IBM Security Verify Privilege

Privilege DevOps Vault User Guide

Table of Contents

FOTEWOTA .ttt ettt et s e b e et e e bt e s a e e e bt e e ae e e bt e s ab e e st e e ab e e st e s as e e st e eabe e seesaseeaneeeabeesneesaseenneeenneennee 6
OVEBIVIEW .ttt ettt sttt ettt s et e st e e st e st e e st e s bt e s ae e s st e se e e st e e ae e e bt e e ae e s st e s mae s bt e emee e seesaneeaneesaneesneesaneeannens 7
AP ettt h et h e e e te e bt e st e e bt e e at e e bt e et e e b e e e a et e hee et e e ahee et e e bt e ebeeeheeebeeanee e beeeneeeneenneeerean 7
(@ TUT T 1] 8
THIrd-Party DOWNLIOAUS........ccuvieeeieiieecciteeeeee e e eeceetreeeeeeeeesesetbareeseeeesesesassrassseeeessesassssssassaesessesssnssnsssseseesennnnnes 8
(@ TUT Lo Sy =Y A 101 e [8
Download the CLI Executable for your Operating SYStEMciiicciiieiiiiiec et e e e s eare e e e aaeee s 8
INIIALIZE ThE CLI. ittt ettt et ettt e st e e b e e s ae e st e e s ae e e bt e sae e e b e e e aeeeabeeeaeesabeesneeenseesnnesseennnenas 9
O] I Y= Yol =] R =t L g o] L= SRR 11
CrEATING USEI'S ..uuviieiiiiiieeiceittee e ettt e e e sttt e e s et e e e e s ateee e s saeeeeassaeeeassseaeseasssseesaassasaeesassseesaanssanesaasssaeessassnnesannes 14
Local User and Thycotic One User AUThENTICAtIONeviiiiiiiii it e e e re e e e e e e 15
Provide USErs ACCESS 10 SECIEES ...cuuiiiiiiiiiiie ettt s n e e s e e e e s n e meesanees 17
(O 0= (= =T ol USSP PRSI 19
(O I 0] 31 aF=T 0o IS} V401 €= D PSRRI 20
(0] o[o1 £ PR UUUTURRRRP 20
Workflows for Creating or Updating ObjJECTS.......uiiiiiiiiiiiiieei ettt sre e e s saan e s s saaaaee s 20
[T =T 0= (=] SO PTOP PP UPPRTPP 21
(O TN} 4o T\ o T 11 11T SRR PRRRNE 22
ENCOAING AN BEAULITY .eiiiuiiiieiieiiiieetee ettt s e e s ee e e s s aba e e s s bsae e e s abaaeesesasaeeeesnsaaaessnnsenes 22
1= PP PS PRSP 23
DUttt ettt ettt et e h e et e e bt e et e e a e e e bt e eae e e bt e eat e e bt e eat e e bt e eat e e b e e eab e e bt e eabe e bt e e beeehteeabeeenteebeeenteenreenaee 23
(O TN 41U B oo] = OO SO POUUPPPRRRPPPPPRROE 24
ST =T o] = PSPPI 24
CommANdS that ACE ON SECIETS.....ciiiiiiieee et s e e s bt e st e s e bt e s e st e s aseesenns 24
=TT (=TSRSS 25
0 T PP 30
Understanding QUalified USEINAMESooiuiiiiiiiiiieeieeete ettt ettt e st e e st e e bt e e s ane e e saseeseaneess 30
ComMMANAS that ACT ON USEIS....coiiieieieeeeeee ettt sttt et e st e s e e s e s e e e st e s s e e seesareesneeenneens 30
=T 1] L= PSR PP 31
LT 0 1] 1 34
CommMaANAS that ACt ON GIOUPSuviieeieiiiieeeeiiieeeeeiteeeeeecteeeeesstaeeeeesssreeeeessaseesassasaessassssessesssasesesssssseessssseneennnn 34
=11 2] o1 LT3R 34

CommMaANdS that ACT ON ROLES ...ttt sttt et e be e s e bt e e b e st e s s e e neeeaneene 37
=TT (=SS 37
61 11=T 1) PP PPN 38
CommMaANdS that ACT ON CLENTS ..cueiiiieie ettt ettt b e s e e be e e e seesr e e neeeaneene 39
EXIMIPLES .evvreriieiiiieeiiitieee e eeeecitrtee e e et e s eesetbareeeeeeeeesesasbaaaaaeeessesasssssaassaeesesensssbsssaasesseesansssranseaesessessnsssrraneeeennns 39
o] oYU 41
oY Tor YA Sz 1 [V E= N 4o PO S 42
o NV e T] 0] (=TSR 43
Fi¥e [a1 ol alo] TorV - Ua Lo I AN I o AV [T TR 49
Commands that ACt ON POLICIESooueiiiieiieeeee e s s ne 49
HOME VAULE ...ttt et e st s bt e s e e s ne e ne e e et e s seesaneesseeenneesneesaneennnens 52
=T 0 0] o1 LTSRS 52
LCTT 1 ST AY =T 51 (o] ISP 55
AUTNENTICATION 1ottt b e e sab e e e bt e e e bt e e s bt e e e bt e e eabbeesabbesenbeesenbeesanseesans 57
PASSWOIT .ttt ettt e e e e s e bt e e s bt e e e ab e e e a bt e e b bt e e bt e e e b b e e e bt e e e b e e e e bt e e e bt e e e bt e s enree s 57
(O 1T=T 01 Al 61 =Te (=T L AT 1 PRSPPSO 57
THird Party AUTNENTICATIONuviiiieeei ettt ettt e et e e e e e e e e e e e e e e e e e s e e assasaeeeeeesensnnsrssssaeasaesnnnnes 57
o) 11 (=P SUPRUSTOPROROP 58
PV o I W e o {1 (=T o = 60 1) =SSR 58
SEE The CONTIZ CONTENTS ittt ettt e e e st a e e e s s bbr e e e ssabeeeeessaaeeessssaaeesnssanessnnns 58
Using an Alternate Profile for @ SpPecific CLL ACTIONuviii ittt e e e e e e e e 58
AUTNENTICALION: AWS ... ettt ettt e st e e s bt e e it e e e bt e e e bt e e esbeeeanbeeesbeesnseesenseesenseesans 58
AUTNENTICATION: AZUTE ...ttt ettt e et e e et e e s st e e e bt e e ebbeeeabbeeesbeeanseeeenseesenseenans 63
Authentication Google Cloud PLatform (GCP)ccueeecciie ettt ettt e rtre e s tee e e tae e e raeesreeeeabeeeenreeenns 67
AULhENTICAtION: OIDC......ciiiiiiiiieeeiieeet ettt e e et e st e s st e s s bt e s sabe e s sbe e s st eessbeesasbeesasaeeasseessnseesnnseenans 83
OIDC PrOVIAEES «.eeieeeieeeteeite ettt ettt st s e st e st e e st e bt esae e e b e s as e e s e e s ab e e st e ease e seesaseeseeeaneeseesaseenneeenseennes 83
AZUIE AD OIDC EXAMIPLE.uttiiiieiiiieeiiteee e ettt e e ettt e e erte e e e e e e e e eeteeeeeesnsaeeeesssseeeeasssseeeanssaneaesnssseeeeaansseesannnseeennn 89
Okta Identity Provider EXAMPLEuii ettt st s s et e s s vre e e s s ae e e e seaata e e s e sasaeeesssnaaessnsssanessnnns 90
DY aF: UL To Y=ol = £ SRR 98
]] 4] = SO PO O OSSP OR R PSP RPORUPPTRTPTRRPI 98
SEArCH fOr LINKEA SECTEES ..ttt ettt e it s bt e s st e s b e s st e e neesseesabeesneeenneenne 99
AWS DYNAMIC SECIETS ooiiiiiiiieieiiiieeeccitee e eectte e e eeitte e e eetteeesesateeeesestaeeeeassaeaeaasssasasaasssssesansssasesanssssessnsssenesannnes 100

F N Y S R=Te [T =\ (=TT 100

AWS ASSUME ROLE ...ttt ettt et et b e st e e bt eeae e e bt e s ae e s abeeeaeeeabeesaeesbeenneeenneenneesanes 102
AZUIE DY NAMIC SECIETS . iiiiieee e e et e e e e e eec e e e e e e e eseeaeeaeeeeeeeesea e ssetaeseaaeseseasssssaeaaeasaesaassrennneeesesanan 106
AZUIE SEIVICE PIriINCIPAL..cccicciiiiieiie ettt eeccreee e e e e e e s sarreeeeeeeeses s abssaeeeeeesesesssnsssaeaseeseesassssrennsaeeessanas 110
(OO S B Y P T 0 o TR Y= Tod = £ SRR 116
Y= (U o TR 117
OAULN ACCESS TOKEN....einiiiiieeeteete ettt et s e et e s e e e bt e e et e seesneesseeesneesseesaneennneas 117
SEIVICE ACCOUNT KBY 1.ttt sttt e e tte e e e e e e e e s te e e s e eeeeese e astreaaeaeeseasassssseasaasesesaassseennaaesssensnnnnnns 119
A O] I B F= Y0 o[Toa = Tod Y =T 121
Privilege DevOps Vault ENGINE REQUITEMiiiiiiiieiiiiiiee ettt eesirte s vre e s sre e e s ssaae e e s s aaeesssssaeessnanes 121
DYNAMIC SECIET SEIUP tuvrriiiiiiiieiiirieieee e eeeicrtreee et e e e eeebereeeeeeesesesssraaseeeesesesssbarassseeseseesssrsssseseessesanssssrnneeens 121
Sending a MySQL task t0 an €NEINE ..cioueuiiiiiiciieeeeeeee et e s et e e e e s e e e e s sasae e e e e nsaeeeesnaaeesennnaneas 122
Privilege DeVOPS VAULL ENGINE ccuuviiiiiiieeccitee ettt et e e st e e s iae e e s sataa e e ssabaeesssasaaeesssssnaeesnssaeesssnnns 122
CUSTOMEE FIFEWALL ..ttt s e e s r e s me e s n e e neessneesmeesaneennneas 123
Registering @ POOL and @n ENGINE ..coouuiieiiiiiieectee ettt s st e e s s saae e e s ssaba e e s ssbaeee s s ssaaeesssnbaeeeenanes 123
SEAMTING AN ENEINE ettt ettt e s st e e e sttt e e e s sabaeeessbbaeesssasbaeeesssbaeeesassaaeesasnsaeeessssnaessnssaes 123
CertifiCate ISSUANCE ...eeueiiiieitieeeee ettt st ettt et e st e bt e s et e se e s s e e ne e e st e s meesaneeanee e st e nneesareennnens 124
Generate @ SigNING CertifiCat ..ttt e s st e e e st ae e e s s braeeesseabeeeeesaeaeeenas 124
Register (IMport) @ SigniNg CertifiCate......ciciiiiiiieecieecie et et e et e e s e e e srae e s eaae e s raeessseeesnneennns 126
Generate and Sign @ Leaf CertifiCate. ... e e e e e e e s e er e e e e anaeeaeas 128
Sign a Certificate Given a Certificate Signing ReqQUESt (CSR) ..cccuieiiciieiiiiieecieeeree et sae e aee e 129
I IS CE 2V KT U= Lol SN 131
Adding an SSH PUDLIC KEY 10 @ SEIVET ...ttt ittt e s e e s s aa e e s s tae e e s s aaaeeessasaaeas 131
Trusting a group of keys signed by @ 00T KEYciiiiiiiiiiiiiie e 132
ArChITECTUIE ANA SECUIITY ...uviiiieciiiee ettt ettt e et e et e e e e see e e e e taeeeessteeeeessssaeeeesnsseeeeeanssaeeeanssaeesenssenesannnns 133
FN Y=Y £ o 1L Y2 PR PPPR 134
Business Continuity and DiSAStEr RECOVETY ...ccuuiiiiieiiiieecectie e et eertee e e e etee e e e e atee e e esaaeee e s ssaeessensaeeeennnns 134
(00T] T [T 0] AE= 111 42U 134
CLIENT AUTRENTICATION ...eiiitii ittt sttt e s e et e s e bt e s e b e e e s bt e s sabeeessbeeesnbeesnaeenane 134
RN (Y A O 3 T ol SRR 135
Personally Identifiable Information (PII) and GDPR.......cccooviiiiiiiiieeeecteee ettt ee e e e eearee e eeeaneeeeeanns 135
AUAIES, ettt et et e bt e e a e e et e e e at e e bt e e h e e e b e e Re e e b e e eab e e bt e e Rt e e b et e be e be e e bt e beeebeeeneeenneenaeenares 137
Logging Format and Transport ProtoCols SUPPOIEd.eeiceeiiie it eee e e e e e e e e e 137

Foreword

IBM Security Verify Privilege DevOps Vault (Privilege DevOps Vault) uses the term secret to address a
privileged account. Therefore, the product is also referred to as DevOps Secrets Vault (DSV). Privilege DevOps
Vault is powered by the original product manufacturer, Thycotic. The product documentation contains several
links that can direct to Thycotic's documentation. Also, since Privilege DevOps Vault interoperates with other
cloud providers and development platforms, links to such third parties are also part of the documentation.

Overview

IBM Security Verify Privilege DevOps Vault is a high velocity vault that centralizes secrets management,
enforces access, and provides automated logging trails. This cloud-based solution is platform agnostic and
designed to replace hard-coded credentials in applications, micro-services, DevOps tools, and robotic process
automation. This vault ensures IT, DevOps and Security teams the speed and agility needed to stay
competitive without sacrificing security.

IBM Security Verify Privilege DevOps Vault is deployed as an API-as-a Service. Organizations can sign-up and
create their first secrets in minutes with no infrastructure to manage or maintain.

API

Command line interface (CLI) for Windows, Mac, and Linux/Unix
RESTful Application programming interface (API)
APIaaS offering infinite scalability, high-speed access, and agility with no infrastructure
maintenance
Automated and searchable logging
Five-nines availability
Disaster recovery via multi-region deployment and hot-standby
Local caching (with the CLI)
Sandbox tenant available for testing before deployment to production
Cloud authentication
o Amazon Web Services (AWS)
o Microsoft Azure
o Google Cloud Platform (GCP)

SDK support
o Java
o Go
o Python
o NET Core
DevOps Tools Support (Plugins)
o Jenkins

o Terraform
o Kubernetes

o Ansible
Robotic Process Automation
o UIPath

o Automation Anywhere
o Blue Prism
SOC II Compliance - report available upon request

This documentation is for general IBM Security Verify Privilege DevOps Vault operation and command line
interface (CLI). If you prefer the API, here is the API documentation

https://github.com/thycotic/dsv-sdk-java
https://github.com/thycotic/dsv-sdk-go
https://github.com/thycotic/python-dsv-sdk
https://github.com/thycotic/dsv-netcore-sdk
https://github.com/thycotic/dsv-jenkins-plugin
https://github.com/thycotic/dsv-k8s
https://github.com/thycotic/dsv-k8s
https://github.com/thycotic/dsv-ansible-lookup-plugin
https://github.com/thycotic/uipath-orchestrator-dsv
https://docs.thycotic.com/dsv-extension-automation-anywhere/
https://docs.thycotic.com/dsv-extension-blue-prism/
https://dsv.thycotic.com/api

Quick Links

Third-Party Downloads

jq Library for filtering JSON results

Linux pass

Windows Credential Manager

AWS CLI
Azure User Assignhed MSI

Quick Start Guide

Download the CLI Executable for your Operating System

Download the Command Line Interface executable files to each of the workstations where you operate IBM
Security Verify Privilege DevOps Vault.

e IBM Security provides Privilege DevOps Vault CLI executables for multiple platforms here.
e Onceinstalled, these CLI executables periodically check the download site for updates and inform
you if an update is available.

Rename the Executable

The executable file name reflects the OS and 32-bit or 64-bit architecture. Rename the executable to dsv or
dsv.exe to simplify command entry.

Place the Executable
Place the executable in the file directory location of your choice and note the path.
Add the Executable Path to the PATH Environment Variable

While not required, adding the location of the executable to your PATH environment variable enables you to
invoke dsv without specifying its path or having to pre-pend .\

e For Windows, press the Windows key and type "edit environment variables". Select the offered item.
o Inthe Environment Variables dialog, under the System Variables section, select the Path and
click edit.
o Add the path to the dsv executable—for example *C:\Users<name>\ and save.
e For Linux or macOS use export to modify the shell profile file, ~.profile or ~.bash_profile typically, so
that it adds dsv to the PATH on system startup: export PATH=~thycotic/cli:$PATH

https://stedolan.github.io/jq/
https://www.passwordstore.org/
https://support.microsoft.com/en-us/help/4026814/windows-accessing-credential-manager
https://aws.amazon.com/cli/
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview
https://dsv.thycotic.com/downloads

Enable Autocomplete

Autocomplete is supported for bash, zsh, and fish shells only.

To turn on autocomplete for the CLI, run dsv -install and restart your shell. Now when you type out the
beginning of a command such as dsv s and hit tab, it fills out the full command to dsv secret
Autocomplete also helps with expanding the secret path on dsv secret read. Putin the beginning of the
path, such as dsv secret read resources and hit tab to get the next part of the path. If there are
multiple matching sub-paths hit tab twice to print out the available options.

For example: typing dsv secret read resources/us-east-and hitting tab twice shows the output of any
secrets below that path. Such as resources/us-east-1/server resources/us-east-2/server.

Initialize the CLI

Required Information

Privilege DevOps Vault CLI initialization presents you with a series of questions and choices. If you are the
initial administrator, that is the person who setup the tenant, then you have the required information from
signing-up. However, if you are not the initial administrator, you need the collect this information from that
person:

e Tenant

e Domain

local or federated user, and if federated, which authentication provider
credentials - username or access key, password or secret key as examples

"dsv init"

Begin setup with the dsv init command. This starts a workflow:

dsv init Please enter
tenant name: example

Specify the tenant name IBM Security provided when setting up your organization's account.

NOTE: You need only enter your tenant name, that is, just example not
example.secretsvaultcloud.com, because the domain is set by region and that is covered in the next
question:

Please choose domain:

(1) secretsvaultcloud.com (default)

(2) secretsvaultcloud.eu
(3) secretsvaultcloud.com.au

Your domain is based on the server location that was chosen during provisioning: United States, European
Union, or Australia/Asia, respectively.

NOTE: In all of these selections with numbered choices, the first choice is marked (default) because that
is the selection if you simply hit "enter" without entering a number.

Next, Privilege DevOps Vault prompts you about credential storage.

Please enter store type:

(1) File store (default)

) None (no caching)

) Pass (linux only)

) Windows Credential Manager (windows only)

Sw N

(
(
(
Select (1) File store (default) to keep the credentials in a configuration file. If you select this, Privilege DevOps

Vault prompts for the storage location.

Select (2) None (no caching) to avoid storing the credentials. With this option active, Privilege DevOps Vault
requires authentication with every command.

Select (3) Pass (linux only) to use Linux pass for encrypted storage.

Select (4) Windows Credential Manager (windows only) to use Windows Credential Manager to store
credentials.

Your next selection concerns the type of authentication.

Please enter auth type:

1) Password (local user) (default)
Client Credential

Thycotic One (federated)

AWS IAM (federated)

Azure (federated)

GCP (federated)

OIDC (federated)

Select (1) Password (local user) (default) to authenticate by username and password.

Select (2) Client Credential to authenticate by Client ID and Client Secret authentication; this supports use of
Privilege DevOps Vault commands by applications.

Select (3) Thycotic One (federated) to authenticate using IBM Security's access manager.

NOTE: The person who signed up for IBM Security Verify Privilege DevOps Vault is the initial
administrator and is automatically setup using Thycotic One. If this is you, then select this option. This
enables you to reset the password if it is ever lost and/or setup up 2FA if desired. It is up to the
customer to then decide if all other users are local or federated through one the available providers.

Select (4) AWS IAM (federated) to authenticate as a trusted Identity Access Management Role or User.
Select (5) Azure (federated) to authenticate as a trusted Azure Managed Service Identity (MSI).

Select (6) GCP (federated) to authenticate as a trusted Google Service Account.

Select (7) OIDC (federated) to authenticate through Thycotic One to an external IDP using the OIDC protocol.

Next, the initialization process prompts about the cache strategy for Secrets. The choice here depends on
your specific set of concerns around security, network connectivity, performance, and systems availability.

Please enter cache strategy for Secrets:
(1) Never (default)

10

https://www.passwordstore.org/
https://support.microsoft.com/en-us/help/4026814/windows-accessing-credential-manager

(2) Server then cache
(3) Cache then server
(4) Cache then server, but allow expired cache if server unreachable

Note that in this context, server refers to your Privilege DevOps Vault tenant and cache refers to storage on the
local machine with the CLI installed.

Select (1) Never (default) to never cache Secrets. Every credential request requires an API call.

Select (2) Server then cache to make an API call every time, but if not accessible, then the cached Secret is
used.

Select (3) Cache then server to use the cached Secret unless it has expired, in which case an API call is made.

Select (4) Cache then server, but... If the cached Secret has expired, an API call is made for the Secret. If the
API call fails, then use the expired cached Secret.

e Finally, you are prompted for your credentials and authentication provider. For the initial administrator,
they are the username and password that you setup in Thycotic One during the sign-up, with the
username often your email address. The authentication provider is the default, thy-one

e Local users does not need to specify an authentication provider.

Please enter username for tenant "example":

admin@example.com Please enter password:
*kkkkkkk*k

Thycotic One authentication provider name (default thy-one): thy-one

That completes setup. You can begin using the IBM Security Verify Privilege DevOps Vault Command Line
Interface to create your first secret

CLI Secrets Examples
Create a Secret
Using a file

Here is an example of JSON that could be made a Secret. The JSON is arbitrary, so you can set any number of
fields (key-value pairs).

"host": "server(Q01l",
"username": "administrator",
"password":

"secretp@ssword" }
To create a Secret, open a text editor and create and save a file (.json) similar to the example above.

Create the Secret and specify the path to its storage location:

11

NOTE: Every Secret correlates uniquely with a specific path that describes the location of the Secret.
The idea here is no different than the concept of a path to a file on a hard drive. Paths are also the
basis for creating policies to determine who (or what) has which rights to those secrets.

Linux:
dsv secret create --path servers:us-east:server0l --data @secret.json
Powershell:
dsv secret create --path servers:us-east:server0l --data '@secret.json'
CMD:
dsv secret create --path servers:us-east:server0l --data @secret.json
Outputs:
"attributes": null,
"created": "2019-01-03T23:11:48z",
"createdBy": "users:thy-one:admin@example.com",
"data": {
"host": "server(01l",
"password": "secretp@sssword",
"username": "administrator"
by
"description": "",

"id": "c5239%9a6c-422e-4£f57-b3a6-5167656a£852",
"lastModified": "2019-01-03T23:11:482Z",

"lastModifiedBy": "users:thy-one:admin@example.com",
"path": "servers:us-east:server(01l",
"version": "O"

Files may also be used to enter attributes --attributes or a description --desc

Direct Command

Instead of using afile, the data can be entered as part of the command:

Linux:

dsv secret create --path servers:us-east:server0l --data
'"{"host":"server01l", "username" :"administrator", "password":"secretp@sssword"}"'
Powershell:

dsv secret create --path servers:us-east:server(0l --data

"{\"host\":\"server01\", \"username\":\"administrator\", \"password\":\"secretp@sssword\"}"'

CMD:

dsv secret create --path servers:us-east:server0l --data "

{\"host\":\"server01\", \"username\":\"administrator\", \"password\":\"secretp@sssword\"}"

12

Outputs:
{

"attributes": null,
"created": "2019-01-03T23:11:482z2",
"createdBy": "users:thy-one:admin@example.com",
"data": {

"host": "server(01l",

"password": "secretp@sssword",

"username": "administrator"
}I
"description":
"id": "c5239a6c-422e-4£f57-b3a6-5167656a£852",
"lastModified": "2019-01-03T23:11:482",
"lastModifiedBy": "users:thy-one:admin@example.com",

nwn
4

"path": "servers:us-east:server0Ol",
"version": "Q"
Retrieve a Secret
To retrieve a Secret use the Secret read command and specify the path to the Secret's storage location.

dsv secret read --path /servers/us-east/server0l

Output defaults to JISON:
"attributes": null,
"created": "2019-11-08T15:46:142",
"createdBy": "users:thy-one:admin@example.com",
"data": {
"host": "server(01l",
"password": "secretp@ssword",
"username": "administrator"
by
"description”™: "",

"id": "cb239%a6c-422e-4£57-b3a6-5167656a£852",
"lastModified": "2020-01-17T15:38:492",

"lastModifiedBy": "users:thy-one:admin@example.com",
"path": "servers:us-east:server(01l",
"version":

"0"

If you like the output to be in YAML:

dsv secret read --path /servers/us-east/server0l -e yaml
Outputs:

attributes: null created:

"2019-11-08T15:46:142z"

createdBy: users:thy-
one:admin@example.com data:

13

host: server(1l password:
secretp@ssword username:
administrator description: ""

id: ¢5239%a6¢c-422e-4£57-b3a6-
5167656af852 lastModified: "2020-01-
17T15:38:492" lastModifiedBy:
users:thy-one:admin@example.com
path: servers:us-east:server(0l
version: "O"

Filter JSON Command Output for Specific Fields

When you need to locate a specific field in a JISON output, use a JSON filter. An example use case is writing
scripts that need to obtain a password but lack the capacity to efficiently parse JSON.

dsv secret read --path /servers/us-east/server0l -bf data.password secretpl@ssword
Separately Update Attributes, Data, and Description

Using the --data, --attributes,and --desc flags, respectively, you can update a Secret's data, attributes,
and description separately. For example:

dsv secret update servers/us-east/server0l --data '{"host": "server0l", "password":
"badpassword", "username": "admin"}' --desc 'update description' --attributes '{"attr":
"add one"}'!

{
"attributes": {
"attr": "add one"
}I
"created": "2019-11-08T15:46:14272",
"createdBy": "users:thy-one:admin@example.com",
"data": {
"host": "server(01l",
"password": "badpassword",
"username": "admin"
}I
"description": "update description",
"id": "4348e941-£f945-460d-98e8-2ab659362£f51",
"lastModified": "2020-02-22T20:48:052",
"lastModifiedBy": "users:thy-one:admin@example.com",
"path": "servers:us-east:server(01l",
"version": "1"

Creating Users
With the first Secrets created, the next step is to create Users or Roles that access those secrets.
For this quick-start guide, as the initial admin, we create two users - a local User and a Thycotic One User.

First, a local Privilege DevOps Vault User, designated with their email address 1ocal@example.comis created.
For local users, an email address is not required.

14

thy user create --username local@example.com --password BadP@ssword

Second, a Thycotic One User is created in Privilege DevOps Vault. Here a valid email address is required as
the username.

thy user create --username thyoneuser@example.com --provider thy-one

The user receives an email with a link to both confirm their email address and setup a password.

tnucu“‘\gz Welcome to Thycotic One

Thycotic One is the cloud-based single sign-on provider for Thycotic products

You have recelved this message because your organization has created an
account for you in Thycotic One. To set up your account for the first time, visit

the link below

https:/flogin.thycotic.com/Account/ConfirmEmall191d2ee 7-d9c5-4246-bidd-
25b4bbe7928a?token=B9DgeMBo_EOqfQ5J2--XuSale VAgmr2mdjjiNTsLkuO

Your Thycotic Support Team

Once the Thycotic One User clicks that link and sets a password, is ready to authenticate to Privilege DevOps
Vault.

Local User and Thycotic One User Authentication

The local and Thycotic One users can then, on their own machines, download the CLI and start the thy
init process. The admin must provide the local user with their password, and both of them with the
Privilege DevOps Vault tenant name and domain (region). The process is here Initializing the CLI for the
first time

When they get to the Please enter auth type:

Please enter auth type:

1) Password (local user) (default)
Client Credential

Thycotic One (federated)

AWS IAM (federated)

Azure (federated)

GCP (federated)

OIDC (federated)

The local user selects (1) and enter their username and password. The Thycotic One user selects (3) and enter
their email, Thycotic One password, and for the provider name simply hit enter to default to thy-one.

The local user must change their password immediately as a best pratice because the admin knows it and had
to transfer it to them somehow. The command is: thy auth changepassword

At this point, the users are created and able to authenticate to Privilege DevOps Vault (they can confirm with
the command thy authand get a token), however, they do not have permission to access anything yet
because Privilege DevOps Vault defaults to deny all. In the next step, the admin creates policies granting
permission to these users.

15

16

Provide Users Access to Secrets

Assuming we have two secrets, each located at:
servers:us-east:server01 and servers:us-east:production:server01

And two users:
local@example.com and thycoticoneuser@example.com

Our goal is to create policy to allow:

e both users access to servers:us-east:serverOl
e |ocal@example.com to have access to servers:us-east:production:server0l1
e thycoticoneuser@example.com to be denied access to servers:us-east:production:server01

Create a Group

Optionally, we can put these Users in a Group with two commands. The first command creates the group:
dsv group create --groupname firstgroup

The second command puts the Users in the Group
dsv group add-members --group-name firstgroup --data

'{"memberNames": ["local@example.com", "thyone:thycoticoneuser@example.com"]}"'

Create Policy for Allow Access

The admin has to create a policy for the Group to get access to the Secrets. Here is a sample CLI command:
dsv policy create --path secrets:servers:us-east --actions '<.*>' --desc 'Allow Policy' --

subjects groups:firstgroup --effect allow

Where path starts with secrets: followed by the secret path.

NOTE: That resources are not specified separately, but they default to the path and everything below it, so

in this case secrets:servers:us-east:<.*>

actions is a wildcard, so full create, read, update, delete, list, assignisauowed.
subjects are the Users that are getting access to the secrets.

Note: The local user does not need a prefix, but any federated users, in this case Thycotic One, refers
to the name of the auth provider. The default auth-provider name for Thycotic One in Privilege DevOps
Vault is thy-one

effect is allow

The resulting policy looks like this if you read it using the command dsv policy read secrets:servers:us-
east -e yaml

path: secrets:servers:us-east

permissionDocument:

- actions:

- <.*> conditions: {} description: Allow Policy
effect: allow

id:

17

XX XXX XXX XXXKXXXXXXX
XX
meta: null
resources: -
secrets:servers:us-—
east:<.*> subjects:
- groups:firstgroup
version: "QO"
This policy now enables both Users (local@example.com and thycoticoneuser@example.com) to gain full

access to all secrets located at the path servers:us-east and below.
Create Policy for Deny Access

If we decided that the thycoticoneuser@example.com must no longer have access to the secrets at
servers:us-east:production we can write another policy to deny that access. The command looks like this:

dsv policy create --path secrets:servers:us-east:production --actions '<.*>' --desc 'Deny
Policy' --subjects 'users:<thyone:thycoticoneuserf@example.com>' --effect deny

The resulting policy looks like this if you read it using the command dsv policy read secrets:servers:us-
east:production -e yaml

path: secrets:servers:us-east:production

permissionDocument:

- actions:

- <.*> conditions: {} description:
Deny Policy
effect: deny

id:

XX XXX KXXXKXXXKXXXKXXXX

XX
meta: null resources: -

secrets:servers:us-—

east:production:<.*>

subjects:

- users:<thy-
one:thycoticoneuser@example.com>versio
n: "O"

Now local@example.com has access to everything at servers:us-east and below, including
servers:us-east:production. However, thycoticoneuser@example.com only has access to the
secrets at servers:us-east and not at servers:us-east:production This is the end of the quick-
start guide, but for more on policies see CLI Reference/Policy in this documentation.

18

CLI Reference

Organized by the type of command object, these articles use task-oriented examples to show you how to use
IBM Security Verify Privilege DevOps Vault.

CLI commands commonly act on these object types:

e Secret
e User

e Policy
e Group
e Role

e Client
e Config

This Reference complements the separately maintained IBM Security Verify Privilege DevOps Vault API
Reference.

19

https://dsv.thycotic.com/api
https://dsv.thycotic.com/api

CLI Command Syntax

With few exceptions, CLI commands follow a simple syntax:

dsv (object) (command) (flags and parameters)

For example, indsv role create, roleisthe object of the command create. Some parameters and flags
apply only to some commands. Privilege DevOps Vault also includes output modifiers for filtering and
formatting responses to commands.

Objects
Object
auth
cli-
config

client

config
eval
group
init
pki
policy
role
secret
siem
user

whoami

Syntax
auth
cli-config

client (<client-id> * --
client-1id)

config

eval

group (<group-name> * —-

groupname)

cli-config init or init

pki

policy (<path> * --path
* —r)

role (<name> * --name *

secret (<path> * --path
* 1)

siem

user (<username> * -—-
username)

whoami

Definition

authenticate to the vault or display the current access token

manage the CLI authentication file

manage client credentials for application vault access

manage the top level configuration document for the admin policy
and authentication providers

check the value of a command line flag or variable

manage collections of Users uniformly by placing them in a
managed Group

initialize Privilege DevOps Vault on first run

manage certificate issuance

manage policies on permissions for Secrets, Roles, Users, and other
entities in the vault

manage Roles

create, update, and retrieve Secrets from the wvault
manage endpoints for pushing audit logs

manage Users

display the currently authenticated User

Workflows for Creating or Updating Objects

For many objects, if the command is create or update, then adding no flags starts a workflow.

A workflow is a series of questions that guides the user through the creation or update process. Workflow
supported objects include:

e dsvinit (This command is only done with a workflow)

20

e dsv config auth-provider
e dsv policy
e dsvsiem

e dsvpki

e dsvuser
e dsv group
e dsvrole

If the object doesn't support a workflow, then the flag --help is assumed.

Parameters
Parameters can be:

e strings or numerics

e Boolean

e JSON data

o file path
Strings

Most commands take strings as parameters, quoted or unquoted. For example, the username uses quotes
but the password does not. Both are valid string parameter values.

dsv user create --username "adminl" --password BadP@ssword

If a string value has spaces, it must be wrapped in quotes. For example, when creating a Role, the
description must be quoted.

dsv role create --name test-role --desc "a test role"

Boolean

Some parameters are simple Boolean flags controlling whether or not something applies, for example,
whether to beautify the JSON output of a Secret read.

dsv secret read --path example/bash-json --beautify

JSON Data and 0S-Specific Syntax

In some cases the parameter expects JSON. For example, the --data parameter on adsv secret create
command expects JSON data.

JSON parameter formatting depends on the OS and shell program.

e Linux: wrap the JSON in a single quote (')

e PowerShell: wrap the JISON in a single quote (') and inside the JSON escape each double
quote (") with a backslash (\)

« cmd.exe: wrap the JSON in a double quote (") and inside the JSON escape each double
quote (") with a backslash (\)

21

dsv secret create --path example/bash-json --data '{"password":"bash-
secret"}'

PS C:> dsv secret create --path example/ps-json --data
'"{\"password\":\"powershell-secret\"}'

C:> dsv secret create --path example/cmd-json --data "{\"password\":\"cmd-
secret\"}"

File Path and 0S-Specific Syntax

Passing JSON as a parameter remains practical only as long as the JSON remains short. Instead of passing
JSON as a parameter, you can pass it as a file, using the @ prefix to specify the path to the file.

For instance, here the command is to create a Secret using a local file named secret.json. The examples show
the minor variations among operating systems and shells.

dsv secret create --path example/bash-json --data @secret.json
PS C:> dsv secret create --path example/ps-json --data '@secret.json'

C:> dsv secret create --path example/cmd-json --data @secret.json

For passing a file as data, only Powershell requires the file path and name to be wrapped in quote marks, in
this case single-quote marks.

Output Modifiers
Privilege DevOps Vault offers global flags that combine with most commands to format or redirect output.

e -—-encoding, -especifythe output format as either JSON or YAML

e -—-beautify, -bbeautify JISON or YAML output

e -——filter, -f filtertooutputonly a specific JSON attribute; this feature uses the jq library

e --out, -ocontrolthe output destination; valid values: stdout, clip, and file:[file-name], with stdout the
default

Encoding and Beautify

dsv secret read --path /servers/us- east/server(0l -be yaml
Outputs:

attributes: null

data: host:

server01l

password:

Secretp@ssword

username:

administrator

id: ¢523%a6c¢c-422e-4f57-b3a6-
5167656af852 path: servers:us-
east:server01l

22

https://stedolan.github.io/jq/

Filter

The filter modifier relies on a lightweight, flexible command line JSON processor, the jq library. Visit the JQ
GitHub repo to learn more about how to use JQ.

The following code block illustrates:

dsv secret read --path resources/server0l/mysgl -b

Outputs:

"attributes": {
"tagl": "this is a tag"
}I
"created": "2019-07-17T21:33:35z2",

"createdBy": "users:ben",
"data": {
"foo": ["bar2", "blah"],
"password": "root-password",
"username": "blah"
}I
"id": "59f2ab72-7£51-4£f0e-8ffd-35cb94b818fb",
"lastModified": "2019-07-17T21:36:012",
"lastModifiedBy": "users:ben",
"path": "resources:server(0l:mysql",
"version": "1"

} dsv secret read --path resources/server0l/mysqgl

--filter data.password
Outputs:

root-password

The command without the filter produced the entire Secret, while the command with the filter read out only
the password value.

Out

The -0 modifier allows output to be redirected to a file.

dsv secret read --path /servers/us-east/server0l -b -o file:Secret.json \$ nano
Secret.json

Contents of Secret.json:
{

"attributes": null,

"data": {
"host": "server(Q1l",
"password": "Secretp@ssword",
"username": "administrator"

23

https://stedolan.github.io/jq/

bo
"id": "c5239a6c-422e-4£f57-b3a6-5167656a£852",
"path": "servers:us-

east:server(01l"

}

Using -o clip puts the command output on the OS clipboard.

Output Piping

Output piping takes advantage of a common coding practice in which the value of a parameter passed to a
command is itself a command or set of commands. When the outer command receiving the parameter
executes, it evaluates the parameter, which requires it to run the command that was passed as a parameter.
The output of that command becomes the parameter value for the outer command, which then continues to
execute.

As an example, you can save any Privilege DevOps Vault CLI output into an environment variable by piping the
output from the standard output into an environment variable.

export MYSecret=$ (dsv secret read --path Secretl)

SMYSecret=dsv secret read --path Secretl

Both of the preceding create an environment variable named MYSecret that store the Secret data. To view the
data, use:

echo S$MYSecret

Secret

Secrets are sensitive data protected in your vault. Many Secrets relate to authentication—such as passwords,
SSH keys, and SSL certificates— but Secrets can be anything represented as a file on computer storage media.

When Privilege DevOps Vault has possession of Secrets outside the vault (that is, the CLI or API has
reproduced a Secret anywhere outside the vault), it keeps the Secrets encrypted and locked down in
conformance to the specific permissions and policies in the config.

Commands that Act on Secrets

Command Action

bustcache clear the Secret cache
create create a Secret in the vault
search search for Secrets
describe view Secret metadata only
read view a Secret's data

24

edit

update

delete
restore

rollback

Examples

Bustcache

modify a Secret using the OS's default command-line editor, such as VI, nano, or Notepad

modify a Secret, with --data, --attributesand --desc flags to modify selected portions
only, and a Boolean --overwrite flag to control whether the --data flag's content
overwrites or merges with extant data object fields

delete a Secret
restore a Secret (if within 72 hours of deletion)

for a Secret that has had more than one version, roll back to an earlier version

The bustcache command clears the local cache, if present.

dsv secret bustcache

Create

The create command uses the --data flag to pass data into the secret. This flag accepts JSON entered directly
into the command line or by a path (absolute or relative) to a JSON file.

Bash examples

dsv secret create --path us-east/server(02 --data

'{"username" :"administrator", "password":"bash-secret"}'

dsv secret create --path us-east/server02 --data @/home/user/secret.json
dsv secret create --path us-east/server02 --data @../secret.json

Powershell examples

PS C:> dsv secret create —--path us-east/server02 --data

"{\"username\":\"administrator\",\"password\":\"powershell-secret\"}"'

dsv secret create --path us-east/server02 --data '@/home/user/secret.json'

dsv secret create --path us-east/server02 --data '@../secret.json'

CMD Examples

PS C:> dsv secret create —--path us-east/server02 --data

"{\"username\":\"administrator\", \"password\":\"cmd-secret\"}"

dsv home secret --path us-east/server02 --data @/home/user/secret.json

dsv home secret --path us-east/server02 --data @../secret.json

The --attributes flag can be used to add user-defined metadata in the same way that data is added.

The --desc flag can be used to add a simple string. If the string has any spaces, then it must be enclosed in

double quotes.

As a Bash example:

25

dsv secret create --path us-east/server02 --attributes '{"priority":"high"}'
--desc "Covert Secret" --data '{"username":"administrator","password":"bash-
secret"}'

Update

update is similar to create but operates on an existing secret. When using update for other commands like
policy or auth-providers, it is an all or nothing change. ie, for those if you want to change only one field, you
have to update all of them. However, for Secrets, it is possible to update only one field and not change the
others.

If you have this secret:

{
"attributes": {
"attr": "add one"
}I
"created": "2019-09-20T16:12:572",

"createdBy": "users:thy-one:admin@example.com",
"data": {
"host": "serverO1l",
"password":
"badpassword"
}I
"description": "update description",

"id": "c893b4f8-9425-4fad-acbf-2806d6f1fa82",
"lastModified": "2020-01-17T15:43:272",

"lastModifiedBy": "users:thy-one:admin@example.com",
"path": "servers:us-east:server0O1l",
"version":

"iz2m" }

This Bash command only changes the value for host in the data section.
dsv secret update servers/us-east/server0l --data '{\"host\":\"unknown\"}'

{
"attributes": {
"attr": "add one"
}I
"created": "2019-09-20T16:12:572",

"createdBy": "users:thy-one:admin@example.com",
"data": |
"host": "unknown",
"password":
"badpassword"
}I
"description": "update description",

"id": "c893b4f8-9425-4fad-acbf-2806d6fl1fa82",
"lastModified": "2020-08-03T17:58:292",

"lastModifiedBy": "users:thy-one:admin@example.com",
"path": "servers:us-east:server(01",
"version": "13"

26

The flag --overwrite, ifadded to the above command wipes-out the description and any other data KV pairs.
So this flag requires caution.

dsv secret update servers/us-east/server0l --data '{\"host\":\"unknown\"}' --overwrite

Search

You can search for Secrets by path or attribute
Some examples

dsv secret search server

dsv secret search --query server

dsv secret search -g aws:base:secret --search-links
dsv secret search --query

aws --search-field attributes.type

dsv secret search --query 900 --search-field attributes.ttl --search-
type number

dsv secret search --query production --search-field attributes.stage
--search-comparison equal

flags

--query, -qQuery of secrets to fetch (required)

--1imit Set the maximum number of search results that are displayed per page (cursor)
-—cursor Accepts the element used to get the next page of results

--search-comparison Specify the operator for advanced field searching, can be 'contains’, 'equal’, or
'begins_with' Defaults to 'contains' (optional)

--search-field Advanced search on a secret field such as 'attribute.type' or 'description’. Defaults to 'path'.
(optional)

--searcn-1inks Find secrets that link to the secret path in the query (optional)

--search-type Specify the value type for advanced field searching, can be 'number’ or 'string'. Defaults to
'string' (optional)

For a search where there are more results than returned in the first set, the API returns a cursor—a large piece
of text. You pass that back to get the next set of results.

For example, if the command dsv secret search -g admin --1limit 10 matched 12 Secrets with admin in

the name, the CLI returns the first 10 plus a cursor. To obtain the next two results, use this command: dsv
secret search -gq admin --1limit 10 --cursor AFSDFSD...DKFJLSDJ=

Cursors may be lengthy:

dsv secret search -gq resources --limit 10 --cursor
eyJpZCI6IMEWOTEFJOWIZLWE4AMmMQOtNGRiYy1hYThiLTYxMDYONDZhZjA3MSIsInBhdGgiOiIiLCJ2Z2XJzaW9uljoidi
17dXJyZW50IiwidHIwZSI6I1iIsImxhdGvVzdC I6MHO=

27

Describe

Use describe to show only metadata; you do not see the actual Secret value.

dsv secret describe --path us-east/server02

Read

The read command shows both the Secret data and metadata.

dsv secret read --path us-east/server02
Flags
--encoding or -e converts the output to JSON (default) or YAML.

--out or -o can send the read response to stdout (default), the clipboard (clip), or a file (file:)
--filter or - £ filters to a specific KV pair. So data.password only outputs the password value.
This example sends the password value only to the clipboard
. dsv secret read secret2 -o clip -f data.password
TIP: Although the -o flag allows redirection of output to files, it does not support directly assigning
the output to an environmental variable. However, you can use piping to achieve that outcome.

Piping refers to passing to a command a parameter value that is itself a command, or assigning to a variable a
value that is a command. In effect, piping means assigning as a value the means to obtain the value, rather

than the value itself.
export TEST=\$ (dsv secret read --path us-east/server02)

or
\STEST=dsv secret read --path us-east/server02

Both examples use piping to assign to the variable TEST the value contained in the Secret, by making the
secret read command a parameter within a larger command or statement.

Once stored as the value of TEST, the data remain easily accessible:
echo \S$TEST

As a well established computing technique of long standing, piping is not limited to Secrets. You can use
piping to store any output—search results, configuration states, and more.

Edit

Use edit to open the Secret data in the default text editor for bash, such as vi, nano, or Notepad.

e Saving in the editor updates the Secret in the vault, except in the case of Notepad, in which case the
update happens when you exit Notepad. Your interim saves are to the working copy.

dsv secret edit --path us-east/server02
Update

Use update to change a Secret's data. The command has several flags pertinent to Secrets:
28

e the --data flag allows you to only update the data portion of the Secret
o the Boolean --overwrite flag controls whether the --data flag's content
overwrites or merges with extant data object fields
o the data object accepts as many fields as you choose
e the --attributes flag allows you to only update the attributes of the
Secret
e the --desc flag allows you to only update the description of the Secret

The --overwrite flag applies only at the field level; it does not allow you to merge new attributes of a data
field into existing attributes of that field, only to merge new data fields into the extant set of data fields.

As with create, for the value of the --data parameter update accepts JSON entered directly at the
command line, or the path to a JSON file.
dsv secret update --path us-east/server02 --data {\\"password\\":\\"Secret2\\"} Or

dsv secret update --path us-east/server02 --data @secret.json

Delete

To delete a Secret simply specify the path.
dsv secret delete --path us-east/server02

When you delete a Secret, it is no longer usable. However, with the soft delete capacity of Privilege DevOps
Vault, you have 72 hours to use the restore command to undelete the Secret. After 72 hours, the Secret is no
longer retrievable.

If you want to perform a hard delete, precluding any restore operation, you can use the delete command's --
force flag.

Restore

Up to 72 hours after you delete a Secret (but not if you hard deleted it using the --force flag), you can
restore it:

dsv secret restore --path us-east/server02

Do not confuse restore with rollback because the two have no relation. While restore undeletes a deleted
Secret, restoring it to the condition it was in at the time of its deletion, rol1back does not operate on deleted
Secrets. It simply sets a Secret back to an earlier version of itself.

Rollback

A Secret that has had more than one version can be rolled back to an earlier version of itself:

dsv secret rollback --path us-east/server02 --version 2

29

If you do not include the --version flag, the Secret rolls back to the last version before the present version.
By serially issuing the rollback command without a version number, you could step back through the versions
one at a time.

Note that the rollback is non-destructive; technically, the command does not roll back so much as retrieve the
indicated version and duplicate it as a new version, which becomes the current version.

e If you usedthe --version flag to jump back three versions, you do not lose those three versions; they
remain in place, with the version from three back now being replicated into a new version.

It is important to distinguish between the rol1back feature, which relates to versions, and the restore
feature, which relates to the delete feature and has nothing to do with versions.

A deleted Secret can be restored up to 72 hours after it has been deleted (if it was not hard deleted using the
--force flag), after which it cannot be restored. Rollback does not change that in any way, because it cannot
operate on a deleted Secret.

If a deleted Secret is restored, Rollback can operate on it just as it makes with any other Secret.

User

For Privilege DevOps Vault, the term "user" refers to a security principal in the vault that can authenticate
locally by a username and password or can authenticate through a federated provider such as Amazon Web
Services or Amazon Resource Names.

Understanding Qualified Usernames

When a User or Role ties to a third-party provider, the name is the fully qualified name to help distinguish
potentially duplicate User or Role names across different systems.

The name qualifier format provider name:local name means, for example, that the test-admin User has the
username aws-dev:test-admin while the local User with username test-admin does not have a qualifier, so its
username is just test-admin.

Commands that Act on Users

Command Action

changepassword change a local User's password

create create a User in the vault
search find Users by username
read read a User's details

delete delete a User from the vault

restore a deleted User (if within 72 hours of deletion and not hard

restore deleted)

30

Examples

Changepassword

The change-password command, effective for local Users only, initiates an elemental password change
sequence:

dsv auth change-password

Please enter your current password:
kkhkkhkkhkkkkkkkk*k

Please enter the new password:
kAhkkhkkhkkkkkkk*k

Please enter the new password (confirm):
KAk Ak Kk Ak hkKk Kk kKX k%K

With a local User, correct entry for the current password prompt, and valid, matching responses to the first
and second prompts for the new password, the response is a message that the password has been changed.

A Thycotic One Federated User must instead visit Thycotic One to change their password. Attempting to use
the changepassword command within the CLI fails.

Create

The create command takes several --parameters that spec foundational aspects of the User record.

Parameter Content

local username; required; supports local authentication by username and password;

—-username L . .
need not match that used by a federated authentication provider (if present)
--password password for local authentication by username and password
, matches the name attribute of the authentication provider in the settings section of the
—--provider

config

identifier recognized by third-party federated authentication providers, such as AWS or
ARN

-—-external-id

Create a local User with username test-admin and password secret-password:
dsv user create --username test-admin --password secret-password

Create a User account for login by the AWS IAM test-admin User, with the account tied to an aws-dev
account in the configuration:

dsv user create --username test-admin --external-id arn:aws:iam::00000000000:user/test-

admin --provider aws-dev

31

Search

The search command locates Users by searching on their usernames. It accepts as a --query parameter the
username you provide, and searches for records with a matching username.

dsv user search --query test-admin

Output:
[
{
"externalId": "arn:aws:iam::00000000000:user/test-admin",
"provider": "aws-dev",

"qualifier": "bgno6etchfrc72getijo",
"userId": "dd632a7f-419f-400b-9e36-£f67603b£934b",

"userName": "test-admin"
}I
{
"externalId": "",
"provider": "",
"userId": "8be9%917b3-9577-4dba-b39f-b531f27clcaa",
"userName": "test-admin"

Read

The read command retrieves and displays information without changing anything.
Provide a fully qualified username and read the User's details:

dsv user read --username aws-dev:test-admin

Provide a full local username and read the User's details:

dsv user get --username test-admin
Delete

The delete command removes records of both local Users and Users associated with third-party
authentication providers. In both cases, you must provide the fully qualified username.

Delete a third-party User identified by a fully qualified name:
dsv user delete --username aws-dev:test-admin
Delete a local User identified by the full local username:

dsv user delete --username test-admin

32

When you delete a User, it is no longer usable. However, with the soft delete capacity of Privilege DevOps

Vault, you have 72 hours to use the restore command to undelete the User. After 72 hours, the User is no
longer retrievable.

If you want to perform a hard delete, precluding any restore operation, you can use the delete command's --
force flag.

Restore

Up to 72 hours after you delete a User (but not if you hard deleted it using the --force flag), you can restore
it:

dsv user restore --username test-admin

33

Group

A Group facilitate the application of the same policies to all members of a given set of Users.

Commands that Act on Groups

Command Action

create create a Group in the vault

add-members add members to a Group

read read a Group’s details

update update a Group

delete-members remove members from a Group

delete delete a Group

restore restore a Group (if within 72 hours of deletion and not hard deleted)
Examples
Create

This example command creates a Group named admins from a file data.json containing {"groupName":
"admins"} (or same with singlequote marks, for Powershell) and located in the tmp folder:

dsv group create --data Q@/tmp/data.json

{
"groupName": "admins",
"id": "2ce6754d-afbc-43a9-bfd4-3b7ec61170a0",
"members": null,
"metaData":
null

This example creates a Group without referencing a file:

dsv group create -data {"groupName": "admins"}
{
"groupName": "admins",
"id": "2ce6754d-afbc-43a9-bfd4-3b7ec61170a0",
"members": null,
"metaData":
null

Note that in Powershell, single quotes are required and double quotes escaped, like this:

dsv group create --data '{\"groupName\": \"admins\"}'

34

Find Group Membership

To see what Groups the user Billy belongs to, use:

dsv user groups —--username billy
{
"groups": [
{
"groupName": "admins"
}
1,
"name": "billy"

Add-Members

Add members to a Group similarly to this example, wherein the file newmember.json contains:
{"memberNames": ["billy",”larry’]}

dsv group add-members --group-name admins --data '@/tmp/newmember.json
{

"memberNames": ["billy", "larry"] }
Read

This example demonstrates how to read a Group:

dsv group read --group-name admins

{
"groupName": "admins",
"id": "2dc756d6-ba71-44e9-94e9-£f822e0f7ca3f",
"members": ["larry"],

"metaData": null

}
Update | Assign Group to Policy
This example assigns the admins Group to an existing policy at the path secrets:servers:us-west:

dsv policy update --actions "<.*>" --subjects groups:admins --path secrets/servers/us-
west

Note that you can designate paths with either of the colon : or forward slash / characters.

Delete-Members

To remove members from a Group, follow this example, wherein deletemembers.json contains:
{"memberNames": ["billy"]}

dsv group delete-members --group-name admins --data @/tmp/deletemembers.json <no
response>

35

Note that this does not delete the user objects that were members. It simply makes those user objects no
longer members of the Group.

Delete

To delete a Group, follow this example:

dsv group delete --group-name admins <no response>

When you delete a Group, it is no longer usable. However, with the soft delete capacity of Privilege DevOps
Vault, you have 72 hours to use the restore command to undelete the Group. After 72 hours, the Group is no
longer retrievable.

If you want to perform a hard delete, precluding any restore operation, you can use the delete command’s --
force flag.

Restore

Up to 72 hours after you delete a Group (but not if you hard deleted it using the --force flag), you can
restore it:

dsv group restore --group-name admins

36

Role

With Privilege DevOps Vault, the term “role” describes a security principal in the vault that ties to third-party
providers or client credentials for granting permissions.

Commands that Act on Roles

Command Action

create create a Role in the vault
search find Roles by Role name
read read a Role’s details
update upload a superseding Role
delete delete a Role from the vault

restore restore a deleted Role to the Vault (if within 72 hours of deletion and not hard deleted)

Examples

Create

The create command takes several --parameters that spec key aspects of the Role record.

Parameter Content

--desc description of the Role

--name name of the Role

provider matches the name attribute of the authentication provider in the settings section of the
config

evternaloid ide:;i:ijer recognized by third-party federated authentication providers, such as AWS
or

Create a local Role with the name _test-role_:
dsv role create —--name test-role
Search

The search command locates Roles by searching on their Role names. It accepts as a --query parameter the
Role name you provide, and searches for records with a matching Role name.

Search for a Role named _dev-admin_:

37

dsv role search --query dev-admin

Or simply: dsv role search devadmin

You can also specify the maximum number of search results per page (cursor) and a cursor to get the next
batch of results.

dsv role search --query us-east/server(02 --limit 2 --cursor
eyJpZCI6ImZmZjZ30DUxTJI2ZXJIzaWIuIljo50TIiwidHiJ9

Read

The read command retrieves and displays information without changing anything.

Provide a Role name and read the Role’s details in beautified form:

dsv role read --name test-role -b
Update
Use update to change a Role’s data.
Note that update rewrites the entire set of Role data, even if only a single field has changed.

Provide a Role name and update the Role to replace the description field’s value:

dsv role update --name test-role --desc "a new description"

Delete
The delete command removes Roles.

Provide a Role name and delete the Role:

dsv role delete --name test-role

When you delete a Role, it is no longer usable. However, with the soft delete capacity of Privilege DevOps
Vault, you have 72 hours to use the restore command to undelete the Role. After 72 hours, the Role is no
longer retrievable.

If you want to perform a hard delete, precluding any restore operation, you can use the delete command’s --
force flag.

Restore

Up to 72 hours after you delete a Role (but not if you hard deleted it using the --force flag), you can restore
it:

dsv role restore --name test-role

Client

Client credentials enable applications to authenticate as the Role assigned to the client record.

38

Commands that Act on Clients

Command Action

create create a User in the vault
search find clients by Role name
read read a client’s details
delete delete a User from the vault
Examples
Create

The create command accepts as its --role parameter a fully qualified Role name, and creates a client
credential assigned to that Role.

dsv client create --role app-role

The output includes a clientId and clientSecret suitable for use during CLI installation, or within REST calls to
authenticate as the Role assigned to the clientId.

{

"clientId": "ab59d37bf-4028-4eb9-9df4-6f1fea7d9298",
"clientSecret": "rvV718177DDwTLkdzWkL18UF9blycz3r9yfRhQTYICFc",
"role": "app-role"

}

NOTE: The client Secret is available only when you create the client. If the Secret is lost, delete the client
and create a new one.

Search
The search command accepts as its --query parameter the name of a Role, and searches for clients having
that Role.

dsv client search --query dev-role OF dsv client search dev-role

Read

The read command accepts a client ID as a parameter and returns the details for the given client. As with most
commands, remember that you can apply flags to beautify, redirect, or reformat the returned material.

dsv client read --client-id a59d37bf-4028-4eb9-9df4-6f1fea7d9298

Delete

The delete command accepts a client ID as a parameter and deletes from the vault the indicated client.

dsv client delete --client-id a59d37bf-4028-4eb9-9df4-6f1fea7d9298

39

When you delete a Client, it is no longer usable. However, with the soft delete capacity of Privilege DevOps
Vault, you have 72 hours to use the restore command to undelete the Client. After 72 hours, the Client is no
longer retrievable.

If you want to perform a hard delete, precluding any restore operation, you can use the delete command’s --
force flag.

Bootstrapping

There are times when machines or applications require access to Privilege DevOps Vault to get started, but
you can't (or don't want) to hardcode the client secret. In this case, we can create the client ID and get a one-
time use URL. When the URL is accessed, then the corresponding client secret is created and returned. The
URL is no longer valid after the initial use, so if the intended machine or application gets an error "url already
used" then there must be an alarm to investigate.

First create the Client ID and URL:
dsv client create --role <role> --url true --url-ttl <ttl in seconds>

Where "role" is a Role created earlier and is attached to a Policy to provide the proper peermissions. "--url" is
the flag that tells Privilege DevOps Vault to create a one-time use URL instead of a Client Secret right now. "--
url-ttl" is the time to live of the URL in sseconds. If it is not accessed in that timeframe, then it becomes
invalid.

The result looks something like this:

"clientId": "5£1761dd-95ac-479f-a386-£9c379055b04™",
"created": "2020-09-29T713:39:31z",

"createdBy": "users:admin@example.com",

"id": "2£375a20-a670-4843-8b78-502649bc668e",
"role": "bootstraptest",

"url": true,

"urlPath": "https://company.secrestvaultcloud.com/vl/clients/bootstrap/5£1761dd-95ac-479f-
a386-£9c379055b04",
"urlTTL": 3600

Then the machine or application can access that urlpath for the Client Secret. For Example, using CURL (or

Invoke-RestMethod for Powershell):
curl https://company.secrestvaultcloud.com/vl/clients/bootstrap/5£f1761dd-95ac-479f-a386-

£9¢c379055b04

With a result containing the Client Secret:

"id":"2f375a20-a670-4843-8b78-502649bc668e",
"clientId":"5f1761dd-95ac-479f-a386-f9c379055b04",
"clientSecret":"r jgAZz6zs Togidv-Paz8wWe90oP9HyjzRan7t7bc4",
"role":"bootstraptest",

"url":true,

"accessed":"2020-09-29T13:45:212",
"created":"2020-09-29T713:39:312",

40

https://company.secrestvaultcloud.com/v1/clients/bootstrap/5f1761dd-95ac-479f-a386-f9c379055b04
https://company.secrestvaultcloud.com/v1/clients/bootstrap/5f1761dd-95ac-479f-a386-f9c379055b04

"createdBy":"users:admin@example.com"

If the URL is accessed a second time, then the response contains: "code":400, "message":"url has
already used"

Policy

Policies control access to resources and authorization to act on resources, such as to change them, via
permissions. IBM Security Verify Privilege DevOps Vault permissions are foundational for proper operation
and security.

To get ajson encoded list of all Policies, use: dsv policy search
You can add a query item to search Policies by path:
dsv policy search secrets/database Ordsv policy search --query secrets/databases

A typical Policy looks like this:

created: '2019-09-24T18:12:262"'
createdBy: users:thy-
one:admin@example.com id:
XXXXXXXK=KXXK=KKKK = KKK =
XXXXXXXXXxXXX lastModified: '2019-
09-24T720:13:53Z"' lastModifiedBy:
users:thy-one:admin@example.com
path: secrets:servers:us-west
permissionDocument:
- actions:
- read conditions: {}
description: ''
effect: allow id:
XXXXXXXKXKXKXKXXKKKKKKKK
meta: resources:
- secrets:servers:us-
west:<.*> subjects:
- groups:west
adminsversion: '5'

A policy contains a list of permissions which define access to resource paths. The policy itself has a top-level
path which is the identifier of the policy as well. The policy path is used to validate the resource paths in the
permission documents. This allows administrators to delegate user ownership of policies without allowing
self-elevation through modifying the policy to a higher level path.

For example, the policy above has a path of secrets:servers:us-west. Permissions can be created for
resources paths like
secrets:servers:us—west,secrets:servers:us—west:<.*>,Orsecrets:servers:us—west:prod:<.*>.A
permission document cannot be created on the policy to allow users to manage users, that is with a resource
path of users:<*>. Because the policy path must be the root of any resource paths in its permission
documents.

41

The one exception is policy delegation. An admin can create a policy and add a resource path for
config:policies:secrets:servers:us-west to allow users to manage the policy. An example of this is
below

The permission document has the following elements:

Element Definition

a list of possible actions on the resource including create, read, update, delete, list, and

actions . . .
assign (regular expressions and list supported

conditions an optional CIDR range to lock down access to a specific IP range

description human friendly description of the Policy intent
effect whether the Policy is allowing or preventing access; valid values are allow and deny

id system-generated unique identifier to track changes to a particular Policy

the resource path defining the targets to which the permissions apply; a resource path
resources prefixes the entity type (secrets, clients, roles, users, config, config:auth, config:policies,
audit, system:log) to a colon delimited path to the resource.

subjects the Policy provides authorization to these entiries. Includes Users, Roles, and Groups

Policy Evaluation
To correctly evaluate permission Policies, you must know the rules that apply to permissions.

e Values for permission properties may optionally be specified using a regular expression enclosed in
angle brackets <>. For example, a subject entry could be written as ["users:<boblalice>"]. Here,
users bob and alice are specified. A longer alternative is ["users": "bob", "users": "alice"].

e Permissions are cumulative.

o Ifthereis atop level permission for the path secrets:servers:<.*> that grants a User write
access, then even if they are only granted read access at the resource path
secrets:servers:webservers:<.*>, they still have write access due to the top level implicit match

e cffect can either be allow or deny. If not specified, it defaults to aliow.

e Anexplicit deny trumps an explicit or implicit allow.

e At least one action must be listed in an array. Actions are explicit. A User assigned update and read do
not automatically have create for the resource path.

« Foractions, the wildcard form <. *> replaces any other values, since it is an all-inclusive form. A
wildcard could be written as a standard <. *> form, but also as .* or * for convenience. The backend
automatically converts it to <. *>.

e Invalid actions are not allowed, unless there is a wildcard element. Valid actions are create, read,
update, delete, assign, list.

« Thelist action has a special behaviour.

42

https://prod.homer.thycotic.net/dsv/1.0.0/#%23%23delegate-policy-authority

o First, list (search) is global—it runs across all items of an entity (any of the resources like Useres,
Roles, Groups, etc), not limited to paths and sub-paths.
o Second, to grant a User an ability to search entities via list, use the root of the entity if you
want list to include other entities and actions within the same Policy. The root entity, for
example, is secrets, with no other characters following.
o See the example on Search
e At least one subject must be listed in an array. A prefix is required. For example, a valid subject is
"users:bob".Va“d[Neﬂxesaregroups, roles, users.
e Subjects and actions are automatically converted to lower case upon save.

Policy Examples

When creating or updating a Policy, a workflow can be started using dsv policy create Or dsv policy
update without flags. This starts step-bystep questions to guide you through the process. However, in the
following examples, the direct command is shown.

Deny Access at a Lower Level

Case: Subjects need access to Secrets for an environment, but that logical environment contains a more
restricted area.

Solution: Two Policies. The first provides the Subjects (developer1@thycotic.com/developer2@thycotic.com)
general access to the Secrets resources at the path secrets:servers:us-east-1:<.>*.

The direct command to create this policy is

dsv policy create --path secrets:servers:us-east-1 --actions '<.*>' --desc 'Developer
Policy' --subjects 'users:<developerl@thycotic.com|developer2@thycotic.com>' --effect
allow

With the trickiest part being to remember the "secrets" prefix on the path.

created: '2020-06-24T18:12:26Z"'
createdBy: users:thy-
one:admin@example.com id:
XXXXXXXK~KXXK—KXXK~KKKK~

XXXXRXXXXXxxXX lastModified: '2020-
07-16T20:13:53Z"' lastModifiedBy:
users:thy-one:admin@example.com

path: secrets:servers:us-east-1
permissionDocument:

- id: xxxxxxxxxxxxdescription: Developer Policy.
subjects: -
users:<developerl@thycotic.com|developer?2
@thycotic.com> actions:

- "<read|delete|create|update|share>"
effect: allow

resources: -

secrets:servers:us-

east-1:<.*>

43

The second Policy adds a specific path at a level lower (secrets:servers:us-east-1:production) to explicitly deny
access to developerl@thycotic.com, as in the following example.

Theconwnandtocrea&aﬂﬂspoﬁcyis“dsv policy create --path secrets:servers:us-east-

l:production --actions '<.*>' --desc 'Developer Deny Policy'
--subjects 'users:developerl@thycotic.com' --effect deny"
created: '2020-06-24T18:12:262"

createdBy: users:thy-

one:admin@example.com id:

XRXXKXXXK-KKXXK~XKXKKXX~XKXKXKX~
XXXXXXXXXXXX lastModified: '2020-
07-16T20:13:53Z2"' lastModifiedBy:
users:thy-one:admin@example.com
path: secrets:servers:us—-east-
l:production permissionDocument: -
id: 2$:9:9:9:0:9:9::9:9:94 description:
Developer Deny Policy. subjects: -
users:<developerl@thycotic.com>
actions: - "<.*>" effect: deny
resources: - secrets:servers:us-
east-1l:production:<.*>

Allow Users to Assign Specific Roles

Case: A User needs to assign Roles when they create client credentials but must not be able to self-elevate by
assigning an admin level Role.

Solution: Use a naming convention when creating Roles and specify a prefix with a wildcard to only allow
Users to assign Roles that match the naming convention, as modeled in the following example.

The command to run thisis dsv policy create roles:dev-role --subjects
users:developer@thycotic.com, roles:onboarding-role --desc 'Role Assignment' --resources
'roles:dev-role-<.*>' --actions assign

created: '2020-06-24T18:12:26Z"'
createdBy: users:thy-
one:admin@example.com id:
KXXXXXXKX XXX KX XXX X=XXXX—
XXXXXXXXXXxXX lastModified: '2020-
07-16T20:13:53Z"' lastModifiedBy:
users:thy-one:admin@example.com
path: roles:dev-role
permissionDocument: - id:
XXXXXXXXXXXX description:
Limited Role Assignment Policy.
subjects:
- users:developer@thycotic.com
- roles:onboarding-roleactions: - assign effect: allow
resources: - roles:dev-role-<.*>

44

Allow User2 Access to Userl's Home Vault

Case User2 need access to a secrets space (folder) in Userl's Home Vault

Solution: Have an Admim create a policy that enables access. In this example, we assume Userl has a secret
in their home vault at: databases/mongo/primary and wants to give User2 read rights to anything under
databases, but not their entire Home vault

The command the Admin runs to create the policy is:

dsv policy create --path home:users:userl:databases --actions '<read>' --desc 'User2
to access Userl Home/databases' -subjects 'users:User2' --effect allow

Notice the path starts with home : users:

When Userl is authenticated and needs to access the secret, the command is

dsv home read databases/mongo/primary'
When User2 is authenticated and needs to access the secret, the command is

dsv home read users:Userl/databases/mongo/primary'
Enable a Group to search Secrets

Case: Allow a Group to search secrets

Solution: Under the Resource entity, Secrets, enable the Group named "admins".

The command to create this policy is dsv policy create secrets --subjects groups:admins --desc
'secret search' --resources secrets --actions list

created: '2020-06-24T18:12:26Z"'
createdBy: users:thy-
one:admin@example.com id:
XXXXXXXK—KXXK—KXKK~KKKK—
XXXXXXXXXXXX lastModified: '2020-
07-16T20:13:53Z"' lastModifiedBy:
users:thy-one:admin@example.com
path: secrets
permissionDocument:

- actions:

- list conditions: {}
description: secret
search

effect:

allow id:
XXXXXXXXXXKXX
meta: null
resources:
- secrets
subjects:

- groups:adminsversion:
"O"

45

Note: Searching secrets only enables the users to see the path, but not the actual data in the secret.
That requires Read access at the proper path.

Allow Users to List Specific Entities

Case: A User needs to search across all items but only needs full read access on specific ones
Solution: Add a list action and the root of the entity used for searching.

In the example below, roles is the entity for reading and searching (list action). In the resources section,
roles:dev-role-<.>* is used for reading, while roles is used for searching.

The command to create this policy is dsv policy create roles --subjects
users:developer@thycotic.com, roles:onboarding-role --desc 'Role Searching' --resources
'roles:dev-role-<.*>,roles' --actions read,list

created: '2020-06-24T18:12:262"'

createdBy: users:thy-

one:admin@example.com id:

KX XXXXXKX=XXXKX=XXXX=XXXX—

XXXXXXXXXxXXX lastModified: '2020-

07-16T20:13:53Z2"' lastModifiedBy:

users:thy-one:admin@example.com
path: roles

permissionDocument:

- actions:

- read - list conditions: {}
description: Role Searching
effect:

allow id:

XXXXKXXXKKKKKX

meta: null

resources:

- roles:dev-role-<.*>

- roles subjects:

- users:developer@thycotic.com

- roles:onboarding-roleversion: "0O"

The syntax of the latter is important. In general, the root form of an entity has no * after the entity name, or
anything besides the name.

Delegate Policy Authority

Case: An admin wants to delegate control to various team leads at a sub-path.

Solution: Under Resources, add config:policies followed by the resource path.

The command to create this policy is dsv policy create secrets:servers --actions
create, read,update,delete —--resources
'secrets:servers:<.*>,config:policies:secrets:servers:<.*>' --subjects 'users:
<developerl@thycotic.com|developer2@thycotic.com>"

created: '2020-06-24T18:12:26Z"'
createdBy: users:thy-

46

one:admin@example.com id:
XXKXKKXXKK~KKXKXK~KKXX~KKKKX~

XXXXXXXXXXxXX lastModified: '2020-
07-16T20:13:53Z" lastModifiedBy:
users:thy-one:admin@example.com
path: secrets:servers
permissionDocument:

actions:

create

read

update - delete conditions: {} description: "" effect: allow 1d: XXXXXXXXKKKX
meta: nullb resources:

secrets:servers:<.*>
config:policies:secrets:servers:<.*> subjects:
users:<developerl@thycotic.com|developer2@thycotic.com>version: "0O"

Now the developers can create Policies below the secrets:servers: path; for example, developerl can create
Policies for secrets:servers:webservers and developer2 can do the same at secrets:servers:databases.

Read Audits

Case: A user needs to be able to read audit records

Solution: Add a policy for the audit resource path

The command to create this policy is dsv policy create audit --actions list --resources audit --
subjects users:developerl@thycotic.com

created: '2020-06-24T18:12:26Z"'
createdBy: users:thy-
one:admin@example.com id:

XX XXXKXXX XXX X XXX KX=XXXX—

XXXXXXXXXXXX lastModified: '2020-
07-16T20:13:53Z"' lastModifiedBy:
users:thy-one:admin@example.com
path: audit

permissionDocument:

actions:
list
conditions:

{}
description:
" effect:
allow id:
XXXXXXXXXXKXX
meta: null
resources:

- audit
subjects:

users:developerl@thycotic.comversion: "QO"

Read System Logs

Case: A user needs to be able to read the application log messages

47

Solution: Add a policy for the system:log resource path

The command to create this policy is dsv policy create system:log --actions list --resources
system:log —--subjects users:developerl@thycotic.com

created: '2020-06-24T18:12:26Z2"'

createdBy: users:thy-

one:admin@example.com id:
XXXXKKXKXKK=KKXKXK—KKKXK—XKKKK—
XXXXXXXXXXXX lastModified: '2020-
07-16T20:13:53Z2"' lastModifiedBy:
users:thy-one:admin@example.com

path: system:log

permissionDocument:

- actions:

- list conditions: {}
description: "" effect:
allow 1d: XXXXXXXXXKXKKX
meta: null resources: -
system:log subjects:

- users:developerl@thycotic.co

mversion: "O"

Manage An Auth Provider

Case: A user needs to update a single auth provider

Solution: Add a policy for the config:auth provider path

The command to create this policy is dsv policy create

config:auth:gcp-dev --actions read,update

--resources config:auth:gcp-dev -subjects users:developerl@thycotic.com

created: '2020-06-24T18:12:26Z"'

createdBy: users:thy-

one:admin@example.com id:

XRXXKKXXXK-KKXXX~XKXKXX~KXKX~

XXXXXXXXXxXxXX lastModified: '2020-

07-16T20:13:53Z2"' lastModifiedBy:

users:thy-one:admin@example.com

path: config:auth:gcp-dev

permissionDocument:

- actions:

- read

- update conditions: {} description:
resources: - config:auth:gcp-dev

- users:developerl@thycotic.com

"O"

nwn

subjects:

version:

48

effect:

allow 1id: XXXXXXXXXXXX meta: null

Admin Policy and Auth Providers
In this section we

e Define the Default Admin Policy
e Show settings for third-party authentication providers including Thycotic One, AWS, Azure, or GCP.

Commands that Act on Policies

Command Action

read view the current configuration

edit modify the configuration in an OS-native text editor such as VI, nano, or Notepad
update upload a superseding configuration document

delete delete a configuration

restore restore a deleted configuration (if within 72 hours of deletion and not hard deleted)

Read

To read out the current config, which contains the Admin policies dsv config read

Note: In this command the --encoding yaml flag could be used to provide the output in YAML format.

In response, you see a block of code containing the Default Admin Policy, similar to this.

{
"created": "2019-09-18T18:38:49z2",

"createdBy": "system",
"lastModified": "2020-07-30T23:56:562",
"lastModifiedBy": "users:thy-one:admin@example.com",

"permissionDocument": [
{
"actions": ["<.*>"],
"conditions": {},
"description”: "Default Admin Permissions",
"effect": "allow",
"id": "bml7jee33mlc72u313tg",
"meta": null,

"resources": ["<.*>"],

"subjects": ["users:<thy-one:admin@example.com>"]
by
{

"actions": ["<.*>"],

"conditions": {},

"description": "Default Deny Home Permissions",

"effect": "deny",

"id": "bsd72rfelvkc72up3o0lg",
"meta": null,

49

"resources": ["home:<.*>"],

"subjects": ["users:<thy-one:admin@example.com>"]
}
JI
"tenantName": "company",
"version": "1"

}

The initial User possesses full administrator rights and is federated through Thycotic One. This is indicated by
the dsv-one prefix on the users's email. This enables self-service password reset through Thycotic One.

In keeping with best practices, you must set up a less privileged User policy for routine use. The highly
privileged initial Admin account must be used only when a task requires its privileges.

The first section of the Admin policy with the description "Default Admin Permission" is what allows the
Admin full rights to everything in Privilege DevOps Vault.

The second section with the description "Default Deny Home Permissions" denies the Admin permission to
access the Home feature where users have a place for their own secrets. If required, the Admin can remove
his/her name and then get access to he Home secrets (API only in Beta)

Edit

NOTE: IBM Security recommends against changing the Default Admin Policy other than to add a User as a
back-up admin. Even then, best practices are to create a separate policy for specific access for Users.

NOTE: For adding and editing policies beyond the Default Admin Policy, see the Policy article.

NOTE: IBM Security recommends against changing the Thycotic One provider because it provides for
the initial User and any others you add that federate to Thycotic One. However, you can add
providers.

Use edit to open your configuration in the OS’s default editor (typically VI, nano, or Notepad).
dsv config edit --encoding YAML

The editor directly updates the configuration in the vault when you save your work.

Update

Use update to change a config by uploading JSON data.

The value of the --data parameter for update accepts JSON entered directly at the command line, or the
path to a JSON file.

dsv config update --path us-east/server02 --data '{"something":"value"}'
or
dsv config update --path us-east/server02 --data @configfilename.json

50

Grant Admin Access Rights to All Home Vaults

If it is required that the Admin have access to all individual Home vaults, then edit the Home Vault
Permissions and change the effect field to "allow"
dsv config edit --encoding YAML

The editor opens the OS default editor and you can modify the effect field.
Add an Authentication Provider

The general command is:
dsv config auth-provider create --name <name> --type <type> --<properties>

in which:

e name is the friendly name used in Privilege DevOps Vault to reference this provider. It is separate
from type because it allows multiple auth providers of the same type (for example several AWS
accounts).

e typeis the authentication provider type; valid values are aws, azure, gcp and thycoticone

e properties are configuration settings specific to the authentication provider

o AWSflag is --aws-account-id
o Azure flag is --azure-tenant-id
o Thycotic One requires three flags --baseURI, --clientID, and —clientSecret
o GCP has two options for federation, GCE metadata and service accounts.
» For GCE metadata, use --gcp-projcet-id
» Flags are not provided for a service account, so afile is required.

Note: The account identifiers for third-party authentication are a top level setting that allow you or
other Users to authorize specific security principals within that account. They do not automatically
grant access to any User or Role within the provider.

See the Authentication section for examples of using AWS, Azure, GCP, and Thycotic One for authentication.

To see a list of all Auth-providers:

dsv config auth-provider search

Initially, your tenant only has a Thycotic One connection

{
"created": "2019-09-18T18:38:4972",
"createdBy": "",
"id": "bml7jee33mlc72u313ul",
"lastModified": "2020-05-10T02:25:04Z",

"lastModifiedBy": "users:admin@example.com",
"name": "thy-one",
"properties": { "baseUri": "https://thycotic-
one-sscdev-dev-eastus-web0l.azurewebsites.net",
"clientId": "XXXXXXXX—XXXX—XKXXXK-XXXX-XXXXXXXXXXXX",
"clientSecret":

[15:$:9:$:9:$:9:$:9:$:9:$.9:$:9:9.9:9.9:9.9:9.9:9.9:9.9:$.9:9.9:9.9:9.9:9.9:9.9:9.9:9.9:9.9:9.9:9.9:9.9:0.9:.9:0.9:0.9:9:9:0.9:0.0:0.0-4

}y
"type": "thycoticone",

51

"version": "1"

s

Home Vault

Home provides Users with a separate space to store secrets. No Users can access another User's Home
values. As soon as a User is created in Privilege DevOps Vault, they are given access to their own Home vault
without an explicit policy granting access.

The Home value lists a path like "users:" Privilege DevOps Vault determines which username based on
whomever authenticated. So if joesmith@example.com authenticates, then creates a Home value, that value
is in Joe Smith's Home vault.

Even the Admin does not have access by default, though they can give themselves access for "breakglass"
purposes. If the admin is given access to read users' Home values, it can only be done through the API in the
Beta version.

Home follows the familiar syntax: dsv home (command) (flags and parameters) with the commands being
create, read, delete, update, describe, edit, search The difference between read and describe is
that read shows both data and metadata, while describe only shows metadata.

Examples
Create

The create command uses the --data flag to pass data into the secret. This flag accepts JSON entered directly
into the command line or by a path (absolute or relative) to a JSON file.

Bash examples

dsv home create secretl --data '{"username":"administrator","password":"bash-secret"}'
dsv home create secret2 --data @/home/user/secret.json
dsv home create secret2 --data @../secret.json

Powershell examples

PS C:> dsv home create --path secretl --data
"{\"username\":\"administrator\", \"password\":\"powershell-secret\"}"'

dsv home create secret2 --data '@/home/user/secret.json'

dsv home create secret2 --data '@../secret.json'
CMD Examples

PS C:> dsv home create secretl --data
"{\"username\":\"administrator\", \"password\":\"cmd-secret\"}"

dsv home create secret?2 --data @/home/user/secret.json

dsv home create secret?2 --data @../secret.json

The --attributes flag can be used to add user-defined metadata in the same way that data is added.

52

The --desc flag can be used to add a simple string. If the string has any spaces, then it must be enclosed in
double quotes.

As a Bash example:

dsv home create secretl --attributes '{"priority":"high"}' --desc "Covert Secret" --
data '{"username":"administrator", "password":"bash-secret"}'
Update

update is similar to create but operates on an existing Home value. Only the specified values change unless
the " --overwrite' flag is used, in which case all unspecified values are deleted.

If you have this Home value:

{
"attributes": {
"attr": "add one"
}I
"created": "2019-09-20T16:12:57Z",

"createdBy": "users:user@example.com",
"data": {
"host": "serverO1l",
"password": "badpassword"
}y
"description": "update description",

"id": "c893b4f8-9425-4fad-acbf-2806d6f1fa82",
"lastModified": "2020-01-17T15:43:272",

"lastModifiedBy": "users:dsv-one:admin@example.com",
"path": "users:user@example.com:secretl",
"version":

"12" }

This Bash command only changes the value for host in the data section.

dsv home update secretl --data '{\"host\":\"unknown\"}'

{
"attributes": {
"attr": "add one"
}I
"created": "2019-09-20T16:12:572",

"createdBy": "users:user@example.com",
"data": |
"host": "unknown",
"password": "badpassword"
}y
"description": "update description",

"id": "c893b4£f8-9425-4fad-acbf-2806d6flfa82",
"lastModified": "2020-08-03T17:58:292",

"lastModifiedBy": "users:user@example.com",
"path": "users:user@example.com:secretl",
"version": "13"

53

The flag --overwrite, if added to the above command wipes-out the description and any other data KV pairs.
So this flag requires caution.

dsv home update secretl --data '{\"host\":\"unknown\"}' --overwrite
Read

The read command shows both the Secret data and metadata.

dsv home read secretl

Flags

--encoding or -e converts the output to JSON (default) or YAML.
--out or -o can send the read response to stdout (default), the clipboard (clip), or a file (file:)
--filter or -£ filters to a specific KV pair. So data.password only outputs the password value.

This example sends the password value only to the clipboard.

dsv home read secret2 -o clip -f data.password

Describe

The command describe only shows the metadata of a Home value

dsv home describe secretl

Search

You can search for Secrets by path or attribute

Some examples:

dsv home search server

dsv home search --query server

dsv home search --query aws --search-field attributes.type

dsv home search --query 900 --search-field attributes.ttl --search-type number

dsv home search --query production --search-field attributes.stage --search-comparison
equal

flags

--query, -qg Query of secrets to fetch (required)
--1limit Sets the maximum number of search results that display per page (cursor)
-—cursor Accepts the element used to get the next page of results

--search-comparison Specify the operator for advanced field searching, can be 'contains’, ‘equal’, or 'begins
with' Defaults to 'contains' (optional)

--search-field Advanced search on a secret field such as 'attribute.type' or 'description’. Defaults to 'path’.
(optional)

--search-type Specify the value type for advanced field searching, can be 'number' or 'string'. Defaults to
'string' (optional)

54

For a search where there are more results than returned in the first set, the API returns a cursor—a large piece
of text. You pass that back to get the next set of results.

For example, if the command dsv secret search -q admin --limit 10 matched 12 Secrets with adminin
the name, the CLI returns the first 10 plus a cursor. To obtain the next two results, use this command:

dsv secret search -g admin --limit 10 --cursor AFSDFSD...DKFJLSDJ=

Cursors may be lengthy:

dsv secret search -gq resources --limit 10 --cursor
eyJpZCI6IMEWOTFJOWIzLWE4AMmMQOtNGRiYy1hYThiLTYXMDYONDZhZJA3MSIsInBhdGgiOiIiLCJI22XJzaW9uljoidi
17dXJyZW50TiwidHIwZSI6I1IsImxhdGVzdC I6MHO=

Edit

Use edit to open the Secret data in the default text editor for bash, such as vi, nano, or Notepad.

Saving in the editor updates the Secret in the vault, except in the case of Notepad, in which case the update
happens when you save and then exit Notepad. Your interim saves are to the working copy.

dsv home edit --path us-east/server02

Delete

To delete a Home value, simply specify its name.
dsv home delete secretl

When you delete a Secret, it is no longer usable. However, with the soft delete capacity of Privilege DevOps
Vault, you have 72 hours to use the restore command to undelete the Secret. After 72 hours, the Secret is no
longer retrievable.

If you want to perform a hard delete, precluding any restore operation, you can use the delete command's --
force flag.

Restore

The delete command is a soft delete for about 72 hours before the delete become permanent. During that
time, the secret can be brought back using the restore command. After the ~72 hours, the secret is
permanently deleted and can't be restored.

dsv home restore secretl

GetByVersion

The --version flag determines how many past versions are displayed along with the current version.

dsv home secretl --version 3

55

Rollback
To return a secret to a past version, use the rol1back command and a --version flag to determine which

version to return to. The original version is 0.

dsv home rollback secretl --version 2

56

Authentication

Privilege DevOps Vault supports several authentication methods.

Password

Password authentication relies directly on individual User accounts. It requires an initial admin account with
username + password authentication.

Privilege DevOps Vault encrypts the password in the config on successful authentication. This prevents Users
from accidentally disclosing the password by sending the config to someone or by giving access to the
computer to another person.

Routine activities associated with this authentication method include:

e creating a new User
e entering the username and password of the new User
e adding the new User to the Privilege DevOps Vault config

See the Users portion of the CLI Reference for details.

Client Credentials

In this method, you authenticate via a client id and a Secret generated by the vault. This suits situations
requiring application or server access when no third party trust is feasible.

Client credentials tie to Roles, not User accounts, the significance being that Roles have a one-to-many
relationship with User accounts. Using Roles-based authentication allows you to efficiently apply uniform
authentication requirements to collections of Users.

Routine activities associated with the client credentials authentication method include:

e creating a new Role

e adding the new Role to the Privilege

e DevOps Vault config creating new client credentials using the new Role
e invoking the init command and supplying those client credentials

See the Roles portion of the CLI Reference for more information.

Third Party Authentication

Besides ThycoticOne, IBM Security Verify Privilege DevOps Vault works with third party authentication
providers, including:

AWS IAM: Privilege DevOps Vault uses the current AWS profile to generate a signed request which the vault
validates against AWS. You can use this with EC2 instances and with a Lambda that is assigned an IAM Role or
an IAM User account. See Authentication: AWS

Azure MSI: Privilege DevOps Vault uses the assigned Azure Managed Service Identity (MSI). See
Authentication: Azure

57

GCP Service Accounts: Privilege DevOps Vault uses GCP's service accounts to enable secrets access to just
about anything that can be assigned a service account. Google Compute Engines (GCE) may also be assigned
service accounts and authenticated through GCE metadata. See Authentication; Azure

OIDC Provider Privilege DevOps Vault connects to Thycotic One, which in-turn may connect to any OIDC
provider. See Authentication: OIDC

Profiles

On initial configuration, your IBM Security Verify Privilege DevOps Vault config has just one profile with the
choices you specified for credentials storage, authentication type, and cache strategy for Secrets.

However, Privilege DevOps Vault supports creating other profiles, potentially with different credentials, and
adding them to the config. Once the config has more than one profile, you can set which one Privilege DevOps
Vault uses by default.

Add a Profile to a Config
Privilege DevOps Vault syntax gives you two ways to add a profile to the config.

e Rundsv init andtype add or a at the prompt. Then enter the name of a new profile.
e Todoitwithone command, rundsv init --profile [name].

See the Config Contents

If you want to verify the profile has been added, output the updated config contents:

dsv cli-config read

Using an Alternate Profile for a Specific CLI Action

For a config with more than one profile, the profile used by default for any command is the first profile created.
However, you can override the default by specifying the profile to be used for a command as a parameter:

dsv secret read --path mySecret --profile developer

So commanded, the CLI tries to auth as the User specified in the developer profile and attempt to read the
Secret as that User.

The CLI does not have a command to set the default for all commands moving forward. For that, you must edit
the .thy.yml file in the home directory to change the profile set as the default.

Authentication: AWS
Use dsv config auth-provider search -e yaml to see all of your current authentication providers.

Initially, the only authentication provider is Thycotic One, similar to this:

created: "2019-11-
11T720:29:202" createdBy:
users:thy-
one:admin@example.com

58

1d: XXXXXXXXXXXXXXXXXXXX
lastModified: "2020-05-
18T03:58:152" lastModifiedBy:
users:thy-one:admin@example.com
name: thy-one properties:

baseUri:
https://login.thycotic.com/
clientId:
XXXXXXXXXXXXXXXXX KKK KKK KK KK KKK KK KK
XXX

clientSecret: XXKXKXKXKXXKXKXKXXXXKXXXXXXXXX
type: thycoticone

version: "QO"

AWS Authentication Provider

To add an AWS account to act as an authentication provider:

dsv config auth-provider create --name <name> --type aws --aws-account-id <AWS account
ID>
in which:
e name is the friendly name used in Privilege DevOps Vault to reference this policy
e type is the authentication provider type; in this case, aws
e the property flag for AWS is --aws-account-id then include the account ID

To view the resulting addition to the config file, you use:

dsv config auth-provider <name> read -e yaml Where the example name we use here is aws-dev

The readout looks similar to this:

created: "2019-11-
12T718:34:492" createdBy:
users:thy-
one:admin@example.com

i d: XXXXXXXXXXXXXXXXKXKXXX
lastModified: "2020-05-
18T03:58:152" lastModifiedBy:
users:thy-one:admin@example.com
name: aws-dev

properties:

accountId:

"XRXXKXXKXKXKXK"

type: aws

version: "Q"

AWS User Example

When you create a User in AWS, remember that the username serves as a friendly name within Privilege
DevOps Vault. It does not have to match the Identity Access Management (IAM) username, but the provider
must match the provider name previously configured.

59

dsv user create --username test-admin --external-id arn:aws:iam: :xXXXXXXXXXXX:user/test-
admin --provider aws-dev

After creating the User, modify the config to give that User access to the default administrator permission
policy.

NOTE: Adding a user to the admin policy is not security best practices. This is for example purposes only.
Ideally, create a separate policy for this AWS user with restricted access. For details on limiting access
through policies, see the Policy section.

dsv config edit -e yaml

Add test-admin as a User subject to the Default Admin Policy. Third party accounts must be prefixed with the
provider name; in this case, the fully qualified username is aws-dev:test-admin.

<snip>
- actions:
- <.F>
- conditions: {}
description: Default Admin Policy
effect: allow
1d: XXXXXXXXKXKXXXKXKXXXKKK
meta: null
resources:
- <.*>
subjects:
- users:<aws-dev:test-admin|admin@example.com>
<snip>

Next, on a machine with the AWS CLI installed and configured with an AWS IAM user, download the DVS CLI
executable appropriate to the OS of the machine, and initialize the CLI:

dsv init
When prompted for the authorization type, choose AWS IAM (federated).

Please enter auth type:
(1) Password (local user) (default)
(2) Client Credential
(3) Thycotic One (federated)
(4 AWS IAM (federated)
(5) Azure (federated)
(6) GCP (federated)
(7) OIDC (federated)

Privilege DevOps Vault prompts for the specific AWS profile to use if you are authenticating using a non-
default AWS profile.

Please enter aws profile for federated aws auth (optional, default:default)

Read an existing Secret to verify you can authenticate to Privilege DevOps Vault and access data.

dsv secret read --path <path to secret>

60

https://aws.amazon.com/cli/

AWS Role Example

This example assumes that you:

e Have your own CLI configured locally with an admin account
e Created an IAMrole in the AWS Console

e Launched an EC2 instance using the IAM role

e downloaded the CLI onto the EC” instance

Create a corresponding Role in Privilege DevOps Vault with the external-id of the IAM Role's ARN.

dsv role create --name test-role --external-id
arn:aws:iam: :XxXxXXxxxXxxx:role/testlogin --provider aws-dev

You see a result similar to this:

{

"description": "",

"externalld": "arn:aws:iam::xxxxxxxxxxx:role/testlogin",
"name": "test-role",

"provider":

"aws-dev" }

Add the Role aws-dev:test-role to the Default Admin Policy in your vault config to grant the new Role admin
access.

NOTE: Adding a role to the admin policy is not security best practices. This is for example purposes only.
Ideally, create a separate policy for this AWS role with restricted access. For details on limiting access
through policies, see the Policy section.

Use the command dsv config edit -e yaml
<snip>
- actions:
- < F>
- conditions: {}
description: Default Admin Policy
effect: allow
id: bgn8gjei66jc7148d91i0
meta: null
resources:
— <‘*>
subjects:
- users:<aws-dev:test-admin|admin@example.com>
- roles:<aws-dev:test-role>
<snip>

On the EC2 instance, configure the CLI by running dsv init and choosing AWS IAM as the authentication
type.

Once configured, ensure you can read an existing Secret to verify the EC2 instance is able able to authenticate
and access data.

dsv secret read --path <path to secret>

61

https://dsv.thycotic.com/downloads

62

Authentication: Azure
Use dsv config auth-provider search -e yaml to see all of your current authentication providers.

Initially, the only authentication provider is Thycotic One, similar to this:

created: "2019-11-

11T720:29:20Z" createdBy:
users:thy-

one:admin@example.com

1d: XXXXXXXXXXXXXXXXXXXX
lastModified: "2020-05-
18T03:58:152" lastModifiedBy:
users:thy-one:admin@example.com
name: thy-one properties:
baseUri:
https://login.thycotic.com/
clientId:
):9:4
XXX

clientSecret: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXKXKXKXKKXKKXKXKXKXKXXXKXXXXXXXX
type: thycoticone

version: "QO"

Azure Authentication Provider

To add an Azure account to act as an authentication provider:

dsv config auth-provider create --name <name> --type azure --azure-tenant-id <Azure tenant
ID>

where:

¢ name is the friendly name used in Privilege DevOps Vault to reference this policy
e type is the authentication provider type; in this case, azure
o the property flag for Azure is --azure-tenant-id

To view the resulting addition to the config file, use:

dsv config auth-provider <name> read -e yaml where the example name we use here is azure-prod

The readout looks similar to this:

created: "2019-11-12T18:34:492"
createdBy: users:thy-one:admin@example.com
—1d: XXXXXXXXXXKXKXXXKXXXKXKXXXK
lastModified: "2020-05-
18T03:58:152" lastModifiedBy:
users:thy-one:admin@example.com
name: azure-prod properties:
tenantlId: XXXXXXXXXXXXXXX—XXXX—XXXX—
XXXX—XXXXXXXXKKKK

type: azure

version: "QO"

63

Azure User Assighed MSI Example

First you need to configure the User that corresponds to an Azure User Assigned MSI.

The username is a friendly name within Privilege DevOps Vault. It does not have to match the MSI username,
but the provider must match the resource id of the MSI in Azure.

dsv user create --username test-api --provider azure-prod --external-id
/subscriptions/xXXXXXXX—XXXX—XXXX—

XXXXXXXXXXXXXXXX/resourcegroups/build/providers/Microsoft.ManagedIdentity/us

erAssignedIdentities/test-api
Modify the config to give that User access to the default administrator permission policy.

NOTE: Adding a user to the admin policy is not security best practices. This is for example purposes only.
Ideally, create a separate policy for this Azure user with restricted access. For details on limiting access
through policies, see the Policy section.

dsv config edit --encoding yaml

Add the User as a subject to the Default Admin Policy. Third party accounts must be prefixed with the
provider name; in this case the fully qualified username is azure-prod:test-api.

<snip>

actions

- <.*> conditions: {}
description: Default Admin Policy
effect: allow

id:

XXXXXXXXKXXKXKKXXKX KKK

XX
meta:

null

resource

s: -

< x>

subjects

- users:<azure-prod:test-api|admin@example.com>
<snip

On a VM in Azure that has the User MSI assigned as the identity, download the DVS CLI
executable appropriate to the 0S of the VM and initialize the CLI.

" "BASH
dsv
init

When prompted for the authorization type, choose the Azure (federated) authentication option.

Please enter auth type:
(1) Password (local user) (default)
(2) Client Credential

64

https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview

) Thycotic One (federated)
)y AWS IAM (federated)

)y Azure (federated)

) GCP (federated)

) OIDC (federated)

Read an existing Secret to verify you can authenticate and access data.

dsv secret read --path <path to a secret>

Azure Resource Group

If you want to grant access to a set of VMs in a resource group that use a System assigned MSI rather than a
User assigned MSI, you can create a Role that corresponds to the resource group's resource ID.

dsv role create --name identity-rg --external-id /subscriptions/xXxXxXXXXX-—XXXX-XXXX-XXXX—
XXXXXXXXXXXX/resourceGroups/build -provider azure-prod

Modify the config to give that Role access to the default administrator permission policy.

NOTE: Adding a role to the admin policy is not security best practices. This is for example purposes only.
Ideally, create a separate policy for this Azure role with restricted access. For details on limiting access
through policies, see the Policy section.

dsv config edit --encoding yaml

Add the User as a subject to the Default Admin Policy. Third party accounts must be prefixed with the
provider name; in this case the fully qualified Role name is azure-prod:identity-rg.

<snip>

actions

- <.*> conditions: {}
description: Default Admin Policy
effect: allow

id:

bgn8gjei663c7148d9

i0

meta:

null

resource

s: -

< k>

subjects

- users:<azure-prod:test-api|admin@example.com>
- roles:<azure-prod:identity-rg>
<snip

On a VM in Azure that is part of the resource group and has a system-assigned MSI,
download the DVS CLI executable appropriate to the 0S of the VM and initialize the CLI.

* " "BASH
dsv
init

65

When prompted for the authorization type, choose the Azure (federated) option.

Please enter auth type:

)y Password (local user) (default)
) Client Credential

) Thycotic One (federated)

)y AWS IAM (federated)
)y Azure (federated)
) GCP (federated)

Read an existing Secret to verify you are able to authenticate and access data.

dsv secret read --path <path to a secret>

66

Authentication Google Cloud Platform (GCP)

IBM Security Verify Privilege DevOps Vault provides two ways to authenticate using GCP. One is through a
Google service account and the other is through Google Compute Engine (GCE) metadata.

Google Service Account Authentication

To setup GCP authentication using service accounts in Privilege DevOps Vault, a GCP service account must be
provided that Privilege DevOps Vault can use as the authentication provider. This service account must be
assigned to the project you are working in, have the role Service Account Key Admin so that it can issue and
manage service account tokens, and a key must be generated.

These steps can be done programmatically, but we use the GCP Console.

GCP Service Account Setup

In the GCP Console Home page, go to your project, hover IAM & Admin, and then click Service Accounts.

= Google Cloud Platform & My First Project v

A) DASHBOARD ACTIVITY
Pins appear here © X
9@ Projectinfo
Marketplace Project name
B Billing Project 1D
W1 APls&S ; myfirstproject-273119
1 s & Services
" ! Project number
’ﬁ" Support >
6 1AM & Admin > »
® Getting started dentity & Organization ettings
g eshooter
% Security >
rgar n Po
Anthos > .
reCAPTCHA Enterpri Service Accounts
Lat
Settings
¥ Acn Ensicg 2 Privary £ Saesyit

At the top, click CREATE SERVICE ACCOUNT.

For the first step, enter an account name. We use dsv-svc in this example. Click CREATE.

67

= Google Cloud Platform & MyFirst Project w

8 IAM & Admin Create service account
2 1AM @ Service account details — @) Grant this service account access to pr
© [dentity & Organization
LN Policy Troubleshooter Service account details
Service account name
a Organization Policies [dsv-sv|
Display name for this service account
|=] Quotas = s
Service account ID
o3 Service Accounts dsv-sv a 273119.lam.gserviceaccountcom X C
53 Labels
Service account description
Settings
= ¢ De hatt ice account will do
Q Privacy & Security
Crypt: hic Key
®: Coyptogrphic Keys CREATE CANCEL
B |dentity-Aware Proxy

In the second step, click the dropdown arrow in the Select a role box, then type service account key
admin in the filter and select Service Account Key Admin. Then click Continue.

O AM&Admin Create service account
b I @ service account details — @) Grant this service account access to
e de
R Poli Service account permissions (optional)
) Grant this service account access to My First Project so that it has permission to
=) rganization Policie complete specific actions on the resources in your project. Learn more
[& Quotas Role Condition
Service Account Key Admin v AGd condition]
2 rvice Accounts anage {and rotate) service
Q@ Labe
<+ ADD ANOTHER ROLE
e Settings
(%] Privacy & Security CONTINUE CANCEL
® Cryptographic Keys

In the third step, click CREATE KEY and when the option to generate a file slides in from the right, select json
and click CREATE. A file is downloaded that has all the information needed to setup the Privilege DevOps
Vault authentication provider.

68

Private key saved to your computer

myfirstoroject-273119-g8s4tjg=fvdvb json allows access to your cloud resources, so store it securely. Learmn more

CLOSE

The Goolge API for IAM must be enabled. To do this in the Google Console, go to the relevant project and on
the left nav, hover APIs & Services then select Library.

= Google Cloud Platform 8= My First Project +

A Hon DASHBOARD ACTIVITY
Pins appear here @ X
%@ Projectinfo

W Marketplace Project name

My First §
& Biling Project ID

myfirstproject-273119
APT APIs & Services >
< e Das! d

]'" Support
© 1AM & Admin P TS PRO
® Getting started tings

L

Security Y Page usage agreements

& Resources
Anthos >

In the search, type Identity and Access and in the results, select the Identity and Access Management
(IAM) API. Click Enable.

0 My Fest Project qQ

API Library

Identity and Access Management (IAM) API

Google

Manages sentity and nccess control for Google Choud Platform
S0UrCen. INCIUdIY the Cremtion of

m TRY THIS API

Privilege DevOps Vault Authentication Provider Setup

Go back to the terminal (IBM Security Verify Privilege DevOps Vault CLI)
Use dsv config auth-provider search -e yaml to see all of your current authentication providers.

Initially, the only authentication provider is Thycotic One, similar to this:

69

created: "2019-11-
11T720:29:202" createdBy:
users:thy-
one:admin@example.com
1d: XXXXXXXXXXXXXXXXXXXX
lastModified: "2020-05-
18T03:58:152" lastModifiedBy:
users:thy-one:admin@example.com
name: thy-one properties: baseUri: https://login.thycotic.com/
clientId: XXXXXXXXKXXXXXXXXXXXXXXXXXXXXXXXXXXXKK
clientSecret: XXXKKKKKKKKKKKKXKXRXXXXXKXX
type: thycoticone
version: "QO"

Setup the Privilege DevOps Vault authentication provider. Create a json file named auth-gcp. txt with the
following format, substituting the dsv-svc service account values in the key file you downloaded from the
GCP console.

{

"name": "gcloud",
"type": "gcp",
"properties": {
"ProjectId": "{project-id}",
"type": "service account",
"PrivateKeyId": "{private-key-id}",
"PrivateKey": "----- BEGIN PRIVATE KEY----- {private-key}-—---- END PRIVATE KEY----- \n",
"ClientEmail": "{clientemail}",
"TokenURI": "https://oauth2.googleapis.com/token"

}

In the Privilege DevOps Vault CLI, run dsv config auth-provider create --data Rauth-gcp.txt to
create the GCP authentication provider.

dsv config auth-provider <name> read -e yaml where the example name we use here is gcloud

created: "2019-11-
12T718:34:492" createdBy:
users:thy-
one:admin@example.com

id: bgdcel7cj2bc72qun8vg
lastModified: "2020-05-
18T03:58:15Z2" lastModifiedBy:
users:thy-one:admin@example.com
name: gcloud properties: clientEmail: dsv-
svcl@myfirstproject-
XXXXXX.lam.gserviceaccount.com
privateKey: |

):0:9:0:9:0:9:0:9:0:9:9:9:0:9.0:9.9:9.0:9.9:9.0:0.0:9.9.:9.0:9.0:9.0:9.0:9.0:9.0:9.0:9.0:9.0.:9.0.:9.0:9:0:0.9:9.0:9.0:9.0:0.0:0.0:9:0:0:0:0:0:0.0:0.9:0:0:9:0:9.9.:9:0:0.0.:0:0.0:0.0.0.
):0:9:0:9:0:9.:9:9:0:9.:9:9.:90:0:90:9.9:9:0:9.9:9.0:0.0:9.9:9.0:9.0.:9.0:9.0:9.0:9.0:9.0:0.0:9.0:9:0:9.0:9.0.:9.0:0.0:9.0:9.0:9:0.:9.0:9.0:9.0:0.0:0.0:9.0:9:0:9:0:9.9:9:9.:9.9.:0:0.0.0.0.0.¢
):0:9:0:9:0:9:0:9:0:0.:0:9:0:9:0:9:9:9:0:9.0:9:0:9.0:9.0:9.0:0.0:9.0:9:0:9.0:9:0:9.0:9.0:9.0.:9.0.:9.0:9:0:0:0:9.0:9:0:9.0:0:0:9:0:9:0:9:0:0:0:0.9.:9.9:0.0:9.0:0:0:9:9.:0.9.:0.0.0.0.0.0.4
):0:9.0:9.0:9.0:9.0:9.0:9.0:9.0:9.0.9.0:9.0:9.0.:9.0.:9.0.:9.0:9.0.:9.0.:9.0:9.0:9.0.:9.0:9.0:9.0:9.0.9.0:9.0.:0.0:0.0:0.0:9.0:0.0:9.0:9.0:0.0:0.0:0.0:9.0:9.0:0.0:0.0:9.0:0.0:0.0:9.0.0.0.¢
):0:9.0:9.0:9.0:9.0:9.0:9.0:9.0:9.0.9.0:9.0:9.0:9.0:9.9.9.0:9.0.9.0:9.0:9.0:9.0:9.0.9.0.:9.0.9.0.9.0.9.0.9.0:9.0.9.0.9.0:0.0.9.0:9.0:9.0:0.0:9.0.9.9:0.0:0.0:0.9:9.0:0.0:0.0.9.0.0.0.¢
).0:9.0:9.0:9.0:9.0:9.0:9.0:9.0:9.9:9.0:9.0:9.0.9.0:9.9.9.0:9.0.9.0:9.0:9.0:9.0.9.0:9.0:9.0.9.0.9.0:9.0:9.0:9.0:9.0:0.0:0.0:9.0:9.0:9.0:0:0:0.0:0:9:0:0.9:0:9.9.9.9.9.9.0:9.9.0.9.0.4

70

):9:0:9:9.9:9:9.0:9.9.9:9:9.9.9.9.9.0:9.9.0:9.9.9:0:9.9.0:9.9.0:9.9.0:9,9.9.0.9.9.0.9.9.0:9.0.9.9.9.9:0:9.9.0:9.9.0:9:0.9.9.9.9.0.9.9.0:0.9.0:0,0.9:0.9.9.0:9.9.0:9.0.0:0,0.9:0:0.0.4
):9:0:9:9.9:9:9.0:9.9.9:9.9.9.9:9.9.0:9.9.0:9.9.9:0:9.9.0:9.9.0:9.9.0:9,9.9.0.9.9.0.9.9.0:9.9.9.9.9.9.0:9.9.0:9.9.0:9:0.9.9.9.9.0.9.9.0:0.9.0:9,0.9.:0.9.9.0.9.9.0.9.0.0:9,0.9.0:0.0.4
):9:0:9:9.0:9:9.0:9.9.9:9.9:9.0.9.9.0:9.9.0:9.9.9:0.9.9.0:9.9.0:9.0.9:9.9.9.0:9.9.0.9.9.0:9.0.9.:9.9.9.0:9.9.0:9.9.0:0.9.9.0.9.9.0:9.9.0:0.0.9.:0.9.9.0:9.9.0:9.9.9.:0.0.9.0.9.9.0:0.0.¢
):9:0:9:9:0:9.9:9:9.9:9.0.9.9.0.9.9.90.:9.9:9.9.9.9.0.9.9.0.9.9.9.9.9:9.0.9.9.0.9.9.0.9.9.9.:9.9.9.0.9.9.0.0.9.0.:0.9:0.:0.9.9.0.9.9.0.9.9.0.:0.9.0:0.0.9.0.0.9.0.0.9.0.9.9.0.0.0.9.0.:0.0.4
):9:0:9:9:9:9.9:9:9.9:9.0.9.9.0.9.9.90.9.9:9.9.9.9.0.0.9.0.:9.9.9.9.9:9.0.9.9.0.9.9.0.9.9.9.:9.9.9.0.0.9.0.0.9.0.:0.9:0.:0.9.9.0.9.9.0.9.9.0.:0.9.9:0.9.9.0.0.9.0.:0.9.0.9.9.0.0.0.9.0.:0.0.4
):9:0:9:9:0.:9.9:0:9.9:9.0.9.9.0.9.9:90.:9.9:9.9.9.9.0.0.9.0:9.9.9.9.9.9.0.9.9.0.9.9.9.9.9.9.9.9.9.0.0.9.0.:0.9.9.0.9.9.0.0.9.0.9.9:0.:9.9.0:0.0.9.0.0.9.0.:9.9:0.:0.9.9.0.9.9.0.9.0.0:0.0:¢
):9:0:9:9.0:9:9.0:9.9.9:9.9:9.0.9.9.0:9:9.0:9.9.9:0.9.9.0:9.9.0:9.9.9:9,9.9.0.9.9.0.9.9.0:9,0.9.:9.9.9:0:9.9.0:9.9.0:9.0.9.:9.9.9.0.9.9.0:0.0.0:0.0.9:0.9.9.0.9.9.0:9.0.0:0,0.9.0:0.0.4
):9:0:9:9.9:9:9.0:9.9:9:9.9.9.9:9.9.0:9.9.9:9.9.9:0.9.9.0:9.9.9:9:9.0:9,9.9.0.9.9.0.9.9.0:9,0.9:9.9.9:0:9.9.0:9.9.0:9.0.9.:9.9.9.0.9.9.0:9.0.0:0.0.9:0.9.9.0.9.9.0:9.0.0:0,0.9.0:0.0.4
):9:0:9:9.9:9:9.0:9.9.9:9.9:9.0.9.9.0:9.9.0:9.9.9:0:9.9.0:9.9.9:9.0.9.:9.9.9.0:9.9.0:9.0.9:9.9.9.0:9.9.0:9.9.0:0.9.9.:9.9.9.9.9.9.0.9.9.0:0.0.9:0.9.9.0:9.9.0.:9.9.0:9.0.9.0.9.9.0:0.0.¢
):9:0:9:9.0:9:9.0:9.9.9:9.9:9.0.9.9.0:9:9.0:9.9.9:0.9.9.0:9.9.0:9.9.9:9,9.9.0.9.9.0.9.9.0:9,0.9.:9.9.9:0:9.9.0:9.9.0:9.0.9.:9.9.9.0.9.9.0:0.0.0:0.0.9:0.9.9.0.9.9.0:9.0.0:0,0.9.0:0.0.4
):9:0:9:9:0:9.9:9:9.9:9.0.9.9.9.9.9:90.9.9:9.9.9.9.0.0.9.0.:9.9.9.9.9:9.0.9.9.0.9.9.0.9.9.9.:9.9.9.0.9.9.0.9.9.0.:9.9:0.:0.9.9.0.9.9.0.9.9.0.:9.9.0:0.0.9.0.0.9.0.0.9.0.9.9.0.0.0.9.0.:0.0.4
):9:0:9:9:0:9.9:9:9.9:9.0.9.9.9.9.9:9.:9.9:9.0.9.9.0:9.9.0.:9.9.9.9.9.9.0.9.9.0.9.9.0.9.9.9.9.9.9.0.0.9.0.9.9.0.:9.9:9.0.9.9.0.9.9.0.9.9.0.:0.0.9:0.9.9.0.0.9.0.0.9.0.9.0.0.0.0.9.0.:0.0.4
XXXX= —==——= END PRIVATE KEY-----

privateKeyld: IXXXXXXXXXXXXXXXXXXXXXKXXXKXXXKXXXKXXXKXXKXX3

projectId: myfirstproject-xxxxxx

tokenUri: https://ocauth2.googleapis.com/token

type:
service account
type: gcp

Privilege DevOps Vault Service Account/User Mapping

Now the service account that is going to access Privilege DevOps Vault is required. For this example, we name
this account client-svc. The setup in GCP is the same as above for the dsv-svc account except that when
the role is assigned, it must be Service Account Token Creator so that this account can request tokens. Also,
after generating the key, make sure to save the file to the local machine that accesses Privilege DevOps Vault
and note the location.

In the Privilege DevOps Vault CLI, create a User called gcp-test referring to the client-svc service account

with gcloud as the authentication provider using dsv user create --username gcp-test --provider
gcloud --external-id client-svc@myfirstproject-273119.iam.gserviceaccount.com

{

"cursor": "",
"data": [
{
"created": "2020-04-04T17:56:33Z",
"createdBy": "users:thy-one:admin@example.com",
"externalId": "client-svc@myfirstproject-xxxxxx.lam.gserviceaccount.com",
"id": "d6a8ele5-5554-4fc8-adca-1cla653£9095",
"lastModified": "2020-04-04T17:56:332",
"lastModifiedBy": "users:thy-one:admin@example.com",
"provider": "gcloud",
"userName": "gcp-test",
"version": "0O"
}
JI
"length": 1,
"limit": 25

Set an environmental variable named GOOGLE_APPLICATION_CREDENTIALS to the path of the key file for
client-svc that was just downloaded.

71

In Linux or Mac, this might look like:
export GOOGLE APPLICATION CREDENTIALS="/home/user/Downloads/[FILE NAME].json"
Windows Powershell

$env:GOOGLE APPLICATION CREDENTIALS="C:\Users\username\Downloads\[FILE NAME].json"
Windows Command Line
set GOOGLE APPLICATION CREDENTIALS="C:\Users\username\Downloads\[FILE NAME].json"

After creating the User, modify the config to give that User access to the default administrator permission
policy.

NOTE: Adding a User to the admin policy is not security best practices. This is for example purposes
only. Ideally, create a separate policy for this GCP service account with restricted access. For details
on limiting access through policies, see the Policy section.

dsv config edit

Add gcloud:gcp-test as a User to the Default Admin Policy. Third party accounts must be prefixed with the
provider name; in this case, the fully qualified username is glcoud:gcp-test.

<snip>

actions

- <.*> conditions: {}

description: Default Admin Policy
effect: allow

1d: XXXXXXXXXXKXXXXXXXKXKKX

meta:
null

resource

s: -
< k>

subjects

- users:<gcloud:gcp-test|admin@example.com>
<snip>

Rundsv init filling out the desired values and selecting 6 GCP (federated) when prompted for the auth type.

Please enter auth type:
(1) Password (local user) (default)
(2) Client Credential
(3) Thycotic One (federated) (4) AWS IAM (federated)
(5) Azure (federated)
(6) GCP (federated)
(7 OIDC (federated)

72

Run dsv auth to verify authentication. A token is displayed.

Run dsv secret read <path to any secret> to verify secret access.
Google Compute Engine (GCE) Metadata Authentication

The idea behind GCE Metadata authentication is to enable a GCE instance to gain access to IBM Security
Verify Privilege DevOps Vault.

In this example we assume you have created a Linux Google Compute Instance and have the Google Compute
Engine API enabled.

= Google Cloud Platform 3¢ My fist ot ~

AP Library

Compute Engine API
Google

m SRR

It is further assumed that the Compute Engine default service account is used. However, you can assign a
different service account to the Compute instance if desired.

NOTE: Using the GCE default service account is generally not best practices because it is defaulted to
every GCE that is created, violating the idea of least privileges. This is for illustration purposes.

Identity and APl access

Service account
Compute Engine default service account -

Access scopes

@ Allow default access
Allow full access to all Cloud APIs
Set access for each API

To find the Compute Engine default service account email, from the GCP Console Home, hover IAM and
then click Service Accounts The name is "Compute Engine default service account". Copy and store the
email for later.

73

= Google Cloud Platform 8 MyFirst Project v Q v

e IAM & Admin Service accounts + CREATE SERVICE ACCOUNT W oeueTe

Service accounts for project "My First Project”

(2] antity & Organizatior A service account represents 3 Google Cloud service ldentity, s a5 code running on Compute Engine VMs, App Engine apps, of systems running outside Google. Lea
A P Troublesh '
a8 P
O Email Status Name P Description Key 1D
B auotss o =22 > © 10 Eng
compute@developer gserviceaccount com .

o3 ervice ot

Label
-3 etting

Pri &
U] ptographic Keys

Privilege DevOps Vault GCE Authentication Provider setup

Using any computer with Admin Privilege DevOps Vault access, we now want to setup the Privilege DevOps
Vault Authentication Provider Create a file named 'auth-gcp.txt' in the following format and substituting your

ProjectID.
{
"name": "gcloud-gce",
"type" . "gcp"’
"properties": {
"ProjectId": "myfirstproject-273119"
}

Run dsv config auth-provider create --data Rauth-gcp.txt to implement the Authentication Provider.
To view the resulting addition to the config file, you use:
dsv config auth-provider <name> read -e yaml Where the example name we use here is gcloud-gce

- ID: bg71e5c0l19js72ppv140
name: gcloud-gce
properties: projectId:
myfirstproject-273119
type: gcp

tenantName:

company

created: "2019-11-
12T718:34:492" createdBy:
users:thy-
one:admin@example.com

1d: XXXXXXXXXXXXXXXXXXXX
lastModified: "2020-05-
18T03:58:152" lastModifiedBy:
users:thy-one:adminlexample.com
name: gcloud-gce

properties: projectId:

74

nmyfirstproject-xxxxxx
type: gcp version: "QO"

Privilege DevOps Vault GCE Metadata Service Account/ Privilege DevOps Vault User Mapping

Rundsv user create --username gce-test --provider gcloud-gce --external-id {default

compute service account email} usingthe default service account email we saved earlier.

{
"created": "2020-04-09T12:59:44272",
"createdBy": "users:thy-one:admin@example.com",
"externalId": "2XXXXXXXXXX3-computel@developer.gserviceaccount.com",
"id": "19709b4e-2a13-4164-a930-81997b568036",
"lastModified": "2020-04-09T12:59:44z",

"lastModifiedBy": "users:thy-one:admin@example.com",
"provider": "gcloud-gce",
"userName": "gce-test",
"version":
"o")

After creating the User, modify the config to give that User access to the default administrator permission
policy.

NOTE: Adding a User to the admin policy is not security best practices. This is for example purposes
only. Ideally, create a separate policy for this GCP service account with restricted access. For details
on limiting access through policies, see the Policy section.

dsv config edit

Add gcloud:gce-test as a User to the Default Admin Policy. Third party accounts must be prefixed with the
provider name; in this case, the fully qualified username is glcoud-gce:gce-test.

NOTE: Adding a user to the admin policy is not security best practices. This is for example purposes only.
Ideally, create a separate policy for this AWS user with restricted access. For details on limiting access
through policies, see the Policy section.

dsv config edit -e yaml

<snip>

actions

- <.*> conditions: {}
description: Default Admin Policy
effect: allow

id:

XXXXXXXKXKXXKXKKXKXKXKXKK

XX
meta:

null

resource

s: -

<L x>

75

subjects

- users:<gcloud-gce:gce-test|admin@example.com>
<snip>

GCE Authentication

SSH into the GCE and download the latest Privilege DevOps Vault CLI from this website DSV CLI
Forexanuﬂe,curl https://dsv.thycotic.com/downloads/cli/1.8.0/thy-linux-x64 -o dsv
You may need to give yourself permissions to run the "dsv" binary and it is also easier if you set the path.

Run dsv init filling out the desired values and selecting 6 GCP (federated) when prompted for the auth type.

Please enter auth type:
(1) Password (local
user) (default)
(2) Client Credential
(3) Thycotic One (federated) (4) AWS IAM
(federated)
(5) Azure (federated)
(6) GCP (federated)
(7 OIDC (Federated)

Run dsv auth to verify authentication. A token is displayed.
Run dsv secret read <path to any secret> to verify secret access.

Google Kubernetes Engine (GKE) Authentication

It follows that, if you can have a GCE (that is a virtual server) authenticate to Privilege DevOps Vault, there is a
similar way to do that with a Google Kubernetes Engine (GKE) node.

Here is an example where we deploy a simple app in GKE that can authenticate to Privilege DevOps Vault.

In the GCE example above, we used the Compute Engine default service account. Here we suggest you
create a service account with at least the storage.objectviewer role for the project which enables the
ability to pull an image from GCP registry. In this example, we created a service account named dsv-gce

Privilege DevOps Vault Authentication provider

Using any computer with Admin Privilege DevOps Vault access, we now want to setup the Privilege DevOps
Vault Authentication Provider Create a file named 'auth-gcp.txt' in the following format and substituting your

GCP.
{

"name": "gcloud-gce",
"type" : "gcp",
"properties": {
"ProjectId": "myfirstproject-273119"

}

76

https://dsv.thycotic.com/downloads

Rundsv config auth-provider create --data Rauth-gcp.txt toimplement the Authentication Provider.

Privilege DevOps Vault User mapped to the GKE service account

Run dsv user create --username gce-test --provider gcloud-gce --external-id {dsv-gce
service account email} usingthe default service account email we saved earlier. You get a response like
this:

{
"created": "2020-04-09T12:59:447z",
"createdBy": "users:thy-one:admin@example.com",
"externalId": "dsv-gcel@gcp-project-id.iam.gserviceaccount.com",
"id": "19709b4e-2a13-4164-a930-81997b568036",
"lastModified": "2020-04-09T12:59:447z",

"lastModifiedBy": "users:thy-one:admin@example.com",
"provider": "gcloud-gce",
"userName": "gce-test",

"version": "O"

}

Back to GCP to setup a GKE cluster

From the GCP Home page, in the left menu, hover over Kubernetes Engine and select Clusters. Then Create
Cluster. If this is the first one, then GCP enables the GKE API for you.

When the form comes up, the default values can be used with the exception of the service account. To change
this, in the left nav, select defaultpool then Security where you select the service account dsv-gce just
mentioned.

Click Create. It takes a few minutes for the cluster to be built.

& Create a Kubernetes cluster a

* Cluster basics Node security

* default-pool
Nodes oy v ol
* Secunty
* Metadata
* Agtomation
* Networking

* Security

* Metadata

* Foatures

Hello-App

Now create and deploy this Go-based hello app in this cluster node.

We use the built-in GCP Cloud shell to connect since it comes with Docker, Kubectl, and connectivity to GCP
all setup. It even has a nice editor for the files we create. To do this, go to the Kubernetes Engine then

77

Clusters page. From the list, there is a Connect button that opens a modal pop-up. In the modal, select Run
in Cloud Shell

Connect to the cluster

You can connect to your cluster via command-line or using a dashboard

Command-line access

Configure kubectl command line access by running the following command

Run in Cloud Shell

Cloud Console dashboard

You can view the workloads running in your cluster in the Cloud Console Workloads dashboard

Open Workloads dashboard

A terminal opens in the browser. Run the following steps:

mkdir
hello-app
cd hello-
app cat >
main.go

Now you can copy the code below into the terminal, but substitute the tenant url to your URL, which looks
something like https://mycompany.secretsvaultcloud.com

package main

import (
"bytes?™"
"encoding/Jjson"
"fmt"
"io/ioutil"
" l O g "
"net/http"
n o) s n

78

func main () {
mux := http.NewServeMux ()
mux.HandleFunc ("/", hello)

port := os.Getenv ("PORT")
if port == "" {
port="802820"

}

log.Printf ("Server listening on port %s", port)

log.Fatal (http.ListenAndServe (":"+port, mux))
}

func hello(w http.ResponseWriter, r
*http.Request) { log.Printf ("Serving

request: %s", r.URL.Path) fmt.Println("---

———————— computeMetadata-----------")
client := &http.Client{}
req, err := http.NewRequest ("GET",

"http://metadata.google.internal/computeMetadata/vl/project/project-id", nil) if err !=
nil{
fmt.Fprintf (w, "Error creating Metadata Request: %s\n",
err.Error()) return
}
reqg.Header.Add ("Metadata-Flavor", ~Google’)
resp, err :=
client.Do (req) if err !=
nil{
fmt.Fprintf (w, "Error creating Metadata : %s\n", err.Error())
return

}

body, err := ioutil.ReadAll (resp.Body)

if err != nil{
fmt.Fprintf (w, "Error parsing body computeMetadata: %$s\n", err.Error())
return

} el s e {

fmt.Fprintf (w, "Response computeMetadata: %s\n", string(body))
}

fmt.Println("-------—---- computeMetadata-service-accounts-——---------- ")
tenant url := "{tenant url}"
client?2 := g&http.Client{
}
req2, err := http.NewRequest ("GET",

"http://metadata.google.internal/computeMetadata/vl/instance/serviceaccounts/default/ident
ity", nil)
if err !'= nil{
fmt.Fprintf(w, "Error creating service-accounts Metadata Request:
%$s\n", err.Error()) return

}

79

reqg2.Header.Add ("Metadata-Flavor",

"Google') g := reqg2.URL.Query ()
g.Add ("audience", tenant url)
g.Add ("format", "full")
reqg2.URL.RawQuery =
g.Encode () resp2, err :=
client2.Do (reg2)

if err !'= nil{

fmt.Fprintf(w, "Error creating service-accounts Metadata : %s\n",
err.Error()) return

}

body2, err := ioutil.ReadAll (resp2.Body)
if err != nil{

fmt.Fprintf (w, "Error parsing body service-accounts computeMetadata: %s\n",
err.Error())

return

} el s e {

fmt.Fprintf (w, "Response service-accounts computeMetadata: %$s\n", string(body2))

}

fmt.Println("------——--- DSV-—===—————~- ")
regBody, _ := json.Marshal (map[string]string{
"grant_type" : "gcp",
"jwt" : string(body2),
o)
dsvResp, err := http.Post(tenant url+"/vl/token","application/json",
bytes.NewBuffer (reqBody)) if err != nil || dsvResp == nil{
iferr! =nil/¢{

fmt.Fprintf (w, "Error creating dsv Request: %$s\n", err.Error())

}

re turn

}

dsvBody, err :=

ioutil.ReadAll (dsvResp.Body) 1if err !=

nil{
fmt.Fprintf (w, "Error parsing body dsv: %s\n", err.Error())
} el s e {
fmt.Fprintf (w, "Response from DSV: %$s\n", string(dsvBody))

}

Use to escape out. Then provide executable privileges.

chmod +x main.go

Now create the docker file.

cat > Dockerfile

Copy the commands below in.

FROM golang:1.13-alpine
80

ADD . /go/src/hello-app
RUN go install hello-app

FROM alpine:latest COPY
-—-from=0 /go/bin/hello-

app
ENV PORT 8080
CMD ["./hello-app"]

Use to escape out. Then provide executable privileges.

chmod +x Dockerfile
Run these commands to build and push the app to GKE. Substitute your project IDIin.

docker build -t gcr.io/{PROJECT ID}/hello-app:vl . docker push
gcr.io/{PROJECT ID}/hello-app:vl

The docker image is in GCP registry, so now create the kubernetes deployment

cat > k8.yml

Substitute your project id and paste the following:

apiVersion:
apps/vl kind:
Deployment
metadata:
name: my-app
labels:
app: my-
app spec:
replicas: 1
selector:
matchLabels:
app: my-app
template:
metadata:
name: my-app
labels:
app:
my-app
spec:
containers:
- name: my-app
image:
gcr.io/{PROJECT ID}/hello-app:vl
volumeMounts: - name:
certs mountPath:
/etc/ssl/certs volumes:
- name: certs hostPath:
path: /etc/ssl/certs

Use to escape out. Then provide executable privileges.

chmod +x k8.yml
81

And deploy:

kubectl apply -f k8.yml

Make sure the pod is in running status
kubectl get pod

Now expose the app to the internet:

kubectl expose deployment my-app --type=LoadBalancer --port 80
--target-port 8080 kubectl get service

You see

root@THY-01-0250-LT: masres/repo o-app# ectl get service

<

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

kubernetes ClusterIP 10.8.0.1 <none> 443 /TCP 10d
my-app LoadBalancer 10.8.0.130 <pending> 80:32628/TCP 3s

It takes a few minutes for the to turn to an IP address

Retry kubectl get service until you see IP address in EXTERNAL-IP

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
kubernetes ClusterIP 10.8.0.1 <none> AA3/TCP

my -app LoadBalancer 10.8.0.130 34.66.218.89 80:32628/TCP

Copy the EXTERNAL-IP for my-app and paste in your browser. You get Privilege DevOps Vault token
(_ £ i}

C O Notsecure | 34.66.218.89 &

incogni...

Response computeMetadata: test-env-269515

Response service-accounts computeMetadata:

eyIhbGci0iISUZI1NIIsImtpZCI6I5cOYmQANMZ NS FINGM2Y2IONT AxMZmZR1MZhiMDY5Y FhmOGY ZNWMi LCI0eXA10iIKVIQiFQ. eyThdWQiOiJodHRwczovL 3R1c3ROZNShbNQUZGV2YmFtYmUuY29+ T iwiYXpwIjoiMTEIMA20TkxMzA2NDMzNZQSNDKAT iwiZW1hakwiOilke
3YtdGVzdEBOZXNOLWVUdiByNjkIMTUuaWFtLmdzZX]2aWN1YWNIb3VudC5b20iLCI1bWF pbF92ZXIpZml1ZCI6dHI1ZSwiZXhiIjoxNTg40DY3NTg1LCInb29nbGUiONs1Y29tcHVBZVI1bmdpbmUiOns iaWSzdGFuY2VFY3I1YXRpb25FdG1tZXNGYWLwIjoxNTg4MDAGHDEALC Ipb
nN@YWSZVIpZCI6IIMIOTgxNTAYOTYIMTE2MFUSNTMILCIpbnNOYWS ZVIuYW11T§0iZ2t 1LWNSAXNOZXTtMS 1kc3YtdGVzdC1wb29s LNE2YmUANI Tl XNrdHE iLCIwcm9qZWNOX21kTjoidGVzdC11bnY M YSNTELTiwi cHIvamVidF9udiliZXIi03Y3NDMOMzU20DI40Swi emduZ
SI6InVzLWN1bnRyYWwxLWMifX0sImlhdCIEMTU4ODg2MzkAaNSwiaXNzIjoiaHROCHM6LYIhY2NvdW5@cy5nb29nbGUuY29t Tiwic3ViIjoiNTEIMIA20TkxMzA2NDMZNZQSND4ING . HbSIT74vCy0s76GIp2ntziooED7Tfym3z5iytZbiiX83rRs6YZAaXLQUEpCENDC 1 JugoY FOOM
1eZsx6MV5dBuXwTXmw2vACFy4hZkqreG7XghzB_aQONtkaGdu@_nx5PmyVIuUfcdkZRCrtPaAmgH7tmEbby_ZMp7_D-1cX9nyCSYuhwdFF96JpiUREpHYFFId9gRgbaK2qg -waOlIMKT2yUjgcAkkHjayGZcR-mcZU6pOpTC6TaEEeXEM7ICKSLsKStol -
FXKTo6HNNWVHE0Agd@bbYUBUNEG7_V718sXfzh_ljymjkdQuvUImiUl6tpdRblq_S52LUatpAr-8bw

Response from DSV:

{"accessToken": "eyJhbGci0iISUzI1NiIsInR5cCI6IkpXVCI9. eyThZG1pbil6ZmFsc2Us InR1bmFudCI6InR1c3ROZWShbnQiLCInecmluY21wYixIdGVESWQiOi JkMzISMINKNCBAZDRML TQXN2YtODABZi@XNT1iNWUAY2U40DciLCI1eHAIOFEL0DgAN] c10DUs ImlhdCIEMTU
40Dg2Mzk4NSwi aXNzIjoic2V]cmVOc3ZhduxeY2xvdiQiLCIuYmyYi0IE10Dg4NFHSODUSINNLYiI6InVzZX]20mdbG91ZDpke3Y+Z2NwIn®. ronNLtBCWWIF s FUEVCWPFDhUA7SumPzrX7snB-Cuc7_fOL-AL_60-hjSxIR31GUL1vHNO-
HzIs4eWibMaa53pIE4gEGq8eD7Yxc6RIyEqSKECF7R3BI-NHaFuN19UFU;5b359I0ZGMUSKY cecgPqYt1GMadodsAySH-Lea_7QeYC7iArHILOBG3mNQWYNnBvO7ILwBUkrOrkG_TBDVQFVaGCkXu-~

sCywea@aZzo2cW76VANSmF cgX49GXoWIhmytj2fcylkgfsP1SFWfdf1Y9_kEWNmCvLyPuRbuad4hY1LpWBEUSVHIrc91LQdOtZdTDObTo3y16n8ACS -NY1mYdQ", "tokenType" : "bearer"”, "expiresIn”:3600}

At this point you are successfully logged into Privilege DevOps Vault from GKE. There are two tokens, the first
one is the GKE metadata token. The second one is the Privilege DevOps Vault authentication token. If you
parse the Privilege DevOps Vault token at the jwt.io website you see the username gcloud-gce:gce-test to
confirm.

82

https://jwt.io/

Authentication: OIDC

Use dsv config auth-provider search --encoding yaml to see your current authentication settings.

The initial auth settings after your tenant is provisioned looks like this:

data:
- created: "2020-04-27T18:04:52Z7"
createdBy: "" id:
bgjhth447csc72i4sm8g
lastModified: "2020-04-
27T18:04:52z"
lastModifiedBy: "" name: thy-one
properties: baseUri:
https://login.thycotic.com/
clientId:
29:9:9:9:9:9:9:9:9:9:9:0:9:0:0:0:0:0:0:0:0:0:0:0:0:0:0:6::9:9:9:$.4 4
X
clientSecret: XXXKXXXXXXXXXXKXXXKXXKXK
type:
thycoticone
version: "O"
length: 1
limit: 25

OIDC Providers

Any OIDC compliant authentication provider must be configurable to work with Thycotic One and IBM Security
Verify Privilege DevOps Vault. Documented integrations are below.

Common Steps

For all OIDC authentication providers you need to get their provider URL, client id, and client secret. You need
to set in the authentication provider the callback URL that it redirects to once authentication is complete.

To get your callback URL:

1. Sign into the cloud manager portal and go to Manage->Teams and click on Organizations for your team.

2. Click on Auth Providers and then click the New button. This opens a dialog up.

3. Give it a name and copy the Callback URL provided. Do not save or cancel, you come back later to fill out
the rest of the fields.

83

https://portal.thycotic.com/

External Authentication Provider Settings

Description
Azure AD
Provider URL

ClientID

Secret

Callback URL

[] Enabled

Google Identity Provider Example
Configure Auth Providers

This example uses the Google Cloud Identity service.
1. Get the callback URL from Thycotic One following the directions at Authentication:0IDC

2. Go to the Google Cloud API Console and select a project if needed.

3. Select Credentials and click Create Credentials and click OAuth Client ID.
4. Choose Web Application

5. Enter the information, setting the Authorized origin as https://portal.thycotic.com/ and Authorized
redirect as the callback URL copied from the IBM Security cloud manager portal. Follow the instructions
to add these URL's to the OAuth consent screen.

84

https://console.cloud.google.com/apis/dashboard

API APIs & Services & Client ID for Web application ¥ DOWNLOADJSON (C RESET

¢ Dashboard

Name *
Library DSV

EE

The name of your OAuth 2.0 client. This name is only used to identify the client in

Or i R
Credentials the console and will not be shown to end users.

T2 OAuth consent screen
0 The domains of the URIs you add below will be automatically added
Domain verification to your OAuth consent screen as authorized domains.

Za Page usage agreements

Authorized JavaScript origins @

For use with requests from a browser

URIs

https://portal.thycotic.com

-+ ADD URI

Authorized redirect URIs @

For use with requests from a web server

URIs

https://login.thycotic.com/signin-oidc/0767b236-b57d-421b-b9ca-2dc’

6. Save and copy the client id and client secret from the dialog into the credentials create dialog in Cloud
Manager. Your Provider URL in cloud manager must be setto https://accounts.google.com

85

External Authentication Provider Settings

Description

Google Identity

Provider URL

https://accounts.google.com

ClientID

.apps.googleuserconten(.com

Secret
Callhack 11D1

7. Save the credential create dialog in cloud manager and go back to Organizations. Click Credentials and
then edit your Credential. This is what is used by Privilege DevOps Vault to connect to the Thycotic One
identity provider for authentication.

8. Verify that there is a Post-Login Redirect URI for http://localhost:8072/callback. If thereisn't, add
one. This is the callback used when logging into Privilege DevOps Vault with the CLI.

86

Organization Credential

Name

DevOps Secrets Vault dsv.secretsvaultcloud.com

Post-Login Redirect URIs

http://localhost:8072/callback

https://dsv.secretsvaultcloud.com/signin-oidc

Post-Logout Redirect URIs

https://dsv.secretsvaultcloud.com/signout-callback-oidc

Credentials
Endpoint

https://

Client Id

] Revoked

Save x Cancel

Creating a User in Thycotic One and Privilege DevOps Vault

In order to login using OIDC, the user must exist in the external provider, Thycotic One, and in Privilege
DevOps Vault.

If your current user, such as your initial admin already exists in all places, then skip this section. If you want to
add another user to Thycotic One and Privilege DevOps Vault simultaneously, do the following steps:

1. Inthe Privilege DevOps Vault CLI run dsv user create --username useremail@example.com --
provider thy-one

2. This creates a user record in Privilege DevOps Vault and syncs it to Thycotic One. The User gets an
email with a link to establish their password.

3. Inthe cloud manager portal, you can see your users by logging in and clicking on the Users link.
Logging In

Initialize the CLI:

dsv init

87

https://portal.thycotic.com/

Add a new profile if you want to retain your default dsv profile.

When prompted for the authorization type, choose OIDC (federated).

Please enter auth type:
(1) Password (local user) (default)
2) Client Credential
3) Thycotic One (federated)

AWS IAM (federated)

(2)
(3)
(4)
(5) Azure (federated)
(6)
(7)

6) GCP (federated)
7) OIDC (federated)

When prompted for the authentication provider hit Enter to accept the default of thy-one

If you are on Windows or Mac OS the CLI automatically opens a browser to the Google login page, otherwise it
prints out a URL that you can copy and paste into a browser to complete the process.

Login using your Google credentials and your browser redirects to http://localhost:8072/callback, the
CLI is listening on that port and submits the returned authorization code to Privilege DevOps Vault to finish
the login process.

Verify the login by running (omit the --profile flag if you overwrote your config):

dsv auth --profile profilename

88

Azure AD OIDC Example

1. Get the callback URL from Thycotic One following the directions at Authentication:0IDC
2. Inyour azure portal go to Azure Active Directory and then go to the App Registrations.

3. Click New Registration
4. Give your app a name and add the Callback URL from Thycotic One as the Redirect URI.

Register an application

* Name

The user-facing display name for this application (this can be changed later).

I dsv

Supported account types

Who can use this application or access this API?

'@' Accounts in this organizational directory only (only - Single tenant)
O Accounts in any organizational directory (Any Azure AD directory - Multitenant)

O Accounts in any organizational directory (Any Azure AD directory - Multitenant) and personal Microsoft accounts (e.g. Skype, Xbox)

Help me choose...

Redirect URI (optional)

We'll return the authentication response to this URI after successfully authenticating the user. Providing this now is optional and it can be
changed later, but a value is required for most authentication scenarios.

‘ Web v | ‘

5.Click Register to save your app.

6. Go to your app's Certificates and Secrets and click New Client Secret

7. Set the time period for the secret and click Add.

8. Copy the client secret, note that it is not available after you leave the page.

9. Go to Authentication and check the box for ID Tokens in the implicit grant section and save.

10.Navigate to Overview and note the Application ID and Directory ID. The Application ID is your Client ID
for Thycotic One and the Directory ID is part of your provider URL in the format
https://login.microsoftonline.com/{directory id}

89

https://login.microsoftonline.com/%7Bdirectory

Home > dsv-sign-on

1T SRS
Ef8 dsv-sign-on

j Delete @ Endpoints

= Display name . dsv-sign-on
¥ Overview ‘ L

’ Application (client) ID :
Quickstart
Directory (tenant) ID @
" Integration assistant (preview)
Object ID
Manage

&2 Brandin
2 0 Welcome to the new and improved App registrations. Locking to learn how it's changed from App registrations (Legacy)? Learn more

2 Authentication

Certificates & secrets

Token configuration Call APIs
- APl permissions
& Expose an AP N<
- -
owners m a 4 s
Roles and administrators (Previ... =
Manifest Build more powerful apps with rich user and business data

from Microsoft services and your own company's data

11.Go back to the open dialog in Thycotic One and enter the Application ID for the Client ID, the generated
secret for Client Secret, and fill in the Provider URL and click Save
12.When you sign into Thycotic one again you see an option for logging in with Azure AD.

Okta Identity Provider Example

This example uses Okta as a OIDC identity provider.
Okta OIDC connection

1. Get the callback URL from IBM Security’s Cloud Manager portal following the directions at
Authentication:0IDC

2. Login to your Okta Admin console.

3. From the top menu bar, select Applications

4. Select Add Application

5. Atthe top right, select Create New App. A window opens

6. For platform, select Web from the dropdown and the OpenID Connect radio button. Click Create

90

Create a New Application Integration

Platform Web v
Sign on method (_) Secure Web Authentication (SWA)
Uses credentials to sign in. This integration works with most apps
() SAML 20
Jses the SAML protocol to log users into the app. This is a better option

7. On the resulting screen, provide an Application name and optional logo. Enter the IBM Security callback
URL in the box labeled Login redirect URIs. Click Save.

91

2% Create OpenlD Connect Integration

Application name DevOps Secrets Vault

Application logo Browse files

Login redirect URIs https://login thycotic.com/signin-oidc/09e75fff-620e-4xx-d3-82€
<+ Add URI

Logout redirect URIs + Add URI

8. Totheright of General Settings click Edit. Check the Implicit (Hybrid) box and it expands. Then check
Allow ID Token with Implicit grant type.

9. Inthe Initiate login URI Okta defaults to copying the Login Redirect URI, so highlight that box and copy
https://portal.thycotic.comin. Click Save

10.Copy the Client ID and Client secret for entry into the IBM Security Cloud portal

General Settings

92

Application label

Application type

Allowed grant types

Login redirect URIs

Logout redirect URIs

Login initiated by

Initiate login URI

Client Credentials

Client ID

Client secret

Retrieve the Issuer URL

Client acting on behalf of itself
Client Credentials
Client acting on behalf of a user
/| Authorization Code
Refresh Token
/| Implicit (Hybrid

V| Allow ID Token with Implicit grant type

hycotic.com/signin-oldc/09e75fff-62

App Only

https://portal.thycotic.com

OoamihsppKbfezGeQ4x6

Oe-4bfc-8266-

Ednt

11. In the second menu bar from the top, click Sign On and in the third box down, titled "OpenID Connect ID
Token", take note of the URL by Issuer for entry into the IBM Security Cloud portal. It is generally
something like https://company.okta.com or https://company.oktapreview.com

93

7 DSV
© -

Active v Logs
Sign On
Settings
! AETHOL
Configure profile mapping
Token Credentials Edit
Signing credential rotation € Automatic
OpenlD Connect ID Token Edit
Issuer htps// N o< ta.com
Audience 0o R - /5
Claims Claims for this token Include all user attributes on the app profile
Groups claim type Filter
Groups claim filter § None

[l Using Groups Claim

Add Okta Users and Groups to the Privilege DevOps Vault Application
12.In second menu bar from the top, click Assignments

94

13.Click Assign and when it drops down add users and/or groups that use IBM Security Verify Privilege
DevOps Vault. Of course, you can always come back, and add/remove people as needed.

©

Finish the Connection on the Thycotic One side

14.Go back to the IBM Security Cloud Manager Portal where we started. Fill-in a Description and the
issuer/provider URL from step 11.

15.Fill-in the Client ID and Client Secret from step 10.

16.Check the Enable box.

17.Click Save

95

External Authentication Provider Settings

Description

Okta Example

Provider URL
https:// | ckta.com
Client ID
00 0+
Secret

££ %4

Callback URL

https://login.thycotic.com/signin-oidc/ | G

Enabled

Save % Cancel

18. Click Back to Organizations 19. Click Credentials
20.Click Edit and a window pops-up

21.To the right of "Post-Login Redirect URIs" click the + and a new empty box appears. In this new box, type
http://localhost:8072/callback.

Note: If you have already added this call back for another auth provider, then it is still there so you can
skip these last steps (18-21).

96

Organization Credential

Name

DevOps Secrets Vault I sccretsvaultcloud.com

Post-Login Redirect URIs
https:// M sccretsvaultcloud.com/signin-oidc
http://localhost:8072/callback

Post-Logout Redirect URIs

https:// I sccretsvaultcloud.com/signout-callback-oidc

nﬁ-* nﬂ+

Credentials
Endpoint

https://login.thycotic.com/

Client Id
e

(] Revoked

97

Dynamic Secrets

Dynamic Secrets are automatically generated at the time of request. This differs from the standard Secret
store read request where the credentials remain the same until changed by a user. They can be used when

you need to provide credentials to a user or resource, like a configuration tool, but the access must expire
after a set period of time.

Supported Types:

e AWS
e Azure
e GCP

Linking

For Dynamic Secrets to be generated, they rely on a Base Secret stored in Privilege DevOps Vault that
contains the provider's credentials that are used to automatically generate the ephemeral access keys.

3. CredentiilsiJSid o aWS

ANSIBLE 4. Credentials Expire after TTL
'\\ 2. Credentials
\ generated and
N\ ¥ sent back.
1. Read Secret \\ .
L Dynamic Base
« Secret o Secret
(Policy and
TTL)

CcO

The linking is done through the attributes section in the Secret JSON. For example, the following Secret
temp-api has no data, but is linked to a different AWS IAM Secret that contains the access and secret key
information. The 1inkconfig defines the type of linking and the linked Secret path.

Attribute Description

linkConfig link type and path to the linked Secret.
linkConfig.linkType The only valid value is "dynamic"
linkConfig.linkedSecret Secret path to the base credential

{

98

"id": "cc619722-6538-4891-b0a6b-2c7fal776a67",
"path": "dynamic:aws:creds:temp-api",
"attributes": {

"linkConfig": {

"linkType": "dynamic",
"linkedSecret": "base:aws:creds:api-account"
}
}I
"description": "",

"data": {
}

Search for linked Secrets

To get a list of all dynamic secrets linked to a base secret, issue the command dsv secret search --query
<base secret path> --searchlinks

99

AWS Dynamic Secrets

AWS Dynamic Secrets generate a temporary access key, secret key, and session token. AWS security token
service (STS) for provides either federate Or assumeRole. federate is ideal for assigning dynamic secrets
from a single AWS account. assumeRole allows cross account access in AWS, so a single set of credentials in
Privilege DevOps Vault can grant access to multiple AWS accounts.

These are the links to AWS documentation for each STS type:

e Federate
e Assume Role

AWS Federate

Setup the AWS IAM User

For the federate example, create a new IAM User and note the access key and secret key.

Assign a policy to the IAM user with sts:GetFederationToken permission as well as any other permissions
the IAM user must have. In this example, we assign the user full CodeDeploy rights.

NOTE: When you get temporary tokens from AWS via GetFederationToken the resulting token's
permissions are the intersection of the IAM User and the policy ARN specified on the Dynamic Secret.
In other words, the Dynamic Secret is only allowed the permissions that are in both the IAM policies
and the Dynamic secret attached policy.

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [

"sts:GetFederationToken",
"codedeploy:*"
1,

"Resource": "*"

}
Create the Base Secret

Next create a Secret in Privilege DevOps Vault with the AWS IAM user access key, secret key, and region.

Create afile named secret root.json substituting your values:
{

"accessKey": "AIA2RAVTSMNW437LM",
"region": "us-east-1",
"secretKey":

"SpN5Ipjvgepz0/g0ZNGmFhhLkUr+Uie5+D3CE" }

100

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

Create the Secret via the CLI at a path of your choosing:

dsv secret create --path aws/base/api-account --data @secret root.json --attributes
] {"type": "awsll}]

Create the Dynamic Secret
policyArn AWS ARN of the policy to assign the federated user token. Can be customer or aws managed
providerType federate

ttl optional time to live in seconds of the generated token. If none is specified it defaults to 900

Now you need to create a Dynamic Secret, which points to the base Secret via its attributes. The Dynamic
Secret doesn't have any data stored in it because data is only populated when you read the Secret.
Create an attributes json file named " secret_attributes.json' substituting your values.

{
"linkConfig": {

"linkType": "dynamic",
"linkedSecret": "aws:base:api-account"
} 4
"policyArn": "arn:aws:iam::aws:policy/AWSCodeDeployReadOnlyAccess",
"providerType": "federate",
"ttl": 1200

Create a new Dynamic Secret

dsv secret create --path dynamic/aws/federate-api --attributes @secret attributes.json

Now anytime you read the Dynamic Secret, the data is populated with the temporary AWS access

credentials.
dsv secret read --path dynamic/aws/federate-api

returns a result like:

"attributes": {
"linkConfig": {

"linkType": "dynamic",
"linkedSecret": "aws:base:api-account"
by
"policyArn": "arn:aws:iam::aws:policy/AWSCodeDeployReadOnlyAccess",
"providerType": "federate",
"ttl": 1200
}y
"data": |
"accessKey": "ASIAZTRAVTSMN5SP6P",
"expiration": "2020-02-06T18:49:17z2",
"secretKey": "Is5L79Y1LgtOistJv+x0yVz2/KLPWUUsUU]j",

101

"sessionToken": "FwIv...Zggfj+6nbiT9IOrEw==",

"ttl"™: 1200
b
"description": "",
"id": "db38e569-5d7f-4ad8-954c-ac846d528947",
"version": "Q"

}

You can validate the credentials only grant read access to Code Deploy by putting the credentials in a python
script and attempting to create a Code Deploy Application:

import boto3 import json from
botocore.exceptions import
ClientError

sess = boto3.Session(
aws_access_key 1d="ASIAZTRAVTSMN5P6P",
aws_secret access_ key="Is5L79Y1Lgt0OistJIv+x0yVZ2/KLPWUUsUU]",
aws_session token="FwIv...Ay93XTqVBGyeuodcw=="

)

client = sess.client ("codedeploy")
resp = client.list applications()
print ("----1list code deploy apps---

-")
print (json.dumps (resp["applications
"], indent=4)) print("----create
code deploy app----") try:

resp =
client.create application(
applicationName="TestApp",
computePlatform="Server"
) except ClientError as e:
print (e.response["Error"] ["
Code"])

The result looks something like this (depending on how many CodeDeploy apps exist)

----1list code deploy

apps—--|
"ExampleApp"

]
----create code deploy app-—---
AccessDeniedException

AWS Assume Role

In this example, we assume the IAM user and the role that that user assumes are in separate AWS accounts.
This is not required, but then it might make more sense to use the sts:Federated approach.

102

Setup the AWS IAM user

In the AWS account for the IAM user, create or modify an IAM user policy to include the sts:AssumeRole

permissions as well as any other permissions the user must have. In this example, we assign the user full
CodeDeploy rights.

NOTE: For setting up, if you don't know the role account ID or name at this point, Resources could be
set to all *, but best practices are to come back and restrict the Resources to only the role once the
name is known as shown here.

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [

"codedeploy:*"
1,

"Resource": "*"

b

{
"Effect": "Allow",
"Action": [

"sts:AssumeRole"
1,

"Resource": "arn:aws:iam:: {account id of role}:role/{role-name}""

Setup the AWS IAM role

In the AWS account with the role that is to be used, create a new Role or identify an existing one with the
proper policies (not shown here).

NOTE: The sts:AssumeRole token has permissions that intersect between the IAM user policy(ies) and
the role ploicy(ies) they assume. In other words, the token can't have permissions enabled by both the
user and role policies.

Additionally, this role must have a trust relationship setup between the IAM user in the first account and this
role. It might look like this:

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Principal": {
"AWS": "arn:aws:iam::{account id of user}:{iam-user}"
}I
"Action":
"sts:AssumeRole",
"Condition": {}

103

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html

Create the Base Secret

Next create a Secret in Privilege DevOps Vault with the AWS IAM user access key, secret key, and region.

Create afile named secret root.json substituting your values:

{

"accessKey": "AIA2RAVTSMNW437LM",
"region": "us-east-1",
"secretKey": "SpN5Ipjvgepz0/q0ZNGmFhhLkUr+Uie5+D3CE"

}

Create the Secret via the CLI at a path of your choosing:

dsv secret create --path aws/base/api-account --data @secret root.json -
-attributes '{"type": "aws"}'

Create the Dynamic Secret

Attribute Description

AWS ARN of the role to assign the AssumeRole user token. Can be customer or aws

roleArn
managed

providerType assumeRole

l optional time to live in seconds of the generated token. If none is specified, it defaults to
900

Create the Dynamic Secret

Now you need to create a Dynamic Secret, which points to the base secret via its attributes. The Dynamic
Secret doesn't have any data stored in it. Data is only populated when you read the secret.

Create or update the attributes json file named " secret_attributes.json substituting the ARN of the role you
created.

{
"linkConfig": {
"linkType": "dynamic",
"linkedSecret": "aws:base:api-account”
} 14
"roleArn": "arn:aws:iam::{account id of role}:role/{role-name}",
"providerType": "assumeRole",
"ttl": 1200
}

Now create the dynamic secret in the CLI using the json above.

104

dsv secret create --path dynamic/aws/assume-api --attributes @secret attributes.json

Now anytime you read the Dynamic Secret, the data is populated with the temporary AWS access
credentials.

dsv secret read --path dynamic/aws/assume-api

returns a result like:

"attributes": {
"linkConfig": {

"linkType": "dynamic",
"linkedSecret": "aws:base:api-account"”
}I
"roleArn": "arn:aws:iam:: {account id of role}:role/{role-name}",
"providerType": "assumeRole",
"ttl": 1200
}I
"data": {
"accessKey": "ASIAZTRAVBIVK5SLU",
"expiration": "2020-02-06T18:49:172",
"secretKey": "Xh/xqw5Ipjvgepz0ie6un+zUUsUUI",
"sessionToken": "FwIv...Zggfj+TexEiLtE3h1R1Uv11XCHzk5==",
"ttl": 1200
}I
"description”™: "",
"id": "34fb64d7-18da-453d-9487-3d1c082ba372",
"version": "O"

105

Azure Dynamic Secrets
IBM Security Verify Privilege DevOps Vault relies on Azure service principals to provide Dynamic Secrets.

For Privilege DevOps Vault to generate dynamic Secrets, a base secret must first be created using a service
principal that has permissions to manage other service principals. Those permissions include:

e “Owner" role for the subscription scope

e “Read and write all applications" permission in Azure Active Directory

e Your account must have Microsoft.Authorization/*/Write access to assign an active directory
application to a role

These permissions can be configured through the Azure Portal, CLI tool, or PowerShell. A guide to setting up
the Azure service principals in the Azure portal is provided in the Azure Service Principal section. Create
the Base Secret

The base Secret holds the credentials required for Privilege DevOps Vault to perform API calls to Azure to
query roles and create/delete service principals.

Attribute Description

Required - The subscription ID holding the resources you wish to access using Azure Active
Directory.

Required - The tenant ID for Azure Active Directory. Azure lists it in places as "Directory

subscription_id

tenant_id (tenant) ID"

client id Required - The OAuth2 client ID to connect to Azure. Azure lists it in places as
- "Application (client) ID"

client_secret Required - The OAuth2 client secret to connect to Azure.

Optional - The Azure environment. If not specified, Privilege DevOps Vault uses Azure

i t
environmen Public Cloud.

Create afile named secret base.json substituting your values:

{

"subscriptionId": "6ca2adeb-7b44-4c7£f-93fc-2d5b972%9a8c1l",
"tenantId": "11£54b31-ffb9-42b5-8fda-76c734a7796c",
"clientId": "4d95b358-079d-4d6d-85c4-943c0£1d91cd",
"clientSecret": "tMQ5ZEP?.s5346e15123ba3b5b]"

}

Create the base Secret via the CLI substituting a path of your choosing:

dsv secret create --path azure/base/api-account --data '@secret base.json' --attributes
'"{"type": "azure"}' --desc "azure base credential"

Dynamic Secrets

In Privilege DevOps Vault you can create dynamic Secrets from either an existing service principal or create a
temporary service principal.

106

NOTE Temporary vs Existing Service Principals: Azure does not use these terms, but Privilege DevOps
Vault can either use a service principal that you have already setup (existing) or Privilege DevOps Vault
can create a service principal on the fly (temporary) through Azure's role-based access control (RBAC).

If possible, a temporary service principal is preferred. Temporary service principals are independent
from other service principals and provide fine grained access and auditing. However, creating
temporary service principals can take up to 2 minutes before fully provisioned on Azure.

Use of an existing service principal is required in some cases when Azure services are not accessible
through Azure RBAC. In these cases, an existing service principal can be set up with the necessary
access and Privilege DevOps Vault can create a new client secret for this service principal each time the
dynamic secret is read. One issue with this might be that Azure limits the number of passwords for a
given Application object, but this can be managed by reducing the secret TTL. Also keep in-mind that
Azure does not log actions related to each secret, so auditing is not a clean as with temporary service
principals.

Dynamic Secret for an Existing Service Principal

Create a dynamic Secret that points to the base Secret via its attributes. The dynamic Secret doesn't have any
data stored in it because data is only populated when you read the Secret.

Attribute Description

Optional- Azure role name to be assigned to the existing service principal. Does not change

roleName L. .
existing principal's role

appld Required - Application (client) ID for an existing service principal

appObjectId Required - Application Object ID for an existing service principal

Optional - Time to live in seconds of the generated token. If none is specified, it defaults to
900

ttl
Create an attributes json file named secret attributes.json substituting your values

{
"linkConfig": {

"linkType": "dynamic",
"linkedSecret": "azure:base:api-account”

} 14
"roleName": "Contributor",
"appId": "f81b3c6d-2ce9-47d4-ad2d-fef8390792a2",
"appObjectId" : "5fe2l18ee-cb58-4089-ac9f-blb68971ad73",
"ttl": 360

}

Create the dynamic Secret via the CLI substituting the path of your choosing.

dsv secret create --path azure/dynamic/api-account --attributes '@secret attributes.json'
--desc "azure dynamic credential"

107

Now anytime you read the dynamic Secret, the data is populated with the temporary Azure access credentials.

dsv secret read --path azure/dynamic/api-account

Returns a result like:

{

"id": "6e7de928-5027-4afb-bbff-b3ee59£f9c24f",

"path": "dynamic:azure:sp-static",

"attributes": {
"appId": "f81b3c6d-2ce9-47d4-ad2d-£fef8390792a2",
"appObjectId": "5fe218ee-cb58-4089-ac9f-blb68971ad73",
"linkConfig": {

"linkType": "dynamic",
"linkedSecret": "azure:base:api-account”

1y
"roleName": "Contributor",
"ttl": 360

}I

"data": {
"appObjectId": "5fe218ee-cb58-4089-ac9f-b1b68971ad73",
"client id": "£f81b3c6d-2ce9-47d4-ad2d-fef8390792a2",
"client secret": "bfetac86-3671-4£fd9-8f76-8f2e0£224954",
"role": "Contributor",
"subscription id": "6caZadeb-7b44-4c7f-93fc-2d5b9729%a8cl",
"tenant id": "11£54b31-ffb9-42b5-8fda-76c734a7796c",
"ttl": 360

}I

"created": "2020-02-24T16:42:3472",

"lastModified": "2020-03-04T19:21:042z",

"version": "13"

Dynamic Secret for a Temporary Service Principal

Note: Creating service principal and assigning role in same request takes tens of seconds (over a
minute has been seen), The command has been broken down into two separate calls. In the first call
the service principal is returned along with the task id that fired in the background for role assignment.
You need to wait to use that temporary service principal or check via the Azure portal or via the
Privilege DevOps Vault API (provided below)

Attribute Description

Optional - If no "roleID" is assigned, Privilege DevOps Vault tries to look-up the built-in Azure
role by this name.

Optional - Azure role id to be assigned to the temporary service principal. If not defined, then
roleId Privilege DevOps Vault attempts to look up the Azure built-in role by "roleName". However,
role ID takes precedence. One of roleName or roleID required.

roleName

scope Required - Azure resource group to be assigned to the temporary service principal

Optional - Time to live in seconds of the generated token. If none is specified, it defaults to
900.
Note: Azure built-in role names and IDs can be found here

108

ttl

https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles

Create an attributes json file named secret attributes.json substituting your values.

{

"linkConfig": {

"linkType": "dynamic",
"linkedSecret": "azure:base:api-account"
by
"roleName": "Contributor",
"roleId": "/subscriptions/<Azure Subscription

ID>/providers/Microsoft.Authorization/roleDefinitions/b24988ac6180-42a0-ab88-
20£7382dd24c",

"scope": "/subscriptions/<Azure Subscription ID>/resourceGroups/<resource group
name>",

"ttl": 36000

Create a new Dynamic Secret via the CLI substituting the path of your choosing.

dsv secret create --path /azure/dynamic/api-account --attributes '@secret attributes.json'
--desc "azure dynamic credential"

Now anytime you read the dynamic Secret, the data is populated with the temporary azure access credentials.

"id": "27a405c6-14b4-4d4b-b566-9fe23f1012c2",
"path": "dynamic:azure:ac-api",
"attributes": {

"linkConfig": {

"linkType": "dynamic",

"linkedSecret": "azure:base:api-account"
}y
"roleId": "/subscriptions/6ca2adeb-7b44-4c7f-

93fc2d5b9729%a8cl/providers/Microsoft.Authorization/roleDefinitions/b24988ac-6180-42a0-
ab88-20£7382dd24c",

"roleName": "Contributor",

"scope": "/subscriptions/6ca2adeb-7b44-4c7f-93fc-2d5b9729%a8cl/resourceGroups/dsv-
resource-group",

"ttl": 36000

}I
"description": "azure root credential",
"data": {

"appObjectId": "ed63477c-7d90-4743-92f2-c7f44ede8ec9",

"client id": "945d25cb-7697-4648-b574-e8a660154269",

"client secret": "celd072d-449d-4052-9a81-0d7ef982f7a4",

"role": "Contributor",

"roleAssignmentId": "/subscriptions/6cal2adeb-7b44-4c7f-
93£fc2d5b9729%a8cl/providers/Microsoft.Authorization/roleDefinitions/b24988ac-6180-42a0~-
ab88-20f£7382dd24c",

"roleAssignmentStatus": "created",

"roleAssignmentTaskId": "task 3dala37c-0alc-4ebd-8829-dbe7b988b36f",

"spObjectId": "1782611c-99¢c2-418b-b672-783e3cf8bd1l4",

"subscription id": "6caZadeb-7b44-4c7f-93fc-2d5b9%729%a8cl",

109

Ll

"tenant id": "11£54b31-ffb9-42b5-8fda-76c734a7796c",
"ttl": 36000

b
"created": "2020-02-12T20:57:442z7",

"lastModified": "2020-03-04T19:27:45z",
"version": "12"

}

It takes some time for the temporary service principal to be created, so you can check using the Azure portal
for the new service principal or use the Privilege DevOps Vault API:

Use the roleAssignmentTaskId from above response

method path

GET /vl/task/status/

Sample Response:

{

"taskName": "azure role assignment",
"state": "SUCCESS",

"results": null,

"error": "",

"createdAt": "2020-03-

04T19:28:07.420285103Z2" }

Azure Service Principal

This is a step-by-step guide to creating an Azure service principal with the privileges necessary to enable
Azure credential generation.

An Azure service principal is an identity created for use with applications, hosted services, and automated
tools to access Azure resources.

These are the links to azure documentation on service principal:

e Service Principal
e Create Service Principal

Creating a Service Principal for the Privilege DevOps Vault Base Secret

Go to the Microsoft Azure portal and login.

Go to Azure Active Directory.

Click App registrations then New registration. Enter an application name and then click Register.

Take note of the Application (client) ID and Directory (tenant) ID. They are the Privilege DevOps Vault Base
secret clientId and tenantId parameters respectively.

110

https://docs.microsoft.com/en-us/azure/active-directory/develop/app-objects-and-service-principals
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://portal.azure.com/

= Microsoft Azure P Search resources, services, and docs (G+/)

Home Default Directory | App registrations DsV_Tnal
(1 1] -
i DSV _Trial

&« o

Delete &P Endpoints

£ Bearch (Ctri+))

Display name : DSV _Tria

Application (client) 1D : cb I NNINGTNGNGNGNGNEEEE
Directory (tenant) ID : e2 GGG -
Manage /' Object ID e

B overview

{}" Quickstart

5. Select Certifications & secrets then New client secret. Enter a description and when it expires. Click Add.
6. Take note of the newly generated secret which is the c1ientsecret parameter in the Privilege DevOps Vault

Base Secret.

Client secrets

A& secret string that the application uses to prove its identity when requesting a token. Also can be referred to as application password.

New client secret

Description Expires Value

-
(=)

Password uploaded on Mon Mar 30 2020 3/30/2021 /' N O D

7. Select API permissions and then Add a permission.
8. Under Supported Legacy APIs, select Azure Active Directory Graph.
9. Select Delegated permissions, expand the User accordion, and then check the User.Read box.

111

What type of permissions does your application require?

Delegated permissions Application permissions

Your application needs to access the APl as the signed-in user. Your application runs as a background service or daemon without a
signed-in user,

Select permissions expand all
| Type to search

Permission Admin consent required

> Directory

> Group

> Member

> Policy

v User (1)

v User.Read
Sign in and read user profile @

P

D User.Read.All ;
Read all users' full profiles © es
D User.ReadBasic.All
Read all users® basic profiles @

10.Select Application permissions and expand the Application and Directory accordions. Check the
Application.ReadWrite.All and Directory.ReadWrite.All boxes.

112

What type of permissions does your application require?

Delegated permissions Application permissions

Your application needs to access the APl as the signed-in user. Your application runs as a background service or daemon without a
signed-in user,

Select permissions expand a

Type to search

Permission Admin consent required
\ Application (1)
ication. ite.all
/ ::;;Icaant cljo-::feag[‘;v;;;iﬁations ® e
0 Application.ReadWrite.OwnedBy ‘ ves
Manage apps that this app creates orowns (@
> Device
“ Directory (1)
0 Directo_ry.Read.All -
Read directory data (@
Directory.RegdWrite.All Yes
/'lzj Read and write directory data
> Domain
> Member

> Policy

11.Select Add permisssions at the bottom of the page. This takes you back to the API Permissions page. Notice
that the Application permissions have warnings that those permissions are not yet granted.

12.Click Grant admin consent for Default Directory and then Yes. This step can be easy to miss.

113

Configured permissions

Applications are authorized to call APIs when the,f are granted permissions by users/admms as part of the consent process. The list of configured permissions should include
all the permissions the application needs. Learn more about permissions and consent

Add a permission ‘ ‘ Grant admin consent for Default Directory

AP/ Permissiol@

Type Description Admin consentreq... Status
Application Read and write all applications Yes A\ Not granted for Default ==+
Application Read and write directory data Yes £\ Not granted for Default

Delegated Sign in and read user profile

Delegated Sign in and read user profile

13.Navigate to Home > Subscriptions and take note of the Subscription ID that you are using. This is the
subscriptionId in the Privilege DevOps Vault Base Secret.

Microsoft Azure
Home > Subscriptions

Subscrlptlons

Default Directory

Add

Showing subscriptions in Default Directory. Don't see a subscription? Switch directories

P Search resources, services, and docs (G+/)

My role (O Status (O
‘ 8 selected % | 3 selected
Apply
Showing 1 of 1 subscriptions Show only subscriptions selected in the global subscriptions filter ®
‘ L Search to filter items...
Subscription name Ty Subscription ID T™L Myrole
2 Azure subscription 1 oS Owner

14.Click into the Subscription ID then Access control (IAM) then Add in the Add role assignment box on the

right.

15.Select Owner in the Role dropdown.

16.Select Azure AD user, group, or service principal in the Assign access to dropdown.

17.1n the Select field, enter the application name or Application (client) ID saved previously and select it so that
it shows up under Selected Members below.

114

18.Click Save

Add role assignment X

Role (O

= |
ot feedback? / Owner (U v

Assign access to (D

pdministrators Roles / Azure AD user, group, or service principal v

Select (&
/ DSV_T
) Add a role aSSic
11\/ Grant access to res No users, groups, or service principals found.

assigning a role to
principal, or manag

View role assig

View the users, gro
and managed iden'
assignments granti Selected members:
scope.
DSV_Trial

View deny assit

® View the users, gro

and managed iden
denied access to sg
scope.

[View |
e == | ova |

>

Creating a Service Principal for a Privilege DevOps Vault Dynamic Secret

In the Azure Dynamic Secrets section, we discuss Privilege DevOps Vault using an "existing service principal"
vs Privilege DevOps Vault creating a "temporary service principal". This is guidance on creating an existing
service principal in the Azure portal. In the case of the temporary service principal, no guidance in Azure is
needed because Privilege DevOps Vault creates them.

1. Go to the Microsoft Azure portal and login.

2. Go to Azure Active Directory.

3. Click App registrations then New registration. Enter an application name and then click Register.

4. Take note of the Application (client) ID and Object ID. They are the Privilege DevOps Vault Dynamic
Secret appId and appObjectId parameters respectively.

115

https://portal.azure.com/

— Microsoft Azure P search resources, services, and docs (G+/)

Home Default Directory | App registrations Dsv_Trial

(T DSV _Trial

£ Bearch (ctr+) |<< [pelete & Endpoints

ey T

Display name . DSV _Tria

Application (client) 1D : cb NGNS
Directory (tenant) ID o2
Manage Object ID s

B Overview

& Quickstart

o1

. Navigate to Home > Subscriptions

6. Click into the Subscription ID that you are using and then Access control (IAM) then Add in the Add
role assignment box on the right.

7. Select Role dropdown, select the role you wish to provide. In this example, we use Contributor.

Select Azure AD user, group, or service principal in the Assign access to dropdown.

9. Inthe Select field, enter the application name or Application (client) ID saved previously and select it so
that it shows up under Selected Members below.

10.Click Save

o

Add role assignment X

Role (O

O Got feedback? / Contributor © v |

Assign access to (i

dministrators Roles | Azure AD user group, or service principal v
Select (O
a/ Thy .
D Add a role a8 Thycotic TMS -
» —_—
il
r V| Grant access to res —

assigning a role to

Thycotic Wiki
principal, or manag

m Selected members:

- . ; __ Thycotic Chat Connector
View role assig i —~—

Py
=y

View the users, gro
and managed iden’
assignments granti
scope.

GCP Dynamic Secrets

There are two ways to generate dynamic GCP secrets:

116

e Token Generation
e Service Account Key

Token generation creates an access token that can be used as the bearer token in the GCP API. Service
account key generation creates a new key on a service account in GCP and then deletes the key after the
specified time to live is up.

Setup

Create a GCP Service Account

For setting up GCP token or key based dynamic secrets you first need a service account in GCP.

e Go to Service Accounts under IAM & Admin in the GCP console

e Click Create Service Account and grant it access to a project

e Generate a key for the service account and save it

e Under IAM Assign the service Account Key Admin and Service Account Token Creator rolesto
the new service account. Also give it storage Admin which is used for testing the dynamic secrets

Create the Base Secret
Next create a Secret in Privilege DevOps Vault with the AWS IAM user access key, secret key, and region.
Create a file named secret root.json substituting your values from the service key file:

{
"projectId": "test-project-1234",

"type": "service account",

"privateKeyId": "XXXXXXXXXXXXXXXXXXXKXXXXXXXKXXXXXXX",

"privateKey": "---——- BEGIN PRIVATE KEY----- \n...\n-————- END PRIVATE KEY----- \n",
"clientEmail"™: "dsv-test@test-project-1234.iam.gserviceaccount.com",
"clientId": "XXXXXXXXXXXXXXXXXXXXXXXXXXXXX",

"tokenUri":

"https://ocauth2.googleapis.com/token"
}

Create the Secret via the CLI at a path of your choosing:

dsv secret create --path gcp/base/svc-account --data @secret root.json --attributes
|l {"type": "gcp"} |l
OAuth Access Token
Attribute Description
scopes Array of GCP OAuth 2.0 scopes for the dynamic token
providerType token

Now you need to create a Dynamic Secret, which points to the base Secret via its attributes. The Dynamic
Secret doesn't have any data stored in it because data is only populated when you read the Secret.

117

https://cloud.google.com/iam/docs/creating-short-lived-service-account-credentials
https://cloud.google.com/iam/docs/creating-managing-service-account-keys
https://developers.google.com/identity/protocols/oauth2/scopes

Create an attributes json file named " secret_attributes.json' substituting your values.

{
"linkConfig": {

"linkType": "dynamic",

"linkedSecret": "gcp:base:svc-account"
|

"providerType": "token",

"scopes": [

"https://www.googleapis.com/auth/devstorage.full control”

}

Create a new Dynamic Secret
dsv secret create --path dynamic/gcp/token --attributes @secret attributes.json

Now anytime you read the Dynamic Secret, the data is populated with the a temporary access token that is

valid for 1 hour.
dsv secret read --path dynamic/gcp/token

returns a result like:

{
"id": "ba2flfc7-cl6f-4062-a216-3116d1ad42545",
"path": "dynamic:gcp:token",
"attributes": {
"linkConfig": {

"linkType": "dynamic",

"linkedSecret": "gcp:base:svc-account"
}I
"providerType": "token",
"scopes": [

"https://www.googleapis.com/auth/devstorage.full control"

}y

"description": "gcp dynamic token secret",

"data": {
"access token": "ya29.c.Ko8ByAfMsL-...JbFloC6tOiUCOM6vXn7YNhZA",

"expiry": "2020-04-26T22:04:32.3897188z2",
"ttl": 3600

You can validate the credentials are able to read storage buckets by making an API request with the access
token in the authorization header to the storage API for your project, substituing your values:

curl -H 'Authorization: Bearer {access token}'
https://storage.googleapis.com/storage/vl/b?project={project id}

118

Service Account Key

In this example, rather than generating an OAuth token we generate a new key in json format for the service
account. This creates a new key in GCP that can be used to authenitcate with the gcloud CLI or other SDK's.
Once the ttl for the dynamic secret expires the key is removed.

Service accounts in GCP are limited to 10 keys per account. If you exceed this you get a 400 error

reading the dynamic secret with a message of unable to create new service account key
googleapi: Error 429: Maximum number of keys on account reached., ratelLimitExceeded

To help avoid this ensure that you keep ttl's relatively low for service account keys to ensure they get
cleaned up. You can also create multiple service accounts with the same permissions in GCP and then
create a base secret for each one to help spread the number of keys across service accounts.

Create the Base Secret

For this example, we reuse the base secret from above. If you haven't done this already, then follow those
directions to create the base secret now.

Create the Dynamic Secret

Attribute Description

providerType serviceKey

ttl required time to live in seconds of the generated token.

Create or update the attributes json file named secret attributes.json changing the provider type to
serviceKey and replacing the

{
"linkConfig": {
"linkType": "dynamic",
"linkedSecret": "gcp:base:svc-account"

|

"providerType": "serviceKey",
"ttl": 3600
}

Now create the dynamic secret in the CLI using the json above.
dsv secret create --path dynamic/gcp/secret-svc-key --attributes @secret attributes.json

Now anytime you read the Dynamic Secret, the data is populated with the GCP service key.
dsv secret read --path dynamic/gcp/secret-svc-key

returns a result like:

{
"linkConfig": {
"linkType": "dynamic",
"linkedSecret": "gcp:base:svc-account”

119

|
"providerType": "serviceKey",

"ttl": 3600
}I
"data": {

"keyAlgorithm": "KEY ALG RSA 2048",

"keyOrigin": "GOOGLE PROVIDED",

"name": "projects/test-proj-1234/serviceAccounts/dsv-
testltest-
progl234.iam.gserviceaccount.com/keys/0e4c690b713bfeled517ed56¢cba4
814afd35a8ad", "privateKeyData":

{

"client id": "XXXXXXXXXXXXXXXXX",
"auth uri": "https://accounts.google.com/o/ocauth2/auth",
"client x509 cert url": "https://www.googleapis.com/robot/vl/metadata/x509/dsv-

test%40test-proj-
1234 .iam.gserviceaccount.com",

"auth provider x509 cert url": "https://www.googleapis.com/oauth2/vl/certs",
"client email": "dsv-test@test-project-1234.iam.gserviceaccount.com",
"private key": "----- BEGIN PRIVATE KEY----- \nMIIEVQIBADAN. ..iV7quFF35ILBG+w=\n-——----
END PRIVATE KEY----- \n",
"private key id": "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
"token uri": "https://oauth2.googleapis.com/token",
"type": "service account",
"project id": "test-proj-1234"
}I
"ttl": 3600
}I
"description": "",
"id": "34fb64d7-18da-453d-9487-3d1c082ba372",
"version": "Q"

Copy the inner JSON of privateKeyData into a file and name it svc-account.json. Then using the gcloud CLI
run gcloud auth activate-serviceaccount --key-file svc-account.json to testthe generated key is
valid. If so, you get a reply similar to 'Activated service account credentials for: [service account email]'

After the ttl expires you can check the keys on the service account and they are removed. Note that there may
be some delay between when the ttl expires and when the key is removed from the service account.

120

MySQL Dynamic Secrets

Database Dynamic Secrets are similar to IaaS Dynamic Secrets in that the idea is to provide temporary
credentials for very specific uses. The possible damage done by leaked credentials is severely limited to due
to granular policies and short time-to-live. However, IaaS platforms provide mechanisms for ephemeral
credentials with fine-grained policies, and most databases do not. Therefore, Privilege DevOps Vault provides
a way to provide ephemeral credentials by creating and deleting users in a just-in-time manner.

H((

3. Credentials Used —— o

DSV

Engine Customer Network
v (on-prem or laa$)

ANSIBLE
®

2. New User and
credentials generated and

sent back.
L "
1. Read Secret| -
5 4. DSV Engine Deletes the User after TTL
X Base
Dynamic i
(Policy and TTL)
g

Privilege DevOps Vault Engine Required

MySQL Dynamic Secrets requires the deployment of the Privilege DevOps Vault Engine. See the instructions at
Privilege DevOps Vault Engine

Dynamic Secret Setup

In the CLI, create a base secret containing the credentials of the MySQL account that is responsible for
creating new MySQL accounts on a given MySQL server.

The secret could look like the following:

{
"path": "db:mysgl:root",
"attributes": {
"type": "mysql"
by

"description": "mysqgl root credentials",
"data": {
"host": "database-l.cjgpjhgsaz53.us-east-1.rds.amazonaws.com",
"password": "P@ssword!",
"port": 3306,
"username": "admin"

121

}

The path is arbitrary, as is the description, of all secrets. To mark a secret as a MySQL root secret, ensure its
attributes contain a key type with a value of mysql. All fields in the data object are required.

Then create a new dynamic secret linked to the root secret. The secret could look like the following:

{

"path": "db:mysqgl:dynl",
"attributes": {
"grantPermissions": {
"what": "SELECT",
"where'": "* _*"

Yy
"linkConfig": {

"linkType": "dynamic",
"linkedSecret": "db:mysgl:root"
}I
"pool":
"pooll",
"ttl": 1000
}I
"data": {1},

}

The path is arbitrary. There is no secret data when creating the dynamic secret. All the necessary information
is in the attributes, where all the fields are required. In the 1inkConfig, be sure to specify the path of the root
secret as the value of the 1inkedsecret key. The value of 1inkType is always dynamic for dynamic secrets.

The grantpPermissions object specifies the permissions assigned by MySQL to the new user account. The tt1
specifies the number of seconds for which the new account exists before the engine automatically deletes it.

The attributes may also include an optional userprefix key whose value is a string prepended to all MySQL
account usernames created from the dynamic secret.

Sending a MySQL task to an engine

Read the MySQL dynamic secret. A randomly chosen engine in a pool of engines receives the task and
performs it. The engine attempts to create a MySQL account and reports back success or failure. On success,
the user also receives the new working credentials. As long as there is at least one running engine in a given
pool, some engine receives a MySQL account revocation task and delete the account once its TTL expires.

Privilege DevOps Vault Engine

An engine is an agent performing tasks on any remote machine. After deployment, the agent opens a real-
time two-way communication channel with the main Privilege DevOps Vault API. Users of the API can send
the agent tasks to complete, and the agent, having completed a task or failed, reports back to the caller.

An engine is designed to be a long-running process that completes tasks on demand and automatically in the
background.

122

The initial use of the Privilege DevOps Vault Engine is to support database dynamic secrets. In this use-case, a
user or application requests access to a database. Privilege DevOps Vault has a "base" secret that gives
Privilege DevOps Vault access to the database and permission to create users along with permissions and
credentials. Privilege DevOps Vault provides those new credentials to the user or application for use. Then
when the TTL expires, Privilege DevOps Vault goes back to the database and delete that user. This provides
just-in-time access and eliminates the need for credential rotation.

Future uses of the Privilege DevOps Vault Engine include additional authentication methods and password
rotation.

Customer Firewall

The Privilege DevOps Vault Engine uses secure websockets (wss) on port 443 TCP outbound. Since most
users already have this port open for web access, they do not need to make firewall changes.

Registering a pool and an engine

Users can create engines as other entities (like roles, users) in Privilege DevOps Vault. Privilege DevOps Vault
organizes engines in pools, so an engine must be assigned to an existing pool. Using the DSV API, users first
create a pool, then an engine assigned to that pool. An engine can only be assigned to one pool. A pool can
contain many engines.

Starting an engine

To start an engine in a container, pull the appropriate image and run a container from it. The result depends
on the environment variables you provide to the new container. If you had created a pool, but not engine, you
can register a new engine and start it in one step:

docker run -e ENGINE NAME=enginel -e DSV _POOL=pooll -e DSV _TENANT=bob -e
DSV_URL=secretsvaultcloud.com -e DSV _TOKEN=eyJhbGcxNjAKadw dsv-engine

You see the private key and other information about the new engine displayed once it has been registered,
and the container has been started. Store the private key and other information securely.

If you already have a registered engine and want to run it in the container, then provide a different set of
environment variables:

docker run --name eng --rm -e ENGINE NAME=enginel -e
DSV_ENDPOINT=bob.ws.secretsvaultcloud.com -e DSV _PRIVATE KEY=LSOtLS1CRUiBSkFURS dsv-
engine

In either case, on successful engine start, you get a message saying that the engine is ready and waiting for
messages.

List of environment variables for engine Docker container

e ENGINE_NAME
e DSV_POOL
o DSV_TENANT

123

https://dsv.thycotic.com/api/index.html#tag/Pools

e DSV_URL

e DSV_TOKEN

e DSV_PRIVATE_KEY
e DSV_ENDPOINT

Running the Privilege DevOps Vault -engine binary directly

The container encapsulates the operations of the dsv-engine binary, which is a client-side CLI program to
register and run an engine. It exposes two commands: register and run. Standard help is available with

dsv-engine register -hand dsv-engine run -h.

Certificate Issuance

IBM Security Verify Privilege DevOps Vault provides the ability to generate and sign leaf (end-entity)
certificates or to create and sign a certificate from a certificate signing request (CSR).

All certificates assume RSA 2048 key-pairs and SHA-256 Hashing

A signing certificate is required, and it may be generated in Privilege DevOps Vault or imported from an
outside Certificate Authority (CA). This documentation often refers to the signing certificate as the "root"
certificate. However, in the case of a signing certificate being imported from an outside CA, best practices are
to use an intermediate certificate as the Privilege DevOps Vault signing certificate.

All the dsv pki <action>commands start a workflow if no flags are added. However, --help (or -h) can
be used for help. In these examples we provide the direct commands.

Generate a Signing Certificate

The command to generate a self-signed root certificate and private key is dsv pki generate-root

Flag Description

commonname Required - The domain name of the root CA
rootcapath Required - Path and name of a secret that contains the signing certificate

. Required - List of domains that this signing certificate is allowed to sign leaf
domains

certificates
Required - Maximum time to live in hours for a leaf cert signed with this signing

maxtl certificate. This also sets the expiration date (time) of this root certificate

crl Optional - URL where customer-supported certificate revocation list (CRL) resides
country Optional

state Optional

locality Optional

email Optional

124

organization Optional

This command generates a root certificate named foobar.org and corresponding private key for signing leaf
certificates with the common name foo.org and/or bar.org. They are saved in the secret path, ca/myroot, that
is referenced when a leaf certificate is generated and/or signed.

dsv pki generate-root --rootcapath ca/myroot --domains foo.org,bar.org —--common-name
foobar.org --organization FooBar, Inc -country US --state IA --locality Boone --maxttl 1000

The output from the above command only shows the certificate and is base64 encoded.

To retrieve the root certificate and private key, run dsv secret read --path ca/myroot

{

"attributes": {
"type" : "CA"
b
"created": "2020-04-09T20:29:412z",

"createdBy": "users:thy-one:dsvtest9519@mailinator.com",
"data": {
"cert":

"LSOtLS1CRUAJTiBDRVJUSUZJQOFURSOtLSO0tCk1JSURNakNDQW1xZ0F3SUJIBZ01FTVp4NWIgQUSCZ2txaGtpRz13M
EJBUXNGQURCaE1Rc3dDUVIEVIFRROV3S1YKVXpFTE1BaOdBMVVEQOJINQINVRXhEakFNQOmdOVkJIBY1RCVUp2YjIlbEl
STXdFUV1EV1FRSOV3cEdiMjlDWVhIcwpTVzVgTVFrd0J3WURWUVEMRXdABeEZUQVRCZO5WQkEFNVERIUM91V052ZEdsa
kxtTnZiVEF1RncweUlEQTBNRGt5Ck1ESTVOREZhRncweULlEQTFNakVATWpINUSERMENROVAQ3pBSkInT1ZCQVIUQWX
WVE1Rc3dDUV1EV1FRS
UV3SkoKUVRFTO01BdOdBMVVEFQNhNRIFtOXZibVV4ARXpBUkJINT1ZCQWOUQ2tadmIwSmhjaXhKYm1NeENUQUhCZ0O5WQKE
zVAPBREVWTUJNROExVUVBeE1NZEdoNVkyOTB
hV01l1WTIS5dE1JSUJJakFOQmdrcWhraUc5dzBCQVEFFRkFBTONBUThBCk1JSUJDZOtDQVEFFQXRVUJFKaDZ4UkdRYVZ00
WhvaUdvWjdiN3JTVzk3YVFhRnprK2VESUNhZ
ThFSJFpYkdSQl1AKVFJIMUZHLZ1InMUtNTFhPUjJArcDRWSH1vYJhzVVhSb0tYeHZZa2t4eXM4RJBoVVAEb1UxZHJIFVXh
rZGkOR3BhdQpObEJJaWhmblpRdmtnYOtxMzF
oYktpS1lIwaTUObONNNjhyNVY2VUY4bVpNQWloa2cyal0l2emFIMFEOTGE2d3FaCj1SRIFSULJLRkIzZNEx6SUdnaFpDS
1dTUkY2UDZnSWJIpM2VOck1KRWdsaUdgblFYW

JJ1anJd1RURWaHhgQ295W3 YKAmdUdDIza2dxWnNOQUxxUE9CazJGeGZZQ3FuS2d3TTAdRYTNRAmdNeVEOeG5KSTBqTUJ
aVWpFUOIvSmRiRVo5eQplckhsZGpSYnEFSUjh

rRORsYksweDBkUW1 jNHpUQitOcOJRSURBUUFCbzBJd1FEQUIOCZO5WSFE4QkFMOEVCQU1DCkEFvUXdIUV1IEV1IIwbEJCW
XdGQV1JS3dZQkJRVUhBAO1HQONzZROFRVUZCA
01CTUE4ROEXVWRFAOVCL3dRRk1BTUIKQWY4d0ORRWUpLblpJdaHZjTkFRRUXCUUFEZ2dFQkFBCEZNYWhFM1FINHQ3UOg
zczNNK1ZUSGJIpSWhrUnVxazVVZQozK1IM2Ykp

1L3ROCckRVTE51SFkyaDBPRGpmMcWI3QWk5RE1SM)c3dW8vVkhOQW1 zWnolbEJS5TJILZSs3YUxXY2FTC1Voekl1FVUt6C
m4vMWIO0T2Q5S2RuVIWJI1cS8xXNEVCVMmUyb0t4Y

1k1cHdAJZTZnMkpVMW50SGM2 SENENmMJVNVRNVmMgKbzNWc1JONVAS5VUs4aWsraUlDbktObVRJUWhsRDVhZ2VJeVp0UmY
yQ01xdzROT1dMRzU4b011UTQrcjvVwY2Vgegp
FSGI1UHPpiR29wMGI3NUdyQVFZbWhEFU2d4SnVUZWI3WnZiTUIxbG5QdnFyWWNCNOOMR2VyaDY4bHZ4K1NadVk2CmE2N
1dORmNobjF1R3cO0W1QOxdz14Vk5VOVhgRndvbjRgaGOVAIRxXxROk0OL2cON1JVY1INoZz0KLSOtLS1FTkQgQOVSVE1IGSUN
BVEUtLSO0tLQo=",

"domains": ["foo.org", "bar.org"],
"maxTTL": 1000,
"privateKey":

"LSO0tLS1CRUAJTiBSUOEgUFJJVkFURSBLRVktLSOtLOpNSULlFb3dJQkFBSONBUUVBAEFVSMUpoONNhSRIFhvVnQ5aG9pR
29aN2I3clINXOTdhUWFGemsrZURJQ2F10EVKMW1iCkdSQ1BUUkkxRkcvOWCxSOIMWE9SMCLtwNFZIeW9iOHNVWEJvS1lh
4d11ra3h5czhGMGhVVORUVTFkckVVeGtkaTQKR3BhdU5sQklpaGZuWlF2a2djS3EzMWhiS21

KU3FBpNTRVvQ2c20HI1VjZVRjhtWk1BaWhrZzJrTXZ6YUkwUTRMYQ02d3FaOVJIGUVJISUKtGQIMOTHPpIJR2doWkNKVINSR

125

JZONMdJIYmkzZUS5yTUpFZ2xpR2pvUVhaMmVgc
NVFRFZoeGpDCm95W3jZ2Z21ROMINrZ3FacO05BTHFQTO0JrMkZ4Z11DcW5LZ3dNN1IFhM1F2Z015UTR4bkpIJMGPNQlpVakV
TQi9KZGIKRV0o5eWVySGxkalJicVISOGtHRGx
1S5zB4MGRRbWM0elRCKO05zQ1FJREFRQUJIBb01CQUJIYYk1UenRhblpTazVKeAo4TFc1IMVRKYOwS50OmE3cUhLelpLeldre
Jd6S3ExXT1IEWOMRBSDAVM1EFwZzlgby8rbzdvO
GMvTGhBZEwWxRVEqc2FiCjkrS1lolekk4aTBwb21WUCIOPV3R3VEVSRk5]jJdzFzNXBnUINKL2xKWGI3RU1xU3EOM1Z1RUd
kYy9rT1duRkpaUncKSWY40OW1vMzJRU21VeWM5Q21FZ09hNVdsaORmODZLYJIMS2ZscXE1QWkybCs2VVRQTGovej1pT
GhDcTdgTFRtVwpaSzVhcVdaUnpNQ24 rVEhnNNEAUY2dBeW1 0VzInbUo2RFBSW1dzaHJISUUJ2V
V10Y1JJSnBKN3FQb3hEOGPMNXIyCmVXV0UzZGslbzJSdG5aZFRZU095N004ZFM5¢c2F0Sk1UQmAxNOZNbkFRR2EQS2p
1YStkQ3RuVjRPaGhivV240dGIKR2NtUjJVRUN
nWUVBeFd1lOnpvR3p2RnJgSGl3ZmYraVlYUnFvcEJrROVBAOgvUCOSUZFQOMGNNnbjNuYkFKdzZ0OegpEbW1SSH1DNHhEQ
Xh0ZzVgz25mdkMvYS9UcnZXMy9JY3doZzdMM
UtIajh6d2NrOGEVIWDAOZENJWVECZ2w0bU1lCCnNDaVpicmdwblVBbHUxZFRLZ3BULzZVYZzBERX1IHUE15VkpIZmE3cGp
rVO0plQTdSejRtYjczdkVDZ11FQTZ4SzYKWHZUVWEzcEFk10OWV5emhFUIRhNEdzZVTEFMRzZMWRTJCb0owS1h6dEQ4TkVEM
kZTM1RJQ2Jsbk9Rakxod2RpU3ESMgptNnZXejVpVGlteGwvMHI2cERZL3Q1RMJOOEVS5eHVzZZ
GACbDBNTkR1THM2bTRUbUSUWXpVST1qOUF6ajglalVPCmdaTTI1S01zMDNgMGZudGlvejQzYXRnVOM5R3EVOEL2eG0
wVXhsVUNNWUFGeWcxU2d4ZEVWTJRJU243NS8
xWkkKbExtUlpuSjVFZ0ZCKORhcE1PTXdYUDUORDJ1IWIR6ZENtdkgO0bWIzUmRsaDdIMXpudkt DMEZ4NXhMcTBVaOVNc
gpwZzVHU3dOU3drM2k3Rkwlbl1CbENTcDY1c
nBsczBXZ1p2Rm8VvOW1vbEFBNR1ZYOUkObGLVVERYMWICATZBNWZJC1J4TG9UcnV3emRRAOk2Q3FhUjdGNFFLOMAGNm1
00Hc4SUZ0d1ppVFR3UGNNQUPLAWc1dF1WK2 1
WaVNIS09gRIgKNEL1dTY0QOVBS3UreEp6RNZGNUV3RTU2TnFXRH1IPb2RZcnpyM2 IMTFNyWmtaazlhSF1XNFRWWkJ3R
VEVM3Z6NQpRc04xSEXKVUd2WUSvMnZRaklweWt FMS80TFNBbOhxajM4YnE1Y213WmlHWEFpsakEljTnZnYmVBTWEDSGE
rb21XCjJrcVIBb0dCQUkyQW8zdk1lUei84ckc3SFAd6b1VMLOWlOWZwaUMrVXJIvUXUwcUxxR1IBDTkQ2d2kyUy91NKFFS
1IKMWhQRWJI1b1NvUG4vaExhaDNHL3VsWkOtMmU3d1lZ6dHpoblRIBUKkOWGZrbENaUWV4Q3BQOESwWUD1IKUDZHZVVVOQpP
MbHpaSkFjZHVFck5zb2pXcT1uYVhCZkdZUFkyd0kvOXZyQ2 9HUGhDMXVWMURNVEF1QNk9ZCi0tLSOtRUSEIFJTQSBQU
k1WQVRFIEtFWSOtLSOtCg==""

}I

"description": "",

"id": "90delc6b-3c85-42cf-9d6a-758b48fldafs",

"lastModified": "2020-04-09T20:29:417z2",

"lastModifiedBy": "users:thy-one:dsvtest9519@mailinator.com",

"path": "ca:myroot",

"version": "O"

Register (Import) a Signing Certificate

The command to register a signing certificate and private key generated outside of IBM Security Verify
Privilege DevOps Vault is dsv pki register

Flag Description

certpath Required - Path to a PEM file containing the signing certificate.

privkeypath Required - Path to a PEM file containing the signing certificate private key.
rootcapath Required - Path and name of a secret that contains the signing certificate

domains Required - List of domains that this signing certificate is allowed to sign leaf certificates..

126

Required - Maximum time to live in hours for a leaf cert signed with this signing certificate. If
this is set further out in time than the expiration date of the certificate that is being

maxttl . : el e . .
registered, then there is an error. For example, if this signing certifcate has an expiration date
next week, the maxTTL maximium number is 189 hours.

crl Optional - URL where customer-supported certificate revocation list (CRL) resides

As an example, create a file with this certificate and name it cert .pem

MIIDnjCCAoagAwIBAgIJAMOhi74h41RQMAOGCSGSIb3DOEBCWUAMGOxCZzAJBgNVBAYTALIVTMOswCQYDVQQIDAJJITD
EQMA4GALlUEBWWHQ2hpY2FnbzEhMB8GAIUECgwYSW50ZXJuZzXQgV21kZz210cyBQdHkgTHRKkMRMWEQYDVQQODDApmb2 91
YXIub3JInMB4XDTIwMDQXMDAXMIMyOFoXDTI1IMDOQWOTAXMIMyOFowZDELMAKGA1IUEBhMCVVMxCzAJ
BgNVBAgMAk1MMRAWDgYDVQQHDAdADaGLjYWAvMSEwWHwYDVQQOKDBhJbnR1cm51dCBX
aWRNnaXRzIFB0eSBMAGOxXEzARBgGNVBAMMCmZ vb2Jhci5vemecwggEiMAOGCSgGSIb3
DQEBAQUAA4IBDWAWGGEKAOIBAQCxDNinSZ/wDyXCcRCAgGHAGxP8/YW4sX10cStil
gqOjVVCGErOwrLGOrDFb/KxVJI3WVM41h381ZUT/N6QcRr12ZPupPh9P9jjUSNkKJIIS
x2wIsuptRFzuw4nSBoIdDdMunO0CDbscEUWUIjEdsC5kj7DPLaNl6u6icOxxAHIRW
YzQoV92hsimIZvHtzpCoVMsUMF70Nbzh54wZgajzMPV0]jaGKrgLMnuhLs5010+AY4k03N1fsTSNsOA8a+])jXXG331]j
muQPh4UphcmUfMIpEfWwox/qwSrxKz07k6dDWKKemIzgAj /MXA7coOvw)7L39uv/cMVzk/MTeLYW2Jbz7h07CBAgMB
AAGjUzBRMBOGA1UdDgQWBBTRG8S1eQc6720n7j/fPAQss3eAlpjAfBgNVHSMEGDAWGBTRG8S1eQc6720n7/£PAQss3e
AlpjAPBgNVHRMBAfS8EBTADAQH/MAOGCSgGSIb3DOEBCWUAA4LIBAQCUOM)UQVYMGCcPZz1lwzc2GIw57dTONNNyLXUd1iOp
GOrxheplveFkCQOmgrxAMu7Ky ZNEOINmkHY1fOOp7hAzKIWpFBSpMwDZg/lvamjEQriJ+JIxGWo2C34WZgRJIHbunK5S
cBmZBeER93L76Pc8k6eC/01lcus+higs2Mg7Ugg0RsV+fEsS6BELOKQQh+VG+rPg6C
WHOGJr9PiLD+gGorxOZRrXt6gx1X0O0K6RE]1W5wMaxeS2+SKOHGPhaRE+z1xXC9z
7Y837UnAeE9dikJipfgj48zWskUexWb6rxYK7hiz5nX3VCP1XpZp5uFhXmegJlfmDOx0dZF6QQORIK4AMNGZ2mgly3F-—
—-——-END CERTIFICATE-----

Create a file with this corresponding private key and name it key.pem

MITIEowIBAAKCAQEAsSQ54p0mf8A81wnNEQYIB3RsT/P2FuLF9TnErY5ajolVQhhKIMKyxtKwxW/ysVSd11TOJYd/NWVE
/zegqnEa5dmT7gT4£fT/Y410TZCSEsdsCLLgbURC

7s0J0gaCHQ3TLp9Ag2 7HBL11CIxHbAUZI+wzy2jderuonDscQB/UVmMOKFfdobI5
1iGbx7c6QgFTLFDBezjW84eeMGYGo8zD1dI2hig6izJd70S70TtTvgGOINNZZXTEQD]
bDgPGv0o411xt99Y5rkD4eFKYXJ1HZzI6RH1s0sf6sEg8Ss9050nQ1liinJic6gl/zF
wO3KDr8I+y9/br/3DFc5PzE312FtiW8+4dOwgQIDAQABAOIBAEBCGUXVcadlR/X2
PN+0QDu9+UkeaibOfgDGIUVvMbpwl yXhnSoSMvh4Wf2hiUXqaUE6EAOMdVeKJ1lbsZ
TACEVQxwkYU7LokJ2rZJlsnb+Hh7vprjabr520YP+J7kypUsFPTeenpbcrCUgMNU
vkKMUgvrxh3gB3gTOV/MbXrgzCgriHazR27/pPLJALNOAUsSU7CO0XGSa7eJSY6ysO

neKWkWt JiPWa3wTp9LHxeHrkYbEd4cx2G3n0olSMAIUDOUjAkHI20yShkyn/vXUn9

Aygnlp0s26MIgXgk4 6AqoROWIWRYu68FqdXdCl6GRmcBYALKASXJ4Hgz908ufoJf/RIPwWJECGYEASCVCHTX+0ChbzgU
rtODz3ymHK2g2 £SoMGGPPiBHQigqIhaVtprCpMpbhIy4Vk/D2rHbWj+idMufnvAPjr+qJPRzIAOVMRkDYLHGg2WBv4
Owc5ud4Pw+sa9YPhONDmCu4wABvc41bKueP70tAcp04nLSk3B9ZLBnOjONMMDVim2db0CgYEAXT 8M
XawhGI9LpL7tFtIQsvIxTvY1FimC5+CmnFLjcKD/137gz8rVISLCEtPZnh2tDcifxh
yo8UA+/nWHYOtF6JIThfh+DqUWwWCPxJc5djwM8Zs3TrnawIBYWc13wUM7X6FLSX
v5unb61XjPYWMU62z64cVaCH20sCUXing9Sh4gBUCgYAOXZUwGkz /M6grYAS+bELN
VIm62/nGTbSW4AMAZzaRM11/iVz2e7rIGFSYf2wH6JtzIga9LlyNbyPOhAW63J2hvW
fml10bU44CAOMbmen8K0O4hY4dY90vwDbclgllimbalKC3zsKx0Q7JL5oy6cmwx9j51
Md47P0ZvabpCYoqcWlUlvQKBgQC60xnUWNALOJglK5KdaKPcFPv30DgY48WUZ/VM
yvk6nVz3HLzA34DkYwJIJvKOh1Xg2HCvyjZPeE2iH5jYDysnvecp7WBXdh7BxIB1KDNo
SMt+2X£f8Mpnvg6Q7dv3iiOmktIBZrzgXefVI2sCIBSGirlHYfwlmZxzh%909t0js+
PnlMsQKBgAUCVE5yqUGETwkv17I/2Fn+17Hw3Yv8CedlWKB6bwoF5Hd11r01LgpF
gl0bc+NezxCPQd+dBNBgFbcWpWvYPDEfte2u6G94G80giOXczwu7Z231I6puukVv4Uy

8Nz 6NxjrgibNpB/nuili36HKAYDWmMmo57mc7UofPCEieIK/g3DnwG

127

This command saves this signing certificate and key at the secret path ca/myroot and enables it to sign leaf
certs for foo.org and/or bar.org domains (common name).

dsv pki register --certpath @cert.pem --privkeypath @key.pem --rootcapath ca/myroot --
domains foo.org,bar.org --maxttl 900

Generate and Sign a Leaf Certificate

The command to generate a leaf certificate and private key is dsv pki leaf

Flag Description

commonname Required - The domain name that this certificate uses. This must match a domain in the
signing certificate's list.
Required - Path and name of a secret that contains the signing certificate. It does not matter

ootcapath

' P if the signing certificate was generated by Privilege DevOps Vault or imported.

- Optional - Time to live in hours. If not specified, then the maxttl of the signing certificate is
used.
Optional - Path and name of a secret that contains this leaf certificate and private key. If

store-path not specified, then Privilege DevOps Vault does not store the leaf certificate and private
key and there is no way to retrieve them after the initial stdout is deleted.

country Optional.

state Optional.

locality Optional.

email Optional.

organization Optional.

For this example, we request a leaf certificate for bar.org and use the imported signing certificate above
stored at ca/myroot

dsv pki leaf --rootcapath ca/myroot --common-name bar.org --organization FooBar, Inc --
country US --state CA --locality 'San Francisco' --ttl 24

A signed certificate and private key is returned in base64 encoding

{

"certificate":
"LSOtLS1CRUAJTiBDRVJUSUZJQOFURSOtLSO0tCk1JSURaakNDQWs2Z0F3SUJBZ01FR11XNFRUQUSCZ2txaGtpRz13M
EJBUXNGQURCaE1Rc3dDUV1EVIFRROV3S1YKVXpFTE1BaOdBMVVEFQOJNQINVRXhEakFNOMdOVkIBY1RCVUp2YjI1lbEL
STXAFUV1EV1IFRSOV3cEdiMj1DWVhIcwpTVzVgqTVErd0J3WURWUVEMRXABeEZUQVRCZO5SWQKEFNVERIUmMO1V052ZEdsa
kxtTnZiVEF1RncweUlEQTBNVEF3Ckl1gSTVNVGhhRncweUlEQTBNVEV3TWpJINU1UaGENROF4Q3pBSkInT1ZCQV1UQWx
WVE1Rc3dDUV1EV1FRS
UV3SkQKUVRFEV0O1CUUABMVVEQNhNT1UyRNVJRVpSWVclamEFYTmpiekVQTUEWROEXVUVDaE1HUMOS5d1FtRn1INUWE30Qnd
ZRAPWUVFMRXdBeEVEQUI9CZ05WQkFNVEIySmh
JaTVgYjIwd2dnRWINQTBHQINXRINJIY JNEUUVCQVEFVQUEOSUJEdOF3CmdnRUtBb01CQVFDAUdNbm1 ITIJM4TJRGTGABN
H1ESEZTVWYrekxjREFGUWI1SGZ1eTNDMESVL
3RZeHNrTnNRczkKQUJIkZGIyUTBMb jNVWKkRNL2hVcUZIR2pr SGRKUVROSTIMY2IzRGk4QWALVU850HVhOHVPWSttTDZ
ZK211TE9Xegoze jVNNNRFOGAFbHN1QUJ4VKF
wT29hTGlEZV14MUxXWOUdSULVoZmlhZ1RFNVF4V3pmdTVKUOwyYVd2M3RreUhMCnpFandiaGEFDVHV0d0gxM1INrczN50

128

UNwZ091MW1gVIN3WmUOCcIRGY284KzdMMEUVS
DZLcG9zQk1ImWTV5N24wbmOKeUSNL2ZKM2d3eCtpSkIJKalolRnIJgRWxnNNVIyZUs0aG5QdUl zeGFvYO5FSE1IROGNXalN
TOGOzWnpNRNVjYVAFMOPKNINTSDQOrd0ZXazB
ZdzAlcTRTZnQreEhGK1VocFdmZkFnTUJBQUdAgSnpBbE1BNEABMVVkKkRHAFQ1 93UUVBAO1ICMdEQVRCZO5WSEFNVRUREQ
UtCZ2dyQmdFRkJRYORBakFOQmdrcWhraUchd
zBCQVFEFzRkFBTONBUUVBbzdtTJEXRFAKDL3c5Y3VEtWXJ1VzdzUEFSSWXUcCHBWMStIY1BNaOJhLOJvZUwrOEAtM3JIDZWg
yOnM4b09YOXhyVmVWSkZ5KOVNQQPIZjhQSjF
Haz1MeHNzSDJQazk0OTNGMzJ1VGhxUWo0dORuQzg0TkpJdZz1YMIpNSkpDSFBjcOwvVU9kenZraEhLCnkvSHkObD15Y
0dQdGtudmtURkVkTVAKZ2hOcFgvSkxrTF1Q7Z
WthNzFORJjFPOEFaMFZVbXJXMDROYV1DYZzZ5UVAKMV1JbXhSAd1IFLNVJiYWMXSWUXVEISVIWc5Z22dvUnhZOUpFKyt5aFR
OoMUSSKOtYUTZucWVNbk1lSdStxaERON]jRxVwp
mMzhBU110Mk1gRndnTVBEK3ES5R3JOAW12REYxc051cDVDeFEzdi83S2dtNDNHTFFhZ302T0piblNLbmYrM211Cit3M
TOxXUXZJT1pDZDRnNPTOKLSOtLS1FTkQgQOVSV E1GSUNBVEUtLSOtLQo=", "privateKey":
"LSO0tLS1CRUAJTiBSUOEgUFJJVkFURSBLRVkKktLSOtLOPNSULlFb3dJQkFBSONBUUVBcmhgSjRoemQvRGVCUzZRBTO1lne
HhVbEgvc3kzQXdCVUcrUjMzc3R3AERWUDAXTWIKCkRIRUXQUUEFYWECc2MESDNTkxR1IFOUDRWS2hSeG81QjNYVUV6UOS
PM0c5dzR2QUIDbER2 ZkxtdkxvbVBwaSttUG8Kbml 6bHM50CtUT3JSUEICSmJIIZ0FjVIFLVHFHaTRNM21NZFMxZ1JrV
VZJIWDVtbOV4ATIVNVNMzN3VIVWkS5bWxyOQo3WkloeTh4d SThHNFdnazdyY0IS5ZDBWTE44d1FxWURydFpvMNtzR1h1Syt
CWEtQUHV50UJQeCtpcWFMQVRIMk97CnULOU0lc2pUUDNSZDRNTWZvaVETWkd1UmEOeEpZT1Vkbml1SVp6N2pMTVdxS
ERSON1FUEhGCcEVrdkpOMmN6QmIKbkdsaESTZWtraCtQcOJWcESHTUSPYXVEbjdmcl1J4ZmxJYVZUuM3dJREFRQUJIBbO1
CQUAMVUdZNXRHcXElaTRFagpnV3R4AMNNhREcrY01HdAm92T1pVbktOeDAxbkpSY1VavVkdmN1d1lTzEONXNxWU5GM0cOc
EUYREUyTH11REVYdHJZCkFjbE13ckFVembTaXJaWEF1jVnFNMmh6c3RaTloxK1FSNFJRaGIVvZTRPLOtIL2gwZELoRVV
FaFJEUT1LZEO9ReWcKSFVPK1h3U1R2MUcCzKO0J
ONExFdzRROUp3Uks1K1YwRysyZjlgbjQOMOSBZGRIVIWZ1UFRpVXVqelRTaWNGS1BKdwp0alhYeU01VkpzViNOVEZ2a
3ZkVE43WFVhUDNLQ3ZOdUSXWEFUrbG1BS21qgc
2xXSDBIRUJhSONVWWVgMyt4ZURtCnFFR1IASbXc2eFZVYOhTalgzT1BHVEFIrbnR3bXNkRkQ4Z2ZJY1i 9RZXpVRGVNVOV
vM21xSTIpQ2RLbDUWWURLUWkKkKSUxzNHY1RUN

nWUVBeFdxOEdPMGRCRzBkbGIt TWpEUTESNNQOckhGUjhObHNZzOXZ 6Wnd0VzZ4Z0c4dONFWnFhTwpVNU1VeXd4YWxBL
0xQVmMJITAVNHOmM54SyOFQTYrZVJ2cT1x0UL5UC
Ew5UDBDc3dpV1diMHpWAUNDQ1ZYRitaR3diCkRKcVBOZHd1b0dxNVZ0aUhFUKkVEemRUMORWMVAXZ zFyU0 QwR3BmT Ow
50VpYNU9IcGoraEhob2tDZ11FQTR])SjgKRWh
zdS93clZSTjcOMGxsdzRQTUSHMFUxZ01YaT1JVkZ5dkdtQUIXQ3FGUmpZeUtFTHZgQ1h6UFN2ZTRGCczRVZQpRY1Uza
UVnUldjeEFFSmJI6VTB5S1t6ZHAITkpJOFJMM
zhxcTB6dVJUSGlpc2Y4cnhGZUt2QU80ONTEIN2R6WmMIHC1IR6MTMWUTRNC1RKbUxyR2xSTOMrMHV5UKRQOM92RUL12V2k
wV11TYONNWUEOMWAYW1YwcW5YNUxJINOdhZVp
ObXkKdAUZkOnJrNWMvUHZpdkV4VE9seUh5cDhWanV5UGNSeEF5eW5aVzNFb2QzT1g4VXN4AcVIimYitGV3hsYzBZcVEFUN
AppSGZGUzISRNRhVUhRNQOMYyWWSTV1VPWNFKA2F3ZXI4KzNiRELtOdGXLYMUSMWEtmMRXc1S2tudHJ60X1BT11LTHplCmZ
UUmh5c0JkVmdSdORPcGxXQVpmb 1l FLOMACRMEWQXJJUOJWK2VCNEFpQZXQ5c0syN1FYR3RPbFA4NEthSGNEd1AKbzRFe
XZxTU9DYTNmUTJZUSOYQOXAIYTAORIB3ZVRBRWIWZ INGOWRNAFht ZGOFMEIrQzhWaUYINC9sQOmZrSzJkZQpOQ1lFMZ17Z
CREg2K2JQRGxBZWMrS2dLd1FySOJYVES0ZWt FMWoxUm55RStUWEJSdHFVNEVIYWIINNRYSnpiQXgwCmx0b1ZBb0dCO
UladjU2cGNrbXRoMkJIgZzdDdnpja2VxbHhBeUxKWU1laaW5sYjhjTDIS5UmVINEQSWmMO yNHAFOGKKVIN6OEWWUMEF1K01
Idk85bX1rckVubHhDcHd5aFUvLO5tUDIENMZGY 1h1MWpCblh4ZUlJRWt1Wk9LdAzISRmIMMgpFSitKV2MrRkYO0cGdpZ
HBUMCtQL250c2ZTVGt4TmtZaWdCSzJ1dmVBATIJIUONtRWNIRIJBICi0tLSOtRUSEIFJTQSBQUKIWQVRFIELFWSOtLSO
tCg=="

}

Sign a Certificate Given a Certificate Signing Request (CSR)
The command for honoring a certificate signing request is dsv pki sign

NOTE: The common name for the certificate in the CSR must match a domain in the signing certificate's list.

Flag Description

csrpath Required - Path to a PEM file containing the certificate signing request.

129

Required - Path and name of a secret that contains the signing certificate. It does not matter
if the signing certificate was generated by Privilege DevOps Vault or imported

Optional - List of alternative domains. They must match a domain in the signing
certificate's list.

Optional - Time to live in hours. If not specified, then the maxttl of the signing certificate is
used.

rootpath
subjectaltnames

ttl

As an example, create a file with this certificate signing request and name it internalsSite.csr. Itis
requesting the common name of foo.org so we sign it with the sample root certificate we generated at the top
of this page.

MIIC1DCCAXWCAQAWTzZELMAKGAIUEBhMCVVMxCzAJBgNVBAgMAKIMMSEWHWYDVQQKDBhJbnR1cm51dCBXaWRnaXRzIF
B0eSBMAGQxEDAOBgNVBAMMB2 Zvby5vemewggE i
MAOGCSgGSIb3DQEBAQUAA4AIBDWAWggEKAOIBAQDcmth1IMQcfWwZmKZr1G7aYuTLb
j/hCTI1GEhGDcpO0elAENnzWGLAFUsbIMdb7210/SEJLb9cVHGgcf9U67s9+1hqUPY
/xWCbHJ7JYfLHZM3XHT50A2QUmMMNgwZ1h/YTwUDUr9NYs1TZOUm4dy6smzfO5TVOCZISFET13Z2fPsknQQ3EEmMPso2yJd
U0ygxHkgozm2bYOItdlySEOM4AR0OJLOEBSgLLo4
QLtxJJZ1KKVvuhGZ7SZUcXft4RxBqdluvlYyffWezYaOb/h7hcb7Gj+pnal/1PWm
vxdkW6cXnpAmL5k0PX1fQARGkBkUFyF3DQOGDfT41UfSHE9qWi0gA6wEfhXvCFAgMB
AAGgADANBgkaghkiG9wOBAQsFAAOCAQEAML2 JDxGpKmIU60uMUsQXtylObyyIMWOqg
bmmgrfccfxdV/WNLLOrm/8g0Rp/eWwAGkQY8tZJIn1N+BPK6yEFpx1TYW622aPGTUT
TgKnaheDWnpCPLkRJIRGEIHYe9B+vEVEJX111U7pA4FGISNV+1R2TTGAnBp8Nx 7NgLWCFT4m90R39wCxXEJMoUOTI118
mfeaFwlZstyb/pAPuQoWYebOMCTHxJIsxRsr/w9

PBJsTPM+USH1xTUTtbEgY4SGEFG7C+SY1uFH]} 9c5hhH40TPvONHOcmMHxSsbNKbou

wmg9DFjzRXDVJAMLb2 fsbBBpQ7/aT30pdWr9jAX0/FH1Ymg2aIK8 9w==

————— END CERTIFICATE REQUEST----

dsv pki sign --rootcapath ca/myroot --csrpath @internalSite.csr --ttl 24
The signed certificate comes back in base64 encoding

{

"certificate":
"LSO0tLS1CRUAJTiBDRVJUSUZJQOFURSOtLS0tCk1JSURZakNDQWtxZ0F3SUJBZ01FRmM10YmV6oQUS5CZ2txaGtpRz13M
EJBUXNGQURCaE1Rc3dDUV1IEV1IFRROV3S1YKVXpFTE1BaOdBMVVEQOJINQINVRXhEakFNQOmdOVkIBY1RCVUp2YjIlbEl
STXdFUV1EV1FRSOV3cEdiMjlDWVhIcwpTVzVgTVFrd0J3WURWUVEMRXABeEZUQVRCZO5SWQkFNVERIUM91V052ZEdsa
kxtTnZiVEF1RncweUlEQTBNVEF3Ck1gRTROVGxhRncweULlEQTBNVEV3TWpENESUDGENRTh4Q3pBSkInT1ZCQVIUQWX
WVE1Rc3dDUV1EV1FRSUV3SkoKVERFaE1COEABMVVEFQ2hNWVNXNTBaWEp1WI1hRZ1YybGtaMmwwY31CUWRIa2dUSEFJrT
VIBAORNWURWUVFERXdkbQpiMjhlYjNKbk1JSUJJakFOQmdrcWhraUc5dzBCQVFFRkFBTONBUThBTU1JQkNnSONBUUV
BMOpyWVpURUhIMXNHClppbWESUNnUybUxreTI0OLzRRa31KUmhJUmczS2RICFFCSjgxaGkzULlZMR31ESFcrMlpUdjBoQ
1IMyL1hGUnhvSEgKL1ZPdTdQZnRZYWxEM1IA4YOFteH11eVdIeXgyWnQOxeDArYUFOa0Z2KakRhc0daWWYyRThGQTFLL1R
XTEpVM1RsSgplTXVySnMzenVVMVRNbWZVaFJFNHQyWHo3SkowRU54QkpgNOtOc21WTklxclI1SULNNXRtMkRpTFhkY
2t oRGpPCkVkQIMwQkEFVDONSNkIOFQzdjUINXWW1lpbGI3blJtZTBtVKkhGMzdlRWNRYXVOYnISV0O1luMzEFubVdHAECVNGU
OWECKK3hvL3FaMmlQOVOxXxcHIAWEFpGAWSGNTZRSmkrWk SEMTVYMEFFUNBBWkZCY2hkdzBCZzMwKO5WSDBoeFBhbG90S
QPBT3NINFY3d2hRSURBUUFCb3pRA01gQUICZOSWSFE4QkFMOEVCQU1DQjRBAOVIWURWUJBsQkF3dONnNWU1Ld11CCkJ
RVUhBd013Q3dZRFZSMFJCQVF3QWI9JQU1BMEADU3FHUO1iMORRRUJIDA
1VBQTRIQkFRQkh1b2FwSk05VTVUa0IKcU5SPb0hVMnJ3UmxjOUpRRmc50Td3Y0UxUOdKbUNKTUJOZkJIMajZRRk80ORNFE
JZGU5Qk90N200bnZwQUduYXNmaQpzbzBWa09
tK1dyZUpuRXJ1iLOAMKORPMEXKbGxSZHAUYWItY2NXTEVKNMSEWWXGY J ZLAEAmU3dYQWJIyTTh5VVZjCmdgdUlodUl5d
1ExOHRIUEFTWGFrWjUwU2VyOFd4Q3dUM1gvR
DhVaGhXR1Ercno5aFVvV0ZHpUdUSCOUdVb21PaGUKbO1XZGxHVV1pcm9sQS9GQkOnNWjZCT2gxVnQ4S31FNOVLR])ZJdUL
wM3kvc2szcGVMUMpULOdAIKOJxRWSPNmhz Zwp

130

1a3NOCTNGSWROYmMNITEx1V3dLWW1 ZUEAQYWFuSNZ3NnZWN3MzR1Q0TUhUaUFtVTRkDTRkZVAVNZRPpZXVvTX1XCnNpZ
TdESkoxCi0tLSOtRUSEIENFUIRJRkIDQVRFLSOtLSOK"
}

SSH Key Issuance

In addition to allowing users to generate TLS certificates, Privilege DevOps Vault provides an ability to
generate SSH-2 compatible public keys (currently only RSA supported) and SSH-2 certificates.

e Using SSH-2 public keys allows an administrator to place your public key on the server for which you
wish to access. This is usually placed in the user's home directory ~/.ssh/authorized keys file

e Using SSH-2 certificates allows Privilege DevOps Vault 's specific root CA to sign the credentials which
can then be used to access any SSH Server where Privilege DevOps Vault 's root CA is trusted

When users create a regular leaf or root certificate with dsv pki leaf Oordsv pki generate-root,
respectively, Privilege DevOps Vault automatically creates and saves an SSH-compatible public key.
Privilege DevOps Vault stores it in secret data for the leaf or root secret.

dsv secret read myleaf

Among other fields, such as those for TLS private key, certificate, there is a field for the SSH public key:

"sshPublicKey": "ssh-rsa AAAAB3NzaClyc2EAAAADAQABAAABAQC4nmHvYaqodYKUZ2..."

Adding an SSH public key to a server

In order to authenticate to a remote server using SSH, users need to provide a regular RSA private key, such
as a TLS private key Privilege DevOps Vault generates. Before doing that, users must ensure the server knows
about the public key associated with the private key.

For example, administrators can edit the .ssh/authorized keys file and add the public key to the list of
authorized public keys for the user of that server.

Downloading keys

Below is an example of how to fetch the keys from Privilege DevOps Vault for use with SSH:
Fetching the SSH private key:

dsv secret myleaf -f data.privateKey | base64 -d > leaf.priv

Fetching the public key in SSH-2 format:

dsv secret myleaf -f data.sshPublicKey > leaf.pub

The names of the files are arbitrary.

NOTE: The private key must first be base64-decoded.

Authenticating

Having added the public key to the list of authorized keys, users can authenticate:

131

ssh -1 /path/to/leaf.priv [user@host]

This example uses a leaf key, but the workflow is the same with a root key.

Trusting a group of keys signed by a root key

The previous example works well, but there is a maintenance problem that appears if the number of users
who authenticate to one particular host increases. Administrators must update the list of authorized public
keys for each new key. Instead, administrators could make the server trust all keys that are signed by a root
key, one that is higher in the chain of trust.

Clients can then authenticate using any leaf private key that has been signed by a certain root private key.
Setting this up is a two-step process.

Adding a public root key to the server

1. First, the SSH-compatible root public key must be downloaded and saved: dsv secret myroot -f
data.sshPublicKey > root.pub

2. A file with the key must be uploaded to the server and placed in the /etc/ssh/ directory.

3.0n the server, edit /etc/ssh/sshd _config. The following line appended to the file instructs the SSH
daemon service to trust all keys signed by a private key associated with a given public key:

TrustedUserCAKeys /etc/ssh/root.pub €.g8. echo "TrustedUserCAKeys /etc/ssh/root.pub" >>
/etc/ssh/sshd _config

4.1t is often a good idea to restart the SSH daemon service for changes to be applied immediately: sudo
/etc/init.d/ssh restart

Generating an SSH certificate on the client side

To authenticate with a private key, users need to prove that a given leaf key has indeed been signed by a root
private key that is connected with the root public key, which the server trusts. To do this, users need to
generate an SSH certificate using the root private key and leaf private key. There is a special command for
this: dsv pki ssh-cert --rootcapath myroot --leafcapath myleaf --principals root,ubuntu --

ttl 1000 Allarguments are required:

e rootcapath is the path to the root CA secret
e leafcapath is the path to the leaf CA secret
e principals is a list of one or more principals (user or host names) to be included in a certificate
when signing a key
e ttlisthe amount of time (by default, in hours) for which the certificate is valid
This returns an SSH-2 signed certificate. Privilege DevOps Vault saves the certificate in the leaf secret data.
Users can copy the certificate and save in a file or download it later:

dsv secret myleaf -f data.sshCertificate > leaf.priv-cert.pub

Now it is possible to try to authenticate. Users use the same ssh command and pass the same private key.
The SSH certificate is also submitted automatically behind the scenes by ssh. The command tries to find the

132

certificate in the same directory where the leaf private key is. For this reason, the certificate file must be
named in a certain way: [private key]-cert.pub

If there is a leaf private key file named 1eaf.priv, then the certificate must be named 1eaf.priv-cert.pub.

Then authentication works: ssh -i leaf.priv [user@host]

Another client just needs access to the same root secret. With this root secret and a leaf secret, another user
can generate an SSH certificate and use it along with the private key to authenticate. Administrators must not
do any additional setup on the server.

Architecture and Security

A

CLI or Direct API Calls

Users authenticate locally or by a Thycotic One, Amazon AWS, Microsoft Azure, or Google Cloud Platform
authentication provider.

Within the Privilege DevOps Vault application platform, the API Gateway receives API calls, obtains the
responses, and relays them to the caller using HTTPS GET, PUT, POST and other methods common to the
REST architecture. The Authorizer uses OAuth to handle API Gateway authorization.

The Vault Application hosts the core Privilege DevOps Vault functionality and auto-scales to demand.

133

Extensive logging enables strong audit trails and protections, while encryption protects Secrets at-rest and
in-transit

Availability

IBM Security Privilege DevOps Vault supports 99.9% uptime.

Business Continuity and Disaster Recovery

IBM Security Verify Privilege DevOps Vault leverages AWS DynamoDB global tables for data storage, with a
configuration using automatic dual-region replication as a continuous backup mechanism.

e Of the two AWS Regions used in this architecture, one serves as the primary application platform and
the other as a hot stand-by.

e IBM Security monitors both regions via AWS Route 53 so that if the primary platform fails, client traffic
automatically routes to the hot stand-by in under one minute

Confidentiality

Data at Rest

Information about customers in DynamoDB, application activity and related logs stored in S3 and sometimes
in Elasticsearch during analysis, is always encrypted transparently.

Customer Secret data is further encrypted by the application with a customer specific key in AWS KMS.

Data in Transit

Privilege DevOps Vault establishes the HTTPS connection using the TLS 1.2 protocols. For server-side
authentication, Privilege DevOps Vault relies on Amazon-issued digital certificates.

Client Authentication
Privilege DevOps Vault provides five methods for client authentication:

e Username/password (local)

e Username/password (Thycotic One)
e ClientID

e AWSIAM

e Microsoft MSI

Authentication grants an access token with a one-hour time-to-live (TTL). When the token times out, Privilege
DevOps Vault requires re-authentication.

The username/password authentication method uses a refresh token good for 48 hours. The refresh token
renews along with each new access token, so the 48 hours counts relative to the last access token’s time of
issuance. If the refresh token expires, Privilege DevOps Vault requires re-authentication.

The initial administrator (the one who signs up for a tenant) is always setup with Thycotic One to enable IBM
Security support.

134

Integrity Checks

Both code signing and token signing are used to ensure integrity.
CLI Code Signing

The download website provides a 256-bit hash of the executable files in a text file, so that customers may run
a hash check on the downloaded material. The Windows CLI executable is also signed.

Token Signing

Access tokens granted to Users or applications must transit from the client to the API, potentially allowing an
unauthorized party to tamper with the tokens. To prevent this, Privilege DevOps Vault signs access tokens.

Personally Identifiable Information (PII) and GDPR

Privilege DevOps Vault requires certain personally identifiable information (PII) to identify each User’s
account. This includes the User’s name, email address, and password, these being the minimum necessary
for authentication, and the User’s IP address, used during auditing as an indicator of the User’s location.

Privilege DevOps Vault functions to store and protect User’s “Secrets,” and to make the Secrets accessible to
the User and potentially their designees. The term Secrets here commonly means passwords, which are not
PII, but Privilege DevOps Vault Users can store anything they choose as a Secret—for example, images,
documents, or other files.

e Accordingly, only Users know whether Privilege DevOps Vault Secrets have PII status.

e Because the nature of Privilege DevOps Vault is to encrypt and protect Secrets for Users, Secrets that
are PII de facto benefit from Privilege DevOps Vault’s stringent controls for privacy and user control, in
accordance with both the letter and spirit of the GDPR.

Only selected, trusted employees of the original product manufacturer, Thycotic, can access Secrets data and
decrypt it, and only via a controlled process that generates an audit trail inaccessible to those employees. This
serves the interests of users without compromising their privacy and control.

In GDPR terms, IBM Security customers are the data controllers, and IBM Security is the data processor.

e The customer determines all information (the Secrets) stored in the vault and decides how long to
store it.

e Each Privilege DevOps Vault customer entirely controls their Users, their User Roles, and the access to
Secrets by their Users, according to the policies of the customer organization. Privilege DevOps Vault
logs activity so the customer can monitor access and changes to the Secrets, Users, and Roles within
the vault —again, all according to the customer’s policies.

e For traceability, Privilege DevOps Vault logs include source IP addresses and time stamps.

Thycotic conducts Privacy Impact Assessment (PIA) annually to verify continued conformance to GDPR
principles.

135

Third Party SOC 2 Conformance Assessment

Thycotic SOC 2 Type II report contains an independent third-party assessment of our control environment.
The report is available upon request with an NDA.

The report ties to the AICPA’s Trust Services Criteria (specifically the Security, Availability, and Confidentiality
criteria) and issues annually in accordance with the AICPA’s AT Section 101 (Attest Engagements).

136

Audits:

Privilege DevOps Vault captures audits of activities and persists them for future reference. If the User wants
to ship their audits to a third party logging system (e.g. Security Information and Event Management (SIEM)),
they can register an endpoint where Privilege DevOps Vault sends any recorded audit events to that endpoint
in near real time.

Audit Fields:
attribute description example
id Audit id "dxv7389e463s72jbo345"
tenant Tenant ID "bjr738973p3s72jbo090"
tenantName Tenant Name "test"
principal Security principal that performed action "users:user"
principalltemId Principal item ID jgdbigizz;?dogaeuﬂlb8-8b02-
action Action performed "POST"
Status Response status code "200"
path Resource path action performed on token"
ipaddress IP Address logged from client "192.0.2.55"
created Audit created date "2020-05-01T01:09:07.225694779Z"
message Additional details "login succeeded"

Logging Format and Transport Protocols supported.

Privilege DevOps Vault supports the following logging output formats: syslog, CEF, and JSON to a registered
endpoint.

Privilege DevOps Vault supports the following transport protocols: transport-level security (TLS) 1.2 over
TCP,TCP, UDP, HTTP and HTTPS.

SYSlog

Syslog messages must be in RFC 5424-compliant form. Privilege DevOps Vault truncates messages over
64KB in length.

Syslog Audit

Timestamp RFC3339 format
Priority 191
Version 1

137

https://tools.ietf.org/html/rfc5424
https://kc.mcafee.com/resources/sites/MCAFEE/content/live/CORP_KNOWLEDGEBASE/78000/KB78712/en_US/CEF_White_Paper_20100722.pdf
https://tools.ietf.org/html/rfc7159

Hostname Privilege DevOps Vault URL (e.g. IBM Security.secretsvaultcloud.com)

MsgID id

Appname Privilege DevOps Vault
Message usertoken message
StructuredData all other audit fields

Note: A user-specific token, generated by user, is inserted into each message to identify the user

Sample syslog output

<191>1 2020-06-02T14:53:4872 tenantName.dsvdomain.com DSV - - [l action=POST created=2020-
06-02T14:51:36.519620577Z ipaddress=192.0.2.55 path=token principal=users:tenantaame
principalltemId=£f18b5bda-5lea-4bfa-b272-80b12e43b676 tenant=tenant tenantName=tenantName]
abcdef "

Configure Syslog

To start a SIEM configuration workflow, use the command:

dsv siem create

Option Description

name required

siemType required, allowed values: syslog

host required, url

port required, numeric

protocol required, allowed values: tcp, udp, http, https, tls
authMethod required, allowed values: token

auth required

loggingFormat required, allowed values: rfc5424

Sample values

{

"siemType": "syslog",
"name": "syslogtest",
"host": "54.210.93.200",
"port": 8000,

"protocol": "tls",
"authMethod": "token",
"auth": "abcdef",
"loggingFormat": "rfcb5424"

138

CEF

Privilege DevOps Vault Audit Description
Version 0 constant
Device Product Ibm security constant
Device Product Privilege DevOps Vault constant
Device Version - unused by Privilege DevOps Vault
Signature ID id audit field
Name action audit field
Severity status see below for translation
Extension all other audit fields
200 0
400 1
401 7
403 7
404 0
500 0

Anything else -

Sample CEF output

CEF:0|thycotic|dsv|-|b40e07d3-6fb9-41e8-9816-
356de992b8fa|POST|0|{action:POST,created:2020-0602T17:52:30.841020649%,1d:b40e07d3-6fb9~-
41e8-9816-356de992b8fa, ipaddress:192.0.2.55,message:1login

succeeded, path:token,principal:users:user,principalltemId: £18b5bda-5lea-4bfa-
b27280b12e43b676,status:200, tenant:tenat, tenantName:tenantName}

Configure CEF

To start a SIEM configuration workflow, use the command:

dsv siem create

Option Description

name required
siemType required, allowed values: cef

139

host required, url

port required, numeric

protocol required, allowed values: tcp, udp, http, https, tls
authMethod required, allowed values: token

auth required

loggingFormat required, allowed values: cef

Sample values

{

"siemType": "cef",
"name": "syslogtest",
"host": "192.0.2.55",
"port": 8678,
"protocol": "udp",
"authMethod": "token",
"auth": "abcdef",
"loggingFormat": "cef"
}

JSON

Privilege DevOps Vault sends raw JSON audit via configure transport

Sample JSON output

{\"action\":\"POST\",\"created\":\"2020-06-02T17:52:30.8410206492\",\"1d\":\"b40e07d3-
6fb9-41e8-9816-356de992b8fa\", \"ipaddress\":\"192.0.2.55\",\"message\":\"login
succeeded\", \"path\":\"token\",\"principal\":\"users:user\",\"principalIltemId\":\"f18b5bda
-5lea-4bfa-

b27280b12e43b676\", \"status\":\"\",\"tenant\":\"tenat\", \"tenantName\":\"tenantName\"}

Configure JSON

To start a SIEM configuration workflow, use the command:

dsv siem create

Option Description

name required

siemType required, allowed values: json

host required, url

port required, numeric

protocol required, allowed values: tcp, udp, http, https, tls

140

authMethod required, allowed values: token
auth required

loggingFormat required, allowed values: json

Sample values

{

"siemType": "json",
"name": "syslogtest",
"host": "192.0.2.55",
"port": 443,
"protocol": "https",
"authMethod": "token",
"auth": "abcdef",
"loggingFormat": "cef"

141

Release Notes

IBM Security periodically updates IBM Security Verify Privilege DevOps Vault to provide fixes and
improvements and introduce features.

As a Cloud application, Privilege DevOps Vault lacks version numbers; the current version serves all users
because it is always the only version available.

The Command Line Interface (CLI) is locally installed using OS-specific executables. These bear version
numbers to reflect updates.

e The version number is always the same across the 0S-specific editions of the CLI executable.

e You obtain these updated versions of the CLI executables by downloading them from IBM Security
Verify Privilege DevOps Vault Downloads.

o The CLI itself notifies you when a new version is available for download.

e Generally, older versions of CLI executables continue to work, but you want to have the latest
executables to benefit from fixes and obtain new features.

142

https://dsv.thycotic.com/downloads
https://dsv.thycotic.com/downloads

	Foreword
	Overview
	API
	Quick Links
	Third-Party Downloads

	Quick Start Guide
	Download the CLI Executable for your Operating System
	Rename the Executable
	Place the Executable
	Add the Executable Path to the PATH Environment Variable
	Enable Autocomplete

	Initialize the CLI
	Required Information
	"dsv init"

	CLI Secrets Examples
	Create a Secret
	Retrieve a Secret
	Filter JSON Command Output for Specific Fields
	Separately Update Attributes, Data, and Description

	Creating Users
	Local User and Thycotic One User Authentication
	Provide Users Access to Secrets
	Create a Group
	Create Policy for Deny Access

	CLI Reference
	CLI Command Syntax
	Objects
	Workflows for Creating or Updating Objects
	Parameters
	Strings
	Boolean
	File Path and OS-Specific Syntax

	Output Modifiers
	Encoding and Beautify
	Filter
	Out

	Output Piping
	Secret
	Commands that Act on Secrets
	Examples
	Bustcache
	Create
	Describe
	Read
	Update
	Restore
	Rollback

	User
	Understanding Qualified Usernames
	Commands that Act on Users
	Examples
	Changepassword
	Create
	Search
	Read
	Delete
	Restore

	Group
	Commands that Act on Groups
	Examples
	Create
	Add-Members
	Read
	Update | Assign Group to Policy
	Delete-Members
	Restore

	Role
	Commands that Act on Roles
	Examples
	Create
	Search
	Update
	Restore

	Client
	Commands that Act on Clients
	Examples
	Create
	Search
	Read
	Bootstrapping

	Policy
	Policy Evaluation
	Policy Examples
	Deny Access at a Lower Level
	Allow User2 Access to User1's Home Vault
	Enable a Group to search Secrets
	Allow Users to List Specific Entities
	Delegate Policy Authority
	Read Audits
	Read System Logs
	Manage An Auth Provider

	Admin Policy and Auth Providers
	Commands that Act on Policies
	Read
	Edit
	Update
	Grant Admin Access Rights to All Home Vaults
	Add an Authentication Provider

	Home Vault
	Examples
	Create
	Describe
	Search
	Restore

	GetByVersion
	Rollback

	Authentication
	Password
	Client Credentials
	Third Party Authentication

	Profiles
	Add a Profile to a Config
	See the Config Contents
	Using an Alternate Profile for a Specific CLI Action
	Authentication: AWS
	AWS Authentication Provider
	AWS User Example
	AWS Role Example

	Authentication: Azure
	Azure Authentication Provider
	Azure User Assigned MSI Example
	Azure Resource Group

	Authentication Google Cloud Platform (GCP)
	Google Service Account Authentication
	Google Compute Engine (GCE) Metadata Authentication
	Google Kubernetes Engine (GKE) Authentication

	Authentication: OIDC
	OIDC Providers
	Common Steps
	Configure Auth Providers
	4. Choose Web Application
	Creating a User in Thycotic One and Privilege DevOps Vault

	Azure AD OIDC Example
	3. Click New Registration
	6. Go to your app's Certificates and Secrets and click New Client Secret

	Okta Identity Provider Example
	Okta OIDC connection
	4. Select Add Application
	Retrieve the Issuer URL
	Add Okta Users and Groups to the Privilege DevOps Vault Application
	Finish the Connection on the Thycotic One side
	18. Click Back to Organizations 19. Click Credentials

	Dynamic Secrets
	Linking
	Search for linked Secrets

	AWS Dynamic Secrets
	AWS Federate
	Setup the AWS IAM User
	Create the Base Secret
	Create the Dynamic Secret

	AWS Assume Role
	Setup the AWS IAM user
	Setup the AWS IAM role
	Create the Base Secret
	Create the Dynamic Secret
	Create the Dynamic Secret

	Azure Dynamic Secrets
	Dynamic Secrets
	Dynamic Secret for an Existing Service Principal
	Dynamic Secret for a Temporary Service Principal

	Azure Service Principal
	Creating a Service Principal for the Privilege DevOps Vault Base Secret
	Creating a Service Principal for a Privilege DevOps Vault Dynamic Secret
	5. Navigate to Home > Subscriptions

	GCP Dynamic Secrets
	Setup
	Create a GCP Service Account
	Create the Base Secret

	OAuth Access Token
	Service Account Key
	Create the Base Secret
	Create the Dynamic Secret

	MySQL Dynamic Secrets
	Privilege DevOps Vault Engine Required
	Dynamic Secret Setup
	Sending a MySQL task to an engine

	Privilege DevOps Vault Engine
	Customer Firewall
	Registering a pool and an engine
	Starting an engine

	Certificate Issuance
	Generate a Signing Certificate
	Register (Import) a Signing Certificate
	Generate and Sign a Leaf Certificate
	Sign a Certificate Given a Certificate Signing Request (CSR)

	SSH Key Issuance
	Adding an SSH public key to a server
	Trusting a group of keys signed by a root key
	Adding a public root key to the server
	Generating an SSH certificate on the client side

	Architecture and Security
	Availability
	Business Continuity and Disaster Recovery
	Confidentiality
	Data at Rest
	Data in Transit

	Client Authentication
	Integrity Checks
	CLI Code Signing
	Token Signing

	Personally Identifiable Information (PII) and GDPR
	Third Party SOC 2 Conformance Assessment

	Audits:
	Logging Format and Transport Protocols supported.
	SYSlog
	Configure Syslog

	CEF
	Configure CEF

	JSON

	Release Notes

