
IBM Security Verify Access
Version 10.0.2
June 2021

Federation Configuration topics

IBM

Contents

Tables... vii

Chapter 1. Federation overview... 1

Chapter 2. Upgrading configuration..3
Point of contact profile configuration after an upgrade.. 3
Point of contact advanced configuration property updates ...4
Change in OpenID Connect relying party mapping rule..5

Chapter 3. SAML Federations Overview.. 7
SAML 1.1.. 7
SAML 2.0.. 8
SAML profiles... 9

SAML 1.1 initial URL... 10
SAML 2.0 endpoints and URLs... 11
SAML 2.0 profile initial URLs.. 14

Customizing SAML identity mapping...18
Mapping a local user identity to a SAML 1.1 token... 19
Mapping a SAML 1.1 token to a local user identity... 19
Mapping a local identity to a SAML 2.0 token..19
Mapping a SAML 2.0 token to a local identity..21

Creating a SAML federation... 21
Gathering your federation configuration information... 21

Creating a SAML partner..40
Obtaining federation configuration data from your partner..41

SAML 2.0 bindings... 58
SAML 2.0 name identifier formats...59

Alias service..60
Configuring an LDAP alias service database..60
Modifying alias service settings to LDAP... 61

Customizing the SAML 2.0 login form... 61
Supported macros for customizing an authentication login form...61

Customizing AuthnContext using identity mapping rule...62
SAML 2.0 pages..62

Event pages.. 63
SAML 2.0 page identifiers.. 63
Template page for the WAYF page...70
Customizing the Consent to Federate Page...71

Configuring the user session ID for the federation runtime... 72
Synchronizing system clocks in the federation...74

Chapter 4. WS-Federation federations... 75
WS-Federation single sign-on profiles.. 75
Identity provider and service provider roles...75
Creating a WS-Federation federation..76

WS-Federation federation properties..76
Creating a WS-Federation partner...78

WS-Federation partner properties...78
WS-Fed exclude elements...82

 iii

Chapter 5. OpenID Connect federations... 83
OpenID Connect Provider federations.. 83
OpenID Connect Relying Party federations.. 83

Authentication with OpenID Connect Relying Party... 84
Configuring an OpenID Connect Relying Party federation.. 97
Configuring an OpenID Connect Relying Party partner...99
Making a request to /userinfo as part of authentication..103

Conformance..104
Setting up the OIDC Definition API..104
OpenID Connect Provider Conformance... 106
FAPI Conformance... 109

Chapter 6. Configuring STS modules...121
Supported module types... 121

Attribute Mapping module... 121
Default Mapping module..122
HTTP Callout module... 122
IVCred module... 123
LTPA module...124
SAML 2.0 module... 125
SAML 1.1 module... 129
STS Universal User module..132
Username token module..134
PassTicket module... 136
JSON Web Token (JWT)... 138
Kerberos Module.. 146
X.509 module...147

Token module properties.. 148
Attribute Mapping module properties... 148
Default Mapping module properties..149
HTTP Callout module properties... 149
IVCred module properties... 150
LTPA module properties...152
SAML 2.0 module properties... 154
SAML 1.1 module properties... 161
Username module properties..165

STSRequest and STSResponse access using a JavaScript mapping rule.. 168
Mapping a base64 encoded JSON string to a SAML2 token example..169
Mapping a SAML2 token to a base64 encoded JSON string example..172

Chapter 7. Nested single sign-on flows...177

Chapter 8. Configuring a reverse proxy point of contact server............................ 179

Chapter 9. Global Settings... 183
Advanced Configuration.. 184

Advanced configuration properties... 185
User Registry..211
Runtime Parameters..213
Template files.. 218

Managing template files...218
Customizing the consent page (OIDC)...220
Template file scripting..221
Template files reference.. 224
SAML 2.0 pages..239
Template file macros..249

iv

Mapping Rules... 252
Managing JavaScript mapping rules..252
Customizing one-time password mapping rules to use access control context data......................257
Managing OAuth 2.0 and OIDC mapping rules..258
Mapping rules actions.. 259
MMFA mapping rule methods..260
JavaScript whitelist..262
Managing JavaScript mapping rules..266
STSRequest and STSResponse access using a JavaScript mapping rule...269
OpenID Connect mapping rules.. 276
Import mapping rule from another mapping rule... 277

Distributed Session Cache...278
Server Connections..279

Server connection properties.. 280
Point of Contact... 283

Creating a point of contact profile... 283
Updating or viewing a point of contact profile...284
Deleting a point of contact profile... 285
Setting a current point of contact profile...285
Callback parameters and values..285

Access policies.. 287
Creating an access policy...288
Access policy development... 289
Template files for access policies..295
Managing access policies...295
Sample file for Access Policies.. 296

Runtime monitoring using Prometheus.. 297
Managing Session Persistence.. 298

Chapter 10. DB2 HVDB High Availability Disaster Recovery (HADR) guideline...... 301
Description of the HADR Modes..301

SYNC mode... 301
NEARSYNC mode.. 302
ASYNC mode...302
SUPERASYNC mode..302

Choose a synchronization Mode..302

Index.. 305

 v

vi

Tables

1. Point of contact profile configuration upgrade scenarios and changes...3

2. Point of contact advanced configuration properties status and mapping to callback parameters............ 4

3. General information for service provider in SAML 1.1 federation... 22

4. Federation protocol for service provider in SAML 1.1 federation.. 22

5. Point of contact server information for service provider in SAML 1.1 federation..................................... 22

6. Single Sign-On settings for service provider in SAML 1.1 federation.. 22

7. Signature information for service provider in SAML 1.1 federation...22

8. Identity mapping information for service provider in SAML 1.1 federation.. 23

9. General information for identity provider in SAML 1.1 federation...23

10. Federation protocol information for identity provider in SAML 1.1 federation....................................... 24

11. Point of contact server for identity provider in SAML 1.1 federation.. 24

12. Single Sign-On settings for identity provider in SAML 1.1 federation... 24

13. Signing information for identity provider in SAML 1.1 federation... 24

14. SAML Message Settings information for identity provider in SAML 1.1 federation.................................25

15. Identity mapping information for identity provider in SAML 1.1 federation... 25

16. Federation protocol...26

17. Template..26

18. General information.. 26

19. Point of contact server.. 27

20. Profile selection ..27

21. Single Sign-on settings... 28

22. Name Identifier Management settings...28

23. Single logout settings..29

 vii

24. Signature options.. 29

25. Encryption options.. 30

26. SAML message settings.. 31

27. Identity mapping settings...31

28. SAML Message Extensions..32

29. Federation protocol...32

30. Template..33

31. General information.. 33

32. Point of contact server.. 34

33. Profile selection ..34

34. Single Sign-on settings... 34

35. Name Identifier Management settings...36

36. Single logout settings..36

37. Signature options.. 37

38. Encryption options.. 38

39. SAML message settings.. 39

40. Access policy settings...39

41. Identity mapping settings...40

42. SAML Message Extensions..40

43. Federation to which you are adding a service provider partner in a SAML 1.1 federation..................... 41

44. Metadata file from your service provider partner in a SAML 1.1 federation... 41

45. Configuring a partner manually.. 42

46. Single Sign-On settings for service provider partner in SAML 1.1 federation...42

47. Assertion Settings... 42

48. Validation Settings.. 44

viii

49. Identity mapping information for service provider partner in SAML 1.1 federation...............................46

50. Federation to which you are adding a service provider partner in a SAML 1.1 federation..................... 46

51. Metadata file from your service provider partner in a SAML 1.1 federation... 47

52. Configuring a partner manually.. 47

53. Single Sign-On Settings.. 47

54. Signature validation information for identity provider partner in SAML 1.1 federation..........................48

55. Assertion Settings... 48

56. Server certificate validation for your identity provider partner in a SAML 1.1 federation...................... 49

57. Client authentication for SOAP for your identity provider partner in a SAML 1.1 federation................. 50

58. Identity mapping information for service provider partner in SAML 1.1 federation...............................50

59. Federation to which you are adding a service provider partner in a SAML 2.0 federation..................... 51

60. Metadata file from your service provider partner in a SAML 2.0 federation... 51

61. Single sign-on settings..51

62. Server certificate validation for your service provider partner in a SAML 2.0 federation....................... 52

63. Client authentication for your service provider partner in a SAML 2.0 federation..................................53

64. Access policy settings...53

65. Identity Mapping options for your service provider partner in a SAML 2.0 federation...........................54

66. SAML Message Extensions..54

67. Federation to which you are adding an identity provider partner in a SAML 2.0 federation.................. 55

68. Metadata file from your identity provider partner in a SAML 2.0 federation...55

69. Single sign-on settings..55

70. Server certificate validation..57

71. Client authentication...57

72. Identity Mapping .. 58

73. SAML Message Extensions..58

 ix

74. LDAP environment properties...60

75. Macros for customizing the login form... 61

76. SAML 2.0 HTML page identifiers and macros...64

77. Supported consent values for SAML 2.0 response.. 71

78. Attribute types to use before the redirect to /authorize.. 90

79. Attribute types to use before the request to /token, and to modify requests to /userinfo.....................90

80. Attribute types to use for responses.. 91

81. Supported signature algorithms...100

82. Key management algorithms..101

83. Content encryption algorithms...101

84. Signing algorithms.. 138

85. Encryption key agreement..139

86. Content encryption algorithms...139

87. Configuration properties and usage in validate mode... 140

88. Configuration properties and usage in issue mode... 143

89. Attribute Mapping module properties..148

90. Default Mapping module properties...149

91. HTTP Callout module properties..149

92. IVCred module properties.. 150

93. LTPA module properties... 152

94. SAML 2.0 module properties.. 154

95. SAML 1.1 module properties.. 161

96. Username module properties...165

97. JSON to SAML2 module chain values.. 170

98. SAML2 to JSON module chain values.. 173

x

99. Supported nested SSO combinations ..177

100. Supported nested OAuth flow combinations...177

101. Filter by Category..185

102. HTTP proxy properties..215

103. Valid trace levels...217

104. Example JavaScript.. 221

105. Default template files in the ac/ directory... 224

106. Default template files in the mga/ directory.. 224

107. Default template files in the authsvc/ directory.. 226

108. Default template files in the otp/ directory..227

109. Default template files in the authsvc/authenticator/password/ directory... 229

110. Default template files in the authsvc/authenticator/http_redirect/ directory....................................230

111. Default template files in the authsvc/authenticator/macotp/ directory...231

112. Default template files in the authsvc/authenticator/rsa/ directory.. 231

113. Default template files in the authsvc/authenticator/totp/ directory.. 232

114. Default template files in the authsvc/authenticator/hotp/ directory..233

115. Default template files in the authsvc/authenticator/consent_register_device/ directory................. 233

116. Default template files in the authsvc/authenticator/eula/ directory.. 234

117. Default template files in the authsvc/authenticator/knowledge_questions/ directory..................... 235

118. Default files in the proper/ directory..236

119. Default files in the oauth20/ directory...238

120. SAML 2.0 HTML page identifiers and macros.. 240

121. Supported consent values for SAML 2.0 response..248

122. JSON to SAML2 module chain values.. 270

123. SAML2 to JSON module chain values.. 274

 xi

124. Server Connection properties.. 280

125. Tuning properties..282

126. Access Policy templates...295

xii

Chapter 1. Federation overview
IBM Security Verify Access provides a Federation Module so that collaborating organizations can gain
secure access to each other's applications. With federated access, you have a secure, seamless sign-on
experience to external applications, helping to eliminate the need for providing multiple user IDs and
passwords.

By definition, a federation is a relationship in which the participating entities agree to use the same
technical standard, enabling access to data and resources of one another. It consists of one or more
service providers (SP) and an identity provider (IdP). An IdP is a partner in a federation that can
authenticate the identity of a user. A service provider is a company or program that provides a business
function as a service.

The Federation Module provides the following functions:

• Federated single sign-on (SSO) for users across multiple applications.
• Support for SAML 2.0, WS-Federation, and OpenID Connect protocols for federated access.
• Pre-integrated federation connectors to popular cloud applications.

Activate the Security Verify Access Platform and Federation Module to set up federations.

2 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Chapter 2. Upgrading configuration
After upgrading your Security Verify Access appliance, be aware of some changes to your configuration.

Point of contact profile configuration after an upgrade
The point of contact profile configuration process changed compared to how it was handled before
release 9.0.1.

In releases before 9.0.1, the point of contact was configured by using poc.* advanced configuration
parameters. The upgrade process maps these values to callback parameters in a point of contact profile.

Depending on your upgrade scenario, the upgrade makes the following changes:

Table 1. Point of contact profile configuration upgrade scenarios and changes

Upgrade scenario Changes

From a fresh 9.0.1 installation to 9.0.2
or later

None.

.

From a previously upgraded 9.0.1 to
9.0.2 or later

• Copies the values of the poc.* advanced configuration
parameters to the point of contact profile named Advanced
configuration. The values of the equivalent callback
parameters are shown in Table 2 on page 4.

• Deletes the poc.* advanced configuration properties that
were moved to the Advanced configuration profile. The
only way that you can update these parameters now is by
using the callback parameters.

• Makes the Advanced configuration profile editable. You
can now edit the callback parameters for this profile.

• Does not change the other point of contact profiles.

From any release before 9.0.1 (for
example, 9.0 or 8.0.*) to 9.0.2 or later.

• Keeps the read-only current profile, which was on the
appliance before the upgrade. This current profile is called
Advanced configuration.

• Removes the other obsolete profiles.
• Copies the values of the poc.* advanced configuration

parameters to the point of contact profile named Advanced
configuration. The values of the equivalent callback
parameters are shown in Table 2 on page 4.

• Deletes the poc.* advanced configuration properties that
were moved to the Advanced configuration profile. The
only way that you can update these parameters now is by
using the callback parameters.

• Makes the Advanced configuration profile editable. You
can now edit the callback parameters for this profile.

There are also three preconfigured point of contact profiles which support three EAI authentication
methods.

For more information, see:

• Creating a point of contact profile

• Callback parameters and values
• “Point of contact advanced configuration property updates ” on page 4

Point of contact advanced configuration property updates
The use of several point of contact advanced configuration properties has changed; some properties are
deprecated and one is removed after an upgrade.

Table 2 on page 4 shows the status of the point of contact advanced configuration properties:

Table 2. Point of contact advanced configuration properties status and mapping to callback parameters

Callback
type

Advanced configuration property
names

Status New callback parameter name

signIn poc.signIn.userRequestHeader Deprecate
d

fim.user.request.header.name

signIn poc.signIn.attributesResponseHeader Deprecate
d

fim.attributes.response.header.name

signIn poc.signIn.groupsResponseHeader Deprecate
d

fim.groups.response.header.name

signIn poc.signIn.serverResposeHeader Deprecate
d

fim.server.response.header.name

signIn poc.signIn.targetResponseHeader Deprecate
d

fim.target.response.header.name

signIn poc.signIn.userResponseHeader Deprecate
d

fim.user.response.header.name

signIn poc.signIn.userSessionResponseHeader Deprecate
d

fim.user.session.id.response.header.nam
e

signIn poc.signIn.credResponseHeader Deprecate
d

fim.cred.response.header.name

signIn poc.signIn.urlEncodingEnabled Deprecate
d

url.encoding.enabled

signIn poc.signIn.authenticationLevelResponse
Header

Removed
from
Advanced
Configurat
ion panel
after an
upgrade

None.

signOut poc.signOut.userSessionRequestHeader Deprecate
d

fim.user.session.id.request.header.name

signOut poc.signOut.userRequestHeader Deprecate
d

fim.user.request.header.name

localId poc.localIdentity.attributesRequestHead
er

Deprecate
d

fim.attributes.request.header.name

localId poc.localIdentity.credRequestHeader Deprecate
d

fim.cred.request.header.name

localId poc.localIdentity.groupsRequestHeader Deprecate
d

fim.groups.request.header.name

4 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 2. Point of contact advanced configuration properties status and mapping to callback parameters
(continued)

Callback
type

Advanced configuration property
names

Status New callback parameter name

localId poc.localIdentity.userRequestHeader Deprecate
d

fim.user.request.header.name

authenticat
e

poc.websealAuth.userRequestHeader Deprecate
d

fim.user.request.header.name

authenticat
e

poc.websealAuth.authenticationMacros Deprecate
d

authentication.macros

authenticat
e

poc.websealAuth.authLevel Continue
use in
Advanced
Configurat
ion panel

None.

authenticat
e

poc.otp.authLevel Continue
use in
Advanced
Configurat
ion panel

None.

authenticat
e

poc.otp.backwardCompatibilityEnabled Continue
use in
Advanced
Configurat
ion panel

None.

authnPolicy poc.authPolicy.allowRequestOverride Continue
use in
Advanced
Configurat
ion panel

None.

authnPolicy poc.authPolicy.authLevel Continue
use in
Advanced
Configurat
ion panel

None.

authnPolicy poc.authPolicy.authType Continue
use in
Advanced
Configurat
ion panel

None.

See more details in “Point of contact profile configuration after an upgrade” on page 3.

Change in OpenID Connect relying party mapping rule
If you're upgrading from version 9.0, you must change the location of the attribute values for issuing
authority (iss) and subject (sub). If you don't make these changes, the existing OpenID Connect relying
party custom mapping rules fail.

The attribute values for issuing authority (iss) and subject (sub) are now in the attribute container of the
Secure Token Service Universal User (STSUU). In 9.0, these attribute values were in the context
attributes.

Chapter 2. Upgrading configuration 5

For example, the following attributes are in the attribute container for versions 9.0.1 or later:

stsuu.getAttributeContainer().getAttributeValueByName("iss");
stsuu.getAttributeContainer().getAttributeValueByName("sub");

Action: Change your mapping rules to specify the correct location of the attribute values.

6 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Chapter 3. SAML Federations Overview
The Federation Module supports SAML 1.1 and 2.0 federations.

SAML (Security Assertion Markup Language) is a protocol that you can use to perform federated single
sign-on from identity providers to service providers. In federated single sign-on, users authenticate at
identity provider. Service providers consume the identity information asserted by identity providers.

SAML relies on the use of SOAP, among other technologies, to exchange XML messages over computer
networks. The XML messages are exchanged through a series of requests and responses.

In this process, one of the federation partners sends a request message to the other federation partner.
Then, that receiving partner immediately sends a response message to the partner who sent the request.

The SAML specifications include descriptors to establish a federation, initialize, and manage single sign-
on. The following descriptors specify the structure, content of the messages, and the way the messages
are communicated between partners and users.
Assertions

XML-formatted tokens that are used to transfer user identity information, such as the authentication,
attribute, and entitlement information, in the messages.

Protocols
The types of request messages and response messages that are used for obtaining authentication
data and for managing identities.

Bindings
The communication method that is used to transport the messages.

Profiles
Combinations of protocols, assertions, and bindings that are used together to create a federation and
enable federated single sign-on.

You and your partner must use the same SAML specification and agree on which protocols, bindings, and
profiles to use.

SAML 1.1
IBM Security Verify Access supports SAML 1.1.

If you and your partner choose to use SAML 1.1 in your federation, you need to understand the SAML 1.1
support that is provided in IBM Security Verify Access.

Assertions
The assertions created by IBM Security Verify Access contain authentication statements, which assert
that the principal (that is, the entity requesting access) was authenticated. Assertions can also carry
attributes about the user that the identity provider wants to make available to the service provider.

Assertions are usually passed from the identity provider to the service provider.

The following variables control the content of the assertions created by IBM Security Verify Access:

• The specification (SAML 1.1) that you select when you establish a federation.
• The definitions used in the IBM Security Verify Access identity mapping method that you configure.

Identity mapping specifies how identities are mapped between federation partners.

The IBM Security Verify Access identity mapping method can either be a custom mapping module or a
JavaScript mapping rule.

Protocol
In IBM Security Verify Access, SAML 1.1 uses a simple request-response protocol to make authentication
requests.

Binding
SAML 1.1 uses both plain HTTP (using browser redirects) or SOAP for the transportation of messages. The
profile used in the federation further specifies how the communication of the messages takes place.

Profiles
SAML 1.1 specifies two options for profiles:
Browser artifact

Browser artifact uses SOAP-based communications (also called the SOAP backchannel) to exchange
an artifact during the establishment and use of a trusted session between an identity provider, a
service provider, and a client (browser).

Browser POST
Browser POST uses a self-posting form during the establishment and use of the trusted session
between an identity provider, a service provider, and a client (browser).

IBM Security Verify Access supports browser artifact by default when you select SAML 1.1 as the profile
for your federation. However, you can use browser POST in your federation on a per-partner basis. For
example, if you are a service provider, you can specify that your identity provider partner uses Browser
POST when you configure that partner. If you are an identity provider, you can enable the IBM® PROTOCOL
extension when configuring a SAML 1.1 federation.

The URL that is used to initiate single sign-on differs depending on whether the identity provider is using
this extension. For more information about URLs, see “SAML 1.1 initial URL” on page 10.

SAML 2.0
The Federation Module relies on the SAML 2.0 specification to establish a federation and to initialize and
manage single sign-on.

Assertions
The assertions contain authentication statements. These authentication statements assert that the
principal (that is, the entity that requests access) was authenticated. Assertions can also carry attributes
about the user that the identity provider wants to make available to the service provider.

Assertions are typically passed from the identity provider to the service provider.

The content of the assertions that are created is controlled by the SAML 2.0 specification. Select these
assertions when you establish a federation. You can also select these assertions by the definitions that
are used in the identity mapping method that you configure.

The identity mapping method can either be a custom mapping module or a JavaScript mapping rule. The
identity mapping also specifies how identities are mapped between federation partners.

Protocols
SAML 2.0 defines several request-response protocols that correspond to the action that is being
communicated in the message. The SAML 2.0 protocols that are supported are:

• Authentication request
• Single logout
• Artifact resolution
• Name identifier management

8 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Note: The Enhanced Client or Proxy (ECP) flow is currently not supported by Security Verify Access.

SAML profiles
SAML profiles combine protocols, assertions, and bindings to create a federation and enable federated
single sign-on.

The following profiles are supported:
Web browser single sign-on

This profile provides options regarding the initiation of the message flow and the transport of the
messages:

Flow initiation
The message flow can be initiated from the identity provider or the service provider.

Bindings
The following bindings can be used in the Web browser SSO profile:

• HTTP redirect
• HTTP POST
• HTTP artifact

The choice of binding depends on the type of messages being sent. For example, an
authentication request message can be sent from a service provider to an identity provider using
HTTP redirect, HTTP POST, or HTTP artifact. The response message can be sent from an identity
provider to a service provider by using either HTTP POST or HTTP artifact. A pair of partners in a
federation does not need to use the same binding.

Single Logout
The Single Logout profile is used to terminate all the login sessions currently active for a specified
user within the federation. A user who achieves single sign-on to a federation establishes sessions
with more than one participant in the federation.

The sessions are managed by a session authority, which in many cases is an identity provider. When
the user wants to end sessions with all session participants, the session authority can use the single
logout profile to globally terminate all active sessions.

This profile provides options regarding the initiation of the message flow and the transport of the
messages:

Flow initiation
The message flow can be initiated from the identity provider or the service provider.

Bindings
The following bindings can be used in the Single Logout profile:

• HTTP redirect
• HTTP POST
• HTTP artifact
• SOAP

Name Identifier Management
The Name Identifier Management profile manages user identities that are exchanged between
identity providers and service providers.

This profile can be used by identity providers or service providers to inform their partners when there
is a change in user aliases.

This profile can also be used by identity providers or service providers to terminate user linkages at
the partners.

Chapter 3. SAML Federations Overview 9

To manage the aliases, the Federation module uses a function that is called the alias service. The alias
service stores and retrieves aliases that are related to a federated identity. User aliases are stored and
retrieved from high-volume database.

This profile provides options regarding the initiation of the message flow and the transport of the
messages:

Flow initiation
The message flow can be initiated from the identity provider or the service provider.

Bindings
The following bindings can be used in the Web browser SSO profile:

• HTTP redirect
• HTTP POST
• HTTP artifact
• SOAP

SAML 1.1 initial URL
The intersite transfer service URL is where the sign-on request process begins in a SAML 1.1 federation.
The URL for initiating a single sign-on request has the following syntax:

Syntax
https://identity_provider_hostname:port_number/sps/junction_name
 federation_name/saml11/login?TARGET= target_application_location
 [optional query strings]

Elements
identity_provider_hostname

The host name of the reverse proxy server of the identity provider.
port_number

The port number of the reverse proxy server. The default value is 443.
sps

The designation for IBM Security Verify Access server the This element cannot be changed.
junction_name

The name of the junction created on the reverse proxy server. For example, isva
federation_name

The name of the SAML 1.1 federation.
saml11

The designation of the SAML protocol you choose to use in your federation.
login

This element indicates what type of endpoint is using the port. login is used for the intersite transfer
service.

You have the option of using either, both, or neither of the optional query strings (SP_PROVIDER) and
(PROTOCOL), see the following examples:
TARGET

The URL of the target application that a user can log on to using single sign-on.
SP_PROVIDER_ID

The value of query string specifies the provider ID of the service provider that is the target of the
single sign-on request. This query string is optional but might be necessary. The use of this query
string removes any ambiguity about which service provider is the target of the single sign-on request.

10 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Without this query string, the service provider is determined by matching the URI://
hostname[:port] of the URL in the TARGET query string to the URI://hostname[:port] of the
provider ID for the service provider partner that is configured for the federation. This parameter is
used with requests that are initiated at the identity provider.

PROTOCOL
The value of this parameter specifies the type of single sign-on profile (browser artifact or browser
POST) that can be used for the single sign-on request. The syntax of the extension is PROTOCOL=[BA|
POST], with BA indicating Browser Artifact and POST indicating Browser POST. The query string
overrides local identity provider configuration.
The use of the extension is optional. When the extension is not present, the profile choice is
determined by the configuration file settings. To use this extension, you must enable the IBM
PROTOCOL extension setting during the configuration steps for creating a SAML 1.1 federation on an
identity provider.

These query strings can be used individually or in combination. For example, the URL used to initiate
single sign-on, when the SP_PROVIDER_ID is used but the PROTOCOL extension is not, has the following
syntax:

https://intersite_transfer_service_URL?SP_PROVIDER_ID=
 provider_ID_of_service_provider&TARGET=target_application_URL

With the SP_PROVIDER_ID and the PROTOCOL extension, the URL has the following syntax:

https://intersite_transfer_service_URL?SP_PROVIDER_ID=
 provider_ID_of_service_provider&TARGET=target_application_URL
 &PROTOCOL=[BA|POST]

Examples
Single sign-on URL, without the optional parameters:

The following example shows the single sign-on URL for an identity provider using a federation named
ipfed, the SAML 1.1 protocol, a service provider with a provider ID of https://
sp.example.com:443, and an application called snoop:

https://idp.example.com:443/sps/ipfed/saml11/login?TARGET=
 https://sp.example.com:443/snoop/

Single sign-on URL, when SP_PROVIDER_ID and PROTOCOL extension are used:

The following example shows a URL that is used to initiate single sign-on when the IBM PROTOCOL
extension is used. In this example, even if the identity provider is configured to use a POST profile for
the service provider named sp, the following use of the PROTOCOL extension would force the identity
provider to use the browser artifact profile:

https://idp.example.com:443/isam/sps/ipfed/saml11/login?SP_PROVIDER_ID=
 https://sp.example.com:443/isam/sps/spfed/saml11&TARGET=
 https://sp.example.com:443/isam/
 snoop&PROTOCOL=BA

Single sign-on URL, when SP_PROVIDER_ID is used but the PROTOCOL extension is not used:
The following example shows a URL that is used to initiate single sign-on when the SP_PROVIDER_ID
is used but the IBM PROTOCOL extension is not used:

https://idp.example.com:443/isam/sps/ipfed/saml11/login?SP_PROVIDER_ID=
 https://sp.example.com:443/isam/sps/spfed/saml11&TARGET=
 https://sp.example.com:443/snoop

SAML 2.0 endpoints and URLs
Communications within a federation take place through endpoints on the servers of the identity provider
and service provider partners.

In a Security Verify Access environment, endpoints fall into two categories:

Chapter 3. SAML Federations Overview 11

• Endpoints that are specified by the federation specification (such as SAML 2.0) and are used for
partner-to-partner communication.

• Endpoints that end users can access to initiate a single sign-on activity.

All endpoints can be accessed through URLs. The syntax of the URLs is specific to the purpose of the
access and whether the access is by a partner or by an end user.

URLs for partner communication
The URLs that are used for partner-to-partner communication, such as the exchange of requests, in SAML
2.0 federations are referred to collectively as endpoint URLs. They can also be individually referred to by
the name of the protocol and binding or service that they are related to. Administrators who are
responsible for installing, configuring, and maintaining the Security Verify Access environment and the
partner-to-partner communication in that environment will see references to these endpoint URLs and
might find it helpful to understand their purpose. See “Endpoint URL specifications” on page 12.

URLs for user access
While the SAML specifications define the endpoints for partner-to-partner communication, they provide
limited or no guidance about the endpoints or methods that end users must use to initiate single sign-on
actions. Security Verify Access supports specific URLs for end-user initiation of single sign-on actions.

In a SAML 2.0 federation, single sign-on actions can be initiated at the identity provider site or the service
provider site. URLs that can be used by users to initiate a sign-on action are specific to the a single sign-on
action, such as initiate a federated sign on, perform a single logout, or end account linkage. They are also
specific to whether the action is being initiated at the identity provider or service provider site. In a
Security Verify Access environment, the URLs that can be used for initiating sign-on actions are referred to
as profile initial URLs. Architects and application developers, who design and implement the interactions
of their users with the single sign-on process, need to understand profile initial URLs.

Endpoint URL specifications
You must define several endpoints on your point of contact server so that communications can be
exchanged between you and your partner.

These endpoints are defined when you configure your federation in Security Verify Access. The endpoints
are accessible through URLs and are used by the partners in the federation.

The following types of endpoint URLs initiate single sign-on:

• Single sign-on service
• Assertion consumer service
• Single logout service endpoint
• Artifact resolution service or SOAP
• Name identifier management service

Single sign-on service endpoint URL (IP)
The endpoint on the identity provider point of contact server that receives authentication requests.
The unauth ACL must be attached to this URL. The syntax of the URL is:

https://isam_hostname:port_number/junction_name/sps/federation_name/saml20/login

Where:
isam_hostname

The host name of the reverse proxy server for the identity provider.
port_number

The port number of the reverse proxy server.
junction_name

The name of the junction created on the reverse proxy server.

12 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

federation_name
The name you assigned to the federation when you created it.

Assertion consumer service endpoint (SP)
The endpoint on the service provider point of contact server that receives assertions. The unauth ACL
must be attached to this URL. The syntax of the URL is:

https://isam_hostname:port_number/junction_name/sps/federation_name/saml20/login

Where:
isam_hostname

The host name of the reverse proxy server for the service provider.
port_number

The port number of the reverse proxy server.
junction_name

The name of the junction created on the reverse proxy server.
federation_name

The name you assigned to the federation when you created it.
Single logout service endpoint (IP or SP)

The endpoint on the service provider or identity provider point of contact server that receives logout
requests. The unauth ACL must be attached to this URL. The syntax of the URL is:

https://isam_hostname:port_number/junction_name/sps/federation_name/saml20/slo

Where:
isam_hostname

The host name of the reverse proxy server for the service provider or identity provider.
port_number

The port number of the reverse proxy server.
junction_name

The name of the junction created on the reverse proxy server.
federation_name

The name you assigned to the federation when you created it.
Artifact resolution service or SOAP endpoint (IP or SP)

The endpoint on the service provider or identity provider where artifacts are exchanged for SAML
messages. The unauth ACL must be attached to this URL. The syntax of the URL is:

https://isam_hostname:port_number/junction_name/sps/federation_name/saml20/soap

Where:
isam_hostname

The host name of the reverse proxy server for the service provider or identity provider.
port_number

The port number of the reverse proxy server.
junction_name

The name of the junction created on the reverse proxy server.
federation_name

The name you assigned to the federation when you created it.
Name identifier management service endpoint (IP or SP)

The endpoint on the service provider or identity provider that receives messages related to the name
ID management. The unauth ACL must be attached to this endpoint.

Chapter 3. SAML Federations Overview 13

The syntax of the URL for HTTP redirect, HTTP POST, and HTTP artifact binding is:

https://isam_hostname:port_number/junction_name/sps/federation_name/saml20/mnids

The syntax of the URL for SOAP binding is:

https://isam_hostname:port_number/junction_name/sps/federation_name/saml20/soap

Where:
isam_hostname

The host name of the reverse proxy server for the service provider or identity provider.
port_number

The port number of the reverse proxy server.
junction_name

The name of the junction created on the reverse proxy server.
federation_name

The name you assigned to the federation when you created it.

SAML 2.0 profile initial URLs
In a federated environment, specially formed URLs can be used for user-initiated single sign-on actions.
You can initiate a single sign-on flow from the service provider or identity provider.

The following profile initial URLs are supported in a Security Verify Access environment:

• Assertion consumer service
• Single sign-on service
• Single logout service
• Name identifier management service

Assertion consumer service initial URL (SP)
Initiate the single sign-on flow at the service provider. The unauth ACL must be attached to this URL.
The syntax of the URL is:

https://isam_hostname:port_number/junction_name/sps
 /federation_name/saml20/logininitial
 ?RequestBinding=RequestBindingType
 &ResponseBinding=ResponseBindingType
 &NameIdFormat=NameIDFormatType
 &IsPassive=IsPassiveValue
 &IncludeIsPassive=IncludeIsPassiveValue
 &ForceAuthn=ForceAuthnValue
 &IncludeForceAuthn=IncludeForceAuthnValue
 &AllowCreate=AllowCreateValue
 &IncludeAllowCreate=IncludeAllowCreateValue
 &AuthnContextClassRef=ClassRefValues
 &AuthnContextDeclRef=DeclarationRefValues
 &AuthnContextComparison=AuthnContectComparisonValue
 &Target=target_application_location

Where:
isam_hostname

The host name of the reverse proxy server for the service provider.
port_number

The port number of the reverse proxy server.
junction_name

The name of the junction created on the reverse proxy server.
federation_name

The name you assigned to the federation when you created it.

14 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

RequestBindingType
The binding that is used to send the request. The valid values when initiating single sign-on at the
service provider are:

• HTTPPost
• HTTPRedirect
• HTTPArtifact

ResponseBindingType
The binding that is used by the responder to return the response. The valid values when initiating
single sign-on at the service provider are:

• HTTPPost
• HTTPArtifact

NameIdFormatType
The name ID format to use for name identifiers. Valid values are:

• Transient (anonymous)
• Persistent
• Email

IsPassiveValue

Specifies if the identity provider must take control of the user agent. A value of true means that
the identity provider is not permitted to request the user to provide log in credentials. The default
value is false.

IncludeIsPassiveValue
Specifies whether to include the IsPassive attribute in the SAML authentication request. The value
of the IsPassive attribute is taken from the IsPassive query string parameter. A value of true
includes the attribute. The default value is true.

ForceAuthnValue
Specifies if the identity provider authenticates the user. A value of true means that the user must
be authenticated. The default value is false.

IncludeForceAuthnValue
Specifies whether to include the ForceAuthn attribute in the SAML authentication request. The
value of the ForceAuthn attribute is taken from the ForceAuthn query string parameter.A value of
true includes the attribute. The default value is true.

AllowCreateValue
Specifies if new persistent account linkage is performed on the request. The default value is true.
To use this parameter, the NameIdFormat must be set to Persistent.

IncludeAllowCreateValue
Specifies whether to include the AllowCreate attribute in the SAML authentication request. The
value of the AllowCreate attribute is taken from the AllowCreate query string parameter. A value of
true includes the attribute. The default value is true.

ClassRefValues
Specifies one or more string values which identify authentication context class URI references.

DeclarationRefValues
Specifies one or more string values which identify authentication context declaration URI
references.

AuthnContectComparisonValue
Specifies the type of comparison used to determine the requested context classes or declarations.
The comparison type must be one of the following variables:

• exact
• minimum

Chapter 3. SAML Federations Overview 15

• maximum
• better

The default value is exact.
target_application_location

The URL of the application that a user can log on to using single sign-on.
Example:

Single sign-on URL when initiated at the service provider:

https://sp.example.com:433/samlsp/sps/spfed/saml20/logininitial
 ?RequestBinding=HTTPPost
 &ResponseBinding=HTTPPost
 &NameIdFormat=Email
 &IsPassive=true
 &ForceAuthn=false
 &Target=https://sp.example.com:433/samlsp/banking

Single sign-on service initial URL (IP)
Initiate the single sign-on flow at the identity provider. The unauth ACL must be attached to this URL.
The syntax of the URL is:

https://isam_hostname:port_number/junction_name/sps
 /federation_name/saml20/logininitial
 ?RequestBinding=RequestBindingType
 &PartnerId=target_partner_provider_ID
 &NameIdFormat=NameIDFormatType
 &AllowCreate=AllowCreateValue
 &Target=target_application_location

Where:
isam_hostname

The host name of the reverse proxy server for the identity provider.
port_number

The port number of the reverse proxy server.
junction_name

The name of the junction created on the reverse proxy server.
federation_name

The name you assigned to the federation when you created it.
RequestBindingType

The binding that is used to send the request to the service provider. The valid values when
initiating single sign-on at the identity provider are:

• HTTPPost
• HTTPArtifact

target_partner_provider_ID
The provider ID of the target partner.

NameIdFormatType
The name ID format to use for name identifiers. Valid values are:

• Transient (anonymous)
• Persistent
• Email

AllowCreateValue
Specifies if new persistent account linkage is performed on the request. The default value is false.

16 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

target_application_location
This element is URL-encoded and set as the value of the RelayState parameter in the unsolicited
response delivered by the identity provider to the service provider. A service provider interprets
this value as the URL of the application that a user can log on to using single sign-on.

AssertionConsumerSvcIndex
Specifies the index of the Assertion Consumer Service URL where the Identity Provider sends the
response. The value must correspond to the endpoint in the Service Provider metadata.

This attribute is supported on both the Identity Provider and Service Provider.

Note: In case ResponseBinding and AssertionConsumerSvcIndex are specified, the latter
takes precedence.

Example:
Single sign-on URL when initiated at the identity provider:

The following example shows the single sign-on URL when initiated at an identity provider, using
the SAML 2.0 protocol. AssertionConsumerSvcIndex refers to the index of the ACS URL to
send the response.

https://idp.example.com:433/samlip/sps/saml20/saml20/logininitial
 ?RequestBinding=HTTPPost
 &NameIdFormat=persistent
 &AllowCreate=true
 AssertionConsumerSvcIndex=0&
 &PartnerId=https://sp.example.com:433/samlsp/sps/saml20/saml20
 &Target=https://sp.example.com:9443/banking

Single logout service initial URL (IP or SP)
Initiate the SLO flow at either the identity provider or service provider. The unauth ACL must be
attached to this URL. The syntax of the URL is:

https://isam_hostname:port_number/junction_name/sps
 /federation_name/saml20/sloinitial
 ?RequestBinding=RequestBindingType

Where:
isam_hostname

The host name of the reverse proxy server for the identity provider or service provider.
port_number

The port number of the reverse proxy server.
junction_name

The name of the junction created on the reverse proxy server.
federation_name

The name you assigned to the federation when you created it.
RequestBindingType

The binding that is used to send the request. The valid values are:

• HTTPPost
• HTTPRedirect
• HTTPArtifact
• HTTPSOAP

Examples:

Single logout URL when initiated at the service provider:

https://sp.example.com:433/samlsp/sps/spfed/saml20/sloinitial
 ?RequestBinding=HTTPRedirect

Single logout URL when initiated at the identity provider:

Chapter 3. SAML Federations Overview 17

https://idp.example.com:433/samlip/sps/ipfed/saml20/sloinitial
 ?RequestBinding=HTTPPost

Name identifier management service initial URL (IP or SP)
Used by the partner to contact the name identifier management server. The anyauth ACL must be
attached to this URL. The syntax of the URL is:

https://isam_hostname:port_number/junction_name/sps
 /federation_name/saml20/mnidsinitial
 ?RequestBinding=RequestBindingType
 &PartnerId=target_partner_provider_ID
 &NameIdTerminate=name_ID_terminate_value

Where:
isam_hostname

The host name of the reverse proxy server for the identity provider or service provider.
port_number

The port number of the reverse proxy server.
junction_name

The name of the junction created on the reverse proxy server.
federation_name

The name you assigned to the federation when you created it.
RequestBindingType

The binding that is used to send the request. The valid values are:

• HTTPPost
• HTTPRedirect
• HTTPArtifact
• HTTPSOAP

target_partner_provider_ID
The provider ID of the target partner.

name_ID_terminate_value
A value that indicates if the name ID management flow must terminate the name ID mapping.
Valid values are:

• True: Ends the account linkage.
• False: Indicates that the name ID flow updates the name identifiers (aliases). False is the

default, if you do not explicitly specify a value.

Examples:

Name ID management initiated by the identity provider:

https://idp.example.com:443/samlip/sps/ipfed/saml20/mnidsinitial
 ?RequestBinding=HTTPSOAP
 &PartnerId=https://sp.example.com:443/samlsp/sps/spfed/saml20
 &NameIdTerminate=true

Name ID management initiated by the service provider:

https://sp.example.com:443/samlsp/sps/spfed/saml20/mnidsinitial
 ?RequestBinding=HTTPArtifact
 &PartnerId=https://idp.example.com:443/samlip/sps/ipfed/saml20
 &NameIdTerminate=true

Customizing SAML identity mapping
Use mapping rules to map local identities to SAML tokens and to map SAML tokens to local identities.

You can use an attribute source, such as LDAP, for the identity mapping. See Managing attribute sources.

18 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

You can use an HTTP external user mapping to map a local identity to a SAML token and to map SAML
token to a local identity.

See Managing JavaScript mapping rules for information about how to create or modify mapping rules.

Mapping a local user identity to a SAML 1.1 token
You can map a local identity to a SAML 1.1 token for an identity provider.

The Security Verify Access server places the local user identity information into an XML document that
conforms to the security token service universal user (STSUUSER) schema. The identity provider issues a
SAML 1.1 token to the service provider. It generates the SAML 1.1 token based on the local identity of the
user. You can customize how the local identity is converted into a SAML 1.1 token by using a mapping rule.

Security Verify Access first converts the local identity to an STS Universal User. It then converts this STS
Universal User into another STS Universal User by using a mapping rule that you provide. After that, it
converts the latter STS Universal User to a SAML 1.1 token.

Your mapping rule does not operate directly on local identity or SAML 1.1 token. Instead, it operates on
the STS Universal User. Any modification that you make to an STS Universal User has an impact on the
output SAML 1.1 token.

The mapping rule is responsible for the following tasks:

1. Mapping Principal Attr Name to a Principal Name entry. When the token module generates the token,
this Principal name is not directly used. Instead, the value in the Name field is sent as input to the alias
service. The alias service obtains the alias name, name identifier, for the principal, and places the
returned alias in the generated token module.

The type must be valid for SAML. For example:

urn:oasis:names:tc:SAML:1.1:assertion

2. Setting the authentication method to the password mechanism. This action is required by the SAML
standard.

Mapping a SAML 1.1 token to a local user identity
You can map a SAML 1.1 token to a local identity for a service provider.

A service provider consumes a SAML 1.1 token that is issued by an identity provider. It generates the local
identity of the user based on a SAML 1.1 token. You can customize how a SAML 1.1 token is converted
into the local identity of the user by using a mapping rule.

Security Verify Access first converts a SAML 1.1 token to an STS Universal User. It then converts this STS
Universal User into another STS Universal User by using a mapping rule that you provide. After that, it
converts the latter STS Universal User to a local identity of the user.

Your mapping rule does not operate directly on the local identity or SAML 1.1 token. Instead, it operates
on the STS Universal User. Any modifications that you make on the STS Universal User impacts the output
local identity of the user.

Mapping a local identity to a SAML 2.0 token
You can map a local identity to a SAML 2.0 token for an identity provider.

The Security Verify Access server places the local user identity information into an XML document that
conforms to the security token service universal user (STSUUSER) schema. The identity provider issues a
SAML 2.0 token to the service provider. It generates the SAML 2.0 token based on the local identity of the
user. You can customize how the local identity is converted into a SAML 2.0 token by using a mapping rule.

Security Verify Access first converts the local identity to an STS Universal User. It then converts this STS
Universal User into another STS Universal User by using a mapping rule that you provide. After that, it
converts the latter STS Universal User to a SAML 2.0 token.

Chapter 3. SAML Federations Overview 19

Your mapping rule does not operate directly on local identity or SAML 2.0 token. Instead, it operates on
the STS Universal User. Any modification that you make to an STS Universal User has an impact on the
output SAML 2.0 token.

The mapping rule is responsible for the following tasks:

1. Mapping Principal Attr Name to a Principal Name entry. When the token module generates the token,
this Principal name is not directly used. Instead, the value in the Name field is sent as input to the alias
service. The alias service obtains the alias name, name identifier, for the principal, and places the
returned alias in the generated token module.

The type must be valid for SAML. For example:

urn:oasis:names:tc:SAML:2.0:assertion

2. Setting the authentication method to the password mechanism. This action is required by the SAML
standard.

3. Setting the audience of the audience restriction condition to the value of the STSUU element
AudienceRestriction. If this STSUU element is not present, the audience is set to the Provider ID
of the federation partner.

4. Populating the attribute statement of the assertion with the attributes in the AttributeList in the In-
STSUU. This information becomes custom information in the token.

Custom attributes might exist that are required by applications that use information that is to be
transmitted between federation partners.

5. Specifying whether the assertion conditions should contain the <saml:OneTimeUse></
saml:OneTimeUse> element. If so, insert a special context attribute into the STSUU as shown:

var oneTimeUseAttr = new Attribute("AssertionIncludeOneTimeUse","urn:oasis:names:tc:SAML:2.0:assertion",
"true");
stsuu.addContextAttribute(oneTimeUseAttr);

6. Setting the NameID attribute in the assertion with Transient NameId format. This action is useful when
you want to specify a name value to use instead of the default UUID that is generated by the runtime
for Transient NameID format.

To replace the UUID, create a principal name attribute of type
urn:oasis:names:tc:SAML:2.0:nameid-format:transient, with its value provided by user.

The examples below show the user-provided value UserGeneratedTransientId but it could be any
other value. The value of the specified STSUU principal name will be set as the NameID in the SAML
assertion.

Example mapping rule

importPackage(Packages.com.tivoli.am.fim.trustserver.sts.uuser);
var transientNameId = "UserGeneratedTransientId";
stsuu.addPrincipalAttribute(new Attribute("name",
 "urn:oasis:names:tc:SAML:2.0:nameid-format:transient", transientNameId));

Example STSUU values after mapping rule applied

 <stsuuser:Attribute name="name" type="urn:oasis:names:tc:SAML:2.0:nameid-format:transient">
 <stsuuser:Value>UserGeneratedTransientId</stsuuser:Value>
 </stsuuser:Attribute>

Example SAML assertion NameID with Transient NameId formats

<saml:NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-format:transient"
 NameQualifier="https://ip-wga/isam/sps/saml20ip/saml20"
 SPNameQualifier="https://sp-wga/isam/sps/saml20sp/saml20"
 >UserGeneratedTransientId</saml:NameID>

20 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

7. Determine if the partner requires a specific SPNameQualifier within NameID of assertion for
transient identifiers. To change SPNameQualifer within NameID of assertion, insert a special context
attribute into the STSUU with a value agreed with partner as shown in the following example:

var SPNameQualifierAttr = new
Attribute("AssertionChangeSPNameQualifier","urn:oasis:names:tc:SAML:2.0:assertion","http://sp
/target/app");
stsuu.addContextAttribute(SPNameQualifierAttr);

Mapping a SAML 2.0 token to a local identity
You can map a SAML 2.0 token to a local identity for a service provider.

A service provider consumes a SAML 2.0 token that is issued by an identity provider. It generates the local
identity of the user based on a SAML 2.0 token. You can customize how a SAML 2.0 token is converted
into the local identity of the user by using a mapping rule.

Security Verify Access first converts a SAML 2.0 token to an STS Universal User. It then converts this STS
Universal User into another STS Universal User by using a mapping rule that you provide. After that, it
converts the latter STS Universal User to a local identity of the user.

Your mapping rule does not operate directly on the local identity or SAML 2.0 token. Instead, it operates
on the STS Universal User. Any modifications that you make on the STS Universal User impacts the output
local identity of the user.

Creating a SAML federation
Create a federation by gathering the necessary configuration information for input into the local
management interface on the appliance.

To set up a federation, follow these steps:

1. Create and configure a reverse proxy instance to act as the point of contact for the federation. See
Chapter 8, “Configuring a reverse proxy point of contact server,” on page 179.

2. Gather the required data. See “Gathering your federation configuration information” on page 21.
3. Use the local management interface to create your role in the federation. See Creating and modifying

federation properties.

Next, you can set up your federation partner. See “Creating a SAML partner” on page 40.

Gathering your federation configuration information
Setting up a federation requires that you first gather the required information according to your role in the
federation.

Procedure
• If your role in the federation is a SAML 1.1 service provider, fill out this worksheet: “SAML 1.1 service

provider worksheet” on page 22
• If your role in the federation is a SAML 1.1 identity provider, fill out this worksheet: “SAML 1.1 identity

provider worksheet” on page 23
• If your role in the federation is a SAML 2.0 service provider, fill out this worksheet: “SAML 2.0 service

provider worksheet” on page 26
• If your role in the federation is an SAML 2.0 identity provider, fill out this worksheet: “SAML 2.0 identity

provider worksheet” on page 32

Chapter 3. SAML Federations Overview 21

SAML 1.1 service provider worksheet
If you assume the role of the service provider in the federation, and use SAML 1.1, record your
configuration information in the following tables.

Table 3. General information for service provider in SAML 1.1 federation

General Information Description Your value

Federation name The unique name you give to the
federation.

Role The role you provide in the
federation. (In these instructions,
you are the service provider.)

Service provider

Company name The name of the company that is
creating this provider.

Table 4. Federation protocol for service provider in SAML 1.1 federation

Federation Protocol Description Your value

Protocol The SAML protocol you and your
partner use in the federation.

SAML 1.1

Table 5. Point of contact server information for service provider in SAML 1.1 federation

Point of contact server Description Your value

Point of contact server URL The URL that provides access to
the endpoints on the point of
contact server.

Table 6. Single Sign-On settings for service provider in SAML 1.1 federation

Settings Description Your value

Enable one-time assertion use
enforcement

This setting is to ensure the SAML
assertion is used only once.

• True
• False

Include the following attribute
types in the SAML assertions

Provide attribute types in the
value text box.

A "*" means include all types. It
is selected by default.

Table 7. Signature information for service provider in SAML 1.1 federation

Signatures Description Your value

Sign Artifact Resolution
Requests

A check box that indicates that
you will sign request messages.
Default value: No signing. The
check box is not selected.

One of the following:

• Sign request messages. (Select
check box.)

• Do not sign request messages.
(Clear check box.)

22 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 7. Signature information for service provider in SAML 1.1 federation (continued)

Signatures Description Your value

Select Signing Key

• Keystore in IBM Security Verify
Access key service, where the
key is stored

• Private key you will use to sign
request messages

If you select the check box, you
must supply the signing key that
you will use to sign the requests.

Note: Be sure you have created
the key and imported it into the
appropriate keystore in the IBM
Security Verify Access key service
prior to this task.

• Keystore name
• Certificate Label

Table 8. Identity mapping information for service provider in SAML 1.1 federation

Identity mapping Description Your value

Identity mapping options

• User JavaScript transformation
for identity mapping

• Use an external web service for
identity mapping

If you configure an identity
provider, this mapping specifies
how to create an assertion that
contains attributes that are
mapped from a local user
account.

If you configure a service
provider, this mapping specifies
how to match an assertion from
the partner to the local user
accounts.

If you choose JavaScript for
mapping, on a subsequent panel,
you are asked to select the
JavaScript file to use.

If you choose an external web
service, on a subsequent panel,
you are asked to provide the
following information:

• URI format (HTTP or HTTPS)
• Web service URI
• Server Certificate database, if

the URI format is HTTPS
• Client authentication type, if

the URI format is HTTPS
• Message format:

– XML
– WS-Trust

SAML 1.1 identity provider worksheet
If you assume the role of the identity provider in the federation, and use SAML 1.1, record your
configuration information in the following tables.

Table 9. General information for identity provider in SAML 1.1 federation

General Information Description Your value

Federation name The unique name you give to the
federation.

Role The role you provide in the
federation. (In these instructions,
you are the identity provider.)

Identity provider

Company name The name of the company that is
creating this provider.

Chapter 3. SAML Federations Overview 23

Table 10. Federation protocol information for identity provider in SAML 1.1 federation

Federation Protocol Description Your value

Protocol The SAML protocol you and your
partner use in the federation.

SAML 1.1

Table 11. Point of contact server for identity provider in SAML 1.1 federation

Point of Contact Server Description Your value

Point of contact server URL The URL that provides access to
the endpoints on the point of
contact server.

Table 12. Single Sign-On settings for identity provider in SAML 1.1 federation

Settings Description Your value

Amount of time before the issue
date that an assertion is
considered valid

The number of seconds that an
assertion is considered valid
before its issue date. Default
value: 60

Amount of time the assertion is
valid after being issued

The number of seconds that an
assertion is considered valid after
its issue date. Default value: 60

Include the following attribute
types in the SAML assertions

Provide attribute types in the
value text box.

A "*" means include all types. It
is selected by default.

Table 13. Signing information for identity provider in SAML 1.1 federation

Signatures Description Your value

Signature options:

• SAML messages for Browser
POST profile are signed
(required)

• Sign SAML messages for
artifact profile (optional)

• When browser POST is used as
the profile, SAML messages
must be signed. Therefore, it is
pre-selected and cannot be
deselected.

• You have the option of also
signing the SAML messages
when browser artifact is used.

One of the following:

• Sign browser artifact
messages. (Select check box.)

• Do not sign browser artifact
messages. (Clear check box.)

Select Signing Key

• Keystore in IBM Security Verify
Access key service, where the
key is stored

• Private key you will use for
signing

Because Browser POST
messages must be signed, you
are required to supply a signing
key. If you select to also sign
messages when browser artifact
is used, the same signing key is
used to sign them.

Note: Be sure you have created
the key and imported it into the
appropriate keystore in the IBM
Security Verify Access key service
prior to this task.

• Keystore name
• Certificate label

24 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 14. SAML Message Settings information for identity provider in SAML 1.1 federation

SAML Message Settings Description Your value

Artifact Resolution Service URL The URL for your artifact
resolution endpoint. (Note: The
value for this field is filled in
automatically using the point of
contact server URL you specified
earlier.)

Artifact Cache Lifetime
(seconds)

The artifact cache lifetime in
seconds. Default value: 30
seconds.

Allow IBM Protocol Extension You must specify whether you
will allow the use of the IBM
PROTOCOL extension. The
extension allows a query-string
parameter that specifies whether
browser artifact or browser POST
is used. For more information,
see “SAML 1.1 ” on page 7 .

One of the following:

• Allow IBM Protocol Extension.
(Select the check box.)

• Do not allow Protocol
Extension. (Clear the check
box.)

Table 15. Identity mapping information for identity provider in SAML 1.1 federation

Identity mapping Description Your value

Identity mapping options

• User JavaScript transformation
for identity mapping

• Use an external web service for
identity mapping

If you configure an identity
provider, this mapping specifies
how to create an assertion that
contains attributes that are
mapped from a local user
account.

If you configure a service
provider, this mapping specifies
how to match an assertion from
the partner to the local user
accounts.

If you choose JavaScript for
mapping, on a subsequent panel,
you are asked to select the
JavaScript file to use.

If you choose an external web
service, on a subsequent panel,
you are asked to provide the
following information:

• URI format (HTTP or HTTPS)
• Web service URI
• Server Certificate database, if

the URI format is HTTPS
• Client authentication type, if

the URI format is HTTPS
• Message format:

– XML
– WS-Trust

After you complete the tables, continue with the instructions in Creating and modifying a federation.

Chapter 3. SAML Federations Overview 25

SAML 2.0 service provider worksheet
If you are the service provider in the federation and use SAML 2.0, use this worksheet to record your
configuration information.

Table 16. Federation protocol

Federation protocol Description Your value

Federation name The name you want to give this
federation.

The name must not contain any
ASCII control characters or
special characters except hyphen
and underscore.

Select the protocol for this
federation:

• OpenID Connect
• SAML 2.0

The protocol you want to use in
the federation.

In these instructions, use SAML
2.0.

Table 17. Template

Template Description Your value

Select the template:

• Quick Connect
• SAML 2.0

Choose Quick Connect to quickly
set up an identity provider
federation to work with partner
templates that can assist with
the establishment of federations
to well-known partners.

Choose SAML 2.0 to use the full
set of configuration options.

Because this is SAML 2.0 service
provider worksheet, select SAML
2.0 as the template.

The template cannot be changed
after a federation is created.

SAML 2.0

Table 18. General information

General information Description Your value

Company name The name of the company that is
creating this provider.

Provider ID A unique identifier that identifies
the provider to its partner
provider.

The default value is
point_of_contact
_server_URL/
federation_name/saml20.

26 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 18. General information (continued)

General information Description Your value

Role Your role is either Identity
Provider or Service Provider.

An identity provider vouches for
the identity of the end user. The
Identity Provider authenticates
the user and provides an
authentication token to the
service provider.

A service provider provides a
service to end users. In most
cases, service providers do not
authenticate users, but instead
request authentication decisions
from an identity provider. You
cannot change the role after a
federation is created.

Service provider

Table 19. Point of contact server

Point of contact server Description Your value

Point of contact server URL The endpoint URL of the point of
contact server. The point of
contact server is a reverse proxy
server that is configured in front
of the runtime listening
interfaces. The format is

http[s]://
hostname[:portnumber]/
[junction]/sps

Table 20. Profile selection

Profile selection Description Your value

SAML 2.0 profile options:

• Web Browser Single Sign-on
• Name Identifier Management
• Single Logout

The profile for your federation.
The Web Browser Single Sign-
on profile must be selected by
default. You cannot clear this
selection.

For more information about
profiles, see “SAML profiles” on
page 9.

Chapter 3. SAML Federations Overview 27

Table 21. Single Sign-on settings

Settings Description Your value

Bindings:

You can choose one or more
binding options.

• HTTP Artifact
• HTTP POST
• HTTP Redirect

The choice of binding depends on
the type of messages sent. For
example, an authentication
request message can be sent
from service provider to an
identity provider. The response
message can be sent from an
identity provider to a service
provider by using either HTTP
POST or HTTP artifact.

A pair of partners in a federation
does not need to use the same
binding.

The default NameID format The default format determines
processing rules for the NameID
value if one of the following items
is true:

• The format attribute is not set
• The format attribute is set to
urn:oasis:names:tc:SAML
:1.1:nameid-
format:unspecified

Choose one of the following
formats:

• urn:oasis:names:tc:SAML
:2.0:nameid-
format:persistent

• urn:oasis:names:tc:SAML
:1.1:nameid-
format:emailAddress

• urn:oasis:names:tc:SAML
:2.0:nameid-
format:transient

Enable ECP Check this check box to enable
the ECP profile.

Require signature on incoming
SAML assertions

Specifies that you require your
partner to sign SAML assertions.
You will validate the signature on
the incoming SAML assertions.

Require outgoing SAML
authentication requests to be
signed

Specifies that you require your
partner to validate the signature
on SAML authentication requests.
You will sign the outgoing SAML
authentication requests.

Table 22. Name Identifier Management settings

Settings Description Your value

Bindings:

You can choose one or more
binding options.

• HTTP Artifact
• HTTP POST
• HTTP Redirect
• HTTP SOAP

The choice of binding depends on
the type of messages sent. A pair
of partners in a federation does
not need to use the same
binding.

28 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 22. Name Identifier Management settings (continued)

Settings Description Your value

Message signatures Select
which outgoing SAML messages
require a signature:

• Name identifier management
requests

• Name identifier management
responses

Specifies whether you will sign
the outgoing SAML name
identifier management requests
and responses.

Table 23. Single logout settings

Settings Description Your value

Bindings:

You can choose one or more
binding options.

• HTTP Artifact
• HTTP POST
• HTTP Redirect
• HTTP SOAP

The choice of binding depends on
the type of messages sent. A pair
of partners in a federation does
not need to use the same
binding.

Message signatures Select
which outgoing SAML messages
require a signature:

• Single logout requests
• Single logout responses

Specifies whether you will sign
the outgoing SAML logout
requests and responses.

Table 24. Signature options

Signatures Description Your value

Certificate database Select the database where the
signing certificate is stored

Certificate label Name of the certificate to use for
signing.

Chapter 3. SAML Federations Overview 29

Table 24. Signature options (continued)

Signatures Description Your value

Include the following KeyInfo
elements

Determine which KeyInfo
elements to include in the digital
signature for a SAML message or
assertion.
X509 certificate data

Specify whether you want the
BASE64 encoded certificate
data to be included with your
signature. The default action
is to include the X.509
certificate data.

X509 Subject Name
Specify whether you want the
subject name to be included
with your signature. The
default action is to exclude
the X.509 subject name.

X509 Subject Key Identifier
Specify whether you want the
X.509 subject key identifier
to be included with your
signature. The default action
is to exclude the subject key
identifier.

X509 Subject Issuer Details
Specify whether you want the
issuer name and the
certificate serial number to
be included with your
signature. The default action
is to exclude the X.509
subject issuer details.

Public key
Specify whether you want the
public key to be included with
your signature. The default
action is to exclude the public
key.

Table 25. Encryption options

Signatures Description Your value

Certificate database Select the database where the
encryption certificate is stored

Certificate label Name of the certificate to use for
encryption.

30 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 26. SAML message settings

Message settings Description Your value

Message Lifetime in seconds An integer value specifying the
length of time, in seconds, that a
message is valid. The default
value is 300.

Artifact Lifetime in seconds The length of time, in seconds,
that an artifact is considered
valid. This field is only valid when
HTTP artifact binding has been
enabled. The default value
is 120.

Session Timeout in seconds The length of time, in seconds,
that the session remains valid.
The default value is 7200.

Select which outgoing
messages require a signature:

• Artifact requests
• Artifact responses

Specifies whether you will sign
the outgoing SAML artifact
requests and responses.

Message issuer format Format attribute of the Issuer of
the SAML message.

Message issuer name qualifier Name qualifier attribute of the
Issuer of the SAML message.

Table 27. Identity mapping settings

Identity mapping Description Your value

Identity mapping options

• Use JavaScript
transformation for identity
mapping

• Use an external web service
for identity mapping

If you configure an identity
provider, this mapping specifies
how to create an assertion that
contains attributes that are
mapped from a local user
account.

If you configure a service
provider, this mapping specifies
how to match an assertion from
the partner to the local user
accounts.

If you choose JavaScript for
mapping, on a subsequent panel,
you are asked to select the
JavaScript file to use.

If you choose an external web
service, on a subsequent panel,
you are asked to provide the
following information:

• URI format (HTTP or HTTPS)
• Web service URI
• Server Certificate database, if

the URI format is HTTPS
• Client authentication type, if

the URI format is HTTPS
• Message format:

– XML
– WS-Trust

Chapter 3. SAML Federations Overview 31

Table 28. SAML Message Extensions

Message Extensions Description Your value

SAML Message Extension
options:

• No message extensions
(default)

• Use Javascript to add
message extensions

If you configure your federation
with a message extension rule,
every time a SAML message is
written, the rule is invoked in order
to gather any extensions which
need to be included. The mapping
rule is invoked with context
information about the federation
and partner, as well as the kind of
message being sent.

The mapping rule context is
available in a variable ‘context’. For
documentation on this object see
the on box javadoc for the class
JSMessageExtensionContext.

If Javascript extensions are
enabled, a subsequent dialogue
allows selection of the mapping
rule.

Traditional identity mapping rules
with the category SAML_2_0 are
filtered from the view, as identity
mapping rules are not compatible
with extension rules. There is a
rule available out of the box,
which contains information and
examples.

After you complete the tables, continue with the instructions in Creating and modifying a federation.

SAML 2.0 identity provider worksheet
If you are the identity provider in the federation and use SAML 2.0, record your configuration information
in the following tables.

Table 29. Federation protocol

Federation protocol Description Your value

Federation name The name you want to give this
federation.

The name must not contain any
ASCII control characters or
special characters except hyphen
and underscore.

Select the protocol for this
federation:

• OpenID Connect
• SAML 2.0

The protocol you want to use in
the federation.

In these instructions, use SAML
2.0.

32 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 30. Template

Template Description Your value

Select the template:

• Quick Connect
• SAML 2.0

Choose Quick Connect to quickly
set up an identity provider
federation to work with partner
templates that can assist with
the establishment of federations
to well-known partners.

Choose SAML 2.0 to use the full
set of configuration options.

The template cannot be changed
after a federation is created.

Table 31. General information

General information Description Your value

Company name The name of the company that is
creating this provider.

Provider ID A unique identifier that identifies
the provider to its partner
provider.

The default value is
point_of_contact
_server_URL/
federation_name/saml20.

Role Your role is either Identity
Provider or Service Provider.

An identity provider vouches for
the identity of the end user. The
Identity Provider authenticates
the user and provides an
authentication token to the
service provider.

A service provider provides a
service to end users. In most
cases, service providers do not
authenticate users, but instead
request authentication decisions
from an identity provider. You
cannot change the role after a
federation is created.

Identity provider

Chapter 3. SAML Federations Overview 33

Table 32. Point of contact server

Point of contact server Description Your value

Point of contact server URL The endpoint URL of the point of
contact server. The point of
contact server is a reverse proxy
server that is configured in front
of the runtime listening
interfaces. The format is

http[s]://
hostname[:portnumber]/
[junction]/sps

Table 33. Profile selection

Profile selection Description Your value

SAML 2.0 profile options:

• Web Browser Single Sign-on
• Name Identifier Management
• Single Logout

The profile for your federation.
The Web Browser Single Sign-
on profile must be selected by
default. You cannot clear this
selection.

For more information about
profiles, see “SAML profiles” on
page 9.

Table 34. Single Sign-on settings

Settings Description Your value

Bindings:

You can choose one or more
binding options.

• HTTP Artifact
• HTTP POST
• HTTP Redirect

The choice of binding depends on
the type of messages sent. For
example, an authentication
request message can be sent
from a service provider to an
identity provider. The response
message can be sent from an
identity provider to a service
provider by using either HTTP
POST or HTTP artifact.

A pair of partners in a federation
does not need to use the same
binding.

34 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 34. Single Sign-on settings (continued)

Settings Description Your value

The default NameID format The default format determines
processing rules for the NameID
value if one of the following items
is true:

• The format attribute is not set
• The format attribute is set to
urn:oasis:names:tc:SAML
:1.1:nameid-
format:unspecified

Choose one of the following
formats:

• urn:oasis:names:tc:SAML
:2.0:nameid-
format:persistent

• urn:oasis:names:tc:SAML
:1.1:nameid-
format:emailAddress

• urn:oasis:names:tc:SAML
:2.0:nameid-
format:transient

Amount of time, in seconds,
before the issue date that an
assertion is considered valid

Specifies that you require your
partner to sign SAML validations.
You will validate the signature on
the incoming SAML assertions.

Amount of time, in seconds,
that the assertion is valid
before being issued

Specifies that you require your
partner to validate the signature
on SAML authentication requests.
You will sign the outgoing SAML
authentication requests.

Require consent to federate Requires the identity provider to
present a page to the user
verifying the federation request.

Enable ECP Check this check box to enable
the ECP profile.

Add Session State Headers Add or delete a Session State
Header. Multiple headers can be
added.

Specify the name of the Session
State Header that you are adding
in the field.

Require signature on incoming
SAML assertions

Specifies that you require your
partner to sign SAML assertions.
You will validate the signature on
the incoming SAML assertions.

Require outgoing SAML
authentication requests to be
signed

Specifies that you require your
partner to validate the signature
on SAML authentication requests.
You will sign the outgoing SAML
authentication requests.

Chapter 3. SAML Federations Overview 35

Table 35. Name Identifier Management settings

Settings Description Your value

Bindings:

You can choose one or more
binding options.

• HTTP Artifact
• HTTP POST
• HTTP Redirect
• HTTP SOAP

The choice of binding depends on
the type of messages sent. A pair
of partners in a federation does
not need to use the same
binding.

Message signatures Select
which outgoing SAML messages
require a signature:

• Name identifier management
requests

• Name identifier management
responses

Specifies whether you will sign
the outgoing SAML name
identifier management requests
and responses.

Table 36. Single logout settings

Settings Description Your value

Bindings:

You can choose one or more
binding options.

• HTTP Artifact
• HTTP POST
• HTTP Redirect
• HTTP SOAP

The choice of binding depends on
the type of messages sent. A pair
of partners in a federation does
not need to use the same
binding.

Message signatures Select
which outgoing SAML messages
require a signature:

• Single logout requests
• Single logout responses

Specifies whether you will sign
the outgoing SAML logout
requests and responses.

36 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 36. Single logout settings (continued)

Settings Description Your value

Exclude session index Select whether to exclude
session index in the single logout
request.

If this property is selected, the
logout request message sent out
from this Identity Provider will
exclude session index. When the
Service Provider receives this
logout request, it will log out all
the sessions for the current user.
The Identity Provider will log out
only the current user session
locally.

This setting is used on the
identity provider only.

Optional attribute-
ResponseLocation

Table 37. Signature options

Signatures Description Your value

Certificate database Select the database where the
signing certificate is stored

Certificate label Name of the certificate to use for
signing.

Chapter 3. SAML Federations Overview 37

Table 37. Signature options (continued)

Signatures Description Your value

Include the following KeyInfo
elements

Determine which KeyInfo
elements to include in the digital
signature for a SAML message or
assertion.
X509 certificate data

Specify whether you want the
BASE64 encoded certificate
data to be included with your
signature. The default action
is to include the X.509
certificate data.

X509 Subject Name
Specify whether you want the
subject name to be included
with your signature. The
default action is to exclude
the X.509 subject name.

X509 Subject Key Identifier
Specify whether you want the
X.509 subject key identifier
to be included with your
signature. The default action
is to exclude the subject key
identifier.

X509 Subject Issuer Details
Specify whether you want the
issuer name and the
certificate serial number to
be included with your
signature. The default action
is to exclude the X.509
subject issuer details.

Public key
Specify whether you want the
public key to be included with
your signature. The default
action is to exclude the public
key.

Table 38. Encryption options

Signatures Description Your value

Certificate database Select the database where the
encryption certificate is stored

Certificate label Name of the certificate to use for
encryption.

38 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 39. SAML message settings

Message settings Description Your value

Message Lifetime in seconds An integer value specifying the
length of time, in seconds, that a
message is valid. The default
value is 300.

Artifact Lifetime in seconds The length of time, in seconds,
that an artifact is considered
valid. This field is only valid when
HTTP artifact binding has been
enabled. The default value
is 120.

Session Timeout in seconds The length of time, in seconds,
that the session remains valid.
The default value is 7200.

Select which outgoing
messages require a signature:

• Artifact requests
• Artifact responses

Specifies whether you will sign
the outgoing SAML artifact
requests and responses.

Message issuer format Format attribute of the Issuer of
the SAML message.

Message issuer name qualifier Name qualifier attribute of the
Issuer of the SAML message.

Table 40. Access policy settings

Access Policy Description Your value

Enable access policy If you configure an identity
provider, this setting specifies
whether to enable access policy.
If you enable access policy, you
must select one of the policies
that you defined.

Note: If access policy is enabled
on both the federation
configuration and the partner
configuration, the partner
configuration takes effect.

Chapter 3. SAML Federations Overview 39

Table 41. Identity mapping settings

Identity mapping Description Your value

Identity mapping options

• Use JavaScript
transformation for identity
mapping

• Use an external web service
for identity mapping

If you configure an identity
provider, this mapping specifies
how to create an assertion that
contains attributes that are
mapped from a local user
account.

If you configure a service
provider, this mapping specifies
how to match an assertion from
the partner to the local user
accounts.

If you choose JavaScript for
mapping, on a subsequent panel,
you are asked to select the
JavaScript file to use.

If you choose an external web
service, on a subsequent panel,
you are asked to provide the
following information:

• URI format (HTTP or HTTPS)
• Web service URI
• Server Certificate database, if

the URI format is HTTPS
• Client authentication type, if

the URI format is HTTPS
• Message format:

– XML
– WS-Trust

Table 42. SAML Message Extensions

Message Extensions Description Your value

SAML Message Extension
options:

• No message extensions
(default)

• Use Javascript to add
message extensions

If you configure your federation
with a message extension rule,
every time a SAML message is
written, the rule is invoked in order
to gather any extensions which
need to be included. The mapping
rule is invoked with context
information about the federation
and partner, as well as the kind of
message being sent.

The mapping rule context is
available in a variable ‘context’. For
documentation on this object see
the on box javadoc for the class
JSMessageExtensionContext.

If Javascript extensions are
enabled, a subsequent dialogue
allows selection of the mapping
rule.

Traditional identity mapping rules
with the category SAML_2_0 are
filtered from the view, as identity
mapping rules are not compatible
with extension rules. There is a
rule available out of the box,
which contains information and
examples.

After you complete the tables, continue with the instructions in Creating and modifying a federation.

Creating a SAML partner
Create a federation partner by gathering the necessary configuration information for input into the local
management interface on the appliance.

To set up a federation, follow these steps:

1. Gather the required data. See “Obtaining federation configuration data from your partner” on page
41.

2. Use the local management interface to configure your partner. See Managing federated partners. This
process includes exporting a metadata file for the partner.

40 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Obtaining federation configuration data from your partner
You must obtain configuration information from your partner before you can add that partner to a
federation.

The partner can export the federation configuration to a metadata file.

To help you gather the appropriate information from your partner, complete the appropriate worksheet for
the role that your partner will have in the federation:

• If you are the identity provider, add a service provider partner. Depending on your service provider
partner, use one of the following worksheets:

– “SAML 1.1 service provider partner worksheet” on page 41
– “SAML 2.0 service provider partner worksheet” on page 51

• If you are the service provider, add an identity provider partner. Depending on your identity provider
partner, use one of the following worksheets:

– “SAML 1.1 identity provider partner worksheet” on page 46
– “SAML 2.0 identity provider partner worksheet” on page 54

After gathering the configuration information of your partner, use the local management interface to add
the federation partner properties. See Managing federation partners.

SAML 1.1 service provider partner worksheet
If you use SAML 1.1 as an identity provider, you must add a service provider partner to your federation.
Some information can be supplied to you in a metadata file, or all of the information can be supplied to
you manually.

Use the following worksheet to gather the necessary information from your partner. Modify this worksheet
to reflect the specific information that you need from your partner. You must also ask your partner to
complete that modified worksheet.

Table 43. Federation to which you are adding a service provider partner in a SAML 1.1 federation

Select Federation Description Your value

Federation name The name of the federation to
which you are adding the partner.

Table 44. Metadata file from your service provider partner in a SAML 1.1 federation

Import metadata Description Your value

Configure the partner manually Enter the information of your
partner manually in the
subsequent windows. See Table
45 on page 42

Note: If Configure the partner
manually is selected in the
Create New Partner window and
the Next button is clicked, the
user is unable to go back to
change the option to add a new
partner.

To rectify this issue, cancel the
widget and start again.

Chapter 3. SAML Federations Overview 41

Table 44. Metadata file from your service provider partner in a SAML 1.1 federation (continued)

Import metadata Description Your value

Upload a partner metadata file The name and path of the file you
obtained from your partner that
contains the configuration
information of your partner.

Table 45. Configuring a partner manually. Provide the following information if you selected Configure
the partner manually

Basic Information Description

Name Provide a name for the partner.

Enabled Check this for the partner to be active.

Provider ID Provide a unique identifier that identifies the
provider partner to the federation.

The value for this must be a URI.

Table 46. Single Sign-On settings for service provider partner in SAML 1.1 federation

Settings Description Your value

Assertion Consumer Service
URL

Provide the Assertion Consumer
Service URL for the partner.

The value for this must be a URI.

Use artifact profile for SSO Check this check box to use the
artifact profile for single sign-on.

Include the following attribute
types in the SAML assertions

Provide attribute types in the
value text box.

A "*" means include all types. It
is selected by default.

Subject confirmation method There are four subject
confirmation methods. It no
value is set, this field defaults to
No Subject Confirmation
Method.

Table 47. Assertion Settings

Configure Security Token Description Your value

Sign SAML Assertions Enable this checkbox if you want
to sign SAML assertions.

Select the key for signing
assertions

• Keystore in IBM Security Verify
Access key service, where the
key is stored

• Private key you will use for
signing the assertion.

If you choose to sign the
assertion signatures, you must
select a keystore and a key.

Note: Create the keystore and
key before this task.

• KeyStore
• Certificate label

42 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 47. Assertion Settings (continued)

Configure Security Token Description Your value

Include the X509 certificate
data

If you choose to sign the SAML
assertion, specify whether you
want the BASE64 encoded
certificate data to be included
with your signature.

The default action is to include
the X.509 certificate data (Yes).

Or, you can also choose to
exclude the X.509 certificate
data (No).

Include the X509 Subject
Issuer Details

If you choose to sign the SAML
assertion, specify whether you
want the issuer name and the
certificate serial number to be
included with your signature.

The default action is to exclude
(No) the X.509 subject issuer
details .

Or, you can choose to include the
X.509 subject issuer details
(Yes).

Include the X509 Subject Name If you choose to sign the SAML
assertion, specify whether you
want the subject name to be
included with your signature.

The default action is to exclude
the X.509 subject name (No).

Or, you can choose to include the
X.509 subject name (Yes).

Include the X509 Subject Key
Identifier

If you choose to sign the SAML
assertion, specify whether you
want the X.509 subject key
identifier to be included with your
signature.

The default action is to exclude
the subject key identifier (No).

Or, you can choose to include the
X.509 subject key identifier
(Yes).

Chapter 3. SAML Federations Overview 43

Table 47. Assertion Settings (continued)

Configure Security Token Description Your value

Include the Public Key If you choose to sign the SAML
assertion, specify whether you
want the public key to be
included with your signature.

The default action is to exclude
the public key (No).

Or, you can choose to include the
public key (Yes).

Use the inclusive Namespaces If you choose to sign the SAML
assertion, you can select to use
the InclusiveNamespaces
element in the canonicalization of
the assertion during signature
creation.

The default is unchecked.

Signature Algorithm for signing
SAML Messages

Specifies the signature algorithm
to use for the transaction.

The selected key used to sign the
SAML messages must match the
option chosen in the drop-down
menu to prevent signature
failure.

Select the signature algorithm
from the following options.

• RSA-SHA1
• DSA-SHA256
• RSA-SHA512

Table 48. Validation Settings

Signatures Description Your value

Validate Signatures on Artifact
Requests

You can validate the SAML
message signatures when
browser artifact is used. To use
this option, select the Validate
Signatures check box.

One of the following:

• Validate signatures for artifact.
(Select check box.)

• Do not validate signatures for
artifact. (Clear check box.)

44 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 48. Validation Settings (continued)

Signatures Description Your value

Select the key for validating
artifacts:

If you select to validate
messages when browser artifact
is used, the same validation key
is used to validate them.

The key you use is the public key
that corresponds to the private
key that your partner uses to sign
messages.

Note: If you are importing the
data of your partner, the key is
supplied in the metadata file.

If you are manually entering the
data of your partner, be sure that
you have obtained the key from
your partner. Then import the key
into the appropriate keystore in
the IBM Security Verify Access
key service before this task.

• Certificate database
• Certificate Label

Signature Algorithm for
validating artifacts

Specifies the signature algorithm
to use for the transaction.

The selected key used to sign the
SAML messages must match the
option chosen in the drop-down
menu to prevent signature
failure.

Select the signature algorithm
from the following options.

• RSA-SHA1
• DSA-SHA256
• RSA-SHA512

Chapter 3. SAML Federations Overview 45

Table 49. Identity mapping information for service provider partner in SAML 1.1 federation

Identity mapping Description Your value

Identity mapping options

One of the following:

• Use the identity mapping that is
configured for this partner's
federation.

• Use JavaScript transformation
for identity mapping

• Use an external web service for
identity mapping

The type of identity mapping to
use with this partner. You can
choose to use the identity
mapping that is configured for
this partner's federation. Or, you
can choose to override the
identity mapping that is
configured for this partner's
federation.

If you choose JavaScript for
mapping, on a subsequent panel,
you are asked to select the
JavaScript file to use.

If you choose an external web
service, on a subsequent panel,
you are asked to provide the
following information:

• URI format (HTTP or HTTPS)
• Web service URI
• Server Certificate database, if

the URI format is HTTPS
• Client authentication type, if

the URI format is HTTPS
• Message format:

– XML
– WS-Trust

SAML 1.1 identity provider partner worksheet
If you use SAML 1.1 as a service provider, you must add an identity provider partner to your federation.
Some information can be supplied to you in a metadata file, or all of the information can be supplied to
you manually.

Use the following worksheet to gather the necessary information from your partner. Modify this worksheet
to reflect the specific information that you need from your partner. You must also ask your partner to
complete the modified worksheet.

Table 50. Federation to which you are adding a service provider partner in a SAML 1.1 federation

Select Federation Description Your value

Federation name The name of the federation to
which you are adding the partner.

46 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 51. Metadata file from your service provider partner in a SAML 1.1 federation

Import metadata Description Your value

Configure the partner manually Enter the information of your
partner manually in the
subsequent windows. See Table
52 on page 47

Note: If Configure the partner
manually is selected in the
Create New Partner window and
the Next button is clicked, the
user is unable to go back to
change the option to add a new
partner.

To rectify this issue, cancel the
widget and start again.

Metadata file The name and path of the file you
obtained from your partner that
contains the configuration
information of your partner.

Table 52. Configuring a partner manually. Provide the following information if you selected Configure
the partner manually

Basic Information Description

Name Provide a name for the partner.

Enabled Check this for the partner to be active.

Provider ID Provide a unique identifier that identifies the
provider partner to the federation.

Table 53. Single Sign-On Settings

Settings Description

Artifact Resolution Service URL The value for this must be a URI.

Intersite Transfer Service URL The value for this must be a URI.

Create multiple attribute statements in the
Universal User

Select this check box to keep multiple attribute
statements in the groups they were received in.

This option might be necessary if your custom
identity mapping rules are written to operate on
one or more specific groups of attribute
statements.

If this check box is not selected, multiple attribute
statements are arranged into a single group
(AttributeList) in the STSUniversalUser document.

The default setting of the check box is not selected
and this setting is appropriate for most
configurations.

Chapter 3. SAML Federations Overview 47

Table 53. Single Sign-On Settings (continued)

Settings Description

Maximum request life time (in miliseconds) Default value: -1, which means the request never
expires.

Table 54. Signature validation information for identity provider partner in SAML 1.1 federation

Signature Validation Description Your value

Validate Signatures on SAML
Messages for Artifact Profile
(optional)

You have the option of validating
the SAML message signatures
when browser artifact is used.

One of the following:

• Validate signatures for artifact.
(Select check box.)

• Do not validate signatures for
artifact. (Clear check box.)

Select the key for validating
artifacts:

If you select to validate
messages when browser artifact
is used, the same validation key
is used to validate them.

The key you use is the public key
that corresponds to the private
key that your partner uses to sign
messages.

Note: If you are importing the
data of your partner, the key is
supplied in the metadata file.

If you are manually entering the
data of your partner, be sure that
you have obtained the key from
your partner. Then import the key
into the appropriate keystore in
the IBM Security Verify Access
key service before this task.

• Certificate database
• Certificate Label

Table 55. Assertion Settings

Configure Security Token Description Your value

Enable Signature Validation If your partner signs assertions,
you can choose to validate those
signatures. In some cases, your
partner require you to validate
the signatures.

One of the following:

• Enable validation signatures.
(Select check box.)

• Do not validate signatures.
(Clear check box.)

Select Validation Key Specify the type of signature
validation to use.

• If you select keystore alias,
provide the values for
certificate keystore and label.

• If you select KeyInfo, provide
the regular expression that
matches the validation key.

One of the following:

• Use the KeyInfo of the XML
signature to find X.509
certificate for signature
validation

• Use keystore alias to find public
key for signature validation
(Default).

48 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 55. Assertion Settings (continued)

Configure Security Token Description Your value

Select key and truststore

• Truststore in IBM Security
Verify Access key service,
where the key is stored

• Public key to use for validating
the signature

If you choose to validate the
assertion signatures or your
partner requires signature
validation, you must select a
keystore and a key.

Note: The key you use must be
the public key that corresponds
to the private key that your
partner uses to sign the
assertions. Obtain this key and
create the keystore before this
task.

• Keystore
• Certificate label

Table 56. Server certificate validation for your identity provider partner in a SAML 1.1 federation

Server Certificate Validation for
SOAP Description Your value

Select Server Validation
Certificate

The public key for the certificate
that shows during SSL
communication with your
partner.

You and your partner must agree
on which certificate to use. You
must have already obtained the
certificate and keystore for the
certificate. No password is
required.

This is a mandatory configuration
for browser artifact profile.

• Keystore name
• Certificate Label

Note: If no option is selected, the
server certificate validation is
disabled.

Chapter 3. SAML Federations Overview 49

Table 57. Client authentication for SOAP for your identity provider partner in a SAML 1.1 federation

Client Authentication for SOAP Description Your value

Client authentication
information

Either:

• Basic authentication

– Username
– Password

• Client certificate
authentication

– Certificate you must present
to the server of the identity
provider.

The certificate that you and
your identity provider
partner agreed that you
would present.

– Keystore in IBM Security
Verify Access key service,
where the key is stored

• None- Client authentication
information is disabled.

If your partner requires mutual
authentication, you must know
which type you must use.

If it is basic authentication, you
need a user name and password.

If it is client certificate
authentication, you need the
certificate that you and your
partner have agreed to use.

Note:

• If you need a certificate, be
sure that you have agreed with
your partner where to get it.
Then, import it into the
appropriate keystore in the IBM
Security Verify Access key
service before this task.

• Client certificate authentication
does not require a password for
the truststore.

One of the following:

• Basic authentication
information:

– Username:
– Password:

• Client certificate authentication
information:

– Keystore name:
– Certificate Label

Table 58. Identity mapping information for service provider partner in SAML 1.1 federation

Identity mapping Description Your value

Identity mapping options

One of the following:

• Use the identity mapping that is
configured for this partner's
federation.

• Use JavaScript transformation
for identity mapping

• Use an external web service for
identity mapping

The type of identity mapping to
use with this partner. You can
choose to use the identity
mapping that is configured for
this partner's federation. Or, you
can choose to override the
identity mapping that is
configured for this partner's
federation.

If you choose JavaScript for
mapping, on a subsequent panel,
you are asked to select the
JavaScript file to use.

If you choose an external web
service, on a subsequent panel,
you are asked to provide the
following information:

• URI format (HTTP or HTTPS)
• Web service URI
• Server Certificate database, if

the URI format is HTTPS
• Client authentication type, if

the URI format is HTTPS
• Message format:

– XML
– WS-Trust

50 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

SAML 2.0 service provider partner worksheet
If you use SAML 2.0 in your role as an identity provider, you must add a service provider partner to your
federation.

Use the following worksheet to gather the necessary information from your partner. Modify this worksheet
to reflect the specific information that you need from your partner and ask your partner to complete that
modified worksheet.

Note: If your service provider (SP) partner supports multiple assertion consumer (ACS) service endpoints,
the SAML2 identity provider supports multiple ACS endpoints for the partner, in a SP-initiated single sign-
on flow from that SP partner. The support is effective once you add the SP partner into the SAML2 identity
provider federation. Depending on the ACS URL that is specified in the authentication request message,
the identity provider processes it as needed.

Table 59. Federation to which you are adding a service provider partner in a SAML 2.0 federation

Select Federation Description Your value

Federation name The name of the federation to
which you are adding the partner.

Table 60. Metadata file from your service provider partner in a SAML 2.0 federation

Import metadata Description Your value

Metadata file The name and path of the file you
obtained from your partner that
contains the configuration
information of your partner.

Table 61. Single sign-on settings

Single sign-on settings Description Your value

Provide the details for the SAML
2.0 Web Browser Single Sign-
On profile

Specify the details for the SAML
2.0 Web Browser Single Sign-On
profile. Multiple profiles can be
added.

Specify the binding type and URL
for the profile that you are
adding.

Include the following attributes
in the SAML assertions

Specify the attributes to include
in the assertion. The source
attributes must be created first.

Include the following attribute
types in the SAML assertions (a
"*" means include all types)

Specify the types of attributes to
include in the assertion. The
asterisk (*), which is the default
setting, indicates that all of the
attribute types will be included in
the assertion.

Amount of time, in seconds,
that an idle session for the
partner remains valid

Amount of time, in seconds, that
an idle session for the partner
remains valid. The default value
is 3600 seconds.

Chapter 3. SAML Federations Overview 51

Table 61. Single sign-on settings (continued)

Single sign-on settings Description Your value

Include federation ID when
performing alias service
operations.

Indicates whether the key for
indexing into the alias service
combines the federation ID with
the partner Provider ID when
performing alias service
operations.

This feature is useful in scenarios
where two or more federations,
that use persistent name
identifiers, import the same
partner metadata.

Table 62. Server certificate validation for your service provider partner in a SAML 2.0 federation.

Note: Provide the SOAP SSL connection parameters, only if SOAP endpoint is https.

SSL server validation for
SOAP endpoints Description Your value

Select Server Validation
Certificate

The public key for the certificate
that shows during SSL
communication with your
partner.

You and your partner must agree
which certificate to use. You
must have already obtained the
certificate and added it to your
truststore.

Certificate database Select the database where the
certificate is stored.

Certificate label Name of the certificate to use for
server validation. If not
provided, all certificates in the
specified certificate database
will be trusted.

Certificate Key Information Specifies a Regular Expression
that matches the certificate to
be used for signature validation
for SAML 2.0 assertion

52 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 63. Client authentication for your service provider partner in a SAML 2.0 federation

SSL Client Authentication for
SOAP endpoints Description Your value

Client authentication
information

• No authentication
• Basic authentication

– Username
– Password

• Client certificate
authentication

– Certificate to present to the
server of the identity
provider.

This certificate is the
certificate that you and your
identity provider partner
agreed to present.

If your partner requires mutual
authentication, you must know
which type to use.

Select No authentication if your
partner does not require
authentication.

If it is basic authentication, you
need a user name and password.

If it is client certificate
authentication, you need the
certificate that you and your
partner have agreed to use.

Note: If you need a certificate, be
sure that you have agreed with
your partner where it comes
from. Obtain and import it into
the appropriate keystore.

One of the following options:

• No authentication
• Basic authentication

information:

– Username:
– Password:

• Client certificate authentication
information:

– Certificate database
– Certificate label

Table 64. Access policy settings

Access Policy Description Your value

Enable access policy Specifies whether to enable
access policy. If you enable
access policy, you must select
one of the policies that you
defined.

Note: If access policy is enabled
on both the federation
configuration and the partner
configuration, the partner
configuration takes effect.

Chapter 3. SAML Federations Overview 53

Table 65. Identity Mapping options for your service provider partner in a SAML 2.0 federation

Identity Mapping Options Description Your value

Identity mapping options

• Use the identity mapping that is
configured for this partner's
federation.

• Use JavaScript transformation
for identity mapping

• Use an external web service for
identity mapping

The type of identity mapping to
use with this partner. You can
choose to use the identity
mapping that is configured for
this partner's federation. Or, you
can choose to override the
identity mapping that is
configured for this partner's
federation.

If you choose JavaScript for
mapping, on a subsequent panel,
you are asked to select the
JavaScript file to use.

If you choose an external web
service, on a subsequent panel,
you are asked to provide the
following information:

• URI format (HTTP or HTTPS)
• Web service URI
• Server Certificate database, if

the URI format is HTTPS
• Client authentication type, if

the URI format is HTTPS
• Message format:

– XML
– WS-Trust

.

Table 66. SAML Message Extensions

Message Extensions Description Your value

SAML Message Extension
options:

• No message extensions
(default)

• Use Javascript to add
message extensions

• Use the federation
configurations (Partner only)

If you configure your federation
with a message extension rule,
every time a SAML message is
written, the rule is invoked in order
to gather any extensions which
need to be included. The mapping
rule is invoked with context
information about the federation
and partner, as well as the kind of
message being sent.

The mapping rule context is
available in a variable ‘context’. For
documentation on this object see
the on box javadoc for the class
JSMessageExtensionContext.

If Javascript extensions are
enabled, a subsequent dialogue
allows selection of the mapping
rule.

Traditional identity mapping rules
with the category SAML_2_0 are
filtered from the view, as identity
mapping rules are not compatible
with extension rules. There is a
rule available out of the box,
which contains information and
examples.

After you complete this worksheet, continue with the steps in Managing federation partners.

SAML 2.0 identity provider partner worksheet
If you use SAML 2.0 in your role as a service provider, you must add an identity provider partner to your
federation.

Use the following worksheet to gather the necessary information from your partner. Modify this worksheet
to reflect the specific information that you need from your partner and ask your partner to complete that
modified worksheet.

54 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 67. Federation to which you are adding an identity provider partner in a SAML 2.0 federation

Select Federation Description Your value

Federation name The name of the federation to
which you are adding the partner.

Table 68. Metadata file from your identity provider partner in a SAML 2.0 federation

Import metadata Description Your value

Metadata file The name and path of the file you
obtained from your partner that
has their configuration
information.

Table 69. Single sign-on settings

Single sign-on settings Description Your value

Provide the details for the SAML
2.0 Web Browser Single Sign-
On profile

Specify the details for the SAML
2.0 Web Browser Single Sign-On
profile. Multiple profiles can be
added.

Specify the details of the profile
that you are uploading according
to the options available.

Include the following attributes
in the SAML assertions

Specify the attributes to include
in the STSUniversalUser. The
source attributes must be
created first.

Force authentication to achieve
account linkage

Specify if a user is forced to
authenticate at the service
provider to perform account
linkage. This event occurs if a
SAML response is received with
an unknown alias in the service
provider.

Include federation ID when
performing alias service
operations

Indicates whether the key for
indexing into the alias service
combines the federation ID with
the partner Provider ID when
performing alias service
operations.

This feature is useful in scenarios
where two or more federations,
that use persistent name
identifiers, import the same
partner metadata.

Chapter 3. SAML Federations Overview 55

Table 69. Single sign-on settings (continued)

Single sign-on settings Description Your value

Username to be used for
anonymous users

Use this name identifier to access
a service through an anonymous
identity. The user name entered
here is one that the service
provider recognizes as a one-
time name identifier for a
legitimate user in the local user
registry.

This feature gives users access to
a resource on the service
provider without establishing a
federated identity. This feature is
useful in scenarios where the
service provider does not need to
know the identity of the user
account but must only know that
the identity provider has
authenticated (and can vouch for)
the user.

Map unknown name identifiers
to the anonymous username

Specifies that the service
provider can map an unknown
persistent name identifier alias to
the anonymous user account.

Create multiple attribute
statements in the Universal
User

Select this check box to keep
multiple attribute statements in
the groups they were received in.
This option might be necessary if
your custom identity mapping
rules are written to operate on
one or more specific groups of
attribute statements. If this
check box is not selected,
multiple attribute statements are
arranged into a single group
(AttributeList) in the
STSUniversalUser document.

56 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 70. Server certificate validation.

Note: Provide the SOAP SSL connection parameters, only if SOAP endpoint is https.

SSL server validation for SOAP
endpoints Description Your value

Select Server Validation
Certificate

The public key for the certificate
that shows during SSL
communication with your
partner.

You and your partner must agree
which certificate to use. You must
have already obtained the
certificate and added it to your
truststore.

Certificate database Select the database where the
certificate is stored.

Certificate label Name of the certificate to use for
server validation. If not provided,
all certificates in the specified
certificate database will be
trusted.

Table 71. Client authentication

SSL Client Authentication for
SOAP endpoints Description Your value

Client authentication
information

• No authentication
• Basic authentication

– Username
– Password

• Client certificate
authentication

– Certificate to present to the
server of the identity
provider.

This certificate is the
certificate that you and your
identity provider partner
agreed to present.

If your partner requires mutual
authentication, you must know
which type to use.

Select No authentication if your
partner does not require
authentication.

If it is basic authentication, you
need a user name and password.

If it is client certificate
authentication, you need the
certificate that you and your
partner have agreed to use.

Note: If you need a certificate, be
sure that you have agreed with
your partner where it comes
from. Obtain and import it into
the appropriate keystore.

One of the following options:

• No authentication
• Basic authentication

information:

– Username:
– Password:

• Client certificate authentication
information:

– Certificate database
– Certificate label

Chapter 3. SAML Federations Overview 57

Table 72. Identity Mapping

Identity Mapping Options Description Your value

Identity mapping options

• Use the identity mapping that is
configured for this partner's
federation.

• Use JavaScript transformation
for identity mapping

• Use an external web service for
identity mapping

The type of identity mapping to
use with this partner. You can
choose to use the identity
mapping that is configured for
this partner's federation. Or, you
can choose to override the
identity mapping that is
configured for this partner's
federation.

If you choose JavaScript for
mapping, on a subsequent panel,
you are asked to select the
JavaScript file to use.

If you choose an external web
service, on a subsequent panel,
you are asked to provide the
following information:

• URI format (HTTP or HTTPS)
• Web service URI
• Server Certificate database, if

the URI format is HTTPS
• Client authentication type, if

the URI format is HTTPS
• Message format:

– XML
– WS-Trust

Table 73. SAML Message Extensions

Message Extensions Description Your value

SAML Message Extension
options:

• No message extensions
(default)

• Use Javascript to add
message extensions

• Use the federation
configurations (Partner only)

If you configure your federation
with a message extension rule,
every time a SAML message is
written, the rule is invoked in order
to gather any extensions which
need to be included. The mapping
rule is invoked with context
information about the federation
and partner, as well as the kind of
message being sent.

The mapping rule context is
available in a variable ‘context’. For
documentation on this object see
the on box javadoc for the class
JSMessageExtensionContext.

If Javascript extensions are
enabled, a subsequent dialogue
allows selection of the mapping
rule.

Traditional identity mapping rules
with the category SAML_2_0 are
filtered from the view, as identity
mapping rules are not compatible
with extension rules. There is a
rule available out of the box,
which contains information and
examples.

After you complete this worksheet, continue with the steps in Managing federation partners.

SAML 2.0 bindings
SAML requestors and responders communicate by exchanging messages. The mechanism to transport
these messages is called a SAML binding.

Security Verify Access supports the following bindings:
HTTP redirect

HTTP redirect enables SAML protocol messages to be transmitted within URL parameters. It enables
SAML requestors and responders to communicate by using an HTTP user agent as an intermediary.

58 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

The intermediary might be necessary if the communicating entities do not have a direct path of
communication. The intermediary might also be necessary if the responder requires interaction with a
user agent, such as an authentication agent.

HTTP redirect is sometimes called browser redirect in single sign-on operations. This profile is
selected by default.

HTTP POST
HTTP POST enables SAML protocol messages to be transmitted within an HTML form by using
base64-encoded content. It enables SAML requestors and responders to communicate by using an
HTTP user agent as an intermediary.

The agent might be necessary if the communicating entities do not have a direct path of
communication. The intermediary might also be necessary if the responder requires interaction with a
user agent such as an authentication agent.

HTTP POST is sometimes called Browser POST, particularly when used in single sign-on operations. It
uses a self-posting form during the establishment and use of a trusted session between an identity
provider, a service provider, and a client (browser).

HTTP artifact
HTTP artifact is a binding in which a SAML request or response (or both) is transmitted by reference by
using a unique identifier that is called an artifact.

A separate binding, such as a SOAP binding, is used to exchange the artifact for the actual protocol
message. It enables SAML requestors and responders to communicate by using an HTTP user agent
as an intermediary.

This setting is used when it is not preferable to expose the message content to the intermediary.

HTTP artifact is sometimes called browser artifact, particularly when used in single sign-on
operations. The HTTP artifact uses a SOAP back channel. The SOAP back channel is used to exchange
an artifact during the establishment and use of a trusted session between an identity provider, a
service provider, and a client (browser).

SOAP

SOAP is a binding that uses Simple Object Access Protocol (SOAP) for communication.

To use SOAP binding, SAML requestors must have a direct communication path with SAML
responders.

The choice of binding you have depends on the profile you choose to use in your federation.

SAML 2.0 name identifier formats
SAML 2.0 name identifier formats control how the users at identity providers are mapped to users at
service providers during single sign-on.

Security Verify Access supports the following name identifier formats:

Email address
Use the email address name identifier format if you want a user to log in at the service provider as the
same user that they use to log in at the identity provider.

For example, if a user is logged in at the identity provider as user1, then they will also be logged in as
user1 at the service provider after single sign-on.

Persistent aliases
Use the persistent name identifier format if you want a user to log in at the identity provider as one
user, but log in at the service provider as a different user.

Before you can use this name identifier format, you must link the user at the identity provider with the
user at the service provider. You can choose to have the user linking done during single sign-on or by
using the alias service.

Chapter 3. SAML Federations Overview 59

For example, suppose user1 in the identity provider is linked with user2 in the service provider. If
user1 is logged in at the identity provider, then they will be logged in as user2 in service provider
after single sign-on.

Transient aliases
Use the transient name identifier format if you want a user to log in as a shared anonymous user,
regardless of which user that they use to log in at the identity provider.

For example, suppose user1 is a shared anonymous user in the service provider. If the user is logged
in as user2 in the identity provider, then they will be logged in as user1 in the service provider after
single sign-on. Similarly, if the user is logged in as user3 in the identity provider, then they will be
logged in also as user1 in the service provider.

See Alias service for information about how to manage aliases.

Alias service
To manage the aliases, the Federation module uses an alias service. The alias service stores and retrieves
aliases that are related to a federated identity.

Persistent name identifier format allows you to link a user at the identity provider with a user at the
service provider. Security Verify Access stores these account linkages in a high-volume database or an
LDAP database. You can manage these account linkages using the alias service REST API. See to the REST
API documentation for more information.

Configuring an LDAP alias service database
If you install IBM Security Verify Access, the high-volume database is used to store the alias information
by default. However, now the LDAP database can be used to store alias information.

About this task
The alias service manages aliases by accessing an LDAP user registry. The alias service must know
information about the LDAP environment that it operates in.

This topic describes the properties that you must specify.

Procedure
Identify the LDAP environment properties.

Table 74. LDAP environment properties

Property Description

LDAP Server
Connection

Specifies the LDAP Server connection name from the list of available LDAP server
connection on the appliance.

An LDAP server connection can be configured on the appliance by navigating to Federations
> Global > Server Connection and adding a server of the type LDAP.

Note: When you are configuring LDAP settings in Server Connection , ensure that the pool
size is set in the tuning parameters. Do not leave it as default.

See “Managing server connections” on page 279.

LDAP BaseDN The LDAP search string to search the user and store the user alias.

60 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Modifying alias service settings to LDAP
Learn about modifying the setting for your name identifier database

Procedure
1. Log in to the IBM Security Verify Access local management interface.
2. Click Federations > Manage > Alias Service Settings.
3. Select LDAP.
4. Select the LDAP Server Connection from the drop-down list of available server connections.
5. Provide the LDAP BaseDN information.
6. Click Save.
7. Deploy the pending changes.

Customizing the SAML 2.0 login form
An identity provider can customize the default authentication login page with more contextual
information.

When a user requests access to a single sign-on federation, the identity provider initiates single sign-on
by authenticating the user. To authenticate the user, the identity provider uses a point of contact server to
display a forms-based login page.

When an identity provider participates in multiple federations or hosts multiple partners in one federation,
an administrator might want to customize the default login form.

To specify the contextual information to pass to the web reverse proxy login page, use the local
management interface to update the Point of Contact profile. In the profile, edit the
authentication.macros callback parameter. The value of this callback parameter is a list of comma-
separated macros. Each macro represents a piece of contextual information.

To identity the macros you want to use, and to review the Point of Contact profile and its callback
parameters, see:

• “Supported macros for customizing an authentication login form” on page 61.
• “Callback parameters and values” on page 285.
• “Updating or viewing a point of contact profile” on page 284.

Supported macros for customizing an authentication login form
You can customize an authentication login form with a set macros that are supported by SAML 2.0.

Security Verify Access supplies contextual authentication parameters so that you can customize login
forms. The contextual authentication parameters are passed to the web reverse proxy as query string
parameters.

Table 75 on page 61 shows the list of macros names and the name of the query string parameter in
which the contextual information is passed to the web reverse proxy login page.

Specify a list of these comma-separated macros in the authentication.macros callback parameter.
See Callback parameters and values.

Table 75. Macros for customizing the login form

Macro Query-String Parameter name Description

%FEDID% FedId Specifies the unique identifier of the
federation.

%FEDNAME% FedName Specifies the user-assigned name of the
federation.

Chapter 3. SAML Federations Overview 61

Table 75. Macros for customizing the login form (continued)

Macro Query-String Parameter name Description

%PARTNERID% PartnerId Specifies the provider ID of the partner.

%TARGET% Target Specifies the target URL at the partner.

%SPRELAYSTATE% SPRelayState Specifies the RelayState data that
accompanies the SAML authentication
request.

%ACSURL% AssertionConsumerURL Specifies the assertion consumer service
URL of the partner.

%AUTHNCONTEXT% AuthnContext Specifies the RequestedAuthnContext in the
SAML authentication request.

%SSOREQUEST% SSORequest Specifies the base-64 encoded form of
SAML authentication request.

%FORCEAUTHN% ForceAuthn Specifies ForceAuthn in SAML authentication
request.

Customizing AuthnContext using identity mapping rule
SAML 2.0 Identity Provider now supports customizing AuthnContextClassRef using the mapping rule.

The AuthnContextClassRef, AuthnContextDeclRef, and AuthnContextComparison are
retrieved from the Authentication Request.

The STSUUSER method addContextAttribute can be used to set AuthnContextClassRef to a required
value. In the example below, the AuthnContextClassRef is set to
urn:oasis:names:tc:SAML:2.0:ac:classes:X509.

stsuu.addContextAttribute(new Attribute("AssertionAuthnContextRef",
"urn:oasis:names:tc:SAML:2.0:assertion",
"urn:oasis:names:tc:SAML:2.0:ac:classes:X509"));

The AuthnContextComparison value is available at the mapping rule. The administrator can write logic
in the mapping rule to decide on what “exact”, “better”, “minimum”, or “maximum” represents. The
administrator can then decide the AuthnContextClassRef that needs to be sent in the SAML response.

A sample mapping rule saml20_authncontext.js is provided with samples of how these parameters
is used. From the dashboard, the mapping rule is under File Downloads > federation > examples >
mapping rules.

Customizing SAML 2.0 pages
Verify Access generates files that are displayed in response to events that occur during single sign-on
requests. The response that is displayed might be a form, such as when login information is required, or
an error or information statement about a condition that occurred while the request was processed.

You can customize the event pages by modifying their appearance or content.

Before you continue with the customization, you need to have a thorough understanding of how event
pages are generated and displayed.

62 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Generation of event pages
Event pages are displayed in response to events that occur during single sign-on requests. They usually
contain a form (such as a prompt for user name and password information) or text (such as an
informational or error message).

Event pages are dynamic pages that are generated by Security Verify Access by using the following
information:
Template files

XML or HTML files that are provided with the appliance and contain elements, such as fields, text, or
graphics, and sometimes macros that are replaced with information that is specific to the request or
to provide a response to the request.

Page identifiers
Event information that corresponds to one or more template files. Each page identifier corresponds to
a specific event condition, such as a specific error or a condition in which a message or a form must be
displayed.

Message catalogs
Text that is used to replace macros in the template files.

When a request is received, the appropriate response page is generated as follows:

1. Processing of the request occurs and a response to an event is required.
2. Template files and page identifiers are read from the file system.
3. Macros in the template files are replaced with values that are appropriate for the response that is

needed.
4. An appropriate event page is generated.
5. The generated event page is displayed.

SAML 2.0 page identifiers
The SAML 2.0 runtime can display HTML pages in response to events that occur during single sign-on
requests. You can select which pages to display and also modify the pages.

Use HTML pages for the following purposes:

• Displaying success and error messages to users
• Asking users for confirmation
• Sending SAML messages

You can customize these HTML pages so that they display what you want. These pages contain macros
and are similar to other HTML pages in Security Verify Access. A macro is text in an HTML page that is
replaced with context-specific information. For example, the macro @ERROR_MESSSAGE@ is replaced by
text that describes the error that occurred.

You can find the SAML 2.0 pages in the local management interface using these steps:

1. Click Federation > Global Settings > Template Files.
2. Expand the locale folder to locate a template file.

For example, the English version of the SAML consent_to_federate.html template is in C/saml20.

All of the available SAML 2.0 HTML pages are listed in the following table.

Chapter 3. SAML Federations Overview 63

Table 76. SAML 2.0 HTML page identifiers and macros

Page identifier Description Macros and descriptions

saml20/
consent_to_federate.html

Displays during the SAML single
sign-on flow whenever the
service provider wants to
federate the account at the
identity provider with the account
at the service provider.

@TOKEN:form_action@
The URL to which the SAML
message is sent.

@TOKEN:SPProviderID@
The ID of the Service
Provider.

@TOKEN:SPDisplayName@
The name of the Service
Provider.

@TOKEN:IPProviderID@
The name of the Identity
Provider.

saml20/
logout_partial_success.ht
ml

Displays whenever the SAML
single log out flow completes
with partial success.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@TOKEN:UserName@
The user name that performs
the operation.

saml20/
logout_success.html

Displays whenever the SAML
single log out flow completes
successfully.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@TOKEN:UserName@
The user name that performs
the operation.

saml20/
nimgmt_terminate_success.
html

Displays whenever the SAML
name identifier management
terminate flow completes
successfully.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@TOKEN:UserName@
The user name that performs
the operation.

@TOKEN:PartnerID@
The ID of the partner.

64 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 76. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/
nimgmt_update_success.htm
l

Displays whenever the SAML
name identifier management
update flow completes
successfully.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@TOKEN:UserName@
The user name that performs
the operation.

@TOKEN:PartnerID@
The ID of the partner.

saml20/
saml_post_artifact.html

Sends the SAML artifact to the
partner for HTTP POST binding.

@TOKEN:form_action@
The URL to which the SAML
message is sent.

@TOKEN:RelayState@
The RelayState.

@TOKEN:SamlMessage@
The SAML message.

saml20/
saml_post_request.html

Sends the SAML request
message to partner for HTTP
POST binding.

@TOKEN:form_action@
The URL to which the SAML
message is sent.

@TOKEN:RelayState@
The RelayState.

@TOKEN:SamlMessage@
The SAML message.

saml20/
saml_post_response.html

Sends the SAML response
message to the partner for HTTP
POST binding.

@TOKEN:form_action@
The URL to which the SAML
message is sent.

@TOKEN:RelayState@
The RelayState.

@TOKEN:SamlMessage@
The SAML message.

saml20/
art_exchange_failed.html

Displays whenever there is a
failure during the SAML artifact
resolution flow.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

Chapter 3. SAML Federations Overview 65

Table 76. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/authn_failed.html Displays whenever there is a
failure during the SAML single
sign-on flow.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
error_building_msg.html

Displays whenever an outgoing
SAML message is not
constructed.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
error_decrypting_msg.html

Displays whenever an incoming
SAML message is decrypted.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
error_missing_config_para
m.html

Displays whenever a SAML flow is
run on a SAML federation with
invalid configuration.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

66 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 76. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/
error_parsing_art.html

Displays whenever an incoming
SAML artifact is parsed.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
error_parsing_msg.html

Displays whenever an incoming
SAML message is parsed.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
error_sending_msg.html

Displays whenever an outgoing
SAML message is sent.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
error_validating_art.html

Displays whenever an incoming
SAML artifact is validated.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

Chapter 3. SAML Federations Overview 67

Table 76. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/
error_validating_init_msg
.html

Displays whenever a SAML flow is
initiated.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
error_validating_msg.html

Displays whenever an incoming
SAML message is validated.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
error_validating_msg_sign
ature.html

Displays whenever an incoming
SAML message is signature
validated.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/invalid_art.html Displays whenever an incoming
SAML artifact is validated.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

68 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 76. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/
invalid_init_msg.html

Displays whenever a SAML flow is
initiated.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/invalid_msg.html Displays whenever an incoming
SAML message is validated.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/logout_failed.html Displays whenever there is a
failure during SAML single logout
flow.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
nimgmt_terminate_failed.h
tml

Displays whenever there is a
failure during the SAML name
identifier terminate management
flow.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

Chapter 3. SAML Federations Overview 69

Table 76. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/
nimgmt_update_failed.html

Displays whenever there is a
failure during the SAML name
identifier update management
flow.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

Template page for the WAYF page
The Where Are You From (WAYF) page is used at the service provider. The WAYF page enables users to
select their identity provider if there is more than one configured in the federation.

When a user arrives at a service provider, a WAYF identifier can be delivered through a cookie or query-
string parameter with the request. The entity ID of the identity provider is stored as the value of the
cookie or query-string parameter. If the WAYF identifier cookie or query-string parameter is not present,
the WAYF page opens.

An example URL that includes the query string parameter for WAYF:

https://sp.host.com/isam/sps/samlfed/saml20/
logininitial?RequestBinding=HTTPRedirect&ResponseBinding
=HTTPPost&ITFIM_WAYF_IDP=https://idp.host.com/isam/sps/samlfed/saml20

This example is for a SAML 2.0 single sign-on URL. The query string parameter name is
ITFIM_WAYF_IDP. The value of the identity provider ID is https://idp.host.com/isam/sps/
samlfed/saml20.

The WAYF page requires the user to indicate where they came from. If the user is not logged on to their
identity provider, they are asked to log on. Depending on the attributes passed, the service provider can
grant or deny access to the service.

You can find the template pages for WAYF in the local management interface using these steps:

1. Click Federation > Global Settings > Template Files.
2. Expand the locale folder and navigate to /pages/itfim/wayf.

Administrators can use the WAYF page without modifications, but in some cases might want to modify the
HTML style to match the specific deployment environment.

This template file provides several replacement macros:

@WAYF_FORM_ACTION@
This macro is replaced with the endpoint of the original request. This macro does not belong within a
repeatable section.

@WAYF_FORM_METHOD@
This macro is replaced with the HTTP method of the original request. This macro does not belong
within a repeatable section.

@WAYF_FORM_PARAM_ID@
This macro is replaced with ID used by the action for the identity provider. This macro is repeated
once for each identity provider.

70 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

@WAYF_IP_ID@
This macro is replaced with the unique ID of the identity provider. This macro is repeated once for
each identity provider.

@WAYF_IP_DISPLAY_NAME@
This macro is replaced with the configured display name of the identity provider. This macro is
repeated once for each identity provider.

@WAYF_HIDDEN_NAME@
This macro is replaced with the name of the hidden parameter. This macro is repeated once for each
original request parameter and is hidden.

@WAYF_HIDDEN_VALUE@
This macro is replaced with the value of the hidden parameter. This macro is repeated once for each
original request parameter and is hidden.

Customizing the Consent to Federate Page
A consent to federate page is an HTML form which prompts a user to give consent to joining a federation.
You can customize the consent to federate page to specify what information it requests from a user.

Before you begin
Determine what values you want to use for the consent to federate page.

About this task
When a user accesses a federation, they agree to join the federation. The HTML form saml20/
consent_to_federate.html prompts for this consent. You can customize what the form requests by
adding consent values. These values indicate how a user agrees to join a federation and if service
providers are notified of the consent. Identity providers receive the consent values in the SAML 2.0
response.

The following values determine how a user joins a federation:
1

A user agrees to join a federation without notifying the service provider.
0

A user refuses to join a federation.
A URI value

A URI can indicate whether the user agrees to join a federation and if you want to notify the service
provider about the user consent. The following table lists and describes the supported URI values.

Table 77. Supported consent values for SAML 2.0 response

Consent value URI Description

Unspecified urn:oasis:names:tc:
SAML:2.0:consent:
unspecified

The consent of the user is not
specified.

Obtained urn:oasis:names:tc:
SAML:2.0:consent: obtained

Specifies that user consent is
acquired by the issuer of the
message.

Prior urn:oasis:names:tc:
SAML:2.0:consent: prior

Specifies that user consent is
acquired by the issuer of the
message before the action which
initiated the message.

Chapter 3. SAML Federations Overview 71

Table 77. Supported consent values for SAML 2.0 response (continued)

Consent value URI Description

Implicit urn:oasis:names:tc:
SAML:2.0:consent: current-
implicit

Specifies that user consent is
implicitly acquired by the issuer of
the message when the message
was initiated.

Explicit urn:oasis:names:tc:
SAML:2.0:consent: current-
explicit

Specifies that the user consent is
explicitly acquired by the issuer of
the message at the instance that
the message was sent.

Unavailable urn:oasis:names:tc:
SAML:2.0:consent:
unavailable

Specifies that the issuer of the
message was not able to get
consent from the user.

Inapplicable urn:oasis:names:tc:
SAML:2.0:consent:
inapplicable

Specifies that the issuer of the
message does not need to get or
report the user consent.

Follow the steps in this procedure to customize the consent to federate page.

Procedure
1. Log in to the local management interface.
2. Click Federation > Global Settings > Template Files.
3. Expand a locale and select saml20/consent_to_federate.html.
4. Click Edit and add the appropriate consent values for your federation.
5. Click Save.
6. Deploy the changes.

Example
The following example shows an added URI with a consent value Obtained:

<input type="radio" checked name="Consent"
value="urn:urn:oasis:names:tc:SAML:2.0:consent:obtained"/>
Consent Obtained.

In this example, the user consent is acquired by the issuer of the message.

Configuring the user session ID for the federation runtime
Customize the user session ID header name so that you can track user sessions, end sessions, or sign out
a particular user from a web reverse proxy point of contact server.

Before you begin
Set your web reverse proxy to enable the creation of unique user session IDs. The following stanza and
entry must be set:

[session]
user-session-ids = yes

See User session management for back-end servers for general information.

About this task
The federation runtime uses user session ID information to log out the user from the web reverse proxy.

72 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

The user session ID uniquely identifies a specific session for an authenticated user and is stored as a part
of credential information of the user.

The federation runtime obtains the user session ID from the web reverse proxy. The web reverse proxy
sends the user session ID to the federation runtime in an HTTP header. To accomplish this, configure the
web reverse proxy and federation runtime to use the same header name.

Procedure
1. For the federation runtime, update the advanced configuration property,
poc.signOut.userSessionRequestHeader by using the local management interface:
a) Select Federation > Global Settings > Advanced Configuration.
b) Locate poc.signOut.userSessionRequestHeader in the list, select it, and click Edit.
c) Enter the header name that you want to use for the user session ID and click Save.

For example, specify my_user_session_id.
See “Managing advanced configuration” on page 184.

2. Optional: For the web reverse proxy, update the junction to delete an existing user_session_id by
using the following command:
pdadmin -a sec_master -p password object modify /WebSEAL/fedname-webseal/junction_name
 delete attribute HTTP-Tag-Value user_session_id=user_session_id

Where:
password

Specifies the password for sec_master.
fedname

Specifies the name of the federation.
webseal

Specifies the name of the web reverse proxy server.
junction_name

Specifies the name of the junction.
user_session_id

Specifies the existing name that was defined for the session ID.
For example:

pdadmin -a sec_master -p ipadminpw object modify
 /WebSEAL/saml20-ip-ipwga/isam
 delete attribute HTTP-Tag-Value user_session_id=user_session_id

This command deletes the existing user_session_id.
3. For the web reverse proxy, update the junction to use the
poc.signOut.userSessionRequestHeader property value you defined in step “1” on page 73.
Add this customized attribute value by using the following command:

pdadmin -a sec_master -p password object modify /fedname-webseal/junction_name
 set attribute HTTP-Tag-Value user_session_id=user_session_ID

Where:
user_session_id

Specifies the value from step “1” on page 73. For example, my_user_session_id.
For example:

pdadmin -a sec_master -p ipadminpw object modify /WebSEAL/saml20-ip-ipwga/isam
 set attribute HTTP-Tag-Value user_session_id=my_user_session_ID

This command changes the value for the web reverse proxy to my_user_session_ID.

Chapter 3. SAML Federations Overview 73

Results
The federation runtime and the web reverse proxy have the same header name.

Synchronizing system clocks in the federation
Because security tokens have expiration times, you and your partner's system clocks must be
synchronized.

About this task
In your environment, ensure that the clock on the system where you have the runtime and management
services component installed is synchronized with your partner.

See the information of your operating system documentation for information about your system clock and
time synchronization. Consider using the NTP time synchronization protocol.

74 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Chapter 4. WS-Federation federations
The Federation Module supports WS-Federation federations.

WS-Federation is a protocol that you can use to accomplish federated single sign-on from identity
providers to service providers. In federated single sign-on, users authenticate at identity provider. Service
providers use the identity information asserted by identity providers.

WS-Federation protocol defines a standardized, multi-vendor web-based single sign-on solution based on
a collection of integrated Web Services (WS*) standards such as WS-Security, WS-Trust, and WS-
Federation.

Review the WS-Federation standards documents before you implement a single sign-on federation. The
standards specify data exchange and message processing. Understand what information you must
provide to your business partners, and what information your partner must provide to you.

WS-Federation single sign-on profiles
The single sign-on profiles enable a client by using a Web browser to achieve single sign-on access to
resources within a WS-Federation 1.0 federation.

Typically the user wants to access a resource provided by a service provider, and must authenticate with
an identity provider in order to be granted that access.

The profile provides a mechanism for the Web user to obtain an authentication assertion that can be used
to establish a security context within the federation. Establishment of the security context enables a user
to access multiple resources within the federation without having to authenticate more than once.

WS-Federation support two profiles for use with single sign-on sessions:
Browser POST

Browser POST uses a self-posting form during the establishment and use of a trusted session
between an identity provider, a service provider, and a client (browser).

WS-Federation supports browser POST by default. No configuration is required.

Single logout
This profile terminates all log in sessions within the federation for a specified user. WS-Federation
supports single logout by default. No configuration is required.

Identity provider and service provider roles
Each partner in a federation has a role. The role is either Identity Provider or Service Provider. Understand
the behavior of each role.

• Identity provider

An identity provider is a federation partner that vouches for the identity of a user. The Identity Provider
authenticates the user, and provides an authentication token to the service provider.

The identity provider is responsible for the following tasks:

– Directly authenticates the use by validating a user name and password.
– Indirectly authenticates the user by validating an assertion about the user's identity as presented by

a separate identity provider.

The identity provider handles the management of user identities to free the service provider from this
responsibility.

• Service Provider

A service provider is a federation partner that provides services to the user. Typically, service providers
do not authenticate users, but instead request authentication decisions from an identity provider.

Service providers rely on identity providers to assert the identity of a user, and rely on identity providers
to manage user identities for the federation.

Service providers can maintain a local account for the user, which can be referenced by an identifier for
the user.

Creating a WS-Federation federation
To create a federation, review the configuration properties, run the configuration wizard, and configure a
reverse proxy for the federation.

Before you begin
Ensure that you created a reverse proxy. During federation configuration, you need to specify a reverse
proxy URL for the point of contact server. If you need to create a reverse proxy, see Configuring an
instance.

Procedure
1. Plan your federation configuration by reviewing the configuration properties. See “WS-Federation

federation properties” on page 76.

Note: Security Verify Access support for WS-Federation includes a customized template for use with
Microsoft SharePoint. This template expedites the federation configuration for SharePoint.
Deployments with Microsoft SharePoint must use an identity provider federation. For more
information, see “WS-Federation federation properties” on page 76.

2. Use the local management interface to create your role in the federation. See Creating and modifying
federation properties.

3. Create and configure a reverse proxy instance to act as the point of contact for the federation. See
Adding a federation for a reverse proxy server.

What to do next
Next, you can set up your federation partner. See “Creating a WS-Federation partner” on page 78.

WS-Federation federation properties
To configure a WS-Federation federation, you must specify values for a set of properties.

The properties in this list describe the inputs that you must provide when you use the LMI wizard to
configure a federation. Most properties are specified for both identity provider and service provider
federations. The exceptions are described below.

• Identity provider only

– Amount of time, in seconds, before the issue date that an assertion is considered valid
– Amount of time, in seconds, that the assertion is valid before being issued

• Service provider only

– Enable one-time assertion use enforcement

Federation properties descriptions
Federation name

The name that you want to give this federation.

The name must not contain any ASCII control characters or special characters except hyphen and
underscore.

Select the protocol for this federation
WS-Federation

76 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Select the template
Choose SharePoint to quickly set up an identity provider federation to work with partner templates
that can assist with the establishment of federations to SharePoint partners.

Choose WS-Federation to use the full set of configuration options.

Company name
The name of the company that is creating this provider.

Role
Your role is either Identity Provider or Service Provider.

An identity provider vouches for the identity of the user. The Identity Provider authenticates the user
and provides an authentication token to the service provider.

A service provider provides a service to users. In most cases, service providers do not authenticate
users, but instead request authentication decisions from an identity provider. You cannot change the
role after a federation is created.

Note: When you use the SharePoint template, the Role field is not displayed because the Identity
Provider role is automatically set. SharePoint deployments do not use Service Provider federations.

Point of contact server URL
The endpoint URL of the point of contact server. The point of contact server is a reverse proxy server
that is configured in front of the runtime listening interfaces. The format is:

http[s]://hostname[:portnumber]/[junction]/sps

For example, https://test.com/isam/sps.

To view your reverse proxy configuration, see Reverse proxy instance management.

Enable one-time assertion use enforcement
Service provider configuration only.

Specifies whether to use the assertion or token only one time. You can select or clear this option.

Amount of time, in seconds, before the issue date that an assertion is considered valid

Identity provider configuration only.

Default value 300 seconds. There is no minimum or maximum enforced.

Amount of time, in seconds, that the assertion is valid before being issued
Identity provider configuration only.

An integer value that specifies the number of seconds that the assertion remains valid. The default
value is 300 seconds.

Identity mapping

Identity mapping options

• Do not perform identity mapping
• Use JavaScript transformation for identity mapping
• Use an external web service for identity mapping

If you configure an identity provider, this mapping specifies how to create an assertion that contains
attributes that are mapped from a local user account.

If you configure a service provider, this mapping specifies how to match an assertion from the partner
to the local user accounts.

If you choose JavaScript for mapping, on a subsequent page, you are asked to select the JavaScript
file to use.

If you choose an external web service, on a subsequent page, you are asked to provide the following
information:

Chapter 4. WS-Federation federations 77

• URI format (HTTP or HTTPS)
• Web service URI
• Server Certificate database, if the URI format is HTTPS.
• Client authentication type, if the URI format is HTTPS.
• Message format:

– XML
– WS-Trust

Creating a WS-Federation partner
Create a federation partner by reviewing the configuration properties and then running the local
management interface wizard on the appliance.

Before you begin
You must configure a federation before you create and add a partner. If you did not yet create the
federation for this partner, see “Creating a WS-Federation federation” on page 76.

Procedure
1. Plan your federation configuration by reviewing the configuration properties. See “WS-Federation

partner properties” on page 78.
2. Use the local management interface to configure your partner. See Managing federated partners.

WS-Federation partner properties
To configure a WS-Federation federation partner, you must specify values for a set of properties.

The properties in this list describe the inputs that you must provide when you use the LMI wizard to
configure a partner for a WS-Federation federation. The list consists of three sections:

• Common properties that are used by both identity provider and service provider partners
• Properties that are used by only the identity provider partner
• Properties that are used by only the service provider partner

Be sure to review both the common properties section and the section for your type of partner.

Common properties for both identity provider partners and service provider
partners

Federation name
The name of the federation to which you are adding the partner.

Enabled
Specifies whether to enable the partner. Select or clear.

Connection Template
Displays the type of template that is used. The partner wizard automatically detects which template
(default or SharePoint) was used to create the federation, and uses the same template to create the
partner. The field is read-only.

The name of the WS-Federation realm for this partner

The name of the WS-Federation Realm. This name is the unique identifier for this instance of Security
Verify Access. The Realm name is included in assertions that are sent to federation partners. Partners
rely on finding a known (defined) Realm name to accept the assertions.

To determine the Realm name, use the local management interface to view the federation
configuration. Select Federation > Manage > Federations, select your federation, and click Edit. On

78 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

the Point of Contact Server pane, make note of the Realm value that the wizard displays, and click
Cancel to exit the wizard. For more information, see Creating and modifying a federation.

The Realm name is generated from the point of contact server value. For example, if the point of
contact server URL is https://test.com/isam/sps then the realm is set as:

https://test.com/isam/sps/wsfed/wsf

In the example above, the string wsfed is the name of the federation.

The name of the WS-Federation endpoint for this partner

The endpoint for all requests for WS-Federation services. The endpoint is generated from the point of
contact server URL value.

To determine the WS-Federation endpoint name, use the local management interface to view the
federation configuration. Select Federation > Manage > Federations, select your federation, and click
Edit. On the Point of Contact Server pane, make note of the Endpoint value that the wizard displays,
and click Cancel to exit the wizard. For more information, see Creating and modifying a federation.

For example, if the point of contact server URL is https://test.com/isam/sps then the endpoint
is set to:

https://test.com/isam/sps/wsfed/wsf

In the example above, the string wsfed is the name of the federation.

Maximum request lifetime (in milliseconds)
Amount of time, in milliseconds, that the request is valid. A value of -1 means that the request lifetime
has no limit.

Partner role
Identity Provider or Service Provider. The partner role is read-only and is the opposite of the
federation role.

Note: SharePoint partners must be service providers because all SharePoint federations are identity
provider federations.

Identity mapping options

• Use the identity mapping that is configured for this partner's federation.
• Do not perform identity mapping.
• Use JavaScript transformation for identity mapping.
• Use an external web service for identity mapping.

The type of identity mapping to use with this partner. You can choose to use the identity mapping that
is configured for this partner's federation. Or, you can choose to override the identity mapping that is
configured for this partner's federation.

If you choose JavaScript for mapping, on a subsequent page you are asked to select the JavaScript
file to use.

If you choose an external web service, on a subsequent page you are asked to provide the following
information:

• URI format (HTTP or HTTPS)
• Web service URI
• Server Certificate database, if the URI format is HTTPS.
• Client authentication type, if the URI format is HTTPS.
• Message format:

– XML
– WS-Trust

Chapter 4. WS-Federation federations 79

Properties for only the identity provider partner
Create multiple attribute statements in the Universal User

Identity provider partner only.

Select or clear. Select this check box to keep multiple attribute statements in the groups they were
received in. This option might be necessary if your custom identity mapping rules are written to
operate on one or more specific groups of attribute statements. If this check box is not selected,
multiple attribute statements are arranged into a single group (AttributeList) in the
STSUniversalUser document.

Enable signature validation
Identity provider partner only.

Enables or disables validation of signatures in the token module. Select or clear.

Use the keystore alias to find the public key for signature validation
Identity provider partner only.

Specifies a public key for signature validation, which is the default. Select the certificate database and
label.

Certificate database
For identity provider partner.

This property is displayed if you choose to use the keystore alias. Select the certificate database to
use for validation.

Certificate label
For identity provider partner.

This property is displayed if you choose to use the keystore alias. Select the certificate label for
validation.

Use the KeyInfo of the XML signature to find the X509 Certificate for signature validation
Identity provider partner only.

Determines the appropriate certificate for signature validation. When you select this option, you must
provide the subject distinguished name that matches the certificate.

Regexp
Identity provider partner only.

Specifies a regular expression to validate the subject distinguished name that is returned in
theKeyInfo.

Properties for only the service provider partner
Include the following attribute types in the SAML assertions (a "*" means include all types)

Service provider partner only.

Specifies the types of attributes to be inserted during token creation. The attributes consist of
information about the identity (user). Use && to separate attribute types. By default, all types are
supported, as indicated by the asterisk (*) wildcard character. For example, to add user-defined
attribute types type1 and type2, enter:

type1&&type2

Subject confirmation method
Service provider partner only.

Specifies the subject confirmation method for the assertion. You can select one confirmation method,
or choose No Subject Confirmation Method. If you select the holder-of-key type, the default
includes the X.509 Certificate Data in the KeyInfo for the SubjectConfirmationMethod.
STSUniversalUser can provide the data for the subject confirmation method KeyInfo. The data
can also be extracted from the signed request data.

80 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Valid values:

• No Subject Confirmation Method
• urn:oasis:names:tc:SAML:1.0:bearer
• urn:oasis:names:tc:SAML:1.0:holder-of-key
• urn:oasis:names:tc:SAML:1.0:sender-vouches

Sign SAML assertions
Service provider partner only.

Select if SAML assertions must be signed.

Certificate database
Service provider partner only.

Select the database where the signing certificate is stored.

Certificate label
Service provider partner only.

Name of the certificate to use for signing.

Include the following KeyInfo elements
Service provider partner only.

Determines what KeyInfo elements to include in the digital signature for a SAML message or
assertion. Select one or more of the following elements.

X509 certificate data
Specify whether you want the BASE64 encoded certificate data to be included with your signature.
The default action is to include the X.509 certificate data.

X509 Subject Name
Specify whether you want the subject name to be included with your signature. The default action
is to exclude the X.509 subject name.

X509 Subject Key Identifier
Specify whether you want the X.509 subject key identifier to be included with your signature. The
default action is to exclude the subject key identifier.

X509 Subject Issuer Details
Specify whether you want the issuer name and the certificate serial number to be included with
your signature. The default action is to exclude the X.509 subject issuer details.

Public key
Specify whether you want the public key to be included with your signature. The default action is
to exclude the public key.

Note: If you do not select any of the KeyInfo elements, X.509 certificate data is still included in
the signature by default.

Use Inclusive Namespaces
Service provider partner only.

Specifies whether to use the InclusiveNamespaces construct, which means employing exclusive
XML canonicalization for greater standardization. The default is cleared.

Signature algorithm for signing SAML assertions
Service provider partner only.

Specifies the signature algorithm to use to sign the SAML assertion.

• RSA-SHA1

http://www.w3.org/2000/09/xmldsig#rsa-sha1

• RSA-SHA256

Chapter 4. WS-Federation federations 81

http://www.w3.org/2001/04/xmldsig-more#rsa-sha256

• RSA-SHA512

http://www.w3.org/2001/04/xmldsig-more#rsa-sha512

Excluding elements from a WS-FED Request Security Token
Response

The default configuration of a Security Verify Access WS-Federation federation specifies a list of elements
to exclude from the WS-Federation request security token response (RSTR). This default configuration
enables WS-Federation single sign-on to work in the majority of scenarios, such as single sign-on to a
Security Verify Access appliance, and single sign-on to a Microsoft SharePoint deployment.

The custom property wsfed.idp.rstr.excluded.elements is used to exclude a comma-separated
list of elements. The elements that are excluded by default are "Forwardable", "Delegatable", "Status",
and "Renewing". The LMI displays the default custom property wsfed.idp.rstr.excluded.elements
with the following value:

default=Forwardable,Delegatable,Status,Renewing

Certain applications require a different set of excluded elements. For these cases, you can use the
Security Verify Access Advanced Configuration feature to set a custom property to specify the set of
elements. You must specify the federation realm for which your set applies. Optionally, you can also set
elements of a per-partner basis for the federation.

You can use the following syntax to specify elements are needed:

default=<comma_separated_list_of_elements>:<federation_realm>=<comma_separated_list_of_elements>
:
 <federation_realm>%<partner_realm>=<comma_separated_list_of_elements>

For example, if a federation requires that the only excluded elements are Forwardable and
Delegatable, you can modify the custom property. For this example, to modify the custom property for
a federation fed1 with a realm fed1-REALM, set the custom property as follows:

default=Forwardable,Delegatable,Status,Renewing:fed1-REALM=Forwardable,Delegatable

You can also modify the custom property to allow for requirements specific to a federation partner.

For example, if federation fed1 from the example above has a partner partner1 with a realm of
partner1-REALM, and this partner allows only the Status element to be excluded, you can set the
custom property wsfed.idp.rstr.excluded.elements as follows:

default=Forwardable,Delegatable,Status,Renewing:fed1-REALM=Forwardable,Delegatable:
 fed1-REALM%partner1-REALM=Status

For information on how to use the LMI Advanced Configuration menu to set custom properties, see
“Managing advanced configuration” on page 184.

82 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Chapter 5. OpenID Connect federations
The Federation module supports OpenID Connect (OIDC) Provider federations and OIDC Relying Party
federations.

Security Verify Access supports the OAuth 2.0 protocol, including OIDC. The OIDC protocol is an
extension of the OAuth protocol to better support identity and authentication. To understand how OIDC
extends OAuth, and to understand OIDC Provider federations and Relying Party federations, see:

• OAuth 2.0 and OIDC support
• OpenID Connect concepts
• OAuth 2.0 and OIDC workflows

Versions of Security Verify Access prior to 9.0.4 configured OIDC federations through a federation wizard.
Security Verify Access 9.0.4 now configures OIDC Providers through an API Protection interface. Relying
Party federations use a new federation wizard that is enhanced to support new capabilities.

Existing deployments of Security Verify Access OIDC federations are fully supported as legacy
federations.

For configuration, use the instructions that apply to your deployment:

• For new OIDC Providers, see “OpenID Connect Provider federations” on page 83.
• For new OIDC Relying Party federations, see “OpenID Connect Relying Party federations” on page 83.
• For existing (prior to Security Verify Access 9.0.4) OIDC Provider federations and Relying Party

federations, see Legacy support for OpenID Connect federations.

OpenID Connect Provider federations
You can now configure support for an OpenID Connect Provider by using the API Protection user interface
panel.

The API Protection panel provides user controls for enabling OIDC and specifying settings, such as issuer,
point of contact, metadata URI, ID token encryption, and certificate usage. You can also specify Attribute
Mappings for use in customizing claims. See Creating an API protection definition.

OpenID Connect Relying Party federations
Security Verify Access supports OpenID Connect Relying Party federations.

When configuring a OpenID Connect Relying Party two entities must be created - a federation and a
partner. There can be multiple partners per federation, but each partner has only one federation.

The OpenID Connect Relying Party federation does not do anything on its own - it just serves as a
container for the partners. Each OpenID Connect Relying Party Partner is a entity which consumes
identities from a given OpenID Connect Provider. For more information on Relying Parties see:

• http://openid.net/specs/openid-connect-basic-1_0.html
• http://openid.net/specs/openid-connect-implicit-1_0.html

Support for Relying Party federations is enhanced in Security Verify Access Version 9.0.4. The
enhancement include new configuration wizards. If you manage an existing (prior to Version 9.0.4)
Relying Party federation, use the legacy wizards instead. Refer to the configuration instructions for your
deployment:

• To deploy and manage new Relying Party federations, see “Authentication with OpenID Connect Relying
Party” on page 84.

http://openid.net/specs/openid-connect-basic-1_0.html
http://openid.net/specs/openid-connect-implicit-1_0.html

Authentication with OpenID Connect Relying Party
Security Verify Access supports authentication with OpenID Connect (OIDC) Relying Party.

An OIDC Relying Party is an OAuth 2.0 Client application that requires user authentication and claims
from an OpenID Connect Provider. Security Verify Access supports Relying Party (RP) as part of the
support of the OAuth 2.0 and OpenID Connect (OIDC) specifications.

Deployment of a Relying Party requires knowledge of OIDC concepts, work flows, and end points. For an
overview of the Security Verify Access support for OIDC, see the following topics:

• OpenID Connect concepts
• OAuth 2.0 and OIDC workflows
• OAuth 2.0 endpoints

An OpenID Connect (OIDC) Relying Party (RP) is an OAuth client plus an identity management layer. You
can invoke an RP connection to Security Verify Access to log a user into WebSEAL. The Security Verify
Access implementation of the Relying Party for use during authentication includes, in addition to basic RP
functions, an initiation delegate, a reentry delegate, and a context object. The Security Verify Access RP
uses the following Security Verify Access features:

• Secure Token Service (STSUU)
• Verify Access credentials (iv-cred)
• JSON Web Token (JWT)
• Identity Mapping
• HTTP callout
• Attribute Mapping

The Security Verify Access RP supports the following OpenID Connect (OIDC) features:

• The OIDC Authorization code, OIDC implicit, and OIDC Hybrid flows.
• 256, 384, and 512-bit SHA signing algorithms for the types HS, RS, and ES.

For a complete list, see “OpenID Connect Relying Party partner properties” on page 99.
• Use of response_mode=form post.
• The RP always sends a state and nonce for implicit flows.
• Encrypted ID tokens.
• Consumption of OIDC Provider (OP) metadata at run time, for easy configuration.

Relying party endpoints for authentication
A Secure Verify Access OpenID Connect Relying Party (RP) federation uses two URL endpoints.

Initiation or Kickoff URL
The user accesses this URL to initiate an OpenID Connect (OIDC) federated single sign-on. Access to
this URL results in a redirect to the /authorize endpoint of the configured OIDC Provider.

https://<reverseproxy_host, port, junction>/sps/oidc/rp/<federation name>/kickoff/<partner name>

This endpoint supports providing a Target parameter. A Target query string parameter can be
provided to define a location to redirect the user after a successful authentication. An example
location is an application's landing page. This target must be a fully qualified URL containing protocol,
host, and path information.

For example, with a junction of /isam, a federation of my_federation and a partner of
partner_company, the URL is:

https://my.webseal.com/isam/sps/oidc/rp/my_federation/kickoff/partner_company

84 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Reentry or Redirect URL

After the request to /authorize is made through the Kickoff URL, the user is redirected back to the
RP through the Redirect URI. The URI value is included in the request to /authorize.

https://<reverseproxy host, port, junction>/sps/oidc/rp/<federation name>/redirect/<partner name>

The Redirect URL must be configured on the OIDC Provider. If this URL is accessed without a session
state existing (that is, without first accessing the Kickoff URL), an error occurs. Assuming a successful
flow, the user is authenticated after this URL is accessed.

For example, with a junction of /isam, a federation of my_federation and a partner of
partner_company, the URL is:

https://my.webseal.com/isam/sps/oidc/rp/my_federation/redirect/partner_company

Relying party authentication flow
Relying Party authentication supports implicit flow and authorization code flow.

• Implicit flow is useful when you need to single sign-on from the internet to an intranet site. During the
implicit flow, the /token endpoint is not needed, and no direct connection exists from the RP to the
OpenID Provider (OP). This lack of direct connection is based on the assumption that no metadata or /
userinfo is configured.

• Authorization code is traditionally considered to be more secure. It is the only instance where a refresh
token might be issued. Both the ID token and access token are considered less at risk when the RP uses
the authorization code flow, as neither is ever transported through the browser.

When a federated single sign-on is performed with the OpenID Connect (OIDC) Relying Party (RP), several
steps must be completed. It is useful to understand these steps, so that you understand what potential
customization can be made to the requested authentication.

1. The first step of an authentication is the kickoff, which is initiated by accessing the following URL:

https://www.mywebseal.com/<isva junction>/sps/oidc/rp/<federation name>
/kickoff/<partner name>

For example, with a junction of /isva, a federation of my_federation and a partner of
partner_company, the URL is:

https://www.mywebseal.com/isva/sps/oidc/rp/my_federation/kickoff/partner_company

2. When the Kickoff request is first received, the federation and partner name are checked to ensure
that the request is for federation with a valid configuration. The OIDC OP metadata, if configured, is
retrieved now.

See “Relying party authentication metadata” on page 87.
3. If a Target query parameter was provided, it is stored in the user's session.
4. The incoming HTTP request is then serialized into an STSUniversalUser(STSUU). This structure

contains any incoming request parameters. Any parameters that must be added to the request to /
authorize are added to STSUU context attributes.

5. If an advanced mapping rule is configured, it is run now. This action occurs now so that the
authentication request to the OP can be modified at run time.

See “Relying party advanced configuration” on page 88.
6. After the advanced mapping rule is invoked, the state and response_type are validated. When

validated, they are persisted in the user session.

See “Managing Distributed Session Cache” on page 278.
7. A response is then sent to the user agent, redirecting the user to the OIDC Provider (OP).

Chapter 5. OpenID Connect federations 85

8. The OP completes its processing steps. Typically an authentication is performed, or a pre-existing
session is checked, and potentially a prompt to consent is issued

9. When the OP processing completes, the user is redirected back to the RP, through the pre-registered
redirect URI.

This URI has the format:

https://wwww.mywebseal.com/isvajct/sps/oidc/rp/<federationName>/redirect/<partnerName>

For example, with the example values from above, the URL would be:

https://wwww.mywebseal.com/isva/sps/oidc/rp/my_federation/redirect/partner_company

10. Next, the Redirect URI of the RP is invoked. This invocation occurs in one of the following ways:

• If a GET request is serviced from the user agent, whether coming through a 302 from the OP or
another method, and the state parameter is not included through a query string, then the RP
sends back the self-posting form. The self-posting form extracts the fragment portion of the URL
and posts the values to the RP.

Note: The self-posting form is the template page form_post.html. Use the local management
interface to obtain this file. Access Federation > Global Settings > Template Files. The path to the
file is C > oidc > rp > form_post.html.

• If the request is a POST, the incoming parameters are validated and the single sign-on proceeds.
• 302 including query string. In this case, the RP processes the query parameters.

Note: The OAuth RFC forbids this action when an access_token is included in the redirect.
11. Once the RP receives the redirect parameters from the OP, through one of the mechanisms above, the

RP validates the request. The validation includes validating the state, and asserting that the incoming
request contains all of the response_types included in the request.

12. Next, the advanced mapping rule is invoked. This invocation can be used to perform an HTTP Callout,
or to add more parameters to the /token or /userinfo requests (if configured).

13. When the request is validated, if an id_token was returned from the request, it is validated and
decrypted. The claims and header of this JWT are added to the STSUU. The at_hash, nonce, and
c_hash claims of the id_token are validated.

14. After the implicit id_token is validated, if a code was returned it is now exchanged at the token
endpoint. The response is then validated and the response parameters are added to the STSUU
context attributes.

15. The id_token that was returned from the token endpoint is then validated and decrypted, and its
claims are checked.

16. If the RP is configured to access user information, and possesses an access token, it makes a request
to /userinfo with the access token. The response is included in the STSUU attribute list. The sub
claim that is returned is checked against the sub claim in the id_token.

17. The STSUU is now passed to the final identity map step, where the STSUU is processed into a
credential. This step is performed by HTTP callout or JavaScript mapping rule, depending on
configuration.

See “Relying Party identity mapping” on page 87.
18. If you’re authenticating a user that does not exist in the Security Verify Access registry, the point of

contact configuration must be updated to reflect this authentication.

See Point of contact profiles for Federation.

86 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Relying party authentication metadata
Metadata is the discovery information that the OpenID Provider (OP) exposes.

If metadata is configured, the Relying Party (RP) uses it as the source of the /authorize, /token, /
jwks, and /userinfo URLs for the RP. The RP uses other metadata fields, including supported signing
algorithms and supported response types. If the RP is configured for a particular response_type and
signing algorithm, which are not included in the metadata, the metadata is still used. The OP advertises
that it supports this action.

The RP overwrites any configured field with the metadata it retrieves. In some cases, the RP does not
even prompt for configuration if it knows that metadata is provided. For example, it is impossible to
provide an /authorize URL when you use metadata because metadata must expose /authorize.

In other instances, the RP permits you to elect which value to use, but ignores that value at run time if the
value is incompatible with the metadata. For example, if you select ES256 as the signing algorithm, but
the OP supports only RS256, the RP expects an RS256 signed JWT (not an ES256 signed JWT) because
the OP advertises that it does not provide an ES algorithm. However, if the OP does support ES256, ES384
and ES512, and you select ES256, then this signature algorithm is used because it is an elected and
compatible preference.

See the OpenID Connect specification for metadata definition: http://openid.net/specs/openid-connect-
discovery-1_0.html#ProviderMetadata

Relying Party identity mapping

Identity mapping is a step in the Secure Verify Access federation flow that is invoked at the end of a
successful single sign-on. Identity mapping can take place either through a JavaScript mapping rule or an
HTTP callout.

Use of a JavaScript mapping allows administrators to modify the attributes of the session that was
created for a user as a result of a federated single sign-on. Modification of attributes can be necessary
because incoming data comes in several different forms, such as SAML assertions or a JSON Web Token
(JWT). Sometimes this information is not complete, and more work is need to retrieve the entire profile. In
other cases, the values are complete, but not in the correct form for a consuming application.

Note: For information on using HTTP callout, see External user mapping.

During the Relying Party flow, the credential (iv-cred) is built and returned to WebSEAL. At this step in the
authentication process, you can use Relying Party identity mapping to perform the following actions, as
needed.

• Set the principal name.

The identity mapping step of a Relying Party must set a valid principal name to use in the user session. A
common way to do this is to combine claims from a JWT, such as combining the iss and sub claims.
See the example mapping rule below.

• Map attributes from the id_token or /userinfo into any additional credential attributes to be present
in the users session.

• Access a protected resource by using the provided access_token (if one was issued), to retrieve more
information to include in the session.

• Produce an attribute from the various claim sources, such as JWT claims, UserInfo, or additional
callouts.

• Combine multiple attributes into a single more-consumable attribute.
• Make an advanced call to /userinfo, when the default callout that is provided with Security Verify

Access is not sufficient.
• Persist access or refresh tokens.
• Use UserLookupHelper to perform just in time (JIT) provisioning of a Security Verify Access account.
• HTTP callouts

Chapter 5. OpenID Connect federations 87

http://openid.net/specs/openid-connect-discovery-1_0.html#ProviderMetadata
http://openid.net/specs/openid-connect-discovery-1_0.html#ProviderMetadata

• Callout to APIs with the access_token.

JavaScript mapping rules call Java™ code from JavaScript. The set of classes that can be called are
restricted. Examples include:

• packages.com.ibm.security.access.user.UserLookupHelper

• com.ibm.security.access.httpclient.HttpClient

• com.tivoli.am.fim.trustserver.sts.utilities.IDMappingExtUtils

To view the full list of whitelisted (allowable) JavaScript classes, see “JavaScript whitelist” on page 262.

Identity mapping uses Secure Token Service (STS) chains. The chains use a Secure Token Service
Universal User (STSUU) module to map the necessary attributes. For information on the Relying Party's
use of the STSUU, see “Use of STSUU for the Relying Party” on page 91 and “Security Token Service
Universal User document” on page 132.

When identity mapping includes a user identity that does not exist with the registry, the Security Verify
Access point of contact must be configured accordingly.

• Review how to change the point of contact configurations for the Security Verify Access runtime, on the
federation side. See “Point of contact profiles” on page 283.

• Understand how external authentication (EAI) works for users that exist within the registry. See External
authentication interface HTTP header reference.

Example rule
The Security Verify Access distribution includes an example identity mapping rule for Relying Party. To
view it:

1. Log in to the local management interface.
2. Select Federation > Global Settings > Mapping Rules.
3. Select OIDCRP Category OIDC, and use the Edit function to view the contents.

The example identity mapping rule OIDCRP Category OIDC demonstrates code that completes the
mandatory requirement of an identity mapping rule to assign the Principal Name. The example assigns
the name by combining the values of the iss and sub fields of the id_token. See the extract from the
mapping rule below.

/*
 * Construct a basic identity made up of iss and sub
 */
var iss = stsuu.getAttributeContainer().getAttributeValueByName("iss");
var sub = stsuu.getAttributeContainer().getAttributeValueByName("sub");

/*
 * This builds a principal name from the iss and sub fields of the id_token. If
 * this user does not exist in the Verify Access registry, either modify to map to a
 * local user that is in the registry, or change the EAI authentication
 * settings of the federation runtime to use PAC authentication.
 */
stsuu.setPrincipalName(iss + "/" + sub)

To use PAC authentication, log in to the local management interface. Select Federation > Point of
Contact. Select Verify Access Credential and click Set as Current.

Relying party advanced configuration
You can use advanced configuration to customize requests that are made by the Relying Party.

Advanced configuration consists of a JavaScript mapping rule, which you can configure on a per partner or
per federation basis. The JavaScript mapping rule is invoked at the following points during the Relying
Party (RP) single sign-on flow.

• Before the redirect to /authorize
• Before the request to /token

88 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

This invocation point also allows the modification of the request to /userinfo.

The goal of the mapping rule is to add, augment, or remove parameters from the request that is about to
be made. This request is achieved through a 302 redirect that is sent to the user agent.

Potential uses of the advanced mapping rule before the redirect from the OpenID Connect Provider (OP):

• Execution of an HTTP callout to a remote service.
• Modification of the request parameters for the request to /authorize that is about to be made. This
modification can include changes to request_type, redirect_uri, state, nonce, scope, and any
other parameters that the RP configuration includes.

• Addition of any new parameters. For example, if you are federating to Microsoft Azure, you might want
to include a resource parameter. Common or standardized parameters include a claims, prompt, or
acr_values.

• Removal of unwanted parameters, such as removing response_mode=form_post. For example, if the
OP does not support nonce on authorization code flows, use this mechanism to remove it.

The RP uses the STSUniversalUser (STSUU) to represent the authentication request or response in its
processing. The STSUU is passed into advanced mapping. HTTP parameters are included in the context
attributes. JWT claims and the response from /userinfo are included in the attribute list, as they
pertain to a users identity.

The processing flow before and after invocation of the rule is as follows:

1. An incoming single sign-on request is received, either as part of a single sign-on kickoff, or as a
redirect from the OpenID Connect Provider (OP).

2. The request is unpacked into an STSUU structure.
3. The mapping rule adds, to the STSUU, any values that are configured in the RP that need to be sent as

part of this authorize request. For example, scope, client_id, and response_types.
4. The advanced configuration rule is invoked, and changes are made to the STSUU.
5. When the rule is successfully run, the STSUU is converted into an HTTP request.

Supported scenarios:

• Augmentation of a single sign-on request at run time. This request is to /authorize.

By unpacking the incoming single sign-on request at the /kickoff delegate, you can build an RP that
tailors its functions based on the incoming request. Because the request parameters to /kickoff are
included in the STSUU, you can modify the request to /authorize, based on the initial request to /
kickoff. For example, a different scope might be requested, or a decision made against the use of an
implicit flow. This mapping rule allows those values to be added, changed, or removed at run time.

• Allowance for OPs that do not fully conform to the OpenID Connect 1.0 specification.

Some OPs might place extra requirements on incoming request parameters, or might support
alternative parameter values. Some OPs might reject some of the specification-compliant values due to
their own limitations.

• A similar scenario applies to requests to /token. A client might be required to present another
parameter to /token, to use an additional feature that is supported or required by the OP.

Since the same rule runs at both points, authors of rules must include logic to extract the current request
type, and run the logic only where appropriate. This requirement is similar to the OAuth concept
request_type. Because of this requirement, the operation parameter in the STSUU can be used.

In your mapping rule, use the attribute operation, of type urn:ibm:SAM:oidc:rp:operation to
execute the mapping rule code for the STSUU operation for the intended entry point. You can then specify
attributes of the necessary attribute type, based on the operation value.

For more information, see:

• “Relying Party attribute types” on page 90
• “Use of STSUU for the Relying Party” on page 91

Chapter 5. OpenID Connect federations 89

• “Security Token Service Universal User document” on page 132

Example rule
The Security Verify Access distribution includes an example advanced configuration mapping rule for
Relying Party. This example demonstrates a simple way to include an example claims parameter. To view
it:

1. Log in to the local management interface.
2. Select Federation > Global Settings > Mapping Rules.
3. Select OIDCRP_ADV Category OIDC, and use the Edit function to view the contents.

Relying Party attribute types
The Relying Party can use specific attribute types during advanced configuration.

In mapping rules, the attribute operation, of type urn:ibm:SAM:oidc:rp:operation runs the
mapping rule code for the STSUU operation for the intended entry point. Based on the operation type,
attributes of the necessary attribute type are specified, as shown in the following tables.

• If operation is authorize, add attributes before the redirect to /authorize.

Table 78. Attribute types to use before the redirect to /authorize

Attribute type Description Usage

urn:ibm:SAM:oidc:rp:kickoff:param OIDC kickoff request parameters read

urn:ibm:SAM:oidc:rp:authorize:uri The authorization URL read, write

urn:ibm:SAM:oidc:rp:authorize:req:para
m

OIDC /authorize request parameters.
Can also be used to include a claims
object in the request to /authorize.
This claims parameter requests the email
claim in the id_token as essential.

read, write

• If operation is token, add attributes before the request to /token. This operation means a request to /
redirect for reentry from the OIDC Provider (OP).

Table 79. Attribute types to use before the request to /token, and to modify requests to /userinfo

Attribute type Description Usage

urn:ibm:SAM:oidc:rp:authorize:rsp:param Use this type to retrieve any of the
parameters that were included in the
redirect from the OIDC Provider.

read

urn:ibm:SAM:oidc:rp:userinfo:req:param Use this type to add more string query
parameters to the request to /
userinfo.

write

urn:ibm:SAM:oidc:rp:token:req:param Use this type to add more body
parameters to the /token request.

write

urn:ibm:SAM:oidc:rp:meta Contains metadata values that are
relevant to the entire Relying Party
flow. For example, it includes the
nonce that is presented to /
authorize.

read

Attribute types that are used for responses from /authorize, /token, and /userinfo.

90 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 80. Attribute types to use for responses

Attribute type Description Usage

urn:id_token:attribute:implicit If an id_token is returned from /
authorize, the id_token claims have
this type.

read

urn:id_token:attribute:token If an id_token is returned from /
token, the id_token claims have this
type.

read

urn:ibm:SAM:oidc:rp:userinfo:rsp:param If a /userinfo request is made, the
response properties have this type.

read

urn:ibm:SAM:oidc:rp:token:rsp:param If a request to /token is made, the
response parameters have this type.
For example, access_token,
expires_in, and scope.

read

urn:ibm:SAM:oidc:rp:authorize:rsp:param
f

The response parameters from /
authorize. For example, state. If an
implicit flow is run, an access_token or
id_token might be present with this
type.

read

Use of STSUU for the Relying Party
Relying Party identity mapping and advanced configuration can use Secure Token Service Universal User
(STSUU) modules to obtain needed data. You can view some example usages, and a sample of a complete
STSUU.

Example: How to get an authorize response from the request to /authorize
(authorization code)
If you have the following STSUU variable as XML:

 <stsuuser:ContextAttributes>
 ...
 <stsuuser:Attribute name="code" type="urn:ibm:SAM:oidc:rp:authorize:rsp:param">
 <stsuuser:Value>d44df5efb1008969e26ce702ff0989e57448b809..8329</stsuuser:Value>
 </stsuuser:Attribute>

 </stsuuser:ContextAttributes>

Then you could use the following JavaScript code:

// For example, getting the authorization code. Take note that it is sourced from the context
attributes.
var azn_code = stsuu.getContextAttributes().getAttributeValueByNameAndType("code",
 "urn:ibm:SAM:oidc:rp:authorize:rsp:param");

The code returns the value:

d44df5efb1008969e26ce702ff0989e57448b809..8329

Chapter 5. OpenID Connect federations 91

Example: How to get a token response parameter (access token)
If you have the following STSUU variable as XML:

 <stsuuser:ContextAttributes>
 ...
 <stsuuser:Attribute name="access_token" type="urn:ibm:SAM:oidc:rp:token:rsp:param">
 <stsuuser:Value>ya29.Gl39BHO35g7mBjJKkQNi0mS0rVeEvpxt9nLRfoOW0noKtvz4gUUiP3tz6-
TqJKgi62yXaHDs1NZV5DI
 </stsuuser:Value>
 </stsuuser:Attribute>

 </stsuuser:ContextAttributes>

Then you could use the following JavaScript code:

// For example, getting the authorization code. Take note that it is sourced from the context
attributes.
var access_token = stsuu.getContextAttributes().getAttributeValueByNameAndType("access_token",
 "urn:ibm:SAM:oidc:rp:token:rsp:param");

The code returns the value:

ya29.Gl39BHO35g7mBjJKkQNi0mS0rVeEvpxt9nLRfoOW0noKtvz4gUUiP3tz6-TqJKgi62yXaHDs1NZV5DI

Example: How to get a parameter from the id_token from /authorize
If you have the following STSUU variable as XML:

<stsuuser:AttributeList>
...
 <stsuuser:Attribute name="email" type="urn:id_token:attribute:implicit">
 <stsuuser:Value>testuser@example.com</stsuuser:Value>
 </stsuuser:Attribute>
...
</stsuuser:AttributeList>

Then you could use the following JavaScript code:

// For example, getting the authorization code. Take note that its sourced from the context attributes.
// Take note that the attribute list is used, not the context attributes.
var email =
stsuu.getAttributeContainer().getAttributeValueByNameAndType("email","urn:id_token:attribute:implicit");

The code returns the value:

testuser@example.com

Example: How to get a parameter from the id_token from /token
If you have the following STSUU variable as XML:

 <stsuuser:AttributeList>
...
 <stsuuser:Attribute name="email" type="urn:id_token:attribute:implicit">
 <stsuuser:Value>testuser2@example.com</stsuuser:Value>

92 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

 </stsuuser:Attribute>
...
 </stsuuser:AttributeList>

Then you could use the following JavaScript code:

// For example, getting the authorization code. Take note that its sourced from the context attributes.
// Take note that the attribute list is used, not the context attributes.
var email =
stsuu.getAttributeContainer().getAttributeValueByNameAndType("email","urn:id_token:attribute:token");

The code returns the value:

testuser2@example.com

Example: How to get a parameter that came from /userinfo
If you have the following STSUU variable as XML:

 <stsuuser:AttributeList>
 ...
 <stsuuser:Attribute name="name" type="urn:ibm:SAM:oidc:rp:userinfo:rsp:param">
 <stsuuser:Value>Test User</stsuuser:Value>
 </stsuuser:Attribute>
 ...
 </stsuuser:AttributeList>

Then you could use the following JavaScript code:

// For example, getting the users 'name', this comes from the attribute list,
// as thats where userinfo response parameters go.
var name =
stsuu.getAttributeContainer().getAttributeValueByNameAndType("name","urn:ibm:SAM:oidc:rp:userinfo:rsp:par
am");

The code returns the value:

Test User

A complete STSUU of an authorization code
<?xml version="1.0" encoding="UTF-8"?>
<stsuuser:STSUniversalUser xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser">
 <stsuuser:Principal/>
 <stsuuser:AttributeList>
 <stsuuser:Attribute name="family_name" type="urn:ibm:SAM:oidc:rp:userinfo:rsp:param">
 <stsuuser:Value>User</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="email" type="urn:id_token:attribute:token">
 <stsuuser:Value>testuser@example.com</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="family_name" type="urn:id_token:attribute:token">
 <stsuuser:Value>User</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="email_verified" type="urn:id_token:attribute:token">
 <stsuuser:Value>true</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="exp" type="urn:id_token:attribute:token">

Chapter 5. OpenID Connect federations 93

 <stsuuser:Value>1510105195</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="name" type="urn:id_token:attribute:token">
 <stsuuser:Value>Test User</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="email_verified" type="urn:ibm:SAM:oidc:rp:userinfo:rsp:param">
 <stsuuser:Value>true</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="picture" type="urn:id_token:attribute:token">
 <stsuuser:Value>https://lh6.example.com/-xfh8mrdMtRk/AAAAAAAAAAI/AAAAAAAAAAA/
 ANQ0kf7mUOsYQEP0mNtQgWDQRrSy9hvVnA/s96-c/photo.jpg</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="aud" type="urn:id_token:attribute:token">
 <stsuuser:Value>269072228812-th7t9u11fnk6but52c7u6rfhkqrkldha.example.com</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="name" type="urn:ibm:SAM:oidc:rp:userinfo:rsp:param">
 <stsuuser:Value>Test User</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="email" type="urn:ibm:SAM:oidc:rp:userinfo:rsp:param">
 <stsuuser:Value>testuser@example.com</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="iat" type="urn:id_token:attribute:token">
 <stsuuser:Value>1510101595</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="given_name" type="urn:ibm:SAM:oidc:rp:userinfo:rsp:param">
 <stsuuser:Value>Test</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="locale" type="urn:id_token:attribute:token">
 <stsuuser:Value>en</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="given_name" type="urn:id_token:attribute:token">
 <stsuuser:Value>Test</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="iss" type="urn:id_token:attribute:token">
 <stsuuser:Value>https://example.com</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="sub" type="urn:ibm:SAM:oidc:rp:userinfo:rsp:param">
 <stsuuser:Value>111172479139097978803</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="at_hash" type="urn:id_token:attribute:token">
 <stsuuser:Value>4kiED05hW5JX45rFxFAqmQ</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="azp" type="urn:id_token:attribute:token">
 <stsuuser:Value>269072228812-th7t9u11fnk6but52c7u6rfhkqrkldha.example.com</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="locale" type="urn:ibm:SAM:oidc:rp:userinfo:rsp:param">
 <stsuuser:Value>en</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="picture" type="urn:ibm:SAM:oidc:rp:userinfo:rsp:param">
 <stsuuser:Value>https://lh3.example.com/-XdUIqdMkCWA/AAAAAAAAAAI/AAAAAAAAAAA/4252rscbv5M/photo.jpg
 </stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="sub" type="urn:id_token:attribute:token">
 <stsuuser:Value>111172479139097978803</stsuuser:Value>
 </stsuuser:Attribute>
 </stsuuser:AttributeList>
 <stsuuser:RequestSecurityToken>
 <stsuuser:Attribute name="Issuer" type="http://schemas.xmlsoap.org/ws/2005/02/trust">
 <stsuuser:Value>https://accounts.example.com</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="AppliesTo" type="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <stsuuser:Value>https://www.mysp.mycompany.com/goog/sps/oidc/rp/test:ivc:metaRP</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="Forwardable" type="com:tivoli:am:fim:sts:RST">
 <stsuuser:Value>true</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="RenewingOk" type="com:tivoli:am:fim:sts:RST">
 <stsuuser:Value>false</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="RenewingAllow" type="com:tivoli:am:fim:sts:RST">
 <stsuuser:Value>true</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="AllowPostDating" type="com:tivoli:am:fim:sts:RST">
 <stsuuser:Value>false</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="KeySize" type="com:tivoli:am:fim:sts:RST">
 <stsuuser:Value>0</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="RequestType" type="com:tivoli:am:fim:sts:RST">
 <stsuuser:Value>http://schemas.xmlsoap.org/ws/2005/02/trust/Validate</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="Base" type="urn:ibm:names:ITFIM:1.0:stsuuser">

94 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

 <stsuuser:Value>
 <stsuuser:STSUniversalUser>
 <stsuuser:Principal/>
 <stsuuser:AttributeList>
 <stsuuser:Attribute name="family_name" type="urn:ibm:SAM:oidc:rp:userinfo:rsp:param">
 <stsuuser:Value>User</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="email" type="urn:id_token:attribute:token">
 <stsuuser:Value>testuser@examplecom</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="family_name" type="urn:id_token:attribute:token">
 <stsuuser:Value>User</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="email_verified" type="urn:id_token:attribute:token">
 <stsuuser:Value>true</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="exp" type="urn:id_token:attribute:token">
 <stsuuser:Value>1510105195</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="name" type="urn:id_token:attribute:token">
 <stsuuser:Value>Test User</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="email_verified" type="urn:ibm:SAM:oidc:rp:userinfo:rsp:param">
 <stsuuser:Value>true</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="picture" type="urn:id_token:attribute:token">
 <stsuuser:Value>https://lh6.example.com/-xfh8mrdMtRk/AAAAAAAAAAI/AAAAAAAAAAA/
 ANQ0kf7mUOsYQEP0mNtQgWDQRrSy9hvVnA/s96-c/photo.jpg</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="aud" type="urn:id_token:attribute:token">
 <stsuuser:Value>269072228812-th7t9u11fnk6but52c7u6rfhkqrkldha.example.com</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="name" type="urn:ibm:SAM:oidc:rp:userinfo:rsp:param">
 <stsuuser:Value>Test User</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="email" type="urn:ibm:SAM:oidc:rp:userinfo:rsp:param">
 <stsuuser:Value>testuser@example.com</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="iat" type="urn:id_token:attribute:token">
 <stsuuser:Value>1510101595</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="given_name" type="urn:ibm:SAM:oidc:rp:userinfo:rsp:param">
 <stsuuser:Value>Test</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="locale" type="urn:id_token:attribute:token">
 <stsuuser:Value>en</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="given_name" type="urn:id_token:attribute:token">
 <stsuuser:Value>Test</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="iss" type="urn:id_token:attribute:token">
 <stsuuser:Value>https://accounts.example.com</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="sub" type="urn:ibm:SAM:oidc:rp:userinfo:rsp:param">
 <stsuuser:Value>111172479139097978803</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="at_hash" type="urn:id_token:attribute:token">
 <stsuuser:Value>4kiED05hW5JX45rFxFAqmQ</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="azp" type="urn:id_token:attribute:token">
 <stsuuser:Value>269072228812-th7t9u11fnk6but52c7u6rfhkqrkldha.example.com</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="locale" type="urn:ibm:SAM:oidc:rp:userinfo:rsp:param">
 <stsuuser:Value>en</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="picture" type="urn:ibm:SAM:oidc:rp:userinfo:rsp:param">
 <stsuuser:Value>https://lh3.example.com/-XdUIqdMkCWA/AAAAAAAAAAI/AAAAAAAAAAA/4252rscbv5M/
photo.jpg
 </stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="sub" type="urn:id_token:attribute:token">
 <stsuuser:Value>111172479139097978803</stsuuser:Value>
 </stsuuser:Attribute>
 </stsuuser:AttributeList>
 <stsuuser:RequestSecurityToken/>
 <stsuuser:ContextAttributes>
 <stsuuser:Attribute name="prompt" type="urn:ibm:SAM:oidc:rp:authorize:rsp:param">
 <stsuuser:Value>none</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="authuser" type="urn:ibm:SAM:oidc:rp:authorize:rsp:param">
 <stsuuser:Value>0</stsuuser:Value>
 </stsuuser:Attribute>

Chapter 5. OpenID Connect federations 95

 <stsuuser:Attribute name="id_token" type="urn:ibm:SAM:oidc:rp:token:rsp:param">

<stsuuser:Value>eyJhbGciOiJSUzI1NiIsImtpZCI6ImExMmMzYTYxMDkxOTMzMDgzMDA3OTkyNWRmOWM5NWFkODUyNzQ1ODAifQ.

eyJhenAiOiIyNjkwNzIyMjg4MTItdGg3dDl1MTFmbms2YnV0NTJjN3U2cmZoa3Fya2xkaGEuYXBwcy5nb29nbGV1c2VyY29udGVudC5

jb20iLCJhdWQiOiIyNjkwNzIyMjg4MTItdGg3dDl1MTFmbms2YnV0NTJjN3U2cmZoa3Fya2xkaGEuYXBwcy5nb29nbGV1c2VyY29udGV

udC5jb20iLCJzdWIiOiIxMTExNzI0NzkxMzkwOTc5Nzg4MDMiLCJlbWFpbCI6ImxtZi5vaWRjLnRlc3RAZ21haWwuY29tIiwiZW1haWx

fdmVyaWZpZWQiOnRydWUsImF0X2hhc2giOiI0a2lFRDA1aFc1Slg0NXJGeEZBcW1RIiwiaXNzIjoiaHR0cHM6Ly9hY2NvdW50cy5nb29

nbGUuY29tIiwiaWF0IjoxNTEwMTAxNTk1LCJleHAiOjE1MTAxMDUxOTUsIm5hbWUiOiJUZXN0IFVzZXIiLCJwaWN0dXJlIjoiaHR0cHM

6Ly9saDYuZ29vZ2xldXNlcmNvbnRlbnQuY29tLy14Zmg4bXJkTXRSay9BQUFBQUFBQUFBSS9BQUFBQUFBQUFBQS9BTlEwa2Y3bVVPc1l

RRVAwbU50UWdXRFFSclN5OWh2Vm5BL3M5Ni1jL3Bob3RvLmpwZyIsImdpdmVuX25hbWUiOiJUZXN0IiwiZmFtaWx5X25hbWUiOiJVc2V
 yIiwibG9jYWxlIjoiZW4ifQ.L-tUdSUTHwkmj6VjOFgoGXnAnFEGe179x1ZiIReWc6t6rN7RvQrTlIxLhs3z_P-Ec-
fAQg1UGwXsU545
 Z4TNkif4UDT2JkDPIxaY746oAGZyKZcUm7Lxw6n1tOzp3c8tYRaVty-
R8840rI1ALUExOYv72BRlTyQG7o7FZjs_D1lMnGvPe6fwzPmT
 -
ShjhjYu2joZmsJ07uPUFPLBWDhMwN7hUcPnbqWQpypJmKN7EQBKpJImz8vMkAVVxNSJpeU09dNICLh5MkNEsoIcKCDsYK4o1N_SaRLYh
 xYIhUgbT_-l4f5fvRv5W1AQwn-v4L220gF9vYrb1rYktvMV9fFYGQ</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="token_type" type="urn:ibm:SAM:oidc:rp:token:rsp:param">
 <stsuuser:Value>Bearer</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="signature" type="urn:id_token:attribute:token">
 <stsuuser:Value>L-tUdSUTHwkmj6VjOFgoGXnAnFEGe179x1ZiIReWc6t6rN7RvQrTlIxLhs3z_P-Ec-
fAQg1UGwXsU545Z4TNkif
 4UDT2JkDPIxaY746oAGZyKZcUm7Lxw6n1tOzp3c8tYRaVty-
R8840rI1ALUExOYv72BRlTyQG7o7FZjs_D1lMnGvPe6fwzPmT-ShjhjY

u2joZmsJ07uPUFPLBWDhMwN7hUcPnbqWQpypJmKN7EQBKpJImz8vMkAVVxNSJpeU09dNICLh5MkNEsoIcKCDsYK4o1N_SaRLYhxYIhUgb
 T_-l4f5fvRv5W1AQwn-v4L220gF9vYrb1rYktvMV9fFYGQ</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="session_state" type="urn:ibm:SAM:oidc:rp:authorize:rsp:param">
 <stsuuser:Value>d44df5efb1008969e26ce702ff0989e57448b809..8329</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="expires_in" type="urn:ibm:SAM:oidc:rp:token:rsp:param">
 <stsuuser:Value>3600</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="response_type" type="urn:ibm:SAM:oidc:rp:meta">
 <stsuuser:Value>code</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="nonce" type="urn:ibm:SAM:oidc:rp:meta"/>
 <stsuuser:Attribute name="access_token" type="urn:ibm:SAM:oidc:rp:token:rsp:param">
 <stsuuser:Value>ya29.Gl39BHO35g7mBjJKkQNi0rM2CSeW_x0GF_LgWdX0udmIa0HzD-yyzfKikfRYWU_JK_E-im
 S0rVeEvpxt9nLRfoOW0noKtvz4gUUiP3tz6-TqJKgi62yXaHDs1NZV5DI</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="header" type="urn:id_token:attribute:token">
 <stsuuser:Value>{"alg":"RS256","kid":"a12c3a610919330830079925df9c95ad85274580"}</
stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="state" type="urn:ibm:SAM:oidc:rp:authorize:rsp:param">
 <stsuuser:Value>8lj0Nv0Wzm</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="code" type="urn:ibm:SAM:oidc:rp:authorize:rsp:param">
 <stsuuser:Value>4/t5uPKRAieP6r9AbclAhzwK6gLUC8vmuULWDm1viYmMg</stsuuser:Value>
 </stsuuser:Attribute>
 </stsuuser:ContextAttributes>
 <stsuuser:AdditionalAttributeStatement/>
 </stsuuser:STSUniversalUser>
 </stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="Delegatable" type="com:tivoli:am:fim:sts:RST">
 <stsuuser:Value>false</stsuuser:Value>
 </stsuuser:Attribute>
 </stsuuser:RequestSecurityToken>
 <stsuuser:ContextAttributes>
 <stsuuser:Attribute name="prompt" type="urn:ibm:SAM:oidc:rp:authorize:rsp:param">
 <stsuuser:Value>none</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="authuser" type="urn:ibm:SAM:oidc:rp:authorize:rsp:param">
 <stsuuser:Value>0</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="id_token" type="urn:ibm:SAM:oidc:rp:token:rsp:param">

<stsuuser:Value>eyJhbGciOiJSUzI1NiIsImtpZCI6ImExMmMzYTYxMDkxOTMzMDgzMDA3OTkyNWRmOWM5NWFkODUyNzQ1ODAifQ.

eyJhenAiOiIyNjkwNzIyMjg4MTItdGg3dDl1MTFmbms2YnV0NTJjN3U2cmZoa3Fya2xkaGEuYXBwcy5nb29nbGV1c2VyY29udGVudC5

96 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

jb20iLCJhdWQiOiIyNjkwNzIyMjg4MTItdGg3dDl1MTFmbms2YnV0NTJjN3U2cmZoa3Fya2xkaGEuYXBwcy5nb29nbGV1c2VyY29udGV

udC5jb20iLCJzdWIiOiIxMTExNzI0NzkxMzkwOTc5Nzg4MDMiLCJlbWFpbCI6ImxtZi5vaWRjLnRlc3RAZ21haWwuY29tIiwiZW1haWx

fdmVyaWZpZWQiOnRydWUsImF0X2hhc2giOiI0a2lFRDA1aFc1Slg0NXJGeEZBcW1RIiwiaXNzIjoiaHR0cHM6Ly9hY2NvdW50cy5nb29n

bGUuY29tIiwiaWF0IjoxNTEwMTAxNTk1LCJleHAiOjE1MTAxMDUxOTUsIm5hbWUiOiJUZXN0IFVzZXIiLCJwaWN0dXJlIjoiaHR0cHM6L

y9saDYuZ29vZ2xldXNlcmNvbnRlbnQuY29tLy14Zmg4bXJkTXRSay9BQUFBQUFBQUFBSS9BQUFBQUFBQUFBQS9BTlEwa2Y3bVVPc1lRRV

AwbU50UWdXRFFSclN5OWh2Vm5BL3M5Ni1jL3Bob3RvLmpwZyIsImdpdmVuX25hbWUiOiJUZXN0IiwiZmFtaWx5X25hbWUiOiJVc2VyIiw
i
 bG9jYWxlIjoiZW4ifQ.L-tUdSUTHwkmj6VjOFgoGXnAnFEGe179x1ZiIReWc6t6rN7RvQrTlIxLhs3z_P-Ec-
fAQg1UGwXsU545Z4TNkif
 4UDT2JkDPIxaY746oAGZyKZcUm7Lxw6n1tOzp3c8tYRaVty-R8840rI1ALUExOYv72BRlTyQG7o7FZjs_D1lMnGvPe6fwzPmT-
ShjhjYu2

joZmsJ07uPUFPLBWDhMwN7hUcPnbqWQpypJmKN7EQBKpJImz8vMkAVVxNSJpeU09dNICLh5MkNEsoIcKCDsYK4o1N_SaRLYhxYIhUgbT_
-
 l4f5fvRv5W1AQwn-v4L220gF9vYrb1rYktvMV9fFYGQ</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="token_type" type="urn:ibm:SAM:oidc:rp:token:rsp:param">
 <stsuuser:Value>Bearer</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="session_state" type="urn:ibm:SAM:oidc:rp:authorize:rsp:param">
 <stsuuser:Value>d44df5efb1008969e26ce702ff0989e57448b809..8329</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="expires_in" type="urn:ibm:SAM:oidc:rp:token:rsp:param">
 <stsuuser:Value>3600</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="response_type" type="urn:ibm:SAM:oidc:rp:meta">
 <stsuuser:Value>code</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="nonce" type="urn:ibm:SAM:oidc:rp:meta"/>
 <stsuuser:Attribute name="access_token" type="urn:ibm:SAM:oidc:rp:token:rsp:param">
 <stsuuser:Value>ya29.Gl39BHO35g7mBjJKkQNi0rM2CSeW_x0GF_LgWdX0udmIa0HzD-yyzfKikfRYWU_JK_E-
imS0rVeEvpxt9nLRfoOW0
 noKtvz4gUUiP3tz6-TqJKgi62yXaHDs1NZV5DI</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="header" type="urn:id_token:attribute:token">
 <stsuuser:Value>{"alg":"RS256","kid":"a12c3a610919330830079925df9c95ad85274580"}</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="state" type="urn:ibm:SAM:oidc:rp:authorize:rsp:param">
 <stsuuser:Value>8lj0Nv0Wzm</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="code" type="urn:ibm:SAM:oidc:rp:authorize:rsp:param">
 <stsuuser:Value>4/t5uPKRAieP6r9AbclAhzwK6gLUC8vmuULWDm1viYmMg</stsuuser:Value>
 </stsuuser:Attribute>
 </stsuuser:ContextAttributes>
 <stsuuser:AdditionalAttributeStatement id=""/>
</stsuuser:STSUniversalUser>

Configuring an OpenID Connect Relying Party federation
You can use the Federation page, in the local management interface, to configure an OpenID Connect
Relying Party federation.

Procedure
1. Log in to the local management console.
2. Select Federation > Manage > Federations.
3. Click Add.
4. On the Federation Protocol page, enter a Federation Name and select OpenID Connect Relying Party.

Note: Do not select Legacy OpenID Connect (Provider or Relying Party). This selection is used only
for maintaining existing legacy deployments of OpenID Connect federations. For information on
configuring legacy federations, see Configuring a legacy relying party federation.

5. Supply values for the configuration properties as prompted on each page by the configuration wizard.

For information on properties, see “OpenID Connect Relying Party federation properties” on page 98.
6. When you have completed the wizard pages, review the Summary page, and click OK.

Chapter 5. OpenID Connect federations 97

7. Deploy the pending changes.

Note: The deploy operation triggers a runtime restart.

OpenID Connect Relying Party federation properties
Define these properties when you configure an OpenID Connect Relying Party federation
Point of Contact

String containing the protocol, host, port and path of the runtime junction on the Reverse Proxy
instance. This is used to automatically generate redirect URIs derived from the applies to value of
the partner. An example value for this property is https://www.reverse.proxy.com:443/mga,
where www.reverse.proxy.com is the hostname of the Reverse Proxy instance, 443 is the listening
SSL port of the instance, and /mga is the local junction to the Federation runtime.

Default Response Types

An array of elements that specify the default flow type to run when metadata URL is specified. The
flow types are authorization code, implicit flow, or any hybrid flow.

• code
• id_token
• token

For information on the use of response types in each flow, see OAuth 2.0 and OIDC workflows.

Attribute Mapping

You can use the Attribute Mapping page to define new attributes that can be used to customize claims
from attribute sources. Attribute sources can be: Fixed, Credential, or LDAP.

To create a new mapping, select New and enter Attribute Name. Select Attribute Source type.

To remove an existing Attribute Name, select the attribute and click Delete.

Identity mapping

Identity mapping options

• Do not perform identity mapping
• Use JavaScript transformation for identity mapping
• Use an external web service for identity mapping

If you configure an identity provider, this mapping specifies how to create an assertion that contains
attributes that are mapped from a local user account.

If you configure a service provider, this mapping specifies how to match an assertion from the partner
to the local user accounts.

If you choose JavaScript for mapping, on a subsequent page, you are asked to select the JavaScript
file to use.

If you choose an external web service, on a subsequent page, you are asked to provide the following
information:

• URI format (HTTP or HTTPS)
• Web service URI
• Server Certificate database, if the URI format is HTTPS.
• Client authentication type, if the URI format is HTTPS.
• Message format:

– XML
– WS-Trust

98 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Advanced Configuration

Supported options:

• Advanced configuration is not required
• Use JavaScript for advanced configuration

You can use JavaScript to create mapping rules that add optional parameters to OpenID Connect
requests. Open ID Connect requests can contain optional request parameters, as supported by the
OIDC Provider. For example, max_age, acr_values, and claims.

If you choose to use JavaScript, the federation wizard displays existing advanced configuration
mapping rules. Select the existing (already defined) JavaScript mapping rule that contains the
advanced configuration that you want to use.

Configuring an OpenID Connect Relying Party partner
You can use the Partners action on the Federations page in the local management interface to configure
an OpenID Connect Relying Party partner.

Procedure
1. Log in to the local management console.
2. Select Federation > Manage > Federations.
3. The existing federations are displayed in a list. Select the OpenID Connect Relying Party federation

that you want to add a partner to.
4. Click Partners. Click Add.
5. Enter a name for the partner, and select the Enabled check box.

The OIDC10 Connection Template is selected. The field is read-only.
6. Follow the UI wizard prompts to supply the required properties.

For more information about what each field means, see “OpenID Connect Relying Party partner
properties” on page 99.

7. When you have completed the wizard pages, review the Summary page, and click OK.
8. Deploy the pending changes.

Note: The deploy operation triggers a runtime restart.

OpenID Connect Relying Party partner properties
Define these properties when you configure an OpenID Connect Relying Party partner.
Client ID

Value that is used to identify this Relying Party at the OpenID Connect (OIDC) Provider. This value is
required.

Client Secret
Value that is used in combination with the Relying Party to authenticate at the OIDC Provider. Not
specifying a Client Secret indicates that the client is public. Required to perform the Authorization
Code grant, and to complete signing.

Metadata Endpoint
The /metadata endpoint URL of the OIDC Provider.

Issuer Identifier

The expected value of the iss claim in a JWT. If this value does not match the contents of the JWT,
then the authentication is rejected.

Response Types

An array of elements that specify the flow type to run when metadata URL is specified. The flow types
are authorization code, implicit flow, or any hybrid flow.

Chapter 5. OpenID Connect federations 99

• code
• id_token
• token

For more information, see OAuth 2.0 and OIDC workflows.

Authorization endpoint URL

The /authorization endpoint that is used to start the OpenID Connect flow at the OIDC Provider.

Token endpoint URL
The /token endpoint that is used to exchange an authorization code for an ID token and access
token. Required if code response type is selected. Required to perform the Authorization Code grant.
Requires a client secret to be set.

Signature Algorithm
Specifies the algorithm that is used to validate the JWT. See the next table for a list of valid values.

Table 81. Supported signature algorithms.

Digital Signature or MAC Algorithm JWS alg parameter value

HMAC using SHA-2 HS256, HS384, HS512.

Performs symmetric signing with the use of a client
secret. A client secret is required.

RSASSA-PKCS1-V1_5 Digital Signatures
with SHA-2

RS256, RS384, RS512.

Performs asymmetric signing with the use of certificates.
A JWK endpoint URL or a Signing Key keystore and label
is required to perform RS256, RS384, and RS512
signing.

RS256 is the default algorithm.

Elliptic Curve Digital Signatures (ECDSA)
with SHA-2

ES256, ES384, ES512. Requires certificate.

RSASSA-PSS Digital Signatures with
SHA-2

PS256, PS384, and PS512

A value of none denotes that no signing is
performed on the issued JWT.

none

Signature validation behavior is determined by whether the Relying Party (RP) partner uses the
OpenID Provider metadata.

• If the RP partner uses the OpenID Provider's metadata, and the metadata publishes more than one
supported signing algorithm, then the RP uses its partner configuration to validate the signature.

• If the RP partner uses the OpenID Provider's metadata, and the metadata publishes only one
supported signing algorithm, then the RP uses that single signing algorithm (as published by OpenID
Provider's metadata) to validate the signature.

• If the RP partner does not use the OpenID Provider's metadata, then the RP use its partner
configuration to validate the signature.

For more information, see https://bitbucket.org/b_c/jose4j/wiki/Home.

Use checked-in certificate
Select this check box on the JWT Signature Verification page if you want to use a certificate from an
existing keystore for signing. If you select this option, you must select a keystore from the Certificate
Database menu, and select a certificate from the Certificate Label field.

If you select this option, you cannot select the JWK Endpoint URL option.

100 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

https://bitbucket.org/b_c/jose4j/wiki/Home

Use JWK endpoint
Select this check box on the JWT Signature Verification page if you want to use the JWK endpoint of
the OIDC provider. If you select this check box, you do not need to specify a Verification Certificate
(Certificate Database and Certificate Label).

Certificate Database
When the signature algorithm requires a certificate, this property is the keystore that contains the
selected certificate to perform the signing. When the signature algorithm does not require a
certificate, this property is invalid. You cannot specify a Certificate Database when you specify a Use
JWK Endpoint.

Certificate Label
When the signature algorithm requires a certificate, this property is the alias of the public key in the
selected keystore (certificate database) to use in signature verification. You cannot specify a
Certificate Label when you specify a JWK Endpoint URL.

JWK Endpoint URL
When the signature algorithm requires a certificate, this property is the JWK Endpoint of the OIDC
provider. However, if the metadata endpoint is specified, the JWK URL can be read from metadata
information.

This field is required if you do not specify a Use checked-in certificate and you specify an algorithm
that requires JWT signatures.

Key Management Algorithm
The key management algorithm to use for JWT Decryption. The next table lists the supported
algorithms.

Table 82. Key management algorithms.

Key Management Algorithm JWE alg parameter value

The default value none

Direct encryption with a shared symmetric key dir

AES key wrap A128KW, A192KW, and A256KW

AES GCM key encryption A128GCMKW, A192GCMKW, and A256GCMKW

Elliptic Curve Diffie-Hellman Ephemeral Static
key agreement using Concat KDF

ECDH-ES

Elliptic Curve Diffie-Hellman Ephemeral Static
key agreement using Concat KDF with AES key
wrap

ECDH-ES+A128KW, ECDH-ES+A192KW, ECDH-
ES+A256KW

RSAES-PKCS1-V1_5 key encryption RSA1_5

RSAES using OAEP key encryption RSA-OAEP and RSA-OAEP-256

• When the selected algorithm requires a certificate, such as RSA or ECDH algorithms, both the
Certificate Database and Certificate Label for the Decryption Certificate must be specified.

• For more information, see https://bitbucket.org/b_c/jose4j/wiki/Home.

Content Encryption Algorithm

The content encryption algorithm to use. The next table lists the supported algorithms.

Table 83. Content encryption algorithms.

Content Encryption Algorithm JWE "enc" Parameter Value

The default value. none

Chapter 5. OpenID Connect federations 101

https://bitbucket.org/b_c/jose4j/wiki/Home

Table 83. Content encryption algorithms. (continued)

Content Encryption Algorithm JWE "enc" Parameter Value

Authenticated encryption with AES-CBC and
HMAC-SHA2

A128CBC-HS256, A192CBC-HS384, A256CBC-
HS512

Authenticated encryption with Advanced
Encryption Standard (AES) in Galois/Counter
Mode (GCM)

A128GCM, A192GCM, A256GCM

• If the key management algorithm is set to a value other than none, the content encryption algorithm
must also be a value other than none.

• For more information, see https://bitbucket.org/b_c/jose4j/wiki/Home.

Decryption Certificate - Certificate Database

When the key management algorithm requires a certificate, this property is the certificate database
(keystore) which contains the selected certificate to perform JWT decryption. When the key
management algorithm does not require a certificate, this property is invalid.

Decryption Certificate - Certificate Label

When the key management algorithm requires a certificate, this property is the alias of the private key
in the selected keystore to perform JWT decryption.

Scope

An array of strings that identify the scopes to request from the provider. Must contain openid. This
property is an array of elements.

The default string is openid.

Userinfo Request - Perform userinfo request automatically

Boolean setting. Select this check box to specify whether to perform a UserInfo request automatically
whenever possible.

Select this option if you want to populate the credential (iv-cred) from both the ID token and
UserInfo. However, the /userinfo endpoint is optional for OIDC Providers. If your provider does not
support the UserInfo endpoint, Security Verify Access cannot complete the request.

Keep in mind that a goal of Relying Parties is to retrieve user information, such as given_name,
family_name, andbirthdate, and then populate the credential. The user information is obtained
from the ID token and – if the OIDC Provider supports the /userinfo endpoint – from the UserInfo
response. The information that is returned in an ID token can differ from the information in /
userinfo.

You can choose to populate the credential solely from the ID token that is returned during the
selected flow. However, some flows do not have an ID Token, such as response_type=token. (The
response_type can be any combination of code, token, and id_token). Choose whether to perform
userinfo request automatically depending on whether your deployment provides /userinfo.

Token Endpoint Authentication Method

The token endpoint authentication method. Valid values:

• client_secret_basic
• client_secret_post

Attribute Mapping

You can use the Attribute Mapping page to define new attributes that can be used to customize
claims from attribute sources. Attribute sources can be Fixed, Credential, or LDAP.

To create a new mapping, select New and enter Attribute Name. Select Attribute Source type.

102 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

https://bitbucket.org/b_c/jose4j/wiki/Home

To remove an existing Attribute Name, select the attribute and click Delete.

Identity mapping

Identity mapping options

• Use the identity mapping that is configured for this partner's federation
• Do not perform identity mapping
• Use JavaScript transformation for identity mapping
• Use an external web service for identity mapping

If you configure an identity provider, this mapping specifies how to create an assertion that contains
attributes that are mapped from a local user account.

If you configure a service provider, this mapping specifies how to match an assertion from the partner
to the local user accounts.

If you choose JavaScript for mapping, on a subsequent page, you are asked to select the JavaScript
file to use.

If you choose an external web service, on a subsequent page, you are asked to provide the following
information:

• URI format (HTTP or HTTPS)
• Web service URI
• Server Certificate database, if the URI format is HTTPS.
• Client authentication type, if the URI format is HTTPS.
• Message format:

– XML
– WS-Trust

Advanced Configuration
Use this configuration to customize the request. Supported options:

• Use the advanced configuration that is configured for this partner's federation
• Advanced configuration is not required.
• Use JavaScript for advanced configuration

You can use JavaScript to create mapping rules that add optional parameters to OpenID Connect
requests. Open ID Connect requests can contain optional request parameters, as supported by the
OIDC Provider. For example, max_age, acr_values, and claims.

If you choose to use JavaScript, the federation wizard displays existing advanced configuration
mapping rules. Select the existing (already defined) JavaScript mapping rule that contains the
advanced configuration that you want to use.

Making a request to /userinfo as part of authentication
You can add request parameters to the /userinfo request by using an advanced mapping rule.

You can configure the relying party to make a request to /userinfo as part of the authentication request.
This request is useful when the ID Token does not contain complete identity information. Identity
mapping is also needed to produce a valid subject in cases where an ID Token is not issued, and only an
access token is available.

The configured /userinfo URL is invoked with the Authorization: Bearer header as defined by
section 5.3.1 in the specification: http://openid.net/specs/openid-connect-
core-1_0.html#UserInfoRequest

If metadata is configured, and no /userinfo URL is present in the metadata, then the /userinfo
request is not made.

Chapter 5. OpenID Connect federations 103

http://openid.net/specs/openid-connect-core-1_0.html#UserInfoRequest
http://openid.net/specs/openid-connect-core-1_0.html#UserInfoRequest

The successful /userinfo response is added to the STSUU attribute list. The attributes have the type
urn:ibm:SAM:oidc:rp:userinfo:rsp:param.

You can add request parameters to the /userinfo request by using an advanced mapping rule.

Add context attributes with the type urn:ibm:SAM:oidc:rp:userinfo:req:param to include them
in the query string of the request.

For example, this code adds a nonce value to the /userinfo request.

var nonce = new com.tivoli.am.fim.trustserver.sts.uuser.Attribute("nonce",
 "urn:ibm:SAM:oidc:rp:userinfo:req:param", "myNonce");
 stsuu.addContextAttribute(nonce);

After you create a mapping rule, you can add it to a Relying Party configuration. Use the Advanced
Configuration page in the UI wizard, when either creating or editing a Relying Party federation or partner.

Conformance
IBM Security Verify Access supports FAPI conformance and OpenID Connect Discovery conformance.

Setting up the OIDC Definition API

Before you begin
To configure an API protection definition to be OIDC OP conformant and Financial Grade API compliant,
ensure the OIDC Compliant and FAPI Compliant flag are checked. See OIDC Definition and WebSEAL
OAuth Config.

Follow the guidelines below and the configuration steps in this topic to be completely conformed:
For both FAPI and OIDC

Ensure that the OIDC well-known endpoint is configured. See OpenID Connect Discovery.
For FAPI only

• Ensure that each client has a certificate and the public portion of that certificate is added to
rt_profile or signing ssl db (required for Request JWT validation). The same client
certificate can be added to pdsrv or webseal ssl db for MTLS. Ensure the certificate that is used
for JWT validation is ES256 to meet FAPI requirements. See Configuring FAPI Client.

• FAPI requires the signing algorithm used for signing JWT to be ES256. Ensure a certificate where
the algorithm that is mentioned is used, to be FAPI Compliant.

• Update Discovery Endpoint. The following parameters are required to be added to metadata.json.

"claims_supported":
["realmName","preferred_username","given_name","uid","upn","groupIds","employee_id","name","tenantId","
mobile_number","department","job_title","family_name","email","acr"],
"tls_client_certificate_bound_access_tokens":<%var supported =
true;templateContext.response.body.write(supported);%>

• Set [session] variable ‘require-map’ to 'yes' in webseal. This ensures that HTTP headers are
not valid session keys or authentication tokens unless they are received through an MPA. In FAPI,
this functionality can be used to ensure each token and the certificate information are build as one
unique session without any form of session caching.

• Set Point of Contact to Access Manager Credential.

About this task
Note: OIDC Compliance is a prerequisite for FAPI Compliance. The following conformances are configured
when the OIDC or FAPI Wizards are checked.

More information on the functionalities that are performed can be found in OpenID Connect Provider
Conformance and FAPI Conformance.

104 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

The following are configured when OIDC Compliant flag is check in API Definition API.

OIDC Conformance (OIDC definition)

• Access Policy – max_age and prompt=none
• Mapping Rule - authenticationTime
• Mapping Rule – produce_userinfo_jwt
• Mapping Rule – redirect_uri
• Mapping Rule – nonce
• Mapping Rule – assert_no_code_reuse
• STS Chain – Userinfo as JWT
• STS Chain – Request JWT (With a module for mapping rule and validate Request Object added by

default this code only runs if FAPI flag is turned on in the definition)
• STS Chain – Client Authentication

FAPI Conformance

The following articles are configured when FAPI Compliant flag is checked in WebSEAL OAuth and
OpenID Connect Provider Configuration and API Protected Definition accordingly.

WebSEAL - OAuth and OpenID Connect
Provider Configuration (FAPI Compliant flag)

OpenID Connect and API Protection (FAPI
Compliant flag)

Authentication Mechanism – FAPI Cert
Authentication with FAPI_CertEAI.js (Available
by default in Verify Access 10)

Mapping Rule – s_hash

WebSEAL Config – Configure FAPI Cert EAI Mapping Rule – Disallow response_type code

WebSEAL Config – Configure HTTP
Transformation for Sample Resource Endpoint

Mapping Rule – Disallow state in request
parameter

Access Policy – isam_oauth_unauth acl to
junction/sps/auth

Mapping Rule – Disallow state in request
parameter

STS Chain – Request JWT (With a module for
mapping rule that triggers
FAPI_ValidateJWT.js. This code only runs if
FAPI flag is turned on in the definition)

Access Policy – check for Request JWT in Auth
Request

FAPI Definition Configuration

Access Policy – check for Request JWT in Auth
Request

Procedure
1. OIDC Definition

a) In the appliance dashboard, select Federation > OpenID Connect and API.
b) In the Definitions tab, check the OIDC Compliant and FAPI Compliant check-box.

2. WebSEAL OAuth Config
a) In the appliance dashboard, select Web > Reverse Proxy.
b) Select a reverse proxy instance.
c) Navigate to Manage > AAC and Federation Configuration > OAuth and OpenID Connect Provider

Configuration.

Chapter 5. OpenID Connect federations 105

d) In the Main tab, check the FAPI compliant check-box.

Achieving OpenID Connect Provider conformance with IBM Security Verify
Access

IBM Security Verify Access supports the OpenID Connect protocol. IBM Security Verify Access acts as
both the OpenID Provider and the Relying Party.

This topic provides the information that is required to be performed on IBM Security Verify Access for it to
be conformant as an OpenID Connect Provider.

Most of the scenarios are conformant Out-of-the-box. However there are some scenarios where access
policies and mapping rule can be used.

These artifacts that are required to achieve conformance with IBM Security Verify Access are placed in a
compressed file under System > File Downloads > Federation > examples. In the examples folder,
download oidc_op_conformance.zip and extract its contents.

The oidc_op_conformance.zip contains the following files:

• pre_token.js
• post_token.js
• authsvc_credential.js
• access_policy.js
• metadata.json
• httptransform.xsl
• stschains.json

There are comments that are specified in the files listed above that explains in detail about the scenario
that is achieved for OIDC Conformance.

The files also contain “OIDC Conformance-Example" which indicates a snippet of code to be added to
achieve a certain scenario for conformance.

To achieve conformance on an existing IBM Security Verify Access setup, copy the snippets of
AccessPolicy, Mapping Rule, and create the necessary STS chains.

Note: If the OIDC compliance flag is checked for a specific definition in a fresh installed appliance, the
access policy, mapping rule, and necessary STS chains are created.

OpenID Connect Provider Access Policies
You can use access policies to perform step-up and re-authentication during a single sign-on flow based
on contextual information.

prompt and max_age
The access policy checks if one of the following attributes is requested from the authentication
context and triggers an authentication policy based on the selected attribute:

• max_age
• prompt=none

For max_age, an authenticationTime attribute must be added to the authsvc_credential
mapping rule. It is also available as an example.

The following prerequisites are required to use the access policy:

1. The access policy uses the Advanced Access Control, UsernamePassword policy. Click AAC >
Policy > Authentication > Mechanism. Search for the UsernamePassword mechanism to
configure it.

2. Change the ACL that is attached to {junction}/sps/auth from anyauth to unauth ACL.
3. The access policy that is created is to be used by the API Definition that is created.

106 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Mapping Rules

authenticationTime
The max_age scenario requires an authentication time attribute which is added to the
authsvc_credential mapping rule.

For more information, refer to the oidc_op_conformance.zip file for the following examples:

• OIDC Conformance-Example 1.1.1 in the authsvc_credential mapping rule.
• OIDC Conformance-Example 1.1.2 in the pre_token mapping rule.

produce_userinfo_jwt
One of the conformance scenarios is to be able to sign the userinfo response. This can be achieved
in IBM Security Verify Access by sending userinfo response as a signed JWT.

To achieve conformance, a snippet of code is added to check if the
userinfo_signed_response_alg is requested, based on that an STS chain is invoked to convert
the STSUniversalUser to a signed JWT.

STS chain samples are available in the same zip file.

For more information, refer to the OIDC Conformance-Example 1.2 in the
oidc_op_conformance.zip file in the post_token mapping rule.

The mapping rule snippet retrieves the userinfo_signed_response_alg and uses
STSClientHelper to call an STS chain.

redirect_uri
In IBM Security Verify Access we provide some flexibility for the redirect_uri check. Howerver, the
OIDC conformance performs a strict check on the redirect_uri for it to be an identical match.

If the redirect_uri https://test.com/isam is registered in IBM Security Verify Access and request
came in with a redirect_uri which is https://test.com/isam?example=one , IBM Security Verify
Access flow succeeds.

However, OIDC conformance suggests that an error is thrown if it is not an exact match. To retain
flexibility, IBM Security Verify Access made the choice to flag an error at the mapping rule. Hence the
following snippet is added into the pre_token mapping rule to throw an error based on the
redirect_uri.

For more information, refer to the OIDC Conformance-Example 1.3 in the
oidc_op_conformance.zip file in the pre_token mapping rule.

The mapping rule snippet retrieves the requested redirect_uri and compares it to the registered
redirect_uri. It throws an error if an identical match is not found.

nonce
In OpenID connect specification, nonce is not a required parameter for authorization_code flow.
In IBM Security Verify Access during an authorization_code flow, if a nonce is requested it is not
returned as a claim in the id_token when the code is exchanged for token and id_token.

To enable this, see to the OIDC Conformance-Example 1.4 in the oidc_op_conformance.zip file
in the pre_token mapping rule. The mapping rule snippet retrieves the nonce during the code flow
and during the token flow retrieves the nonce associated with the state_id and adds nonce as an
id_token claim.

assert_no_code_reuse
The OAuth specification dictates that the Authorization server should revoke access tokens which are
issued to a code, if that code is reused. In order to enable this enforcement a snippet in the
post_token and the pre_token mapping rule must be enabled.

See OIDC Conformance-Example 1.5.1 and OIDC Conformance-Example 1.5.2,the in pre_token
and post_token mapping rule respectively.

Chapter 5. OpenID Connect federations 107

https://test.com/isam
https://test.com/isam?example=one

STS Chains
Three STS chains are required to achieve conformance. The STS chain JSON is included in the
compressed file.

Userinfo as JWT

This is used to generate a userinfo as a signed JWT. This chain is called from the post_token mapping
rule.

The appliesto attribute must match urn:appliesTo.

The issuer must match urn:issuer.

The signing algorithm property for the JWT module can be set to RS256.

Request JWT (JWT to STSUU)

This STS chain is used to handle request and request_uri parameters. Parameters can be sent to the /
authorize endpoint via a JWT or via a URL that contains the JWT.

This appliesto must match https://localhost/sps/oauth/oauth20.

The issuer must match REGEXP:(urn:ibm:ITFIM:oauth20:client_request:.*).

See Passing parameters through JWT in a request to /authorize.

Client Authentication (JWT to STSUU)

This STS chain is used to handle Client Authentication using a JWT.

The appliesto must match https://localhost/sps/oauth/oauth20.

The issuer must match REGEXP:(urn:ietf:params:oauth:client-assertion-type:jwt-
bearer:.*).

See Client authentication to /token through an incoming JSON Web Token.

OpenID Connect Discovery
IBM Security Verify Access provides an endpoint for discovery which is the metadeta endpoint. However,
the specification strictly states that the discovery endpoint is /.well-known/openid-configuration
appended to the issuer endpoint.

We can use HTTP transformation rule to route requests to /.well-known/openid-configuration
endpoint.

An example is attached with the compressed files.

For more information, refer to the OIDC Conformance-Example 1.7 in the oidc_op_conformance.zip
file.

Create an HTTP Transformation rule by using the httptransform.xsl and call it httptransform.

In the following example, API definition's issuer is configured to be https://www.myidp.ibm.com/
test. The WebSEAL configuration must be updated.

[http-transformations]
updateuri = httptransform
[http-transformations:updateuri]
request-match = request:GET /test/.well-known/openid-configuration*

Also, there are some optional discovery parameters, which are required for conformance. To add these
values, the metadata.json under Federation or AAC, Template Files can be modified.

The modification that must be made are as follows:

• Adding "claims_supported"with the following values:

108 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

["realmName","preferred_username","given_name","uid","upn","groupIds",
"employee_id","name","tenantId","mobile_number","department","job_title",
"family_name","email"]

• Adding "userinfo_signing_alg_values_supported" with this value: ["RS256"]
• Adding "request_parameter_supported" with the following value :

<%var supported = true;templateContext.response.body.write(supported);%>

Note: For achieving key rotation in IBM Security Verify Access, we add a new key to the
rt_profile_keys (which is used as a default keystore). Since the jwks lists keys to "use" during signing
only, to list down the keys to "use" during encryption, we use the jwks_uri which is https://
<runtime_host>/sps/jwks.

Achieving Financial-grade API (FAPI) conformance with IBM Security Verify
Access

The Financial-grade API aims to provide specific implementation guidelines for online financial services.

The Financial-grade API security profile can be applied to online services in any market area that requires
a higher level of security than provided by standard OAuth or OpenID Connect.

Verify Access supports the OpenID Connect protocol, ISAM can act both as an OpenID Provider and as a
Relying Party. This topic provides additional information that is mentioned in the OpenID Connect
Provider Conformance chapter.

Most of the scenarios are FAPI-conformant out-of-the-box. However there are some scenarios that
require changes to be done to the mapping rules and transformation rules. To achieve FAPI conformance
on an existing Verify Access setup, follow the procedures mentioned in this chapter.

Note: The steps mentioned in this document are additional procedures to perform in OpenID Connect
Provider Conformance. Ensure that the procedures in the OpenID Connect Provider Conformance are
completed before the procedures for FAPI conformance are performed.

OpenID Connect Discovery
There are some optional discovery parameters which are required to be present for FAPI conformance.

These information can be added to the metadata.json under Federation or AAC > Template Files > in
order for the endpoint to be updated accordingly.

The following modifications must be made:

• Adding "tls_client_certificate_bound_access_tokens" to

<%var supported = true;templateContext.response.body.write(supported);%>

• Updating "claims_supported" to

["realmName","preferred_username","given_name","uid","upn","groupIds","employee_id","name","te
nantId",
"mobile_number","department","job_title","family_name","email","acr"]

WebSEAL Configuration
As part of the FAPI conformance, the IBM Security Verify Access appliance supports Mutual TLS-based
client authentication (MTLS) for confidential client authentication

About this task
To achieve FAPI MTLS on IBM Security Verify Access, perform the following tasks:

Chapter 5. OpenID Connect federations 109

Disable TLS 1.0/1.1
As part of FAPI requirement, the appliance strictly disallows TLS 1.0/1.1 connections. See Step 1:
Disable TLS 1.0/1.1

Only Allow Secure Cipher Suites
To ensure that IBM Security Verify Access uses only FAPI specification-compliant SSL version and
ciphers for TLS Connection, see Step 2: Allow Secure Cipher Suites.

Procedure
1. To disable TLS 1.0/1.1, configure the WebSEAL configuration file by setting "disable-tls-v1" and

"disable-tls-v11" to "yes".
a) In the Appliance Dashboard, select Web > Manage > Reverse Proxy.
b) Select the reverse proxy instance name and select Manage > Configuration > Edit Configuration

File.
c) In the configuration file, set disable-tls-v1 and disable-tls-v11 under "yes".

2. To only allow secure cipher suites:
a) In the appliance dashboard, select Web > Manage > Reverse Proxy.
b) Select the reverse proxy instance name.
c) Select Manage > Configuration > Edit Configuration File.
d) In the configuration file under [ssl]. disable tlsv11 and earlier:

• disable-tls-v1 = yes
• disable-tls-v11 = yes

e) In the configuration file under [ssl-qop-mgmt-default], set default ciphers to:

• default = TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
• default = TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
• default = TLS_DHE_RSA_WITH_AES_256_GCM_SHA384
• default = TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384

f) In order for the appliance to use the DHE ciphers set in the previous step, a platform level flag must
be set. This can be done with by setting gsk-attr-name = enum:4009:1 under [ssl].

HTTP Transformation Rules
Resource endpoint protection

As part of FAPI conformance, any resource endpoint that is protected by an OIDC API definition
should support the following standards:

• Returns x-fapi-interaction-id
• ContentType: JsonUTF8

These requirements can be achieved by implementing the following HTTP transformation rule. The
example assumes resource endpoint are files under a directory with the name 'resource'.

110 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

HTTP Transformation Rule Reverse Proxy Configuration

<?xml version="1.0" encoding="UTF-8"?>
 <xsl:stylesheet xmlns:xsl="http://
www.w3.org/1999/XSL/Transform"
 version="1.0" xmlns:external="http://
xsltfunctions.isam.ibm.com">
 <xsl:strip-space elements="*" />
 <xsl:template match="/">
 <HTTPResponseChange>
 <xsl:apply-templates />
 </HTTPResponseChange>
 </xsl:template>
 <xsl:template match="//HTTPResponse/
Headers">
 <Header name="Content-type"
action="update">application/json;
charset=utf-8</Header>
 </xsl:template>
 <xsl:template match="//HTTPResponse/
HTTPRequest/Headers/Header">
 <xsl:choose>
 <xsl:when test="@name='x-
fapi-interaction-id' ">
 <Header name="x-fapi-
interaction-id" action="add">
 <xsl:value-of
select="current()" />
 </Header>
 </xsl:when>
 </xsl:choose>
 </xsl:template>
 </xsl:stylesheet>

[http-transformations]
resourceReq=resourceReq
[http-transformations:resourceReq] request-
match = response:GET /resource*
 match-case-insensitive = yes

Mapping Rules
s_hash

IBM Security Verify Access does not support "s_hash" out-of-the-box. However, it can be calculated
and added as claims by adding the following code snippet to pre_token mapping rules. See https://
www.ibm.com/blogs/security-identity-access/openbanking-the-state-hash-claim/ for more
information.

/*
FAPI - S_HASH
*/
importClass(Packages.java.util.Base64);

var request_type = null;
var grant_type = null;
var response_type = null;

// The request type - if none available assume 'resource'
var tmp = stsuu.getContextAttributes().getAttributeValuesByNameAndType("request_type",
"urn:ibm:names:ITFIM:oauth:request");
if (tmp != null && tmp.length > 0) {
 request_type = tmp[0];
} else {
 request_type = "resource";
}

// The grant type
tmp = stsuu.getContextAttributes().getAttributeValuesByNameAndType("grant_type",
"urn:ibm:names:ITFIM:oauth:body:param");
if (tmp != null && tmp.length > 0) {
 grant_type = tmp[0];
}

// The response type
tmp = stsuu.getContextAttributes().getAttributeValuesByName("response_type");
if (tmp != null && tmp.length > 0) {
 response_type = tmp[0];
}

var state = null;

Chapter 5. OpenID Connect federations 111

https://www.ibm.com/blogs/security-identity-access/openbanking-the-state-hash-claim/
https://www.ibm.com/blogs/security-identity-access/openbanking-the-state-hash-claim/

if (request_type == "authorization" && response_type != null &&
response_type.indexOf("id_token") > -1) {

 // When id_token to be produced at /authorize
 state = stsuu.getContextAttributes().getAttributeValueByName("state");

} else if (request_type == "access_token" && grant_type == "authorization_code") {

 // When id_token to be produced at /token
 var code = stsuu.getContextAttributes()
 .getAttributeValueByNameAndType("code", "urn:ibm:names:ITFIM:oauth:body:param");
 var token = OAuthMappingExtUtils.getToken(code);
 if (token != null) {
 state = OAuthMappingExtUtils.getAssociation(token.getStateId(), "state");
 }

}

if (state != null) {

 // Need to hash based on algorithm
 // The hash algorithm to use is dictated by the signing algorithm of JWT
 var alg = stsuu.getContextAttributes()
 .getAttributeValueByNameAndType("signing.alg", "urn:ibm:oidc10:jwt:create");

 // For now only SHA-256 and SHA-512 are supported natively by ISAM.
 // Consider using KJUR or similar if SHA384 is needed.
 var hash = null;

 if (alg != null) {
 if (alg.endsWith("256")) {
 hash = OAuthMappingExtUtils.SHA256Sum(state);
 } else if (alg.endsWith("384")) {
 hash = null; // Not supported!
 } else if (alg.endsWith("512")) {
 hash = OAuthMappingExtUtils.SHA512Sum(state);
 }
 }

 if (hash != null && hash.length > 0) {
 var state_hash =
Base64.getUrlEncoder().withoutPadding().encodeToString(hash.splice(0, hash.length/2));
 var attr = new com.tivoli.am.fim.trustserver.sts.uuser.Attribute("s_hash",
"urn:ibm:jwt:claim", state_hash);
 stsuu.addAttribute(attr);
 }

}

/*
FAPI - S_HASH
*/

Response type code
As part of FAPI conformance, response type code is not permitted. Therefore incoming request with
response type code throws an unsupported error page. This can be achieved by including the
following snippet in pre_token mapping rules.

/*Disallow Code Flow*/
var response_type= null;
if (request_type="authorization"){
 temp_attr =
stsuu.getContextAttributes().getAttributeValuesByNameAndType("response_type",
"urn:ibm:names:ITFIM:oauth:query:param");
 if (temp_attr != null && temp_attr.length > 0) {
 response_type = temp_attr[0];
 } else {
 temp_attr =
stsuu.getContextAttributes().getAttributeValuesByNameAndType("response_type",
"urn:ibm:names:ITFIM:oauth:body:param");
 if (temp_attr != null && temp_attr.length > 0) {
 response_type = temp_attr[0];
 IDMappingExtUtils.traceString("response_type :::"+response_type);
 }
 }
 if ("code" == response_type) {
 //IDMappingExtUtils.throwSTSException("Code Flow Disallowed");
 OAuthMappingExtUtils.throwSTSCustomUserPageException("Unsupported response type
code.",400,"invalid_request");

112 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

 }
}
/*Disallow Code Flow*/

Disallowing state in request parameter
As part of FAPI conformance, only claims passed in request object is used and returned. This rule
ensures that when state is passed in request parameter, the appliance does not take it into
consideration during the flow by removing it from the stsuu in the pre_token mapping rule.

/*Disallow State in Request Param*/
var reqParam_state =
stsuu.getContextAttributes().getAttributeValueByNameAndType("state","urn:ibm:names:ITFIM:oauth:query:param");
if (reqParam_state != null){
var x = stsuu.getContextAttributes().removeAttributeByNameAndType("state","urn:ibm:names:ITFIM:oauth:query:param");
}
/*Disallow State in Request Param*/

STS Chains
As a part of OIDC OP Conformance, an STS chain is created to handle parameters that are sent in a JWT to
the authorize endpoint. This STS chain template must be updated to include a map module.
UpdateRequestJWT (JWTtoMaptoSTSUU)

This STS chain is used to handle request and request_uri parameters. Parameters can be sent to the /
authorize endpoint by using a JWT or by using a URL that contains the JWT.

The applies to must match https://localhost/sps/oauth/oauth20.

The issuer must match REGEXP:(urn:ibm:ITFIM:oauth20:client_request:.*). See Passing
parameters through JWT in a request to /authorize.

The map module performs basic request object checks which are required for FAPI conformance. This
map module links to the following mapping rule that can be uploaded into mapping rules in the
appliance.

importPackage(Packages.com.tivoli.am.fim.trustserver.sts);
importPackage(Packages.com.tivoli.am.fim.trustserver.sts.oauth20);
importPackage(Packages.com.tivoli.am.fim.trustserver.sts.uuser);
importPackage(Packages.com.ibm.security.access.user);
importClass(Packages.com.tivoli.am.fim.trustserver.sts.utilities.IDMappingExtUtils);
importClass(Packages.com.tivoli.am.fim.trustserver.sts.utilities.OAuthMappingExtUtils);
importClass(Packages.com.ibm.security.access.httpclient.HttpClient);
importClass(Packages.com.ibm.security.access.httpclient.HttpResponse);
importClass(Packages.com.ibm.security.access.httpclient.Headers);
importClass(Packages.com.ibm.security.access.httpclient.Parameters);
importClass(Packages.java.util.ArrayList);
importClass(Packages.java.util.HashMap);
var claims_str = stsuu.getContextAttributes().getAttributeValueByNameAndType("claim_json",
"urn:com:ibm:JWT");
var claims = JSON.parse(claims_str);
var header_str = stsuu.getContextAttributes().getAttributeValueByNameAndType("header",
"urn:com:ibm:JWT");
var headers = JSON.parse(header_str);
/*
 * Checks that request object contains exp, scope, nonce, redirect_uri.
 */
requestObjPass = true
if (claims.exp == undefined){
 OAuthMappingExtUtils.throwSTSCustomUserPageException("exp is missing in request
object.",400,"invalid_request");
}
if (claims.scope == undefined){
 OAuthMappingExtUtils.throwSTSCustomUserPageException("scope is missing in request
object.",400,"invalid_request");
}
if (claims.nonce == undefined){
 OAuthMappingExtUtils.throwSTSCustomUserPageException("nonce is missing in request
object. ",400,"invalid_request");
}
if (claims.redirect_uri == undefined){
 OAuthMappingExtUtils.throwSTSCustomUserPageException("redirect_uri in request object is
missing. ",400,"invalid_request");
}
if (headers.alg == "none"){
 OAuthMappingExtUtils.throwSTSCustomUserPageException("alg in request object value cannot
be none. ",400,"invalid_request");

Chapter 5. OpenID Connect federations 113

}
/*
 * Check that the JWT has not expired
 */
if (claims.exp != undefined){
 var expDate = new Date(claims.exp * 1000);
 var currDate = new Date();
 if (expDate < currDate){
 OAuthMappingExtUtils.throwSTSCustomUserPageException("Request object has
expired.",400,"invalid_request");
 }
}
/*
 * Validates aud and issuer value in request object against information in definition.
 */
if (claims.iss != undefined){
 var defID = OAuthMappingExtUtils.getClient(claims.iss).getDefinitionID();
 var iss = OAuthMappingExtUtils.getDefinitionByID(defID).getOidc().getIss();
 if (Array.isArray(claims.aud)){
 var found = false;
 for (var x = 0; x < claims.aud.length; x++){
 if(claims.aud[x]!= iss){
 found = true;
 }
 }
 if (!found){
 OAuthMappingExtUtils.throwSTSCustomUserPageException("aud in request object does
not match issuer of client definition.",400,"invalid_request");
 }
 }
 else if(claims.aud != iss){
 OAuthMappingExtUtils.throwSTSCustomUserPageException("aud in request object does
not match issuer of client definition.",400,"invalid_request");
 }
}
/*
 * Ensures Nonce/State length are within supported range, 255.
 */
if (claims.state != undefined && claims.state.length > 255){
 OAuthMappingExtUtils.throwSTSCustomUserPageException("State in request object exceeds
supported limit.",400,"invalid_request");
}
if (claims.nonce != undefined && claims.nonce.length > 255){
 OAuthMappingExtUtils.throwSTSCustomUserPageException("Nonce in request object exceeds
supported limit.",400,"invalid_request");
}

FAPI Definition Configurations
This topic describes the FAPI definitions configurations.
Definition Configuration- Minimum Entropy 128bit

As part of FAPI requirement, access_tokens should be a minimum of 128 bit. To configure this set
access_token length to '32' in OpenID Definition.

Definition & Advanced Configuration - Update HTML Encoded Macro
As part of FAPI requirement, users are allowed to reject login attempt upon authentication. This can
be achieved by setting Prompt to Always allow in the Definition configuration. This would mean
that the prompt page is triggered during the SSO flow after the user successfully logs in. In order for
claims passed to be successfully added without being html encoded you can add the macro
@OAUTH_OTHER_PARAM_VALUE_REPEAT@ to sps.page.htmlEscapedMacros.

Definition Configuration- Use EC256 or PS256 Signing keys
As part of FAPI requirement, ES256 signing keys are required to be used for id_token signing.

Advance Configuration- OAuth20.State.Required
FAPI conformance requires authorization requests without state to be allowed. To achieve this, set the
advance configuration parameter OAuth20.State.Required to false. The configuration
overwrites IBM Security Verify Access default behavior making state a non-mandatory parameter.

Note: This can only be achieved on IBM Security Verify Access version 10.0.0

114 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

FAPI - MTLS and Certificate Bound Tokens
FAPI specs require that Verify Access supports [OAUTB] or [MTLS] as a hold of key mechanism.

This specification requires clients to authenticate to token endpoint or resource endpoint with a client
certificate. The authenticated client certificate is then bound to tokens (access_token, refresh_token, and
code) that are generated for the client.

FAPI- Certificate Authentication and MTLS
To handle Client Cert Authentication according to FAPI Specs, Cert-EAI can be used. The following are
steps to configure this.

Creating Authentication Mechanism (available by default from IBM Security Verify Access version
10.0.0)

1. Create an InfoMap Authentication Mechanism with FAPI_CertEAI as Mapping rule and
cert_mismatch.json as template page.

2. Create an Authentication Policy with the authentication mechanism that is created from the
previous step.

/authsvc/authenticator/Infomap/cert_mismatch.json

{
"Error": "Certificate Mismatch"
<% templateContext.response.setHeader("am-eai-flags", "stream");
templateContext.response.setHeader("Content-Type", "application/json");
templateContext.response.setStatus(401);
%>
}

Configuring CertEAI in WebSEAL
Configure CertEAI to call authentication policy that is created in “Creating Authentication Mechanism
(available by default from IBM Security Verify Access version 10.0.0)” on page 115 and pass the
certificate data. See the following example:

[certificate]
accept-client-certs = optional
eai-uri = junction+"/sps/authsvc?PolicyId=urn:ibm:security:authentication:asf:fapi_CertAuth"
eai-data = Base64Certificate:cert
eai-data = SubjectCN:SubjectCN
eai-data = Fingerprint:Fingerprint

Note: Client Certificate must be added to WebSEAL’s SSL DB (pdsrv) and ensure that junction has an
appropriate value

FAPI Certificate Authentication EAI
FAPI_CertEAI, the infomap that is used in FAPI Authentication Mechanism, checks if certificate is
bound to token matches the certificate in incoming request.
FAPI_CertEAI

importClass(Packages.com.tivoli.am.fim.trustserver.sts.utilities.IDMappingExtUtils);
importClass(Packages.com.ibm.security.access.user.UserLookupHelper);
importPackage(Packages.com.ibm.security.access.httpclient);
importClass(Packages.com.tivoli.am.fim.trustserver.sts.utilities.OAuthMappingExtUtils);

IDMappingExtUtils.traceString("Entering FAPI Infomap");

var cert = context.get(Scope.REQUEST, "urn:ibm:security:asf:request:header", "cert");
var subjectCN = context.get(Scope.REQUEST, "urn:ibm:security:asf:request:header",
"SubjectCN");
var fingerprint = context.get(Scope.REQUEST, "urn:ibm:security:asf:request:header",
"Fingerprint");

if (cert != null && subjectCN != null && fingerprint!= null){
 // useful trace
 IDMappingExtUtils.traceString(" cert: " + cert);
 IDMappingExtUtils.traceString(" SubjectCN: " + subjectCN);
 IDMappingExtUtils.traceString(" fingerprint: " + fingerprint);

Chapter 5. OpenID Connect federations 115

 var auth_header = context.get(Scope.REQUEST, "urn:ibm:security:asf:request:header",
"Authorization");
 //Check if there is a authorization header
 if(auth_header != null){
 var array = auth_header.split(" ");
 if (array[0].equals("Bearer")){
 var token = array[1];

 //Introspect the access_token
 var tkn = OAuthMappingExtUtils.getToken(token)
 var cnf = OAuthMappingExtUtils.getAssociation(tkn.getStateId(), "cnf")
 IDMappingExtUtils.traceString("cnf:: [" + cnf + "]");
 if (cnf != fingerprint){
 IDMappingExtUtils.traceString("MISMATCHED CERTS");
 success.setValue(false);
 }
 else{
 var iv_user_l = context.get(Scope.REQUEST,
"urn:ibm:security:asf:request:header", "iv-user-l");
 context.set(Scope.SESSION,
"urn:ibm:security:asf:response:token:attributes", "username", subjectCN);
 context.set(Scope.SESSION,
"urn:ibm:security:asf:response:token:attributes", "cert", cert);
 context.set(Scope.SESSION,
"urn:ibm:security:asf:response:token:attributes", "fingerprint", fingerprint);
 success.setValue(true);
 }
 }
 }
 else{
 var iv_user_l = context.get(Scope.REQUEST,
"urn:ibm:security:asf:request:header", "iv-user-l");
 context.set(Scope.SESSION, "urn:ibm:security:asf:response:token:attributes",
"username", subjectCN);
 context.set(Scope.SESSION, "urn:ibm:security:asf:response:token:attributes",
"cert", cert);
 context.set(Scope.SESSION, "urn:ibm:security:asf:response:token:attributes",
"fingerprint", fingerprint);
 success.setValue(true);
 }
}
else{
 IDMappingExtUtils.traceString("Certificate information unavailable");
 success.setValue(false);
}

Certificate bound token can be achieved by associating token’s state ID to the certificate
thumbprint upon token creation in oauth post_token mapping rule. When these tokens are
used again at resource endpoint, a check is done in the pre_token mapping rule to retrieve the
associated thumbprint and check if it matches the incoming certificate thumbprint of the client. If
it matches, access is allowed to the resource. If it does not match, an error is thrown. See the
following example:

When there is an issue with certificate bound token and an error is thrown. WebSEAL returns a
stepuplogin error. In FAPI, this error is a 401 Unauthorized or Invalid_request. To achieve this
error on IBM Security Verify Access, create an error file (Select Reverse Proxy > Manage > Management
Root) . Under management/C/, create stepuplogin.401.json. This returns a 401 error. The following
is a sample content of the file:

{
 "error_code" : " Unauthorized "
 "error_message" : " Client Certificate Mismatch. This resource can only be access by an
authorized user. "
 }

FAPI specs requires resource endpoint to be protected by mtls. This can be done by enforcing a ‘ext-
auth-interface’ authentication level by using a Protected Object Policy (POP).

[session]
require-mpa = yes

116 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Setting require-mpa to 'yes' means that HTTP headers are not valid session keys or authentication
tokens unless received through an MPA. In FAPI, this functionality is used to ensure each token and the
cert information are build as one unique session without any form of session caching.

FAPI- Certificate Bound Token
At the resource endpoint, a check is done in the pre_token mapping rule to retrieve the associated
thumbprint and checks if the thumbprint matches the incoming certificate thumbprint of the client. If the
thumbprint matches, access is allowed to the resource. If the thumbprint does not match, an error is
thrown. See the following example:

oauth20 pre_token mapping rule

/*Cert Bound Tokens*/
 if (request_type == "resource"){
 var incoming_thumbprint =
stsuu.getContextAttributes().getAttributeValueByName("tagvalue_x509fingerprint");
 var incoming_access_token =
stsuu.getContextAttributes().getAttributeValueByName("access_token");
 var incoming_refresh_token =
stsuu.getContextAttributes().getAttributeValueByName("refresh_token");
 var incoming_code = stsuu.getContextAttributes().getAttributeValueByName("code");

 if (incoming_access_token != null && incoming_thumbprint != null){
 var state_id = OAuthMappingExtUtils.getToken(incoming_access_token).getStateId();
 var original_thumbprint = OAuthMappingExtUtils.getAssociation(state_id, "cnf");

 if (original_thumbprint != incoming_thumbprint){
 OAuthMappingExtUtils.throwSTSCustomUserPageException("INCOMING MTLS client cert
does not match access_token client's cert",400,"invalid_request");
 }

 }else if (incoming_refresh_token != null && incoming_thumbprint != null){
 var state_id = OAuthMappingExtUtils.getToken(incoming_refresh_token).getStateId();
 var original_thumbprint = OAuthMappingExtUtils.getAssociation(state_id, "cnf");

 if (original_thumbprint != incoming_thumbprint){
 OAuthMappingExtUtils.throwSTSCustomUserPageException("INCOMING MTLS client cert
does not match access_token client's cert",400,"invalid_request");
 }

 }else if (incoming_code != null && incoming_thumbprint != null){
 var state_id = OAuthMappingExtUtils.getToken(incoming_code).getStateId();
 var original_thumbprint = OAuthMappingExtUtils.getAssociation(state_id, "cnf");

 if (original_thumbprint != incoming_thumbprint){
 OAuthMappingExtUtils.throwSTSCustomUserPageException("INCOMING MTLS client cert
does not match access_token client's cert",400,"invalid_request");
 }

 }
 }
 /*Cert Bound Tokens*/

oauth20 post_token mapping rule

 /*
 FAPI - Cert Bound Tokens
 */
 var client_thumbprintAttribute =
stsuu.getAttributeValueByName("tagvalue_x509fingerprint");

 if (state_id != null && client_thumbprintAttribute != null){
 var result = OAuthMappingExtUtils.associate(state_id, "cnf",
client_thumbprintAttribute);
 }
 /*
 FAPI - Cert Bound Tokens
 */

Chapter 5. OpenID Connect federations 117

FAPI- Private Key JWT
When FAPI_CertEAI authenticates a client with MTLS, client_assertion STS chain is not triggered
as the client is already authenticated.

The following code snippet triggers client_assertion STS Chain. This ensures client present in
client_assertion and MTLS authenticated client matches.

To achieve FAPI certification with Private Key JWT, add the following snippet to the API Protection
Definition pre token mapping rule:

/*
 * FAPI - Private_key_jwt
 *
 * Ensure this snippet is added within the isFapiCompliantByDefinitionID check
 * Client Assertion is a form of client authentication. In the case of FAPI, FAPI_CertEAI
authenticates a client if mtls client certificate is present.
 * Therefore, client_assertion is not handled. This code snippet triggeres client_assertion
manually and ensures client id of client_assertion jwt and client object that was created
 * based of mtls authentication matches.
 *
 * client_assertion_required flag enforces client_assertion.
 *
 */

var client_assertion_required = true;
var client_assertion = stsuu.getContextAttributes().getAttributeValueByName("client_assertion");

if (client_assertion_required && request_type == "access_token" && client_assertion != null){

 var base_token = IDMappingExtUtils.stringToXMLElement(
 "<wss:BinarySecurityToken "
 + "xmlns:wss=\"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd\" "
 + "wss:EncodingType=\"http://ibm.com/2004/01/itfim/base64encode\" "
 + "wss:ValueType=\"urn:com:ibm:JWT\">"+client_assertion+"<\/wss:BinarySecurityToken>");

 var res = LocalSTSClient.doRequest("http://schemas.xmlsoap.org/ws/2005/02/trust/
Validate","https://localhost/sps/oauth/oauth20", "urn:ietf:params:oauth:client-assertion-
type:jwt-bearer:", base_token, null)

 if (res.errorMessage == null){
 var client_assertion_stsuu = new STSUniversalUser();
 client_assertion_stsuu.fromXML(res.token);
 IDMappingExtUtils.traceString("FAPI Client Assertion Result: " +
client_assertion_stsuu);

 var claims_str =
client_assertion_stsuu.getContextAttributes().getAttributeValueByNameAndType("claim_json",
"urn:com:ibm:JWT");
 var claims = JSON.parse(claims_str);

 /*
 * Check that the JWT has not expired
 */

 if (claims.exp != undefined){
 var expDate = new Date(claims.exp * 1000);
 var currDate = new Date();
 if (expDate < currDate){
 OAuthMappingExtUtils.throwSTSCustomUserPageException("JWT has
expired.",400,"invalid_request");
 }
 }

 /*
 * Validates aud and issuer value in client_assertion jwt against information in
definition.
 */
 if (claims.iss != undefined && claims.aud != undefined){
 var def_id = OAuthMappingExtUtils.getClient(claims.iss).getDefinitionID();
 var iss = OAuthMappingExtUtils.getDefinitionByID(def_id).getOidc().getIss();
 var poc = OAuthMappingExtUtils.getDefinitionByID(def_id).getOidc().getPoc();

 if (Array.isArray(claims.aud)){
 var found = false;

 for (var x = 0; x < claims.aud.length; x++){

118 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

 if((claims.aud[x]).includes(iss) || (claims.aud[x]).includes(poc)){
 found = true;
 break;
 }
 }
 if (!found){
 OAuthMappingExtUtils.throwSTSCustomUserPageException("aud in request object
does not match issuer of client definition.",400,"invalid_request");
 }
 }
 else if(!((claims.aud).includes(iss) || (claims.aud).includes(poc))){
 OAuthMappingExtUtils.throwSTSCustomUserPageException("aud in client_assertion
jwt does not match issuer of client definition.",400,"invalid_request");
 }
 }

 /*
 * Ensure MTLS authentication credentials present
 */
 var fingerprint = stsuu.getAttributeValueByName("fingerprint");
 if (fingerprint == null){
 OAuthMappingExtUtils.throwSTSCustomUserPageException("mtls credentials of client is
missing.",400,"invalid_request");
 }

 }else{
 OAuthMappingExtUtils.throwSTSCustomUserPageException("client_assertion
failed.",400,"invalid_request");
 }

}else if(client_assertion_required && request_type == "access_token"){
 OAuthMappingExtUtils.throwSTSCustomUserPageException("client_assertion is not found in
token endpoint.",400,"invalid_request");
}

Configuring FAPI Client
FAPI conformance requires MTLS and Certificate bound token to use a Client Certificate.

You can bind a certificate that is added to the trust store, to a client. To bind a certificate, add the client
certificate details (for example, alias and keystore) to the extended properties when you are creating a
client. This can be achieved by navigating to Federation > OpenID Connect and API Protection >
Clients. This can also be done for dynamic clients.

{
 "tls_client_auth_subject_dn": "clientID",
 "tls_client_auth_keystore": "rt_profile_keys "
}

The information that is added to client configuration can then be used to verify if the incoming mtls
certificate matches client certificate. Use the following code snippet at
FAPI_ValidateJWT_RequestJWT mapping rule or oauth20_pre_token mapping rule to verify:

/*
 * Certificate and Jwt signing key check
 * claims.iss can be substituted with client id
 * headers.kid can be substituted with fingerprint
(stsuu.getAttributeValueByName("fingerprint");)
 * Please note that (stsuu.getAttributeValueByName("fingerprint");) returns thumbprint in
OAuthMappingExtUtils.getCertificateThumbprint format.
 */
var client_ExtendedData = OAuthMappingExtUtils.getClient(claims.iss).getExtendedData();
if (client_ExtendedData != null){
 var client_keystore =
JSON.parse(client_ExtendedData).dynamic_client.tls_client_auth_keystore;
 var client_alias =
JSON.parse(client_ExtendedData).dynamic_client.tls_client_auth_subject_dn;
 if (client_alias != null && client_keystore != null){
 var cert_thumbprint =
OAuthMappingExtUtils.getCertificateThumbprint_S256(client_keystore,client_alias);
 if (cert_thumbprint != null && cert_thumbprint != headers.kid){
 OAuthMappingExtUtils.throwSTSCustomUserPageException("Client certificate mis-
match!!!",400,"invalid_request");
 }

Chapter 5. OpenID Connect federations 119

 }
}

120 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Chapter 6. Configuring STS modules
Configure Security Token Service (STS) modules to validate and exchange security token types.

About this task
The STS is a component of the federation runtime that accepts WS-Trust requests for the validation and
exchange of one security token type for another. You can configure the STS artifacts, which consist of
modules, templates, and chains. These configuration elements allow an incoming WS-Trust message to
be mapped to a particular template and its configuration.

These steps apply to the configuration for all of the “Supported module types” on page 121.

Procedure
1. Configure the token module prerequisites.

• The Attribute Mapping module requires that you set up attribute sources. See Managing attribute
sources.

• The Username Token module requires that you set up server connections. See Managing server
connections

• The LTPA module requires that you import the LTPA key file. See Managing LTPA keys.
• The Default Mapping module requires that you import the JavaScript rule file. See Managing

JavaScript mapping rules.
2. View the module instances that are available. See Managing modules.
3. Create a new template or use an existing one. See Managing templates.

4. Create a new module chain. See Managing module chains.

5. Configure the module properties within the chain. Use the Properties tab inside of the module chain
for the module.

Supported module types
STS modules are assembled as part of an STS chain that issues and validates specific types of tokens.
IBM Security Verify Access supports several STS module types.

Attribute Mapping module
The Attribute Mapping STS module injects attribute values from different sources into an STSUU. This
method to add attributes into the STSUU is convenient if you do not know how to write a mapping rule.

The Attribute Mapping module is called AttributeMappingModule.

Before using the attribute mapping module, you must configure the attribute sources so that they are
available for selection. See Managing attribute sources.

Scenarios

• Single sign-on federations
• Custom trust chains

Supported modes

• Map

Configuration properties
Attribute Name

The attribute name that is populated into the STSUniversalUser.

Attribute Source
The name of a configured attribute source object. See Managing attribute sources for information
about configuring attribute sources.

Default Mapping module
The Default Mapping module facilitates mapping by using an identity mapping rule.

The Default Mapping module is called XSLTransformationModule. The default mapping configuration
consists of a JavaScript file that specifies an identity mapping rule. See Managing JavaScript mapping
rules.

The module calls a JavaScript engine to read and run the identity mapping rules to generate a Secure
Token Service Universal User (STSUU) XML document. The generated STSUU XML document contains the
user identity information.

Scenarios

• Single sign-on federations
• Custom trust chains

Supported modes

• Map

Configuration properties
JavaScript file containing the identity mapping rule

The ID of the JavaScript file that contains the identity mapping rule.

For example, enter 8.

You must complete the mapping rule file and upload it before you can configure it into the chain.

HTTP Callout module
The HTTP callout module invokes a web service and enriches the STSUU with the returned contents.

Scenarios

• Single sign-on federations
• Custom trust chains

Supported modes

• Map

Configuration properties
Identify the URI format

The URI scheme.
HTTP

Use http for resources that are not protected by SSL.
HTTPS

Use https for resources that are protected by SSL.
Provide the web service URI

The endpoint address of the web service.
Server Certificate Database

The trust store containing the certificate of the HTTPS URL to call out to. This option is only
required if the URI format is HTTPS.

Client authentication type
Specify the type of authentication to use:

122 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

No authentication
No credentials are required.

Basic authentication
Supply the basic authentication credentials:
Username

Specify the user name.
Password

Specify the password.
Client certificate authentication

Authenticate using a client certificate
Select the message format to use

XML
Use XML format for the message.

WS-Trust
Use WS-Trust format for the message.

IVCred module
The Verify Access credential module creates and consumes Verify Access-specific credentials. These
credentials are called IVCreds.

The IVCred token module is called IVCredModule.The trust service can create and use local tokens in an
environment that is protected by Verify Access. The support for Access Manager credentials means that
the trust service can also use the credentials for authorization decisions.

Supported modes

• Validate
• Issue

Configuration properties

Validate mode

Enable signature validation
Enables or disables validation of signatures in the token module. Select the check box to enable
signature validation.

Select validation key
Specifies the validation key that the partner must use.
Certificate Database

Select the certificate database to use for validation.
Certificate Label

Select the certificate label for validation.
Issue mode
List the attribute types to include

Specifies the attribute type of the attributes to be inserted during token creation. The attributes
consist of information about the identity (user).

By default, all types are supported, as indicated by the asterisk (*) wildcard character.

Enable signatures
Specifies that signatures must be added to tokens.

Select the signing key
Specifies the key to use to sign tokens.
Certificate Database

Select the certificate database to use for validation.

Chapter 6. Configuring STS modules 123

Certificate Label
Select the certificate label for validation.

Select the KeyInfo elements to include
Specifies the elements of the signing certificate in the extended attributes of the credential. These
attributes are only included if signatures are enabled. The default is for them to be disabled.
Public Key

Select to include the public key. If selected, the public key of the signing certificate is included
in the Base64 encoded form. The extended attribute is labeled
ITFIM_IVCRED_SIGNER_CERTIFICATE_PUBKEY.

Clear the check box to exclude the public key.

X509 Subject Name
Select to include this attribute. If selected, the distinguished name of the subject for the
signing certificate is included. The extended attribute is labeled
ITFIM_IVCRED_SIGNER_CERTIFICATE_SUBJECT.

Clear the check box to exclude the X509 Subject Name.

X509 Subject Issuer Details
Select to include this attribute. If selected, the issuer details of the signing certificate are
included. The extended attribute is labeled
ITFIM_IVCRED_SIGNER_CERTIFICATE_ISSUER.

Clear the check box to exclude the X509 Subject Issuer Details.

X509 Subject Key Identifier
Select to include this attribute. If selected, the subject key identifier of the signing certificate is
included. The extended attribute is labeled ITFIM_IVCRED_SIGNER_CERTIFICATE_SKI.

Clear the check box to exclude the X509 Subject Key Identifier.

X509 Certificate Data
Select to include this attribute. If selected, the certificate data of the signing certificate is
included in the Base64 encoded form. The extended attribute is labeled
ITFIM_IVCRED_SIGNER_CERTIFICATE.

Clear the check box to exclude the X509 Certificate Data.

Note: If none of the KeyInfo elements are selected, X509Certificate data is still included in the
signature by default.

LTPA module
The LTPA module facilitates the validating and issuing of LTPA version 1 and version 2 tokens.

The LTPA module is called STSLTPATokenModule.

An LTPA token is an encrypted string that contains user information and other metadata. Version 1 tokens
contain fairly limited information, such as username and token expiration time. Version 2 tokens are
extensible in that they can contain user-defined attributes, where each attribute can contain a list of
values.

These tokens are represented as BinarySecurityToken elements.

This module does not support the initial generation of LTPA keys. You must provide a set of LTPA keys that
were generated by another source such as a WebSphere® application server.

Supported modes

• Validate
• Issue

Configuration properties
Validate mode

124 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

LTPA file
Select the LTPA file to use.

You must upload the LTPA file into /wga/ltpa_key first for it to display in the list.

Password for key protection
(Required) The password that was used to protect the keys that are created by the partner.

Use the FIPS standard
Select to enable the Federal Information Processing Standards (FIPS). If FIPS was enabled when
you created your partner, select this check box. The default is unchecked.

Issue mode
LTPA file

Select the LTPA file to use.

You must upload the LTPA file into /wga/ltpa_key first for it to display in the list.

Password for key protection
(Required) The password that was used to protect the keys that are created by the partner. It must
be the same password that was used when the keys were created by the partner.

Use the FIPS standard
Select to enable the Federal Information Processing Standards (FIPS). If FIPS was enabled when
you created your partner, select this check box. The default is unchecked.

Number of minutes before the created token expires
(Required) Indicates how long, from the time of token creation, the token remains valid. Specify
the value in minutes. You can override this value by using the expiration Principle value in the
Universal User. The default value is 120 minutes.

Realm used to create the user ID
The realm name to append to the user ID during token creation. You can override this value by
using the realm Principle value in the Universal User. If you do not specify a name here, then the
realm from the imported LTPA file is assumed.

Version of LTPA token to issue
The version number of the LTPA token you are issuing. Select 1 or 2 from the list, denoting LTPA
Version 1 or Version 2.

Attributes to add to a version 2 token

Specify the type of attributes to include in the assertion. Use this field only for LTPA Version 2
tokens. An asterisk (*) indicates that all of the attribute types that are specified in the identity
mapping file are included in the assertion.

To specify one specific type individually, type the attribute type in the text box. For example, if you
want to include only attributes of type urn:oasis:names:tc:SAML:2.0:assertion in the
assertion, type that string in the text box.

SAML 2.0 module
The SAML 2.0 module validates and issues SAML 2.0 tokens. This module is used for single sign-on in
SAML 2.0 federations.

The SAML 2.0 module is called Saml20STSTokenModule.

Security Assertion Markup Language 2.0 (SAML 2.0) is a version of the SAML standard for exchanging
authentication and authorization data between security domains. SAML 2.0 enables web-based
authentication and authorization scenarios including cross-domain single sign-on (SSO), which helps
reduce the administrative overhead of distributing multiple authentication tokens to the user.

Scenarios

• Single sign-on federations
• Custom trust chains

Chapter 6. Configuring STS modules 125

Supported modes

• Validate
• Issue
• Exchange

Configuration properties
Validate mode
Enable one-time assertion use enforcement

Specifies whether to use the assertion or token only once.
Enable signature validation

Enables or disables validation of signatures in the token module. Even if you do not select the
check box, you must provide the key for decryption.

Select a validation key
Specifies the validation key that the partner must use.
Use the KeyInfo of the XML signature to find the X509 certificate for signature validation

Determines the appropriate certificate for signature validation. When you select this option,
you must provide the subject distinguished name that matches the certificate.
RegExp

Specifies a regular expression to validate the subject distinguished name returned in
theKeyInfo.

Use the keystore alias to find the public key for signature validation
Specifies a public key for signature validation, which is the default. Select the certificate
database and label.
Certificate Database

Select the certificate database to use for validation.
Certificate Label

Select the certificate label for validation.
Select a decryption key

Select the key to use to decrypt encrypted messages.
Certificate Database

Select the certificate database to use for validation.
Certificate Label

Select the certificate label for validation.
Create multiple attribute statements in the Universal User

Specifies whether to keep multiple attribute statements in the groups in which they were received.
This option might be necessary if your custom identity mapping rules are written to operate on
one or more specific groups of attribute statements.
If you do not select this check box, multiple attribute statements are arranged into a single group
(AttributeList) in the STSUniversalUser document. The default setting of the check box is not
selected. This setting is appropriate for most configurations.

Map unknown name identifiers to the anonymous username
Specifies that the service provider can map an unknown persistent name identifier alias to the
anonymous user account. By default, this option is disabled.

Default NameID format for assertion validation
Specifies a parameter for use during validation of a SAML assertion. The parameter is used to
determine processing rules for the NameID element when one of the following conditions exists:

• If there is not an explicit Format attribute that is included in the assertion
• If the Format attribute is urn:oasis:names:tc:SAML:2.0:nameid-format:unspecified

126 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Typically this parameter is needed only for STS chains that process SAML assertions that do not
set the Format attribute. A normal example value is
urn:oasis:names:tc:SAML:2.0:nameid-format:emailAddress.

Issue and Exchange mode
Name of the organization issuing the assertions

Shows a string that specifies the name of the organization (for example, a company) that issues
the SAML assertions.

Amount of time before the issue date that an assertion is considered valid (seconds)
Default: 60 seconds

There is no minimum or maximum value enforced.

This field must contain a value.

Amount of time that the assertion is valid after being issued (seconds)
Default: 60 seconds

There is no minimum or maximum value enforced.

This field must contain a value.

List the attribute types to include
Specifies the types of attributes to be inserted during token creation. The attributes consist of
information about the identity (user). Use && to separate attribute types. By default, all types are
supported, as indicated by the asterisk (*) wildcard character.

For example, to add user-defined attribute types type1 and type2, enter:

type1&&type2

Sign SAML assertions
Select if SAML assertions must be signed. Even if you do not select the check box, you must
provide the key for encryption assertions.

Select the key for signing assertions
Specifies the key to use when signing SAML assertions.
Certificate Database

Select the certificate database to use for validation.
Certificate Label

Select the certificate label for validation.
Select the KeyInfo elements to include

Determines what KeyInfo elements to include in the digital signature when signing a SAML
message or assertion. Select one or more of the following elements.
X509 Subject Key Identifier

Select to include the X.509 subject key identifier with your signature. If not selected, the
subject key identifier is excluded. To change the default for this element, change it in the
custom properties.

Public Key
Select to include the public key with your signature. If not selected, the public key is
excluded. To change the default for this element, change it in the custom properties.

X509 Subject Issuer Details
Select to include the issuer name and the certificate serial number with your signature. If
not selected, the subject issuer details are excluded. To change the default for this
element, change it in the custom properties.

X509 Subject Name
Select to include the X.509 subject name with your signature. If not selected, the X.509
data is excluded. To change the default for this element, change it in the custom
properties.

Chapter 6. Configuring STS modules 127

X509 Certificate Data
Select to include the BASE64 encoded certificate data with your signature. If not selected,
the X.509 data is excluded. To change the default for this element, change it in the custom
properties.

Note: If you do not select any of the KeyInfo elements, X.509 certificate data is still included in
the signature by default.

Signature algorithm for signing SAML assertions
Specifies the signature algorithm to use to sign the SAML assertion.
RSA-SHA1

http://www.w3.org/2000/09/xmldsig#rsa-sha1
DSA-SHA1

http://www.w3.org/2000/09/xmldsig#dsa-sha1
RSA-SHA256

http://www.w3.org/2001/04/xmldsig-more#rsa-sha256

Note: The chosen signature algorithm must match the signing key type that was set in the
federation level to prevent a signature failure. For example, select DSA-SHA1 for DSA keys.

Select the key for encrypting assertion elements for this partner
Specifies the key to use to encrypt assertions.
Certificate Database

Select the certificate database to use for validation.
Certificate Label

Select the certificate label for validation.
Encrypt assertions

Specifies whether assertions are to be encrypted. If selected, specify an encryption key.
Encrypt assertion attribute elements

Specifies whether Attribute elements within the assertions are to be encrypted. If selected,
specify an encryption key.

Encrypt NameID elements in assertions
Specifies whether NameID elements in the assertions are to be encrypted. If selected, specify an
encryption key.

Block encryption algorithm
Specifies the encryption algorithm to use to encrypt data for this partner.
Triple DES

Triple Digital Encryption Standard
AES-128

Advanced Encryption Standard 128-bit
AES-192

Advanced Encryption Standard 192-bit
AES-256

Advanced Encryption Standard 256-bit
Subject confirmation method

Specifies the subject confirmation method for the assertion. You can select one or more subject
confirmation methods at the same time, or choose not to select any confirmation methods. If you
select the holder-of-key type, the default includes the X.509 Certificate Data in the KeyInfo for
the SubjectConfirmationMethod. STSUniversalUser can provide the data for the subject
confirmation method KeyInfo. The data can also be extracted from the signed request data.

Valid values can be:

• urn:oasis:names:tc:SAML:2.0:bearer
• urn:oasis:names:tc:SAML:2.0:holder-of-key

128 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

• urn:oasis:names:tc:SAML:2.0:sender-vouches

You can use the identity mapping rules to add subject confirmation information to the
STSUniversalUser.

<stsuuser:Attribute name="SamlSubjectConfirmationMethod"
 type="urn:oasis:names:tc:SAML:2.0:assertion">
 <stsuuser:Value>urn:oasis:names:tc:SAML:2.0:cm:bearer
 </stsuuser:Value>
 <stsuuser:Value>urn:oasis:names:tc:SAML:2.0:cm:holder-of-key
 </stsuuser:Value>
 </stsuuser:Attribute>

Another way to add subject confirmation information is by using configuration properties. See the
topic on “SAML 2.0 module properties” on page 154.

Note: The values set in the identity mapping rule take precedence over the settings in the
configuration.

For the SubjectConfirmationMethod to be issued correctly, the client must sign the
RequestSecurityToken request and include a KeyInfo used for the SCM when sending the
RequestSecurityToken. To use the holder-of-key capability, the JavaScript mapping rules
must be updated to insert the attribute into the STSUU.

For example:

<stsuuser:AttributeList>
 <stsuuser:Attribute name="SamlSubjectConfirmationMethod"
 type="urn:oasis:names:tc:SAML:2.0:assertion">
 <stsuuser:Value>urn:oasis:names:tc:SAML:2.0:cm:holder-of-key
 </stsuuser:Value>
 </stsuuser:Attribute>
</stsuuser:AttributeList>

SAML 1.1 module
The SAML 1.1 module validates and issues SAML 1.1 tokens.

The SAML 1.1 module is called Saml11STSTokenModule.

Security Assertion Markup Language 1.1 (SAML 1.1) is a version of the SAML standard for exchanging
authentication and authorization data between security domains. SAML 1.1 enables web-based
authentication and authorization scenarios including cross-domain single sign-on (SSO), which helps
reduce the administrative overhead of distributing multiple authentication tokens to the user.

Scenarios

• Single sign-on federations
• Custom trust chains

Supported modes

• Validate
• Issue
• Exchange

Configuration properties
Validate mode
Enable one-time assertion use enforcement

Specifies whether to use the assertion or token only once.
Enable signature validation

Enables or disables validation of signatures in the token module.
Select a validation key

Specifies the validation key that the partner must use.

Chapter 6. Configuring STS modules 129

Use the KeyInfo of the XML signature to find the X509 certificate for signature validation
Determines the appropriate certificate for signature validation. When you select this option,
you must provide the subject distinguished name that matches the certificate.
RegExp

Specifies a regular expression to validate the subject distinguished name returned in
theKeyInfo.

Use the keystore alias to find the public key for signature validation
Specifies a public key for signature validation, which is the default. Select the certificate
database and label.
Certificate Database

Select the certificate database to use for validation.
Certificate Label

Select the certificate label for validation.
Create multiple attribute statements in the Universal User

Specifies whether to keep multiple attribute statements in the groups in which they were received.
This option might be necessary if your custom identity mapping rules are written to operate on
one or more specific groups of attribute statements.
If you do not select this check box, multiple attribute statements are arranged into a single group
(AttributeList) in the STSUniversalUser document. The default setting of the check box is not
selected. This setting is appropriate for most configurations.

Issue and Exchange mode
Name of the organization issuing the assertions

Shows a string that specifies the name of the organization (for example, a company) that issues
the SAML assertions.

Amount of time before the issue date that an assertion is considered valid (seconds)
Default: 60 seconds

There is no minimum or maximum value enforced.

This field must contain a value.

Amount of time that the assertion is valid after being issued (seconds)
Default: 60 seconds

There is no minimum or maximum value enforced.

This field must contain a value.

List the attribute types to include
Specifies the types of attributes to be inserted during token creation. The attributes consist of
information about the identity (user). Use && to separate attribute types. By default, all types are
supported, as indicated by the asterisk (*) wildcard character.

For example, to add user-defined attribute types type1 and type2, enter:

type1&&type2

Sign SAML assertions
Select if SAML assertions must be signed.

Select the key for signing assertions
Specifies the key to use when signing SAML assertions.
Certificate Database

Select the certificate database to use for validation.
Certificate Label

Select the certificate label for validation.

130 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Select the KeyInfo elements to include
Determines what KeyInfo elements to include in the digital signature when signing a SAML
message or assertion. Select one or more of the following elements.
X509 Subject Key Identifier

Select to include the X.509 subject key identifier with your signature. If not selected, the
subject key identifier is excluded. To change the default for this element, change it in the
custom properties.

Public Key
Select to include the public key with your signature. If not selected, the public key is
excluded. To change the default for this element, change it in the custom properties.

X509 Subject Issuer Details
Select to include the issuer name and the certificate serial number with your signature. If
not selected, the subject issuer details are excluded. To change the default for this
element, change it in the custom properties.

X509 Subject Name
Select to include the X.509 subject name with your signature. If not selected, the X.509
data is excluded. To change the default for this element, change it in the custom
properties.

X509 Certificate Data
Select to include the BASE64 encoded certificate data with your signature. If not selected,
the X.509 data is excluded. To change the default for this element, change it in the custom
properties.

Use Inclusive Namespaces
Specifies whether to use the InclusiveNamespaces construct, which means employing
exclusive XML canonicalization for greater standardization. The default is cleared.

Note: If you do not select any of the KeyInfo elements, X.509 certificate data is still included in
the signature by default.

Signature algorithm for signing SAML assertions
Specifies the signature algorithm to use to sign the SAML assertion.
RSA-SHA1

http://www.w3.org/2000/09/xmldsig#rsa-sha1
DSA-SHA1

http://www.w3.org/2000/09/xmldsig#dsa-sha1
RSA-SHA256

http://www.w3.org/2001/04/xmldsig-more#rsa-sha256

Note: The chosen signature algorithm must match the signing key type that was set in the
federation level to prevent a signature failure. For example, select DSA-SHA1 for DSA keys.

Subject confirmation method
Specifies the subject confirmation method for the assertion. You can select one confirmation
method, or choose No Subject Confirmation Method. If you select the holder-of-key type,
the default includes the X.509 Certificate Data in the KeyInfo for the
SubjectConfirmationMethod. STSUniversalUser can provide the data for the subject
confirmation method KeyInfo. The data can also be extracted from the signed request data.

Valid values can be:

• No Subject Confirmation Method
• urn:oasis:names:tc:SAML:1.0:bearer
• urn:oasis:names:tc:SAML:1.0:holder-of-key
• urn:oasis:names:tc:SAML:1.0:sender-vouches

Chapter 6. Configuring STS modules 131

You can use the identity mapping rules to add subject confirmation information to the
STSUniversalUser.

<stsuuser:Attribute name="SamlSubjectConfirmationMethod"
 type="urn:oasis:names:tc:SAML:1.0:assertion">
 <stsuuser:Value>urn:oasis:names:tc:SAML:1.0:cm:bearer
 </stsuuser:Value>
 <stsuuser:Value>urn:oasis:names:tc:SAML:1.0:cm:holder-of-key
 </stsuuser:Value>
 </stsuuser:Attribute>

Another way to add subject confirmation information is by using configuration properties. See the
topic on “SAML 1.1 module properties” on page 161.

Note: The values set in the identity mapping rule take precedence over the settings in the
configuration.

For the SubjectConfirmationMethod to be issued correctly, the client must sign the
RequestSecurityToken request and include a KeyInfo used for the SCM when sending the
RequestSecurityToken. To use the holder-of-key capability, the JavaScript mapping rules
must be updated to insert the attribute into the STSUU.

For example:

<stsuuser:AttributeList>
 <stsuuser:Attribute name="SamlSubjectConfirmationMethod"
 type="urn:oasis:names:tc:SAML:1.0:assertion">
 <stsuuser:Value>urn:oasis:names:tc:SAML:1.0:cm:holder-of-key
 </stsuuser:Value>
 </stsuuser:Attribute>
</stsuuser:AttributeList>

STS Universal User module
The Security Token Service Universal User (STSUU) module acts as a pass-through module to either pass
in or out an XML-based STSUniversalUser token.

The STS Universal User module is called STSUUSTSModule.

This module is useful for testing other STS modules or for simple custom trust client applications. It
provides a simple means to directly call the trust service to issue more complex token types without
having to first pass in another token, and then perform a mapping operation.

The input STSUniversalUser token can contain the username, any extended attributes, and any attributes
required for issuing the SAML assertion, as generated by the caller of the trust service.

No mapping step is required.

Scenario

• Custom trust chains

Supported modes

• Validate
• Issue
• Exchange

Configuration properties
None.

Security Token Service Universal User document

In order to ensure that an incoming token can be converted properly into an outgoing token that contains
the content and format that is required by the partner, Security Verify Access creates an intermediate
document in a generic XML format that holds identity information. This document is called the STS
Universal User or STSUU. The STSUU document contains three sections:

132 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

• Principal information
• Group information
• Attribute information

To create the STSUU document, Security Verify Access uses an XML schema that specifies the structure.
The schema is defined in the file stsuuser.xsd. The following code sample contains the entire contents of
the secure token service universal user XML schema.

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="urn:ibm:names:ITFIM:1.0:stsuuser"
xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser"
elementFormDefault="qualified">

 <xsd:element name="STSUniversalUser">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Principal" type="stsuuser:PrincipalType"
 minOccurs="1" maxOccurs="1"/>
 <xsd:element name="GroupList" type="stsuuser:GroupListType"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="AttributeList" type="stsuuser:AttributeListType"
 minOccurs="0" maxOccurs="1"/>
 <xsd:element name="RequestSecurityToken"
type="stsuuser:RequestSecurityTokenType"
 minOccurs="0" maxOccurs="1"/>
 </xsd:sequence>
 <xsd:attribute name="version" type="xsd:string" use="required"/>
 </xsd:complexType>
 </xsd:element>

 <xsd:complexType name="PrincipalType">
 <xsd:sequence>
 <xsd:element name="Attribute" type="stsuuser:AttributeType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="RequestSecurityTokenType">
 <xsd:sequence>
 <xsd:element name="Attribute" type="stsuuser:AttributeType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="AttributeType">
 <xsd:sequence>
 <xsd:element name="Value" type="xsd:string"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"/>
 <xsd:attribute name="type" type="xsd:string" use="optional" />
 <xsd:attribute name="nickname" type="xsd:string" use="optional" />
 <xsd:attribute name="preferEncryption" type="xsd:boolean"
use="optional" />
 </xsd:complexType>

 <xsd:complexType name="AttributeListType">
 <xsd:sequence>
 <xsd:element name="Attribute" type="stsuuser:AttributeType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="GroupListType">
 <xsd:sequence>
 <xsd:element name="Group" type="stsuuser:GroupType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="GroupType">
 <xsd:sequence>
 <xsd:element name="Attribute" type="stsuuser:AttributeType"
 minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required" />
 <xsd:attribute name="type" type="xsd:string" use="optional" />

Chapter 6. Configuring STS modules 133

 </xsd:complexType>

</xsd:schema>

Although the schema is used as the base for all STSUU documents, the exact information contained in any
specific STSUU document is dependent on the token type for the security token that was used as input.
The information required in an STSUU document after transformation by identity mapping depends on:

• The token type to be generated.
• The specific mapping rule being used for the conversion.

During token processing for a typical single sign-on configuration, two STSUUs are created. One is an
input STSUU, which is created from the original input token. The other is an output STSUU, which is
created after the identity mapping rules are applied.

To view the Javadoc for the STSUU:

1. Log in to the local management interface.
2. Select System > File Downloads.
3. Expand federation > doc, and select ISAM-javadoc.zip.
4. Download and decompress the compressed file. View the API for
com.tivoli.am.fim.trustserver.sts.user.

Username token module
The Username token STS module validates and issues UsernameToken elements.

The Username token STS module is called UsernameTokenSTSModule. The STS handles a Username
token as both an incoming and outgoing token type.

There are three supported username and password validation methods from which to select.

Scenario

• Custom trust chains

Supported modes

• Validate
• Issue

Configuration properties (Validate mode)
Skip password validation

Do not perform password validation for the Username token. The default value is cleared.
User registry option

Select the type of user registry to use for validation.
Verify Access runtime

Validate the username and password according to the Verify Access runtime configuration.

Note: Complete the following steps before using this option:

1. Configure the runtime component. See Configure the runtime environment. During this
process, you must specify an Verify Access user registry as your primary LDAP server.

2. Configure a federated user registry.

Note: Client certificate authentication for federated directories is not supported for
UsernameTokenSTSModule.

See Managing federated directories.
3. Enable basic users. See Configuring the runtime to authenticate basic users.

134 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

LDAP bind DN
The username used to authenticate to the primary LDAP server. For example,
cn=SecurityMaster,secAuthority=Default.

LDAP bind Password
The password used to authenticate to the primary LDAP server. For example, admin.

SSL Enabled
Select to enable SSL.

Certificate Database
The name of the certificate database to use for the SSL connection. For example,
embedded_ldap_keys.kdb.

Verify Access user registry
Validate the username and password according to the configured Verify Access user registry.
This method requires an LDAP server that you must define by using the local management
interface. See Managing server connections.
Server Connection ID

The name of the server connection that holds the required LDAP settings to access the
Security Verify Access registry. This property is required if password validation is not
skipped.

Login Failures Persistent
Login failures are used with the three-strikes policy.

If this option is set to false, each process that uses this API stores the number of login
failures in memory. If multiple servers are involved, the total number of login failures to
trigger a strike-out might vary.

If this option is set to true, the strike count is stored in LDAP and shared across all
servers. Therefore, an accurate count is kept in a multi-server environment.

The default is false.

Management Domain
The management domain of Security Verify Access. The default is Default.

Maximum Server Connections
The maximum number of connections that are made to the Security Verify Access registry.

The default is 16.

Generic LDAP user registry
Validate the username and password according to the configured LDAP user registry. It does
not have to be an Verify Access user registry.
Server Connection ID

The name of the server connection that holds the required LDAP settings to access an
LDAP user registry. This property is required if password validation is not skipped.

Maximum Server Connections
The maximum number of connections that are made to the LDAP user registry.

The default is 16.

User ID attribute
An LDAP attribute that stores the username. For example, uid.

LDAP Base DN
An LDAP base DN to search. For example, o=ibm,c=us.

User search filter
An LDAP search filter. For example, ((objectClass=person)
(objectClass=ePerson)).

Chapter 6. Configuring STS modules 135

Enable the time validity check, based on created time and the amount of time permitted after the
issue

Specifies a required created time element on the Username token when checked. This property is
enabled by default. The software compares the value of the created time element against the
value that specifies the amount of time that the token is valid after it is issued.

Amount of time the token is valid after being issued
The amount of time a token is valid after it is issued. The default value is 300 seconds. A value of
-1 means that the token does not expire.

Configuration properties (Issue mode)
Include nonce in token

Includes a nonce (random bits used for obfuscating the element) in the token. When the password
option 4 is specified, this value has no effect.

Include token creation time in token
Adds a time stamp to the token, indicating the creation time of the token.

Options for including password in the token
Indicates whether to include the password in the token. When the password is included, you can
specify the format.
Do not include the password

Specifies that you do not want to include the password in the token.
Include the digest of the password value

Specifies that you want to include the password in the token as the digest of the password
value.

Include the password in clear text
Specifies that you want to include the password in the token as clear text.

PassTicket module
The PassTicket token STS module validates and issues Resource Access Control Facility (RACF®)
PassTicket tokens.

The PassTicket module is called PassTicketSTSModule. PassTicket tokens extend the structure of
Username tokens by adding a generated PassTicket.

Scenario

• Custom trust chains

Supported modes

• Validate
• Issue
• Exchange

Configuration properties for Validate mode
Amount of time the token remains valid (seconds)

An integer value that indicates the amount of time, in seconds, that the token remains valid.

Default value is 300.

The special value -1 means that the token does not expire.

Hexadecimal key used to validate a PassTicket token

A key value that consists of exactly 16 hexadecimal digits, which are used to validate a valid
PassTicket.

Note: Leave as ******** if you are editing the property, and the key does not need to be changed.

136 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

The name of the application used to generate the unique PassTicket

The name of the application that was used to generate the unique PassTicket. This property must
be an eight character user ID. The characters must be alphanumeric. For example, GS1SGRAM.

Dynamic application names are supported. You can override the configured application name by
supplying an application name in the SOAP request. When the module is in Validate mode, the
application name to be used is determined as follows:

1. If an application name is supplied in wst:Claims, use it.
2. If an application name is not supplied in wst:Claims, use the name that is configured in the

module.

Enable signature validation
Specifies whether to enable validation of signatures in the token module. Default is false.

Certificate database
Specifies the keystore that contains the key or certificate for validating the signatures in the
PassTicket token. Required only when Enable signature validation is selected.

Certificate label
Specifies the certificate in the specified keystore for validating the signatures in the PassTicket
token. Required only when Enable signature validation is selected.

Configuration properties for Issue mode and Exchange mode
Include a nonce in the PassTicket token

Specifies whether to include a nonce (random bits used for obfuscating the element) in the
PassTicket token.

Add creation timestamp in the PassTicket token
Specifies whether to add a time stamp to the PassTicket token, indicating the creation time of the
token.

Hexadecimal key used to generate a PassTicket token

A key value that consists of exactly 16 hexadecimal digits, which are used to generate a valid
PassTicket.

Note: Leave as ******** if you are editing the property, and the key does not need to be changed.

The name of the application used to generate the unique PassTicket

The name of the application that was used to generate the unique PassTicket. Must be an eight
character user ID. The characters must be alphanumeric. For example, GS1SGRAM.

Dynamic application names are supported. You can override the application name by supplying an
application name in the SOAP request. When the module is in Issue mode, the application name
to use is determined in the following order:

1. If an application name is supplied in ContextAttributes, use it.
2. If an application name is not supplied in ContextAttributes, but an application name is

supplied in wst:Claims, use the wst:Claims name.
3. If an application name is not supplied in either ContextAttributes or wst:Claims, use the

name that is configured in the module.

Enable signing of the PassTicket token
Specifies whether to enable the signing of the PassTicket token module.

Default is false.

Certificate database
Specifies the keystore that contains the key or certificate for signing the PassTicket token.
Required only when Enable signing of the PassTicket token is selected.

Certificate label
Specifies the certificate in the specified keystore for signing the PassTicket token. Required only
when Enable signing of the PassTicket token is selected.

Chapter 6. Configuring STS modules 137

JSON Web Token (JWT)
A JWT is a set of JSON claims that are signed, encrypted, or both, and are encoded into a web safe form.
This set of claims might or might not include some well-known claims that are defined by the RFC.

The methods of encrypting and signing and the support for key exchange and algorithms are defined in
RFCs 7515, 7516, 7517, and 7518. These RFCs cover signing, encryption, key sets, and algorithms. RFC
7519 covers JWT.

A JWT contains three Base64 encoded strings that are separated by dots (“.”).

For a signed JWT, these parts are:

• JWT Header - JSON
• JWT claims - JSON
• Signature - Binary data

All of these parts are Base64 URL encoded. An example JWT is shown in the following example:

eyJhbGciOiJIUzI1NiJ9.eyJhdWQiOiJ5b3UiLCJpc3MiOiJtZSIsInN1YiI6InRvZ
GF5IiwiZGF5IjoibW9uZGF5In0.6f14Ub6WuEuMMSa_6hkXfj5kpVAI9tkmP5vcbX1
qH3Y

This JWT is signed by using the algorithm HS256 and the shared key of “secret”.

You can use http://jwt.io to create and validate simple signed JWTs.

JWT support
IBM Security Verify Access supports JWT by using STS to expose a JWT module.

This module can be run in the following two modes:

Validate
Consume a JWT.

Issue
Create a JWT.

Both modes support signing, encryption, and some basic validation or population of claims.

Security Verify Access supports consuming a nested JWT using the header claim “cty”:”JWT”.
However, this support applies only when the JWT is both signed and encrypted, per RFC 7519 section
11.2.

The JWT module supports the following JSON Web Algorithms.

Table 84. Signing algorithms

Algorithm Uses symmetric
key

Uses certificates Required key size Suggested key
size

HS256 Yes No 256 bits

RS256 No Yes At least 2048 bits

ES256 No Yes 256 bits

HS384 Yes No 384 bits

RS384 No Yes At least 2048 bits

ES384 No Yes 384 bits

HS512 Yes No 512 bits

RS512 No Yes At least 2048 bits

138 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

http://jwt.io

Table 84. Signing algorithms (continued)

Algorithm Uses symmetric
key

Uses certificates Required key size Suggested key
size

ES512 No Yes 512 bits

PS256 No Yes 2048 bits

PS384 No Yes 2048 bits

PS512 No Yes 2048 bits

Note: A required key size indicates that an error occurs if this value is not supplied. A suggested key size
indicates the minimum value to achieve a reasonable level of security.

Table 85. Encryption key agreement

Algorithm Uses symmetric key Uses certificates Required key size

RSA1_5 No Yes At least 2048 bits

RSA-OAEP No Yes At least 2048 bits

RSA-OAEP-256 No Yes At least 2048 bits

A128KW Yes No 128 bits

A192KW Yes No 192 bits

A256KW Yes No 256 bits

A128GCMKW Yes No 128 bits

A192GCMKW Yes No 192 bits

A256GCMKW Yes No 256 bits

dir Yes No The key size that is
required by the
encryption algorithm
(one of 128, 192, or 256
bits)

ECDH-ES No Yes

ECDH-ES+A128KW No Yes

ECDH-ES+A192KW No Yes

ECDH-ES+A256KW No Yes

Note: A required key size indicates that an error occurs if this value is not supplied.

Table 86. Content encryption algorithms

Algorithm Uses symmetric key Required key size

A128GCM Yes 128 bits

A192GCM Yes 192 bits

A256GCM Yes 256 bits

A128-CBC-HS256 Yes 256 bits

A192-CBC-HS384 Yes 384 bits

Chapter 6. Configuring STS modules 139

Table 86. Content encryption algorithms (continued)

Algorithm Uses symmetric key Required key size

A256CBC-HS512 Yes 512 bits

Note:

• A required key size indicates that an error occurs if this value is not supplied.
• The Content Encryption Key (CEK) is generated in most cases. When the encryption key algorithm is

"dir", you must know the required key size of the CEK. Because the mode "dir" uses the provided key as
the CEK.

The size of each character in the "symmetricKey" field is 8 bits. For a 128-bit key, you need to provide a
16 character key.

The previously listed algorithms are from the JWA RFC(7518) https://tools.ietf.org/html/rfc7518.

Validate mode
In validate mode, the JWT Module consumes a binary security token, which has the attribute type
“urn:com:ibm:JWT”.

When the module consumes a JWT, the following operations are performed:

1. The keys are resolved.
2. The JWT is decrypted if it was encrypted.
3. The JWT signature is verified if it was signed. If the JWT was encrypted, this step is performed on the

payload of the decrypted JWT.
4. The claims are validated.
5. The STSUU is populated.

If the JWT is successfully decrypted and validated, then the STSUU attributes will contain the claims and
context attributes. The claims will have the attribute type urn:com:ibm:JWT:claim. The context
attributes will have one of the following values:

• urn:com:ibm:JWT:header
• urn:com:ibm:JWT:outer_header
• urn:com:ibm:JWT:signature

The following table shows the configuration properties.

Table 87. Configuration properties and usage in validate mode

Configuration property Description Can be provided via WS-Trust
claims

signing.alg The algorithm with which the
JWT is signed.

FALSE

signing.symmetricKey The symmetric key that is used to
perform signature validation.

TRUE

signing.db The keystore from which the
certificate is sourced.

TRUE

signing.cert The certificate label from which
the public keys are sourced.

TRUE

signing.jwksUri The JWKS URI from which the
public key is retrieved.

TRUE

140 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

https://tools.ietf.org/html/rfc7518

Table 87. Configuration properties and usage in validate mode (continued)

Configuration property Description Can be provided via WS-Trust
claims

encryption.alg The algorithm that is used by the
JWT for key management.

FALSE

encryption.enc The algorithm that is used by the
JWT for content encryption.

FALSE

encryption.symmetricKey The symmetric key that is used
for key management.

TRUE

encryption.db The keystore from which the
private key is sourced.

TRUE

encryption.cert The label of the certificate that
contains the private key to use
for decrypting the encryption key.

TRUE

iss The Java regular expression that
matches the "iss" (issuer) claim.
This value is optional.

FALSE

aud The Java regular expression that
matches the "aud" (audience)
claim. This value is optional.

FALSE

sub The Java regular expression that
matches the "sub" (subject)
claim. This value is optional.

FALSE

validateExp Whether the exp claim in the JWT
is checked. This check requires
that the "exp" (expiration time)
claim be set to a time in the
future.

FALSE

validateNbf Whether the "nbf" (not before)
claim in the JWT is checked. This
check requires that the nbf claim
be set to a time in the past.

FALSE

validateSkew The skew to offset time checks
with.

FALSE

When the module runs in validate mode, it converts the JWT into a populated STSUU. The following
examples show some sample input JWT and the corresponding output STSUU.

Input example

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:rst="http://docs.oasis-open.org/ws-sx/ws-trust/200512"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">

 <SOAP-ENV:Body>
 <!-- <rst:RequestSecurityTokenCollection>-->
 <rst:RequestSecurityToken>
 <wsp:AppliesTo>
 <wsa:EndpointReference>
 <wsa:Address>validate</wsa:Address>

Chapter 6. Configuring STS modules 141

 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wst:Issuer>
 <wsa:Address>validate</wsa:Address>
 </wst:Issuer>
 <wst:RequestType>http://schemas.xmlsoap.org/ws/2005/02
 /trust/Validate</wst:RequestType>
 <wst:Claims><signing.alg>HS256</signing.alg><signing.
 symmetricKey>superSecret</signing.symmetricKey></wst:Claims>
 <wst:Base>
 <wss:BinarySecurityToken xmlns:wss="http://docs.oasis-open.org
 /wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd" wss:
 EncodingType="http://ibm.com/2004/01/itfim/base64encode" wss:
 ValueType="urn:com:ibm:JWT">eyJhbGciOiJIUzI1NiJ9.eyJuYW1lIjoi
 am9obiIsInRpdGxlIjoiTXIiLCJleHAiOjE0NjA0MzkxNzN9.BNkZM38PygNYb
 PzGSsd1Za8HmgUkn0aT0ImaJmBmKtU</wss:BinarySecurityToken>

 </wst:Base>
 </rst:RequestSecurityToken>
 <!--</rst:RequestSecurityTokenCollection>-->
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Output example

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"/>
 <soap:Body>
 <wst:RequestSecurityTokenResponseCollection xmlns:wst="http://
 docs.oasis-open.org/ws-sx/ws-trust/200512">
 <wst:RequestSecurityTokenResponse xmlns:wsu="http://docs.oasis-open.org
 /wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 wsu:Id="uuid8f53fcc-0154-10f4-bfcd-ebb7b0604011">
 <wsp:AppliesTo xmlns:wsa="http://www.w3.org/2005/08/addressing" xmlns:
 wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsa:EndpointReference>
 <wsa:Address>validate</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wst:RequestedSecurityToken>
 <stsuuser:STSUniversalUser xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser">
 <stsuuser:Principal/>
 <stsuuser:AttributeList>
 <stsuuser:Attribute name="title" type="urn:com:ibm:JWT:claim">
 <stsuuser:Value>Mr</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="exp" type="urn:com:ibm:JWT:claim">
 <stsuuser:Value>1460439173</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="name" type="urn:com:ibm:JWT:claim">
 <stsuuser:Value>john</stsuuser:Value>
 </stsuuser:Attribute>
 </stsuuser:AttributeList>
 <stsuuser:RequestSecurityToken/>
 <stsuuser:ContextAttributes>
 <stsuuser:Attribute name="header" type="urn:com:ibm:JWT">
 <stsuuser:Value>{"alg":"HS256"}</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="signature" type="urn:com:ibm:JWT">
 <stsuuser:Value>BNkZM38PygNYbPzGSsd1Za8HmgUkn0aT0ImaJmBmKtU
 </stsuuser:Value>
 </stsuuser:Attribute>
 </stsuuser:ContextAttributes>
 <stsuuser:AdditionalAttributeStatement/>
 </stsuuser:STSUniversalUser>
 </wst:RequestedSecurityToken>
 <wst:RequestType>http://schemas.xmlsoap.org/ws/2005/02/trust/Validate
 </wst:RequestType>
 <wst:Status>
 <wst:Code>http://docs.oasis-open.org/ws-sx/ws-trust/200512/status
 /valid</wst:Code>
 </wst:Status>
 </wst:RequestSecurityTokenResponse>
 </wst:RequestSecurityTokenResponseCollection>
 </soap:Body>
</soap:Envelope>

142 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Issue mode
In issue mode, the JWT Module creates a binary security token, which has the attribute type
urn:com:ibm:JWT.

When the module creates a JWT, the following operations are performed:

1. The keys are resolved.
2. The claims are populated from the STSUU.
3. The static claims are populated, if they were configured and are not already set from the STSUU.
4. The JWT is signed if signing is set.
5. The JWT is encrypted. If it is signed, the signed JWT will be encrypted and the claim “cty”:”jwt”

will be added to the header.
6. The binary security token is issued.

The following table shows the configuration properties.

Table 88. Configuration properties and usage in issue mode

Configuration property Description Can be provided by STSUU
Context Attributes

signing.alg The algorithm with which the
JWT is signed.

TRUE

signing.symmetricKey The symmetric key that is used to
perform signature validation.

TRUE

signing.db The keystore from which the
certificate is sourced.

TRUE

signing.cert The certificate label from which
the public keys are sourced.

TRUE

signing.kid The Key ID that is used for
signing.

TRUE

encryption.jwksUri The JWKS URI that is used for
encryption.

TRUE

encryption.kid The Key ID that is used for
encryption.

TRUE

encryption.alg The algorithm that is used by the
JWT for key management.

TRUE

encryption.enc The algorithm that is used by the
JWT for content encryption.

TRUE

encryption.symmetricKey The symmetric key that is used
for key management.

TRUE

encryption.db The keystore from which the
private key is sourced.

TRUE

encryption.cert The label of the certificate that
contains the private key to use
for decrypting the encryption key.

TRUE

Chapter 6. Configuring STS modules 143

Table 88. Configuration properties and usage in issue mode (continued)

Configuration property Description Can be provided by STSUU
Context Attributes

includeIat A Boolean value that indicates
whether the "iat" (issued at)
claim is generated and included
in the JWT. This value does not
override an existing "iat" value if
it is already present.

FALSE

iss The static value with which the
"iss" (issuer) claim is populated.

FALSE

aud The static value with which the
"aud" (audience) claim is
populated.

FALSE

sub The static value with which the
"sub" (subject) claim is
populated.

FALSE

jti JWT ID, which is a unique
identifier for the JWT. A value of
0 disables the claim.

FALSE

exp Offset for the "exp" (expiration
time) claim. A value of 0 disables
the claim.

FALSE

nbf Offset for the "nbf" (not before)
claim. A value of -1 disables the
claim.

FALSE

When the module runs in issue mode, it converts the STSUU into a JWT. The following examples show
some sample input STSUU and the corresponding output JWT.

To add custom claims to a JWT header, add a custom context attribute with the type
"urn:ibm:JWT:header:claim". This type is not case sensitive.

A snippet of an example attribute in XML is shown as follows:

<stsuuser:ContextAttributes>...
 <stsuuser:Attribute name="typ" type="urn:ibm:JWT:header:claim">
 <stsuuser:Value>JWT</stsuuser:Value>
 </stsuuser:Attribute>...</stsuuser:ContextAttributes>

Note: The header value can be set in the custom mapping rules.

The user may add the zip header value into the STSUU, pass the STSUU to STSChain, and the JWT STS
module will set the header based on the STSUU. Then the JWE will be compressed during the encryption.
For example:

var req_stsuu = new STSUniversalUser();
 req_stsuu.addContextAttribute(new com.tivoli.am.fim.trustserver.sts.uuser.Attribute("zip",
"urn:ibm:JWT:header:claim", "DEF"));

 var base_element = req_stsuu.toXML().getDocumentElement();
 var rsp = LocalSTSClient.doRequest("<http://schemas.xmlsoap.org/ws/2005/02/trust/Issue",>
 requested_token_type,
 target,
 base_element,
 null);

144 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Input example

<?xml version="1.0"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:rst="http://docs.oasis-open.org/ws-sx/ws-trust/200512"
 xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 <SOAP-ENV:Body>
 <rst:RequestSecurityToken>
 <wsp:AppliesTo>
 <wsa:EndpointReference>
 <wsa:Address>issue</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wst:Issuer>
 <wsa:Address>issue</wsa:Address>
 </wst:Issuer>
 <wst:RequestType>http://schemas.xmlsoap.org/ws/2005/02/trust/Validate
 </wst:RequestType>
 <wst:Base>
 <stsuuser:STSUniversalUser xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser">
 <stsuuser:Principal/>
 <stsuuser:AttributeList>
 <stsuuser:Attribute name="name" type="urn:ibm:jwt:claim">
 <stsuuser:Value>john</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="title" type="urn:ibm:jwt:claim">
 <stsuuser:Value>Mr</stsuuser:Value>
 </stsuuser:Attribute>
 </stsuuser:AttributeList>
 <stsuuser:ContextAttributes>

 <!-- specify a HS256 JWT, with the key "superSecret" -->
 <stsuuser:Attribute name="signing.symmetricKey" type="">
 <stsuuser:Value>superSecret</stsuuser:Value>
 </stsuuser:Attribute>
 <stsuuser:Attribute name="signing.alg" type="">
 <stsuuser:Value>HS256</stsuuser:Value>
 </stsuuser:Attribute>
 </stsuuser:ContextAttributes>
 <stsuuser:AdditionalAttributeStatement id=""/>
 </stsuuser:STSUniversalUser>
 </wst:Base>

 </rst:RequestSecurityToken>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Output example

<?xml version="1.0"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"/>
 <soap:Body>
 <wst:RequestSecurityTokenResponseCollection xmlns:wst="http://
 docs.oasis-open.org/ws-sx/ws-trust/200512">
 <wst:RequestSecurityTokenResponse xmlns:wsu="http://docs.oasis-open.org/
 wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" wsu:Id=
 "uuid8f2887f-0154-1671-a234-ebb7b0604011">
 <wsp:AppliesTo xmlns:wsa="http://www.w3.org/2005/08/addressing" xmlns:
 wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsa:EndpointReference>
 <wsa:Address>issue</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wst:RequestedSecurityToken>
 <wss:BinarySecurityToken xmlns:wss="http://docs.oasis-open.org/wss
 /2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd" wss:EncodingType=
 "http://ibm.com/2004/01/itfim/base64encode" wss:ValueType="urn:com:ibm:JWT">
 eyJhbGciOiJIUzI1NiJ9.eyJuYW1lIjoiam9obiIsInRpdGxlIjoiTXIiLCJleHAiOjE0NjA0Mz
 kxNzN9.BNkZM38PygNYbPzGSsd1Za8HmgUkn0aT0ImaJmBmKtU</wss:BinarySecurityToken>
 </wst:RequestedSecurityToken>
 <wst:RequestType>http://schemas.xmlsoap.org/ws/2005/02/trust/Validate
 </wst:RequestType>
 <wst:Status>
 <wst:Code>http://docs.oasis-open.org/ws-sx/ws-trust/200512/status/valid
 </wst:Code>

Chapter 6. Configuring STS modules 145

 </wst:Status>
 </wst:RequestSecurityTokenResponse>
 </wst:RequestSecurityTokenResponseCollection>
 </soap:Body>
</soap:Envelope>

Pre populating the JWT JSON

In some instances, a more complex and custom JSON format for the JWT might be necessary. This can be
achieved by providing the context attribute “claim_json”. The value of this attribute will be parsed and
used when initializing the JSON that will be the claims for the JWT. Any attributes that are present will be
added to the JWT.

Attribute example:

<stsuuser:ContextAttributes>
...
 <stsuuser:Attribute name="claim_json" type="">
 <stsuuser:Value>
 {
 “customObjectAttribute” : {},
 “customBooleanAttribute” : true,
 “customIntegerAttribute” : 1
 }
 </stsuuser:Value>
 </stsuuser:Attribute>
...
</stsuuser:ContextAttributes>

Kerberos Module
The Kerberos module is called the KerberosSTSModule.

Validates Kerberos security tokens with a token type of http://docs.oasis-open.org/wss/oasis-
wss-kerberos-token-profile-1.1#GSS_Kerberosv5_AP_REQ.

Supported mode
Validate

Configuration properties
Validate mode
Kerberos keytab file

Specify one of the available imported Kerberos service keytab file for the Kerberos service
identified by the Kerberos security token. Follow the steps below to import a keytab file:

1. From the top menu, select Federation > Global Keys > Kerberos Keytab file.
2. Click Import to upload a keytab file.

This field is required.

Service principal name for the Kerberos
Specify the principal name of the Kerberos service in the form of <service name>/<fully
qualified hostname>@<realmname>. For example, HTTP/WIN-
JCCFTF7M7EI.kerb.com@KERB.COM.

This field is required.

Note: If you want to overwrite the default Kerberos configuration information, navigate to Web >
Kerberos Configuration > Defaults.

146 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Kerberos Keytab File
Use the Keyfiles tab on the Kerberos Configuration management page in the LMI to manage these
settings.

About this task
The Keyfiles tab contains settings for the keytab files that are used for Kerberos authentication. You can
import, combine, and delete keytab files. You can also test authentication with a Kerberos principal name
and keytab file.

Procedure
1. From the top menu, select Federation > Global Keys > Kerberos Keytab File.

The current Kerberos configuration is displayed.
2. On the Keyfiles tab, take actions as needed.

• Import a keytab file

a. Click Import.
b. In the Import Keytab File window, click Browse.
c. Select the keytab file to be imported and then click Open.
d. Click Import.

• Delete a keytab file

a. Select the file to delete from the table.
b. Click Delete.
c. In the Confirm Action window, click Yes.

• Combine keytab files

a. Select the keytab files to be combined from the table.
b. Click Combine.
c. In the Combine Keytab Files window, enter the name for the combined file in the New

Resource Name field.
d. Click Save.

• Verify authentication with a keytab file

a. Select the keytab file to test from the table.
b. Click Test.
c. In the Test Keytab Authentication window, provide the value of the Kerberos principal in the

Username field.
d. Click Test.

X.509 module
The X.509 module is called X509STSModule.

Validates X.509 security tokens with a token type of:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-
 wss-x509-token-profile-1.0#X509
http://docs.oasis-open.org/wss/2004/01/oasis-200401-
 wss-x509-token-profile-1.0#X509v3
http://docs.oasis-open.org/wss/2004/01/oasis-200401-
 wss-x509-token-profile-1.0#X509PKIPathv1

The module uses the IBM Security Verify Access KESS to validate the X.509 certificate path.

Chapter 6. Configuring STS modules 147

Deployment scenarios for this module type

• Custom trust chains

Supported modes

• Validate

Configuration properties
Enable X.509 certificate validation

Specifies whether validation of X.509 certificates must be enforced. By default, this check box is
selected. When this box is cleared, the certificate is not validated. This option can be used in
deployments where the certificate has already been validated by another entity.

X.509 default value type
If an X.509 BinarySecurityToken does not have the ValueType attribute specified, this
configuration value is used as the default ValueType.

Include Subject DN
If enabled, the X.509 Subject Distinguished Name is added to the STSUniversalUser
AttributeList.

Include Issuer DN
If enabled, the X.509 Issuer distinguished name is added to the STSUniversalUser
AttributeList.

Include Not Before
If enabled, the X.509 NotBefore date is added to the STSUniversalUser AttributeList.
This date indicates the earliest date from which the X.509 is valid.

Include Not After
If enabled, the X.509 NotAfter date is added to the STSUniversalUser AttributeList. This
date indicates the latest date for which the X.509 is valid.

Include Serial Number
If enabled, the X.509 serial number is added to the STSUniversalUser AttributeList.

Include Type
If enabled, the X.509 type is added to the STSUniversalUser AttributeList.

Include Version
If enabled, the X.509 version is added to the STSUniversalUser AttributeList.

Include Basic Constraints
If enabled, the X.509 Basic Constraints are added to the STSUniversalUser AttributeList.

Please enter a list of Object Identifiers to read from the certificate
Use this text area to add custom Object Identifiers to the STSUniversalUser AttributeList.
Put each unique OID on a new line in the text area. Each value is a hexadecimal representation of
the octet string.

Token module properties
Configure token modules so that it contains the appropriate values for your environment.

Attribute Mapping module properties
You can define Attribute Mapping module self or partner properties.

Table 89. Attribute Mapping module properties

Appliance property Self or Partner Mode Description

attribute.mappings PARTNER, SELF Map Attribute Mapping in the format:
attributeName_attributeSou
rceID.

148 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Default Mapping module properties
You can define Default Mapping module self or partner properties.

Table 90. Default Mapping module properties

Appliance property Self or Partner Mode Description

map.rule.reference.ids PARTNER, SELF Map Specifies the ID of the JavaScript
file containing the identity mapping
rule.

HTTP Callout module properties
You can define HTTP Callout module self or partner properties.

Table 91. HTTP Callout module properties

Appliance property Self or Partner Mode Description

uri PARTNER, SELF Map Specifies the endpoint address of
the web service.

authType PARTNER, SELF Map Specifies the client authentication
type:
NONE

Specifies no authentication.
CERTIFICATE

Specifies client certificate
authentication. If selected, set
the following client keystore
parameters:

• clientKeyStore
• clientKeyAlias

BASIC
Specifies basic authentication.
If selected, set the basic
authentication username and
password parameters:

• basicAuthUsername
• basicAuthPassword

sslKeyStore PARTNER, SELF Map Specifies the server certificate
information. If the uri parameter is
an HTTPS endpoint, then set this
parameter to point to the truststore
that contains the HTTPS certificate
of the endpoint.

clientKeyStore PARTNER, SELF Map Defines the name of the client
certificate store. It is required if the
authType parameter is set to
CERTFICATE.

clientKeyAlias PARTNER, SELF Map Defines the alias of the client
certificate. It is required if the
authType parameter is set to
CERTFICATE.

Chapter 6. Configuring STS modules 149

Table 91. HTTP Callout module properties (continued)

Appliance property Self or Partner Mode Description

basicAuthUsername PARTNER, SELF Map Defines the basic authentication
username. It is required if the
authType parameter is set to
BASIC.

basicAuthPassword PARTNER, SELF Map Defines the plain text basic
authentication password. It is
required if the authType
parameter is set to BASIC.

messageFormat PARTNER, SELF Map Defines the message format.
Supports XML or WSTrust as
values.

appliesTo PARTNER, SELF Map If the messageFormat parameter
is set to WSTrust, then set this
parameter to the WSTrust applies-
to address. This value is typically
formatted as a URL.

issuerUri PARTNER, SELF Map If the messageFormat parameter
is set to WSTrust, then set this
parameter to the WSTrust issuer
address. This value is typically
formatted as a URL.

IVCred module properties
You can define Security Verify Access IVCred token module self or partner properties.

Table 92. IVCred module properties

Appliance Property Self or Partner Mode Description

ivcred.attribute.types SELF Issue Specifies the attribute type to
include in the assertion.

Enter one attribute type, or use an
asterisk (*) for all types.

The default is an asterisk (*).

This property is required.

ivcred.sign.keystore.alias
.db

SELF Issue Specifies the name of the keystore
for the signing key. For example,
use DefaultKeyStore.

This property is required if
ivcred.add.signatures=true
.

ivcred.sign.keystore.alias
.cert

SELF Issue Specifies the name of the signing
key. For example, use testkey.

This property is required if
ivcred.add.signatures=true
.

150 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 92. IVCred module properties (continued)

Appliance Property Self or Partner Mode Description

ivcred.add.signatures SELF Issue Specifies that signatures must be
added to tokens.

Set to true to add signatures to
tokens.

Set to false to exclude signatures
in tokens.

This property is optional.

ivcred.signing.
IncludeX509SubjectKeyIdent
ifier

SELF Issue Specifies whether to include this
attribute.

Set to true to include the X509
Subject Key Identifier of the signing
certificate.

Set to false to exclude the X509
Subject Key Identifier. This is the
default.

Required if
ivcred.add.signatures=true.

ivcred.signing.IncludePubl
icKey

SELF Issue Specifies whether to include the
KeyInfo element, Public Key.

Set to true to include the Public
Key.

Set to false to exclude the Public
Key. This is the default.

Required if
ivcred.add.signatures=true.

ivcred.signing.
IncludeX509IssuerDetails

SELF Issue Specifies whether to include the
Key Info element, X509 Issuer
Details.

Set to true to include the X509
Issuer Details.

Set to false to exclude the X509
Issuer Details. This is the default.

Required if
ivcred.add.signatures=true.

ivcred.IncludeX509SubjectN
ame

SELF Issue Specifies whether to include the
Key Info element, X509 Subject
Name.

Set to true to include the X509
Subject Name.

Set to false to exclude the X509
Subject Name. This is the default.

Required if
ivcred.add.signatures=true.

Chapter 6. Configuring STS modules 151

Table 92. IVCred module properties (continued)

Appliance Property Self or Partner Mode Description

ivcred.IncludeX509Certific
ateData

SELF Issue Specifies whether to include the
Key Info element, X509 Certificate
Data.

Set to true to include the X509
Certificate Data.

Set to false to exclude the X509
Certificate Data. This is the default.

Required if
ivcred.add.signatures=true.

ivcred.validate.keystore.a
lias.db

PARTNER Validate Specifies the name of the keystore
for the key identifier. For example,
use DefaultKeyStore.

Required if
ivcred.verify.signatures=t
rue.

ivcred.validate.keystore.a
lias.cert

PARTNER Validate Specifies the name of the validation
key identifier. For example, use
testkey.

Required if
ivcred.verify.signatures=t
rue.

ivcred.verify.signatures PARTNER Validate Specifies whether the signatures
are verified.

Set to true to verify signatures.

Set to false for no signature
verification. The default is false.

This property is optional.

LTPA module properties
You can define LTPA token module self or partner properties.

Table 93. LTPA module properties

Appliance property Self or Partner Mode Description

ltpa.self.filename SELF Issue Specifies the LTPA file to use.

This property is required.

ltpa.self.password SELF Issue Specifies the password that was
used to protect the keys. It must be
the same password that was used
when the keys were created.

This property is required.

152 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 93. LTPA module properties (continued)

Appliance property Self or Partner Mode Description

ltpa.self.expiration SELF Issue Specifies the expiration, in minutes,
set on created tokens.

The default is 120.

ltpa.self.extattr SELF Issue Specifies the attribute type to add
to a version 2 token.

Enter one attribute type, or use an
asterisk (*) for all types.

ltpa.self.realm SELF Issue Specifies the realm used to create
the user name in the token.

ltpa.self.usefips SELF Issue Specifies whether FIPS mode
should be used for incoming
tokens. The default is false.

ltpa.self.version SELF Issue Specifies the version of token to be
created. This property is required.

ltpa.partner.filename PARTNER Validate Specifies the name of the
previously imported LTPA file.

This property is optional.

ltpa.partner.password PARTNER Validate Specifies the password that was
used to protect the keys created by
the partner. It must be the same
password that was used when the
keys were created by the partner.

This property is optional.

ltpa.partner.usefips PARTNER Validate Specifies whether FIPS mode
should be used for incoming
tokens.

Chapter 6. Configuring STS modules 153

SAML 2.0 module properties
You can define SAML 2.0 token module self or partner properties.

Table 94. SAML 2.0 module properties

Appliance property Self or Partner Mode Description

com.tivoli.am.fim.sts.saml
.2.0.
assertion.replay.validatio
n

SELF Validate Specifies whether to enable one-
time assertion use enforcement.

Set to true to enable one-time use
enforcement.

Set to false if you do not want to
enforce one-time assertion use.

Note: If the assertion to be
validated has
<saml:OneTimeUse></
saml:OneTimeUse> in the
assertion conditions, then the one-
time assertion use is enforced even
though the property is disabled.

com.tivoli.am.fim.sts.saml
.2.0.
assertion.verify.signature
s

PARTNER Validate Specifies whether to enable
signature validation.

Set to true to enable validation.

Set to false if you do not want
validation enabled.

com.tivoli.am.fim.sts.saml
.2.0.
assertion.signature.use.ke
yinfo

PARTNER Validate Specifies whether to use the
KeyInfo of the XML signature to
find the X509 certificate for
signature validation.

Set to true to use this method.
Then, define the
com.tivoli.am.fim.sts.saml
.2.0.ValidateKeyIdentifier
property.

Set to false, otherwise.

com.tivoli.am.fim.sts.saml
.2.0.
assertion.keystore.alias

PARTNER Validate Specifies whether to use the
keystore alias to find the public key
for signature validation.

Set to true to use this method.
Then, define the
com.tivoli.am.fim.sts.saml
.2.0.ValidateKeyIdentifier
.db and
com.tivoli.am.fim.sts.saml
.2.0.ValidateKeyIdentifier
.cert properties.

Set to false, otherwise.

154 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 94. SAML 2.0 module properties (continued)

Appliance property Self or Partner Mode Description

com.tivoli.am.fim.sts.saml
.2.0.
ValidateKeyIdentifier

PARTNER Validate Specifies a regular expression to
validate the subject distinguished
name returned in the KeyInfo, if
com.tivoli.am.fim.sts.saml
.2.0.
assertion.signature.use.ke
yinfo is set to true.

You can either specify this property
or specify both of the following
properties:

• com.tivoli.am.fim.sts.sam
l.2.0.
ValidateKeyIdentifier.db

• com.tivoli.am.fim.sts.sam
l.2.0.
ValidateKeyIdentifier.cer
t

If you specify all of these
properties, the keystore alias
format overwrites the
com.tivoli.am.fim.sts.saml
.2.0.
ValidateKeyIdentifier
property.

com.tivoli.am.fim.sts.saml
.2.0.
ValidateKeyIdentifier.db

PARTNER Validate Specifies the name of the
certificate database to use for
validation, if
com.tivoli.am.fim.sts.saml
.2.0.assertion.
keystore.alias is set to true.

com.tivoli.am.fim.sts.saml
.2.0.
ValidateKeyIdentifier.cert

PARTNER Validate Specifies the name of the
certificate label for validation, if
com.tivoli.am.fim.sts.saml
.2.0.assertion.keystore.al
ias is set to true.

com.tivoli.am.fim.sts.saml
.2.0.
DecryptionKeyIdentifier.db

PARTNER Validation Specifies the name of the keystore
for the decryption key. For example,
use DefaultKeyStore.

com.tivoli.am.fim.sts.saml
.2.0.
DecryptionKeyIdentifier.ce
rt

PARTNER Validation Specifies the name of decryption
key. For example, use testkey.

Chapter 6. Configuring STS modules 155

Table 94. SAML 2.0 module properties (continued)

Appliance property Self or Partner Mode Description

com.tivoli.am.fim.sts.saml
.2.0.
WantMultipleAttributeState
ments

PARTNER Validate Specifies whether to create
multiple attribute statements in the
Universal User.

If you specify false, multiple
attribute statements are arranged
into a single group (AttributeList) in
the
STSUniversalUserdocument.
This setting is appropriate for most
configurations.

com.tivoli.am.fim.sts.saml
.2.0.
map.unknown.alias

PARTNER Validate Specifies whether to map unknown
name identifiers to the anonymous
username.

com.tivoli.am.fim.sts.saml
.2.0.

assertion.default.nameidfo
rmat

PARTNER Validate Specifies the default NameID
format for assertion validation.
Specify a parameter for use during
validation of a SAML assertion. The
parameter determines processing
rules for the NameID element when
one of the following conditions
exists:

• If there is not an explicit Format
attribute included in the
assertion.

• If the Format attribute is:
urn:oasis:names:tc:SAML:1
.1: nameid-
format:unspecified.

Typically, this parameter is needed
only for STS chains that process
SAML assertions that do not set the
Format attribute. A normal example
value
is :urn:oasis:names:tc:SAML:
1.1: nameid-
format:emailAddress

com.tivoli.am.fim.sts.saml
.2.0.
 assertion.issuer

SELF Issue, Exchange Specifies the name of the
organization that issues assertions.
This is required.

com.tivoli.am.fim.sts.saml
.2.0.
assertion.pretime.valid

SELF Issue, Exchange Specifies the number of seconds
that assertions are valid before its
issue date. There is no minimum or
maximum value enforced, but a
value is required.

Default: 60

156 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 94. SAML 2.0 module properties (continued)

Appliance property Self or Partner Mode Description

com.tivoli.am.fim.sts.saml
.2.0.

assertion.posttime.valid

SELF Issue, Exchange Specifies the number of seconds
that assertions are valid after its
issue date. There is no minimum or
maximum value enforced, but a
value is required.

Default: 60

com.tivoli.am.fim.sts.saml
.2.0.assertion.signature.u
se.inclusive.namespaces

PARTNER Issue, Exchange Specifies whether to use the
InclusiveNamespaces construct.
This means using exclusive XML
canonicalization for greater
standardization. You must set this
parameter without a prefix.

Set to true or false.

If unset, the system behaves as if it
was set to true.

com.tivoli.am.fim.sts.saml
.2.0.

assertion.attribute.types

PARTNER Issue, Exchange Specifies the types of attributes to
include in the assertion.

The default, an asterisk (*),
includes all the attribute types that
are specified in the identity
mapping file.

To specify one or more attribute
types individually, enter each
attribute type.

Separate multiple type values using
&&.

com.tivoli.am.fim.sts.saml
.2.0.
assertion.sign

PARTNER Issue, Exchange Specifies whether SAML assertions
must be signed.

Set to true to sign assertions.

Set to false if signing is not
required.

com.tivoli.am.fim.sts.saml
.2.0.
SigningKeyIdentifier.db

PARTNER Issue, Exchange Specifies the name of the keystore
where the signing key is stored. For
example, use DefaultKeyStore.

com.tivoli.am.fim.sts.saml
.2.0.
signingKeyIdentifier.cert

PARTNER Issue, Exchange Specifies the name of the signing
key identifier. For example, use
testkey.

Chapter 6. Configuring STS modules 157

Table 94. SAML 2.0 module properties (continued)

Appliance property Self or Partner Mode Description

com.tivoli.am.fim.sts.saml
.2.0.

assertion.signature.includ
e.
subject.keyid

PARTNER Issue, Exchange Specifies whether to include the
subject key identifier with your
signature.

Set to true to include the subject
key identifier.

Set to false to exclude the subject
key identifier.

com.tivoli.am.fim.sts.saml
.2.0.

assertion.signature.includ
e.
public.key

PARTNER Issue, Exchange Specifies whether to include the
public key with your signature.

Set to Yes to include the public key.

Set to No to exclude the public key.

com.tivoli.am.fim.sts.saml
.2.0.

assertion.signature.includ
e.
issuer.details

PARTNER Issue, Exchange Specifies whether to include the
issuer details with your signature.

Set to Yes to include the issuer
details.

Set to No to exclude the issuer
details.

com.tivoli.am.fim.sts.saml
.2.0.

assertion.signature.includ
e.
subject.name

PARTNER Issue, Exchange Specifies whether to include the
subject name with your signature.

Set to Yes to include the subject
name.

Set to No to exclude the subject
name.

com.tivoli.am.fim.sts.saml
.2.0.

assertion.signature.includ
e.
cert.data

PARTNER Issue, Exchange Specifies whether to include the
certificate data with your signature.

Set to Yes to include the certificate
data.

Set to No to exclude the certificate
data.

If none of the
assertion.signature.includ
e.* properties are set, the system
behaves as if
com.tivoli.am.fim.sts.saml
.2.0.assertion.signature.i
nclude.cert.data is set to true.

158 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 94. SAML 2.0 module properties (continued)

Appliance property Self or Partner Mode Description

com.tivoli.am.fim.sts.saml
.2.0.
 SignatureAlgorithm

PARTNER Issue, Exchange Specifies the signature algorithm to
use for signing assertions. Valid
values:

• RSA-SHA1, set to http://w
ww.w3.org/2000/09/
xmldsig#rsa-sha1

• DSA-SHA1, set to http://w
ww.w3.org/2000/09/
xmldsig#dsa-sha1

• RSA-SHA256, set to http://
www.w3.org/2001/04/
xmldsig-more#rsa-sha256

com.tivoli.am.fim.sts.saml
.2.0.
DigestAlgorithm

PARTNER Issue, Exchange Specifies the digest algorithm used
to sign SAML messages. Valid
values:

• SHA1, set to http://
www.w3.org/2000/09/
xmldsig#sha1

• SHA256, set to http://
www.w3.org/2001/04/
xmlenc#sha256

• SHA512, set to http://
www.w3.org/2001/04/
xmlenc#sha512

com.tivoli.am.fim.sts.saml
.2.0.
EncryptAssertions

PARTNER Issue, Exchange Specifies whether assertions are to
be encrypted.

Set to true to encrypt.

Set to false, if no encryption is
required.

.

com.tivoli.am.fim.sts.saml
.2.0.
EncryptionKeyIdentifier.db

PARTNER Issue, Exchange Specifies the name of the keystore
where the encryption key is stored.
For example, use
DefaultKeyStore.

com.tivoli.am.fim.sts.saml
.2.0.
EncryptionKeyIdentifier.ce
rt

PARTNER Issue, Exchange Specifies the name of the
encryption key. For example, use
testkey.

com.tivoli.am.fim.sts.saml
.2.0.
EncryptAllAttributes

PARTNER Issue, Exchange Specifies whether all Attribute
elements within the assertions are
to be encrypted.

Set to true to encrypt.

Set to false if no encryption is
required.

Chapter 6. Configuring STS modules 159

Table 94. SAML 2.0 module properties (continued)

Appliance property Self or Partner Mode Description

com.tivoli.am.fim.sts.saml
.2.0.
EncryptNameIdentifiers

PARTNER Issue, Exchange Specifies whether NameID
elements in the assertions are to be
encrypted.

Set to true to encrypt.

Set to false if no encryption is
required.

com.tivoli.am.fim.sts.saml
.2.0.
BlockEncryptionAlgorithm

PARTNER Issue, Exchange Specifies the block encryption
algorithm.

• TRIPLEDES, set to http://
www.w3.org/2001/04/
xmlenc#tripledes-cbc

• AES-128, set to http://
www.w3.org/2001/04/
xmlenc#aes128-cbc

• AES-192, set to http://
www.w3.org/2001/04/
xmlenc#aes192-cbc

• AES-256, set to http://
www.w3.org/2001/04/
xmlenc#aes256-cbc

com.tivoli.am.fim.sts.saml
.2.0.
EncryptionKeyTransportAlgo
rithm

PARTNER Issue, Exchange Specifies the key transport
algorithm used to encrypt SAML
messages. Valid values are:

• RSA-v1.5, set to http://
www.w3.org/2001/04/
xmlenc#rsa-1_5

• RSA-OAEP, set to http://
www.w3.org/2001/04/
xmlenc#rsa-oaep-mgf1p

com.tivoli.am.fim.sts.saml
.2.0.
assertion.SubjectConfirmat
ionMethod

PARTNER Issue, Exchange Specifies the subject confirmation
method. Valid values:

• urn:oasis:names:tc:SAML:2
.0:cm:bearer

• urn:oasis:names:tc:SAML:2
.0:cm:holder-of-key

• urn:oasis:names:tc:SAML:2
.0:cm:sender-vouches

160 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

SAML 1.1 module properties
You can define SAML 1.1 token module self or partner properties.

Table 95. SAML 1.1 module properties

Appliance property Self or Partner Mode Description

com.tivoli.am.fim.sts.saml
.1.1.
assertion.replay.validatio
n

SELF Validate Specifies whether to enable one-
time assertion use enforcement.

Set to true to enable one-time use
enforcement.

Set to false if you do not want to
enforce one-time assertion use.

com.tivoli.am.fim.sts.saml
.1.1.
assertion.verify.signature
s

PARTNER Validate Specifies whether to enable
signature validation.

Set to true to enable validation.

Set to false if you do not want
validation enabled.

com.tivoli.am.fim.sts.saml
.1.1.
assertion.signature.use.ke
yinfo

PARTNER Validate Specifies whether to use the
KeyInfo of the XML signature to
find the X.509 certificate for
signature validation.

Set to true to use this method.
Then, define the
com.tivoli.am.fim.sts.saml
.1.1.
ValidateKeyIdentifier.keyi
nfo property.

Set to false, otherwise.

Chapter 6. Configuring STS modules 161

Table 95. SAML 1.1 module properties (continued)

Appliance property Self or Partner Mode Description

com.tivoli.am.fim.sts.saml
.1.1.
ValidateKeyIdentifier.keyi
nfo

PARTNER Validate Specifies a regular expression to
validate the subject distinguished
name returned in the KeyInfo, if
com.tivoli.am.fim.sts.saml
.1.1.
assertion.signature.use.ke
yinfois set to true.

You can either specify this property
or specify both of the following
properties:

• com.tivoli.am.fim.sts.sam
l.1.1.
ValidateKeyIdentifier.db

• com.tivoli.am.fim.sts.sam
l.1.1.
ValidateKeyIdentifier.cer
t

If you specify all of these
properties, the keystore alias
format overwrites the
com.tivoli.am.fim.sts.saml
.1.1.
ValidateKeyIdentifier.keyi
nfo property.

com.tivoli.am.fim.sts.saml
.1.1.
ValidateKeyIdentifier.db

PARTNER Validate Specifies the name of the
certificate database to use for
validation, if
com.tivoli.am.fim.sts.saml
.1.1.
assertion.keystore.alias is
set to true.

com.tivoli.am.fim.sts.saml
.1.1.
ValidateKeyIdentifier.cert

PARTNER Validate Specifies the name of the
certificate label for validation, if
com.tivoli.am.fim.sts.saml
.1.1.
assertion.keystore.alias is
set to true.

com.tivoli.am.fim.sts.saml
.1.1.
WantMultipleAttributeState
ments

PARTNER Validate Specifies whether to create
multiple attribute statements in the
Universal User.

If you specify false, multiple
attribute statements are arranged
into a single group (AttributeList) in
the
STSUniversalUserdocument.
This setting is appropriate for most
configurations.

162 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 95. SAML 1.1 module properties (continued)

Appliance property Self or Partner Mode Description

com.tivoli.am.fim.sts.saml
.1.1.
assertion.issuer

SELF Issue, Exchange Specifies the name of the
organization that issues assertions.
This is required.

com.tivoli.am.fim.sts.saml
.1.1.
assertion.pretime.valid

SELF Issue, Exchange Specifies the number of seconds
that assertions are valid before its
issue date. There is no minimum or
maximum value enforced, but a
value is required.

Default: 60

com.tivoli.am.fim.sts.saml
.1.1.

assertion.posttime.valid

SELF Issue, Exchange Specifies the number of seconds
that assertions are valid after its
issue date. There is no minimum or
maximum value enforced, but a
value is required.

Default: 60

com.tivoli.am.fim.sts.saml
.1.1.
assertion.signature.use.
inclusive.namespaces

PARTNER Issue, Exchange Specifies whether to use the
InclusiveNamespaces construct.
This means using exclusive XML
canonicalization for greater
standardization. You must set this
parameter without a prefix.

Set to true or false.

If unset, the system behaves as if it
was set to true.

com.tivoli.am.fim.sts.saml
.1.1.

assertion.attribute.types

PARTNER Issue, Exchange Specifies the types of attributes to
include in the assertion.

The default, an asterisk (*),
includes all the attribute types that
are specified in the identity
mapping file.

To specify one or more attribute
types individually, enter each
attribute type.

Separate multiple type values using
&&.

com.tivoli.am.fim.sts.saml
.1.1.
assertion.sign

PARTNER Issue, Exchange Specifies whether SAML assertions
must be signed.

Set to true to sign assertions.

Set to false if signing is not
required.

com.tivoli.am.fim.sts.saml
.1.1.
SigningKeyIdentifier.db

PARTNER Issue, Exchange Specifies the name of the keystore
where the signing key is stored. For
example, use DefaultKeyStore.

Chapter 6. Configuring STS modules 163

Table 95. SAML 1.1 module properties (continued)

Appliance property Self or Partner Mode Description

com.tivoli.am.fim.sts.saml
.1.1.
signingKeyIdentifier.cert

PARTNER Issue, Exchange Specifies the name of the signing
key identifier. For example, use
testkey.

com.tivoli.am.fim.sts.saml
.1.1.
assertion.signature.includ
e.
subject.keyid

PARTNER Issue, Exchange Specifies whether to include the
subject key identifier with your
signature.

Set to true to include the subject
key identifier.

Set to false to exclude the subject
key identifier.

com.tivoli.am.fim.sts.saml
.1.1.
assertion.signature.includ
e.
public.key

PARTNER Issue, Exchange Specifies whether to include the
public key with your signature.

Set to Yes to include the public key.

Set to No to exclude the public key.

com.tivoli.am.fim.sts.saml
.1.1.
assertion.signature.includ
e.
issuer.details

PARTNER Issue, Exchange Specifies whether to include the
issuer details with your signature.

Set to Yes to include the issuer
details.

Set to No to exclude the issuer
details.

com.tivoli.am.fim.sts.saml
.1.1.
assertion.signature.includ
e.
subject.name

PARTNER Issue, Exchange Specifies whether to include the
subject name with your signature.

Set to Yes to include the subject
name.

Set to No to exclude the subject
name.

com.tivoli.am.fim.sts.saml
.1.1.
assertion.signature.includ
e.
cert.data

PARTNER Issue, Exchange Specifies whether to include the
certificate data with your signature.

Set to Yes to include the certificate
data.

Set to No to exclude the certificate
data.

If none of the
assertion.signature.includ
e.* properties are set, the system
behaves as if
com.tivoli.am.fim.sts.saml
.1.1.
assertion.signature.includ
e.cert.data is set to true.

164 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 95. SAML 1.1 module properties (continued)

Appliance property Self or Partner Mode Description

com.tivoli.am.fim.sts.saml
.1.1.
SignatureAlgorithm

PARTNER Issue, Exchange Specifies the signature algorithm to
use for signing assertions. Valid
values:

• RSA-SHA1, set to http://w
ww.w3.org/2000/09/
xmldsig#rsa-sha1

• RSA-SHA256, set to http://
www.w3.org/2001/04/
xmldsig-more#rsa-sha256

• RSA-SHA512, set to http://
www.w3.org/2001/04/
xmldsig-more#rsa-sha512

com.tivoli.am.fim.sts.saml
.1.1.
assertion.SubjectConfirmat
ionMethod

PARTNER Issue, Exchange Specifies the subject confirmation
method. Valid values:

• No Subject Confirmation
Method

• urn:oasis:names:tc:SAML:1
.1:cm:bearer

• urn:oasis:names:tc:SAML:1
.1:cm:holder-of-key

• urn:oasis:names:tc:SAML:1
.1:cm:sender-vouches

Username module properties
You can define Username module self or partner properties.

Table 96. Username module properties

Appliance property Self or Partner Mode Description

username.password.options PARTNER, SELF Issue Specifies the option for including
the password in the token:
2

Include the digest of the
password value

3
Include the password in clear
text

4
Do not include the password

Default value is 4.

Chapter 6. Configuring STS modules 165

Table 96. Username module properties (continued)

Appliance property Self or Partner Mode Description

username.add.nonce SELF Issue Specifies whether to include the
nonce (random bits used for
obfuscating the element) in the
token. The default is true.

Set to true to include a nonce in
the token.

Set to false to exclude the nonce.

When you specify to issue no
password, this value is ineffective.

username.add.timestamp SELF Issue Specifies whether to include
creation time, or timestamp, in the
token. The default is true.

Set to true to add the timestamp.

Set to false to exclude the
timestamp.

username.password.validato
r

SELF Validate Specifies the user registry option to
use. Valid values are:

• ISAMRTE, for the Verify Access
runtime option

• TAMRD, for the Verify Access user
registry option

• LDAP, for the non-Verify Access
user registry option

username.skip.password.val
idation

SELF Validate Specifies whether to disable
password validation. The default is
false.

Set to true to skip validation.

Set to false to enable validation.

username.server.connection
.id

SELF Validate If TAMRD is specified for
username.password.validato
r, specify the server connection ID.
This is the name of the previously
configured server connection which
holds the settings for the Verify
Access LDAP registry.

This property is required if
password validation is not skipped.

username.tamrd.management.
domain

SELF Validate If TAMRD is specified for
username.password.validato
r, specify the Verify Access
management domain. The default
is Default.

166 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 96. Username module properties (continued)

Appliance property Self or Partner Mode Description

username.tamrd.login.failu
res.persistent

SELF Validate If TAMRD is specified for
username.password.validato
r, specify if log in failures are
persistent. The default is false.

Set to true to persist the failures.

Set to false to not persist.

username.tamrd.maximum.ser
ver.connections

SELF Validate If TAMRD is specified for
username.password.validato
r, specify the maximum number of
server connections that are
allowed. The default is 16.

username.rte.bind.dn SELF Validate If ISAMRTE is specified for
username.password.validato
r, specify the username used to
authenticate to the primary LDAP
server.

For example,
cn=SecurityMaster,secAutho
rity=Default.

username.rte.bind.pwd SELF Validate If ISAMRTE is specified for
username.password.validato
r, specify the password used to
authenticate to the primary LDAP
server.

username.rte.enableSSL SELF Validate Specifies whether to enable SSL.
The default is false. Set to true
to enable SSL. Then, define the
username.rte.sslTrustStore
property. Set to false to disable
SSL.

username.rte.sslTrustStore SELF Validate Specifies the name of the
certificate database to use for the
SSL connection, if
username.rte.enableSSL is set
to true.

username.ldap.server.conne
ction.id

SELF Validate If LDAP is specified for
username.password.validato
r, specify the name of the server
connection that holds the required
LDAP settings to access the LDAP
user registry. For example, my-
isam-user-registry.

username.ldap.maximum.serv
er.connections

SELF Validate If LDAP is specified for
username.password.validato
r, specify the maximum number of
connections to make to the LDAP
user registry. For example, 16.

Chapter 6. Configuring STS modules 167

Table 96. Username module properties (continued)

Appliance property Self or Partner Mode Description

username.ldap.base.dn SELF Validate If LDAP is specified for
username.password.validato
r, specify an LDAP base DN to
search. For example, dn
o=ibm,c=us.

username.ldap.search.filte
r

SELF Validate If LDAP is specified for
username.password.validato
r, specify an LDAP search filter. For
example,
((objectClass=ePerson)
(objectClass=Person)).

username.ldap.user.id.attr
ibute

SELF Validate If LDAP is specified for
username.password.validato
r, specify an LDAP attribute that
stores the username. The LDAP
attribute must uniquely identify a
user. For example, uid.

username.validate.freshnes
s

PARTNER Validate Enables the time validity check,
based on created time and the
amount of time permitted after the
issue. The default is true.

Set to true to validate freshness.

Set to false for no validation.

If this property is not set, then the
value of the property
username.freshness.limit is
checked to see if the time
validation check needs to be
performed.

username.freshness.limit PARTNER Validate Specifies, in seconds, the amount
of time the Username token is valid
after being issued.

Default: 300 seconds

A value of -1 means that the token
does not expire.

STSRequest and STSResponse access using a JavaScript mapping
rule

By using the Default Mapping STS Module and a JavaScript mapping rule, you can perform identity
mapping. The mapping rule can access STSRequest and STSResponse objects.

The following two implicit objects and the classes required by these two objects can be exposed (for
example, Java DOM, XML classes, and so on):

• STSRequest which represents the WS-Trust request
• STSResponse, which represents the WS-Trust response

168 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Use JavaScript code stsrequest.getRequestSecurityToken().getBase() to get the input
security token from the WS-Trust request. This returns the input security token as an instance of the Java
class org.w3c.dom.Element.

Use JavaScript code
stsresponse.getRequestSecurityTokenResponse().setRequestedSecurityToken
(outputSecurityToken) to set the output security token in the WS-Trust response. The
outputSecurityToken is the output security token represented as an instance of Java class
org.w3c.dom.Element. By default, WS-Trust response contains only one output security token. To return
additional output security tokens, you can use the following JavaScript code:

 stsresponse.addRequestSecurityTokenResponse().setRequestedSecurityToken(outputSecurityToken)

The examples in the following topics show the mapping to and from a base64 encoded JSON string. They
use the Default Mapping module with a JavaScript mapping rule. The JavaScript mapping rule accesses
the STSRequest and STSResponse objects and performs the identity mapping.

Mapping a base64 encoded JSON string to a SAML2 token example
You can map a base64 encoded JSON string to a SAML 2 token by using a JavaScript mapping rule.

About this task
The steps show an end-to-end JSON to SAML2 mapping. “STSRequest and STSResponse access using a
JavaScript mapping rule” on page 168 provides a description of this support.

Procedure
1. Create a JavaScript mapping rule by using the local management interface.

a) Select Federation > Global Settings > Mapping Rules.
b) Click Add.
c) In the Content field, copy and paste the following code:

 importClass(com.tivoli.am.fim.base64.BASE64Utility);
 importClass(com.tivoli.am.fim.trustserver.sts.uuser.Attribute);

 var jwtElement = stsrequest.getRequestSecurityToken().getBase();
 var jwtText = jwtElement.getTextContent();
 var jwtString = new java.lang.String(BASE64Utility.decode(jwtText), "UTF-8");
 var jwt = JSON.parse(jwtString);

 for (var name in jwt) {
 if (jwt.hasOwnProperty(name)) {
 if ("sub".equals(name)) {
 stsuu.addPrincipalAttribute(new Attribute("name",
 "urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress", jwt[name]));
 } else {
 stsuu.addAttribute(new Attribute(name,
"urn:oasis:names:tc:SAML:2.0:attrname-format:basic", jwt[name]));
 }
 }
 }

d) In the Name field, enter jwt_saml.
e) In the Category field, select SAML2_0.
f) Click Save and deploy the changes.

2. Assemble the Security Token Service (STS) template.
a) Select Federation > Manage > Security Token Service.
b) Click Templates.
c) Click Add and name the template JSON to SAML2. Click OK.

Chapter 6. Configuring STS modules 169

d) Select the JSON to SAML2 template and add the Default Map Module in Map mode and a Default
SAML 2.0 token in Issue mode.

e) Save and deploy the changes.
3. Create an STS chain that references the mapping rule and template you created in the previous steps.

a) Within the Security Token Service panel, select Module Chains.
b) Click Add to create the module chain, with the following values:

Table 97. JSON to SAML2 module chain values

Tab: Field Value

Overview: Name JSON to SAML2

Overview: Description base64 encoded JSON string to SAML2
conversion STS chain

Overview: Template JSON to SAML2

Lookup: Request Type Validate

Lookup: Applies to Address jwtappliesto

Lookup: Issuer Address jwtissuer

Properties: Default Map Module (JavaScript file
containing the identity mapping rule

jwt_saml

Properties: Default SAML 2.0 Token (Name of
the organization issuing the assertions)

isam

Properties: Default SAML 2.0 Token (Amount of
time before the issue date that an assertion is
considered valid)

60

Properties: Default SAML 2.0 Token (Amount of
time that the assertion is valid after being
issued)

60

Properties: Default SAML 2.0 Token (List of
attribute types to include)

*

Use the defaults for all of the fields that are not specified in the table.
c) Save and deploy the changes.

4. Use curl to test the chain.
a) Send the following WS-Trust 1.2 message:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <ns1:RequestSecurityToken xmlns:ns1="http://docs.oasis-open.org/ws-sx/ws-trust/
200512">
 <wst:RequestType xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 http://schemas.xmlsoap.org/ws/2005/02/trust/Validate</wst:RequestType>
 <wst:Issuer xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 <wsa:Address xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/
addressing">jwtissuer</wsa:Address>
 </wst:Issuer>
 <wsp:AppliesTo xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsa:EndpointReference xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/
addressing">
 <wsa:Address>jwtappliesto</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wst:Base xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">

170 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

<JWT>ewogICJlbWFpbCI6ICJqb2huLmRvZUBleGFtcGxlLmNvbSIsIAogICJmYW1pbHlfbmFtZSI6ICJkb2UiLCAK
ICAiZ2l2ZW5fbmFtZSI6ICJqb2huIiwgCiAgImlzcyI6ICJpc2FtIiwgCiAgInN1YiI6ICIwMTIzNDU2Nzg5Igp9</
JWT>
 </wst:Base>
 </ns1:RequestSecurityToken>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The bold embedded element, <JWT> </JWT>, is the input to the chain. This is a Base64 encoded
JSON string that contains the following data::

{
 "email": "john.doe@example.com",
 "family_name": "doe",
 "given_name": "john",
 "iss": "isam",
 "sub": "0123456789"
}

b) Save this file as jwt.xml.
c) Run the following curl command, where jwt.xml is the WS-Trust 1.2 message:

curl -k -v -u "easuser:passw0rd" -H "Content-Type: text/xml" --data-binary
@jwt.xml https://ip-rte/TrustServer/SecurityTokenService

The following results are returned:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"></SOAP-
ENV:Header>
 <soap:Body>
 <wst:RequestSecurityTokenResponseCollection xmlns:wst="http://docs.oasis-
open.org/ws-sx/ws-trust/200512">
 <wst:RequestSecurityTokenResponse xmlns:wsu="http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 wsu:Id="uuidc1288a62-0153-1f8b-bf2a-b4c46f51cd03">
 <wsp:AppliesTo xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsa:EndpointReference>
 <wsa:Address>jwtappliesto</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wst:Lifetime xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/
200512">
 <wsu:Created>2016-03-29T06:56:13Z</wsu:Created>
 <wsu:Expires>2016-03-29T06:57:13Z</wsu:Expires>
 </wst:Lifetime>
 <wst:RequestedSecurityToken>
 <saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ID="Assertion-
uuidc1288ae8-0153-10bd-b7ef-b4c46f51cd03"
 IssueInstant="2016-03-29T06:56:13Z" Version="2.0">
 <saml:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-
format:entity">isam</saml:Issuer>
 <saml:Subject>
 <saml:NameID Format="urn:oasis:names:tc:SAML:1.1:nameid-
format:emailAddress">
 0123456789</saml:NameID>
 <saml:SubjectConfirmation
Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
 <saml:SubjectConfirmationData
NotOnOrAfter="2016-03-29T06:57:13Z"></saml:SubjectConfirmationData>
 </saml:SubjectConfirmation>
 </saml:Subject>
 <saml:Conditions NotBefore="2016-03-29T06:55:13Z"
NotOnOrAfter="2016-03-29T06:57:13Z">
 <saml:AudienceRestriction>
 <saml:Audience>jwtappliesto</saml:Audience>
 </saml:AudienceRestriction>
 </saml:Conditions>
 <saml:AuthnStatement AuthnInstant="2016-03-29T06:56:13Z">
 <saml:AuthnContext>

<saml:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:Password
 </saml:AuthnContextClassRef>
 </saml:AuthnContext>

Chapter 6. Configuring STS modules 171

 </saml:AuthnStatement>
 <saml:AttributeStatement>
 <saml:Attribute Name="given_name"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
 <saml:AttributeValue xsi:type="xs:string">john</
saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="email"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
 <saml:AttributeValue
xsi:type="xs:string">john.doe@example.com</saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="iss"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
 <saml:AttributeValue xsi:type="xs:string">isam</
saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="family_name"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
 <saml:AttributeValue xsi:type="xs:string">doe</
saml:AttributeValue>
 </saml:Attribute>
 </saml:AttributeStatement>
 </saml:Assertion>
 </wst:RequestedSecurityToken>

The JSON string is mapped into the SAML assertion, as shown by the previous bold text. The
attributes in the SAML2 assertion are mapped from JSON attributes.

<wst:RequestedAttachedReference xmlns:wss="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wss:SecurityTokenReference xmlns:wss11="http://docs.oasis-
open.org/wss/oasis-wss-wssecurity-secext-1.1.xsd"
 wss11:TokenType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-
profile-1.1#SAMLV2.0">
 <wss:KeyIdentifier
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
 xmlns:wss="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd"
 ValueType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-
profile-1.1#SAMLID">
 Assertion-uuidc1288ae8-0153-10bd-b7ef-b4c46f51cd03</
wss:KeyIdentifier>
 </wss:SecurityTokenReference>
 </wst:RequestedAttachedReference>
 <wst:RequestType>http://schemas.xmlsoap.org/ws/2005/02/trust/Validate</
wst:RequestType>
 <wst:Status>
 <wst:Code>http://docs.oasis-open.org/ws-sx/ws-trust/200512/status/
valid</wst:Code>
 </wst:Status>
 </wst:RequestSecurityTokenResponse>
 </wst:RequestSecurityTokenResponseCollection>
 </soap:Body>
</soap:Envelope>

Related tasks
“Mapping a SAML2 token to a base64 encoded JSON string example” on page 172
You can map a SAML 2 token to a base64 encoded JSON string by using a JavaScript mapping rule.

Mapping a SAML2 token to a base64 encoded JSON string example
You can map a SAML 2 token to a base64 encoded JSON string by using a JavaScript mapping rule.

About this task
The steps show an end-to-end SAML to JSON mapping. “STSRequest and STSResponse access using a
JavaScript mapping rule” on page 168 provides a description of this support.

Procedure
1. Create a JavaScript mapping rule using the local management interface.

172 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

a) Select Federation > Global Settings > Mapping Rules.
b) Click Add.
c) In the Content field, copy and paste the following code:

 importClass(com.tivoli.am.fim.base64.BASE64Utility);
 importClass(com.tivoli.am.fim.trustserver.sts.utilities.IDMappingExtUtils)

 var jwt = {};

 var it = stsuu.getPrincipalAttributes();
 var jt = stsuu.getAttributes();

 while (it.hasNext()) {
 var attribute = it.next();
 var name = new String(attribute.getName());
 var value = new String(attribute.getValues()[0]);

 if ("name".equals(name)) {
 jwt["sub"] = value;
 } else {
 jwt[name] = value;
 }
 }

 while (jt.hasNext()) {
 var attribute = jt.next();
 var name = new String(attribute.getName());
 var value = new String(attribute.getValues()[0]);

 jwt[name] = value;
 }

 var document = IDMappingExtUtils.newXMLDocument();
 var jwtString = JSON.stringify(jwt);
 var jwtText = document.createTextNode(BASE64Utility.encode((new
java.lang.String(jwtString)).getBytes("UTF-8")));
 var jwtElement = document.createElement("JWT");

 jwtElement.appendChild(jwtText);

 stsresponse.getRequestSecurityTokenResponse().setRequestedSecurityToken(jwtElement);

d) In the Name field, enter saml_jwt.
e) In the Category field, select SAML2_0.
f) Click Save and deploy the changes.

2. Assemble the Security Token Service (STS) template.
a) Select Federation > Manage > Security Token Service.
b) Click Templates.
c) Click Add and name the template SAML2 to JSON. Click OK.
d) Select the SAML2 to JSON template and add the Default SAML 2.0 Token in Validate mode and a

Default Map Module in Map mode.
e) Save and deploy the changes.

3. Create an STS chain that references the mapping rule and template you created in the previous steps.
a) Within the Security Token Service panel, select Module Chains.
b) Click Add to create a module chain, with the following values:

Table 98. SAML2 to JSON module chain values

Tab: Field Value

Overview: Name SAML2 to JSON

Overview: Description SAML2 to base64 encoded JSON string
conversion STS chain

Overview: Template SAML2 to JSON

Chapter 6. Configuring STS modules 173

Table 98. SAML2 to JSON module chain values (continued)

Tab: Field Value

Lookup: Request Type Validate

Lookup: Applies to Address SAML2_AppliesTo

Lookup: Issuer Address SAML2_Issuer

Properties: Default Map Module (JavaScript file
containing the identity mapping rule

saml_jwt

Use the defaults for all of the fields not in the table.
c) Save and deploy the changes.

4. Use curl to test the chain.
a) Send the following WS-Trust 1.2 message:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <ns1:RequestSecurityToken xmlns:ns1="http://docs.oasis-open.org/ws-sx/ws-trust/
200512">
 <wst:RequestType xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 http://schemas.xmlsoap.org/ws/2005/02/trust/Validate</wst:RequestType>
 <wst:Issuer xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 <wsa:Address xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/
addressing">SAML2_Issuer</wsa:Address>
 </wst:Issuer>
 <wsp:AppliesTo xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsa:EndpointReference xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/
addressing">
 <wsa:Address>SAML2_AppliesTo</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
<wst:Base xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 <saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
 ID="Assertion-uuidbcb46a39-0153-1337-8efa-fec506fb7461"
IssueInstant="2016-03-28T10:10:53Z" Version="2.0">
 <saml:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">isam</
saml:Issuer>
 <saml:Subject>
 <saml:NameID Format="urn:oasis:names:tc:SAML:1.1:nameid-
format:emailAddress">0123456789</saml:NameID>
 <saml:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
 <saml:SubjectConfirmationData NotOnOrAfter="2016-03-28T10:11:53Z"/>
 </saml:SubjectConfirmation>
 </saml:Subject>
 <saml:Conditions NotBefore="2016-03-28T10:09:53Z"
NotOnOrAfter="2016-03-29T10:11:53Z">
 <saml:AudienceRestriction>
 <saml:Audience>jwt_saml</saml:Audience>
 </saml:AudienceRestriction>
 </saml:Conditions>
 <saml:AuthnStatement AuthnInstant="2016-03-28T10:10:53Z">
 <saml:AuthnContext>
 <saml:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:Password</
saml:AuthnContextClassRef>
 </saml:AuthnContext>
 </saml:AuthnStatement>
 <saml:AttributeStatement>
 <saml:Attribute Name="given_name"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
 <saml:AttributeValue xsi:type="xs:string">john</saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="email" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-
format:basic">
 <saml:AttributeValue xsi:type="xs:string">john.doe@example.com</
saml:AttributeValue>
 </saml:Attribute>

174 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

 <saml:Attribute Name="iss" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-
format:basic">
 <saml:AttributeValue xsi:type="xs:string">isam</saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="family_name"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
 <saml:AttributeValue xsi:type="xs:string">doe</saml:AttributeValue>
 </saml:Attribute>
 </saml:AttributeStatement>
 </saml:Assertion>
 </wst:Base>
 </ns1:RequestSecurityToken>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The bold element in the SAML2 assertion is mapped to the JSON attributes in the result.
b) Save this file as saml2.xml.
c) Run the following curl command, where saml2.xml is the WS-Trust 1.2 message:

curl -k -v -u "easuser:passw0rd" -H "Content-Type: text/xml" --data-binary
@saml2.xml https://ip-rte/TrustServer/SecurityTokenService

The following results are returned:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"></SOAP-
ENV:Header>
 <soap:Body>
 <wst:RequestSecurityTokenResponseCollection xmlns:wst="http://docs.oasis-
open.org/ws-sx/ws-trust/200512">
 <wst:RequestSecurityTokenResponse
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 wsu:Id="uuidc1676e30-0153-16a8-86b5-c34fd1aca7a8">
 <wsp:AppliesTo xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsa:EndpointReference>
 <wsa:Address>SAML2_AppliesTo</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wst:RequestedSecurityToken>

<JWT>eyJzdWIiOiIwMTIzNDU2Nzg5IiwiZ2l2ZW5fbmFtZSI6ImpvaG4iLCJOb3RPbk9yQWZ0ZXIiOiIyMDE2LTAz

LTI5VDEwOjExOjUzWiIsIkF1dGhlbnRpY2F0aW9uTWV0aG9kIjoidXJuOm9hc2lzOm5hbWVzOnRjOlNBTUw6MS4w

OmFtOnBhc3N3b3JkIiwiZW1haWwiOiJqb2huLmRvZUBleGFtcGxlLmNvbSIsIkF1ZGllbmNlUmVzdHJpY3Rpb25

Db25kaXRpb24uQXVkaWVuY2UiOiJqd3Rfc2FtbCIsImlzcyI6ImlzYW0iLCJJc3N1ZUluc3RhbnQiOiIyMDE2LT

AzLTI4VDEwOjEwOjUzWiIsImZhbWlseV9uYW1lIjoiZG9lIiwiTm90QmVmb3JlIjoiMjAxNi0wMy0yOFQxMDowO

To1M1oiLCJBdXRoZW50aWNhdGlvbkluc3RhbnQiOiIyMDE2LTAzLTI4VDEwOjEwOjUzWiIsImlzc3VlciI6Iml
 zYW0ifQ==</JWT>
 </wst:RequestedSecurityToken>
 <wst:RequestType>http://schemas.xmlsoap.org/ws/2005/02/trust/Validate</
wst:RequestType>
 <wst:Status>
 <wst:Code>http://docs.oasis-open.org/ws-sx/ws-trust/200512/status/
valid</wst:Code>
 </wst:Status>
 </wst:RequestSecurityTokenResponse>
 </wst:RequestSecurityTokenResponseCollection>
 </soap:Body>
</soap:Envelope>

The bold embedded element, <JWT> </JWT>) , is the result in a Base64 encoded JSON Web
Token:

{
 "sub": "0123456789",
 "given_name": "john",
 "NotOnOrAfter": "2016-03-29T10:11:53Z",
 "AuthenticationMethod": "urn:oasis:names:tc:SAML:1.0:am:password",
 "email": "john.doe@example.com",
 "AudienceRestrictionCondition.Audience": "jwt_saml",

Chapter 6. Configuring STS modules 175

 "iss": "isam",
 "IssueInstant": "2016-03-28T10:10:53Z",
 "family_name": "doe",
 "NotBefore": "2016-03-28T10:09:53Z",
 "AuthenticationInstant": "2016-03-28T10:10:53Z",
 "issuer": "isam“
}

Related tasks
“Mapping a base64 encoded JSON string to a SAML2 token example” on page 169
You can map a base64 encoded JSON string to a SAML 2 token by using a JavaScript mapping rule.

176 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Chapter 7. Nested single sign-on flows
You can nest SAML or OpenID Connect single sign-on flows. That is, you can resume an initial SSO flow
after the completion of a second SSO flow.

For SAML, a nested SSO flow means the involvement of an IdP proxy between a real service provider (SP)
and a real identity provider (IdP). The IdP proxy delegates the user credentials authentication to the real
IdP.

For OpenID Connect, a nested SSO flow means the involvement of an OAuth provider (OP) proxy between
a real relying party (RP) and a real OP. The OP proxy delegates the user credentials authentication to the
real OP.

A nested SSO flow involves the following two SP or RP-initiated SSO flows:

• Between the real SP or RP and an IdP or OP proxy.
• Between the IdP or OP proxy (acts as an SP or RP) and the real IdP or OP.

After the second SSO flow completes the authentication of credentials with the real IdP or OP, the IdP or
OP proxy has an implicit mechanism to resume the first SSO flow to sign in to the real SP or RP.

When you install an appliance to work as an IdP proxy, create an identity provider and service provider
federation and map them to a single reverse proxy instance. See Chapter 8, “Configuring a reverse proxy
point of contact server,” on page 179.

Note: Configure the proper mapping rules in the IdP proxy federations to avoid duplicate attributes in
STSUU to attain the successful flow of nested SSO. See the following topics: .

• “Mapping a local identity to a SAML 2.0 token” on page 19
• “Mapping a SAML 2.0 token to a local identity” on page 21
• OpenID Connect Provider mapping rules
• OpenID Connect Relying Party mapping rules

Table 99. Supported nested SSO combinations

First SSO flow Second SSO flow

SAML (HTTPRedirect, HTTPPost, HTTPArtifact) SAML (HTTPRedirect, HTTPPost, HTTPArtifact)

SAML (HTTPRedirect, HTTPPost, HTTPArtifact) OpenID Connect

OpenID Connect OpenID Connect

OpenID Connect SAML (HTTPRedirect, HTTPPost, HTTPArtifact)

The following supported nested flows are for the authentication delegated to the external IdP during an
OAuth20 flow:

Table 100. Supported nested OAuth flow combinations

First flow Second flow

OAuth20 SAML (HTTPRedirect, HTTPPost, HTTPArtifact)

OAuth20 OpenID Connect

178 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Chapter 8. Configuring a reverse proxy point of
contact server

Configuring a SAML 2.0 or OpenID Connect federation requires that you set up a reverse proxy instance as
the point of contact.

Before you begin
You can use these instructions to configure a reverse proxy instance, or you can use the Web services
REST APIs. The REST API topic is located in Web > Manage > Reverse Proxy > Federation Configuration.

Note: If you use the Web services REST APIs to configure a reverse proxy instance, ensure that the
junction name is /isam.

About this task
The reverse proxy instance that you use authenticates users at the identity provider and protects services
at the service provider. You must have a reverse proxy instance for both the service provider and the
identity provider.

See Reverse proxy instance management for more information.

Procedure
1. Import the federation runtime SSL certificate into the reverse proxy trusted signer certificates

keystore. Use the local management interface to import the certificate. See Managing SSL certificates.
2. Using the pdamin command, create the /isam junction to the federated runtime. Substitute the

values of your runtime in the following command:

server task hostname-webseal-instanceName create -t ssl -c all -s -b ignore -j
 -e utf8_uri -J inhead -r -q /sps/cgi-bin/query_contents -f
 -h runtimeHostname -p runtimePort /isam

3. Update the reverse proxy configuration file by using the local management interface:
a) Click Web > Manage > Reverse Proxy.
b) Select the reverse proxy instance to update, and click Manage > Configuration > Edit

Configuration File.
c) Edit the configuration file with the following stanzas and entries, depending on the federation

protocol:
SAML 2.0

[ba]:
ba-auth = none
[forms]:
forms-auth = https
[authentication-levels]:
level = ext-auth-interface
[eai]:
eai-auth = https
retain-eai-session = yes
eai-verify-user-identity = no
eai-redir-url-priority = yes
[eai-trigger-urls]:
trigger = /isam/sps/auth*
trigger = /isam/sps/federation_name/saml20/soap*
trigger = /isam/sps/federation_name/saml20/slo*
trigger = /isam/sps/federation_name/saml20/login*
[session]:
user-session-ids = yes

Legacy OpenID Connect

[ba]:
ba-auth = none
[forms]:
forms-auth = https
[junction:/isam]:
reset-cookies-list = *JSESSIONID*,*WAS*
(RP ONLY) [authentication-levels]:
level = ext-auth-interface
(RP ONLY) [eai]:
eai-auth = https
eai-redir-url-priority = yes
(RP ONLY) [eai-trigger-urls]:
trigger = /isam/sps/oidc/client/federation_providerID*

OpenID Connect Relying Party

[ba]:
ba-auth = none
[forms]:
forms-auth = https
[junction:/isam]:
reset-cookies-list = *JSESSIONID*,*WAS*
[authentication-levels]:
level = ext-auth-interface
[eai]:
eai-auth = https
eai-redir-url-priority = yes
[eai-trigger-urls]:
trigger = /isam/sps/oidc/rp/fedname/redirect/*

4. Using the pdadmin command, define the nobody, anyauth, and unauth ACLs. Note that the
WebSEAL user should be used for default-webseald/isam-op.

acl create fedname-nobody
acl modify fedname-nobody set user default-webseald/hostname TcmdbsvaBRl
acl modify fedname-nobody set user sec_master TcmdbsvaBRrxl
acl modify fedname-nobody set group iv-admin TcmdbsvaBRrxl
acl modify fedname-nobody set group webseal-servers Tgmdbsrxl
acl modify fedname-nobody set any-other T
acl modify fedname-nobody set unauthenticated T

acl create fedname-anyauth
acl modify fedname-anyauth set user default-webseald/hostname TcmdbsvaBRl
acl modify fedname-anyauth set user sec_master TcmdbsvaBRrxl
acl modify fedname-anyauth set group iv-admin TcmdbsvaBRrxl
acl modify fedname-anyauth set group webseal-servers Tgmdbsrxl
acl modify fedname-anyauth set any-other Tr
acl modify fedname-anyauth set unauthenticated T

acl create fedname-unauth
acl modify fedname-unauth set user default-webseald/hostname TcmdbsvaBRl
acl modify fedname-unauth set user sec_master TcmdbsvaBRrxl
acl modify fedname-unauth set group iv-admin TcmdbsvaBRrxl
acl modify fedname-unauth set group webseal-servers Tgmdbsrxl
acl modify fedname-unauth set any-other Tr
acl modify fedname-unauth set unauthenticated Tr

5. Using the pdadmin command, create the ACLs on the policy server, and attach them to the relevant
endpoints.
SAML 2.0

fedname-nobody:
/WebSEAL/hostname-webseal/isam
fedname-unauth:
/WebSEAL/hostname-webseal/isam/sps/fedname/saml20/login
/WebSEAL/hostname-webseal/isam/sps/fedname/saml20/sloinitial
/WebSEAL/hostname-webseal/isam/sps/fedname/saml20/mnids
/WebSEAL/hostname-webseal/isam/sps/fedname/saml20/logininitial
/WebSEAL/hostname-webseal/isam/sps/fedname/saml20/slo
/WebSEAL/hostname-webseal/isam/sps/fedname/saml20/soap
fedname-anyauth:
/WebSEAL/hostname-webseal/isam/sps/fedname/saml20/mnidsinitial
/WebSEAL/hostname-webseal/isam/sps/fedname/saml20/auth

180 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

/WebSEAL/hostname-webseal/isam/sps/wssoi
/WebSEAL/hostname-webseal/isam/sps/auth

Legacy OpenID Connect

fedname-nobody:
/WebSEAL/hostname-instance/isam
fedname-unauth:
/WebSEAL/hostname-instance/isam/sps/static
/WebSEAL/hostname-instance/isam/sps/fedname/oidc/auth
/WebSEAL/hostname-instance/isam/oidc/scripts
/WebSEAL/hostname-instance/isam/oidc/endpoint/amapp-runtime-fedname/token
/WebSEAL/hostname-instance/isam/oidc/endpoint/amapp-runtime-fedname/introspect
/WebSEAL/hostname-instance/isam/oidc/endpoint/amapp-runtime-fedname/authorize
(RP Only) /WebSEAL/hostname-instance/isam/sps/oidc/client/fedname
(RP Only) /WebSEAL/hostname-instance/isam/oidcclient/redirect
fedname-anyauth
/WebSEAL/hostname-instance/isam/sps/auth

OpenID Connect Relying Party

fedname-unauth:
/WebSEAL/hostname-instance/isam/sps/oidc/rp/fedname/kickoff
/WebSEAL/hostname-instance/isam/sps/oidc/rp/fedname/redirect

6. Using the pdamin command, add the HTTP-Tag-Value attribute to the /isam junction object to
propagate the user_session_id to the federation runtime:

• If force-tag-value-prefix = yes:

object modify /WebSEAL/hostname-default/isam set attribute
 HTTP-Tag-Value user_session_id=USER-SESSION-ID

• If force-tag-value-prefix = no:

object modify /WebSEAL/hostname-default/isam set attribute
 HTTP-Tag-Value tagvalue_user_session_id=USER-SESSION-ID

Chapter 8. Configuring a reverse proxy point of contact server 181

182 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Chapter 9. Global settings
You can use the LMI to access an administrative menu to configure global settings that are used by both
Federation and Advanced Access Control.

The Local Management Interface (LMI) has a user interface page for administering each major feature in
IBM Security Verify Access. Since some features are used by multiple licensing levels for the product, the
administration page for these features can be accessed through multiple user interface menu paths.

You can use either of the following LMI menus to access the global settings:

• AAC > Global Settings
• Federation > Global Settings

You can use the global settings menus to configure the following features:

• Advanced Configuration

Some of the advanced configuration properties are common to Advanced Access Control and
Federation. Others are specific to one of the licensing levels.

• User Registry

Use these settings to administer users and group memberships for the user registry that is used by the
runtime applications. Management tasks are common to Advanced Access Control and Federation.

• Runtime Parameters

You can use the Runtime Parameters menu to view runtime status, tune runtime parameters, and set
tracing on the runtime. These functions are common to Advanced Access Control and to Federation.

In addition, the runtime tracing feature can be set in the LMI through Monitor > Logs > Runtime Tracing
> ..

The topic for Runtime Parameters is also included in the appliance troubleshooting section of the IBM
Knowledge Center. See Tuning runtime application parameters and tracing specifications

• Template Files

Template files are HTML pages that are presented to your users. You can customize the content of the
pages for your deployment by setting supported macros, or by adding JavaScript scripting. Template
pages are used in multiple scenarios.

– Customizing the authentication process, such as error messages
– Specifying settings for the supported authentication mechanisms
– Customizing error messages for authentication attempts
– Obtaining consent for registering devices
– Specifying authorization parameters for OAuth 2.0
– Configuring user self-care tasks

• Mapping Rules

Mapping rules are JavaScript code that runs during the authentication flow for Advanced Access Control
and Federation. Mapping rules can be used for multiple purposes. For Advanced Access Control, you
can modify rules for the Authentication Service, OTP, and OAuth 2.0. For Federation, you can modify
mapping rules to manage identities for OIDC and SAML 2.0.

• Distributed Session Cache

The Distributed Session Cache is supplied by the Web Reverse Proxy and is used with all activation
levels. The management windows in the LMI can also be accessed through Web > Manage >
Distributed Session Cache.

For an overview of the Distributed Session Cache, and a review of advanced configuration options, see:
Distributed Session Cache.

• Server Connections

Advanced Access Control and Federations both use the IBM Security Verify Access appliance to connect
to external data sources. For Advanced Access Control, you can use the server connections menus to
configure LDAP or database server connections so that you can set up policy information points. For
Federation, you can configure an LDAP server as an attribute source for attribute mapping.

• Point of Contact

IBM Security Verify Access provides servers, such as WebSEAL, that function as point of contact servers
for handling external requests for authentication and authorization. You can configure a point of contact
profile to specify the information that is needed for the runtime to communicate with a specific point of
contact server. Security Verify Access provides three Point of Contact profiles that are ready for use. You
can specify callback parameters and values for these profiles.

• Access Policies

You can use access policies to perform step-up and re-authentication during a single sign-on flow based
on contextual information. Access policies can be enforced at a federation or at API Protection for
OAuth and OpenID Connect.

Note: The LMI mega-menu for the Web licensing level also presents a set of tasks under a Global
Settings heading. These tasks are different from the tasks under the Global Settings menu for AAC and
Federation. The Web > Global Settings LMI menus are not used with AAC and Federation .

Managing advanced configuration
Adjust configuration settings in supported configuration files.

About this task
The advanced configuration includes both properties and files. The properties configuration panel
displays a table of configuration settings. Some can be modified and some are read-only. Each setting is
displayed as a row in the table. The name of the setting is listed in the key column. The current value of
the key is listed in the value column. You can locate a setting by using one of the following methods:

• Scroll through the list until you see the setting.

By default, all configuration settings are included in the list.
• Filter the list by entering a string in the Filter field.

When you enter a string, the list is modified to show only the settings that contain the specified string.
• Filter the list by selecting a category from the Filter by Category menu.

For descriptions of the categories and properties, see “Advanced configuration properties” on page 185.

This files configuration panel displays a table of configuration files. Each file can be viewed, edited,
replaced, or exported.

Procedure
1. Select the menu entry for your licensing level:

• If using an Advanced Access Control license, select AAC > Global Settings > Advanced
Configuration.

• If using a Federation license, select Federation > Global Settings > Advanced Configuration

2. To edit a property key, select the edit icon for the key.

Note: You cannot edit keys that are marked with the read-only icon: .

184 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

When you choose to edit a key, a new window displays the name of the key and the current value.

a) Edit the value of your deployment.
b) Click OK.

3. To manage an advanced configuration file click the Files link in the page header and click the required
file in the table.

a) To edit the file click the Edit button to make the required changes. Click Save.
b) To replace the existing file click the Import button in the Manage drop down, select the new file in

the dialog and click Import.
c) To export the existing file click the Export button in the Manage drop down.

4. Click OK.
5. Deploy the changes.

Advanced configuration properties
Modify the advanced configurations for Advanced Access Control or Federation to meet the requirements
of your organization.

Category filter
The category filter displays names of grouping of configuration settings. The groupings correspond to
functional areas. When you select a category, the user interface displays only the settings for the
category.

Table 101. Filter by Category

Category Displays values for:

All All keys

poc.websealAuth “WebSEAL Authenticate Callback” on page 186

poc.websealSignout “WebSEAL Signout Callback” on page 186

poc.otpAuth “One-time password Authenticate Callback” on page 187

poc.authPolicy “Authentication-Policy Callback” on page 187

sps.httpRequestClaims “SPS HTTP request claims” on page 187

distributedMap “Distributed shared data storage” on page 187

userBehavior “Attribute matcher properties” on page 188

ipReputation “IP reputation PIP properties” on page 189

attributeCollection “Attribute collector properties” on page 189

deviceRegistration “Device registration properties” on page 190

runtime “Runtime properties” on page 191

sps.page “SPS page” on page 192

sps “Single sign-on protocol service” on page 191

riskEngine “Risk engine properties” on page 193

sps.authService “Authentication service properties” on page 193

authsvc.stateMgmt “Authentication service session store properties” on page 194

session “Session” on page 195

Chapter 9. Global settings 185

Table 101. Filter by Category (continued)

Category Displays values for:

distributedSessionCache “Distributed session cache” on page 196

otp.retry “TOTP and HOTP retry properties” on page 197

oauth20 “OAuth20” on page 197

util.httpClient “HTTP client” on page 199

util.httpClient v2 “HTTP Client version 2” on page 200

demo “Demo” on page 204

knowledge.questions “Knowledge questions properties” on page 205

kess “Key encryption and signing service (KESS)” on page 205

jwks “JSON Web Key” on page 206

pip “Policy information point (PIP)” on page 206

sts “Security token service (STS)” on page 207

mmfa Mobile Multi-Factor Authentication (MMFA)

wsfed “WS-Federation” on page 209

saml20 “SAML 2.0” on page 210

demo “Demo” on page 204

saml11 “SAML 1.1” on page 209

oidc “OIDC” on page 211

js “Rhino Javascript Engine” on page 211

WebSEAL Authenticate Callback
poc.websealAuth.authLevel

The authentication level of the callback.
Data type: Integer
Example: 1

WebSEAL Signout Callback
poc.websealSignout.terminate

When forceauth=true is specified, poc.websealSignout.terminate determines which
mechanism is used to force an authentication interaction in WebSEAL. A value of true (default)
means use eai-server-task terminate session which will logout of WebSEAL. User will be
prompted to login. The original WebSEAL session is destroyed (including any managed cookies).

A value of false means use eai-server-task force-reauthenticate session which will result
in user being prompted to re-authenticate to WebSEAL. The original WebSEAL session including
managed cookies are preserved on re-authentication.

Data type: Boolean
Example: true

186 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

One-time password Authenticate Callback
poc.otp.authLevel

The authentication level of the callback.
Data type: Integer
Example: 2

poc.otp.backwardCompatibilityEnabled
Indicates whether the one-time password authentication mechanism should run in backward
compatibility mode. The default value is false if it is a new installation. The default value is true if
the installation is an upgrade.
Data type: Boolean
Example: true

Authentication-Policy Callback
poc.authPolicy.allowRequestOverride

Whether the authentication level, the authentication mode, and the authentication type of the
callback can be overwritten by query string parameters.
Data type: Boolean
Example: true

poc.authPolicy.authLevel
The authentication level of the callback.
Data type: Integer
Example: 1

poc.authPolicy.authType
The authentication type of the callback.
Data type: String
Example: COMPLEMENTARY, HIERARCHICAL

SPS HTTP request claims
sps.httpRequestClaims.enabled

Whether HTTP request information is sent to STS as HTTPRequestClaims. This flag additionally
makes HTTP Request attributes (Headers, Cookies and Parameters) available to administrators in
OIDC, OAuth, and SAML (see HTTP Claims in OIDC, OAuth and SAML JavaScript Mapping Rules),
Authsvc and InfoMap (see HTTP Claims in Authsvc and InfoMap JavaScript Mapping Rules) and FIDO2
(see HTTP Claims in FIDO2 Mediator JavaScript Mapping Rules) JavaScript Mapping rules.
Data type: Boolean
Example:false

sps.httpRequestClaims.filterSpec
The filter that specifies the HTTP request information that is sent to STS as HTTPRequestClaims.
Data type: String
Example: cookies=*:headers=*

Distributed shared data storage
distributedMap.cleanupWait

The amount of time, in milliseconds, to wait before it performs another cleanup against the distributed
map.

Distributed map clean up can be disabled by setting the cleanupWait to 0.

Data type: Integer

Chapter 9. Global settings 187

Example: 10000
distributedMap.defaultTTL

The amount of time, in seconds, that the entries in the distributed map must live when no lifetime is
specified for an entry.
Data type: Integer
Example: 3600

distributedMap.getRetryDelay
The amount of time, in milliseconds, to wait before it performs another retrieval against the
distributed map. The default is 0.
Data type: Integer
Example: 500

distributedMap.getRetryLimit
The number of retrievals that is done against the distributed map before it returns that the retrieved
data is not in the distributed map. The default is 0.
Data type: Integer
Example: 10

distributedMap.store
Specifies storage location for distributed shared data.

• Redis: stores the DMAP instance into Redis.
• HVDB: stores the DMAP instance into the HVDB.

You can configure the parameter for AAC or Federation in one of the following screens in the LMI:

• AAC > Global Settings > State Persistence
• Federation > Global Settings > State Persistence

Allowed Values: Redis, HVDB

Example: Redis

distributedMap.redisServerConnectionName
Specifies the Redis server connection to use for the runtime.

This parameter must be specified when the distributedMap.store is set to Redis. See
“distributedMap.store” on page 188.

You can configure the parameter for AAC or Federation in one of the following screens in the LMI:

• AAC > Global Settings > State Persistence
• Federation > Global Settings > State Persistence

Attribute matcher properties
userBehavior.minimumUsageHistoryRequired

Minimum usage data records required for any usage data analysis; used by LoginTimeMatcher.
Data type: Integer
Example: 8

userBehavior.ipAddressRequestAttribute
The XACML request attribute to read from the IP address.
Data type: String
Example: urn:ibm:security:subject:ipAddress

188 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

IP reputation PIP properties
ip.reputation.ipAddressAdverseReputationThreshold

The value that an IP classification score must be at or above for an IP address to be considered as
that classification.
Data type: Integer
Example:50

ipReputation.dbConnectionTimeout
Indicates the number of seconds that the IP reputation policy information point (PIP) waits for a
connection to the IP reputation database. The ipReputation.dbConnectionTimeout property
defaults to 120.
Data type: Integer
Example: 60

Attribute collector properties
attributeCollection.cookieName

Correlation ID used by the attribute collector.
Data type: String
Example: ac.uuid

attributeCollection.requestServer
Request server for attribute collector. A list of the allowable hosts where the ajaxRequest can be sent
from.
Data type: String List
Example: https://rbademo.example.com,https://rbaemo2.example.com

attributeCollection.serviceLocation
Location of the attribute collector.
Data type: String List
Example: http://rbademo.example.com/mga

attributeCollection.sessionTimeout
Number of seconds in which sessions stored in context-based access will automatically expire, unless
updated. If any attribute in the session is updated, the session expiry is extended by the specified
number of seconds configured in this property. The default is 1800 seconds.
Data type: Integer
Example: 1800 seconds

attributeCollection.enableGetAttributes
Enables the REST GET method to return attributes.
Data type: Boolean
Example: false

attributeCollection.getAttributesAllowedClients
A comma-separated list of clients that are allowed to access the ACS REST GET method.

If this property is not set and attributeCollection.enableGetAttributes is set to true,
anyone can access the GET method. If this property is set but
attributeCollection.enableGetAttributes is set to false, this property is ignored.

Data type: String List
Example: hostname1, hostname2

attributeCollection.hashAlgorithm
The algorithm that is used to create the hash.
Data type: String

Chapter 9. Global settings 189

Example: SHA256
attributeCollection.attributesHashEnabled

A comma-separated list of attribute URI values configured for hashing.

Attention: Do not hash the following attributes:

• ipAddress
• geoLocation
• accessTime

Data type: String List
Example:

urn:ibm:security:environment:http:userAgent,
urn:ibm:security:environment:deviceFonts,
urn:ibm:security:environment:browserPlugins

attributeCollection.authenticationContextAttributes
Comma-separated lists of attribute names to be collected during an authentication service obligation.
The maximum number of characters for this property is 200.
Data type: String List
Example: authenticationLevel, http:host

Device registration properties
deviceRegistration.allowIncompleteFingerprints

Specifies to allow the device registration obligation to store fingerprints where all the fingerprint
attributes are not available on the session information.
Data type: Boolean
Example: false

deviceRegistration.checkForExpiredDevices
Determines whether registered devices are inactive or expired. If the
deviceRegistration.checkForExpiredDevices property is set to true, the risk engine
checks whether a device is inactive or expired. The
deviceRegistration.checkForExpiredDevices property defaults to false, which means
that users can use any of the devices that are registered.
Date type: Boolean
Example: true

deviceRegistration.cleanupThread.batchSize
Specifies if batch delete is enabled for expired devices and how many records are deleted per batch.
If the value is defined as 0 or is blank, batch delete is not enabled and all expired devices are deleted
using one SLQ delete statement.
If the value is defined as an integer greater than 0, batch delete is enabled. The number that you
specify determines how many records are deleted in each batch. The batch delete continues until all
of the expired devices are deleted. The batch process is useful for deleting a large quantity of expired
devices.
Data type: Integer
Example: 1000 (Batch delete is enabled, with a batch size of 1000 records.)

deviceRegistration.deviceMatchThreshold
The risk score threshold where an existing fingerprint is considered to match the incoming device
fingerprint.
Data type: Integer
Example: 20

190 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

deviceRegistration.inactiveExpirationTime
Specifies the number of days that a device must be inactive for it to expire. The
deviceRegistration.inactiveExpirationTime property defaults to 90.
Date type: Integer
Example: 100

deviceRegistration.maxRegisteredDevices
Maximum device fingerprint count. The default is 10. Valid values are 1 to 100.
Data type: Integer
Example: 10

deviceRegistration.maxUsageDataPerUser
Maximum number of historical usage attribute records stored per user. The default is 200. Valid
values are 1 to 5000.
Data type: Integer
Example: 1000

deviceRegistration.permitOnIncompleteFingerprints
Specifies to permit access to the resource if the fingerprint collected by the device registration
obligation does not include all fingerprint attributes.
Data type: Boolean
Example: false

Runtime properties
runtime.dbLoggingEnabled

Enables fine-grained logging for database SQL statements.
Data type: Boolean
Example: false

runtime.hashAlgorithm
The algorithm that is used for hashing. The supported algorithms are:

• SHA-1
• SHA-256
• SHA-384
• SHA-512

The runtime.hashAlgorithm property defaults to SHA-256.

Data type: String
Example: SHA-256

runtime.verificationHashAlgorithms
Defines the hashing algorithms that are used to verify a hashed value. The value is typically a comma
separated list of hashing algorithms.
Data type: String
Example: SHA-256, SHA-1

Single sign-on protocol service
sps.setCookiesAsSecure

Determine whether to flag the cookies set by Security Verify Access as secure.

The default value is false.

Data type: Boolean
Example: false

Chapter 9. Global settings 191

sps.targetURLWhitelist

Specifies a list of allowed target URLs for SAML 2.0, OpenID Connect, and the authentication service.
Use this property to prevent an attacker from redirecting a user to malicious target URLs.

The value of this advanced configuration property is a comma-separated string, where each string is a
target URL in the form of a regular expression. The regular expression must not contain commas, and
spaces between regular expressions are ignored.

• For SAML 2.0 SSO flows, you can specify a Target URL when you configure the initial URL in flows
that are initiated by either the Identity Provider or the Service Provider. For more information, see
“SAML 2.0 profile initial URLs” on page 14.

• For Open ID Connect flows, you can specify a Target URL when you configure the initial URL for
Relying Party initiated single sign-on. For more information, see Relying Party SSO initiation
endpoint.

• For the authentication service, you can specify a Target URL when you configure the authentication
service trigger URL. For more information, see Configuring authentication.

The default value is “.*”.

Data type String

Example

(http|https)://www.app.ibm.com/.*, (http|https)://www.myidp.ibm.com/.*

sps.illegalUrlSubstrings
A comma-separated list of strings, the single sign-on service stops processing the request if the
request URL query parameters contain any of the strings.

The default value is "".

Data type: String

Example:

"<script"

sps.doNotSendXFrameOptionsHeader
Specifies whether an X-Frame-Options header with value SAMEORIGIN must be returned from the
SPS endpoints for browser based flows. When this property is set to true, no X-Frame-Options
header is sent.

Note: The sps.doNotSendXFrameOptionsHeader property defaults to false.

Data type: Boolean

Example: False

SPS page
sps.page.htmlEscapedMacros

A comma-separated list of macros that is HTML-escaped when it is rendered in pages that are sent to
the browser.
Data type: String
Example:

@REQ_ADDR@,
@DETAIL@,
@EXCEPTION_STACK@,
@EXCEPTION_MSG@,
@OTP_METHOD_ID@,
@OTP_METHOD_LABEL@,
@OTP_HINT@,

192 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

@ERROR_MESSAGE@,
@MAPPING_RULE_DATA@

sps.page.exceptionMacros
A comma-separated list of classname:macro pairs. Classname is the fully qualified name of the
exception class. Macro is the name of the macro to which the class maps.
Data type: String
Example:

com.tivoli.am.fim.otp.deliveries.OTPDeliveryException:@OTP_DELIVERY_EXCEPTION@,
com.tivoli.am.fim.otp.providers.OTPProviderException:@OTP_PROVIDER_EXCEPTION@

sps.page.notEscapedMacros
A comma-separated list of macros that are not HTML-escaped when they are rendered in pages that
are sent to the browser. Macros that do not appear in this list or the Macros in the
htmlEscapedMacros list are HTML-escaped.

Data type: String

Example:

@COOKIE_NAME@,
@SERVER_NAME@,
@JUNCTION@

sps.page.hiddenMacros
A comma-separated list of macros that are not rendered in the pages that are sent to the browser. The
default value is @EXCEPTION_STACK@.

Data type: String

Example: @EXCEPTION_STACK@

Risk engine properties
riskEngine.reportsEnabled

Enables the generation of risk calculation reports.
Data type: Boolean
Example: false

riskEngine.reportsMaxStored
Specifies the maximum number of reports to store.
Data type: Integer
Example: 5

Authentication service properties
sps.authService.reauthenticationEnabled

Specifies that the authentication service performs authentication even if the user already has an
authenticated session at the required authentication level.
Data type: Boolean
Example: true

sps.authService.policyKickoffMethod
Specifies whether the URLs /sps/authsvc and /sps/apiauthsvc can be invoked with the
policyId query string parameter.

If set to query, the authentication service endpoints continue to accept policyId as a query or post
parameter.

If set to path, authentication service endpoints are changed to:

Chapter 9. Global settings 193

• /sps/apiauthsvc/policy/<shortPolicyId>
• /sps/authsvc/policy/<shortPolicyId>

Where <shortPolicyId> is the value that comes after the prefix
urn:ibm:security:authentication:asf:

By default, the value is set to both.

When set to both, either the path or query parameter can be used to initiate an authentication
service flow.

sps.authService.stateIdSource.authsvc
Specifies whether the URL /sps/authsvc can be invoked with the StateId query string parameter.

If set to Body and Query, the authentication service endpoint continues to accept StateId as a query
or body parameter.

If set to Body Only, the authentication service endpoint only accepts the StateId as a body parameter
(POST or PUT).

Data type: String

Default: Body and Query

Example: Body only

sps.authService.stateIdSource.apiauthsvc
Specifies whether the URL /sps/apiauthsvc can be invoked with the StateId query string
parameter.

If set to Body and Query, the API authentication service endpoint continues to accept StateId as a
query or body parameter.

If set to Body Only, the API authentication service endpoint only accepts the StateId as a body
parameter (POST or PUT).

Data type: String

Default: Body and Query

Example: Body Only

sps.authService.password.pwdFailCountLDAPAttribute
Specify the LDAP attribute which is used to store the number of failed login attempts using the
password attribute. If null and login failure persistent is enabled, the default secPwdFailures
attribute is used.

Example: secPwdFailures

Default: null

sps.authService.password.lastLoginLDAPAttribute
Specify a LDAP attribute which is used to store the last successful login using the password attribute.
If null the and password last use is enabled, the default secPwdLastUsed attribute is used.

Example: secPwdLastUsed

Default: null

Authentication service session store properties
authsvc.stateMgmt.cookieless

Enables the server side storage of session data for the authentication service. If enabled, this removes
the need for the JSESSIONID cookie.

Data type: Boolean

Example: true

194 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Default value: true

authsvc.stateMgmt.store
Specifies the storage type that is used by the Authentication service to cache user session data. The
authentication service can be supported by the DSC, the DMap, or stored in Memory.

Note: For clustered environments, storage in Memory does not replicate between nodes.

Data type: String

Example: Memory

Default value: DMap

authsvc.stateMgmt.lifetime
Length of time in seconds that a session is cached for. Once this time period is exceeded, the user’s
session is removed from the session store. If this value is less than 0, the default lifetime of 3600
seconds (1 hour) is enforced for Memory, and 600 seconds (10 minutes) is enforced for DMap. This
configuration option applies only to session stores supported by the DMap or Memory.

Data type: Integer

Example: 60 (1 minute)

Default value: 3600

authsvc.stateMgmt.memory.maxSessions
Maximum number of user sessions to be cached at any point in time. If the number of sessions in the
store exceeds this value, the oldest session is invalidated. This configuration option only applies to the
Memory session store.

Data type: Integer

Example: 10000

Default value: 1000

authsvc.stateMgmt.memory.cleanupWait
Frequency (in seconds) that expired or excess sessions are removed from the session store. Setting
this entry to -1 disables the cleanup thread. This configuration option only applies to the Memory
session store.

Data type: Integer

Example: 30

Default value: 120

authsvc.stateMgmt.memory.cleanupThread.batchSize
Maximum number of expired sessions which are removed in a single cleanup operation. If the value is
defined as 0 or is blank, batch delete is not enabled. All expired sessions are deleted by using one SQL
delete statement. If the value is defined as an integer greater than 0, batch delete is enabled. The
number that you specify determines how many sessions are deleted in each batch. The batch delete
continues until all of the expired sessions are deleted. This configuration option only applies to
sessions that are stored in Memory.

Data type: Integer

Example: 1000

Default value: 0

Session
session.dbCleanupInterval

Specifies the interval, in seconds, that the database cleanup thread runs to remove expired data in the
runtime database. The default is 86400. The minimum value for this property is 3600. For more
information, see Runtime database tuning parameters

Chapter 9. Global settings 195

Session database clean up can be disabled by setting the dbCleanupInterval to 0. This is not
overridden by the minimum value.

Data type: Integer
Example: 90000

session.store
Specifies the user session store.

Note: This configuration is dependent on distributedSessionCache.enabled.

You can configure the parameter for AAC or Federation in one of the following screens in the LMI:

• AAC > Global Settings > State Persistence
• Federation > Global Settings > State Persistence

Allowed values: unset, In-Memory, DSC, DMap

Example: unset

Distributed session cache
distributedSessionCache.localCacheSize

The number of sessions to be stored on the client as a local cache. A value of 0 or less means that any
number of sessions can be cached by the client. A low number requires more connections to the
distributed session cache if there are many active sessions. A high number runs the risk of running out
of memory if many sessions are locally cached. All sessions are still stored on the distributed session
cache when it is enabled.
Data type: Integer
Example: 4096

distributedSessionCache.externalServers

A list of locations of the distributed session cache servers in weighted order.

Syntax:

<primary_address>:<port>[:<ssl>];<secondary_address>:<port>[:<ssl>],...

<address>

The IP address of the distributed session cache server. For example, 10.150.21.80.

<port>

The port for the distributed session cache. For example, 2126.

<ssl>

Whether SSL communication with the distributed session cache is required. The default value is
false.

Data type: String

Example:

10.150.21.80:2126:true;10.150.21.81:2126:false,10.150.21.82:2126

distributedSessionCache.localCacheEnabled
A switch that dictates whether a local cache of distributed sessions is maintained. If this setting is
disabled a higher load is placed on the distributed session cache server. The local cache should only
be enabled if all requests from the same client is guaranteed to be sent to the same runtime server
(otherwise known as stickiness). Session inconsistencies might occur if the local cache is enabled and
stickiness is not maintained. All sessions are still stored in the distributed session cache when it is
enabled.

196 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Data type: Boolean

Example: False

distributedSessionCache.enabled

Note: This is a legacy configuration. It is recommended that this configuration be set to false and
use session.store instead.

You can configure the parameter for AAC or Federation in one of the following screens in the LMI:

• AAC > Global Settings > State Persistence
• Federation > Global Settings > State Persistence

A switch that dictates if the distributed session cache is used for session failover. If this setting is not
enabled, the distributed session cache server still runs as a service, but the client does not use it.

Data type: Boolean

Example: false

TOTP and HOTP retry properties
otp.retry.enabled

Whether the retry protection is enabled.
Data type: Boolean
Example: true

otp.retry.maxNumberOfAttempts
The maximum number of strikes the users can have before they are prevented from logging in.
Data type: Integer
Example: 5

otp.retry.otpRetryTimeout
The number in seconds a strike lasts.
Data type: Integer
Example: 600

OAuth20
oauth20.clientDataToInclude

Specifies the OAuth client information to be returned as JSON data. This property is a comma-
separated list of the JSON Keys. Valid values are:

contact_type
email_address
contact_person
company_name
company_url
phone_number
other_info

You can specify one or more of these keys for this property.

Note: The oauth20.clientDataToInclude property defaults to contact_type,
email_address, contact_person, company_name, company_url, phone_number,
other_info.

Data type: String
Example: contact_type, email_address, company_name

oauth20.doNotSendXFrameOptionsHeader
Specifies whether an X-Frame-Options header with value SAMEORIGIN must be returned from the
OAuth 2.0 endpoints. When set to true, no X-Frame-Options header is sent.

Chapter 9. Global settings 197

Note: The oauth20.doNotSendXFrameOptionsHeader property defaults to false.

Data type: Boolean
Example: false

oauth20.hashedTokenStorageEnabled
Enables hashed storage when set to true. The Security Verify Access appliance can persist OAuth 2.0
tokens in the clear text form or in the more secure hashed form.

The hashing algorithm set in the runtime.hashAlgorithm property will be used. When verifying
hashed tokens, the runtime.verificationHashAlgorithms property will be used. The
algorithms listed in the runtime.verificationHashAlgorithms property will be tried in the
specified order. This mechanism allows for upgrading of the hashing algorithm while continuing to
support old tokens.

Note: The oauth20.hashedTokenStorageEnabled property defaults to false, and the OAuth 2.0
tokens will be stored as-is.

Data type: Boolean
Example: false

oauth20.sessionEndpointEnabled
Enables the ability to return an authenticated session at the point-of-contact when the
oauth20.sessionEndpointEnabled property is set to true.

Note: The oauth20.sessionEndpointEnabled property defaults to false.

Data type: Boolean
Example: false

oauth20.tokenCache.cleanupWait
The amount of time, in seconds, to wait before it performs another cleanup of expired tokens in the
OAuth 2.0 token cache.

Note: The oauth20.tokenCache.cleanupWait property defaults to 120.

OAuth token clean up can be disabled by setting the cleanupWait value to 0.

Data type: Integer
Example: 120

oauth20.legacyAttributeHandling
Changes how associated attributes function across the API Protection and OpenID Connect solution.
This includes:

• OauthMappingExtUtils.retrieveAllAssociations()
OauthMappingExtUtils.getAssociation() calls in mapping rules

– When it is set to True, it does not return READONLY or SENSITIVE attributes.
– When it is set to False, it returns READONLY or SENSITIVE attributes.

• The user self care endpoint /mga/sps/mga/user/mgmt/grant/

– When it is set to True, attributes that are both READONLY and SENSITIVE are returned
– When it is set to False, attributes that are both READONLY and SENSITIVE are not returned.

• Attributes which are saved from attribute sources when performing identity enrichment.

– When it is set to True, attributes are saved against the grant as neither READONLY or SENSITIVE.
– When it is set to False, attributes are saved against the grant as READONLY. The post token rule

can be used to update this value if necessary.

oauth20.authorize.stateRequired
Specifies state as a required parameter in authorization code flow.

Data type: Boolean

198 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Default: true

Note: For OIDC conformance, set to false.

HTTP client
util.httpClient.defaultTrustStore

Stores the default truststore that HTTPS connections in HTTP client uses.

Note: The util.httpClient.TrustStore property defaults to rt_profile_keys.

Data type: String
Example: rt_profile_keys

util.httpClient.defaultSSLProtocol
Stores the default SSL protocol configuration that HTTPS connections in HTTP client uses.

Note: The util.httpClient.defaultSSLProtocol property defaults to TLS.

Data type: String
Example: TLS

util.httpClient.maxActiveConnections
Specifies the maximum number of HTTP and HTTPS connections, per host, between the appliance
runtime and other modules. In a multiple host environment, the runtime might need to establish many
HTTP/HTTPS connections at the same time. By specifying this property, you can limit the number of
active connections for each host. This setting ensures that each host can obtain their fair share of
HTTP/HTTPS connections without being forced to wait for other hosts to release connections.

• Data type: String
• Default: An unlimited number of HTTP/HTTPS connections are permitted

You can specify the maximum number of active connections in one of two ways:

• Specify a maximum number to apply to every host. Syntax:

"*=<count>"

• Specify a maximum number on a per host basis. Syntax:

"<host1>:<port1>=<count>,<host2>:<port2>=<count>,*=<count>"

<host>
The host value can be either an IP address, a hostname or domain name as specified in the
Endpoint URL. Specify the host value based on the URL format. For example:

– IP Address: 192.168.102.192
– Hostname or domain name: www.server1.com

<port>=<count>
The communication port on the host. For example, to limit port 80 to only 100 connections,
enter 80=100.

*=<count>
The count limit for servers that are not specified by a <host> value in this property. When set to
zero (*=0) there is no limit on the number of HTTP/HTTPS connections that can be created to
other servers. When set to an integer greater than zero, the integer specifies the maximum
number of HTTP/HTTPS connections that can be created to each of the other servers.

Note: Ensure that <count> is specified as a value of type integer. Do not use values of type
string for <count>.

Example 1: Specifying a maximum number to apply to every host

Chapter 9. Global settings 199

For example, your deployment must establish connections to two servers. You want to limit the
number of connections to 100 per server. You also want to ensure that when you add additional
servers, the number of connections to each additional server is limited to 100.

Use the syntax "*=<count>". For this example:

"*=100"

Example 2: Specifying maximum numbers on a per host basis

For example, your deployment must establish connections to two servers. You want to limit the
number of connections for one server to 100, but allow the other server to have 200 connections. In
addition, you do not want to limit the number of connections for any additional servers.

Use the syntax: "<host1>:<port1>=<count>,<host2>:<port2>=<count>,*=<count>"

For example, the runtime might need to establish the connections to the following URLs, for an SMS
OTP flow and an OIDC flow:

• http://www.server1.com/isam/sms_otp
• https://192.168.102.192/isam/oidc_sts

Example configuration entry:

"www.server1.com:80=100,192.168.102.192:443=200,*=0"

The example configuration entry specifies:

• The maximum number of HTTP/HTTPS connections that can be created to www.server1.com at a
time (on port 80) is 100.

• The maximum number of HTTP/HTTPS connections that can be created to 192.168.102.192 at a
time (on port 443) is 200.

• There is no limit on the number of HTTP/HTTPS connections that can be created to other hosts.

HTTP Client version 2
util.httpClientv2.getConnectionTimeout

Specifies the timeout for retrieving a connection from the connection pool. Value is in seconds.

Note: The util.httpClientv2.getConnectionTimeout property defaults to 5 seconds for every
host (*=5)

Data type: String

Example: *=5

You can specify the timeout by using one of the following methods:

• Specify a timeout that applies to every host and port.

“*=<timeout>”

• Specify a timeout on a per host and port basis

“<host1>:<port1>=<timeout>,<host2>:<port2>=<timeout2>,*=<timeout3>

util.httpClientv2.connectTimeout
Specifies the timeout for establishing a connection with the remote host. Value is in seconds.

Note: The util.httpClientv2.connectTimeout property defaults to 5 seconds for every host
(*=5).

Data type: String

Example: (*=5)

200 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

You can specify the timeout by using one of the following methods:

• Specify a timeout that applies to every host and port.

“*=<timeout>”

• Specify a timeout on a per host and port basis

“<host1>:<port1>=<timeout>,<host2>:<port2>=<timeout2>,*=<timeout3>

util.httpClientv2.connectionInactiveValidate
Specifies the period of inactivity in milliseconds after which pooled connections must be re-validated
prior to being reused. Value is in seconds.

Note: The util.httpClientv2.connectionInactiveValidate property defaults to 2 seconds
for every host (*=2).

Data type: String

Example: *=2

You can specify the value by using one of the following methods:

• Specify a value that applies to every host and port.

“*=<value>”

• Specify a value on a per host and port basis

“<host1>:<port1>=<value>,<host2>:<port2>=<value2>,*=<value3>

util.httpClientv2.connectionTimeToLive
Specifies the maximum time a connection stays open. After which it automatically closes. Value is in
seconds.

Note: The util.httpClientv2.connectionTimeToLive property defaults to no timeout.

Data type: String

Example: *=30

You can specify the value by using one of the following methods:

• Specify a value that applies to every host and port.

“*=<value>”

• Specify a value on a per host and port basis

“<host1>:<port1>=<value>,<host2>:<port2>=<value2>,*=<value3>

util.httpClientv2.socketTimeout
Specifies the timeout to wait for packets to arrive on an established connection. Value is in seconds.

Note: The util.httpClientv2.socketTimeout property defaults to 5 seconds for every host
(*=5).

Data type: String

Example: *=5

You can specify the timeout by using one of the following methods:

• Specify a timeout that applies to every host and port.

“*=<timeout>”

• Specify a timeout on a per host and port basis

Chapter 9. Global settings 201

“<host1>:<port1>=<timeout>,<host2>:<port2>=<timeout2>,*=<timeout3>

util.httpClientv2.defaultSSLProtocol
Specifies the default SSL protocol configuration that HTTPS connections in HTTP client uses.

The following values are valid:

• TLSv1
• TLSv1.1
• TLSv1.2
• TLS (This value enables all of the above protocols)

Note: The util.httpClientv2.defaultSSLProtocol property defaults to TLS.

Data type: String

Example: TLS

util.httpClientv2.defaultTrustStore
Specifies the default truststore that HTTPS connections in HTTP client uses.

Note: The util.httpClientv2.defaultTrustStore property defaults to rt_profile_keys.

Data type: String

Example: rt_profile_keys

util.httpClientv2.disableAutoRetries
Specifies whether or not to disable automatic request recovery and re-execution.

Note: The util.httpClientv2.disableAutoRetries property defaults to false for every host
(*=false).

Data type: String

Example: *=false

You can specify the value by using one of the following methods:

• Specify a value that applies to every host and port.

“*=<value>”

• Specify a value on a per host and port basis

“<host1>:<port1>=<value>,<host2>:<port2>=<value2>,*=<value3>

util.httpClientv2.enableHostNameVerification
Specifies whether or not to enable hostname verification. If enabled it verifies that the target
hostname matches the names that are stored inside the server’s X.509 certificate once the
connection is established.

Note: The util.httpClientv2.enableHostNameVerification property defaults to true for
every host (*=host).

Data type: String

Example: *=true

You can specify the value by using one of the following methods:

• Specify a value that applies to every host and port.

“*=<value>”

• Specify a value on a per host and port basis

“<host1>:<port1>=<value>,<host2>:<port2>=<value2>,*=<value3>

202 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

util.httpClientv2.disablePublicSuffixVerification

Specifies whether or not to disable hostname verification using the list of valid public suffixes.
HttpClient uses the public suffix list to ensure that wildcards in SSL certificates cannot be misused to
apply to multiple domains with a common top-level domain. The HTTP Client ships with a copy of the
list retrieved at the time of the release. The local copy is a configuration file named local-copy-
effective_tld_names.dat and can be updated following the instructions at Managing advanced
configuration.

Note: The util.httpClientv2.disablePublicSuffixVerification property defaults to
false for every host (*=false).

Data type: String

Example: *=false

You can specify the value by using one of the following methods:

• Specify a value that applies to every host and port.

“*=<value>”

• Specify a value on a per host and port basis

“<host1>:<port1>=<value>,<host2>:<port2>=<value2>,*=<value3>

util.httpClientv2.disableRedirectHandling
Specifies whether or not the HTTP Client automatically handles redirects.

Note: The util.httpClientv2.disableRedirectHandling property defaults to false for
every host (*=false).

Data type: String

Example: *=false

You can specify the value by using one of the following methods:

• Specify a value that applies to every host and port.

“*=<value>”

• Specify a value on a per host and port basis

“<host1>:<port1>=<value>,<host2>:<port2>=<value2>,*=<value3>

util.httpClientv2.maxConnections
Specifies the maximum number of connections that are created in each connection pool.

Note:

• There is a separate connection pool that is created for each unique SSL connection key. This key is
generated by using the URL hostname and port, truststore, client keystore, client key alias, protocol,
and proxy server values that are specified in the HTTP Client V2 usage.

• The util.httpClientv2.maxConnections property defaults to 200 for every host (*=200).

Data type: String

Example: *=200

You can specify the value by using one of the following methods:

• Specify a value that applies to every host and port.

“*=<value>”

• Specify a value on a per host and port basis

Chapter 9. Global settings 203

“<host1>:<port1>=<value>,<host2>:<port2>=<value2>,*=<value3>

util.httpClientv2.maxRouteConnections
Specifies the maximum number of connections in a connection pool that are available for each unique
route.

Note:

The util.httpClientv2.maxRouteConnections property defaults to 20 for every host (*=20).

Data type: String

Example: *=20

You can specify the value by using one of the following methods:

• Specify a value that applies to every host and port.

“*=<value>”

• Specify a value on a per host and port basis

“<host1>:<port1>=<value>,<host2>:<port2>=<value2>,*=<value3>

util.httpClientv2.proxyHost
Specifies the hostname of the proxy server if requests must go through a proxy.

To disable the use of a proxy, leave this value, proxyPort and/or proxyProtocol empty.

Note: The util.httpClientv2.proxyHost defaults to none.

Data type: String

Example: test.com

util.httpClientv2.proxyPort
Specifies the port of the proxy server if requests must go through a proxy.

To disable the use of a proxy, leave this value, proxyHost and/or proxyProtocol empty.

Note: The util.httpClientv2.proxyPort property defaults to none.

Data type: Integer

Example: 443

util.httpClientv2.proxyProtocol
Specifies the protocol for the proxy server if requests must go through a proxy.

To disable the use of a proxy, leave this value, proxyHost and/or proxyPort empty.

Note: The util.httpClientv2.proxyProtocol property defaults to none.

Data type: String

Example: test.com

Demo
live.demos.enabled

Enables the mobile demonstration application.
Data type: Boolean
Example: False

live.demos.settings
This setting can be used to pre-populate the settings of the mobile demo. This is a comma separated
set of key, value pairs that match what is submitted on the settings form.

Data type: String

204 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Example: lmiHostAndPort=lmi.host.com, lmiAdminId=admin, lmiAdminPwd=admin,
acHostAndPort=127.0.0.1, websealHostNameAndPort=webseal.host.com

Knowledge questions properties
knowledge.questions.AnswerValidationRegEx

Specifies the regular expression used to validate the knowledge question answer value provided
during a knowledge question management operation. The assigned value is the list of invalid
characters to match against to determine if the supplied value is valid.

Note: At a minimum, this property must include the following characters: <>:"

Data type: RegEx
Example: [\[()<>,;:\\/\"\]=]

knowledge.questions.QuestionValidationRegEx
Specifies the regular expression used to validate the knowledge question text value provided during a
knowledge question management operation. The assigned value is the list of invalid characters to
match against to determine if the supplied value is valid.

Note: At a minimum, this property must include the following characters: <>:"

Data type: RegEx
Example: [\[()<>,;:\\/\"\]=]

Key encryption and signing service (KESS)
kess.crlEnabled

Checks the certificate revocation list. Checking is done by the key encryption and signature service
(KESS) for all functions that use an external certificate, except for the audit syslog. If your
configuration does not require CRL checking, you can disable it. For example, if you use if an internal
certificate authority (CA), you might want to disable CRL checking. The kess.crlEnabled property
defaults to true.
CRL site unavailability scenario

If you have kess.crlEnabled set to true and a CRL site becomes unavailable, you cannot
determine the revocation status of the certificate. In this situation, the single sign-on flow will fail.

Confirm a CRL site unavailability issue by looking for the message "FBTKJK056E The CRL site
could not be determined." in the runtime trace.log file.

As a temporary workaround, set the CRL checking to false to keep the single sign-on flow
running. As soon as the CRL site is working again, set kess.crlEnabled to true so that the
single sign-on flow contains the CRL check.

CAUTION: If you do stop CRL checking as a temporary workaround, be aware that the
certificate might have already been revoked by the CA. If this type of certificate is allowed
to pass the validation, it creates security issues. Therefore, ensure that you enable CRL
checking to avoid potential security issues such as this.

Data type: Boolean
Example: true

kess.crlInterval
The amount of time, in seconds, between successive CRL checks. Using an interval of time between
CRL checks reduces the performance impact of doing the checks every time a certificate needs to be
validated.

A value less than or equal to zero means that the runtime performs a CRL check every time it wants to
use a certificate. The default is 0 seconds.

If kess.crlEnabled is set to false, this value is ignored.

Data type: Integer

Chapter 9. Global settings 205

Example: 86400

This value means that a CRL check on a certificate is performed once per day.

kess.hostnameValidationDisabled
Determine whether to disable host name verification when establishing an SSL connection. Host name
verification is performed when the host name of the server does not match the CN of the certificate of
the server.

In a test environment, you might want to disable the validation. In a production environment, you
might want to enable validation.

The default value is False.

Data type: Boolean
Example: False

kess.keySelectionCriteria
Specify which key or certificate to use for signing, validating, encrypting, or decrypting various
messages. If there are multiple keys or certificates with the same Subject DN as the key or certificate
with the specified alias, this setting determines which one to use. Use one of the following selection
methods:
only.alias

Alias only: The selected key only, without Auto rollover. If the key is invalid, the software indicates
failure. Configure the property to use the value.

shortest.lifetime
Shortest lifetime: For signing, a valid key with the shortest available lifetime. For validation, key
lifetime availability runs from shortest to longest.

longest.lifetime
Longest Lifetime: For signing, a valid key with the longest available lifetime. For validation, key
lifetime availability runs from longest to shortest.

Data type: String
Example: only.alias

kessjksservice.exclude.inclusive.namespace.prefixes
Specifies a comma-separated list of prefix names. When this is set, the prefixes in the list are not
added to the InclusiveNamespaces list that is in the Signature Element.

Data type: String

Example: ds

JSON Web Key
jwks.encryption.keystore

Defines the name of the encryption keystore to be used by the jwks endpoint for the runtime. These
certificates will have their public keys exposed, with the 'use' value 'enc'.

Default value: rt_profile_keys

jwks.signing.keystore

Defines the name of the signing keystore to be used by the jwks endpoint for the runtime. These
certificates will have their public keys exposed, with the 'use' value 'sig'.

Default value: rt_profile_keys

Policy information point (PIP)
pip.uncachedAttributes

Defines a comma-separated list of attributes that are generated by a policy information point (PIP)
that you do not want to be cached.

206 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Data type: String list
Example: urn:ibm:security:jdbc:city, urn:ibm:security:ldap:priviledgeUser

Security token service (STS)
sts.ivcred.unauthenticated.user.name

Set to a special user account for unauthenticated user tokens when using IVCRED STS module in
validate mode. The Default value is "".

Data type: String

Example: guest

sts.ivcred.unauthenticated.user.registry.id

In addition to the user name set in sts.ivcred.unauthenticated.user.name, a user's registry
id can also be added when using IVCRED STS module in validate mode. The Default value is "".

This parameter is optional.

Data type: String

Example: cn=guest,o=ibm,c=us

sts.ivcred.unauthenticated.user.uuid

In addition to the user name set in sts.ivcred.unauthenticated.user.name, a user's UUID
can also be added when using IVCRED STS module in validate mode. The Default value is "".

This parameter is optional.

Data type: String

Example: 81a2a65e-0018-0150-8080-3f83b0f74f4c

sts.ldapAttributeCache.TTL
Specifies a time-to-live (TTL) value, in seconds, for the amount of time to keep an LDAP attribute in
the cache. Specify 0 to disable.

The default value is 60.

Data type: Integer
Example: 60

sts.wstrust.error.shortexception
Set this parameter to True to provide a short exception in the 'wst:Reason' for STS exceptions.
When this parameter is set to False, the entire exception stack is provided in 'wst:Reason'.

Type: Boolean

Default: False

Example: False

Mobile Multi-Factor Authentication (MMFA)
mmfa.authenticator.cleanupWait

The amount of time, in seconds, to wait before another cleanup of expired authenticators is
performed.

MMFA authenticator clean up can be disabled by setting cleanupWait to 0.

The default value is 3600.

Data type: Integer

Example: 3600

Chapter 9. Global settings 207

mmfa.transactionArchival.maxCompletedPerUser

The number of historical transactions in a completed state to keep in the HVDB before archival to the
audit log. The oldest transactions will be removed first. A value of -1 will indicate that no archival
should be performed.

The default value is 50.

Data type: Integer

Example: 50

mmfa.transactionArchival.maxPendingPerUser

The number of transactions to keep in a pending state. Transactions over this number will have their
status set to "fail". The oldest transactions will be aborted first. A value of -1 will indicate that no
archival should be performed.

The default value is 1.

Data type: Integer

Example: 1

mmfa.transactionPending.minAgeBeforeAbort

The minimum number of seconds a transaction is in the pending state before being aborted via a
cleanup thread. Due to the cleanup thread interval, the total time a transaction can be in the pending
state can be between minAgeBeforeAbort and (minAgeBeforeAbort + cleanupInterval) - 1

The default value is 300.

Data type: Integer

Example: 300

mmfa.transactionPending.cleanupInterval

The number of seconds between each run of the pending transactions cleanup thread.

The default value is 150.

Data type: Integer

Example: 150

mmfa.transaction.cleanupOnlyOnPrimaryMaster

Indicates whether transaction cleanup should be run on all nodes in a cluster, or only on the primary
master. This applies to pending transaction cleanup as well as transaction archival.

The default value is false.

Data type: Boolean

Example: false

mmfa.devicePrompt.skipIfOneDevice
Indicates whether to skip the device selection page in an MMFA flow if the user only has one device or
authenticator registered.

The default value is false.

Data type: Boolean

Example: true

208 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

WS-Federation
wsfed.idp.rstr.excluded.elements

Specifies a comma-separated list of elements to exclude from the WS-Federation request security
token response. Can optionally contain a federation realm and federation partner realm, to indicate
the federation or federation partner that uses the property values.

The default value is default=Forwardable,Delegatable,Status,Renewing.

The syntax for specifying federation and federation partner is:

default=<comma_separated_list_of_elements>:<federation_realm>=<comma_separated_list_of_elements>:
 <federation_realm>%<partner_realm>=<comma_separated_list_of_elements>

Data type: String

Example:

default=Forwardable,Delegatable,Status,Renewing:fed1-REALM=Forwardable,Delegatable:
fed1-REALM%partner1-REALM=Status

SAML 1.1
saml.use.legacy.clockskew.default

IBM Security Verify Access can add a clock skew of 60 seconds when validating the SAML assertion
timestamps. To enable the 60 second clock skew, add the custom property:

saml.use.legacy.clockskew.default = true

Default value = False

• Value type: Boolean
• Example value: True

Note: This custom property is also applicable for SAML 2.0

saml.allowDebugMessages
When specified as true, and a SAML artifact resolution failure occurs, the SystemOut.log and
SystemErr.log contains an informational message. In addition, the message contains extra debug
information about the request that contained the failed artifact and provides a reason for the event.

Note: This message is only available in English.

Default value: False

• Value type: Boolean
• Example value: SAML.allowDebugMessage = True

saml.allowNoRecipient
Use this custom property if a SAML 1.x service provider needs to accept a samlp:Response that does
not contain a Recipient attribute.

Default value: False

saml.assertion.IncludeNSPrefixList.DS
When this custom property is specified as true, ds is included in the Prefix List attribute of the
InclusiveNameSpaces in the SAML assertion.

Default value: False

• Value type: Boolean
• Example value: True

Note: This custom property is also applicable for SAML 2.0

Chapter 9. Global settings 209

saml.allowSpecificInvalidArtifactMessages
When this custom property is specified as true, and a SAML artifact resolution failure occurs, identity
provider sends a SAML Response with specific invalid message to tell the service provider that there is
no assertion available. The specific invalid message is FBTSML276E. If not specified, by default it is
false, and the invalid message send back to service provider is FBTSML013E.

Default value: False

• Value type: Boolean
• Example value: True

SAML 2.0
saml20.enableSubjectInAuthnRequest

Set to true if the Subject element is required for the SAML 2.0 AuthnRequest. The Subject element is
set to the userid of the existing authenticated session. The Default value is false.

Data type: Boolean

Example: true

saml20.idp.acsurlpattern
IBM Security Verify Access uses an exact string comparison between the AssertionConsumerService
URL in the AuthnRequest message and the protocol endpoint specified in metadata.

This custom property allows regular expression matching for the AssertionConsumerService URL and
the protocol endpoint, so that a dynamic AssertionConsumerService URL that matches the regular
expression can be provided in the AuthnRequest.

Data type: String

Note: The binding can be omitted if the configuration applies to all the bindings for that specific
federation and partner.

Format:

<FederationId>%<PartnerId>
%<Binding>=<RegularExpression>,<FederationId2>%<PartnerId2>
=<RegularExpression2>

Example:

https://www.myidp.ibm.com/isam/sps/saml20idp/saml20%https://www.mysp.ibm.com
/isam/sps/saml20sp/saml20%urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST=https://.*.ibm.com/
isam/sps/.*

saml20.sessionStore
Specifies the SAML 2.0 session footprint store.

SAML session footprint can be stored in HVDB, Redis or DSC. Select Distributed Map (DMap) if the
SAML session needs to be stored in HVDB or Redis. When the option is switched to DSC, the SAML
session gets stored in Distributed Session Cache.

Data type: String

Note: The selection for the SAML 2.0 session footprint store is drop-down list with the following
options:

• DMap
• DSC

Example: DMap

Note: This configuration affects SAML 1.1 and SAML 2.0.

210 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

saml20.authn.request.provider.name.enabled
Set to true to add ProviderName value to SAML2.0 AuthnRequests.

Data type: Boolean

Example: False

Note: The default value is False.

saml20.signatureValidation.policy
Allowed Values: LENIENT/STRICT

Example: STRICT

Note: The default value is STRICT.

If STRICT is specified, the signature must be included in the received request and it will be validated.
If LENIENT is specified, the signature, if it exists, will be validated and if no signature is included in
the request, no error is reported.

OIDC
oidc.rp.idToken.validationSkew

The number of seconds of skew allowed on the 'nbf' and 'exp' claims of an idToken when it is being
processed by an OpenID Connect relying party. For instances where the clocks of two systems are not
perfectly synchronized.

Note: This advanced configuration does not apply to legacy OpenID Connect relying parties or
Reverse Proxy Relying parties.

Default value: 0

Rhino Javascript Engine
js.optimizationLevel

*js.version *Supported values Context.VERSION_ES6, Context.VERSION_1_7, Context.VERSION_1_8

This is the rhino javascript version indicator.

Default values: js.optimizationLevel =0 and js.version= Context.VERSION_ES6

Managing user registries
The appliance runtime profile has a user registry associated. Use the User Registry management page to
administer the users and group memberships. The user registry in discussion here is the one used by the
runtime applications, not the one used by the management interface.

Before you begin
Note: From version 9.0.7 and above, these characters "&|\><;" are not allowed for passwords in the AAC
or Federation user registry.

Procedure
1. From the top menu, select the user interface panel for your licensing level.

• AAC > Manage > User Registry
• Federation > Manage > User Registry

A list of all the current users in the registry is displayed. You can filter and reorder the list of users.
2. Select Users (current page) or Groups to manage users or groups, respectively.
3. To manage users, perform one or more of the following actions as needed:

Chapter 9. Global settings 211

Create a user in the registry

a. Click New.
b. In the Create User window, enter the user name and password for the new user.
c. Click OK.

Delete a user from the registry

a. Select the user to delete.
b. Click Delete.
c. In the Delete User window, click Yes to confirm the delete operation.

Change the password of a user in the registry

a. Select the user for which you want to change password.
b. Click Set Password.
c. In the Set Password window, enter the password in the New Password and Confirm

Password fields.
d. Click OK.

Manage group memberships of a user

a. Select the user of interest. The group memberships that are associated with this user are
displayed under the Group Membership section.

b. You can add the user to a group or delete the user from a group in the registry.
Add the user to a group

i) In the Group Membership section, click Add.
ii) In the Add to Group window, select the group to add this user to.

Note: Only a single group can be selected.
iii) Click OK.

Remove the user from a group

i) In the Group Membership section, select the group to remove the user from.
ii) Click Delete.

iii) In the Remove from Group window, click Yes to confirm the removal.
4. To manage groups, perform one or more of the following actions as needed:

Create a new group in the registry

a. Click New.
b. In the New Group window, enter the group name for the new group.
c. Click OK.

Delete a group from the registry

a. Select the group to delete.
b. Click Delete.
c. In the Delete Group window, click Yes to confirm the delete operation.

Manage group members

a. Select the group of interest. The users that are currently members of this group are displayed
under the Group Members section.

b. You can add a user to the group or delete a user from the group in the registry.

Add a user to the group

a. In the Group Members section, click Add.

212 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

b. In the Add to Group window, select the user to add to the group.

Note: Only a single user can be selected.
c. Click OK.

Remove a user from the group

a. In the Group Members section, select the user to remove from the group.
b. Click Remove.
c. In the Remove from Group window, click Yes to confirm the removal.

Tuning runtime application parameters and tracing specifications
To manually tune selected runtime application parameters and tracing specifications, use the Runtime
Parameters management page.

Before you begin

About this task

Procedure
1. From the top menu, select AAC > Global Settings > Runtime Parameters or Federation > Global

Settings > Runtime Parameters.
This page contains three panels: Runtime Status, Runtime Tuning Parameters, and Runtime
Tracing.

2. Perform one or more of the following actions to tune your runtime.

Note: Certain changes might require a restart of the runtime before they can take effect.

Disable automatic restart of the runtime
By default, the runtime is automatically restarted after certain changes are made. You can disable
this automatic restart function if you prefer manual restarts.

a. On the Runtime Tuning Parameters panel, select Auto Restart.
b. Click Edit.
c. In the Auto Restart window, define the value as False.
d. Click OK.

View the status of the runtime and restart the runtime

a. Select the Runtime Status panel. The status of local and clustered runtimes are displayed.

• Under Local Runtime Status, you can view the runtime operational status, when it was last
started, and whether a restart is outstanding. If the value of the Restart Required field is
True, it means that the runtime must be restarted for some changes to take effect.

• Under Clustered Runtime Status, all nodes in the cluster are listed.

– The Master column indicates whether a node is the cluster master.
– The Runtime Status column indicates whether a node is running or stopped.
– The Changes Active column indicates whether changes made to the cluster configuration

are active on this node. Having a green indicator in this column means that all changes
made are already active. Having a yellow indicator in this column means that this node
must be restarted before some changes can take effect.

b. Depending on which runtime you want to restart, click Restart Local Runtime or Restart All
Clustered Runtimes.

Chapter 9. Global settings 213

Modify the maximum or initial heap size

These parameters indicate the maximum and initial heap size in megabytes for the runtime Java
virtual machine.

a. On the Runtime Tuning Parameters panel, select Max Heap Size or Initial Heap Size.
b. Click Edit.
c. In the Max Heap Size or Initial Heap Size window, enter the heap size value as needed.
d. Click OK.

Modify the minimum or maximum threads
These parameters indicate the minimum number of core threads that the runtime server starts
with and the maximum number of threads that can be associated with the runtime server.

If the minimum value is not set or is set as -1, a default value is calculated based on the number of
hardware threads on the system.

If the maximum value is not set or is set as 0 or less, a default value of unbounded is used.

The minimum cannot be set to a value larger than the maximum.

a. On the Runtime Tuning Parameters panel, select Min Threads or Max Threads.
b. Click Edit.
c. In the Min Threads or Max Threads window, enter the required value.
d. Click OK.

Modify whether to suppress sensitive trace

Enabling this parameter prevents sensitive information from being exposed in log and trace files.
Examples of such sensitive information include bytes received over a network connection.

a. On the Runtime Tuning Parameters panel, select Suppress Sensitive Trace.
b. Click Edit.
c. In the Suppress Sensitive Trace window, select or clear the check box as needed.
d. Click OK.

Modify console log level

Console log level controls the granularity of messages that go to the console.log file.

a. On the Runtime Tuning Parameters panel, select Console Log Level.
b. Click Edit.
c. In the Console Log Level window, select the new value from the list.
d. Click OK.

Set whether to accept client certificates

This parameter controls whether the server accepts client certificates as a form of authentication.

a. On the Runtime Tuning Parameters panel, select Accept Client Certificates.
b. Click Edit.
c. In the Accept Client Certificates window, select or clear the check box as needed.
d. Click OK.

Maximum Session Count
This parameter defines the maximum number of sessions that is maintained in memory.

Note: The default setting is 250000. When this setting is used, the maximum number of sessions
is 250000.

a. On the Runtime Tuning Parameters panel, select Maximum Session Count.
b. Click Edit.

214 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

c. In the Maximum Session Count window, define the value.
d. Click OK.

Set session invalidation timeout

This parameter defines the amount of time a session can remain unused before it is no longer
valid.

Note: The default setting is 1200. When this setting is used, the session invalidation timeout is
1200 seconds.

a. On the Runtime Tuning Parameters panel, select Session Invalidation Timeout.
b. Click Edit.
c. In the Session Invalidation Timeout window, define the value in seconds.
d. Click OK.

Set session reaper poll interval

This parameter defines the wake-up interval in seconds for the process that removes invalid
sessions. The minimum value is 30 seconds.

The default setting is Unset. When this setting is used, or if a value less than the minimum is
entered, an appropriate value is automatically determined and used. This value overrides the
default installation value, which is 30 - 360 seconds, based on the session invalidation timeout
value. Because the default session invalidation timeout is 1800 seconds, the reaper interval is
usually between 120 and 180 seconds.

a. On the Runtime Tuning Parameters panel, select Session Reaper Poll Interval.
b. Click Edit.
c. In the Session Reaper Poll Interval window, define the value in seconds.
d. Click OK.

Set the keystore that is used by the runtime server

This parameter defines the key database that contains the runtime server's private key.

a. On the Runtime Tuning Parameters panel, select Keystore.
b. Click Edit.
c. In the Keystore window, select the key database from the list.
d. Click OK.

Set the truststore that is used by the runtime server

This parameter defines the key database that contains keys that are trusted by the runtime server

a. On the Runtime Tuning Parameters panel, select Truststore.
b. Click Edit.
c. In the Truststore window, select the key database from the list.
d. Click OK.

Configure an outbound HTTP proxy

You must specify values for the properties for the HTTP proxy. You might also need to import the
root CA certificate from the proxy. See the instructions that follow.

Table 102. HTTP proxy properties

Name Sample Value Description

http.proxyHost http.proxy.ibm.com The hostname or IP address of
the HTTP proxy

Chapter 9. Global settings 215

Table 102. HTTP proxy properties (continued)

Name Sample Value Description

http.proxyPort 3128 The port of the HTTP proxy

https.proxyHost https.proxy.ibm.com The hostname or IP address of
the HTTPS proxy

https.proxyPort 3128 The port of the HTTPS proxy

a. For each property in the table above:

i) On the Runtime Tuning Parameters panel, select the property.
ii) Click Edit.

iii) In the property window, enter the value. See the sample values in the table.
iv) Click OK.

b. When all properties are set, follow the prompt to deploy the pending changes.

Certain functions, such as the OpenID connect single sign-on flow, require the root CA certificate of
the outbound HTTP proxy to be imported to the Security Verify Access runtime keystore.

Complete the following steps:

a. Go to your HTTP Proxy application and obtain the necessary certificate for exchange. The exact
steps to take are specific to the proxy application. Place the certificate on the local file system
where it can be accessed by the appliance.

b. On the Security Verify Access system, log in to the local management interface and select
System > Secure Settings > SSL Certificates

c. Select the rt_profile_keys keystore.
d. Select Manage > Edit SSL Certificate Database.
e. Select Manage > Import.
f. On the Signer Certificate panel, browse to locate the Certificate File. Enter a Certificate Label.

Click Import.
g. Deploy the changes.

Delete the value of a parameter
Use this button to delete the existing value of a parameter.

a. Select the parameter to reset the value for.
b. Click Delete. The value of the parameter is then changed to Unset.

Manage the application interface on which the runtime listens

a. On the Runtime Tuning Parameters panel, under Runtime Listening Interfaces, you can add,
edit, or delete a listening interface.
To add a listening interface

i) Click Add.
ii) In the Runtime Listening Interfaces window, select the listening interface from the list.

iii) Specify the listening port.
iv) Select the SSL check box if security is required.
v) Click OK.

To modify a listening interface

i) Select the listening interface to edit.
ii) Click Edit.

216 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

iii) In the Runtime Listening Interfaces window, edit the values as needed.
iv) Click OK to save the changes.

To delete a listening interface

i) Select the listening interface to delete.
ii) Select Delete.

iii) Confirm the deletion.

Manage tracing specification

Note: Setting trace for Oracle components “oracle.*” results in the underlying Oracle JDBC jar
file being changed to a debugging jar file. This might have adverse effects on performance and as
such Oracle tracing should only be enabled for debugging purposes and disabled once complete.

a. Select the Runtime Tracing link from the top of this page. You can also access this panel from
the top menu by selecting Monitor > Logs > Runtime Tracing.

b. Use one of the following ways to edit the trace level of a component.

• Select the component name from the Component list. Select the ideal trace level for this
component from the Trace Level list. Then, click Add. Repeat this process to modify trace
levels for other components if needed. To clear all of the tracing levels, click Clear.

To log all events, select ALL as the trace level.

Note: This setting increases the amount of data in logs, so use this level when necessary.

com.tivoli.am.fim.authsvc.*
com.tivoli.am.fim.trustserver.sts.modules.*

Table 103. Valid trace levels. The following table contains the valid trace levels.

Level Significance

ALL All events are logged. If you create custom
levels, ALL includes those levels and can
provide a more detailed trace than FINEST.

FINEST Detailed trace information that includes all of
the details that are necessary to debug
problems.

FINER Detailed trace information.

FINE General trace information that includes
methods entry, exit, and return values.

DETAIL General information that details sub task
progress.

CONFIG Configuration change or status.

INFO General information that outlines the overall
task progress.

AUDIT Significant event that affects the server state
or resources.

WARNING Potential error or impending error. This level
can also indicate a progressive failure. For
example: the potential leaking of resources

Chapter 9. Global settings 217

Table 103. Valid trace levels. The following table contains the valid trace levels. (continued)

Level Significance

SEVERE The task cannot continue, but component,
application, and server can still function. This
level can also indicate an impending
unrecoverable error.

FATAL The task cannot continue, and component,
application, and server cannot function.

OFF Logging is turned off.

• Enter the name and value of the trace component in the Trace Specification field. To modify
multiple components, separate two strings with a colon (:). Here is an example.

com.x.y.*=WARNING:com.a.b.*=WARNING:com.ibm.isva.*=INFO

c. Click Save.
3. When you make changes, the appliance displays a message that there are undeployed changes. If you

have finished making changes, deploy them.

Template files
Template files are HTML pages that are presented to your users during the authentication process. The
pages prompt users for authentication information, such as user names and passwords, or present
information to users, such as one-time passwords, status, or errors.

You can customize any of the HTML pages by exporting, modifying, and importing its corresponding
template file. Each template file uses one or more specific macros.

Managing template files
Use the local management interface to manage files and directories in the template files.

About this task
You can run the following tasks on the template files:

• New- Use this option if you want to create a new file or directory.
• Edit- Use this option if you want to view or modify the template file.
• Import- Use this option if you to import a file to the template files root.
• Export- Use this option if you want to export a file from the template files root.
• Rename- Use this option if you want to rename a file or directory from the template files root.
• Delete- Use this option if you want to delete a file or directory from the template files root.
• Import Zip- Use this option if you want to import the template files from a compressed file.
• Export Zip- Use this option if you want to export the template files as a compressed file.

Note: When you use this option to export template files as a compressed file, you cannot export an
individual folder. The root directory, including all the sub-directories, is exported. To access the
contents of a specific directory, export the entire template directory, and then view the directory from
the extracted compressed file on your local workstation. Administrators can refer to metadata.json
under file downloads after upgrades to check if there are new configuration parameters included for
AAC related endpoints.

Procedure
1. Select AAC > Global Settings > Template Files

218 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

2. Work with all the management files and directories.
Create a file or directory in the template files root

a. Select the directory of interest.
b. Select New.
c. Select File or Directory.
d. Enter the name of the file or directory.
e. Click Save.

View or update the contents of a file in the template files root

a. Select the file of interest.
b. Select Edit. You can then view the contents of the file.
c. Edit the contents of the file.
d. Click Save.

Export a file from the template files root

a. Select the file of interest.
b. Select Manage > Export.
c. Confirm the save operation when your browser displays a confirmation window.

Rename file from the template files root

a. Select the file or directory of interest.
b. Select Manage > Rename.
c. Enter the new resource name.
d. Click Save.

Delete file from the template files root

a. Select the file or directory of interest.
b. Select Manage > Delete.
c. Click Yes.

Import a file to the template files root

• Select a file.

a. Select Manage > Import.
b. Click Browse.
c. Browse to the file that you want to import the contents from.
d. Click Open.
e. Click Import.

• Select a folder.

a. Select Manage > Import.
b. Click Browse.
c. Browse to the file that you want to import to the selected folder.
d. Click Open.
e. Click Import.

Export the template file as a compressed file

a. Select Manage > Export Zip.
b. Confirm the save operation when your browser displays a confirmation window.

Chapter 9. Global settings 219

Import the template files as a compressed file
Make sure that the files in the compressed file are in the same directory structure as the files in the
root directory or appliance.
For example, if a file in the compressed file is in the /C directory of the appliance, the compressed
file must contain the C folder and the file that you want to import. When you import a compressed
file that contains:

• A file that exists in the appliance

The file is replaced in the appliance.
• A file or directory that does not exist in the appliance

The file or directory is created in the appliance. You can put these new files and directories in an
existing non-root directory or add a new directory in the root.

Note: You cannot delete a top level directory after you create it.

a. Select Manage > Import Zip.
b. Click Browse.
c. Browse to the file you want to import.
d. Click Open.
e. Click Import.

3. When you edit or import template files, the appliance displays a message that there are undeployed
changes. If you finish the changes, deploy them.

For more information, see Deploying pending changes.

Customizing the consent page
The consent page of an OpenID Connect Provider Federation can be changed with the Template Files
page in the local management interface.

About this task
All OpenID Connect Provider (OP) federations can have their own unique consent pages. Follow these
steps to set a consent page to be used by a specific federation.

Procedure
1. Log in to the local management console.
2. Select Federation > Global Settings > Template Files.
3. Expand the C locale.
4. Highlight the oidc folder.
5. Click New and select Directory.
6. Enter the Federation Name of the OpenID Connect Provider Federation to use the custom consent

page.
7. Click Save.
8. Highlight the new directory.
9. Click New and select File.

10. Enter consent.html as the file name.
11. Populate the file contents.
12. Click Save.
13. Deploy the pending changes.

Note: The deploy operation triggers a runtime restart.

220 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Template page scripting
You can use JavaScript to add server-side scripting for Advanced Access Control and Federation template
pages. You can use JavaScript functions, closures, objects, and delegations.

Usage
You can customize template files or pages on the server. For example, you can customize an error
message that is displayed by the runtime server.

The template files menu is located under both the Federation and AAC menus.

To edit a Federation template file, go Federation > Template Files, select the specific template file, and
click Edit.

To edit an AAC template file, go to AAC > Template Files, select the specific template file, and click Edit.

The JavaScript engine supports the following syntax:

• Insert JavaScript code between <% and %>.
• Embed JavaScript expressions between <%= and %>.

Example tasks

• Access whitelisted Java classes. For example,

var javaStr = new java.lang.String("Hello")

• Access all the macro variables through templateContext. The standard object to access a Java object is
templateContext. For example,

templateContext.macros["@TIMESTAMP@"]

• Use the document.write function to write content to the output stream. For example,

templateContext.response.body.write("Hello")

Examples

Table 104. Example JavaScript

Template HTML Output

<%
var contents = {product:"Verify
Access",department:"Lab",country:"SG",region:"Asia"};
templateContext.response.body.write(contents.product);
%>

Verify Access

<%
var date = templateContext.macros["@TIMESTAMP@"].substring(0, 10);
templateContext.response.body.write(date);
%>

2017-01-25

The following code example shows how to use repeatable macros. The following example shows an
OAuth consent page.

<%
var test = templateContext.macros["oauthTokenScopeNewApprovalRepeatable"];
n = test.length;
for (i=0; i<n; i++){
 var scope = test[i]["@OAUTH_TOKEN_SCOPE_REPEAT@"];
 if (scope == "contacts"){
 label ="Do you grant permission to the client to access your phone book";
 }

Chapter 9. Global settings 221

 else if (scope == "photos"){
 label ="Do you grant permission to the client to access your photos";
 }
 else if (scope == "messages"){
 label ="Do you grant permission to the client to access your WhatsApp messages";
 }
 else{
 label ="Do you grant permission to the client to access your "+scope;
 }
%>

Setting an HTTP response header
You can use templateContext.response.setHeader(HeaderName, HeaderValue) to set an
HTTP response header.

For example, you can set the Content-Type to support both a mobile-based browser and a traditional
browser. A mobile-based browser might expect JSON format while a traditional browser expects forms-
based HTML.

 <%
templateContext.response.setHeader("Content-Type","application/json");
var myObj = { "name":"John", "age":31, "city":"New York" };
templateContext.response.body.write(JSON.stringify(myObj));
%>

To set an HTTP header that uses forms-based HTML:

templateContext.response.setHeader("Content-Type","text/html");

Setting an HTTP status code
You can use templateContext.response.setStatus(Code) to set an HTTP response status code.

For example, if you want to set the status to 400 (standard code for a bad request):

templateContext.response.setStatus(400);

Setting a Redirect URL
You can use templateContext.response.sendRedirect(URL) to redirect the HTTP response to a
different URL.

For example, when you configure single logout, you can redirect the response to a specific target page,
based on the federation name. An example scenario is a deployment that has one SAML 2.0 federation
with two partner federations. The partner federations are named saml20app2 and saml20sp. The
saml20app2 federation uses an application that is named jkebank. The saml20sp federation uses an
application that is named jkeschool. The page to display on logout is determined by the federation
name.

var fedName = templateContext.macros[@FEDERATION_NAME@"];
if (fedName == "saml20app2")
{
 templateContext.response.sendRedirect("http://jkebank:1337");
}
else if
{
(fedName == "saml20sp")
{
 templateContext.response.sendRedirect("http://jkeschool:1400");
}

222 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Obtaining a list of macros that are available for a template page
In some scenarios, you might want to write JavaScript based on configuration values in your deployment.
For example, you might implement one action based on the authentication type, such as if the OTP type is
TOTP. Another example is you might implement an action if the Federation name of the single sign-on
partner matches a certain value.

Information such as the OTP type and partner name can be retrieved only through the template page
macros. To use such information, you need to know which macros are used by the page. The JavaScript
engine support provides a utility that can print the available macros for a page.

Use the following syntax to obtain a list of the available macros.

<%
var javaStr = new java.lang.String(JSON.stringify(templateContext.macros));
templateContext.response.body.write(javaStr.replaceAll('@','#'));
%>

For example, the following sample code prints the macros from a template page that ran a single sign-on
flow with a partner that does not exist.

{

 "@PAGE_IDENTIFIER@": "/saml20/invalid_init_msg.html",
 "@TARGET@": "https://www.mysp.ibm.com/isam/mobile-demo/diag",
 "@PARTNER_ENTITY_ID@": "",
 "@ERROR_MESSAGE@": "FBTSML002E The value https://saml.partner.com for attribute PartnerId is not
valid.",
 "@FEDERATION_NAME@": "saml20idp",
 "@FEDERATION_ENTITY_ID@": "https://www.myidp.ibm.com/isam/sps/saml20idp/saml20",
 "@REQ_ADDR@": "/sps/saml20idp/saml20/logininitial",
 "@ERROR_CODE@": "FBTSML002E",
 "@EXCEPTION_STACK@": "",
 "@PARTNER_NAME@": "",
 "@TIMESTAMP@": "2017-06-22T03:34:39Z",
 "@SAMLSTATUS@": "<fim:FIMStatusCollection xmlns:fim=\"urn:ibm:names:ITFIM:saml\"
 xmlns:samlp=\"urn:oasis:names:tc:SAML:2.0:protocol\"><fim:FIMStatusCollectionEntry>
 <samlp:Status><samlp:StatusCode Value=\"urn:oasis:names:tc:SAML:2.0:status:Responder\"></
samlp:StatusCode>
 <samlp:StatusDetail><fim:FIMStatusDetail MessageID=\"invalid_attribute_value\">
 <fim:SubstitutionString>https://saml.salesforce.com</fim:SubstitutionString>
 <fim:SubstitutionString>PartnerId</fim:SubstitutionString></fim:FIMStatusDetail>
 </samlp:StatusDetail></samlp:Status></fim:FIMStatusCollectionEntry></fim:FIMStatusCollection>",
 "@EXCEPTION_MSG@": ""

}

The format is JSON { "name1":"value1","name2":"value2"}

Limitations
• JavaScript validation is done only when a template file is edited (imported) or created. A template file

that is imported as a part of an Import compressed file is not validated.
• You must restart the runtime manually to activate changes to OpenID Connect template files. In the

administrative interface, click Federation -> Runtime Tuning -> Restart Runtime.
• When you access a variable, do not end the variable name with a semicolon. For example, in the

following JavaScript, do not end <%=example%> with a semicolon <%=example;%>.

<%var example = "Hello World"; %>
<%=example%>

The correct syntax is <%=example%>. Do not use the incorrect syntax <%=example;%>.

Chapter 9. Global settings 223

Template files reference
Template files are HTML pages that are presented to your users during the authentication process. The
pages prompt users for authentication information, such as user names and passwords, or present
information to users, such as one-time passwords, status, or errors.

Consent to register device template files
These files support consent to registering a device.

Consent to register device template files
These files support consent to registering a device.

Table 105. Default template files in the ac/ directory

Page name File name and macros Description

Attribute Collection JavaScript ac/info.js Detects the location of the device
from which the requests are
made. Collects the web browser
attributes and sends them to the
server for storing in the database.
When the user logs out or when
the current session times out, the
script deletes the attributes from
the database.

Dynamics Attributes JavaScript ac/javascript_rules/
dynamic_attributes.js

Runs after each request is
processed by risk engine. Use it
to capture attributes that do not
get captured automatically.
Captured attributes are stored
either in the session storage or
the behavior storage area of the
risk-based component, or both.
The risk profile configuration
dictates where the attributes are
stored.

User self-care template files
These files support user self-care tasks.

User self-care template files
These files support user self-care tasks.

Table 106. Default template files in the mga/ directory

Page name File name and macros Description

Common User Profile
Management JavaScript

mga/user/mgmt/common.js Used by one-time password
pages and by device
management pages. Contains
functions and properties that are
used for making calls to the user
self-care REST services.

224 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 106. Default template files in the mga/ directory (continued)

Page name File name and macros Description

Device Attributes mga/user/mgmt/device/
device_attributes.html

Enables or disable devices.
Renames or removes device.
Displays all of the attributes for a
device.

For more information, see
Managing your registered
devices.

Device Attributes JavaScript mga/user/mgmt/device/
device_attributes.js

Processes values that are
entered in the
device_attributes.html
template

Device Selection mga/user/mgmt/device/
device_selection.html

Displays device name, status
(enabled or disabled), and time of
last activity.

For more information, see
Managing your registered
devices.

Device Selection JavaScript mga/user/mgmt/device/
device_selection.js

Processes data to display in the
device_selections.html
template

Authorization Grant mga/user/mgmt/device/
grant_attributes.html

Enables or disables an OAuth 2.0
authorization grant. Removes an
OAuth 2.0 authorization grant.
Displays the OAuth 2.0 tokens
and attributes of an authorization
grant. For more information, see
Managing OAuth 2.0
authorization grants.

Authorization Grants
JavaScript

mga/user/mgmt/device/
grant-attributes.js

Processes data to display in the
grant_attributes.html
template.

HMAC OTP Shared Key mga/user/mgmt/otp/
otp.html

Resets TOTP and HOTP Secret
Key.

For more information, see
Managing OTP secret keys.

HMAC OTP Shared Key
JavaScript

mga/user/mgmt/otp/otp.js Resets TOTP and HOTP Secret
Key.

Knowledge Questions
management

mga/user/mgmt/questions/
user_questions.html

Macros:

• @USERNAME @
• @MAX_STORED_QUESTIONS@

Displayed for the user to manage
their knowledge questions. The
user can select pre-configured
questions or write their own
questions.

Chapter 9. Global settings 225

Table 106. Default template files in the mga/ directory (continued)

Page name File name and macros Description

Knowledge Questions
JavaScript functions

mga /user/mgmt/questions/
user_questions.js

Consists of the JavaScript
functions that:

• Display the knowledge
questions.

• Allow the user to manage their
knowledge questions.

Authentication process
These files support the authentication process

Authentication process template files
These files support the authentication process. For more information, see Authentication.

Table 107. Default template files in the authsvc/ directory

Page name File name and macros Description

Server Error authsvc/server_error.html

Macros:

• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays general server errors.

User Error authsvc/user_error.html

Macros:

• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays errors during
authentication policy execution
that are caused by user input.

Authentication mechanisms
These files support the authentication mechanisms.

Authentication mechanisms
These files support the authentication mechanisms. For more information, see Authentication.

226 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 108. Default template files in the otp/ directory

Page name File name and macros
Description and link to file
contents

Change PIN required otp/change_pin.html

Macros:

• @ERROR_MESSAGE@
• @MAPPING_RULE_DATA@
• @DISPLAY_RESELECT_BUTTO
N@

Enables the user to enter a new
PIN.

OTP Email Delivery Message otp/delivery/
email_message.xml

Used by EmailOTPDelivery as
the content of the email that it
sends to the user.

The template file must be a
compliant XML file.

The content can be plain text or
HTML. Following is an example
using HTML in the email
template:

<?xml version="1.0"
encoding="UTF-8"?>
<root>
<Subject>
 <Value>One-time Password</
Value>
</Subject>
<Message>
 <Value><![CDATA[<html>
<body>
<img src="https://
www.example.com/images/
logo.gif" />

This is your HTML
email one-time password
@OTP_STRING@.

 <p>Thank you,

 The Example Co.</p>
</body>
 </html>]]>
 </Value>
</Message>
</root>

For information on HTML
formatting of email messages,
see HTML format for OTP email
messages.

OTP SMS Delivery Message otp/delivery/
sms_message.xml

Used by SMSOTPDelivery as
the content of the SMS that it
sends to the user.

The template file must be a
compliant XML file.

Chapter 9. Global settings 227

Table 108. Default template files in the otp/ directory (continued)

Page name File name and macros
Description and link to file
contents

One-Time Password Delivery
Selection

otp/
delivery_selection.html

Macros:

• @OTP_METHOD_CHECKED@
• @OTP_METHOD_LABEL@

Displays the list of methods for
generating, delivering, and
verifying the one-time password.

OTP General Error otp/errors/allerror.html

Macros:

• @REQ_ADDR@
• @TIMESTAMP@
• @DETAIL@
• @EXCEPTION_STACK@

Displays general errors that
happen during the one-time
password flow.

OTP Validation Error otp/errors/
error_could_not_validate_
otp.html

Macros:

• @REQ_ADDR@
• @TIMESTAMP@
• @DETAIL@
• @EXCEPTION_STACK@

Displays errors during the
validation of the one-time
password that the user submits.

OTP Generation Error otp/errors/
error_generating_otp.html

Macros:

• @REQ_ADDR@
• @TIMESTAMP@
• @DETAIL@
• @EXCEPTION_STACK@

Displays errors during the
generation of a one-time
password.

OTP Methods Retrieval Error otp/errors/
error_get_delivery_option
s.html

Macros:

• @REQ_ADDR@
• @TIMESTAMP@
• @DETAIL@
• @EXCEPTION_STACK@

Displays errors during the
retrieval of the list of methods for
delivering one-time password to
the user.

228 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 108. Default template files in the otp/ directory (continued)

Page name File name and macros
Description and link to file
contents

OTP Delivery Error otp/errors/
error_otp_delivery.html

Macros:

• @REQ_ADDR@
• @TIMESTAMP@
• @DETAIL@
• @EXCEPTION_STACK@

Displays errors during the
delivery of a one-time password
to the user.

OTP STS Invocation Error otp/errors/
error_sts_invoke_failed.h
tml

Macros:

• @REQ_ADDR@
• @TIMESTAMP@
• @DETAIL@
• @EXCEPTION_STACK@

Displays errors during the
invocation of the Security Token
Service.

One-Time Password Login otp/login.html

Macros:

• @ERROR_MESSAGE@
• @MAPPING_RULE_DATA@
• @DISPLAY_RESELECT_BUTTO
N@

Displays the form where the user
can enter the one-time
password.

Enter Next OTP Form otp/next_otp.html

Macros:

• @ERROR_MESSAGE@
• @MAPPING_RULE_DATA@
• @DISPLAY_RESELECT_BUTTO
N@

Enables the user to enter the
next one time password.

Table 109. Default template files in the authsvc/authenticator/password/ directory

Page name File name and macros Description

Change Password authsvc/authenticator/
password/
change_password.html

Macros:

• @USERNAME@
• @ERROR_MESSAGE@

Enables the users to change their
registry password.

Chapter 9. Global settings 229

Table 109. Default template files in the authsvc/authenticator/password/ directory (continued)

Page name File name and macros Description

Username and Password Error authsvc/authenticator/
password/error.html

Macros:

• @ERROR_MESSAGE@
• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays errors during the user
name and password
authentication or when the users
modify their password.

Username and Password Login authsvc/authenticator/
password/login.html

Displays the form where the
users can enter their user name
and password to log in.

Table 110. Default template files in the authsvc/authenticator/http_redirect/ directory

Page name File name and macros Description

HTTP Redirect Authentication
Error

authsvc/authenticator/
http_redirect/
allerror.html

Macros:

• @ERROR_MESSAGE@
• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays general errors during for
HTTP redirect authentication
mechanism.

HTTP Redirect Authentication
Failed

authsvc/authenticator/
http_redirect/
error_authenticate.html

Macros:

• @ERROR_MESSAGE@
• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays errors during the HTTP
redirect authentication flow.

230 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 111. Default template files in the authsvc/authenticator/macotp/ directory

Page name File name and macros Description

MAC One-Time Password
Delivery Selection

authsvc/authenticator/
macotp/
delivery_selection.html

Macros:

• @ERROR_MESSAGE@
• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays the list of methods for
generating, delivering, and
verifying the one-time password.

MAC OTP One-Time Password
Error

authsvc/authenticator/
macotp/error.html

Macros:

• @ERROR_MESSAGE@
• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays errors during the MAC
one-time password
authentication.

MAC One-Time Password Login authsvc/authenticator/
macotp/login.html

Macros:

• @OTP_HINT@
• @OTP_LOGIN_DISABLED@

Displays the form where the user
can enter the MAC one-time
password

Table 112. Default template files in the authsvc/authenticator/rsa/ directory

Page name File name and macros Description

RSA One-Time Password Error authsvc/
authenticator/rsa/
error.html

Macros:

• @ERROR_MESSAGE@
• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays errors during the RSA
one-time password
authentication.

RSA One-Time Password Login authsvc/
authenticator/rsa/
code.html

Macro:

@ERROR_MESSAGE@

Displays the form where the
users can enter the RSA one-time
password to log in.

Chapter 9. Global settings 231

Table 112. Default template files in the authsvc/authenticator/rsa/ directory (continued)

Page name File name and macros Description

RSA One-Time Password Login
(New PIN)

authsvc/
authenticator/rsa/
new_pin.html

Macro:

@ERROR_MESSAGE@

Enables users to enter a new RSA
pin.

RSA One-Time Password Login
(Next OTP)

authsvc/
authenticator/rsa/
next_code.html

Macro:

@ERROR_MESSAGE@

Enables users to enter the next
RSA one-time password.

Table 113. Default template files in the authsvc/authenticator/totp/ directory

Page name File name and macros Description

TOTP One-Time Password Error authsvc/authenticator/
totp/error.html

Macros:

• @ERROR_MESSAGE@
• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays errors during the TOTP
one-time password
authentication.

TOTP One-Time Password Login authsvc/authenticator/
totp/login.html

Macros:

• @ERROR_MESSAGE@
• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays the form where the
users can enter the TOTP
password to log in.

232 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 114. Default template files in the authsvc/authenticator/hotp/ directory

Page name File name and macros Description

HOTP One-Time Password Error authsvc/authenticator/
hotp/error.html

Macros:

• @ERROR_MESSAGE@
• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays errors during the HOTP
one-time password
authentication.

HOTP One-Time Password Login authsvc/authenticator/
hotp/login.html

Macros:

@ERROR_MESSAGE@

Displays the form where the
users can enter the HOTP
password to log in.

Table 115. Default template files in the authsvc/authenticator/consent_register_device/
directory

Page name File name and macros Description

Consent to Device Registration
Error

authsvc/authenticator/
consent_register_device/
error.html

Macros:

• @ERROR_MESSAGE@
• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays errors during the
consent to device registration
flow.

Consent page authsvc/authenticator/
consent_register_device/
consent-form.html

Macro:

@ERROR_MESSAGE@

Prompts the user to provide
consent for registering a device.

Chapter 9. Global settings 233

Table 116. Default template files in the authsvc/authenticator/eula/ directory

Page name File name and macros Description

End-User License Agreement
license file display

authsvc/authenticator/
eula/license.txt

Contains the license agreement
to display to the user.

The template does not use
replacement macros.

Note: You can add more license
files to the template tree.

Specify the metadata in the End-
User License Agreement for the
following purposes:

• Auditing
• Forensic

The End-User License Agreement
authentication mechanism
removes the metadata before it
displays the license agreement to
the user. The metadata must be
on the first line of the license
agreement. For example:

Metadata: Version:
1.0 Identifier:
135223434343

When the user accepts the
license agreement or declines
the license agreement, the
mechanism audits:

• The user action.
• The license file name.
• The corresponding metadata.

End-User License Agreement
license agreement display

authsvc/authenticator/
eula/eula.html

Macros:

• @USERNAME@
• @LICENSE@

Displays the page where the user
views the license and accepts the
license agreement.

234 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 116. Default template files in the authsvc/authenticator/eula/ directory (continued)

Page name File name and macros Description

End-User License Agreement
license agreement decline

authsvc/authenticator/
eula/
error_license_declined.ht
ml

Macros:

• @USERNAME@
• @ERROR_MESSAGE@
• @REQ_ADDR@
• @TIMESTAMP@
• @ERROR_MESSAGE@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@
• @LICENSE_FILE@
• @LICENSE_METADATA@

Displays the page where the user
declines the license agreement.

Table 117. Default template files in the authsvc/authenticator/knowledge_questions/ directory

Page name File name and macros Description

Knowledge Questions
authentication mechanism
knowledge question form

authsvc/authenticator/
knowledge_questions/
login.html

Macros:

• @ QUESTION_TEXT @
• @ QUESTION_INDEX @
• @QUESTION_UNIQUE_ID@
• @QUESTION_COUNT@
• @ERROR_MESSAGE@

• @NUM_REQUIRED_ANSWERS@

Displays the form where the user
enters the answers to the
required knowledge questions.

Knowledge Questions
authentication mechanism
knowledge question
authentication errors

authsvc/authenticator/
knowledge_questions/
error.html

Macros:

• @REQ_ADDR@
• @TIMESTAMP@
• @ERROR_MESSAGE@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays errors during
knowledge-question
authentication.

Chapter 9. Global settings 235

Table 117. Default template files in the authsvc/authenticator/knowledge_questions/ directory
(continued)

Page name File name and macros Description

Knowledge Questions
authentication mechanism
missing knowledge questions
with grace period

authsvc/authenticator/
knowledge_questions/
not_enough_questions_foun
d_continue.html

Macros:

• @USERNAME@
• @NUM_REQUIRED_ANSWERS@
• @NUM_REGISTERED_QUESTIO
NS@

• @
GRACE_PERIOD_AUTH_COUNT
@

• @MAX_
GRACE_PERIOD_AUTH_COUNT
@

Displayed when the user did not
register the required number of
knowledge questions and
answers that are required for
successful authentication. The
following conditions must also be
true:

• The administrator configured
the environment to allow
grace-period authentication.

• The user did not reach the limit
of grace-period logins.

Knowledge Questions
authentication mechanism
missing knowledge questions
without grace period

authsvc/authenticator/
knowledge_questions/
not_enough_questions_foun
d_error.html

Macros:

• @USERNAME@
• @NUM_REQUIRED_ANSWERS@
• @NUM_REGISTERED_QUESTIO
NS@

• @REQ_ADDR@
• @TIMESTAMP@

Displayed when the user did not
register the required number of
knowledge questions and
answers that are required for
successful authentication. One of
the following conditions must
also be true:

• The administrator did not
configure the environment to
allow grace-period
authentication.

• The user reached the limit of
grace-period logins.

Authentication error template files
These files display errors that occur during authentication.

Authentication error template files
These files display errors that occur during authentication.

Table 118. Default files in the proper/ directory

Page name File name and macros Description

Access Denied proper/errors/
access_denied.html

Macros:

• @REQ_ADDR@
• @TIMESTAMP@

Displays a message that the user
cannot access the requested
resource.

236 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 118. Default files in the proper/ directory (continued)

Page name File name and macros Description

General Error proper/errors/
allerror.html

Macros:

• @REQ_ADDR@
• @TIMESTAMP@
• @DETAIL@
• @EXCEPTION_STACK@

Displays general errors that are
not displayed in other template
files.

Missing Component Error proper/errors/
missingcomponent.html

Macros:

• @REQ_ADDR@
• @TIMESTAMP@
• @DETAIL@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays an error that the
component required to process
the request was not correctly
configured or was not initialized.

Authentication Required proper/errors/
need_authentication.html

Macros:

• @REQ_ADDR@
• @TIMESTAMP@

Displays an error that
authentication is required to
access the requested resource.

Protocol Determination Error proper/errors/
noprotdet.html

Macros:

• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays an error that the access
request is to an unknown
address. The error might occur
because no configured endpoint
or protocol exists that is mapped
to this endpoint.

Protocol Runtime Error proper/errors/
protocol_error.html

Macros:

• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Displays errors that an error
occurred fulfilling a request to a
specified address, and the error
was caused by an unexpected
error on the protocol module.

Chapter 9. Global settings 237

OAuth template files
These files support OAuth.

OAuth template files
These files support OAuth. For more information, see OAuth 2.0 and OIDC Support.

Table 119. Default files in the oauth20/ directory

Page name File name and macros Description

OAuth 2.0 Trusted Clients
Manager

oauth20/
clients_manager.html

Macros:

• @USERNAME@
• @OAUTH_CLIENT_COMPANY_N
AME@

• @PERMITTED_SCOPES@
• @OAUTH_CUSTOM_MACRO@

Used by resource owners to show
and manage trusted clients
information.

OAuth 2.0 - Consent to
Authorize

oauth20/
user_consent.html

Macros:

• @USERNAME@
• @OAUTH_CLIENT_COMPANY_N
AME@

• @PERMITTED_SCOPES@
• @OAUTH_CUSTOM_MACRO@

Used by the authorization server
to determine and store user
consent information about which
OAuth clients are authorized to
access the protected resource.

The page also lists of scopes that
the OAuth client requests. These
lists are shown in the consent
page and can be of indeterminate
length. The template supports
multiple copies of stanzas that
are repeated once for each scope
in the lists.

OAuth 2.0 - Error oauth20/user_error.html

Macros:

• @OAUTH_CLIENT_COMPANY_N
AME@

• @CLIENT_TYPE@
• @CLIENT_ID@
• @REDIRECT_URI@
• @STATE@
• @RESPONSE_TYPE@
• @USERNAME@
• @OAUTH_TOKEN_SCOPE_REPE
AT@

• @OAUTH_OTHER_PARAM_REPE
AT@

• @OAUTH_OTHER_PARAM_VALU
E_REPEAT@

Shows detailed text information
when an error occurs in an OAuth
2.0 flow.

238 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 119. Default files in the oauth20/ directory (continued)

Page name File name and macros Description

OAuth - Response oauth20/
user_response.html

Macros:

• @OAUTH_CODE@

Displays the authorization code
of an OAuth client that did not
specify a client redirection URI
upon registration.

When the OAuth client does not
specify a client redirection URI or
cannot receive redirects, the
authorization server does not
know where to send the resource
owner after authorization. As a
result, the OAuth client does not
receive the authorization code
that is required to exchange for
an access token or refresh token.

The page includes several codes:

• The authorization code that the
resource owner can provide to
the trusted OAuth client.

• The authorization code as
machine-readable Quick
Response (QR) code.

Note: The encoder that creates
the QR code follows the
ISO/IEC 18004:2006
specification. Scanners that
support this specification can
read the generated QR code.

Customizing SAML 2.0 pages
Verify Access generates files that are displayed in response to events that occur during single sign-on
requests. The response that is displayed might be a form, such as when login information is required, or
an error or information statement about a condition that occurred while the request was processed.

You can customize the event pages by modifying their appearance or content.

Before you continue with the customization, you need to have a thorough understanding of how event
pages are generated and displayed.

Generation of event pages
Event pages are displayed in response to events that occur during single sign-on requests. They usually
contain a form (such as a prompt for user name and password information) or text (such as an
informational or error message).

Event pages are dynamic pages that are generated by Security Verify Access by using the following
information:
Template files

XML or HTML files that are provided with the appliance and contain elements, such as fields, text, or
graphics, and sometimes macros that are replaced with information that is specific to the request or
to provide a response to the request.

Chapter 9. Global settings 239

Page identifiers
Event information that corresponds to one or more template files. Each page identifier corresponds to
a specific event condition, such as a specific error or a condition in which a message or a form must be
displayed.

Message catalogs
Text that is used to replace macros in the template files.

When a request is received, the appropriate response page is generated as follows:

1. Processing of the request occurs and a response to an event is required.
2. Template files and page identifiers are read from the file system.
3. Macros in the template files are replaced with values that are appropriate for the response that is

needed.
4. An appropriate event page is generated.
5. The generated event page is displayed.

SAML 2.0 page identifiers
The SAML 2.0 runtime can display HTML pages in response to events that occur during single sign-on
requests. You can select which pages to display and also modify the pages.

Use HTML pages for the following purposes:

• Displaying success and error messages to users
• Asking users for confirmation
• Sending SAML messages

You can customize these HTML pages so that they display what you want. These pages contain macros
and are similar to other HTML pages in Security Verify Access. A macro is text in an HTML page that is
replaced with context-specific information. For example, the macro @ERROR_MESSSAGE@ is replaced by
text that describes the error that occurred.

You can find the SAML 2.0 pages in the local management interface using these steps:

1. Click Federation > Global Settings > Template Files.
2. Expand the locale folder to locate a template file.

For example, the English version of the SAML consent_to_federate.html template is in C/saml20.

All of the available SAML 2.0 HTML pages are listed in the following table.

Table 120. SAML 2.0 HTML page identifiers and macros

Page identifier Description Macros and descriptions

saml20/
consent_to_federate.html

Displays during the SAML single
sign-on flow whenever the
service provider wants to
federate the account at the
identity provider with the account
at the service provider.

@TOKEN:form_action@
The URL to which the SAML
message is sent.

@TOKEN:SPProviderID@
The ID of the Service
Provider.

@TOKEN:SPDisplayName@
The name of the Service
Provider.

@TOKEN:IPProviderID@
The name of the Identity
Provider.

240 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 120. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/
logout_partial_success.ht
ml

Displays whenever the SAML
single log out flow completes
with partial success.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@TOKEN:UserName@
The user name that performs
the operation.

saml20/
logout_success.html

Displays whenever the SAML
single log out flow completes
successfully.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@TOKEN:UserName@
The user name that performs
the operation.

saml20/
nimgmt_terminate_success.
html

Displays whenever the SAML
name identifier management
terminate flow completes
successfully.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@TOKEN:UserName@
The user name that performs
the operation.

@TOKEN:PartnerID@
The ID of the partner.

saml20/
nimgmt_update_success.htm
l

Displays whenever the SAML
name identifier management
update flow completes
successfully.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@TOKEN:UserName@
The user name that performs
the operation.

@TOKEN:PartnerID@
The ID of the partner.

saml20/
saml_post_artifact.html

Sends the SAML artifact to the
partner for HTTP POST binding.

@TOKEN:form_action@
The URL to which the SAML
message is sent.

@TOKEN:RelayState@
The RelayState.

@TOKEN:SamlMessage@
The SAML message.

Chapter 9. Global settings 241

Table 120. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/
saml_post_request.html

Sends the SAML request
message to partner for HTTP
POST binding.

@TOKEN:form_action@
The URL to which the SAML
message is sent.

@TOKEN:RelayState@
The RelayState.

@TOKEN:SamlMessage@
The SAML message.

saml20/
saml_post_response.html

Sends the SAML response
message to the partner for HTTP
POST binding.

@TOKEN:form_action@
The URL to which the SAML
message is sent.

@TOKEN:RelayState@
The RelayState.

@TOKEN:SamlMessage@
The SAML message.

saml20/
art_exchange_failed.html

Displays whenever there is a
failure during the SAML artifact
resolution flow.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/authn_failed.html Displays whenever there is a
failure during the SAML single
sign-on flow.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

242 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 120. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/
error_building_msg.html

Displays whenever an outgoing
SAML message is not
constructed.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
error_decrypting_msg.html

Displays whenever an incoming
SAML message is decrypted.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
error_missing_config_para
m.html

Displays whenever a SAML flow is
run on a SAML federation with
invalid configuration.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
error_parsing_art.html

Displays whenever an incoming
SAML artifact is parsed.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

Chapter 9. Global settings 243

Table 120. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/
error_parsing_msg.html

Displays whenever an incoming
SAML message is parsed.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
error_sending_msg.html

Displays whenever an outgoing
SAML message is sent.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
error_validating_art.html

Displays whenever an incoming
SAML artifact is validated.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
error_validating_init_msg
.html

Displays whenever a SAML flow is
initiated.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

244 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 120. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/
error_validating_msg.html

Displays whenever an incoming
SAML message is validated.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
error_validating_msg_sign
ature.html

Displays whenever an incoming
SAML message is signature
validated.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/invalid_art.html Displays whenever an incoming
SAML artifact is validated.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
invalid_init_msg.html

Displays whenever a SAML flow is
initiated.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

Chapter 9. Global settings 245

Table 120. SAML 2.0 HTML page identifiers and macros (continued)

Page identifier Description Macros and descriptions

saml20/invalid_msg.html Displays whenever an incoming
SAML message is validated.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/logout_failed.html Displays whenever there is a
failure during SAML single logout
flow.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
nimgmt_terminate_failed.h
tml

Displays whenever there is a
failure during the SAML name
identifier terminate management
flow.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

saml20/
nimgmt_update_failed.html

Displays whenever there is a
failure during the SAML name
identifier update management
flow.

@REQ_ADDR@
The URL of the request.

@TIMESTAMP@
The time stamp of the
request.

@ERROR_MESSAGE@
The error message.

@EXCEPTION_STACK@
The stack trace of the error.
Do not use this macro in a
production environment.

246 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Template page for the WAYF page
The Where Are You From (WAYF) page is used at the service provider. The WAYF page enables users to
select their identity provider if there is more than one configured in the federation.

When a user arrives at a service provider, a WAYF identifier can be delivered through a cookie or query-
string parameter with the request. The entity ID of the identity provider is stored as the value of the
cookie or query-string parameter. If the WAYF identifier cookie or query-string parameter is not present,
the WAYF page opens.

An example URL that includes the query string parameter for WAYF:

https://sp.host.com/isam/sps/samlfed/saml20/
logininitial?RequestBinding=HTTPRedirect&ResponseBinding
=HTTPPost&ITFIM_WAYF_IDP=https://idp.host.com/isam/sps/samlfed/saml20

This example is for a SAML 2.0 single sign-on URL. The query string parameter name is
ITFIM_WAYF_IDP. The value of the identity provider ID is https://idp.host.com/isam/sps/
samlfed/saml20.

The WAYF page requires the user to indicate where they came from. If the user is not logged on to their
identity provider, they are asked to log on. Depending on the attributes passed, the service provider can
grant or deny access to the service.

You can find the template pages for WAYF in the local management interface using these steps:

1. Click Federation > Global Settings > Template Files.
2. Expand the locale folder and navigate to /pages/itfim/wayf.

Administrators can use the WAYF page without modifications, but in some cases might want to modify the
HTML style to match the specific deployment environment.

This template file provides several replacement macros:

@WAYF_FORM_ACTION@
This macro is replaced with the endpoint of the original request. This macro does not belong within a
repeatable section.

@WAYF_FORM_METHOD@
This macro is replaced with the HTTP method of the original request. This macro does not belong
within a repeatable section.

@WAYF_FORM_PARAM_ID@
This macro is replaced with ID used by the action for the identity provider. This macro is repeated
once for each identity provider.

@WAYF_IP_ID@
This macro is replaced with the unique ID of the identity provider. This macro is repeated once for
each identity provider.

@WAYF_IP_DISPLAY_NAME@
This macro is replaced with the configured display name of the identity provider. This macro is
repeated once for each identity provider.

@WAYF_HIDDEN_NAME@
This macro is replaced with the name of the hidden parameter. This macro is repeated once for each
original request parameter and is hidden.

@WAYF_HIDDEN_VALUE@
This macro is replaced with the value of the hidden parameter. This macro is repeated once for each
original request parameter and is hidden.

Chapter 9. Global settings 247

Customizing the Consent to Federate Page
A consent to federate page is an HTML form which prompts a user to give consent to joining a federation.
You can customize the consent to federate page to specify what information it requests from a user.

Before you begin
Determine what values you want to use for the consent to federate page.

About this task
When a user accesses a federation, they agree to join the federation. The HTML form saml20/
consent_to_federate.html prompts for this consent. You can customize what the form requests by
adding consent values. These values indicate how a user agrees to join a federation and if service
providers are notified of the consent. Identity providers receive the consent values in the SAML 2.0
response.

The following values determine how a user joins a federation:
1

A user agrees to join a federation without notifying the service provider.
0

A user refuses to join a federation.
A URI value

A URI can indicate whether the user agrees to join a federation and if you want to notify the service
provider about the user consent. The following table lists and describes the supported URI values.

Table 121. Supported consent values for SAML 2.0 response

Consent value URI Description

Unspecified urn:oasis:names:tc:
SAML:2.0:consent:
unspecified

The consent of the user is not
specified.

Obtained urn:oasis:names:tc:
SAML:2.0:consent: obtained

Specifies that user consent is
acquired by the issuer of the
message.

Prior urn:oasis:names:tc:
SAML:2.0:consent: prior

Specifies that user consent is
acquired by the issuer of the
message before the action which
initiated the message.

Implicit urn:oasis:names:tc:
SAML:2.0:consent: current-
implicit

Specifies that user consent is
implicitly acquired by the issuer of
the message when the message
was initiated.

Explicit urn:oasis:names:tc:
SAML:2.0:consent: current-
explicit

Specifies that the user consent is
explicitly acquired by the issuer of
the message at the instance that
the message was sent.

Unavailable urn:oasis:names:tc:
SAML:2.0:consent:
unavailable

Specifies that the issuer of the
message was not able to get
consent from the user.

Inapplicable urn:oasis:names:tc:
SAML:2.0:consent:
inapplicable

Specifies that the issuer of the
message does not need to get or
report the user consent.

248 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Follow the steps in this procedure to customize the consent to federate page.

Procedure
1. Log in to the local management interface.
2. Click Federation > Global Settings > Template Files.
3. Expand a locale and select saml20/consent_to_federate.html.
4. Click Edit and add the appropriate consent values for your federation.
5. Click Save.
6. Deploy the changes.

Example
The following example shows an added URI with a consent value Obtained:

<input type="radio" checked name="Consent"
value="urn:urn:oasis:names:tc:SAML:2.0:consent:obtained"/>
Consent Obtained.

In this example, the user consent is acquired by the issuer of the message.

Template file macros
Most template pages contain one or more macros. The macros are replaced by values that are specific to
the action that is requested on the page.

Macro Value that replaces the macro

@CLIENT_ID@ The client_id parameter that is specified in the
authorization request.

@CONSENT_FORM_VERIFIER@ A unique identifier for the consent_form_verifier
parameter value. The value is automatically
generated by the authorization server. Do not
modify the parameter name or value.

@DETAIL@ The error message.

@ERROR_CODE@ Characters that uniquely identify the error.

@ERROR_DESCRIPTION@ The native language support (NLS) text of the error
message that is associated with the error.

@ERROR_MESSAGE@ An error message that is specific to the action in
the page. For example, on the One-time password
template page for login, the error message
indicates that the password submitted contains
errors, such as the password is not valid or has
expired.

@EXCEPTION_MSG@ The exception message.

@EXCEPTION_STACK@ The stack trace of the error.

@GRACE_PERIOD_AUTH_COUNT@ The amount of grace-period authentication.

@LICENSE@ The contents of the license file.

@LICENSE_FILE@ The name of the license file.

@LICENSE_METADATA@ The metadata that is either:

Chapter 9. Global settings 249

Macro Value that replaces the macro

• Defined in the license file.
• Not Available if it is not defined.

@MAPPING_RULE_DATA@ If the submitted one-time password contains an
error, this value is the STS Universal User context
attribute with the name @MAPPING_RULE_DATA@
and is type otp.sts.macro.type. This context
attribute can be set in the OTPVerify mapping rule.

@MAX_GRACE_PERIOD_AUTH_COUNT@ The maximum count of grace-period
authentication that is allotted to a policy.

@MAX_STORED_QUESTIONS@ The maximum number of answers that can be
stored per user.

@NUM_REQUIRED_ANSWERS@ The number of valid answers that is required for
successful authentication.

@NUM_REGISTERED_QUESTIONS@ The number of questions that the user registered.

@OAUTH_AUTHORIZE_URI@ The URI for the authorization endpoint.

@OAUTH_CLIENT_COMPANY_NAME@ A multi-valued macro that belongs inside an [RPT
trustedClients] repeatable replacement list.
The values are replaced with the name of the
company that requests access to the protected
resource.

@OAUTH_CLIENTMANAGERURL@ A multi-valued macro that belongs inside an [RPT
trustedClients] repeatable replacement list.
The values are replaced with the endpoint of the
trusted clients manager.

@OAUTH_CODE@ The oauth_code parameter that is specified in the
authorization response.

@OAUTH_CUSTOM_MACRO@ A multi-valued macro that belongs inside an [RPT
trustedClients] repeatable replacement list.
The values are replaced with trusted client
information that contains additional information
about an authorized OAuth client.

@OAUTH_OTHER_PARAM_REPEAT@ A multi-valued macro that belongs inside an [RPT
oauthOtherParamsRepeatable] repeatable
replacement list. The values show the list of extra
parameter names.

@OAUTH_OTHER_PARAM_VALUE_REPEAT@ A multi-valued macro that belongs inside an [RPT
oauthOtherParamsRepeatable] repeatable
replacement list. The values show the list of extra
parameter values.

@OAUTH_TOKEN_SCOPE_REPEAT@ A multi-valued macro that belongs inside an [RPT
oauthTokenScopePreapprovedRepeatable]
or [RPT
oauthTokenScopeNewApprovalRepeatable]r
epeatable replacement lists. The values inside the
[RPT
oauthTokenScopePreapprovedRepeatable]
show the list of token scopes that have been

250 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Macro Value that replaces the macro

previously approved by the resource owner.
Alternatively, the values inside the [RPT
oauthTokenScopeNewApprovalRepeatable]
show the list of token scopes that have not yet
been approved by the resource owner.

@OTP_HINT@ The one-time password hint. The hint is a
sequence of characters that is associated with the
one-time password.

@OTP_METHOD_CHECKED@ For the first method, this macro is replaced with an
HTML radio button attribute that causes that radio
button to be selected. For the remaining methods
that generate, deliver, and verify one-time
passwords, this macro is replaced with an empty
string.

@OTP_METHOD_ID@ The ID of the method for generating, delivering,
and verifying the one-time password. This ID is
generated by the OTPGetMethods mapping rule.

@OTP_METHOD_LABEL@ The label of the method for generating, delivering,
and verifying the one-time password. This label is
generated by the OTPGetMethods mapping rule.

@OTP_METHOD_TYPE@ The type of the currently selected method for
generating, delivering, and verifying the one-time
password. This type is generated by the
OTPGetMethods mapping rule and was selected
by the user.

@OTP_STRING@ The one-time password that is generated by the
one-time password provider.

@PERMITTED_SCOPES@ A multi-valued macro that belongs inside an [RPT
trustedClients] repeatable list. The values are
replaced with the token scopes to which the OAuth
client has access.

@QUESTION_COUNT@ The number of questions that are presented on the
login page.

@QUESTION_TEXT@ The question text. This macro is only populated
when the question is a user-provided question.

@QUESTION_INDEX@ The question index. This index corresponds to the
array of questions that are presented on the page
when questions are presented as a group.

@QUESTION_UNIQUE_ID@ The question unique identifier.

@REDIRECT_URI@ The redirect URI that the authorization server uses
to send the authorization code to. The value
depends on the following items:

• Redirect URI that is entered during partner
registration.

• oauth_redirect parameter that is specified in
the authorization request

Chapter 9. Global settings 251

Macro Value that replaces the macro

@REGENERATE_ACTION@ The URl where the Generate button posts the form
to regenerate and deliver the new one-time
password value.

@RESPONSE_TYPE@ The response_type parameter specified in the
authorization request.

@REQ_ADDR@ The URL into which the request from the user is
sent.

@RESELECT_ACTION@ The URl where the Reselect button posts the form
to reselect the method for generating, delivering,
and verifying the one-time password value.

@STATE@ The state parameter that is specified in the
authorization request.

@TIMESTAMP@ The time stamp when the error occurred.

@UNIQUE_ID@ A multi-valued macro that belongs inside an [RPT
trustedClients] repeatable replacement list.
The values are replaced with a unique identifier
that identifies the trusted client information for
each entry in the list.

@USERNAME@ The Security Verify Access user name.

Mapping rules
Mapping rules are JavaScript code that runs during the authentication flow for Advanced Access Control
and Federation.

Mapping rules can be used for multiple purposes. For Advanced Access Control, you can modify rules for
the Authentication Service, OTP, and OAuth 2.0. For Federation, you can modify mapping rules to manage
identities for OIDC and SAML 2.0. Use the task topic below that applies to the type of mapping rule you
want to manage.

Note: Support for the importing of a mapping rule into another mapping rule applies to all mapping rules.

Managing JavaScript mapping rules
Create or edit JavaScript mapping rules.

About this task
When you activate the Advanced Access Control offering, the following mapping rule types are available:

AuthSvc
Authorization service mapping rule.

OAUTH
OAuth mapping rule.

OTP
One-time password mapping rule.

OIDC
OpenID Connect mapping rule.

SAML2_0
SAML 2.0 mapping rule.

252 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Procedure
1. Click AAC.
2. Under Global Settings, click Mapping Rules.

All existing mapping rules are displayed.
3. You can create or modify a mapping rule.

• To create a mapping rule

a. Click Add.
b. In the Content field, enter the JavaScript mapping rule content.
c. In the Name field, enter a name for the rule.
d. In the Category field, select the type of the mapping rule from the list.

Note: Only the mapping rule types that apply to your current activated offering are displayed in
the list.

e. Click Save.
• To modify a mapping rule

a. Select the mapping rule to modify.
b. Click Edit.
c. Modify the mapping rule in the Content field as needed.

Note: The Name and Category fields are not editable.
d. Click Save.

Authentication Service Credential mapping rule
The Authentication Service Credential mapping rule is JavaScript code that you can use to customize the
information that is contained in the user credential.

During authentication, the Authentication Service gathers information about the authenticated user,
including attributes associated with the user ID. After successful authentication, the Authentication
Service provides this information to the Authentication Service Credential mapping rule. The main task of
the mapping rule is to modify or add attributes to the user information before it is used to generate a
credential.

Customizing the mapping rule is an advanced way to customize the credential. To specify basic credential
attributes, use an authentication policy and the Credentials panel in the local management interface
instead of creating a custom mapping rule. See Creating an authentication policy.

If you write your own mapping rule and use it to replace the existing rule, be aware of the following
considerations:

• Credential attributes are string values. For example, user names and lists of groups are string arrays.
• Do not use spaces, commas, or colons in credential attribute names. Use alphanumeric characters.

The sample mapping rule provides more descriptions about considerations for writing your own mapping
rule.

A default AuthSvcCredential mapping rule is provided. To review the rule:

1. Log in to the local management interface.
2. Click AAC
3. Under Policy, click Authentication.
4. Click Advanced.
5. Select AuthSvcCredential.

6. Click .

Chapter 9. Global settings 253

7. Choose a location and save the file.

To review an example of a customized credential mapping rule:

1. Log in to the local management interface.
2. Click System.
3. Click File Downloads.
4. Click access_control > examples > mapping_rules.
5. Select authsvc_credential.js.
6. Click Export to download the file.

If you create your own rule, use it to replace the existing rule. See the replacement instructions in
Managing mapping rules.

OTPGetMethods mapping rule
OTPGetMethods specifies the methods for delivering the one-time password to the user.

This sample mapping rule sets password delivery conditions for the following delivery methods:

• By email
• By SMS
• No delivery

Each delivery method includes the following attributes and their corresponding value:

id
Specifies a unique delivery method ID. This value replaces the @OTP_METHOD_ID@ macro in the OTP
Method Selection page. Use a unique value across different methods. For example, sms.

deliveryType
Specifies the delivery plug-in that delivers the one-time password. The value must match one of the
types in the DeliveryTypesToOTPDeliveryModuleIds parameter of the OTP response file. For
example, sms_delivery.

deliveryAttribute
Specifies an attribute that is associated with the delivery type. The value depends on the one-time
password provider plug-in for the delivery type. For example:

• For SMS delivery, the value is the mobile number of the user. For example, mobileNumber.
• For email delivery, the value is the email address of the user. For example, emailAddress.
• For no delivery, the value is an empty string.

label
Specifies the unique delivery method to the user. For time-based and counter-based one-time
password, use this attribute to specify the secret key of the user. If label is not specified, the time-
based and counter-based one-time password code retrieves the key by invoking the user information
provider plug-in. This parameter replaces the @OTP_METHOD_LABEL@ macro in the OTP Method
Selection page.

otpType
Specifies the one-time password provider plug-in that generates and verifies the password. The value
must match one of the types in the OTPTypesToOTPProviderModuleIds parameter of the OTP
response file. For example, mac_otp.

userInfoType
Specifies which user information provider plug-in to use to retrieve user information that is required to
calculate the one-time password. This parameter is only required if user information is used for
calculation of the one-time password.

To customize one-time password delivery, you can do one of the following actions:

• Create your own mapping rules that are based on the sample OTPGetMethods mapping rule.

254 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

• Modify the sample OTPGetMethods mapping rule.

You can also customize the mapping rule to use access control context data. For details see, Customizing
one-time password mapping rules to use access control context data.

OTPGenerate mapping rule
OTPGenerate mapping rule specifies the generation of the one-time password for the user.

You can use the OTPGenerate mapping rule in the following configuration:

Modify the one-time password type of the selected method to generate the one-time password
Indicates the one-time password type to determine the one-time password Provider plug-in that
generates the one-time password for the user.

Note: See the comments in the mapping rule for more details.

You can also customize the mapping rule to use access control context data. For details see, Customizing
one-time password mapping rules to use access control context data.

OTPDeliver mapping rule
The OTPDeliver mapping rule specifies the delivery method of the one-time password to the user.

Use the following OTPDeliver mapping rules:

Generate the one-time password hint
The one-time password hint is a sequence of characters that is associated with the one-time
password. The one-time password hint is displayed in the One-Time Password Login page. It is also
sent to the user together with the one-time password.

You can customize the way the one-time password hint is generated by modifying the following
section in the default OTPDeliver mapping rule:

var otpHint = Math.floor(1000 + (Math.random() * 9000));

Note: See the comments in the mapping rule for more details.

Generate the formatted one-time password
The formatted one-time password is the formatted version of the one-time password. The formatted
one-time password, instead of the actual one-time password, is sent to the user. For example, for
one-time password hint abcd, and one-time password 12345678, you can set the formatted one-
time password as abcd-12345678. For one-time password hint efgh, and one-time
password87654321, you can set the one-time password as efgh#8765#4321.

You can customize the way that the one-time password is generated by modifying the following
section in the sample OTPDeliver mapping rule:

var otpFormatted = otpHint + "-" + otp;

Note: See the comments in the mapping rule for more details.

Modify the delivery type of the selected method for delivering the one-time password
The delivery type specifies the one-time password Delivery plug-in that delivers the one-time
password to the user.

Modify the delivery attribute of the selected method to deliver
The delivery attribute is an attribute that is associated with delivery type. The meaning of the delivery
attribute depends on the one-time password provider plug-in for the delivery type. For example, for
SMS delivery type, the delivery attribute is the mobile number of the user. For email delivery type, the
delivery attribute is the email address of the user.

Note: See the comments in the mapping rule for more details.

You can also customize the mapping rule to use access control context data. For details see, Customizing
one-time password mapping rules to use access control context data.

Chapter 9. Global settings 255

OTPVerify mapping rule
OTPVerify specifies the verification of the one-time password that is submitted by the user.

You can customize the sample OTPVerify mapping rule to modify the following verification rules:

Modify the one-time password type of the user
Indicates the one-time password type to determine the one-time Provider plug-in that verifies the
one-time password submitted by the user.

Set the authentication level of the user
After one-time password authentication completes, a credential is issued that contains the
authentication level of the user. You can customize the authentication level by modifying the following
section in the mapping rule:

var authenticationLevel = contextAttributesAttributeContainer.getAttributeValueByNameAndType
 ("otp.otp-callback.authentication-level", "otp.otp-callback.type");
var attributeAuthenticationLevel = new Attribute("AUTHENTICATION_LEVEL",
 "urn:ibm:names:ITFIM:5.1:accessmanager", authenticationLevel);
attributeContainer.setAttribute(attributeAuthenticationLevel);

Enforce the number of times the user can submit the one-time password in the one-time password
login page

If a user exceeds the permitted number of times to submit a one-time password, an error message
displays. You can customize the number of times that the user can submit the one-time password in
the one-time password login page by modifying the following section in the mapping rule:

var retryLimit = 5;

By default, this option is set to false.

Note: This setting applies only to MAC OTP.

Identify the secret key of a user
When a user registers with a time-based one-time password application, they are assigned a secret
key. Store the secret key in this mapping rule for verification of the user by modifying the following
code:

var secretStr = new java.lang.String(SECRET_KEY_GOES_HERE);

By default, this option is set to false.
Override the one-time password target URL

By default, a user is redirected to a target URL upon completion of an one-time password flow. That
target URL was either the initial cached request at the WebSEAL or reverse proxy instance or was
specified as part of the one-time password invocation using the Target query string parameter.
You can use the OTPVerify mapping rule to override this target URL by adding an attribute called
itfim_override_targeturl_attr. This attribute ensures that at the completion of a successful
one-time password flow, the user is redirected to the override target instead of the initial target.
Example code:

var targetUrl = new java.lang.String("http://www.example.com/url");
var targetUrlAttr = new Attribute("itfim_override_targeturl_attr",
"urn:ibm:names:ITFIM:5.1:accessmanager", targetUrl);
attributeContainer.setAttribute(targetUrlAttr);

To customize one-time password verification, you can do one of the following actions:

• Create your own verification rules that are based on the sample OTPVerify mapping rule.
• Modify the sample OTPVerify mapping rule.

You can also customize the mapping rule to use access control context data. For details see, Customizing
one-time password mapping rules to use access control context data.

256 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Customizing one-time password mapping rules to use access control context
data

Some authentication scenarios require that context data used in making an access control decision be
available during authentication. You can configure Security Verify Access to capture the content data and
make it available to the one-time password mapping rules.

About this task
You can configure Security Verify Access to perform access control policy evaluation when a resource is
accessed. The access control policy evaluation can result on a permit with authentication. The required
authentication is determined by the access control policy. Some scenarios require that the context data
used to perform the access control decision be available during the authentication. In order to provide
access to the access control context data, you can persist the context information for the predefined
authentication obligations that perform one-time password authentication.

Note: The context data available is limited to the attributes referenced by the access control policy and
the request attributes provided by the policy enforcement point. If the policy relies on the risk score to
perform access control, the context data available also includes the risk-profile attributes.

Procedure
1. Log in to the local management interface.
2. Click AAC > Global Settings > Advanced Configuration.
3. Select attributeCollection.authenticationContextAttributes.

4. Click for the property.
5. In the text field, enter a list of comma separated attribute names to be collected during the

authorization policy evaluation.
For example, if your scenario requires the authentication level and host of the request the
configuration property, enter authenticationLevel, http:host.
The access control context data is provided to the one-time password mapping rules as context
attributes values. The following format is used:

<stsuuser:Attribute name="AttributeName-AttributeURI"
 type=""authn.service.context.attribute.type.AttributeDatatype">
<stsuuser:Value>AttributeValue</stsuuser:Value>
</stsuuser:Attribute>

Where:

• name is the attribute name and attribute identifier separated by a dash (-).
• type is the attribute data type prefixed by authn.service.context.attribute.type.

For example the authenticationLevel attribute value is added as:

<stsuuser:Attribute name="authenticationlevel-urn-ibm:
 security:subject:authenticationlevel"
 type="authn.service.context.attribute.type.Integer">
<stsuuser:Value>1</stsuuser:Value>
</stsuuser:Attribute>

6. Click OK.
7. When you edit a property, a message indicates that there are undeployed changes. If you have finished

making changes, deploy them.

For more information, see Deploying pending changes.
8. Configure the mapping rule to use the information collected by this property as the context attribute.

a) Click AAC.
b) Under Policy, click Authentication.

Chapter 9. Global settings 257

c) Click Advanced.
d) Select and export the mapping rule.
e) Use a text editor and modify the rule to access the attributes collected during the access control

policy evaluation in the following format:

var accessControlAttribute =
contextAttributesAttributeContainer.getAttributeValueByNameAndType
("AttributeName-AttributeURI",
"authn.service.context.attribute.type.AttributeDatatype");

Where:

• name is the attribute name and attribute identifier separated by a dash (-).
• type is the attribute data type prefixed by authn.service.context.attribute.type.

For example, the authenticationLevel attribute can be obtained using the following
information:

var accessControlAuthenticationLevel =
contextAttributesAttributeContainer.getAttributeValueByNameAndType
("authenticationlevel-urn-ibm:security:subject:authenticationlevel",
"authn.service.context.attribute.type.Integer");

f) Save the mapping rule and take note of its location.
g) In the local management interface, click AAC.
h) Under Policy, click Authentication.
i) Click Advanced.
j) Select the mapping rule you want to replace.

k) Click Replace. The Replace Mapping Rule panel opens.
l) Click the field or the Browse button and select the file for your saved mapping rule.

Attention: The name of the mapping rule cannot be replaced. The name of the uploaded file
is ignored.

m) Click OK to upload the mapping rule.

Managing OAuth 2.0 mapping rules
Use the mapping rules to customize the methods for the OAuth 2.0 or OIDC flow.

About this task
The OAuth 2.0 and OIDC mapping rules are JavaScript code that run during the OAuth 2.0 or OIDC flow.
You can view, export, and replace OAuth or OIDC mapping rules.

View the mapping rule if you want to see the content and structure of the mapping rule. Export the
mapping rule if you want to save a copy of the mapping rule. You can also edit this copy. Replace a
mapping rule if you want to use a new mapping rule.

Procedure
1. Log in to the local management interface.
2. Click AAC > Policy > OpenID Connect and API Protection or Federation > Manage > OpenID

Connect and API Protection.
3. Click Mapping Rules.
4. Perform one or more of the following actions:

View a mapping rule

a. Select a mapping rule.

258 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

b. Click . The View Mapping Rule panel opens. The content of the mapping rule is displayed.
c. Click OK to close the panel.

Export a mapping rule

a. Select a mapping rule.

b. Click .
c. Choose a location and save the file.

Replace a mapping rule:

Note: Use an existing mapping rule as the basis for the updated mapping rule.

a. Select a mapping rule that you want to replace.

b. Click . The Replace Mapping Rule panel opens.
c. Click the field or Browse and select a file.
d. Click OK to upload the mapping rule.

5. When you replace a mapping rule, the appliance displays a message that there are undeployed
changes. If you are finished with the changes, deploy them.

For more information, see Deploying pending changes.

Related reference
OAuth 2.0 and OIDC mapping rule methods

OAuth 2.0 mapping rule methods
You can use Java methods to customize the PreTokenGeneration and PostTokenGeneration
mapping rules.

The sample mapping rules are oauth_20_pre_mapping.js and oauth_20_post_mapping.js.

You can access the sample mapping rules from the LMI. Navigate to System > Secure Settings > File
Downloads. Continue to either of the following locations:

• access_control > examples > mapping rules
• federation > examples > mapping rules

The following limitations affect the attribute keys and values that are associated with the state_id by
using the OAuthMappingExtUtils class:

• Keys cannot be null or empty.
• Values cannot be null but can be empty.
• Associated key-value pairs are read and write-allowed and not-sensitive.
• Some keys are reserved for system use and cannot be modified by this utility. For example, the keys and

values for the API PIN protection.

For more information, see the Javadoc. In the LMI, navigate to System > Secure Settings > File
Downloads. Continue to either access_control > doc or federation > doc.

See also JavaScript whitelist.

Actions to be performed in mapping rules
For certain grant types, you must perform these actions in the pre-token mapping rule.
Resource owner password credentials (ROPC) grant type flow

For the ROPC flow, the pre-token mapping rule is responsible for performing validation of the user
name and password. This validation can be performed in various ways. The pre-defined rule that is
included with the appliance provides the following examples:

Chapter 9. Global settings 259

• The java class PluginUtils can be used to validate a user name and password against a
configured LDAP.

To configure the LDAP to be used, see Configuring username and password authentication.
• Validate the user name and password through an HTTP callout. The mapping rule sends the user

name and password to a web service. As the format of the messages is not fixed, various services
(for example, REST, SOAP, SCIM) can be used for this purpose. Javadoc on the HTTP client and all
other exposed Java classes available in mapping rules can be downloaded from the appliance File
Downloads page under the path access_control > doc > ISAM-javadoc.zip.

JWT and SAML bearer grant type flow

For the JWT or SAML assertion bearer grant type flows, the pre-token mapping rule must perform the
following actions:

• Validate the assertion, including but not limited to:

– Validate the signature (if signed).
– Decrypt the assertion (if encrypted).
– Check the expiry and "not before" value of the assertion.
– Ensure that the issuer is a trusted party.

• Extract the subject from the assertion and set the USERNAME field of the STSUU.

The USERNAME field of the STSUU can be set via a call, for example:

// username is a variable containing the subject of the assertion

stsuu.addContextAttribute(new com.tivoli.am.fim.trustserver.sts.uuser.Attribute
("username","urn:ibm:names:ITFIM:oauth:rule:decision", username));

The validation of the assertion can be performed in various ways:

– HTTP callout to a web service. Use the HTTP client to perform this.
– WS-Trust request to the Secure Token Service (STS).

- A chain must be configured to consume the assertion and return the required information.
- The STSClientHelper will be called to invoke the STS via HTTP. For more information about

this class, see the Javadoc that is embedded in the appliance.

Any attributes of the assertion can be extracted and associated to the OAuth grant to be used later.
For more information about associating attributes, see OAuth 2.0 and OIDC mapping rule methods.

• The type of the username attribute added must be
"urn:ibm:names:ITFIM:oauth:rule:decision" to ensure that only a value populated from
the rule is used.

MMFA mapping rule methods
Customize the OAuth PreTokenGeneration and PostTokenGeneration mapping rules by using these
methods.

Sample mapping rules are available from System > Secure Settings > File Downloads under the
access_control > examples > mapping rules directory.

The following limitations affect the attribute keys and values that are associated with the state_id by
using the MMFAMappingExtUtils class:

• Keys cannot be null or empty.
• Values can only be null or empty when specified.
• Associated key-value pairs are read-only and not case sensitive.
• The push token is read-only and case sensitive.

260 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

registerAuthenticator

public static String registerAuthenticator(
 String stateId
)

This method performs the final steps of registering an authenticator. Use the following parameters:

stateId

The state ID of the authorization grant. This parameter cannot be null or empty.

These responses come from the runtime after registration.

• The new authenticator's ID if successful.
• Null if not successful.

savePushToken

public static boolean savePushToken(
 String stateId,
 String pushToken,
 String applicationID
)

This method saves the push token and application ID with the authorization grant state ID. Use the
following parameters:

stateId

The state ID of the authorization grant. This parameter cannot be null or empty.

pushToken

The push token the authenticator application has received from its push notification service
provider. This parameter cannot be null or empty.

applicationID

The application ID of the authenticator application. This parameter can be null or empty.

These responses come from the runtime.

• True if successful.
• False if not successful.

savePushToken

public static boolean savePushToken(
 String stateId,
 String pushToken
)

This method saves the push token and application ID with the authorization grant state ID. Use the
following parameters:

stateId

The state ID of the authorization grant. This parameter cannot be null or empty.

pushToken

The push token the authenticator application has received from its push notification service
provider. This parameter cannot be null or empty.

These responses come from the runtime.

• True if successful.

Chapter 9. Global settings 261

• False if not successful.

saveDeviceAttributes

public static boolean saveDeviceAttributes(
 String stateId,
 String deviceName,
 String deviceType,
 String osVersion,
 String fingerprintSupport,
 String frontCameraSupport,
 String tenantId
)

This method saves various device attributes with the authorization grant state ID. Use the following
parameters:

stateId

The state ID of the authorization grant. This parameter cannot be null or empty.

deviceName

The name of the device the authenticator is installed on. This parameter can be null or empty. If
empty, the value is cleared.

deviceType

The type of the device the authenticator is installed on. This parameter can be null or empty. If
empty, the value is cleared.

osVersion

The OS version of the device the authenticator is installed on. This parameter can be null or empty.
If empty, the value is cleared.

fingerprintSupport

The type of fingerprint sensor that is supported by the device. This parameter can be null or
empty. If empty, the value is cleared.

frontCameraSupport

flag that indicates if the device has a front facing camera. This parameter can be null or empty. If
empty, the value is cleared.

tenantId

The tenant ID for this registration, if the authenticator application is multi-tenant. This parameter
can be null or empty. If empty, the value is cleared.

These responses come from the runtime.

• True if successful.
• False if not successful.

JavaScript whitelist
Advanced Access Control JavaScript mapping rules and Federation mapping rules call Java code from
JavaScript. The set of classes that can be called is restricted.

Exercise reasonable caution when you call Java code from JavaScript rules to ensure that accidental
damage to appliance resources is avoided.

262 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Common classes allowed in one-time password, OAuth or API protection, dynamic attributes, and
JavaScript PIP, federation mapping rules, and access policies.

java.lang.Boolean
java.lang.Byte
java.lang.Character
java.lang.Class
java.lang.Double
java.lang.Float
java.lang.Integer
java.lang.Long
java.lang.reflect.Array
java.lang.Short
java.lang.String
java.lang.System

java.io.ByteArrayInputStream
java.io.ObjectInputStream
java.io.PrintStream

java.math.BigDecimal

java.util.ArrayList **
java.util.Base64
java.util.Base64$Decoder
java.util.Base64$Encoder
java.util.Date
java.util.HashSet **
java.util.HashMap **
java.util.Iterator
java.util.List
java.util.logging.Level
java.util.Map
java.util.Set
java.util.UUID

com.ibm.security.access.httpclient.HttpClient
com.ibm.security.access.httpclient.HttpResponse
com.ibm.security.access.httpclient.Headers
com.ibm.security.access.httpclient.Parameters
com.ibm.security.access.httpclient.HttpClientV2
com.ibm.security.access.httpclient.RequestParameters
com.ibm.security.access.scimclient.ScimClient
com.ibm.security.access.scimcleint.ScimConfig
com.ibm.security.access.ciclient.CiClient
com.tivoli.am.rba.attributes.AttributeIdentifier
com.tivoli.am.rba.extensions.RBAExtensions
com.tivoli.am.rba.fingerprinting.ValueContainerIdentifierAdapter
com.tivoli.am.rba.extensions.Attribute$Category
com.tivoli.am.rba.extensions.Attribute$DataType
com.tivoli.am.rba.extensions.Attribute
com.tivoli.am.rba.extensions.PluginUtils

** Inner classes for these classes are not supported. Methods that involve an inner class
implementation of an interface are not available. For example, do not use the following methods in
java.util.HashMap:

• Collection<V> values()
• Set<K> keySet()
• Set<Map.Entry<K,V>> entrySet()

For more information about dynamic attributes, see Dynamic attributes.

For information about federation mapping rules, see “Mapping rules” on page 252.

Chapter 9. Global settings 263

Additional classes allowed in one-time password, OAuth or API protection mapping rules,
federation mapping rules, and access policies

com.tivoli.am.fim.base64.BASE64Utility
com.tivoli.am.fim.fedmgr2.trust.util.LocalSTSClient
com.tivoli.am.fim.fedmgr2.trust.util.LocalSTSClient$LocalSTSClientResult
com.tivoli.am.fim.saml20.protocol.extension.js.JSMessageExtensionContext
com.tivoli.am.fim.trustserver.sts.modules.http.stsclient.STSClientHelper
com.tivoli.am.fim.trustserver.sts.oauth20.Client
com.tivoli.am.fim.trustserver.sts.oauth20.Grant
com.tivoli.am.fim.trustserver.sts.oauth20.Token
com.tivoli.am.fim.trustserver.sts.oauth20.Definition
com.tivoli.am.fim.trustserver.sts.oauth20.OidcDefinition
com.tivoli.am.fim.trustserver.sts.STSModuleException
com.tivoli.am.fim.trustserver.sts.STSUniversalUser *
com.tivoli.am.fim.trustserver.sts.utilities.HttpResponse
com.tivoli.am.fim.trustserver.sts.utilities.IDMappingExtUtils
com.tivoli.am.fim.trustserver.sts.utilities.IDMappingExtCacheDMAPImpl
com.tivoli.am.fim.trustserver.sts.utilities.InfoCardClaim
com.tivoli.am.fim.trustserver.sts.utilities.MMFAMappingExtUtils
com.tivoli.am.fim.trustserver.sts.utilities.OAuthMappingExtUtils
com.tivoli.am.fim.trustserver.sts.utilities.QueryServiceAttribute
com.tivoli.am.fim.trustserver.sts.utilities.USCContextAttributesHelper
com.tivoli.am.fim.trustserver.sts.uuser.Attribute *
com.tivoli.am.fim.trustserver.sts.uuser.AttributeList *
com.tivoli.am.fim.trustserver.sts.uuser.AttributeStatement *
com.tivoli.am.fim.trustserver.sts.uuser.ContextAttributes *
com.tivoli.am.fim.trustserver.sts.uuser.Group *
com.tivoli.am.fim.trustserver.sts.uuser.Principal *
com.tivoli.am.fim.trustserver.sts.uuser.RequestSecurityToken *
com.tivoli.am.fim.trustserver.sts.uuser.Subject *
com.tivoli.am.fim.utils.IteratorWrapper
com.tivoli.am.rba.pip.JavaScriptPIP
com.tivoli.am.rba.pip.JavaScriptPIP$Context
java.mail.internet.InternetAddress

* The white list does not contain any implementation of the interfaces that are defined in the
org.w3c.dom package. For example, you cannot use the method org.w3c.dom.Document toXML()
in com.tivoli.am.fim.trustserver.sts.STSUniversalUser.

Additional classes allowed in JavaScript PIP

com.tivoli.am.fim.base64.BASE64Utility
com.tivoli.am.rba.pip.JavaScriptPIP
com.tivoli.am.rba.pip.JavaScriptPIP$Context
com.tivoli.am.rba.rtss.AttributeLocatorImpl

For more information about policy information points, see Managing policy information points.

264 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Additional classes allowed in mapping rules

packages.com.ibm.security.access.user.UserLookupHelper
packages.com.ibm.security.access.user.User
com.ibm.security.access.ldap.utils.AttributeUtil
com.ibm.security.access.ldap.utils.AttributeUtil$AttributeGetResult
com.ibm.security.access.ldap.LdapAttributeGetResult
com.ibm.security.access.ldap.LdapModifyResult
com.ibm.security.access.ldap.LdapSearchResult
com.ibm.security.access.ldap.LdapContextCreateResult
com.sun.jndi.ldap.LdapSearchEnumeration
javax.naming.NamingEnumeration
javax.naming.directory.BasicAttributes
javax.naming.directory.BasicAttribute
javax.naming.directory.SearchResult
com.ibm.security.access.recaptcha.RecaptchaClient
com.ibm.security.access.signing.SigningHelper
javax.crypto.SecretKey
javax.crypto.SecretKeyFactory
javax.crypto.spec.PBEKeySpec
com.ibm.crypto.provider.PBEKey
com.ibm.crypto.provider.PBKDF2KeyImpl
com.ibm.ws.logging.internal.impl.BaseTraceService$TeePrintStream
com.tivoli.am.fim.email.Email
com.tivoli.am.fim.email.EmailDeliveryException
com.tivoli.am.fim.email.EmailSender
com.tivoli.am.fim.email.EmailSender$SendStatus

For information on mapping rules, see:

• Managing OAuth 2.0 and OIDC mapping rules
• Managing mapping rules

Additional classes to manage server connections

com.ibm.security.access.server_connections.LdapServerConnection
com.ibm.security.access.server_connections.LdapServerConnection$LdapHost
com.ibm.security.access.server_connections.ServerConnection
com.ibm.security.access.server_connections.ServerConnectionFactory
com.ibm.security.access.server_connections.SmtpServerConnection
com.ibm.security.access.server_connections.WebServerConnection
com.ibm.security.access.server_connections.CiServerConnection

For more information, see Managing server connections.

Classes to use with InfoMap

com.tivoli.am.fim.authsvc.action.authenticator.infomap.InfoMapResult
com.tivoli.am.fim.authsvc.action.authenticator.infomap.InfoMapString
com.tivoli.am.fim.authsvc.local.client.AuthSvcClient

For more information, see Configuring an Info Map authentication mechanism.

Chapter 9. Global settings 265

Classes to use in Access Policies

com.ibm.security.access.policy.Context
com.ibm.security.access.policy.Cookie
com.ibm.security.access.policy.decision.ChallengeDecisionHandler
com.ibm.security.access.policy.decision.DecisionHandler
com.ibm.security.access.policy.decision.DenyDecisionHandler
com.ibm.security.access.policy.decision.Decision
com.ibm.security.access.policy.decision.DecisionType
com.ibm.security.access.policy.decision.HtmlPageChallengeDecisionHandler
com.ibm.security.access.policy.decision.HtmlPageDecisionHandler
com.ibm.security.access.policy.decision.HtmlPageDenyDecisionHandler
com.ibm.security.access.policy.decision.RedirectChallengeDecisionHandler
com.ibm.security.access.policy.decision.RedirectDecisionHandler
com.ibm.security.access.policy.decision.RedirectDenyDecisionHandler
com.ibm.security.access.policy.oauth20.AuthenticationContext
com.ibm.security.access.policy.oauth20.AuthenticationRequest
com.ibm.security.access.policy.oauth20.Claim
com.ibm.security.access.policy.oauth20.ProtocolContext
com.ibm.security.access.policy.ProtocolContext
com.ibm.security.access.policy.Request
com.ibm.security.access.policy.saml20.AuthnRequest
com.ibm.security.access.policy.saml20.ProtocolContext
com.ibm.security.access.policy.saml20.RequestedAuthnContext
com.ibm.security.access.policy.Session
com.ibm.security.access.policy.user.Attribute
com.ibm.security.access.policy.user.Group
com.ibm.security.access.policy.user.User

For more information, see “Access policies” on page 287.

Additional classes to customize FIDO2 flows

com.tivoli.am.fim.fido.mediation.FIDO2Registration
com.tivoli.am.fim.fido.mediation.FIDO2RegistrationHelper
com.tivoli.am.fim.fido.server.FIDOClientManager
com.tivoli.am.fim.fido.server.LocalFIDOClient

For more information, see FIDO2 Mediation and FIDO Client Manager

Additional classes to manage 2FA registrations

com.tivoli.am.fim.registrations.Mechanism
com.tivoli.am.fim.registrations.MechanismList
com.tivoli.am.fim.registrations.MechanismRegistrationHelper
com.tivoli.am.fim.registrations.cloud.CloudMechanism
com.tivoli.am.fim.registrations.local.FIDORegistration
com.tivoli.am.fim.registrations.local.MMFARegistration
com.tivoli.am.fim.registrations.local.HOTPRegistration
com.tivoli.am.fim.registrations.local.TOTPRegistration
com.tivoli.am.fim.registrations.local.KnowledgeQuestionRegistration
com.tivoli.am.fim.registrations.local.EULAStatus

Related tasks
Managing OAuth 2.0 and OIDC mapping rules
Managing mapping rules

Managing JavaScript mapping rules
Create, edit, or delete JavaScript mapping rules.

About this task
When you activate the Federation offering, the following mapping rule types are available:

OIDC
OpenID Connect mapping rule.

266 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

SAML2_0
SAML 2.0 mapping rule.

Procedure
1. Click Federation.
2. Under Global Settings, click Mapping Rules.

All existing mapping rules are displayed.
3. You can create, edit, or delete a mapping rule.

• To create a mapping rule

a. Click Add.
b. In the Content field, enter the JavaScript mapping rule content.
c. In the Name field, enter a name for the rule.
d. In the Category field, select the type of the mapping rule from the list, or type a name to create

your own mapping rule type.

Note: Only the mapping rule types that apply to your current activated offering are displayed in
the list.

e. Click Save.
• To modify a mapping rule

a. Select the mapping rule to modify.
b. Click Edit.
c. Modify the mapping rule in the Content field as needed.

Note: The Name and Category fields are not editable.
d. Click Save.

• To delete a mapping rule

Note: Do not delete a mapping rule that is currently used by a SAML 2.0 or OpenID Connect
federation.

a. Select the mapping rule to delete.
b. Click Delete.
c. Confirm the delete operation.

Customizing SAML 2.0 identity mapping
Use mapping rules to map local identities to SAML tokens and to map SAML tokens to local identities.

You can use an attribute source, such as LDAP, for the identity mapping. See Managing attribute sources.

You can use an HTTP external user mapping to map a local identity to a SAML token and to map SAML
token to a local identity.

See Managing JavaScript mapping rules for information about how to create or modify mapping rules.

Mapping a local identity to a SAML 2.0 token
You can map a local identity to a SAML 2.0 token for an identity provider.

The Security Verify Access server places the local user identity information into an XML document that
conforms to the security token service universal user (STSUUSER) schema. The identity provider issues a
SAML 2.0 token to the service provider. It generates the SAML 2.0 token based on the local identity of the
user. You can customize how the local identity is converted into a SAML 2.0 token by using a mapping rule.

Chapter 9. Global settings 267

Security Verify Access first converts the local identity to an STS Universal User. It then converts this STS
Universal User into another STS Universal User by using a mapping rule that you provide. After that, it
converts the latter STS Universal User to a SAML 2.0 token.

Your mapping rule does not operate directly on local identity or SAML 2.0 token. Instead, it operates on
the STS Universal User. Any modification that you make to an STS Universal User has an impact on the
output SAML 2.0 token.

The mapping rule is responsible for the following tasks:

1. Mapping Principal Attr Name to a Principal Name entry. When the token module generates the token,
this Principal name is not directly used. Instead, the value in the Name field is sent as input to the alias
service. The alias service obtains the alias name, name identifier, for the principal, and places the
returned alias in the generated token module.

The type must be valid for SAML. For example:

urn:oasis:names:tc:SAML:2.0:assertion

2. Setting the authentication method to the password mechanism. This action is required by the SAML
standard.

3. Setting the audience of the audience restriction condition to the value of the STSUU element
AudienceRestriction. If this STSUU element is not present, the audience is set to the Provider ID
of the federation partner.

4. Populating the attribute statement of the assertion with the attributes in the AttributeList in the In-
STSUU. This information becomes custom information in the token.

Custom attributes might exist that are required by applications that use information that is to be
transmitted between federation partners.

5. Specifying whether the assertion conditions should contain the <saml:OneTimeUse></
saml:OneTimeUse> element. If so, insert a special context attribute into the STSUU as shown:

var oneTimeUseAttr = new Attribute("AssertionIncludeOneTimeUse","urn:oasis:names:tc:SAML:2.0:assertion",
"true");
stsuu.addContextAttribute(oneTimeUseAttr);

6. Setting the NameID attribute in the assertion with Transient NameId format. This action is useful when
you want to specify a name value to use instead of the default UUID that is generated by the runtime
for Transient NameID format.

To replace the UUID, create a principal name attribute of type
urn:oasis:names:tc:SAML:2.0:nameid-format:transient, with its value provided by user.

The examples below show the user-provided value UserGeneratedTransientId but it could be any
other value. The value of the specified STSUU principal name will be set as the NameID in the SAML
assertion.

Example mapping rule

importPackage(Packages.com.tivoli.am.fim.trustserver.sts.uuser);
var transientNameId = "UserGeneratedTransientId";
stsuu.addPrincipalAttribute(new Attribute("name",
 "urn:oasis:names:tc:SAML:2.0:nameid-format:transient", transientNameId));

Example STSUU values after mapping rule applied

 <stsuuser:Attribute name="name" type="urn:oasis:names:tc:SAML:2.0:nameid-format:transient">
 <stsuuser:Value>UserGeneratedTransientId</stsuuser:Value>
 </stsuuser:Attribute>

Example SAML assertion NameID with Transient NameId formats

<saml:NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-format:transient"
 NameQualifier="https://ip-wga/isam/sps/saml20ip/saml20"

268 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

 SPNameQualifier="https://sp-wga/isam/sps/saml20sp/saml20"
 >UserGeneratedTransientId</saml:NameID>

7. Determine if the partner requires a specific SPNameQualifier within NameID of assertion for
transient identifiers. To change SPNameQualifer within NameID of assertion, insert a special context
attribute into the STSUU with a value agreed with partner as shown in the following example:

var SPNameQualifierAttr = new
Attribute("AssertionChangeSPNameQualifier","urn:oasis:names:tc:SAML:2.0:assertion","http://sp
/target/app");
stsuu.addContextAttribute(SPNameQualifierAttr);

Mapping a SAML 2.0 token to a local identity
You can map a SAML 2.0 token to a local identity for a service provider.

A service provider consumes a SAML 2.0 token that is issued by an identity provider. It generates the local
identity of the user based on a SAML 2.0 token. You can customize how a SAML 2.0 token is converted
into the local identity of the user by using a mapping rule.

Security Verify Access first converts a SAML 2.0 token to an STS Universal User. It then converts this STS
Universal User into another STS Universal User by using a mapping rule that you provide. After that, it
converts the latter STS Universal User to a local identity of the user.

Your mapping rule does not operate directly on the local identity or SAML 2.0 token. Instead, it operates
on the STS Universal User. Any modifications that you make on the STS Universal User impacts the output
local identity of the user.

STSRequest and STSResponse access using a JavaScript mapping rule
By using the Default Mapping STS Module and a JavaScript mapping rule, you can perform identity
mapping. The mapping rule can access STSRequest and STSResponse objects.

The following two implicit objects and the classes required by these two objects can be exposed (for
example, Java DOM, XML classes, and so on):

• STSRequest which represents the WS-Trust request
• STSResponse, which represents the WS-Trust response

Use JavaScript code stsrequest.getRequestSecurityToken().getBase() to get the input
security token from the WS-Trust request. This returns the input security token as an instance of the Java
class org.w3c.dom.Element.

Use JavaScript code
stsresponse.getRequestSecurityTokenResponse().setRequestedSecurityToken
(outputSecurityToken) to set the output security token in the WS-Trust response. The
outputSecurityToken is the output security token represented as an instance of Java class
org.w3c.dom.Element. By default, WS-Trust response contains only one output security token. To return
additional output security tokens, you can use the following JavaScript code:

 stsresponse.addRequestSecurityTokenResponse().setRequestedSecurityToken(outputSecurityToken)

The examples in the following topics show the mapping to and from a base64 encoded JSON string. They
use the Default Mapping module with a JavaScript mapping rule. The JavaScript mapping rule accesses
the STSRequest and STSResponse objects and performs the identity mapping.

Mapping a JSON Web Token to a SAML2 token example
You can map a base64 encoded JSON string to a SAML 2 token by using a JavaScript mapping rule.

About this task
The steps show an end-to-end JSON to SAML2 mapping. “STSRequest and STSResponse access using a
JavaScript mapping rule” on page 168 provides a description of this support.

Chapter 9. Global settings 269

Procedure
1. Create a JavaScript mapping rule by using the local management interface.

a) Select Federation > Global Settings > Mapping Rules.
b) Click Add.
c) In the Content field, copy and paste the following code:

 importClass(com.tivoli.am.fim.base64.BASE64Utility);
 importClass(com.tivoli.am.fim.trustserver.sts.uuser.Attribute);

 var jwtElement = stsrequest.getRequestSecurityToken().getBase();
 var jwtText = jwtElement.getTextContent();
 var jwtString = new java.lang.String(BASE64Utility.decode(jwtText), "UTF-8");
 var jwt = JSON.parse(jwtString);

 for (var name in jwt) {
 if (jwt.hasOwnProperty(name)) {
 if ("sub".equals(name)) {
 stsuu.addPrincipalAttribute(new Attribute("name",
 "urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress", jwt[name]));
 } else {
 stsuu.addAttribute(new Attribute(name,
"urn:oasis:names:tc:SAML:2.0:attrname-format:basic", jwt[name]));
 }
 }
 }

d) In the Name field, enter jwt_saml.
e) In the Category field, select SAML2_0.
f) Click Save and deploy the changes.

2. Assemble the Security Token Service (STS) template.
a) Select Federation > Manage > Security Token Service.
b) Click Templates.
c) Click Add and name the template JSON to SAML2. Click OK.
d) Select the JSON to SAML2 template and add the Default Map Module in Map mode and a Default

SAML 2.0 token in Issue mode.
e) Save and deploy the changes.

3. Create an STS chain that references the mapping rule and template you created in the previous steps.
a) Within the Security Token Service panel, select Module Chains.
b) Click Add to create the module chain, with the following values:

Table 122. JSON to SAML2 module chain values

Tab: Field Value

Overview: Name JSON to SAML2

Overview: Description base64 encoded JSON string to SAML2
conversion STS chain

Overview: Template JSON to SAML2

Lookup: Request Type Validate

Lookup: Applies to Address jwtappliesto

Lookup: Issuer Address jwtissuer

Properties: Default Map Module (JavaScript file
containing the identity mapping rule

jwt_saml

Properties: Default SAML 2.0 Token (Name of
the organization issuing the assertions)

isam

270 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 122. JSON to SAML2 module chain values (continued)

Tab: Field Value

Properties: Default SAML 2.0 Token (Amount of
time before the issue date that an assertion is
considered valid)

60

Properties: Default SAML 2.0 Token (Amount of
time that the assertion is valid after being
issued)

60

Properties: Default SAML 2.0 Token (List of
attribute types to include)

*

Use the defaults for all of the fields that are not specified in the table.
c) Save and deploy the changes.

4. Use curl to test the chain.
a) Send the following WS-Trust 1.2 message:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <ns1:RequestSecurityToken xmlns:ns1="http://docs.oasis-open.org/ws-sx/ws-trust/
200512">
 <wst:RequestType xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 http://schemas.xmlsoap.org/ws/2005/02/trust/Validate</wst:RequestType>
 <wst:Issuer xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 <wsa:Address xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/
addressing">jwtissuer</wsa:Address>
 </wst:Issuer>
 <wsp:AppliesTo xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsa:EndpointReference xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/
addressing">
 <wsa:Address>jwtappliesto</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wst:Base xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
<JWT>ewogICJlbWFpbCI6ICJqb2huLmRvZUBleGFtcGxlLmNvbSIsIAogICJmYW1pbHlfbmFtZSI6ICJkb2UiLCAK
ICAiZ2l2ZW5fbmFtZSI6ICJqb2huIiwgCiAgImlzcyI6ICJpc2FtIiwgCiAgInN1YiI6ICIwMTIzNDU2Nzg5Igp9</
JWT>
 </wst:Base>
 </ns1:RequestSecurityToken>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The bold embedded element, <JWT> </JWT>, is the input to the chain. This is a Base64 encoded
JSON string that contains the following data::

{
 "email": "john.doe@example.com",
 "family_name": "doe",
 "given_name": "john",
 "iss": "isam",
 "sub": "0123456789"
}

b) Save this file as jwt.xml.
c) Run the following curl command, where jwt.xml is the WS-Trust 1.2 message:

curl -k -v -u "easuser:passw0rd" -H "Content-Type: text/xml" --data-binary
@jwt.xml https://ip-rte/TrustServer/SecurityTokenService

The following results are returned:

Chapter 9. Global settings 271

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"></SOAP-
ENV:Header>
 <soap:Body>
 <wst:RequestSecurityTokenResponseCollection xmlns:wst="http://docs.oasis-
open.org/ws-sx/ws-trust/200512">
 <wst:RequestSecurityTokenResponse xmlns:wsu="http://docs.oasis-open.org/wss/
2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 wsu:Id="uuidc1288a62-0153-1f8b-bf2a-b4c46f51cd03">
 <wsp:AppliesTo xmlns:wsa="http://www.w3.org/2005/08/addressing"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsa:EndpointReference>
 <wsa:Address>jwtappliesto</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wst:Lifetime xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/
200512">
 <wsu:Created>2016-03-29T06:56:13Z</wsu:Created>
 <wsu:Expires>2016-03-29T06:57:13Z</wsu:Expires>
 </wst:Lifetime>
 <wst:RequestedSecurityToken>
 <saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ID="Assertion-
uuidc1288ae8-0153-10bd-b7ef-b4c46f51cd03"
 IssueInstant="2016-03-29T06:56:13Z" Version="2.0">
 <saml:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-
format:entity">isam</saml:Issuer>
 <saml:Subject>
 <saml:NameID Format="urn:oasis:names:tc:SAML:1.1:nameid-
format:emailAddress">
 0123456789</saml:NameID>
 <saml:SubjectConfirmation
Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
 <saml:SubjectConfirmationData
NotOnOrAfter="2016-03-29T06:57:13Z"></saml:SubjectConfirmationData>
 </saml:SubjectConfirmation>
 </saml:Subject>
 <saml:Conditions NotBefore="2016-03-29T06:55:13Z"
NotOnOrAfter="2016-03-29T06:57:13Z">
 <saml:AudienceRestriction>
 <saml:Audience>jwtappliesto</saml:Audience>
 </saml:AudienceRestriction>
 </saml:Conditions>
 <saml:AuthnStatement AuthnInstant="2016-03-29T06:56:13Z">
 <saml:AuthnContext>

<saml:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:Password
 </saml:AuthnContextClassRef>
 </saml:AuthnContext>
 </saml:AuthnStatement>
 <saml:AttributeStatement>
 <saml:Attribute Name="given_name"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
 <saml:AttributeValue xsi:type="xs:string">john</
saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="email"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
 <saml:AttributeValue
xsi:type="xs:string">john.doe@example.com</saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="iss"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
 <saml:AttributeValue xsi:type="xs:string">isam</
saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="family_name"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
 <saml:AttributeValue xsi:type="xs:string">doe</
saml:AttributeValue>
 </saml:Attribute>
 </saml:AttributeStatement>
 </saml:Assertion>
 </wst:RequestedSecurityToken>

The JSON string is mapped into the SAML assertion, as shown by the previous bold text. The
attributes in the SAML2 assertion are mapped from JSON attributes.

272 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

<wst:RequestedAttachedReference xmlns:wss="http://docs.oasis-open.org/wss/2004/01/
oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wss:SecurityTokenReference xmlns:wss11="http://docs.oasis-
open.org/wss/oasis-wss-wssecurity-secext-1.1.xsd"
 wss11:TokenType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-
profile-1.1#SAMLV2.0">
 <wss:KeyIdentifier
xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
 xmlns:wss="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd"
 ValueType="http://docs.oasis-open.org/wss/oasis-wss-saml-token-
profile-1.1#SAMLID">
 Assertion-uuidc1288ae8-0153-10bd-b7ef-b4c46f51cd03</
wss:KeyIdentifier>
 </wss:SecurityTokenReference>
 </wst:RequestedAttachedReference>
 <wst:RequestType>http://schemas.xmlsoap.org/ws/2005/02/trust/Validate</
wst:RequestType>
 <wst:Status>
 <wst:Code>http://docs.oasis-open.org/ws-sx/ws-trust/200512/status/
valid</wst:Code>
 </wst:Status>
 </wst:RequestSecurityTokenResponse>
 </wst:RequestSecurityTokenResponseCollection>
 </soap:Body>
</soap:Envelope>

Related tasks
“Mapping a SAML2 token to a base64 encoded JSON string example” on page 172
You can map a SAML 2 token to a base64 encoded JSON string by using a JavaScript mapping rule.

Mapping a SAML2 token to a JSON Web Token example
You can map a SAML 2 token to a base64 encoded JSON string by using a JavaScript mapping rule.

About this task
The steps show an end-to-end SAML to JSON mapping. “STSRequest and STSResponse access using a
JavaScript mapping rule” on page 168 provides a description of this support.

Procedure
1. Create a JavaScript mapping rule using the local management interface.

a) Select Federation > Global Settings > Mapping Rules.
b) Click Add.
c) In the Content field, copy and paste the following code:

 importClass(com.tivoli.am.fim.base64.BASE64Utility);
 importClass(com.tivoli.am.fim.trustserver.sts.utilities.IDMappingExtUtils)

 var jwt = {};

 var it = stsuu.getPrincipalAttributes();
 var jt = stsuu.getAttributes();

 while (it.hasNext()) {
 var attribute = it.next();
 var name = new String(attribute.getName());
 var value = new String(attribute.getValues()[0]);

 if ("name".equals(name)) {
 jwt["sub"] = value;
 } else {
 jwt[name] = value;
 }
 }

 while (jt.hasNext()) {
 var attribute = jt.next();
 var name = new String(attribute.getName());
 var value = new String(attribute.getValues()[0]);

Chapter 9. Global settings 273

 jwt[name] = value;
 }

 var document = IDMappingExtUtils.newXMLDocument();
 var jwtString = JSON.stringify(jwt);
 var jwtText = document.createTextNode(BASE64Utility.encode((new
java.lang.String(jwtString)).getBytes("UTF-8")));
 var jwtElement = document.createElement("JWT");

 jwtElement.appendChild(jwtText);

 stsresponse.getRequestSecurityTokenResponse().setRequestedSecurityToken(jwtElement);

d) In the Name field, enter saml_jwt.
e) In the Category field, select SAML2_0.
f) Click Save and deploy the changes.

2. Assemble the Security Token Service (STS) template.
a) Select Federation > Manage > Security Token Service.
b) Click Templates.
c) Click Add and name the template SAML2 to JSON. Click OK.
d) Select the SAML2 to JSON template and add the Default SAML 2.0 Token in Validate mode and a

Default Map Module in Map mode.
e) Save and deploy the changes.

3. Create an STS chain that references the mapping rule and template you created in the previous steps.
a) Within the Security Token Service panel, select Module Chains.
b) Click Add to create a module chain, with the following values:

Table 123. SAML2 to JSON module chain values

Tab: Field Value

Overview: Name SAML2 to JSON

Overview: Description SAML2 to base64 encoded JSON string
conversion STS chain

Overview: Template SAML2 to JSON

Lookup: Request Type Validate

Lookup: Applies to Address SAML2_AppliesTo

Lookup: Issuer Address SAML2_Issuer

Properties: Default Map Module (JavaScript file
containing the identity mapping rule

saml_jwt

Use the defaults for all of the fields not in the table.
c) Save and deploy the changes.

4. Use curl to test the chain.
a) Send the following WS-Trust 1.2 message:

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <SOAP-ENV:Header/>
 <SOAP-ENV:Body>
 <ns1:RequestSecurityToken xmlns:ns1="http://docs.oasis-open.org/ws-sx/ws-trust/
200512">
 <wst:RequestType xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 http://schemas.xmlsoap.org/ws/2005/02/trust/Validate</wst:RequestType>
 <wst:Issuer xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">

274 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

 <wsa:Address xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/
addressing">SAML2_Issuer</wsa:Address>
 </wst:Issuer>
 <wsp:AppliesTo xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsa:EndpointReference xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/
addressing">
 <wsa:Address>SAML2_AppliesTo</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
<wst:Base xmlns:wst="http://docs.oasis-open.org/ws-sx/ws-trust/200512">
 <saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance"
 ID="Assertion-uuidbcb46a39-0153-1337-8efa-fec506fb7461"
IssueInstant="2016-03-28T10:10:53Z" Version="2.0">
 <saml:Issuer Format="urn:oasis:names:tc:SAML:2.0:nameid-format:entity">isam</
saml:Issuer>
 <saml:Subject>
 <saml:NameID Format="urn:oasis:names:tc:SAML:1.1:nameid-
format:emailAddress">0123456789</saml:NameID>
 <saml:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
 <saml:SubjectConfirmationData NotOnOrAfter="2016-03-28T10:11:53Z"/>
 </saml:SubjectConfirmation>
 </saml:Subject>
 <saml:Conditions NotBefore="2016-03-28T10:09:53Z"
NotOnOrAfter="2016-03-29T10:11:53Z">
 <saml:AudienceRestriction>
 <saml:Audience>jwt_saml</saml:Audience>
 </saml:AudienceRestriction>
 </saml:Conditions>
 <saml:AuthnStatement AuthnInstant="2016-03-28T10:10:53Z">
 <saml:AuthnContext>
 <saml:AuthnContextClassRef>urn:oasis:names:tc:SAML:2.0:ac:classes:Password</
saml:AuthnContextClassRef>
 </saml:AuthnContext>
 </saml:AuthnStatement>
 <saml:AttributeStatement>
 <saml:Attribute Name="given_name"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
 <saml:AttributeValue xsi:type="xs:string">john</saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="email" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-
format:basic">
 <saml:AttributeValue xsi:type="xs:string">john.doe@example.com</
saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="iss" NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-
format:basic">
 <saml:AttributeValue xsi:type="xs:string">isam</saml:AttributeValue>
 </saml:Attribute>
 <saml:Attribute Name="family_name"
NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:basic">
 <saml:AttributeValue xsi:type="xs:string">doe</saml:AttributeValue>
 </saml:Attribute>
 </saml:AttributeStatement>
 </saml:Assertion>
 </wst:Base>
 </ns1:RequestSecurityToken>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The bold element in the SAML2 assertion is mapped to the JSON attributes in the result.
b) Save this file as saml2.xml.
c) Run the following curl command, where saml2.xml is the WS-Trust 1.2 message:

curl -k -v -u "easuser:passw0rd" -H "Content-Type: text/xml" --data-binary
@saml2.xml https://ip-rte/TrustServer/SecurityTokenService

The following results are returned:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <SOAP-ENV:Header xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"></SOAP-
ENV:Header>
 <soap:Body>
 <wst:RequestSecurityTokenResponseCollection xmlns:wst="http://docs.oasis-
open.org/ws-sx/ws-trust/200512">
 <wst:RequestSecurityTokenResponse

Chapter 9. Global settings 275

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
utility-1.0.xsd"
 wsu:Id="uuidc1676e30-0153-16a8-86b5-c34fd1aca7a8">
 <wsp:AppliesTo xmlns:wsa="http://www.w3.org/2005/08/addressing"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <wsa:EndpointReference>
 <wsa:Address>SAML2_AppliesTo</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wst:RequestedSecurityToken>

<JWT>eyJzdWIiOiIwMTIzNDU2Nzg5IiwiZ2l2ZW5fbmFtZSI6ImpvaG4iLCJOb3RPbk9yQWZ0ZXIiOiIyMDE2LTAz

LTI5VDEwOjExOjUzWiIsIkF1dGhlbnRpY2F0aW9uTWV0aG9kIjoidXJuOm9hc2lzOm5hbWVzOnRjOlNBTUw6MS4w

OmFtOnBhc3N3b3JkIiwiZW1haWwiOiJqb2huLmRvZUBleGFtcGxlLmNvbSIsIkF1ZGllbmNlUmVzdHJpY3Rpb25

Db25kaXRpb24uQXVkaWVuY2UiOiJqd3Rfc2FtbCIsImlzcyI6ImlzYW0iLCJJc3N1ZUluc3RhbnQiOiIyMDE2LT

AzLTI4VDEwOjEwOjUzWiIsImZhbWlseV9uYW1lIjoiZG9lIiwiTm90QmVmb3JlIjoiMjAxNi0wMy0yOFQxMDowO

To1M1oiLCJBdXRoZW50aWNhdGlvbkluc3RhbnQiOiIyMDE2LTAzLTI4VDEwOjEwOjUzWiIsImlzc3VlciI6Iml
 zYW0ifQ==</JWT>
 </wst:RequestedSecurityToken>
 <wst:RequestType>http://schemas.xmlsoap.org/ws/2005/02/trust/Validate</
wst:RequestType>
 <wst:Status>
 <wst:Code>http://docs.oasis-open.org/ws-sx/ws-trust/200512/status/
valid</wst:Code>
 </wst:Status>
 </wst:RequestSecurityTokenResponse>
 </wst:RequestSecurityTokenResponseCollection>
 </soap:Body>
</soap:Envelope>

The bold embedded element, <JWT> </JWT>) , is the result in a Base64 encoded JSON Web
Token:

{
 "sub": "0123456789",
 "given_name": "john",
 "NotOnOrAfter": "2016-03-29T10:11:53Z",
 "AuthenticationMethod": "urn:oasis:names:tc:SAML:1.0:am:password",
 "email": "john.doe@example.com",
 "AudienceRestrictionCondition.Audience": "jwt_saml",
 "iss": "isam",
 "IssueInstant": "2016-03-28T10:10:53Z",
 "family_name": "doe",
 "NotBefore": "2016-03-28T10:09:53Z",
 "AuthenticationInstant": "2016-03-28T10:10:53Z",
 "issuer": "isam“
}

Related tasks
“Mapping a base64 encoded JSON string to a SAML2 token example” on page 169
You can map a base64 encoded JSON string to a SAML 2 token by using a JavaScript mapping rule.

OpenID Connect mapping rules
Mapping rules allow users to customize the information that is propagated from an OpenID Connect
Provider or what is consumed by a Relying Party.

These mapping rules can either be JavaScript, which is invoked internally via the STS, or the mapping can
be performed externally via a HTTP request.

OpenID Connect Provider mapping rules
When you write mapping rules for a provider, the primary goal is to augment the claims that are included
in the ID token.

After mapping rule execution, all attributes in the STSUU will be added to the id_token as a claim, where
the attribute key is the key in the id_token, and the value is the value of the attribute. If there are several
attributes with the same key, then an array containing each attribute will be added to the claim. Some

276 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

context information is made available to the user when writing mapping rules; the context attributes of
the passed in STSUU will contain attributes with the type “urn:ibm:ITFIM:oidc:provider:context”, which
can be used to make decisions on what claims are added, or if any other actions are performed.

These context attributes include:

• The client ID of the client making the request.
• The federation name of the provider servicing the request.
• The redirect URI sent in the request.
• The response type of the request.
• The state parameter of the request.
• The user-consented scopes for the request.

OpenID Connect Relying Party mapping rules
When you write mapping rules for a Relying Party, the resulting STSUU is turned into a PAC that is used to
authenticate the user to a Reverse Proxy via EAI.

The attributes that are included in that PAC will be the attributes of the STSUU, and the principal will be
the first principal which was in the STSUU. When writing mapping rules for a Relying Party, the values of
the id_token will be made available as Attributes in the STSUU. Some additional context is made
available to the user via the STSUU's context attributes. These attributes will have the types
“urn:ibm:ITFIM:oidc:client:idtoken:param” and “urn:ibm:ITFIM:oidc:client:token:param”.

These context attributes include:

• All of the claims inside the id_token.
• The raw JWT.
• Any issued access or refresh tokens.
• All of the properties of the issued bearer token if an authorization code flow is used.
• All of the parameters issued in the response if an implicit flow is used.

Attribute sources
Both OpenID Connect Providers and Relying Parties can be configured to use an attribute source.

For an OpenID Connect Provider, this can be used instead of a mapping rule. However for an OpenID
Connect Relying Party a mapping rule must still be present, this mapping rule is required to construct the
principal used in the iv-cred.

For more information about attribute sources, see Managing attribute sources.

OpenID Connect mapping rules
Mapping rules allow users to customize the information that is propagated from an OpenID Connect
Provider or what is consumed by a Relying Party.

These mapping rules can either be JavaScript, which is invoked internally via the STS, or the mapping can
be performed externally via a HTTP request.

Import a mapping rule from another mapping rule
You can reuse mapping rules by importing a mapping rule from another mapping rule.

When you want to create a new mapping rule, or customize an existing mapping rule, you can reuse
JavaScript code from a previously defined mapping rule. With this feature, you can define a mapping rule
once and then reuse it in other mapping rules.

Chapter 9. Global settings 277

Use the function importMappingRule() to specify a mapping rule to import. For example, you can
define a mapping rule that is called Utility.js that contains functions for obtaining an HTTP header
and an HTTP cookie.

function getHeader(name) {
 // function for getting HTTP header
}

function getCookie(name) {
 // function for getting HTTP cookie
}

If you have another mapping rule that is called Credential.js, which also needs to obtain HTTP
headers, use the following code to include the functions from the Utility.js mapping rule:

importMappingRule("Utility");
var host = getHeader("Host");
// do something with the host header
var sessionID = getHeader("PD-SESSION-ID");
// do something with the session ID

The function importMappingRule() accepts a list of mapping rule names and imports each of the
mapping rules. For example:

importMappingRule("Utility","Credential","UserIdentity");

Alternatively, you can also make multiple calls to importMappingRule() within one script. For
example:

importMappingRule("Utility");
importMappingRule("Credential");
importMappingRule("UserIdentity");

The JavaScript engine throws an error if you do not specify a mapping rule name, or if you specify the
name of a mapping rule that does not exist.

Use the Local Management Interface (LMI) to view existing mapping rules that are defined on your
system. Select Federation > Global Settings > Mapping Rules, or AAC > Global Settings > Mapping
Rules.

Note:

On the LMI menu, the icon Import is for importing mapping rules into IBM Security Verify Access, not for
importing a mapping rule into an existing mapping rule. Use the Edit icon to add the
importMappingRule() function to an existing mapping rule.

Managing Distributed Session Cache
In a clustered appliance environment, session information is stored in the Distributed Session Cache. To
work with these sessions, use the Distributed Session Cache management page.

About this task
The Distributed Session Cache feature replaces the Session Management Server. The Session
Management Server (SMS) is not supported on IBM Security Verify Access for Web Version 8 and later.

Procedure
1. From the top menu, select the menu for your activation level.

• Web > Manage > Distributed Session Cache
• AAC > Global Settings > Distributed Session Cache
• Federation > Global Settings > Distributed Session Cache

278 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

All replica set names and the number of sessions in each replica set are displayed.
2. You can then view the replica set server list and manage sessions in a particular replica set.

a) To view a list of the servers that are registered with a replica set, select the replica set and then
click Servers.

b) To manage the sessions in a replica set, select the replica set and then click Sessions.

Tip: Typically, the list of sessions contains many entries. You can locate a session or a user faster by
using the filter in the upper left corner.

Delete a specific session

i) Select the session to delete.
ii) Click Delete.

iii) In the confirmation window, click Delete Session.

Delete all sessions for a user

i) Select any session for that user.
ii) Click Delete.

iii) In the confirmation window, click Delete User.

Managing server connections
To access data from outside of your appliance, you must define a server connection.

Before you begin
Obtain the connection information for an existing LDAP database server.

About this task
With a Federation module activated, you can create server connections to an LDAP data source. You can
have multiple servers for an LDAP connection.

Note: Even though other server connection types are available to select in the local management
interface, such as DB2, only the LDAP server connection is used by Federation module.

If you also have the Advanced Access Control module activated, you can create any of the server
connection types. See Managing server connections.

Procedure
1. Log in to the local management interface.
2. Click Federation.
3. Under Global Settings, click Server Connections.
4. Take one of the following actions:

Filter server connections:

a. In the Quick Filter field, type one or more characters. For example, enter g to search for all
server connection names that contain g or G.

b. Press Enter.

Add a server connection:

a. Click the drop-down button.
b. Select LDAP.
c. Complete the properties for the new server connection. See “Server connection properties” on

page 280. Look specifically for the LDAP properties.

Chapter 9. Global settings 279

Modify an existing server connection:

a. Select a server connection.

b. Click the edit icon .
c. Complete the properties for the server connection. See “Server connection properties” on page

280.

Delete a server connection:

Note: Be careful about removing a server connection that is in use.

a. Select a server connection.

b. Click the delete icon .
c. Click Delete to confirm the deletion.

What to do next
After you define a server connection to an LDAP data source, you can create an attribute source that looks
up information from the LDAP server.

Server connection properties
To access a data source outside of the appliance, define the properties of the server.

The Server Connection properties table describes the properties on the Server Connections panel for the
Advanced Access Control and Federation module activation levels.

• Advanced Access Control: Configure LDAP, database, web service, or Cloud Identity server connections
so that you can set up policy information points. You can configure any of the server connection types.

• Federation: Configure an LDAP server as an attribute source for attribute mapping. Federation does not
configure any of the other database server connection types.

Table 124. Server Connection properties

Property Description

Name Specifies the name for the server connection. Ensure that the name
is unique. Select this name when you define the policy information
point.

Note: The server connection name must begin with an alphabetic
character. Do not use control characters, leading and trailing blanks,
and the following special characters ~ ! @ # $ % ^ & * () + | ` = \ ; " '
< > ? , [] { } / anywhere in the name.

Description Describes the server connection. This property is optional.

Type Shows the server connection type. (Read only)

JNDI ID (Oracle, DB2,
PostgreSQL only)

Specifies the JNDI ID that the server uses. Ensure that the ID is
unique. Use only alphanumeric characters: a-b, A-B, 0-9

Server name (Oracle, DB2,
PostgreSQL, SMTP only)

Specifies the name or IP address for the server.

Port (Oracle, DB2, PostgreSQL,
LDAP, SMTP, Redis only)

Specifies the port number where the connection to the server can be
made.

URL (Web Service only) Specifies the URL where the connection to the server can be made.

Master Name (Redis-Sentinel
only)

280 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 124. Server Connection properties (continued)

Property Description

User name (Oracle, DB2,
PostgreSQL, SMTP, and Web
Service only)

Specifies the user name that has the correct permissions to access
the resources.

Password (Oracle, DB2,
PostgreSQL, SMTP, and Web
Service only)

Specifies the password to access the server.

SSL Specifies whether SSL is used for connecting to the server. Select
True or False. The default value is True.

Driver type (Oracle only) Specifies the driver type. Select Thin or OCI. The default value is
Thin.

Service name (Oracle only) Specifies the name of the service.

Database name (DB2,
PostgreSQL only)

Specifies the name of the database.

Host name (LDAP and Redis
only)

Specifies the host name or IP address of the LDAP and Redis server.

For Redis-Sentinel, select the Servers tab to add specify the servers.

Bind DN (LDAP only) Specifies the LDAP distinguished name (DN) that is used when
binding, or signing on, to the LDAP server.

Note: If this value is set to "anonymous", the appliance uses an
anonymous bind to the LDAP directory server. Typically the bind-dn
has significant privileges so that it can be used to modify LDAP
registry entries, such as creating users and resetting passwords via
pdadmin or the Registry Direct Java API. Using an anonymous
connection to LDAP typically comes with very limited access,
perhaps at most search and view of entries, at the least no access at
all. If anonymous access has sufficient privileges, then it might be
usable for the WebSEAL level of access on users and groups. This
access includes the permission for a user to change password if
"bind-auth-and-pwdchg = yes" is set ("ldap.bind-auth-
and-pwdchg = true" for Registry Direct Java API).

Bind Password (LDAP only) Specifies the password for the LDAP bind DN.

Note: If bind DN (bind-dn) is set to anonymous, you can use any
non-empty string as the value of bind password (bind-pwd).

Administration hostname
(Cloud Identity only)

Specifies the administration hostname of the Cloud Identity
subscription.

Client ID (Cloud Identity only) Specifies the client ID of an API Client on Cloud Identity.

Client Secret (Cloud Identity
only)

Specifies the client secret of an API Client on Cloud Identity.

SSL Truststore (LDAP, Web
Service, Cloud Identity, and Redis
only)

Specifies the truststore that verifies the credentials.

Chapter 9. Global settings 281

Table 124. Server Connection properties (continued)

Property Description

SSL Mutual Authentication Key
(LDAP, Web Service, Cloud
Identity, Redis only)

Label of the client certificate to be presented when connecting to the
LDAP. This property is sourced from SSL Truststore.

Note: This field is required only if mutual SSL authentication is
required by the server.

Note: For information on SSL configuration, see Configuring SSL connections.

The properties in the following table are connection manager properties. The defaults that are listed are
the current known defaults. All tuning properties are optional.

Table 125. Tuning properties

Property Description

Aged timeout (seconds) (Oracle,
DB2, PostgreSQL only)

Specifies the amount of time, in seconds, before a physical
connection is discarded by pool maintenance. Specify -1 to disable
this timeout. The default is -1.

Connection timeout (seconds) Specifies the amount of time, in seconds, after which a connection
times out.

For Oracle, DB2, PostgreSQL, and SMTP, specify -1 to disable this
timeout. The default is 30 seconds.

For LDAP, specify only integers, 1 or greater. The default is 120
seconds.

For Redis, the default is 10 seconds

Min Idle Size (Redis only) Specifies the minimum number of established connections that must
be kept in the pool.

Max Idle Size (Redis only) Specifies the maximum number of established connections that
must be kept in the pool.

Max Idle Time (seconds) Specifies the maximum amount of time, in seconds, after which an
unused or idle connection is discarded during pool maintenance.
Specify -1 to disable this timeout. The default is 1800 seconds.

Max Idle Time (seconds) (LDAP
only)

Specifies the amount of time, in seconds, after which an established
connection is discarded as idle. Set this to a value lower than the
connection idle timeout on the LDAP server.

Note: This is only applicable for performing Attribute Mapping from
an LDAP server.

Reap time (seconds) (Oracle,
DB2, PostgreSQL only)

Specifies the amount of time, in seconds, between runs of the pool
maintenance thread. Specify -1 to disable pool maintenance. The
default is 180 seconds.

Max pool size (Oracle, DB2,
PostgreSQL only)

Specifies the maximum number of physical connections for a pool.
Specify 0 for unlimited. The default is 50.

Max pool size (LDAP and Redis
only)

Specifies the maximum number of connections that are pooled.

Note: This is only applicable for performing Attribute Mapping from
an LDAP server.

Min pool size (Oracle, DB2,
PostgreSQL only)

Specifies the minimum number of physical connections to maintain
in a pool. The aged timeout can override the minimum.

282 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Table 125. Tuning properties (continued)

Property Description

Purge policy (Oracle, DB2,
PostgreSQL only)

Specifies which connections to delete when a stale connection is
detected in the pool. Select from the following options:
Entire pool

When a stale connection is detected, all connections in the pool
are marked stale, and when no longer in use, are closed. This is
the default option.

Failing connection only

When a stale connection is detected, only the connection that
was found to be bad is closed.

Validate all connections

When a stale connection is detected, connections are tested and
the ones that are found to be bad are closed.

Max connections per thread
(Oracle, DB2, PostgreSQL only)

Specifies the limit of open connections on each thread.

Cache connections per thread
(Oracle, DB2, PostgreSQL only)

Specifies the number of cache connections for each thread.

Idle Timeout (seconds) (Redis
only

Specifies the amount of time, in seconds, after which an established
connection is discarded as idle. The default is 1800 seconds.

IO Timeout (seconds) (Redis
only)

Specifies the amount of time, in seconds, that the client waits for a
response from the server, after an established connection, before it
is discarded as idle.

Point of contact profiles
Use the local management interface to work with your point of contact profiles.

You can perform the following point of contact profile tasks:

• “Creating a point of contact profile” on page 283
• “Updating or viewing a point of contact profile” on page 284
• “Deleting a point of contact profile” on page 285
• “Setting a current point of contact profile” on page 285

Creating a point of contact profile
Create a point of contact server profile to capture the information needed for the runtime to communicate
with the point of contact server.

About this task
You can create point of contact profiles with the Federation module or the Advanced Access Control
module.

Three point of contact profiles provided by Security Verify Access are ready for use.

When you want to create your own profile that is similar to an existing one, use Create Like to save time.
If you do not want to reuse any of the existing specifications, create a brand new one with Create. The
details are in the following procedure.

Chapter 9. Global settings 283

Procedure
1. From the local management interface, select Federation or AAC. Then, Global Settings > Point of

Contact.
A list of point of contact server profiles displays. The list includes three preconfigured profiles and any
other custom profiles that you created.

2. Take one of the following actions:

• Click Create to create a custom point of contact profile.
• Select a profile from the list and click Create Like to start with values similar to an existing profile.

3. On the Profile Name page, enter the name of the profile. The first character of the profile name must be
alphanumeric. The maximum number of characters is 200.

4. Optional: Enter a description.
5. Specify the parameter information:

• Enter the information on each tabbed page, and click Next.
• In the Callback Parameters section on each page, click Create to open a window to add a set of

parameter name and value pairs. Click Save when complete.
• Add as many parameters as you need. The Value field might be empty for some parameters.
• To delete a parameter name from the list, select the parameter and click Delete.

6. At the Summary page, if everything is correct, click Finish.
7. Deploy the pending changes.

What to do next
• See “Callback parameters and values” on page 285 for more information.
• You might want to change the current point of contact profile. See “Setting a current point of contact
profile” on page 285.

Updating or viewing a point of contact profile
Update or view a point of contact server profile.

About this task
You cannot update the preconfigured point of contact profiles.

Procedure
1. From the local management interface, select Federation or AAC. Then, Global Settings > Point of

Contact.
A list of point of contact server profiles displays.

2. Perform one of the following actions:

• Update

a. Select a profile from the list that is not a preconfigured profile and click Update to change the
configuration details.

b. Click Next to see each page and make updates if necessary.
c. On the Summary page, click Finish to save your changes.
d. Deploy the changes

• View

a. Select a profile from the list and click Properties to look at the configuration details without
making updates.

b. Click on each tab to see the information.

284 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

c. Click OK when finished.

What to do next
See “Callback parameters and values” on page 285 for more information about the properties.

Deleting a point of contact profile
Use the local management interface to remove a point of contact profile.

About this task
You cannot delete the following profiles:

• A preconfigured point of contact profile.
• A profile that is set as the current profile. Select another profile as the current one, if necessary.

See “Setting a current point of contact profile” on page 285.

Procedure
1. From the local management interface, select Federation > Global Settings > Point of Contact or AAC

> Global Settings > Point of Contact.
A list of point of contact server profiles displays.

2. Select a profile from the list, that is not a preconfigured profile, and click Delete.
The details of the selected profile display.

3. Review the profile to ensure that it is the one you want to delete.
4. Click Finish.
5. Click OK to confirm.
6. Deploy the change.

Setting a current point of contact profile
Set a point of contact profile as the current one so that the federation runtime communicates with the
point of contact server using the correct set of specifications.

Procedure
1. From the local management interface, select Federation > Global Settings > Point of Contact or

select AAC > Global Settings > Point of Contact.
A list of point of contact server profiles displays. The list includes three preconfigured profiles and any
other custom profiles that you created. The green dot indicates the current profile.

2. To change the current profile, select the profile you want to use as the current one and click Set As
Current.
The current profile indicator displays next to the profile you selected.

3. Deploy the changes.

Callback parameters and values
Specify the callback parameters and values when you define a point of contact profile.

Sign In callbacks
fim.user.request.header.name

The name of the header that contains the user name of the user.

Data type: String

Chapter 9. Global settings 285

Example: iv-user

fim.attributes.response.header.name
The name of the header that contains the attributes of the user.

Data type: String

Example: am-fim-eai-xattrs

fim.groups.response.header.name
The name of the header that contains the groups of the user.

Data type: String

Example: fim.groups

fim.server.response.header.name
The name of the header that contains the hostname that authenticates the user.

Data type: String

Example: fim.server

fim.target.response.header.name
The name of the header that contains the redirect URL.

Data type: String

Example: am-fim-eai-redir-url

fim.user.response.header.name
The name of the header that contains the user name of the user.

Data type: String

Example: am-fim-eai-user-id

fim.user.session.id.response.header.name
The name of the header that contains the reverse proxy session ID of the user.

Data type: String

Example: user_session_id

fim.cred.response.header.name
The name of the header that contains the IVCred of the user.

Data type: String

Example: am-fim-eai-pac

url.encoding.enabled
Indicates whether the EAI header names and values are URL encoded. The default setting for this
property is false. The EAI header names and values are not URL encoded.

Data type: Boolean

Example: false

Sign Out callbacks
fim.user.session.id.request.header.name

The name of the header that contains the reverse proxy session ID of the user.

Data type: String

Example: user_session_id

fim.user.request.header.name
The name of the header that contains the user name.

Data type: String

286 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Example: iv-user

Local ID
fim.attributes.request.header.name

The name of the header that contains the attributes of the user.

Data type: String

Example: fim.attributes

fim.cred.request.header.name
The header that contains the IVCred of the user.

Data type: String

Example: iv-creds

fim.groups.request.header.name
The name of the header that contains the groups of the user.

Data type: String

Example: iv-groups

fim.user.request.header.name
The name of the header that contains the user name.

Data type: String

Example: iv-user

Authenticate
fim.user.request.header.name

The name of the header that contains the user name.

Data type: String

Example: iv-user

authentication.macros
A list of macros that defines contextual information to pass to the web reverse proxy login page. The
macros you specify can customize an authentication login page for a specific service provider. For
more information, see Customizing the SAML 2.0 login form.

Data type: String

Example: If an identity provider wants to display the provider ID and target URL of a partner, specify
the following macros:

%PARTNERID%,%TARGET%

Access policies
You can use access policies to perform step-up and reauthentication during a single sign-on flow based
on contextual information.

Access policies can be enforced at a federation or at API Protection for OAuth and OpenID Connect. The
following list shows some example scenarios where access policies could be used.

• Restrict single sign-on access to applications based on the user and group membership.
• Restrict single sign-on access to applications based on devices, locations, and time.
• Require more authentication steps for single sign-on access to sensitive applications. Examples include

re-authentication through an SMS one-time password, or confirmation of a push notification to a mobile
device.

Chapter 9. Global settings 287

• Enforce user authentication requirements as demanded by an application, through a service provider, to
grant single sign-on access.

Access policies can take contextual information as input:

• User information, such as user, groups, attributes
• Request information, such as HTTP headers, HTTP parameters, and cookies
• Single sign-on context, such as federation, partner, and authentication request. For OAuth and OpenID

Connect the context includes Client ID, scope, response type, and other attributes.

Based on the contextual information, the administrator can choose from the following actions:

Allow
The user is allowed single sign-on access.

Deny
The user is denied single sign-on access.

Challenge
The user must complete a challenge before single sign-on access can proceed.

Access policies are defined as JavaScript. See “Access policy development” on page 289.

After an access policy is defined, it can be applied, used, and enforced on the following types of
deployments.

• SAML 2.0 identity provider federation
• SAML 2.0 service provider partner to an identity provider federation
• OpenID Connect and API Protection Definition

Access policies cannot be applied or used by the following deployments.

• SAML 2.0 service provider federation
• SAML 2.0 identity provider partner to a service provider federation
• OpenID Connect and API Protection Client
• OpenID Connect Relying Party

For more information, see “Creating an access policy” on page 288.

Creating an access policy
You can create an access policy in JavaScript and then use the local management interface to deploy it.

Before you begin
Before you begin, ensure that you understand the following concepts.

• The business requirements or scenarios for the access policy.
• The types of Security Verify Access deployments that can enforce and use access policies.

For more information, see “Access policies” on page 287.

Procedure
1. Create the policy by writing JavaScript that enforces the requirements.

See “Access policy development” on page 289.
2. Use the Access Policies menu in the local management interface to add the policy to your

deployment.

See “Managing access policies” on page 295.
3. Enable access policies for your deployment, and apply the necessary access policy.

288 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Follow the instructions for your type of deployment.

• SAML 2.0 identity provider federation

Use the local management interface Federation > Manage > Federations wizard to enable access
policies, and select a policy to assign to the federation. See Creating and modifying a federation.

• SAML 2.0 service provider partner to an identity provider federation

Use the local management interface Federation > Manage > Federations wizard to enable access
policies, and select a policy to assign to the partner. See Managing federation partners.

Note: If you enable access policies on the partner, and select a policy, the partner policy takes
precedence over any policy that is assigned to the federation. If you do not enable access policies
on the partner, access policies that are enabled for the federation are still enforced.

• OpenID Connect and API Protection Definition

When you create or manage an API Protection Definition, you can choose to specify an access
policy. See Creating an API protection definition.

Access policy development
You can use JavaScript to define and develop access policies.

Access policies are used to decide whether a user is allowed access to a single sign-on federation. Access
policies return a decision of either Allow, Deny, or Challenge. If the Access Policy does not return a
decision, an error will be returned.

To write an access policy in JavaScript, use the Java classes, methods, and handlers that are supplied in
Security Verify Access. To view the Javadoc, use the local management interface.

1. Select System > File Downloads > federation > doc
2. Access ISAM-javadoc.zip.

Expand the Javadoc to view the relevant packages. For example:

• com.ibm.security.access.policy
• com.ibm.security.access.policy.decision
• com.ibm.security.access.policy.saml20
• com.ibm.security.access.policy.user

Allow
Use the allow decision to allow the single sign-on flow to continue if the requirement is met. The following
example code shows a simple access policy that does not check any condition or requirement.

importClass(Packages.com.ibm.security.access.policy.decision.Decision);
var decision = Decision.allow();
context.setDecision(decision);

Another example is to allow the single sign-on flow to continue if the username equals testuser.

importClass(Packages.com.ibm.security.access.policy.decision.Decision);
importClass(Packages.com.ibm.security.access.policy.decision.HtmlPageDenyDecisionHandler);
importPackage(Packages.com.tivoli.am.fim.trustserver.sts.utilities);

//Retrieve the user context
var user = context.getUser();
//Retrieve the username
var username = user.getUsername();

if (username == "testuser"){
//Check the condition is username = testuser
 var decision = Decision.allow();
 context.setDecision(decision);
}

Chapter 9. Global settings 289

else{
 //If username is not testuser then deny the SSO flow.
 var handler = new HtmlPageDenyDecisionHandler();
 handler.setMacro("@MESSAGE@", JSON.stringify("Sorry "+username+ " is not allowed to run
 a successful Single Sign on flow"));
 var decision = Decision.deny(handler);
 context.setDecision(decision);
}

Challenge
Use the challenge decision to force the user to complete an action before the single sign-on flow can
proceed.

The action might be to be redirected to a service that is running out of the Security Verify Access
appliance, or to an HTML page that is provided by Security Verify Access, or to a custom HTML page, by
setting a pageid. When you redirect to an HTML page, you can set macros to display data on the page.

The challenge decision can result in one of the following actions.

• HTMLPage Challenge

This decision results in the display to the user of a default HTML page or a custom HTML. The default
page is present under /access_policy, and is called challenge_decision.html.

To challenge with a custom page, call the setPageId function with the path where the page is
uploaded in Template Files.

setPageId("/access_policy/Challenge_User.html");

Macros can be set and retrieved by using the setMacro function.

setMacro("@MESSAGE@", "Challenge Decision");

When a challenge decision is called during a single sign-on operation, the single sign-on operation halts
for the challenge to be completed. When the challenge is completed, the single sign-on operation must
resume. To resume the operation, the page must be a POST operation on the @ACTION@ macro, which
resumes the flow.

• Redirect Challenge

This decision results in an HTTP redirect to an external or third-party service. The user must complete
the challenge before single sign-on can resume.

In this scenario, the single sign-on flow is halted when a redirect challenge decision is initiated by the
third-party server. The third party must be told which URL to redirect the user to, when the user
successfully completes the challenge. Following is example code for a redirect challenge.

setRedirectUri("https://www.service.ibm.com/isam/service&redirectUri=https://www.myidp.ibm.com/
isam@ACTION@");

The URL https://www.service.ibm.com/isam/service is the third-party application or service
that sends a challenge to the user. In this example, https://www.myidp.ibm.com/isam is the point
of contact for the identity provider federation or OpenID Provider, and @ACTION@ indicates the endpoint
to access to resume the single sign-on flow. The Security Verify Access runtime server populates the
value for the @ACTION@ macro.

Deny
The Deny decision can result in one of the following actions.

• HTMLPage Deny

290 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

This decision results in a default HTML page or a custom HTML page that is displayed to the user. The
default page, deny_decision.html, is located under /access_policy.

To deny with a custom page, call the setPageId function with the path where the page is uploaded in
Template Files.

setPageId("/access_policy/Deny_User.html");

You can use the setMacro function to set and retrieve macros.

setMacro("@MESSAGE@", "Deny Decision");

• Redirect Deny

This decision results in an HTTP redirect to an external or third-party service. Example code for a
redirect is as follows.

setRedirectUri("https://www.denyService.com");

The URI https://www.denyService.com is the third-party application to which the user is
redirected.

User context example for access policy
You can specify an access policy that makes access decisions based on context that is obtained from the
user information.

User context contains, users, groups, and attributes information. The following example access policy
makes an access decision based on user context.

var userJSON = (function() {
 var user = context.getUser();
 var userReturn = {};

 var groupsJSON = (function() {
 var groupsReturn = [];
 var groups = user.getGroups();

 for (var it = groups.iterator(); it.hasNext();) {
 var group = it.next();
 var groupName = group.getName();
 groupsReturn.push("" + groupName);
 }

 return groupsReturn;
 })();

 var attributesJSON = (function() {
 var attributesReturn = {};
 var attributes = user.getAttributes();

 for (var it = attributes.iterator(); it.hasNext();) {
 var attribute = it.next();
 var attributeName = attribute.getName();
 var attributeValue = attribute.getValue();

 attributesReturn["" + attributeName] = "" + attributeValue;
 }

 return attributesReturn;
 })();

 userReturn["username"] = "" + user.getUsername();
 userReturn["groups"] = groupsJSON;
 userReturn["attributes"] = attributesJSON;

 return userReturn;
})();

Chapter 9. Global settings 291

Request context example for access policy
You can specify an access policy that makes access decisions based on context that is obtained from the
request.

Requests can contain headers, cookies, and parameters. The following example uses the request context
to make an access decision.

//Retrieve request context
var requestJSON = (function() {
 var request = context.getRequest();
 var requestReturn = {};

 var headersJSON = (function() {
 var headersReturn = {};
 var headerNames = request.getHeaderNames();

 for (var it = headerNames.iterator(); it.hasNext();) {
 var headerName = it.next();
 var headerValue = request.getHeader(headerName);

 headersReturn["" + headerName] = "" + headerValue;
 }

 return headersReturn;
 })();

 var cookiesJSON = (function() {
 var cookiesReturn = {};
 var cookies = request.getCookies();

 for (var it = cookies.iterator(); it.hasNext();) {
 var cookie = it.next();
 var cookieComment = cookie.getComment();
 var cookieDomain = cookie.getDomain();
 var cookieHttpOnly = cookie.isHttpOnly();
 var cookieMaxAge = cookie.getMaxAge();
 var cookieName = cookie.getName();
 var cookiePath = cookie.getPath();
 var cookieSecure = cookie.isSecure();
 var cookieValue = cookie.getValue();
 var cookieVersion = cookie.getVersion();

 cookiesReturn["" + cookieName] = {
 comment: "" + cookieComment,
 domain: "" + cookieDomain,
 httpOnly: cookieHttpOnly,
 maxAge: cookieMaxAge,
 path: "" + cookiePath,
 secure: cookieSecure,
 value: "" + cookieValue,
 version: cookieVersion
 };
 }

 return cookiesReturn;
 })();

 var parametersJSON = (function() {
 var parametersReturn = {};
 var parameterNames = request.getParameterNames();

 for (var it = parameterNames.iterator(); it.hasNext();) {
 var parameterName = it.next();
 var parameterValue = request.getParameter(parameterName);

 parametersReturn["" + parameterName] = "" + parameterValue;
 }

 return parametersReturn;
 })();

 requestReturn["headers"] = headersJSON;
 requestReturn["parameters"] = parametersJSON;

 return requestReturn;
})();

292 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

SAML 2.0 protocol context example for access policy
You can specify an access policy that makes access decisions based on context that is obtained from the
protocol.

For SAML 2.0, the protocol context includes federation information, partner information, and the
authentication request. The following policy makes an access decision based on the protocol context.

//Retrieve protocol context
var protocolContextJSON = (function() {
 var protocolContext = context.getProtocolContext();
 var protocolContextReturn = {};
 protocolContextReturn["request"] = "" + protocolContext.getAuthnRequest();
 protocolContextReturn["FederationId"] = "" + protocolContext.getFederationId();
 protocolContextReturn["PartnerId"] = "" + protocolContext.getPartnerId();
 protocolContextReturn["FederationName"] = "" + protocolContext.getFederationName();
 protocolContextReturn["PartnerName"] = "" + protocolContext.getPartnerName();
 return protocolContextReturn;
})();

An example of using SAML 2.0 protocol context to decide whether to allow or deny based on the partner
name is as follows.

importClass(Packages.com.ibm.security.access.policy.decision.Decision);
importClass(Packages.com.ibm.security.access.policy.decision.HtmlPageDenyDecisionHandler);

var protocolContext = context.getProtocolContext();

if (protocolContext.getPartnerName() != "SP Company"){
 var decision = Decision.allow();
 context.setDecision(decision);
}
else{
 var handler = new HtmlPageDenyDecisionHandler();
 handler.setMacro("@MESSAGE@", "Sorry "+protocolContext.getPartnerName()+ " is not allowed
 to run a successful Single Sign on flow");
 var decision = Decision.deny(handler);
 context.setDecision(decision);
}

OAuth and OpenID Connect protocol context example for access policy
You can specify an access policy that makes access decisions based on context that you obtained from
the OAuth and OpenID Connect protocol.

Some examples scenarios that make use of an access policy with an OAuth and OpenID Connect
deployment are as follows.

• An access policy performs extra authentication:

– For a particular client
– For a certain flow based, on response_type requested.
– When a specific scope is requested.

• An access policy decided to re-authenticate the user when the last authentication time is greater than
the max_age that was requested.

Following is an example of protocol context for OpenID Connect.

//Retrieve protocol context
var protocolContextJSON = (function() {
 var protocolContext = context.getProtocolContext();
 var protocolContextReturn = {};
 protocolContextReturn["request"] = "" + protocolContext.getAuthenticationRequest();
 protocolContextReturn["ClientId"] = "" + protocolContext.getClientId();
 protocolContextReturn["ClientName"] = "" + protocolContext.getClientName();
 protocolContextReturn["DefinitionId"] = "" + protocolContext.getDefinitionId();
 protocolContextReturn["DefinitionName"] = "" + protocolContext.getDefinitionName();

Chapter 9. Global settings 293

 return protocolContextReturn;
})();

An example of using OpenID Connect 2.0 protocol context to make a decision to allow or deny based on
the client ID name is as follows.

importClass(Packages.com.ibm.security.access.policy.decision.Decision);
importClass(Packages.com.ibm.security.access.policy.decision.HtmlPageDenyDecisionHandler);
importPackage(Packages.com.tivoli.am.fim.trustserver.sts.utilities);

//This access policy denies successful Single Sign On, if clientid = clientID
var protocolContext = context.getProtocolContext();

if (protocolContext.getClientId() == "clientID")
{
 var handler = new HtmlPageDenyDecisionHandler();
 //Setting the macro with all the context information,
 // make sure that the /access_policy/deny_decision.html is modified to print the macro.
 handler.setMacro("@MESSAGE@", "Single Sign On cannot be completed by the
 following clientId : "+protocolContext.getClientId());
 var decision = Decision.deny(handler);
 context.setDecision(decision);
}
else
{
 var decision = Decision.allow();
 context.setDecision(decision);
}

Session context example for access policy
You can specify an access policy that makes access decisions based on context that is obtained from the
session.

var session = context.getSession();
//If a session attribute called 'text' exists the following function will retrieve its value
var sessionData = session.getAttribute("text");

Reauthentication example for access policy
Access policies can be used to do reauthentication. Following is an example of an access policy that
implements reauthentication.

Note: Reauthentication in an access policy is supported only by performing a Redirect Challenge to the
required authentication service.

// max_age represents how long a user session should be active
// authenticationTime represents when the user first logged into the authentication service
if (max_age < authenticationTime){
 // Reauthenticate the user using a username password policy
 // Once the username password policy is executed, the authenticationTime will be refreshed and
 // the "if" condition will not hold good; hence the user will be allowed to run the single sign-on
 var handler = new RedirectChallengeDecisionHandler();
 handler.setRedirectUri("https://www.myidp.example.com/isam/sps/authsvc?PolicyId=
 urn:ibm:security:authentication:asf:password&Target=https://www.myidp.example.com/isam@ACTION@");
 var decision = Decision.challenge(handler);
 context.setDecision(decision);
}
else{
 var decision = Decision.allow();
 context.setDecision(decision);
}

294 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Template files for access policies
You can use template files to build your access policies.

You can access the template files from the local management interface.

1. Select Federation > Template Files
2. Expand the access_policy entry.

The following template files are provided.

Table 126. Access Policy templates

Template Description

challenge_decision.html An HTML page that instructs the user to complete a challenge in order
to gain access. The challenge is specified by the value you put into the
@ACTION@ macro.

deny_decision.html An HTML page that informs the user that access is denied.

server_error.html An HTML page that you can use to display an error message to the
user. You can assign values for the following macros:

• @REQ_ADDR@
• @TIMESTAMP@
• @EXCEPTION_MSG@
• @EXCEPTION_STACK@

Managing access policies
You can use the local management interface to manage access policies.

Before you begin
Ensure you understand how to develop and use access policies for federation single sign-on. For more
information, see “Access policies” on page 287.

Procedure
1. In the local management interface, select Federation > Global Settings > Access Policies.
2. Select the action you want to complete.

Add

Enter the JavaScript code that you want to include in this policy. Enter a name (string) for the
policy. For Type, select JavaScript. For Category, you can specify any string. Save the entry.

Import

Enter a name for the policy and select a type. Use the Browse window to select a JavaScript file to
import. Click OK to import the file.

Edit

Select a policy from the Access Policies list. Click Edit. Change the JavaScript as needed and click
OK.

Delete

Select a policy from the Access Policies list. Click Delete to remove the policy.

Export

Select a policy from the Access Policies list. Click Export to save the policy to disk.

Chapter 9. Global settings 295

Replace

Select a policy from the Access Policies list. Click Replace to replace the policy. Click Browser to
locate the JavaScript file that contains the policy that you want to use instead of the existing
JavaScript for the policy that you selected. Click OK to replace the existing JavaScript in the
selected policy with the JavaScript from the selected file.

3. When prompted, deploy your changes.

What to do next
Create or modify a federation or federation partner to use the access policy. See “Creating an access
policy” on page 288.

Sample file for Access Policies
Use the Access Policies samples as a template and modify it to suit your needs.

The access policy samples help you to get started with access policies. These samples assume that the
federation, partner, and reverse proxy are configured with the correct junction, federation, and partner
name.

importClass(Packages.com.ibm.security.access.policy.decision.Decision);
importClass(Packages.com.ibm.security.access.policy.decision.HtmlPageDenyDecisionHandler);
importClass(Packages.com.ibm.security.access.policy.decision.RedirectDenyDecisionHandler);
importClass(Packages.com.ibm.security.access.policy.decision.HtmlPageChallengeDecisionHandler);
importClass(Packages.com.ibm.security.access.policy.decision.RedirectChallengeDecisionHandler);
importPackage(Packages.com.tivoli.am.fim.trustserver.sts.utilities);

//Set promptTOTP = true if the user must be prompted with TOTP during a single sign on flow.
var promptTOTP = false;
if (promptTOTP){
/*
* We are using the TOTP policy that is bundled with the Advanced Access Control activation.
* The isamcfg tool must be configured with the right junction name.
*/
 //Retrieve user context
 var user = context.getUser();
 //Check the various authenticationTypes performed by the user
 var authenticationTypesAttribute = user.getAttribute("authenticationTypes");
 if (authenticationTypesAttribute != null && authenticationTypesAttribute.getValues().
contains("urn:ibm:security:authentication:asf:totp")){
 /*
 * If authenticationTypesAttribute is not null, we check if the user has performed TOTP,
 * if yes the user is allowed to continue with the Single Sign on.
 */
 context.setDecision(Decision.allow());
 }
 else{
 /*
 * If authenticationTypesAttribute is null, or the user has not performed TOTP, the
 * user is challenged with a TOTP authentication.
 * This is done by using a RedirectChallengeDecision. The RedirectChallengeDecision
 * handler needs a redirect uri to which the user must be redirected to. Below is the
 * API which does that.
 * handler.setRedirectUri("/sps/authsvc?PolicyId=urn:ibm:security:authentication:asf:
 * totp&Target=https://www.myidp.ibm.com/isam@ACTION@");
 * Notice the Uri, it invokes a TOTP policy that is available OOTB by activating the
 * Advanced Access Control, the other parameter which is sent is the Target, this is
 * the URL the user will be redirected to once the TOTP is completed.
 * The format of the URL is https://www.myidp.ibm.com/isam@ACTION@ , where
 * https://www.myidp.ibm.com/isam is the point of contact server for the federation
 * and @ACTION@ macro is the endpoint which needs to be accessed for the Single Sign On
 * flow to continue, since it was halted when the redirect challenge was initiated.
 */

 var handler = new RedirectChallengeDecisionHandler();
 /*
 * If a variable or a string needs to be logged into the trace.log use the
 * IDMappingExtUtils.traceString() function. To enable the trace, set the trace string
to
 * com.tivoli.am.fim.*:ALL
 */
 IDMappingExtUtils.traceString("CHALLENGE WITH TOTP");
 handler.setRedirectUri("/sps/authsvc?PolicyId=urn:ibm:security:authentication:asf:totp\
&Target=https://www.myidp.ibm.com/isam@ACTION@");

296 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

 context.setDecision(Decision.challenge(handler));
 }
}

/*
* Set checkGroupMembership = true if the user is allowed to perform single sign on flow based on
* group membership.
*/
var checkGroupMembership = false;
if (checkGroupMembership){
 //Retrieve user context
 var user = context.getUser();
 //Check if the user belongs to the "SecurityGroup"
 var group = user.getGroup("SecurityGroup");
 //If the user belongs to the group, else Deny
 if (group != null){
 context.setDecision(Decision.allow());
 }
 else{
 /*
 * If the user does not belong to the group, the single sign on flow is aborted. A
 * HtmlPageDenyDecision is used to deny the user from performing SSO.
 * The HtmlPageDenyDecision throws an OOTB HTML Deny page, which is located at
 * /access_policy/deny_decision.html or we could set a custom page using setPageId().
 * A custom macro could be sent to display a custom error messages using setMacro().
 *
 * var handler = new HtmlPageDenyDecisionHandler();
 * handler.setPageId("/access_policy/custom_deny_decision.html");
 * handler.setMacro("@MESSAGE@","This is a custom deny page");
 *
 * Make sure that the following page exists /access_policy/
custom_deny_decision.html,
 * a macro can be set to so that it can be retrieved from the template page.
 *
 * In the above example a @MESSAGE@ macro is set, this can be retrieved in the
 * /access_policy/custom_deny_decision.html page using the following code snippet.
 *
 * <%templateContext.response.body.write(templateContext.macros["@MESSAGE@"]);%>
 *
 * <div class="pageContent">
 * <div class="errorMessage"><
%templateContext.response.body.write(templateContext
 * .macros["@MESSAGE@"]);%></div>
 * </div>
 *
 */
 var handler = new HtmlPageDenyDecisionHandler();
 handler.setMacro("@MESSAGE@", "This user does not belong to the required group and is\
not allowed to preform sso");
 context.setDecision(Decision.deny(handler));
 }

}

With the Access Policies above, there are samples for each of the following activities:

• Redirecting to another authentication provider, and the pattern for returning to the SSO
• Checking credential attributes
• Checking group membership
• Sending a HTML page
• Setting a macro for a page
• Sending a redirect
• Denying a request
• Allowing a request

Runtime monitoring using Prometheus
Runtime can be configured to provide a /metrics REST interface from which you can access all metrics
that are emitted by the Runtime. The default format for responses to requests to /metrics is a text
format that is compatible with Prometheus.

Chapter 9. Global settings 297

This is controlled by the advance tuning parameter runtime_profile.enable.monitor. To enable,
set the parameter to true and deploy pending changes. To disable, set the
runtime_profile.enable.monitor to false

The monitoring endpoint is unprotected. If the service needs to be protected, it needs to be done with a
WebSEAL junction.

Use /metrics to access the monitoring data.

Managing Session Persistence
Use the Session Persistence page in the Local Management Interface (LMI) to configure the Advanced
Access Control and Federation session persistence stores and consumers through their own UI page.

About this task
The following components in the appliance utilize the storage and retrieval of user sessions:

• Application server HTTP user sessions
• Authentication service policy state and sessions
• SAML session footprints

The actual data storage can be configured as one of the following:

• Distributed Session Cache
• Distributed Map

The session persistence managed here is for Advanced Access Control and/or Federation only.

Note: Changes made to Managing advanced configuration might affect the settings in session persistence.
Each page shows the advanced configuration items that are controlled by the session persistence
settings.

Procedure
1. Select one of the following menu entries for your licensing level:

• If you are using an Advanced Access Control license, select AAC > Global Settings > Session
Persistence.

• If you are using a Federation license, select Federation > Global Settings > Session Persistence.

Note: If both licenses are activated, either of the menu items will open the same page.
2. To manage the user HTTP session storage:

This might include information related to inflight Authentication Service Requests, inflight Federated
SSO flows, or any data stored against the session object in mapping rules.
a) Select the Data link at the top of the page to ensure that the Data page is open.
b) Select the User Session tab.
c) Choose the location for the data tied to the WebSphere Liberty HTTP session that is used by the

AAC/Federation runtime by selecting the required radio button:

• In Memory. When it is configured with "In Memory" persistence, no replication of session data is
shared with other servers.

• Distributed Session Cache
• Distributed Map

d) Click Save.
e) Deploy the changes.

3. To manage Authentication State Management:

298 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

The authentication service stores policy state and session information between invocations, indexed
off the state ID or session ID. Cookies are used to track the state ID unless cookie-less operation is
enabled. When cookie-less operation is enabled, the state ID is used as the key into the configured
store location.

If the cookie-less is set to HVDB, the HVDB lifetime should be set to 600 seconds
(authsvc.stateMgmt.HVDB.lifetime). This will limit the inactivity lifetime of the session to 600
seconds (10 minutes).

If cookie-less is enabled, the state ID source should be set to Body Only.
(sps.authService.stateIdSource.authsvc,
sps.authService.stateIdSource.apiauthsvc)

These state ID source parameters allow more fine-grained control over how the authentication service
sources the state ID. If set to Body and Query, the authentication service continues to accept state ID
as a query or body parameter. If set to Body Only, the authentication service only accepts the state
ID as a body parameter (POST or PUT).

a) Select the Data link at the top of the page to ensure that the Data page is open.
b) Select the Authentication Service tab.
c) To enable the server side storage of session data, check the Cookie-less check box.
d) If cookie-less is selected, choose the storage type by selecting the required type from the Store

dropdown.
e) Click Save.
f) Deploy the changes.

4. To manage SAML 2.0 session footprint storage:
a) Select the Data link at the top of the page to ensure that the Data page is open.
b) Select the SAML 2.0 tab.
c) Choose the location for the SAML 2.0 footprint data by selecting the required radio button:

• Distributed Map
• Distributed Session Cache

d) Click Save.
e) Deploy the changes.

5. To manage the Distributed Session Cache store:
a) Select the Stores link at the top of the page to ensure that the Stores page is open.
b) Select the Distributed Session Cache tab.
c) To use a distributed session cache location on the same server, or as part of a cluster configuration,

select the Local to Server/Cluster radio button.
d) To use a distributed session cache on another server/container, select the External radio button.

i) To add an external server, click the Add button. Set the hostname, port, and whether to enable
SSL and click Save.

ii) To modify an existing server, select the server in the list and click the Edit button. Update the
required field(s) and click the Save button.

iii) To delete an existing server, select the server in the list and click the Delete button. Click Delete
to confirm the operation.

iv) To change the ordering of the servers use the up and down buttons.

Note: A maximum of four external servers can be set.
e) Click Save.
f) Deploy the changes.

6. To manage the Distributed Map store:

Chapter 9. Global settings 299

a) Select the Stores link at the top of the page to ensure that the Stores page is open.
b) Select the Distributed Map tab.
c) To use the high volume database, select the HVDB radio button.
d) To use Redis, select the Redis radio button.

i) Select the Redis server connection from the dropdown.
ii) If the Redis server connection does not exist, Click the New button and create the server

connection then select it in the dropdown. For details on the creation of the Redis server
connection see Server connection properties.

iii) To test the Redis server connection, click Test Connection.
e) Click Save.
f) Deploy the changes.

300 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Chapter 10. DB2 HVDB High Availability Disaster
Recovery (HADR) guideline

HADR provides a high availability solution for both partial and complete site failures.

HADR protects against data loss by replicating data changes from a source database, called the primary
database, to the target databases, called the standby databases. HADR supports up to three remote
standby servers.

Description of the HADR Modes
HADR synchronization mode is controlled by the database configuration parameter hadr_syncmode.

See DB2 v1.0.1 Knowledge Center.

HADR provides four synchronization modes to suit a diverse range of operational environment. Database
configuration parameter hadr_syncmode can be set to one of the following modes:
SYNC

Transactions on primary commits only after relevant logs are written to disk on both primary and
standby.

NEARSYNC
Transactions on primary commits only after relevant logs are written to disk on primary and received
into memory on standby.

ASYNC
Transactions on primary commits only after relevant logs have been written to local disk and sent to
standby.

SUPERASYNC
Transactions on primary does not wait for replication of logs to the standby.

For SYNC and NEARSYNC modes, the primary waits for an ack message from the standby to confirm that
the logs are received and written to disk on standby (SYNC mode) or are received on the standby
(NEARSYNC mode).

For ASYNC mode, primary considers replication as done as soon as the logs are delivered to the TCP layer
of the primary host machine. For SUPERASYNC mode, the primary log writing is independent of log
replication.

SYNC and NEARSYNC modes are typically used on LAN. ASYNC and SUPERASYNC modes are typically used
over WAN.

SYNC mode
SYNC mode provides the most secure data protection. Two on-disk copies of data are required for
transaction commit.

The downside of this mode is the extra time for writing on standby and sending the ack message back to
primary.

In SYNC mode, logs are sent to standby only after they are written to primary disk. Log write and
replication events happen sequentially. The total time for a log write is the sum of the
primary_log_write, log_send, standby_log_write, and ack_message. The cost of replication is
significantly higher than other modes.

https://www.ibm.com/support/knowledgecenter/SSEPGG_10.1.0/com.ibm.db2.luw.admin.ha.doc/doc/c0011724.html

NEARSYNC mode
NEARSYNC mode is comparable to the SYNC, mode at significantly less cost.

Standby sends ack message as soon as it receives the logs in memory. It also sends logs to standby and
writes logs to primary disk in parallel. On a fast network, log replication causes no or little overhead to
primary log writing.

In NEARSYNC mode, you lose data if primary fails and the standby fails before it has a chance to write the
received logs to disk. This is a rare "double failure" scenario. Thus NEARSYNC mode is a good choice for
many applications, providing near synchronization protection at a far less performance cost.

ASYNC mode
In ASYNC mode, sending logs to standby and writing logs to primary disk are done in parallel.

ASYNC mode does not wait for ack messages from the standby, primary system throughput is minimum
(log write rate, log send rate). ASYNC mode is applicable for WAN application. Network transmission delay
does not impact performance in this mode. However, if the primary database fails, there is a higher
chance that logs in transit are lost (not replicated to standby).

SUPERASYNC mode
In SUPERASYNC mode, log writing and replication are independent. HADR never enters peer state.

Log shipping only uses remote catchup state. Log writing is never slowed down. However, primary-
standby log gap can grow. In a failover, data in the gap is lost. You must monitor the gap closely. This
mode provides the least impact on primary, at the cost of the least data protection. It is typically used on
unreliable networks.

While in other sync modes, a non-forced takeover is allowed only in peer state, where primary and
standby log positions are close, in the SUPERASYNC mode, non-forced takeover is allowed in remote
catchup state. If there is a large gap, the takeover takes a long time because after stopping transactions
on the primary, HADR is still required to ship all logs in the gap to the standby and replay them before
takeover can complete. You must to check the gap before issuing a non-forced takeover in SUPERASYNC
mode.

Choose a synchronization Mode
You can choose synchronization mode types for the IBM Security Verify Access Federation component.

SAML
SAML 2.0 Flow Binding NameID

Management
Recommended
replication mode

Comments

Single Sign-On (SSO) HTTP POST Email, Transient NEARSYNC If Single Log Out is not required,
choose the SUPERASYNC mode.

HTTP REDIRECT Email, Transient NEARSYNC

HTTP Artifact Email, Transient NEARSYNC The Service Provider or Identity
Provider must resolve the SAML
Artifact from the Identity Provider or
Service Provider.

In case of a database failover during an
SSO, the SAML message must be in
standby for the Service Provider or
Identity Provider to be able to resolve
it.

• HTTP POST
• HTTP ARTIFACT
• HTTP REDIRECT

Persistent NEARSYNC ALIAS_SVC_ALIASUSERPARTNER data
is replicated in case of failover.

302 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

OpenID Connect (OIDC) or OAuth
OIDC Flow Response type Recommended replication

mode
Comment

Authorization code flow code NEARSYNC At authorization code flow, the
Relying Party client is required
to exchange an authorization
code for a token.

In case of failover, the Relying
Party must get the
authorization code resolved
from the secondary database.

Implicit • token
• id_token

NEARSYNC In Implicit flow, the refresh
token is not generated. To
improve performance, use the
SUPERASYNC mode.

Hybrid • code
• token
• id_token

NEARSYNC At hybrid flow, Relying Party
client is required to exchange
an authorization code for a
token.

In case of failover Relying
Party needs to get the
authorization code resolved
from a secondary database.

WS Federation Single Sign-On (WSFed SSO)
Recommended HADR mode: NEARSYNC.

Note: If the single log out feature is not required we can use the SUPERASYNC mode.

SAML 1.1

SAML 1.1 Flow Binding Recommended replication
mode

Comment

Single Sign-On HTTP POST SUPERASYNC

Single Sign-On HTTP Artifact NEARSYNC The Service Provider or
Identity Provider must resolve
the SAML Artifact from the
Identity Provider or Service
Provider.

In case of a database failover
during an SSO, the SAML
message must be in standby
for the Service Provider or
Identity Provider to be able to
resolve it.

For more information on synchronization mode types for the IBM Security Verify Access Advanced Access
Control component, see Choose a synchronization mode for the Advanced Access Control component.

Chapter 10. DB2 HVDB High Availability Disaster Recovery (HADR) guideline 303

304 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

Index

A
Advanced Access Control

point of contact profile 283
advanced configration 184
alias service

SAML 2.0 60
appliances

clusters 278
artifact resolution service

endpoint URLs 12
assertion consumer service

endpoint URLs 12
Attribute Mapping module

properties 148
using 121

authentication
login form 61

B
bindings

SAML 2.0 58

C
callback parameters

point of contact profile 285
clocks

synchronizing 74
clusters

Distributed Session Cache 278
configuration

federation
advanced 184

partner
obtaining from 41

Consent to Federate Page
customization 71, 248
description 71, 248

D
Default Mapping module

properties 149
using 122

deleted advanced configuration properties 4
deprecated advanced configuration properties 4
Distributed Session Cache (DSC)

managing 278

E
endpoint URLs

SAML 2.0 12
endpoints

endpoints (continued)
SAML 11

event pages
customization overview 62, 239
overview 63, 239

F
federation

information gathering 21
partner

configuring 41
obtaining 41

point of contact profile 283
reverse proxy point of contact server configuration 179
SAML 2.0 federations 7

Federation Module
overview 1

federation runtime
user session ID 72

federations
LDAP data source 279

H
HTML pages

SAML 2.0 63, 240
HTTP Callout module

properties 149
using 122

I
identity mapping

SAML 1.1 token, local user 19
SAML 2.0 token, local user 21, 269

identity provider
SAML 1.1 worksheet 23
SAML 2.0 worksheet 32

identity provider mapping
SAML 2.0 token, local user 19, 267

identity provider partner
SAML 1.1 worksheet 46
SAML 2.0 worksheet 54

IVCred token module
properties 150

L
LDAP

server connection 279
local user identity mapping

from 19, 267
to 19, 21, 269

login form
customizing (overview) 62, 239

Index 305

login pages
custom 61
web reverse proxy 61

logout
user session ID 72

LTPA module
properties 152
using 124

M
macros

customization 61
HTML pages for SAML 2.0 63, 240

manageItfimStsChainMapping
token module properties 148

mapping rules
customizing for context data 257
OTPDeliver 255
OTPGenerate 255
OTPGetMethods 254
OTPVerify 256
PostTokenGeneration 259
SAML 2.0 token to local identity 19, 267

metadata
partner

obtaining from 41
module types

Attribute Mapping 121
Default Mapping 122
HTTP Callout 122
LTPA 124
overview 121
PassTicket token 136
SAML 1.1 129
SAML 2.0 125
STSUU 132
Verify Access credentials 123

N
name identifier management

SAML 2.0 59
name identifier service

endpoint URLs 12

O
one-time password

delivery method 254, 259
OpenID Connect federation

reverse proxy point of contact server configuration 179
OTPDeliver

usage 255
OTPGenerate

usage 255
OTPGetMethods

usage 254
OTPVerify

usage 256

P
page identifiers

HTML for SAML 2.0 63, 240
pages, event

SAML 2.0 63, 239
partner

obtaining configuration from 41
PassTicket module

using 136
point of contact profile

callback parameters 285
creating 283
current 285
deleting 285
updating 284

point of contact profile configuration 4
point of contact server

reverse proxy configuration 179
PostTokenGeneration

usage 259
profiles

initial URLs description 11
properties

Attribute Mapping module 148
Default Mapping module 149
HTTP Callout module 149
IVCred module 150
LTPA module 152
SAML 1.1 module 161
SAML 2.0 module 154
Username module 165

protocols
support for SAML 2.0 7

R
removed advanced configuration properties 4
replica sets

management 278
reverse proxy instance

point of contact server configuration 179

S
SAML

authentication login form custom macros 61
profiles 9

SAML 1.1
local user mapping 19
worksheets

identity provider 23
identity provider partner 46
service provider 22

SAML 1.1 federations
description 7

SAML 1.1 module
properties 161
using 129

SAML 2.0
alias service 60
bindings 58
Consent to Federate Page customization 71, 248

306 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

SAML 2.0 (continued)
custom login form 61
endpoints 11, 12
event pages 63, 239
local user mapping 19, 21, 267, 269
name identifier management 59
overview 8
page identifiers 63, 240
responses 71, 248
service provider partner worksheet 51
URLs 12
worksheets

identity provider 32
identity provider partner 54
service provider 26

SAML 2.0 federations
description 7

SAML 2.0 module
properties 154
using 125

SAML federations
reverse proxy point of contact server configuration 179

server connections
LDAP 279

servers
point of contact server 179

service provider
SAML 1.1 worksheet 22
SAML 2.0 worksheet 26

service provider mapping
SAML 2.0 token, local user 21, 269

service provider partner
SAML 2.0 worksheet 51

session ID
user 72

sessions
information 278

single logout
user session ID 72

single sign-on
event pages 62, 239
HTML pages 63, 240

single sign-on service
endpoint URLs 12

STS module types
Attribute Mapping 121
Default Mapping 122
HTTP Callout 122
IVCred 123
LTPA 124
PassTicket 136
SAML 1.1 129
SAML 2.0 125
STSUU 132

STS modules
configure 121
overview 121

STSUU module
using 132

synchronizing clocks 74
system clock synchronization 74

T
template files

macros 249
template pages

WAYF page 70, 247

U
upgrading

point of contact configuration 3
URLs

partner communication 11
profiles 11
SAML 2.0

endpoint URLs 12
user session ID 72
Username module

properties 165

V
Verify Access credential module

using 123

W
WAYF page

template 70, 247
web reverse proxy

login pages 61
Where Are You From (WAYF) page, See WAYF page
worksheets

SAML 1.1
identity provider 23
identity provider partner 46
IDP 23
IDP partner 46
service provider 22
SP 22

SAML 2.0
identity provider 32
IDP 32
IDP partner 54
service provider 26
SP worksheet 26

SAML 2.0 service provider partner 51

Index 307

308 IBM Security Verify Access Version 10.0.2 June 2021: Federation Configuration topics

IBM®

	Contents
	Tables
	Chapter 1. Federation overview
	Chapter 2. Upgrading configuration
	Point of contact profile configuration after an upgrade
	Point of contact advanced configuration property updates
	Change in OpenID Connect relying party mapping rule

	Chapter 3. SAML Federations Overview
	SAML 1.1
	SAML 2.0
	SAML profiles
	SAML 1.1 initial URL
	SAML 2.0 endpoints and URLs
	Endpoint URL specifications

	SAML 2.0 profile initial URLs

	Customizing SAML identity mapping
	Mapping a local user identity to a SAML 1.1 token
	Mapping a SAML 1.1 token to a local user identity
	Mapping a local identity to a SAML 2.0 token
	Mapping a SAML 2.0 token to a local identity

	Creating a SAML federation
	Gathering your federation configuration information
	SAML 1.1 service provider worksheet
	SAML 1.1 identity provider worksheet
	SAML 2.0 service provider worksheet
	SAML 2.0 identity provider worksheet

	Creating a SAML partner
	Obtaining federation configuration data from your partner
	SAML 1.1 service provider partner worksheet
	SAML 1.1 identity provider partner worksheet
	SAML 2.0 service provider partner worksheet
	SAML 2.0 identity provider partner worksheet

	SAML 2.0 bindings
	SAML 2.0 name identifier formats
	Alias service
	Configuring an LDAP alias service database
	Modifying alias service settings to LDAP

	Customizing the SAML 2.0 login form
	Supported macros for customizing an authentication login form

	Customizing AuthnContext using identity mapping rule
	SAML 2.0 pages
	Event pages
	SAML 2.0 page identifiers
	Template page for the WAYF page
	Customizing the Consent to Federate Page

	Configuring the user session ID for the federation runtime
	Synchronizing system clocks in the federation

	Chapter 4. WS-Federation federations
	WS-Federation single sign-on profiles
	Identity provider and service provider roles
	Creating a WS-Federation federation
	WS-Federation federation properties

	Creating a WS-Federation partner
	WS-Federation partner properties

	WS-Fed exclude elements

	Chapter 5. OpenID Connect federations
	OpenID Connect Provider federations
	OpenID Connect Relying Party federations
	Authentication with OpenID Connect Relying Party
	Relying party endpoints for authentication
	Relying party authentication flow
	Relying party authentication metadata
	Relying Party identity mapping
	Relying Party advanced configuration
	Relying Party attribute types
	Use of STSUU for the Relying Party

	Configuring an OpenID Connect Relying Party federation
	OpenID Connect Relying Party federation properties

	Configuring an OpenID Connect Relying Party partner
	OpenID Connect Relying Party partner properties

	Making a request to /userinfo as part of authentication

	Conformance
	Setting up the OIDC Definition API
	OpenID Connect Provider Conformance
	OpenID Connect Provider Access Policies
	Mapping Rules
	STS Chains
	OpenID Connect Discovery

	FAPI Conformance
	OpenID Connect Discovery
	WebSEAL Configuration
	HTTP Transformation Rules
	Mapping Rules
	STS Chains
	FAPI Definition Configurations
	FAPI - MTLS and Certificate Bound Tokens
	FAPI- Private Key JWT
	Configuring FAPI Client

	Chapter 6. Configuring STS modules
	Supported module types
	Attribute Mapping module
	Default Mapping module
	HTTP Callout module
	IVCred module
	LTPA module
	SAML 2.0 module
	SAML 1.1 module
	STS Universal User module
	Security Token Service Universal User

	Username token module
	PassTicket module
	JSON Web Token (JWT)
	JWT support
	Validate mode
	Issue mode

	Kerberos Module
	Kerberos Keytab File

	X.509 module

	Token module properties
	Attribute Mapping module properties
	Default Mapping module properties
	HTTP Callout module properties
	IVCred module properties
	LTPA module properties
	SAML 2.0 module properties
	SAML 1.1 module properties
	Username module properties

	STSRequest and STSResponse access using a JavaScript mapping rule
	Mapping a base64 encoded JSON string to a SAML2 token example
	Mapping a SAML2 token to a base64 encoded JSON string example

	Chapter 7. Nested single sign-on flows
	Chapter 8. Configuring a reverse proxy point of contact server
	Chapter 9. Global Settings
	Advanced Configuration
	Advanced configuration properties

	User Registry
	Runtime Parameters
	Template files
	Managing template files
	Customizing the consent page (OIDC)
	Template file scripting
	Template files reference
	Consent to register
	User self-care
	Authentication process
	Authentication mechanisms
	Authentication error
	OAuth

	SAML 2.0 pages
	Event pages
	SAML 2.0 page identifiers
	Template page for the WAYF page
	Customizing the Consent to Federate Page

	Template file macros

	Mapping Rules
	Managing JavaScript mapping rules
	Authentication Service Credential mapping rule
	OTPGetMethods mapping rule
	OTPGenerate mapping rule
	OTPDeliver mapping rule
	OTPVerify mapping rule

	Customizing one-time password mapping rules to use access control context data
	Managing OAuth 2.0 and OIDC mapping rules
	OAuth 2.0 mapping rule methods

	Mapping rules actions
	MMFA mapping rule methods
	JavaScript whitelist
	Managing JavaScript mapping rules
	Customizing SAML identity mapping
	Mapping a local identity to a SAML 2.0 token
	Mapping a SAML 2.0 token to a local identity

	STSRequest and STSResponse access using a JavaScript mapping rule
	Mapping a base64 encoded JSON string to a SAML2 token example
	Mapping a SAML2 token to a base64 encoded JSON string example

	OpenID Connect mapping rules
	OpenID Connect Provider mapping rules
	OpenID Connect Relying Party mapping rules
	Attribute sources
	OpenID Connect mapping rules

	Import mapping rule from another mapping rule

	Distributed Session Cache
	Server Connections
	Server connection properties

	Point of Contact
	Creating a point of contact profile
	Updating or viewing a point of contact profile
	Deleting a point of contact profile
	Setting a current point of contact profile
	Callback parameters and values

	Access policies
	Creating an access policy
	Access policy development
	User context example for access policy
	Request context example for access policy
	Protocol context example for access policy
	OAuth and OpenID Connect protocol context example for access policy
	Session context example for access policy
	Reauthentication example for access policy

	Template files for access policies
	Managing access policies
	Sample file for Access Policies

	Runtime monitoring using Prometheus
	Managing Session Persistence

	Chapter 10. DB2 HVDB High Availability Disaster Recovery (HADR) guideline
	Description of the HADR Modes
	SYNC mode
	NEARSYNC mode
	ASYNC mode
	SUPERASYNC mode

	Choose a synchronization Mode

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

