

IBM Security Verify Privilege

Privilege DevOps Vault User Guide

2

Table of Contents
Foreword .. 6

Overview ... 7

API ... 7

Quick Links ... 8

Third-Party Downloads ... 8

Quick Start Guide ... 8

Download the CLI Executable for your Operating System .. 8

Initialize the CLI .. 9

CLI Secrets Examples ...11

Creating Users ..14

Local User and Thycotic One User Authentication ..15

Provide Users Access to Secrets ..17

CLI Reference ..19

CLI Command Syntax ..20

Objects ..20

Workflows for Creating or Updating Objects..20

Parameters ...21

Output Modifiers ..22

Encoding and Beautify ..22

Filter ..23

Out ...23

Output Piping ...24

Secret ...24

Commands that Act on Secrets ..24

Examples ..25

User ..30

Understanding Qualified Usernames ...30

Commands that Act on Users ...30

Examples ..31

Group ...34

Commands that Act on Groups ..34

Examples ..34

3

Role ..37

Commands that Act on Roles ...37

Examples ..37

Client ..38

Commands that Act on Clients ...39

Examples ..39

Policy..41

Policy Evaluation ...42

Policy Examples ..43

Admin Policy and Auth Providers ..49

Commands that Act on Policies ...49

Home Vault ..52

Examples ..52

GetByVersion ..55

Authentication ...57

Password ..57

Client Credentials ...57

Third Party Authentication ...57

Profiles ...58

Add a Profile to a Config ...58

See the Config Contents ...58

Using an Alternate Profile for a Specific CLI Action ...58

Authentication: AWS ...58

Authentication: Azure ...63

Authentication Google Cloud Platform (GCP) ..67

Authentication: OIDC ..83

OIDC Providers ...83

Azure AD OIDC Example ...89

Okta Identity Provider Example ...90

Dynamic Secrets ..98

Linking ...98

Search for linked Secrets ...99

AWS Dynamic Secrets .. 100

4

AWS Federate .. 100

AWS Assume Role ... 102

Azure Dynamic Secrets .. 106

Azure Service Principal .. 110

GCP Dynamic Secrets ... 116

Setup .. 117

OAuth Access Token .. 117

Service Account Key .. 119

MySQL Dynamic Secrets ... 121

Privilege DevOps Vault Engine Required .. 121

Dynamic Secret Setup ... 121

Sending a MySQL task to an engine .. 122

Privilege DevOps Vault Engine ... 122

Customer Firewall .. 123

Registering a pool and an engine .. 123

Starting an engine .. 123

Certificate Issuance ... 124

Generate a Signing Certificate ... 124

Register (Import) a Signing Certificate.. 126

Generate and Sign a Leaf Certificate ... 128

Sign a Certificate Given a Certificate Signing Request (CSR) ... 129

SSH Key Issuance ... 131

Adding an SSH public key to a server .. 131

Trusting a group of keys signed by a root key ... 132

Architecture and Security ... 133

Availability.. 134

Business Continuity and Disaster Recovery ... 134

Confidentiality .. 134

Client Authentication ... 134

Integrity Checks ... 135

Personally Identifiable Information (PII) and GDPR .. 135

Audits: ... 137

Logging Format and Transport Protocols supported. .. 137

5

SYSlog .. 137

CEF ... 139

JSON .. 140

Release Notes.. 142

6

Foreword
IBM Security Verify Privilege DevOps Vault (Privilege DevOps Vault) uses the term secret to address a

privileged account. Therefore, the product is also referred to as DevOps Secrets Vault (DSV). Privilege DevOps

Vault is powered by the original product manufacturer, Thycotic. The product documentation contains several

links that can direct to Thycotic's documentation. Also, since Privilege DevOps Vault interoperates with other

cloud providers and development platforms, links to such third parties are also part of the documentation.

7

Overview
IBM Security Verify Privilege DevOps Vault is a high velocity vault that centralizes secrets management,

enforces access, and provides automated logging trails. This cloud-based solution is platform agnostic and

designed to replace hard-coded credentials in applications, micro-services, DevOps tools, and robotic process

automation. This vault ensures IT, DevOps and Security teams the speed and agility needed to stay

competitive without sacrificing security.

IBM Security Verify Privilege DevOps Vault is deployed as an API-as-a Service. Organizations can sign-up and

create their first secrets in minutes with no infrastructure to manage or maintain.

• Command line interface (CLI) for Windows, Mac, and Linux/Unix

• RESTful Application programming interface (API)

• APIaaS offering infinite scalability, high-speed access, and agility with no infrastructure

maintenance

• Automated and searchable logging

• Five-nines availability

• Disaster recovery via multi-region deployment and hot-standby

• Local caching (with the CLI)

• Sandbox tenant available for testing before deployment to production

• Cloud authentication

o Amazon Web Services (AWS)

o Microsoft Azure

o Google Cloud Platform (GCP)

• SDK support

o Java

o Go

o Python

o NET Core

• DevOps Tools Support (Plugins)

o Jenkins

o Terraform

o Kubernetes

o Ansible

• Robotic Process Automation

o UIPath

o Automation Anywhere

o Blue Prism

• SOC II Compliance - report available upon request

API

This documentation is for general IBM Security Verify Privilege DevOps Vault operation and command line

interface (CLI). If you prefer the API, here is the API documentation

https://github.com/thycotic/dsv-sdk-java
https://github.com/thycotic/dsv-sdk-go
https://github.com/thycotic/python-dsv-sdk
https://github.com/thycotic/dsv-netcore-sdk
https://github.com/thycotic/dsv-jenkins-plugin
https://github.com/thycotic/dsv-k8s
https://github.com/thycotic/dsv-k8s
https://github.com/thycotic/dsv-ansible-lookup-plugin
https://github.com/thycotic/uipath-orchestrator-dsv
https://docs.thycotic.com/dsv-extension-automation-anywhere/
https://docs.thycotic.com/dsv-extension-blue-prism/
https://dsv.thycotic.com/api

8

Quick Links

Third-Party Downloads

jq Library for filtering JSON results

Linux pass

Windows Credential Manager

AWS CLI

Azure User Assigned MSI

Quick Start Guide

Download the CLI Executable for your Operating System

Download the Command Line Interface executable files to each of the workstations where you operate IBM

Security Verify Privilege DevOps Vault.

• IBM Security provides Privilege DevOps Vault CLI executables for multiple platforms here.

• Once installed, these CLI executables periodically check the download site for updates and inform

you if an update is available.

Rename the Executable

The executable file name reflects the OS and 32-bit or 64-bit architecture. Rename the executable to dsv or

dsv.exe to simplify command entry.

Place the Executable

Place the executable in the file directory location of your choice and note the path.

Add the Executable Path to the PATH Environment Variable

While not required, adding the location of the executable to your PATH environment variable enables you to

invoke dsv without specifying its path or having to pre-pend .\

• For Windows, press the Windows key and type "edit environment variables". Select the offered item.

o In the Environment Variables dialog, under the System Variables section, select the Path and

click edit.

o Add the path to the dsv executable—for example *C:\Users<name>\ and save.

• For Linux or macOS use export to modify the shell profile file, ~.profile or ~.bash_profile typically, so

that it adds dsv to the PATH on system startup: export PATH=~thycotic/cli:$PATH

https://stedolan.github.io/jq/
https://www.passwordstore.org/
https://support.microsoft.com/en-us/help/4026814/windows-accessing-credential-manager
https://aws.amazon.com/cli/
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview
https://dsv.thycotic.com/downloads

9

Enable Autocomplete

Autocomplete is supported for bash, zsh, and fish shells only.

To turn on autocomplete for the CLI, run dsv -install and restart your shell. Now when you type out the

beginning of a command such as dsv s and hit tab, it fills out the full command to dsv secret

Autocomplete also helps with expanding the secret path on dsv secret read. Put in the beginning of the

path, such as dsv secret read resources and hit tab to get the next part of the path. If there are

multiple matching sub-paths hit tab twice to print out the available options.

For example: typing dsv secret read resources/us-east- and hitting tab twice shows the output of any

secrets below that path. Such as resources/us-east-1/server resources/us-east-2/server.

Initialize the CLI

Required Information

Privilege DevOps Vault CLI initialization presents you with a series of questions and choices. If you are the

initial administrator, that is the person who setup the tenant, then you have the required information from

signing-up. However, if you are not the initial administrator, you need the collect this information from that

person:

• Tenant

• Domain

• local or federated user, and if federated, which authentication provider

• credentials - username or access key, password or secret key as examples

"dsv init"

Begin setup with the dsv init command. This starts a workflow:

dsv init Please enter

tenant name: example

Specify the tenant name IBM Security provided when setting up your organization's account.

NOTE: You need only enter your tenant name, that is, just example not

example.secretsvaultcloud.com, because the domain is set by region and that is covered in the next

question:

 Please choose domain:

(1) secretsvaultcloud.com (default)

(2) secretsvaultcloud.eu

(3) secretsvaultcloud.com.au

Your domain is based on the server location that was chosen during provisioning: United States, European

Union, or Australia/Asia, respectively.

NOTE: In all of these selections with numbered choices, the first choice is marked (default) because that

is the selection if you simply hit "enter" without entering a number.

10

Next, Privilege DevOps Vault prompts you about credential storage.

Please enter store type:

(1) File store (default)

(2) None (no caching)

(3) Pass (linux only)

(4) Windows Credential Manager (windows only)

Select (1) File store (default) to keep the credentials in a configuration file. If you select this, Privilege DevOps

Vault prompts for the storage location.

Select (2) None (no caching) to avoid storing the credentials. With this option active, Privilege DevOps Vault

requires authentication with every command.

Select (3) Pass (linux only) to use Linux pass for encrypted storage.

Select (4) Windows Credential Manager (windows only) to use Windows Credential Manager to store

credentials.

Your next selection concerns the type of authentication.

Please enter auth type:

(1) Password (local user)(default)

(2) Client Credential

(3) Thycotic One (federated)

(4) AWS IAM (federated)

(5) Azure (federated)

(6) GCP (federated)

(7) OIDC (federated)

Select (1) Password (local user) (default) to authenticate by username and password.

Select (2) Client Credential to authenticate by Client ID and Client Secret authentication; this supports use of

Privilege DevOps Vault commands by applications.

Select (3) Thycotic One (federated) to authenticate using IBM Security's access manager.

NOTE: The person who signed up for IBM Security Verify Privilege DevOps Vault is the initial

administrator and is automatically setup using Thycotic One. If this is you, then select this option. This

enables you to reset the password if it is ever lost and/or setup up 2FA if desired. It is up to the

customer to then decide if all other users are local or federated through one the available providers.

Select (4) AWS IAM (federated) to authenticate as a trusted Identity Access Management Role or User.

Select (5) Azure (federated) to authenticate as a trusted Azure Managed Service Identity (MSI).

Select (6) GCP (federated) to authenticate as a trusted Google Service Account.

Select (7) OIDC (federated) to authenticate through Thycotic One to an external IDP using the OIDC protocol.

Next, the initialization process prompts about the cache strategy for Secrets. The choice here depends on

your specific set of concerns around security, network connectivity, performance, and systems availability.

Please enter cache strategy for Secrets:

(1) Never (default)

https://www.passwordstore.org/
https://support.microsoft.com/en-us/help/4026814/windows-accessing-credential-manager

11

(2) Server then cache

(3) Cache then server

(4) Cache then server, but allow expired cache if server unreachable

Note that in this context, server refers to your Privilege DevOps Vault tenant and cache refers to storage on the

local machine with the CLI installed.

Select (1) Never (default) to never cache Secrets. Every credential request requires an API call.

Select (2) Server then cache to make an API call every time, but if not accessible, then the cached Secret is

used.

Select (3) Cache then server to use the cached Secret unless it has expired, in which case an API call is made.

Select (4) Cache then server, but... If the cached Secret has expired, an API call is made for the Secret. If the

API call fails, then use the expired cached Secret.

• Finally, you are prompted for your credentials and authentication provider. For the initial administrator,

they are the username and password that you setup in Thycotic One during the sign-up, with the

username often your email address. The authentication provider is the default, thy-one

• Local users does not need to specify an authentication provider.

Please enter username for tenant "example":

admin@example.com Please enter password:

Thycotic One authentication provider name (default thy-one): thy-one

That completes setup. You can begin using the IBM Security Verify Privilege DevOps Vault Command Line

Interface to create your first secret

CLI Secrets Examples

Create a Secret

Using a file

Here is an example of JSON that could be made a Secret. The JSON is arbitrary, so you can set any number of

fields (key-value pairs).

{
 "host": "server01",

 "username": "administrator",

 "password":

"secretp@ssword" }

To create a Secret, open a text editor and create and save a file (.json) similar to the example above.

Create the Secret and specify the path to its storage location:

12

NOTE: Every Secret correlates uniquely with a specific path that describes the location of the Secret.

The idea here is no different than the concept of a path to a file on a hard drive. Paths are also the

basis for creating policies to determine who (or what) has which rights to those secrets.

Linux:
dsv secret create --path servers:us-east:server01 --data @secret.json

Powershell:

dsv secret create --path servers:us-east:server01 --data '@secret.json'

CMD:
dsv secret create --path servers:us-east:server01 --data @secret.json

Outputs:

 "attributes": null,

 "created": "2019-01-03T23:11:48Z",

 "createdBy": "users:thy-one:admin@example.com",

 "data": {

 "host": "server01",

 "password": "secretp@sssword",

 "username": "administrator"

 },

 "description": "",

 "id": "c5239a6c-422e-4f57-b3a6-5167656af852",

 "lastModified": "2019-01-03T23:11:48Z",

 "lastModifiedBy": "users:thy-one:admin@example.com",

 "path": "servers:us-east:server01",

 "version": "0"
}

Files may also be used to enter attributes --attributes or a description --desc

Direct Command

Instead of using a file, the data can be entered as part of the command:

Linux:

dsv secret create --path servers:us-east:server01 --data

'{"host":"server01","username":"administrator","password":"secretp@sssword"}'

Powershell:

dsv secret create --path servers:us-east:server01 --data

'{\"host\":\"server01\",\"username\":\"administrator\",\"password\":\"secretp@sssword\"}'

CMD:

dsv secret create --path servers:us-east:server01 --data "

{\"host\":\"server01\",\"username\":\"administrator\",\"password\":\"secretp@sssword\"}"

13

Outputs:

{

 "attributes": null,

 "created": "2019-01-03T23:11:48Z",

 "createdBy": "users:thy-one:admin@example.com",

 "data": {

 "host": "server01",

 "password": "secretp@sssword",

 "username": "administrator"

 },

 "description": "",

 "id": "c5239a6c-422e-4f57-b3a6-5167656af852",

 "lastModified": "2019-01-03T23:11:48Z",

 "lastModifiedBy": "users:thy-one:admin@example.com",

 "path": "servers:us-east:server01",

 "version": "0"

}

Retrieve a Secret

To retrieve a Secret use the Secret read command and specify the path to the Secret's storage location.

dsv secret read --path /servers/us-east/server01

Output defaults to JSON:

 "attributes": null,

 "created": "2019-11-08T15:46:14Z",

 "createdBy": "users:thy-one:admin@example.com",

 "data": {

 "host": "server01",

 "password": "secretp@ssword",

 "username": "administrator"

 },

 "description": "",

 "id": "c5239a6c-422e-4f57-b3a6-5167656af852",

 "lastModified": "2020-01-17T15:38:49Z",

 "lastModifiedBy": "users:thy-one:admin@example.com",

 "path": "servers:us-east:server01",

 "version":

"0" }

If you like the output to be in YAML:

dsv secret read --path /servers/us-east/server01 -e yaml

Outputs:

attributes: null created:

"2019-11-08T15:46:14Z"

createdBy: users:thy-

one:admin@example.com data:

14

host: server01 password:

secretp@ssword username:

administrator description: ""

id: c5239a6c-422e-4f57-b3a6-

5167656af852 lastModified: "2020-01-

17T15:38:49Z" lastModifiedBy:

users:thy-one:admin@example.com

path: servers:us-east:server01

version: "0"

Filter JSON Command Output for Specific Fields

When you need to locate a specific field in a JSON output, use a JSON filter. An example use case is writing

scripts that need to obtain a password but lack the capacity to efficiently parse JSON.

dsv secret read --path /servers/us-east/server01 -bf data.password secretp@ssword

Separately Update Attributes, Data, and Description

Using the --data, --attributes, and --desc flags, respectively, you can update a Secret's data, attributes,

and description separately. For example:

dsv secret update servers/us-east/server01 --data '{"host": "server01", "password":

"badpassword","username": "admin"}' --desc 'update description' --attributes '{"attr":

"add one"}'

{

 "attributes": {

 "attr": "add one"

 },

 "created": "2019-11-08T15:46:14Z",

 "createdBy": "users:thy-one:admin@example.com",

 "data": {

 "host": "server01",

 "password": "badpassword",

 "username": "admin"

 },

 "description": "update description",

 "id": "4348e941-f945-460d-98e8-2ab659362f51",

 "lastModified": "2020-02-22T20:48:05Z",

 "lastModifiedBy": "users:thy-one:admin@example.com",

 "path": "servers:us-east:server01",

 "version": "1"
}

Creating Users

With the first Secrets created, the next step is to create Users or Roles that access those secrets.

For this quick-start guide, as the initial admin, we create two users - a local User and a Thycotic One User.

First, a local Privilege DevOps Vault User, designated with their email address local@example.com is created.

For local users, an email address is not required.

15

thy user create --username local@example.com --password BadP@ssword

Second, a Thycotic One User is created in Privilege DevOps Vault. Here a valid email address is required as

the username.

thy user create --username thyoneuser@example.com --provider thy-one

The user receives an email with a link to both confirm their email address and setup a password.

Once the Thycotic One User clicks that link and sets a password, is ready to authenticate to Privilege DevOps

Vault.

Local User and Thycotic One User Authentication

The local and Thycotic One users can then, on their own machines, download the CLI and start the thy

init process. The admin must provide the local user with their password, and both of them with the

Privilege DevOps Vault tenant name and domain (region). The process is here Initializing the CLI for the

first time

When they get to the Please enter auth type:

Please enter auth type:

(1) Password (local user)(default)

(2) Client Credential

(3) Thycotic One (federated)

(4) AWS IAM (federated)

(5) Azure (federated)

(6) GCP (federated)

(7) OIDC (federated)

The local user selects (1) and enter their username and password. The Thycotic One user selects (3) and enter

their email, Thycotic One password, and for the provider name simply hit enter to default to thy-one.

The local user must change their password immediately as a best pratice because the admin knows it and had

to transfer it to them somehow. The command is: thy auth changepassword

At this point, the users are created and able to authenticate to Privilege DevOps Vault (they can confirm with

the command thy auth and get a token), however, they do not have permission to access anything yet

because Privilege DevOps Vault defaults to deny all. In the next step, the admin creates policies granting

permission to these users.

16

17

Provide Users Access to Secrets

Assuming we have two secrets, each located at:

servers:us-east:server01 and servers:us-east:production:server01

And two users:

local@example.com and thycoticoneuser@example.com

Our goal is to create policy to allow:

• both users access to servers:us-east:server01

• local@example.com to have access to servers:us-east:production:server01

• thycoticoneuser@example.com to be denied access to servers:us-east:production:server01

Create a Group

Optionally, we can put these Users in a Group with two commands. The first command creates the group:

dsv group create --groupname firstgroup

The second command puts the Users in the Group
dsv group add-members --group-name firstgroup --data

'{"memberNames":["local@example.com","thyone:thycoticoneuser@example.com"]}'

Create Policy for Allow Access

The admin has to create a policy for the Group to get access to the Secrets. Here is a sample CLI command:

dsv policy create --path secrets:servers:us-east --actions '<.*>' --desc 'Allow Policy' --

subjects groups:firstgroup --effect allow

Where path starts with secrets: followed by the secret path.

NOTE: That resources are not specified separately, but they default to the path and everything below it, so

in this case secrets:servers:us-east:<.*>

actions is a wildcard, so full create, read, update, delete, list, assign is allowed.

subjects are the Users that are getting access to the secrets.

Note: The local user does not need a prefix, but any federated users, in this case Thycotic One, refers

to the name of the auth provider. The default auth-provider name for Thycotic One in Privilege DevOps

Vault is thy-one

effect is allow

The resulting policy looks like this if you read it using the command dsv policy read secrets:servers:us-

east -e yaml

path: secrets:servers:us-east

permissionDocument:

- actions:

- <.*> conditions: {} description: Allow Policy

 effect: allow

id:

18

xxxxxxxxxxxxxxxxxx

xx

 meta: null

resources: -

secrets:servers:us-

east:<.*> subjects:

- groups:firstgroup

version: "0"

This policy now enables both Users (local@example.com and thycoticoneuser@example.com) to gain full

access to all secrets located at the path servers:us-east and below.

Create Policy for Deny Access

If we decided that the thycoticoneuser@example.com must no longer have access to the secrets at

servers:us-east:production we can write another policy to deny that access. The command looks like this:

dsv policy create --path secrets:servers:us-east:production --actions '<.*>' --desc 'Deny

Policy' --subjects 'users:<thyone:thycoticoneuser@example.com>' --effect deny

The resulting policy looks like this if you read it using the command dsv policy read secrets:servers:us-

east:production -e yaml

path: secrets:servers:us-east:production

permissionDocument:

- actions:

- <.*> conditions: {} description:

Deny Policy

 effect: deny

id:

xxxxxxxxxxxxxxxxxx

xx

 meta: null resources: -

secrets:servers:us-

east:production:<.*>

subjects:

- users:<thy-

one:thycoticoneuser@example.com>versio

n: "0"

Now local@example.com has access to everything at servers:us-east and below, including

servers:us-east:production. However, thycoticoneuser@example.com only has access to the

secrets at servers:us-east and not at servers:us-east:production This is the end of the quick-

start guide, but for more on policies see CLI Reference/Policy in this documentation.

19

CLI Reference

Organized by the type of command object, these articles use task-oriented examples to show you how to use

IBM Security Verify Privilege DevOps Vault.

CLI commands commonly act on these object types:

• Secret

• User

• Policy

• Group

• Role

• Client

• Config

This Reference complements the separately maintained IBM Security Verify Privilege DevOps Vault API

Reference.

https://dsv.thycotic.com/api
https://dsv.thycotic.com/api

20

CLI Command Syntax

With few exceptions, CLI commands follow a simple syntax:

dsv (object) (command) (flags and parameters)

For example, in dsv role create, role is the object of the command create. Some parameters and flags

apply only to some commands. Privilege DevOps Vault also includes output modifiers for filtering and

formatting responses to commands.

Objects

Object Syntax Definition

auth auth authenticate to the vault or display the current access token

cli-

config
cli-config manage the CLI authentication file

client
client (<client-id> * --

client-id)
manage client credentials for application vault access

config config
manage the top level configuration document for the admin policy

and authentication providers

eval eval check the value of a command line flag or variable

group
group (<group-name> * --

groupname)

manage collections of Users uniformly by placing them in a

managed Group

init cli-config init or init initialize Privilege DevOps Vault on first run

pki pki manage certificate issuance

policy
policy (<path> * --path

* -r)

manage policies on permissions for Secrets, Roles, Users, and other

entities in the vault

role
role (<name> * --name *

-n)
manage Roles

secret
secret (<path> * --path

* -r)
create, update, and retrieve Secrets from the vault

siem siem manage endpoints for pushing audit logs

user
user (<username> * --

username)
manage Users

whoami whoami display the currently authenticated User

Workflows for Creating or Updating Objects

For many objects, if the command is create or update, then adding no flags starts a workflow.

A workflow is a series of questions that guides the user through the creation or update process. Workflow

supported objects include:

• dsv init (This command is only done with a workflow)

21

• dsv config auth-provider

• dsv policy

• dsv siem

• dsv pki

• dsv user

• dsv group

• dsv role

If the object doesn't support a workflow, then the flag --help is assumed.

Parameters

Parameters can be:

• strings or numerics

• Boolean

• JSON data

• file path

Strings

Most commands take strings as parameters, quoted or unquoted. For example, the username uses quotes

but the password does not. Both are valid string parameter values.

dsv user create --username "admin1" --password BadP@ssword

If a string value has spaces, it must be wrapped in quotes. For example, when creating a Role, the

description must be quoted.

dsv role create --name test-role --desc "a test role"

Boolean

Some parameters are simple Boolean flags controlling whether or not something applies, for example,

whether to beautify the JSON output of a Secret read.

dsv secret read --path example/bash-json --beautify

JSON Data and OS-Specific Syntax

In some cases the parameter expects JSON. For example, the --data parameter on a dsv secret create

command expects JSON data.

JSON parameter formatting depends on the OS and shell program.

• Linux: wrap the JSON in a single quote (')

• PowerShell: wrap the JSON in a single quote (') and inside the JSON escape each double

quote (") with a backslash (\)

• cmd.exe: wrap the JSON in a double quote (") and inside the JSON escape each double

quote (") with a backslash (\)

22

dsv secret create --path example/bash-json --data '{"password":"bash-

secret"}'

PS C:> dsv secret create --path example/ps-json --data

'{\"password\":\"powershell-secret\"}'

C:> dsv secret create --path example/cmd-json --data "{\"password\":\"cmd-

secret\"}"

File Path and OS-Specific Syntax

Passing JSON as a parameter remains practical only as long as the JSON remains short. Instead of passing

JSON as a parameter, you can pass it as a file, using the @ prefix to specify the path to the file.

For instance, here the command is to create a Secret using a local file named secret.json. The examples show

the minor variations among operating systems and shells.

dsv secret create --path example/bash-json --data @secret.json

PS C:> dsv secret create --path example/ps-json --data '@secret.json'

C:> dsv secret create --path example/cmd-json --data @secret.json

For passing a file as data, only Powershell requires the file path and name to be wrapped in quote marks, in

this case single-quote marks.

Output Modifiers

Privilege DevOps Vault offers global flags that combine with most commands to format or redirect output.

• --encoding, -e specify the output format as either JSON or YAML

• --beautify, -b beautify JSON or YAML output

• --filter, -f filter to output only a specific JSON attribute; this feature uses the jq library

• --out, -o control the output destination; valid values: stdout, clip, and file:[file-name], with stdout the

default

Encoding and Beautify

dsv secret read --path /servers/us- east/server01 -be yaml

Outputs:

attributes: null

data: host:

server01

password:

Secretp@ssword

username:

administrator

id: c5239a6c-422e-4f57-b3a6-

5167656af852 path: servers:us-

east:server01

https://stedolan.github.io/jq/

23

Filter

The filter modifier relies on a lightweight, flexible command line JSON processor, the jq library. Visit the JQ

GitHub repo to learn more about how to use JQ.

The following code block illustrates:

dsv secret read --path resources/server01/mysql -b

Outputs:

{

 "attributes": {

 "tag1": "this is a tag"

 },

 "created": "2019-07-17T21:33:35Z",

 "createdBy": "users:ben",

 "data": {

 "foo": ["bar2", "blah"],

 "password": "root-password",

 "username": "blah"

 },

 "id": "59f2ab72-7f51-4f0e-8ffd-35cb94b818fb",

 "lastModified": "2019-07-17T21:36:01Z",

 "lastModifiedBy": "users:ben",

 "path": "resources:server01:mysql",

 "version": "1"

} dsv secret read --path resources/server01/mysql

--filter data.password

Outputs:

root-password

The command without the filter produced the entire Secret, while the command with the filter read out only

the password value.

Out

The -o modifier allows output to be redirected to a file.

dsv secret read --path /servers/us-east/server01 -b -o file:Secret.json \$ nano

Secret.json

Contents of Secret.json:

{

 "attributes": null,

 "data": {

 "host": "server01",

 "password": "Secretp@ssword",

 "username": "administrator"

https://stedolan.github.io/jq/

24

 },

 "id": "c5239a6c-422e-4f57-b3a6-5167656af852",

 "path": "servers:us-

east:server01"

}

Using -o clip puts the command output on the OS clipboard.

Output Piping

Output piping takes advantage of a common coding practice in which the value of a parameter passed to a

command is itself a command or set of commands. When the outer command receiving the parameter

executes, it evaluates the parameter, which requires it to run the command that was passed as a parameter.

The output of that command becomes the parameter value for the outer command, which then continues to

execute.

As an example, you can save any Privilege DevOps Vault CLI output into an environment variable by piping the

output from the standard output into an environment variable.

export MYSecret=$(dsv secret read --path Secret1)

$MYSecret=dsv secret read --path Secret1

Both of the preceding create an environment variable named MYSecret that store the Secret data. To view the

data, use:

echo $MYSecret

Secret

Secrets are sensitive data protected in your vault. Many Secrets relate to authentication—such as passwords,

SSH keys, and SSL certificates— but Secrets can be anything represented as a file on computer storage media.

When Privilege DevOps Vault has possession of Secrets outside the vault (that is, the CLI or API has

reproduced a Secret anywhere outside the vault), it keeps the Secrets encrypted and locked down in

conformance to the specific permissions and policies in the config.

Commands that Act on Secrets

Command Action

bustcache clear the Secret cache

create create a Secret in the vault

search search for Secrets

describe view Secret metadata only

read view a Secret's data

25

edit modify a Secret using the OS's default command-line editor, such as VI, nano, or Notepad

update

modify a Secret, with --data, --attributes and --desc flags to modify selected portions

only, and a Boolean --overwrite flag to control whether the --data flag's content

overwrites or merges with extant data object fields

delete delete a Secret

restore restore a Secret (if within 72 hours of deletion)

rollback for a Secret that has had more than one version, roll back to an earlier version

Examples

Bustcache

The bustcache command clears the local cache, if present.

dsv secret bustcache

Create

The create command uses the --data flag to pass data into the secret. This flag accepts JSON entered directly

into the command line or by a path (absolute or relative) to a JSON file.

Bash examples

dsv secret create --path us-east/server02 --data

'{"username":"administrator","password":"bash-secret"}'

dsv secret create --path us-east/server02 --data @/home/user/secret.json

dsv secret create --path us-east/server02 --data @../secret.json

Powershell examples

PS C:> dsv secret create --path us-east/server02 --data

'{\"username\":\"administrator\",\"password\":\"powershell-secret\"}'

dsv secret create --path us-east/server02 --data '@/home/user/secret.json'

dsv secret create --path us-east/server02 --data '@../secret.json'

CMD Examples

PS C:> dsv secret create --path us-east/server02 --data

"{\"username\":\"administrator\",\"password\":\"cmd-secret\"}"

dsv home secret --path us-east/server02 --data @/home/user/secret.json

dsv home secret --path us-east/server02 --data @../secret.json

The --attributes flag can be used to add user-defined metadata in the same way that data is added.

The --desc flag can be used to add a simple string. If the string has any spaces, then it must be enclosed in

double quotes.

As a Bash example:

26

dsv secret create --path us-east/server02 --attributes '{"priority":"high"}'

--desc "Covert Secret" --data '{"username":"administrator","password":"bash-

secret"}'

Update

update is similar to create but operates on an existing secret. When using update for other commands like

policy or auth-providers, it is an all or nothing change. ie, for those if you want to change only one field, you

have to update all of them. However, for Secrets, it is possible to update only one field and not change the

others.

If you have this secret:

{

 "attributes": {

 "attr": "add one"

 },

 "created": "2019-09-20T16:12:57Z",

 "createdBy": "users:thy-one:admin@example.com",

 "data": {

 "host": "server01",

"password":

"badpassword"

 },

 "description": "update description",

 "id": "c893b4f8-9425-4fa4-acbf-2806d6f1fa82",

 "lastModified": "2020-01-17T15:43:27Z",

 "lastModifiedBy": "users:thy-one:admin@example.com",

 "path": "servers:us-east:server01",

 "version":

"12" }

This Bash command only changes the value for host in the data section.

dsv secret update servers/us-east/server01 --data '{\"host\":\"unknown\"}'

{

 "attributes": {

 "attr": "add one"

 },

 "created": "2019-09-20T16:12:57Z",

 "createdBy": "users:thy-one:admin@example.com",

 "data": {

 "host": "unknown",

"password":

"badpassword"

 },

 "description": "update description",

 "id": "c893b4f8-9425-4fa4-acbf-2806d6f1fa82",

 "lastModified": "2020-08-03T17:58:29Z",

 "lastModifiedBy": "users:thy-one:admin@example.com",

 "path": "servers:us-east:server01",

 "version": "13"

}

27

The flag --overwrite, if added to the above command wipes-out the description and any other data KV pairs.

So this flag requires caution.

 dsv secret update servers/us-east/server01 --data '{\"host\":\"unknown\"}' --overwrite

Search

You can search for Secrets by path or attribute

Some examples

dsv secret search server

dsv secret search --query server

dsv secret search -q aws:base:secret --search-links

dsv secret search --query

aws --search-field attributes.type

dsv secret search --query 900 --search-field attributes.ttl --search-

type number

dsv secret search --query production --search-field attributes.stage

--search-comparison equal

flags

--query, -q Query of secrets to fetch (required)

--limit Set the maximum number of search results that are displayed per page (cursor)

--cursor Accepts the element used to get the next page of results

--search-comparison Specify the operator for advanced field searching, can be 'contains', 'equal', or

'begins_with' Defaults to 'contains' (optional)

--search-field Advanced search on a secret field such as 'attribute.type' or 'description'. Defaults to 'path'.

(optional)

--search-links Find secrets that link to the secret path in the query (optional)

--search-type Specify the value type for advanced field searching, can be 'number' or 'string'. Defaults to

'string' (optional)

For a search where there are more results than returned in the first set, the API returns a cursor—a large piece

of text. You pass that back to get the next set of results.

For example, if the command dsv secret search -q admin --limit 10 matched 12 Secrets with admin in

the name, the CLI returns the first 10 plus a cursor. To obtain the next two results, use this command: dsv
secret search -q admin --limit 10 --cursor AFSDFSD...DKFJLSDJ=

Cursors may be lengthy:
dsv secret search -q resources --limit 10 --cursor

eyJpZCI6ImEwOTFjOWIzLWE4MmQtNGRiYy1hYThiLTYxMDY0NDZhZjA3MSIsInBhdGgiOiIiLCJ2ZXJzaW9uIjoidi

1jdXJyZW50IiwidHlwZSI6IiIsImxhdGVzdC I6MH0=

28

Describe

Use describe to show only metadata; you do not see the actual Secret value.

dsv secret describe --path us-east/server02

Read

The read command shows both the Secret data and metadata.

dsv secret read --path us-east/server02

Flags

--encoding or -e converts the output to JSON (default) or YAML.

--out or -o can send the read response to stdout (default), the clipboard (clip), or a file (file:)

 --filter or -f filters to a specific KV pair. So data.password only outputs the password value.

This example sends the password value only to the clipboard

. dsv secret read secret2 -o clip -f data.password

TIP: Although the -o flag allows redirection of output to files, it does not support directly assigning

the output to an environmental variable. However, you can use piping to achieve that outcome.

Piping refers to passing to a command a parameter value that is itself a command, or assigning to a variable a

value that is a command. In effect, piping means assigning as a value the means to obtain the value, rather

than the value itself.

 export TEST=\$(dsv secret read --path us-east/server02)

or
\$TEST=dsv secret read --path us-east/server02

Both examples use piping to assign to the variable TEST the value contained in the Secret, by making the

secret read command a parameter within a larger command or statement.

Once stored as the value of TEST, the data remain easily accessible:

 echo \$TEST

As a well established computing technique of long standing, piping is not limited to Secrets. You can use

piping to store any output—search results, configuration states, and more.

Edit

Use edit to open the Secret data in the default text editor for bash, such as vi, nano, or Notepad.

• Saving in the editor updates the Secret in the vault, except in the case of Notepad, in which case the

update happens when you exit Notepad. Your interim saves are to the working copy.

dsv secret edit --path us-east/server02

Update

Use update to change a Secret's data. The command has several flags pertinent to Secrets:

29

• the --data flag allows you to only update the data portion of the Secret

o the Boolean --overwrite flag controls whether the --data flag's content

overwrites or merges with extant data object fields

o the data object accepts as many fields as you choose

• the --attributes flag allows you to only update the attributes of the

Secret

• the --desc flag allows you to only update the description of the Secret

The --overwrite flag applies only at the field level; it does not allow you to merge new attributes of a data

field into existing attributes of that field, only to merge new data fields into the extant set of data fields.

As with create, for the value of the --data parameter update accepts JSON entered directly at the

command line, or the path to a JSON file.

dsv secret update --path us-east/server02 --data {\\"password\\":\\"Secret2\\"} or

dsv secret update --path us-east/server02 --data @secret.json

Delete

To delete a Secret simply specify the path.

dsv secret delete --path us-east/server02

When you delete a Secret, it is no longer usable. However, with the soft delete capacity of Privilege DevOps

Vault, you have 72 hours to use the restore command to undelete the Secret. After 72 hours, the Secret is no

longer retrievable.

If you want to perform a hard delete, precluding any restore operation, you can use the delete command's --

force flag.

Restore

Up to 72 hours after you delete a Secret (but not if you hard deleted it using the --force flag), you can

restore it:

dsv secret restore --path us-east/server02

Do not confuse restore with rollback because the two have no relation. While restore undeletes a deleted

Secret, restoring it to the condition it was in at the time of its deletion, rollback does not operate on deleted

Secrets. It simply sets a Secret back to an earlier version of itself.

Rollback

A Secret that has had more than one version can be rolled back to an earlier version of itself:

dsv secret rollback --path us-east/server02 --version 2

30

If you do not include the --version flag, the Secret rolls back to the last version before the present version.

By serially issuing the rollback command without a version number, you could step back through the versions

one at a time.

Note that the rollback is non-destructive; technically, the command does not roll back so much as retrieve the

indicated version and duplicate it as a new version, which becomes the current version.

• If you used the --version flag to jump back three versions, you do not lose those three versions; they

remain in place, with the version from three back now being replicated into a new version.

It is important to distinguish between the rollback feature, which relates to versions, and the restore

feature, which relates to the delete feature and has nothing to do with versions.

A deleted Secret can be restored up to 72 hours after it has been deleted (if it was not hard deleted using the

--force flag), after which it cannot be restored. Rollback does not change that in any way, because it cannot

operate on a deleted Secret.

If a deleted Secret is restored, Rollback can operate on it just as it makes with any other Secret.

User

For Privilege DevOps Vault, the term "user" refers to a security principal in the vault that can authenticate

locally by a username and password or can authenticate through a federated provider such as Amazon Web

Services or Amazon Resource Names.

Understanding Qualified Usernames

When a User or Role ties to a third-party provider, the name is the fully qualified name to help distinguish

potentially duplicate User or Role names across different systems.

The name qualifier format provider name:local name means, for example, that the test-admin User has the

username aws-dev:test-admin while the local User with username test-admin does not have a qualifier, so its

username is just test-admin.

Commands that Act on Users

Command Action

changepassword change a local User's password

create create a User in the vault

search find Users by username

read read a User's details

delete delete a User from the vault

restore
restore a deleted User (if within 72 hours of deletion and not hard

deleted)

31

Examples

Changepassword

The change-password command, effective for local Users only, initiates an elemental password change

sequence:

dsv auth change-password

Please enter your current password:

Please enter the new password:

Please enter the new password (confirm):

With a local User, correct entry for the current password prompt, and valid, matching responses to the first

and second prompts for the new password, the response is a message that the password has been changed.

A Thycotic One Federated User must instead visit Thycotic One to change their password. Attempting to use

the changepassword command within the CLI fails.

Create

The create command takes several --parameters that spec foundational aspects of the User record.

Parameter Content

--username
local username; required; supports local authentication by username and password;

need not match that used by a federated authentication provider (if present)

--password password for local authentication by username and password

--provider
matches the name attribute of the authentication provider in the settings section of the

config

--external-id
identifier recognized by third-party federated authentication providers, such as AWS or

ARN

Create a local User with username test-admin and password secret-password:

dsv user create --username test-admin --password secret-password

Create a User account for login by the AWS IAM test-admin User, with the account tied to an aws-dev

account in the configuration:

dsv user create --username test-admin --external-id arn:aws:iam::00000000000:user/test-

admin --provider aws-dev

32

Search

The search command locates Users by searching on their usernames. It accepts as a --query parameter the

username you provide, and searches for records with a matching username.

dsv user search --query test-admin

Output:

[

 {

 "externalId": "arn:aws:iam::00000000000:user/test-admin",

 "provider": "aws-dev",

 "qualifier": "bgno6etchfrc72getij0",

 "userId": "dd632a7f-419f-400b-9e36-f67603bf934b",

 "userName": "test-admin"

 },

 {

 "externalId": "",

 "provider": "",

 "userId": "8be917b3-9577-4dba-b39f-b531f27c1caa",

 "userName": "test-admin"

 }

]

Read

The read command retrieves and displays information without changing anything.

Provide a fully qualified username and read the User's details:

dsv user read --username aws-dev:test-admin

Provide a full local username and read the User's details:

dsv user get --username test-admin

Delete

The delete command removes records of both local Users and Users associated with third-party

authentication providers. In both cases, you must provide the fully qualified username.

Delete a third-party User identified by a fully qualified name:

dsv user delete --username aws-dev:test-admin

Delete a local User identified by the full local username:

dsv user delete --username test-admin

33

When you delete a User, it is no longer usable. However, with the soft delete capacity of Privilege DevOps

Vault, you have 72 hours to use the restore command to undelete the User. After 72 hours, the User is no

longer retrievable.

If you want to perform a hard delete, precluding any restore operation, you can use the delete command's --

force flag.

Restore

Up to 72 hours after you delete a User (but not if you hard deleted it using the --force flag), you can restore

it:

dsv user restore --username test-admin

34

Group

A Group facilitate the application of the same policies to all members of a given set of Users.

Commands that Act on Groups

Command Action

create create a Group in the vault

add-members add members to a Group

read read a Group’s details

update update a Group

delete-members remove members from a Group

delete delete a Group

restore restore a Group (if within 72 hours of deletion and not hard deleted)

Examples

Create

This example command creates a Group named admins from a file data.json containing {"groupName":

"admins"} (or same with singlequote marks, for Powershell) and located in the tmp folder:

dsv group create --data @/tmp/data.json

{

 "groupName": "admins",

 "id": "2ce6754d-afbc-43a9-bfd4-3b7ec61170a0",

 "members": null,

 "metaData":

null }

This example creates a Group without referencing a file:

dsv group create -data {"groupName": "admins"}

{

 "groupName": "admins",

 "id": "2ce6754d-afbc-43a9-bfd4-3b7ec61170a0",

 "members": null,

 "metaData":

null }

Note that in Powershell, single quotes are required and double quotes escaped, like this:

dsv group create --data '{\"groupName\": \"admins\"}'

35

Find Group Membership

To see what Groups the user Billy belongs to, use:

dsv user groups --username billy

{

 "groups": [

 {

 "groupName": "admins"

 }

],

 "name": "billy"

}

Add-Members

Add members to a Group similarly to this example, wherein the file newmember.json contains:

{"memberNames": ["billy",”larry’]}

dsv group add-members --group-name admins --data '@/tmp/newmember.json

{

 "memberNames": ["billy", "larry"] }

Read

This example demonstrates how to read a Group:

dsv group read --group-name admins

{

 "groupName": "admins",

 "id": "2dc756d6-ba71-44e9-94e9-f822e0f7ca3f",

 "members": ["larry"],

"metaData": null

}

Update | Assign Group to Policy

This example assigns the admins Group to an existing policy at the path secrets:servers:us-west:

 dsv policy update --actions "<.*>" --subjects groups:admins --path secrets/servers/us-

west

Note that you can designate paths with either of the colon : or forward slash / characters.

Delete-Members

To remove members from a Group, follow this example, wherein deletemembers.json contains:

{"memberNames": ["billy"]}

dsv group delete-members --group-name admins --data @/tmp/deletemembers.json <no

response>

36

Note that this does not delete the user objects that were members. It simply makes those user objects no

longer members of the Group.

 Delete

To delete a Group, follow this example:

dsv group delete --group-name admins <no response>

When you delete a Group, it is no longer usable. However, with the soft delete capacity of Privilege DevOps

Vault, you have 72 hours to use the restore command to undelete the Group. After 72 hours, the Group is no

longer retrievable.

If you want to perform a hard delete, precluding any restore operation, you can use the delete command’s --

force flag.

Restore

Up to 72 hours after you delete a Group (but not if you hard deleted it using the --force flag), you can

restore it:
dsv group restore --group-name admins

37

Role

With Privilege DevOps Vault, the term “role” describes a security principal in the vault that ties to third-party

providers or client credentials for granting permissions.

Commands that Act on Roles

Command Action

create create a Role in the vault

search find Roles by Role name

read read a Role’s details

update upload a superseding Role

delete delete a Role from the vault

restore restore a deleted Role to the Vault (if within 72 hours of deletion and not hard deleted)

Examples

Create

The create command takes several --parameters that spec key aspects of the Role record.

Parameter Content

--desc description of the Role

--name name of the Role

--provider
matches the name attribute of the authentication provider in the settings section of the

config

--external-id
identifier recognized by third-party federated authentication providers, such as AWS

or ARN

Create a local Role with the name _test-role_:

 dsv role create --name test-role

Search

The search command locates Roles by searching on their Role names. It accepts as a --query parameter the

Role name you provide, and searches for records with a matching Role name.

Search for a Role named _dev-admin_:

38

 dsv role search --query dev-admin

Or simply: dsv role search devadmin

You can also specify the maximum number of search results per page (cursor) and a cursor to get the next

batch of results.

dsv role search --query us-east/server02 --limit 2 --cursor

eyJpZCI6ImZmZjZjODUxTJ2ZXJzaW9uIjo50IiwidHiJ9

Read

The read command retrieves and displays information without changing anything.

Provide a Role name and read the Role’s details in beautified form:

dsv role read --name test-role -b

Update

Use update to change a Role’s data.

Note that update rewrites the entire set of Role data, even if only a single field has changed.

Provide a Role name and update the Role to replace the description field’s value:

 dsv role update --name test-role --desc "a new description"

Delete

The delete command removes Roles.

Provide a Role name and delete the Role:

dsv role delete --name test-role

When you delete a Role, it is no longer usable. However, with the soft delete capacity of Privilege DevOps

Vault, you have 72 hours to use the restore command to undelete the Role. After 72 hours, the Role is no

longer retrievable.

If you want to perform a hard delete, precluding any restore operation, you can use the delete command’s --

force flag.

Restore

Up to 72 hours after you delete a Role (but not if you hard deleted it using the --force flag), you can restore

it:

dsv role restore --name test-role

Client

Client credentials enable applications to authenticate as the Role assigned to the client record.

39

Commands that Act on Clients

Command Action

create create a User in the vault

search find clients by Role name

read read a client’s details

delete delete a User from the vault

Examples

Create

The create command accepts as its --role parameter a fully qualified Role name, and creates a client

credential assigned to that Role.

dsv client create --role app-role

The output includes a clientId and clientSecret suitable for use during CLI installation, or within REST calls to

authenticate as the Role assigned to the clientId.

{

"clientId": "a59d37bf-4028-4eb9-9df4-6f1fea7d9298",

"clientSecret": "rV7l8l77DDwTLkdzWkL18UF9blycz3r9yfRhQTYICFc",

"role": "app-role"

}

NOTE: The client Secret is available only when you create the client. If the Secret is lost, delete the client

and create a new one.

Search

The search command accepts as its --query parameter the name of a Role, and searches for clients having

that Role.

dsv client search --query dev-role or dsv client search dev-role

Read

The read command accepts a client ID as a parameter and returns the details for the given client. As with most

commands, remember that you can apply flags to beautify, redirect, or reformat the returned material.

 dsv client read --client-id a59d37bf-4028-4eb9-9df4-6f1fea7d9298

Delete

The delete command accepts a client ID as a parameter and deletes from the vault the indicated client.

dsv client delete --client-id a59d37bf-4028-4eb9-9df4-6f1fea7d9298

40

When you delete a Client, it is no longer usable. However, with the soft delete capacity of Privilege DevOps

Vault, you have 72 hours to use the restore command to undelete the Client. After 72 hours, the Client is no

longer retrievable.

If you want to perform a hard delete, precluding any restore operation, you can use the delete command’s --

force flag.

Bootstrapping

There are times when machines or applications require access to Privilege DevOps Vault to get started, but

you can't (or don't want) to hardcode the client secret. In this case, we can create the client ID and get a one-

time use URL. When the URL is accessed, then the corresponding client secret is created and returned. The

URL is no longer valid after the initial use, so if the intended machine or application gets an error "url already

used" then there must be an alarm to investigate.

First create the Client ID and URL:

dsv client create --role <role> --url true --url-ttl <ttl in seconds>

Where "role" is a Role created earlier and is attached to a Policy to provide the proper peermissions. "--url" is

the flag that tells Privilege DevOps Vault to create a one-time use URL instead of a Client Secret right now. "--

url-ttl" is the time to live of the URL in sseconds. If it is not accessed in that timeframe, then it becomes

invalid.

The result looks something like this:

"clientId": "5f1761dd-95ac-479f-a386-f9c379055b04",

"created": "2020-09-29T13:39:31Z",

"createdBy": "users:admin@example.com",

"id": "2f375a20-a670-4843-8b78-502649bc668e",

"role": "bootstraptest",

"url": true,

"urlPath": "https://company.secrestvaultcloud.com/v1/clients/bootstrap/5f1761dd-95ac-479f-

a386-f9c379055b04",

"urlTTL": 3600

Then the machine or application can access that urlpath for the Client Secret. For Example, using CURL (or

Invoke-RestMethod for Powershell):
curl https://company.secrestvaultcloud.com/v1/clients/bootstrap/5f1761dd-95ac-479f-a386-

f9c379055b04

With a result containing the Client Secret:

"id":"2f375a20-a670-4843-8b78-502649bc668e",

"clientId":"5f1761dd-95ac-479f-a386-f9c379055b04",

"clientSecret":"r_jqAZz6zs_Toqidv-Paz8wWe9OoP9HyjzRan7t7bc4",

"role":"bootstraptest",

"url":true,

"accessed":"2020-09-29T13:45:21Z",

"created":"2020-09-29T13:39:31Z",

https://company.secrestvaultcloud.com/v1/clients/bootstrap/5f1761dd-95ac-479f-a386-f9c379055b04
https://company.secrestvaultcloud.com/v1/clients/bootstrap/5f1761dd-95ac-479f-a386-f9c379055b04

41

"createdBy":"users:admin@example.com"

If the URL is accessed a second time, then the response contains: "code":400,"message":"url has
already used"

Policy

Policies control access to resources and authorization to act on resources, such as to change them, via

permissions. IBM Security Verify Privilege DevOps Vault permissions are foundational for proper operation

and security.

To get a json encoded list of all Policies, use: dsv policy search

You can add a query item to search Policies by path:

dsv policy search secrets/database or dsv policy search --query secrets/databases

A typical Policy looks like this:

created: '2019-09-24T18:12:26Z'

createdBy: users:thy-

one:admin@example.com id:

xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx lastModified: '2019-

09-24T20:13:53Z' lastModifiedBy:

users:thy-one:admin@example.com

path: secrets:servers:us-west

permissionDocument:

- actions:

- read conditions: {}

description: ''

effect: allow id:

xxxxxxxxxxxxxxxxxxxx

meta: resources:

- secrets:servers:us-

west:<.*> subjects:

- groups:west

adminsversion: '5'

A policy contains a list of permissions which define access to resource paths. The policy itself has a top-level

path which is the identifier of the policy as well. The policy path is used to validate the resource paths in the

permission documents. This allows administrators to delegate user ownership of policies without allowing

self-elevation through modifying the policy to a higher level path.

For example, the policy above has a path of secrets:servers:us-west. Permissions can be created for

resources paths like

secrets:servers:us-west, secrets:servers:us-west:<.*>, or secrets:servers:us-west:prod:<.*>. A

permission document cannot be created on the policy to allow users to manage users, that is with a resource

path of users:<*>. Because the policy path must be the root of any resource paths in its permission

documents.

42

The one exception is policy delegation. An admin can create a policy and add a resource path for

config:policies:secrets:servers:us-west to allow users to manage the policy. An example of this is

below

The permission document has the following elements:

 Element Definition

actions
a list of possible actions on the resource including create, read, update, delete, list, and

assign (regular expressions and list supported

conditions an optional CIDR range to lock down access to a specific IP range

description human friendly description of the Policy intent

effect whether the Policy is allowing or preventing access; valid values are allow and deny

id system-generated unique identifier to track changes to a particular Policy

resources

the resource path defining the targets to which the permissions apply; a resource path

prefixes the entity type (secrets, clients, roles, users, config, config:auth, config:policies,

audit, system:log) to a colon delimited path to the resource.

subjects the Policy provides authorization to these entiries. Includes Users, Roles, and Groups

Policy Evaluation

To correctly evaluate permission Policies, you must know the rules that apply to permissions.

• Values for permission properties may optionally be specified using a regular expression enclosed in

angle brackets <>. For example, a subject entry could be written as ["users:<bob|alice>"]. Here,

users bob and alice are specified. A longer alternative is ["users": "bob", "users": "alice"].

• Permissions are cumulative.

o If there is a top level permission for the path secrets:servers:<.*> that grants a User write

access, then even if they are only granted read access at the resource path

secrets:servers:webservers:<.*>, they still have write access due to the top level implicit match

• effect can either be allow or deny. If not specified, it defaults to allow.

• An explicit deny trumps an explicit or implicit allow.

• At least one action must be listed in an array. Actions are explicit. A User assigned update and read do

not automatically have create for the resource path.

• For actions, the wildcard form <.*> replaces any other values, since it is an all-inclusive form. A

wildcard could be written as a standard <.*> form, but also as .* or * for convenience. The backend

automatically converts it to <.*>.

• Invalid actions are not allowed, unless there is a wildcard element. Valid actions are create, read,

update, delete, assign, list.

• The list action has a special behaviour.

https://prod.homer.thycotic.net/dsv/1.0.0/#%23%23delegate-policy-authority

43

o First, list (search) is global—it runs across all items of an entity (any of the resources like Useres,

Roles, Groups, etc), not limited to paths and sub-paths.

o Second, to grant a User an ability to search entities via list, use the root of the entity if you

want list to include other entities and actions within the same Policy. The root entity, for

example, is secrets, with no other characters following.

o See the example on Search

• At least one subject must be listed in an array. A prefix is required. For example, a valid subject is

"users:bob". Valid prefixes are groups, roles, users.

• Subjects and actions are automatically converted to lower case upon save.

Policy Examples

When creating or updating a Policy, a workflow can be started using dsv policy create or dsv policy

update without flags. This starts step-bystep questions to guide you through the process. However, in the

following examples, the direct command is shown.

Deny Access at a Lower Level

Case: Subjects need access to Secrets for an environment, but that logical environment contains a more

restricted area.

Solution: Two Policies. The first provides the Subjects (developer1@thycotic.com|developer2@thycotic.com)

general access to the Secrets resources at the path secrets:servers:us-east-1:<.>*.

The direct command to create this policy is

dsv policy create --path secrets:servers:us-east-1 --actions '<.*>' --desc 'Developer

Policy' --subjects 'users:<developer1@thycotic.com|developer2@thycotic.com>' --effect

allow

With the trickiest part being to remember the "secrets" prefix on the path.

created: '2020-06-24T18:12:26Z'

createdBy: users:thy-

one:admin@example.com id:

xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx lastModified: '2020-

07-16T20:13:53Z' lastModifiedBy:

users:thy-one:admin@example.com

path: secrets:servers:us-east-1

permissionDocument:

- id: xxxxxxxxxxxxdescription: Developer Policy.

subjects: -

users:<developer1@thycotic.com|developer2

@thycotic.com> actions:

- "<read|delete|create|update|share>"

effect: allow

resources: -

secrets:servers:us-

east-1:<.*>

44

The second Policy adds a specific path at a level lower (secrets:servers:us-east-1:production) to explicitly deny

access to developer1@thycotic.com, as in the following example.

The command to create this policy is ``dsv policy create --path secrets:servers:us-east-

1:production --actions '<.*>' --desc 'Developer Deny Policy'

--subjects 'users:developer1@thycotic.com' --effect deny`

created: '2020-06-24T18:12:26Z'

createdBy: users:thy-

one:admin@example.com id:

xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx lastModified: '2020-

07-16T20:13:53Z' lastModifiedBy:

users:thy-one:admin@example.com

path: secrets:servers:us-east-

1:production permissionDocument: -

id: xxxxxxxxxxxx description:

Developer Deny Policy. subjects: -

users:<developer1@thycotic.com>

actions: - "<.*>" effect: deny

resources: - secrets:servers:us-

east-1:production:<.*>

Allow Users to Assign Specific Roles

Case: A User needs to assign Roles when they create client credentials but must not be able to self-elevate by

assigning an admin level Role.

Solution: Use a naming convention when creating Roles and specify a prefix with a wildcard to only allow

Users to assign Roles that match the naming convention, as modeled in the following example.

The command to run this is dsv policy create roles:dev-role --subjects

users:developer@thycotic.com,roles:onboarding-role --desc 'Role Assignment' --resources

'roles:dev-role-<.*>' --actions assign

created: '2020-06-24T18:12:26Z'

createdBy: users:thy-

one:admin@example.com id:

xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx lastModified: '2020-

07-16T20:13:53Z' lastModifiedBy:

users:thy-one:admin@example.com

path: roles:dev-role

permissionDocument: - id:

xxxxxxxxxxxx description:

Limited Role Assignment Policy.

subjects:

- users:developer@thycotic.com

- roles:onboarding-roleactions: - assign effect: allow

resources: - roles:dev-role-<.*>

45

Allow User2 Access to User1's Home Vault

Case User2 need access to a secrets space (folder) in User1's Home Vault

Solution: Have an Admim create a policy that enables access. In this example, we assume User1 has a secret

in their home vault at: databases/mongo/primary and wants to give User2 read rights to anything under

databases, but not their entire Home vault

The command the Admin runs to create the policy is:

dsv policy create --path home:users:user1:databases --actions '<read>' --desc 'User2

to access User1 Home/databases' -subjects 'users:User2' --effect allow

Notice the path starts with home:users:

When User1 is authenticated and needs to access the secret, the command is

dsv home read databases/mongo/primary'

When User2 is authenticated and needs to access the secret, the command is

dsv home read users:User1/databases/mongo/primary'

Enable a Group to search Secrets

Case: Allow a Group to search secrets

Solution: Under the Resource entity, Secrets, enable the Group named "admins".

The command to create this policy is dsv policy create secrets --subjects groups:admins --desc

'secret search' --resources secrets --actions list

created: '2020-06-24T18:12:26Z'

createdBy: users:thy-

one:admin@example.com id:

xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx lastModified: '2020-

07-16T20:13:53Z' lastModifiedBy:

users:thy-one:admin@example.com

path: secrets

permissionDocument:

- actions:

- list conditions: {}

description: secret

search

 effect:

allow id:

xxxxxxxxxxxx

meta: null

resources:

- secrets

subjects:

- groups:adminsversion:

"0"

46

Note: Searching secrets only enables the users to see the path, but not the actual data in the secret.

That requires Read access at the proper path.

Allow Users to List Specific Entities

Case: A User needs to search across all items but only needs full read access on specific ones

Solution: Add a list action and the root of the entity used for searching.

In the example below, roles is the entity for reading and searching (list action). In the resources section,

roles:dev-role-<.>* is used for reading, while roles is used for searching.

The command to create this policy is dsv policy create roles --subjects

users:developer@thycotic.com,roles:onboarding-role --desc 'Role Searching' --resources

'roles:dev-role-<.*>,roles' --actions read,list

created: '2020-06-24T18:12:26Z'

createdBy: users:thy-

one:admin@example.com id:

xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx lastModified: '2020-

07-16T20:13:53Z' lastModifiedBy:

users:thy-one:admin@example.com

path: roles

permissionDocument:

- actions:

- read - list conditions: {}

 description: Role Searching

 effect:

allow id:

xxxxxxxxxxxx

meta: null

resources:

- roles:dev-role-<.*>

- roles subjects:

- users:developer@thycotic.com

- roles:onboarding-roleversion: "0"

The syntax of the latter is important. In general, the root form of an entity has no * after the entity name, or

anything besides the name.

Delegate Policy Authority

Case: An admin wants to delegate control to various team leads at a sub-path.

Solution: Under Resources, add config:policies followed by the resource path.

The command to create this policy is dsv policy create secrets:servers --actions

create,read,update,delete --resources

'secrets:servers:<.*>,config:policies:secrets:servers:<.*>' --subjects 'users:

<developer1@thycotic.com|developer2@thycotic.com>'

created: '2020-06-24T18:12:26Z'

createdBy: users:thy-

47

one:admin@example.com id:

xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx lastModified: '2020-

07-16T20:13:53Z' lastModifiedBy:

users:thy-one:admin@example.com

path: secrets:servers

permissionDocument:

- actions:

- create

- read

- update - delete conditions: {} description: "" effect: allow id: xxxxxxxxxxxx

meta: nullb resources:

- secrets:servers:<.*>

- config:policies:secrets:servers:<.*> subjects:

- users:<developer1@thycotic.com|developer2@thycotic.com>version: "0"

Now the developers can create Policies below the secrets:servers: path; for example, developer1 can create

Policies for secrets:servers:webservers and developer2 can do the same at secrets:servers:databases.

Read Audits

Case: A user needs to be able to read audit records

Solution: Add a policy for the audit resource path

The command to create this policy is dsv policy create audit --actions list --resources audit --

subjects users:developer1@thycotic.com

created: '2020-06-24T18:12:26Z'

createdBy: users:thy-

one:admin@example.com id:

xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx lastModified: '2020-

07-16T20:13:53Z' lastModifiedBy:

users:thy-one:admin@example.com

path: audit

permissionDocument:

- actions:

- list

 conditions:

{}

description:

"" effect:

allow id:

xxxxxxxxxxxx

meta: null

resources:

- audit

subjects:

- users:developer1@thycotic.comversion: "0"

Read System Logs

Case: A user needs to be able to read the application log messages

48

Solution: Add a policy for the system:log resource path

The command to create this policy is dsv policy create system:log --actions list --resources

system:log --subjects users:developer1@thycotic.com

created: '2020-06-24T18:12:26Z'

createdBy: users:thy-

one:admin@example.com id:

xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx lastModified: '2020-

07-16T20:13:53Z' lastModifiedBy:

users:thy-one:admin@example.com

path: system:log

permissionDocument:

- actions:

- list conditions: {}

description: "" effect:

allow id: xxxxxxxxxxxx

meta: null resources: -

system:log subjects:

- users:developer1@thycotic.co

mversion: "0"

Manage An Auth Provider

Case: A user needs to update a single auth provider

Solution: Add a policy for the config:auth provider path

The command to create this policy is dsv policy create config:auth:gcp-dev --actions read,update

--resources config:auth:gcp-dev -subjects users:developer1@thycotic.com

created: '2020-06-24T18:12:26Z'

createdBy: users:thy-

one:admin@example.com id:

xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx lastModified: '2020-

07-16T20:13:53Z' lastModifiedBy:

users:thy-one:admin@example.com

path: config:auth:gcp-dev

permissionDocument:

- actions:

- read

- update conditions: {} description: "" effect: allow id: xxxxxxxxxxxx meta: null

resources: - config:auth:gcp-dev subjects:

- users:developer1@thycotic.com

version: "0"

49

Admin Policy and Auth Providers

In this section we

• Define the Default Admin Policy

• Show settings for third-party authentication providers including Thycotic One, AWS, Azure, or GCP.

Commands that Act on Policies

Command Action

read view the current configuration

edit modify the configuration in an OS-native text editor such as VI, nano, or Notepad

update upload a superseding configuration document

delete delete a configuration

restore restore a deleted configuration (if within 72 hours of deletion and not hard deleted)

Read

To read out the current config, which contains the Admin policies dsv config read

Note: In this command the --encoding yaml flag could be used to provide the output in YAML format.

In response, you see a block of code containing the Default Admin Policy, similar to this.

{

 "created": "2019-09-18T18:38:49Z",

 "createdBy": "system",

 "lastModified": "2020-07-30T23:56:56Z",

 "lastModifiedBy": "users:thy-one:admin@example.com",

 "permissionDocument": [

 {

 "actions": ["<.*>"],

 "conditions": {},

 "description": "Default Admin Permissions",

 "effect": "allow",

 "id": "bm17jee33m1c72u313tg",

 "meta": null,

 "resources": ["<.*>"],

 "subjects": ["users:<thy-one:admin@example.com>"]

 },

 {

 "actions": ["<.*>"],

 "conditions": {},

 "description": "Default Deny Home Permissions",

 "effect": "deny",

 "id": "bsd72rfe1vkc72up3o1g",

 "meta": null,

50

 "resources": ["home:<.*>"],

 "subjects": ["users:<thy-one:admin@example.com>"]

 }

],

 "tenantName": "company",

 "version": "1"

}

The initial User possesses full administrator rights and is federated through Thycotic One. This is indicated by

the dsv-one prefix on the users's email. This enables self-service password reset through Thycotic One.

In keeping with best practices, you must set up a less privileged User policy for routine use. The highly

privileged initial Admin account must be used only when a task requires its privileges.

The first section of the Admin policy with the description "Default Admin Permission" is what allows the

Admin full rights to everything in Privilege DevOps Vault.

The second section with the description "Default Deny Home Permissions" denies the Admin permission to

access the Home feature where users have a place for their own secrets. If required, the Admin can remove

his/her name and then get access to he Home secrets (API only in Beta)

Edit

NOTE: IBM Security recommends against changing the Default Admin Policy other than to add a User as a

back-up admin. Even then, best practices are to create a separate policy for specific access for Users.

NOTE: For adding and editing policies beyond the Default Admin Policy, see the Policy article.

NOTE: IBM Security recommends against changing the Thycotic One provider because it provides for

the initial User and any others you add that federate to Thycotic One. However, you can add

providers.

Use edit to open your configuration in the OS’s default editor (typically VI, nano, or Notepad).

dsv config edit --encoding YAML

The editor directly updates the configuration in the vault when you save your work.

Update

Use update to change a config by uploading JSON data.

The value of the --data parameter for update accepts JSON entered directly at the command line, or the

path to a JSON file.

dsv config update --path us-east/server02 --data '{"something":"value"}'

or

dsv config update --path us-east/server02 --data @configfilename.json

51

Grant Admin Access Rights to All Home Vaults

If it is required that the Admin have access to all individual Home vaults, then edit the Home Vault

Permissions and change the effect field to "allow"

dsv config edit --encoding YAML

The editor opens the OS default editor and you can modify the effect field.

Add an Authentication Provider

The general command is:

dsv config auth-provider create --name <name> --type <type> --<properties>

in which:

• name is the friendly name used in Privilege DevOps Vault to reference this provider. It is separate

from type because it allows multiple auth providers of the same type (for example several AWS

accounts).

• type is the authentication provider type; valid values are aws, azure, gcp and thycoticone

• properties are configuration settings specific to the authentication provider

o AWS flag is --aws-account-id

o Azure flag is --azure-tenant-id

o Thycotic One requires three flags --baseURI, --clientID, and –clientSecret

o GCP has two options for federation, GCE metadata and service accounts.

▪ For GCE metadata, use --gcp-projcet-id

▪ Flags are not provided for a service account, so a file is required.

Note: The account identifiers for third-party authentication are a top level setting that allow you or

other Users to authorize specific security principals within that account. They do not automatically

grant access to any User or Role within the provider.

See the Authentication section for examples of using AWS, Azure, GCP, and Thycotic One for authentication.

To see a list of all Auth-providers:

dsv config auth-provider search

Initially, your tenant only has a Thycotic One connection

 {

 "created": "2019-09-18T18:38:49Z",

 "createdBy": "",

 "id": "bm17jee33m1c72u313u0",

 "lastModified": "2020-05-10T02:25:04Z",

 "lastModifiedBy": "users:admin@example.com",

 "name": "thy-one",

 "properties": { "baseUri": "https://thycotic-

one-sscdev-dev-eastus-web01.azurewebsites.net",

 "clientId": "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",

 "clientSecret":

"xxx"

 },

 "type": "thycoticone",

52

 "version": "1"

 },

Home Vault

Home provides Users with a separate space to store secrets. No Users can access another User's Home

values. As soon as a User is created in Privilege DevOps Vault, they are given access to their own Home vault

without an explicit policy granting access.

The Home value lists a path like "users:" Privilege DevOps Vault determines which username based on

whomever authenticated. So if joesmith@example.com authenticates, then creates a Home value, that value

is in Joe Smith's Home vault.

Even the Admin does not have access by default, though they can give themselves access for "breakglass"

purposes. If the admin is given access to read users' Home values, it can only be done through the API in the

Beta version.

Home follows the familiar syntax: dsv home (command) (flags and parameters) with the commands being

create, read, delete, update, describe, edit, search The difference between read and describe is

that read shows both data and metadata, while describe only shows metadata.

Examples

Create

The create command uses the --data flag to pass data into the secret. This flag accepts JSON entered directly

into the command line or by a path (absolute or relative) to a JSON file.

Bash examples

dsv home create secret1 --data '{"username":"administrator","password":"bash-secret"}'

dsv home create secret2 --data @/home/user/secret.json

dsv home create secret2 --data @../secret.json

Powershell examples

PS C:> dsv home create --path secret1 --data

'{\"username\":\"administrator\",\"password\":\"powershell-secret\"}'

dsv home create secret2 --data '@/home/user/secret.json'

dsv home create secret2 --data '@../secret.json'

CMD Examples

PS C:> dsv home create secret1 --data

"{\"username\":\"administrator\",\"password\":\"cmd-secret\"}"

dsv home create secret2 --data @/home/user/secret.json

dsv home create secret2 --data @../secret.json

The --attributes flag can be used to add user-defined metadata in the same way that data is added.

53

The --desc flag can be used to add a simple string. If the string has any spaces, then it must be enclosed in

double quotes.

As a Bash example:

dsv home create secret1 --attributes '{"priority":"high"}' --desc "Covert Secret" --

data '{"username":"administrator","password":"bash-secret"}'

Update

update is similar to create but operates on an existing Home value. Only the specified values change unless

the `--overwrite' flag is used, in which case all unspecified values are deleted.

If you have this Home value:

{

 "attributes": {

 "attr": "add one"

 },

 "created": "2019-09-20T16:12:57Z",

 "createdBy": "users:user@example.com",

 "data": {

 "host": "server01",

 "password": "badpassword"

 },

 "description": "update description",

 "id": "c893b4f8-9425-4fa4-acbf-2806d6f1fa82",

 "lastModified": "2020-01-17T15:43:27Z",

 "lastModifiedBy": "users:dsv-one:admin@example.com",

 "path": "users:user@example.com:secret1",

 "version":

"12" }

This Bash command only changes the value for host in the data section.

dsv home update secret1 --data '{\"host\":\"unknown\"}'

{

 "attributes": {

 "attr": "add one"

 },

 "created": "2019-09-20T16:12:57Z",

 "createdBy": "users:user@example.com",

 "data": {

 "host": "unknown",

 "password": "badpassword"

 },

 "description": "update description",

 "id": "c893b4f8-9425-4fa4-acbf-2806d6f1fa82",

 "lastModified": "2020-08-03T17:58:29Z",

 "lastModifiedBy": "users:user@example.com",

 "path": "users:user@example.com:secret1",

 "version": "13"
}

54

The flag --overwrite, if added to the above command wipes-out the description and any other data KV pairs.

So this flag requires caution.

dsv home update secret1 --data '{\"host\":\"unknown\"}' --overwrite

Read

The read command shows both the Secret data and metadata.

dsv home read secret1

Flags

--encoding or -e converts the output to JSON (default) or YAML.

--out or -o can send the read response to stdout (default), the clipboard (clip), or a file (file:)

--filter or -f filters to a specific KV pair. So data.password only outputs the password value.

This example sends the password value only to the clipboard.

dsv home read secret2 -o clip -f data.password

Describe

The command describe only shows the metadata of a Home value

dsv home describe secret1

Search

You can search for Secrets by path or attribute

Some examples:

dsv home search server

dsv home search --query server

dsv home search --query aws --search-field attributes.type

dsv home search --query 900 --search-field attributes.ttl --search-type number

dsv home search --query production --search-field attributes.stage --search-comparison

equal

flags

--query, -q Query of secrets to fetch (required)

--limit Sets the maximum number of search results that display per page (cursor)

--cursor Accepts the element used to get the next page of results

--search-comparison Specify the operator for advanced field searching, can be 'contains', 'equal', or 'begins

with' Defaults to 'contains' (optional)

--search-field Advanced search on a secret field such as 'attribute.type' or 'description'. Defaults to 'path'.

(optional)

--search-type Specify the value type for advanced field searching, can be 'number' or 'string'. Defaults to

'string' (optional)

55

For a search where there are more results than returned in the first set, the API returns a cursor—a large piece

of text. You pass that back to get the next set of results.

For example, if the command dsv secret search -q admin --limit 10 matched 12 Secrets with admin in

the name, the CLI returns the first 10 plus a cursor. To obtain the next two results, use this command:

dsv secret search -q admin --limit 10 --cursor AFSDFSD...DKFJLSDJ=

Cursors may be lengthy:

dsv secret search -q resources --limit 10 --cursor

eyJpZCI6ImEwOTFjOWIzLWE4MmQtNGRiYy1hYThiLTYxMDY0NDZhZjA3MSIsInBhdGgiOiIiLCJ2ZXJzaW9uIjoidi

1jdXJyZW50IiwidHlwZSI6IiIsImxhdGVzdC I6MH0=

Edit

Use edit to open the Secret data in the default text editor for bash, such as vi, nano, or Notepad.

Saving in the editor updates the Secret in the vault, except in the case of Notepad, in which case the update

happens when you save and then exit Notepad. Your interim saves are to the working copy.

dsv home edit --path us-east/server02

Delete

To delete a Home value, simply specify its name.

 dsv home delete secret1

When you delete a Secret, it is no longer usable. However, with the soft delete capacity of Privilege DevOps

Vault, you have 72 hours to use the restore command to undelete the Secret. After 72 hours, the Secret is no

longer retrievable.

If you want to perform a hard delete, precluding any restore operation, you can use the delete command's --

force flag.

Restore

The delete command is a soft delete for about 72 hours before the delete become permanent. During that

time, the secret can be brought back using the restore command. After the ~72 hours, the secret is

permanently deleted and can't be restored.

dsv home restore secret1

GetByVersion

The --version flag determines how many past versions are displayed along with the current version.

dsv home secret1 --version 3

56

Rollback

To return a secret to a past version, use the rollback command and a --version flag to determine which

version to return to. The original version is 0.

dsv home rollback secret1 --version 2

57

Authentication

Privilege DevOps Vault supports several authentication methods.

Password

Password authentication relies directly on individual User accounts. It requires an initial admin account with

username + password authentication.

Privilege DevOps Vault encrypts the password in the config on successful authentication. This prevents Users

from accidentally disclosing the password by sending the config to someone or by giving access to the

computer to another person.

Routine activities associated with this authentication method include:

• creating a new User

• entering the username and password of the new User

• adding the new User to the Privilege DevOps Vault config

See the Users portion of the CLI Reference for details.

Client Credentials

In this method, you authenticate via a client id and a Secret generated by the vault. This suits situations

requiring application or server access when no third party trust is feasible.

Client credentials tie to Roles, not User accounts, the significance being that Roles have a one-to-many

relationship with User accounts. Using Roles-based authentication allows you to efficiently apply uniform

authentication requirements to collections of Users.

Routine activities associated with the client credentials authentication method include:

• creating a new Role

• adding the new Role to the Privilege

• DevOps Vault config creating new client credentials using the new Role

• invoking the init command and supplying those client credentials

See the Roles portion of the CLI Reference for more information.

Third Party Authentication

Besides ThycoticOne, IBM Security Verify Privilege DevOps Vault works with third party authentication

providers, including:

AWS IAM: Privilege DevOps Vault uses the current AWS profile to generate a signed request which the vault

validates against AWS. You can use this with EC2 instances and with a Lambda that is assigned an IAM Role or

an IAM User account. See Authentication: AWS

Azure MSI: Privilege DevOps Vault uses the assigned Azure Managed Service Identity (MSI). See

Authentication: Azure

58

GCP Service Accounts: Privilege DevOps Vault uses GCP's service accounts to enable secrets access to just

about anything that can be assigned a service account. Google Compute Engines (GCE) may also be assigned

service accounts and authenticated through GCE metadata. See Authentication: Azure

OIDC Provider Privilege DevOps Vault connects to Thycotic One, which in-turn may connect to any OIDC

provider. See Authentication: OIDC

Profiles

On initial configuration, your IBM Security Verify Privilege DevOps Vault config has just one profile with the

choices you specified for credentials storage, authentication type, and cache strategy for Secrets.

However, Privilege DevOps Vault supports creating other profiles, potentially with different credentials, and

adding them to the config. Once the config has more than one profile, you can set which one Privilege DevOps

Vault uses by default.

Add a Profile to a Config

Privilege DevOps Vault syntax gives you two ways to add a profile to the config.

• Run dsv init and type add or a at the prompt. Then enter the name of a new profile.

• To do it with one command, run dsv init --profile [name].

See the Config Contents

If you want to verify the profile has been added, output the updated config contents:

dsv cli-config read

Using an Alternate Profile for a Specific CLI Action

For a config with more than one profile, the profile used by default for any command is the first profile created.

However, you can override the default by specifying the profile to be used for a command as a parameter:

dsv secret read --path mySecret --profile developer

So commanded, the CLI tries to auth as the User specified in the developer profile and attempt to read the

Secret as that User.

The CLI does not have a command to set the default for all commands moving forward. For that, you must edit

the .thy.yml file in the home directory to change the profile set as the default.

Authentication: AWS

Use dsv config auth-provider search -e yaml to see all of your current authentication providers.

Initially, the only authentication provider is Thycotic One, similar to this:

created: "2019-11-

11T20:29:20Z" createdBy:

users:thy-

one:admin@example.com

59

id: xxxxxxxxxxxxxxxxxxxx

lastModified: "2020-05-

18T03:58:15Z" lastModifiedBy:

users:thy-one:admin@example.com

name: thy-one properties:

baseUri:

https://login.thycotic.com/

clientId:

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxx

 clientSecret: xx

type: thycoticone

version: "0"

AWS Authentication Provider

To add an AWS account to act as an authentication provider:

dsv config auth-provider create --name <name> --type aws --aws-account-id <AWS account

ID>

in which:

• name is the friendly name used in Privilege DevOps Vault to reference this policy

• type is the authentication provider type; in this case, aws

• the property flag for AWS is --aws-account-id then include the account ID

To view the resulting addition to the config file, you use:

dsv config auth-provider <name> read -e yaml where the example name we use here is aws-dev

The readout looks similar to this:

created: "2019-11-

12T18:34:49Z" createdBy:

users:thy-

one:admin@example.com

id: xxxxxxxxxxxxxxxxxxxx

lastModified: "2020-05-

18T03:58:15Z" lastModifiedBy:

users:thy-one:admin@example.com

name: aws-dev

properties:

accountId:

"xxxxxxxxxxxx"

type: aws

version: "0"

AWS User Example

When you create a User in AWS, remember that the username serves as a friendly name within Privilege

DevOps Vault. It does not have to match the Identity Access Management (IAM) username, but the provider

must match the provider name previously configured.

60

dsv user create --username test-admin --external-id arn:aws:iam::xxxxxxxxxxx:user/test-

admin --provider aws-dev

After creating the User, modify the config to give that User access to the default administrator permission

policy.

NOTE: Adding a user to the admin policy is not security best practices. This is for example purposes only.

Ideally, create a separate policy for this AWS user with restricted access. For details on limiting access

through policies, see the Policy section.

dsv config edit -e yaml

Add test-admin as a User subject to the Default Admin Policy. Third party accounts must be prefixed with the

provider name; in this case, the fully qualified username is aws-dev:test-admin.

<snip>

- actions:

- <.*>

- conditions: {}

 description: Default Admin Policy

 effect: allow

 id: xxxxxxxxxxxxxxxxxxxx

 meta: null

 resources:

 - <.*>

 subjects:

- users:<aws-dev:test-admin|admin@example.com>

<snip>

Next, on a machine with the AWS CLI installed and configured with an AWS IAM user, download the DVS CLI

executable appropriate to the OS of the machine, and initialize the CLI:

dsv init

When prompted for the authorization type, choose AWS IAM (federated).

Please enter auth type:

(1) Password (local user)(default)

(2) Client Credential

(3) Thycotic One (federated)

(4) AWS IAM (federated)

(5) Azure (federated)

(6) GCP (federated)

(7) OIDC (federated)

Privilege DevOps Vault prompts for the specific AWS profile to use if you are authenticating using a non-

default AWS profile.

Please enter aws profile for federated aws auth (optional, default:default)

Read an existing Secret to verify you can authenticate to Privilege DevOps Vault and access data.

dsv secret read --path <path to secret>

https://aws.amazon.com/cli/

61

AWS Role Example

This example assumes that you:

• Have your own CLI configured locally with an admin account

• Created an IAM role in the AWS Console

• Launched an EC2 instance using the IAM role

• downloaded the CLI onto the EC” instance

Create a corresponding Role in Privilege DevOps Vault with the external-id of the IAM Role's ARN.

dsv role create --name test-role --external-id

arn:aws:iam::xxxxxxxxxxx:role/testlogin --provider aws-dev

You see a result similar to this:

{

"description": "",

"externalId": "arn:aws:iam::xxxxxxxxxxx:role/testlogin",

"name": "test-role",

"provider":

"aws-dev" }

Add the Role aws-dev:test-role to the Default Admin Policy in your vault config to grant the new Role admin

access.

NOTE: Adding a role to the admin policy is not security best practices. This is for example purposes only.

Ideally, create a separate policy for this AWS role with restricted access. For details on limiting access

through policies, see the Policy section.

Use the command dsv config edit -e yaml

<snip>

- actions:

- <.*>

- conditions: {}

 description: Default Admin Policy

 effect: allow

 id: bgn8gjei66jc7148d9i0

 meta: null

resources:

 - <.*>

 subjects:

- users:<aws-dev:test-admin|admin@example.com>

- roles:<aws-dev:test-role>

<snip>

On the EC2 instance, configure the CLI by running dsv init and choosing AWS IAM as the authentication

type.

Once configured, ensure you can read an existing Secret to verify the EC2 instance is able able to authenticate

and access data.

dsv secret read --path <path to secret>

https://dsv.thycotic.com/downloads

62

63

Authentication: Azure

Use dsv config auth-provider search -e yaml to see all of your current authentication providers.

Initially, the only authentication provider is Thycotic One, similar to this:

created: "2019-11-

11T20:29:20Z" createdBy:

users:thy-

one:admin@example.com

id: xxxxxxxxxxxxxxxxxxxx

lastModified: "2020-05-

18T03:58:15Z" lastModifiedBy:

users:thy-one:admin@example.com

name: thy-one properties:

baseUri:

https://login.thycotic.com/

clientId:

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxx

 clientSecret: xx

type: thycoticone

version: "0"

Azure Authentication Provider

To add an Azure account to act as an authentication provider:

dsv config auth-provider create --name <name> --type azure --azure-tenant-id <Azure tenant

ID>

where:

• name is the friendly name used in Privilege DevOps Vault to reference this policy

• type is the authentication provider type; in this case, azure

• the property flag for Azure is --azure-tenant-id

To view the resulting addition to the config file, use:

dsv config auth-provider <name> read -e yaml where the example name we use here is azure-prod

The readout looks similar to this:

created: "2019-11-12T18:34:49Z"

createdBy: users:thy-one:admin@example.com

-id: xxxxxxxxxxxxxxxxxxxxx

lastModified: "2020-05-

18T03:58:15Z" lastModifiedBy:

users:thy-one:admin@example.com

name: azure-prod properties:

tenantId: xxxxxxxxxxxxxxx-xxxx-xxxx-

xxxx-xxxxxxxxxxxx

type: azure

version: "0"

64

Azure User Assigned MSI Example

First you need to configure the User that corresponds to an Azure User Assigned MSI.

The username is a friendly name within Privilege DevOps Vault. It does not have to match the MSI username,

but the provider must match the resource id of the MSI in Azure.

dsv user create --username test-api --provider azure-prod --external-id

/subscriptions/xxxxxxxx-xxxx-xxxx-

xxxxxxxxxxxxxxxx/resourcegroups/build/providers/Microsoft.ManagedIdentity/us

erAssignedIdentities/test-api

Modify the config to give that User access to the default administrator permission policy.

NOTE: Adding a user to the admin policy is not security best practices. This is for example purposes only.

Ideally, create a separate policy for this Azure user with restricted access. For details on limiting access

through policies, see the Policy section.

dsv config edit --encoding yaml

Add the User as a subject to the Default Admin Policy. Third party accounts must be prefixed with the

provider name; in this case the fully qualified username is azure-prod:test-api.

<snip>

-

actions

:

- <.*> conditions: {}

 description: Default Admin Policy

 effect: allow

id:

xxxxxxxxxxxxxxxxxx

xx

 meta:

null

resource

s: -

<.*>

subjects

:

- users:<azure-prod:test-api|admin@example.com>

<snip

On a VM in Azure that has the User MSI assigned as the identity, download the DVS CLI

executable appropriate to the OS of the VM and initialize the CLI.

```BASH 

dsv 

init 

When prompted for the authorization type, choose the Azure (federated) authentication option. 

Please enter auth type: 

(1) Password (local user)(default) 

(2) Client Credential 

https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview


 

65 
 

(3) Thycotic One (federated) 

(4) AWS IAM (federated) 

(5) Azure (federated) 

(6) GCP (federated) 

(7) OIDC (federated) 

Read an existing Secret to verify you can authenticate and access data.  

dsv secret read --path <path to a secret> 

Azure Resource Group 

If you want to grant access to a set of VMs in a resource group that use a System assigned MSI rather than a 

User assigned MSI, you can create a Role that corresponds to the resource group's resource ID. 

dsv role create --name identity-rg  --external-id /subscriptions/xxxxxxxx-xxxx-xxxx-xxxx-

xxxxxxxxxxxx/resourceGroups/build -provider azure-prod 

Modify the config to give that Role access to the default administrator permission policy. 

NOTE: Adding a role to the admin policy is not security best practices. This is for example purposes only. 

Ideally, create a separate policy for this Azure role with restricted access. For details on limiting access 

through policies, see the Policy section. 

dsv config edit --encoding yaml 

Add the User as a subject to the Default Admin Policy. Third party accounts must be prefixed with the 

provider name; in this case the fully qualified Role name is azure-prod:identity-rg. 

<snip> 

- 

actions

: 

- <.*> conditions: {} 

 description: Default Admin Policy 

 effect: allow  

id: 

bgn8gjei66jc7148d9

i0 

 meta: 

null  

resource

s:  - 

<.*>  

subjects

: 

- users:<azure-prod:test-api|admin@example.com> 

- roles:<azure-prod:identity-rg> 

<snip 

On a VM in Azure that is part of the resource group and has a system-assigned MSI, 

download the DVS CLI executable appropriate to the OS of the VM and initialize the CLI. 

```BASH 

dsv

init

66

When prompted for the authorization type, choose the Azure (federated) option.

Please enter auth type:

(1) Password (local user)(default)

(2) Client Credential

(3) Thycotic One (federated)

(4) AWS IAM (federated)

(5) Azure (federated)

(6) GCP (federated)

Read an existing Secret to verify you are able to authenticate and access data.

dsv secret read --path <path to a secret>

67

Authentication Google Cloud Platform (GCP)

IBM Security Verify Privilege DevOps Vault provides two ways to authenticate using GCP. One is through a

Google service account and the other is through Google Compute Engine (GCE) metadata.

Google Service Account Authentication

To setup GCP authentication using service accounts in Privilege DevOps Vault, a GCP service account must be

provided that Privilege DevOps Vault can use as the authentication provider. This service account must be

assigned to the project you are working in, have the role Service Account Key Admin so that it can issue and

manage service account tokens, and a key must be generated.

These steps can be done programmatically, but we use the GCP Console.

GCP Service Account Setup

In the GCP Console Home page, go to your project, hover IAM & Admin, and then click Service Accounts.

At the top, click CREATE SERVICE ACCOUNT.

For the first step, enter an account name. We use dsv-svc in this example. Click CREATE.

68

In the second step, click the dropdown arrow in the Select a role box, then type service account key

admin in the filter and select Service Account Key Admin. Then click Continue.

In the third step, click CREATE KEY and when the option to generate a file slides in from the right, select json

and click CREATE. A file is downloaded that has all the information needed to setup the Privilege DevOps

Vault authentication provider.

69

The Goolge API for IAM must be enabled. To do this in the Google Console, go to the relevant project and on

the left nav, hover APIs & Services then select Library.

In the search, type Identity and Access and in the results, select the Identity and Access Management

(IAM) API. Click Enable.

Privilege DevOps Vault Authentication Provider Setup

Go back to the terminal (IBM Security Verify Privilege DevOps Vault CLI)

Use dsv config auth-provider search -e yaml to see all of your current authentication providers.

Initially, the only authentication provider is Thycotic One, similar to this:

70

created: "2019-11-

11T20:29:20Z" createdBy:

users:thy-

one:admin@example.com

id: xxxxxxxxxxxxxxxxxxxx

lastModified: "2020-05-

18T03:58:15Z" lastModifiedBy:

users:thy-one:admin@example.com

name: thy-one properties: baseUri: https://login.thycotic.com/

clientId: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 clientSecret: xx

type: thycoticone

version: "0"

Setup the Privilege DevOps Vault authentication provider. Create a json file named auth-gcp.txt with the

following format, substituting the dsv-svc service account values in the key file you downloaded from the

GCP console.

{

"name": "gcloud",

"type": "gcp",

"properties": {

 "ProjectId": "{project-id}",

 "type": "service_account",

 "PrivateKeyId": "{private-key-id}",

 "PrivateKey": "-----BEGIN PRIVATE KEY-----{private-key}-----END PRIVATE KEY-----\n",

 "ClientEmail": "{clientemail}",

 "TokenURI": "https://oauth2.googleapis.com/token"

 }

}

In the Privilege DevOps Vault CLI, run dsv config auth-provider create --data @auth-gcp.txt to

create the GCP authentication provider.

dsv config auth-provider <name> read -e yaml where the example name we use here is gcloud

created: "2019-11-

12T18:34:49Z" createdBy:

users:thy-

one:admin@example.com

id: bq4ce17cj2bc72qun8vg

lastModified: "2020-05-

18T03:58:15Z" lastModifiedBy:

users:thy-one:admin@example.com

name: gcloud properties: clientEmail: dsv-

svc@myfirstproject-

xxxxxx.iam.gserviceaccount.com

privateKey: |

-----BEGIN PRIVATE KEY-----

XX

XX

XX

XX

XX

XX

71

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XX

XXXX= -----END PRIVATE KEY-----

privateKeyId: 9xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx3

projectId: myfirstproject-xxxxxx

tokenUri: https://oauth2.googleapis.com/token

type:

service_account

type: gcp

Privilege DevOps Vault Service Account/User Mapping

Now the service account that is going to access Privilege DevOps Vault is required. For this example, we name

this account client-svc. The setup in GCP is the same as above for the dsv-svc account except that when

the role is assigned, it must be Service Account Token Creator so that this account can request tokens. Also,

after generating the key, make sure to save the file to the local machine that accesses Privilege DevOps Vault

and note the location.

In the Privilege DevOps Vault CLI, create a User called gcp-test referring to the client-svc service account

with gcloud as the authentication provider using dsv user create --username gcp-test --provider
gcloud --external-id client-svc@myfirstproject-273119.iam.gserviceaccount.com

{

 "cursor": "",

 "data": [

 {

 "created": "2020-04-04T17:56:33Z",

 "createdBy": "users:thy-one:admin@example.com",

 "externalId": "client-svc@myfirstproject-xxxxxx.iam.gserviceaccount.com",

 "id": "d6a8e1e5-5554-4fc8-a4ca-1c1a653f9095",

 "lastModified": "2020-04-04T17:56:33Z",

 "lastModifiedBy": "users:thy-one:admin@example.com",

 "provider": "gcloud",

 "userName": "gcp-test",

 "version": "0"

 }

],

 "length": 1,

 "limit": 25

}

Set an environmental variable named GOOGLE_APPLICATION_CREDENTIALS to the path of the key file for

client-svc that was just downloaded.

72

In Linux or Mac, this might look like:

export GOOGLE_APPLICATION_CREDENTIALS="/home/user/Downloads/[FILE_NAME].json"

Windows Powershell

$env:GOOGLE_APPLICATION_CREDENTIALS="C:\Users\username\Downloads\[FILE_NAME].json"

Windows Command Line

set GOOGLE_APPLICATION_CREDENTIALS="C:\Users\username\Downloads\[FILE_NAME].json"

After creating the User, modify the config to give that User access to the default administrator permission

policy.

NOTE: Adding a User to the admin policy is not security best practices. This is for example purposes

only. Ideally, create a separate policy for this GCP service account with restricted access. For details

on limiting access through policies, see the Policy section.

dsv config edit

Add gcloud:gcp-test as a User to the Default Admin Policy. Third party accounts must be prefixed with the

provider name; in this case, the fully qualified username is glcoud:gcp-test.

<snip>

-

actions

:

- <.*> conditions: {}

 description: Default Admin Policy

 effect: allow

 id: xxxxxxxxxxxxxxxxxxxx

 meta:

null

resource

s: -

<.*>

subjects

:

- users:<gcloud:gcp-test|admin@example.com>

<snip>

Run dsv init filling out the desired values and selecting 6 GCP (federated) when prompted for the auth type.

Please enter auth type:

(1) Password (local user)(default)

(2) Client Credential

(3) Thycotic One (federated) (4) AWS IAM (federated)

(5) Azure (federated)

(6) GCP (federated)

(7) OIDC (federated)

73

Run dsv auth to verify authentication. A token is displayed.

Run dsv secret read <path to any secret> to verify secret access.

Google Compute Engine (GCE) Metadata Authentication

The idea behind GCE Metadata authentication is to enable a GCE instance to gain access to IBM Security

Verify Privilege DevOps Vault.

In this example we assume you have created a Linux Google Compute Instance and have the Google Compute

Engine API enabled.

It is further assumed that the Compute Engine default service account is used. However, you can assign a

different service account to the Compute instance if desired.

NOTE: Using the GCE default service account is generally not best practices because it is defaulted to

every GCE that is created, violating the idea of least privileges. This is for illustration purposes.

To find the Compute Engine default service account email, from the GCP Console Home, hover IAM and

then click Service Accounts The name is "Compute Engine default service account". Copy and store the

email for later.

74

Privilege DevOps Vault GCE Authentication Provider setup

Using any computer with Admin Privilege DevOps Vault access, we now want to setup the Privilege DevOps

Vault Authentication Provider Create a file named 'auth-gcp.txt' in the following format and substituting your

ProjectID.
{

"name": "gcloud-gce",

"type": "gcp",

"properties": {

 "ProjectId": "myfirstproject-273119"

 }

}

Run dsv config auth-provider create --data @auth-gcp.txt to implement the Authentication Provider.

To view the resulting addition to the config file, you use:

dsv config auth-provider <name> read -e yaml where the example name we use here is gcloud-gce

- ID: bq71e5co19js72ppv140

name: gcloud-gce

properties: projectId:

myfirstproject-273119

type: gcp

tenantName:

company

created: "2019-11-

12T18:34:49Z" createdBy:

users:thy-

one:admin@example.com

id: xxxxxxxxxxxxxxxxxxxx

lastModified: "2020-05-

18T03:58:15Z" lastModifiedBy:

users:thy-one:admin@example.com

name: gcloud-gce

properties: projectId:

75

myfirstproject-xxxxxx

type: gcp version: "0"

Privilege DevOps Vault GCE Metadata Service Account/ Privilege DevOps Vault User Mapping

Run dsv user create --username gce-test --provider gcloud-gce --external-id {default

compute service account email} using the default service account email we saved earlier.

{

 "created": "2020-04-09T12:59:44Z",

 "createdBy": "users:thy-one:admin@example.com",

 "externalId": "2XXXXXXXXXX3-compute@developer.gserviceaccount.com",

 "id": "19709b4e-2a13-4164-a930-81997b568036",

 "lastModified": "2020-04-09T12:59:44Z",

 "lastModifiedBy": "users:thy-one:admin@example.com",

 "provider": "gcloud-gce",

 "userName": "gce-test",

 "version":

"0" }

After creating the User, modify the config to give that User access to the default administrator permission

policy.

NOTE: Adding a User to the admin policy is not security best practices. This is for example purposes

only. Ideally, create a separate policy for this GCP service account with restricted access. For details

on limiting access through policies, see the Policy section.

dsv config edit

Add gcloud:gce-test as a User to the Default Admin Policy. Third party accounts must be prefixed with the

provider name; in this case, the fully qualified username is glcoud-gce:gce-test.

NOTE: Adding a user to the admin policy is not security best practices. This is for example purposes only.

Ideally, create a separate policy for this AWS user with restricted access. For details on limiting access

through policies, see the Policy section.

dsv config edit -e yaml

<snip>

-

actions

:

- <.*> conditions: {}

 description: Default Admin Policy

 effect: allow

id:

xxxxxxxxxxxxxxxxxx

xx

 meta:

null

resource

s: -

<.*>

76

subjects

:

- users:<gcloud-gce:gce-test|admin@example.com>

<snip>

GCE Authentication

SSH into the GCE and download the latest Privilege DevOps Vault CLI from this website DSV CLI

For example, curl https://dsv.thycotic.com/downloads/cli/1.8.0/thy-linux-x64 -o dsv

You may need to give yourself permissions to run the "dsv" binary and it is also easier if you set the path.

Run dsv init filling out the desired values and selecting 6 GCP (federated) when prompted for the auth type.

Please enter auth type:

(1) Password (local

user)(default)

(2) Client Credential

(3) Thycotic One (federated) (4) AWS IAM

(federated)

(5) Azure (federated)

(6) GCP (federated)

(7) OIDC (Federated)

Run dsv auth to verify authentication. A token is displayed.

Run dsv secret read <path to any secret> to verify secret access.

Google Kubernetes Engine (GKE) Authentication

It follows that, if you can have a GCE (that is a virtual server) authenticate to Privilege DevOps Vault, there is a

similar way to do that with a Google Kubernetes Engine (GKE) node.

Here is an example where we deploy a simple app in GKE that can authenticate to Privilege DevOps Vault.

In the GCE example above, we used the Compute Engine default service account. Here we suggest you

create a service account with at least the storage.objectViewer role for the project which enables the

ability to pull an image from GCP registry. In this example, we created a service account named dsv-gce

Privilege DevOps Vault Authentication provider

Using any computer with Admin Privilege DevOps Vault access, we now want to setup the Privilege DevOps

Vault Authentication Provider Create a file named 'auth-gcp.txt' in the following format and substituting your

GCP .
{

"name": "gcloud-gce",

"type": "gcp",

"properties": {

 "ProjectId": "myfirstproject-273119"

 }

}

https://dsv.thycotic.com/downloads

77

Run dsv config auth-provider create --data @auth-gcp.txt to implement the Authentication Provider.

Privilege DevOps Vault User mapped to the GKE service account

Run dsv user create --username gce-test --provider gcloud-gce --external-id {dsv-gce

service account email} using the default service account email we saved earlier. You get a response like

this:

{

 "created": "2020-04-09T12:59:44Z",

 "createdBy": "users:thy-one:admin@example.com",

 "externalId": "dsv-gce@gcp-project-id.iam.gserviceaccount.com",

 "id": "19709b4e-2a13-4164-a930-81997b568036",

 "lastModified": "2020-04-09T12:59:44Z",

 "lastModifiedBy": "users:thy-one:admin@example.com",

 "provider": "gcloud-gce",

 "userName": "gce-test",

"version": "0"

}

Back to GCP to setup a GKE cluster

From the GCP Home page, in the left menu, hover over Kubernetes Engine and select Clusters. Then Create

Cluster. If this is the first one, then GCP enables the GKE API for you.

When the form comes up, the default values can be used with the exception of the service account. To change

this, in the left nav, select defaultpool then Security where you select the service account dsv-gce just

mentioned.

Click Create. It takes a few minutes for the cluster to be built.

Hello-App

Now create and deploy this Go-based hello app in this cluster node.

We use the built-in GCP Cloud shell to connect since it comes with Docker, Kubectl, and connectivity to GCP

all setup. It even has a nice editor for the files we create. To do this, go to the Kubernetes Engine then

78

Clusters page. From the list, there is a Connect button that opens a modal pop-up. In the modal, select Run

in Cloud Shell

A terminal opens in the browser. Run the following steps:

mkdir

hello-app

cd hello-

app cat >

main.go

Now you can copy the code below into the terminal, but substitute the tenant_url to your URL, which looks

something like https://mycompany.secretsvaultcloud.com

package main

import (

 " b y t e s "

 "encoding/json"

 " f m t "

 "io/ioutil"

 " l o g "

 " n e t / h t t p "

 " o s "

)

79

func main() {

 mux := http.NewServeMux()

mux.HandleFunc("/", hello)

 port := os.Getenv("PORT")

 if port == "" {

 p o r t = " 8 0 8 0 "

 }

 log.Printf("Server listening on port %s", port)

log.Fatal(http.ListenAndServe(":"+port, mux))

}

func hello(w http.ResponseWriter, r

*http.Request) { log.Printf("Serving

request: %s", r.URL.Path) fmt.Println("---

--------computeMetadata-----------")

 client := &http.Client{}

 req, err := http.NewRequest("GET",

"http://metadata.google.internal/computeMetadata/v1/project/project-id", nil) if err !=

nil{

 fmt.Fprintf(w, "Error creating Metadata Request: %s\n",

err.Error()) r e t u r n

 }

 req.Header.Add("Metadata-Flavor", `Google`)

 resp, err :=

client.Do(req) if err !=

nil{

 fmt.Fprintf(w, "Error creating Metadata : %s\n", err.Error())

 r e t u r n

 }

 body, err := ioutil.ReadAll(resp.Body)

 if err != nil{

 fmt.Fprintf(w, "Error parsing body computeMetadata: %s\n", err.Error())

 r e t u r n

 } e l s e {

 fmt.Fprintf(w, "Response computeMetadata: %s\n", string(body))
 }

 fmt.Println("-----------computeMetadata-service-accounts-----------")

 tenant_url := "{tenant url}"

 client2 := &http.Client{

 }

 req2, err := http.NewRequest("GET",

"http://metadata.google.internal/computeMetadata/v1/instance/serviceaccounts/default/ident

ity", nil)

 if err != nil{

 fmt.Fprintf(w, "Error creating service-accounts Metadata Request:

%s\n", err.Error()) r e t u r n

 }

80

 req2.Header.Add("Metadata-Flavor",

`Google`) q := req2.URL.Query()

 q.Add("audience", tenant_url)

 q.Add("format", "full")

req2.URL.RawQuery =

q.Encode() resp2, err :=

client2.Do(req2)

 if err != nil{

 fmt.Fprintf(w, "Error creating service-accounts Metadata : %s\n",

err.Error()) r e t u r n

 }

 body2, err := ioutil.ReadAll(resp2.Body)

 if err != nil{

 fmt.Fprintf(w, "Error parsing body service-accounts computeMetadata: %s\n",

err.Error())

 r e t u r n

 } e l s e {

 fmt.Fprintf(w, "Response service-accounts computeMetadata: %s\n", string(body2))

 }

 fmt.Println("-----------DSV-----------")

 reqBody, _ := json.Marshal(map[string]string{

 "grant_type" : "gcp",

 "jwt" : string(body2),

 })

 dsvResp, err := http.Post(tenant_url+"/v1/token","application/json",

bytes.NewBuffer(reqBody)) if err != nil || dsvResp == nil{

 i f e r r ! = n i l {

 fmt.Fprintf(w, "Error creating dsv Request: %s\n", err.Error())

 }

 r e t u r n

 }

 dsvBody, err :=

ioutil.ReadAll(dsvResp.Body) if err !=

nil{

 fmt.Fprintf(w, "Error parsing body dsv: %s\n", err.Error())

 } e l s e {

 fmt.Fprintf(w, "Response from DSV: %s\n", string(dsvBody))

 }

}

Use to escape out. Then provide executable privileges.

chmod +x main.go

Now create the docker file.

cat > Dockerfile

Copy the commands below in.

FROM golang:1.13-alpine

81

ADD . /go/src/hello-app

RUN go install hello-app

FROM alpine:latest COPY

--from=0 /go/bin/hello-

app .

ENV PORT 8080

CMD ["./hello-app"]

Use to escape out. Then provide executable privileges.

chmod +x Dockerfile

Run these commands to build and push the app to GKE. Substitute your project ID in.

docker build -t gcr.io/{PROJECT_ID}/hello-app:v1 . docker push

gcr.io/{PROJECT_ID}/hello-app:v1

The docker image is in GCP registry, so now create the kubernetes deployment

cat > k8.yml

Substitute your project id and paste the following:

apiVersion:

apps/v1 kind:

Deployment

metadata:

name: my-app

labels:

 app: my-

app spec:

 replicas: 1

selector:

matchLabels:

app: my-app

template:

metadata:

name: my-app

labels:

 app:

my-app

spec:

containers:

 - name: my-app

 image:

gcr.io/{PROJECT_ID}/hello-app:v1

volumeMounts: - name:

certs mountPath:

/etc/ssl/certs volumes:

- name: certs hostPath:

path: /etc/ssl/certs

Use to escape out. Then provide executable privileges.

 chmod +x k8.yml

82

And deploy:

kubectl apply -f k8.yml

Make sure the pod is in running status

kubectl get pod

Now expose the app to the internet:

kubectl expose deployment my-app --type=LoadBalancer --port 80

--target-port 8080 kubectl get service

You see

It takes a few minutes for the to turn to an IP address

Retry kubectl get service until you see IP address in EXTERNAL-IP

Copy the EXTERNAL-IP for my-app and paste in your browser. You get Privilege DevOps Vault token

At this point you are successfully logged into Privilege DevOps Vault from GKE. There are two tokens, the first

one is the GKE metadata token. The second one is the Privilege DevOps Vault authentication token. If you

parse the Privilege DevOps Vault token at the jwt.io website you see the username gcloud-gce:gce-test to

confirm.

https://jwt.io/

83

Authentication: OIDC

Use dsv config auth-provider search --encoding yaml to see your current authentication settings.

The initial auth settings after your tenant is provisioned looks like this:

data:

- created: "2020-04-27T18:04:52Z"

 createdBy: "" id:

bqjhth447csc72i4sm8g

lastModified: "2020-04-

27T18:04:52Z"

 lastModifiedBy: "" name: thy-one

properties: baseUri:

https://login.thycotic.com/

clientId:

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x

 clientSecret: xx

 type:

thycoticone

version: "0"

length: 1

limit: 25

OIDC Providers

Any OIDC compliant authentication provider must be configurable to work with Thycotic One and IBM Security

Verify Privilege DevOps Vault. Documented integrations are below.

Common Steps

For all OIDC authentication providers you need to get their provider URL, client id, and client secret. You need

to set in the authentication provider the callback URL that it redirects to once authentication is complete.

To get your callback URL:

1. Sign into the cloud manager portal and go to Manage->Teams and click on Organizations for your team.

2. Click on Auth Providers and then click the New button. This opens a dialog up.

3. Give it a name and copy the Callback URL provided. Do not save or cancel, you come back later to fill out

the rest of the fields.

https://portal.thycotic.com/

84

Google Identity Provider Example

Configure Auth Providers

This example uses the Google Cloud Identity service.

1. Get the callback URL from Thycotic One following the directions at Authentication:OIDC

2. Go to the Google Cloud API Console and select a project if needed.

3. Select Credentials and click Create Credentials and click OAuth Client ID.

4. Choose Web Application

5. Enter the information, setting the Authorized origin as https://portal.thycotic.com/ and Authorized

redirect as the callback URL copied from the IBM Security cloud manager portal. Follow the instructions

to add these URL's to the OAuth consent screen.

https://console.cloud.google.com/apis/dashboard

85

6. Save and copy the client id and client secret from the dialog into the credentials create dialog in Cloud

Manager. Your Provider URL in cloud manager must be set to https://accounts.google.com

86

7. Save the credential create dialog in cloud manager and go back to Organizations. Click Credentials and

then edit your Credential. This is what is used by Privilege DevOps Vault to connect to the Thycotic One

identity provider for authentication.

8. Verify that there is a Post-Login Redirect URI for http://localhost:8072/callback. If there isn't, add

one. This is the callback used when logging into Privilege DevOps Vault with the CLI.

87

Creating a User in Thycotic One and Privilege DevOps Vault

In order to login using OIDC, the user must exist in the external provider, Thycotic One, and in Privilege

DevOps Vault.

If your current user, such as your initial admin already exists in all places, then skip this section. If you want to

add another user to Thycotic One and Privilege DevOps Vault simultaneously, do the following steps:

1. In the Privilege DevOps Vault CLI run dsv user create --username useremail@example.com --

provider thy-one

2. This creates a user record in Privilege DevOps Vault and syncs it to Thycotic One. The User gets an

email with a link to establish their password.

3. In the cloud manager portal, you can see your users by logging in and clicking on the Users link.

Logging In

Initialize the CLI:

dsv init

https://portal.thycotic.com/

88

Add a new profile if you want to retain your default dsv profile.

When prompted for the authorization type, choose OIDC (federated).

Please enter auth type:

(1) Password (local user)(default)

(2) Client Credential

(3) Thycotic One (federated)

(4) AWS IAM (federated)

(5) Azure (federated)

(6) GCP (federated)

(7) OIDC (federated)

When prompted for the authentication provider hit Enter to accept the default of thy-one

If you are on Windows or Mac OS the CLI automatically opens a browser to the Google login page, otherwise it

prints out a URL that you can copy and paste into a browser to complete the process.

Login using your Google credentials and your browser redirects to http://localhost:8072/callback, the

CLI is listening on that port and submits the returned authorization code to Privilege DevOps Vault to finish

the login process.

Verify the login by running (omit the --profile flag if you overwrote your config):

dsv auth --profile profilename

89

Azure AD OIDC Example

1. Get the callback URL from Thycotic One following the directions at Authentication:OIDC

2. In your azure portal go to Azure Active Directory and then go to the App Registrations.

3. Click New Registration

 4. Give your app a name and add the Callback URL from Thycotic One as the Redirect URI.

 5.Click Register to save your app.

6. Go to your app's Certificates and Secrets and click New Client Secret

7. Set the time period for the secret and click Add.

8. Copy the client secret, note that it is not available after you leave the page.

9. Go to Authentication and check the box for ID Tokens in the implicit grant section and save.

10. Navigate to Overview and note the Application ID and Directory ID. The Application ID is your Client ID

for Thycotic One and the Directory ID is part of your provider URL in the format

https://login.microsoftonline.com/{directory id}

https://login.microsoftonline.com/%7Bdirectory

90

11. Go back to the open dialog in Thycotic One and enter the Application ID for the Client ID, the generated

secret for Client Secret, and fill in the Provider URL and click Save

12. When you sign into Thycotic one again you see an option for logging in with Azure AD.

Okta Identity Provider Example

This example uses Okta as a OIDC identity provider.

Okta OIDC connection

1. Get the callback URL from IBM Security’s Cloud Manager portal following the directions at

Authentication:OIDC

2. Login to your Okta Admin console.

3. From the top menu bar, select Applications

4. Select Add Application

5. At the top right, select Create New App. A window opens

6. For platform, select Web from the dropdown and the OpenID Connect radio button. Click Create

91

7. On the resulting screen, provide an Application name and optional logo. Enter the IBM Security callback

URL in the box labeled Login redirect URIs. Click Save.

92

8. To the right of General Settings click Edit. Check the Implicit (Hybrid) box and it expands. Then check

Allow ID Token with Implicit grant type.

9. In the Initiate login URI Okta defaults to copying the Login Redirect URI, so highlight that box and copy

https://portal.thycotic.com in. Click Save

10. Copy the Client ID and Client secret for entry into the IBM Security Cloud portal

93

Retrieve the Issuer URL

11. In the second menu bar from the top, click Sign On and in the third box down, titled "OpenID Connect ID

Token", take note of the URL by Issuer for entry into the IBM Security Cloud portal. It is generally

something like https://company.okta.com or https://company.oktapreview.com

94

Add Okta Users and Groups to the Privilege DevOps Vault Application

12. In second menu bar from the top, click Assignments

95

13. Click Assign and when it drops down add users and/or groups that use IBM Security Verify Privilege

DevOps Vault. Of course, you can always come back, and add/remove people as needed.

Finish the Connection on the Thycotic One side

14. Go back to the IBM Security Cloud Manager Portal where we started. Fill-in a Description and the

issuer/provider URL from step 11.

15. Fill-in the Client ID and Client Secret from step 10.

16. Check the Enable box.

17. Click Save

96

18. Click Back to Organizations 19. Click Credentials

20. Click Edit and a window pops-up

21. To the right of "Post-Login Redirect URIs" click the + and a new empty box appears. In this new box, type

http://localhost:8072/callback.

Note: If you have already added this call back for another auth provider, then it is still there so you can

skip these last steps (18-21).

97

98

Dynamic Secrets

Dynamic Secrets are automatically generated at the time of request. This differs from the standard Secret

store read request where the credentials remain the same until changed by a user. They can be used when

you need to provide credentials to a user or resource, like a configuration tool, but the access must expire

after a set period of time.

Supported Types:

• AWS

• Azure

• GCP

Linking

For Dynamic Secrets to be generated, they rely on a Base Secret stored in Privilege DevOps Vault that

contains the provider's credentials that are used to automatically generate the ephemeral access keys.

The linking is done through the attributes section in the Secret JSON. For example, the following Secret

temp-api has no data, but is linked to a different AWS IAM Secret that contains the access and secret key

information. The linkConfig defines the type of linking and the linked Secret path.

Attribute Description

linkConfig link type and path to the linked Secret.

linkConfig.linkType The only valid value is "dynamic"

linkConfig.linkedSecret Secret path to the base credential

{

99

 "id": "cc619722-6538-4891-b0a6-2c7fa1776a67",

 "path": "dynamic:aws:creds:temp-api",

 "attributes": {

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "base:aws:creds:api-account"

 }

 },

 "description": "",

 "data": {

 }

}

Search for linked Secrets

To get a list of all dynamic secrets linked to a base secret, issue the command dsv secret search --query

<base secret path> --searchlinks

100

AWS Dynamic Secrets

AWS Dynamic Secrets generate a temporary access key, secret key, and session token. AWS security token

service (STS) for provides either federate or assumeRole. federate is ideal for assigning dynamic secrets

from a single AWS account. assumeRole allows cross account access in AWS, so a single set of credentials in

Privilege DevOps Vault can grant access to multiple AWS accounts.

These are the links to AWS documentation for each STS type:

• Federate

• Assume Role

AWS Federate

Setup the AWS IAM User

For the federate example, create a new IAM User and note the access key and secret key.

Assign a policy to the IAM user with sts:GetFederationToken permission as well as any other permissions

the IAM user must have. In this example, we assign the user full CodeDeploy rights.

NOTE: When you get temporary tokens from AWS via GetFederationToken the resulting token's

permissions are the intersection of the IAM User and the policy ARN specified on the Dynamic Secret.

In other words, the Dynamic Secret is only allowed the permissions that are in both the IAM policies

and the Dynamic secret attached policy.

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "sts:GetFederationToken",

 "codedeploy:*"

],

 "Resource": "*"

 }

]

}

Create the Base Secret

Next create a Secret in Privilege DevOps Vault with the AWS IAM user access key, secret key, and region.

Create a file named secret_root.json substituting your values:

{

 "accessKey": "AIA2RAVTSMNW437LM",

 "region": "us-east-1",

 "secretKey":

"SpN5Ipjvgepz0/q0ZNGmFhhLkUr+Uie5+D3CE" }

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

101

Create the Secret via the CLI at a path of your choosing:

dsv secret create --path aws/base/api-account --data @secret_root.json --attributes

'{"type": "aws"}'

Create the Dynamic Secret

Attribute Description

policyArn AWS ARN of the policy to assign the federated user token. Can be customer or aws managed

providerType federate

ttl optional time to live in seconds of the generated token. If none is specified it defaults to 900

Now you need to create a Dynamic Secret, which points to the base Secret via its attributes. The Dynamic

Secret doesn't have any data stored in it because data is only populated when you read the Secret.

Create an attributes json file named `secret_attributes.json' substituting your values.

{

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "aws:base:api-account"

 } ,

 "policyArn": "arn:aws:iam::aws:policy/AWSCodeDeployReadOnlyAccess",

 "providerType": "federate",

 "ttl": 1200

}

Create a new Dynamic Secret

dsv secret create --path dynamic/aws/federate-api --attributes @secret_attributes.json

Now anytime you read the Dynamic Secret, the data is populated with the temporary AWS access

credentials.
dsv secret read --path dynamic/aws/federate-api

returns a result like:

{

 "attributes": {

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "aws:base:api-account"

 },

 "policyArn": "arn:aws:iam::aws:policy/AWSCodeDeployReadOnlyAccess",

 "providerType": "federate",

 "ttl": 1200

 },

 "data": {

 "accessKey": "ASIAZTRAVTSMN5P6P",

 "expiration": "2020-02-06T18:49:17Z",

 "secretKey": "Is5L79Y1LgtOistJv+x0yVZ2/KLPWUUsUUj",

102

 "sessionToken": "FwIv...Zggfj+6nbiT9IOrEw==",

 "ttl": 1200

 },

 "description": "",

 "id": "db38e569-5d7f-4ad8-954c-ac846d528947",

 "version": "0"
}

You can validate the credentials only grant read access to Code Deploy by putting the credentials in a python

script and attempting to create a Code Deploy Application:

import boto3 import json from

botocore.exceptions import

ClientError

sess = boto3.Session(

 aws_access_key_id="ASIAZTRAVTSMN5P6P",

 aws_secret_access_key="Is5L79Y1LgtOistJv+x0yVZ2/KLPWUUsUUj",

 aws_session_token="FwIv...Ay93XTqVBGyeuodcw=="

)

client = sess.client("codedeploy")

resp = client.list_applications()

print("----list code deploy apps---

-")

print(json.dumps(resp["applications

"], indent=4)) print("----create

code deploy app----") try:

 resp =

client.create_application(

applicationName="TestApp",

computePlatform="Server"

) except ClientError as e:

print(e.response["Error"]["

Code"])

The result looks something like this (depending on how many CodeDeploy apps exist)

----list code deploy

apps---[

 "ExampleApp"

]

----create code deploy app----

AccessDeniedException

AWS Assume Role

In this example, we assume the IAM user and the role that that user assumes are in separate AWS accounts.

This is not required, but then it might make more sense to use the sts:Federated approach.

103

Setup the AWS IAM user

In the AWS account for the IAM user, create or modify an IAM user policy to include the sts:AssumeRole

permissions as well as any other permissions the user must have. In this example, we assign the user full

CodeDeploy rights.

NOTE: For setting up, if you don't know the role account ID or name at this point, Resources could be

set to all *, but best practices are to come back and restrict the Resources to only the role once the

name is known as shown here.

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "codedeploy:*"

],

 "Resource": "*"

 },

 {

 "Effect": "Allow",

 "Action": [

 "sts:AssumeRole"

],

 "Resource": "arn:aws:iam::{account id of role}:role/{role-name}""

 }

]

}

Setup the AWS IAM role

In the AWS account with the role that is to be used, create a new Role or identify an existing one with the

proper policies (not shown here).

NOTE: The sts:AssumeRole token has permissions that intersect between the IAM user policy(ies) and

the role ploicy(ies) they assume. In other words, the token can't have permissions enabled by both the

user and role policies.

Additionally, this role must have a trust relationship setup between the IAM user in the first account and this

role. It might look like this:

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Principal": {

 "AWS": "arn:aws:iam::{account id of user}:{iam-user}"

 },

 "Action":

"sts:AssumeRole",

"Condition": {}

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html

104

 }

]

}

Create the Base Secret

Next create a Secret in Privilege DevOps Vault with the AWS IAM user access key, secret key, and region.

Create a file named secret_root.json substituting your values:

{

 "accessKey": "AIA2RAVTSMNW437LM",

 "region": "us-east-1",

"secretKey": "SpN5Ipjvgepz0/q0ZNGmFhhLkUr+Uie5+D3CE"

}

Create the Secret via the CLI at a path of your choosing:

dsv secret create --path aws/base/api-account --data @secret_root.json -

-attributes '{"type": "aws"}'

Create the Dynamic Secret

Attribute Description

roleArn
AWS ARN of the role to assign the AssumeRole user token. Can be customer or aws

managed

providerType assumeRole

ttl
optional time to live in seconds of the generated token. If none is specified, it defaults to

900

Create the Dynamic Secret

Now you need to create a Dynamic Secret, which points to the base secret via its attributes. The Dynamic

Secret doesn't have any data stored in it. Data is only populated when you read the secret.

Create or update the attributes json file named `secret_attributes.json substituting the ARN of the role you

created.

{

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "aws:base:api-account"

 } ,

 "roleArn": "arn:aws:iam::{account id of role}:role/{role-name}",

 "providerType": "assumeRole",

 "ttl": 1200

}

Now create the dynamic secret in the CLI using the json above.

105

dsv secret create --path dynamic/aws/assume-api --attributes @secret_attributes.json

Now anytime you read the Dynamic Secret, the data is populated with the temporary AWS access

credentials.

dsv secret read --path dynamic/aws/assume-api

returns a result like:

{

 "attributes": {

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "aws:base:api-account"

 },

 "roleArn": "arn:aws:iam::{account id of role}:role/{role-name}",

 "providerType": "assumeRole",

 "ttl": 1200

 },

 "data": {

 "accessKey": "ASIAZTRAVBIVK5SLU",

 "expiration": "2020-02-06T18:49:17Z",

 "secretKey": "Xh/xqw5Ipjvgepz0i6un+ZUUsUUj",

 "sessionToken": "FwIv...Zggfj+TexEiLtE3h1R1UvllXCHzk5==",

 "ttl": 1200

 },

 "description": "",

 "id": "34fb64d7-18da-453d-9487-3d1c082ba372",

 "version": "0"

}

106

Azure Dynamic Secrets

IBM Security Verify Privilege DevOps Vault relies on Azure service principals to provide Dynamic Secrets.

For Privilege DevOps Vault to generate dynamic Secrets, a base secret must first be created using a service

principal that has permissions to manage other service principals. Those permissions include:

• “Owner" role for the subscription scope

• “Read and write all applications" permission in Azure Active Directory

• Your account must have Microsoft.Authorization/*/Write access to assign an active directory

application to a role

These permissions can be configured through the Azure Portal, CLI tool, or PowerShell. A guide to setting up

the Azure service principals in the Azure portal is provided in the Azure Service Principal section. Create

the Base Secret

The base Secret holds the credentials required for Privilege DevOps Vault to perform API calls to Azure to

query roles and create/delete service principals.

Attribute Description

subscription_id
Required - The subscription ID holding the resources you wish to access using Azure Active

Directory.

tenant_id
Required - The tenant ID for Azure Active Directory. Azure lists it in places as "Directory

(tenant) ID"

client_id
Required - The OAuth2 client ID to connect to Azure. Azure lists it in places as

"Application (client) ID"

client_secret Required - The OAuth2 client secret to connect to Azure.

environment
Optional - The Azure environment. If not specified, Privilege DevOps Vault uses Azure

Public Cloud.

Create a file named secret_base.json substituting your values:

{

 "subscriptionId": "6ca2adeb-7b44-4c7f-93fc-2d5b9729a8c1",

 "tenantId": "11f54b31-ffb9-42b5-8fda-76c734a7796c",

 "clientId": "4d95b358-079d-4d6d-85c4-943c0f1d91cd",

 "clientSecret": "tMQ5ZEP?.sj46e15123ba3b5b]"

}

Create the base Secret via the CLI substituting a path of your choosing:

dsv secret create --path azure/base/api-account --data '@secret_base.json' --attributes

'{"type": "azure"}' --desc "azure base credential"

Dynamic Secrets

In Privilege DevOps Vault you can create dynamic Secrets from either an existing service principal or create a

temporary service principal.

107

NOTE Temporary vs Existing Service Principals: Azure does not use these terms, but Privilege DevOps

Vault can either use a service principal that you have already setup (existing) or Privilege DevOps Vault

can create a service principal on the fly (temporary) through Azure's role-based access control (RBAC).

If possible, a temporary service principal is preferred. Temporary service principals are independent

from other service principals and provide fine grained access and auditing. However, creating

temporary service principals can take up to 2 minutes before fully provisioned on Azure.

Use of an existing service principal is required in some cases when Azure services are not accessible

through Azure RBAC. In these cases, an existing service principal can be set up with the necessary

access and Privilege DevOps Vault can create a new client secret for this service principal each time the

dynamic secret is read. One issue with this might be that Azure limits the number of passwords for a

given Application object, but this can be managed by reducing the secret TTL. Also keep in-mind that

Azure does not log actions related to each secret, so auditing is not a clean as with temporary service

principals.

Dynamic Secret for an Existing Service Principal

Create a dynamic Secret that points to the base Secret via its attributes. The dynamic Secret doesn't have any

data stored in it because data is only populated when you read the Secret.

Attribute Description

roleName
Optional- Azure role name to be assigned to the existing service principal. Does not change

existing principal's role

appId Required - Application (client) ID for an existing service principal

appObjectId Required - Application Object ID for an existing service principal

ttl
Optional - Time to live in seconds of the generated token. If none is specified, it defaults to

900

Create an attributes json file named secret_attributes.json substituting your values

{

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "azure:base:api-account"

 } ,

 "roleName": "Contributor",

 "appId": "f81b3c6d-2ce9-47d4-ad2d-fef8390792a2",

 "appObjectId" : "5fe218ee-cb58-4089-ac9f-b1b68971ad73",

 "ttl": 360

}

Create the dynamic Secret via the CLI substituting the path of your choosing.

 dsv secret create --path azure/dynamic/api-account --attributes '@secret_attributes.json'

--desc "azure dynamic credential"

108

Now anytime you read the dynamic Secret, the data is populated with the temporary Azure access credentials.

 dsv secret read --path azure/dynamic/api-account

Returns a result like:

{

 "id": "6e7de928-5027-4afb-bbff-b3ee59f9c24f",

 "path": "dynamic:azure:sp-static",

 "attributes": {

 "appId": "f81b3c6d-2ce9-47d4-ad2d-fef8390792a2",

 "appObjectId": "5fe218ee-cb58-4089-ac9f-b1b68971ad73",

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "azure:base:api-account"

 },

 "roleName": "Contributor",

 "ttl": 360

 },

 "data": {

 "appObjectId": "5fe218ee-cb58-4089-ac9f-b1b68971ad73",

 "client_id": "f81b3c6d-2ce9-47d4-ad2d-fef8390792a2",

 "client_secret": "bfe6ac86-3671-4fd9-8f76-8f2e0f22495d",

 "role": "Contributor",

 "subscription_id": "6ca2adeb-7b44-4c7f-93fc-2d5b9729a8c1",

 "tenant_id": "11f54b31-ffb9-42b5-8fda-76c734a7796c",

 "ttl": 360

 },

 "created": "2020-02-24T16:42:34Z",

 "lastModified": "2020-03-04T19:21:04Z",

 "version": "13"

}

Dynamic Secret for a Temporary Service Principal

Note: Creating service principal and assigning role in same request takes tens of seconds (over a

minute has been seen), The command has been broken down into two separate calls. In the first call

the service principal is returned along with the task id that fired in the background for role assignment.

You need to wait to use that temporary service principal or check via the Azure portal or via the

Privilege DevOps Vault API (provided below)

Attribute Description

roleName
Optional - If no "roleID" is assigned, Privilege DevOps Vault tries to look-up the built-in Azure

role by this name.

roleId

Optional - Azure role id to be assigned to the temporary service principal. If not defined, then

Privilege DevOps Vault attempts to look up the Azure built-in role by "roleName". However,

role ID takes precedence. One of roleName or roleID required.

scope Required - Azure resource group to be assigned to the temporary service principal

ttl
Optional - Time to live in seconds of the generated token. If none is specified, it defaults to

900.

Note: Azure built-in role names and IDs can be found here

https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles

109

Create an attributes json file named secret_attributes.json substituting your values.

{

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "azure:base:api-account"

 } ,

 "roleName": "Contributor",

 "roleId": "/subscriptions/<Azure Subscription

ID>/providers/Microsoft.Authorization/roleDefinitions/b24988ac6180-42a0-ab88-

20f7382dd24c",

 "scope": "/subscriptions/<Azure Subscription ID>/resourceGroups/<resource group

name>",

 "ttl": 36000

}

Create a new Dynamic Secret via the CLI substituting the path of your choosing.

 dsv secret create --path /azure/dynamic/api-account --attributes '@secret_attributes.json'
--desc "azure dynamic credential"

Now anytime you read the dynamic Secret, the data is populated with the temporary azure access credentials.

{

 "id": "27a405c6-14b4-4d4b-b566-9fe23f1012c2",

 "path": "dynamic:azure:ac-api",

 "attributes": {

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "azure:base:api-account"

 },

 "roleId": "/subscriptions/6ca2adeb-7b44-4c7f-

93fc2d5b9729a8c1/providers/Microsoft.Authorization/roleDefinitions/b24988ac-6180-42a0-

ab88-20f7382dd24c",

 "roleName": "Contributor",

 "scope": "/subscriptions/6ca2adeb-7b44-4c7f-93fc-2d5b9729a8c1/resourceGroups/dsv-

resource-group",

 "ttl": 36000

 },

 "description": "azure root credential",

 "data": {

 "appObjectId": "e463477c-7d90-4743-92f2-c7f44ede8ec9",

 "client_id": "945d25cb-7697-4648-b574-e8a660154269",

 "client_secret": "ce1d072d-449d-4052-9a81-0d7ef982f7a4",

 "role": "Contributor",

 "roleAssignmentId": "/subscriptions/6ca2adeb-7b44-4c7f-

93fc2d5b9729a8c1/providers/Microsoft.Authorization/roleDefinitions/b24988ac-6180-42a0-

ab88-20f7382dd24c",

 "roleAssignmentStatus": "created",

 "roleAssignmentTaskId": "task_3da0a37c-0a1c-4ebd-8829-dbe7b988b36f",

 "spObjectId": "1782611c-99c2-418b-b672-783e3cf8bd14",

 "subscription_id": "6ca2adeb-7b44-4c7f-93fc-2d5b9729a8c1",

110

 "tenant_id": "11f54b31-ffb9-42b5-8fda-76c734a7796c",

 "ttl": 36000

 },

 "created": "2020-02-12T20:57:44Z",

 "lastModified": "2020-03-04T19:27:45Z",

 "version": "12"

}

It takes some time for the temporary service principal to be created, so you can check using the Azure portal

for the new service principal or use the Privilege DevOps Vault API:

Use the roleAssignmentTaskId from above response

method path

GET /v1/task/status/

Sample Response:

{

 "taskName": "azure_role_assignment",

 "state": "SUCCESS",

 "results": null,

 "error": "",

 "createdAt": "2020-03-

04T19:28:07.420285103Z" }

Azure Service Principal

This is a step-by-step guide to creating an Azure service principal with the privileges necessary to enable

Azure credential generation.

An Azure service principal is an identity created for use with applications, hosted services, and automated

tools to access Azure resources.

These are the links to azure documentation on service principal:

• Service Principal

• Create Service Principal

Creating a Service Principal for the Privilege DevOps Vault Base Secret

1. Go to the Microsoft Azure portal and login.

2. Go to Azure Active Directory.

3. Click App registrations then New registration. Enter an application name and then click Register.

4. Take note of the Application (client) ID and Directory (tenant) ID. They are the Privilege DevOps Vault Base

secret clientId and tenantId parameters respectively.

https://docs.microsoft.com/en-us/azure/active-directory/develop/app-objects-and-service-principals
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://portal.azure.com/

111

5. Select Certifications & secrets then New client secret. Enter a description and when it expires. Click Add.

6. Take note of the newly generated secret which is the clientSecret parameter in the Privilege DevOps Vault

Base Secret.

7. Select API permissions and then Add a permission.

8. Under Supported Legacy APIs, select Azure Active Directory Graph.

9. Select Delegated permissions, expand the User accordion, and then check the User.Read box.

112

10. Select Application permissions and expand the Application and Directory accordions. Check the

Application.ReadWrite.All and Directory.ReadWrite.All boxes.

113

11. Select Add permisssions at the bottom of the page. This takes you back to the API Permissions page. Notice

that the Application permissions have warnings that those permissions are not yet granted.

12. Click Grant admin consent for Default Directory and then Yes. This step can be easy to miss.

114

13. Navigate to Home > Subscriptions and take note of the Subscription ID that you are using. This is the

subscriptionId in the Privilege DevOps Vault Base Secret.

14. Click into the Subscription ID then Access control (IAM) then Add in the Add role assignment box on the

right.

15. Select Owner in the Role dropdown.

16. Select Azure AD user, group, or service principal in the Assign access to dropdown.

17. In the Select field, enter the application name or Application (client) ID saved previously and select it so that

it shows up under Selected Members below.

115

18. Click Save

Creating a Service Principal for a Privilege DevOps Vault Dynamic Secret

In the Azure Dynamic Secrets section, we discuss Privilege DevOps Vault using an "existing service principal"

vs Privilege DevOps Vault creating a "temporary service principal". This is guidance on creating an existing

service principal in the Azure portal. In the case of the temporary service principal, no guidance in Azure is

needed because Privilege DevOps Vault creates them.

1. Go to the Microsoft Azure portal and login.

2. Go to Azure Active Directory.

3. Click App registrations then New registration. Enter an application name and then click Register.

4. Take note of the Application (client) ID and Object ID. They are the Privilege DevOps Vault Dynamic

Secret appId and appObjectId parameters respectively.

https://portal.azure.com/

116

5. Navigate to Home > Subscriptions

6. Click into the Subscription ID that you are using and then Access control (IAM) then Add in the Add

role assignment box on the right.

7. Select Role dropdown, select the role you wish to provide. In this example, we use Contributor.

8. Select Azure AD user, group, or service principal in the Assign access to dropdown.

9. In the Select field, enter the application name or Application (client) ID saved previously and select it so

that it shows up under Selected Members below.

10. Click Save

GCP Dynamic Secrets

There are two ways to generate dynamic GCP secrets:

117

• Token Generation

• Service Account Key

Token generation creates an access token that can be used as the bearer token in the GCP API. Service

account key generation creates a new key on a service account in GCP and then deletes the key after the

specified time to live is up.

Setup

Create a GCP Service Account

For setting up GCP token or key based dynamic secrets you first need a service account in GCP.

• Go to Service Accounts under IAM & Admin in the GCP console

• Click Create Service Account and grant it access to a project

• Generate a key for the service account and save it

• Under IAM Assign the Service Account Key Admin and Service Account Token Creator roles to

the new service account. Also give it Storage Admin which is used for testing the dynamic secrets

Create the Base Secret

Next create a Secret in Privilege DevOps Vault with the AWS IAM user access key, secret key, and region.

Create a file named secret_root.json substituting your values from the service key file:

{

 "projectId": "test-project-1234",

 "type": "service_account",

 "privateKeyId": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",

 "privateKey": "-----BEGIN PRIVATE KEY-----\n...\n-----END PRIVATE KEY-----\n",

 "clientEmail": "dsv-test@test-project-1234.iam.gserviceaccount.com",

 "clientId": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxx",

 "tokenUri":

"https://oauth2.googleapis.com/token"

}

Create the Secret via the CLI at a path of your choosing:

dsv secret create --path gcp/base/svc-account --data @secret_root.json --attributes

'{"type": "gcp"}'

OAuth Access Token

Attribute Description

scopes Array of GCP OAuth 2.0 scopes for the dynamic token

providerType token

Now you need to create a Dynamic Secret, which points to the base Secret via its attributes. The Dynamic

Secret doesn't have any data stored in it because data is only populated when you read the Secret.

https://cloud.google.com/iam/docs/creating-short-lived-service-account-credentials
https://cloud.google.com/iam/docs/creating-managing-service-account-keys
https://developers.google.com/identity/protocols/oauth2/scopes

118

Create an attributes json file named `secret_attributes.json' substituting your values.

{

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "gcp:base:svc-account"

 } ,

 "providerType": "token",

 "scopes": [

 "https://www.googleapis.com/auth/devstorage.full_control"

]

}

Create a new Dynamic Secret

dsv secret create --path dynamic/gcp/token --attributes @secret_attributes.json

Now anytime you read the Dynamic Secret, the data is populated with the a temporary access token that is

valid for 1 hour.

dsv secret read --path dynamic/gcp/token

returns a result like:
{

 "id": "ba2f1fc7-c16f-4062-a216-3116d1a42545",

 "path": "dynamic:gcp:token",

 "attributes": {

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "gcp:base:svc-account"

 },

 "providerType": "token",

 "scopes": [

 "https://www.googleapis.com/auth/devstorage.full_control"

]

 },

 "description": "gcp dynamic token secret",

 "data": {

 "access_token": "ya29.c.Ko8ByAfMsL-...JbFloC6tOiUCOM6vXn7YNhZA",

 "expiry": "2020-04-26T22:04:32.3897188Z",

 "ttl": 3600

 }

}

You can validate the credentials are able to read storage buckets by making an API request with the access

token in the Authorization header to the storage API for your project, substituing your values:

curl -H 'Authorization: Bearer {access token}'

https://storage.googleapis.com/storage/v1/b?project={project id}

119

Service Account Key

In this example, rather than generating an OAuth token we generate a new key in json format for the service

account. This creates a new key in GCP that can be used to authenitcate with the gcloud CLI or other SDK's.

Once the ttl for the dynamic secret expires the key is removed.

Service accounts in GCP are limited to 10 keys per account. If you exceed this you get a 400 error

reading the dynamic secret with a message of unable to create new service account key

googleapi: Error 429: Maximum number of keys on account reached., rateLimitExceeded

To help avoid this ensure that you keep ttl's relatively low for service account keys to ensure they get

cleaned up. You can also create multiple service accounts with the same permissions in GCP and then

create a base secret for each one to help spread the number of keys across service accounts.

Create the Base Secret

For this example, we reuse the base secret from above. If you haven't done this already, then follow those

directions to create the base secret now.

Create the Dynamic Secret

Attribute Description

providerType serviceKey

ttl required time to live in seconds of the generated token.

Create or update the attributes json file named secret_attributes.json changing the provider type to

serviceKey and replacing the

{

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "gcp:base:svc-account"

 } ,

 "providerType": "serviceKey",

 "ttl": 3600

}

Now create the dynamic secret in the CLI using the json above.

dsv secret create --path dynamic/gcp/secret-svc-key --attributes @secret_attributes.json

Now anytime you read the Dynamic Secret, the data is populated with the GCP service key.

dsv secret read --path dynamic/gcp/secret-svc-key

returns a result like:

{

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "gcp:base:svc-account"

120

 } ,

 "providerType": "serviceKey",

 "ttl": 3600

 },

 "data": {

 "keyAlgorithm": "KEY_ALG_RSA_2048",

 "keyOrigin": "GOOGLE_PROVIDED",

 "name": "projects/test-proj-1234/serviceAccounts/dsv-

test@test-

prog1234.iam.gserviceaccount.com/keys/0e4c690b713bfe0ed517ed56cba4

814afd35a8ad", "privateKeyData":

 {

 "client_id": "xxxxxxxxxxxxxxxxx",

 "auth_uri": "https://accounts.google.com/o/oauth2/auth",

 "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/dsv-

test%40test-proj-

1234.iam.gserviceaccount.com",

 "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",

 "client_email": "dsv-test@test-project-1234.iam.gserviceaccount.com",

 "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADAN...iV7quFF35ILBG+w=\n-----

END PRIVATE KEY-----\n",

 "private_key_id": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",

 "token_uri": "https://oauth2.googleapis.com/token",

 "type": "service_account",

 "project_id": "test-proj-1234"

 },

 "ttl": 3600

 },

 "description": "",

 "id": "34fb64d7-18da-453d-9487-3d1c082ba372",

 "version": "0"

}

Copy the inner JSON of privateKeyData into a file and name it svc-account.json. Then using the gcloud CLI

run gcloud auth activate-serviceaccount --key-file svc-account.json to test the generated key is

valid. If so, you get a reply similar to 'Activated service account credentials for: [service account email]'

After the ttl expires you can check the keys on the service account and they are removed. Note that there may

be some delay between when the ttl expires and when the key is removed from the service account.

121

MySQL Dynamic Secrets

Database Dynamic Secrets are similar to IaaS Dynamic Secrets in that the idea is to provide temporary

credentials for very specific uses. The possible damage done by leaked credentials is severely limited to due

to granular policies and short time-to-live. However, IaaS platforms provide mechanisms for ephemeral

credentials with fine-grained policies, and most databases do not. Therefore, Privilege DevOps Vault provides

a way to provide ephemeral credentials by creating and deleting users in a just-in-time manner.

Privilege DevOps Vault Engine Required

MySQL Dynamic Secrets requires the deployment of the Privilege DevOps Vault Engine. See the instructions at

Privilege DevOps Vault Engine

Dynamic Secret Setup

In the CLI, create a base secret containing the credentials of the MySQL account that is responsible for

creating new MySQL accounts on a given MySQL server.

The secret could look like the following:

{

 "path": "db:mysql:root",

 "attributes": {

 "type": "mysql"

 },

 "description": "mysql root credentials",

 "data": {

 "host": "database-1.cjqpjhgsaz53.us-east-1.rds.amazonaws.com",

 "password": "P@ssword!",

 "port": 3306,

 "username": "admin"

 }

122

}

The path is arbitrary, as is the description, of all secrets. To mark a secret as a MySQL root secret, ensure its

attributes contain a key type with a value of mysql. All fields in the data object are required.

Then create a new dynamic secret linked to the root secret. The secret could look like the following:

{

 "path": "db:mysql:dyn1",

 "attributes": {

 "grantPermissions": {

 "what": "SELECT",

 "where": "*.*"

 },

 "linkConfig": {

 "linkType": "dynamic",

 "linkedSecret": "db:mysql:root"

 },

 "pool":

"pool1",

"ttl": 1000

 },

 "data": {},

}

The path is arbitrary. There is no secret data when creating the dynamic secret. All the necessary information

is in the attributes, where all the fields are required. In the linkConfig, be sure to specify the path of the root

secret as the value of the linkedSecret key. The value of linkType is always dynamic for dynamic secrets.

The grantPermissions object specifies the permissions assigned by MySQL to the new user account. The ttl

specifies the number of seconds for which the new account exists before the engine automatically deletes it.

The attributes may also include an optional userPrefix key whose value is a string prepended to all MySQL

account usernames created from the dynamic secret.

Sending a MySQL task to an engine

Read the MySQL dynamic secret. A randomly chosen engine in a pool of engines receives the task and

performs it. The engine attempts to create a MySQL account and reports back success or failure. On success,

the user also receives the new working credentials. As long as there is at least one running engine in a given

pool, some engine receives a MySQL account revocation task and delete the account once its TTL expires.

Privilege DevOps Vault Engine

An engine is an agent performing tasks on any remote machine. After deployment, the agent opens a real-

time two-way communication channel with the main Privilege DevOps Vault API. Users of the API can send

the agent tasks to complete, and the agent, having completed a task or failed, reports back to the caller.

An engine is designed to be a long-running process that completes tasks on demand and automatically in the

background.

123

The initial use of the Privilege DevOps Vault Engine is to support database dynamic secrets. In this use-case, a

user or application requests access to a database. Privilege DevOps Vault has a "base" secret that gives

Privilege DevOps Vault access to the database and permission to create users along with permissions and

credentials. Privilege DevOps Vault provides those new credentials to the user or application for use. Then

when the TTL expires, Privilege DevOps Vault goes back to the database and delete that user. This provides

just-in-time access and eliminates the need for credential rotation.

Future uses of the Privilege DevOps Vault Engine include additional authentication methods and password

rotation.

Customer Firewall

The Privilege DevOps Vault Engine uses secure websockets (wss) on port 443 TCP outbound. Since most

users already have this port open for web access, they do not need to make firewall changes.

Registering a pool and an engine

Users can create engines as other entities (like roles, users) in Privilege DevOps Vault. Privilege DevOps Vault

organizes engines in pools, so an engine must be assigned to an existing pool. Using the DSV API, users first

create a pool, then an engine assigned to that pool. An engine can only be assigned to one pool. A pool can

contain many engines.

Starting an engine

To start an engine in a container, pull the appropriate image and run a container from it. The result depends

on the environment variables you provide to the new container. If you had created a pool, but not engine, you

can register a new engine and start it in one step:

docker run -e ENGINE_NAME=engine1 -e DSV_POOL=pool1 -e DSV_TENANT=bob -e

DSV_URL=secretsvaultcloud.com -e DSV_TOKEN=eyJhbGcxNjAKadw dsv-engine

You see the private key and other information about the new engine displayed once it has been registered,

and the container has been started. Store the private key and other information securely.

If you already have a registered engine and want to run it in the container, then provide a different set of

environment variables:

docker run --name eng --rm -e ENGINE_NAME=engine1 -e

DSV_ENDPOINT=bob.ws.secretsvaultcloud.com -e DSV_PRIVATE_KEY=LS0tLS1CRUiBSkFURS dsv-

engine

In either case, on successful engine start, you get a message saying that the engine is ready and waiting for

messages.

List of environment variables for engine Docker container

• ENGINE_NAME

• DSV_POOL

• DSV_TENANT

https://dsv.thycotic.com/api/index.html#tag/Pools

124

• DSV_URL

• DSV_TOKEN

• DSV_PRIVATE_KEY

• DSV_ENDPOINT

Running the Privilege DevOps Vault -engine binary directly

The container encapsulates the operations of the dsv-engine binary, which is a client-side CLI program to

register and run an engine. It exposes two commands: register and run. Standard help is available with

dsv-engine register -h and dsv-engine run -h.

Certificate Issuance

IBM Security Verify Privilege DevOps Vault provides the ability to generate and sign leaf (end-entity)

certificates or to create and sign a certificate from a certificate signing request (CSR).

All certificates assume RSA 2048 key-pairs and SHA-256 Hashing

A signing certificate is required, and it may be generated in Privilege DevOps Vault or imported from an

outside Certificate Authority (CA). This documentation often refers to the signing certificate as the "root"

certificate. However, in the case of a signing certificate being imported from an outside CA, best practices are

to use an intermediate certificate as the Privilege DevOps Vault signing certificate.

All the dsv pki <action> commands start a workflow if no flags are added. However, --help (or -h) can

be used for help. In these examples we provide the direct commands.

Generate a Signing Certificate

The command to generate a self-signed root certificate and private key is dsv pki generate-root

 Flag Description

commonname Required - The domain name of the root CA

rootcapath Required - Path and name of a secret that contains the signing certificate

domains
Required - List of domains that this signing certificate is allowed to sign leaf

certificates

maxttl
Required - Maximum time to live in hours for a leaf cert signed with this signing

certificate. This also sets the expiration date (time) of this root certificate

crl Optional - URL where customer-supported certificate revocation list (CRL) resides

country Optional

state Optional

locality Optional

email Optional

125

organization Optional

This command generates a root certificate named foobar.org and corresponding private key for signing leaf

certificates with the common name foo.org and/or bar.org. They are saved in the secret path, ca/myroot, that

is referenced when a leaf certificate is generated and/or signed.

dsv pki generate-root --rootcapath ca/myroot --domains foo.org,bar.org --common-name

foobar.org --organization FooBar,Inc -country US --state IA --locality Boone --maxttl 1000

The output from the above command only shows the certificate and is base64 encoded.

To retrieve the root certificate and private key, run dsv secret read --path ca/myroot

{

 "attributes": {

 "type": "CA"

 },

 "created": "2020-04-09T20:29:41Z",

 "createdBy": "users:thy-one:dsvtest9519@mailinator.com",

 "data": {

"cert":

"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSURnakNDQW1xZ0F3SUJBZ0lFTVp4NWJqQU5CZ2txaGtpRzl3M

EJBUXNGQURCaE1Rc3dDUVlEVlFRR0V3SlYKVXpFTE1Ba0dBMVVFQ0JNQ1NVRXhEakFNQmdOVkJBY1RCVUp2YjI1bE1

STXdFUVlEVlFRS0V3cEdiMjlDWVhJcwpTVzVqTVFrd0J3WURWUVFMRXdBeEZUQVRCZ05WQkFNVERIUm9lV052ZEdsa

kxtTnZiVEFlRncweU1EQTBNRGt5Ck1ESTVOREZhRncweU1EQTFNakV4TWpJNU5ERmFNR0V4Q3pBSkJnTlZCQVlUQWx

WVE1Rc3dDUVlEVlFRS

UV3SkoKUVRFT01Bd0dBMVVFQnhNRlFtOXZibVV4RXpBUkJnTlZCQW9UQ2tadmIwSmhjaXhKYm1NeENUQUhCZ05WQkF

zVApBREVWTUJNR0ExVUVBeE1NZEdoNVkyOTB

hV011WTI5dE1JSUJJakFOQmdrcWhraUc5dzBCQVFFRkFBT0NBUThBCk1JSUJDZ0tDQVFFQXRVUjFKaDZ4UkdRYVZ0O

WhvaUdvWjdiN3JTVzk3YVFhRnprK2VESUNhZ

ThFSjFpYkdSQlAKVFJJMUZHLzlnMUtNTFhPUjArcDRWSHlvYjhzVVhSb0tYeHZZa2t4eXM4RjBoVVdEblUxZHJFVXh

rZGk0R3BhdQpObEJJaWhmblpRdmtnY0txMzF

oYktpSlIwaTU0b0NnNjhyNVY2VUY4bVpNQWloa2cya012emFJMFE0TGE2d3FaCjlSRlFSUlJLRkIzNEx6SUdnaFpDS

ldTUkY2UDZnSWJpM2VOck1KRWdsaUdqb1FYW

jJlanJ1RURWaHhqQ295WjYKdmdUdDIza2dxWnNOQUxxUE9CazJGeGZZQ3FuS2d3TTdRYTNRdmdNeVE0eG5KSTBqTUJ

aVWpFU0IvSmRiRVo5eQplckhsZGpSYnFSUjh

rR0RsYksweDBkUW1jNHpUQitOc0JRSURBUUFCbzBJd1FEQU9CZ05WSFE4QkFmOEVCQU1DCkFvUXdIUVlEVlIwbEJCW

XdGQVlJS3dZQkJRVUhBd0lHQ0NzR0FRVUZCd

01CTUE4R0ExVWRFd0VCL3dRRk1BTUIKQWY4d0RRWUpLb1pJaHZjTkFRRUxCUUFEZ2dFQkFBcEZNYWhFM1FINHQ3U0g

zczNNK1ZUSGJpSWhrUnVxazVVZQozK1M2Ykp

iL3ROckRVTE5lSFkyaDBPRGpmcWI3QWk5RElSMjc3dW8vVkh0QW1zWno1bEJ5TjJLZSs3YUxXY2FTClVoek1FVUt6c

m4vMW90T2Q5S2RuVWJ1cS8xNEVCVmUyb0t4Y

1k1cHdJZTZnMkpVMW5oSGM2SENENmJVNVRnVmgKbzNWclJ0NVA5VUs4aWsraUlDbktObVRJUWhsRDVhZ2VJeVp0UmY

yQ01xdzR0TldMRzU4b011UTQrcjVwY2Vqegp

FSGI1UHpiR29wMGI3NUdyQVFZbWhFU2d4SnVUZWI3WnZiTUIxbG5QdnFyWWNCN09MR2VyaDY4bHZ4K1NadVk2CmE2N

ld0RmNobjFlR3c0WlQxdzl4Vk5VOVhqRndvbjRqaG9VdlRxR0k0L2c0NlJVY1NoZz0KLS0tLS1FTkQgQ0VSVElGSUN

BVEUtLS0tLQo=",

 "domains": ["foo.org", "bar.org"],

 "maxTTL": 1000,

 "privateKey":

"LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLRVktLS0tLQpNSUlFb3dJQkFBS0NBUUVBdFVSMUpoNnhSR1FhVnQ5aG9pR

29aN2I3clNXOTdhUWFGemsrZURJQ2FlOEVKMWliCkdSQlBUUkkxRkcvOWcxS01MWE9SMCtwNFZIeW9iOHNVWFJvS1h

4dllra3h5czhGMGhVV0RuVTFkckVVeGtkaTQKR3BhdU5sQklpaGZuWlF2a2djS3EzMWhiS2l

KUjBpNTRvQ2c2OHI1VjZVRjhtWk1BaWhrZzJrTXZ6YUkwUTRMYQo2d3FaOVJGUVJSUktGQjM0THpJR2doWkNKV1NSR

126

jZQNmdJYmkzZU5yTUpFZ2xpR2pvUVhaMmVqc

nVFRFZoeGpDCm95WjZ2Z1R0MjNrZ3Fac05BTHFQT0JrMkZ4ZllDcW5LZ3dNN1FhM1F2Z015UTR4bkpJMGpNQlpVakV

TQi9KZGIKRVo5eWVySGxkalJicVJSOGtHRGx

iSzB4MGRRbWM0elRCK05zQlFJREFRQUJBb0lCQUJYYklUenRhblpTazVKeAo4TFc1MVRKY0w5QmF3cUhLclpLclJrc

jd6S3ExTlEwQmRBSDdvM1FwZzlqby8rbzdvO

GMvTGhBZEwxRVFqc2FiCjkrS1o1ekk4aTBwb2lWUC9PV3R3VEVSRk5jdzFzNXBnUlNKL2xKWGI3RU1xU3E0MlZ1RUd

kYy9rT1duRkpaUncKSWY4OW1vMzJRU21VeWM5Q21FZ09hNVdsa0RmODZLYjJMS2ZscXE1QWkybCs2VVRQTGovejlpT

GhDcTdqTFRtVwpaSzVhcVdaUnpNQ24rVEhnNEdUY2dBeWl0VzJnbUo2RFBSWldzaHJSUUJ2V

VloY1JjSnBKN3FQb3hEOGpMNXIyCmVXV0UzZGs1bzJSdG5aZFRZU095N0o4ZFM5c2F0Sk1UQmdxN0ZNbkFRR2E0S2p

iYStkQ3RuVjRPaGhiV240dGIKR2NtUjJvRUN

nWUVBeFdlQnpvR3p2RnJqSGl3ZmYraVlYUnFvcEJrR0VBd0gvUC9SUzFQMGNnbjNuYkFKdzZOegpEbW1SSHlDNHhFQ

XhOZzVqZ25mdkMvYS9UcnZXMy9JY3doZzdMM

UtIajh6d2NrOGFvWDdOZFNjWVFCZ2w0bU1CCnNDaVpicmdwblVBbHUxZFRLZ3BULzVYZzBERXlHUE15VkpIZmF3cGp

rV0p1QTdSejRtYjczdkVDZ1lFQTZ4SzYKWHZUVWFzcFk1OWV5emhFU1RhNEdzVTFMRzMwRTJCb0owS1h6dEQ4TkVtM

kZTMlRJQ2Jsbk9Rakxod2RpU3E5MgptNnZXejVpVG1teGwvMHI2cEhZL3Q1RmJOOEV5eHVzZ

GdCbDBNTkR1THM2bTRubU5uWXpVSTlqOUF6ajg1alVPCmdaTTJlS0lzMDNqMGZudG1vejQzYXRnV0M5R3EvOEl2eG0

wVXhsVUNnWUFGeWcxU2d4ZEVWTjRJU243NS8

xWkkKbExtUlpuSjVFZ0ZCK0RhcElPTXdYUDU0RDJ1WjR6ZENtdkg0bWJzUmRsaDdIMXpudktDMEZ4NXhMcTBVa0VNc

gpwZzVHU3dOU3drM2k3Rkw1bllCbENTcDY1c

nBsczBXZlp2Rm8vOW1vbFBNR1ZYOUk0bGlvVERyMW9CdTZBNWZjClJ4TG9UcnV3emRRd0k2Q3FhUjdGNFFLQmdGNm1

oOHc4SUZ0dlppVFR3UGNnQUpLdWc1dFlWK21

WaVNIS09qRjgKNElldTY0Q0VBS3UreEp6RnZqNUV3RTU2TnFXRHlPb2RZcnpyM21MTFNyWmtaazlhSFlXNFRWWkJ3R

VEvM3Z6NQpRc04xSExKVUd2WU5vMnZRaklweWtFMS80TFNBb0hxajM4YnE1Y213WmlHWFpsaE1jTnZnYmVBTWFDSGE

rb21XCjJrcVJBb0dCQUkyQW8zdk1Uei84ckc3SFd6blVML0w1OWZwaUMrVXJvUXUwcUxxR1BDTkQ2d2kyUy9lNkFFS

1IKMWhQRWJ1b1NvUG4vaExhaDNHL3VsWk9tMmU3d1Z6dHpoblRIbUk0WGZrbENaUWV4Q3BQOE9wUDlKUDZHZVVVOQp

MbHpaSkFjZHVFck5zb2pXcTluYVhCZkdZUFkyd0kvOXZyQ29HUGhDMXVWMURnVFlQNk9ZCi0tLS0tRU5EIFJTQSBQU

klWQVRFIEtFWS0tLS0tCg=="

 },

 "description": "",

 "id": "90de1c6b-3c85-42cf-9d6a-758b48f1daf5",

 "lastModified": "2020-04-09T20:29:41Z",

 "lastModifiedBy": "users:thy-one:dsvtest9519@mailinator.com",

 "path": "ca:myroot",

 "version": "0"

}

Register (Import) a Signing Certificate

The command to register a signing certificate and private key generated outside of IBM Security Verify

Privilege DevOps Vault is dsv pki register

 Flag Description

certpath Required - Path to a PEM file containing the signing certificate.

privkeypath Required - Path to a PEM file containing the signing certificate private key.

rootcapath Required - Path and name of a secret that contains the signing certificate

domains Required - List of domains that this signing certificate is allowed to sign leaf certificates..

127

maxttl

Required - Maximum time to live in hours for a leaf cert signed with this signing certificate. If

this is set further out in time than the expiration date of the certificate that is being

registered, then there is an error. For example, if this signing certifcate has an expiration date

next week, the maxTTL maximium number is 189 hours.

crl Optional - URL where customer-supported certificate revocation list (CRL) resides

As an example, create a file with this certificate and name it cert.pem

-----BEGIN CERTIFICATE-----

MIIDnjCCAoagAwIBAgIJAMOhi74h4lRqMA0GCSqGSIb3DQEBCwUAMGQxCzAJBgNVBAYTAlVTMQswCQYDVQQIDAJJTD

EQMA4GA1UEBwwHQ2hpY2FnbzEhMB8GA1UECgwYSW50ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMRMwEQYDVQQDDApmb29i

YXIub3JnMB4XDTIwMDQxMDAxMjMyOFoXDTI1MDQwOTAxMjMyOFowZDELMAkGA1UEBhMCVVMxCzAJ

BgNVBAgMAklMMRAwDgYDVQQHDAdDaGljYWdvMSEwHwYDVQQKDBhJbnRlcm5ldCBX

aWRnaXRzIFB0eSBMdGQxEzARBgNVBAMMCmZvb2Jhci5vcmcwggEiMA0GCSqGSIb3

DQEBAQUAA4IBDwAwggEKAoIBAQCxDninSZ/wDyXCcRCAgHdGxP8/YW4sX1OcStjl

qOjVVCGEr0wrLG0rDFb/KxVJ3WVM4lh381ZUT/N6qcRrl2ZPupPh9P9jjU5NkJIS

x2wIsuptRFzuw4nSBoIdDdMun0CDbscEuWUIjEdsC5kj7DPLaN16u6icOxxAH9RW

YzQoV92hsjmIZvHtzpCoVMsUMF7ONbzh54wZgajzMPV0jaGKrqLMnuhLs5O1O+AY4k03NlfsTSNsOA8a+jjXXG331j

muQPh4UphcmUfMjpEfWw6x/qwSrxKz07k6dDWKKcmJzqAj/MXA7coOvwj7L39uv/cMVzk/MTeLYW2Jbz7h07CBAgMB

AAGjUzBRMB0GA1UdDgQWBBTRG8SieQc672Onj/fPAQss3eA1pjAfBgNVHSMEGDAWgBTRG8SieQc672Onj/fPAQss3e

A1pjAPBgNVHRMBAf8EBTADAQH/MA0GCSqGSIb3DQEBCwUAA4IBAQCuomjUQVYMGcPz1wzc2GJw57dTONnNyLXUdiOp

GOrxhep1veFkCQmgrxAMu7Ky ZNEoINmkHY1fO0p7hAzKIWpFBSpMwDZg/1vamjE0riJ+JxGWo2C34WZqRJHbunK5

cBmZBeER93L76Pc8k6eC/01cus+hiqs2Mg7Ugg0RsV+fEs6BEL0KQQh+VG+rPq6C

WH9GJr9PiLD+gG6rxOZRrXt6gx1XOoK6REj1W5wMaxeS2+SKOHGPhaRE+z1xXC9z

7Y8j7UnAeE9dikJipfgj48zWskUexW6rxYK7hiz5nX3VCP1XpZp5uFhXmegJ1fmDQx0dZF6QQRIK4MNGZ2mg1y3F--

---END CERTIFICATE-----

Create a file with this corresponding private key and name it key.pem

-----BEGIN RSA PRIVATE KEY-----

MIIEowIBAAKCAQEAsQ54p0mf8A8lwnEQgIB3RsT/P2FuLF9TnErY5ajo1VQhhK9MKyxtKwxW/ysVSd1lTOJYd/NWVE

/zeqnEa5dmT7qT4fT/Y41OTZCSEsdsCLLqbURc

7sOJ0gaCHQ3TLp9Ag27HBLllCIxHbAuZI+wzy2jderuonDscQB/UVmM0KFfdobI5

iGbx7c6QqFTLFDBezjW84eeMGYGo8zD1dI2hiq6izJ7oS7OTtTvgGOJNNzZX7E0j

bDgPGvo411xt99Y5rkD4eFKYXJlHzI6RH1sOsf6sEq8Ss9O5OnQ1iinJic6gI/zF

wO3KDr8I+y9/br/3DFc5PzE3i2FtiW8+4dOwgQIDAQABAoIBAEBCGUXVcadlR/X2

pN+OQDu9+UkeaibOfgDGJUvMbpwlyXhnSoSMvh4Wf2hiUXqaUE6EA0mdVeKJlbsZ

7ACEVQxwkYU7LokJ2rZJ1snb+Hh7vprjabr52oYP+J7kypUsFPTeenpbcrCUgMNU

vkKMUgvrxh3qB3qT9V/MbXrgzCgriHazR27/pPLJALnOAusu7C0XGSa7eJSY6ysO

neKWkWtJiPWa3wTp9LHxeHrkYbEd4cx2G3no1SM4IUDOUjAkHJ2OyShkyn/vXUn9

Aygnlp0s26MIgXgk46AqoR0WIwRYu68FqdXdC16GRmcByALKA5XJ4Hqz9Q8ufoJf/R9PwjECgYEA5cvcHTX+OCbzgU

rtODz3ymHK2q2fSoMGGPPiBHQiqIhaVtprCpMp6hIy4Vk/D2rHbWj+idMufnvAPjr+qJPRzId0VmRkDyLHGq2WjBv4

0wc5u4Pw+sa9YPhQNDmCu4wABvc4lbKueP7OtAcp04nLSk3B9ZLBnOjQNMmDVim2db0CgYEAxT8M

XawhG9LpL7tFtIQsvIxTvYlFimC5+CmnFLjcKD/1jqz8rVJSLCEtPZnh2tDcifxh

yo8UA+/nWHy0tF6JIIhfh+DqUWwWCPxJc5djwM8Zs3TrnawIBYWcl3wUM7X6FLSX

v5unb61XjPYWMU6z64cVaCH20sCUXing9Sh4qBUCgYAOXZUwGkz/M6grYAS+bElN

VJm62/nGTbSW4MAzaRM1l/iVz2e7rIGFSYf2wH6JtzIqa9LlyNbyP0hAW63J2hvW

fm1ObU44CAOMbmen8KO4hY4dY90vwDbclgllimba1KC3zsKx0Q7JL5y6cmwx9j5I

Md47POZvqbpCYoqcW1U1vQKBgQC6oxnUWNdLOJqlK5KdaKPcFPv30DgY48WUZ/VM

yk6nVz3HLzA34DkYwJvKOh1Xq2HCvyjZPeE2iH5jYDysnvcp7WBXdh7BxIBlKDNo

SMt+2Xf8Mpnvq6Q7dV3iiOmktIBZrzgXefVI2sCJBSGirlHYfw1mZxzh9o9tOjs+

PnlMsQKBgAUCVf5yqUGETwkv17I/2Fn+l7Hw3Yv8Ced1WKB6bwoF5Hdllr01LgpF

q10bc+NezxCPQd+dBNBgFbcWpWvYPDfte2u6G94G8OqiOXczwu7Z3iI6puukV4Uy

8Nz6NxjrgibNpB/nui0i36HKAyDWmo57mc7UofPCEieIK/g3DnwG

-----END RSA PRIVATE KEY-----

128

This command saves this signing certificate and key at the secret path ca/myroot and enables it to sign leaf

certs for foo.org and/or bar.org domains (common name).

dsv pki register --certpath @cert.pem --privkeypath @key.pem --rootcapath ca/myroot --

domains foo.org,bar.org --maxttl 900

Generate and Sign a Leaf Certificate

The command to generate a leaf certificate and private key is dsv pki leaf

 Flag Description

commonname Required - The domain name that this certificate uses. This must match a domain in the

signing certificate's list.

rootcapath
Required - Path and name of a secret that contains the signing certificate. It does not matter

if the signing certificate was generated by Privilege DevOps Vault or imported.

ttl
Optional - Time to live in hours. If not specified, then the maxttl of the signing certificate is

used.

store-path

Optional - Path and name of a secret that contains this leaf certificate and private key. If

not specified, then Privilege DevOps Vault does not store the leaf certificate and private

key and there is no way to retrieve them after the initial stdout is deleted.

country Optional.

state Optional.

locality Optional.

email Optional.

organization Optional.

For this example, we request a leaf certificate for bar.org and use the imported signing certificate above

stored at ca/myroot

dsv pki leaf --rootcapath ca/myroot --common-name bar.org --organization FooBar, Inc --

country US --state CA --locality 'San Francisco' --ttl 24

A signed certificate and private key is returned in base64 encoding

{

 "certificate":

"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSURaakNDQWs2Z0F3SUJBZ0lFR1lXNFRUQU5CZ2txaGtpRzl3M

EJBUXNGQURCaE1Rc3dDUVlEVlFRR0V3SlYKVXpFTE1Ba0dBMVVFQ0JNQ1NVRXhEakFNQmdOVkJBY1RCVUp2YjI1bE1

STXdFUVlEVlFRS0V3cEdiMjlDWVhJcwpTVzVqTVFrd0J3WURWUVFMRXdBeEZUQVRCZ05WQkFNVERIUm9lV052ZEdsa

kxtTnZiVEFlRncweU1EQTBNVEF3Ck1qSTVNVGhhRncweU1EQTBNVEV3TWpJNU1UaGFNR0F4Q3pBSkJnTlZCQVlUQWx

WVE1Rc3dDUVlEVlFRS

UV3SkQKUVRFV01CUUdBMVVFQnhNTlUyRnVJRVp5WVc1amFYTmpiekVQTUEwR0ExVUVDaE1HUm05dlFtRnlNUWt3Qnd

ZRApWUVFMRXdBeEVEQU9CZ05WQkFNVEIySmh

jaTVqYjIwd2dnRWlNQTBHQ1NxR1NJYjNEUUVCQVFVQUE0SUJEd0F3CmdnRUtBb0lCQVFDdUdNbmlITjM4TjRGTGdBN

HlESEZTVWYrekxjREFGUWI1SGZleTNDME5VL

3RZeHNrTnNRczkKQUJkZGJyUTBMbjNVWkRNL2hVcUZIR2prSGRkUVROSTJMY2IzRGk4QWdLVU85OHVhOHVpWSttTDZ

ZK2llTE9XegozejVNNnRFOGdFbHNlQUJ4VkF

wT29hTGlEZVl4MUxWOUdSUlVoZm1hZ1RFNVF4V3pmdTVKU0wyYVd2M3RreUhMCnpFandiaGFDVHV0d0gxM1NrczN5O

129

UNwZ091MW1qV1N3WmU0cjRGY284KzdMMEUvS

DZLcG9zQk1mWTV5N24wbm0KeU5NL2ZKM2d3eCtpSkJKa1o1RnJqRWxnNVIyZUs0aG5QdU1zeGFvY05FSElROGNXa1N

TOG0zWnpNRnVjYVdFMQpKNlNTSDQrd0ZXazB

ZdzA1cTRTZnQreEhGK1VocFdmZkFnTUJBQUdqSnpBbE1BNEdBMVVkRHdFQi93UUVBd0lICmdEQVRCZ05WSFNVRUREQ

UtCZ2dyQmdFRkJRY0RBakFOQmdrcWhraUc5d

zBCQVFzRkFBT0NBUUVBbzdtTjExRFAKb3c5Y3VtWXJlVzdzUEFSSWxUcHBwMStIY1BNa0JhL0JvZUwrOEdtM3JDZWg

yQnM4b09YQXhyVmVWSkZ5K0VNQQpIZjhQSjF

HazlMeHNzSDJQazk0OTNGMzJlVGhxUWo0d0RuQzg0TkpJZzlYMlpNSkpDSFBjc0wvVU9kenZraEhLCnkvSHk0bDl5Y

0dQdGtudmtURkVkTVdKZ2hOcFgvSkxrTFlQZ

WthNzFORjFPOEFaMFZVbXJXMDR0YVlDYzZ5UVAKMVlJbXhSd1FLNVJiYWMxSWUxVEI5VWc5Z2dvUnhZOUpFKyt5aFR

oMU5SK0tYUTZucWVNbk1SdStxaERONjRxVwp

mMzhBU1lOMklqRndnTVBEK3E5R3JOdWl2REYxc05lcDVDeFEzdi83S2dtNDNHTFFhZ3o2T0piblNLbmYrM2llCit3M

TQxUXZJT1pDZDRnPT0KLS0tLS1FTkQgQ0VSV ElGSUNBVEUtLS0tLQo=", "privateKey":

"LS0tLS1CRUdJTiBSU0EgUFJJVkFURSBLRVktLS0tLQpNSUlFb3dJQkFBS0NBUUVBcmhqSjRoemQvRGVCUzRBT01ne

HhVbEgvc3kzQXdCVUcrUjMzc3R3dERWUDdXTWJKCkRiRUxQUUFYWFc2ME5DNTkxR1F6UDRWS2hSeG81QjNYVUV6U05

pM0c5dzR2QUlDbER2ZkxtdkxvbVBwaSttUG8Kbml6bHM5OCtUT3JSUElCSmJIZ0FjVlFLVHFHaTRnM21NZFMxZlJrV

VZJWDVtb0V4T1VNVnMzN3VTVWk5bWxyOQo3Wk1oeTh4SThHNFdnazdyY0I5ZDBwTE44dlFxWURydFpvMWtzR1h1Syt

CWEtQUHV5OUJQeCtpcWFMQVRIMk9jCnU1OUo1c2pUUDN5ZDRNTWZvaVFTWkdlUmE0eEpZT1Vkbml1SVp6N2pMTVdxS

ERSQnlFUEhGcEVrdkp0MmN6QmIKbkdsaE5TZWtraCtQc0JWcE5HTU5PYXVFbjdmc1J4ZmxJYVZuM3dJREFRQUJBb0l

CQUdMVUdZNXRHcXE1aTRFagpnV3R4MnNhRFcrY0lHdm92TlpVbktOeDAxbkpSY1VaVkdmN1d1TzE0NXNxWU5GM0c0c

EUyREUyTHllREVYdHJZCkFjbEl3ckFVem5TaXJaWFljVnFNMmh6c3RaTloxK1FSNFJRaG9vZTRPL0tIL2gwZEtoRVV

FaFJEUTlLZE9ReWcKSFVPK1h3UlR2MUczK0J

oNExFdzRROUp3Uks1K1YwRysyZjlqbjQ0M05BZGRTVWZ1UFRpVXVqelRTaWNGSlBKdwp0a1hYeU01VkpzVjN0VEZ2a

3ZkVE43WFVhUDNLQ3ZOdU9XWFUrbG1BS21qc

2xXSDBIRUJhS0NvWWVqMyt4ZURtCnFFR1A5bXc2eFZVY0hTalgzT1BHVFJrbnR3bXNkRkQ4Z2ZJYi9RZXpVRGVnV0V

vM21xSTJpQ2RLbDUwWURLUWkKSUxzNHY1RUN

nWUVBeFdxOEdPMGRCRzBkbGJtTWpEUTE5NnQ0ckhGUjhObHNzOXZ6Wnd0VzZ4Z0c4d0NFWnFhTwpVNUlVeXd4YWxBL

0xQVmJTdVNHQm54Sy9FQTYrZVJ2cTlxOU5Uc

Ew5UDBDc3dpVldiMHpWdUNDQlZYRitaR3diCkRKcVB0ZHdlb0dxNVZOaUhFUkVEemRuM0RWMVAxZzFyU09wR3BmT0w

5OVpYNU9IcGoraEhob2tDZ1lFQTRjSjgKRWh

zdS9jc1ZSTjc0MGxsdzRQTU5HMFUxZ01YaTlJVkZ5dkdtQUIxQ3FGUmpZeUtFTHZqQ1h6UFN2ZTRGczRvZQpRY1Uza

UVnU1djeEFFSmJ6VTB5Sit6ZHdITkpJOFJMM

zhxcTB6dVJUSG1pc2Y4cnhGZUt2QU80NTE1N2R6WmJHClR6MTMwUTRNc1RKbUxyR2xST0MrMHV5UkRqQm92RUl2V2k

wV1lTY0NnWUE0MWdYWlYwcW5YNUxJN0dhZVp

0bXkKdUZkQnJrNWMvUHZpdkV4VE9seUh5cDhWanV5UGNSeEF5eW5aVzNFb2QzT1g4VXN4cVlmYitGV3hsYzBZcVFUN

AppSGZGUzJSRnRhVUhNQ0MyWW5TVlVpWnFKd2F3ZXI4KzNiREtOdGxLYmU5MWtmRXc1S2tudHJ6OXlBT1lLTHplCmZ

UUmh5c0JkVmdSd0RPcGxXQVpmb1FLQmdCRmEwQXJjU0JwK2VCNFpQZXQ5c0syNlFYR3RPbFd4NEthSGNEd1AKbzRFe

XZxTU9DYTNmUTJZUS9YQXdIYTA0RlB3ZVRBRW1WZ1NGOWRNdFhtZG9FMEIrQzhWaUY1NC9sQmZrSzJkZQpOQlFMZlZ

CREg2K2JQRGxBZWMrS2dLdlFyS0JYVE50ZWtFMWoxUm55RStUWEJ5dHFVNEVIYW9jNnRYSnpiQXgwCmx0blZBb0dCQ

UladjU2cGNrbXRoMkJqZzdDdnpja2VxbHhBeUxKWU1aaW5sYjhjTDJ5UmV1NEQ5Wm0yNHdFOGkKV1N6OEwwUmFlK01

Idk85bXlrckVubHhDcHd5aFUvL05tUDlENmZGYlh1MWpCb1h4ZUlJRWt1Wk9LdzI5Rm1MMgpFSitKV2MrRkY0cGdpZ

HBUMCtQL25oc2ZTVGt4TmtZaWdCSzJ1dmVBdTJIU0NtRWNlRjBlCi0tLS0tRU5EIFJTQSBQUklWQVRFIEtFWS0tLS0

tCg=="

}

Sign a Certificate Given a Certificate Signing Request (CSR)

The command for honoring a certificate signing request is dsv pki sign

NOTE: The common name for the certificate in the CSR must match a domain in the signing certificate's list.

Flag Description

csrpath Required - Path to a PEM file containing the certificate signing request.

130

rootpath
Required - Path and name of a secret that contains the signing certificate. It does not matter

if the signing certificate was generated by Privilege DevOps Vault or imported

subjectaltnames
Optional - List of alternative domains. They must match a domain in the signing

certificate's list.

ttl
Optional - Time to live in hours. If not specified, then the maxttl of the signing certificate is

used.

As an example, create a file with this certificate signing request and name it internalSite.csr. It is

requesting the common name of foo.org so we sign it with the sample root certificate we generated at the top

of this page.

-----BEGIN CERTIFICATE REQUEST-----

MIIClDCCAXwCAQAwTzELMAkGA1UEBhMCVVMxCzAJBgNVBAgMAklMMSEwHwYDVQQKDBhJbnRlcm5ldCBXaWRnaXRzIF

B0eSBMdGQxEDAOBgNVBAMMB2Zvby5vcmcwggEi

MA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDcmthlMQcfWwZmKZr1G7aYuTLb

j/hCTIlGEhGDcp0elAEnzWGLdFUsbIMdb7ZlO/SEJLb9cVHGgcf9U67s9+1hqUPY

/xwCbHJ7JYfLHZm3XHT5oA2QUmMNqwZlh/YTwUDUr9NYslTZOUm4y6smzfO5TVOCZ9SFETi3ZfPsknQQ3EEmPso2yJ

U0yqxHkgozm2bYOItd1ySEOM4R0JLQEBSgLLo4

QLtxJJZiKKVvuhGZ7SZUcXft4RxBq41uv1YyffWeZYa0b/h7hcb7Gj+pnaI/1PWm

vxdkW6cXnpAmL5k0PXlfQARGkBkUFyF3DQGDfT41UfSHE9qWi0gA6wfhXvCFAgMB

AAGgADANBgkqhkiG9w0BAQsFAAOCAQEAmL2JDxGpKmIU60uMUsQXtylObyyIMW0q

bmmqrfccfxdV/WNLLOrm/8g0Rp/eWwAGkQY8tZJnlN+BPK6yFpx1TYW6z2aPGTUT

TgKnaheDWnpCPLkRJRqEIHYe9B+vFvEJXl1lU7pA4FGIsNV+1R2TTG4nBp8Nx7NgLWCFT4m90R39wCxXEJMoUOIii8

mfeaFwlZstyb/pAPuQoWYebOMCTHxJsxRsr/w9

PBJsTPM+USH1xTUTtbEgY4SGFG7C+SYluFHj9c5hhH40TPv0NH9cmMHxSsbNKbou

wmq9DFjzRXDVjAMLb2fsbBBpQ7/aT30pJWr9jAX0/FH1Ymg2aIK89w==

-----END CERTIFICATE REQUEST----

dsv pki sign --rootcapath ca/myroot --csrpath @internalSite.csr --ttl 24

The signed certificate comes back in base64 encoding

{

 "certificate":

"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSURZakNDQWtxZ0F3SUJBZ0lFRm1OYmV6QU5CZ2txaGtpRzl3M

EJBUXNGQURCaE1Rc3dDUVlEVlFRR0V3SlYKVXpFTE1Ba0dBMVVFQ0JNQ1NVRXhEakFNQmdOVkJBY1RCVUp2YjI1bE1

STXdFUVlEVlFRS0V3cEdiMjlDWVhJcwpTVzVqTVFrd0J3WURWUVFMRXdBeEZUQVRCZ05WQkFNVERIUm9lV052ZEdsa

kxtTnZiVEFlRncweU1EQTBNVEF3Ck1qRTROVGxhRncweU1EQTBNVEV3TWpFNE5UbGFNRTh4Q3pBSkJnTlZCQVlUQWx

WVE1Rc3dDUVlEVlFRSUV3SkoKVERFaE1COEdBMVVFQ2hNWVNXNTBaWEp1WlhRZ1YybGtaMmwwY3lCUWRIa2dUSFJrT

VJBd0RnWURWUVFERXdkbQpiMjh1YjNKbk1JSUJJakFOQmdrcWhraUc5dzBCQVFFRkFBT0NBUThBTUlJQkNnS0NBUUV

BM0pyWVpURUhIMXNHClppbWE5UnUybUxreTI0LzRRa3lKUmhJUmczS2RIcFFCSjgxaGkzUlZMR3lESFcrMlpUdjBoQ

1MyL1hGUnhvSEgKL1ZPdTdQZnRZYWxEMlA4Y0FteHlleVdIeXgyWnQxeDArYUFOa0ZKakRhc0daWWYyRThGQTFLL1R

XTEpVMlRsSgp1TXVySnMzenVVMVRnbWZVaFJFNHQyWHo3SkowRU54QkpqN0tOc2lWTk1xc1I1SUtNNXRtMkRpTFhkY

2toRGpPCkVkQ1MwQkFVb0N5Nk9FQzdjU1NXWWlpbGI3b1JtZTBtVkhGMzdlRWNRYXVOYnI5V01uMzFubVdHdEcvNGU

0WEcKK3hvL3FaMmlQOVQxcHI4WFpGdW5GNTZRSmkrWk5EMTVYMEFFUnBBWkZCY2hkdzBCZzMwK05WSDBoeFBhbG90S

QpBT3NINFY3d2hRSURBUUFCb3pRd01qQU9CZ05WSFE4QkFmOEVCQU1DQjRBd0V3WURWUjBsQkF3d0NnWUlLd1lCCkJ

RVUhBd0l3Q3dZRFZSMFJCQVF3QW9JQU1BMEdDU3FHU0liM0RRRUJDd

1VBQTRJQkFRQkh1b2FwSk05VTVUa0IKcU5Pb0hVMnJ3UmxjOUpRRmc5OTd3Y0UxU0dKbUNKTUd0ZkJMajZRRk80RnF

JZGU5Qk90N2o0bnZwQUduYXNmaQpzbzBWa09

tK1dyZUpuRXJiL0dMK0RpMExKbGxSZHduYWJtY2NXTFVkNm5EWWxGYjZLdEdmU3dYQWJyTTh5VVZjCmdqdU1odUl5d

1ExOHR1UEFTWGFrWjUwU2VyOFd4Q3dUMlgvR

DhVaGhXR1Ercno5aFV0ZHpUdU5COUdVb21PaGUKb0lXZGxHVVlpcm9sQS9GQk9nWjZCT2gxVnQ4S3lFN0VLRjZJdU1

wM3kvc2szcGVMUmpUL0dIK0JxRW5PNmhzZwp

131

ia3NOcTNGSWROYmNlTExlV3dLWW1ZUEdQYWFuSnZ3NnZWN3MzRlQ0TUhUaUFtVTRkbTRkZVAvNzRpZXVvTXlXCnNpZ

TdESkoxCi0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0K"

}

SSH Key Issuance

In addition to allowing users to generate TLS certificates, Privilege DevOps Vault provides an ability to

generate SSH-2 compatible public keys (currently only RSA supported) and SSH-2 certificates.

• Using SSH-2 public keys allows an administrator to place your public key on the server for which you

wish to access. This is usually placed in the user's home directory ~/.ssh/authorized_keys file

• Using SSH-2 certificates allows Privilege DevOps Vault 's specific root CA to sign the credentials which

can then be used to access any SSH Server where Privilege DevOps Vault 's root CA is trusted

When users create a regular leaf or root certificate with dsv pki leaf or dsv pki generate-root,

respectively, Privilege DevOps Vault automatically creates and saves an SSH-compatible public key.

Privilege DevOps Vault stores it in secret data for the leaf or root secret.

dsv secret read myleaf

Among other fields, such as those for TLS private key, certificate, there is a field for the SSH public key:

"sshPublicKey": "ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQC4nmHvYaqodYKU2..."

Adding an SSH public key to a server

In order to authenticate to a remote server using SSH, users need to provide a regular RSA private key, such

as a TLS private key Privilege DevOps Vault generates. Before doing that, users must ensure the server knows

about the public key associated with the private key.

For example, administrators can edit the .ssh/authorized_keys file and add the public key to the list of

authorized public keys for the user of that server.

Downloading keys

Below is an example of how to fetch the keys from Privilege DevOps Vault for use with SSH:

Fetching the SSH private key:

dsv secret myleaf -f data.privateKey | base64 -d > leaf.priv

Fetching the public key in SSH-2 format:

dsv secret myleaf -f data.sshPublicKey > leaf.pub

The names of the files are arbitrary.

NOTE: The private key must first be base64-decoded.

Authenticating

Having added the public key to the list of authorized keys, users can authenticate:

132

ssh -i /path/to/leaf.priv [user@host]

This example uses a leaf key, but the workflow is the same with a root key.

Trusting a group of keys signed by a root key

The previous example works well, but there is a maintenance problem that appears if the number of users

who authenticate to one particular host increases. Administrators must update the list of authorized public

keys for each new key. Instead, administrators could make the server trust all keys that are signed by a root

key, one that is higher in the chain of trust.

Clients can then authenticate using any leaf private key that has been signed by a certain root private key.

Setting this up is a two-step process.

Adding a public root key to the server

1. First, the SSH-compatible root public key must be downloaded and saved: dsv secret myroot -f

data.sshPublicKey > root.pub

2. A file with the key must be uploaded to the server and placed in the /etc/ssh/ directory.

3. On the server, edit /etc/ssh/sshd_config. The following line appended to the file instructs the SSH

daemon service to trust all keys signed by a private key associated with a given public key:

TrustedUserCAKeys /etc/ssh/root.pub e.g. echo "TrustedUserCAKeys /etc/ssh/root.pub" >>

/etc/ssh/sshd_config

4. It is often a good idea to restart the SSH daemon service for changes to be applied immediately: sudo

/etc/init.d/ssh restart

Generating an SSH certificate on the client side

To authenticate with a private key, users need to prove that a given leaf key has indeed been signed by a root

private key that is connected with the root public key, which the server trusts. To do this, users need to

generate an SSH certificate using the root private key and leaf private key. There is a special command for

this: dsv pki ssh-cert --rootcapath myroot --leafcapath myleaf --principals root,ubuntu --

ttl 1000 All arguments are required:

• rootcapath is the path to the root CA secret

• leafcapath is the path to the leaf CA secret

• principals is a list of one or more principals (user or host names) to be included in a certificate

when signing a key

• ttl is the amount of time (by default, in hours) for which the certificate is valid

This returns an SSH-2 signed certificate. Privilege DevOps Vault saves the certificate in the leaf secret data.

Users can copy the certificate and save in a file or download it later:

 dsv secret myleaf -f data.sshCertificate > leaf.priv-cert.pub

Now it is possible to try to authenticate. Users use the same ssh command and pass the same private key.

The SSH certificate is also submitted automatically behind the scenes by ssh. The command tries to find the

133

certificate in the same directory where the leaf private key is. For this reason, the certificate file must be

named in a certain way: [private key]-cert.pub

If there is a leaf private key file named leaf.priv, then the certificate must be named leaf.priv-cert.pub.

Then authentication works: ssh -i leaf.priv [user@host]

Another client just needs access to the same root secret. With this root secret and a leaf secret, another user

can generate an SSH certificate and use it along with the private key to authenticate. Administrators must not

do any additional setup on the server.

Architecture and Security

Users authenticate locally or by a Thycotic One, Amazon AWS, Microsoft Azure, or Google Cloud Platform

authentication provider.

Within the Privilege DevOps Vault application platform, the API Gateway receives API calls, obtains the

responses, and relays them to the caller using HTTPS GET, PUT, POST and other methods common to the

REST architecture. The Authorizer uses OAuth to handle API Gateway authorization.

The Vault Application hosts the core Privilege DevOps Vault functionality and auto-scales to demand.

134

Extensive logging enables strong audit trails and protections, while encryption protects Secrets at-rest and

in-transit

Availability

IBM Security Privilege DevOps Vault supports 99.9% uptime.

Business Continuity and Disaster Recovery

IBM Security Verify Privilege DevOps Vault leverages AWS DynamoDB global tables for data storage, with a

configuration using automatic dual-region replication as a continuous backup mechanism.

• Of the two AWS Regions used in this architecture, one serves as the primary application platform and

the other as a hot stand-by.

• IBM Security monitors both regions via AWS Route 53 so that if the primary platform fails, client traffic

automatically routes to the hot stand-by in under one minute

Confidentiality

Data at Rest

Information about customers in DynamoDB, application activity and related logs stored in S3 and sometimes

in Elasticsearch during analysis, is always encrypted transparently.

Customer Secret data is further encrypted by the application with a customer specific key in AWS KMS.

Data in Transit

Privilege DevOps Vault establishes the HTTPS connection using the TLS 1.2 protocols. For server-side

authentication, Privilege DevOps Vault relies on Amazon-issued digital certificates.

Client Authentication

Privilege DevOps Vault provides five methods for client authentication:

• Username/password (local)

• Username/password (Thycotic One)

• Client ID

• AWS IAM

• Microsoft MSI

Authentication grants an access token with a one-hour time-to-live (TTL). When the token times out, Privilege

DevOps Vault requires re-authentication.

The username/password authentication method uses a refresh token good for 48 hours. The refresh token

renews along with each new access token, so the 48 hours counts relative to the last access token’s time of

issuance. If the refresh token expires, Privilege DevOps Vault requires re-authentication.

The initial administrator (the one who signs up for a tenant) is always setup with Thycotic One to enable IBM

Security support.

135

Integrity Checks

Both code signing and token signing are used to ensure integrity.

CLI Code Signing

The download website provides a 256-bit hash of the executable files in a text file, so that customers may run

a hash check on the downloaded material. The Windows CLI executable is also signed.

Token Signing

Access tokens granted to Users or applications must transit from the client to the API, potentially allowing an

unauthorized party to tamper with the tokens. To prevent this, Privilege DevOps Vault signs access tokens.

Personally Identifiable Information (PII) and GDPR

Privilege DevOps Vault requires certain personally identifiable information (PII) to identify each User’s

account. This includes the User’s name, email address, and password, these being the minimum necessary

for authentication, and the User’s IP address, used during auditing as an indicator of the User’s location.

Privilege DevOps Vault functions to store and protect User’s “Secrets,” and to make the Secrets accessible to

the User and potentially their designees. The term Secrets here commonly means passwords, which are not

PII, but Privilege DevOps Vault Users can store anything they choose as a Secret—for example, images,

documents, or other files.

• Accordingly, only Users know whether Privilege DevOps Vault Secrets have PII status.

• Because the nature of Privilege DevOps Vault is to encrypt and protect Secrets for Users, Secrets that

are PII de facto benefit from Privilege DevOps Vault’s stringent controls for privacy and user control, in

accordance with both the letter and spirit of the GDPR.

Only selected, trusted employees of the original product manufacturer, Thycotic, can access Secrets data and

decrypt it, and only via a controlled process that generates an audit trail inaccessible to those employees. This

serves the interests of users without compromising their privacy and control.

In GDPR terms, IBM Security customers are the data controllers, and IBM Security is the data processor.

• The customer determines all information (the Secrets) stored in the vault and decides how long to

store it.

• Each Privilege DevOps Vault customer entirely controls their Users, their User Roles, and the access to

Secrets by their Users, according to the policies of the customer organization. Privilege DevOps Vault

logs activity so the customer can monitor access and changes to the Secrets, Users, and Roles within

the vault —again, all according to the customer’s policies.

• For traceability, Privilege DevOps Vault logs include source IP addresses and time stamps.

Thycotic conducts Privacy Impact Assessment (PIA) annually to verify continued conformance to GDPR

principles.

136

Third Party SOC 2 Conformance Assessment

Thycotic SOC 2 Type II report contains an independent third-party assessment of our control environment.

The report is available upon request with an NDA.

The report ties to the AICPA’s Trust Services Criteria (specifically the Security, Availability, and Confidentiality

criteria) and issues annually in accordance with the AICPA’s AT Section 101 (Attest Engagements).

137

Audits:

Privilege DevOps Vault captures audits of activities and persists them for future reference. If the User wants

to ship their audits to a third party logging system (e.g. Security Information and Event Management (SIEM)),

they can register an endpoint where Privilege DevOps Vault sends any recorded audit events to that endpoint

in near real time.

Audit Fields:

attribute description example

id Audit id "dxv7389e463s72jbo345"

tenant Tenant ID "bjr738973p3s72jbo090"

tenantName Tenant Name "test"

principal Security principal that performed action "users:user"

principalItemId Principal item ID
86b1c1aa-907e-41b8-8b02-

e8d7dd467d6a"

action Action performed "POST"

Status Response status code "200"

path Resource path action performed on token"

ipaddress IP Address logged from client "192.0.2.55"

created Audit created date "2020-05-01T01:09:07.225694779Z"

message Additional details "login succeeded"

Logging Format and Transport Protocols supported.

Privilege DevOps Vault supports the following logging output formats: syslog, CEF, and JSON to a registered

endpoint.

Privilege DevOps Vault supports the following transport protocols: transport-level security (TLS) 1.2 over

TCP,TCP, UDP, HTTP and HTTPS.

SYSlog

Syslog messages must be in RFC 5424-compliant form. Privilege DevOps Vault truncates messages over

64KB in length.

Syslog Audit

Timestamp RFC3339 format

Priority 191

Version 1

https://tools.ietf.org/html/rfc5424
https://kc.mcafee.com/resources/sites/MCAFEE/content/live/CORP_KNOWLEDGEBASE/78000/KB78712/en_US/CEF_White_Paper_20100722.pdf
https://tools.ietf.org/html/rfc7159

138

Hostname Privilege DevOps Vault URL (e.g. IBM Security.secretsvaultcloud.com)

MsgID id

Appname Privilege DevOps Vault

Message usertoken message

StructuredData all other audit fields

Note: A user-specific token, generated by user, is inserted into each message to identify the user

Sample syslog output

<191>1 2020-06-02T14:53:48Z tenantName.dsvdomain.com DSV - - [1 action=POST created=2020-

06-02T14:51:36.519620577Z ipaddress=192.0.2.55 path=token principal=users:tenantaame

principalItemId=f18b5bda-51ea-4bfa-b272-80b12e43b676 tenant=tenant tenantName=tenantName]

abcdef "

Configure Syslog

To start a SIEM configuration workflow, use the command:

dsv siem create

Option Description

name required

siemType required, allowed values: syslog

host required, url

port required, numeric

protocol required, allowed values: tcp, udp, http, https, tls

authMethod required, allowed values: token

auth required

loggingFormat required, allowed values: rfc5424

Sample values

{

 "siemType": "syslog",

 "name": "syslogtest",

 "host": "54.210.93.200",

 "port": 8000,

 "protocol": "tls",

 "authMethod": "token",

 "auth": "abcdef",

 "loggingFormat": "rfc5424"

}

139

CEF

CEF Privilege DevOps Vault Audit Description

Version 0 constant

Device Product Ibm security constant

Device Product Privilege DevOps Vault constant

Device Version - unused by Privilege DevOps Vault

Signature ID id audit field

Name action audit field

Severity status see below for translation

Extension all other audit fields

Severity status Severity

200 0

400 1

401 7

403 7

404 0

500 0

Anything else -

Sample CEF output

CEF:0|thycotic|dsv|-|b40e07d3-6fb9-41e8-9816-

356de992b8fa|POST|0|{action:POST,created:2020-0602T17:52:30.841020649Z,id:b40e07d3-6fb9-

41e8-9816-356de992b8fa,ipaddress:192.0.2.55,message:login

succeeded,path:token,principal:users:user,principalItemId:f18b5bda-51ea-4bfa-

b27280b12e43b676,status:200,tenant:tenat,tenantName:tenantName}

Configure CEF

To start a SIEM configuration workflow, use the command:

dsv siem create

 Option Description

name required

siemType required, allowed values: cef

140

host required, url

port required, numeric

protocol required, allowed values: tcp, udp, http, https, tls

authMethod required, allowed values: token

auth required

loggingFormat required, allowed values: cef

Sample values

{

 "siemType": "cef",

 "name": "syslogtest",

 "host": "192.0.2.55",

 "port": 8678,

 "protocol": "udp",

 "authMethod": "token",

 "auth": "abcdef",

 "loggingFormat": "cef"

}

JSON

Privilege DevOps Vault sends raw JSON audit via configure transport

Sample JSON output

{\"action\":\"POST\",\"created\":\"2020-06-02T17:52:30.841020649Z\",\"id\":\"b40e07d3-

6fb9-41e8-9816-356de992b8fa\",\"ipaddress\":\"192.0.2.55\",\"message\":\"login

succeeded\",\"path\":\"token\",\"principal\":\"users:user\",\"principalItemId\":\"f18b5bda

-51ea-4bfa-

b27280b12e43b676\",\"status\":\"\",\"tenant\":\"tenat\",\"tenantName\":\"tenantName\"}

Configure JSON

To start a SIEM configuration workflow, use the command:

dsv siem create

Option Description

name required

siemType required, allowed values: json

host required, url

port required, numeric

protocol required, allowed values: tcp, udp, http, https, tls

141

authMethod required, allowed values: token

auth required

loggingFormat required, allowed values: json

Sample values

{
 "siemType": "json",

 "name": "syslogtest",

 "host": "192.0.2.55",

 "port": 443,

 "protocol": "https",

 "authMethod": "token",

 "auth": "abcdef",

 "loggingFormat": "cef"

}

142

Release Notes
IBM Security periodically updates IBM Security Verify Privilege DevOps Vault to provide fixes and

improvements and introduce features.

As a Cloud application, Privilege DevOps Vault lacks version numbers; the current version serves all users

because it is always the only version available.

The Command Line Interface (CLI) is locally installed using OS-specific executables. These bear version

numbers to reflect updates.

• The version number is always the same across the OS-specific editions of the CLI executable.

• You obtain these updated versions of the CLI executables by downloading them from IBM Security

Verify Privilege DevOps Vault Downloads.

• The CLI itself notifies you when a new version is available for download.

• Generally, older versions of CLI executables continue to work, but you want to have the latest

executables to benefit from fixes and obtain new features.

https://dsv.thycotic.com/downloads
https://dsv.thycotic.com/downloads

	Foreword
	Overview
	API
	Quick Links
	Third-Party Downloads

	Quick Start Guide
	Download the CLI Executable for your Operating System
	Rename the Executable
	Place the Executable
	Add the Executable Path to the PATH Environment Variable
	Enable Autocomplete

	Initialize the CLI
	Required Information
	"dsv init"

	CLI Secrets Examples
	Create a Secret
	Retrieve a Secret
	Filter JSON Command Output for Specific Fields
	Separately Update Attributes, Data, and Description

	Creating Users
	Local User and Thycotic One User Authentication
	Provide Users Access to Secrets
	Create a Group
	Create Policy for Deny Access

	CLI Reference
	CLI Command Syntax
	Objects
	Workflows for Creating or Updating Objects
	Parameters
	Strings
	Boolean
	File Path and OS-Specific Syntax

	Output Modifiers
	Encoding and Beautify
	Filter
	Out

	Output Piping
	Secret
	Commands that Act on Secrets
	Examples
	Bustcache
	Create
	Describe
	Read
	Update
	Restore
	Rollback

	User
	Understanding Qualified Usernames
	Commands that Act on Users
	Examples
	Changepassword
	Create
	Search
	Read
	Delete
	Restore

	Group
	Commands that Act on Groups
	Examples
	Create
	Add-Members
	Read
	Update | Assign Group to Policy
	Delete-Members
	Restore

	Role
	Commands that Act on Roles
	Examples
	Create
	Search
	Update
	Restore

	Client
	Commands that Act on Clients
	Examples
	Create
	Search
	Read
	Bootstrapping

	Policy
	Policy Evaluation
	Policy Examples
	Deny Access at a Lower Level
	Allow User2 Access to User1's Home Vault
	Enable a Group to search Secrets
	Allow Users to List Specific Entities
	Delegate Policy Authority
	Read Audits
	Read System Logs
	Manage An Auth Provider

	Admin Policy and Auth Providers
	Commands that Act on Policies
	Read
	Edit
	Update
	Grant Admin Access Rights to All Home Vaults
	Add an Authentication Provider

	Home Vault
	Examples
	Create
	Describe
	Search
	Restore

	GetByVersion
	Rollback

	Authentication
	Password
	Client Credentials
	Third Party Authentication

	Profiles
	Add a Profile to a Config
	See the Config Contents
	Using an Alternate Profile for a Specific CLI Action
	Authentication: AWS
	AWS Authentication Provider
	AWS User Example
	AWS Role Example

	Authentication: Azure
	Azure Authentication Provider
	Azure User Assigned MSI Example
	Azure Resource Group

	Authentication Google Cloud Platform (GCP)
	Google Service Account Authentication
	Google Compute Engine (GCE) Metadata Authentication
	Google Kubernetes Engine (GKE) Authentication

	Authentication: OIDC
	OIDC Providers
	Common Steps
	Configure Auth Providers
	4. Choose Web Application
	Creating a User in Thycotic One and Privilege DevOps Vault

	Azure AD OIDC Example
	3. Click New Registration
	6. Go to your app's Certificates and Secrets and click New Client Secret

	Okta Identity Provider Example
	Okta OIDC connection
	4. Select Add Application
	Retrieve the Issuer URL
	Add Okta Users and Groups to the Privilege DevOps Vault Application
	Finish the Connection on the Thycotic One side
	18. Click Back to Organizations 19. Click Credentials

	Dynamic Secrets
	Linking
	Search for linked Secrets

	AWS Dynamic Secrets
	AWS Federate
	Setup the AWS IAM User
	Create the Base Secret
	Create the Dynamic Secret

	AWS Assume Role
	Setup the AWS IAM user
	Setup the AWS IAM role
	Create the Base Secret
	Create the Dynamic Secret
	Create the Dynamic Secret

	Azure Dynamic Secrets
	Dynamic Secrets
	Dynamic Secret for an Existing Service Principal
	Dynamic Secret for a Temporary Service Principal

	Azure Service Principal
	Creating a Service Principal for the Privilege DevOps Vault Base Secret
	Creating a Service Principal for a Privilege DevOps Vault Dynamic Secret
	5. Navigate to Home > Subscriptions

	GCP Dynamic Secrets
	Setup
	Create a GCP Service Account
	Create the Base Secret

	OAuth Access Token
	Service Account Key
	Create the Base Secret
	Create the Dynamic Secret

	MySQL Dynamic Secrets
	Privilege DevOps Vault Engine Required
	Dynamic Secret Setup
	Sending a MySQL task to an engine

	Privilege DevOps Vault Engine
	Customer Firewall
	Registering a pool and an engine
	Starting an engine

	Certificate Issuance
	Generate a Signing Certificate
	Register (Import) a Signing Certificate
	Generate and Sign a Leaf Certificate
	Sign a Certificate Given a Certificate Signing Request (CSR)

	SSH Key Issuance
	Adding an SSH public key to a server
	Trusting a group of keys signed by a root key
	Adding a public root key to the server
	Generating an SSH certificate on the client side

	Architecture and Security
	Availability
	Business Continuity and Disaster Recovery
	Confidentiality
	Data at Rest
	Data in Transit

	Client Authentication
	Integrity Checks
	CLI Code Signing
	Token Signing

	Personally Identifiable Information (PII) and GDPR
	Third Party SOC 2 Conformance Assessment

	Audits:
	Logging Format and Transport Protocols supported.
	SYSlog
	Configure Syslog

	CEF
	Configure CEF

	JSON

	Release Notes

