
IBM Security Directory Suite
8.0.1

Programming Reference

IBM

Note

Before using this information and the product it supports, read the general information under “Notices”
on page 397.

Edition notice

Note: This edition applies to version 8.0.1.x of IBM Security Directory Suite (product number 5725-Y17) and to all
subsequent releases and modifications until otherwise indicated in new editions.
© Copyright International Business Machines Corporation 2007, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this publication..vii
Accessibility ... vii
Statement of Good Security Practices... vii

Chapter 1. Virtual appliance REST APIs..1
Viewing the REST APIs...1
Downloading REST APIs.. 2

Chapter 2. Directory Server programming reference... 3
LDAP version support...3
LDAP API overview...3

Typical API usage... 4
Retrieval of results..5
Uniform Resource Locators (URLs).. 5
Secure Socket Layer (SSL) support.. 5

API categories.. 5
LDAP_ABANDON...7
LDAP_ADD...8
LDAP_BACKUP.. 9
LDAP_BIND / UNBIND..10
LDAP_CODEPAGE..16
LDAP_COMPARE... 22
LDAP controls... 24
LDAP_CREATE_ABORT_TRANSACTION_REQUEST...26
LDAP_CREATE_ACCOUNT_STATUS_REQUEST.. 26
LDAP_CREATE_COMMIT_TRANSACTION_REQUEST...27
LDAP_CREATE_EFFECTIVE_PWDPOLICY_REQUEST..28
LDAP_CREATE_GET_FILE_REQUEST... 28
LDAP_CREATE_LIMIT_NUM_VALUES_CONTROL...29
LDAP_CREATE_LOCATE_ENTRY_REQUEST...30
LDAP_CREATE_ONLINE_BACKUP_REQUEST.. 30
LDAP_CREATE_PASSWORD_POLICY_BIND_FINALIZE_REQUEST...31
LDAP_CREATE_PASSWORD_POLICY_BIND_INIT_REQUEST... 31
LDAP_CREATE_PERSISTENTSEARCH_CONTROL..32
LDAP_CREATE_PREPARE_TRANSACTION_REQUEST...33
LDAP_CREATE_PROXYAUTH_CONTROL.. 34
LDAP_CREATE_RESUME_ROLE_REQUEST..35
LDAP_CREATE_RETURN_DELETED_OBJECTS_CONTROL...36
LDAP_CREATE_TRANSACTION_CONTROL.. 37
LDAP_CREATE_VLV_CONTROL... 37
LDAP_DELETE... 38
LDAP_END_TRANSACTION.. 40
LDAP_ERROR.. 41
LDAP_EXTENDED_OPERATION..46
LDAP_FIRST_ATTRIBUTE...48
LDAP_FIRST_ENTRY, LDAP_FIRST_REFERENCE...50
LDAP_FREE_LIMIT_NUM_VALUES_RESPONSE.. 52
LDAP_GET_BIND_CONTROLS...53
LDAP_GET_DN...53
LDAP_GET_TRAN_ID.. 55

 iii

LDAP_GET_VALUES...56
LDAP_INIT.. 58
LDAP_MEMFREE... 72
LDAP_MESSAGE..73
LDAP_MODIFY.. 74
LDAP_PAGED_RESULTS..77
LDAP_PARSE_EFFECTIVE_PWDPOLICY_RESPONSE... 80
LDAP_PARSE_ENTRYCHANGE_CONTROL... 81
LDAP_PARSE_EXTENDED_RESULT_W_CONTROLS...82
LDAP_PARSE_LIMIT_NUM_VALUES_RESPONSE.. 83
LDAP_PARSE_RESULT..84
LDAP_PARSE_VLV_CONTROL... 86
LDAP_PASSWORD_POLICY.. 87
LDAP_PLUGIN_REGISTRATION...88
LDAP_PREPARE_TRANSACTION..91
LDAP_RENAME... 92
LDAP_RESTORE.. 94
LDAP_RESULT... 95
LDAP_SEARCH.. 96
LDAP_SERVER_INFORMATION IN DNS...101
LDAP_SSL..115
LDAP_SSL_PKCS11.. 121
LDAP_START_TRANSACTION...123
LDAP_START_TLS..124
LDAP_STOP_TLS... 125
LDAP_URL... 126
LDAP_SSL_ENVIRONMENT_INIT.. 128
LDAP_SORT...129
LDAP_SSL_SET_EXTN_SIGALG..133
LDAP_SSL_SET_SUITEB_MODE...134

IBM Security Directory Server JNDI Toolkit..136
Implementing extended operations by using IBM Security Directory Suite JNDI Toolkit...............136
Implementing controls by using IBM Security Directory Server JNDI Toolkit................................. 139
LDAP client utilities.. 141

Change tracking in IBM Security Directory Suite..142
Persistent search..143
Event notification... 144
Change log..146

LDAP client plug-in programming reference...147
Introduction to client SASL plug-ins..147
Initializing a plug-in..149
Writing your own SASL plug-in...150
Plug-in APIs..150
Sample worker function...152

Possible extended error codes returned by LDAP SSL function codes.. 154
LDAP V3 schema..156
LDAP distinguished names..159
LDAP data interchange format (LDIF)... 160

LDIF examples... 161
Version 1 LDIF support.. 162
Version 1 LDIF examples... 163
IANA character sets supported by platform... 164

Deprecated LDAP APIs.. 165
Object Identifiers (OIDs) for extended operations and controls... 166

OIDs for extended operations... 166
OIDs for controls.. 214

Client libraries..242
Sample Makefile.. 244

iv

Limited transaction support.. 248
Usage..248
Example..249

Appendix A. Possible extended error codes returned by LDAP SSL function
codes.. 269

Appendix B. LDAP V3 schema.. 273

Appendix C. LDAP distinguished names..277

Appendix D. LDAP data interchange format (LDIF).. 279
LDIF examples... 279
Version 1 LDIF support..280
Version 1 LDIF examples...281
IANA character sets supported by platform...282

Appendix E. Deprecated LDAP APIs... 285

Appendix F. Object Identifiers (OIDs) for extended operations and controls.........287
OIDs for extended operations... 287

Account status extended operation.. 293
Attribute type extended operations.. 294
Begin transaction extended operation.. 296
Cascading replication operation extended operation...297
Control replication extended operation.. 300
Control queue extended operation..302
DN normalization extended operation.. 303
Dynamic server trace extended operation.. 304
Dynamic update requests extended operation...305
Effective password policy extended operation... 306
End transaction extended operation... 308
Event notification register request extended operation... 309
Event notification unregister request extended operation... 310
Group evaluation extended operation...311
Kill connection extended operation...312
LDAP trace facility extended operation... 313
Locate entry extended operation...314
LogMgmtControl extended operation..315
Online backup extended operation... 316
Password policy bind initialize and verify extended operation...317
Password policy finalize and verify bind extended operation...318
Prepare transaction extended operation...320
Proxy back-end server resume role extended operation..320
Quiesce or unquiesce replication context extended operation.. 322
Replication error log extended operation..323
Replication topology extended operation... 324
ServerBackupRestore extended operation... 325
Start, stop server extended operations...327
Start TLS extended operation.. 328
Unique attributes extended operation.. 329
User type extended operation... 330
Log access extended operations... 331

OIDs for controls..336
AES bind control...340
Audit control...341

 v

Do not replicate control... 342
Entry change notification control...342
Group authorization control...343
LDAP delete operation timestamp control.. 344
Limit number of attribute values control...345
Manage DSAIT control... 347
Modify groups only control.. 347
No replication conflict resolution control..348
Omit group referential integrity control...348
Paged search results control... 349
Password policy request control... 351
Persistent search control... 352
Proxy authorization control..353
Refresh entry control... 354
Replication bind failure timestamp control...354
Replication supplier bind control...356
Replication update ID control..356
Return deleted objects control.. 357
Server administration control.. 358
Sorted search results control...359
Subtree delete control... 360
Transaction control.. 361
Virtual list view control.. 362

Appendix G. Client libraries... 365

Appendix H. Sample Makefile...367

Appendix I. Limited transaction support...371
Usage... 371
Example... 372

Index.. 393

Notices..397
Trademarks.. 398
Terms and conditions for product documentation... 398

vi

About this publication

IBM® Security Directory Suite, previously known as IBM Security Directory Server or IBM Tivoli® Directory
Server, is an IBM implementation of the Lightweight Directory Access Protocol.

IBM Security Directory Suite Programming Reference contains information about writing LDAP client
applications for your IBM Security Directory Suite.

The book also includes:

• Sample LDAP client programs
• Sample Makefile

Accessibility
Accessibility features help users with a physical disability, such as restricted mobility or limited vision,
to use software products successfully. With this product, you can use assistive technologies to hear and
navigate the interface. You can also use the keyboard instead of the mouse to operate all features of the
graphical user interface.

For more information, see "Accessibility features for IBM Security Directory Suite" in the IBM Knowledge
Center.

Statement of Good Security Practices
IT system security involves protecting systems and information through prevention, detection, and
response to improper access from within and outside your enterprise. Improper access can result in
information being altered, destroyed, misappropriated, or misused or can result in damage to or misuse
of your systems, including for use in attacks on others. No IT system or product should be considered
completely secure and no single product, service or security measure can be completely effective in
preventing improper use or access. IBM systems, products and services are designed to be part of
a comprehensive security approach, which will necessarily involve additional operational procedures,
and may require other systems, products or services to be most effective. IBM DOES NOT WARRANT
THAT ANY SYSTEMS, PRODUCTS OR SERVICES ARE IMMUNE FROM, OR WILL MAKE YOUR ENTERPRISE
IMMUNE FROM, THE MALICIOUS OR ILLEGAL CONDUCT OF ANY PARTY.

© Copyright IBM Corp. 2007, 2015 vii

https://www.ibm.com/support/knowledgecenter/SS3Q78_8.0.1/
https://www.ibm.com/support/knowledgecenter/SS3Q78_8.0.1/

viii IBM Security Directory Suite: Programming Reference

Chapter 1. Virtual appliance REST APIs
You can develop custom applications by using the REST application programming interfaces (APIs). The
REST APIs are available so that you can administer tasks outside the user interface.

The REST APIs are categorized into a set of functional components of IBM Security Directory Suite that
are listed in the following section.
Monitoring tasks

Retrieve storage, CPU usage, and memory usage statistics.
Logs

Retrieve event log information.
Network graphs

Retrieve application interface statistics.
Firmware and fix pack tasks

Manage firmware and active partition.
Retrieve and install fix packs.

Network settings
Manage application interfaces, management interfaces, and the hosts file.

Maintenance operations
Retrieve or view logs.

System settings
Manage administrator settings, system alerts and event logs, support files, snapshots, date/time, and
SNMP monitoring.
Restart or shut down the virtual appliance.

Dashboard operations
Start, stop, or restart servers.
Configure Virtual Directory.
Retrieve disk usage, interface, and server status information.

Configure Directory Server
Set or retrieve a server type for the directory server.

Viewing the REST APIs
You can view the virtual appliance REST API documentation in the virtual appliance console.

Procedure
1. Log on to the IBM Security Directory Suite virtual appliance console.
2. On the title banner, click Help > REST API.

The index page of the REST API documentation is displayed.

What to do next
You can view the REST API calls that are logged as part of server messages.

1. From the top-level menu of the virtual appliance console, select Manage > Maintenance > Log
Retrieval and View.

2. Click Appliance or Directory tab to view, download, and clear the logs.
3. In the table, select the Server Message log file.
4. Click View to display the contents of the log file.

© Copyright IBM Corp. 2007, 2015 1

For more information, see Retrieving log files.

Downloading REST APIs
You can download the virtual appliance REST API documentation from the virtual appliance console or
from the online download document.

Procedure
1. Download the REST API documentation.

• Download the file from the virtual appliance console.

– From the top-level menu of the virtual appliance console, select Configure > Advanced
Configuration > Custom File Management.

– On the Custom File Management page, under the All Files tab, click the directories folder to
expand it.

– Click the RestAPI folder.
– Select the RAPI_DOCS.zip file, which is displayed in the right pane of the table.
– Click Download to save the file.

• Download the file from the online download document.

– Go to the online download document, REST APIs for IBM Security Directory Suite virtual
appliance.

– Download the RAPI_DOCS.zip file that is attached to the download document.
2. Extract the contents of the RAPI_DOCS.zip file.
3. Open the index.html file to view the REST API documentation.

Note:

The following browsers are supported:

• Microsoft Internet Explorer, Version 9 or later
• Mozilla FireFox, Version 17.0 or later

2 IBM Security Directory Suite: Programming Reference

http://www-01.ibm.com/support/docview.wss?uid=swg24041958
http://www-01.ibm.com/support/docview.wss?uid=swg24041958

Chapter 2. Directory Server programming reference
The Lightweight Directory Access Protocol (LDAP) provides TCP/IP access to LDAP-compliant servers.

The Directory Server Programming Reference section includes various sample LDAP client programs. It
also includes an LDAP client library that is used to provide application access to the LDAP servers.

For more information, see the following sections:

• “LDAP version support” on page 3
• “LDAP API overview” on page 3

LDAP version support
The IBM Security Directory Suite C-Client SDK provides support for both LDAP Version 2 and LDAP Version
3 application programming interfaces (APIs) and protocols.

The LDAP SDK APIs are based upon the "C LDAP Application Program Interface" Internet Draft at http://
www.ietf.org/proceedings/45/I-D/draft-ietf-ldapext-ldap-c-api-03.txt.

The LDAP API provides typical directory functions such as read, write, and search. With the advent of
support for LDAP Version 3 APIs and protocols, the following features are also supported:

• LDAP V3 referrals and search references.
• Improved globalization with UTF-8 support for Distinguished Names (DNs) and strings that are passed

into, and returned from, the LDAP APIs. Support for converting string data between the local code page
and UTF-8 is also provided. When you run as an LDAP V2 application, DNs and strings remain limited to
the IA5 character set.

• As provided by the IBM Directory Server dynamic schema capability, an LDAP application can add,
modify, and change elements of the schema. For more information, see “LDAP V3 schema” on page
156.

• Controls for the LDAP server and client.

With the C-Client SDK, an application that uses the ldap_open API defaults to the LDAP V2 protocol.
Existing LDAP applications continue to work and can interoperate with both LDAP V2 servers and LDAP V3
servers.

An application that uses the ldap_init API defaults to the LDAP V3 protocol with optional bind. An
LDAP V3 application does not necessarily interoperate with an LDAP server that supports only LDAP V2
protocols.

Note: An application can use the ldap_set_option API to change its LDAP protocol version. This
operation is done after you use ldap_open or ldap_init but before you issue a bind or any other
operation that results in contacting the server.

LDAP API overview
The set of LDAP APIs is designed to provide a suite of functions that can be used to develop directory-
enabled applications.

Directory-enabled applications typically connect to one or more directories and run various directory-
related operations, such as:

• Adding entries
• Searching the directories and obtaining the resulting list of entries
• Deleting entries
• Modifying entries
• Renaming entries

© Copyright IBM Corp. 2007, 2015 3

http://www.ietf.org/proceedings/99jul/I-D/draft-ietf-ldapext-ldap-c-api-03.txt

The type of information that is managed in the directory depends on the nature of the application.
Directories often are used to provide public access to information about people. For example:

• Phone numbers
• Email addresses
• Fax numbers
• Mailing addresses

Increasingly, directories are being used to manage and publish other types of information. For example:

• Configuration information
• Public key certificates (managed by certificate authorities (CAs))
• Access control information
• Locating information (how to find a service)

The LDAP API provides for both synchronous and asynchronous access to a directory. Asynchronous
access enables your application to do other work while you wait for the results of a directory operation to
be returned by the server.

Source code, example makefile, and executable programs are provided for running the following
operations:

• ldapsearch (searches the directory)
• ldapmodify (modifies information in the directory)
• ldapdelete (deletes information from the directory)
• ldapmodrdn (modifies the Relative Distinguished Name (RDN) of an entry in the directory)

You can download the example code from the virtual appliance console, Custom File Management >
ClientSDK folder. See Managing custom files.

LDAP APIs use standard LDAP structures to store various information that is related to an LDAP operation.
For information about LDAP structures, see IETF RFC 1823 at http://www.ietf.org/rfc/rfc1823.txt for
version 2 of the LDAP protocol. Also, see C LDAP Application Program Interface at http://www.ietf.org/
proceedings/01mar/I-D/ldapext-ldap-c-api-05.txt for version 3 of the LDAP protocol.

See the Command Reference section of IBM Security Directory Suite documentation, to know more about
the syntax and usage of the command-line utilities.

Typical API usage
The typical API usage provides an understanding about the LDAP connection.

The basic interaction is as follows:

1. A connection is made to an LDAP server by calling either ldap_init or ldap_ssl_init. This call is
used to establish a secure connection over Secure Sockets Layer (SSL).

2. An LDAP bind operation is run by calling ldap_simple_bind. The bind operation is used to
authenticate to the Directory Server. The LDAP V3 API and protocol provides the bind to be skipped, in
which case the access rights associated with anonymous access are obtained.

3. Other operations are run by calling one of the synchronous or asynchronous routines. For example,
ldap_search_s or ldap_search followed by ldap_result.

4. Results that are returned from these routines are interpreted by calling the LDAP parsing routines,
which include operations such as:

• ldap_first_entry, ldap_next_entry
• ldap_get_dn
• ldap_first_attribute, ldap_next_attribute
• ldap_get_values

4 IBM Security Directory Suite: Programming Reference

http://www.ietf.org/rfc/rfc1823.txt
http://www.ietf.org/proceedings/01mar/I-D/ldapext-ldap-c-api-05.txt
https://www.ibm.com/docs/sdsu/8.0.1

• ldap_parse_result (new for LDAP V3)
5. The LDAP connection is terminated by calling ldap_unbind.

When you handle a client referral to another server, the ldap_set_rebind_proc routine defines the
entry point of a routine that is called when an LDAP bind operation is needed.

Retrieval of results
LDAP search routines provide the accessed results.

Results that are obtained from the LDAP search routines can be accessed by calling the following APIs:

• ldap_first_entry and ldap_next_entry to step through the entries returned
• ldap_first_attribute and ldap_next_attribute to step through the attributes of an entry
• ldap_get_values to retrieve a value of an attribute
• printf or some other display or usage method

Uniform Resource Locators (URLs)
The routines support the use of LDAP URLs (Uniform Resource Locators).

Use the ldap_url routines to do the following actions:

• Test a URL to see whether it is an LDAP URL
• Parse LDAP URLs into their component pieces
• Initiate® searches by directly using an LDAP URL

Some examples of these routines are ldap_url_parse, ldap_url_search_s, and
ldap_is_ldap_url.

Secure Socket Layer (SSL) support
The LDAP API is extended to support connections that are protected by the SSL protocol.

This connection can be used to provide the following mechanisms:

• Strong authentication between the client and server
• Data encryption of LDAP messages that flow between the client and the LDAP server

The ldap_ssl_client_init() and ldap_ssl_init() APIs are provided to initialize the SSL
function, and to create a secure SSL connection.

API categories
Various API categories are supported by IBM Security Directory Suite.

The following sets of APIs are supported:

• “LDAP_ABANDON” on page 7
• “LDAP_ADD” on page 8
• “LDAP_BACKUP” on page 9
• “LDAP_BIND / UNBIND” on page 10
• “LDAP_CODEPAGE” on page 16
• “LDAP_COMPARE” on page 22
• “LDAP controls” on page 24
• “LDAP_CREATE_ABORT_TRANSACTION_REQUEST” on page 26
• “LDAP_CREATE_COMMIT_TRANSACTION_REQUEST” on page 27
• “LDAP_CREATE_EFFECTIVE_PWDPOLICY_REQUEST” on page 28

Chapter 2. Directory Server programming reference 5

• “LDAP_CREATE_GET_FILE_REQUEST” on page 28
• “LDAP_CREATE_LIMIT_NUM_VALUES_CONTROL” on page 29
• “LDAP_CREATE_LOCATE_ENTRY_REQUEST” on page 30
• “LDAP_CREATE_ONLINE_BACKUP_REQUEST” on page 30
• “LDAP_CREATE_PASSWORD_POLICY_BIND_FINALIZE_REQUEST” on page 31
• “LDAP_CREATE_PASSWORD_POLICY_BIND_INIT_REQUEST” on page 31
• “LDAP_CREATE_PERSISTENTSEARCH_CONTROL” on page 32
• “LDAP_CREATE_PREPARE_TRANSACTION_REQUEST” on page 33
• “LDAP_CREATE_PROXYAUTH_CONTROL” on page 34
• “LDAP_CREATE_RESUME_ROLE_REQUEST” on page 35
• “LDAP_CREATE_RETURN_DELETED_OBJECTS_CONTROL” on page 36
• “LDAP_CREATE_TRANSACTION_CONTROL” on page 37
• “LDAP_CREATE_VLV_CONTROL” on page 37
• “LDAP_DELETE” on page 38
• “LDAP_END_TRANSACTION” on page 40
• “LDAP_ERROR” on page 41
• “LDAP_EXTENDED_OPERATION” on page 46
• “LDAP_FIRST_ATTRIBUTE” on page 48
• “LDAP_FIRST_ENTRY, LDAP_FIRST_REFERENCE” on page 50
• “LDAP_FREE_LIMIT_NUM_VALUES_RESPONSE” on page 52
• “LDAP_GET_BIND_CONTROLS” on page 53
• “LDAP_GET_DN” on page 53
• “LDAP_GET_TRAN_ID” on page 55
• “LDAP_GET_VALUES” on page 56
• “LDAP_INIT” on page 58
• “LDAP_MEMFREE” on page 72
• “LDAP_MESSAGE” on page 73
• “LDAP_MODIFY” on page 74
• “LDAP_PAGED_RESULTS” on page 77
• “LDAP_PARSE_EFFECTIVE_PWDPOLICY_RESPONSE” on page 80
• “LDAP_PARSE_ENTRYCHANGE_CONTROL” on page 81
• “LDAP_PARSE_EXTENDED_RESULT_W_CONTROLS” on page 82
• “LDAP_PARSE_LIMIT_NUM_VALUES_RESPONSE” on page 83
• “LDAP_PARSE_RESULT” on page 84
• “LDAP_PARSE_VLV_CONTROL” on page 86
• “LDAP_PASSWORD_POLICY” on page 87
• “LDAP_PLUGIN_REGISTRATION” on page 88
• “LDAP_PREPARE_TRANSACTION” on page 91
• “LDAP_RENAME” on page 92
• “LDAP_RESTORE” on page 94
• “LDAP_RESULT” on page 95
• “LDAP_SEARCH” on page 96
• “LDAP_SERVER_INFORMATION IN DNS” on page 101

6 IBM Security Directory Suite: Programming Reference

• “LDAP_SSL” on page 115
• “LDAP_SSL_PKCS11” on page 121
• “LDAP_START_TRANSACTION” on page 123
• “LDAP_START_TLS” on page 124
• “LDAP_STOP_TLS” on page 125
• “LDAP_SSL_ENVIRONMENT_INIT” on page 128
• “LDAP_SORT” on page 129
• “LDAP_SSL_SET_EXTN_SIGALG” on page 133
• “LDAP_SSL_SET_SUITEB_MODE” on page 134
• “LDAP_URL” on page 126

LDAP_ABANDON
Use the LDAP_ABANDON API to abandon an LDAP operation in progress.

ldap_abandon
ldap_abandon_ext

Synopsis

#include ldap.h

int ldap_abandon(
 LDAP *ld,
 int msgid)

int ldap_abandon_ext(
 LDAP *ld,
 int msgid,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls)

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init() or
ldap_open().

msgid
The message ID of an outstanding LDAP operation, as returned by a call to an asynchronous LDAP
operation. For example:

• ldap_search
• ldap_modify, and others.

serverctrls
Specifies a list of LDAP server controls. This parameter can be set to NULL. For more information
about server controls, see “LDAP controls” on page 24.

clientctrls
Specifies a list of LDAP client controls. This parameter can be set to NULL. For more information about
client controls, see “LDAP controls” on page 24.

Usage
The ldap_abandon() and ldap_abandon_ext() APIs are used to abandon or cancel an LDAP
operation in progress. The msgid passed must be the message ID of an outstanding LDAP operation,
as returned by a call to an asynchronous LDAP operation such as ldap_search(), ldap_modify(), and
others.

Chapter 2. Directory Server programming reference 7

Both APIs check to see whether the result of the operation is already returned by the server. If the result
of the operation is returned, both APIs delete the result of the operation from the queue of pending
messages. If not, both APIs send an LDAP abandon operation to the LDAP server.

The result of an abandoned operation is not returned from a future call to ldap_result().

The ldap_abandon() API returns 0 if the abandon was successful or -1 if unsuccessful; it does not
support LDAP V3 server controls or client controls. The ldap_abandon_ext() API returns the constant
LDAP_SUCCESS if the abandon was successful, or another LDAP error code if not.

Errors
ldap_abandon() returns 0 if the operation is successful, -1 if unsuccessful, setting ld_errno
appropriately. For more information, see “LDAP_ERROR” on page 41. ldap_abandon_ext() returns
LDAP_SUCCESS if successful and returns an LDAP error code if unsuccessful.

See also
ldap_result, ldap_error

LDAP_ADD
Use the LDAP_ADD API to carry out an LDAP operation to add an entry.

ldap_add
ldap_add_s
ldap_add_ext
ldap_add_ext_s

Synopsis

#include ldap.h

int ldap_add(
 LDAP *ld,
 const char *dn,
 LDAPMod *attrs[])

int ldap_add_s(
 LDAP *ld,
 const char *dn,
 LDAPMod *attrs[])

int ldap_add_ext(
 LDAP *ld,
 const char *dn,
 LDAPMod *attrs[],
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 int *msgidp)

int ldap_add_ext_s(
 LDAP *ld,
 const char *dn,
 LDAPMod *attrs[],
 LDAPControl **serverctrls,
 LDAPControl **clientctrls)

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init() or
ldap_open().

8 IBM Security Directory Suite: Programming Reference

msgid
The message ID of an outstanding LDAP operation, as returned by a call to an asynchronous LDAP
operation. For example:

• ldap_search
• ldap_modify, and others.

serverctrls
Specifies a list of LDAP server controls. This parameter can be set to NULL. For more information
about server controls, see “LDAP controls” on page 24.

clientctrls
Specifies a list of LDAP client controls. This parameter can be set to NULL. For more information about
client controls, see “LDAP controls” on page 24.

Usage
The ldap_abandon() and ldap_abandon_ext() APIs are used to abandon or cancel an LDAP
operation in progress. The msgid passed must be the message ID of an outstanding LDAP operation,
as returned by a call to an asynchronous LDAP operation such as ldap_search(), ldap_modify(), and
others.

Both APIs check to see whether the result of the operation is already returned by the server. If the result
of the operation is returned, both APIs delete the result of the operation from the queue of pending
messages. If not, both APIs send an LDAP abandon operation to the LDAP server.

The result of an abandoned operation is not returned from a future call to ldap_result().

The ldap_abandon() API returns 0 if the abandon was successful or -1 if unsuccessful; it does not
support LDAP V3 server controls or client controls. The ldap_abandon_ext() API returns the constant
LDAP_SUCCESS if the abandon was successful, or another LDAP error code if not.

Errors
ldap_abandon() returns 0 if the operation is successful, -1 if unsuccessful, setting ld_errno
appropriately. For more information, see “LDAP_ERROR” on page 41. ldap_abandon_ext() returns
LDAP_SUCCESS if successful and returns an LDAP error code if unsuccessful.

See also
ldap_result, ldap_error

LDAP_BACKUP
Use the LDAP_BACKUP API to request a server backup. This LDAP routine is used to create and call an
LDAP extended operation for requesting a Directory Server backup.

Synopsis

#include ldap.h

 int ldap_backup (LDAP *ld, Backup_Restore_Result *op_result);

Input parameters
ld

Specifies the address of the LDAP connection.
op_result

Specifies the address of the result code from the administration server response.

Chapter 2. Directory Server programming reference 9

Usage
The ldap_backup routine is a wrapper that is used for creating requests to back up a directory server.
This extended operation is only supported by the administration server, ibmdiradm.

If LDAP_SUCCESS is returned for a backup request, the request is sent to the Administration Server.
The Administration Server submits the backup request unless the directory server is running. It is not
configured for online backups or another bulkload, backup, or restore command is already running. The
op_result parameter indicates the status of the request that is based on the action that is taken by
the Administration Server on the request. The result of backup operation on a Directory Server does not
reflect in the return code or in the op_result parameter.

Errors
The ldap_backup routine returns the following error code:

• LDAP_SUCCESS // if the request is submitted
• LDAP_NO_MEMORY // if allocation fails
• LDAP_INSUFFICIENT_ACCESS // DN used for bind does not have authority to send this request
• LDAP_UNWILLING_TO_PERFORM // if backup configuration is not configured for a server
• LDAP_PROTOCOL_ERROR // if request sent to the server is from other than administration server
• LDAP_OTHER // unable to prepare request

See also
ldap_restore

LDAP_BIND / UNBIND
Use the LDAP_BIND / UNBIND API to request a server backup. LDAP routines for binding and unbinding.

ldap_sasl_bind
ldap_sasl_bind_s
ldap_simple_bind
ldap_simple_bind_s
ldap_unbind
ldap_unbind_ext
ldap_unbind_s
ldap_set_rebind_proc
ldap_bind (deprecated)
ldap_bind_s (deprecated)

Synopsis

#include ldap.h

int ldap_sasl_bind(
 LDAP *ld,
 const char *dn,
 const char *mechanism,
 const struct berval *cred,
 LDAPControl **servctrls,
 LDAPControl **clientctrls,
 int *msgidp)

int ldap_sasl_bind_s(
 LDAP *ld,
 const char *dn,
 const char *mechanism,
 const struct berval *cred,
 LDAPControl **servctrls,

10 IBM Security Directory Suite: Programming Reference

 LDAPControl **clientctrls,
 struct berval **servercredp)

int ldap_simple_bind(
 LDAP *ld,
 const char *dn,
 const char *passwd)

int ldap_simple_bind_s(
 LDAP *ld,
 const char *dn,
 const char *passwd)

int ldap_unbind(
 LDAP *ld)

int ldap_unbind_s(
 LDAP *ld)

int ldap_unbind_ext(
 LDAP *ld,
 LDAPControl **servctrls,
 LDAPControl **clientctrls)

void ldap_set_rebind_proc(
 LDAP *ld,
 LDAPRebindProc rebindproc)

int ldap_bind(
 LDAP *ld,
 const char *dn,
 const char *cred,
 int method)

int ldap_bind_s(
 LDAP *ld,
 const char *dn,
 const char *cred,
 int method)

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init()
or ldap_open().

dn
Specifies the Distinguished Names (DN) of the entry to bind as.

mechanism
Although various mechanisms are IANA (Internet Assigned Numbers Authority) registered, the only
basic mechanisms that are supported by the LDAP library currently are:

• LDAP_MECHANISM_EXTERNAL mechanism, represented by the string EXTERNAL.
• LDAP_MECHANISM_GSSAPI mechanism, represented by the string GSSAPI.
• LDAP_MECHANISM_DIGEST_MD5 mechanism, represented by the string DIGEST-MD5.

Note: The CRAM-MD5 mechanism is not supported in a bind operation.

The LDAP_MECHANISM_EXTERNAL mechanism indicates to the server that information external
to SASL must be used to determine whether the client is authorized to authenticate. For this
implementation, the system that provides the external information must be SSL. For example, if the
client sets the DN and credentials to NULL (the value of the pointers must be NULL), with mechanism
set to LDAP_MECHANISM_EXTERNAL, the client is requesting that the server use the authenticated
identity from the client X.509 certificate that was used to authenticate the client to the server during
the SSL handshake. The server can then use the authenticated identity to access the directory.

The LDAP_MECHANISM_GSSAPI mechanism is used to enable Kerberos authentication. In Kerberos
authentication, a client presents valid credentials that are obtained from a Kerberos key distribution
center (KDC) to an application server. The server decrypts and verifies the credentials using its service
key.

Chapter 2. Directory Server programming reference 11

When mechanism is set to a NULL pointer, the SASL bind request is interpreted as a request for simple
authentication, that is, equivalent to using ldap_simple_bind() or ldap_simple_bind_s().

For more information about using LDAP client plug-ins, see “LDAP_PLUGIN_REGISTRATION” on
page 88. For more information about developing an LDAP client plug-in, see “LDAP client plug-in
programming reference” on page 147.

The LDAP_MECHANISM_DIGEST_MD5 mechanism is used to authenticate your ID and password with
the server by using a challenge or response protocol. The protocol protects the clear-text password
over the wire and prevents replay attacks.

This mechanism is useful only when the LDAP server can retrieve the user password. If the password
is stored in a hashed form, for example, crypt or SHA, then authentication by using the DIGEST-MD5
mechanism fails. When you use the DIGEST-MD5 mechanism, the host name that is supplied on the
ldap_init call must resolve to the fully qualified host name of the server.

The application must supply a user name on the ldap_sasl_bind_s call by using the
IBM_CLIENT_MD5_USER_NAME_OID client control. The application can optionally supply a realm on
the ldap_sasl_bind_s call by using the IBM_CLIENT_MD5_REALM_NAME_OID client control. The
application can optionally supply an authorization ID as the dn parameter.

cred
Specifies the credentials with which to authenticate. Arbitrary credentials can be passed with this
parameter. In most cases, this credential is the user password. When you use a Simple Authentication
Security Layer (SASL) bind, the format and content of the credentials depends on the setting of the
mechanism parameter.

method
Selects the authentication method to use. Specify LDAP_AUTH_SIMPLE for simple authentication or
LDAP_AUTH_SASL for SASL bind. The use of the ldap_bind and ldap_bind_s APIs is deprecated.

password
Specifies the password that is used in association with the DN of the entry in which to bind.

serverctrls
Specifies a list of LDAP server controls. For more information about server controls, see “LDAP
controls” on page 24.

clientctrls
Specifies a list of LDAP client controls. For more information about client controls, see “LDAP
controls” on page 24.

rebindproc
Specifies the entry-point of a routine that is called to obtain bind credentials that are used when a
new server is contacted following an LDAP referral.

Output parameters
msgidp

This result parameter is set to the message ID of the request if the ldap_sasl_bind() call
succeeds.

servercredp
This result parameter is set to the credentials returned by the server. If no credentials are returned, it
is set to NULL.

Usage
These routines provide various interfaces to the LDAP bind operation. After you use ldap_init,
ldap_ssl_init or ldap_open to create an LDAP handle, a bind can be run before other operations
are attempted over the connection. Both synchronous and asynchronous versions of each variant of the
bind call are provided.

12 IBM Security Directory Suite: Programming Reference

A bind is optional when you communicate with an LDAP server that supports the LDAP V3 protocol. The
absence of a bind is interpreted by the LDAP V3 server as a request for unauthenticated access. A bind is
required by LDAP servers that support only the LDAP V2 protocol.

The ldap_simple_bind() and ldap_simple_bind_s() APIs provide simple authentication, by using
a user ID or dn and a password that is passed in clear-text to the LDAP API.

The ldap_bind() and ldap_bind_s() provide general authentication routines, where an
authentication method can be chosen. In this toolkit, method must be set to LDAP_AUTH_SIMPLE.
Because the use of these two APIs is deprecated, ldap_simple_bind and ldap_simple_bind_s
must be used instead.

The ldap_sasl_bind and ldap_sasl_bind_s APIs can be used to run general and extensible
authentication over LDAP by using the SASL.

All bind routines take ld as their first parameter as returned from ldap_init, ldap_ssl_init, or
ldap_open.

Simple authentication
The simplest form of the bind call is ldap_simple_bind_s(). It takes the DN to bind and the
user password (supplied in password). It returns an LDAP error indication (see LDAP_ERROR). The
ldap_simple_bind() call is asynchronous, taking the same parameters but initiating only the bind
operation and returning the message ID of the request it sent. The result of the operation can be
obtained with a subsequent call to ldap_result().

General authentication

The ldap_bind() and ldap_bind_s() routines are deprecated.

The deprecated APIs can be used when the authentication method is selected at run time.
They both take an extra method parameter when you select the authentication method to use.
However, when you use this toolkit, method must be set to LDAP_AUTH_SIMPLE to select
simple authentication. ldap_bind() and ldap_simple_bind() return the message ID of the
initiated request. ldap_bind_s() and ldap_simple_bind_s() return an LDAP error indication
on unsuccessful completion, or LDAP_SUCCESS on successful completion.

SASL authentication

Five categories of SASL authentication are supported:

• SASL authentication by using the EXTERNAL mechanism
• SASL authentication by using the GSSAPI mechanism (Kerberos is supported and implemented as a

plug-in)
• SASL authentication by using the DIGEST-MD5 mechanism (implemented as a plug-in)
• SASL authentication by using a user-supplied SASL plug-in library
• SASL authentication by using a SASL mechanism that is implemented by the application itself

When the input parameter mechanism is set to a NULL pointer, the SASL bind request is interpreted
as a request for simple authentication, that is, equivalent to using ldap_simple_bind() or
ldap_simple_bind_s().

Also, the SASL authentication mechanism provides a facility for the LDAP server to return server
credentials to the client. An application can obtain the server credentials that are returned from the
server in the SASL bind result with the ldap_parse_sasl_bind_result() API.

EXTERNAL SASL binds

The primary reason for using the EXTERNAL SASL bind mechanism is to use the client
authentication mechanism. This mechanism is provided by SSL to strongly authenticate to the
Directory Server by using the client X.509 certificate. For example, the client application can use
the following logic:

• ldap_ssl_client_init (initialize the SSL library)

Chapter 2. Directory Server programming reference 13

• ldap_ssl_init (host, port, name), where name references a public or private key pair in the
client key database file

• ldap_sasl_bind_s (ld, dn=NULL, mechanism=LDAP_MECHANISM_EXTERNAL,
cred=NULL)

A server that supports this mechanism, such as the IBM Directory Server, can then access the
directory. It uses the authenticated client identity as extracted from the client X.509 certificate.

GSSAPI SASL binds

Kerberos authentication is supported in this release. If the input parameters for
ldap_sasl_bind or ldap_sasl_bind_s are mechanism==GSSAPI and cred==NULL, then
it is assumed that the user already authenticated to a Kerberos security server and obtained a
ticket-granting-ticket (TGT), either through a desktop log-on process, or by using a program such
as kinit. The GSSAPI credential handle used to initiate a security context on the LDAP client
side is obtained from the current login context. If the input parameters for these two SASL bind
functions are mechanism==GSSAPI and cred!=NULL, the caller of the functions must provide
the GSSAPI credential handle for the LDAP client to initiate a security context with an LDAP server.
For example, an LDAP server calls an SASL bind function with a credential handle that the server
receives from a client as a delegated credential handle.

DIGEST-MD5 SASL binds

The server accepts SASL bind requests by using the DIGEST-MD5 mechanism. There are
two types of DIGEST-MD5 bind requests: Initial Authentication bind requests and Subsequent
Authentication bind requests. Initial Authentication is required and supported by the Directory
Server. Subsequent Authentication support is optional, and is not supported by the Directory
Server.

The server responds to a DIGEST-MD5 SASL bind request with a digest-challenge. The
challenge contains the values that are required by RFC2831 section 2.1.1, with the following
implementation-specific behavior:

• realm - The server always sends the realm that the server is configured to be in.
• nonce - The server generates a random nonce.
• qop-options - The server supports "auth" only.

The next response from the client to the server must be another DIGEST-MD5 SASL bind message.
The response includes several fields with values that the server uses as follows:

• username- The server uses the user name value to determine whether the user is binding as
an administrator or to find an entry in the primary rdbm. If the user name is an administrator
DigestUsername, then the server uses that administrator to bind. If the user name was not an
administrator, then the server searches the primary rdbm for a user with that user name. If the
user name does not correspond to a single entry or the entry does not have a user-password
value, the server returns LDAP_INVALID_CREDENTIALS. It also prints the appropriate error
message.

• realm - The value in the realm field must match the realm that the server is configured to be
in. If the realm value does not match the realm that the server is configured to be in, the server
returns LDAP_PROTOCOL_ERROR.

• nonce - The value in the nonce field must match the nonce value that the server sent
the client with the digest-challenge. If the value does not match, the server returns
LDAP_PROTOCOL_ERROR.

• response - The value in the response field contains a hash of the password. For each of the
user-password values that the server gets from the user entry, it generates the DIGEST-MD5
hash. The server then compares it with the hash from the client. If one matches, the server
returns LDAP_SUCCESS and the user is bound as that user. Otherwise, the server returns
LDAP_INVALID_CREDENTIALS and print an error message.

• authzid - The value in the authzid field contains a "dn:"- or "u:"-style authorization ID
from RFC 2829. The server uses RFC 2829 for authority checking after the bind, rather than the

14 IBM Security Directory Suite: Programming Reference

entry found for the user name, similar to Proxied Authentication. The entry that the user name
corresponds to must have the authority to use the other DN. The server maps the value to an
entry similar to the user name parameter if the authzid contains a "u:"-style authorization
ID. If the mapping fails, the server returns LDAP_INVALID_CREDENTIALS.

User-supplied SASL plug-ins

The application developer, or a third party, can implement more SASL mechanisms by using the
Directory Server C-Client SASL plug-in facility. For example, a client and server SASL plug-in can
be developed that supports a new authentication mechanism that is based upon a retinal scan. If
the mechanism associated with this new authentication mechanism is retscan, the application
calls ldap_sasl_bind() with mechanism set to retscan. Depending on how the mechanism
and plug-in are designed, the application might be required to also supply the user's DN and
credentials. Alternatively, the plug-in itself might be responsible for obtaining the user identity and
credentials, which are derived in some way from a retinal scan image.

If the retinal scan plug-in is not defined in ibmldap.conf, the application must explicitly
register the plug-in, by using the ldap_register_plugin() API. For information about defining
a SASL plug-in for use with an application, see the section, Defining a SASL plug-in in
“LDAP_BIND / UNBIND” on page 10. For more information about using an LDAP client plug-in,
see “LDAP_PLUGIN_REGISTRATION” on page 88. For more information about developing an
LDAP client plug-in, see “LDAP client plug-in programming reference” on page 147.

try
SASL mechanisms that are implemented by the application

In some cases, the SASL mechanism might not require the presence of a plug-in, or any
special support in the LDAP library. If the application can call the ldap_sasl_bind() or
ldap_sasl_bind_s() API with the parameters appropriate to the mechanism, the LDAP library
encodes the SASL bind request and sends it to the server. If a plug-in is defined for the specified
mechanism, the request is diverted to the plug-in. The request can do more processing before it
sends the SASL bind to the server.

SASL mechanisms that are supported by the LDAP server

The application can query the LDAP server root DSE, by using ldap_search() with the following
settings:

• base DN set to NULL
• scope that is set to base
• filter that is set to "(objectclass=*)"

If the LDAP server supports one or more SASL mechanisms, the search results include one or
more values for the supportedsaslmechanisms attribute type.

Defining a SASL plug-in

When the application issues an ldap_sasl_bind_s() API with a mechanism that is supported
by a particular SASL plug-in, the LDAP library must be able to locate the plug-in shared library.
Two mechanisms are available for making an LDAP client plug-in that is known to the LDAP library:

• The plug-in for the specified SASL mechanism is defined in the ibmldap.conf file.
• The plug-in is explicitly registered by the application, by using the ldap_register_plugin()

API.

For more information about locating a plug-in library and defining plug-ins in the ibmldap.conf
file, see the section Finding the plug-in library in “LDAP_PLUGIN_REGISTRATION” on page 88.

Unbinding

ldap_unbind_ext(), ldap_unbind(), and ldap_unbind_s() are synchronous APIs. They send
an unbind request to the server. Then, they close all open connections that are associated with the
LDAP session handle. Later, they dispose of all resources that are associated with the session handle
before a return. There is no server response to an LDAP unbind operation. All three of the unbind

Chapter 2. Directory Server programming reference 15

functions return LDAP_SUCCESS or another LDAP error code if the request cannot be sent to the LDAP
server. After a call to one of the unbind functions, the session handle ld is invalid and it is not valid to
make any further LDAP API calls by using the ld.

The ldap_unbind() and ldap_unbind_s() APIs behave identically. The ldap_unbind_ext()
API allows server and client controls to be included explicitly. Because there is no server response to
an unbind request, therefore you cannot receive a response to a server control sent with an unbind
request.

Rebinding while following referrals

The ldap_set_rebind_proc() call is used to set the entry-point of a routine that is called back to
obtain bind credentials for use when a new server is contacted following an LDAP referral or search
reference. This function is available only when LDAP_OPT_REFERRALS is set, which is the default
setting. If ldap_set_rebind_proc() is never called, or if it is called with a NULL rebindproc
parameter, an unauthenticated simple LDAP bind is always done when you chase referrals. The SSL
characteristics of the connections to the referred servers are preserved when you chase referrals. In
addition, if the original bind was an LDAP V3 bind, an LDAP V3 bind is used to connect to the referred
servers. If the original bind was an LDAP V2 bind, an LDAP V2 bind is used to connect to each referred
server.

rebindproc must be a function that is declared as follows:

 int rebindproc(LDAP *ld, char **whop, char **credp,

 int *methodp, int freeit);

The LDAP library first calls the rebindproc to obtain the referral bind credentials, and the freeit
parameter is zero. The whop, credp, and methodp parameters must be set as appropriate. If the
rebindproc returns LDAP_SUCCESS, referral processing continues, and the rebindproc is called
a second time with freeit nonzero to give the application a chance to free any memory that is
allocated in the previous call.

If anything other than LDAP_SUCCESS is returned by the first call to the rebindproc, referral
processing is stopped and the error code is returned for the original LDAP operation.

Errors
Asynchronous routines return -1 in case of error. However, in the case of the asynchronous bind routine
ldap_sasl_bind(), it returns LDAP result code other than LDAP_SUCCESS if the sent request was
unsuccessful. To obtain the LDAP result code of the asynchronous bind routine, ldap_sasl_bind(),
use the ldap_result() API. To obtain the LDAP error, use the ldap_get_errno() API. Synchronous
routines return the LDAP error code that results from the operation.

See also
ldap_error, ldap_open

LDAP_CODEPAGE
Use the LDAP_CODEPAGE API to manage string conversions. It functions for managing the conversion of
strings between UTF-8 and a local code page.

ldap_xlate_local_to_utf8
ldap_xlate_utf8_to_local
ldap_xlate_local_to_unicode
ldap_xlate_unicode_to_local
ldap_set_locale
ldap_get_locale
ldap_set_iconv_local_codepage
ldap_get_iconv_local_codepage

16 IBM Security Directory Suite: Programming Reference

ldap_set_iconv_local_charset
ldap_char_size

Synopsis

#include ldap.h

int ldap_xlate_local_to_utf8(
 char *inbufp,
 unsigned long *inlenp,
 char *outbufp,
 unsigned long *outlenp);

int ldap_xlate_utf8_to_local(
 char *inbufp,
 unsigned long *inlenp,
 char *outbufp,
 unsigned long *outlenp);

int ldap_xlate_local_to_unicode(
 char *inbufp,
 unsigned long *inlenp,
 char *outbufp,
 unsigned long *outlenp);

int ldap_xlate_unicode_to_local(
 char *inbufp,
 unsigned long *inlenp,
 char *outbufp,
 unsigned long *outlenp);

int ldap_set_locale(
 const char *locale);

char *ldap_get_locale()

int ldap_set_iconv_local_codepage
 char *codepage);

char *ldap_get_iconv_local_codepage();

int ldap_set_iconv_local_charset(
 char *charset);

int ldap_char_size(
 char *p);

Input parameters
inbufp

A pointer to the address of the input buffer that contains the data to be translated.
inlenp

Length in bytes of the inbufp input buffer.
outbufp

A pointer to the address of the output buffer for translated data.
outlenp

Length in bytes of the outbufp input buffer.

Note: The output buffer must be three times as large as the input buffer if you want to translate the
entire input buffer in a single call.

charset
Specifies the character set to be used when you convert strings between UTF-8 and the local code
page. See “IANA character sets supported by platform” on page 164 for the specific charset values
that are supported for each operating system platform.

Note: The supported values for charset are the same values that are supported for the charset tag
that is optionally defined in Version 1 LDIF files.

Chapter 2. Directory Server programming reference 17

codepage
Specifies a code page or code set for overriding the active code page for the currently defined locale.
See the system documentation for the code pages that are supported for a particular operating
system.

locale
Specifies the locale to be used by LDAP when you convert to and from UTF-8 or Unicode. If the locale
is not explicitly set, the LDAP library uses the default locale of the application. To force the LDAP
library to use another locale, specify the appropriate locale string.

For applications that run on the Windows platform, supported locales are defined in ldaplocale.h.
For example, the following code is an excerpt from ldaplocale.h and shows the available French
locales:

/* French - France */
 #define LDAP_LOCALE_FRFR850 "Fr_FR"
 #define LDAP_LOCALE_FRFRISO8859_1 "fr_FR"

For applications that run on the AIX® operating system, see the locale definitions that are defined in
the "Understanding Locale" section of AIX System Management Guide: Operating System and Devices.
System-defined locales are in /usr/lib/nls/loc on the AIX operating system. For example, Fr_FR
and fr_FR are two system-supported French locales.

For Solaris applications, see the system documentation for the set of system-supported locale
definitions.

Note: The specified locale is applicable to all conversions by the LDAP library within the applications
address space. The LDAP locale is set or changed only when there is no other LDAP activity that
occurs within the application on other threads.

p
Returns the number of bytes constituting the character pointed to by p. For ASCII characters, it is 1.
For other character sets, it can be greater than 1.

Output parameters
inbufp

A pointer to the address of the input buffer that contains the data to be translated
inlenp

Length in bytes of the inbufp input buffer
outbufp

A pointer to the address of the output buffer for translated data
outlenp

Length in bytes of the outbufp input buffer

Note: The output buffer must be three times as large as the input buffer if you want to translate the
entire input buffer in a single call.

locale
When returned from the ldap_get_locale() API, locale specifies the currently active locale for
LDAP. See the system documentation for the locales that are supported for a particular operating
system. For applications that run in the Windows environment, see ldaplocale.h.

codepage
When returned from ldap_get_iconv_local_codepage() API, code page specifies the currently
active code page, as associated with the currently active locale. See the system documentation for the
code pages that are supported for a particular operating system.

Usage
These routines are used to manage application-level conversion of data between the local code page and
UTF-8. It is used by LDAP when it communicates with an LDAP V3 compliant server.

18 IBM Security Directory Suite: Programming Reference

When connected to an LDAP V3 server, the LDAP APIs accept and return string data UTF-8 encoded,
which is the default mode of operation. Alternatively, your application can rely on the LDAP library
to convert LDAP V3 string data to and from UTF-8 by using the ldap_set_option() API to set the
LDAP_OPT_UTF8_IO option to LDAP_UTF8_XLATE_ON. When set, the following connection-based APIs
that accept a ld as input, expect string data to be supplied as input in the local code page. They return
string data to the application in the local code page. In other words, the following LDAP routines and
related APIs automatically convert string data to and from the UTF-8 wire protocol:

• ldap_add (and family)
• ldap_bind (and family)
• ldap_compare (and family)
• ldap_delete (and family)
• ldap_parse_reference
• ldap_get_dn
• ldap_get_values
• ldap_modify (and family)
• ldap_parse_result
• ldap_rename (and family)
• ldap_search (and family)
• ldap_url_search (and family)

The following APIs are not associated with a connection, and always expect string data, for example, DNs,
to be supplied and returned UTF-8 encoded:

• ldap_explode_dn
• ldap_explode_dns
• ldap_explode_rdn
• ldap_server_locate
• ldap_server_conf_save
• ldap_is_ldap_url
• ldap_url_parse
• ldap_default_dn_set

The APIs convert your application data to and from the locale code page. There are several reasons for
using these APIs:

• The application is using one or more of the non-connection oriented APIs. It requires to convert strings
to UTF-8 from the local code page before you use the APIs.

• The application is designed to send and receive strings as UTF-8 when it uses the LDAP APIs. But it
requires to convert selected strings to the local code page before you present to the user. When the
directory contains heterogeneous data, that is, data is obtained from multiple countries, or locales, it
might be the required approach.

These routines are used to manage application-level conversion of data between the local code page and
UTF-8. It is used by LDAP when it communicates with an LDAP V3 compliant server. For more information
about the UTF-8 standard, search for "UTF-8, a Transformation Format of ISO 10646."

When connected to an LDAP V3 server, the LDAP APIs accept and return string data UTF-8 encoded,
which is the default mode of operation. Alternatively, your application can rely on the LDAP library to
convert LDAP V3 string data to and from UTF-8 by using the ldap_set_option() API to set the
LDAP_OPT_UTF8_IO option to LDAP_UTF8_XLATE_ON. When set, the following connection-based APIs
that accept a ld as input, expect string data to be supplied as input in the local code page. They return
string data to the application in the local code page. In other words, the following LDAP routines and
related APIs automatically convert string data to and from the UTF-8 wire protocol:

Chapter 2. Directory Server programming reference 19

• ldap_add (and family)
• ldap_bind (and family)
• ldap_compare (and family)
• ldap_delete (and family)
• ldap_parse_reference
• ldap_get_dn
• ldap_get_values
• ldap_modify (and family)
• ldap_parse_result
• ldap_rename (and family)
• ldap_search (and family)
• ldap_url_search (and family)

The following APIs are not associated with a connection, and always expect string data, for example, DNs,
to be supplied and returned UTF-8 encoded:

• ldap_explode_dn
• ldap_explode_dns
• ldap_explode_rdn
• ldap_server_locate
• ldap_server_conf_save
• ldap_is_ldap_url
• ldap_url_parse
• ldap_default_dn_set

The APIs convert your application data to and from the locale code page. There are several reasons for
using these APIs:

• The application is using one or more of the non-connection oriented APIs. It requires to convert strings
to UTF-8 from the local code page before it uses the APIs.

• The application is designed to send and receive strings as UTF-8 when you use the LDAP APIs. But
it requires to convert selected strings to the local code page before it presents to the user. When the
directory contains heterogeneous data, that is, data is obtained from multiple countries, or locales, it
might be the required approach.

If your application might be extracting string data from the directory that originated from other countries
or locales, design the application with the following considerations:

• Consider splitting your application into a presentation component, and an LDAP worker component.

– The presentation component is responsible for obtaining data from external sources. For example,
graphical user interfaces (GUIs), command-lines, files, and displaying the data to a GUI, standard
out, files. This component typically deals with string data that is represented in the local code page.

– The LDAP worker component is responsible for interfacing directly with the LDAP programming
interfaces. The LDAP worker component can be implemented to deal strictly in UTF-8 when you
handle string data. The default mode of operation for the LDAP library is to handle strings that are
encoded as UTF-8.

– String conversion between UTF-8 and the local code page occurs when data is passed to and from
the presentation component and the LDAP worker component.

Consider the following scenario:

The LDAP worker component issues an LDAP search, and returns a list of entries from the directory. To
ensure that no data is lost, the default mode is used and the LDAP library does not convert string data.
In this case, it means the DNs of the entries that are returned from the search are represented in UTF-8.

20 IBM Security Directory Suite: Programming Reference

The application wants to display this list of DNs on a panel. This display can help the user to select the
required entry, and the application then retrieves more attributes for the selected DN. Since the DN is
represented in UTF-8, it must be converted to the local code page before display.

The converted DN might not be a faithful representation of the UTF-8 DN. For example, if the DN was
created in China, it can contain Chinese characters. If the application is running in a French locale,
certain Chinese characters might not be converted correctly, and are replaced with a replacement
character.

The application can display the converted DN, but certain characters might be displayed as bobs.
Assuming there is enough information for the user to select the wanted DN, the application accesses
the LDAP directory with the selected DN for more information. For example, a "jpeg" image so it can
display the user photograph. Since "jpeg" images might be large, the application is designed to obtain
the jpeg attribute after the user selects the specific DN only.

Ensure that the search gets the "jpeg" attribute by using the selected DN to work. The search must be
done with the original UTF-8 version of the selected DN. The search must not be done with the version
of the DN that converted to the local code page. This action implies that the application maintains a
correlation between the original DN UTF-8 version, and the version that converted to the local code
page.

• If the application accepts user input, generate one or more LDAP searches, then display the information
without passing the results back into the LDAP library. The application can be designed to provide the
LDAP library run the conversions, even though some data loss might theoretically occur. Automatic
conversion of string data for a specific ld can be enabled by using ldap_set_option() with the
LDAP_OPT_UTF8_IO option set to LDAP_UTF8_XLATE_ON.

ldap_char_size returns the number of bytes constituting the character pointed to by p. For ASCII
characters, it is 1. For other character sets, it can be greater than 1.

Translate local code page to UTF-8

The ldap_xlate_local_to_utf8() API is used to convert a string from the local code page to a
UTF-8 encoding. The output string from the conversion process can be larger than the input string.
Therefore, the output buffer must be at least twice as large as the input buffer. LDAP_SUCCESS is
returned if the conversion is successful.

Translate UTF-8 to local code page

The ldap_xlate_utf8_to_local() API is used to convert a UTF-8 encoded string to the local
code page encoding. The output string from the conversion process can be larger than the input string.
Therefore, the output buffer must be at least twice as large as the input buffer. LDAP_SUCCESS is
returned if the conversion is successful.

Note: Translation of strings from a UTF-8 encoding to local code page can result in loss of data. This
loss is possible when one or more characters in the UTF-8 encoding cannot be represented in the
local code page. When this translation occurs, a substitution character replaces any UTF-8 characters
that cannot be converted to the local code page.

Translate local code page to unicode

The ldap_xlate_local_to_unicode() API is used to convert a string from the local code page
to the UCS-2 encoding as defined by ISO/IEC 10646-1. This same set of characters is also defined
in the UNICODE standard. The output string from the conversion process can be larger than the input
string. Therefore, the output buffer must be at least twice as large as the input buffer. LDAP_SUCCESS
is returned if the conversion is successful.

Translate unicode to local code page

The ldap_xlate_unicode_to_local() API is used to convert a UCS-2-encoded string to the local
code page encoding. The output string from the conversion process can be larger than the input string.
Therefore, the output buffer must be at least twice as large as the input buffer. LDAP_SUCCESS is
returned if the conversion is successful.

Chapter 2. Directory Server programming reference 21

Note: Translation of strings from a UCS-2 (UNICODE) encoding to local code page can result in loss of
data. This loss is possible when one or more characters in the UCS-2 encoding cannot be represented
in the local code page. When this translation occurs, a substitution character replaces any UCS-2
characters that cannot be converted to the local code page.

Set locale

The ldap_set_locale() API is used to change the locale that is used by LDAP for
conversions between the local code page and UTF-8 (or Unicode). Unless explicitly set with the
ldap_set_locale() API, LDAP uses the default locale of the application. To force the LDAP library
to use another locale, specify the appropriate locale string. For UNIX systems, see the system
documentation for the locale definitions. For Windows operating systems, see ldaplocale.h.

Get locale

The ldap_get_locale() API is used to obtain the active LDAP locale. Values that can be returned
are system-specific.

Set code page

The ldap_set_iconv_local_codepage() API is used to override the code page that is associated
with the active locale. See the system documentation for the code pages that are supported for a
particular operating system.

Get code page

The ldap_get_iconv_local_codepage() API is used to obtain the code page that is associated
with the active locale. See the system documentation for the code pages that are supported for a
particular operating system. See “IANA character sets supported by platform” on page 164 for the
specific charset values that are supported for each operating system platform. The supported values
for charset are the same values that are supported for the charset tag that is optionally defined in
Version 1 LDIF files.

Japanese and Korean currency considerations

The generally accepted convention for converting the backslash character (\) (single-byte X'5C')
from the Japanese or Korean locale into Unicode is to convert X'5C' character to the following
considerations:

• the Unicode yen for Japanese
• the Unicode won for Korean

To change the default behavior, set the LDAP_BACKSLASH environment variable to YES before you
use any of the LDAP APIs. When LDAP_BACKSLASH is set to YES, the X'5C' character is converted to
the Unicode (\), instead of the Japanese yen or Korean won.

Errors
Each of the LDAP user configuration APIs returns a nonzero LDAP return code if an error occurs. See
“LDAP_ERROR” on page 41 for more details.

See also
ldap_error

LDAP_COMPARE
Use the LDAP_COMPARE API to do an LDAP compare operation.

ldap_compare
ldap_compare_s
ldap_compare_ext
ldap_compare_ext_s

22 IBM Security Directory Suite: Programming Reference

Synopsis

#include ldap.h

int ldap_compare(
 LDAP *ld,
 const char *dn,
 const char *attr,
 const char *value)

int ldap_compare_s(
 LDAP *ld,
 const char *dn,
 const char *attr,
 const char *value)

int ldap_compare_ext(
 LDAP *ld,
 const char *dn,
 const char *attr,
 const struct berval *bvalue,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 int *msgidp)

int ldap_compare_ext_s(
 LDAP *ld,
 const char *dn,
 const char *attr,
 const struct berval *bvalue,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls)

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init(),
or ldap_open().

dn
Specifies the DN of the entry on which to run the comparison.

attr
Specifies the attribute type to use in the comparison.

bvalue
Specifies the attribute value to compare against the entry value. This parameter is used in the
ldap_compare_ext and ldap_compare_ext_s routines, and is a pointer to a struct berval, making
it possible to compare binary values. See LDAP_GET_VALUES.

serverctrls
Specifies a list of LDAP server controls. This parameter can be set to NULL. For more information
about server controls, see “LDAP controls” on page 24.

clientctrls
Specifies a list of LDAP client controls. This parameter can be set to NULL. For more information about
client controls, see “LDAP controls” on page 24.

Output parameters
msgidp

This result parameter is set to the message ID of the request if the ldap_compare_ext() call
succeeds.

Usage
The various LDAP compare routines are used to run LDAP compare operations. They take dn, the DN of
the entry upon which to run the compare, and attr and value, the attribute type, and value to compare
to those routines found in the entry.

Chapter 2. Directory Server programming reference 23

The ldap_compare_ext() API initiates an asynchronous compare operation and returns the constant
LDAP_SUCCESS if the request was successfully sent, or another LDAP error code if it was not successfully
sent. If successful, ldap_compare_ext() places the message ID of the request in *msgidp. A
subsequent call to ldap_result() obtains the result of the operation. After the operation completes,
ldap_result() returns the status of the operation in the form of an error code. The error code indicates
whether the operation completed successfully (LDAP_COMPARE_TRUE or LDAP_COMPARE_FALSE).

Similarly, the ldap_compare() API initiates an asynchronous compare operation and returns the
message ID of that operation. Use a subsequent call to ldap_result() to obtain the result of the
compare. If there is an error, ldap_compare() returns -1, setting the session error parameters
in the LDAP structure appropriately. The session error parameters can be obtained by using
ldap_get_errno().

See LDAP_ERROR for more details.

Use the synchronous ldap_compare_s() and ldap_compare_ext_s APIs to run LDAP compare
operations. These APIs return an LDAP error code, which can be LDAP_COMPARE_TRUE if the entry
contains the attribute value and LDAP_COMPARE_FALSE if it does not. Otherwise, some error code is
returned.

The ldap_compare_ext() and ldap_compare_ext_s() APIs both support LDAP V3 server controls
and client controls.

Errors
ldap_compare_s() API returns an LDAP error code that can be interpreted by calling one of the
ldap_error routines. The ldap_compare() API returns -1 if the initiation request was unsuccessful. It
returns the message ID of the request if successful.

See also
ldap_error

LDAP controls
Certain LDAP Version 3 operations can be extended with the use of controls. Controls can be sent to a
server or returned to the client with any LDAP message. This type of control is called a server control.

The LDAP API also supports a client-side extension mechanism, which can be used to define client
controls. The client-side controls affect the behavior of the LDAP client library and are never sent to the
server. The client-side controls are not defined for this client library.

A common data structure is used to represent both server-side and client-side controls:

 typedef struct ldapcontrol {
 char *ldctl_oid;
 struct berval ldctl_value;
 char ldctl_iscritical;
 } LDAPControl, *PLDAPControl;

The LDAPControl fields have the following definitions:
ldctl_oid

Specifies the control type, represented as a string.
ldctl_value

Specifies the data that is associated with the control. The control might not include data.
ldctl_iscritical

Specifies whether the control is critical or not. If the field is nonzero, the operation is carried out only
if it is recognized and supported by the server or the client for client-side controls.

24 IBM Security Directory Suite: Programming Reference

Functions to manipulate controls
The function is to add, remove, or copy controls.

ldap_insert_control
ldap_add_control
ldap_remove_control
ldap_copy_controls

Synopsis

#include ldap.h

int ldap_insert_control(
 LDAPControl *newControl,
 LDAPControl ***ctrlList);

int ldap_add_control(
 const char *oid, ber_len_t len,
 char *value,
 int isCritical,
 LDAPControl ***ctrlList);

int ldap_remove_control(
 LDAPControl *delControl,
 LDAPControl ***ctrlList,
 int freeit);

int ldap_copy_controls(
 LDAPControl ***to_here,
 LDAPControl **from);

Input parameters
newcontrol

Specifies a control to be inserted into a list of controls.
ctrlList

Specifies a list of LDAP server controls
oid

Specifies the control type, represented as a string.
len

Specifies the length of the value string.
value

Specifies the data that is associated with the control.
isCritical

Specifies whether the control is critical or not.
delControl

Specifies the control to be deleted.
freeit

Specifies whether to free the control. If set to TRUE, the control is freed. If set to FALSE, the control is
not freed.

to_here
Specifies the location to which to copy the control list.

from
Specifies the location of the control list to be copied.

Usage
The ldap_insert_control() API inserts the control *newcontrol into a list of controls that are
specified by ***ctrlList. The function allocates space in the list for the control, but does not allocate

Chapter 2. Directory Server programming reference 25

the actual control. Returns LDAP_SUCCESS if the request was successfully sent or LDAP_NO_MEMORY if
the control cannot be inserted.

The ldap_add_control() API creates a control by using the oid, len, value and isCritical values, and
inserts it into a list of controls that are specified by ***ctrlList. The function allocates space in the list
for the control. Returns LDAP_SUCCESS if the request was successfully sent or LDAP_NO_MEMORY if the
control cannot be added.

The ldap_remove_control() API removes the control from the list. If freeit is not 0, the control is
freed. If freeit is set to 0, the control is not freed. Returns LDAP_SUCCESS if the request was successfully
sent or LDAP_NO_MEMORY if the control cannot be removed.

The ldap_copy_controls() API makes a copy of the control list. Returns LDAP_SUCCESS if the
request was successfully sent or LDAP_NO_MEMORY if the control list cannot be copied.

LDAP_CREATE_ABORT_TRANSACTION_REQUEST
Use the LDAP_CREATE_ABORT_TRANSACTION_REQUEST API or LDAP routine to create a cancel or stop
transaction request, in other words, an abort transaction request.

Synopsis

#include ldap.h

 struct berval * ldap_create_abort_transaction_request (const char *tran_id);

Input parameters
tran_id

Specifies the transaction ID as a string.

Output parameters
The ldap_create_abort_transaction_request() routine returns a berval struct that contains the
abort transaction request.

Usage
This routine is used to create the abort transaction request that can be passed to
ldap_extended_operation() or ldap_extended_operation_s() API.

Errors
If an error is encountered, this routine returns a null value.

See also
ldap_start_transaction, ldap_start_transaction_s, ldap_prepare_transaction, ldap_prepare_transaction_s,
ldap_end_transaction, ldap_end_transaction_s, ldap_get_tran_id, ldap_create_transaction_control,
ldap_create_commit_transaction_request, ldap_create_prepare_transaction_request

LDAP_CREATE_ACCOUNT_STATUS_REQUEST
Use the LDAP_CREATE_ACCOUNT_STATUS_REQUEST API or LDAP routine to create a berval for the
account status request.

Synopsis

26 IBM Security Directory Suite: Programming Reference

#include ldap.h

 struct berval * ldap_create_account_status_request (char *entryDN);

Input parameters
entryDN

A character string that specifies the entry DN. The entryDN parameter is set in the berval and must
not be null.

Usage
This routine is used by the client to create a berval for an account status extended operation request. This
routine creates a berval structure that contains an entryDN.

Errors
If any errors were encountered, the returned berval is null. If berval request was created successfully, the
berval is a valid berval for the account status extended operation.

LDAP_CREATE_COMMIT_TRANSACTION_REQUEST
Use the LDAP_CREATE_COMMIT_TRANSACTION_REQUEST API or LDAP routine to create a commit
transaction request.

Synopsis

#include ldap.h

 struct berval * ldap_create_commit_transaction_request (const char *tran_id);

Input parameters
tran_id

Specifies the transaction ID as a string.

Output parameters
The ldap_create_commit_transaction_request() routine returns a berval struct that contains the
commit transaction request.

Usage
This routine is used to create a commit transaction request that can be passed to the
ldap_extended_operation() or ldap_extended_operation_s() API.

Errors
If an error is encountered, this routine returns a null value.

See also
ldap_start_transaction, ldap_start_transaction_s, ldap_prepare_transaction, ldap_prepare_transaction_s,
ldap_end_transaction, ldap_end_transaction_s, ldap_get_tran_id, ldap_create_transaction_control,
ldap_create_abort_transaction_request, ldap_create_prepare_transaction_request

Chapter 2. Directory Server programming reference 27

LDAP_CREATE_EFFECTIVE_PWDPOLICY_REQUEST
Use the LDAP_CREATE_EFFECTIVE_PWDPOLICY_REQUEST API or LDAP routine for creating an extended
operation request to query the effective password policy of a user or a group.

Synopsis

#include ldap.h

 struct berval *ldap_create_effective_pwdpolicy_request (char *dn);

Input parameters
dn

Specifies the DN of a user or a group entry.

Usage
This routine encodes the request value for the effective password policy extended operation.
The returned value can be used as an input parameter to ldap_extended_operation_s or
ldap_extended_operation function.

Errors
The ldap_create_effective_pwdpolicy_request routine returns an LDAP error code if it
encounters an error when it encodes the request.

See also
ldap_extended operation, ldap_extended operation_s, ldap_parse_effective_pwdpolicy_response

LDAP_CREATE_GET_FILE_REQUEST
Use the LDAP_CREATE_GET_FILE_REQUEST API or LDAP routine to create a berval request that can be
sent on the get file extended operation.

Synopsis

#include ldap.h

 struct berval* ldap_create_get_file_request (
 int fileNumber;
 char* fileName
);

Input parameters
fileNumber

Specifies the file option that is defined in ldap.h. The various file options are listed:

• Other(0)
• V3.ibm.at(1), V3.ibm.oc(2),
• V3.user.at(3), V3.user.oc(4),
• V3.config.at(5), V3.config.oc(6),
• V3.system.at(7), V3.system.oc(8),
• V3.modifiedschema(9), V3.ldapsyntaxes(10),
• V3.matchingrules(11),

28 IBM Security Directory Suite: Programming Reference

• key ring file(12), key database file(13)

fileName
Specifies the file name when the fileNumber is 0. The value of this parameter must be set to
NULL when the fileNumber is in the range from 1 through 11 and 13. The fileName parameter
must either be provided as a full path to the file or the system must be able to resolve the
file name with the set path for the environment. The fileName parameter can either be a
file that is in the configuration file of the server under the ibm-slapdIncludeSchema or ibm-
slapdSchemaAdditions attributes, or a keytab file of a proxy back-end server.

Usage
The ldap_create_get_file_request routine is used to create a berval request that can be sent on
the get file extended operation.

Errors
This routine does not return any return code. The berval that is returned is NULL, if the routine encounters
any errors.

LDAP_CREATE_LIMIT_NUM_VALUES_CONTROL
Use the LDAP_CREATE_LIMIT_NUM_VALUES_CONTROL API or LDAP routine to create the Limit
Number of Attribute Values Control. This control is used to limit the number of values that
are returned for the entire entry.

Synopsis

#include ldap.h

 int ldap_create_limit_num_values_control(
 LDAP *ld,
 int maxTotalValues,
 int maxValuesPerAttribute,
 int returnDetails,
 int isCritical,
 LDAPControl **control);

Input parameters
ld

Specifies a pointer to the LDAP structure that represents an LDAP connection.
maxTotalValues

An integer that indicates the maximum number of attribute values that can be returned for an entry.
maxValuesPerAttribute

An integer that indicates the maximum number of attribute values that can be returned for an
attribute in an entry.

returnDetails
An integer that indicates the type of response wanted. If the value of returnDetails is 0, no
response controls are returned with the entries. Otherwise, response controls are returned with the
entries.

isCritical
An integer that indicates whether the criticality of the control must be critical or not critical. If the
value is 0, the criticality of the control is set to not critical. If the value is non-zero, the criticality of the
control is set to critical.

control
Specifies the address of a pointer to an LDAPControl structure, where the created control is built if
the API is successful.

Chapter 2. Directory Server programming reference 29

Usage
The ldap_create_limit_num_values_control routine is used for creating the Limit Number of
Attribute Values Control.

Errors
The ldap_create_limit_num_values_control routine returns an LDAP error code if the routine
encounters an error.

The errors that are returned by the ldap_create_limit_num_values_control routine are listed:

• LDAP_PARAM_ERROR // bad input parameter
• LDAP_NO_MEMORY // server is out of memory
• LDAP_SUCCESS // operation was successful
• LDAP_ENCODING_ERROR // an encoding error was encountered

See also
ldap_parse_limit_num_values_response, ldap_free_limit_num_values_response

LDAP_CREATE_LOCATE_ENTRY_REQUEST
Use the LDAP_CREATE_LOCATE_ENTRY_REQUEST API or LDAP routine to create a berval request for the
locate entry extended operation.

Synopsis

#include ldap.h

struct berval *ldap_create_locate_entry_request (const char *entryDN)

Input parameters
entryDN

Specifies the entry DN, for which the location details are to be determined.

Usage
This routine is used by the client to create a berval for the locate entry extended operation request.

Errors
If any errors were encountered, the returned berval is null. If berval request is created successfully, the
berval is a valid berval for the group evaluation extended operation.

LDAP_CREATE_ONLINE_BACKUP_REQUEST
Use the LDAP_CREATE_ONLINE_BACKUP_REQUEST API or LDAP routine to create a berval request that
can be sent on the online backup extended operation.

Synopsis

#include ldap.h

 struct berval* ldap_create_online_backup_request (char* directoryPath);

30 IBM Security Directory Suite: Programming Reference

Input parameters
directoryPath

Specifies a path to which the target system has write access. This path is used by the DB2® online
backup command to store the backup image. The value of the path must not be NULL.

Usage
The ldap_create_online_backup_request routine is used to create a berval that can be sent on the
online backup extended operation.

Errors
This routine does not return any return code. The berval that is returned is NULL, if the routine encounters
any errors.

LDAP_CREATE_PASSWORD_POLICY_BIND_FINALIZE_REQUEST
Use the LDAP_CREATE_PASSWORD_POLICY_BIND_FINALIZE_REQUEST API or LDAP routine for
creating a password policy bind finalize request and verifying extended operation request.

Synopsis

#include ldap.h

struct berval *ldap_create_password_policy_bind_finalize_request (
 const char *bind_dn,
 const int ldap_rc);

Input parameters
bind_dn

The bind DN that is used for running bind password policy checks.
ldap_rc

The return code for the bind.

Output parameters
berval

The berval struct contains the password policy bind finalize and verify bind extended operation
request.

Usage
The ldap_create_password_policy_bind_finalize_request() API is used to create the
prebind password policy request that is used as input parameter to the ldap_extended_operation
or ldap_extended_operation_s function.

Errors
This routine returns a null value if it encounters an error.

LDAP_CREATE_PASSWORD_POLICY_BIND_INIT_REQUEST
Use the LDAP_CREATE_PASSWORD_POLICY_BIND_INIT_REQUEST API or LDAP routine for creating a
password policy bind initialize request and verifying the extended operation request.

Synopsis

Chapter 2. Directory Server programming reference 31

#include ldap.h

struct berval *ldap_create_password_policy_bind_init_ request (
 const char *bind_dn);

Input parameters
bind_dn

The bind DN that is used for running password policy checks.

Output parameters
berval

The berval struct contains the password policy bind initialize and the verifying extended operation
request.

Usage
The ldap_create_password_policy_bind_init_request() API is used to create the prebind
password policy request that can be used as input parameter to the ldap_extended_operation or
ldap_extended_operation_s function.

Errors
This routine returns a null value if it encounters an error.

LDAP_CREATE_PERSISTENTSEARCH_CONTROL
Use the LDAP_CREATE_PERSISTENTSEARCH_CONTROL API or LDAP routine to create a persistent search
control that can be passed to the ldap_search_ext() or ldap_search_ext_s() function to initiate a
persistent search.

Synopsis

#include ldap.h

#define LDAP_CHANGETYPE_ADD 1
#define LDAP_CHANGETYPE_DELETE 2
#define LDAP_CHANGETYPE_MODIFY 4
#define LDAP_CHANGETYPE_MODDN 8
#define LDAP_CHANGETYPE_ANY (1|2|4|8)

#define LDAP_CONTROL_PERSISTENTSEARCH "2.16.840.1.113730.3.4.3"

int ldap_create_peristentsearch_control(
 LDAP *ld,
 int changetypes,
 int changesonly,
 int return_echg_ctls,
 char ctl_iscritical,
 LDAPControl **ctrlp);

Input parameters
ld

Specifies the LDAP pointer, which acts as an LDAP session handle, returned by previous call to
ldap_init(), ldap_ssl_init(), or ldap_open().

changetypes
Specifies a bit field that indicates the client about the type of changes. The value of the field can be
LDAP_CHANGETYPE_ANY or any logical-OR combination of one or more of the following values:

32 IBM Security Directory Suite: Programming Reference

• LDAP_CHANGETYPE_ADD
• LDAP_CHANGETYPE_DELETE
• LDAP_CHANGETYPE_MODIFY
• LDAP_CHANGETYPE_MODDN

The changetypes field corresponds to the changeType element of the BER-encoded persistent
search control value.

changesonly

It is a boolean field that specifies whether the searchResultEntry messages for entries that are
changed or all the static entries that match the search criteria must be returned to the client.

If the value is non-zero, the entries that are changed are returned. If zero, all the static entries that
match search criteria are returned before the server sends change notification. The changesonly field
corresponds to the changesOnly element of the BER-encoded persistent search control value.

return_echg_ctls
It is a boolean field that specifies the behavior of the server about the returning of an Entry Change
Notification control with each searchResultEntry when an entry is changed. If the value of this
field is non-zero, the Entry Change Notification controls are requested. If zero, the Entry Change
Notification controls are not requested. The return_echg_ctls field corresponds to the returnECs
element of the BER-encoded persistent search control value.

ctl_iscritical
Sets the ctl_iscritical flag within the resulting LDAPControl structure. A non-zero value
indicates that the persistent search control is critical and a zero value indicates that this control is
not critical.

Output parameters
ctrlp

This result parameter is assigned the address of an LDAPControl structure that contains the
Persistent Search control that is created by this routine.

Note: The caller must free the memory that is occupied by the LDAPControl structure after its use
by calling ldap_control_free().

Usage
This routine is used to create a persistent search control that can be passed to the ldap_search_ext()
or ldap_search_ext_s() function to initiate a persistent search. If the operation is successful,
LDAP_SUCCESS is returned.

Errors
This routine returns an LDAP error code if the operation is a failure.

See “LDAP_ERROR” on page 41 for a list of the LDAP error codes.

LDAP_CREATE_PREPARE_TRANSACTION_REQUEST
Use the LDAP_CREATE_PREPARE_TRANSACTION_REQUEST API or LDAP routine to create a prepare
transaction request.

Synopsis

#include ldap.h

 struct berval * ldap_create_prepare_transaction_request(
 const char *tran_id);

Chapter 2. Directory Server programming reference 33

Input parameters
tran_id

Specifies the transaction ID as a string.

Output parameters
The ldap_create_prepare_transaction_request() routine returns a berval struct containing the
prepare transaction request.

Usage
This routine is used to create the prepare transaction request that can be passed to
ldap_extended_operation() or ldap_extended_operation_s() API.

Errors
If an error is encountered, this routine returns a null value.

See also
ldap_start_transaction, ldap_start_transaction_s, ldap_prepare_transaction, ldap_prepare_transaction_s,
ldap_end_transaction, ldap_end_transaction_s, ldap_get_tran_id, ldap_create_transaction_control,
ldap_create_abort_transaction_request, ldap_create_commit_transaction_request

LDAP_CREATE_PROXYAUTH_CONTROL
Use the LDAP_CREATE_PROXYAUTH_CONTROL API or LDAP routine to create an LDAP control that allows
a bind entity to assume a proxy identity.

ldap_create_proxyauth_control
ldap_proxy_dn_prefix

Synopsis

#include ldap.h

int ldap_create_proxyauth_control(
 LDAP *ld,
 char *proxyDN,
 int iscritical,
 LDAPControl **controlp)

int ldap_proxy_dn_prefix(
 char **proxyDN,
 char *parm)

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init(),
or ldap_open().

proxyDN
Specifies the DN of the entry whose identity the client assumes.

iscritical
Specifies whether the persistent search control is critical to the current operation. This parameter
must be set to a non-zero value.

34 IBM Security Directory Suite: Programming Reference

controlp
Pointer to a pointer of a structure that is created by this function. This control must be freed by calling
ldap_control_free() function, when it is done by using the control.

Usage
This API is used to create an LDAP control that contains the proxy authorization identity. The created
proxy authorization control is then included in LDAP operations to request an operation from the server.

Using the proxy authorization control mechanism, a client can bind to the LDAP directory by using its own
identity. But is granted proxy authorization rights of another user to access the target directory.

When the LDAP server receives an operation with proxy authorization control, the bind DN is validated
against the administrative group or the predefined proxy authorization group. This validation is to
determine whether the bind DN must be granted the proxy authorization right. In other words, the bound
application client must be a member of the administrative group or proxy authorization group to request a
proxy authorization operation.

For a specific DN, the ldap_proxy_dn_prefix function ensures that the DN has the proxy DN prefix.
The DN is passed in by using the param parameter. The value is returned by using the proxyDN
parameter. If the passed in DN already has the "dn:" prefix, the parameter is copied into the return
value. A new string is allocated with the "dn:" prefix if the passed in DN does not have the "dn:" prefix.
The return code can be:

• LDAP_PARAM_ERROR if the param is null
• LDAP_NO_MEMORY if the function failed to allocate memory
• LDAP_SUCCESS if a new proxyDN was successfully allocated

If LDAP_SUCCESS is returned, it is the responsibility of the caller to free the returned proxyDN.

Errors
LDAP_PARAM_ERROR returns if an invalid parameter was passed.

LDAP_NO_MEMORY returns if memory cannot be allocated.

LDAP_ENCODING_ERROR returns if an error occurred when you encode the control.

LDAP_UNAVAILABLE_CRITICAL_EXTENSION returns if server does not support proxy authorization and
iscritical is set to a non-zero value.

See also
ldap controls, ldap_bind, ldap_search, ldap_modify, ldap_delete, ldap_add

LDAP_CREATE_RESUME_ROLE_REQUEST
Use the LDAP_CREATE_RESUME_ROLE_REQUEST API to create a request for resuming the role extended
operation. The LDAP routine creates a berval that can be sent by using the proxy back-end server resume
role extended operation.

Synopsis

#include ldap.h

struct berval* ldap_create_resume_role_request (
 int RequestType,
 char *PartitionName,
 char *ServerName)

Chapter 2. Directory Server programming reference 35

Input parameters
RequestType

One of the request types that are defined in ldap.h. The request type can have one of the following
values:

• All (0)
• Partition (1)
• Server (2)
• ServerInAPartition (3)

PartitionName
Specifies the partition name for the request. If request value is 1 or 3, PartitionName must not be
NULL. The partition name is one of the following names that are configured in the configuration file:

• ibm-slapdProxySplitName=Name
• ibm-slapdProxyPartitionIndex=index value
• ibm-slapdProxySplitName=Name

ServerName
Specifies the server URL for the request. If request value is 2 or 3, ServerName must not be NULL.

Usage
This API routine creates a berval that is sent by using the proxy back-end server resume role extended
operation.

Errors
This routine does not return any return code. If any errors are encountered, the value of the returned
berval is set to NULL.

See also
See “LDAP_ERROR” on page 41 for a list of the LDAP error codes.

LDAP_CREATE_RETURN_DELETED_OBJECTS_CONTROL
Use the LDAP_CREATE_RETURN_DELETED_OBJECTS_CONTROL API or LDAP routine to create a return
deleted objects control.

Synopsis

#include ldap.h

int ldap_create_return_deleted_objects_control(
 LDAP *ld,
 int control_iscritical,
 LDAPControl **control);

Input parameters
ld

Specifies an LDAP session handle that is returned by a call to ldap_init().
control_iscritical

Specifies whether the control is critical or not. A nonzero value indicates that the return deleted
objects control is critical and a zero value if it is not.

control
Specifies the address of a pointer to an LDAPControl structure, where the created control is placed.

36 IBM Security Directory Suite: Programming Reference

Usage
This routine creates a return deleted objects control if the return code is LDAP_SUCCESS. The caller must
free the memory that is occupied by the LDAPControl structure after its use.

Errors
• LDAP_PARAM_ERROR // returned if an invalid parameter was passed
• LDAP_NO_MEMORY // returned if memory cannot be allocated

See also
LDAP controls

LDAP_CREATE_TRANSACTION_CONTROL
Use the LDAP_CREATE_TRANSACTION_CONTROL API or LDAP routine to create a transaction control that
is sent by using the update operation within a transaction.

Synopsis

#include ldap.h

LDAPControl *ldap_create_transaction_control(
 string tran_id);

Input parameters
tran_id

Specifies the transaction ID in a string format.

Output parameters
This routine returns a transaction control with the transaction ID and is set to the value passed in the
routine.

Usage
This routine creates a control that is used with update operation within a transaction.

Errors
If an error occurs, this routine returns a NULL value for the control.

See also
ldap_start_transaction, ldap_start_transaction_s, ldap_prepare_transaction, ldap_prepare_transaction_s,
ldap_end_transaction, ldap_end_transaction_s, ldap_get_tran_id, ldap_create_transaction_control

LDAP_CREATE_VLV_CONTROL
Use the LDAP_CREATE_VLV_CONTROL API or LDAP routine to create a virtual list view request control.

Synopsis

#include ldap.h

int ldap_create_vlv_control(
 LDAP *ld,

Chapter 2. Directory Server programming reference 37

 LDAPVLVInfo *vlvinfop,
 LDAPControl **ctrlp
);

Input parameters
ld

Specifies the LDAP session handle that is returned by a call to ldap_init().
vlvinfop

Contains the address of the LDAPVLVInfo object whose contents are used for constructing the value
of control to be created.

ctrlp
Specifies the result parameter that contains the address of the created Virtual list view control. After
its use, it must be freed by the caller by using the ldap_control_free() function.

The ldap_create_vlv_control routine is used for creating a virtual list view request control. The
possible return codes from this routine are as follows:

• LDAP_SUCCESS // on success
• LDAP_PARAM_ERROR // bad input parameter
• LDAP_NO_MEMORY // memory allocation failure
• LDAP_ENCODING_ERROR // encoding error

See also
ldap_parse_vlv_control

LDAP_DELETE
Use the LDAP_DELETE API or LDAP routine for conducting an LDAP operation to delete a leaf entry.

ldap_delete
ldap_delete_s
ldap_delete_ext
ldap_delete_ext_s

Synopsis

#include ldap.h

int ldap_delete(
 LDAP **ld,
 const char *dn)

int ldap_delete_s(
 LDAP *ld,
 const char *dn)

int ldap_delete_ext(
 LDAP *ld,
 const char *dn,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 int *msgidp)

int ldap_delete_ext_s(
 LDAP *ld,
 const char *dn,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls)

38 IBM Security Directory Suite: Programming Reference

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init() or
ldap_open().

dn
Specifies the DN of the entry to be deleted.

serverctrls
Specifies a list of LDAP server controls. This parameter can be set to NULL. For more information
about server controls, see “LDAP controls” on page 24.

clientctrls
Specifies a list of LDAP client controls. This parameter can be set to NULL. For more information about
client controls, see “LDAP controls” on page 24.

Output parameters
msgidp

This result parameter is set to the message ID of the request if the ldap_delete_ext() call
succeeds.

Usage
Note: The entry to delete must be a leaf entry, that is, it must have no children. Deletion of entire subtrees
in a single operation is not supported by LDAP.

The ldap_delete_ext() API initiates an asynchronous delete operation and returns the constant
LDAP_SUCCESS if the request was successfully sent, or returns another LDAP error code if the request
was not successful. If successful, ldap_delete_ext() places the message ID of the request in
*msgidp. ldap_result() returns the status of an operation as an error code. The error code indicates
whether the operation completed successfully. The ldap_parse_result() API checks the error code.

Similarly, the ldap_delete() API initiates an asynchronous delete operation and returns the message
ID of that operation. A subsequent call to ldap_result() can be used to obtain the result of the
ldap_delete() operation. If there is an error, ldap_delete() returns -1, setting the session error
parameters in the LDAP structure appropriately. These error parameters can be obtained by using
ldap_get_errno().

See “LDAP_ERROR” on page 41 for more details.

Use the synchronous ldap_delete_s() and ldap_delete_ext_s() APIs to run LDAP delete
operations. The results of both operations are output parameters. These routines return either the
constant LDAP_SUCCESS if the operation was successful, or another LDAP error code returns if the
operation was not successful.

Both the ldap_delete_ext() and ldap_delete_ext_s() APIs both support LDAP V3 server controls
and client controls.

Errors
ldap_delete_s() returns an LDAP error code that can be interpreted by calling an ldap_error
routine. The ldap_delete() API returns -1 if the request initiation was unsuccessful. It returns the
message ID of the request if successful.

See also
ldap_error

Chapter 2. Directory Server programming reference 39

LDAP_END_TRANSACTION
Use the LDAP_END_TRANSACTION API or LDAP routine to call an end transaction request.

• ldap_end_transaction
• ldap_end_transaction_s

Synopsis

#include ldap.h

int ldap_end_transaction(
 LDAP *ld,
 string tran_id,
 int abort,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 int *msgidp)

int ldap_end_transaction_s(
 LDAP *ld,
 string tran_id,
 int abort,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls)

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init(),
or ldap_open().

tran_id
Specifies the transaction ID of the end transaction.

abort
Specifies the request type that is sent to the transaction. The request type can be one from the
following list:

• 0 – commit transaction
• 1 – abort transaction

serverctrls
Specifies a list of LDAP server controls.

clientctrls
Specifies a list of LDAP client controls.

Output parameters
msgidp

This parameter contains the message ID of the request.

Usage
This API routine is used to initiate an end transaction request against the server.

Errors
This routine returns an LDAP error code if the operation is unsuccessful.

40 IBM Security Directory Suite: Programming Reference

See also
ldap_start_transaction, ldap_start_transaction_s, ldap_prepare_transaction, ldap_prepare_transaction_s,
ldap_end_transaction, ldap_end_transaction_s, ldap_get_tran_id, ldap_create_transaction_control

LDAP_ERROR
Use the LDAP_ERROR API or LDAP routine to manage or handle protocol errors.

ldap_get_errno
ldap_get_lderrno
ldap_set_lderrno
ldap_perror (deprecated)
ldap_result2error (deprecated)
ldap_err2string
ldap_get_exterror

Synopsis

#include ldap.h

int ldap_get_errno(
 LDAP *ld);

int ldap_get_lderrno (
 LDAP *ld,
 char **dn,
 char **errmsg);

int ldap_set_lderrno (
 LDAP *ld,
 int errnum,
 char *dn,
 char *errmsg);

void ldap_perror(
 LDAP *ld,
 const char *s);

int ldap_result2error(
 LDAP *ld,
 LDAPMessage *res,
 int freeit);

const char *ldap_err2string(
 int error);

int ldap_get_exterror(
 LDAP *ld);

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init() or
ldap_open().

dn
Specifies a DN that identifies an existing entry, indicating how much of the name in the request that is
recognized by the server. The DN is returned when an LDAP_NO_SUCH_OBJECT error is returned from
the server. The matched DN string must be freed by calling ldap_memfree().

errmsg
Specifies the text of the error message, as returned from the server. The error message string must be
freed by calling ldap_memfree().

Chapter 2. Directory Server programming reference 41

s
Specifies the message prefix, which is prefixed to the string form of the error code held that is stored
under the LDAP structure. The string form of the error is the same string that is returned by a call to
ldap_err2string().

res
Specifies the result, as produced by ldap_result() or ldap_search_s(), to be converted to the
error code with which it is associated.

freeit
Specifies whether the result, res, must be freed as a result of calling ldap_result2error(). If
nonzero, the result, res, is freed by the call. If zero, res is not freed by the call.

errnum
Specifies the LDAP error code, as returned by ldap_parse_result() or another LDAP API call.

Usage
These routines provide interpretation of the various error codes that are returned by the LDAP protocol
and LDAP library routines.

The ldap_get_errno() and ldap_get_lderrno() APIs obtain information for the most recent error
that occurred for an LDAP operation. When an error occurs at the LDAP server, the server returns the
following information back to the client:

• The LDAP result code for the error that occurred.
• A message that contains any additional information about the error from the server.

If the error occurred because an entry specified by a DN cannot be found, the server might also return the
DN portion that identifies an existing entry.

Both APIs return the error result code of the server. Use ldap_get_lderrno() to obtain the message
and matched DN.

The ldap_set_lderrno() API sets an error code and other information about an error in the specified
LDAP structure. This function can be called to set error information that is retrieved by subsequent
ldap_get_lderrno() calls.

The ldap_result2error() routine takes res, a result as produced by ldap_result() or
ldap_search_s(), and returns the corresponding error code. Possible error codes follow. See the tables
in the following section. If the freeit parameter is nonzero, it indicates that the res parameter must be
freed by a call to ldap_msgfree() after the error code is extracted. The ld_errno field in ld is set and
returned.

The returned value can be passed to ldap_err2string(), which returns a pointer to a character string
which is a textual description of the LDAP error code. The character string must not be freed when use of
the string is complete.

The ldap_perror() routine can be called to print an indication of the error on standard error.

The ldap_get_exterror() routine returns the current extended error code that is returned by an LDAP
server or other library, such as Kerberos or SSL, for the LDAP session. For some error codes, it might be
possible to further interpret the error condition. For example, for SSL errors the extended error code might
indicate why an SSL handshake failed.

Errors
The possible values for an LDAP error code are shown in the following tables.

Table 1. Return codes and their description

Dec
val
ue

Value Hex
value

Brief description Detailed description

00 LDAP_SUCCESS 00 Success The request was successful.

42 IBM Security Directory Suite: Programming Reference

Table 1. Return codes and their description (continued)

Dec
val
ue

Value Hex
value

Brief description Detailed description

00 LDAP_OPERATIONS_ERROR 01 Operations error An operations error occurred.

02 LDAP_PROTOCOL_ERROR 02 Protocol error A protocol violation was detected.

03 LDAP_TIMELIMIT_EXCEEDED 03 Time limit that exceeded An LDAP time limit was exceeded.

04 LDAP_SIZELIMIT_EXCEEDED 04 Size limit that exceeded An LDAP size limit was exceeded.

05 LDAP_COMPARE_FALSE 05 Compare false A compare operation returned false.

06 LDAP_COMPARE_TRUE 06 Compare true A compare operation returned true.

07 LDAP_STRONG_AUTH_NOT_SUPPORTED 07 Strong authentication that is
not supported

The LDAP server does not support
strong authentication.

08 LDAP_STRONG_AUTH_REQUIRED 08 Strong authentication that is
required

Strong authentication is required for
the operation.

09 LDAP_PARTIAL_RESULTS 09 Partial results and referral
received

Partial results that are only returned.

10 LDAP_REFERRAL 0A Referral returned Referral returned.

11 LDAP_ADMIN_LIMIT_EXCEEDED 0B Administration limit that
exceeded

Administration limit that exceeded.

12 LDAP_UNAVAILABLE_CRITICAL_EXTENSION 0C Critical extension that is not
supported

Critical extension is not supported.

13 LDAP_CONFIDENTIALITY_REQUIRED 0D Confidentiality is required Confidentiality is required.

14 LDAP_SASLBIND_IN_PROGRESS 0E SASL bind in progress An SASL bind is in progress.

16 LDAP_NO_SUCH_ATTRIBUTE 10 No such attribute The attribute type that is specified
does not exist in the entry.

17 LDAP_UNDEFINED_TYPE 11 Undefined attribute type The attribute type that is specified is
not valid.

18 LDAP_INAPPROPRIATE_MATCHING 12 Inappropriate matching Filter type that is not supported for the
specified attribute.

19 LDAP_CONSTRAINT_VIOLATION 13 Constraint violation An attribute value that is specified
violates some constraint. For example,
a postal address has too many lines, or
a line that is too long.

20 LDAP_TYPE_OR_VALUE_EXISTS 14 Type or value exists An attribute type or attribute value
that is specified exists in the entry.

21 LDAP_INVALID_SYNTAX 15 Invalid syntax An attribute value that is not valid was
specified.

32 LDAP_NO_SUCH_OBJECT 20 No such object The specified object does not exist in
the directory.

33 LDAP_ALIAS_PROBLEM 21 Alias problem An alias in the directory points to a
nonexistent entry.

34 LDAP_INVALID_DN_SYNTAX 22 Invalid DN syntax A DN that is syntactically not valid was
specified.

35 LDAP_IS_LEAF 23 Object is a leaf The object that is specified is a leaf.

36 LDAP_ALIAS_DEREF_PROBLEM 24 Alias dereferencing problem A problem was encountered when you
dereferenced an alias.

48 LDAP_INAPPROPRIATE_AUTH 30 Inappropriate
authentication

Inappropriate authentication
was specified. For example,
LDAP_AUTH_SIMPLE was specified
and the entry does not have a
userPassword attribute.

Chapter 2. Directory Server programming reference 43

Table 1. Return codes and their description (continued)

Dec
val
ue

Value Hex
value

Brief description Detailed description

49 LDAP_INVALID_CREDENTIALS 31 Invalid credentials Invalid credentials were presented.
For example, the wrong password.

50 LDAP_INSUFFICIENT_ACCESS 32 Insufficient access The user has insufficient access to run
the operation.

51 LDAP_BUSY 33 DSA is busy The DSA is busy.

52 LDAP_UNAVAILABLE 34 DSA is unavailable The DSA is unavailable.

53 LDAP_UNWILLING_TO_PERFORM 35 DSA cannot run The DSA cannot run the operation.

54 LDAP_LOOP_DETECT 36 Loop detected A loop was detected.

64 LDAP_NAMING_VIOLATION 40 Naming violation A naming violation occurred.

65 LDAP_OBJECT_CLASS_VIOLATION 41 Object class violation An object class violation occurred. For
example, a "required" attribute was
missing from the entry.

66 LDAP_NOT_ALLOWED_ON_NONLEAF 42 Operation that is not
allowed on nonleaf

The operation is not allowed on a
nonleaf object.

67 LDAP_NOT_ALLOWED_ON_RDN 43 Operation that is not
allowed on RDN

The operation is not allowed on an
RDN.

68 LDAP_ALREADY_EXISTS 44 Exists The entry exists.

69 LDAP_NO_OBJECT_CLASS_MODS 45 Cannot modify object class Object class modifications are not
allowed.

70 LDAP_RESULTS_TOO_LARGE 46 Results too large Results too large.

71 LDAP_AFFECTS_MULTIPLE_DSAS 47 Affects multiple DSAs Affects multiple DSAs.

80 LDAP_OTHER 50 Unknown error An unknown error occurred.

81 LDAP_SERVER_DOWN 51 Cannot contact LDAP server The LDAP library cannot contact the
LDAP server.

82 LDAP_LOCAL_ERROR 52 Local error Some local error occurred. This error is
usually a failed memory allocation.

83 LDAP_ENCODING_ERROR 53 Encoding error An error was encountered encoding
parameters to send to the LDAP
server.

84 LDAP_DECODING_ERROR 54 Decoding error An error was encountered decoding a
result from the LDAP server.

85 LDAP_TIMEOUT 55 Timed out A time limit was exceeded while you
waited for a result.

86 LDAP_AUTH_UNKNOWN 56 Unknown authentication
method

The authentication method that is
specified on a bind operation is not
known.

87 LDAP_FILTER_ERROR 57 Bad search filter An invalid filter that is supplied
to ldap_search. For example,
unbalanced parentheses.

88 LDAP_USER_CANCELLED 58 User canceled operation The user canceled the operation.

89 LDAP_PARAM_ERROR 59 Bad parameter to an LDAP
routine

An LDAP routine that is called with a
bad parameter. For example, a NULL ld
pointer, and others.

90 LDAP_NO_MEMORY 5A Out of memory A memory allocation call, such as
malloc, failed in an LDAP library
routine.

91 LDAP_CONNECT_ERROR 5B Connection error Connection error.

44 IBM Security Directory Suite: Programming Reference

Table 1. Return codes and their description (continued)

Dec
val
ue

Value Hex
value

Brief description Detailed description

92 LDAP_NOT_SUPPORTED 5C Not supported Not supported.

93 LDAP_CONTROL_NOT_FOUND 5D Control not found Control not found.

94 LDAP_NO_RESULTS_RETURNED 5E No results that returned No results that returned.

95 LDAP_MORE_RESULTS_TO_RETURN 5F More results to return More results to return.

96 LDAP_URL_ERR_NOTLDAP 60 URL does not begin with
ldap://

The URL does not begin with
ldap://.

97 LDAP_URL_ERR_NODN 61 URL has no DN (required) The URL does not have a DN
(required).

98 LDAP_URL_ERR_BADSCOPE 62 URL scope string is invalid The URL scope string is not valid.

99 LDAP_URL_ERR_MEM 63 Cannot allocate memory
space

Cannot allocate memory space.

100 LDAP_CLIENT_LOOP 64 Client loop Client loop.

101 LDAP_REFERRAL_LIMIT_EXCEEDED 65 Referral limit that exceeded Referral limit that exceeded.

112 LDAP_SSL_ALREADY_INITIALIZED 70 ldap_ssl_client_init
successfully called
previously in this process

The ldap_ssl_client_init was
successfully called previously in this
process.

113 LDAP_SSL_INITIALIZE_FAILED 71 Initialization call that failed SSL Initialization call failed.

114 LDAP_SSL_CLIENT_INIT_NOT_CALLED 72 Must call
ldap_ssl_client_init
before you attempt to use
SSL connection

Must call ldap_ssl_client_init
before you attempt to use the SSL
connection.

115 LDAP_SSL_PARAM_ERROR 73 Invalid SSL parameter
previously specified

An SSL parameter that was not valid
was previously specified.

116 LDAP_SSL_HANDSHAKE_FAILED 74 Failed to connect to SSL
server

Failed to connect to SSL server.

117 LDAP_SSL_GET_CIPHER_FAILED 75 Not used Deprecated

118 LDAP_SSL_NOT_AVAILABLE 76 SSL library cannot be
located

Ensure that GSKit is installed.

128 LDAP_NO_EXPLICIT_OWNER 80 No explicit owner found No explicit owner was found.

129 LDAP_NO_LOCK 81 Cannot obtain lock Client library was not able to lock a
required resource.

In addition, the following DNS-related error codes are defined in the ldap.h file:

Table 2. DNS-related return codes

Dec
value

Value Hex
value

Detailed description

133 LDAP_DNS_NO_SERVERS 85 No LDAP servers found.

134 LDAP_DNS_TRUNCATED 86 Warning: truncated DNS results.

135 LDAP_DNS_INVALID_DATA 87 Invalid DNS Data.

136 LDAP_DNS_RESOLVE_ERROR 88 Cannot resolve system domain or name server.

137 LDAP_DNS_CONF_FILE_ERROR 89 DNS Configuration file error.

The following UTF8-related error codes are defined in the ldap.h file:

Chapter 2. Directory Server programming reference 45

Table 3. UTF8-related return codes

Dec
value

Value Hex
value

Detailed description

160 LDAP_XLATE_E2BIG A0 Output buffer overflow.

161 LDAP_XLATE_EINVAL A1 Input buffer that is truncated.

162 LDAP_XLATE_EILSEQ A2 Unusable input character.

163 LDAP_XLATE_NO_ENTRY A3 No code set point to map to.

176 LDAP_REG_FILE_NOT_FOUND B0 NT Registry file not found.

177 LDAP_REG_CANNOT_OPEN B1 NT Registry cannot open.

178 LDAP_REG_ENTRY_NOT_FOUND B2 NT Registry entry not found.

192 LDAP_CONF_FILE_NOT_OPENED C0 Plug-in configuration file not opened.

193 LDAP_PLUGIN_NOT_LOADED C1 Plug-in library that is not loaded.

194 LDAP_PLUGIN_FUNCTION_NOT_RESOLVED C2 Plug-in function that is not resolved.

195 LDAP_PLUGIN_NOT_INITIALIZED C3 Plug-in library not initialized.

196 LDAP_PLUGIN_COULD_NOT_BIND C4 Plug-in function cannot bind.

208 LDAP_SASL_GSS_NO_SEC_CONTEXT D0 gss_init_sec_context failed.

See also
ldap_memfree, ldap_parse routines

LDAP_EXTENDED_OPERATION
Use the LDAP_EXTENDED_OPERATION API or LDAP routine to conduct extended operations and parse
extended result.

ldap_extended_operation
ldap_extended_operation_s

Synopsis

#include ldap.h

int ldap_extended_operation(
 LDAP *ld,
 const char *reqoid,
 const struct berval *reqdata,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 int *msgidp)

int ldap_extended_operation_s(
 LDAP *ld,
 const char *reqoid,
 const struct berval *reqdata,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 char **retoidp,
 struct berval **retdatap)

46 IBM Security Directory Suite: Programming Reference

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init() or
ldap_open().

reqoid
Specifies the dotted-object identifier (OID) text string that identifies the extended operation to be run
by the server.

reqdata
Specifies the arbitrary data that is required by the extended operation. If NULL, no data is sent to the
server.

serverctrls
Specifies a list of LDAP server controls. This parameter can be set to NULL. For more information
about server controls, see “LDAP controls” on page 24.

clientctrls
Specifies a list of LDAP client controls. This parameter can be set to NULL. For more information about
client controls, see “LDAP controls” on page 24.

Output parameters
msgidp

This result parameter is set to the message ID of the request if the ldap_extended_operation()
call is successfully sent to the server. To check the result of this operation, call the ldap_result()
and ldap_parse_result() APIs. The server can also return an OID and result data.
Because the asynchronous ldap_extended_operation does not directly return the results, use
ldap_parse_extended_result() to get the results.

retoidp
This result parameter is set to point to a character string that is set to an allocated, dotted-OID text
string that is returned from the server. This string must be disposed of using the ldap_memfree()
API. If no OID is returned, *retoidp is set to NULL.

retdatap
This result parameter is set to a pointer to a berval structure pointer that is set to an allocated
copy of the data. This data is returned by the server. This struct berval must be disposed of using
ber_bvfree(). If no data is returned, *retdatap is set to NULL.

Usage
The ldap_extended_operation() function is used to initiate an asynchronous extended operation,
which returns LDAP_SUCCESS if the extended operation was successfully sent, or an LDAP error code
is returned if the operation was not successful. If successful, the ldap_extended_operation()
API places the message ID of the request in *msgidp. A subsequent call to ldap_result()
can be used to obtain the result of the extended operation, which can then be passed to
ldap_parse_extended_result() to obtain the OID and data that is contained in the response.

The ldap_extended_operation_s() function is used to initiate a synchronous extended operation,
which returns the result of the operation: either LDAP_SUCCESS if the operation was successful, or it
returns another LDAP error code if it was not successful. The retoid and retdata parameters are
provided with the OID and data from the response. If no OID or data was returned, these parameters are
set to NULL.

If the LDAP server does not support the extended operation, the server rejects the request. IBM Security
Directory Suite provides a server plug-in interface that can be used to add extended operation support.
For more information, see the Server Plug-ins Reference section of the IBM Security Directory Suite
documentation.

To determine whether the requisite extended operation is supported by the server, get the rootDSE
of the LDAP server and check for the supportedExtension attribute. If the values for this attribute
include the OID of your extended operation, then the server supports the extended operation. If the

Chapter 2. Directory Server programming reference 47

https://www.ibm.com/docs/sdsu/8.0.1
https://www.ibm.com/docs/sdsu/8.0.1

supportedExtension attribute is not present in the rootDSE, then the server is not configured to
support any extended operations.

A list of OIDs for supported extended operations can be found in “Object Identifiers (OIDs) for extended
operations and controls” on page 166.

Errors
The lldap_extended_operation() API returns the LDAP error code for the operation.

The ldap_extended_operation() API returns -1 instead of a valid msgid if an error occurs, setting
the session error in the LD structure. The session error can be obtained by using ldap_get_errno().

For more information, see “LDAP_ERROR” on page 41.

Notes®

These routines allocate storage. Use ldap_memfree to free the returned OID. Use ber_bvfree to free
the returned struct berval.

See also
ldap_result, ldap_error

LDAP_FIRST_ATTRIBUTE
Use the LDAP_FIRST_ATTRIBUTE API to step through the LDAP entry attributes.

ldap_count_attributes
ldap_first_attribute
ldap_next_attribute

Synopsis

#include ldap.h

int ldap_count_attributes(
 LDAP *ld,
 LDAPMessage *entry)

char *ldap_first_attribute(
 LDAP *ld,
 LDAPMessage *entry,
 BerElement **berptr)

char *ldap_next_attribute(
 LDAP *ld,
 LDAPMessage *entry,
 BerElement *berptr)

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init(),
or ldap_open().

entry
Pointer to the LDAPMessage that represents an entry.

48 IBM Security Directory Suite: Programming Reference

Output parameters
berptrs

This parameter is an output parameter that is returned from ldap_first_attribute(). This
parameter returns a pointer to a BerElement that is allocated to track the current position. It is
an input and output parameter for subsequent calls to ldap_next_attribute(), where it specifies
a pointer to a BerElement that is allocated by the previous call to ldap_first_attribute(). The
BerElement structure is opaque to the application.

Usage
The ldap_count_attributes() routine returns a count of the number of attributes in an LDAP entry. If
a NULL entry is returned from ldap_first_entry() or ldap_next_entry(), and is passed as input to
ldap_count_attributes(), -1 is returned.

The ldap_first_attribute() and ldap_next_attribute() routines are used to step through the
attributes in an LDAP entry.

ldap_first_attribute() takes an entry as returned by ldap_first_entry() or
ldap_next_entry() and returns a pointer to a buffer that contains the first attribute type in the entry.

The pointer that is returned by ldap_first_attribute in berptr must be passed to subsequent
calls to ldap_next_attribute and is used to step through the entry attributes. When there are no
attributes that are left to be retrieved, ldap_next_attribute() returns NULL and sets the error code
to LDAP_SUCCESS. If an error occurs, NULL is returned and an error code is set. The memory that is
allocated for the BerElement buffer must be freed by using ldap_ber_free().

Therefore, when NULL is returned, the ldap_get_errno() API must be used to determine whether an
error occurs.

If the caller fails to call ldap_next_attribute() enough times to exhaust the list of attributes, the
caller is responsible for freeing the BerElement pointed to by berptr when it is no longer needed by
calling ldap_ber_free().

The attribute names that are returned by ldap_first_attribute() and ldap_next_attribute()
are suitable for inclusion in a call to ldap_get_values().

ldap_next_attribute() returns a string that contains the name of the next type in the entry. This
string must be freed by using ldap_memfree() when its use is completed.

The attribute names that are returned by ldap_next_attribute() are suitable for inclusion in a call to
ldap_get_values() to retrieve the attribute values.

Errors
If the ldap_first_attribute() call results in an error, then NULL is returned, the error code is set.

The ldap_get_errno() API can be used to obtain the error code. For a description about possible error
codes, see “LDAP_ERROR” on page 41.

Notes
The ldap_first_attribute() and ldap_next_attribute() routines allocate memory that might
be required to be freed by the caller through ldap_memfree.

See also
ldap_first_entry, ldap_get_values, ldap_memfree, ldap_error

Chapter 2. Directory Server programming reference 49

LDAP_FIRST_ENTRY, LDAP_FIRST_REFERENCE
Use the LDAP_FIRST_ENTRY, LDAP_FIRST_REFERENCE API or LDAP routine for result entry and
continuation reference parse and counting routines.

APIs with the "_np" suffix are preliminary implementations, and are not documented in the Internet Draft,
"C LDAP Application Program Interface".

ldap_first_entry
ldap_next_entry
ldap_count_entries
ldap_get_entry_controls_np
ldap_first_reference
ldap_next_reference
ldap_count_references
ldap_parse_reference_np

Synopsis

#include ldap.h

LDAPMessage *ldap_first_entry(
 LDAP *ld,
 LDAPMessage *result)

LDAPMessage *ldap_next_entry(
 LDAP *ld,
 LDAPMessage *entry)

int ldap_count_entries(
 LDAP *ld,
 LDAPMessage *result)

int ldap_get_entry_controls_np(
 LDAP *ld,
 LDAPMessage *entry
 LDAPControl ***serverctrlsp)

LDAPMessage *ldap_first_reference(
 LDAP *ld,
 LDAPMessage *result)

LDAPMessage *ldap_next_reference(
 LDAP *ld,
 LDAPMessage *ref)
 LDAPMessage *result)

int ldap_count_references(
 LDAP *ld,
 LDAPMessage *result)

int ldap_parse_reference_np(
 LDAP *ld,
 LDAPMessage *ref,
 char ***referralsp,
 LDAPControl ***serverctrlsp,
 int freeit)

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init(),
or ldap_open().

result
Specifies the result that is returned by a call to ldap_result() or one of the synchronous search
routines, such as ldap_search_s(), ldap_search_st(), or ldap_search_ext_s().

50 IBM Security Directory Suite: Programming Reference

http://www.ietf.org/proceedings/99jul/I-D/draft-ietf-ldapext-ldap-c-api-03.txt

entry
Specifies a pointer to an entry returned on a previous call to ldap_first_entry() or
ldap_next_entry().

serverctrlsp
Specifies a pointer to a result parameter that is provided with an allocated array of controls
that are copied out of the LDAPMessage message. The control array must be freed by calling
ldap_controls_free().

ref
Specifies a pointer to a search continuation reference returned on a previous call to
ldap_first_reference() or ldap_next_reference().

referralsp
Specifies a pointer to a result parameter that is provided with the contents of the referrals field
from the LDAPMessage message. The LDAPMessage message indicates zero or more alternative
LDAP servers where the request must be tried again. The referrals array must be freed by calling
ldap_value_free(). Supply NULL for this parameter to ignore the referrals field.

freeit
Specifies a Boolean value that determines whether the LDAP result chain, as specified by ref, is to
be freed. Any nonzero value results in the LDAP result chain that is being freed after the requested
information is extracted. Alternatively, the ldap_msgfree() API can be used to free the LDAP result
chain later.

Usage
These routines are used to parse results that are received from ldap_result() or the
synchronous LDAP search operation routines ldap_search_s(), ldap_search_st(), and
ldap_search_ext_s().

Processing entries

The ldap_first_entry() and ldap_next_entry() APIs are used to step through and retrieve
the list of entries from a search result chain. When an LDAP operation completes and the result
is obtained as described, a list of LDAPMessage structures is returned. This list is denoted as the
search result chain. A pointer to the first of these structures is returned by ldap_result() and
ldap_search_s().

The ldap_first_entry() routine is used to retrieve the first entry in a chain of search
results. It takes the result that is returned by a call to ldap_result(), ldap_search_s(),
ldap_search_st(), or ldap_search_ext_s() and returns a pointer to the first entry in the result.

This pointer must be supplied on a subsequent call to ldap_next_entry() to get the next entry,
and others, until ldap_next_entry() returns NULL. The ldap_next_entry() API returns NULL
when there are no more entries. The entries that are returned from these calls are used in calls to the
routines ldap_get_dn(), ldap_first_attribute(), ldap_get_values(), and others.

The ldap_get_entry_controls_np() routine is used to retrieve an array of server controls that
are returned in an individual entry in a chain of search results.

Processing continuation references

The ldap_first_reference() and ldap_next_reference() APIs are used to step through and
retrieve the list of continuation references from a search result chain. They return NULL when no more
continuation references exist in the result that is set to be returned.

The ldap_first_reference() routine is used to retrieve the first continuation reference in a chain
of search results. It takes the result as returned by a call to ldap_result(), ldap_search_s(),
ldap_search_st(), or ldap_search_ext_s() and returns a pointer to the first continuation
reference in the result.

The pointer that is returned from ldap_first_reference() must be supplied on a subsequent call
to ldap_next_reference() to get the next continuation reference.

Chapter 2. Directory Server programming reference 51

The ldap_parse_reference_np() routine is used to retrieve the list of alternative servers that are
returned in an individual continuation reference in a chain of search results. This routine is also used
to obtain an array of server controls that are returned in the continuation reference.

Counting entries and references

The ldap_count_entries() API returns the number of entries that are contained in
a search result chain. It can also be used to count the number of entries that
remain in a chain if called with a message, entry, or continuation reference that
is returned by ldap_first_message(), ldap_next_message(), ldap_first_entry(),
ldap_next_entry(), ldap_first_reference(), or ldap_next_reference().

The ldap_count_references() API is used to count the number of continuation references
returned. It can also be used to count the number of continuation references that remain in a chain.

Errors
If an error occurs in ldap_first_entry(), ldap_next_entry(), ldap_first_reference(), or
ldap_next_reference(), NULL is returned, and ldap_get_errno() API can be used to obtain the
error code.

If an error occurs in ldap_count_entries() or ldap_count_references(), -1 is returned, and
ldap_get_errno() can be used to obtain the error code. The ldap_get_entry_controls_np() and
ldap_parse_reference_np() APIs return an LDAP error code directly. For example, LDAP_SUCCESS if
the call was successful, an LDAP error if the call was unsuccessful.

See “LDAP_ERROR” on page 41 for a description of possible error codes.

See also
ldap_result(), ldap_search(), ldap_first_attribute(), ldap_get_values(), ldap_get_dn()

LDAP_FREE_LIMIT_NUM_VALUES_RESPONSE
Use the LDAP_FREE_LIMIT_NUM_VALUES_RESPONSE API or LDAP routine for freeing an
LDAPNumValuesResponse structure.

Synopsis

 #include ldap.h

 void ldap_free_limit_num_values_response(
 LDAPNumValuesResponse **numValuesResponse);

Input parameters
numValuesResponse

Specifies the address of a pointer to an LDAPNumValuesResponse structure to free. The structure is
freed and the pointer is set to NULL.

Usage
The ldap_free_limit_num_values_response routine is used for freeing an
LDAPNumValuesResponse structure.

See also
ldap_parse_limit_num_values_response

52 IBM Security Directory Suite: Programming Reference

LDAP_GET_BIND_CONTROLS
Use the LDAP_GET_BIND_CONTROLS API or LDAP routine to allow the client by using
ldap_sasl_bind_s methods to get controls sent by the server.

ldap_get_bind_controls

Synopsis

int ldap_get_bind_controls LDAP_P(
 LDAP *ld,
 LDAPControl ***bind_controls);

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init() or
ldap_open().

bind_controls
Cannot be NULL.

Output parameters
bind_controls has a copy of the bind controls, or NULL if there are no controls.

Usage
After you call ldap_sasl_bind_s, the application calls ldap_get_bind_controls to get a NULL-
terminated array of controls that the server returned on the bind. The caller is responsible for freeing
the controls by using ldap_controls_free(). If the caller does not call ldap_sasl_bind_s for the
supplied ld, the client sets bind_controls to NULLreturn.

Errors
LDAP_PARAM_ERROR: If bind_controls=NULL, error code if ld not valid.

See also
“LDAP controls” on page 24

LDAP_GET_DN
Use the LDAP_GET_DN API or LDAP routine to handle DN and RDN routines.

ldap_dn2ufn
ldap_get_dn
ldap_explode_dn
ldap_explode_dns
ldap_explode_rdn

Synopsis

#include ldap.h

char *ldap_dn2ufn(
 const char *dn)

char *ldap_get_dn(
 LDAP *ld,

Chapter 2. Directory Server programming reference 53

 LDAPMessage *entry)

char **ldap_explode_dn(
 const char *dn,
 int notypes)

char **ldap_explode_dns(
 const char *dn)

char **ldap_explode_rdn(
 const char *rdn,
 int notypes)

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init(),
or ldap_open().

dn
Specifies the DN to be exploded (as returned from ldap_get_dn()) or converted to a simple form
(as returned from ldap_dn2ufn()).

rdn
Specifies the RDN to be exploded (as returned from ldap_explode_dn()).

entry
Specifies the entry whose dn is to be retrieved.

notypes
Specifies whether type names are to be returned for each RDN. If nonzero, the type information is
stripped. If zero, the type information is retained. For example, setting notypes to 1 can result in the
RDN "cn=Fido" being returned as Fido.

Usage
The ldap_dn2ufn() routine takes a DN and converts it into a simple representation by removing
the attribute type that is associated with each RDN. For example, the DN "cn=John Doe,
ou=Widget Division, ou=Austin, o=sample" is returned in simple form as "John Doe,
Widget Division, Austin, sample". Space for the simple name is obtained by the LDAP API,
and must be freed by a call to ldap_memfree().

The ldap_get_dn() routine takes an entry as returned by ldap_first_entry() or
ldap_next_entry() and returns a copy of the DN entry. Space for the DN is obtained by the LDAP
API, and must be freed by a call to ldap_memfree().

The ldap_explode_dn() routine takes a DN (as returned by ldap_get_dn()) and breaks it up
into its component parts. Each part is known as a Relative Distinguished Name, or RDN. The
ldap_explode_dn() API returns a NULL-terminated array of character strings, each component of
which contains an RDN from the DN. The notypes parameter is used to request that only the RDN
values, and not their types, be returned. For example, the DN "cn=Bob,c=US" returns an array as either
{"cn=Bob","c=US",NULL} or {"Bob","US",NULL} depending on whether notypes was 0 or 1. The
result can be freed by calling ldap_value_free().

The ldap_explode_dns() routine takes a DNS-style DN and breaks it up into its component parts.
It returns a NULL-terminated array of character strings. For example, the DN "austin.ibm.com" returns
{ "austin", "ibm", "com", NULL }. The result can be freed by calling ldap_value_free().

The ldap_explode_rdn() routine takes an RDN (as returned by ldap_explode_dn()) and breaks
it up into its component parts. The ldap_explode_rdn() API returns a NULL-terminated array
of character strings. The notypes parameter is used to request that only the component values
be returned, not their types. For example, the RDN "ou=Research + cn=Bob" returns as either
{"ou=Research", "cn=Bob", NULL} or {"Research","Bob", NULL}, depending on whether
notypes was 0 or 1. The result can be freed by calling ldap_value_free().

54 IBM Security Directory Suite: Programming Reference

The client DN processing functions normalize attribute values that contain compound RDNs, escaped
hex representations of UTF-8 characters and ber-encoded values. The functions also check that the DN
passed in is in a correct format according to RFC 2253. ldap_explode_rdn removes back slashes (\)
from in front of special characters.

ldap_dn2ufn, ldap_explode_dn and ldap_explode_rdn normalize attribute values by doing the
following changes:

• A back slash followed by a two-digit hex representation of a UTF-8 character is converted to the
character representation. For example, cn=\4A\6F\68\6E Doe is converted to cn=John Doe.

• A ber-encoded value is converted to a UTF-8 value. For example, cn=#04044A6F686E20446F65 is
converted to cn=John Doe.

ldap_dn2ufn, ldap_explode_dn and ldap_explode_rdn check that the DN passed in is valid. If
the DN is not valid, NULL is returned. A DN is not valid if the attribute type or value are in invalid formats.
For more information, see RFC 2253.

ldap_dn2ufn, ldap_explode_dn, and ldap_explode_rdn handle compound RDNs. For example:

• The DN cn=John+sn=Doe passed into ldap_dn2ufn returns John+Doe
• ldap_explode_dn with notype returns John+Doe
• ldap_explode_rdn with notype returns [0]=John [1]=Doe

ldap_explode_rdn removes the back slash from in front of special characters. For example, when you
call ldap_explode_rdn(cn=Doe\<Jane+ou=LDAP+o=sample,1), ldap_explode_rdn returns:

• [0] = Doe<Jane
• [1] = LDAP
• [2] =sample

Errors
If an error occurs in ldap_dn2ufn(), ldap_get_dn(), ldap_explode_dn(), or
ldap_explode_rdn(), NULL is returned. If ldap_get_dn() returns NULL, the ldap_get_errno()
API can be used to obtain the error code. See “LDAP_ERROR” on page 41 for a description of possible
error codes.

Notes
These routines allocate memory that the caller must deallocate.

See also
ldap_first_entry, ldap_error, ldap_value_free

LDAP_GET_TRAN_ID
Use the LDAP_GET_TRAN_ID API or LDAP routine to get the transaction ID from the berval struct that is
returned by the start transaction.

Synopsis

#include ldap.h

char *ldap_get_tran_id(
 struct berval *tran_id_bv);

Chapter 2. Directory Server programming reference 55

Input parameters
tran_id_bv

Specifies the transaction ID in berval format that is returned by the ldap_start_transaction
routine.

Output parameters
This routine returns a string value of the transaction ID.

Note: The caller must free the allocated memory that is returned by the call after its use.

Usage
This routine retrieves the transaction ID from the result that is returned by the start transaction.

Errors
If an error occurs, this routine returns a NULL value for the transaction ID.

See also
ldap_start_transaction, ldap_start_transaction_s, ldap_prepare_transaction, ldap_prepare_transaction_s,
ldap_end_transaction, ldap_end_transaction_s, ldap_get_tran_id, ldap_create_transaction_control

LDAP_GET_VALUES
Use the LDAP_GET_VALUES API or LDAP routine to fetch or manipulate values that handle routines.

ldap_get_values
ldap_get_values_len
ldap_count_values
ldap_count_values_len
ldap_value_free
ldap_value_free_len

Synopsis

#include ldap.h

 struct berval {
 unsigned long bv_len;
 char *bv_val;
 };

char **ldap_get_values(
 LDAP *ld,
 LDAPMessage *entry,
 const char *attr)

struct berval **ldap_get_values_len(
 LDAP *ld,
 LDAPMessage *entry,
 const char *attr)

int ldap_count_values(
 char **vals)

int ldap_count_values_len(
 struct berval **bvals)

void ldap_value_free(
 char **vals)

56 IBM Security Directory Suite: Programming Reference

void ldap_value_free_len(
 struct berval **bvals)

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init(),
or ldap_open().

attr
Specifies the attribute whose values are wanted.

entry
Specifies an LDAP entry as returned from ldap_first_entry() or ldap_next_entry().

vals
Specifies a pointer to a NULL-terminated array of attribute values, as returned by
ldap_get_values().

bvals
Specifies a pointer to a NULL-terminated array of pointers to berval structures, as returned by
ldap_get_values_len().

Usage
These routines are used to retrieve and manipulate attribute values from an LDAP entry as returned by
ldap_first_entry() or ldap_next_entry().

The values of an attribute can be represented in two forms:

• A NULL-terminated array of strings. This representation is appropriate when the attribute contains string
data. For example, a title, description or name.

• A NULL-terminated array of berval structures. This representation is appropriate when the attribute
contains binary data. For example, a JPEG file.

String values

Use ldap_get_values() to obtain attribute values as an array of strings. The
ldap_get_values() API takes the entry and the attribute attr whose values are wanted and
returns a NULL-terminated array of character strings that represent the attribute values. The attr can
be an attribute type as returned from ldap_first_attribute() or ldap_next_attribute(), or
if the attribute type is known it can be provided.

The number of values in the array of character strings can be counted by calling
ldap_count_values(). The array of values that is returned can be freed by calling
ldap_value_free().

If your application is designed to rely on the LDAP library to convert LDAP V3 string data from UTF-8
to the local code page (enabled on a per-connection basis by using the ldap_set_option() API
with the LDAP_OPT_UTF8_IO), strings returned in the NULL-terminated array of string values can
contain multibyte characters, as defined in the local code page. In this case, the application must use
string-handling routines that are properly enabled to handle multibyte strings.

If the attribute values are binary in nature, and thus not suitable to be returned as an array of
character strings, the ldap_get_values_len() routine can be used instead. It takes the same
parameters as ldap_get_values() but returns a NULL-terminated array of pointers to berval
structures, each containing the length of, and a pointer to, a value.

Binary values

The number of values in the array of bervals can be counted by calling ldap_count_values_len().
The array of values that is returned can be freed by calling ldap_value_free_len().

Chapter 2. Directory Server programming reference 57

Errors
If an error occurs in ldap_get_values() or ldap_get_values_len(), NULL is returned and the
ldap_get_errno() API can be used to obtain the error code. See LDAP_ERROR for a description of
possible error codes.

See also
ldap_first_entry, ldap_first_attribute, ldap_error

LDAP_INIT
Use the LDAP_INIT or LDAP routine to initialize the LDAP library and open a connection to an LDAP
server, and get or set options for an LDAP connection.

ldap_init
ldap_open (deprecated)
ldap_set_option
ldap_get_option
ldap_version

Synopsis

#include ldap.h

LDAP *ldap_init(
 const char *host,
 int port)

LDAP *ldap_open(
 const char *host,
 int port)

int ldap_set_option(
 LDAP *ld,
 int optionToSet,
 void *optionValue)

int ldap_get_option(
 LDAP *ld,
 int optionToGet,
 void *optionValue)

int ldap_version(
 LDAPVersion *version)

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init(),
or ldap_open().

host
Several methods are supported for specifying one or more target LDAP servers, including the following
methods:
Explicit Host List

Specifies the name of the host on which the LDAP server is running. The host parameter can
contain a blank-separated list of hosts to try to connect to, and each host can optionally be of
the form host:port. If present, the :port overrides the port parameter that is supplied on
ldap_init(), ldap_ssl_init() or ldap_open(). The following examples are typical:

ld=ldap_init ("server1", ldap_port);
ld=ldap_init ("server2:1200", ldap_port);
ld=ldap_init ("server1:800 server2:2000 server3", ldap_port);

58 IBM Security Directory Suite: Programming Reference

Localhost
If the host parameter is NULL, the LDAP server is assumed to be running on the local host.

Default Hosts
If the host parameter is set to "ldap://" the LDAP library attempts to locate one or more default
LDAP servers, with non-SSL ports, by using the ldap_server_locate() function. The port
that is specified on the call is ignored because ldap_server_locate() returns the port. For
example, the following settings are equivalent:

ld=ldap_init ("ldap://", ldap_port);

and

ld=ldap_init (LDAP_URL_PREFIX, LDAP_PORT);

If more than one default server is located, the list is processed in sequence until an active server
is found.

The LDAP URL can include a distinguished name, which is used as a filter for selecting candidate
LDAP servers that are based on the server suffixes. If the most significant DN portion is an exact
match with a server suffix after normalizing for case, add the server to the candidate servers list.
For example, the following example returns default LDAP servers that have a suffix that supports
the specified DN only:

ld=ldap_init ("ldap:///cn=fred, dc=austin,
 dc=ibm, dc=com", LDAP_PORT);

In this case, a server that has a suffix of "dc=austin, dc=ibm, dc=com" matches. If more
than one default server is located, the list is processed in sequence until an active server is found.

If the LDAP URL contains a host name and optional port, the host is used to create the connection.
No attempt is made to locate the default servers, and the DN, if present, is ignored. For example,
the following examples are equivalent:

ld=ldap_init ("ldap://myserver", LDAP_PORT);

and

ld=ldap_init ("myserver", LDAP_PORT);

For more information about the algorithm that is used to locate default LDAP servers, see
“Locating default LDAP servers” on page 71.

Local Socket
If the host parameter is prefixed with a forward slash (/), the host parameter is assumed to be
the name of a UNIX socket, that is, family is AF_UNIX, and port is ignored. Use of a UNIX socket
requires the LDAP server to be running on the local host. In addition, the local operating system
must support UNIX sockets and the LDAP server must be listening on the specified UNIX socket.
UNIX variants of the Directory Server listen on the /tmp/s.slapd local socket, in addition to any
configured TCP/IP ports. For example:

ld=ldap_init ("/tmp/s.slapd", ldap_port);

Host with Privileged Port
On platforms that support the rresvport function, typically UNIX platforms, if a specified host
is prefixed with "privport://", then the LDAP library uses the rresvport function to attempt
to obtain one of the reserved ports (512 through 1023), instead of an ephemeral port. The search
for a reserved port starts at 1023 and stops at 512. If a reserved port cannot be obtained, the
function call fails. For example:

ld=ldap_init ("privport://server1", ldap_port);
ld=ldap_init ("privport://server2:1200", ldap_port);
ld=ldap_init ("privport://server1:800 server2:2000
 privport://server3", ldap_port);

Chapter 2. Directory Server programming reference 59

port
Specifies the port number to connect to. If the default IANA-assigned port of 389 is wanted,
LDAP_PORT must be specified. To use the default SSL port 636 for SSL connections, use
LDAPS_PORT.

optionToSet
Identifies the option value that is to be set on the ldap_set_option() call. For the list of supported
options, see the following section, Usage.

optionToGet
Identifies the option value that is to be queried on the ldap_get_option() call. For the list of
supported options, see the following section, Usage.

optionValue
Specifies the address of the value to set by using ldap_set_option() or the address of the storage
in which the queried value is returned by using ldap_get_option().

version
Specifies the address of an LDAPVersion structure that contains the following returned values:
sdk_version

SDK version, which is multiplied by 100.
protocol_version

Highest LDAP protocol that is supported, multiplied by 100.
SSL_version

SSL version that is supported, multiplied by 100.
security_level

Level of encryption that is supported in bits. Set to LDAP_SECURITY_NONE if SSL not enabled.
ssl_max_cipher

A string that contains the default ordered ciphers set that are supported by this installation.
For more information about changing the set of ciphers that is used to negotiate the secure
connection with the server, see “LDAP_SET_OPTION syntax for LDAP V2 applications” on page
68.

sdk_vendor
A pointer to a static string that identifies the supplier of the LDAP library. This string must not be
freed by the application.

sdk_build_level
A pointer to a static string that identifies the build level, including the date when the library was
built. This string must not be freed by the application.

Usage
The ldap_init() API initializes a session with an LDAP server. The server is not contacted until an
operation is run that requires the server. It allows various options to be set after initialization, but before
actually contacting the host. It allocates an LDAP structure that is used to identify the connection and
maintain per-connection information.

Although still supported, ldap_open() is deprecated. The ldap_open() API allocates an LDAP
structure and opens a connection to the LDAP server. Use ldap_init() instead of ldap_open().

The ldap_init() and ldap_open() APIs return a pointer to an LDAP structure, which must be passed
to subsequent calls to ldap_set_option(), ldap_simple_bind(), ldap_search(), and others.

The LDAP structure is opaque to the application. Direct manipulation of the LDAP structure must
be avoided. The ldap_version() API returns the toolkit version (multiplied by 100). It also sets
information in the LDAPVersion structure. See the section Input Parameters.

60 IBM Security Directory Suite: Programming Reference

Setting and getting session settings
The ldap_set_option() API sets options for the specified LDAP connection. The
ldap_get_option() API queries settings that are associated with the specified LDAP connection.

The following session settings can be set and retrieved by using the ldap_set_option() and
ldap_get_option() APIs:
LDAP_OPT_SIZELIMIT

Get or set maximum number of entries that can be returned on a search operation.
LDAP_OPT_TIMELIMIT

Get or set maximum number of seconds to wait for search results.
LDAP_OPT_REFHOPLIMIT

Get or set maximum number of referrals in a sequence that the client can follow.
LDAP_OPT_DEREF

Get or set rules for following aliases at the server.
LDAP_OPT_REFERRALS

Get or set whether referrals must be followed by the client.
LDAP_OPT_DEBUG

Get or set debug options.
LDAP_OPT_SSL_CIPHER

Get or set SSL ciphers to use.
“LDAP_OPT_SSL_CIPHER_EX” on page 64

Specifies a set of TLS 1.2 ciphers for the TLS 1.2 protocol.
“LDAP_OPT_SSL_SECURITY_PROTOCOL” on page 65

Specifies a set of one or more protocols to use for secure communication with an LDAP server.
LDAP_OPT_SSL_TIMEOUT

Get or set SSL timeout for refreshing session keys.
LDAP_OPT_REBIND_FN

Get or set address of the setrebindproc application procedure.
LDAP_OPT_PROTOCOL_VERSION

Get or set LDAP protocol version to use (V2 or V3).
LDAP_OPT_SERVER_CONTROLS

Get or set default server controls.
LDAP_OPT_CLIENT_CONTROLS

Get or set default client library controls.
LDAP_OPT_UTF8_IO

Get or set mode for converting string data between the local code page and UTF-8.
LDAP_OPT_HOST_NAME

Get current host name (cannot be set).
LDAP_OPT_ERROR_NUMBER

Get error number (cannot be set).
LDAP_OPT_ERROR_STRING

Get error string (cannot be set).
LDAP_OPT_API_INFO

Get API version information (cannot be set).
LDAP_OPT_EXT_ERROR

Get extended error code.
LDAP_OPT_CONNECT_TIMEOUT

Set connect timeout value for LDAP C clients.
See “LDAP_SET_OPTION syntax for LDAP V2 applications” on page 68 for important information
if your LDAP application is based on the LDAP V2 APIs and uses the ldap_set_option()

Chapter 2. Directory Server programming reference 61

or ldap_get_option() functions. That is, you are using ldap_open, or your application uses
ldap_init() and ldap_set_option() to switch from the default of LDAP V3 to use the LDAP V2
protocol and then uses the ldap_set_option() or ldap_get_option() calls.

Additional details on specific options for ldap_set_option() and ldap_get_option() are provided
in the following sections.

LDAP_OPT_SIZELIMIT
Use the LDAP_OPT_SIZELIMIT setting to specify the maximum number of entries that can be returned
on a search operation.

Note: The actual size limit for operations is also bounded by the maximum number of entries that the
server is configured to return. Therefore, the actual size limit value is the lesser to that value specified on
this option and the value that is configured in the LDAP server.

The default sizelimit is unlimited, specified with a value of zero, thus deferring to the sizelimit
setting of the LDAP server.

For example:

sizevalue=50;
ldap_set_option(ld, LDAP_OPT_SIZELIMIT, &sizevalue);
ldap_get_option(ld, LDAP_OPT_SIZELIMIT, &sizevalue);

LDAP_OPT_TIMELIMIT
Use the LDAP_OPT_TIMELIMIT setting to specify the number of seconds to wait for search results.

Note: The actual time limit for operations is also bounded by the maximum time that the server is
configured to allow. Therefore, the actual time limit is lesser of the value that is specified on this option
and the value that is configured in the LDAP server.

The default is unlimited, which is specified with a value of zero. For example:

timevalue=50;
ldap_set_option(ld, LDAP_OPT_TIMELIMIT, &timevalue);
ldap_get_option(ld, LDAP_OPT_TIMELIMIT, &timevalue);

LDAP_OPT_REFHOPLIMIT
Use the LDAP_OPT_REFHOPLIMIT setting to specify the maximum number of hops that the client library
takes when it chases referrals.

The default is 10. For example:

hoplimit=7;
ldap_set_option(ld, LDAP_OPT_REFHOPLIMIT, &hoplimit);
ldap_get_option(ld, LDAP_OPT_REFHOPLIMIT, &hoplimit);

LDAP_OPT_DEREF
Use the LDAP_OPT_DEREF setting to specify alternative rules for following aliases at the server.

The default is LDAP_DEREF_NEVER.

Supported values:

LDAP_DEREF_NEVER 0
LDAP_DEREF_SEARCHING 1
LDAP_DEREF_FINDING 2
LDAP_DEREF_ALWAYS 3

For example:

 int deref = LDAP_DEREF_NEVER;
 ldap_set_option(ld, LDAP_OPT_DEREF, &deref);
 ldap_get_option(ld, LDAP_OPT_DEREF, &deref);

62 IBM Security Directory Suite: Programming Reference

LDAP_OPT_REFERRALS
Use the LDAP_OPT_REFERRALS setting to specify whether the LDAP library automatically follows
referrals that are returned by LDAP servers or not.

The API can be set to one of the constants LDAP_OPT_ON or LDAP_OPT_OFF. By default, the LDAP client
follows referrals. For example:

 int value;
 ldap_set_option(ld, LDAP_OPT_REFFERALS, (void *)LDAP_OPT_ON);
 ldap_get_option(ld, LDAP_OPT_REFFERALS, &value);

LDAP_OPT_DEBUG
Use the LDAP_OPT_DEBUG setting to specify a bitmap that indicates the level of debug trace for the LDAP
library.

Supported values:

 /* Debug levels */

 LDAP_DEBUG_OFF 0x000
 LDAP_DEBUG_TRACE 0x001
 LDAP_DEBUG_PACKETS 0x002
 LDAP_DEBUG_ARGS 0x004
 LDAP_DEBUG_CONNS 0x008
 LDAP_DEBUG_BER 0x010
 LDAP_DEBUG_FILTER 0x020
 LDAP_DEBUG_CONFIG 0x040
 LDAP_DEBUG_ACL 0x080
 LDAP_DEBUG_STATS 0x100
 LDAP_DEBUG_STATS2 0x200
 LDAP_DEBUG_SHELL 0x400
 LDAP_DEBUG_PARSE 0x800
 LDAP_DEBUG_ANY 0xffff

For example:

 int value;
 int debugvalue= LDAP_DEBUG_TRACE | LDAP_DEBUG_PACKETS;
 ldap_set_option(ld, LDAP_OPT_DEBUG, &debugvalue);
 ldap_get_option(ld, LDAP_OPT_DEBUG, &value);

LDAP_OPT_CONNECT_TIMEOUT
Use the LDAP_OPT_CONNECT_TIMEOUT setting to specify a timeout value in seconds and microseconds
for LDAP C clients.

Client library receives timeout value as Struct timeval pointer. For example, specify a 10-second
timeout value as follows:

struct timeval tv = { 10 , 0 };
ldap_set_option(ld, LDAP_OPT_CONNECT_TIMEOUT, &tv);

LDAP_OPT_SSL_CIPHER
Use the LDAP_OPT_SSL_CIPHER parameter to specify a set of one or more ciphers to be used when it
negotiates the cipher algorithm with the LDAP server.

Choose the first cipher in the list that is common with the list of ciphers that are supported by the server.
The default value is "352F05040A090306". You can use the ldap_set_option() API to also set the
TLS protocols and ciphers for the TLS protocols. See “LDAP_SET_OPTION” on page 69.

Note: If you try to get an SSL cipher and you are not running on an SSL/TLS version of the Directory Server,
an error is returned.

Supported ciphers for SSLv3/TLS 1.0:

SLAPD_SSL_RC4_MD5_EX "03"
SLAPD_SSL_RC2_MD5_EX "06"
SLAPD_SSL_RC4_SHA_US "05"

Chapter 2. Directory Server programming reference 63

SLAPD_SSL_RC4_MD5_US "04"
SLAPD_SSL_DES_SHA_US "09"
SLAPD_SSL_3DES_SHA_US "0A"
SLAPD_SSL_AES_128_SHA_US "2F"
SLAPD_SSL_AES_256_SHA_US "35"

For example:

 char *setcipher = "090A";
 char *getcipher;
 ldap_set_option(ld, LDAP_OPT_SSL_CIPHER, setcipher);
 ldap_get_option(ld, LDAP_OPT_SSL_CIPHER, &getcipher);

Use ldap_memfree() to free the memory that is returned by the call to ldap_get_option().

LDAP_OPT_SSL_CIPHER_EX
Use LDAP_OPT_SSL_CIPHER_EX to specify a set of TLS 1.2 ciphers for the TLS 1.2 protocol. To
specify one or more TLS 1.2 ciphers, separate the ciphers by a comma (,).

Supported TLS 1.2 ciphers
The following ciphers are supported by the TLS 1.2 protocol:

TLS_RSA_WITH_RC4_128_SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_AES_128_GCM_SHA256
TLS_RSA_WITH_AES_256_GCM_SHA384
TLS_RSA_WITH_AES_128_CBC_SHA256
TLS_RSA_WITH_AES_256_CBC_SHA256
TLS_ECDHE_RSA_WITH_RC4_128_SHA
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

You can use the ldap_set_option() API to also set the TLS protocols and ciphers for the TLS
protocols. See “LDAP_SET_OPTION” on page 69.

Examples
Example 1

To set one or more ciphers for the TLS 1.2 protocol, use the following example:

char *setcipher = "TLS_RSA_WITH_AES_128_CBC_SHA,
 TLS_RSA_WITH_AES_256_CBC_SHA";
ldap_set_option(ld, LDAP_OPT_SSL_CIPHER_EX, setcipher);

64 IBM Security Directory Suite: Programming Reference

LDAP_OPT_SSL_SECURITY_PROTOCOL
Use LDAP_OPT_SSL_SECURITY_PROTOCOL to specify a set of one or more protocols to use for secure
communication with an LDAP server.

Supported protocols
The following macros are defined in the ldap.h header file to represent the protocols:

#define LDAP_SECURITY_PROTOCOL_ALL "SSLV3,TLS10,TLS11,TLS12"
#define LDAP_SECURITY_PROTOCOL_DEFAULT "SSLV3,TLS10"
#define LDAP_SECURITY_PROTOCOL_SSLV3 "SSLV3"
#define LDAP_SECURITY_PROTOCOL_TLSV10 "TLS10"
#define LDAP_SECURITY_PROTOCOL_TLSV11 "TLS11"
#define LDAP_SECURITY_PROTOCOL_TLSV12 "TLS12"

You can use the ldap_set_option() API to also set the TLS protocols and ciphers for the TLS
protocols. See “LDAP_SET_OPTION” on page 69.

Examples
Example 1:

To set all protocols for secure communication with an LDAP server, use the following example:

ldap_set_option(
 ld, LDAP_OPT_SSL_SECURITY_PROTOCOL,
 LDAP_SECURITY_PROTOCOL_ALL);

LDAP_OPT_SSL_TIMEOUT
Use the LDAP_OPT_SSL_TIMEOUT setting to specify in seconds the SSL inactivity timer.

After the number of seconds specified, in which no SSL activity occurs, the SSL connection is refreshed
with new session keys. A smaller value can help increase security, but has a small affect on performance.
The default SSL timeout value is 43200 seconds. For example:

 value = 100;
 ldap_set_option(ld, LDAP_OPT_SSL_TIMEOUT, &value);
 ldap_get_option(ld, LDAP_OPT_SSL_TIMEOUT, &value)

Note: If you use LDAP_OPT_SSL_TIMEOUT and you are not running on an SSL version of the Directory
Server, an error is returned.

LDAP_OPT_REBIND_FN
Use the LDAP_OPT_REBIND_FN setting to specify the routine address to be called by the LDAP library to
authenticate a connection with another LDAP server when it chases a referral or search reference.

If a routine is not defined, referrals are chased by using the identity and credentials that are specified on
the bind sent to the original server. A default routine is not defined. For example:

 extern LDAPRebindProc proc_address;
 LDAPRebindProc value;
 ldap_set_option(ld, LDAP_OPT_REBIND_FN, &proc_address);
 ldap_get_option(ld, LDAP_OPT_REBIND_FN, &value);

LDAP_OPT_PROTOCOL_VERSION
Use the LDAP_OPT_PROTOCOL_VERSION setting to specify the LDAP protocol to be used by the LDAP
client library when it connects to an LDAP server.

The API is also used to determine which LDAP protocol is being used for the connection. For
an application that uses ldap_init() to create the LDAP connection, the default value of this
option is LDAP_VERSION3 for communicating with the LDAP server. The default value of this option
is LDAP_VERSION2 if the application uses the deprecated ldap_open() API. In either case, the
LDAP_OPT_PROTOCOL_VERSION option can be used with ldap_set_option() to change the default.

Chapter 2. Directory Server programming reference 65

The LDAP protocol version must be reset before you issue the bind, or any operation that causes an
implicit bind. For example:

 version2 = LDAP_VERSION2;
 version3 = LDAP_VERSION3;
/* Example for Version 3 application setting version to version 2 */
 ldap_set_option(ld, LDAP_OPT_PROTOCOL_VERSION, &version2);
/* Example of Version 2 application setting version to version 3 */
 ldap_set_option(ld, LDAP_OPT_PROTOCOL_VERSION, &version3);
 ldap_get_option(ld, LDAP_OPT_PROTOCOL_VERSION, &value);

LDAP_OPT_SERVER_CONTROLS
Use the LDAP_OPT_SERVER_CONTROLS setting to specify a default list of server controls to be sent with
each request.

The default list can be overridden by specifying a server control, or list of server controls, on specific APIs.
By default, there are no settings for server controls. For example:

ldap_set_option(ld, LDAP_OPT_SERVER_CONTROLS, &ctrlp);

LDAP_OPT_CLIENT_CONTROLS
Use the LDAP_OPT_CLIENT_CONTROLS setting to specify a default list of client controls to be processed
by the client library with each request.

Because client controls are not defined for this version of the library, the ldap_set_option() API can
be used to define a set of default, non-critical client controls. If one or more client controls in the set are
critical, the entire list is rejected with a return code as follows:

LDAP_UNAVAILABLE_CRITICAL_EXTENSION

LDAP_OPT_UTF8_IO
Use the LDAP_OPT_UTF8_IO setting to specify whether the LDAP library automatically converts string
data to and from the local code page.

The API can be set to either LDAP_UTF8_XLATE_ON or LDAP_UTF8_XLATE_OFF. By default, the LDAP
library does not convert string data.

When conversion is disabled by default, the LDAP library assumes that data received from the application
by using LDAP APIs is already represented in UTF-8. Similarly, the LDAP library assumes that the
application is prepared to receive string data from the LDAP library represented in UTF-8, or as binary.

When LDAP_UTF8_XLATE_ON is set, the LDAP library assumes that string data received from the
application by using LDAP APIs is in the default or explicitly designated code page. Similarly, all string
data that is returned from the LDAP library back to the application is converted to the designated local
code page.

Only string data that is supplied on connection-based APIs is translated, that is, only those APIs that
include a ld are subject to translation.

Translation of strings from a UTF-8 encoding to local code page can result in loss of data. The loss occurs
when one or more characters in the UTF-8 encoding cannot be represented in the local code page. When
this translation occurs, a substitution character replaces any UTF-8 characters that cannot be converted
to the local code page.

For more information about explicitly setting the locale for conversions, see ldap_set_locale(). For
example:

 int value;
 ldap_set_option(ld, LDAP_OPT_UTF8_IO, (void*)LDAP_UTF8_XLATE_ON);
 ldap_get_option(ld, LDAP_OPT_UTF8_IO, &value);

66 IBM Security Directory Suite: Programming Reference

LDAP_OPT_HOST_NAME
Use the LDAP_OPT_HOST_NAME setting to return a pointer to the host name for the original connection.

This setting is a read-only option that returns a pointer to the host name for the original connection, as
specified on ldap_init(), ldap_open(), or ldap_ssl_init(). For example:

 char *hostname;
 ldap_get_option(ld, LDAP_OPT_HOST_NAME, &hostname);

Use ldap_memfree to free the memory that is returned by the call to ldap_get_option().

LDAP_OPT_ERROR_NUMBER
Use the LDAP_OPT_ERROR_NUMBER setting to return an error code that is associated with the most
recent LDAP error.

This setting is a read-only option. It returns the error code that is associated with the most recent LDAP
error that occurred for the specified LDAP connection. For example:

int error;
ldap_get_option(ld, LDAP_OPT_ERROR_NUMBER, &error);

LDAP_OPT_ERROR_STRING
Use the LDAP_OPT_ERROR_STRING setting to return a text message that is associated with the most
recent LDAP error.

This setting is a read-only option. It returns the text message that is associated with the most recent
LDAP error that occurred for the specified LDAP connection. For example:

char *error_string;
ldap_get_option(ld, LDAP_OPT_ERROR_STRING, &error_string);

Use ldap_memfree() to free the memory that is returned by the call to ldap_get_option().

LDAP_OPT_API_INFO
Use the LDAP_OPT_API_INFO setting to return basic information about the API and the specific
implementation that is used.

This setting is a read-only option. The ld parameter to ldap_get_option() can be either NULL
or a valid LDAP session handle that is obtained by calling ldap_init(), ldap_ssl_init()
or ldap_open(). The optdata parameter to ldap_get_option() must be the address of an
LDAPAPIInfo structure, which is defined as follows:

 typedef struct ldapapiinfo {
 int ldapai_info_version; /* version of this struct (1) */
 int ldapai_api_version; /* revision of API supported */
 int ldapai_protocol_version; /* highest LDAP version supported */
 char **ldapai_extensions; /* names of API extensions */
 const char *ldapai_vendor_name; /* name of supplier */
 int ldapai_vendor_version; /* supplier-specific version times 100 */
 } LDAPAPIInfo;

Note: The ldapai_info_version field of the LDAPAPIInfo structure must be set to the value
LDAP_API_INFO_VERSION before you call ldap_get_option() so that it can be checked for
consistency. All other fields are set by the ldap_get_option() function.

The members of the LDAPAPIInfo structure are:
ldapai_info_version

A number that identifies the version of the LDAPAPIInfo structure. This member must be
set to the value LDAP_API_INFO_VERSION before you call ldap_get_option(). If the value
received is not recognized by the API implementation, the ldap_get_option() function sets
ldapai_info_version to a valid value that can be recognized, sets ldapai_api_version to the
correct value, and returns an error without supplying any of the other fields in the LDAPAPIInfo
structure.

Chapter 2. Directory Server programming reference 67

ldapai_api_version
A number that matches that assigned to the C LDAP API RFC supported by the API implementation.
This number must match the value of the LDAP_API_VERSION define.

ldapai_protocol_version
The highest LDAP protocol version that is supported by the implementation. For example, if LDAP V3
is the highest version supported then this field is set to 3.

ldapai_extensions
A NULL-terminated array of character strings that lists the names of API extensions. The caller
is responsible for disposing of the memory that is occupied by this array by passing it to
ldap_value_free().

LDAP_OPT_EXT_ERROR
Use the LDAP_OPT_EXT_ERROR setting to return the extended error code.

This setting is a read-only option. For example, if an SSL error occurred when it attempts to call an
ldap_search_s API, the actual SSL error can be obtained by using LDAP_OPT_EXT_ERROR:

int error;
ldap_get_option(ld, LDAP_OPT_EXT_ERROR, &exterror);

LDAP_OPT_EXT_ERROR returns errors reported by the SSL library.

Errors
You can interpret errors that are returned by the LDAP API routines.

If an error occurs, a nonzero return code is returned from ldap_set_option and ldap_get_option.

LDAP_DEBUG
Use the LDAP_DEBUG API for debugging information from a client application.

To obtain debug information from a client application that is built by using the IBM Security Directory
Suite LDAP C-API, you can set the environment variables LDAP_DEBUG and LDAP_DEBUG_FILE.

For UNIX, enter the following command before you run your application:

export LDAP_DEBUG=65535

For the Windows NT and Windows 2000 operating systems, enter the following command before you run
your application:

set LDAP_DEBUG=65535

Trace messages in the LDAP C-API library are output to standard error. Use LDAP_DEBUG_FILE=xxxxx
to send the trace output to the file xxxxx.

These environment variables affect only applications that are run in the same shell or command window
session. You can also call ldap_set_option() in your application to enable and disable the library
trace messages.

LDAP_SET_OPTION syntax for LDAP V2 applications
Use the LDAP_SET_OPTION API to maintain compatibility with the LDAP client library older versions.

To maintain compatibility with older versions of the LDAP client library (pre-LDAP V3), the
ldap_set_option() API expects the value of the following option values to be supplied, instead of
the address of the value, when the application is running as an LDAP V2 application:

• LDAP_OPT_SIZELIMIT
• LDAP_OPT_TIMELIMIT
• LDAP_OPT_SSL_TIMEOUT

68 IBM Security Directory Suite: Programming Reference

• LDAP_OPT_DEREF
• LDAP_OPT_DEBUG

You can use the ldap_set_option() API to also set the TLS protocols and ciphers for the TLS
protocols. See “LDAP_SET_OPTION” on page 69.

The value that is returned by ldap_get_option() when LDAP_OPT_PROTOCOL_VERSION is specified
can be used to determine how parameters must be passed to the ldap_set_option() call. The
easiest way to work with this compatibility feature is to ensure that calls to ldap_set_option() are
all run while the LDAP_OPT_PROTOCOL_VERSION is set to the same value. If it cannot be ensured
by the application, then follow the format of the following example when you code the call to
ldap_set_option():

 int sizeLimit=100;

 int protocolVersion;

 ldap_get_option(ld, LDAP_OPT_PROTOCOL_VERSION, &protocolVersion);

 if (protocolVersion == LDAP_VERSION2) {
 ldap_set_option(ld, LDAP_OPT_SIZELIMIT, (void *)sizeLimit);
 } else { /* the protocol version is LDAP_VERSION3 */
 ldap_set_option(ld, LDAP_OPT_SIZELIMIT, &sizeLimit);
 }

An LDAP application is typically running as LDAP V2 when it uses ldap_open() to create the LDAP
connection. An LDAP application is typically running as LDAP V3 when it uses ldap_init() to create
the LDAP connection. However, it was possible with the LDAP V2 API to call ldap_init(), so there can
be cases in which this condition is not true. LDAP_OPT_PROTOCOL_VERSION can be used to toggle the
protocol, in which case the behavior of ldap_set_option() changes.

LDAP_SET_OPTION
Use the ldap_set_option API in an LDAP application to access and set various LDAP session
parameters.

Purpose
The ldap_set_option() API in an LDAP application sets the parameters for a secure connection
with an LDAP server. The ldap_set_option() API calls the ldap_init(), ldap_ssl_init(), or
ldap_open() API to initialize a session with an LDAP server. After the successful initialization, the
ldap_set_option() API obtains a pointer to an LDAP structure. You must call this API before you issue
a bind or any other operations that connects to the server.

Synopsis
#include <ldap.h>

int ldap_set_option(
 LDAP *ld,
 int optionToSet,
 void *optionValue)

Input parameters
ld

Specifies the LDAP pointer that is returned by a call to ldap_init(), ldap_ssl_init(), or
ldap_open().

optionToSet
Identifies the value for the ldap_set_option() call.

optionValue
Specifies the address of the value to set with ldap_set_option().

Chapter 2. Directory Server programming reference 69

Session settings
You can set the SSLv3, TLS 1.0, TLS 1.1, or TLS 1.2 protocols and the TLS 1.2 ciphers with
ldap_set_option(). You can set the options for an LDAP connection with ldap_set_option().

You can set the following session settings with ldap_set_option():

LDAP_OPT_SSL_CIPHER
Specifies a set of ciphers for the SSLv3, TLS 1.0, or TLS 1.1 protocols.

Table 4. Supported ciphers for the SSLv3, TLS 1.0, or TLS 1.1 protocol

Ciphers
Supported by SSLv3 and TLS
1.0 Supported by TLS 1.1

SLAPD_SSL_RC4_MD5_EX "03" Yes No

SLAPD_SSL_RC2_MD5_EX "06" Yes No

SLAPD_SSL_RC4_SHA_US "05" Yes Yes

SLAPD_SSL_RC4_MD5_US "04" Yes Yes

SLAPD_SSL_DES_SHA_US "09" Yes Yes

SLAPD_SSL_3DES_SHA_US "0A" Yes Yes

SLAPD_SSL_AES_128_SHA_US "2F" Yes Yes

SLAPD_SSL_AES_256_SHA_US "35" Yes Yes

Note: The ciphers with 03 and 06 hexadecimal values are not supported by the TLS 1.1 protocol.

To set one or more ciphers for the SSLv3, TLS 1.0, or TLS 1.1 protocol, use the following
example:

char *setcipher = "352F090A";
ldap_set_option(ld, LDAP_OPT_SSL_CIPHER, setcipher);

LDAP_OPT_SSL_CIPHER_EX
Specifies a set of TLS 1.2 ciphers for the TLS 1.2 protocol. To specify one or more TLS 1.2
ciphers, separate the ciphers by a comma (,).
The following ciphers are supported by the TLS 1.2 protocol:

TLS_RSA_WITH_RC4_128_SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_WITH_AES_128_GCM_SHA256
TLS_RSA_WITH_AES_256_GCM_SHA384
TLS_RSA_WITH_AES_128_CBC_SHA256
TLS_RSA_WITH_AES_256_CBC_SHA256
TLS_ECDHE_RSA_WITH_RC4_128_SHA
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
TLS_ECDHE_ECDSA_WITH_RC4_128_SHA
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

To set one or more ciphers for the TLS 1.2 protocol, use the following example:

char *setcipher = "TLS_RSA_WITH_AES_128_CBC_SHA,
 TLS_RSA_WITH_AES_256_CBC_SHA";
ldap_set_option(ld, LDAP_OPT_SSL_CIPHER_EX, setcipher);

70 IBM Security Directory Suite: Programming Reference

LDAP_OPT_SSL_SECURITY_PROTOCOL
Specifies a set of one or more protocols to use for secure communication with an LDAP server.
The following macros are defined in the ldap.h header file to represent the protocols:

#define LDAP_SECURITY_PROTOCOL_ALL "SSLV3,TLS10,TLS11,TLS12"
#define LDAP_SECURITY_PROTOCOL_DEFAULT "SSLV3,TLS10"
#define LDAP_SECURITY_PROTOCOL_SSLV3 "SSLV3"
#define LDAP_SECURITY_PROTOCOL_TLSV10 "TLS10"
#define LDAP_SECURITY_PROTOCOL_TLSV11 "TLS11"
#define LDAP_SECURITY_PROTOCOL_TLSV12 "TLS12"

To set all protocols for secure communication with an LDAP server, use the following example:

ldap_set_option(
 ld, LDAP_OPT_SSL_SECURITY_PROTOCOL,
 LDAP_SECURITY_PROTOCOL_ALL);

Errors
The ldap_set_option() AP returns a non-zero value if an error occurs. To obtain a detailed error
report, you must run the application in debug mode and check the debug traces.

Locating default LDAP servers
You can search for default LDAP servers with the LDAP APIs.

When the ldap_init(), ldap_open(), or ldap_ssl_init() APIs are called with an LDAP URL of the
following forms, the ldap_server_locate() function is used to obtain a set of one or more default
LDAP servers:

ld=ldap_init ("ldap://", ldap_port); /* locate servers with
 non-secure ports */
ld=ldap_ssl_init ("ldaps://", ldap_port); /* locate servers with
 secure SSL ports */

The ldap_server_locate() API provides several options for searching for default LDAP servers. An
application by using ldap_server_locate() in an explicit fashion can control these options. When
ldap_server_locate() is used implicitly, as described here, the following options are used:
Security

If the non-secure LDAP URL is specified such as ldap://, servers with a non-secure security type are
used as candidate servers only. If the secure LDAP URL is specified such as ldaps://, servers with a
secure security type are used as candidate servers only.

Source for Server Information
The ldap_server_locate() API can be used to find default LDAP server information in either a
local configuration file, or published in the Domain Name System (DNS). In this case, the default
behavior is used. The ldap_server_locate() API looks for a local configuration file first, and
attempts to find one or more LDAP servers that meet the search criteria (security and suffix filter). If
nothing is found, it then searches DNS. For more information about using a local configuration file, see
ldap_server_conf_save().

DNS Domain Name
When you search the local configuration and DNS, the ldap_server_locate() API assumes that
your default LDAP servers are published in your locally configured TCP or DNS. For example, ibm.com.

Service Name and Protocol
A complete search is run by using ldap for the service name and tcp for the protocol. If no servers
are located, the search is rerun by using _ldap and _tcp.

Note: If the default behavior as described here is not appropriate for your application, consider by using
the ldap_server_locate() API explicitly before you call the ldap_init() or ldap_ssl_init()
API.

Chapter 2. Directory Server programming reference 71

Multithreaded applications
A multi-threaded application that uses system or library calls can use the ldap_get_errno() to
indicate the error type.

The LDAP client library is re-entrant. While a multithreaded application can safely use the LDAP library on
multiple threads within the application, there are a few considerations to keep in mind:

• The ldap_get_errno() API obtains information about the most recent error that occurred on the
current thread for the specified LDAP connection. It does not return the most recent LDAP error that
occurred on any thread.

• If an operation results in more than one response message from a server, then all the response
messages are returned to only one thread. The thread that reads the first response message for that
operation must read all the remaining response messages as well.

• The locale is applicable to all conversions by the LDAP library within the application address space. The
LDAP locale must be set or changed only when there is no other LDAP activity that occurs within the
application on other threads.

Notes
These notes provide information that is useful in the LDAP structure.

Do not make any assumptions about the order or location of elements in the opaque LDAP structure.

See also
You can see more information about the LDAP structure in ldap_bind.

See ldap_bind.

LDAP_MEMFREE
Use the LDAP_MEMFREE API to free the storage that is allocated by the LDAP library.

ldap_memfree
ldap_ber_free
ldap_control_free
ldap_controls_free
ldap_msgfree

Synopsis

#include ldap.h

void ldap_memfree(
 char *mem)

void ldap_ber_free(
 BerElement *berptr)

void ldap_control_free (
 LDAPControl *ctrl)

void ldap_controls_free)
 LDAPControl **ctrls)

int ldap_msgfree(
 LDAPMessage *msg)

Input parameters
mem

Specifies the address of storage that is allocated by the LDAP library.

72 IBM Security Directory Suite: Programming Reference

berptr
Specifies the address of the BerElement returned from ldap_first_attribute() and
ldap_next_attribute().

ctrl
Specifies the address of an LDAPControl structure.

ctrls
Specifies the address of an LDAPControl list, represented as a NULL-terminated array of pointers to
LDAPControl structures.

Usage
The ldap_memfree() API is used to free storage that is allocated by the LDAP library (libldap).
Use this routine as directed when you use ldap_get_option(), ldap_first_attribute(),
ldap_default_dn_get(), and ldap_enetwork_domain_get().

The ldap_ber_free() API is used to free the BerElement pointed to by berptr. The LDAP library
automatically frees the BerElement when ldap_next_attribute() returns NULL. The application is
responsible for freeing the BerElement if it does not call ldap_next_attribute() until it returns
NULL.

For those LDAP APIs that allocate an LDAPControl structure, the ldap_control_free() API can be
used.

For those LDAP APIs that allocate an array of LDAPControl structures, the ldap_controls_free()
API can be used.

The ldap_msgfree() routine is used to free the memory that is allocated for an LDAP message by
ldap_result, ldap_search_s, ldap_search_ext_s(), or ldap_search_st(). It takes a pointer to
the result to be freed and returns the type of the message it freed.

See also
ldap_controls

LDAP_MESSAGE
Use the LDAP_MESSAGE API or LDAP routine to step through the list of messages in a result chain, as
returned by ldap_result().

ldap_first_message
ldap_next_message
ldap_count_messages

Synopsis

#include ldap.h

LDAPMessage *ldap_first_message(
 LDAP *ld,
 LDAPMessage *result)

LDAPMessage *ldap_next_message(
 LDAP *ld,
 LDAPMessage *msg)

int ldap_count_messages(
 LDAP *ld,
 LDAPMessage *result)

Chapter 2. Directory Server programming reference 73

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init(),
orldap_open().

result
Specifies the result that is returned by a call to ldap_result() or one of the synchronous search
routines such as ldap_search_s(), ldap_search_st(), or ldap_search_ext_s().

msg
Specifies the message that is returned by a previous call to ldap_first_message() or
ldap_next_message().

Usage
These routines are used to step through the list of messages in a result chain, as returned by
ldap_result().

For search operations, the result chain can include:

• Referral messages
• Entry messages
• Result messages

The ldap_count_messages() API is used to count the number of messages returned. The
ldap_msgtype() API can be used to distinguish between the different message types. Unlike
ldap_first_entry(), ldap_first_message() returns any of the three types of messages.

The ldap_first_message() and ldap_next_message() APIs return NULL when no more messages
exist in the result that is set to be returned. NULL is also returned if an error occurs while you step through
the entries. When such an error occurs, ldap_get_errno() can be used to obtain the error code.

The ldap_count_messages() API can also be used to count the number of messages that remain
in a chain if called with a message, entry, or reference that is returned by ldap_first_message(),
ldap_next_message(), ldap_first_entry(), ldap_next_entry(), ldap_first_reference(),
and ldap_next_reference().

Errors
If an error occurs in ldap_first_message() or ldap_next_message(), the ldap_get_errno()
API can be used to obtain the error code.

If an error occurs in ldap_count_messages(), -1 is returned, and ldap_get_errno() can be used to
obtain the error code. See “LDAP_ERROR” on page 41 for a description of possible error codes.

See also
ldap_result, ldap_first_entry, ldap_next_entry, ldap_first_reference, ldap_next_reference,
ldap_get_errno, ldap_msgtype.

LDAP_MODIFY
Use the LDAP_MODIFY API to conduct various LDAP modify operations.

ldap_modify
ldap_modify_ext
ldap_modify_s
ldap_modify_ext_s
ldap_mods_free

74 IBM Security Directory Suite: Programming Reference

Synopsis

#include ldap.h

 typedef struct ldapmod {
 int mod_op;
 char *mod_type;
 union {
 char **modv_strvals;
 struct berval **modv_bvals;
 } mod_vals;
 } LDAPMod;
 #define mod_values mod_vals.modv_strvals
 #define mod_bvalues mod_vals.modv_bvals

int ldap_modify(
 LDAP *ld,
 const char *dn,
 LDAPMod *mods[])

int ldap_modify_ext(
 LDAP *ld,
 const char *dn,
 LDAPMod *mods[],
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 int *msgidp)

int ldap_modify_s(
 LDAP *ld,
 const char *dn,;
 LDAPMod *mods[])

int ldap_modify_ext_s(
 LDAP *ld,
 const char *dn,
 LDAPMod *mods[],
 LDAPControl **serverctrls,
 LDAPControl **clientctrls)

void ldap_mods_free(
 LDAPMod **mods,
 int *freemods)

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init(),
orldap_open().

dn
Specifies the distinguished name (DN) of the entry to be modified. For more information about DNs,
see “LDAP distinguished names” on page 159.

mods
Specifies a NULL-terminated array of entry modifications. Each element of the mods array is a pointer
to an LDAPMod structure.

freemods
Specifies whether the mods pointer is to be freed, in addition to the NULL-terminated array of mod
structures.

serverctrls
Specifies a list of LDAP server controls. This parameter can be set to NULL. For more information
about server controls, see “LDAP controls” on page 24.

clientctrls
Specifies a list of LDAP client controls. This parameter can be set to NULL. For more information about
client controls, see “LDAP controls” on page 24.

Chapter 2. Directory Server programming reference 75

Output parameters
msgidp

This result parameter is set to the message ID of the request if the ldap_modify_ext() call
succeeds.

Usage
The various modify APIs are used to run an LDAP modify operation. DN is the distinguished name of the
entry to modify, and mods is a NULL-terminated array of modifications to make to the entry. Each element
of the mods array is a pointer to an LDAPMod structure.

The mod_op field is used to specify the type of modification to run and must be one of the following
types:

• LDAP_MOD_ADD (0x00)
• LDAP_MOD_DELETE (0x01)
• LDAP_MOD_REPLACE (0x02)

This mod_op field also indicates the type of values that are included in the mod_vals union. For binary
data, you must also logically or the operation type with LDAP_MOD_BVALUES (0x80). This type indicates
that the values are specified in a NULL-terminated array of struct berval structures. Otherwise, the
mod_values are used, that is, the values are assumed to be a NULL-terminated array of NULL-terminated
character strings.

The mod_type field specifies the name of the attribute to add, modify, or delete.

The mod_vals field specifies a pointer to a NULL-terminated array of values to add, modify, or delete.
Only one of the mod_values or mod_bvalues variants must be used, with mod_bvalues being selected
by ORing the mod_op field with the constant LDAP_MOD_BVALUES.

The mod_values array is NULL-terminated. Because the ldap_add() API converts the string from the
local code page to UTF-8, the strings must be in the local code page if the LDAP_OPT_UTF8_IO option is
set to LDAP_UTF8_XLATE_ON for the connection. If the UTF-8 translation option is not set, the array of
strings must be composed of NULL-terminated UTF-8 strings.

Note: US-ASCII is a subset of UTF-8.

mod_bvalues is a NULL-terminated array of berval structures that can be used to pass binary values
such as images.

For LDAP_MOD_ADD modifications, the values are added to the entry, creating the attribute if necessary.

For LDAP_MOD_DELETE modifications, the values are deleted from the entry, removing the attribute if no
values remain. If the entire attribute is to be deleted, the mod_values field must be set to NULL.

For LDAP_MOD_REPLACE modifications, the attribute has the listed values after the modification, which is
created if necessary, or removed when the mod_vals field is NULL.

All modifications are run in the order in which they are listed.

The ldap_modify_ext() API initiates an asynchronous modify operation and returns the constant
LDAP_SUCCESS if the request was successfully sent, or it returns another LDAP error code if it is not
successful. If successful, ldap_modify_ext() places the message ID of the request in *msgidp. A
subsequent call to ldap_result() can be used to obtain the result of the operation. When the operation
is complete, ldap_result() returns the status of the operation in the form of an error code. The error
code indicates whether the operation completed successfully. The ldap_parse_result() API checks
the error code in the result.

The ldap_modify() API initiates an asynchronous modify operation and returns the message ID of this
operation. A subsequent call to ldap_result(), can be used to obtain the result of ldap_modify().
If there is an error, ldap_modify() returns -1, which sets the session error parameters in the
LDAP structure appropriately. The parameters can be obtained by using ldap_get_errno(). For more
information, see “LDAP_ERROR” on page 41.

76 IBM Security Directory Suite: Programming Reference

The synchronous ldap_modify_ext_s() and ldap_modify_s() APIs both return the result of the
operation, either the constant LDAP_SUCCESS if the operation was successful, or another LDAP error
code if it was not.

The ldap_modify_ext() and ldap_modify_ext_s() APIs support LDAP V3 server controls and
client controls.

The ldap_modify_s() API returns the LDAP error code that results from the modify operation. This
code can be interpreted by ldap_perror() or ldap_err2string().

The ldap_modify() operation works the same way as ldap_modify_s(), except that it is
asynchronous, returning the message ID of the request it initiates, or -1 on error. The result of the
operation can be obtained by calling ldap_result().

ldap_mods_free() can be used to free each element of a NULL-terminated array of LDAPMod
structures. If freemods is nonzero, the mods pointer is freed as well.

Errors
ldap_modify_s() and ldap_modify_ext_s() return the resulting LDAP error code from the modify
operation.

ldap_modify() and ldap_modify_ext() return -1 instead of a valid msgid if an error occurs, setting
the session error in the LD structure, which can be obtained by using ldap_get_errno(). For more
information, see “LDAP_ERROR” on page 41.

See also
ldap_error, ldap_add

LDAP_PAGED_RESULTS
Use the LDAP_PAGED_RESULTS API or LDAP routine to request simple paged results of entries that are
returned by the servers that match the filter that is specified on a search operation.

ldap_create_page_control
ldap_parse_page_control

Synopsis

#include ldap.h

int ldap_create_page_control(
 LDAP *ld,
 unsigned long pageSize,
 struct berval *cookie,
 const char isCritical,
 LDAPControl **control)

int ldap_parse_page_control(
 LDAP *ld,
 LDAPControl **serverControls,
 unsigned long *totalCount,
 struct berval **cookie)

Input parameters
ld

Specifies the LDAP pointer that is returned by previous call to ldap_init(), ldap_ssl_init(), or
ldap_open(). Must not be NULL.

pageSize
Number of entries that are returned for this paged results search request.

Chapter 2. Directory Server programming reference 77

cookie
Opaque structure that is returned by the server. No assumptions must be made about the internal
organization or value. The cookie is used on subsequent paged results search requests when more
entries are to be retrieved from the results set. The cookie must be the value of the cookie that is
returned on the last response from the server on all subsequent paged results search requests. The
cookie is empty when:

• There are no more entries to be returned by the server
• The client abandons the paged results request by sending in a zero page size

After the paged results search request is completed, the cookie must not be used because it is no
longer valid.

isCritical
Specifies the criticality of paged results on the search. Whether the criticality of paged results is TRUE
or FALSE, and the server finds a problem with the sort criteria, the search does not continue. If the
server does not find any problem with the paged results criteria, the search continues and entries are
returned one page at a time.

serverControls
A list of LDAP server controls. For more information about server controls, see “LDAP controls”
on page 24. These controls are returned to the client when you call the ldap_parse_result()
function on the set of results that are returned by the server.

Output parameters
control

A result parameter that is provided with an allocated array of one control for the sort function. The
control must be freed by calling ldap_control_free().

totalCount
Estimate of the total number of entries for this search, can be zero if the estimate cannot be provided.

cookie
Opaque structure that is returned by the server. No assumptions must be made about the internal
organization or value. The cookie is used on subsequent paged results search requests when more
entries are to be retrieved from the results set. The cookie must be the value of the cookie that is
returned on the last response from the server on all subsequent paged results search requests. The
cookie is empty when:

• There are no more entries to be returned by the server
• The client abandons the paged results request by sending in a zero page size

After the paged results search request is completed, the cookie must not be used because it is no
longer valid.

Usage
The ldap_create_page_control() function uses the page size and the cookie to build the
paged results control. The control output from ldap_create_page_control() function includes the
criticality set that is based on the value of the isCritical flag. This control is added to the list of client
controls that are sent to the server on the LDAP search request.

When a paged results control is returned by the server, the ldap_parse_page_control() function can
be used to retrieve the values from the control. The function takes as input the server controls returned by
the server. Then, it returns a cookie to be used on the next paged results request for this search operation.

Note: If the page size is greater than or equal to the search sizeLimit value, the server ignores the
paged results control because the request can be satisfied in a single page. No paged results control value
is returned by the server in this case. In all other cases, error or not, the server returns a paged results
control to the client.

78 IBM Security Directory Suite: Programming Reference

Simple paged results of search results

Simple Paged Results provides paging capabilities for LDAP clients that want to receive just a subset
of search results (page) instead of the entire list. The next page of entries is returned to the client
application for each subsequent paged results search request. The request is submitted by the client
until the operation is canceled or the last result is returned. The server ignores a simple paged results
request if the page size is greater than or equal to the sizeLimit value for the server because the
request can be satisfied in a single operation.

The ldap_create_page_control() API takes as input a page size and a cookie, and outputs an
LDAPControl structure that can be added to the list of client controls that are sent to the server
on the LDAP search request. The page size specifies search results that must be returned for this
request, and the cookie is an opaque structure that is returned by the server. On the initial paged
results search request, the cookie must be a zero-length string. No assumptions must be made about
the internal organization or value of the cookie. The cookie is used on subsequent paged results
search requests when more entries are to be retrieved from the results set. The cookie must be the
value of the cookie that is returned on the last response from the server on all subsequent paged
results search requests. The cookie is empty when:

• There are no more entries to be returned by the server
• The client application abandons the paged results request by sending in a zero page size

After the paged results search request is completed, the cookie must not be used because it is no
longer valid.

The LDAPControl structure that is returned by ldap_create_page_control() can be used as
input to ldap_search_ext() or ldap_search_ext_s(), which are used to make the actual
search request.

Note: Server side simple paged results is an optional extension of the LDAP v3 protocol, so the server
you bound before the ldap_search_ext() or ldap_search_ext_s() call might not support this
function.

Upon completion of the search request that you submitted by using ldap_search_ext() or
ldap_search_ext_s(), the server returns an LDAP result message that includes a paged results
control. The client application can parse this control by using ldap_parse_page_control(), which
takes the returned server response controls (a null terminated array of pointers to LDAPControl
structures) as input. ldap_parse_page_control() outputs a cookie and the total number of
entries in the entire search result-set. Servers that cannot provide an estimate for the total number of
entries might set this value to zero. Use ldap_controls_free() to free the memory that is used by
the client application to hold the server controls when you are finished processing all controls that are
returned by the server for this search request.

The server might limit the number of outstanding paged results operations from a client or for all
clients. A server with a limit on the number of outstanding paged results requests might return
either LDAP_UNWILLING_TO_PERFORM in the sortResultsDone message or age out an older
paged results request. There is no surety to the client application that search query results remain
unchanged throughout the life of a paged results request set or response sequences. The result-set
for that query might changes since the initial search request by specifying paged results. If it changes,
the client application might not receive all the entries that match the search criteria. When you chase
referrals, the client application must send an initial paged results request, with the cookie set to
null, to each of the referral servers. It is up to the application that uses the client services to decide
whether to set the criticality as to the support of paged results. It is also up to the application to
handle a lack of support of this control on referral servers as appropriate, based on the application.
Additionally, the LDAP server does not ensure that the referral server supports the paged results
control. Multiple lists can be returned to the client application, some not paged. It is the client
decision of the application about how best to present this information to the user. Possible solutions
include:

• Combine all referral results before you present to the user
• Show multiple lists and the corresponding referral server host name

Chapter 2. Directory Server programming reference 79

• Take no extra steps and show all results to the user as they are returned from the server

The client application must turn off referrals to get one truly paged list. Otherwise, when you chase
referrals with the paged results search control specified, unpredictable results might occur.

Information about simple paged results search control with control OID of 1.2.840.113556.1.4.319
can be found in the RFC 2696, LDAP Control Extension for Simple Paged Results Manipulation.

Errors
The sort routines return an LDAP error code if they encounter an error that parses the result. For a list of
the LDAP error codes, see “LDAP_ERROR” on page 41.

Notes
Controls, serverControls, and cookie must be freed by the caller.

See also
ldap_search, ldap_parse_result

LDAP_PARSE_EFFECTIVE_PWDPOLICY_RESPONSE
Use the LDAP_PARSE_EFFECTIVE_PWDPOLICY_RESPONSE API or LDAP routine for extracting
information from results that are returned by the ldap_parse_effective_pwdpolicy_request()
routine.

Synopsis

#include ldap.h

int ldap_parse_effective_pwdpolicy_response(
 char *resOid,
 struct berval **resVal,
 LDAPAttr **attrs,
 char **dns);

Input parameters
resOid

Represents the effective password policy response OID.
resVal

Specifies a berval structure that contains the response value of the effective password policy
extended operation. This resVal must be an output of ldap_extended_operation or
ldap_extended_operation_s function.

Output parameters
attrs

Specifies an array of pointers that point to structures that stores the requested user or group effective
password policy attribute types and values.

dns
Specifies an array of pointers that point to entry DNs from which the requested effective password
policy is derived.

Usage
This API is used to obtain the attribute types and attribute values that are contained in the returned
response of an effective password policy extended operation. If the bind DN of this extended operation

80 IBM Security Directory Suite: Programming Reference

is an administrative user, the DN of the password policy entries is also returned. The DN of the password
policy entries is evaluated with the effective password policy.

Errors
The ldap_parse_effective_pwdpolicy_response routine returns an LDAP error code if it
encounters an error in parsing the result.

See also
ldap_create_effective_pwdpolicy_request, ldap_extended_operation, ldap_extended_operation_s

LDAP_PARSE_ENTRYCHANGE_CONTROL
The LDAP_PARSE_ENTRYCHANGE_CONTROL API or LDAP routine is used by a client application to parse
the control when the client application receives entries that contain Entry Change Notification controls.

Synopsis

#include ldap.h

#define LDAP_CONTROL_ENTRYCHANGE "2.16.840.1.113730.3.4.7"

int ldap_parse_entrychange_control(
 LDAP *ld,
 LDAPControl **ctrls,
 int *chgtypep,
 char **prevdnp,
 int *chgnumpresentp,
 long *chgnump);

Input parameters
ld

Specifies the LDAP pointer, which acts as an LDAP session handle, returned by previous call to
ldap_init(), ldap_ssl_init(), or ldap_open().

ctrls
Specifies the address of a NULL-terminated array of LDAPControl structures that are obtained by
calling ldap_get_entry_controls().

Output parameters
chgtypep

This result parameter contains the value that indicates the type of change made that caused the entry
to be returned. The value for this result parameter is obtained from the changeType element of
the BER-encoded EntryChangeNotification control value. The parameter can contain one of the
following values:

• LDAP_CHANGETYPE_ADD (1)
• LDAP_CHANGETYPE_DELETE (2)
• LDAP_CHANGETYPE_MODIFY (4)
• LDAP_CHANGETYPE_MODDN (8)
• NULL

If this parameter is NULL, the change type information is not returned.

prevdnp
This result parameter is provided with the DN that an entry had before the DN was renamed or moved
by the modifyDN operation. For other type of changes, the value of parameter is set to NULL. If the

Chapter 2. Directory Server programming reference 81

parameter is NULL, the previous DN information is not returned. The value for this result parameter
is pulled from the previousDN element of the BER-encoded EntryChangeNotification control
value.

chgnumpresentp
This result parameter contains a non-zero value if a change was returned in the
EntryChangeNotification control. If this parameter is NULL, there is no indication whether the
change number was present.

Note: Even if the parameter contains a non-zero value, the server might choose not to return the
change number because it is optional.

chgnump
This result parameter contains the change number if a change was returned in the
EntryChangeNotification control. If this parameter contains a non-NULL value, the
chgnumpresentp parameter is provided with a non-zero value. If this parameter is NULL, the
change number is not returned. The value for this result parameter is pulled from the optional
changeNumber element of the BER-encoded EntryChangeNotification control value.

Usage
This routine is used by a client application to search and parse the control when the client application
receives entries that contain Entry Change Notification controls. If the operation is successful,
LDAP_SUCCESS is returned.

Errors
This routine returns LDAP error code that indicates whether an EntryChangeNotification control
was found and the parsing was successful. LDAP_CONTROL_NOT_FOUND is returned if the ctrls array
does not include an EntryChangeNotification control.

LDAP_PARSE_EXTENDED_RESULT_W_CONTROLS
Use the LDAP_PARSE_EXTENDED_RESULT_W_CONTROLS API or LDAP routine to parse the extended
response result and return any response controls that are sent on the response.

Synopsis

#include ldap.h

int ldap_parse_extended_result_w_controls (
 LDAP *ld,
 LDAPMessage *res,
 char **resultoidp,
 struct berval **resultdata,
 int freeit,
 LDAPControl ***serverctrlsp);

Input parameters
ld

Specifies a pointer to the LDAP structure that represents an LDAP connection.
res

Specifies a pointer to LDAPMessage structure that points to the result of the operation that is
returned by ldap_result().

resultoidp
A character pointer specifies the location of the dotted-OID text that represents the name of the
extended operation. A NULL value can be passed to this parameter.

82 IBM Security Directory Suite: Programming Reference

resultdata
A pointer to the struct berval that points to the data in the extended operation response. A NULL value
can be passed to this parameter.

freeit
An integer variable, which indicates whether the result parameter must be freed after the information
is extracted.

Output parameters
serverctrlsp

Specifies a pointer to a result parameter that is provided with an allocated array of controls
that are copied out of the LDAPMessage structure. The control array must be freed by calling
ldap_controls_free().

LDAP Return code
The return code is set as listed for ldap_parse_extended_result.

Usage
The ldap_parse_extended_result_w_controls() API is used after you call
ldap_extended_operation to get the results. This routine must be called if controls are returned
as part of the extended operation result.

LDAP_PARSE_LIMIT_NUM_VALUES_RESPONSE
Use the LDAP_PARSE_LIMIT_NUM_VALUES_RESPONSE API or LDAP routine to extract information from
the results that are returned by the Limit Number of Attribute Values Control.

Synopsis

 #include ldap.h

 int ldap_parse_limit_num_values_response(
 LDAP *ld,
 LDAPCONTROL **serverControls,
 LDAPNumValuesResponse **numValuesResponse);

Input parameters
ld

Specifies a pointer to the LDAP structure that represents an LDAP connection.
serverControls

Specifies an array of LDAPCONTROL pointers that are returned by a previous call to
ldap_parse_result().

numValuesResponse
Specifies the address of a pointer to an LDAPNumValuesResponse structure in which the control
results are placed.

Usage
The ldap_parse_limit_num_values_response routine is used for obtaining the results of the Limit
Number of Attribute Values Control that was used in a search operation. The results are built into an
LDAPNumValuesResponse structure.

Note: The LDAPNumValuesResponse structure that is created by this routine must be freed by calling
the ldap_free_limit_num_values_response() API.

Chapter 2. Directory Server programming reference 83

Errors
The errors that are returned by the ldap_parse_limit_num_values_response routine are listed:

• LDAP_SUCCESS // is returned if the operation is successful
• LDAP_DECODING_ERROR // is returned if the response cannot be parsed
• LDAP_PARAM_ERROR // is returned if an input parameter is not valid
• LDAP_NO_MEMORY // is returned if the server runs out of memory
• LDAP_OPERATIONS_ERROR //is returned if any other internal error occurs

See also
ldap_parse_result, ldap_free_limit_num_values_response

LDAP_PARSE_RESULT
Use the LDAP_PARSE_RESULT API or LDAP routine to extract information from the results that are
returned by other LDAP API routines.

ldap_parse_result
ldap_parse_sasl_bind_result
ldap_parse_extended_result

Synopsis

#include ldap.h

int ldap_parse_result(
 LDAP *ld;
 LDAPMessage *res,
 int *errcodep,
 char **matcheddnp,
 char **errmsgp,
 char ***referralsp,
 LDAPControl ***servctrlsp,
 int freeit)

int ldap_parse_sasl_bind_result(
 LDAP *ld;
 LDAPMessage *res,
 struct berval **servercredp,
 int freeit)

int ldap_parse_extended_result(
 LDAP *ld,
 LDAPMessage *res,
 char **resultoidp,
 struct berval **resultdatap,
 int freeit)

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init(),
or ldap_open().

res
Specifies the result of an LDAP operation as returned by ldap_result() or one of the synchronous
LDAP API operation calls.

errcodep
Specifies a pointer to the result parameter that is provided with the LDAP error code field from the
LDAPMessage message. The LDAPResult message is produced by the LDAP server, and indicates

84 IBM Security Directory Suite: Programming Reference

the outcome of the operation. NULL can be specified for errcodep if the LDAPResult message is to be
ignored.

matcheddnp
Specifies a pointer to a result parameter. When LDAP_NO_SUCH_OBJECT is returned as the LDAP
error code, this result parameter is provided with a Distinguished Name indicating how much of the
name in the request was recognized by the server. NULL can be specified for matcheddnp if the
matched DN is to be ignored. The matched DN string must be freed by calling ldap_memfree().

errmsgp
Specifies a pointer to a result parameter that is provided with the contents of the error message from
the LDAPMessage message. The error message string must be freed by calling ldap_memfree().

referralsp
Specifies a pointer to a result parameter that is provided with the contents of the referrals field from
the LDAPMessage message, indicating zero or more alternative LDAP servers where the request must
be tried again. The referrals array must be freed by calling ldap_value_free(). NULL can be supplied for
this parameter to ignore the referrals field.

resultoidp
This result parameter specifies a pointer that is set to point to an allocated, dotted-OID text string that
is returned from the server. This string must be disposed of using the ldap_memfree() API. If no
OID is returned, *resultoidp is set to NULL.

resultdatap
This result parameter specifies a pointer to a berval structure pointer that is set to an allocated data
copy that is returned by the server. This struct berval must be disposed of using ber_bvfree(). If no
data is returned, *resultdatap is set to NULL.

serverctrlsp
Specifies a pointer to a result parameter that is provided with an allocated array of controls that are
copied out of LDAPMessage. The control array must be freed by calling ldap_controls_free().

freeit
Specifies a Boolean value that determines whether the LDAP result (as specified by res) is to be
freed. Any nonzero value results in res being freed after the requested information is extracted. The
ldap_msgfree() API can be used to free the result later.

servercredp
Specifies a pointer to a result parameter. For SASL bind results, this result parameter is provided with
the credentials returned by the server for mutual authentication, if the credentials are returned. The
credentials are returned in a struct berval structure. NULL might be supplied to ignore this field.

err
Specifies an LDAP error code, which is used as input to ldap_err2string(), so that a text
description of the error can be obtained.

Usage
The ldap_parse_result() API is used to:

• Obtain the LDAP error code field that is associated with an LDAPMessage message.
• Obtain the portion of the DN that the server recognizes for a failed operation.
• Obtain the text error message that is associated with the error code returned in an LDAPMessage

message.
• Obtain the list of alternative servers from the referrals field.
• Obtain the array of controls that can be returned by the server.

The ldap_parse_sasl_bind_result() API is used to obtain server credentials, as a result of an
attempt to run mutual authentication.

Both the ldap_parse_sasl_bind_result() and the ldap_parse_extended_result() APIs
ignore messages of type LDAP_RES_SEARCH_ENTRY and LDAP_RES_SEARCH_REFERENCE when you

Chapter 2. Directory Server programming reference 85

look for a result message to parse. They both return LDAP_SUCCESS if the result was successfully located
and parsed, and an LDAP error code if the result was not successfully parsed.

The ldap_err2string() API is used to convert the numerical LDAP error code, as returned by any of
the LDAP APIs, into a NULL-terminated character string that describes the error. The character string is
returned as static data and must not be freed by the application.

Errors
The parse routines return an LDAP error code if they encounter an error that parses the result.

See “LDAP_ERROR” on page 41 for a list of the LDAP error codes.

See also
ldap_error, ldap_result

LDAP_PARSE_VLV_CONTROL
Use the LDAP_PARSE_VLV_CONTROL API or LDAP routine to parse a virtual list view control.

Synopsis

#include ldap.h

int ldap_parse_vlv_control(
 LDAP *ld,
 LDAPControl **ctrlp,
 unsigned long *target_posp,
 unsigned long *list_countp,
 struct berval **contextp,
 int *errcodep
);

Input parameters
ld

Specifies the LDAP session handle that is returned by a call to ldap_init().
ctrlp

Contains the address of NULL terminated array of LDAPControl structures, typically obtained by a
call to ldap_parse_result().

target_posp
Specifies the result parameter that contains the list index of the target entry. If the value of this
parameter is NULL, then the target position is not returned. The value for this result parameter is
obtained from the targetPosition field in the Virtual list view response control.

list_countp
Specifies the result parameter that contains the server estimate of the list size. If the value of this
parameter is NULL, then the size is not returned. The value for this result parameter is obtained from
the contentCount field of the Virtual list view response control.

contextp
Specifies the result parameter that contains the address of struct berval, which contains a server
generated context ID if one was returned by the server. If the server did not return any context ID, the
value of the parameter is NULL. The berval structure that returned must be freed after its use by using
the ber_bvfree() function.

errcodep
Specifies the result parameter that contains the Virtual list view result code. If NULL, the result code
is not returned. The value of this parameter is obtained from the virtualListViewResult field of the
Virtual list view response control.

86 IBM Security Directory Suite: Programming Reference

Usage
The ldap_parse_vlv_control routine is used to parse the virtual list view response control. The
following codes are the possible return codes from this routine:

• LDAP_SUCCESS // on successful parsing
• LDAP_NO_MEMORY // memory allocation failure
• LDAP_PARAM_ERROR // bad input parameters
• LDAP_DECODING_ERROR // decoding error

See also
ldap_create_vlv_control

LDAP_PASSWORD_POLICY
Use the LDAP_PASSWORD_POLICY API or LDAP routine to extract information from results that are
returned in the Password Policy Control structure.

ldap_parse_pwdpolicy_response
ldap_pwdpolicy_err2string

Synopsis

#include ldap.h

int ldap_parse_pwdpolicy_response(LDAPCONTROL **serverControls,
 int *controlerr,
 int *controlwarn,
 int *controlres);

static struct ldaperror ldap_ctrlerr[] = {
 LDAP_SUCCESS, "Success",
 LDAP_TIME_BEFORE_EXPIRE, "Warning, time before expiration is %ld",
 LDAP_GRACE_LOGINS, "Warning, %ld grace logins remain",
 LDAP_PASSWORD_EXPIRED, "Error, Password has expired",
 LDAP_ACCOUNT_LOCKED, "Error, Account is locked",
 LDAP_CHANGE_AFTER_RESET, "Error, Password must be changed after reset",
 LDAP_PASSWORD_NO_MOD, "Error, Password may not be modified",
 LDAP_NEED_OLD_PASSWORD, "Error, Must supply old password",
 LDAP_INVALID_PASS_SYNTAX, "Error, Invalid password syntax",
 LDAP_PASSWORD_TOO_SHORT, "Error, Password too short",
 LDAP_PASSWORD_TOO_YOUNG, "Error, Password too young",
 LDAP_PASSWORD_IN_HISTORY, "Error, Password in History",
 -1, NULL
};

const char *ldap_pwdpolicy_err2string(int err);

Input parameters
serverControls

Specifies an array of LDAPCONTROL pointers that are returned by a previous call to
ldap_parse_result().

controlerr
Specifies a pointer to the result parameter that is provided with the LDAP Password Policy error code,
which can be used as input to ldap_pwdpolicy_err2string(), so that a text description of the
error can be obtained.

controlwarn
Specifies a pointer to the result parameter that is provided with the LDAP Password Policy warning
code, which can be used as input to ldap_pwdpolicy_err2string(), so that a text description of
the warning can be obtained.

Chapter 2. Directory Server programming reference 87

controlres
Specifies a pointer to the result parameter that is provided with the LDAP Password Policy warning
result value.

err
Specifies an integer value that is returned from ldap_parse_pwdpolicy_response() that
contains the Password Policy warning or error code.

Usage
The ldap_parse_pwdpolicy_response() API is used to:

• Obtain the LDAP Password Policy error or warning codes from the Password Policy Response Control
that is associated with an LDAPMessage message.

• Obtain the LDAP Password Policy warning result code from the Password Policy Response Control that
is associated with the returned Password Policy warning code.

• This function takes in an array of LDAPCONTROL structure pointers, parses these structures, and then
returns three integers that contain the Password Policy response values.

The static struct ldaperror ldap_ctrlerr array contains the LDAP error code that is associated with
the password policy and the corresponding text description of the LDAP error code. Unlike the familiar
ldap_err2string, for warnings, you get a string with %d format, and pass it to the printf() function
along with the returned controlres to get the final diagnostic string. In some cases, the text description
string has %ld, and expects some parameters before it can be printed.

The ldap_pwdpolicy_err2string() API is used to convert the numerical LDAP Password Policy
error or warning code, as returned by ldap_parse_pwdpolicy_response(), into a NULL-terminated
character string that describes the error or warning. The character string is returned as static data and
must not be freed by the application.

Errors
The ldap_parse_pwdpolicy_response routine returns an LDAP error code if it encounters an error
that parses the result.

See “LDAP_ERROR” on page 41 for a list of the LDAP error codes.

See also
ldap_parse_result

LDAP_PLUGIN_REGISTRATION
Use the LDAP_PLUGIN_REGISTRATION API or LDAP routine to register an LDAP client plug-in,
obtain information about plug-ins that are registered by the application and plug-ins that are
defined in ibmldap.conf, and free the array of plug-in information that is returned from the
ldap_query_plugin() API.

ldap_register_plugin
ldap_query_plugin
ldap_free_query_plugin

Synopsis

#include ldap.h

int ldap_register_plugin(
 LDAP_File_Plugin_Info *plugin_info)

int ldap_query_plugin(
 LDAP_File_Plugin_Info plugin_infop)

88 IBM Security Directory Suite: Programming Reference

int ldap_free_query_plugin(
 LDAP_File_Plugin_Info ***plugin_infop)

typedef struct ldap_file_plugin_info {
 char *type; /* plug-in type */
 char *subtype; /* plug-in subtype */
 char *path; /* path to plug-in library */
 char *init; /* initialization routine */
 char *paramlist; /* plug-in parameter list */
} LDAP_File_Plugin_Info;

Input parameters
plugin_info

A structure that contains information about a specific type of SASL plug-in. An instance of the
structure contains the following fields:
type

NULL-terminated string that defines the plug-in type. The only type that is supported is sasl.
subtype

NULL-terminated string that specifies the subtype of the plug-in being registered. When
type=sasl, the subtype is used to specify the SASL mechanism that is supported by the plug-in.
For example, fingerprint might be specified for any SASL plug-in that supports the fingerprint
mechanism.

path
NULL-terminated string that specifies the path to the plug-in shared library. The plug-in path can
be a fully qualified path that includes file name, or only the file name with or without the file
extension. If only the file name is supplied, the LDAP library attempts to find it using standard
operating system search criteria.

init
NULL-terminated string that specifies the initialization routine for the plug-in. If NULL, the name of
the initialization routine is assumed to be ldap_plugin_init.

parmlist
NULL-terminated string that specifies arbitrary parameter information that is used by the plug-in.
For example, if the plug-in accesses a remote security server, then the remote security server host
name is supplied as a value in the parameter list.

plugin_infop
Specifies the address that points to a NULL-terminated array of LDAP_Plugin_Info structures.
Each LDAP_Plugin_Info structure that is defined in the list contains information about a registered
plug-in. For example:

LDAP_File_Plugin_Info **plugin_infop;

 rc = ldap_query_plugin (&plugin_infop);

Output parameters
plugin_infop

Upon successful return from ldap_query_plugin(), plugin_infop points to a NULL-terminated
array of LDAP_Plugin_Info pointers. If there are no plug-ins that are registered, the
plugin_infop data structure is set to NULL and no memory is allocated.

Usage
Two mechanisms are available for making an LDAP client plug-in that is known to the LDAP library:

• The plug-in is defined in the ibmldap.conf file.
• The plug-in is explicitly registered by the application, by using the ldap_register_plugin() API.

Chapter 2. Directory Server programming reference 89

An application can override the definition of a plug-in in the ibmldap.conf file by using the
ldap_register_plugin() API. A plug-in is uniquely identified by the combination of its type
and subtype. For example, an application can choose to use its own DIGEST-MD5 plug-in as
defined in ibmldap.conf, by calling ldap_register_plugin() and defining another shared
library with type="sasl" and subtype="DIGEST-MD5". Plug-ins that are registered with the
ldap_register_plugin() API are defined for the application.

Finding the plug-in library

When a plug-in is not explicitly registered by the application with the ldap_register_plugin()
API, the LDAP library must find the appropriate plug-in shared library. To find information about the
plug-in, the LDAP library must find the ibmldap.conf file. The attempt to locate the ibmldap.conf
file is made on behalf of the application in whichever of the following events occurs first:

• The ldap_register_plugin() API is called.
• The ldap_sasl_bind_s() API is called.

After the ibmldap.conf file is accessed, all information in the file is stored internally for subsequent
use. The file is not reaccessed until the application is restarted. However, the application can use the
ldap_register_plugin() API to add more plug-in definitions, or to override definitions that are
obtained from the ibmldap.conf file.

The ibmldap.conf file

The ibmldap.conf file contains information that is required to load and initialize default plug-ins. It
can also include more plug-in-specific configuration information. The following types might be defined
for each plug-in in the ibmldap.conf file:

• The plug-in type (for example, sasl)
• The plug-in subtype (for example, mechanism, if type=sasl)
• The path to the plug-in shared library
• The plug-in initialization routine
• The user-defined parameter string

The ibmldap.conf file might contain one or more records, each defining this information for a
plug-in. Each record takes the following form:

plugin type subtype path init-routine parameters

For example:

#
keyword type subtype path init parameters
#
 plugin sasl fpauth x:\security\fplib fpinit parm2 parm3
 plugin sasl hitech hitechlib hitekinit parm5 parm6

This example defines two plug-ins, fpauth and hitek, along with associated information.

Note: If the extension is omitted, then an appropriate extension is assumed for the platform. For
example, .a on the AIX operating system or .dll on a Windows operating system. If the fully
qualified path is omitted, standard operating system search rules are applied.

Lines beginning with a number sign (#) are ignored.

The algorithm that is used to locate the ibmldap.conf file is platform-specific:

• On a UNIX system, the following search order is used:

1. Query the environment variable IBMLDAP_CONF for the path to the ibmldap.conf file.
2. Look for the ibmldap.conf file in the /etc directory.

• On a Windows system, the following search order is used:

1. Query the environment variable IBMLDAP_CONF for the path to the ibmldap.conf file.

90 IBM Security Directory Suite: Programming Reference

2. Look in the current directory for the ibmldap.conf file.
3. Look for the ibmldap.conf file in the \etc directory under the LDAP installation directory. For

example, C:\Program Files\IBM\ldap\V8.0.1.x\etc.

If the SASL plug-in definition is not available, the LDAP library encodes the SASL bind. It transmits it
directly to the LDAP server and bypasses the plug-in facility.

Errors
These routines return an LDAP error code when an error is encountered. To obtain a string description of
the LDAP error, use the ldap_err2string() API.

See also
ldap_error

LDAP_PREPARE_TRANSACTION
Use the LDAP_PREPARE_TRANSACTION API or LDAP routine to call a prepare transaction request.

• ldap_prepare_transaction
• ldap_prepare_transaction_s

Synopsis

#include ldap.h

int ldap_prepare_transaction(
 LDAP *ld,
 string tran_id,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 int *msgidp)

int ldap_prepare_transaction_s(
 LDAP *ld,
 string tran_id,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls)

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init(),
or ldap_open().

tran_id
Specifies the transaction ID of a prepare transaction.

serverctrls
Specifies a list of LDAP server controls.

clientctrls
Specifies a list of LDAP client controls.

Output parameters
msgidp

This parameter contains the message ID of the request.

Usage
This API routine is used to initiate a prepare transaction request against the server.

Chapter 2. Directory Server programming reference 91

Errors
This routine returns an LDAP error code if the operation is unsuccessful.

See also
ldap_start_transaction, ldap_start_transaction_s, ldap_prepare_transaction, ldap_prepare_transaction_s,
ldap_end_transaction, ldap_end_transaction_s, ldap_get_tran_id, ldap_create_transaction_control

LDAP_RENAME
Use the LDAP_RENAME API to carry out an LDAP rename operation.

ldap_rename
ldap_rename_s
ldap_modrdn
ldap_modrdn_s

Synopsis

#include ldap.h

int ldap_rename(
 LDAP *ld,
 const char *dn,
 const char *newrdn,
 const char *newparent,
 int deleteoldrdn,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 int *msgidp)

int ldap_rename_s(
 LDAP *ld,
 const char *dn,
 const char *newrdn,
 const char *newparent,
 int deleteoldrdn,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls)

int ldap_modrdn(
 LDAP *ld,
 const char *dn,
 const char *newrdn,
 int deleteoldrdn)

int ldap_modrdn_s(
 LDAP *ld,
 const char *dn,
 const char *newrdn,
 int deleteoldrdn)

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init(),
or ldap_open().

dn
Specifies the DN of the entry whose DN is to be changed. When specified with the ldap_modrdn()
and ldap_modrdn_s() APIs, dn specifies the DN of the entry whose RDN is to be changed.

newrdn
Specifies the new RDN given to the entry.

92 IBM Security Directory Suite: Programming Reference

newparent
Specifies the new parent, or superior entry. If this parameter is NULL, only the RDN of the entry is
changed. The root DN can be specified by passing a zero length string, "". The newparent parameter
is always NULL when you use version 2 of the LDAP protocol. Otherwise, the behavior of the server is
undefined.

deleteoldrdn
Specifies an integer value. When set to 1, the old RDN value is to be deleted from the entry.
When set to 0, the old RDN value must be retained as a non-distinguished value. Regarding the
ldap_rename() and ldap_rename_s() APIs, this parameter has meaning only if newrdn is
different from the old RDN.

serverctrls
Specifies a list of LDAP server controls. This parameter can be set to NULL. For more information
about server controls, see “LDAP controls” on page 24.

clientctrls
Specifies a list of LDAP client controls. This parameter can be set to NULL. For more information about
client controls, see “LDAP controls” on page 24.

Output parameters
msgidp

This result parameter is set to the message ID of the request if the ldap_rename() call succeeds.

Usage
In LDAP V2, the ldap_modrdn() and ldap_modrdn_s() APIs were used to change the name of an
LDAP entry. They can be used to change the least significant component of a name (the RDN or relative
distinguished name) only. LDAP V3 provides the Modify DN protocol operation that allows more general
name change access. The ldap_rename() and ldap_rename_s() routines are used to change the
name of an entry.

The ldap_rename() API initiates an asynchronous modify DN operation and returns the constant
LDAP_SUCCESS if the request was successfully sent, or another LDAP error code if not. If successful,
ldap_rename() places the message ID of the request in *msgidp. A subsequent call to ldap_result()
can be used to obtain the result of the operation. After the operation completes, ldap_result() returns
the status of the operation in the form of an error code. The error code indicates whether the operation
completed successfully. The ldap_parse_result() API is used to check the error code in the result.

Similarly, the ldap_modrdn() API initiates an asynchronous modify RDN operation and returns the
message ID of the operation. A subsequent call to ldap_result() can be used to obtain the result
of the modify operation. If there is an error, ldap_modrdn() returns -1, setting the session error
parameters in the LDAP structure appropriately, which can be obtained by using ldap_get_errno().

The synchronous ldap_rename_s() API returns the result of the operation, either the constant
LDAP_SUCCESS if the operation was successful, or another LDAP error code if it was not.

The ldap_rename() and ldap_rename_s() APIs both support LDAP V3 server controls and client
controls.

The ldap_modrdn() and ldap_modrdn_s() routines run an LDAP modify RDN operation. They both
take dn, the DN of the entry whose RDN is to be changed, and newrdn, the new RDN to give to the entry.
ldap_modrdn_s() is synchronous, returning the LDAP error code that indicates the success or failure
of the operation. In addition, they both take the deleteoldrdn parameter, which is used as an integer
value to indicate whether the old RDN values must be deleted from the entry.

Errors
The synchronous version of this routine returns an LDAP error code, either LDAP_SUCCESS or an error
code if there was an error. The asynchronous version returns -1 in case of an error. If the asynchronous

Chapter 2. Directory Server programming reference 93

API is successful, ldap_result() is used to obtain the results of the operation. See “LDAP_ERROR” on
page 41 for more details.

See also
ldap_error ldap_result

LDAP_RESTORE
Use the LDAP_RESTORE API or LDAP routine to create and call an LDAP extended operation that requests
a directory server restore.

Synopsis

#include ldap.h

 int ldap_restore (LDAP *ld, , Backup_Restore_Result *op_result);

Input parameters
ld

Specifies the address of the LDAP connection.
op_result

Specifies the address of the result code from the administration server response.

Usage
The ldap_restore routine is a wrapper that is used for creating requests to restore a directory server.
This extended operation is only supported by the administration server, ibmdiradm.

If LDAP_SUCCESS is returned for a restore request, this status indicates that the request was sent to
the Administration Server. The Administration Server submits the restore request unless the Directory
Server is running or another backup or restore command is already running. The op_result parameter
indicates the status of the request that is based on the action that is taken by the Administration Server
on the request. The result of directory restore operation does not reflect in the return code or in the
op_result parameter.

Errors
The ldap_restore routine returns the following error code:

• LDAP_SUCCESS // if the request is submitted
• LDAP_NO_MEMORY // if allocation fails
• LDAP_OPERATIONS_ERROR // if no backup is available
• LDAP_INSUFFICIENT_ACCESS // DN used for bind does not have authority to send this request
• LDAP_UNWILLING_TO_PERFORM // if backup configuration is not configured for the server
• LDAP_PROTOCOL_ERROR // if request sent to the server is from other than administration server
• LDAP_OTHER // unable to prepare request

See also
ldap_backup

94 IBM Security Directory Suite: Programming Reference

LDAP_RESULT
Use the LDAP_RESULT API to wait for the result of an asynchronous LDAP operation, obtain LDAP
message types, or obtain the message ID of an LDAP message.

ldap_result
ldap_msgtype
ldap_msgid

Synopsis

#include sys/time.h /* for struct timeval definition */
#include ldap.h

int ldap_result(
 LDAP *ld,
 int msgid,
 int all,
 struct timeval *timeout,
 LDAPMessage **result)

int ldap_msgtype(
 LDAPMessage *msg)

int ldap_msgid(
 LDAPMessage *msg)

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init(),
or ldap_open().

msgid
Specifies the message ID of the operation whose results are to be returned. The parameter can be set
to LDAP_RES_ANY if any result is wanted.

all
This parameter has meaning only for search results. For search results, use all to specify how many
search result messages are returned in a single call to ldap_result(). Specify LDAP_MSG_ONE to
retrieve one search result message at a time. Specify LDAP_MSG_ALL to request that all results of a
search be received. ldap_result() waits until all results are received before it returns all results
in a single chain. Specify LDAP_MSG_RECEIVED to indicate that all results retrieved so far are to be
returned in the result chain.

timeout
Specifies how long in seconds to wait for results to be returned from ldap_result, as identified by
the supplied msgid. A NULL value causes ldap_result() to wait until results are available. To poll,
the timeout parameter is non-NULL, pointing to a zero-valued timeval structure.

msg
Specifies a pointer to a result, as returned from ldap_result(), ldap_search_s(),
ldap_search_st(), or ldap_search_ext().

Output parameters
result

Contains the result of the asynchronous operation that is identified by msgid. This result is passed to
an LDAP parsing routine such as ldap_first_entry().

Chapter 2. Directory Server programming reference 95

If ldap_result() is unsuccessful, it returns -1 and sets the appropriate LDAP error, which can be
retrieved by using ldap_get_errno(). If ldap_result() times out, it returns 0. If successful, it
returns one of the following result types:

 #define LDAP_RES_BIND 0x61L
 #define LDAP_RES_SEARCH_ENTRY 0x64L
 #define LDAP_RES_SEARCH_RESULT 0x65L
 #define LDAP_RES_MODIFY 0x67L
 #define LDAP_RES_ADD 0x69L
 #define LDAP_RES_DELETE 0x6bL
 #define LDAP_RES_MODRDN 0x6dL
 #define LDAP_RES_COMPARE 0x6fL
 #define LDAP_RES_SEARCH_REFERENCE 0X73L
 #define LDAP_RES_EXTENDED 0X78L
 #define LDAP_RES_ANY (-1L)
 #define LDAP_RES_RENAME LDAP_RES_MODRDN

Usage
The ldap_result() routine is used to wait for and return the result of an operation that is
previously initiated by one of the LDAP asynchronous operation routines. For example, ldap_search(),
ldap_modify(), and others. These routines return a msgid that uniquely identifies the request. The
msgid can then be used to request the result of a specific operation from ldap_result().

The ldap_msgtype() API returns the type of LDAP message, which is based on the LDAP message that
is passed as input by using the msg parameter.

The ldap_msgid() API returns the message ID associated with the LDAP message passed as input by
using the msg parameter.

Errors
ldap_result() returns 0 if the timeout expires, and -1 if an error occurs. The ldap_get_errno() routine
can be used to get an error code.

Notes
This routine allocates memory for results that it receives. The memory can be deallocated by calling
ldap_msgfree().

See also
ldap_search

LDAP_SEARCH
Use the LDAP_SEARCH API for carrying out various LDAP search operations.

ldap_search
ldap_search_s
ldap_search_ext
ldap_search_ext_s
ldap_search_st

Synopsis

#include sys/time.h /* for struct timeval definition */
#include ldap.h

int ldap_search(
 LDAP *ld,
 const char *base,
 int scope,

96 IBM Security Directory Suite: Programming Reference

 const char *filter,
 char *attrs[],
 int attrsonly)

int ldap_search_ext(
 LDAP *ld,
 const char *base,
 int scope,
 const char *filter,
 char *attrs[],
 int attrsonly,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 struct timeval *timeout,
 int sizelimit,
 int *msgidp)

int ldap_search_s(
 LDAP *ld,
 const char *base,
 int scope,
 const char *filter,
 char *attrs[],
 int attrsonly,
 LDAPMessage **res)

int ldap_search_ext_s(
 LDAP *ld,
 const char *base,
 int scope,
 const char *filter,
 char *attrs[],
 int attrsonly,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 struct timeval *timeout,
 int sizelimit,
 LDAPMessage **res)

int ldap_search_st(
 LDAP *ld,
 const char *base,
 int scope,
 const char *filter,
 char *attrs[],
 int attrsonly,
 struct timeval *timeout,
 LDAPMessage **res)

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init() or
ldap_open().

base
Specifies the DN of the entry the search starts.

scope
Specifies the scope of the search. It can be LDAP_SCOPE_BASE (to search the object itself), or
LDAP_SCOPE_ONELEVEL (to search the immediate children of the object), or LDAP_SCOPE_SUBTREE
(to search the object and all its descendants).

filter
Specifies a string representation of the filter to apply in the search. Simple filters can be specified
as attributetype=attributevalue. More complex filters are specified by using a prefix notation
according to the following BNF:

filter ::='('filtercomp')'
filtercomp ::= and|or|not|simple
and ::= '&' filterlist
or ::= '|' filterlist
not ::= '!' filter
filterlist ::= filter|filterfiltertype
simple ::= attributetypefiltertype

Chapter 2. Directory Server programming reference 97

attributevalue
filtertype ::= '='|'~='|'='|'='

The '~=' construct is used to specify approximate matching. The representation for attributetype
and attributevalue are as described in "RFC 2252, LDAP V3 Attribute Syntax Definitions". In addition,
attributevalue can be a single * to achieve an attribute existence test, or can contain text and asterisks
(*) interspersed to achieve substring matching.

For example, the filter "(mail=*)" finds any entries that have a mail attribute. The filter
"(mail=*@student.of.life.edu)" finds any entries that have a mail attribute which ends in
the specified string. To put parentheses in a filter, escape them with a backslash (\) character. See
"RFC 2254, A String Representation of LDAP Search Filters" for a complete description of allowable
filters.

attrs
Specifies a NULL-terminated array of character string attribute types to return from entries that match
filter. If NULL is specified, all user attributes are returned.

The attrs parameter consists of an array of attribute type names to be returned for each entry
that matches the search filter. By default, a search request returns only user attributes. Operational
attributes, for example createtimestamp and modifytimestamp, are returned only when provided
in the attrs parameter. The following attributes types that are listed when specified in the attrs
parameter have special meaning in LDAP searches and can be combined with other attribute types.
*

Returns all user attributes.
1.1

Specifies to return no attributes and is used to request that a search returns only the matching
distinguished names.

+
Returns all operational attributes.

+ibmaci
Returns the access control related operational attributes that exclude those attributes that are
expensive to return.

+ibmentry
Returns a core-set of operational attributes that all entries in the Directory Server contain, such as
creatorsName and createTimestamp. This server excludes those attributes that are expensive
to return.

+ibmrepl
Returns operational attributes that are related to replication that excludes those attributes that
are expensive to return.

+ibmpwdpolicy
Returns operational attributes that are related to password policy that excludes those attributes
that are expensive to return.

++
Returns all operational attributes, including those attributes that are considered expensive to
return, such as ibm-allGroups and ibm-replicationPendingChanges.

++ibmaci
Returns all access control related operational attributes.

++ibmentry
Returns all operational attributes that every entry contains, such as numsubordinates and
ibm-entryChecksum.

++ibmrepl
Returns all operational attributes that are related to replication.

++ibmpwdpolicy
Returns all operational attributes that are related to password policy.

98 IBM Security Directory Suite: Programming Reference

http://www.ietf.org/rfc/rfc2252.txt
http://www.ietf.org/rfc/rfc2254.txt

See Supported special attributes and associated list of operational attributes table in Administering
section in the IBM Security Directory Suite documentation. You can know more about the list of
specific attributes the server returns for + and ++ attributes.

Note: Server support for + and ++ is optional, and the list of attributes that returned might not include
all operational attributes because of security or performance concerns. A server indicates support
for the all operational attributes feature by returning the value 1.3.6.1.4.1.4203.1.5.1 in the
supportedfeatures root DSE attribute.

To know more about the syntax and usage of the command-line utilities, idsldapsearch and
ldapsearch, see Command Reference section in the IBM Security Directory Suite documentation.

attrsonly
Specifies attribute information. The attrsonly parameter must be set to 1 to request attribute types
only or set to 0 to request both attribute types and attribute values.

sizelimit
Specifies the maximum number of entries to return. The server can set a lower limit which is enforced
at the server.

timeout
The ldap_search_st() API specifies the local search timeout value. The ldap_search_ext()
and ldap_search_ext_s() APIs specify both the local search timeout value and the operation time
limit that is sent to the server within the search request.

The local search timeout relates to the timeout parameter address that is passed to the API, such
as ldap_search_st and ldap_search_ext. The local search timeout structure has two member
variables, long int tv_sec and long int tv_usec.

• long int tv_sec - Represents elapsed time in seconds.
• long int tv_usec - Represents the rest of elapsed time in microseconds.

Since the timeout value for local search timeout is tv_sec + tv_usec, if tv_sec is 0 then the
timeout value is in microseconds.

The operation timeout limit relates to the value set in the LDAP handle, ld, by using calls to
ldap_set_option (ld, LDAP_OPT_TIMELIMIT, value_in_seconds).

serverctrls
Specifies a list of LDAP server controls. This parameter can be set to NULL. For more information
about server controls, see “LDAP controls” on page 24.

clientctrls
Specifies a list of LDAP client controls. This parameter can be set to NULL. For more information about
client controls, see “LDAP controls” on page 24.

Output parameters
res

Contains the result of the asynchronous operation that is identified by msgid, or returned directly
from ldap_search_s() or ldap_search_ext_s(). This result is passed to the LDAP parsing
routines. See “LDAP_RESULT” on page 95.

msgidp
This result parameter is set to the message ID of the request if the ldap_search_ext() call
succeeds.

Usage
These routines are used to run LDAP search operations.

The ldap_search_ext() API initiates an asynchronous search operation and returns the constant
LDAP_SUCCESS if the request was successfully sent, or another LDAP error code if not.

Chapter 2. Directory Server programming reference 99

https://www.ibm.com/docs/en/sdsu/8.0.1?topic=documentation-administering
https://www.ibm.com/docs/sdsu/8.0.1
https://www.ibm.com/docs/en/sdsu/8.0.1?topic=reference-security-directory-suite-command
https://www.ibm.com/docs/sdsu/8.0.1

If successful, ldap_search_ext() places the message ID of the request in *msgidp. Use a subsequent
call to ldap_result() to obtain the results from the search.

Similar to ldap_search_ext(), the ldap_search() API initiates an asynchronous search operation
and returns the message ID of this operation. If an error occurs, ldap_search() returns -1, setting the
session error in the LD structure, which can be obtained by using ldap_get_errno(). If successful, use
a subsequent call to ldap_result() to obtain the results from the search.

The synchronous ldap_search_ext_s(), ldap_search_s(), and ldap_search_st() functions all
return the result of the operation: either the constant LDAP_SUCCESS if the operation was successful or
an LDAP error code if the operation was not successful. For more information about possible errors and
how to interpret them, see “LDAP_ERROR” on page 41. If any entries are returned from the search, they
are contained in the res parameter. This parameter is opaque to the caller. Entries, attributes, values,
and others, must be extracted by calling the result parsing routines. The memory that is allocated for res
must be freed when no longer in use, whether the operation was successful, by calling ldap_msgfree().

The ldap_search_ext() and ldap_search_ext_s() APIs support LDAP V3 server controls and
client controls, and allow varying size and time limits to be easily specified for each search operation.
The ldap_search_st() API is identical to ldap_search_s(), except that it requires an additional
parameter that specifies a local timeout for the search.

There are three options in the session handle ld which potentially can affect how the search is run. They
are:
LDAP_OPT_SIZELIMIT

A limit on the number of entries that are returned from the search. 0 means no limit. The value from
the session handle is ignored when you use the ldap_search_ext() or ldap_search_ext_s()
functions.

LDAP_OPT_TIMELIMIT
A limit on the number of seconds to spend on the search. Zero means no limit.

Note: The value from the session handle is ignored when you use the ldap_search_ext() or
ldap_search_ext_s() functions.

LDAP_OPT_DEREF
One of LDAP_DEREF_NEVER (0x00), LDAP_DEREF_SEARCHING (0x01), LDAP_DEREF_FINDING
(0x02), or LDAP_DEREF_ALWAYS (0x03), specifying how aliases must be handled during the
search. The LDAP_DEREF_SEARCHING value means that aliases must be dereferenced during the
search but not when you locate the base object of the search. The LDAP_DEREF_FINDING value
means that aliases must be dereferenced when you locate the base object but not during the search.

These options are set and queried by using the ldap_set_option() and ldap_get_option() APIs.

Reading an entry

LDAP does not support a read operation directly. Instead, this operation is emulated by a search with
base set to the DN of the entry to read, scope that is set to LDAP_SCOPE_BASE, and filter that is set to
"(objectclass=*)". The attrs parameter optionally contains the list of attributes to return.

Listing the children of an entry

LDAP does not support a list operation directly. Instead, this operation is emulated by a search with
base set to the DN of the list entry, scope set to LDAP_SCOPE_ONELEVEL, and filter that is set to
"(objectclass=*)". The attrs parameter optionally contains the list of attributes to return for
each child entry. If only the distinguished names of child entries are wanted, the attrs parameter
must specify a NULL-terminated array of one-character strings that has the value dn.

Errors
ldap_search_s(), ldap_search_ext_s, and ldap_search_st() return the LDAP error code from
the search operation.

ldap_search() and ldap_search_ext() return -1 instead of a valid msgid if an error occurs, setting
the session error in the LD structure. The session error can be obtained by using ldap_get_errno().

100 IBM Security Directory Suite: Programming Reference

For more information, see “LDAP_ERROR” on page 41.

Notes
These routines allocate storage that is returned by the res parameter. Use ldap_msgfree() to free this
storage.

See also
ldap_result, ldap_error, ldap_sort, ldap_paged_results

LDAP_SERVER_INFORMATION IN DNS
Use the LDAP_SERVER_INFORMATION IN DNS API to run various LDAP operations for LDAP server
information.

ldap_server_locate
ldap_server_free_list
ldap_server_conf_save

These LDAP APIs are provided to run the following operations:

• Use LDAP server information that is published in the Domain Name System (DNS) to locate one or
more LDAP servers, and associated information. Server information is returned as a linked list of server
information structures.

• Free all storage that is associated with a linked list of server information structures.
• Store information about one or more LDAP servers in a local configuration repository. The local
configuration can be used to mimic information that can also be published in DNS.

Synopsis

#include ldap.h

int ldap_server_locate (
 LDAPServerRequest *server_request,
 LDAPServerInfo **server_info_listpp);

int ldap_server_free_list(
 LDAPServerInfo *server_info_listp);

int ldap_server_conf_save(
 char *filename,
 unsigned long ttl,
 LDAPServerInfo *server_info_listp));

typedef struct LDAP_Server_Request {
 int search_source; /* Source for server info */
#define LDAP_LSI_CONF_DNS 0 /* Config first, then DNS (def)*/
#define LDAP_LSI_CONF_ONLY 1 /* Local Config file only */
#define LDAP_LSI_DNS_ONLY 2 /* DNS only */
 char *conf_filename /* pathname of config file */
 int reserved; /* Reserved, set to zero */
 char *service_key; /* Service string */
 char *enetwork_domain; /* eNetwork domain (eDomain) */
 char **name_servers; /* Array of name server addrs */
 char **dns_domains; /* Array of DNS domains */
 int connection_type; /* Connection type */
#define LDAP_LSI_UDP_TCP 0 /* Use UDP, then TCP (default)*/
#define LDAP_LSI_UDP 1 /* Use UDP only */
#define LDAP_LSI_TCP 2 /* Use TCP only */
 int connection_timeout; /* connect timeout (seconds) */
 char *DN_filter; /* DN suffix filter */
 char *proto_key /* Symbolic protocol name */
 unsigned char reserved2[60]; /* reserved fields, set to 0 */
} LDAPServerRequest;

typedef struct LDAP_Server_Info {

Chapter 2. Directory Server programming reference 101

 char *lsi_host; /* LDAP server's hostname */
 unsigned short lsi_port; /* LDAP port */
 char *lsi_suffix; /* Server's LDAP suffix */
 char *lsi_query_key; /* service_key[.edomain] */
 char *lsi_dns_domain; /* Publishing DNS domain */
 int lsi_replica_type;/* master or replica */
#define LDAP_LSI_MASTER 1 /* LDAP Master */
#define LDAP_LSI_REPLICA 2 /* LDAP Replica */
 int lsi_sec_type; /* SSL or non-SSL */
#define LDAP_LSI_NOSSL 1 /* Non-SSL */
#define LDAP_LSI_SSL 2 /* Secure Server */
 unsigned short lsi_priority; /* Server priority */
 unsigned short lsi_weight; /* load balancing weight */
 char *lsi_vendor_info; /* vendor information */
 char *lsi_info; /* LDAP Info string */
 struct LDAP_Server_Info *prev; /* linked list previous ptr */
 struct LDAP_Server_Info *next; /* linked list next ptr */
} LDAPServerInfo;

Input parameters
server_request

Specifies a pointer to an LDAPServerRequest structure, which must be initialized to zero before you
set specific parameters. This setting ensures that defaults are used when a parameter is not explicitly
set. If the default behavior is wanted for all possible input parameters, set server_request to
NULL. This setting is equivalent to setting the LDAPServerRequest structure to zero. Otherwise,
supply the address of the LDAPServerRequest structure, containing the following fields:
search_source

Specifies where to find the server information. search_source can be one of the following
information:

• Access the local LDAP DNS configuration file. If the file is not found, or the file does not contain
information for a combination of the service_key, enetwork_domain, and any of the DNS
domains as specified by the application, then access DNS.

• Search the local LDAP DNS configuration file only.
• Search DNS only.

conf_filename
Specifies an alternative configuration file name. Specify NULL to get the default file name and
location.

reserved
Represents a reserved area for future function, which must be initialized to zero.

service_key
Specifies the search key. For example, use the service name string when you obtain a list of
Service records (SRV), pseudo-SRV Text records (TXT), or CNAME alias records from DNS. If not
specified, the default is "ldap".

Note: Standards are moving towards the use of an underscore (_) as a prefix for service name
strings. Over time, it is expected that "_ldap" is the preferred service name string for publishing
LDAP services in DNS. If the application does not specify service_key, and no entries are
returned by using the default "ldap." service name, the search is automatically rerun by using
"_ldap" as the service name. As an alternative, the application can explicitly specify "_ldap" as
the service name. The search is directed specifically at DNS SRV records that use "_ldap" as the
service name.

enetwork_domain
Indicates that LDAP servers grouped within the specified eNetwork domain are to be located. An
eNetwork domain is a naming construct. It is implemented by the LDAP administrator, to further
subdivide a set of LDAP servers (as published in DNS) into logical groupings. By specifying an
eNetwork domain, only the LDAP servers that are grouped within the specified eNetwork domain
are returned by the ldap_server_locate() API. This grouping can be useful when applications
require access to a particular set of LDAP servers. For example, the research division within
a company might use a dedicated set of LDAP directories, for example, masters and replicas.

102 IBM Security Directory Suite: Programming Reference

Applications that require access to information published in research LDAP servers can selectively
obtain the host names and ports of research LDAP servers. You can obtain them by publishing this
set of LDAP servers in DNS with an eNetwork domain of research. Other LDAP servers that are also
published in DNS are not returned.

The criterion for searching DNS to locate the appropriate LDAP servers is constructed by
concatenating the following information:

• service_key (defaults to "ldap")
• enetwork_domain
• tcp
• DNS domain

For example, if:

• The default service_key of "ldap" is used
• The eNetwork domain is sales5
• The default DNS domain of the client is midwest.acme.com

Then, the DNS value that is used to search DNS for the set of LDAP servers that belong to the
sales5 eNetwork domain is ldap.sales5.tcp.midwest.acme.com.

If enetwork_domain is set to zero, the following steps are taken to determine the
enetwork_domain:

• The locally configured default, if set, is used.
• If a locally configured default is not set, then a platform-specific value is used. On a Windows NT

operating system, the user logon domain is used.
• If a platform-specific eNetwork domain is not defined, then the eNetwork domain component in

the DNS value is omitted. In the preceding example, this results in the following string that is
used: ldap.midwest.tcp.acme.com.

If enetwork_domain is set to a NULL string, then the eNetwork domain component in the DNS
value is omitted. This setting might be useful for finding a default eNetwork domain when a
specific eNetwork domain is not known.

Note: If the search is run with a non-NULL value for enetwork_domain, and the search fails,
the search is issued again with a NULL enetwork_domain, by using the specified service_key,
which defaults to ldap. The second search with NULL enetwork_domain is attempted after
a complete search is concluded without results. For example, if search_source is set to
the default LDAP_LSI_CONF_DNS, then the first search is not considered to be complete until
both the local configuration and DNS are queried. If both of these searches fail, then both the
local configuration and DNS are queried again with a NULL enetwork_domain. The intent is
to find a set of LDAP servers that are published under the default service key, that is, ldap,
when nothing can be found published under ldap.enetwork_domain. The application can
determine whether the located servers are published in an enetwork_domain by examining
the lsi_query_key field, as returned in the server_info_list structures that are returned
on the ldap_server_locate() API. If the returned lsi_query_key consists solely of the
specified service_key, then the located servers were not published in DNS with the specified
enetwork_domain.

.
name_servers

Specifies a NULL-terminated array of DNS name server IP address in dotted decimal format. For
example, 122.122.33.49. If not specified, the locally configured DNS name servers are used.

dns_domains
Specifies a NULL-terminated array of one or more DNS domain names. If not specified, the local DNS
domain configuration is used.

Note: The domain names supplied here can take the following forms:

Chapter 2. Directory Server programming reference 103

• austin.ibm.com (standard DNS format)
• cn=fred, ou=accounting, dc=austin, dc=ibm, dc=com

Regarding providing a domain name, these specifications are equivalent. Both result in a domain
name of austin.ibm.com. This approach makes it easier for an application to locate LDAP servers
for binding based on a user name space. This space is mapped into the DNS name space. For more
information, see the section DNS domains and configuration file.

connection_type
Specifies the type of connection to use when it communicates with the DNS name server. The
following options are supported:

• Use UDP first. If no response is received, or data truncation occurs, then use TCP.
• Use only UDP.
• Use only TCP.

If set to zero, the default is to use UDP first (then TCP).

UDP is the preferred connection type, and typically runs well. You might want to consider by using
TCP/IP if:

• The amount of data that is returned does not fit in the 512-byte UDP packet.
• The transmission and receipt of UDP packets turns out to be unreliable. This action might depend on

network characteristics.

connection_timeout
Specifies a timeout value when querying DNS (for both TCP and UDP). If LDAP_LSI_UDP_TCP is
specified for connection_type and a response is not received in the specified time period for UDP,
TCP is attempted. A value of zero results in an innumerable timeout. When the LDAPServerRequest
parameter is set to NULL, the default is 10 seconds. When you pass the LDAPServerRequest
parameter, this parameter must be set to a nonzero value if an indefinite timeout is not wanted.

DN_filter
Specifies a Distinguished Name to be used as a filter, for selecting candidate LDAP servers that are
based on the server suffixes. If the most significant portion of the DN is an exact match with a
server suffix (after it normalizes), an LDAPServerInfo structure is returned for the server or suffix
combination. If it does not match, an LDAPServerInfo structure is not returned for the server or
suffix combination.

proto_key
Specifies the protocol key. For example, tcp or _tcp, to be used when you obtain a list of SRV,
pseudo-SRV TXT, or CNAME alias records from DNS. If not specified, the default is tcp.

Note: Standards are moving towards the use of an underscore (_) as a prefix for the protocol. Over
time, it is expected that _tcp will become the preferred protocol string for publishing LDAP and other
services in DNS. If the application does not specify protocol_key and no entries are returned by
using the default tcp protocol key, the search is automatically rerun by using the _tcp protocol. As
an alternative, the application explicitly specifies _tcp as the protocol, and the search is directed
specifically at DNS SRV records that use the _tcp protocol.

reserved2
Represents a reserved area for future function, which must be initialized to zero.

server_info_listpp
Specifies the address that is set to point to a linked list of LDAPServerInfo structures. Each
LDAPServerInfo structure that is defined in the list contains server information that is obtained
from either of the following items:

• DNS
• Local configuration

filename
Specifies an alternative configuration file name. Specify NULL to get the default file name and location.

104 IBM Security Directory Suite: Programming Reference

ttl
Specifies the time-to-live, in minutes, for server information that is saved in the configuration file. Set
ttl to zero if it is intended to be a permanent repository of information.

When the ldap_server_locate() API accesses the configuration file with search_source
set to LDAP_LSI_CONF_ONLY, and the configuration file is not refreshed in ttl minutes, the
LDAP_TIMEOUT error code is returned.

When the ldap_server_locate() API is accesses the configuration file with search_source set
to LDAP_LSI_CONF_DNS, and the configuration file is not refreshed in ttl minutes, then network
DNS is accessed to obtain server information.

server_info_listp
Specifies the address of a linked list of LDAPServerInfo structures. This linked list might be
returned from the ldap_server_locate() API, or might be constructed by the application.

Output parameters
Returns 0 if successful. If an error is encountered, an appropriate return code as defined in the ldap.h
file is returned. If successful, the address of a linked list of LDAPServerInfo structures is returned.

server_info_listpp
Upon successful return from ldap_server_locate(), server_info_listpp points to a linked
list of LDAPServerInfo structures. The LDAPServerInfo structure contains the following fields:
lsi_host

Fully qualified host name of the target server (NULL-terminated string).
lsi_port

Integer representation of the LDAP server port.
lsi_suffix

String that specifies a supported suffix for the LDAP server (NULL-terminated string).
lsi_query_key

Specifies the eNetwork domain to which the LDAP server belongs, prefixed by the service key.
For example, if service key is ldap and eNetwork domain is sales, then lsi_query_key is
set to ldap.sales. If the server is not associated with an eNetwork domain (as published in
DNS), then lsi_query_key consists solely of the service key value. Also, for example, if the
service key is _ldap and the eNetwork domain is marketing, then lsi_query_key is set to
_ldap.marketing.

lsi_dns_domain
DNS domain in which the LDAP server was published. For example, the DNS search
might be for ldap.sales.tcp.austin.ibm.com, but the resulting servers have a fully
qualified DNS host name of ldap2.raleigh.ibm.com. In this example, lsi_host is set to
ldap2.raleigh.ibm.com while lsi_dns_domain is set to austin.ibm.com. The actual
domain in which the server was published might be of interest, particularly when multiple DNS
domains are configured or supplied as input.

lsi_replica_type
Specifies the type of server, LDAP_LSI_MASTER or LDAP_LSI_REPLICA. If set to zero, the type is
unknown.

lsi_sec_type
Specifies the port security type, LDAP_LSI_NOSSL or LDAP_LSI_SSL. This value is derived from
the ldap or ldaps prefix in the LDAP URL. If the LDAP URL is not defined, the security type is
unknown and lsi_sectype is set to zero.

lsi_priority
The priority value that is obtained from the SRV RR (or the pseudo-SRV TXT RR). Set to zero if
unknown or not available.

Chapter 2. Directory Server programming reference 105

lsi_weight
The weight value that is obtained from the SRV RR or the pseudo-SRV TXT RR. Set to zero if
unknown or not available.

lsi_vendor_info
NULL-terminated string that is obtained from the ldapvendor TXT RR, if defined. It might be
used to identify the LDAP server vendor or version information.

lsi_info
NULL-terminated information string that is obtained from the ldapinfo TXT RR, if defined. If not
defined, lsi_info is set to NULL. This information string can be used by the LDAP or network
administrator to publish more information about the target LDAP server.

prev
Points to the previous LDAP_Server_Info element in the linked list. This value is NULL if at the top
of the list.

next
Points to the next LDAP_Server_Info element in the linked list. This value is NULL if at the end of
the list.

Usage
DNS domains and configuration file

The local configuration file can contain server information for combinations of the following
information:

• Service key (typically set to ldap or _ldap)
• eNetwork domain
• DNS domains

When the application sets search_source to the default LDAP_LSI_CONFIG_DNS, the
ldap_server_locate() API attempts to find server information in the configuration file for the
designated service key, eNetwork domain, and DNS domains.

If the configuration file does not contain information that matches this criteria, the locator API
searches the DNS. It searches by using the specified service key, eNetwork domain, and DNS
domains. For example:

• The application supplies the following three DNS domains:

– austin.ibm.com
– raleigh.ibm.com
– miami.ibm.com

Also, the application uses the default service key, that is, ldap, and specifies sales for the eNetwork
domain.

• The configuration file contains server information for austin.ibm.com and miami.ibm.com, with
the default service key and eNetwork domain of sales.

• Information is also published in DNS for raleigh.ibm.com, with the default service key and
eNetwork domain of sales.

• The search_source parameter is set to LDAP_LSI_CONFIG_DNS, which indicates that both the
configuration file and DNS are to be used if necessary.

• The locator API builds a single ordered list of server entries, with the following entries:

– Server entries for the austin.ibm.com DNS domain, as extracted from the configuration file.
– Server entries for the raleigh.ibm.com DNS domain, as obtained from DNS over the network.
– Server entries for the miami.ibm.com DNS domain, as extracted from the configuration file.

106 IBM Security Directory Suite: Programming Reference

The resulting list of servers contains all the austin.ibm.com servers first, followed by the
raleigh.ibm.com servers, followed by the miami.ibm.com servers. Within each group of servers,
the entries are sorted by priority and weight.

API usage

These routines are used to run operations that are related to finding and saving LDAP server
information.
ldap_server_locate()

The ldap_server_locate() API is used to locate one or more suitable LDAP servers. In
general, an application uses the ldap_server_locate() API as follows:

• Before you connect to an LDAP server in the enterprise, use ldap_server_locate() to obtain
a list of one or more LDAP servers. The servers are published in DNS or in the local configuration
file. Typically, an application can use the default request settings by passing a NULL for the
LDAPServerRequest parameter. By default, the API looks for server information in the local
configuration file first. Then, it moves on to DNS if the local configuration file does not exist or
expired.

Note: If no server entries are found, and the application does not specify the service key, which
defaults to ldap, then the ldap_server_locate() function runs the complete search again,
by using the alternative "_ldap" for the service key. The results of this second search, if any, are
returned to the application.

• After the application obtains the list of servers, it must walk the list, by using the first server that
meets its requirements. This action maximizes the advantage that can be derived from using the
priority and weighting scheme that is implemented by the administrator. The application might
not want to use the first server in the list for several reasons:

– The client requires to specifically connect by using SSL or non-SSL. For each server in the list,
the application can query the rootDSE to determine whether the server supports a secure
SSL port. This query is the preferred approach. Alternatively, the application can walk the
list until it finds a server entry with the appropriate security type. An LDAP server might be
listening on both an SSL and non-SSL port. In this case, the server has two entries in the
server list:

– The client specifically requires to connect to a Master or Replica.
– The client requires to connect to a server that supports a particular suffix.

Note: Specify DN_filter to filter out servers that do not have a suffix. The DN is under this
suffix. To confirm that a server actually supports the suffix, query the server rootDSE.

– Some other characteristic that is associated with the wanted server exists, defined in the
ldapinfo string.

• After the client selects a server, it then issues the ldap_init or ldap_ssl_init API. If the
selected server is unavailable, the application is free to move down the list of servers. It moves
the server list until either it finds a suitable server it can connect to, or the list is exhausted.

ldap_server_free_list()
To free the list of servers and associated LDAPServerInfo structures, the application must
use the ldap_server_free_list() API. The ldap_server_free_list() API frees the
linked list of LDAPServerInfo structures and all associated storage as returned from the
ldap_server_locate() API.

ldap_server_conf_save()
The ldap_server_conf_save() API is used to store server information into local configuration.
The format for specifying the server information about the ldap_server_conf_save() API is
identical to the format returned from the ldap_server_locate() API.

Chapter 2. Directory Server programming reference 107

The application that writes information into the configuration file can specify an optional time-
to-live for the information that is stored in the file. When an application uses the locator API to
access DNS server information, the configuration file is considered to be stale if:

date/time_file_last_updated + ttl > current_date/time

If the application uses the default behavior for using the configuration file, it bypasses a stale
configuration file. It attempts to find all required information from DNS. Otherwise, the ttl must
be set to zero (indefinite ttl), in which case the information is considered to be good indefinitely.

Setting a nonzero ttl is most useful when an application or other mechanism exists for refreshing
the local configuration file on a periodic basis.

Note: Subsecond response time can be expected in many cases, when you use UDP to query DNS.
Since most applications get the server information during initialization, repetitive invocation of the
locator API is usually unnecessary.

By default, the configuration file is stored in the following platform-specific location:
UNIX

/etc/ldap_server_info.conf
Windows NT and Windows 2000

\drivers\etc\ldap_server_info.conf

Format of local configuration file

The following sample shows the definition for a local configuration file that is created
with the ldap_server_conf_save() API. You must create the file by using the
ldap_server_conf_save() API. However, with careful editing, it can also be created and
maintained manually. Some basic rules for managing this file manually:

• Comment fields must begin with a number sign (#). Comment fields are ignored.
• All parameters are positional.
• The first non-comment line must contain the time-to-live value for the file.

###
Local LDAP DNS configuration file.
#
The following line holds the file's expiration time, which is
a UNIX time_t value (time in seconds since January 1, 1970 UTC).
A value of 0 indicates that the file will not expire.
#907979782
0
Each of the following lines in this file represents a known
LDAP server. The lines have the following format:
#
service domain host priority weight port replica sec "suffix"
 "vendor info" "general info"
#
where:
#
service= service_key[.eNetwork_domain]
#
domain= DNS domain
#
host= fully qualified DNS name of the LDAP Server host
#
priority= target host with the lowest priority tried first
#
weight= load balancing method. When multiple hosts have the
same priority, the host to be contacted first is
determined by the weight value.
Set to 0 if load balancing is not needed.
#
port= The port to use to contact the LDAP Server.
#
replica= Use "1" to indicate Master.
"2" to indicate Replica.
#

108 IBM Security Directory Suite: Programming Reference

sec= Use "1" to indicate Non-SSL
"2" to indicate SSL.
#
suffix= A suffix on the server.
#
vendor info= a string that identifies the LDAP server vendor
#
general info= Any informational text you wish to include.
#
ldap austin.ibm.com ldapserver1.austin.ibm.com 1 1 389 1 1
 "ou=users,o=sample" "IBM SecureWay" "phoneinfo"
ldap austin.ibm.com ldapserver2.austin.ibm.com 1 1 389 2 1
 "ou=users,o=sample" "IBM SecureWay" "phoneinfo replica"
ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 636 1 2 "" ""
ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 636 1 2
 "cn=GSO,o=sample"
ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 636 1 2
 "ou=Austin,o=sample" "IBM" "GSO ePersonbase"
ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 389 1 1 "" ""
ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 389 1 1
 "cn=GSO,o=sample"
ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 389 1 1
 "ou=Austin,o=sample" "IBM" "GSO ePersonbase"
ldap.sales raleigh.ibm.com saleshost1.raleigh.ibm.com 1 1 389 1 1
 "dc=raleigh,dc=ibm, dc=com" "IBM" "Sales Marketing"
ldap.sales raleigh.ibm.com saleshost2.raleigh.ibm.com 2 1 389 2 1
 "dc=raleigh,dc=ibm, dc=com" "IBM" "Sales Marketing Replica"
#
###

The newer form of service keys can also be used in the configuration file. For example, the
following code is an excerpt that uses _ldap as the service key:

_ldap austin.ibm.com ldapserver1.austin.ibm.com 1 1 389 1 1
 "ou=users,o=sample" "IBM SecureWay" "phoneinfo"
_ldap austin.ibm.com ldapserver2.austin.ibm.com 1 1 389 2 1
 "ou=users,o=sample" "IBM SecureWay" "phoneinfo replica"
_ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 636 1 2 "" ""
_ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 636 1 2
 "cn=GSO,o=sample"
_ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 636 1 2
 "ou=Austin,o=sample" "IBM" "GSO ePersonbase"
_ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 389 1 1 "" ""
_ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 389 1 1
 "cn=GSO,o=sample"
_ldap.gso austin.ibm.com gso3.austin.ibm.com 1 1 389 1 1
 "ou=Austin,o=sample" "IBM" "GSO ePersonbase"
_ldap.sales raleigh.ibm.com saleshost1.raleigh.ibm.com 1 1 389 1 1
 "dc=raleigh,dc=ibm,dc=com" "IBM" "Sales Marketing"
_ldap.sales raleigh.ibm.com saleshost2.raleigh.ibm.com 2 1 389 2 1
 "dc=raleigh,dc=ibm,dc=com" "IBM" "Sales Marketing Replica"

Publishing LDAP server information in DNS

If DNS is used to publish LDAP server information, the LDAP administrator must configure the relevant
DNS name servers with the appropriate SRV and TXT records. The records reflect the LDAP servers
available in the enterprise.

• If SRV records are supported by the DNS servers in the enterprise, SRV records can be created
that identify the LDAP servers. They identify with appropriate weighting and priority settings. For
more information about SRV records and how they are used, see A. Gulbrandsen, P. Vixie, "A DNS
RR for Specifying the Location of Services (DNS SRV)", Internet RFC 2782, Troll Technologies, Vixie
Enterprises, February, 2000, which obsoletes RFC 2052.

• TXT records must be associated with the A record of each LDAP server. The TXT records include the
LDAP URL records which specify host name, port, base DN, and port type. For example, ldap for
non-SSL, and ldaps for SSL.

• If SRV records are not used, the list of available servers must be specified with a set of TXT records
which emulate the SRV RR format.

The LDAP server locator API:

• Provides access to a list of LDAP servers. By default, the locator API queries a local configuration file
for the required information. If the file was updated with a nonzero time-to-live, and the file is

Chapter 2. Directory Server programming reference 109

http://www.networksorcery.com/enp/rfc/rfc2782.txt
http://www.networksorcery.com/enp/rfc/rfc2782.txt
http://www.networksorcery.com/enp/rfc/rfc2782.txt

stale, or the file does not contain the required information, the locator API then accesses DNS. By
default, the local configuration file has no time-to-live, and is considered to be good indefinitely.

Note: The configuration file is designed to hold the same level of information per server that can be
obtained from DNS.

• Gathers data relevant to each of the LDAP servers from DNS, by using three sequenced algorithms:

1. SRV records
2. Pseudo-SRV records (by using TXT records)
3. A CNAME alias that references a single host A record

The algorithms are attempted in sequence until results are returned for one of the algorithms. For
example, if no SRV records are found, but pseudo-SRV records are found, the list of servers is built
from the pseudo-SRV records.

• Builds a list of LDAP servers, with the first server in the list that is classified as the preferred or
default server. Depending on how DNS publishes LDAP servers, the preferred LDAP server can be
a reflection of how the administrator organizes the LDAP information in DNS. The application has
access to the additional data that was retrieved from DNS. The additional information for each LDAP
server information structure can consist of the following information:

– Host name and port
– eNetwork domain of the server
– Fully qualified DNS domain where the host name is published
– Suffix
– Replication type (master or replica)
– Security type (SSL or non-SSL)
– Vendor ID
– Administrator-defined data

The application can use ldap_server_locate() to obtain a list of one or more LDAP servers that
exist in the enterprise. It is published in either DNS or the local configuration file. The additional data
might be used by the application to select the appropriate server. For example, the application might
require a server that supports a specific suffix, or might require to specifically access the master for
update operations.

As input to the API, the application can supply:

• A list of one or more DNS name server IP addresses. The default is to use the locally configured
list of name server addresses. When an active name server is located, it is used for all subsequent
processing.

• The service key. The default is ldap. The service key is used to query DNS for information specific
to the LDAP protocol. For example, when you search for SRV records in the austin.ibm.com DNS
domain, the search is for ldap.tcp.austin.ibm.com with type=SRV. This example assumes
that the search does not include an eNetwork domain component. The application can also
specify _ldap as the service key and _tcp for the protocol, in which case the search is for
_ldap._tcp.austin.ibm.com with type=SRV.

• The name of the eNetwork domain. The eNetwork domain is typically the name that is used to
identify the LDAP user authentication domain. It further qualifies the search for relevant LDAP
servers, as published in the user DNS domain. For example, when you search for SRV records
in the austin.ibm.com DNS domain, with an eNetwork domain of marketing the search is for
ldap.marketing.tcp.austin.ibm.com with type=SRV.

• A list of one or more fully qualified DNS domain names. The default is to use the locally configured
domains.

If multiple domains are supplied, either in the default configuration or explicitly supplied by the
application, information is gathered from each DNS domain. The server information that is returned
from the locator API is grouped by DNS domain. If two domains are supplied, for example,

110 IBM Security Directory Suite: Programming Reference

austin.ibm.com and raleigh.ibm.com, the entries for LDAP servers that are published in the
austin.ibm.com domain is first in the list, with the austin.ibm.com servers that are sorted by
priority and weight. Entries for LDAP servers that are published in the raleigh.ibm.com domain
follows the entire set of austin.ibm.com servers (with the raleigh.ibm.com servers that are
sorted by priority and weight).

Note: All entries that are returned by the locator API are associated with a single
service_key.edomain combination.

DNS domain names that are supplied here can take two forms:

– austin.ibm.com (standard DNS format)
– cn=fred, ou=accounting, dc=austin, dc=ibm, dc=com

About providing a fully qualified DNS domain name, these provisions are equivalent. Both result in a
DNS domain name of austin.ibm.com. This approach makes it easier for an application to locate
LDAP servers it requires to bind with, based on a user name space. This space is mapped into the
DNS name space.

• The connection type (UDP or TCP).
• A DN for comparison against the suffix that are defined for each LDAP server entry. This string,

if supplied, is used as a filter. Only server entries that define a suffix that compares with the DN
are returned by the locator API. For example, a DN of "cn=fred, ou=accounting, o=sample"
matches the first of the following DN, but not the second:

– o=sample
– o=tivoli, c=us

The ability to filter based upon each LDAP server suffix is supplied as a convenience. Therefore, the
application does not require to step through the list of servers, comparing a DN with each entry
suffix.

• The application can specify how information in the local configuration file is used. The default is to
look in the local, configuration file for the wanted information. If the information is not found, then
DNS servers on the network are accessed. The application can specify the following information:

– Look in the configuration file first, then access the network (default).
– Look in the configuration file only.
– Access DNS only.

When you use the default configuration file, the application is not required to specify the location.
Alternatively, the application can provide a path name to a configuration file.

Note: Information that is stored in the configuration file takes the same form as information
obtained from DNS. The difference is that it is saved in the file by an application. The file can
also be constructed and distributed to users by the administrator.

Maximum benefit is obtained when applications can use the defaults for all the parameters. This
benefit minimizes application knowledge of the specifics that is related to locating LDAP servers.

Using SRV and TXT records

The DNS-lookup routine looks for SRV records first. If one or more servers are found, then the
server information is returned. The second algorithm, which is based on TXT records that emulate
SRV records, is not called.

Use the SRV records for finding the address of servers and for a specific protocol and domain. This
use is described in RFC 2052, "A DNS RR for Specifying the Location of Services (DNS SRV)". Correct
use of the SRV RR grants the administrator the following actions:

• Distribute a service across multiple hosts within a domain
• Move the service from host to host without disruption
• Designate certain hosts as primary and others as alternates, or backups, by using a priority and

weighting scheme

Chapter 2. Directory Server programming reference 111

TXT stands for text. TXT records are strings. BIND versions before 4.8.3 do not support TXT
records. To fully implement the technique that is described in RFC 2052, the DNS name servers
must use a version of BIND. This version supports SRV records and TXT records. An SRV resource
record (RR) has the following components, as described in RFC 2052:

service.proto.name ttl class SRV priority weight port target

where:
service

Symbolic name of the wanted service. By default, the service name or service key is ldap.
When used to publish servers that are associated with an eNetwork domain, the service value
is derived by concatenating the service key, for example, ldap. With the eNetwork domain
name, for example, marketing. In this example, the resulting service is ldap.marketing.

proto
Protocol, typically tcp or udp, or _tcp or _udp.

name
Domain name that is associated with the RR.

ttl
Time-to-live, standard DNS meaning.

class
Standard DNS meaning. For example, IN.

Priority
Target host with lowest number priority must be attempted first.

weight
Load balancing mechanism. When multiple target hosts have the same priority, the chance of
contacting one of the hosts first must be proportional to its weight. Set to 0 if load balancing is
not necessary.

port
Port on the target host for the service.

target
Target host name must have one or more A records that are associated with it.

The approach is to use SRV records to define a list of candidate LDAP servers. Then, use TXT
records that are associated with the A record of each host to get more information about each
LDAP server. Three forms of TXT records are understood by the LDAP client DNS lookup routines:

• The service TXT record provides a standard LDAP URL, that is, provides host, port and base DN.
• The ldaptype TXT record identifies whether the LDAP server is a master or replica.
• The ldapvendor TXT record identifies the vendor.

ldap A 199.23.45.296
 TXT "service:ldap://ldap.ibm.com:389/o=foo,c=us"
 TXT "ldaptype: master"
 TXT "ldapvendor: IBMeNetwork"
 TXT "ldapinfo: ldapver=3, keyx=fastserver"

The ldapinfo freeform TXT record provides more information, as defined by the LDAP or
network administrator. As in the example above, the information can be keyword-based. The
ldapinfo record is available to the application.

In combination, the name server might contain the following information, which effectively
publishes the set of LDAP servers that are in the marketing eNetwork domain:

ldap.marketing.tcp SRV 0 0 0 ldapm
 SRV 0 0 0 ldapmsec
 SRV 0 0 0 ldapmsuffix
 SRV 1 1 0 ldapr1
 SRV 1 2 0 ldapr2
 SRV 1 2 0 ldapr2sec

112 IBM Security Directory Suite: Programming Reference

 SRV 2 1 2222 ldapr3.raleigh.ibm.com.

ldapm A 199.23.45.296
 TXT "service:ldap://ldapm.austin.ibm.com:389/o=foo,c=us"
 TXT "ldaptype: master"

ldapmsec A 199.23.45.296
 TXT "service:ldaps://ldapm.austin.ibm.com:686/o=foo,c=us"
 TXT "ldaptype: master"

ldapmsuffix A 199.23.45.296
 TXT "service:ldaps://ldapm.austin.ibm.com:389/o=moo,c=us"
 TXT "ldaptype: master"

ldapr1 A 199.23.45.297
 TXT "service:ldap://ldapr1:389/o=foo,c=us"
 TXT "ldaptype: replica"

ldapr2 A 199.23.45.298
 TXT "service:ldap://ldapr2:389/o=foo,c=us"
 TXT "ldaptype: replica"

ldapr2sec A 199.23.45.298
 TXT "service:ldaps://ldapr2/o=foo,c=us"
 TXT "ldaptype: replica"
 TXT "ldapinfo: ca=verisign, authtype=server"

ldapr3.raleigh.ibm.com. A 199.23.45.299

In this example, a DNS search for ibmldap.marketing.tcp.austin.ibm.com with type=SRV
returns seven SRV records, which represent entries for four hosts. An SRV record is required for
each port or suffix combination that is supported by a server. For example, a server that supports
an SSL and non-SSL port might have at least two SRV records and two corresponding A records.
These records point to the same IP address. In this example, the A RR combinations for ldapm/
ldapmsec/ldapmsuffix and ldapr2/ldapr2sec map to the same host address.

Note: ldapmsuffix provides an alternative suffix for the 199.23.45.296 host.

The port that is specified on the SRV record is ignored if the target host has a TXT record that
contains an LDAP URL. If the URL is specified without a port, the default port is used (389 for
non-SSL, 686 for SSL).

Some rules for constructing strings that are associated with the TXT records:

• If the string contains white space, the entire string that follows TXT must be enclosed in double
quotation marks.

• If the string contains characters that are not supported by DNS. For example, the suffix might
contain characters that are not supported by DNS, an escape is supported, based on the
technique that is described in "Uniform Resource Locators (URL)", Internet RFC 1738, December
1994. For example:

TXT "service:ldaps://ldapr2/o=foo%f0,c=us"

grants the x'f0' character to be included in the LDAP URL.

The algorithm for the use of LDAP servers is outlined as follows. The LDAP servers are ordered in
the list that is based on this algorithm. The application has the freedom of using the first server
in the list that is based on priority and weight. It also has the freedom to select a different server,
which is based upon its requirements.

Using pseudo-SRV TXT records

If the SRV algorithm does not return any servers, the secondary algorithm is called. Instead of
looking for SRV records, the lookup routine runs a TXT query. It uses the service name string that
is supplied on ldap_server_locate(), which defaults to ldap.tcp.

The intent is to emulate the scheme that is provided with SRV records, but by using a search
for TXT records instead. To duplicate the previous example by using TXT records instead of SRV
records, the following definition is used:

Chapter 2. Directory Server programming reference 113

ldap.marketing.tcp TXT 0 0 0 ldapm
 TXT 0 0 0 ldapmsec
 TXT 0 0 0 ldapmsuffix
 TXT 1 1 0 ldapr1
 TXT 1 2 0 ldapr2
 TXT 1 2 0 ldapr2sec
 TXT 2 1 2222 ldapr3.raleigh.ibm.com.

ldapm A 199.23.45.296
 TXT "service:ldap://ldapm.austin.ibm.com:389/o=foo,c=us"
 TXT "ldaptype: master"

ldapmsec A 199.23.45.296
 TXT "service:ldaps://ldapm.austin.ibm.com:686/o=foo,c=us"
 TXT "ldaptype: master"

ldapmsuffix A 199.23.45.296
 TXT "service:ldaps://ldapm.austin.ibm.com:389/o=moo,c=us"
 TXT "ldaptype: master"

ldapr1 A 199.23.45.297
 TXT "service:ldap://ldapr1:389/o=foo,c=us"
 TXT "ldaptype: replica"

ldapr2 A 199.23.45.298
 TXT "service:ldap://ldapr2:389/o=foo,c=us"
 TXT "ldaptype: replica"

ldapr2sec A 199.23.45.298
 TXT "service:ldaps://ldapr2/o=foo,c=us"
 TXT "ldaptype: replica"
 TXT "ldapinfo: ca=verisign, authtype=server"

ldapr3.raleigh.ibm.com. A 199.23.45.299

The LDAP resolver routine assumes that the default domain is in effect when the SRV-type TXT
records do not contain fully qualified domain names.

Note: The pseudo-SRV TXT records, in many cases, can exactly replicate the syntax of SRV
records, with the exception that SRV is replaced by TXT. This replication makes for consistent
parsing of the records by the resolver routines. It also makes it simple to switch between the two
mechanisms when you insert this information into the DNS database. However, some versions
of DNS require data that is associated with the TXT records to be enclosed in double quotation
marks, as follows:

ldap.marketing.tcp TXT "0 0 0 ldapm"
 TXT "0 0 0 ldapmsec"

The ldap_server_locate() API handles either format.

Using a CNAME alias record

If the pseudo-SRV algorithm does not return any servers, the third algorithm is called. Instead of
looking for TXT records, the lookup routine runs a standard query by using the service name string
that is supplied on ldap_server_locate(), which defaults to ldap.

ldap.marketing.tcp CNAME ldapm

ldapm A 199.23.45.296
 TXT "service:ldap://ldapm.austin.ibm.com:389/o=foo,c=us"
 TXT "ldaptype: master"

If TXT records are not associated with the A record, defaults are assumed for port and ldaptype.

Alternative scheme for publishing LDAP server information in DNS

A more recent Internet Engineering Task Force (IETF) draft describes a scheme where service keys
and the protocol are prefixed with an underscore (_). For more information about this new scheme,
see the following internet draft: A. Gulbrandsen, P. Vixie, "A DNS RR for Specifying the Location of
Services (DNS SRV)", Internet RFC 2052, Troll Technologies, Vixie Enterprises. January 1999

When services are published in DNS by using the approach that is proposed in this IETF draft, service
names and protocol are prefixed with an underscore (_).

114 IBM Security Directory Suite: Programming Reference

http://www.ietf.org/rfc/rfc2052.txt
http://www.ietf.org/rfc/rfc2052.txt

For instance, a previous example might be defined as follows:

_ldap.marketing._tcp SRV 0 0 0 ldapm
 SRV 0 0 0 ldapmsec
 SRV 0 0 0 ldapmsuffix
 SRV 1 1 0 ldapr1
 SRV 1 2 0 ldapr2
 SRV 1 2 0 ldapr2sec
 SRV 2 1 2222 ldapr3.raleigh.ibm.com.

If all LDAP service information is published within your enterprise this way, the application can choose
to not specify service key or protocol, and the ldap_server_locate() API first runs its search by
using ldap and tcp. The search does not find any entries, and the API automatically runs the search
again by using _ldap and _tcp for service key and protocol. The search returns the information that
is published with the alternative scheme.

If information is published with both schemes, the application must explicitly define the service key
and protocol, to ensure that the wanted information is returned.

Errors
ldap_server_locate(), ldap_server_free_list and ldap_server_conf_save() return the
LDAP error code that results from the operation.

For more information, see “LDAP_ERROR” on page 41.

LDAP_SSL
Use the LDAP_SSL API or LDAP routine for initializing the Secure Socket Layer (SSL) function for an LDAP
application, and creating a secure connection to an LDAP server.

ldap_ssl_client_init
ldap_ssl_init
ldap_ssl_start (deprecated)
ldap_set_cipher
ldap_ssl_set_fips_mode_np

For ldap_ssl_set_fips_mode_np(), the FIPS processing mode is set before you create an SSL
environment that is used for securing server connections.

Synopsis

#include ldap.h
#include ldapssl.h

int ldap_ssl_client_init(
 char *keyring,
 char *keyring_pw,
 int ssl_timeout,
 int *pSSLReasonCode);

LDAP *ldap_ssl_init(
 char *host,
 int port,
 const char *name);

int ldap_ssl_start(
 LDAP *ld,
 char *keyring,
 char *keyring_pw,
 char *name);

int ldap_set_cipher(
 LDAP *ld,
 char *option);

int ldap_ssl_set_fips_mode_np(
 int mode);

Chapter 2. Directory Server programming reference 115

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init() or
ldap_open().

host
Several methods are supported for specifying one or more target LDAP servers, including the following
ones:
Explicit host list

Specifies the name of the host the LDAP server runs on. The host parameter can contain a
blank-separated list of hosts to connect to, and each host might optionally be of the form
host:port. If present, the:port overrides the port parameter that is supplied on ldap_init(),
ldap_ssl_init(), or ldap_open(). The following examples are typical:

ld=ldap_ssl_init ("server1", ldap_port, name);
ld=ldap_ssl_init ("server2:636, ldap_port, name);
ld=ldap_ssl_init ("server1:636 server2:2000 server3",
 ldap_port, name);

Local host
If the host parameter is NULL, the LDAP server is assumed to be running on the local host.

Default hosts
If the host parameter is set to ldaps://, the LDAP library attempts to locate one or more default
LDAP servers, with secure SSL ports, by using the ldap_server_locate() function. The port
that is specified on the call is ignored because ldap_server_locate() returns the port. For
example, the following two are equivalent:

ld=ldap_ssl_init ("ldaps://", ldap_port, name);
ld=ldap_ssl_init (LDAPS_URL_PREFIX, LDAPS_PORT, name);

Note: ldaps or LDAPS_URL_PREFIX must be used to obtain servers with secure ports. If more
than one default server is located, the list is processed in sequence until an active server is found.

The LDAP URL can include a Distinguished Name, which is used as a filter for selecting candidate
LDAP servers that are based on the server suffixes. The server is added to the list of candidate
servers. This addition is done if the most significant portion of the DN is an exact match with a
server suffix after normalizing for case. For example, the following returns default LDAP servers
that have a suffix that supports the specified DN only:

ld=ldap_ssl_init ("ldaps:///cn=fred, dc=austin, dc=ibm,
 dc=com", LDAPS_PORT, name);

In this case, a server that has a suffix of "dc=austin, dc=ibm, dc=com" matches. If more
than one default server is located, the list is processed in sequence until an active server is found.

If the LDAP URL contains a host name and optional port, the host is used to create the connection.
No attempt is made to locate the default servers, and the DN, if present, is ignored. For example,
the following two are equivalent:

ld=ldap_ssl_init ("ldaps://myserver", LDAPS_PORT, name);
ld=ldap_ssl_init ("myserver", LDAPS_PORT, name);

For more information about the algorithm that is used to locate default LDAP servers, see
“Locating default LDAP servers” on page 71.

Host with privileged port
On platforms that support the rresvport function (typically UNIX platforms), if a specified
host is prefixed with "privport://", then the LDAP library uses the rresvport() function to
attempt to obtain one of the reserved ports (512 through 1023), instead of an ephemeral port. The

116 IBM Security Directory Suite: Programming Reference

search for a reserved port starts at 1023 and stops at 512. If a reserved port cannot be obtained,
the function call fails. For example:

 ld=ldap_ssl_init ("privport://server1, ldap_port, name);
ld=ldap_ssl_init ("privport://server2:1200, ldap_port,
 name);
ld=ldap_ssl_init ("privport://server1:800 server2:2000
 privport://server3", ldap_port, name); port

port
Specifies the port number to connect to. If you want the default IANA-assigned SSL port of 636,
specify LDAPS_PORT.

keyring
Specifies the name of a key database file (with kdb extension). The key database file typically
contains one or more certificates of CAs that are trusted by the client. These types of X.509
certificates are also known as trusted roots. A key database can also be used to store the client
private keys and associated client certificates. A private key and associated client certificate are
required only if the LDAP server is configured to require client and server authentication. If the LDAP
server is configured to provide only server authentication, a private key and client certificate are not
required.
Default keyring and password

Applications can use the default keyring file, as installed with the LDAP support, by specifying
NULL pointers for keyring and keyring_pw. The default keyring file, that is, ldapkey.kdb, and
the associated password stash file, that is, ldapkey.sth, are installed in the /etc directory
under LDAPHOME, where LDAPHOME is the path to the installed LDAP support. LDAPHOME varies
by operating system platform:

• For AIX and Solaris: /opt/IBM/ldap/VERSION_NUMBER
• Linux®: /opt/ibm/ldap/VERSION_NUMBER
• Windows: C:\Program Files\IBM\LDAP\VERSION_NUMBER

Note: This location is the default installation location. The actual LDAPHOME is determined
during installation.

where, VERSION_NUMBER is V8.0.1.x for IBM Security Directory Suite 8.0.1.x.

Applications typically use the default keyring file when the LDAP servers used by the
applications are configured with X.509 certificates. These certificates are issued by one of the
well-known defaults CA. A trusted root key is the public key and associated Distinguished Name of
a CA. The following trusted roots are automatically defined in the default LDAP key database file
(ldapkey.kdb):

• Integrion Certification Authority Root
• IBM World Registry Certification Authority
• Thawte Personal Premium CA
• Thawte Personal Freeemail CA
• Thawte Personal Basic CA
• Thawte Premium Server CA
• VeriSign Test CA Root Certificate
• RSA Secure Server Certification Authority
• VeriSign Class 1 Public Primary Certification Authority
• VeriSign Class 2 Public Primary Certification Authority
• VeriSign Class 3 Public Primary Certification Authority
• VeriSign Class 4 Public Primary Certification Authority

Note: Each of these certificates is initially set to be trusted.

Chapter 2. Directory Server programming reference 117

If the default keyring file cannot be located, this set of trusted roots is also built-in to the LDAP
or SSL code, and is used by default.

By modifying the contents of ldapkey.kdb, as in LDAPHOME\etc, all LDAP applications that
use SSL and specify NULL pointers to keyring and keyring_pw use the revised key database
without change to each application. There are various reasons for changing or customizing a
keyring file, including:

• Adding one or more new trusted roots (that is, adding trust for more CAs).
• Removing trust. For example, your enterprise might obtain all of its server certificates from

VeriSign. In this case, it is appropriate to mark the VeriSign certificates as trusted only.

Note: For the default LDAP keyring file to be generally useful to a set of applications, it requires
to be readable by each of the applications. It is not suitable to store client certificates with
private keys in a keyring file that is readable by users other than the owner of the private keys.
Therefore, the client certificates with private keys must not be stored in the default LDAP keyring
file. They must be stored in keyring files that can be accessed by the appropriate user only. Care
must be taken to ensure that local file system permissions are set so that the keyring file and
associated stash file, if used, are accessible by the appropriate user only.

The password that is defined for the default ldapkey.kdb file is ssl_password. Use this
password when initially accessing the default keyring database with the ikeyman utility. This
default password is also encrypted into the default keyring password stash file, ldapkey.sth,
in the same directory as ldapkey.kdb. Use the ikeyman utility to change the password.

If keyring is specified, you must specify a file name with fully qualified path. If a file name
without a fully qualified path is specified, the LDAP library looks in the current directory for the file.
The key database file that is specified here must be created by using the ikeyman utility.

For more information about using ikeyman to manage the contents of a key database, see
the Using iKeyman section in the Administering section in the IBM Security Directory Suite
documentation.

Note: Although still supported, use of the ldap_ssl_start() is discouraged, as its use is
deprecated. Any application that uses the ldap_ssl_start() API must use a single key
database per application process only.

keyring_pw
Specifies the password that is used to protect the contents of the key database. This password
is important, particularly when it protects one or more private keys that are stored in the key
database. The password is specified when the key database is initially created, and can be
changed by using the ikeyman utility. In lieu of specifying the password each time the application
opens the keyring database, the password can be obtained from a password stash file. This file
contains an encrypted version of the password. The password stash file can be created by using
the ikeyman utility. To obtain the password from the password stash file, specify a NULL pointer
for keyring_pw. It is assumed that the password stash file has the same name as the keyring
database file, but with an extension of .sth instead of .kdb. It is also assumed that the password
stash file is in the same directory as the keyring database file.

Note: The default keyring file (ldapkey.kdb) is initially configured to have ssl_password
as its password. This password is also initially configured in the default password stash file
(ldapkey.sth).

name
Specifies the name, or label, which is associated with the client private key or certificate pair in the
key database. It is used to uniquely identify a private key or certificate pair, as stored in the key
database, and might be something like: Digital ID for Fred Smith.

If the PKCS#11 interface is used to run SSL connection by using a Crypto device, then the user
must pass the token label of the Crypto device and the certificate that requires to be used for
the connection in the following format: TOKENLABEL:CERTIFICATENAME. Here, the certificate is
stored in the key storage device by using this format.

118 IBM Security Directory Suite: Programming Reference

https://www.ibm.com/docs/en/sdsu/8.0.1?topic=documentation-administering
https://www.ibm.com/docs/sdsu/8.0.1
https://www.ibm.com/docs/sdsu/8.0.1

If the LDAP server is configured to run Server Authentication, a client certificate is not required
and name can be set to NULL. If the LDAP server is configured to run Client and Server
Authentication, a client certificate is required. name can be set to NULL if a default certificate
or private key pair is designated as the default. See the Using iKeyman section in the Administering
section in the IBM Security Directory Suite documentation. Similarly, name can be set to NULL if
there is a single certificate or private key pair in the designated key database.

ssl_timeout
Specifies the SSL timeout value in seconds. The timeout value controls the frequency with which
the SSL protocol stack regenerates session keys. If ssl_timeout is set to 0, the default value
SSLV3_CLIENT_TIMEOUT is used. Otherwise, the value that is supplied is used, provided it is less
than or equal to 86,400 (number of seconds in a day). If ssl_timeout is greater than 86,400,
then LDAP_PARAM_ERROR is returned.

pSSLReasonCode
Specifies a pointer to the SSL Reason Code, which provides more information in case an error
occurs during initialization of the SSL stack, when ldap_ssl_client_init() is called. See
ldapssl.h for reason codes that can be returned.

mode
For ldap_ssl_set_fips_mode_np(), mode specifies whether FIPS processing mode must be
on (1) or off (0).

Usage
The US Government regulations about the export of SDKs that provide support for encryption continue to
evolve.

The point of control, regarding available levels of encryption, is now the application.

Any LDAP application that uses IBM Security Directory Suite C-Client SDK Version 6.0 or later with the
supported GSKit version provides default access to SSL encryption algorithms.

The ldap_ssl_client_init() routine is used to initialize the SSL protocol stack for an
application process. Initialization includes establishing access to the specified key database
file. The ldap_ssl_client_init() API must be called one time per application process
before you make any other SSL-related LDAP calls, such as ldap_ssl_init(). When
ldap_ssl_client_init() is successfully called, any subsequent invocations return a return code
of LDAP_SSL_ALREADY_INITIALIZED. This return also means that a particular key database file is
effectively bound to an application process. To change the key database, the application or one of its
processes must be restarted.

Note: The ldap_ssl_client_init() routine is deprecated but is still supported.

The ldap_ssl_environment_init() routine can be used instead of ldap_ssl_client_init()
with the advantage of being able to be called more than one time in the same process. Each call
creates an SSL environment which is used for subsequent SSL sessions that are initiated by calling
ldap_ssl_init(). These SSL environments persist until the LDAP sessions that were created by using
them persist.

The ldap_ssl_init() routine is the SSL equivalent of ldap_init(). It is used to initialize a secure
SSL session with a server.

Note: The server is not contacted until an operation is run that requires it, allowing various options to be
set after initialization.

After the secure connection is established for the LDAP session, all subsequent LDAP messages that
flow over the secure connection are encrypted, including the ldap_simple_bind() parameters, until
ldap_unbind() is called.

ldap_ssl_init() returns a session handle, a pointer to an opaque data structure that must be passed
to subsequent calls that pertain to the session. These subsequent calls return NULL if the session cannot
actually be established with the server. Use ldap_get_option() to determine why the call failed.

Chapter 2. Directory Server programming reference 119

https://www.ibm.com/docs/en/sdsu/8.0.1?topic=documentation-administering
https://www.ibm.com/docs/sdsu/8.0.1

The LDAP session handle that is returned by ldap_ssl_init and ldap_init is a pointer to an
opaque data type representing an LDAP session. The ldap_get_option() and ldap_set_option()
APIs are used to access and set various session-wide parameters. For more information about
ldap_get_option() and ldap_set_option(), see “LDAP_INIT” on page 58.

Note: When you connect to an LDAP V2 server, one of the ldap_simple_bind() or ldap_bind()
calls must be completed before other operations can be run on the session, except for ldap_set/
get_option(). The LDAP V3 protocol does not require a bind operation before you run other operations.

Although still supported, the use of the ldap_ssl_start() API is now deprecated.
The ldap_ssl_client_init() and ldap_ssl_init() APIs must be used instead. The
ldap_ssl_start() API starts a secure connection to an LDAP server by using SSL.
ldap_ssl_start() accepts the ld from an ldap_open() and runs an SSL handshake to a server.
ldap_ssl_start() must be called after ldap_open() and before ldap_bind(). When the secure
connection is established for the ld, all subsequent LDAP messages that flow over the secure connection
are encrypted, including the ldap_bind() parameters, until ldap_unbind() is called.

The following scenario depicts the calling sequence, where the entire set of LDAP transactions
is protected by using a secure SSL connection, including the dn and password that flow on the
ldap_simple_bind():

 rc = ldap_ssl_client_init (keyfile, keyfile_pw, timeout,
 &reasoncode);
 ld = ldap_ssl_init(ldaphost, ldapport, label);
 rc = ldap_set_option(ld, LDAP_OPT_SSL_CIPHER, &ciphers);
 rc = ldap_simple_bind_s(ld, binddn, passwd);

 ...additional LDAP API calls

 rc = ldap_unbind(ld);

Note: The sequence of calls for the deprecated APIs is ldap_open/init(), ldap_ssl_start(),
followed by ldap_bind().

The following ciphers are attempted for the SSL handshake by default, in the order shown:

AES_256
AES_128
RC4_SHA_US
RC4_MD5_US
DES_SHA_US
3DES_SHA_US
RC4_MD5_EXPORT
RC2_MD5_EXPORT

For more information about setting the ciphers to be used, see ldap_get/set_option().

To specify the number of seconds for the SSL session-level timer, use:

ldap_set_option(ld,LDAP_OPT_SSL_TIMEOUT, &timeout)

where timeout specifies timeout in seconds. When timeout occurs, SSL again establishes the session keys
for the session, for increased security. To specify a specific cipher, or set of ciphers, to be used when you
negotiate with the server, use ldap_set_option() to define a sequence of ciphers. For example, the
following setting defines a sequence of three ciphers to be used when you negotiate with the server. The
first cipher that is found to be in common with the server list of ciphers is used.

ldap_set_cipher is the same as calling ldap_set_option (ld, LDAP_OPT_SSL_CIPHER, option).
Either function checks the validity of the input string. The cipher is used when the SSL connection is
established by ldap_ssl_init(). For more information about ldap_set_option, see “LDAP_INIT” on
page 58.

ldap_ssl_set_fips_mode_np() can be called before you call ldap_ssl_environment_init() or
ldap_ssl_client_int() to set FIPS processing mode. If FIPS processing mode is supposed to be on,
SSL uses the FIPS certified encryption libraries for encryption and sets the processing mode to on. FIPS
processing mode does not change any existing SSL environments.

120 IBM Security Directory Suite: Programming Reference

Options
Options are supported for controlling the nature of the secure connection. These options are set by using
the ldap_set_option() API.

ldap_set_option(ld, LDAP_OPT_SSL_CIPHER,
(void *) LDAP_SSL_3DES_SHA_US
LDAP_SSL_RC4_MD5_US);

The following ciphers are defined in ldap.h:

#define LDAP_SSL_RC4_SHA_US "05"
#define LDAP_SSL_RC4_MD5_US "04"
#define LDAP_SSL_DES_SHA_US "09"
#define LDAP_SSL_3DES_SHA_US "0A"
#define LDAP_SSL_RC4_MD5_EX "03"
#define LDAP_SSL_RC2_MD5_EX "06"

For more information about ldap_set_option, see “LDAP_INIT” on page 58.

Notes
ldapssl.h contains return codes that are specific for ldap_ssl_client_init(),
ldap_ssl_init(), and ldap_ssl_start().

The SSL versions of these utilities include RSA Security Inc. software.

The ldap_ssl_client_init(), ldap_ssl_init(), and ldap_ssl_start() APIs are only
supported for the versions of the LDAP library that include the SSL component.

ldap_ssl_set_fips_mode_np() returns LDAP_SUCCESS if the client library supports SSL, otherwise
it returns LDAP_SSL_NOT_AVAILABLE.

See also
ldap_init, ldap_ssl_environment_init, and ldap_ssl_client_init

LDAP_SSL_PKCS11
Use the LDAP_SSL_PKCS11 API or LDAP routine for setting up the SSL and PKCS#11 environment for
GSKit.

• ldap_ssl_pkcs11_client_init
• ldap_ssl_pkcs11_environment_init

Synopsis

#include ldap.h
#include ldapssl.h

typedef struct {
 char *Libpath,
 char *TokenLabel,
 char *TokenPw,
 int Keystorage,
 int Accelerator} PKCS11arg;

int ldap_ssl_pkcs11_client_init(
 char *keydatabase,
 char *keydatabase_pwd,
 int ssl_timeout,
 int *pSSLReasonCode,
 PKCS11arg *pkcs11arg);

ldap_ssl_pkcs11_environment_init(
 char *keydatabase,
 char *keydatabase_pwd,
 int ssl_timeout,

Chapter 2. Directory Server programming reference 121

 int *pSSLReasonCode,
 PKCS11arg *pkcs11arg);

Input parameters
keydatabase

Specifies the name of the key database file with kdb extension. The key database file typically
contains one or more certificates from the certificate authorities (CAs) that are trusted by the clients.
If the LDAP server is configured to provide only server authentication, then a private key and client
certificate are not required. If the user wants to use the Crypto device under key storage mode only,
then the keydatabase parameter can be NULL. If the client needs the Crypto device to work only
in accelerator mode, then the kdb file must be specified. If the key database file and password are
NULL, then the default ldapkey.kdb file is used as the key database and the password is used from
default ldapkey.sth file.

User is given a provision to store some keys on device. This provision can be Personal Certificates
with private key, and some in the key database file, which can be Signer Certificates with public keys.
Therefore, a specific certificate is selected either from the local kdb file or from Crypto device that is
based on the certificate label used.

keydatabase_pwd
Specifies the password that is used to protect the contents of the key database file. This password is
important, particularly when it protects one or more private keys that are stored in the key database
file. If NULL is passed to this parameter and the key database file is NULL, then password for the
default ldapkey.kdb file is taken from ldapkey.sth file.

ssl_timeout
Specifies the SSL timeout value in seconds. The timeout value controls the frequency with which
the SSL protocol stack regenerates session keys. If ssl_timeout is set to 0, then the default value
43,200 is used. Otherwise, the value specified in the parameter is used, this value should be less
than or equal to 86,400 (number of seconds in a day). If ssl_timeout is greater than 86,400, then
LDAP_PARAM_ERROR is returned.

pSSLReasonCode
Specifies a pointer to the SSL reason code that contains more information in event of an error occurs
during the initialization of the SSL stack. See ldapssl.h for reason codes that can be returned.

pkcs11arg
Specifies a struct data type that contains information about the different Crypto device settings to
enable key storage and accelerator mode.

An instance of a structure contains following fields:
Libpath

Specifies a null terminated string that defines the driver path of the file that is to be used to access
PKCS11 device.

Token_label
Specifies a null terminated string that defines the label that is assigned to the PKCS11 device for
access.

Token_pwd
Specifies a null terminated string that defines the password phrase to access the PKCS11 device.

Keystorage
The value of this parameter can be 0 or 1. If set to 1, it indicates that the Crypto device is to be
used as key storage. If set to 0, it indicates that the Crypto device cannot function as key storage.

Accelerator
Specifies an integer value that determines the type of accelerated operation a client needs from
the PKCS11 device.

Under acceleration mode, the PKCS11 device can be configured to do three different operations:
Symmetric operation, Digest operation, and Random Data Generation operation.

122 IBM Security Directory Suite: Programming Reference

The accelerator value must be one of the options that are listed as follows:

#define LDAP_SSL_ACCELERATION_MODE_NONE 0
#define LDAP_SSL_ACCELERATION_MODE_SYM 1
#define LDAP_SSL_ACCELERATION_MODE_DIG 2
#define LDAP_SSL_ACCELERATION_MODE_SYM_DIG 3
#define LDAP_SSL_ACCELERATION_MODE_RND 4
#define LDAP_SSL_ACCELERATION_MODE_RND_SYM 5
#define LDAP_SSL_ACCELERATION_MODE_RND_DIG 6
#define LDAP_SSL_ACCELERATION_MODE_SYM_DIG_RND 7

Usage
The ldap_ssl_pkcs11_client_init() routine is used to initialize the SSL and PKCS#11 environment
for an application process. For every application process, the ldap_ssl_pkcs11_client_init() API
must be called before its makes any other SSL-related LDAP calls, such as ldap_ssl_init(). When
ldap_ssl_pkcs11_client_init() is successfully called, any subsequent invocations return a return
code of LDAP_SSL_ALREADY_INITIALIZED. This call indicates that a particular key database file and
PKCS#11 settings are effectively bound to an application process. To change the SSL configuration in use,
the application or one of its processes must be restarted.

The ldap_ssl_pkcs11_environment_init() routine can be used instead of
ldap_ssl_pkcs11_client_init(). This API can be called more than one time in the same process,
where each call creates an SSL environment that is used for subsequent SSL sessions that are initiated
by calling ldap_ssl_init(). In these cases, the SSL environments persist until the LDAP sessions that
were created by using them persist.

See also
ldap_ssl_environment_init, ldap_ssl_client_init, ldap_ssl_init

LDAP_START_TRANSACTION
Use the LDAP_START_TRANSACTION API or LDAP routine to call a start transaction request.

• ldap_start_transaction
• ldap_start_transaction_s

Synopsis

#include ldap.h

int ldap_start_transaction(
 LDAP *ld,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 int *msgidp)

int ldap_start_transaction_s(
 LDAP *ld,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 struct berval **retdatap)

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init(),
or ldap_open().

serverctrls
Specifies a list of LDAP server controls.

Chapter 2. Directory Server programming reference 123

clientctrls
Specifies a list of LDAP client controls.

Output parameters
msgidp

This parameter contains the message ID of the request.
retdatap

This parameter specifies the result of the start transaction operation. This result contains the
transaction ID of the transaction.

Usage
This API routine is used to initiate a start transaction request against the server.

Errors
This API routine returns an LDAP error code if the operation is unsuccessful.

See also
ldap_start_transaction, ldap_start_transaction_s, ldap_prepare_transaction, ldap_prepare_transaction_s,
ldap_end_transaction, ldap_end_transaction_s, ldap_get_tran_id, ldap_create_transaction_control

LDAP_START_TLS
Use the LDAP_START_TLS API or LDAP routine to start a TLS session.

ldap_start_tls_s_np

Synopsis

#include ldap.h

int ldap_start_tls_s_np (
 LDAP *ld,
 const char *certificateName)

Input parameters
ld

Specifies the LDAP pointer that is used in the ldap_start_tls_s_np() call.
certificateName

Specifies the name of the certificate to use. It is the same as the parameter used in the
ldap_ssl_environment_init() API and might be NULL.

Usage
The ldap_start_tls_s_np() API is used to secure a previously unsecured connection. It takes a
handle from an existing LDAP connection and the name of the certificate to use. If the command is
successful, then communication on the connection is secure until either the connection is closed or an
ldap_stop_tls_s_np() call is made.

The secure environment must be initialized, either by calling ldap_ssl_environment_init or
ldap_ssl_client_init, before ldap_start_tls_s_np() is called.

124 IBM Security Directory Suite: Programming Reference

Errors
ldap_start_tls_s_np() returns LDAP_SUCCESS if the call was successful, or an LDAP error if the call
was unsuccessful.

If the connection is already secure, either by going against the SSL port or by already establishing a TLS
session, then LDAP_OPERATIONS_ERROR is returned.

If the secure environment is not initialized through a call to ldap_ssl_client_init or
ldap_ssl_environment_init, then LDAP_TLS_CLIENT_INIT_NOT_CALLED is returned.

If the TLS handshake with the server fails, LDAP_TLS_HANDSHAKE_FAILED is returned.

If the server is not configured to allow TLS, then LDAP_PROTOCOL_ERROR is returned.

If the GSKit environment was not previously initialized, then LDAP_SSL_CLIENT_INIT_NOT_CALLED is
returned.

If the server does not support TLS, then LDAP_REFERRAL is returned. The referred to server might
support TLS.

ldap_stop_tls_s_np, ldap_ssl_environment_init, ldap_ssl_client_init

See also
If the server is configured to do TLS, but is unable to establish TLS connections, then
LDAP_UNAVAILABLE is returned.

LDAP_STOP_TLS
Use the LDAP_STOP_TLS API or LDAP routine to abandon an open LDAP connection over TLS.

ldap_stop_tls_s_np

Synopsis

#include ldap.h

int ldap_stop_tls_s_np(
 LDAP *ld)

Input parameters
ld

Specifies the LDAP pointer that is used in the ldap_start_tls_s_np() call.

Usage
The ldap_stop_tls_s_np() API is used to end the TLS session on a connection.

This call closes the connection to the server.

Errors
ldap_stop_tls_s_np() returns LDAP_SUCCESS if the call was successful, an LDAP error if the call was
unsuccessful.

See also
ldap_start_tls_s_np, ldap_ssl_environment_init, ldap_ssl_client_init

Chapter 2. Directory Server programming reference 125

LDAP_URL
Use the LDAP_URL API for Uniform Resource Locator routines.

ldap_is_ldap_url
ldap_url_parse
ldap_free_urldesc
ldap_url_search
ldap_url_search_s
ldap_url_search_st

Synopsis

#include sys/time.h /* for struct timeval definition */

#include ldap.h

int ldap_is_ldap_url(
 char *url)

int ldap_url_parse(
 char *url,
 LDAPURLDesc **ludpp)

typedef struct ldap_url_desc {
 char *lud_host; /* LDAP host to contact */
 int lud_port; /* port on host */
 char *lud_dn; /* base for search */
 char **lud_attrs; /* NULL-terminate list of attributes */
 int lud_scope; /* a valid LDAP_SCOPE_... value */
 char *lud_filter; /* LDAP search filter */
 char *lud_string; /* for internal use only */
} LDAPURLDesc;

ldap_free_urldesc(
 LDAPURLDesc *ludp)

int ldap_url_search(
 LDAP *ld,
 char *url,
 int attrsonly)

int ldap_url_search_s(
 LDAP *ld,
 char *url,
 int attrsonly,
 LDAPMessage **res)

int ldap_url_search_st(
 LDAP *ld,
 char *url,
 int attrsonly,
 struct timeval *timeout,
 LDAPMessage **res)

Input parameters
ld

Specifies the LDAP pointer that is returned by a previous call to ldap_init(), ldap_ssl_init(),
or ldap_open().

url
Specifies a pointer to the URL string.

attrsonly
Specifies attribute information. Set to 1 to request attribute types only. Set to 0 to request both
attribute types and attribute values.

126 IBM Security Directory Suite: Programming Reference

timeout
Specifies a timeout value for a synchronous search that is issued by the ldap_url_search_st()
routine.

ludp
Points to the LDAP URL description, as returned by ldap_url_parse().

Output parameters
ludpp

Points to the LDAP URL description, as returned by ldap_url_parse().
res

Contains the result of the asynchronous operation that is identified by msgid, as returned from
ldap_url_search_s() or ldap_url_search_st(). This result must be passed to the LDAP
parsing routines.

Usage
These routines support the use of LDAP URLs. LDAP URLs look like the following format:

ldap://[hostname]/dn[?attributes[?scope[?filter]]]

where:

• hostname is a host name with an optional: portnumber.
• dn is the base DN to be used for an LDAP search operation.
• attributes is a comma-separated list of attributes to be retrieved.
• scope is one of the following three strings: base, one, or sub. The default is base.
• filter is the LDAP search filter as used in a call to ldap_search.

For example:

ldap://ldap.itd.umich.edu/c=US?o,description?one?o=umich

URLs that are wrapped in angle-brackets or preceded by URL: or both are also tolerated, including the
following forms:

• URL:ldapurl

For example:

URL:ldap://ldap.itd.umich.edu/c=US?o,description?one?o=umich

• URL:ldapurl

For example:

URL:ldap://ldap.itd.umich.edu/c=US?o,description?one?o=umich

ldap_is_ldap_url() returns a nonzero value if URL begins with ldap://. It can be used as a quick
check for an LDAP URL; the ldap_url_parse() routine is used to extract the various components of the
URL.

ldap_url_parse() breaks down an LDAP URL passed in URL into its component pieces. If successful,
zero is returned, an LDAP URL description is allocated and provided, and ludpp is set to point to it. If an
error occurs, one of these values is returned:

 LDAP_URL_ERR_NOTLDAP - URL doesn't begin with "ldap://"
 LDAP_URL_ERR_NODN - URL has no DN (required)
 LDAP_URL_ERR_BADSCOPE - URL scope string is invalid
 LDAP_URL_ERR_MEM - can't allocate memory space

Chapter 2. Directory Server programming reference 127

ldap_free_urldesc() is called to free an LDAP URL description that was obtained from a call to
ldap_url_parse().

ldap_url_search() initiates an asynchronous LDAP search that is based on the contents of the URL
string. This routine acts just like ldap_search except that the search parameters are pulled out of the
URL.

ldap_url_search_s() does a synchronous LDAP search that is based on the contents of the URL
string. This routine acts just like ldap_search_s() except that the search parameters are pulled out of
the URL.

ldap_url_search_st() does a synchronous LDAP URL search with a specified timeout. This routine
acts just like ldap_search_st() except that the search parameters are pulled out of the URL.

Notes
For search operations, if hostport is omitted, host and port for the current connection are used. If
hostport is specified, and is different from the host and port combination that is used for the current
connection, the search is directed to hostport, instead of using the current connection. In this case, the
underlying referral mechanism is used to bind to hostport.

If the LDAP URL does not contain a search filter, the filter defaults to objectClass=*.

See also
ldap_search

LDAP_SSL_ENVIRONMENT_INIT
Use the LDAP_SSL_ENVIRONMENT_INIT API to initialize SSL for a secure connection between a client
and server.

The ldap_ssl_environment_init() routine has the same parameters as ldap_ssl_client_int()
but can be called more than one time. It returns LDAP_SUCCESS or the appropriate LDAP error code.
It does not return LDAP_SSL_ALREADY_INITIALIZED. An application that requires SSL connections to
different servers can initialize environments in separate calls to this function, with different key database
files. The environment that is created is used by all SSL connections that are established by calling
ldap_ssl_init() until the next call is made to ldap_ssl_environment_init(). Subsequent calls
to ldap_ssl_environment_init() do not affect existing SSL connections.

Note: This routine is deprecated but is still supported.

Synopsis

#include ldap.h
#include ldapssl.h
int ldap_ssl_environment_init(
 const char *keydatabase,
 const char *keydatabase_pw,
 int ssl_timeout,
 int *pSSLReasonCode);

Input parameters
keydatabase

Specifies the name of a key database file with .kdb extension. The key database file typically contains
one or more certificates of CAs that are trusted by the client. These types of X.509 certificates are
also known as trusted roots. A key database can be used to store the private keys of the client and
associated client certificates. A private key and associated client certificate are required if the LDAP
server is configured to require client and server authentication only. If the LDAP server is configured to
provide only server authentication, a private key and client certificate are not required.

128 IBM Security Directory Suite: Programming Reference

keydatabase_pw
Specifies the password that is used to protect the contents of the key database. This password is
important, particularly when it protects one or more private keys that are stored in the key database.
The password is specified when the key database is initially created, and can be changed by using
the iKeyman utility. Instead of specifying the password each time the application opens the key
database. The password can be obtained from a password stash file that contains an encrypted
version of the password. The password stash file can be created by using the iKeyman utility. To
obtain the password from the password stash file, specify a NULL pointer for keydatabase_pw. It is
assumed that the password stash file has the same name as the key database file, but with a .sth
extension instead of .kdb. It is assumed that the password stash file is in the same directory as the
key database file.

Note: The default key database file, ldapkey.kdb, is initially configured to have ssl_password
as its password. This password is also initially configured in the default password stash file
(ldapkey.sth).

ssl_timeout
Specifies the SSL timeout value in seconds. The timeout value controls the frequency with which the
SSL protocol stack regenerates session keys. If ssl_timeout is set to 0, a default value is used.
Otherwise, the value that is supplied is used, provided it is less than or equal to 86,400, the number of
seconds in a day. If ssl_timeout is greater than 86,400, LDAP_PARAM_ERROR is returned.

pSSLReasonCode
Specifies a pointer to the SSL Reason Code, which provides more information when an error
occurs during initialization of the SSL stack, when ldap_ssl_environment_init() is called. See
ldapssl.h for reason codes that can be returned.

See also
ldap_ssl_pkcs11_client_init, ldap_ssl_pkcs11_environment_init

LDAP_SORT
Use the LDAP_SORT API or LDAP routine to request the entries that are sort and returned by the servers
that match the filter that is specified on a search operation.

ldap_create_sort_keylist
ldap_free_sort_keylist
ldap_create_sort_control
ldap_parse_sort_control

Synopsis

#include ldap.h

int ldap_create_sort_keylist(
 LDAPsortkey ***sortKeyList,
 const char *sortString);

int ldap_create_sort_control(
 LDAP *ld,
 LDAPsortkey **sortKeyList,
 const char isCritical,
 LDAPControl **control)

void ldap_free_sort_keylist(
 LDAPsortkey **sortKeyList)

int ldap_parse_sort_control(
 LDAP *ld,
 LDAPControl **serverControls,
 unsigned long *sortRC,
 char **attribute)

Chapter 2. Directory Server programming reference 129

Input parameters
ld

Specifies the LDAP pointer that is returned by previous call to ldap_init(), ldap_ssl_init(), or
ldap_open(). Must not be NULL.

sortString
String with one or more attributes to be used to sort entries that are returned by the server.

sortKeyList
Pointer to an array of LDAPsortkey structures, which represent attributes that the server
uses to sort returned entries. Input when used for ldap_create_sort_control() and
ldap_free_sort_keylist().

isCritical
Specifies the criticality of sort on the search. If the criticality of sort is FALSE, and the server finds
a problem with the sort criteria, the search continues. However, the entries that are returned are not
sorted. If the criticality of sort is TRUE, and the server finds a problem with the sort criteria, the search
does not continue. No sorting is done, and no entries are returned. If the server does not find any
problem with the sort criteria, the search and sort continues and entries are returned sorted.

serverControls
A list of LDAP server controls. For more information about server controls, see “LDAP controls”
on page 24. These controls are returned to the client when you call the ldap_parse_result()
function on the set of results that are returned by the server.

Output parameters
sortKeyList

Pointer to an array of LDAPsortkey structures, which represent attributes the server uses to sort
returned entries. Output when used for ldap_create_sort_keylist().

control
A result parameter that is provided with an allocated array of one control for the sort function. The
control must be freed by calling ldap_control_free().

sortRC
LDAP return code that is retrieved from the sort results control returned by the server.

attribute
Returned by the server, it is the name of the attribute in error.

Usage
These routines are used to sort the entries that are returned from the server after an LDAP search
operation.

The ldap_create_sort_keylist() function builds a list of LDAPsortkey structures that are based
on the list of attributes that are included in the incoming string. A sort key is made up of three possible
values:

• Name of attribute that is used to sort entries that are returned by the server
• OID of a matching rule for that attribute
• Whether the sort must be done in reverse order

The syntax of the attributes in the sortString, [-]attribute name[:<matching rule OID>],
specifies whether there is a matching rule OID that must be used for the attribute, and whether the
attribute must be sorted in reverse order. In the following sortString example, the search results are
sorted first by surname and then by given name, with the given name that is sorted in reverse (descending
order) as specified by the prefixed minus sign (-):

 sn -givenname

Thus, the syntax of the sort parameter is as follows:

130 IBM Security Directory Suite: Programming Reference

 [-]attribute name[:matching rule OID]

where:

• attribute name is the name of the attribute you want to sort by.
• matching rule OID is the optional OID of a matching rule that you want to use for sorting.
• the minus sign (-) indicates that the results must be sorted in reverse order.

The sortKeyList, output from the ldap_create_sort_keylist() function, can be used as
input into the ldap_create_sort_control() function. The sortKeyList is an ordered array of
LDAPsortkey structures such that the key with the highest precedence is at the front of the array. The
control output form ldap_create_sort_control() function includes the criticality set based on the
value of the isCritical flag. This control is added to the list of client controls that are sent to the server
on the LDAP search request.

The ldap_free_sort_keylist() function cleans up all the memory that is used by the sort key list.
This function must be called after the ldap_create_sort_control() function is completed.

When a sort results control is returned by the server, the ldap_parse_sort_control() function can
be used to retrieve the values from the control. The function takes as input the server controls returned
by the server, and returns the value of the sort control return code and possibly an attribute name if the
return code is not LDAP_SUCCESS. No sort control is returned to the client if:

• There was an error that parses the sort criteria for the search.
• There were no entries that are returned for the search.

Server-side sorting of search results

Sorted Search Results provides sort capabilities for LDAP clients with limited or no sort functions.
Sorted Search Results enables an LDAP client to receive sorted search results that are based on a
list of criteria. Each criteria represents a sort key. The sort criteria includes attribute types, matching
rules, or descending order. The server must use this criteria to sort search results before you return
them. This criteria moves the responsibility of sorting from the client application to the server, where
it might be done much more efficiently. For example, a client application might want to sort the list
of employees at their Grand Cayman site by surname, common name, and telephone number. Instead
of building the search list twice for sorting, the search list is built one time. It is then sorted, before it
returns the results to the client application. The sort is done one time at the server and then again at
the client when all the results are returned.

In the following sortString example, the search results are sorted first by surname (sn), then by
given name (givenname), with the given name that is being sorted in reverse (descending) order as
specified by the prefixed minus sign (-).

sn -givenname

The sortKeyList output from ldap_create_sort_keylist() can be used as input to
ldap_create_sort_control(). The sortKeyList is an ordered array of LDAPsortkey
structures such that the key with the highest precedence is at the front of the array.
ldap_create_sort_control() outputs a LDAPControl structure which can be added to the
list of client controls that are sent to the server on the LDAP search request. The LDAPControl
structure that is returned by the ldap_create_sort_control() API can be used as input
to ldap_search_ext() or ldap_search_ext_s(), which are used to make the actual search
request.

Note: Server-side sorting is an optional extension of the LDAP v3 protocol, so the server you are
bound to before the ldap_search_ext() or ldap_search_ext_s() call might not support this
function.

Now that you created the server-side control, you can free the sortKeyList output from
ldap_create_sort_keylist() by using ldap_free_sort_keylist().

Chapter 2. Directory Server programming reference 131

Upon completion of the search request that you submitted by using ldap_search_ext() or
ldap_search_ext_s(), the server returns an LDAP result message that includes a sort results
control. The client application can parse this control by using ldap_parse_sort_control() which
takes the returned server response controls (a null terminated array of pointers to LDAPControl
structures) as input. ldap_parse_sort_control() outputs a return code that indicates whether
the sort request was successful. If the sort was not successful, the name of the attribute in error
might be output from ldap_parse_sort_control(). Use ldap_controls_free() to free the
memory that is used by the client application to hold the server controls when you are done
processing all controls that are returned by the server for this search request.

The server returns a successful return code of LDAP_SUCCESS in the sort response control
(sortKeyResponseControl) in the search result (searchResultDone) message if the server
supports sorting and can sort the search results by using the specified keys. If the search fails for
any reason or there are no search results, then the server omits the sortKeyResponseControl
from the searchResultsDone message.

If the server does not support sorting and the criticality that is specified on the sort control for the
search request is TRUE, the server does not return any search results, and the sort response control
return code is set to LDAP_UNAVAILABLE_CRITICAL_EXTENSION. If the server does not support
the sorting and the criticality that is specified on the sort control for the search request is FALSE, the
server returns all search results. The sort control is ignored.

If the server does support the sorting and the criticality that is specified on the sort control for the
search request is TRUE, but for some reason the server cannot sort the search results, then the sort
response control return code is set to LDAP_UNAVAILABLE_CRITICAL_EXTENSION and no search
results are returned. If the server does support the sorting and the criticality that is specified on the
sort control for the search request is FALSE, and for some reason the server cannot sort the search
results, then the sort response control return code is set to the appropriate return code and all search
results are returned unsorted.

The following return codes might be returned by the server in the sortKeyResponseControl of the
searchResultDone message:

• LDAP_SUCCESS - the results are sorted
• LDAP_OPERATIONS_ERROR - server internal failure
• LDAP_TIMELIMIT_EXCEEDED - time limit that is reached before the sorting was completed
• LDAP_STRONG_AUTH_REQUIRED - refused to return sorted results by using insecure protocol
• LDAP_ADMIN_LIMIT_EXCEEDED - too many matching entries for the server to sort
• LDAP_NO_SUCH_ATTRIBUTE - unrecognized attribute type in sort key
• LDAP_INAPPROPRIATE_MATCHING - unrecognized or inappropriate matching rule in sort key
• LDAP_INSUFFICIENT_ACCESS - refused to return sorted results to this client
• LDAP_BUSY - too busy to process
• LDAP_UNWILLING_TO_PERFORM - unable to sort
• LDAP_OTHER - unable to sort due to reasons other than the reasons specified earlier

There are other rules that must be considered when you request sort from the server. These rules are
as follows:

• The matching rule must be one that is valid for the sort attribute it applies to. The server returns
LDAP_INAPPROPRIATE_MATCHING if it is not.

• If the matching rule is omitted from a sort key, the ordering matching rule that is defined for use
with this sort attribute must be used.

• A server can restrict the number of keys that are supported for a sort control, such as supporting
only one key. (A sort key list of at least one key must be supported).

• A search result meets the search criteria but is missing a value for the sort key (sort attribute value
is NULL). Then, this search result is considered a larger value than any other valid values for that key.

132 IBM Security Directory Suite: Programming Reference

When sorted search is requested along with simple paged results, the sortKeyResponseControl is
returned on every searchResultsDone message, not just the last one of the paged results requests.
The sortKeyResponseControl might not be returned if there is an error that processes the paged
results request or there are no search results to return. When sorted search is requested along with
simple paged results, the server sends the search results sorted based on the entire search result
set. It does not sort each page. For more information, see the section Simple paged results of search
results in “LDAP_PAGED_RESULTS” on page 77.

When it chases referrals, the client application must send in a sorted search request to each of the
referral servers. It is up to the application that uses the client services to decide whether to set the
criticality as to the support of sorted search results. It is also to handle a lack of support of this control
on referral servers as appropriate based on the application. Additionally, the LDAP server does not
ensure that the referral server supports the sorted search control. Multiple lists might be returned to
the client application, some of which are not sorted. It is the decision of the client application as to
how best to present this information to the user. Possible solutions include:

• Combine all referral results before it presents to the user
• Show multiple lists and the corresponding referral server host name
• Take no extra steps and show all results to the user as they are returned from the server

The client application must turn off referrals to get one truly sorted list. Otherwise, when it chases
referrals with the sorted search control specified, unpredictable results can occur.

More information about the server side sorted search control, with control OID of
1.2.840.113556.1.4.473, can be found in RFC 2891 - LDAP Control Extension for Server Side Sorting of
Search Results.

Errors
The sort routines return an LDAP error code if they encounter an error that parses the result. See
“LDAP_ERROR” on page 41 for a list of the LDAP error codes.

Notes
SortString, sortKeyList, controls, serverControls, and attribute must be freed by the caller.

See also
ldap_search, ldap_parse_result

LDAP_SSL_SET_EXTN_SIGALG
Use the ldap_ssl_set_extn_sigalg API in an LDAP application to set TLS 1.2 signature and hash
algorithms.

Purpose
You can use the ldap_ssl_set_extn_sigalg() API to set TLS 1.2 signature and hash algorithm
restriction in an LDAP client environment. You must call this API before you issue a bind or any other
operations that connects to the server.

Synopsis
#include <ldap.h>

int ldap_ssl_set_extn_sigalg(
 char *sigalg)

Chapter 2. Directory Server programming reference 133

Input parameters
sigalg

Specifies the address of the values to set with ldap_ssl_set_extn_sigalg().

Session settings
In IBM Security Directory Server, version 6.3, Fix Pack 17 or later, you can restrict a client utility to
communicate with the TLS 1.2 protocol and a set of TLS 1.2 signature and hash algorithm. Set the
required TLS 1.2 signature and hash algorithm values by calling the ldap_ssl_set_extn_sigalg()
API before the gsk_envrionment_init call initializes the GSKit environment.

You must pass the sigalg parameter to ldap_ssl_set_extn_sigalg() and set the required TLS
1.2 signature and hash algorithm. The ldap_ssl_set_extn_sigalg() API sets the TLS 1.2
signature and hash algorithm restriction for the LDAP connection that is prepared after this call. The
following values are supported by the sigalg parameter:

GSK_TLS_SIGALG_RSA_WITH_SHA224
GSK_TLS_SIGALG_RSA_WITH_SHA256
GSK_TLS_SIGALG_RSA_WITH_SHA384
GSK_TLS_SIGALG_RSA_WITH_SHA512
GSK_TLS_SIGALG_ECDSA_WITH_SHA224
GSK_TLS_SIGALG_ECDSA_WITH_SHA256
GSK_TLS_SIGALG_ECDSA_WITH_SHA384
GSK_TLS_SIGALG_ECDSA_WITH_SHA512

Errors
If an error occurs, the TLS 1.2 signature and hash algorithm restriction is not set. To obtain a detailed
error report, you must run the application in debug mode and check the debug traces.

Examples
To configure TLS 1.2 signature and hash algorithm restriction for an LDAP client, you can use the
following example.

char *sigalg=NULL;

if (ssl == 1){
 if (sigalg != NULL){
 ldap_ssl_set_extn_sigalg(sigalg);
 }
 }

LDAP_SSL_SET_SUITEB_MODE
Use the ldap_ssl_set_suiteb_mode API in an LDAP application to set Suite B mode.

Purpose
You can use the ldap_ssl_set_suiteb_mode() API in LDAP client utilities to set a Suite B mode value
in a client environment. When you set Suite B mode in a client utility, the API sets Suite B mode internally
in the GSKit environment. You must call this API before you issue a bind or any other operations that
connects to the server.

Synopsis
#include <ldap.h>

int ldap_ssl_set_suiteb_mode(
 char *suitebEnv)

134 IBM Security Directory Suite: Programming Reference

Input parameters
suitebEnv

Specifies the address of the value to set with ldap_ssl_set_suiteb_mode().

Session settings
In IBM Security Directory Server, version 6.3, Fix Pack 17 or later, you can set Suite B
mode in an LDAP client with the ldap_ssl_set_suiteb_mode() API. You must call the
ldap_ssl_set_suiteb_mode() API with an appropriate value to set Suite B mode before you initialize
GSKit environment with the gsk_envrionment_init call.

You can set Suite B mode after the ICC version of the libraries is set in the GSKit environment.
You must also set the FIPS-140 certified cryptographic modules in the GSKit environment.
The ldap_ssl_set_suiteb_mode() API internally configures the cryptographic modules. The
ldap_ssl_set_suiteb_mode() API might fail if the settings cannot be configured in the GSKit
environment.

You must pass the LDAP_OPT_SUITEB_MODE parameter to the ldap_ssl_set_suiteb_mode() API to
set Suite B mode. The following values are valid for the LDAP_OPT_SUITEB_MODE parameter:

• 128
• 192

Before you prepare an LDAP connection, you must call the ldap_ssl_set_suiteb_mode() API and set
the Suite B environment.

After you set Suite B mode in an LDAP client environment, you must connect to the secure port of a
Directory Server with an LDAP client.

Note: An LDAP client uses the TLS 1.2 protocol to secure communication with a Directory Server. All
other protocols, such as SSLv3, TLS 1.0, and TLS 1.1 are not supported.

Errors
If an error occurs, Suite B mode is not set. To obtain a detailed error report, you must run the application
in debug mode and check the debug traces.

Examples
To configure Suite B mode for an LDAP client, use the following example:

char *suitebEnv=NULL;
if (ssl == 1){
 suitebEnv = getenv("LDAP_OPT_SUITEB_MODE");
 if (suitebEnv != NULL){
 ldap_ssl_set_suiteb_mode(suitebEnv);
 }
 }

Chapter 2. Directory Server programming reference 135

IBM Security Directory Server JNDI Toolkit
IBM Security Directory Suite provides Java™ Naming and Directory Interface (JNDI) Toolkit that contains
Java classes for most of the extended operations and controls in IBM Security Directory Suite.

Implementing extended operations by using IBM Security Directory Suite
JNDI Toolkit

An extended operation is a mechanism that allows more operations that are not defined in the LDAP
protocol to be supported for services. These services are provided by LDAP V3 servers.

All additional operations that a server supports are to be sent by the client as an extended operation. An
extended operation is called when a client sends an extended request and receives an extended response
in response from the server. This communication between the client and server is broadly sequences as:

1. A client sends an extended request to the server.
2. If the server recognizes the request, it runs the operation.
3. An extended response is sent back with the result, if any, for the operation.

When an extended operation is implemented by using JNDI, each extended operation has a request class
and a response class. An extended request is made of two parts:
requestName

The requestName field contains a unique dotted decimal representation of the OID (Object Identifier)
that identifies the request. The OID namespace is hierarchically divided, every authority that can
define an OID is assigned a prefix that it uses to identify its OID.

requestValue
The requestValue field contains data that is needed to run the request. The format of the data is
predefined for every extended operation. Some extended operations do not require any data to be
associated with a request.

The extended request is encoded before it is sent to the server. IBM Security Directory Suite requires the
extended request to be ASN.1 BER encoded.

The javax.naming.ldap.ExtendedRequest interface describes an extended operation request. This
interface contains methods getID() and getEncodedValue() that retrieve the two properties of
an extended operation request, requestName and requestValue. A request class implements the
javax.naming.ldap.ExtendedRequest interface and overrides the following methods of this interface
public String getID() and public byte[] getEncodedValue(). This method retrieves ASN.1
BER encoded value from the LDAP extended operation request and constructs request sequence for the
extended operation by using the com.ibm.asn1.BEREncoder class. This method then converts the
encoded request sequence to byte array to be returned by the method.

The createExtendedResponse method creates the response object corresponding to a request. When
a caller sends the extended operation request to the LDAP server, a response from the server is sent back.
If the operation fails, the caller throws the NamingException exception. If the operation succeeds, the
caller calls this method by using the data that it received in the response. The purpose of this method is
to return an object of class that implements the ExtendedResponse interface that is appropriate for the
extended operation request.

public ExtendedResponse createExtendedResponse(
 String id,
 byte[] berValue,
 int offset, length) throws NamingException

The parameters that are passed to this method:
id

An object identifier of the response control.

136 IBM Security Directory Suite: Programming Reference

berValue
An ASN.1 BER encoded value of the response control. This value is the raw BER bytes including the
tag and length of the response value. It does not include the response OID.

offset
The starting position in the berValue of the bytes to use.

length
The number of bytes to use from berValue.

The structure of the extended response is similar to extended request. It can contain the OID and value
both of which are optional, and a field that describes the result code of the operation. An extended
response is made of three parts:
resultcode

The resultcode field contains result code of the operation. The result code can contain one of the
defined LDAP error codes. For example, LDAP_SUCCESS and LDAP_OPERATIONS_ERROR.

responseName
The responseName field contains OID of the response. It might or might not be same as the request
OID.

responseValue
The responseValue field contains the result of the operation, if any.

The response from the server is encoded in ASN.1 BER code and must be decoded by the client when
received.

The javax.naming.ldap.ExtendedResponse interface describes an extended operation response. A
response class implements the javax.naming.ldap.ExtendedResponse interface. The methods in this
class can be used by the application to get low-level information about the extended operation response.
This class parses the extended response and provides methods specific to that extended operations to
return response values. It uses com.ibm.asn1.BERDecoder class to parse the response from the LDAP
server. The BEREncoder and BERDecoder classes are part of current IBMLDAPJavaBer.jar shipped
with IBM Security Directory Suite.

The Java classes for extended operations that are provided in IBM Security Directory Suite JNDI Toolkit
are listed.

Table 5. Java classes for extended operations provided in IBM Security Directory Suite JNDI Toolkit

Extended operations Java classes
Request OID or Response

OID

Account status AccountStatusRequest
AccountStatusResponse

1.3.18.0.2.12.58/
1.3.18.0.2.12.59

Attribute type GetAttributesRequest
GetAttributesResponse

1.3.18.0.2.12.46 /
1.3.18.0.2.12.47

Begin transaction TransactionStartRequest
TransactionStartResponse

1.3.18.0.2.12.5

Cascading replication
operation

CascadingReplicationRequest
CascadingReplicationResponse

1.3.18.0.2.12.15

Clear log ClearLogRequest
ClearLogResponse

1.3.18.0.2.12.20 /
1.3.18.0.2.12.21

Control replication ControlReplicationRequest
ControlReplicationResponse

1.3.18.0.2.12.16

Chapter 2. Directory Server programming reference 137

Table 5. Java classes for extended operations provided in IBM Security Directory Suite JNDI Toolkit
(continued)

Extended operations Java classes
Request OID or Response

OID

Control queue ControlQueueRequest
ControlQueueResponse

1.3.18.0.2.12.17

DN normalization NormalizeDNRequest
NormalizeDNResponse

1.3.18.0.2.12.30

Dynamic server trace ControlTracingRequest
ControlTracingResponse

1.3.18.0.2.12.40

Dynamic update requests ReadConfigurationRequest
ReadConfigurationResponse

1.3.18.0.2.12.28 /
 1.3.18.0.2.12.29

End transaction TransactionEndRequest
TransactionEndResponse

1.3.18.0.2.12.6

Effective password policy EffectivePwdPolicyRequest
EffectivePwdPolicyResponse

1.3.18.0.2.12.75/
1.3.18.0.2.12.77

Event notification register
request

RegisterEventRequest
RegisterEventResponse

1.3.18.0.2.12.1

Event notification
unregister request

UnregisterEventRequest
UnregisterEventResponse

1.3.18.0.2.12.3

Get lines ReadLogRequest
ReadLogResponse

1.3.18.0.2.12.22 /
1.3.18.0.2.12.23

Get number of lines GetLogSizeRequest
GetLogSizeResponse

1.3.18.0.2.12.24 /
1.3.18.0.2.12.25

Group evaluation EvaluateGroupsRequest
EvaluateGroupsResponse

1.3.18.0.2.12.50 /
1.3.18.0.2.12.52

Kill connection UnbindRequest
UnbindResponse

1.3.18.0.2.12.35 /
1.3.18.0.2.12.36

LDAP trace facility RemoteTraceExecutionRequest
RemoteTraceExecutionResponse

1.3.18.0.2.12.41

LogMgmtControl LogManagementRequest
LogManagementresponse

1.3.18.0.2.12.70

Proxy back-end server
resume role

ResumeRoleRequest
ResumeRoleResponse

1.3.18.0.2.12.65

138 IBM Security Directory Suite: Programming Reference

Table 5. Java classes for extended operations provided in IBM Security Directory Suite JNDI Toolkit
(continued)

Extended operations Java classes
Request OID or Response

OID

Quiesce or unquiesce
replication context

QuiesceRequest
QuiesceResponse

1.3.18.0.2.12.19

Replication error log ControlReplErrorRequest
ControlReplErrorResponse

1.3.18.0.2.12.56

Replication topology ReplicationTopologyRequest
ReplicationTopologyResponse

1.3.18.0.2.12.54 /
1.3.18.0.2.12.55

ServerBackupRestore BackupRestoreRequest
BackupRestoreResponse

1.3.18.0.2.12.81

Start, stop server StartStopServerRequest
StartStopServerResponse

1.3.18.0.2.12.26

Start TLS StartTLSRequest
StartTLSResponse

1.3.6.1.4.1.1466.20037

Unique attributes UniqueAttributeRequest
UniqueAttributeResponse

1.3.18.0.2.12.44 /
1.3.18.0.2.12.45

User type UserTypeRequest
UserTypeResponse

1.3.18.0.2.12.37 /
1.3.18.0.2.12.38

Implementing controls by using IBM Security Directory Server JNDI Toolkit
The LDAP V3 uses controls to send and receive more data to affect the behavior of predefined LDAP
operations.

The controls are tagged along with LDAP operations and are sent to the server and are sent to as request
controls. For example, a sort control can be sent with an LDAP search operation to request for the
results be returned in a particular order. Solicited and unsolicited controls can also be returned along with
responses from the server and are referred to as response controls. For example, an LDAP server might
define a special control to return change or event notifications. All the supported controls in IBM Security
Directory Suite are also available in Java classes, in addition to C APIs. For a control, both the request
control class and the response control class for controls that have response are available. For example,
Limit number of attribute values on a Search Control has both request and response classes. The request
and response control classes override the fields for ID, criticality, and the constructor for creation of
control by using supplied arguments by application programs. The request control class also has setter
methods specific to a control. It has constructors that allow the application to construct the control in all
supported ways. A response control class has getter methods for the fields that can be retrieved for the
control.

A class that represents a control extends the javax.naming.ldap.BasicControl class. This class
defines following constructors and methods:
BasicControl(String ID)

This constructor creates a noncritical control.

Chapter 2. Directory Server programming reference 139

BasicControl(String ID, boolean criticality, byte[] value)
This constructor creates a control by using the supplied arguments.

public String getID()
This method retrieves the object identifier that is assigned for the LDAP control.

public boolean isCritical()
This method determines the criticality of an LDAP control. IBM Security Directory Suite must
not ignore a critical control. If a server receives a critical control that it does not support,
regardless of whether the control makes sense for the operation, the operation is not done. An
OperationNotSupportedException exception is thrown. This method takes the value true as
parameter if control is critical and false otherwise.

public byte[] getEncodedValue()
This method retrieves the ASN.1 BER encoded value of an LDAP control. The result is raw BER
bytes that include the tag and length of the control value. The result does not include the control
OID or criticality. If the value is absent, NULL is returned. This method can be decoded by using
com.ibm.asn1.BERDecoder in the LDAP Java BER package.

An example of implementation control class:

public class DoNotReplicateControl extends javax.naming.ldap.BasicControl
{
 private static final String OID = "1.3.18.0.2.10.50";
 private byte[] berMess;
 private boolean criticality = false;

 public DoNotReplicateControl() {
 berMess = null;
 }

 public DoNotReplicateControl(boolean criticality) {
 this.riticality = criticality;
 berMess = null;
 }
}

The Java classes for controls that are provided in IBM Security Directory Suite JNDI Toolkit are listed.

Table 6. Java classes for controls provided in IBM Security Directory Suite JNDI Toolkit

Controls Java classes OID

Audit AuditChainControl 1.3.18.0.2.10.22

Do not replicate DoNotReplicateControl 1.3.18.0.2.10.23

Entry change notification EntryChangeRequestControl
EntryChangeResponseControl

2.16.840.1.113730.3.4.7

Group authorization GroupAuthorizationControl 1.3.18.0.2.10.21

Limit number of attribute
values

LimitAttributesSearchControl
LimitAttributesSearchResponse
Control

1.3.18.0.2.10.30

ibm-
saslDigestBindRealmName

MD5RealmConnectionControl 1.3.18.0.2.10.12

ibm-saslDigestBindUserName MD5UserConnectionControl 1.3.18.0.2.10.13

Manage DSAIT ManageDSAITControl 2.16.840.1.113730.3.4.2

Modify groups only ModifyGroupsOnlyControl 1.3.18.0.2.10.25

No replication conflict
resolution

DoNotResoveReplication
CoflictControl

1.3.18.0.2.10.27

140 IBM Security Directory Suite: Programming Reference

Table 6. Java classes for controls provided in IBM Security Directory Suite JNDI Toolkit (continued)

Controls Java classes OID

Omit group referential integrity OmitGroupReferential
IntegrityControl

1.3.18.0.2.10.26

Paged search results PagedResultsControl
PagedResultsResponseControl

1.2.840.113556.1.4.319

Password policy request PasswordPolicyRequestControl
PasswordPolicyResponseControl

1.3.6.1.4.1.42.2.27.8.5.1/
1.3.6.1.4.1.42.2.27.8.5.1

Persistent search PersistentSearchControl 2.16.840.1.113730.3.4.3

Proxy authorization ProxiedAuthorizationControl 2.16.840.1.113730.3.4.18

Return deleted objects TombstoneControl 1.3.18.0.2.10.33

Server administration ServerAdminControl 1.3.18.0.2.10.15

Sorted search results SortedResultsControl
SortedResultsResponseControl

1.2.840.113556.1.4.473

Subtree delete TreeDeleteControl 1.2.840.113556.1.4.805

Transaction TransactionControl 1.3.18.0.2.10.5

Virtual list view VLVRequestControl
VLVResponseControl

2.16.840.1.113730.3.4.9/
2.16.840.1.113730.3.4.10

LDAP client utilities
Currently, example source codes for some of the LDAP client utilities for basic LDAP operations like add,
modify delete, search, and modrdn are provided both in C and Java, which can be used to build your own
version of these LDAP client utilities.

The Java classes for each of these operations use JNDI APIs for doing the operations on Directory Server.
The Java classes for the LDAP client utilities are provided in the DS_INSTALL_ROOT/examples/java
directory.

Note: Javadoc HTML documentation for the extended operations and controls are zipped into
TDSJNDIToolkitJavaDocs.zip and is available in the DS_INSTALL_ROOT/javalib directory.

The following LDAP client utilities in Java are available in the examples/java directory:

• LDAPAdd – To add LDAP entries to the server.
• LDAPModify – To modify LDAP entries on the server.
• LDAPDelete – To delete LDAP entries from the server.
• LDAPModRDN – To modify the RDN or DN of the entries on the server.
• LDAPExop – To run extended operations on the server.
• LDAPSearch – To search entries on the server.

The LDAP client utilities are compiled as Java class files. The table lists Java class files that are associated
with their corresponding LDAP clients:

Chapter 2. Directory Server programming reference 141

Table 7. LDAP clients and corresponding Java classes

LDAP clients Java class file

LDAPAdd com.ibm.ldap.bp.client.ldapadd.LDAPAdd

LDAPModify com.ibm.ldap.bp.client.ldapmodify.LDAPModify

LDAPDelete com.ibm.ldap.bp.client.ldapdelete.LDAPDelete

LDAPModRDN com.ibm.ldap.bp.client.ldapmodrdn.LDAPModRDN

LDAPExop com.ibm.ldap.bp.client.ldapexop.LDAPExop

LDAPSearch com.ibm.ldap.bp.client.ldapsearch.LDAPSearch

To run the LDAP clients, you require IBM SDK Java Technology Edition, Version 8.0.2.10. For the LDAP
clients to run, the class path must be correct and the path of the JAR files must be provided in
the class path. The JAR files, TDSJNDIToolkit.jar and IBMLDAPJavaBer.jar are available in the
DS_INSTALL_ROOT/javalib directory.

Note: To make Java clients to work over SSL and with key database files (with kdb extension), register a
security provider for reading CMS in the java.security file.

To compile the source files to a wanted location, you can use the build script available in the
DS_INSTALL_ROOT/examples/java directory. On Windows platform, the build script is provided as
a batch file, build.bat, and on UNIX platforms, it is provided as a shell script, build.sh.

To run the script on UNIX platform, enter the following command at command prompt:

./build.sh

This script compiles all the LDAP Java clients to the bin folder. To run the script with parameters, check
the usage instructions for the script by providing “-?” on Windows platform and “--help” on UNIX
platform.

After the clients are compiled at the default location, DS_INSTALL_ROOT/examples/java/bin, the
following command can be used to display the LDAPAdd client usage on a UNIX platform:

pwd /opt/ibm/ldap/V8.0.1.x/examples/java/bin

../../../java/bin/java -classpath
.:../../../javalib/TDSJNDIToolkit.jar:../../../javalib/IBMLDAPJavaBer.jar com.\
 ibm.ldap.bp.client.ldapadd.LDAPAdd -?

Change tracking in IBM Security Directory Suite
You can track changes in the IBM Security Directory Suite data for your requirements.

IBM Security Directory Suite provides different ways to track changes that are made to the directory data.
Change tracking mechanism can be broadly categorized into notification that is based and poll based.

• In notification-based change-tracking mechanism, clients are notified about the changes to the
directory data as and when they occur. Persistent search and event notification are the two notification-
based change-tracking techniques.

• In poll based change tracking mechanism, clients are required to query the Directory Server for
changes. LDAP clients can use the change log generated by IBM Security Directory Suite to poll for
changes.

142 IBM Security Directory Suite: Programming Reference

Persistent search
Persistent search is an extended form of the standard LDAP search operation.

Persistent search sends the set of entries that match the search criteria. It also provides clients a means
to receive change notifications to the LDAP server on entries within the result set that were sent to the
client.

The persistent search control can be included in the Controls portion of an LDAP V3 search request
message. The controlType for the persistent search control is "2.16.840.1.113730.3.4.3".

PersistentSearch ::= SEQUENCE {
 changeTypes INTEGER,
 changesOnly BOOLEAN,
 returnECs BOOLEAN
 }

On receiving this control, the Directory Server processes the request as a standard LDAP V3 search with
the following exceptions:

• If changesOnly is TRUE, the server does not return any existing entries that match the search criteria.
Entries are only returned when they are changed by an update operation such as add, modify, delete, or
modifyDN operation.

• After the changes are made to the server, the affected entries that match the search criteria are
returned to the client only if the operation that caused the change is included in the changeTypes field.
The changeTypes field is the logical or of one or more of these values: add (1), delete (2), modify (4),
and modDN (8).

• After the operation is done, the server does not return a SearchResultDone message. Instead, the
search operation is kept active until the client unbinds.

• If the value in the returnECs field is TRUE, the server returns the Entry Change Notification control with
each entry returned as the result of changes.

The ldap_create_persistentsearch_control() API can be used to create the persistent
search control that can then be passed to the controls section of the ldap_search_ext() or
ldap_search_ext_s() API to initiate a persistent search.

The entry change notification control provides more information about the change that caused a particular
entry to be returned on doing a persistent search. The controlType for the entry change notification
control is "2.16.840.1.113730.3.4.7".

If a client sets the returnECs field to TRUE in the persistent search control, then Directory Server
includes the entry change notification control in the Controls portion of each SerachResultEntry that
is returned due to an entry that is being added, deleted, or modified.

EntryChangeNotification ::= SEQUENCE {
 changeType ENUMERATED {
 add (1),
 delete (2),
 modify (4),
 modDN (8)
 },
 previousDN LDAPDN OPTIONAL, # modifyDN operations only
 changeNumber INTEGER OPTIONAL # if supported
}

where,
changeType

This parameter indicates the type of LDAP operation that caused the entry to be returned.
previousDN

The value of this parameter is present only for modifyDN operations. This parameter contains the DN
of the entry before it was renamed or moved. The returnECs optional field is included only when you
return change notifications as a result of modifyDN operations.

Chapter 2. Directory Server programming reference 143

changeNumber
This parameter contains the change number, [CHANGELOG], assigned by the server for a change on
an entry.

The ldap_parse_entrychange_control() API goes through a list of controls that are received from a
persistent search operation, retrieves the entry change control from it and parses that control for change
information.

See the ldapsearch.c example source code to know how to use persistent search. You can download
the example code from the virtual appliance console, Custom File Management > ClientSDK folder. See
Managing custom files.

Event notification
Event notifications are database objects that send information about server and database events to a
client. It also provides the information that is required to understand, design, and implement event
notifications.

The event notification function allows a server to notify a registered client that an entry in the directory
tree is changed, added, or deleted. This notification is in the form of an unsolicited message.

Registration request

To register, the client must use a bound connection. To register a client, use the supported client APIs
for extended operations. An LDAP v3 extended operation request has the form:

 ExtendedRequest ::= [APPLICATION 23] SEQUENCE {
 requestName [0] LDAPOID,
 requestValue [1] OCTET STRING OPTIONAL }

where the requestValue has the form:

requestValue ::= SEQUENCE {
 eventID ENUMERATED {
 LDAP_CHANGE (0)},
 baseObject LDAPDN,
 scope ENUMERATED {
 baseObject (0),
 singleLevel (1),
 wholeSubtree (2) },
 type INTEGER OPTIONAL }

and where type has the form:

 changeType ::= ENUMERATED {
 changeAdd (1),
 changeDelete (2),
 changeModify (4),
 changeModDN (8) }

Note: If the type field is not specified, it defaults to all changes.

An LDAP v3 extended operation response has the form:

 ExtendedResponse ::= [APPLICATION 24] SEQUENCE {
 COMPONENTS OF LDAPResult,
 responseName [10] LDAPOID OPTIONAL,
 response [11] OCTET STRING OPTIONAL }

Registration response

If the registration is successful, the server returns the following message and a unique registration ID:

LDAP_SUCCESS registration ID

If the registration fails, the server returns one of the following codes:

LDAP_UNWILLING_TO_PERFORM

144 IBM Security Directory Suite: Programming Reference

This error code is returned if:

• The event notification function is turned off in the server.
• The event ID requested by the client cannot be handled by the server.
• The client is unbound.

LDAP_NO_SUCH_OBJECT

This error code is returned if:

• The base DN supplied by the client does not exist or is not visible to the client.

LDAP_NOT_SUPPORTED

This error code is returned if:

• The change type that is supplied by the client cannot be handled by the server.

Usage

When an event occurs, the server sends a message to the client as an LDAP v3 unsolicited notification.
The message ID is 0 and the message is in the form of an extended operation response. The
responseName field is set to the registration OID. The response field contains the unique registration
ID and a timestamp for when the event occurred. The time field is in Coordinated Universal Time
(UTC) format.

Note: When a transaction occurs, the event notifications for the transaction steps cannot be sent until
the entire transaction is completed.

Unregistering a client

Set the requestName field to the unregister request OID. In the requestValue field type the unique
registration ID returned by the server from the registration request:

 requestValue ::= OCTET STRING

If the registration is successfully removed, the LDAPResult field contains LDAP_SUCCESS and the
response field contains the registration ID that was removed.

If the unregistration request was unsuccessful, NO_SUCH_OBJECT is returned.

Example

#include stdio.h
#include string.h
#include ldap.h

struct berval *create_reg(int id,char *base,int scope,int type){
 struct berval *ret;
 BerElement *ber;

 if((ber = ber_alloc_t(1)) == NULL){
 printf("ber_alloc_t failed\n");
 return NULL;
 }
 if(ber_printf(ber,"{esi",id,base,scope) == (-1)){
 printf("first ber_printf failed\n");
 return NULL;
 }
 if(type != (-1)){
 if(ber_printf(ber,"i",type) == (-1)){
 printf("type ber_printf failed\n");
 return NULL;
 }
 }
 if(ber_printf(ber,"}") == (-1)){
 printf("closing ber_printf failed\n");
 return NULL;
 }

 if(ber_flatten(ber,&ret) == (-1)){

Chapter 2. Directory Server programming reference 145

 printf("ber_flatten failed\n");
 return NULL;
 }
 ber_free(ber,1);
 return ret;
}

int main(int argc,char **argv){
 LDAP *ld;
 char *oidreq = "1.3.18.0.2.12.1";
 char *oidres;
 struct berval *valres = NULL;
 struct berval *registration;
 int rc,version, port;
 LDAPMessage *res;
 BerElement *ber;
 char *regID;

 argc--; argv++;

 port = 389;
 if(argc > 0){
 if(argc > 1) sscanf(argv[1],"%d",&port);
 ld = ldap_init(argv[0],port);
 }
 else
 ld = ldap_init("localhost",389);
 if(ld == NULL){
 printf("ldap_init failed\n");
 ldap_unbind(ld);
 return -1;
 }
 version = 3;
 ldap_set_option(ld,LDAP_OPT_PROTOCOL_VERSION,&version);

 if(ldap_simple_bind_s(ld,"cn=admin","secret") != LDAP_SUCCESS){
 printf("Couldn't bind\n");
 ldap_unbind(ld);
 return -1;
 }

 registration = create_reg(0,"o=sample",2,15);
 rc = ldap_extended_operation_s(ld,oidreq,registration,NULL,NULL,
 &oidres,&valres);
 if(rc == LDAP_SUCCESS){
 if(valres != NULL){
 if((ber = ber_init2(valres)) == NULL)
 printf("ber_init2 failed\n");
 else{
 if(ber_scanf(ber,"a",®ID) == LBER_ERROR)
 printf("ber_scanf failed\n");
 printf("registration ID: %s\n",regID);
 ber_free(ber,1);
 }
 }
 else{
 printf("valres NULL\n");
 }
 }
 else{
 printf("extended operation failed 0x%x\n",rc);
 }

 ldap_memfree(regID);
 ldap_unbind(ld);
 return 0;
}

Change log
The change log contains information about the Directory Server operations.

The Directory Server records changes made to the LDAP data in the change log database. Entries in
the change log database can be queried by using the standard LDAP APIs. All update operations to the
Directory Server are recorded in this database.

LDAP client applications that depend on polling for identifying changes can query the change log
periodically with appropriate filters (based on chronological change numbers).

146 IBM Security Directory Suite: Programming Reference

All change log entries are of object class ibm-changelog and is derived from changelogentry object
class. They are located under the DN entry "cn=changelog”. The following table contains attributes of
the ibm-changelog object class with the description of a change.

Table 8. Attributes in the ibm-changelog object class and their description

Attribute Description

changenumber A number that uniquely identifies a change that is made to a directory
entry. This integer value increases as new entries are added and is
unique for a specific instance.

targetdn DN of the entry that was added, deleted, or modified. For the modrdn
operation, it gives the DN of the entry before it was modified.

changetype Type of change that is made to the entry: add, modify, delete, or modrdn.

changes The changes that are made to the Directory Server published in LDIF.

newRDN The new RDN of an entry, if changetype is modrdn.

deleteOldRDN It is a Boolean attribute. If the value is TRUE, it indicates that the RDN
must not be retained as a distinguished attribute of the entry. If FALSE, it
indicates that the RDN must be retained as a distinguished attribute.

newSuperior If present, it gives the name of the immediate parent of the existing
entry.

changetime Time when the change was done.

ibm-
changeInitiatorsName

DN of the user who initiated the change.

LDAP client plug-in programming reference
The LDAP client plug-in programming reference provides information about writing client plug-ins.

Introduction to client SASL plug-ins
Client-side SASL plug-ins are used to extend the authentication capabilities of the LDAP client library.

The plug-ins work by intercepting the application invocation of the ldap_sasl_bind_s() API.

Note: SASL plug-ins are not designed to intercept asynchronous SASL binds.

Basic processing
The following section describes the typical flow when a SASL plug-in is used to provide an extended
authentication function.

This flow assumes that the SASL plug-in shared library is already loaded by the LDAP library:

1. Application calls ldap_sasl_bind_s(), with a mechanism supported by a configured SASL plug-in.
2. The LDAP library calls the SASL bind worker function, as provided by the appropriate plug-in. The

parameters that are supplied on the original ldap_sasl_bind_s() API are passed to the plug-in as
elements of a pblock structure.

3. The plug-in worker function receives control, and extracts the parameters from the pblock by using
the ldap_plugin_pblock_get() API. The following SASL-related information can be obtained from
the pblock by the plug-in:

• Distinguished Name (dn)
• Credentials
• Server controls

Chapter 2. Directory Server programming reference 147

• Client controls
• Mechanism (plug-in subtype)

In addition to these parameters, the plug-in can also obtain other information by using the
ldap_plugin_pblock_get(), including:

• Plug-in configuration information (that is, configuration information that is supplied in ARGC and
ARGV form)

• Target LDAP server host name
4. The plug-in runs its mechanism-specific logic. Some of the sample mechanisms that can be

implemented as SASL plug-ins are as follows. They can be made available to all LDAP applications
that are running on the system:
Authentication that is based on a user fingerprint (for example, mechanism=userfp)

When the fingerprint plug-in gets control, it uses the DN supplied on the ldap_sasl_bind_s()
API to obtain an image of the user fingerprint. This authentication can entail prompting the user
to use a fingerprint-scanning device. In this example, the fingerprint image, however obtained,
represents the user credentials.

When the credentials are obtained, the plug-in is ready to run the actual SASL bind. This
authentication is done by calling the ldap_plugin_sasl_bind_s() API, supplying the
appropriate parameters (DN, credentials, mechanism, server controls). This API is a synchronous
API that sends the SASL bind request to the LDAP server. Two items are returned to the plug-in
when the bind result is returned from the server, and control is returned to the plug-in:

• Bind result error code
• Server credentials

If the server credentials are to be returned to the application, they must be set in the pblock
before it returns control to the LDAP library, and after to the application. This setting is done
by using ldap_plugin_pblock_set(). In this example, the plug-in work is complete, and it
returns, supplying the bind result error code as the return code.

Authentication by using credentials that are previously established by the operating system
When the plug-in gets control, it queries the local security context to obtain the user identity
and security token. For this example, we assume the user identity, as associated with the local
security context, is used to construct the DN. The information from the security token is used for
credentials.

After the credentials are obtained, the plug-in calls ldap_plugin_sasl_bind_s(), supplying
the appropriate parameters (DN, credentials, mechanism, server controls). As in the previous
example, the plug-in waits for the results of the bind request, then returns to the LDAP library,
again setting server credentials in the pblock, if appropriate. Control is then returned to the
application, along with the optional server credentials.

Authentication by using multiple binds (mechanism=DIGEST-MD5)
Some SASL mechanisms require multiple transactions between the client and the server (for
example, the SASL DIGEST-MD5 mechanism). For this type of mechanism, when the plug-in gains
control, it actually calls the ldap_plugin_sasl_bind_s() API multiple times. On each bind
operation, the plug-in can supply DN, credentials, mechanism, and server controls, which are
passed to the server. The LDAP server can return a result and server credentials back to the
client. The plug-in can use this information to formulate another bind, again sent to the server by
using ldap_plugin_sasl_bind_s(). When the multi-bind flow is complete, the plug-in returns
control to the LDAP library with the result and optional server credentials.

Restrictions
The plug-in must not use any LDAP APIs, which accept ld as the input.

This input results in deadlock, since the ld is locked until the bind processing is complete.

148 IBM Security Directory Suite: Programming Reference

Initializing a plug-in
You can initialize a SASL plug-in to communicate with LDAP client plug-ins.

A typical LDAP SASL plug-in contains two entry points:

• An initialization routine
• A worker routine, which implements the authentication function

When an instance of an application uses a SASL plug-in for the first time, the LDAP library obtains the
configuration information for the plug-in. The configuration information can come from ibmldap.conf or
might be supplied explicitly by the application with the ldap_register_plugin() API.

When the configuration information is located, the LDAP library loads the plug-in shared library
and call its initialization routine. By default, the name of the initialization routine for a plug-in is
ldap_plugin_init(). A different entry point can be defined in ibmldap.conf, or supplied on the
ldap_plugin_register() API if the plug-in is explicitly registered by the application.

The plug-in initialization routine is responsible for supplying the address of its worker routine
entry point, which actually implements the authentication function. This initialization is done by
using ldap_plugin_pblock_set() to define the address of the worker routine entry point in
the pblock. For example, the following code segment depicts a typical initialization routine, where
authenticate_with_fingerprint is the name of the routine that is provided by the plug-in to run a
fingerprint-based authentication:

int ldap_plugin_init (LDAP_Pblock *pb)
{
 int rc;

 rc = ldap_plugin_pblock_set (pb, LDAP_PLUGIN_SASL_BIND_S_FN, (void *)
 authenticate_with_fingerprint);
 if (rc != LDAP_SUCCESS) printf("ldap_plugin_init couldn't initialize
 worker function\n");
 return (rc);
}

A pblock is an opaque structure in which parameters are stored. A pblock is used to
communicate between the LDAP client library and a plug-in. The ldap_plugin_pblock_set and
ldap_plugin_pblock_get APIs are provided for your plug-in to set, or get, parameters in the pblock
structure.

Using ldap_plugin_pblock_get(), the plug-in can also access configuration parameters. For
example, the following code segment depicts how the plug-in can access its configuration information:

 int argc;
 char ** argv;

 rc = ldap_plugin_pblock_get (pb, LDAP_PLUGIN_ARGC, &argc);
 if (rc != LDAP_SUCCESS)
 return (rc);
 rc = ldap_plugin_pblock_get(pb, LDAP_PLUGIN_ARGV, &argv);
 if (rc != LDAP_SUCCESS)
 return (rc);

If the plug-in initialization processing is significant, and the results are to be preserved and made
available to the plug-in worker function, the initialization routine can store the initialization results as
private instance data in its shared library. When the plug-in worker function is later called, it can access
this private instance data. For example, during initialization, the plug-in might be required to establish a
session with a remote security server. Session information can be retained in the private instance data,
which can be accessed later by the plug-in worker function.

After your plug-in is correctly initialized, its worker function can be used by the LDAP library.
Continuing the example that is shown, if the mechanism supported by the plug-in is userfp, the
authenticate_with_fingerprint function of your plug-in is called when the application issues an
ldap_sasl_bind_s() function with mechanism="userfp". See “Sample worker function” on page
152 for an example of a plug-in worker function.

Chapter 2. Directory Server programming reference 149

Writing your own SASL plug-in
You can write your own SASL plug-in after you initialize an SASL plug-in.

About this task
Complete these steps to write your own SASL plug-in:

1. Implement your own initialization and worker functions. Include ldap.h, where you can find all the
parameters that can be obtained from the pblock, and the function prototypes for the available
plug-in functions:

• ldap_plugin_pblock_get()
• ldap_plugin_pblock_set()
• ldap_plugin_sasl_bind_s()

2. Identify the input parameters to your initialization and worker functions.

Note: The LDAP library can pass parameters to your plug-in initialization function by way of the
argument list that is specified in ibmldap.conf, or by way of the plugin_parmlist parameter on
the ldap_register_plugin() API. Information might also be supplied as client-side controls.

3. The initialization function must call the ldap_plugin_pblock_set API to register your plug-in
worker function.

4. Implement your worker function. The worker function is responsible for obtaining the user
credentials and implementing the authentication function. Typically this function involves calling
the ldap_plugin_sasl_bind_s() API one or more times. If the authentication is successful,
LDAP_SUCCESS must be returned. Otherwise, the unsuccessful LDAP result must be returned as the
return code. If appropriate, the worker function can also return a value for server credentials.

5. Export your initialization function from your plug-in library. Use an .exp file for the AIX operating
system or Solaris operating system, or a .def (or dllexport) file for the Windows NT operating
system to export your initialization function.

6. Compile your client plug-in functions. Set the include path to include ldap.h, and to link to
ldap.lib. Compile and link all your LDAP plug-in object files with whatever libraries you need,
including ldap.lib. Make sure that the initialization function is exported from the .dll you created.

7. Add a plug-in directive in the LDAP plug-in configuration file, ibmldap.conf. Alternatively, the
application can define the plug-in by calling the ldap_register_plugin() API.

Plug-in APIs
The following plug-in APIs illustrate the code formats.
For pblock access:

int ldap_plugin_pblock_get(LDAP_PBlock *pb, int arg, void **value);
int ldap_plugin_pblock_set(LDAP_PBlock *pb, int arg, void *value);

For sending an LDAP bind to the server:

int ldap_plugin_sasl_bind_s (
 LDAP *ld,
 char *dn,
 char *mechanism,
 struct berval *credentials,
 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 struct berval **servercredp)

150 IBM Security Directory Suite: Programming Reference

ldap_plugin_pblock_get()
The ldap_plugin_pblock_get() API returns the value that is associated with the specified pblock
tag.

Syntax
#include "ldap.h"
int ldap_plugin_pblock_get(LDAP_PBlock *pb, int arg, void **value)

Parameters
pb

Specifies the address of a pblock.
arg

Specifies the tag or ID of the tag-value pair that you want to obtain from the pblock.
value

Specifies a pointer to the address of the returned value.

Returns
Returns 0 if successful, or -1 if an error occurs.

ldap_plugin_pblock_set()
The ldap_plugin_pblock_set API sets the value that is associated with the specified pblock tag.

Syntax
#include "ldap.h"
int ldap_plugin_pblock_set(LDAP_PBlock *pb, int arg, void *value);

Parameters
pb

Specifies the address of a pblock.
arg

Specifies the tag or ID of the tag-value pair that you want to set in the pblock.
value

Specifies a pointer to the value that you want to set in the parameter block.

Returns
Returns 0 if successful, or -1 if an error occurs.

ldap_plugin_sasl_bind_s()
The ldap_plugin_sasl_bind_s API is used by the plug-in to transmit an LDAP SASL bind operation to
the LDAP server.

Syntax

#include "ldap.h"
int ldap_plugin_sasl_bind_s(
 LDAP *ld,
 char *dn,
 char *mechanism,
 struct berval *credentials,

Chapter 2. Directory Server programming reference 151

 LDAPControl **serverctrls,
 LDAPControl **clientctrls,
 struct berval **servercredp)

Parameters
ld

Specifies the LDAP pointer that is associated with the application invocation of
ldap_sasl_bind_s(). The plug-in obtains the LD with the ldap_plugin_pblock_get() API.

dn
Specifies the Distinguished Name to bind the entry. The DN might be supplied by the application and
obtained by using ldap_plugin_pblock_get(), or it might be obtained by other means.

credentials
Specifies the credentials to authenticate with. Arbitrary credentials can be passed by using
this parameter. The credentials might be supplied by the application and obtained by using
ldap_plugin_pblock_get(), or they might be obtained by other means.

mechanism
Specifies the SASL mechanism to be used when it binds to the server. If a plug-in can be called
for more than one mechanism, the plug-in can obtain the mechanism that was specified by the
application with the ldap_plugin_pblock_get() API.

serverctrls
Specifies a list of LDAP server controls. For more information about server controls, see “LDAP
controls” on page 24. The server controls might be supplied by the application and obtained by using
ldap_plugin_pblock_get(), or they might be obtained by other means.

clientctrls
Specifies a list of LDAP client controls. For more information about client controls, see “LDAP
controls” on page 24.

Note: The client controls are not supported currently for the ldap_plugin_sasl_bind_s() API.

Returns
error code

The error code is set to LDAP_SUCCESS if the bind succeeded. Otherwise, it is set to a nonzero error
code.

servercredp
This result parameter is set to the credentials returned by the server. If no credentials are returned, it
is set to NULL.

Sample worker function
An code example helps you to understand the sample worker function.

/* Sample SASL Plug-in */

#include ldap.h
#include string.h

int ldap_plugin_sasl_bind_s_prepare (LDAP_Pblock *pb)
{
 LDAP *ld;
 char *dn;
 char *mechanism;
 struct berval *cred;
 LDAPControl **serverctrls;
 LDAPControl **clientctrls;
 struct berval *servercredp = NULL;

 void * data;
 int rc;

 /**/

152 IBM Security Directory Suite: Programming Reference

 /* Query pblock to obtain ld, dn, mechanism, credentials, server controls */
 /* and client controls, as supplied by application when it invoked the */
 /* ldap_sasl_bind_s() API. */
 /**/

 if (rc = (ldap_plugin_pblock_get (pb, LDAP_PLUGIN_LD, &data))){
 printf("Could not get parameter for bind operation\n");
 return (rc);
 }
 ld = (LDAP *) data;
 if (rc = (ldap_plugin_pblock_get (pb, LDAP_PLUGIN_SASL_DN,
 &data)))
 return (rc);
 dn = (char *) data;
 if (rc = (ldap_plugin_pblock_get (pb, LDAP_PLUGIN_SASL_BIND_MECHANISM,
 &data)))
 return (rc);
 mechanism = (char *) data;
 if (rc = (ldap_plugin_pblock_get (pb, LDAP_PLUGIN_SASL_BIND_CREDENTIALS,
 &data)))
 return (rc);
 cred = (struct berval *) data;
 if (rc = (ldap_plugin_pblock_get (pb, LDAP_PLUGIN_SASL_BIND_SERVERCTRLS,
 &data)))
 return (rc);
 serverctrls = (LDAPControl **) data;
 if (rc = (ldap_plugin_pblock_get (pb, LDAP_PLUGIN_SASL_BIND_CLIENTCTRLS,
 &data)))
 return (rc);
 clientctrls = (LDAPControl **) data;

 /**/
 /* Perform plug-in specific logic here to alter or obtain the user's */
 /* distinguished name, credentials, etc. This could include obtaining */
 /* additional data from the pblock, including: */
 /* */
 /* LDAP_PLUGIN_TYPE (e.g. "sasl") */
 /* LDAP_PLUGIN_ARGV plug-in config variables */
 /* LDAP_PLUGIN_ARGC plug-in config variable count */
 /* */
 /**/

 if (rc = (ldap_plugin_sasl_bind_s (
 ld,
 dn,
 mechanism,
 cred,
 serverctrls,
 clientctrls,
 &servercredp)))
 return rc;

 data = (void *) servercredp;

 if (rc = (ldap_plugin_pblock_set (pb, LDAP_PLUGIN_SASL_SERVER_CREDS,
 &data)))
 return rc;

 return (LDAP_SUCCESS);
}

ldap_plugin_init (LDAP_Pblock *pb)
{
 int argc;
 char **argv;

 if (rc = (ldap_plugin_pblock_set (pb, LDAP_PLUGIN_SASL_BIND_S_FN,
 (void *)
 ldap_plugin_sasl_bind_s_prepare)))
 return (rc);

 return (LDAP_SUCCESS);
}

Chapter 2. Directory Server programming reference 153

Possible extended error codes returned by LDAP SSL function
codes

LDAP SSL function codes return possible extended error codes. The following information serves as a
good starting point for the problems.

The following list contains values that are returned by all function calls:

• 0 – The task completed successfully. Issued by every function call that
completes successfully.

• 1 – The environment or SSL handle is not valid. The specified handle was not
the result of a successful open function call.

• 2 – The dynamic link library unloaded (Windows only).
• 3 – An internal error occurred. Report this error to service.
• 4 – Main memory is insufficient to run the operation.
• 5 – The handle is in an invalid state for operation, such as running an init
operation on a handle twice.

• 6 – Specified key label not found in keyfile.
• 7 – Certificate not received from partner.
• 8 – Certificate validation error.
• 9 – Error processing cryptography.
• 10 – Error validating Abstract Syntax Notation (ASN) fields in certificate.
• 11 – Error connecting to LDAP server.
• 12 – Internal unknown error. Report problem to service.
• 101 – Internal unknown error. Report problem to service.
• 102 – I/O error reading keyfile.
• 103 – Keyfile has an invalid internal format. Re-create keyfile.
• 104 – Keyfile has two entries with the same key. Use iKeyman to remove the
duplicate key.

• 105 – Keyfile has two entries with the same label. Use iKeyman to remove the
duplicate label.

• 106 – The keyfile password is used as an integrity check. Either the keyfile
is corrupted or the password ID is incorrect.

• 107 – The default key in the keyfile has an expired certificate. Use iKeyman
to remove certificates that are expired.

• 108 – There was an error for loading one of the GSKdynamic link libraries. Be
sure that GSK was installed correctly.

• 109 – Indicates that a connection is trying to be made in a
gsk environment after the GSK_ENVIRONMENT_CLOSE_OPTIONS is set to
GSK_DELAYED_ENVIRONMENT_CLOSE and gsk_environment_close() function is called.

• 201 – Neither the password nor the stash-file name was specified, so the key
file could not be initialized.

• 202 – Unable to open the key file. Either the path was specified incorrectly
or the file permissions did not allow the file to be opened.

• 203 – Unable to generate a temporary key pair. Report this error to service.
• 204 – A User Name object was specified that is not found.
• 205 – A Password that is used for an LDAP query is not correct.
• 206 – An index into the Fail Over list of LDAP servers was not correct.

154 IBM Security Directory Suite: Programming Reference

• 301 – Indicates that the GSK environment close request was not properly
handled. Cause is most likely because of a gsk_secure_socket*() command that
is being attempted after a gsk_close_environment() call.

• 401 – The system date was set to an invalid value.
• 402 – Neither SSLv2 nor SSLv3 is enabled.
• 403 – The required certificate was not received from partner.
• 404 – The received certificate was formatted incorrectly.
• 405 – The received certificate type was not supported.
• 406 – An IO error occurred on a data read or write.
• 407 – The specified label in the key file could not be found.
• 408 – The specified key file password is incorrect. The key file could not be
used. The key file might also be corrupted.

• 409 – In a restricted cryptography environment, the key size is too long to
be supported.

• 410 – An incorrectly formatted SSL message was received from the partner.
• 411 – The message authentication code (MAC) was not successfully verified.
• 412 – Unsupported SSL protocol or unsupported certificate type.
• 413 – The received certificate contained an incorrect signature.
• 414 – Incorrectly formatted certificate received from partner.
• 415 – Invalid SSL protocol received from partner.
• 416 – Internal error. Report problem to service.
• 417 – The self-signed certificate is not valid.
• 418 – The read failed. Report this error to service.
• 419 – The write failed. Report this error to service.
• 420 – The partner closed the socket before the protocol completed.
• 421 – The specified V2 cipher is not valid.
• 422 – The specified V3 cipher is not valid.
• 423 – Internal error. Report problem to service.
• 424 – Internal error. Report problem to service.
• 425 – The handle could not be created. Report this internal error to service.
• 426 – Initialization failed. Report this internal error to service.
• 427 – When validating a certificate, unable to access the specified LDAP
directory.

• 428 – The specified key did not contain a private key.
• 429 – A failed attempt was made to load the specified Public-Key Cryptography
Standards (PKCS) #11 shared library.

• 430 – The PKCS #11 driver failed to find the token specified by the caller.
• 431 – A PKCS #11 token is not present in the slot.
• 432 – The password or pin to access the PKCS #11 token is invalid.
• 433 – The SSL header received was not a properly SSLV2 formatted header.
• 501 – The buffer size is negative or zero.
• 502 – Used with non-blocking input or output. See the non-blocking section
for usage.

• 601 – SSLV3 is required for reset_cipher, and the connection uses SSLV2.
• 602 – An invalid ID was specified for the gsk_secure_soc_misc function call.

Chapter 2. Directory Server programming reference 155

• 701 – The function call has an invalid ID. This may also be caused by
specifying an environment handle when a handle for an SSL connection must be
used.

• 702 – The attribute has a negative length, which is invalid.
• 703 – The enumeration value is invalid for the specified enumeration type.
• 704 – Invalid parameter list for replacing the SID cache routines.
• 705 – When setting a numeric attribute, the specified value is invalid for
the specific attribute being set.

• 706 – Conflicting parameters have been set for additional certificate
validation.

LDAP V3 schema
Use the following sections for information about the LDAP V3 schema.

Dynamic schema
IBM Security Directory Suite C-Client SDK require that the schema defined for a server is stored in the
subschemasubentry directory.

To access the schema, you must first determine the subschemasubentry DN, which is obtained by
searching the root DSE. To obtain this information from the command-line, issue the following command:

 ldapsearch -h hostname -p 389 -b "" -s base "objectclass=*"

The root DSE information that is returned from an LDAP V3 server, such as the IBM Directory Server,
includes the following subentry:

 subschemasubentry=cn=schema

where subschemasubentry DN is "cn=schema".

Using the subschemasubentry DN returned by searching the root DSE, schema information can be
accessed with the following command-line search:

ldapsearch -h hostname -p 389 -b "cn=schema" -s base "objectclass=subschema"

The schema contains the following information:
Object class

A collection of attributes. A class can inherit attributes from one or more parent classes.
Attribute types

Contain information about the attribute, such as the name, oid, syntax, and matching rules.
IBM attribute types

The IBM LDAP directory implementation-specific attributes, such as database table name, column
name, SQL type, and the maximum length of each attribute.

Syntaxes
Specific LDAP syntaxes available for attribute definitions.

Matching rules
Specific matching rules available for attribute definitions.

Schema queries
The ldapsearch utility can be used to query the subschema entry. This search can be run by any
application by using the ldap_search APIs.

To retrieve all the values of one or more selected attribute types, specify the specific attributes that are
wanted for the LDAP search. Schema-related attribute types include the following values:

156 IBM Security Directory Suite: Programming Reference

• objectclass
• objectclasses
• attributetypes
• ldapsyntaxes
• ibmattributetypes
• matchingrules

For example, to retrieve all the values for ldapsyntaxes, specify:

ldapsearch -h host -b "cn=schema" -s base objectclass=* ldapsyntaxes

which returns something like:

cn=schema
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.10 DESC 'Certificate Pair')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.11 DESC 'Country String')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.12 DESC 'DN')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.14 DESC 'Delivery Method')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.15 DESC 'Directory String')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.16 DESC 'DIT Content Rule
 Description')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.17 DESC 'DIT Structure Rule
 Description')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.21 DESC 'Enhanced Guide')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.22 DESC
 'Facsimile Telephone Number')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.23 DESC 'Fax')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.24 DESC 'Generalized Time')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.25 DESC 'Guide')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.26 DESC 'IA5 String')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.27 DESC 'INTEGER')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.28 DESC 'JPEG')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.3 DESC 'Attribute Type
 Description')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.30 DESC 'Matching Rule
 Description')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.31 DESC 'Matching Rule Use
 Description')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.33 DESC 'MHS OR Address')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.34 DESC 'Name And Optional UID')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.35 DESC 'Name Form
 Description')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.36 DESC 'Numeric String')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.37 DESC 'Object Class
 Description')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.38 DESC 'OID')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.39 DESC 'Other Mailbox')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.40 DESC 'Octet String')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.41 DESC 'Postal Address')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.42 DESC 'Protocol Information')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.43 DESC 'Presentation Address')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.44 DESC 'Printable String')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.49 DESC 'Supported Algorithm')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.5 DESC 'Binary')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.50 DESC 'Telephone
 Number')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.51 DESC
 'Teletex Terminal Identifier')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.52 DESC 'Telex Number')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.53 DESC 'UTC Time')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.54 DESC 'LDAP Syntax
 Description')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.58 DESC 'Substring Assertion')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.6 DESC 'Bit String')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.7 DESC 'Boolean')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.8 DESC 'Certificate')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.9 DESC 'Certificate List')
ldapsyntaxes=(IBMAttributeType-desc-syntax-oid DESC 'IBM Attribute
 Type Description')

Similarly, to obtain the values for matching rules, specify:

 ldapsearch -h host -b "cn=schema" -s base objectclass=* matchingrules

Chapter 2. Directory Server programming reference 157

which returns something like:

cn=schema
 MatchingRules= (1.3.6.1.4.1.1466.109.114.3 NAME \
 'caseIgnoreIA5SubstringsMatch' SYNTAX 1.3.6.1.4.1.1466.115.121.1.58)
 MatchingRules= (2.5.13.5 NAME 'caseExactMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)
 MatchingRules= (2.5.13.2 NAME 'caseIgnoreMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)
 MatchingRules= (2.5.13.7 NAME 'caseExactSubstringsMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.58)
 MatchingRules= (2.5.13.6 NAME 'caseExactOrderingMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)
 MatchingRules= (2.5.13.4 NAME 'caseIgnoreSubstringsMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.58)
 MatchingRules= (2.5.13.3 NAME 'caseIgnoreOrderingMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)
 MatchingRules= (1.3.18.0.2.4.405 NAME 'distinguishedNameOrderingMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)
 MatchingRules= (2.5.13.1 NAME 'distinguishedNameMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)
 MatchingRules= (2.5.13.28 NAME 'generalizedTimeOrderingMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24)
 MatchingRules= (2.5.13.27 NAME 'generalizedTimeMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24)
 MatchingRules= (1.3.6.1.4.1.1466.109.114.2 NAME 'caseIgnoreIA5Match' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)
 MatchingRules= (1.3.6.1.4.1.1466.109.114.1 NAME 'caseExactIA5Match' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)
 MatchingRules= (2.5.13.29 NAME 'integerFirstComponentMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27)
 MatchingRules= (2.5.13.10 NAME 'numericStringSubstringsMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.58)
 MatchingRules= (2.5.13.11 NAME 'caseIgnoreListMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.41)
 MatchingRules= (2.5.13.12 NAME 'caseIgnoreListSubstringsMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.58)
 MatchingRules= (2.5.13.13 NAME 'booleanMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.7)
 MatchingRules= (2.5.13.14 NAME 'integerMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27)
 MatchingRules= (2.5.13.15 NAME 'integerOrderingMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27)
 MatchingRules= (2.5.13.16 NAME 'bitStringMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.6)
 MatchingRules= (2.5.13.17 NAME 'octetStringMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.5)
 MatchingRules= (2.5.13.18 NAME 'octetStringOrderingMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.40)
 MatchingRules= (2.5.13.0 NAME 'objectIdentifierMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)
 MatchingRules= (2.5.13.30 NAME 'objectIdentifierFirstComponentMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)
 MatchingRules= (2.5.13.21 NAME 'telephoneNumberSubstringsMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.58)
 MatchingRules= (2.5.13.20 NAME 'telephoneNumberMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.50)
 MatchingRules= (2.5.13.22 NAME 'presentationAddressMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.43)
 MatchingRules= (2.5.13.23 NAME 'uniqueMemberMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.34)
 MatchingRules= (2.5.13.24 NAME 'protocolInformationMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.42)
 MatchingRules= (2.5.13.25 NAME 'uTCTimeMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.53)
 MatchingRules= (2.5.13.8 NAME 'numericStringMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.36)
 MatchingRules= (2.5.13.9 NAME 'numericStringOrderingMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.36)

Dynamic schema changes
To run a dynamic schema change, use LDAP modify with a DN of "cn=schema". It is permissible to add,
delete, or replace only one schema entity, for example, an attribute type or an object class, at a time.

158 IBM Security Directory Suite: Programming Reference

To delete a schema entity, you can provide the oid in parentheses:

(oid)

A full description might also be provided. In either case, the matching rule that is used to find the schema
entity to delete is objectIdentifierFirstComponentMatch as mandated by the LDAP V3 protocol.

To add or replace a schema entity, you must provide the LDAP V3 definition and you can provide the IBM
definition.

In all cases, you must provide only the definitions of the schema entity that you want to affect. For
example, to delete the attribute type cn (its OID is 2.5.4.3), call ldap_modify() with:

 LDAPMod attr;
 LDAPMod *attrs[] = { &attr, NULL };
 char *vals [] = { "(2.5.4.3)", NULL };
 attr.mod_op = LDAP_MOD_DELETE;
 attr.mod_type = "attributeTypes";
 attr.mod_values = vals;
 ldap_modify_s(ldap_session_handle, "cn=schema", attrs);

To add an attribute type foo with OID 20.20.20 which is a NAME of length 20 chars:

 char *vals1[] = { "(20.20.20 NAME 'foo' SUP NAME)", NULL };
 char *vals2[] = { "(20.20.20 LENGTH 20)", NULL };
 LDAPMod attr1;
 LDAPMod attr2;
 LDAPMod *attrs[] = { &attr1, &attr2, NULL };
 attr1.mod_op = LDAP_MOD_ADD;
 attr1.mod_type = "attributeTypes";
 attr1.mod_values = vals1;
 attr2.mod_op = LDAP_MOD_ADD;
 attr2.mod_type = "IBMattributeTypes";
 attr2.mod_values = vals2;
 ldap_modify_s(ldap_session_handle, "cn=schema", attrs);

To change the object class top so it allows a MAY attribute type called foo. It assumes that the attribute
type foo is defined in the schema:

 LDAPMod attr;
 LDAPMod *attrs[] = { &attr, NULL };
 attr.mod_op = LDAP_MOD_REPLACE;
 attr.mod_type = "objectClasses";
 attr.mod_values = "(2.5.6.0 NAME 'top' ABSTRACT "
 "MUST objectClass MAY foo)";
 ldap_modify_s(ldap_session_handle, "cn=schema", attrs);

LDAP distinguished names
Distinguished names (DNs) are used to uniquely identify entries in an LDAP or X.500 directory. DNs are
user-oriented strings, typically used whenever you must add, modify, or delete an entry in a directory by
using the LDAP programming interface, and when you use the LDAP utilities ldapmodify, ldapsearch,
ldapmodrdn, and ldapdelete.

To know more about the syntax and usage of the command-line utilities, see the Command Reference
section of IBM Security Directory Suite documentation.

A DN is typically composed of an ordered set of attribute type or attribute value pairs. Most DNs are
composed of pairs in the following order:

• common name (cn)
• organization (o) or organizational unit (ou)
• country (c)

The following string-type attributes represent the set of standardized attribute types for accessing an
LDAP directory. A DN can be composed of attributes with an LDAP syntax of Directory String, including the
following ones:

Chapter 2. Directory Server programming reference 159

https://www.ibm.com/docs/sdsu/8.0.1

• CN - CommonName
• L - LocalityName
• ST - StateOrProvinceName
• O - OrganizationName
• OU - OrganizationalUnitName
• C - CountryName
• STREET - StreetAddress

Informal definition
This notation is convenient for common forms of name. Most DNs begin with CommonName (CN), and
progress up the naming tree of the directory. Typically, as you read from left to right, each component of
the name represents increasingly larger groupings of entries, ending with CountryName (C). Remember
that sequence is important. For example, the following two DNs do not identify the same entry in the
directory:

 CN=wiley coyote, O=acme, O=anvils, C=US

 CN=wiley coyote, O=anvils, O=acme, C=US

Some examples follow. The author of RFC 2253, "UTF-8 String Representation of Distinguished Names" is
specified as:

 CN=Steve Kille, O=ISODE Consortium, C=GB

Another name might be:

 CN=Christian Huitema, O=INRIA, C=FR

A semicolon (;) can be used as an alternative separator. The separators might be mixed, but this usage is
discouraged.

 CN=Christian Huitema; O=INRIA; C=FR

Here is an example of a multi-valued Relative Distinguished Name, where the namespace is flat within an
organization, and department is used to disambiguate certain names:

 OU=Sales + CN=J. Smith, O=Widget Inc., C=US

The final examples show both methods of entering a comma in an Organization name:

 CN=L. Eagle, O="Sue, Grabbit and Runn", C=GB

 CN=L. Eagle, O=Sue, Grabbit and Runn, C=GB

Formal definition
For a formal, and complete, definition of Distinguished Names that can be used with the LDAP interfaces,
see "RFC 2253, UTF-8 String Representation of Distinguished Names".

LDAP data interchange format (LDIF)
This documentation describes the LDAP Data Interchange Format (LDIF), as used by the ldapmodify,
ldapsearch, and ldapadd utilities.

The LDIF specified here is also supported by the server utilities that are provided with the IBM Security
Directory Suite. To know more about the syntax and usage of the command-line utilities, see the
Command Reference section of the IBM Security Directory Suite documentation.

160 IBM Security Directory Suite: Programming Reference

http://www.ietf.org/rfc/rfc2253.txt
https://www.ibm.com/docs/en/sdsu/8.0.1?topic=reference-security-directory-suite-command
https://www.ibm.com/docs/sdsu/8.0.1

LDIF is used to represent LDAP entries in text form. The basic form of an LDIF entry is:

dn: distinguished name
attrtype : attrvalue
attrtype : attrvalue
...

A line can be continued by starting the next line with a single space or tab character, for example:

 dn: cn=John E Doe, o=University of High
 er Learning, c=US

Multiple attribute values are specified on separate lines, for example:

 cn: John E Doe
 cn: John Doe

If an attrvalue contains a non-US-ASCII character, or begins with a space or a colon (:), the attrtype is
followed by a double colon and the value is encoded in base-64 notation. For example, the value begins
with a space is encoded as:

 cn:: IGJlZ2lucyB3aXRoIGEgc3BhY2U=

Multiple entries within the same LDIF file are separated by a blank line. Multiple blank lines are
considered a logical end-of-file.

LDIF examples
An LDIF content file contains entries that can be loaded to the directory.

Here is an example of an LDIF content file that contains three entries:

 dn: cn=John E Doe, o=University of High
 er Learning, c=US
 cn: John E Doe
 cn: John Doe
 objectclass: person
 sn: Doe

 dn: cn=Bjorn L Doe, o=University of High
 er Learning, c=US
 cn: Bjorn L Doe
 cn: Bjorn Doe
 objectclass: person
 sn: Doe

 dn: cn=Jennifer K. Doe, o=University of High
 er Learning, c=US
 cn: Jennifer K. Doe
 cn: Jennifer Doe
 objectclass: person
 sn: Doe
 jpegPhoto:: /9j/4AAQSkZJRgABAAAAAQABAAD/2wBDABALD
 A4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9PDkzODdASFxOQ
 ERXRTc4UG1RV19iZ2hnPk1xeXBkeFxlZ2P/2wBDARESEhgVG
 ...

The jpegPhoto in the entry of Jennifer Doe is encoded by using base-64. The textual attribute values can
also be specified in base-64 format. However, if so, the base-64 encoding must be in the code page of
the wire format for the protocol. That is, for LDAP V2, the IA5 character set and for LDAP V3, the UTF-8
encoding.

LDIF example: Content

Chapter 2. Directory Server programming reference 161

LDIF file: Change types
You can modify and delete existing directory entries when an LDIF file contains change types. For
example, the following LDIF file entry shows the object class insectopia being added to the existing
entry dn= cn=foo, ou=bar by using the modify change type:

dn: cn=foo, ou=bar
changetype: modify
add: objectclass
objectclass: insectopia

For a complete list of change types, see RFC 2849.

Change type files can also contain LDAP controls. LDAP controls can be used to extend certain LDAP
Version 3 operations.

A control must contain a unique object identifier (OID) that identifies the control. Make sure that your
server supports the control that you want to use.

The following example shows the LDAP control syntax. Brackets indicate optional data; only the OID is
required.

control: OID [true||false] [string || :: 64string]

Where:

• OID is the OID that identifies the control you want to use.
• string is a string that does not include Line Feed, Carriage Return, NULL, colon, space or < symbol.
• 64string is a base-64 encoded string.

The following example uses the Subtree delete control to delete the ou=Product Development,
dc=airius, dc=com entry:

dn: ou=Product Development, dc=airius, dc=com
control: 1.2.840.113556.1.4.805 true
changetype: delete

When controls are included in an LDIF file, implementations might choose to ignore some or all of them.
This implementation might be necessary if the changes described in the LDIF file are being sent on an
LDAPv2 connection (LDAPv2 does not support controls), or the particular controls are not supported by
the remote server. If the criticality of a control is "true", then the implementation must either include the
control, or must not send the operation to a remote server.

For more information, see “LDAP controls” on page 24 and “Object Identifiers (OIDs) for extended
operations and controls” on page 166.

LDAP controls

Version 1 LDIF support
The ldapmodify and ldapadd client utilities are enhanced to recognize the latest version of LDIF, which
is identified by the presence of the version: 1 tag at the head of the file.

Unlike the original version of LDIF, the newer version of LDIF supports attribute values that are
represented in UTF-8, instead of the limited ASCII.

However, manual creation of an LDIF file that contains UTF-8 values can be difficult. To simplify this
process, a charset extension to the LDIF format is supported. This extension allows an IANA character
set name to be specified in the header of the LDIF file, along with the version number. A limited set of the
IANA character sets is supported. See “IANA character sets supported by platform” on page 164 for the
specific charset values that are supported for each operating system platform.

The version 1 LDIF format also supports file URLs. This format provides a more flexible way to define a file
specification. File URLs take the following form:

162 IBM Security Directory Suite: Programming Reference

 attribute: file:///path
 (where path syntax depends on platform)

For example, the following addresses are valid file web addresses:

 jpegphoto: file:///d:\temp\photos\myphoto.jpg
 (DOS/Windows style paths)
 jpegphoto: file:///etc/temp/photos/myphoto.jpg
 (UNIX style paths)

Note: IBM Security Directory Suite utilities support both the new file URL specification and the older
style. For example, jpegphoto: /etc/temp/myphoto, regardless of the version specification. In other
words, the new file URL format can be used without adding the version tag to your LDIF files.

Version 1 LDIF examples
You can use the optional charset tag so that the utilities automatically convert from the specified
character set to UTF-8.

See the following example:

 version: 1
 charset: ISO-8859-1

 dn: cn=Juan Griego, o=University of New Mexico, c=US
 cn: Juan Griego
 sn: Griego
 description:: V2hhdCBhIGNhcmVmdWwgcmVhZGVyIHlvd
 title: Associate Dean
 title: [title in Spanish]
 jpegPhoto: file:///usr/local/photos/jgriego.jpg

In this instance, all values that follow an attribute name and a single colon are translated from the
ISO-8859-1 character set to UTF-8. Values following an attribute name and a double colon (such as
description:: V2hhdCBhIGNhcm...) must be base-64 encoded, and are expected to be either
binary or UTF-8 character strings. Values that are read from a file, such as the jpegPhoto attribute
specified by the web address in the previous example, are also expected to be either binary or UTF-8. No
translation from the specified charset to UTF-8 is done on those values.

In this example of an LDIF file without the charset tag, content is expected to be in UTF-8, or base-64
encoded UTF-8, or base-64 encoded binary data:

IBM Directory sample LDIF file
#
The suffix "o=sample" should be defined before attempting to load
this data.

 version: 1

 dn: o=sample
 objectclass: top
 objectclass: organization
 o: sample

 dn: ou=Austin, o=sample
 ou: Austin
 objectclass: organizationalUnit
 seealso: cn=Linda Carlesberg, ou=Austin, o=sample

This same file can be used without the version: 1 header information, as in previous releases of the IBM
Security Directory Server version C-Client SDK:

 # IBM Directory sample LDIF file
 #
 # The suffix "o=sample" should be defined before attempting to load
 # this data.

 dn: o=sample
 objectclass: top
 objectclass: organization
 o: sample

Chapter 2. Directory Server programming reference 163

 dn: ou=Austin, o=sample
 ou: Austin
 objectclass: organizationalUnit
 seealso: cn=Linda Carlesberg, ou=Austin, o=sample

Note: The textual attribute values can be specified in base-64 format.

IANA character sets supported by platform
The following table defines the set of IANA-defined (Internet Assigned Numbers Authority) character sets
that can be defined for the charset tag in a Version 1 LDIF file, on a per-platform basis.

The value in the left-most column defines the text string that can be assigned to the charset tag. An X
indicates that conversion from the specified charset to UTF-8 is supported for the associated platform,
and that all string content in the LDIF file is assumed to be represented in the specified charset. n/a
indicates that the conversion is not supported for the associated platform.

String content is defined to be all attribute values that follow an attribute name and a single colon.

For more information about IANA-registered character sets, see IANA Character Sets.

Table 9. IANA-defined character sets by platform

Character Conversion Supported

Set Name Windows AIX Solaris Linux

ISO-8859–1 X X X X

ISO-8859–2 X X X X

ISO-8859–5 X X X X

ISO-8859–6 X X X X

ISO-8859–7 X X X X

ISO-8859–8 X X X X

ISO-8859–9 X X X X

ISO-8859–15 NA X X

IBM437 X NA NA

IBM850 X X NA

IBM852 X NA NA

IBM857 X NA NA

IBM862 X NA NA

IBM864 X NA NA

IBM866 X NA NA

IBM869 X X NA

IBM1250 X NA NA

IBM1251 X NA NA

IBM1253 X NA NA

IBM1254 X NA NA

IBM1255 X NA NA

IBM1256 X NA NA

164 IBM Security Directory Suite: Programming Reference

http://www.iana.org/assignments/character-sets

Table 9. IANA-defined character sets by platform (continued)

Character Conversion Supported

Set Name Windows AIX Solaris Linux

TIS-620 X X NA

EUC-JP NA X X X

EUC-KR NA X X*

EUC-CN NA X X

EUC-TW NA X X

Shift-JIS X X X X

KSC X X NA

GBK X X X*

Big5 X X X

GB18030 X X X X

HP15CN

* Supported on Solaris 7 and higher only.

The new Chinese character set standard (GB18030) is supported by appropriate patches available from
http://www.oracle.com/us/sun/index.htm and http://www.microsoft.com/en-us/default.aspx:

Note: On Windows 2000, you must set the environment variable zhCNGB18030=TRUE.

Deprecated LDAP APIs
Although the following APIs are still supported, their use is deprecated.

Use of the newer replacement APIs is encouraged:
ldap_ssl_start()

Use ldap_ssl_client_init() and ldap_ssl_init(). See “LDAP_SSL” on page 115.
ldap_open()

Use ldap_init(). See“LDAP_INIT” on page 58.
ldap_bind()

Use ldap_simple_bind(). See “LDAP_BIND / UNBIND” on page 10.
ldap_bind_s()

Use ldap_simple_bind_s(). See “LDAP_BIND / UNBIND” on page 10.
ldap_result2error()

Use ldap_parse_result(). See “LDAP_PARSE_RESULT” on page 84.
ldap_perror()

Use ldap_parse_result(). See “LDAP_PARSE_RESULT” on page 84.
ldap_get_entry_controls_np

Use ldap_get_entry_controls. See “LDAP_FIRST_ENTRY, LDAP_FIRST_REFERENCE” on page
50.

ldap_parse_reference_np
Use ldap_parse_reference. See “LDAP_FIRST_ENTRY, LDAP_FIRST_REFERENCE” on page 50.

Chapter 2. Directory Server programming reference 165

http://www.oracle.com/us/sun/index.htm
http://www.microsoft.com/en-us/default.aspx

Object Identifiers (OIDs) for extended operations and controls
The extended operation and control OIDs are in the root DSE of IBM Security Directory Suite.

In this appendix, each OID is defined and its syntax that is specified in the following formats:

Extended operations:
Description

Gives a brief description of the extended operation.
Request

OID and syntax for the extended operation request. A request generally sets the requestValue field.
Response

OID and syntax for the extended operation response.
Behavior

How the extended operation behaves; who is enabled to send the extended operation; possible return
codes.

Scope
The scope of the extended operation.

Auditing (if applicable)
How this extended operation is audited.

Controls:
Description

Gives a brief description of the control.
OID

OID for the extended operation.
Syntax

Syntax for the control.
Behavior

How the control behaves; who is enabled to call the control; possible return codes.
Scope

The scope of the control.
Auditing (if applicable)

How this control is audited.

OIDs for extended operations
The OIDs for extended operations provide support description about various servers.

The following table shows OIDs for extended operations. Click a short name or go to the specified page
number for more information about an extended operation syntax and usage.

166 IBM Security Directory Suite: Programming Reference

Table 10. OIDs for extended operations

Short name with OID Description Supported
by the
Administrati
on Server

Supported by
full Directory
Server with
database

Supported by Proxy
Server

Without
partitione
d data

With
partitione
d data

“Account status
extended operation” on
page 172

1.3.18.0.2.12.58

This extended operation
sends the server a DN of
an entry which contains a
userPassword attribute,
and the server sends
back the status of the
user account that is being
queried:

open
locked
expired

No Yes No No

“Attribute type
extended operations”
on page 173

1.3.18.0.2.12.46

Retrieve attributes by
supported capability:
operational, language tag,
attribute cache, unique, or
configuration.

Note: Attribute cache is
deprecated. You must
avoid using attribute cache.

Yes Yes Yes Yes

“Begin transaction
extended operation” on
page 175

1.3.18.0.2.12.5

Begin a Transactional
context.

No Yes Yes Yes

“Cascading replication
operation extended
operation” on page 176

1.3.18.0.2.12.15

This operation calls the
requested action on the
server it is issued to and
cascades the call to all
consumers beneath it in
the replication topology.

No Yes No No

“Clear log extended
operation” on page 211

1.3.18.0.2.12.20

Request to clear log file. No Yes Yes Yes

“Control replication
extended operation” on
page 179

1.3.18.0.2.12.16

This operation is used
to force immediate
replication, suspend
replication, or resume
replication by a supplier.
This operation is allowed
only when the client owns
update authority to the
replication agreement.

No Yes No No

Chapter 2. Directory Server programming reference 167

Table 10. OIDs for extended operations (continued)

Short name with OID Description Supported
by the
Administrati
on Server

Supported by
full Directory
Server with
database

Supported by Proxy
Server

Without
partitione
d data

With
partitione
d data

“Control queue
extended operation” on
page 181

1.3.18.0.2.12.17

This operation marks items
as "already replicated" for
a specified agreement.
This operation is allowed
only when the client owns
update authority to the
replication agreement.

No Yes No No

“DN normalization
extended operation” on
page 182

1.3.18.0.2.12.30

Request to normalize a DN
or a sequence of DNs.

Yes Yes No No

“Dynamic server trace
extended operation” on
page 183

1.3.18.0.2.12.40

Activate or deactivate
tracing in the Directory
Server.

No Yes Yes Yes

“Dynamic update
requests extended
operation” on page 184

1.3.18.0.2.12.28

Request to update server
configuration for the
Directory Server.

Yes Yes Yes Yes

“Effective password
policy extended
operation” on page 185

1.3.18.0.2.12.75

Used for querying effective
password policy for a user
or a group.

No Yes No No

“End transaction
extended operation” on
page 187

1.3.18.0.2.12.6

End Transactional context
(commit or rollback).

No Yes Yes Yes

“Event notification
register request
extended operation” on
page 188

1.3.18.0.2.12.1

Request registration for
events notification.

No Yes No No

“Event notification
unregister request
extended operation” on
page 189

1.3.18.0.2.12.3

Unregister for events that
were registered for using
an Event Registration
Request.

No Yes No No

168 IBM Security Directory Suite: Programming Reference

Table 10. OIDs for extended operations (continued)

Short name with OID Description Supported
by the
Administrati
on Server

Supported by
full Directory
Server with
database

Supported by Proxy
Server

Without
partitione
d data

With
partitione
d data

“Get file extended
operation” on page 212

1.3.18.0.2.12.73

Returns the contents of a
file on the server.

No Yes Yes Yes

“Get lines extended
operation” on page 213

1.3.18.0.2.12.22

Request to get lines from a
log file.

Yes Yes Yes Yes

“Get number of lines
extended operation” on
page 213

1.3.18.0.2.12.24

Request number of lines in
a log file.

Yes Yes Yes Yes

“Group evaluation
extended operation” on
page 190

1.3.18.0.2.12.50

Requests all the groups
that a user belongs to.

No Yes No No

“Kill connection
extended operation” on
page 191

1.3.18.0.2.12.35

Request to kill connections
on the server. The
request can be to kill
all connections or kill
connections by bound DN,
IP, or a bound DN from a
particular IP.

No Yes Yes Yes

“LDAP trace facility
extended operation” on
page 192

1.3.18.0.2.12.41

Use this extended
operation to control LDAP
Trace Facility remotely by
using the Administration
Server.

Yes Yes Yes Yes

“Locate entry extended
operation” on page 193

1.3.18.0.2.12.71

This extended operation is
used to extract the back-
end server details of a set
of entry DNs and provide
the details to the client.

No No Yes Yes

“LogMgmtControl
extended operation” on
page 194

1.3.18.0.2.12.70

The LogMgmtControl
extended operation is
used to start, stop, and
query the status of the
log management for a
Directory Server instance
that is running on a server.

Yes Yes Yes Yes

Chapter 2. Directory Server programming reference 169

Table 10. OIDs for extended operations (continued)

Short name with OID Description Supported
by the
Administrati
on Server

Supported by
full Directory
Server with
database

Supported by Proxy
Server

Without
partitione
d data

With
partitione
d data

“Online backup
extended operation” on
page 195

1.3.18.0.2.12.74

Runs online backup of the
Directory Server instance
DB2 database.

No Yes No No

“Password policy bind
initialize and verify
extended operation” on
page 196

1.3.18.0.2.12.79

The Password policy-
bind initialize and
verify extended operation
runs password policy
bind initialization and
verification for a specified
user.

No Yes No No

“Password policy
finalize and verify bind
extended operation” on
page 197

1.3.18.0.2.12.80

The Password policy-
finalize and verify bind
extended operation runs
password policy post-bind
processing for a specified
user.

No Yes No No

“Prepare transaction
extended operation” on
page 199

1.3.18.0.2.12.64

Using the prepare
transaction extended
operation the client
requests the server to start
processing the operations
that are sent in a
transaction.

No Yes Yes Yes

“Proxy back-end server
resume role extended
operation” on page 199

1.3.18.0.2.12.65

This extended operation
enables a Proxy Server
to resume the configured
role of a back-end server
in a distributed directory
environment.

No No Yes Yes

“Quiesce or unquiesce
replication context
extended operation” on
page 201

1.3.18.0.2.12.19

This operation puts the
subtree into a state where
it does not accept client
updates (or terminates
this state). Only the
updates from clients are
authenticated as directory
administrators where the
Server Administration
control is present.

No Yes No No

170 IBM Security Directory Suite: Programming Reference

Table 10. OIDs for extended operations (continued)

Short name with OID Description Supported
by the
Administrati
on Server

Supported by
full Directory
Server with
database

Supported by Proxy
Server

Without
partitione
d data

With
partitione
d data

“Replication error log
extended operation” on
page 202

1.3.18.0.2.12.56

Maintenance of a
replication error log.

No Yes No No

“Replication topology
extended operation” on
page 203

1.3.18.0.2.12.54

Trigger a replication
of replication topology-
related entries under a
replication context.

No Yes No No

“ServerBackupRestore
extended operation” on
page 204

1.3.18.0.2.12.81

Issues request to the
Administration Server to do
the following actions:

• Back up a Directory
Server data and
configuration files

• Restore Directory Server
data and configuration
from an existing backup

Yes Yes No No

“Start, stop server
extended operations”
on page 206

1.3.18.0.2.12.26

Request to start, stop, or
restart an LDAP server.

Yes Yes Yes Yes

“Start TLS extended
operation” on page 207

1.3.6.1.4.1.1466.2003
7

Request to start Transport
Layer Security.

Yes Yes Yes Yes

“Unique attributes
extended operation” on
page 208

1.3.18.0.2.12.44

The unique attributes
extended operation
provides a list of all non-
unique (duplicate) values
for a particular attribute.

No Yes No No

“User type extended
operation” on page 209

1.3.18.0.2.12.37

Request to get the User
Type of the bound user.

Yes Yes Yes Yes

Chapter 2. Directory Server programming reference 171

Account status extended operation
The account status extended operation explains its use with the server and provides the results.
Description

This extended operation sends the server a DN of an entry which contains a userPassword attribute,
and the server sends back the status of the user account that is being queried:

• open
• locked
• expired

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.58
Syntax

SEQUENCE {
 dn LDAPDN
}

Response
OID

1.3.18.0.2.12.59
Syntax

SEQUENCE {
 status INTEGER{open(0), locked(1), expired(2)};
}

Behavior
This extended operation requests the account status of a user account. The DN is the DN of the user
account that is being queried. The server sends back the status of the user account that is being
queried.

The following persons are enabled to call the extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin and PasswordAdmin roles
• Global Administration Group members

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_NO_MEMORY
• LDAP_OPERATIONS_ERROR
• LDAP_NO_RESULTS_RETURNED
• LDAP_PROTOCAL_ERROR

This extended operation is not supported by the Administration Server.

Scope
The extended operation affects only the current operation.

172 IBM Security Directory Suite: Programming Reference

Attribute type extended operations
The Attribute type extended operations explain their use with the server and provides the results.
Description

The server provides a way for LDAP clients to determine type of attributes in the schema. This
extended operation is used to list attributes that have a specific characteristic. The extended
operation also provides a way for LDAP clients to query about the following attributes:

• Operational - The operational attributes of the server.
• Language Tag - The attributes that can use language tags.
• Attribute Cache - The attributes that can be cached in attribute cache.

Note: Attribute cache is deprecated. You must avoid using attribute cache.
• Unique - The attributes that can be marked as unique.
• Configuration - The configuration attributes of the server.
• OS400 - The attributes that are used by the i5/OS system projection back-end (i5/OS V5R4).
• Encryptable - The attributes that can be defined as encryptable (version 6.1 and later).
• Encrypted - The attributes that are currently defined as encrypted in the server schema (version

6.1 and later). This returns a subset of encryptable attributes that might have any of the encryption-
related settings: ENCRYPT, RETURN-VALUE, SECURE-CONNECTION-REQUIRED or NONMATCHABLE.

Request
OID

1.3.18.0.2.12.46
Syntax

RequestValue ::= SEQUENCE {
 AttributeTypeRequest ENUMERATED {
 OPERATIONAL (0),
 LANGUAGE TAG (1),
 ATTRIBUTE CACHE (2),
 UNIQUE (3),
 CONFIGURATION (4),
 OS400 (5), #i5/OS V5R4 or later
 ENCRYPTABLE (6), # v6.1 or later
 ENCRYPTED (7) # v6.1 or later
 },
hasCharacteristic BOOLEAN }

The extended operation request value takes two parameters on the request. The first parameter is
an enumeration that tells the server that the attribute type (characteristic) is being requested. The
extended operation supports queries for the following attributes:

• Operational
• Language Tag
• Attribute Cache

Note: Attribute cache is deprecated. You must avoid using attribute cache.
• Unique
• OS400
• Encryptable
• Encrypted

The second parameter is a Boolean value that determines whether to return the attributes that
have the specified attribute characteristic. A value of FALSE returns a list of attribute names that
do not fall into the specified attribute category. A value of TRUE returns a list of attribute names
that do fall into the specified attribute category.

Chapter 2. Directory Server programming reference 173

Response
OID

1.3.18.0.2.12.47
Syntax

ResponseValue ::= SEQUENCE of AttributeNames; #LDAPString or OCTET STRING

Result codes
A standard LDAP result code is returned in the resultCode component of the extended response
message.

Note: If the result code is LDAP_SUCCESS, a list of the attributes that match the request criteria is
returned in the response value.

Behavior
This extended operation enables the user to do the following actions:

• Retrieves a list of all operational attributes.
• Retrieves a list of all attributes that can use language tags (not a list of attributes that are using

language tags).
• Retrieves a list of all attributes that can be cached (not a list of attributes that are being cached).
• Retrieves a list of all attributes that can be made unique attributes (not a list of attributes that are

currently unique attributes).
• Allows the user to retrieve a list of all attributes that are configuration attributes. These attributes

are defined in the configuration schema.
• Retrieves a list of attributes that are used by the i5/OS system projection.
• Retrieves a list of attributes that can be defined as encryptable (version 6.1 and later).
• Retrieves a list of attributes that are currently defined as encrypted in the server schema (version

6.1 and later).

This extended operation also provides an option to return the inverse of any attribute characteristic
for which the user queries. For example, the user must be able to ask for all attributes that are not
operational attributes.

If the encryption setting of a schema attribute type definition is changed, it is audited as a new audit
event, AU_EVENT_ATTR_ENCRYPTION_CHANGED. The audit event message string is:

"GLPSCH045I Encryption setting for attribute '%1$s'
changed to ENCRYPT=%2$s SECURE-CONNECTION-ONLY=%3$s RETURN-VALUE=%4$s\n"

The ENCRYPT value is none or the specified scheme. The SECURE-CONNECTION-ONLY value can be
either 'true' or 'false'. The RETURN-VALUE value can be cleartext or the specified scheme.

All user types, including anonymous users, are enabled to call this extended operation.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_NO_MEMORY
• LDAP_OTHER
• LDAP_PROTOCAL_ERROR
• LDAP_OPERATIONS_ERROR
• LDAP_INSUFFICIENT_ACCESS

This extended operation is supported by the Administration Server.

The authorization that is required for using this extended operation depends on the attribute type
requested. The attribute type and the authority that is required are listed in the table.

174 IBM Security Directory Suite: Programming Reference

Table 11. Authorization required for attributes

Attribute Type Authority Required

Operational Anonymous

Language Tag Anonymous

Attribute Cache Anonymous

Unique Anonymous

Configuration Anonymous

OS400 Anonymous

Encryptable Primary Directory Administrator or Local
Administration Group members with
DirDataAdmin and SchemaAdmin roles

Encrypted Primary Directory Administrator or Local
Administration Group members with
DirDataAdmin and SchemaAdmin roles

Scope
This extended operation has no affect on subsequent requests.

Auditing
The Attribute Type extended operation has an audit string of the following form:

AttributeType: Type

where Type is one of the following types:

• Operational
• Language Tag
• Attribute Cache

Note: Attribute cache is deprecated. You must avoid using attribute cache.
• Unique Attribute
• Configuration
• OS400
• Encryptable
• Encrypted

hasCharacteristic: Boolean

where Boolean is one of the following values:

• FALSE
• TRUE

Begin transaction extended operation
The begin transaction extended operation explains its use with the server and provides the results.
Description

The Begin transaction extended operation sends requests to the server to start a transaction context
on the connection.

Note: This extended operation is enabled by default, but can be disabled by changing the value of the
ibm-slapdTransactionEnable attribute in the configuration file.

Chapter 2. Directory Server programming reference 175

The ibm-slapdTransactionEnable attribute is in the cn=Transaction, cn=Configuration
entry in the configuration file. If the value of this attribute is set to FALSE, transactions are disabled.
If the value is set to TRUE, transactions are enabled. Transactions can also be enabled or disabled by
using the web administration tool.

Request
OID

1.3.18.0.2.12.5
Syntax

There is no request value.
Response

OID
1.3.18.0.2.12.5

Syntax
The response value is a string that contains the transaction ID. The transaction ID is not BER
encoded.

Note: A transaction ID is a string value that is generated by the Directory Server in response to a
start transaction request.

Behavior
This extended operation puts the connection in the transaction state.

All users can run this extended operation.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_NO_MEMORY
• LDAP_OPERATIONS_ERROR
• LDAP_UNWILLING_TO_PERFORM

This extended operation is not supported by the Administration Server.

Scope
This extended operation changes the state of the connection for future operations. This connection
remains in the transaction state until a stop transaction extended operation is sent, or an error occurs.

Cascading replication operation extended operation
The cascading replication operation extended operation explains its use with the server and provides the
results.
Description

Run a replication extended operation on every server in the full replication topology. This extended
operation runs the requested action on the server on which it is issued. It cascades the call to all
consumers beneath it in a replication topology.

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.15
Syntax

requestValue ::= SEQUENCE {
action ActionValue,
subtreeDN DistinguishedName,
timeout INTEGER
}
ActionValue ::= INTEGER {
quiesce (0),

176 IBM Security Directory Suite: Programming Reference

unquiesce (1),
replicateNow (2),
waitForReplication (3)
}

Response
OID

1.3.18.0.2.12.15
Syntax

responseValue ::= SEQUENCE {
 # LDAPResult fields
 resultCode INTEGER (0..MAX),
 errorMessage LDAPString

 # Operation specific failure information:
 supplier LDAPString,
 consumer LDAPString,

 # Additional optional fields:
 additionalResultCode [1] INTEGER OPTIONAL,
 agreementDN [2] LDAPString OPTIONAL

}

When the resultCode is LDAP_TIMEOUT, the additionalResultCode field must be set to one of
the following values:

 additionalResultCode ENUMERATED {
 LDAP_REPLICATION_SUSPENDED [1],
 LDAP_REPLICATION_RETRYING [2],
 LDAP_REPLICATION_ERROR_LOG_FULL [3]
 }

The following codes are possible return codes:

• LDAP_SUCCESS - Operation was successful
• LDAP_NO_SUCH_OBJECT - Replication context or agreement does not exist
• LDAP_UNWILLING_TO_PERFORM - Object is not a replication context
• LDAP_NO_MEMORY
• LDAP_OPERATIONS_ERROR
• LDAP_INSUFFICIENT_ACCESS - Not authorized to run the operation
• LDAP_PARAM_ERROR
• LDAP_ENCODING_ERROR
• LDAP_LOCAL_ERROR
• LDAP_TIMEOUT - Operation did not complete within specified time

Behavior
The requested operation is run on the target server and on all replicas of the target server. This
extended operation runs the requested action on the server it is issued on. It cascades the call to
all consumers beneath it in a replication topology. The operation returns when one of the following
conditions occurs:

• The request is completed on all servers.
• A failure occurred on a server (result indicates the failure and the server).
• The timeout value is exceeded.

This extended operation is allowed only when:

• The client is authenticated with update authority to all agreements in the specified subtree.
• The client is authenticated as a master server for the specified subtree.

Chapter 2. Directory Server programming reference 177

Sometimes when a "wait for replication" is called during the add replica, add master, or move
operation in a replication, wait for replication time-out. No error is displayed that resulted in
time-out. This error is occurred because the cascaded replication times out. To facilitate a better
diagnosis, the replication response structure is updated. When the return code is LDAP_TIMEOUT, the
additionalResultCode and agreementDN fields are set.

The additionalResultCode field is populated with error message. Following examples illustrate how
the server handles the cascaded replication timeout cases and the possible error messages:

• resultCode = LDAP_TIMEOUT without additionalResultCode means a Directory Server instance
earlier than 6.1.

Web Administration tool and ldapexop displays a message, for example:
Replication from supplier replica Supreplica_1 to consumer replica
 hostname: port did not complete.

Replication agreement xxx is suspended.

• resultCode = LDAP_TIMEOUT with additionalResultCode =
LDAP_REPLICATION_SUSPENDED

Web Administration tool and ldapexop displays a message, for example:
Replication from supplier replica Supreplica_1 to consumer replica
 hostname: port did not complete.

Replication agreement xxx is suspended.

• resultCode = LDAP_TIMEOUT with additionalResultCode =
LDAP_REPLICATION_RETRYING

Web Administration tool and ldapexop displays a message, for example:
Replication from supplier replica Supreplica_1 to consumer replica
 hostname: port did not complete.

Replication agreement xxx is blocked on a failing change.

• resultCode = LDAP_TIMEOUT with additionalResultCode =
LDAP_REPLICATION_ERROR_LOG_FULL

Web Administration tool and ldapexop displays a message, for example:
Replication from supplier replica Supreplica_1 to consumer replica
 hostname: port did not complete.

The replication error log is full for agreement xxx.

The agreementDN field contains the DN of the associated replication agreement. The agreementDN
field is set whenever the server that detects the error is working with a particular agreement.

This response is sent for all requests from servers that have a well-formed request value. The
response value consists of a resultCode with errorMessage and information about where the
error was detected.

The supplier field contains the DNS host name of the server that reports the error. If the error occurs
with a consumer server, the consumer field contains the DNS host name of the consumer server.
The error is the server that is timed out and waiting for a response from a consumer. In this case,
the supplier field is always completed but the consumer field might be empty. Since it is an error
condition, the agreementDN field is populated, which provides information about the supplier and
consumer.

The following persons are enabled to call the extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin and ReplicationAdmin roles
• Global Administration Group members
• Master Server DN
• Authenticated Directory User

178 IBM Security Directory Suite: Programming Reference

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_PROTOCOL_ERROR
• LDAP_NO_MEMORY
• LDAP_DECODING_ERROR
• LDAP_UNDEFINED_TYPE
• LDAP_INVALID_DN_SYNTAX

This extended operation is not supported by the Administration Server.

Scope
This extended operation affects only the current operation.

Auditing

Action: [Quiesce | Unquiesce | ReplNow | Wait | Unknown]
Context DN: context DN
Timeout: timeout

Control replication extended operation
The control replication extended operation explains its use with the server and provides the results.
Description

This extended operation is used to control the following aspects of currently running replications:

• Suspend replication
• Resume replication
• Cause changes to be replicated immediately

Request
OID

1.3.18.0.2.12.16
Syntax

requestValue ::= SEQUENCE {
action ActionValue,
scope ScopeValue
entryDN DistinguishedName
}
ActionValue ::= INTEGER {
suspend (0),
resume (1),
replicateNow (2),
terminateFullReplication (3)
}
ScopeValue ::= INTEGER {
singleAgreement (0),
allAgreements (1)
}

Response
OID

1.3.18.0.2.12.16
Syntax

Response Value ::= SEQUENCE {
#fields of interest from LDAPResult:
resultCode INTEGER (0..MAX),
errorMessage LDAPString,

Chapter 2. Directory Server programming reference 179

consumer LDAPString
}

The following return codes are possible:

• LDAP_SUCCESS
• LDAP_NO_SUCH_OBJECT
• LDAP_UNWILLING_TO_PERFORM
• LDAP_OPERATIONS_ERROR
• LDAP_INSUFFICIENT_ACCESS
• LDAP_NO_MEMORY

Behavior
This extended operation is used to control the following aspects of currently running replications:
Suspend replication

Changes are not replicated for the replication agreement or for all replication agreements for the
context until the resume replication or replicate immediately operation is used.

Resume replication
If the replication agreement is suspended, then replication resumes.

Cause changes to be replicated immediately
If the replication agreement is suspended or is waiting for scheduled replication to occur, any
outstanding changes are replicated.

The following persons are enabled to call the extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin and ReplicationAdmin roles
• Global Administration Group members
• Master Server DN
• Authenticated Directory User

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_PROTOCOL_ERROR
• LDAP_DECODING_ERROR
• LDAP_NO_MEMORY
• LDAP_UNDEFINED_TYPE
• LDAP_INVALID_DN_SYNTAX

This extended operation is not supported by the Administration Server.

Scope
This extended operation affects only the current operation.

Auditing

Action: [Suspend | Resume | ReplNow | Unknown]
Scope: [Single | All | Unknown]
DN: dn

180 IBM Security Directory Suite: Programming Reference

Control queue extended operation
The control queue extended operation explains its use with the server and provides the results.
Description

This extended operation is used to skip changes in the replication queue for an agreement.
Request

OID
1.3.18.0.2.12.17

Syntax

requestValue ::= SEQUENCE {
action ActionValue,
agreementDN DistinguishedName,
changeId LDAPString
}
ActionValue ::= INTEGER {
skipAll (0),
skipSingle (1)
}

Response
OID

1.3.18.0.2.12.17
Syntax

Response Value ::= SEQUENCE {
#fields of interest from LDAPResult:
resultCode INTEGER (0..MAX),
errorMessage LDAPString,
#operation information:
changesSkipped INTEGER (0..MAX)
}

The following codes are possible return codes:

• LDAP_SUCCESS
• LDAP_NO_SUCH_OBJECT
• LDAP_UNWILLING_TO_PERFORM
• LDAP_OPERATIONS_ERROR
• LDAP_INSUFFICIENT_ACCESS
• LDAP_NO_MEMORY

Behavior
This extended operation skips changes in the replication agreements queue. If skipSingle is used,
and changeID is the next ID in the replication agreements queue, then changeID is skipped over. If
changeID is not at the head of the list of pending changes, the operation fails. If skipAll is used,
then all outstanding changes in the replication agreements queue are skipped.

The following persons are enabled to call the extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin and ReplicationAdmin roles
• Global Administration Group members
• Master Server DN
• Authenticated Directory User

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

Chapter 2. Directory Server programming reference 181

• LDAP_SUCCESS
• LDAP_PROTOCOL_ERROR
• LDAP_DECODING_ERROR
• LDAP_NO_MEMORY
• LDAP_UNDEFINED_TYPE
• LDAP_INVALID_DN_SYNTAX

This extended operation is not supported by the Administration Server.

Scope
This extended operation affects only the current operation.

Auditing

Skip: [All | changeId | Unknown]
Agreement DN: agreementDn

DN normalization extended operation
The DN normalization extended operation explains its use with the server and provides the results.
Description

The DN normalization extended operation normalizes a DN or a list of DNs. The normalization is based
on the server schema.

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.30
Syntax

RequestValue ::= SEQUENCE {
 case INTEGER {preserve(0), normalize (1)};
 SEQUENCE of DistinguishedName;
 }

Response
OID

1.3.18.0.2.12.30
Syntax

ResultValue ::= SEQUENCE {
 SEQUENCE of SEQUENCE {
 Return code INTEGER;
 DN Normalized DistinguishedName;
 }
 }

Each DN has its own return code. If the return code is not SUCCESS, a DN of zero length is
returned for every DN passed in the original request. The order of DN values in the response
matches the order of DN values that are passed in the request. The LDAP return code and their
corresponding error condition for the extended operation is as follows:

• Success: The DN was normalized successfully.
• UndefinedAttributeType: An attribute in the DN is undefined.
• InvalidDNSyntax: The DN syntax is invalid.

Behavior
The extended operation normalizes a DN, or list of DNs. The normalization is based on the schema.
See "slapi_dn_normalize_v3" in the IBM Security Directory Suite Server Plug-ins Reference.

182 IBM Security Directory Suite: Programming Reference

All users can run this extended operation.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_PROTOCOL_ERROR
• LDAP_OTHER
• LDAP_OPERATIONS_ERROR

This extended operation is supported by the Administration Server.

Scope
The extended operation affects only the current operation.

Dynamic server trace extended operation
The dynamic server trace extended operation explains its use with the server and provides the results.
Description

Use this extended operation to do the following actions:

• Start or stop server-tracing dynamically
• Set the level of debug data collected
• Name the debug output file

This extended operation depends on the LDAP Trace Facility to be initialized with either the ldtrc
command or the successful completion of the LDAP trace facility extended operation request on the
Directory Server. See “LDAP trace facility extended operation” on page 192.

Note:

1. This extended operation is always enabled.
2. Global administrative group members have authority to run the dynamic server trace extended

operation when it is directed to the Directory Server. However, global administrative group
members do not have this authority when they request the extended operation against the
Administration Server.

Request
OID

1.3.18.0.2.12.40
Syntax

The value consists of two integer values and an optional string. The first integer turns on tracing
(1) or off (0). The second integer sets the debug level (0 to 65535) that controls the debug data
that is directed to standard error (stderr) or a file. If the integers are missing, the request fails.
If the value is -1, no change is made. The string value provides the file name and is optional. If no
name is provided, the name is unchanged. If no name is ever provided, the debug output goes to
stderr.

Response
OID

1.3.18.0.2.12.42
Syntax

The response is a string:

Trace settingsactual: enable=%d%d trcEvents=%ld%ld
 level=0x%x0x%x log=[%s]%s

where values in the brackets show that the state after the extended operation is attempted. If
the tracing is on, enable is 1. The trcEvents is 0 if the LDAP Trace Facility is not enabled.
Non-zero values indicate that the server was successful in attaching to the LDAP Trace Facility

Chapter 2. Directory Server programming reference 183

shared memory buffer. The debug level is shown in hex. The log values is the name of the file that
is used to collect the debug output. It might show stderr if the output is going to the console.

Behavior
This extended operation changes the global variables that are used to control debugging and tracing
in the server. If trace is enabled but the debug level is 0, trace data (function entry and exit points,
and other data) is captured in shared memory and nothing is written to the debug file or stderr. If
the debug level is between 0 to 65535, different levels of debug data are output to the debug file or
stderr. If the LDAP Trace facility is not initialized, no trace output is captured and no debug output is
written.

The following persons are enabled to call the extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin role

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_INSUFFICIENT_ACCESS
• LDAP_PROTOCOL_ERROR

This extended operation is not supported by the Administration Server.

Scope
Only the current server session is affected by this operation.

Auditing
The additional information in the audit log is:

Trace=%d [1=on|0=off] debug=0x%x log=[%s]

Dynamic update requests extended operation
The dynamic update request extended operation explains its use with the server and provides the results.
Description

The Dynamic update extended operation requests that the server reread its configuration.

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.28
Syntax

RequestValue ::= SEQUENCE {
 action INTEGER {rereadFile(0),
 rereadAttribute(1),
 rereadEntry(2),
 rereadSubtree(3)};
 entry [0] DistinguishedName OPTIONAL;
 attribute [1] DirectoryString OPTIONAL;
}

Response
OID

1.3.18.0.2.12.29
Syntax

There is no response value.

184 IBM Security Directory Suite: Programming Reference

Behavior
This extended operation forces the server to reread the configuration file. The request can be to
reread the entire file, a subtree, an entry, or a specific attribute. When the server receives the request,
the server reads the configuration file again. It updates all the internal server settings to use the new
settings from the configuration file. Only the dynamic attributes are read again.

Only Primary Directory Administrator and Local Administration Group members with DirDataAdmin
role are enabled to call this extended operation. Local Administration Group members cannot update
attributes of other Local Administration Group members.

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_UNDEFINED_TYPE
• LDAP_INSUFFICIENT_ACCESS
• LDAP_INVALID_SYNTAX
• LDAP_INVALID_DN_SYNTAX
• LDAP_UNWILLING_TO_PERFORM
• LDAP_OBJECT_CLASS_VIOLATION
• LDAP_OTHER
• LDAP_PROTOCOL_ERROR
• LDAP_NO_SUCH_ATTRIBUTE
• LDAP_NO_SUCH_OBJECT
• LDAP_NO_MEMORY

This extended operation is supported by the Administration Server.

Scope
This extended operation causes the server to reread its configuration, which can affect subsequent
operations.

Auditing
The Scope is provided along with the entry dn, or attribute when necessary.

Scope: Scope Value

where Scope Value can be one of the following values:

• Entire - entire configuration file
• Single - for a single attribute
• Entry - for an entry
• Subtree - for a subtree

DN: Entry DN – This DN is required for Single, Entry, and Subtree.

Attribute: Attribute – This attribute is required for Single only.

Effective password policy extended operation
The effective password policy extended operation explains its use with the server and provides the
results.
Description

For a user in a DIT, there are three different password policies that can be used to control the user’s
login and password modifications. An administrator can use this extended operation to obtain users’
effective password policy and manage users and their passwords. In addition, administrators can also

Chapter 2. Directory Server programming reference 185

use this extended operation to query the effective password policy of a group. By specifying a group
DN in the operation, administrators can obtain a combination of the group password policy attributes
and the global password policy attributes. The combination is with the group policy attribute values
overriding the global policy values.

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.75
Syntax

RequestValue ::= SEQUENCE {
 dn LDAPDN
}

Response
OID

1.3.18.0.2.12.77
Syntax

ResponseValue ::= SEQUENCE {
 attributes SEQUENCE OF SEQUENCE {
 attributeType AttributeDescription,
 values SET OF AttributeValue
 }
 objectNames [0] SEQUENCE {
 objectName LDAPDN
 } OPTIONAL
}

where,

• attributes: Represents password policy attribute types and values that are contained in the
user or group effective password policy.

• objectNames: Represents the DNs of all the password policy entries from which the effective
password policy is derived. The objectNames field is not returned if the extended operation is
requested by a non-administrative user.

Behavior

The information that is related to the effective password policy for a user or group is calculated at
run time. It is not stored in the server, such as in the DIT. An administrator or a user can use this
information, which is calculated on the three types of password policies global, group, and individual,
to manage passwords.

This extended operation can be used by primary directory administrators, local administration group
members with password or directory administrative role, and global administration group members.
In additions, users are allowed to use this extended operation to their own effective password policy,
provided their user account are not locked out. If the extended operation is called by a non-authorized
user, a return code LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_INSUFFICIENT ACCESS returned if a non-authorized user tries to run this extended
operation

• LDAP_NO_SUCH_OBJECT returned if the DN specified is not in the directory
• LDAP_NO_MEMORY returned if there was insufficient memory to run the operation
• LDAP_OPERATIONS_ERROR returned if invalid data was given on the call to the password policy

routines
• LDAP_INVALID_DN_SYNTAX returned if the DN specified is not a valid DN
• LDAP_PROTOCOL_ERROR returned if the encoding of the BER was invalid

186 IBM Security Directory Suite: Programming Reference

• LDAP_SUCCESS returned if the operation completed successfully

This extended operation is not supported by the Administration Server.

Scope
This extended operation affects only the current operation.

Auditing
The additional information in the audit log is:

DN: entry dn

End transaction extended operation
The end transaction extended operation explains its use with the server and provides the results.
Description

The End transaction extended operation sends requests to the server to do the following actions:

• Commit all the operations that are run inside the transaction
• Change the state of the connection so it is no longer in the transactional state

Note: This extended operation is enabled by default, but can be disabled by changing the value of the
ibm-slapdTransactionEnable attribute in the configuration file.

The ibm-slapdTransactionEnable attribute is in the cn=Transaction, cn=Configuration
entry in the configuration file. If the value of this attribute is set to FALSE, transactions are disabled.
If the value is set to TRUE, transactions are enabled. Transactions can also be enabled or disabled by
using the web administration tool.

Request
OID

1.3.18.0.2.12.6
Syntax

A string that consists of commit or rollback value followed by the transaction ID value from the
Begin transaction response. The commit or rollback has the following values:

commit = 0

rollback = 1

Response
OID

1.3.18.0.2.12.6
Syntax

The response value is a string that contains the transaction ID. The transaction ID is not BER
encoded.

Behavior
The extended operation commits the transaction and removes the connection from the transaction
state.

All users can run this extended operation.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_NO_MEMORY
• LDAP_OPERATIONS_ERROR
• LDAP_UNWILLING_TO_PERFORM
• LDAP_TIMELIMIT_EXCEEDED
• LDAP_SIZELIMIT_EXCEEDED

Chapter 2. Directory Server programming reference 187

This extended operation is not supported by the Administration Server.

Scope
This extended operation changes the state of the connection for future operations. The extended
operation takes the connection out of the transactional state.

An Example
An example that illustrates the difference in the transaction ID value in a Begin transaction extended
operation and an End transaction extended operation is exemplified.

If in a Begin transaction extended operation, the response value that is returned is the following 24
byte:

0x31 0x31 0x33 0x37 0x33 0x35 0x34 0x33##linebreak##0x33 0x37 0x31 0x32
0x37 0x2E 0x30 0x2E##linebreak##0x30 0x2E 0x31 0x34 0x38 0x39 0x30 0x38

In the End transaction extended operation, the request value for a commit (commit = 0) can be the
following 25 byte:

0x00 0x31 0x31 0x33 0x37 0x33 0x35 0x34##linebreak##0x33 0x33 0x37 0x31
0x32 0x37 0x2E 0x30##linebreak##0x2E 0x30 0x2E 0x31 0x34 0x38 0x39
0x30##linebreak##0x38

In the End transaction extended operation, the request value for a rollback (rollback = 1) can be the
following 25 byte:

0x01 0x31 0x31 0x33 0x37 0x33 0x35 0x34##linebreak##0x33 0x33 0x37 0x31
0x32 0x37 0x2E 0x30##linebreak##0x2E 0x30 0x2E 0x31 0x34 0x38 0x39
0x30##linebreak##0x38

Event notification register request extended operation
The event notification register request extended operation explains its use with the server and provides
the results.
Description

The operation allows a client to request that the server notifies the client when a portion of the tree
changes.

Note: Event notification can be turned off by setting the attribute
ibm-slapdEnableEventNotification in the entry cn=Event Notification,
cn=Configuration to FALSE.

Request
OID

1.3.18.0.2.12.1
Syntax

changeType ::= ENUMERATED {
 changeAdd (1),
 changeDelete (2),
 changeModify (4),
 changeModDN (8) }
 requestValue = SEQUENCE {
 eventID ENUMERATED {
 LDAP_CHANGE (0)},
 baseObject LDAPDN,
 scope ENUMERATED {
 baseObject (0),
 singleLevel (1),
 wholeSubtree (2) },
 type INTEGER OPTIONAL }

Response
OID

1.3.18.0.2.12.1

188 IBM Security Directory Suite: Programming Reference

Syntax

response ::= OCTET STRING

Behavior
If successful, the server sends an unsolicited notification to the client when a modification happens
that the client is interested in.

All users other than anonymous can run this extended operation.

This extended operation has the following possible return codes:

• LDAP_UNWILLING_TO_PERFORM
• LDAP_NO_SUCH_OBJECT
• LDAP_UNDEFINED_TYPE

This extended operation is not supported by the Administration Server.

Scope
If successful, the client might receive unsolicited notifications from the server.

Auditing

eventID: LDAP_change
base: baseDn
scope: baseObject, singleLevel, or wholeSubtree

Event notification unregister request extended operation
The event notification unregister request extended operation explains its use with the server and provides
the results.
Description

The operation allows a client to request that the server must stop notifying the client when a portion
of the tree changes.

Note: Event notification can be turned off by setting the attribute
ibm-slapdEnableEventNotification in the entry cn=Event Notification,
cn=Configuration to FALSE.

Request
OID

1.3.18.0.2.12.3
Syntax

requestValue ::= OCTET STRING

Response
OID

1.3.18.0.2.12.4
Syntax

If the registration is successfully removed, the LDAPResult field contains LDAP_SUCCESS and the
response field contains the registration ID that was removed.

Behavior
If successful, the server stops sending unsolicited notifications to the client when a modification
happens that the client was interested in.

All users other than anonymous can run this extended operation.

This extended operation has the following possible return codes:

• LDAP_UNWILLING_TO_PERFORM
• LDAP_NO_SUCH_OBJECT

Chapter 2. Directory Server programming reference 189

• LDAP_UNDEFINED_TYPE

This extended operation is not supported by the Administration Server.

Scope
If successful, the client stops receiving unsolicited notifications from the server.

Auditing

ID: hostname.uuid

Group evaluation extended operation
The group evaluation extended operation explains its use with the server and provides the results.
Description

The Group evaluation extended operation requests that the server return the set of groups to which
the requested user belongs.

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.50
Syntax

GroupEvaluationRequestValue:: = SEQUENCE {
 dn LDAPDN,
 attributes AttributeList OPTIONAL
}

Response
OID

1.3.18.0.2.12.52
Syntax

Group ::= SEQUENCE { groupName LDAPString }
GroupEvaluationResponseValue :: = SEQUENCE{
 normalized INTEGER{unnormzlied(0), normalized(1)};
 Sequence of Group }

Behavior
This extended operation determines to which groups the requested user belongs.

The following persons are enabled to call the extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin role
• Global Administrators

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_NO_MEMORY
• LDAP_OPERATIONS_ERROR
• LDAP_INVALID_DN_SYNTAX
• LDAP_NO_RESULTS_RETURNED
• LDAP_PROTOCAL_ERROR
• LDAP_NO_SUCH_ATTRIBUTE

190 IBM Security Directory Suite: Programming Reference

This extended operation is not supported by the Administration Server.

Scope
The extended operation affects only the current operation.

Auditing
The group evaluation extended operation sets the audit string to

DN: the DN sent in the group evaluation extended operation \n

If ibm-auditAttributesOnGroupEvalOp is TRUE, the audit string contains a list of attribute value
pairs that are separated by a new line. If the ibm-auditAttributesOnGroupEvalOp is FALSE, the
string contains:

sentAttrs: true|false

The value is FALSE if no attributes were sent on the request.

Kill connection extended operation
The kill connection extended operation explains its use with the server and provides the results.
Description

The Kill connection extended operation requests that the server to stop the specified connections.
Connections can be stopped based on the following parameters:

• Connection IP
• Connection DN
• Combination of IP and DN
• All connections

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.35
Syntax

ReqType ::= ENUMERATED {
DN (1),
IP (2)
}
RequestValue ::= SEQUENCE {
SET {type ReqType
 value Directory String} OPTIONAL
SET {type ReqType
 value Directory String} OPTIONAL
}

For a DN-specific or IP-specific request, only one set of type and value is needed. For a
combination DN or IP request, both sets of type and value are needed. If there is no value that is
specified, all connections are stopped.

Response
OID

1.3.18.0.2.12.36
Syntax

ResponseValue ::= { int numberKilled
 int numberPending }

Each DN has its own return code. If the return code is not SUCCESS, a DN of zero length is
returned for every DN passed in on the original request. The order of DN values in the response
matches the order of DN values that are passed in the request.

Chapter 2. Directory Server programming reference 191

Behavior
This extended operation stops the requested connections.

The following persons are enabled to call the extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin role
• Global Administrators

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_NO_SUCH_OBJECT
• LDAP_INSUFFICIENT_ACCESS
• LDAP_INVALID_DN_SYNTAX
• LDAP_OTHER
• LDAP_PROTOCAL_ERROR

This extended operation is not supported by the Administration Server.

Scope
The extended operation affects only the current operation.

Auditing
The DN or IP or both are provided:

DN: DN
IP: IP

If the DN or the IP is not present, then the request was to stop all connections.

LDAP trace facility extended operation
The LDAP trace facility extended operation explains its use with the server and provides the results.
Description

Use this extended operation to control LDAP trace facility remotely by using the Administration Server.

Note: This extended operation is always enabled on the Administration Server. It is not supported on
the Directory Server.

Request
OID

1.3.18.0.2.12.41
Syntax

The value consists of one integer value and a string. The first integer has the following values:

• 1 enables the LDAP trace facility
• 2 disables the LDAP trace facility
• 3 enables changing masks or other parameters
• 4 clears data that is already collected in the shared memory buffer
• 5 shows information about the current state
• 6 creates a file from the data that is already captured in shared memory

The optional string contains more parameters that are understood by the ldtrc command, such
as the size of the buffer (1) or the name of the output file for memory dump (6).

192 IBM Security Directory Suite: Programming Reference

Response
OID

1.3.18.0.2.12.43
Syntax

The response is a string that contains the output from the ldtrc command that is submitted
remotely.

Behavior
The extended operation submits an ldtrc command on the host computer and captures its output to
return to the client.

The following persons are enabled to call the extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin role

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_INSUFFICIENT_ACCESS
• LDAP_PROTOCOL_ERROR

This extended operation is supported by the Administration Server only.

Scope
The extended operation runs until the computer is rebooted, the root manually issues IPC commands,
the ldtrc command is issued on the computer, or another request is made.

Auditing
The additional information in the audit log is:

OPTIONS: request valueoptional string

where request value is the request value (1-6) and optional string is any additional parameters for
ldtrc.

Locate entry extended operation
The locate entry extended operation explains its use with the server and provides the results.
Description

This extended operation is used to extract the back-end server details of a set of entry DNs and
provide the details to the client.

Request
OID

1.3.18.0.2.12.71
Syntax

RequestValue ::= SEQUENCE {
 DN DistinguishedName;
 //a normalized DN is passed to a Proxy Server
}

Response
OID

1.3.18.0.2.12.72

Chapter 2. Directory Server programming reference 193

Syntax

ResultValue ::= SEQUENCE {
 partitionInformationObject PIO; //depends on the access rights
}

where, the partitionInformationObject constitutes:

• split name
• partition base DN
• partition index
• server group
• list of the server URLs

Behavior

In a distributed directory setup, data are distributed across a set of back-end servers. Also, the
back-end servers are made clear to the users, by placing a Proxy Server in front of this set back-end
server. There are situations, where administrators might want to locate the back-end servers on which
a set of entries exist. This extended operation can be used to extract the back-end server details of a
set of entry DNs and provide the details to the client.

This extended operation for locating entries on the backend-servers can be only run by Primary
Directory Administrator, Local Administration Group members with DirDataAdmin role, and Global
Administration Group members. If a non-authorized user attempts to run this extended operation,
LDAP_INSUFFICIENT_ACCESS is returned.

Note: There is no mechanism in place to restrict the administrators from locating the entries.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_INVALID_DN_SYNTAX
• LDAP_INSUFFICIENT_ACCESS
• LDAP_SERVER_DOWN
• LDAP_NO_SUCH_OBJECT
• LDAP_ENCODING_ERROR
• LDAP_DECODING_ERROR

This extended operation is not supported by the Administration Server.
Scope

This extended operation does not affect the subsequent operations on the connection.

LogMgmtControl extended operation
The LogMgmtControl extended operation explains its use with the server and provides the results.
Description

The LogMgmtControl extended operation is used to start, stop, and query the status of the log
management for a directory server instance and Proxy Server instance that are running on a system.

Request
OID

1.3.18.0.2.12.70
Syntax

 requestValue ::= SEQUENCE {
 action ActionValue,
 commandLineOptions LDAPString OPTIONAL
 }
 ActionValue ::= ENUMERATED {

194 IBM Security Directory Suite: Programming Reference

 start (1),
 stop (2),
 status (3)
 }

Response
Syntax

 ResponseValue ::= SEQUENCE {
 resultCode ENUMERATED {
 success (0),
 insufficientAccessRights (1),
 operationsError (2),
 logmgmtRunningStatus (3),
 logmgmtStoppedStatus (4)
 }
 }

The possible return codes for the LDAP result value and the enabling conditions are as follows:

Table 12. Possible return codes

LDAP Result Value Conditions

Success (0) Issued command to idslogmgmt successfully.

Insufficient Access Rights (1) User is not the server administrator or an
administrative group member.

Operations Error (2) Bad action value or any other error.

Log Management Running Status (3) The log management for the Directory Server
instance is running.

Log Management Stopped Status (4) The log management for the Directory Server
instance is stopped.

Behavior
The LogMgmtControl extended operation can be used to start or stop the log management for a
Directory Server instance and Proxy Server instance. This extended operation also provides the status
of the log management that indicates whether it is running or not.

The following have the authority to call this extended operation:

• Primary Directory Administrator
• Local Administration Group members with AuditAdmin and ServerConfigGroupMember roles

This extended operation is supported by Administration Server and has the same behavior as in a
Directory Server.

Scope
Only the current server session is affected by this operation.

Online backup extended operation
The online backup extended operation explains its use with the server and provides the results.
Description

This extended operation runs online backup of the Directory Server instance DB2 database.
Request

OID
1.3.18.0.2.12.74

Chapter 2. Directory Server programming reference 195

Syntax

RequestValue ::= SEQUENCE {
 directoryPath directoryString;
}

Response
OID

1.3.18.0.2.12.74
Syntax

ResponseValue ::= SEQUENCE {
 resultCode INTEGER (0..MAX)
}

Behavior
A client sends the online backup request to the server for running an online backup of the Directory
Server instance DB2 database.

The following persons are enabled to call the extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin role

Note: If the extended operation is called by a user who does not have the required access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS - If the backup was successfully run.
• LDAP_PROTOCOL_ERROR - If there is an error in the format of the request.
• LDAP_INSUFFICIENT_ACCESS - If the request is from users who do not have the required access.
• LDAP_OPERATIONS_ERROR - Internal Server error, database is not configured for online backup.
• LDAP_NO_SUCH_OBJECT - The specified directory path does not exist.

This extended operation is not supported by the Administration Server.

Scope
The extended operation affects only the current operation.

Auditing
The following information is audited for this extended operation:

Online backup requested: directoryPath

Password policy bind initialize and verify extended operation
The password policy bind-initialize and verify extended operation explains its use with the server and
provides the results.
Description

This extended operation runs password policy bind initialization and verification for a specified
user. This extended operation checks to see whether an account is locked. The extended operation
provides a mechanism for the Proxy Server to support bind plug-ins.

Request
OID

1.3.18.0.2.12.79
Syntax

requestValue ::= SEQUENCE {targetDN DirectoryString}

196 IBM Security Directory Suite: Programming Reference

Response
OID

1.3.18.0.2.12.79
Syntax

responseValue ::= SEQUENCE {ReturnCode Integer}

Behavior
This extended operation runs prebind processing that is related to password policy, that is, bind
initialization and verification for a specified user. This extended operation also checks whether
an account is locked. The extended operation provides a mechanism for the Proxy Server to
support bind plug-ins. This extended operation can be enabled or disabled by setting the ibm-
slapdEnableRemotePWPExOps attribute in the configuration file to TRUE or FALSE in the following
entry:

“cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration”

The following persons are enabled to call this extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin role
• Global administration group members

Note: If this extended operation is called by a user who does not have enough access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS - The operation is completed successfully, caller must check the return code in the
result value.

• LDAP_OPERATIONS_ERROR - The operation did not complete successfully because of an internal
server error. There is not any result value.

• LDAP_INSUFFICIENT_ACCESS - The operation did not complete because the requestor does not
have permission to run the operation. There is not any result value.

• LDAP_UNWILLING_TO_PERFORM - The user account is locked.
• LDAP_INVALID_CREDENTIALS - Invalid DN or password.
• LDAP_NO_MEMORY

This extended operation is not supported by the Administration Server.

Scope
This extended operation affects only the current operation.

Auditing
The additional information in the audit log for this extended operation is listed. The target DN is
audited in the following format:

targetDN: DN value

Password policy finalize and verify bind extended operation
The password policy-finalize and verify bind extended operation explains its use with the server and
provides the results.
Description

This extended operation runs password policy post-bind processing for a specified user. This
extended operation provides a mechanism for the Proxy Server to support bind plug-ins. Post bind
processing includes checking for expired passwords, grace logins, and updating failed and successful
bind counters.

Chapter 2. Directory Server programming reference 197

Request
OID

1.3.18.0.2.12.80
Syntax

requestValue ::= SEQUENCE {
 targetDN DirectoryString,
 bindResult Integer
}

Response
OID

1.3.18.0.2.12.80
Syntax

ResponseValue ::= SEQUENCE {
 PasswordEvaluationReturnCode Integer
}

Behavior
The password policy-finalize and verify bind extended operation runs all the post-bind processing that
is related to password policy. It checks for expired accounts and grace login period. In addition, failed
and successful bind counts are updated for the target entry.

This extended operation can be enabled or disabled by setting the ibm-
slapdEnableRemotePWPExOps attribute in the configuration file to TRUE or FALSE in the following
entry:

 “cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration”

The following persons are enabled to call this extended operation:

• Primary Directory Administrator
• Local administration group members with DirDataAdmin role
• Global administration group members

Note: If this extended operation is called by a user who does not have enough access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS - The operation is completed successfully, caller must check the return code in the
result value.

• LDAP_OPERATIONS_ERROR - The operation did not complete successfully because of an internal
server error. There is not any result value.

• LDAP_INSUFFICIENT_ACCESS - The operation did not complete because the requestor does not
have permission to run this operation. There is not any result value.

• LDAP_UNWILLING_TO_PERFORM - The user account is locked.
• LDAP_INVALID_CREDENTIALS - Invalid DN or password.
• LDAP_NO_MEMORY

This extended operation is not supported by the Administration Server.

Scope
This extended operation affects only the current operation.

Auditing
The additional information in the audit log for this extended operation is listed. The target DN and bind
result is audited in the following format:

198 IBM Security Directory Suite: Programming Reference

targetDN: targer DN
bindResult: rc

Prepare transaction extended operation
The prepare transaction extended operation explains its use with the server and provides the results.
Description

The prepare transaction extended operation can be sent by any client. Using this extended operation,
the client requests the server to start processing the operations that are sent in a transaction. This
extended operation must be called after a start transaction is issued and all the operations within
a transaction are sent. On getting a request, the server starts processing each operation without
committing the changes. This extended operation is enabled only when transactions are enabled.

Request
OID

1.3.18.0.2.12.64
Syntax

requestValue ::= { transactionId String; }

Response
OID

1.3.18.0.2.12.64
Syntax

This extended operation returns the return code for the operation.
Behavior

When the server receives the extended operation, the server checks whether the connection is in
the transactional state and no commit or prepare request are sent. If these checks pass, the server
starts processing each operation in the transaction without a commit. This extended operation is not
supported by the Administration Server.

Auditing
No additional auditing information is provided for this operation.

Note: There is no requirement to audit the transaction ID because this value is already audited when
it is sent by using the transaction control.

Proxy back-end server resume role extended operation
The proxy back-end server resume role extended operation explains its use with the server and provides
the results.
Description

This extended operation enables a Proxy Server to resume the configured role of a back-end server in
a distributed directory environment.

Request
OID

1.3.18.0.2.12.65
Syntax

requestValue ::= SEQUENCE {
 action ENUMERATED {
 All (0),
 Partition (1),
 Server (2),
 ServerInAPartition (3)
 };
 PartitionName DirectoryString;
 ServerURL DirectoryString;
}

Chapter 2. Directory Server programming reference 199

Response
OID

1.3.18.0.2.12.65
Syntax

responseValue ::= SEQUENCE {
 numObjectsImpacted INTEGER
}

Behavior
This extended operation tells a Proxy Server to bring a back-end server back to its configured role.
The Proxy Server resumes only a back-end server role if the back-end server is online and accepting
connections from the Proxy Server. The extended operation uses the 5 second reconnect interval or
the health check thread to connect with the back-end server.

The following are authorized to call this extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin role
• Global Administration Group members

Note: If this extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS - Server matched the request, and no internal errors were encountered.
• LDAP_PROTOCOL_ERROR - If there is an error in the format of the request.
• LDAP_INSUFFICIENT_ACCESS - If the request is from a user who does not have the required

access.
• LDAP_OPERATIONS_ERROR
• LDAP_NO_SUCH_OBJECT - If the requested target does not exist.
• LDAP_INVALID_SYNTAX - If the format of the URL or partition name is invalid.

This extended operation is not supported by the Administration Server.

Scope
This extended operation affects requests are routed through the Proxy Server.

Auditing
The additional information added to audit log by the proxy back-end server resume role extended
operation are:

RequestType: Type

where Type is one of the following types:

• All
• Partition
• Server
• ServerInAPartition

Partition: PartitionName

Server: ServerURL

Note: If PartitionName or ServerURL is not specified in the request, None is audited.

200 IBM Security Directory Suite: Programming Reference

Quiesce or unquiesce replication context extended operation
The quiesce or unquiesce replication context extended operation explains its use with the server and
provides the results.
Description

This extended operation is used for the following changes:

• Disable non-replication topology-related changes in the replication context.
• Enable non-replication topology-related changes.

Request
OID

1.3.18.0.2.12.19
Syntax

requestValue ::= SEQUENCE {
quiesce BOOLEAN,
subtreeDn DistinguishedName
}

Response
OID

1.3.18.0.2.12.19
Syntax

ResponseValue ::= SEQUENCE {
#fields of interest from LDAPResult:
resultCode INTEGER (0..MAX),
errorMessage LDAPString,
}

The following return codes are possible:

• LDAP_SUCCESS
• LDAP_NO_SUCH_OBJECT
• LDAP_UNWILLING_TO_PERFORM
• LDAP_OPERATIONS_ERROR
• LDAP_INSUFFICIENT_ACCESS
• LDAP_NO_MEMORY
• LDAP_REPL_QUIESCE_BAD_STATE

Behavior
This extended operation is used for the following changes:

• Disable non-replication topology-related changes in the replication context.
• Enable non-replication topology-related changes.

If the quiesce Boolean is TRUE, then only replication topology-related changes are enabled.

The following persons are enabled to call the extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin and ReplicationAdmin roles
• Global Administration Group members
• Master Server DN
• Authenticated Directory User

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

Chapter 2. Directory Server programming reference 201

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_PROTOCOL_ERROR
• LDAP_DECODING_ERROR
• LDAP_NO_MEMORY
• LDAP_UNDEFINED_TYPE
• LDAP_INVALID_DN_SYNTAX

This extended operation is not supported by the Administration Server.

Scope
This extended operation affects only the current operation.

Auditing

Action: [Quiesce | Unquiesce]
Context DN: dn

Replication error log extended operation
The replication error log extended operation explains its use with the server and provides the results.
Description

Use this extended operation to monitor replication errors and correct any problems that occur as data
fails to be replicated.

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.56
Syntax

The value consists of an integer which indicates the type of request and two strings in BER format.
The first string identifies which failure or failures are to be deleted, attempted again or displayed.
The value is either 0 for all, or the ID of the failed change. The second string provides the DN for
the replication agreement.

Response
OID

1.3.18.0.2.12.57
Syntax

The response is a string that indicates any problem that occurred, or if successful, how many
failed changes were deleted or present to the consumer.

Behavior
The extended operation acts on the table that maintains the updates that failed on any of the current
server consumer servers. The data for any single failure can be displayed. Any or all failed changes
can be deleted or attempted again. Deleted changes are removed from the table. Changes that
attempted again are sent individually to the consumer. If the update succeeds, the failure is removed
from the table. If the update fails again, it is added back as a new failure with the following results to
reflect this update:

• number of attempts
• last time that attempted
• result code that is updated

The original failure is removed. The worker thread that handles the extended operation connects to
the consumer and sends these changes. Replica threads can send updates to the consumer at the
same time.

202 IBM Security Directory Suite: Programming Reference

The following persons are enabled to call the extended operation:

• Primary Directory Administrator
• Local Administration Group member
• Users with write access to the replica group

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_INSUFFICIENT_ACCESS
• LDAP_DECODING_ERROR
• LDAP_PROTOCOL_ERROR
• LDAP_UNWILLING_TO_PERFORM
• LDAP_NO_SUCH_OBJECT

This extended operation is not supported by the Administration Server.

Scope
If the errors are deleted or successfully attempted again, they are removed from the table
permanently.

Auditing
The additional information in the audit log is consists of three lines:

Replication Error Log Management Option: [SHOW | RETRY | DELETE | UNKNOWN]
Replication Error ID: numeric value
Replication Agreement DN: DN or empty string.

Replication topology extended operation
The replication topology extended operation explains its use with the server and provides the results.
Description

This extended operation propagates replication topology-related entries from a supplier to the
consumers in the network. This extended operation is useful to synchronize replication topology data
for every server in the network before replication of directory entries can begin.

Request
OID

1.3.18.0.2.12.54
Syntax

RequestValue ::= SEQUENCE {
 replicationContextDn DistingushedName,
 timeout INTERGER,
 replicationAgreementDn DistingushedName OPTIONAL
}

Response
OID

1.3.18.0.2.12.55
Syntax

ResponseValue ::= SEQUENCE {
 resultCode INTEGER(0..MAX),
 errorMessage LDAPString,
 #operation specific failure information:
 supplier LDAPString,
 consumer LDAPString,
}

Chapter 2. Directory Server programming reference 203

Behavior
A supplier gathers its replication topology-related entries under a replication context and propagates
them to the consumer servers. The supplier can add the entries to the consumer or modify the
existing entries on the consumer or delete the extra entries from the consumer. As a result of the
extended operation, the replication topology-related entries under the specified context on both the
supplier and the consumers are in sync.

The operation is enabled when the client is authenticated with update authority to all agreements
in the specified subtree. Or, it is authenticated as a master server for the specified subtree.
Primary Directory Administrator and Local Administration Group members with DirDataAdmin and
ReplicationAdmin roles are authorized to call this extended operation.

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_NO_MEMORY
• LDAP_OPERATIONS_ERROR
• LDAP_UNWILLING_TO_PERFORM
• LDAP_PROTOCOL_ERROR

This extended operation is not supported by the Administration Server.

Scope
The extended operation does not affect subsequent operation on the connection.

Auditing
Context DN, Replication Agreement DN, and Timeout are audited.

ServerBackupRestore extended operation
The ServerBackupRestore extended operation explains its use with the server and provides the
results.
Description

The ServerBackupRestore extended operation issues request to the Administration Server to back
up a Directory Server data and configuration files or restore a Directory Server data and configuration
files from an existing backup.

Request
OID

1.3.18.0.2.12.81
Syntax

requestValue ::= SEQUENCE {
 action ActionValue
}

ActionValue ::= ENUMERATED {
 backup (1),
 restore (2)
}

Response
OID

1.3.18.0.2.12.81
Syntax

responseValue ::= SEQUENCE {
 result OperationResult
}

204 IBM Security Directory Suite: Programming Reference

OperationResult ::= ENUMERATED {
 No_Operation_Attempted (1),
 Backup_Submitted (2),
 Failed_Backup_Requires_Server_Stop (3),
 Failed_Backup_In_Progress (4),
 Unknown_Backup_Result (5),
 Restore_Submitted (6),
 Failed_Restore_Requires_Server_Stop (7),
 Failed_Restore_In_Progress (8),
 Failed_Restore_No_Backup_Exists (9),
 Unknown_Restore_Result (10),
 Failed_Backup_Requires_Onetime_Server_Stop (11)
}

Behavior

This extended operation requests the Administration Server to do the following actions:

• Back up a Directory Server data and configuration files
• Restore a Directory Server data and configuration files from an existing backup that depends on the

action value

This extended operation can be disabled by setting the ibm-slapdBackupEnabled attribute in the
server configuration file to FALSE.

This extended operation has the following possible return codes:

• LDAP_SUCCESS - If the request is submitted successfully.
• LDAP_INSUFFICIENT_ACCESS - If the bind DN does not have the required permission to send

request.
• LDAP_PROTOCOL_ERROR - If not an administration server, a Directory Server with RDBM, not
configured for backup and restore, or backup and restore not enabled.

• LDAP_OPERATIONS_ERROR - If the action value is unsupported or missing.

The backup and restore operations can be only run by the following users:

• Primary directory administrator
• Local administration group member that has DirDataAdmin, ServerStartStopAdmin,
ServerConfigGroupMember, and SchemaAdmin roles

This extended operation is only supported by the Administration Server.

Scope
At a time only one operation can be run. If a backup or restore operation is running, other backup or
restore requests results in error unless the earlier operation is completed. If a bulkload operation is
running, then backup or restore operation does not proceed.

Auditing

Action: [backup|restore]
Response: [1 - No Operation Attempted |
 2 - Backup_Submitted |
 3 - Failed_Backup_Requires_Server_Stop |
 4 - Failed_Backup_In_Progress |
 5 - Unknown_Backup_Result |
 6 - Restore_Submitted |
 7 - Failed_Restore_Requires_Server_Stop |
 8 - Failed_Restore_In_Progress |
 9 - Failed_Restore_No_Backup_Exists |
 10 - Unknown_Restore_Result |
 11 - Failed_Backup_Requires_Onetime_Server_Stop
]

Chapter 2. Directory Server programming reference 205

Start, stop server extended operations
The start and stop server extended operation explains its use with the server and provides the results.
Description

The Start, stop server extended operation, when sent to the Administration Server, requests that the
Administration Server does the following actions:

• Start
• Stop
• Restart
• Give the status of the LDAP server
• Stop the Administration Server

The Start Stop Server Extended Operation, when sent to the LDAP Server, requests that the LDAP
Server stop.

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.26
Syntax

actionType ::= ENUMERATED {
 startServer (0),
 stopServer (1),
 restartServer (2),
 serverStatus (3),
 admStop (4)}

 requestValue :: = SEQUENCE {
 action actionType
 command options string OPTIONAL
}

Response
OID

1.3.18.0.2.12.27
Syntax

ResultValue :: SEQUENCE {
 Status Integer
 ErrorString String
 }

Behavior
When sent to the Administration Server, the request does one of the following actions:

• Start
• Restart
• Stop
• Request the server status
• Stop the Administration Server

When sent to the LDAP Server, the server acknowledges only the request to stop the server. Any other
request sent to the LDAP Server results in a return code of LDAP_UNWILLING_TO_PERFORM.

When the request is sent to the Administration Server, only a Primary Directory Administrator or Local
Administration Group members with ServerStartStopAdmin role has the authority to make the
request.

206 IBM Security Directory Suite: Programming Reference

When the request is sent to the LDAP server, only Primary Directory Administrator, Local
Administration Group members with ServerStartStopAdmin role, or a global administration group
member has the authority to make the request.

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_OTHER
• LDAP_UNWILLING_TO_PERFORM
• LDAP_INSUFFICIENT_ACCESS
• LDAP_PROTOCAL_ERROR

This extended operation is supported by the Administration Server. This extended operation with the
stop request is supported in the LDAP Server.

Scope
The extended operation affects only the current operation, unless the request is to stop Administrator
Server.

Auditing
In the LDAP server, the additional information contains:

Operation: Start | Stop | Restart | Admin Stop | Status

In the Administration Server, the additional information contains:

Operation: Start | Stop | Restart | Admin Stop | Status

On a start or restart operation the following line is audited:

Options: Additional Value

For example, a request to start the server with the -a option audits the following operation:

Operation: Start
Options: ---a

Start TLS extended operation
The start TLS extended operation explains its use with the server and provides the results.
Description

This extended operation requests that the server start by using encrypted communications over the
connection.

Note: This extended operation is always enabled.

Request
OID

1.3.6.1.4.1.1466.20037
Syntax

There is no request value for the extended operation.
Response

OID
1.3.6.1.4.1.1466.20037

Syntax

• LDAP_SUCCESS
• LDAP_OPERATIONS_ERROR
• LDAP_PROTOCOL_ERROR

Chapter 2. Directory Server programming reference 207

Behavior
The extended operation is used to request that communication on the connection must be encrypted.
The server expects a TLS handshake on the connection.

All Local Administration Group members irrespective of their roles and all users can run this extended
operation.

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_OPERATIONS_ERROR
• LDAP_PROTOCOL_ERROR

This extended operation is supported by the Administration Server.

Scope
When a TLS handshake is run, all communication on the connection is encrypted until a TLS closure
alert is sent or the connection is closed.

Unique attributes extended operation
The unique attributes extended operation explains its use with the server and provides the results.
Description

The unique attributes extended operation provides a list of all non-unique (duplicate) values for a
particular attribute.

Note: This extended operation can be disabled. Commenting out or removing the statement in
the configuration file for the unique attribute extended operation plug-in disables this extended
operation. For example, commenting out the statement:

ibm-slapdPlugin: extendedop /bin/libback-rdbm.dll initUniqueAttr

from the configuration file disables this extended operation on Windows systems.

Request
OID

1.3.18.0.2.12.44
Syntax

ExtendedRequest ::= SEQUENCE {
 requestName LDAPOID // OID for the IBM Unique Attributes
 requestValue LDAPOID // OID for an attribute requiring uniqueness
}

where LDAPOID is an OCTET STRING.
Response

OID
1.3.18.0.2.12.45

Syntax

ExtendedResponse ::= SEQUENCE {
 COMPONENTS OF LDAPResult,
 responseName LDAPOID // OID for the IBM Unique Attributes
 Response AttributeValueList // list of all
 conflicting attribute values
}

where AttributeValueList is a SEQUENCE OF AttributeValue and LDAPOID is an OCTET
STRING.

208 IBM Security Directory Suite: Programming Reference

Behavior
The extended operation lists all non-unique values for a particular attribute.

The following persons are enabled to call the extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin role
• Global Administration Group members
• Master Server DN

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_INSUFFICIENT_ACCESS
• LDAP_NO_MEMORY
• LDAP_PARAM_ERROR
• LDAP_OPERATIONS_ERROR
• LDAP_OTHER

This extended operation is not supported by the Administration Server.

Scope
This extended operation affects only the current operation.

User type extended operation
The user type extended operation explains its use with the server and provides the results.
Description

This extended operation can be used by a bound user to determine the user type and roles the user
has on a Directory Server instance. Without the extended operation, there is no programmatic way to
determine the general capabilities of a user and where the user DN and password is stored.

It is possible for a user to belong to a user type and have different capabilities and store passwords
under different types of entries or attributes.

Additionally, the extended operation distinguishes the root administrator from an administrative group
member when a client must use the Administration Server to authenticate a user.

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.37
Syntax

There is no request value for the extended operation.
Response

OID
1.3.18.0.2.12.38

Syntax

ResponseValue ::= SEQUENCE {
 STRING (UserType)
 INTEGER (Number of UserRoles)
 SEQUENCE OPTIONAL
 {
 STRING (UserRole)

Chapter 2. Directory Server programming reference 209

 }
}

Behavior
This extended operation can be used by a bound user to determine the user type and roles the user
has on a Directory Server instance.

All users, including anonymous, are enabled to send the control.

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_NO_MEMORY
• LDAP_OPERATIONS_ERROR
• LDAP_NO_RESULTS_RETURNED
• LDAP_PROTOCAL_ERROR

This extended operation is supported by the Administration Server.

Scope
The extended operation affects only the current operation.

Log access extended operations
The log access extended operation explains its use with the server and provides the results.

Three types of extended operation requests support access to the log files. IBM Security Directory Suite
Administration Server supports the following log access extended operations:

• “Clear log extended operation” on page 211
• “Get lines extended operation” on page 213
• “Get number of lines extended operation” on page 213

The server provides access to the following log files:

• ibmslapd.log
• db2cli.log
• db2clicmds.log
• audit.log
• bulkload.log
• ibmdiradm.log
• lostandfound.log
• idstools.log
• db2load.log
• tracemsg.log
• adminAudit.log (this file is available only if the Administration Server audit log OID

(1.3.18.0.2.32.11) is in the list of supported capabilities in the root DSE)
• ibmslapd.trace.log (this file is available only if the trace log OID (1.3.18.0.2.32.14) is in the list of

supported capabilities in the root DSE)

Lines are numbered starting with line 0. A line is considered all characters up to and including a new line
or 400 characters, whichever comes first.

To make the log access request, a client application can use the client APIs for extended operations. An
LDAP v3 extended operation request has the form:

 ExtendedRequest ::= [APPLICATION 23] SEQUENCE {
 requestName [0] LDAPOID,
 requestValue [1] OCTET STRING OPTIONAL }

210 IBM Security Directory Suite: Programming Reference

All the extended requests use a LogType. LogType is defined as:

LogType ::= ENUMERATED {
 SlapdErrors (1),
 CLIErrors (2),
 AuditLog (4),
 BulkloadLog (8),
 AdminErrors (16),
 AdminAudit (32),
 DebugOutputFile (64),
}

RequestValue ::= { log LogType; }

Clear log extended operation
The Clear log extended operation explains its use with the server and provides the results.
Description

The Clear log extended operation requests that the server clear the requested log. When the log is
cleared, a line is written to the log file with the date and time that states when the log file was cleared.

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.20
Syntax

RequestValue ::= { log LogType; }

Response
OID

1.3.18.0.2.12.21
Syntax

There is no response value.
Behavior

The extended operation clears the requested log file and writes a message in the log. It writes the
date and time that states when the log was cleared.

Only the Primary Directory Administrator or Local Administration Group members with AuditAdmin
and ServerConfigGroupMember roles are authorized to call this extended operation. Only the
Primary Directory Administrator can clear the audit log. A Local Administration Group member does
not have access to clear the audit log.

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_INSUFFICIENT_ACCESS
• LDAP_UNWILLING_TO_PERFORM
• LDAP_PROTOCOL_ERROR
• LDAP_NO_MEMORY

This extended operation is not supported by the Administration Server.

Scope
This extended operation affects only the current operation.

Auditing

Log: Log name

Chapter 2. Directory Server programming reference 211

Get file extended operation
The get file extended operation explains its use with the server and provides the results.
Description

This extended operation returns the contents of a file on the server.
Request

OID
1.3.18.0.2.12.73

Syntax

RequestValue ::= SEQUENCE {
 fileNumber INTEGER {Other(0),
 V3.ibm.at(1), V3.ibm.oc(2),
 V3.user.at(3), V3.user.oc(4),
 V3.config.at(5), V3.config.at(6),
 V3.system.at(7), V3.system.oc(8),
 V3.modifiedschema(9), V3.ldapsyntaxes(10),
 V3.matchingrules(11),
 KeyRingFile(12), KeyDBFile(13)};
 fileName String;
}

Response
OID

1.3.18.0.2.12.73
Syntax

ResponseValue ::= SEQUENCE {
 length INTEGER, // The length of the file.
 lines OCTET STRING // The lines from the file.
}

Behavior
A client uses the get file request to retrieve the contents of schema-related files or SSL-related files
from the server. If the connection between the client and server is not over SSL, the SSL-related files
are not returned.

The Primary Directory Administrator is enabled to call the extended operation.

Note: If the extended operation is called by a user who does not have the required access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS - If the file was successfully read.
• LDAP_PROTOCOL_ERROR - If there is an error in the format of the request.
• LDAP_INSUFFICIENT_ACCESS – If the request is from users other than the administrators.
• LDAP_OPERATIONS_ERROR - Internal Server error.
• LDAP_NO_SUCH_OBJECT - The requested file does not exist.

This extended operation is not supported by the Administration Server.

Scope
The extended operation affects only the current operation.

Auditing
The following information is audited for this extended operation:

File: [fileName | V3.ibm.at | V3.ibm.oc |
 V3.user.at | V3.user.oc |
 V3.config.at | V3.config.at |
 V3.system.at | V3.system.oc |
 V3.modifiedschema | V3.ldapsyntaxes |
 V3.matchingrules]

212 IBM Security Directory Suite: Programming Reference

Get lines extended operation
The get lines extended operation explains its use with the server and provides the results.
Description

The Get lines extended operation requests that the server read the specified lines from the requested
log and return them to the client.

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.22
Syntax

RequestValue :== SEQUENCE
 {
 Log LogType;
 firstLine INTEGER;
 lastLine INTEGER;
 }

Response
OID

1.3.18.0.2.12.23
Syntax

There is a response value only if the return code is LDAP_SUCCESS.
Behavior

This extended operation reads the requested set of lines from the requested file and returns the lines
to the user.

Only the Primary Directory Administrator and Local Administration Group members with any roles
other than NoAdmin role are enabled to call this extended operation.

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_INSUFFICIENT_ACCESS
• LDAP_UNWILLING_TO_PERFORM
• LDAP_PROTOCOL_ERROR
• LDAP_NO_MEMORY

This extended operation is supported by the Administration Server.

Scope
This extended operation affects only the current operation.

Auditing

Log: Log name

Get number of lines extended operation
The Get number of lines extended operation explains its use with the server and provides the results.
Description

The Get number of lines extended operation requests that the server determine the number of lines in
the requested log file.

Note: This extended operation is always enabled.

Chapter 2. Directory Server programming reference 213

Request
OID

1.3.18.0.2.12.24
Syntax

LogType ::= ENUMERATED {SlapdErrors (1),
 CLIErrors (2),
 AuditLog (4),
 BulkloadLog (8),
 AdminErrors (16),
 AdminAudit (32),
 DebugOutputFile (64),
 LostAndFound (128).
 ConfigToolsLog (256)}
 RequestValue ::= { log LogType; }

Response
OID

1.3.18.0.2.12.25
Syntax

ResponeValue:: = number of lines

Behavior
The extended requests that the server read the log file and determine the number of lines in the
requested log file.

Primary Directory Administrator and Local Administration Group members with any roles other than
NoAdmin role are enabled to call this extended operation.

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_INSUFFICIENT_ACCESS
• LDAP_UNWILLING_TO_PERFORM
• LDAP_PROTOCOL_ERROR
• LDAP_NO_MEMORY

This extended operation is supported by the Administration Server.

Scope
This extended operation affects only the current operation.

Auditing

Log: Log name

See the section "Creating the administrative group" in the Administering section in the IBM Security
Directory Suite documentation to know more about the following information:

• Administrative roles
• Authorization that is required to issue various extended operations
• Permissions that are required to access various objects

OIDs for controls
The OIDs for controls provide support description for various servers.

The following table shows OIDs for controls. Click the short name or go the specified page number for
more information about a control syntax and usage.

214 IBM Security Directory Suite: Programming Reference

https://www.ibm.com/docs/en/sdsu/8.0.1?topic=documentation-administering
https://www.ibm.com/docs/sdsu/8.0.1
https://www.ibm.com/docs/sdsu/8.0.1

Table 13. OIDs for controls

Short name with OID Description Supported
by the
Administrati
on Server

Supported
by full
Directory
Server with
database

Supported by Proxy
Server

Without
partitioned
data

With
partitioned
data

“AES bind control” on
page 219

1.3.18.0.2.10.28

This control enables the
Directory Server to send
updates to the consumer
server with passwords
already encrypted using
AES.

No Yes No No

“Audit control” on page
220

1.3.18.0.2.10.22

The control sends a
sequence of uniqueid
strings and a source ip
string to the server. When
the server receives the
control, it audits the list of
uniqueids and sourceip
in the audit record of the
operation.

Yes Yes Yes Yes

“Do not replicate
control” on page 221

1.3.18.0.2.10.23

This control can be
specified on an update
operation (add, delete,
modify, modDn, modRdn).

No Yes No No

“Entry change
notification control” on
page 221

2.16.840.1.113730.3.4
.7

This control provides more
information about the
changes that caused a
particular entry to be
returned as the result of a
persistent search.

No Yes No No

“Group authorization
control” on page 222

1.3.18.0.2.10.21

The control sends a list of
groups that a user belongs
to.

No Yes No No

“LDAP delete operation
timestamp control” on
page 223

1.3.18.0.2.10.32

This control is used to send
the modified timestamp
values to a replica during a
delete operation.

No Yes No No

“Limit number of
attribute values
control” on page 224

1.3.18.0.2.10.30

This control limits the
number of attribute values
that are returned for an
entry in a search operation.

No Yes Yes Yes

Chapter 2. Directory Server programming reference 215

Table 13. OIDs for controls (continued)

Short name with OID Description Supported
by the
Administrati
on Server

Supported
by full
Directory
Server with
database

Supported by Proxy
Server

Without
partitioned
data

With
partitioned
data

“Manage DSAIT
control” on page 225

2.16.840.1.113730.3.4
.2

Causes entries with the
ref attribute to be treated
as normal entries, allowing
clients to read and modify
these entries.

* In IBM Security Directory
Suite Proxy Server (without
partitioned data), even if
this control is not included
in the request the Proxy
Server always sends the
Manage DSAIT control to
the back-end server.

No Yes Yes (*) No

“Modify groups only
control” on page 226

1.3.18.0.2.10.25

Attached to a delete or
modify DN request to cause
the server to do only the
group referential integrity
processing. The processing
is for the delete or rename
request without doing the
actual delete or rename of
the entry itself. The entry
that is named in the delete
or modify DN request does
not require to exist on the
server.

No Yes No No

“No replication conflict
resolution control” on
page 227

1.3.18.0.2.10.27

When present, a replica
server accepts a replicated
entry without trying to
resolve any replication
conflict for this entry.

No Yes No No

“Omit group referential
integrity control” on
page 227

1.3.18.0.2.10.26

Omits the group referential
integrity processing on a
delete or modrdn request.
When present on a delete
or rename operation, the
entry is deleted from or
renamed in the directory.
But the entry membership
is not removed or renamed
in the groups in which the
entry is a member.

No Yes No No

216 IBM Security Directory Suite: Programming Reference

Table 13. OIDs for controls (continued)

Short name with OID Description Supported
by the
Administrati
on Server

Supported
by full
Directory
Server with
database

Supported by Proxy
Server

Without
partitioned
data

With
partitioned
data

“Paged search results
control” on page 228

1.2.840.113556.1.4.31
9

Allows management of the
amount of data that is
returned from a search
request.

No Yes Yes Yes

“Password policy
request control” on
page 229

1.3.6.1.4.1.42.2.27.8.5
.1

Password policy request or
response

Yes Yes Yes Yes

“Persistent search
control” on page 231

2.16.840.1.113730.3.4
.3

This control provides
clients a means to receive
notification of changes in
the LDAP server.

No Yes No No

“Proxy authorization
control” on page 231

2.16.840.1.113730.3.4
.18

The Proxy Authorization
Control enables a bound
user to assert another user
identity. The server uses
this asserted identity in the
evaluation of ACLs for the
operation.

No Yes No No

“Refresh entry control”
on page 233

1.3.18.0.2.10.24

This control is returned
when a target server
detects a conflict during
a replicated modify
operation.

No Yes No No

“Replication bind
failure timestamp
control” on page 233

1.3.18.0.2.10.34

The master server uses
the replication bind failure
timestamp control to
propagate the bind failure
timestamp value to a read-
only replica server.

No Yes No No

“Replication supplier
bind control” on page
234

1.3.18.0.2.10.18

This control is added by the
supplier, if the supplier is a
gateway server.

No Yes No No

Chapter 2. Directory Server programming reference 217

Table 13. OIDs for controls (continued)

Short name with OID Description Supported
by the
Administrati
on Server

Supported
by full
Directory
Server with
database

Supported by Proxy
Server

Without
partitioned
data

With
partitioned
data

“Replication update ID
control” on page 235

1.3.18.0.2.10.29

This control was created
for serviceability. If the
supplier server is set
to issue the control,
each replicated update
is accompanied by this
control.

No Yes No No

“Return deleted
objects control” on
page 236

1.3.18.0.2.10.33

This control when included
in a null base search
request, all entries in
the database that includes
those entries with attribute
isDeleted set to TRUE are
returned.

No Yes No No

“Server administration
control” on page 236

1.3.18.0.2.10.15

Allows an update operation
by the administrator
under conditions when the
operation would normally
be refused (server is
quiesced, a read-only
replica, and others).

* In IBM Security Directory
Suite Proxy Server, this
control is supported only
for bind operations.

Yes Yes Yes (*) Yes (*)

“Sorted search results
control” on page 238

1.2.840.113556.1.4.47
3

Allows a client to receive
search results that are
sorted by a list of criteria,
where each criterion
represents a sort key.

No Yes No No

“Subtree delete
control” on page 239

1.2.840.113556.1.4.80
5

This control is attached to
a Delete request to indicate
that the specified entry and
all descendant entries are
to be deleted.

No Yes No No

“Transaction control”
on page 239

1.3.18.0.2.10.5

Marks the operation as part
of a transactional context.

* In IBM Security
Directory Suite Proxy
Server, transactions are
supported only when all
updates target a single
partition.

No Yes Yes (*) Yes (*)

218 IBM Security Directory Suite: Programming Reference

Table 13. OIDs for controls (continued)

Short name with OID Description Supported
by the
Administrati
on Server

Supported
by full
Directory
Server with
database

Supported by Proxy
Server

Without
partitioned
data

With
partitioned
data

“Virtual list view
control” on page 240

2.16.840.1.113730.3.4
.9

This control extends
the regular LDAP search
operation and includes a
server-side sorting control.

No Yes No No

AES bind control
The AES bind control explains its use with the server and provides the results.
Description

This control enables the Directory Server to send updates to the consumer server with passwords
already encrypted by using AES. If the consumer server does not support AES encryption of
passwords, or the seed or salt values do not match, the Directory Server decrypts the userpassword
and secretkey values in updates to be replicated.

Note: This control is always enabled.

OID
1.3.18.0.2.10.28

Syntax
This control has no value.

Behavior

The criticality must be set to TRUE to protect clients from submitting a request with an unauthorized
identity.

This control can operate independent of other controls. However, it is often sent with the Proxy
Authorization Control. This control is registered for the following operations:

• Bind

The following persons are enabled to send the control:

• Primary Directory Administrator
• Master Server DN
• Local Administration Group members
• Global Administration Group members

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

This control has the possible return code as LDAP_INSUFFICIENT_ACCESS. This control is not
supported by the Administration Server.

Scope
The control lasts for the life of the bind session to allow for multiple write operations.

The use of the control implies that cryptographic consistency is verified by the caller. At bind time
the presence of this control, along with the appropriate authorization, causes the c_isConsistent
flag in the connection structure to be set to TRUE. This setting causes any write operations that
contain pre-encrypted AES data to be accepted by the server. Without the presence of the control, the
connection flag is set to FALSE, and a write operation of this type is rejected by the server. The RDBM
back-end is the only back-end that sets, and evaluates, the c_isConsistent flag.

Chapter 2. Directory Server programming reference 219

Audit control
The Audit control explains its use with the server and provides the results.
Description

The Audit Control enables a client to send more information about an operation. This additional
information is a unique ID and an IP address. The additional information is audited in the audit log.

Note: This control is always enabled.

OID
1.3.18.0.2.10.22

Syntax

requestID DirectoryString

controlValue:=SEQUENCE {
{SEQUENCE of requestID}
clientIP String
}

Behavior
This control is registered for the following operations:

• Any
• Add
• Bind
• Compare
• Delete
• Extended Operations
• Search
• Modify
• Modrdn

All users that include anonymous are enabled to send the control. However, there is an environment
variable, SLAPD_AUDIT_DISABLE_NON_ADMIN, which when set, restricts the control to the following
members:

• Primary Directory Administrator
• Local Administration Group members
• Global Administration Group members

If SLAPD_AUDIT_DISABLE_NON_ADMIN is set to TRUE, only audit controls that are sent by
administrators are audited. By default the server enables any user to send this control.

Note: If non-admin users are disabled, and the control is sent by a non-admin, the control is ignored,
even if it is critical.

If there is more information that is required for the control, the error is ignored, and the information is
audited.

The Administration Server recognizes the control, but audits only one of these controls per operation.
The behavior for the Administration Server is the same.

Scope
The control lasts for the term of one operation. Each operation treats the control the same. If the
operation is audited, the additional information that is sent in the control is audited as well.

Auditing
When the server receives this control, the audit plug-in adds the following lines to the audit entry:

controlType: control ID
criticality: true | false

220 IBM Security Directory Suite: Programming Reference

requestID: request ID sent in the control
requestID: request ID sent in the control
requestID: request ID sent in the control
clientIP: client IP sent in the control

Do not replicate control
The Do not replicate control explains its use with the server and provides the results.
Description

This control can be specified for an update operation. When present, a server does not replicate the
update to any consumers.

OID
1.3.18.0.2.10.23

Syntax
This control has no value.

Behavior
This control is registered for the following operations:
Add

When the control is detected in an add operation, the replication threads in a supplier does not
replicate the add operation to the consumer.

Delete
When the control is detected in a delete operation, the replication threads in a supplier does not
replicate the delete operation to the consumer.

Modify
When the control is defected in a modify operation, the replication threads in a supplier does not
replicate the modify operation to the consumer.

Modrdn
When the control is defected in a modrdn operation, the replication threads in a supplier does not
replicate the modify operation to the consumer.

Any administrators and the Master Server DN are able to send the control.

The Administration Server does not support this control.

Scope
The control lasts for the term of one operation.

Entry change notification control
The Entry change notification control explains its use with the server and provides the results.
Description

This control provides more information about the changes that caused a particular entry to be
returned as the result of a persistent search.

OID
2.16.840.1.113730.3.4.7

Syntax

EntryChangeNotification ::= SEQUENCE {
 changeType ENUMERATED {
 add (1),
 delete (2),
 modify (4),
 modDN (8)},
 previousDN LDAPDN OPTIONAL,
 changeNumber INTEGER OPTIONAL
}

Chapter 2. Directory Server programming reference 221

Behavior
If the client set the returnECs Boolean to TRUE in the persistent search control, the server must
include the entry change notification control in the controls portion of each SearchResultEntry
that is returned because of an entry that is added, deleted, or modified.

The value of changeType field indicates what LDAP operation caused the entry to be returned.

The previousDN is present in modifyDN operations and is used to retrieve the DN of the entry
before it was renamed or moved. The changeType optional field must be included by servers when it
returns change notifications as a result of modifyDN operations.

The changeNumber field represents the change number [CHANGELOG] that is assigned by a server
for the change. If a server supports an LDAP change log, it must include this field.

If the search code determines the persistent search control is present, the control is parsed and the
operation is run as specified in the control. After the operation, the pBlock will be handed off to the
plug-in for its record keeping, and the client search is left open. The returnECs control is returned
from the plug-in and not the inline search code.

Note: It is up to the server administrator to configure change log for the client. If the change log is not
set up properly, the client receives no change numbers.

This control is not supported by the Administration Server.

Group authorization control
The Group authorization control explains its use with the server and provides the results.
Description

The Group Authorization Control enables a bound user to assert group membership. The server uses
this set of groups in the evaluation of ACLs for the operation. The control was introduced as a tool for
the Proxy Server. However, this control can be sent by any client.

Note: This control is always enabled.

OID
1.3.18.0.2.10.21

Syntax

Group ::= SEQUENCE { groupName LDAPString }
RequestValue :: = SEQUENCE{
 normalized INTEGER{unnormzlied(0), normalized(1)};
 Sequence of Group
}

The criticality must be set to TRUE to protect clients from submitting a request with an unauthorized
identity.

Behavior
This control can operate independent of other controls. However, it is often sent with the Proxy
Authorization Control. This control is registered for the following operations:

• Any
• Add
• Bind
• Compare
• Delete
• Extended Operations
• Search
• Modify
• Modrdn

222 IBM Security Directory Suite: Programming Reference

The following persons are enabled to send the control:

• Primary Directory Administrator
• Proxy Authorization Group members
• Local Administration Group members
• Global Administration Group members

Only Primary Directory Administrator and Local Administration Group members can assert group
membership into the global administration group. Proxy group members and global administration
group members do not have the authority to assert group membership into the global administration
group.

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

If more information is required for the control, and if an error is in the formatting of that information,
then the following error returns might occur:

• Missing information – LDAP_OPERATIONS_ERROR
• Additional information – LDAP_OPERATIONS_ERROR
• Invalid information – LDAP_OPERATIONS_ERROR

This control has the following possible return codes:

• LDAP_INSUFFICIENT_ACCESS
• LDAP_OPERATIONS_ERROR

This control is not supported by the Administration Server.
Scope

The control lasts for the term of one operation. Each operation treats the control the same. The
operation is run with the assumption that the user is a member of the stated groups. This operation
applies to all back-end servers.

Auditing
This control has a special flag to indicate whether more information must be audited. If the audit flag
ibm-auditGroupsOnGroupControl is set to FALSE, then the control OID and criticality are only
audited. If ibm-auditGroupsOnGroupControl is TRUE, then the following information is audited:

controlType: control ID
criticality: {true | false}
Normalized: {true | false}
Group: group sent in request
Group: group sent in request
Group: group sent in request

LDAP delete operation timestamp control
The LDAP delete operation timestamp control explains its use with the server and provides the results.
Description

This control is used to send the modified timestamp values to a replica during a delete operation.

Note: This control is always enabled.

OID
1.3.18.0.2.10.32

Syntax

Control ::= SEQUENCE{
 controlType 1.3.18.0.2.10.32,
 criticality BOOLEAN FALSE,
 controlValue OCTET STRING
}

Chapter 2. Directory Server programming reference 223

where, the OCTET STRING value is a BER encoded value that represents the timestamp value of the
delete operation.

Behavior

The LDAP delete operation timestamp control is registered for delete operations. This control contains
the modified timestamp value for a replicated delete operation. It is used on a replica to update
the corresponding value of a group entry, which undergoes group referential integrity check. This
control does not rely on other controls and operates independently of other controls. The additional
information is parsed to check for NULL value of timestamp for the control. If NULL is found,
appropriate error code is returned.

Only the master server DN and supplier DN are authorized to send this control, since this
control is used internally by the server replication code. If this control is sent by any other user,
LDAP_INSUFFICIENT_ACCESS is returned.

The control has the possible return code as LDAP_INSUFFICIENT_ACCESS. This control is not
supported by the Administration Server.

Scope
This control lasts for one delete operation.

Limit number of attribute values control
The Limit number of attribute values control explains its use with the server and provides
the results.
Description

This control limits the number of attribute values that are returned for an entry in a search operation.
The Limit number of attribute values control is used to limit the number of values that
are returned for the entire entry. This control can also be used to limit the number of values that are
returned for attribute of an entry.

OID
1.3.18.0.2.10.30

Syntax

 Control ::= SEQUENCE{
 controlType 1.3.18.0.2.10.30,
 criticality BOOLEAN DEFAULT FALSE,
 controlValue OCTET STRING OPTIONAL}

where, the OCTET STRING value is a BER encoded value with the following format:

 RequestValue ::= SEQUENCE{
 MaxValuesPerEntry INTEGER(0..maxInt), // maximum number of values
 // for entire entry where
 // 0 means unlimited
 MaxValuesPerAttribute INTEGER(0..maxInt), // maximum number of values
 // per attribute where
 // 0 means unlimited
 ReturnDetails BOOLEAN DEFAULT FALSE // FALSE indicates that no
 // response controls should
 // be returned
 }

The response that is sent with each entry whose attributes were partially returned when
ReturnDetails is true is:

 ResultValue ::= SEQUENCE{
 DN LDAPString, // The name of the attribute
 // in the same format returned
 // by search.
 AttributeList PartialAttributes // The list of partially returned
 // attributes for an entry.
 }

224 IBM Security Directory Suite: Programming Reference

where, PartialAttributes value is the BER encoded value with the following format:

 PartialAttributes ::= SEQUENCE of SEQUENCE{
 attributeName LDAPString, // The name of the attribute
 // in the same format as
 // returned by search.
 numberValuesReturned INTEGER(0..maxInt),// number of values returned
 // for an attribute
 numberValuesAvailable INTEGER(-1..maxInt)// number of values available,
 // -1 if unknown
 }

Behavior
The Limit number of attribute values control is registered to be used along with the
search operation. At a time, the control can be only used in one search operation. That is, the life of
the control lasts only for a single search operation. All the users are authorized to use this control.

When the control is used in a search operation, a total number of attribute values are returned for
each entry. The number is less than or equal to the maximum total number of values that are specified
on the control. Also, the number of values that are returned per attribute is less than or equal to the
maximum number of values that are returned per attribute. If details are requested on the control,
a response control is also returned with each entry whose attributes were partially returned. This
control is only supported by the RDBM back-end.

The Limit number of attribute values control operates independent of all other controls
and does not affect the behavior of any other controls.

The following error codes might be returned if any additional information is required for this control
and an error occurs in the formatting of that information:

• Missing information - LDAP_DECODING_ERROR
• Additional information - LDAP_DECODING_ERROR
• Invalid information - LDAP_DECODING_ERROR

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_DECODING_ERROR
• LDAP_OPERATIONS_ERROR
• LDAP_NO_MEMORY
• LDAP_OTHER
• LDAP_UNWILLING_TO_PERFORM

This control is not supported by the Administration Server.

Auditing
In this control, no additional information is audited.

Manage DSAIT control
The Manage DSAIT control explains its use with the server and provides the results.
Description

Causes entries with the ref attribute to be treated as normal entries, and allows clients to read and
modify these entries.

OID
2.16.840.1.113730.3.4.2

Syntax
This control has no value.

Behavior
This control enables entries with the ref attribute to be treated as normal entries, and allows clients
to read and modify these entries. In IBM Security Directory Suite Proxy Server, without partitioned

Chapter 2. Directory Server programming reference 225

data, the request might not include this control. Even if the request does not include this control, the
Proxy Server always sends the Manage DSAIT control to the back-end server. This control is registered
for any operation. All users are enabled to send the control.

This control is not supported by the Administration Server.

Scope
The control lasts for one operation.

Modify groups only control
The Modify groups only control explains its use with the server and provides the results.
Description

This control can be used with a delete, modrdn, or moddn operation to cause the server to modify
the groups in which it is in a member without deleting or modifying the entry itself. The entry that is
named in the delete, modrdn, or moddn request does not require to exist on the server.

Note: This control is always enabled.

OID
1.3.18.0.2.10.25

Syntax
This control has no value.

Behavior
This control is registered for the following operations:

• Delete
• Modrdn

The following persons are enabled to send the control:

• Primary Directory Administrator
• Local Administration Group members
• Global Administration Group members

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_DECODING_ERROR
• LDAP_UNWILLING_TO_PERFORM

The Administration Server does not support this control.

Scope
The control lasts for the term of one operation. The control is only recognized when a delete, moddn,
or modrdn request goes to the RDBM back-end.

Auditing
When the server receives this control, the audit plug-in adds the following lines to the audit entry:

controlType: control ID
criticality: true | false

226 IBM Security Directory Suite: Programming Reference

No replication conflict resolution control
The No replication conflict resolution control explains its use with the server and provides the results.
Description

When present, a replica server accepts a replicated entry without trying to resolve any replication
conflict for this entry. This control can be used by the replication topology extended operation to
ensure data consistency between a supplier and a consumer.

Note: If environment variable IBMSLAPD_REPL_NO_CONFLICT_RESOLUTION is set on a replica, a
replica server acts as if all the update requests that coming from the suppliers are specified with
this control. The replica accepts the replicated entries without attempting to resolve any replication
conflicts. This environment variable is useful in a network topology in which one supplier and one or
multiple consumers are defined.

OID
1.3.18.0.2.10.27

Syntax
This control has no value.

Behavior
This control is registered for the following operations:

• Add
• Delete
• Modify
• Modrdn

Add
Upon receiving such a control in a replicated Add request, a replica server does not try to resolve
any replication conflict for this update. It accepts and applies it to the replica.

Modify
Upon receiving such a control in a replicated Modify request, a replica server does not try to
resolve any replication conflict for this update. It accepts and applies it to the replica.

Only the Master Server DN is able to send the control.

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

The Administration Server does not support this control.

Scope
The control lasts for the term of one operation.

Omit group referential integrity control
The Omit group referential integrity control explains its use with the server and provides the results.
Description

This control enables an administrator to request that group referential integrity must not be run. The
control applies only to modrdn and delete operations. When present on a delete or rename operation,
the entry is deleted from or renamed in the directory. But the entry membership is not removed or
renamed in the groups in which the entry is a member.

Note: This control is always enabled.

OID
1.3.18.0.2.10.26

Syntax
This control has no value.

Behavior
This control is registered for the following operations:

Chapter 2. Directory Server programming reference 227

• Delete
• Modrdn

The following persons are enabled to send the control:

• Primary Directory Administrator
• Local Administration Group members
• Global Administration Group members

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_DECODING_ERROR
• LDAP_UNWILLING_TO_PERFORM

The Administration Server does not support this control.

Scope
The control lasts for the term of one operation. The control is only recognized when a delete, moddn,
or modrdn request goes to the RDBM back-end.

Auditing
When the server receives this control, the audit plug-in adds the following lines to the audit entry:

controlType: control ID
criticality: true | false

Paged search results control
The Paged search results control explains its use with the server and provides the results.
Description

The paged results control is enabled on a search operation and enables a client to request a subset
of entries. Subsequent search requests for using this control continue to result in the next results
page until the operation is canceled or the last result is returned. This control is supported by RDBM
back-end and by Proxy Server version 6.2 and later.

Note: This control can be disabled by setting the Paged result limit to 0.

There is also a configuration option which enables an administrator to grant or deny the use of
this control to non-administrators. The administrators in this case refer to the primary directory
administrator, local administration group members, and global administration group members.
If the ibm-slapdPagedResAllowNonAdmin attribute in the cn=RDBM Backends, cn=IBM
Directory, cn=Schemas, cn=Configuration entry is set to TRUE, all users can send paged
search requests. If set to FALSE, only administrators can send paged search requests against RDBM
back-end.

In a Proxy Server, if ibm-slapdPagedResAllowNonAdmin is set to FALSE, then only Global
Administration Group members are allowed to do page search. If primary directory administrator
or local administration group members runs page search when the attribute is set to FALSE, then
LDAP_INSUFFICIENT_ACCESS is retuned.

OID
1.2.840.113556.1.4.319

Syntax

realSearchControlValue ::= SEQUENCE {
 Size INTEGER(0..maxInt),
 -- requested page size from client
 -- result set size estimate from server
 Cookie OCTET STRING }

228 IBM Security Directory Suite: Programming Reference

Behavior
This control is registered for the following operations:

• Search

In a default user installation, any user can send this control. If the ibm-
slapdSortSrchAllowNonAdmin is set to FALSE, the use of this control is restricted to
administrative users:

• Primary Directory Administrator
• Local Administration Group members
• Global Administration Group members

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

If more information is required for the control, and there is an error in the formatting of that
information, the following error returns might occur:

• Missing information – LDAP_DECODING_ERROR
• Additional information – LDAP_DECODING_ERROR
• Invalid information – LDAP_DECODING_ERROR

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_DECODING_ERROR
• LDAP_OPERATIONS_ERROR
• LDAP_INSUFFICIENT_ACCESS
• LDAP_OTHER

The Administration Server does not support this control.

Scope
The control lasts for the term of one operation. The control changes the behavior of a search operation
that goes against the RDBM back-end. The control requests that the server return the entries in a
sorted order. The configuration back-end and schema back-ends do no support this control.

Auditing
When the server receives this control, the audit plug-in adds the following lines to the audit entry:

controlType: control ID
criticality: true | false

Password policy request control
The Password policy request control explains its use with the server and provides the results.
Description

This control is sent by the client application with the requested operation. This control indicates to
the server that this client understands Password Policy return values. If the client sends the Password
policy request control with the request, the server can send the Password policy request control with
the response. The Password policy request control contains extra information about why an operation
failed because of a Password Policy problem. For example, if a client bind request failed because the
user account is locked out. This information is sent to the client on the response in the Password
Policy Response Control value field.

Note: If the Password Policy is disabled, then the Password policy request control is ignored, so no
Password policy request control is sent with the response.

Chapter 2. Directory Server programming reference 229

Request
OID

1.3.6.1.4.1.42.2.27.8.5.1
Syntax

There is no request value for the control.
Response

OID
1.3.6.1.4.1.42.2.27.8.5.1

Syntax

SEQUENCE {
 warning [0] CHOICE OPTIONAL {
 timeBeforeExpiration [0] INTEGER (0 .. MaxInt),
 graceLoginsRemaining [1] INTEGER (0 .. maxInt) }
 error [1] ENUMERATED OPTIONAL {
 passwordExpired (0),
 accountLocked (1),
 changeAfterReset (2),
 passwordModNotAllowed (3),
 mustSupplyOldPassword (4),
 invalidPasswordSyntax (5),
 passwordTooShort (6),
 passwordTooYoung (7),
 passwordInHistory (8) } }

Behavior
This control is registered for the following operations:

• Any
• Add
• Bind
• Compare
• Delete
• Extended Operations
• Search
• Modify
• Modrdn

All users are enabled to send the control.

This control has the following possible return codes:

• LDAP_INSUFFICIENT_ACCESS
• LDAP_INVALID_CREDENTIALS
• LDAP_CONSTRAINT_VIOLATION
• LDAP_UNWILLING_TO_PERFORM

The Administration Server supports this control. The Administration Server checks for this control on
the bind operation, and returns the Password policy response control and values if needed. If the Root
Administrator has too many bad binds in a row, the Administration Server locks out the account. It
sends the Password Policy response that the account is locked.

Scope
The control lasts for the term of one operation. This control indicates to the server that the client
application has information about Password Policy. Therefore, the server sends a Password policy
response control with its response. With this response control, there can be a response control value
which contains the Password Policy error or warning code and message if one is required. The other
back-ends have no knowledge of this control and so it is ignored.

230 IBM Security Directory Suite: Programming Reference

Persistent search control
The Persistent search control explains its use with the server and provides the results.
Description

This control provides clients a means to receive notification of changes in the LDAP server.
OID

2.16.840.1.113730.3.4.3
Syntax

PersistentSearch ::= SEQUENCE {
 changeTypes INTEGER,
 changesOnly BOOLEAN,
 returnECs BOOLEAN}

Behavior
This control can be used by all LDAP users.

If changesOnly is TRUE, then the server does not return any existing entries that match the search
criteria. Also, no entries are returned until an update on an entry occurs that matches the initial search
filter. Entries are only returned after successful update operations. For example, if data is loaded
in the server and a search is issued against it, the matching entries are returned. However, if the
persistent search control is present the entries might or might not be returned initially. This search is
determined by the changesOnly field.

If changesOnly is FALSE, then the server returns all the entries that match the search filter. Also, the
connection is left open and any changes or updates on entries that match the search filter from that
point triggers entries to be returned.

The changeTypes is the logical OR of one or more of these values:

• add (1)
• delete (2)
• modify (4)
• modDN (8)

If returnECs is TRUE, the server returns an entry change notification control with each entry returned
as the result of changes.

This control is not supported by the Administration Server.

Proxy authorization control
The Proxy authorization control explains its use with the server and provides the results.
Description

The Proxy Authorization Control enables a bound user to assert another user identity. The server uses
this asserted identity in the evaluation of ACLs for the operation.

Note: This extended operation is always enabled.

OID
2.16.840.1.113730.3.4.18

Syntax
User DN can be one of the following values:

dn: dn value
dn value
RequestValue:: = User DN

Behavior
This control can operate independent of other controls. However, it is often sent with the Proxy
Authorization Control. This control is registered for the following operations:

Chapter 2. Directory Server programming reference 231

• Add
• Bind
• Compare
• Delete
• Extended Operations
• Search
• Modify
• Modrdn

The following persons are enabled to send the control:

• Primary Directory Administrator
• Proxy Authorization Group members
• Local Administration Group members
• Global Administration Group members

No user can assert the identity of the primary directory administrator or local administration group
members. Only a primary directory administrator or local administration group members can assert
the identity of a global administration group member. Global administration group members and proxy
group members cannot assert the identity of a global administration group member.

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

If more information is required for the control, and there is an error in the formatting of that
information, the following error returns might occur:

• Missing information – LDAP_OPERATIONS_ERROR
• Additional information – LDAP_OPERATIONS_ERROR
• Invalid information – LDAP_OPERATIONS_ERROR

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_OPERATIONS_ERROR
• LDAP_INSUFFICIENT_ACCESS
• LDAP_UNWILLING_TO_PERFORM
• LDAP_OTHER
• LDAP_NO_MEMORY
• LDAP_OPERATIONS_ERROR
• LDAP_PARAM_ERROR

This control is not supported by the Administration Server.
Scope

The control lasts for the term of one operation. Each operation treats the control the same. The
operation is run after you assume the asserted user identity. The control is recognized on all
operations.

Auditing
When the server receives this control, the audit plug-in adds the following lines to the audit entry:

ProxyDN: proxy dn

232 IBM Security Directory Suite: Programming Reference

Refresh entry control
The Refresh entry control explains its use with the server and provides the results.
Description

This control is returned to a supplier when a consumer server detects a replication conflict during a
replicated modify operation. Upon receiving such a control along with an LDAP_OTHER return code,
the supplier retrieves its copy of the entry and send the entry again to the consumer by using an add
operation to refresh the consumer version of the entry.

OID
1.3.18.0.2.10.24

Syntax
This control has no value.

Behavior
This control is registered for the following operations:

• Modify

This control is sent in an LDAP response protocol after a conflict is detected on a replicated entry on a
consumer. The consumer does not require to specifically bind to the supplier to return such a control.
The supplier is already bound to the consumer. If anybody sends such a control in an LDAP request to
any server, the control is ignored and has no effect on the server.

The Administration Server does not support this control.

Scope
The control lasts for the term of one operation. This control is used by a consumer to communicate
to its supplier when a replication conflict is detected on the consumer. When the supplier gets along
the control with an LDAP_OTHER return code, the supplier sends the entry again with an intention of
bringing the consumer back in sync.

Replication bind failure timestamp control
The master server uses the replication bind failure timestamp control to propagate the bind failure
timestamp value to a read-only replica server.
Description

A master server in a replication topology supports this control only when the ibm-
replicateSecurityAttribute attribute is set to true.
A read-only replica notifies its master when a user attempts a bind operation against it that results in
password policy operational attributes update. The read-only replica server notifies its master server
only if the following conditions are met:

• The ibm-replicateSecurityAttribute attribute is set on a read-only replica server.
• The ibm-replicareferralURL attribute is set with the IP address or fully qualified domain name

with ports of all its master servers.

The read-only replica server notifies its master server and provides the following values:

• Passes the replication bind failure timestamp control.
• Binds with the user credentials that resulted in password policy operational attributes update.

If the ibm-replicateSecurityAttribute attribute is set on the master server, it propagates bind
failure timestamp value to the read-only replica in its response. The read-only replica records the
failure timestamp in its database for the user entry. Therefore, both the read-only replica and master
server record the same password failure timestamp for the bind.
If the ibm-replicateSecurityAttribute attribute is not set on the master server, the master
server does not interpret the control that it receives from the read-only replica. If the master is unable
to interpret the control, it does not return the password failure timestamp in its response to the
read-only replica. However, master server updates its password failure count and then replicates it

Chapter 2. Directory Server programming reference 233

to other servers. If the read-only replica does not receive the password failure timestamp from the
master, it records the password failure timestamp at its end in the database.

OID
1.3.18.0.2.10.34

Syntax
The master server sets the response value with the bind failure timestamp in the string format.

Behavior
This control is registered only for a bind operation.
A read-only replica server sends the control to an identified master as an internal request along
with the bind operation by using the same user credentials. The read-only replica sends the request
when a user attempts a bind operation that results in invalid credentials, password expiration, or
password grace use time. In the control response, the master server sends a timestamp value of
invalid credentials, password expiration, or password grace use time to the read-only replica. Only a
master server supports this control and is meant for an RDBM back-end server.
Any user can send this control. A master server expects this control from a read-only replica. If any
external client or user sends this control, the master server functions returns a password failure
timestamp. It is a non-critical control and return code does not vary.
No additional information is required for the control. The master server ignores any additional
information that is receives. The return response from the master server might contain a password
failure timestamp value.
A read-only replica uses the ldap_get_result_control call to parse the response for the
timestamp. If there is an error in the format of the timestamp, the read-only replica takes the
following actions:

• Ignores the timestamp from the master server.
• Records the timestamp of the read-only replica in the user entry.

This control operates independent of other controls. Therefore, the control does not depend on other
control and does not affect the behavior of other controls.
This control is not supported by the Administration Server.

Scope
The control lasts for one operation.

Auditing
In this control, the following information is audited:

• OID
• Timestamp in string format

Replication supplier bind control
The Replication supplier bind control explains its use with the server and provides the results.
Description

Gateway servers send only the changes they receive from a gateway to their local servers. The servers
are in the same site as the gateway server, including peer, forwarder, or pelican server. They do
not send these changes to the other gateway servers. The Replication supplier bind control helps a
gateway server to decide which servers to send to and what to send them. When a gateway server
binds to its consumers, it sends the control with its serverID as the control value. When a gateway
server receives such a control in a bind request, it knows that a gateway server is bound as a supplier.

OID
1.3.18.0.2.10.18

Syntax

controlValue :: SEQUENCE {
 SupplierServerId LDAPString
}

234 IBM Security Directory Suite: Programming Reference

Behavior
This control is registered for the following operations:

• Bind

Only the Master DN is enabled to send this control.

Note: If the control is sent by a user who does not have access, LDAP_UNWILLING_TO_PERFORM is
returned.

If more information is required for the control, and there is an error in the formatting of that
information, the following error returns might occur:

• Missing information – LDAP_OPERATIONS_ERROR
• Additional information – ignored
• Invalid information – ignored

This control has the following possible return codes:

• LDAP_PROTOCOL_ERROR
• LDAP_UNWILLING_TO_PERFORM

The Administration Server does not support this control.

Scope
The control lasts for the life of the bind session. When the control is received, a server knows that a
gateway server is bound as a supplier. Depending on the supplier information, the server can decide to
which consumers an entry is to be replicated.

Replication update ID control
The Replication update ID control explains its use with the server and provides the results.
Description

This control was created for serviceability. If the supplier server is set to issue the control, each
replicated update is accompanied by this control. The data in this control can be used to identify
problems with multi-threaded replication and replication conflict resolution. By default, no supplier
includes this control.

Note: This control is always enabled.

OID
1.3.18.0.2.10.29

Syntax

replication agreement DN:replication change ID

These values are set by the supplier.
Behavior

This control is not registered by any operations.

All users are enabled to send the control.

The Administration Server does not support this control.

Scope
The control lasts for one operation.

Auditing
When the server receives this control, the audit plug-in adds the following lines to the audit entry:

controlType: OID
criticality: false
value: Replication agreement DN:change ID

Chapter 2. Directory Server programming reference 235

Return deleted objects control
The Return deleted objects control explains its use with the server and provides the results.
Description

The return deleted objects control when included in a null base search request, all entries in the
database and those entries with attribute isDeleted set to TRUE are returned.

OID
1.3.18.0.2.10.33

Syntax
This control has no value.

Behavior

When this control is included in a null base search request, all entries in the database and those
entries with attribute isDeleted set to TRUE are returned. Normally, all the entries under “cn=
Deleted Objects” have the attribute isDeleted set to TRUE, and entries under other subtree do
not have this attribute defined.

This control applies only to a server with RDBM back-end. When this control is included with search
base, cn=Deleted Objects, all the entries under the subtree are returned, even those entries with
attribute isDeleted not set to TRUE. When the control is included with search base other than
cn=Deleted Objects, no entries are returned.

Users with sufficient ACL to access the cn=Deleted Objects subtree are able to search and update
the entries under the subtree on a directory server instance. The users include primary administrator,
local administration group members with DirDataAdmin role, and global administrator group
members. Local administrator group members with Server Configuration group member rights
(ServerConfigGroupMember) are able to update the attributes of the entries that are related to
tombstone in the configuration file.

If the control is sent by users who do not have sufficient access permissions, then
LDAP_INSUFFICIENT_ACCESS is returned.

This control has the following possible return codes:

• LDAP_NO_SUCH_OBJECT
• LDAP_NO_MEMORY
• LDAP_INSUFFICIENT_ACCESS
• LDAP_OPERATIONS_ERROR

The Administration Server does not support this control.

Scope
This control lasts for one search operation.

Server administration control
The Server administration control explains its use with the server and provides the results.
Description

Allows an update operation by the administrator under conditions when the operation is normally
refused. For example, the server is quiesced, the server is a read-only replica, and others).

This control can be specified on an update operation (add, modify, modRdn, modDn, delete) by a client
that is bound as an administrator. This control can also be specified on a bind-related operation.
On a bind operation, this control specifies that it is an administrative connection and the connection
must not be dropped when the idle connections are cleaned. This control is only recognized if a
client is bound as a primary directory administrator, global admin group member, or member of the
administrative group with any role other than the “NoAdmin” role. When present, a server that would
normally refuse updates (quiesced server, forwarder, or replica), allows the update. The updates are
replicated like other updates.

236 IBM Security Directory Suite: Programming Reference

Note: This control requires to be used with user discretion. With the control, entry updates are
allowed under unusual circumstances. Therefore, it is the responsibility of the user to ensure the
server that is updated ends up in a state consistent with the other servers. For example, the
timestamp of an entry which is used as the base for replication conflict resolution in IBM Security
Directory Suite. The timestamp might be different on different servers if the entry gets updated
individually on those servers with this control.

OID
1.3.18.0.2.10.15

Syntax
This control has no value.

Behavior
This control is registered for the following operations:

• Add
• Delete
• Modify
• Modrdn
• Moddn
• Bind
• Unbind
• Search

Administrator Server supports the following extended operations:

• Attribute type
• DN normalization
• Dynamic update requests
• Get lines
• Get number of lines
• LDAP trace facility
• LogMgmtControl
• ServerBackupRestore
• Start, stop server
• Start TLS
• User type

Administrator Server supports the following controls:

• Audit
• Password policy request
• Server administration

The following persons are enabled to send the control:

• Primary Directory Administrator
• Local Administration Group Member
• Global Administration Group Member

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

Chapter 2. Directory Server programming reference 237

Scope
The control lasts for one operation. When the control is received, a server knows that a gateway
server is bound as a supplier. Depending on the supplier information, the server can decide to which
consumers an entry is to be replicated.

Sorted search results control
The Sorted search results control explains its use with the server and provides the results.
Description

The sorted search results control enables a client to receive search results that are sorted by a sort
key.

Note: This control can be disabled by setting the ibm-slapdSortKeyLimit to 0.

There is also a configuration option which enables an administrator to grant or deny the use
of this control to non-administrators. In this case, administrators refer to the primary directory
administrator, local administration group members, and global administration group members.
If the ibm-slapdSortSrchAllowNonAdmin attribute in the cn=RDBM Backends, cn=IBM
Directory, cn=Schemas, cn=Configuration entry is set to TRUE, then all users are enabled to
use the sorted search. If set to FALSE, only administrators can use the sorted search.

OID
1.2.840.113556.1.4.473

Syntax

The controlValue is an OCTET STRING who value is the
BER encoding of a value with the following SEQUENCE:

SortKeyList ::= SEQUENCE of SEQUENCE {
 AttributeType AttributeDescription,
 OrderingRule [0] MatchingRuleId OPTIONAL,
 ReverseOrder [1] BOOLEAN DEFAULT FALSE }

Behavior
This control is registered for the following operations:

• Search

In a default user installation, any user can send this control. If the ibm-
slapdSortSrchAllowNonAdmin is set to FALSE, the use of this control is restricted to
administrative users:

• Primary Directory Administrator
• Local Administration Group members
• Global Administration Group members

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

If more information is required for the control, and there is an error in the formatting of that
information, the following error returns might occur:

• Missing information – LDAP_DECODING_ERROR
• Additional information – LDAP_DECODING_ERROR
• Invalid information – LDAP_DECODING_ERROR

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_DECODING_ERROR
• LDAP_OPERATIONS_ERROR
• LDAP_INSUFFICIENT_ACCESS

238 IBM Security Directory Suite: Programming Reference

• LDAP_OTHER

The Administration Server does not support this control.

Scope
The control lasts for the term of one operation. The control changes the behavior of a search operation
that goes against the RDBM back-end. The control requests that the server return the entries in a
sorted order. The configuration back-end and schema back-ends do no support this control.

Auditing
When the server receives this control, the audit plug-in adds the following lines to the audit entry:

controlType: control ID
criticality: true | false

Subtree delete control
The Subtree delete control explains its use with the server and provides the results.
Description

This control is attached to a delete request. This control indicates that the specified entry and all
descendant entries are to be deleted. However, if the subtree is an active replication context, the
control does not take effect and an LDAP_UNWILLING_TO_PERFORM message is returned. This return
means that the subtree to be deleted might contain any replication agreements that the server uses to
replicate. If the subtree contains any replication agreements, then the subtree cannot be deleted by
using this control.

OID
1.2.840.113556.1.4.805

Syntax
This control has no value.

Behavior
This control is registered for the following operations:

• Delete

The following persons are enabled to send the control:

• Primary Directory Administrator
• Local Administration Group members
• Global Administration Group members
• Master server DN

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

This control has the following possible return codes:

• LDAP_INSUFFICIENT_ACCESS
• LDAP_UNWILLING_TO_PERFORM

The Administration Server does not support this control.

Scope
The control lasts for the term of one delete operation. The delete operation not only deletes the base
entry that is specified in the request, but also deletes all the descendant entries.

Transaction control
The Transaction control explains its use with the server and provides the results.
Description

The Transaction control is sent along with update operations run within a transaction.

Chapter 2. Directory Server programming reference 239

Note: This control is enabled by default, but can be disabled by changing the value in the
configuration file for the ibm-slapdTransactionEnable attribute.

The ibm-slapdTransactoinEnabled attribute is in the configuration file in the
cn=Transaction,cn=configuration entry. If the value is set to FALSE, transactions are not
enabled. If set to TRUE, transactions are enabled. Transactions can also be enabled or disabled by
using the web administration tool.

OID
1.3.18.0.2.10.5

Syntax
The controlValue is set to the transaction ID returned in the StartTransaction response.

Behavior
This control is registered for the following operations:

• Add
• Delete
• Modify
• Modrdn

Any user can send this control.

If more information is required for the control, and the transaction ID sent in the control does not
match the transaction ID on the connection, then LDAP_PROTOCOL_ERROR is returned.

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_PROTOCOL_ERROR
• LDAP_TIMELIMIT_EXCEEDED
• LDAP_SIZELIMIT_EXCEEDED

The Administration Server does not support this control.

Scope
The control lasts for the term of one operation, but must be sent only in a transactional context. When
the control is sent only with an update operation to the RDBM back-end, the server holds the update
until an end-transaction request is received. The control is only supported on updated operations that
are run in a transactional context (a start transaction extended operation must be run first).

Auditing
When the server receives this control, the audit plug-in adds the following lines to the audit entry:

controlType: control ID
criticality: true | false

Virtual list view control
The Virtual list view control explains its use with the server and provides the results.
Description

The Virtual list view control extends the regular LDAP search operation and includes a server-side
sorting control. With this control, the server returns a contiguous subset of entries that are taken from
an ordered result set that match a criteria of a target entry, rather than returning the complete set of
searchResultEntry messages.

Request
OID

2.16.840.1.113730.3.4.9

240 IBM Security Directory Suite: Programming Reference

Syntax

VirtualListViewRequest ::= SEQUENCE {
 beforeCount INTEGER (0..maxInt),
 afterCount INTEGER (0..maxInt),
 target CHOICE {
 byOffset [0] SEQUENCE {
 offset INTEGER (1 .. maxInt),
 contentCount INTEGER (0 .. maxInt) },
 greaterThanOrEqual [1] AssertionValue },
 contextID OCTET STRING OPTIONAL }

where,

• beforeCount - Indicates the number of entries before the target entry that the client wants the
server to send.

• afterCount - Indicates the number of entries after the target entry that the client wants the
server to send.

• offset - Used to identify the target entry in the Virtual list view request control by determining
the target entry that is offset within the list. The server examines the contentCount and offset
given by the client and computes the corresponding offset within the list by using following
formula:

 Si = Sc * (Ci / Cc)

where,

– Si is the actual list offset that is used by the server
– Sc is the server estimate for content count
– Ci is the client submitted offset
– Cc is the client submitted content count

• contentCount - Used to identify the target entry.
• greaterThanOrEqual - Indicates a matching rule assertion value. If present, its value is used

to determine the target entry by comparing with the attribute values specified as the primary
sort key.

• contextID - Contains a value for the most recently received contextID field for the same list
view from the Virtual list view response control.

Response
OID

2.16.840.1.113730.3.4.10
Syntax

VirtualListViewResponse ::= SEQUENCE {
 targetPosition INTEGER (0 .. maxInt),
 contentCount INTEGER (0 .. maxInt),
 virtualListViewResult ENUMERATED {
 success (0),
 operationsError (1),
 protocolError (2),
 unwillingToPerform (53),
 insufficientAccessRights (50),
 timeLimitExceeded (3),
 adminLimitExceeded (11),
 innapropriateMatching (18),
 sortControlMissing (60),
 offsetRangeError (61),
 other(80),
 ... },
 contextID OCTET STRING OPTIONAL }

where,

• targetPosition - Indicates the offset list for the target entry.

Chapter 2. Directory Server programming reference 241

• contentCount - Indicates the number of entries in the list that is based on the server estimate.
The value of the count depends on the access rights over all the entries for the user who is
bound to the Directory Server.

• contextID - Server defined octet string.
• virtualListViewResult - Contains error messages that are related to the Virtual list view

operation. For example, insufficientAccessRights indicates that the server denies the
client the permission to run the Virtual list view operation.

Behavior

The Virtual list view control extends the regular LDAP Search operation and includes a server-side
sorting control. In this operation, the server returns a contiguous subset of entries that are taken from
an ordered result set that match a criteria of a target entry, rather than returning the complete set of
searchResultEntry messages.

When you send this control, it must have an accompanying server-side sorting control. If server-side
sorting control is not specified, the request is rejected with the LDAP_SORT_CONTROL_MISSING
error.

Directory Server recognizes the Virtual list view request control that is sent along with a search
request. The search request is then passed to the RDBM back-end from which the result set is
fetched. Then, the cursor is positioned at the required offset in the search result set.

All users are authorized to use this control. This control can be enabled or disabled on a server by
using a configuration option.

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_OPERATIONS_ERROR
• LDAP_PROTOCOL_ERROR
• LDAP_UNWILLING_TO_PERFORM
• LDAP_INSUFFICIENT_ACCESS
• LDAP_TIMELIMIT_EXCEEDED
• LDAP_ADMINLIMIT_EXCEEDED
• LDAP_INAPPROPRIATE_MATCHING
• LDAP_SORT_CONTROL_MISSING
• LDAP_INDEX_RANGE_ERROR
• LDAP_OTHER

The Administrator Server does not support this control.

Scope
This control lasts only for one search operation.

Client libraries
The 32-bit and the 64-bit libraries have the same names.

The following table lists the libraries that are built for IBM Security Directory Suite as part of client.

242 IBM Security Directory Suite: Programming Reference

Table 14. Supported libraries on different platforms

Libraries Operating Systems

AIX Linux Solaris Windows

idsldap_

plugin_

ibm_gsskrb

Y NA NA NA

idsldap_

plugin_

sasl_

digest-md5

Y Y Y Y

libidsldap Y Y Y Y

libidsldapn Y NA NA Y

libids

ldapstatic

Y Y Y Y

libids

ldapstaticn

Y NA NA Y

libids

ldapiconv

Y Y Y Y

libidsldif NA Y NA NA

libids

ldifstatic

Y Y Y Y

libibm

ldapdbg

Y Y Y Y

ldap NA NA NA Y

ldapstatic NA NA NA Y

Note: The dynamic version of libldif is available on Linux, but not on Solaris.

Legend:
Y

This library is 64-bit recertified on the corresponding operating system.
NA

This library is not 64-bit recertified, or it is not valid for the corresponding operating system.

Hence the architecture (32-bit or 64-bit) that is used for those binary files is the one that is used for these
libraries, as well. Therefore, these libraries are placed in the appropriate folder (lib or lib64).

Note: The following library extensions are applicable for each platform:

Chapter 2. Directory Server programming reference 243

Table 15. Library extensions on different platforms

Platform Static library Shared (Dynamic) library

AIX .a .a

Linux .a .so

Solaris .a .so

Windows .lib .dll

Sample Makefile
The sample Makefile (makefile.ex) is updated with the rules and information about building 64-bit
clients.

The sample Makefile lists the 64-bit compilers or linkers to be used along with the relevant flags to be
passed. It also lists the 64-bit libraries, needed to build the customized LDAP clients.

The following sample shows the makefile for 64-bit Linux:

#--
#
ABSTRACT: makefile to generate the example LDAP client programs
#
Licensed Materials - Property of IBM
#
5725-Y17
#
(C) Copyright IBM Corp. 1997, 2007 All Rights Reserved
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
#--
Copyright (c) 1994 Regents of the University of Michigan.
All rights reserved.
#
Redistribution and use in source and binary forms are permitted
provided that this notice is preserved and that due credit is given
to the University of Michigan at Ann Arbor. The name of the University
may not be used to endorse or promote products derived from this
software without specific prior written permission. This software
is provided ``as is'' without express or implied warranty.
#--
#
This makefile will build the example programs whose source is contained
in this directory. The four programs generated are:
ldapsearch
ldapmodify
ldapadd (a hard-link to ldapmodify)
ldapmodrdn
ldapdelete
ldapchangepwd
ldapexop
In addition to being the examples of use of the LDAP client api, these
programs are useful command line utilities. See the README file for
more details.

#
default definitions for Unix utilities (may be changed here)
CC = gcc
RM = rm -f
HARDLN = ln
MKDIR = mkdir -p

The following variable indicates the architecture of the output binaries
on using this Makefile.

BITS = 64

###
General compiler options
###

244 IBM Security Directory Suite: Programming Reference

DEFINES = -DLINUX -D_GCC3
#Note: Append the path to appropriate LDAP headers if not already present
#in the include list.
INCLUDES = -I/opt/ibm/ldap/V8.0.1.x/include -I../include -I/usr/include

###
Options for building 32-bit targets on AMD64 Linux
###
#---
Use the following definition to link the sample programs with
the shared LDAP library dynamically.
CLIENT_LIBS = -lidsldif -libmldap -libmldapdbg -lidsldapiconv
LIBS = -L/opt/ibm/ldap/V8.0.1.x/lib -L/usr/lib -lpthread -ldl
#---
Or use this definition to link the LDAP library statically:
CLIENT_LIBS = -libmldapstatic -lidsldifstatic
LIBS = -L/opt/ibm/ldap/V8.0.1.x/lib -L../lib -L/usr/lib -lpthread -ldl
#---
LFLAGS = -Wl,-rpath,/opt/ibm/ldap/V8.0.1.x/lib $(LIBS) $(CLIENT_LIBS)
CFLAGS = $(INCLUDES) $(DEFINES) -m32
###
Options for building 64 bit targets on AMD64 Linux
###
#--
Use the following definition to link the sample programs with
the shared LDAP library dynamically
 CLIENT_LIBS = -lidsldif -libmldap -libmldapdbg -lidsldapiconv
 LIBS = -L/opt/ibm/ldap/V8.0.1.x/lib64 -L/usr/lib64 -lpthread -ldl
#--
Or use this definition to link the LDAP library statically
CLIENT_LIBS = -libmldapstatic -lidsldifstatic
LIBS = -L/opt/ibm/ldap/V8.0.1.x/lib64 -L../lib64 -L/usr/lib64 -lpthread -ldl
#--
 LFLAGS = -Wl,-rpath,/opt/ibm/ldap/V8.0.1.x/lib64 $(LIBS) $(CLIENT_LIBS)
 CFLAGS = $(INCLUDES) $(DEFINES)
###
Targets
###

all: ldapsearch ldapmodify ldapdelete ldapmodrdn ldapadd ldapchangepwd ldapexop

ldapsearch:
 $(MKDIR) $(BITS)
 $(CC) $(CFLAGS) -o $(BITS)/$@ ldapsearch.c $(LFLAGS)

ldapmodify:
 $(MKDIR) $(BITS)
 $(CC) $(CFLAGS) -o $(BITS)/$@ ldapmodify.c $(LFLAGS)

ldapdelete:
 $(MKDIR) $(BITS)
 $(CC) $(CFLAGS) -o $(BITS)/$@ ldapdelete.c $(LFLAGS)

ldapmodrdn:
 $(MKDIR) $(BITS)
 $(CC) $(CFLAGS) -o $(BITS)/$@ ldapmodrdn.c $(LFLAGS)

ldapchangepwd:
 $(MKDIR) $(BITS)
 $(CC) $(CFLAGS) -o $(BITS)/$@ ldapchangepwd.c $(LFLAGS)

ldapexop:
 $(MKDIR) $(BITS)
 $(CC) $(CFLAGS) -o $(BITS)/$@ ldapexop.c $(LFLAGS)

ldapadd: ldapmodify
 $(RM) $(BITS)/$@
 $(HARDLN) $(BITS)/ldapmodify $(BITS)/ldapadd

clean:
 $(RM) *.o core a.out $(BITS)/*.o $(BITS)/core $(BITS)/a.out $(BITS)/ldapsearch \
 $(BITS)/ldapmodify $(BITS)/ldapdelete \
 $(BITS)/ldapmodrdn $(BITS)/ldapadd $(BITS)/ldapchangepwd $(BITS)/ldapexop

The following example shows a sample makefile for 64-bit Windows operating system:

#
#
#--
#

Chapter 2. Directory Server programming reference 245

ABSTRACT: makefile to generate the example LDAP client programs
#
Licensed Materials - Property of IBM
#
5725-Y17
#
(C) Copyright IBM Corp. 1997, 2007 All Rights Reserved
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
#--
Copyright (c) 1994 Regents of the University of Michigan.
All rights reserved.
#
Redistribution and use in source and binary forms are permitted
provided that this notice is preserved and that due credit is given
to the University of Michigan at Ann Arbor. The name of the University
may not be used to endorse or promote products derived from this
software without specific prior written permission. This software
is provided ``as is'' without express or implied warranty.
#--
#

This makefile will build the example programs whose source is contained
in this directory. The four programs generated are:
ldapsearch
ldapmodify
ldapadd (a hard-link to ldapmodify)
ldapmodrdn
ldapdelete
ldapchangepwd
ldapexop
In addition to being the examples of use of the LDAP client api, these
programs are useful command line utilities. See the LDAP Programming
Reference for more details.

#
default definitions for client utilities (may be changed here)
CC = $(SDKROOT)\bin\win64\x86\AMD64\cl.exe
LD = $(SDKROOT)\bin\win64\x86\AMD64\link.exe
RM = del /f
HARDLN = copy
MKDIR = md

Specify the directory where the C SDK is installed. In our case the Feb 2003
version of the VC SDK was used.
SDKROOT = C:\sdk\ms\2003_sp1

Specify the directory where ISDS 8.0.1.x clients are installed
INSTALLROOT = C:\Progra~1\IBM\ldap\V8.0.1.x

The following variable indicates the architecture of the output binaries
on using this Makefile.

BITS = 64

###
General compiler options
###

DEFINES = /DNDEBUG /DWIN32 /D_CONSOLE /D_MBCS /DNT
INCLUDES = /I$(INSTALLROOT)\include /I../include /I$(SDKROOT)\include\crt
 /I$(SDKROOT)\include\crt\sys /I$(SDKROOT)\include
CFLAGS = /nologo /MD /EHsc /Od $(INCLUDES) $(DEFINES) /Fo$(BITS)/

###
Options for building 64-bit targets for Windows (AMD64) ##
###
LIBS = kernel32.lib uuid.lib msvcrt.lib oldnames.lib Wsock32.lib
 AdvAPI32.lib bufferoverflowu.lib
#--
Use the following definition to link the sample programs with
the LDAP shared library.
CLIENT_LIBS = libidsldap.lib libibmldapdbg.lib libidsldifstatic.lib
LDIR = /LIBPATH:$(INSTALLROOT)\lib64 /LIBPATH:$(SDKROOT)\Lib\AMD64
#--
Use the following definition to link the sample programs statically.
#CLIENT_LIBS = libibmldapdbgstatic.lib libidsldapstatic.lib libidsldifstatic.lib
#LDIR = /LIBPATH:$(INSTALLROOT)\lib64 /LIBPATH:..\lib64 /LIBPATH:$(SDKROOT)\Lib\AMD64
#--
LFLAGS = /nologo /subsystem:console /incremental:no \

246 IBM Security Directory Suite: Programming Reference

 $(LDIR) $(LIBS) $(CLIENT_LIBS)
Note : In case the libraries aren't picked up using the above syntax, modify
the env. variable PATH & LIB to point to the path of the requisite libraries.
#
###
Targets
###

all: ldapsearch.exe ldapmodify.exe ldapdelete.exe ldapmodrdn.exe
 ldapadd.exe ldapchangepwd.exe ldapexop.exe

ldapsearch.exe: $(BITS)/ldapsearch.obj $(BITS)/getopt.obj
 -@ $(MKDIR) $(BITS)
 $(CC) $(CFLAGS) /c getopt.c
 $(CC) $(CFLAGS) /c ldapsearch.c
 $(LD) $(LFLAGS) /out:$(BITS)/$@ $**
 $(RM) $(BITS)*.obj $(BITS)*.exp $(BITS)*.lib

ldapmodify.exe: $(BITS)/ldapmodify.obj $(BITS)/getopt.obj
 -@ $(MKDIR) $(BITS)
 $(CC) $(CFLAGS) /c getopt.c
 $(CC) $(CFLAGS) /c ldapmodify.c
 $(LD) $(LFLAGS) /out:$(BITS)/$@ $**
 $(RM) $(BITS)*.obj $(BITS)*.exp $(BITS)*.lib

ldapdelete.exe: $(BITS)/ldapdelete.obj $(BITS)/getopt.obj
 -@ $(MKDIR) $(BITS)
 $(CC) $(CFLAGS) /c getopt.c
 $(CC) $(CFLAGS) /c ldapdelete.c
 $(LD) $(LFLAGS) /out:$(BITS)/$@ $**
 $(RM) $(BITS)*.obj $(BITS)*.exp $(BITS)*.lib

ldapmodrdn.exe: $(BITS)/ldapmodrdn.obj $(BITS)/getopt.obj
 -@ $(MKDIR) $(BITS)
 $(CC) $(CFLAGS) /c getopt.c
 $(CC) $(CFLAGS) /c ldapmodrdn.c
 $(LD) $(LFLAGS) /out:$(BITS)/$@ $**
 $(RM) $(BITS)*.obj $(BITS)*.exp $(BITS)*.lib

ldapchangepwd.exe: $(BITS)/ldapchangepwd.obj $(BITS)/getopt.obj
 -@ $(MKDIR) $(BITS)
 $(CC) $(CFLAGS) /c getopt.c
 $(CC) $(CFLAGS) /c ldapchangepwd.c
 $(LD) $(LFLAGS) /out:$(BITS)/$@ $**
 $(RM) $(BITS)*.obj $(BITS)*.exp $(BITS)*.lib

ldapexop.exe: $(BITS)/ldapexop.obj $(BITS)/getopt.obj
 -@ $(MKDIR) $(BITS)
 $(CC) $(CFLAGS) /c getopt.c
 $(CC) $(CFLAGS) /c ldapexop.c
 $(LD) $(LFLAGS) /out:$(BITS)/$@ $**
 $(RM) $(BITS)*.obj $(BITS)*.exp $(BITS)*.lib

ldapadd.exe: ldapmodify.exe
 -@ del /f $(BITS)/$@
 $(HARDLN) $(BITS)\ldapmodify.exe $(BITS)\ldapadd.exe

clean:
 $(RM) *.obj *.exe *.exp *.lib $(BITS)*.obj $(BITS)*.exe $(BITS)*.exp
 $(BITS)*.lib

$(BITS)/getopt.obj: getopt.c

$(BITS)/ldapsearch.obj: ldapsearch.c

$(BITS)/ldapmodify.obj: ldapmodify.c

$(BITS)/ldapdelete.obj: ldapdelete.c

$(BITS)/ldapmodrdn.obj: ldapmodrdn.c

$(BITS)/ldapchangepwd.obj: ldapchangepwd.c

$(BITS)/ldapexop.obj: ldapexop.c

You can find the sample Makefile (makefile.ex) in ldap_home/examples.

Chapter 2. Directory Server programming reference 247

Limited transaction support
The limited transaction support provides information about its properties.

Transactions have four critical properties:
atomicity

The transaction must be run completely. If any part of the transaction fails, the entire transaction is
rolled back preserving the original state of the directory.

consistency
The transaction preserves the internal consistency of the database.

isolation
The transaction is serialized by a global lock so that it is run independently of any other transactions.

durability
The results of a committed transaction are backed up in stable storage, usually a disk.

Usage
Transactions are limited to a single connection to a single Directory Server and are supported by the LDAP
extended operations APIs.

Only one transaction at a time can be running over the same connection. During the transaction, no
non-transactional operations can be issued over the same connection.

A transaction consists of three parts:

• An extended request to start the transaction
• Update operations:

– add
– modify
– modify rdn
– delete

Note: The current release does not support some operations. For example, bind, unbind, search,
extended op, and other operations. Referral objects can be updated only with manageDsaIT control
specified.

• An extended request to end the transaction

To start a transaction, the client must send an extended request in the form of:

ExtendedRequest ::= [APPLICATION 23] SEQUENCE {

requestValue [1] OCTET STRING OPTIONAL }

When the server receives the request, it generates a unique transaction ID. It then sends back an
extended response in the form of:

ExtendedResponse ::= [APPLICATION 24]SEQUENCE{

COMPONENTS OF LDAPResult,

responseName [10] LDAPOID OPTIONAL,

response [11] OCTET STRING OPTIONAL }

The client submits subsequent update operations asynchronously with a control attached to all
operations. The control contains the transaction ID returned in the StartTransaction response. The
control has the form of:

Control ::= SEQUENCE {

controlType LDAPOID,

248 IBM Security Directory Suite: Programming Reference

criticality BOOLEAN DEFAULT FALSE,

controlValue OCTET STRING OPTIONAL }

The server does not process update operations immediately. Instead, it saves the necessary information
of operations in a queue.

The client sends an extended request to end the transaction that either commits or rolls back the
transaction. If the server receives the commit operation result, it uses a global writer lock to serialize the
transaction. It then retrieves the set of update operations that are identified by the transaction ID from
the queue and begins to run these operations. If all operations succeed, the results are committed to the
database and the server sends back the success return code.

As each operation is run, it generates a success return code unless an error occurs during the transaction.
In this case, an unsuccessful return code is returned for all the operations. If any operation fails, the
server rolls back the transaction and sends back the error return code of the failed operation. It sends
to the operation in the client that caused the failure. The EndTransaction operation also receives an
unsuccessful return code if the transaction is not successful. For any subsequent update operations that
remain in the queue, an unsuccessful return code is generated. When the transaction times out, the
connection is dropped and any subsequent operations receive an unsuccessful return code.

The server releases the global lock after the commit or the rollback is run. The event notification and
change log operations are run only if the transaction succeeds.

Example
The ldapmod.c example file provides an understanding about the transaction capability.

The following example is an ldapmod.c example file, which is modified for limited transaction capability:

static char sccsid[] = "@(#)17 1.35 11/18/02 progref.idd, ldap, 5.2 15:20:20";
/*
 * COMPONENT_NAME: ldap.clients
 *
 * ABSTRACT: generic program to modify or add entries using LDAP with a transaction
 *
 * ORIGINS: 202,27
 *
 * (C) COPYRIGHT International Business Machines Corp. 2002
 * All Rights Reserved
 * Licensed Materials - Property of IBM
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
 */

/*
 * Copyright (c) 1995 Regents of the University of Michigan.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms are permitted
 * provided that this notice is preserved and that due credit is given
 * to the University of Michigan at Ann Arbor. The name of the University
 * may not be used to endorse or promote products derived from this
 * software without specific prior written permission. This software
 * is provided ``as is'' without express or implied warranty.
 */

/* ldaptxmod.c - generic program to modify or add entries using LDAP
using a single transaction */

#include <ldap.h>

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/stat.h>

#if !defined(WIN32)
#include <sys/file.h>

Chapter 2. Directory Server programming reference 249

#include <fcntl.h>
#include <unistd.h>
#endif
#define LDAPMODIFY_REPLACE 1
#define LDAPMODIFY_ADD 2

#if defined(WIN32)
#define strcasecmp stricmp
#endif

#define safe_realloc(ptr, size) (ptr == NULL ? malloc(size) : \
 realloc(ptr, size))

#define MAX_SUPPLIED_PW_LENGTH 256
#define LDAPMOD_MAXLINE 4096

/* Strings found in replog/LDIF entries (mostly lifted from slurpd/slurp.h) */
#define T_REPLICA_STR "replica"
#define T_DN_STR "dn"
#define T_CHANGETYPESTR "changetype"
#define T_ADDCTSTR "add"
#define T_MODIFYCTSTR "modify"
#define T_DELETECTSTR "delete"
#define T_MODRDNCTSTR "modrdn"
#define T_MODDNCTSTR "moddn"
#define T_MODOPADDSTR "add"
#define T_OPERSTR "transaction_operation"
#define T_MODOPREPLACESTR "replace"
#define T_MODOPDELETESTR "delete"
#define T_MODSEPSTR "-"
#define T_NEWRDNSTR "newrdn"
#define T_DELETEOLDRDNSTR "deleteoldrdn"
#define T_NEWSUPERIORSTR "newsuperior"
#define T_CONTROLSTR "control"

extern char * str_getline(char**);
char * getPassword(void);
char * read_one_record(FILE *fp);

#if defined _WIN32
int getopt (int, char**, char*);
#endif
#ifndef -win32
#ifdef -GCC3
#include <errno.h>
#else
extern int errno;
#endif
#endif

/*Required for password prompting*/
#ifdef -win32
#include <conio.h>
#else
/*termios.h is defined by POSIX*/
#include <termios.h>
#endif

/* Global variables */
static LDAP *ld = NULL; /* LDAP sesssion handle */
static FILE *fp = NULL; /* input file handle */
static char *prog = NULL; /* program name */
static char *binddn = NULL; /* bind DN */
static char *passwd = NULL; /* bind password */
static char *ldaphost = "localhost"; /* server host name */
static char *mech = NULL; /* bind mechanism */
static char *charset = NULL; /* character set for input */
static char *keyfile = NULL; /* SSL key database file name*/
static char *keyfile_pw = NULL; /* SSL key database password */
static char *cert_label = NULL; /* client certificate label */
static int hoplimit = 10; /* limit for referral chasing */
static int ldapport = LDAP_PORT; /* server port number */
static int doit = 1; /* 0 to make believe */
static int verbose = 0; /* 1 for more trace messages */
static int contoper = 0; /* 1 to continue after errors */
static int force = 0;
static int valsfromfiles = 0;
static int operation = LDAPMODIFY_REPLACE;
static int referrals = LDAP_OPT_ON;
static int ldapversion = LDAP_VERSION3;
static int DebugLevel = 0; /* 1 to activate library traces */
static int ssl = 0; /* 1 to use SSL */

250 IBM Security Directory Suite: Programming Reference

static int manageDsa = LDAP_FALSE; /* LDAP_TRUE to modify referral objects */

static LDAPControl manageDsaIT = {
 "2.16.840.1.113730.3.4.2", /* OID */
 { 0, NULL }, /* no value */
 LDAP_OPT_ON /* critical */
};

/* NULL terminated array of server controls*/
static LDAPControl *Server_Controls[3] = {NULL, NULL, NULL};

static int Num_Operations = 0; /* count of times one must go to
 ldap_result to check result codes */
static int Message_ID = 0; /* message ID returned by async
 ldap operation, currently not tracked*/
static int abort_flag = 0; /* abort transaction flag set by
 -A parameter */

/* Implement getopt() for Windows to parse command line arguments. */
#if defined(_WIN32)
char *optarg = NULL;
int optind = 1;
int optopt = 0;
#define EMSG ""

int getopt(int argc, char **argv, char *ostr) {
 static char *place = EMSG;
 register char *oli;

 if (!*place) {
 if (optind >= argc || *(place = argv[optind]) != '-' || !*++place) {
 return EOF;
 }
 if (*place == '-') {
 ++optind;
 return EOF;
 }
 }
 if ((optopt = (int)*place++) == (int)':' || !(oli = strchr(ostr, optopt))) {
 if (!*place) {
 ++optind;
 }
 fprintf(stderr, "%s: %s: %c\n", "getopt", "illegal option", optopt);
 return ('?');
 }
 if (*++oli != ':') {
 optarg = NULL;
 if (!*place)
 ++optind;
 } else {
 if (*place) {
 optarg = place;
 } else if (argc <= ++optind) {
 place = EMSG;
 fprintf(stderr, "%s: %s: %c\n", "getopt", "option requires an argument",
 optopt);
 return 0;
 } else {
 optarg = argv[optind];
 }
 place = EMSG;
 ++optind;
 }
 return optopt;
}
#endif

/* Display usage statement and exit. */
void usage()
{
 fprintf(stderr, "\nSends modify or add requests to an LDAP server.\n");
 fprintf(stderr, "usage:\n");
 fprintf(stderr, " %s [options] [-f file]\n", prog);
 fprintf(stderr, "where:\n");
 fprintf(stderr, " file: name of input file\n");
 fprintf(stderr, "note:\n");
 fprintf(stderr, " standard input is used if file is not specified\n");
 fprintf(stderr, "options:\n");
 fprintf(stderr, " -h host LDAP server host name\n");
 fprintf(stderr, " -p port LDAP server port number\n");
 fprintf(stderr, " -D dn bind DN\n");
 fprintf(stderr, " -w password bind password or '?' for non-echoed prompt\n");

Chapter 2. Directory Server programming reference 251

 fprintf(stderr, " -Z use a secure ldap connection (SSL)\n");
 fprintf(stderr, " -K keyfile file to use for keys\n");
 fprintf(stderr, " -P key_pw keyfile password\n");
 fprintf(stderr, " -N key_name private key name to use in keyfile\n");
 fprintf(stderr, " -R do not chase referrals\n");
 fprintf(stderr, " -M Manage referral objects as normal entries.\n");
 fprintf(stderr, " -m mechanism perform SASL bind with the given mechanism\n");
 fprintf(stderr, " -O maxhops maximum number of referrals to follow in a
 sequence\n");
 fprintf(stderr, " -V version LDAP protocol version (2 or 3; only 3 is
 supported)\n");
 fprintf(stderr, " -C charset character set name to use, as registered with
 IANA\n");
 fprintf(stderr, " -a force add operation as default\n");
 fprintf(stderr, " -r force replace operation as default\n");
 fprintf(stderr, " -b support binary values from files (old style
 paths)\n");
 fprintf(stderr, " -c continuous operation; do not stop processing
 on error\n");
 fprintf(stderr, " -n show what would be done but don't actually do
 it\n");
 fprintf(stderr, " -v verbose mode\n");
 fprintf(stderr, " -A set transaction abort flag\n");
 fprintf(stderr, " -d level set debug level in LDAP library\n");
 exit(1);
}

/* Parse command line arguments. */
void parse_arguments(int argc, char **argv) {
 int i = 0;
 int port = 0;
 char *optpattern = "FaAbcRMZnrv?h:V:p:D:w:d:f:K:P:N:C:O:m:";
#ifndef _WIN32
 extern char *optarg;
 extern int optind;
#endif

 fp = stdin;
 while ((i = getopt(argc, argv, optpattern)) != EOF) {
 switch (i) {
 case 'V':
 ldapversion = atoi(optarg);
 if (ldapversion != LDAP_VERSION3) {
 fprintf(stderr, "Unsupported version level supplied.\n");
 usage();
 }
 break;
 case 'A': /* force all changes records to be used */
 abort_flag = 1;
 break;
 case 'a':
 operation = LDAPMODIFY_ADD;
 break;
 case 'b': /* read values from files (for binary attributes)*/
 valsfromfiles = 1;
 break;
 case 'c': /* continuous operation*/
 contoper = 1;
 break;
 case 'F': /* force all changes records to be used*/
 force = 1;
 break;
 case 'h': /* ldap host*/
 ldaphost = strdup(optarg);
 break;
 case 'D': /* bind DN */
 binddn = strdup(optarg);
 break;
 case 'w': /* password*/
 if (optarg && optarg[0] == '?') {
 passwd = getPassword();
 } else
 if (!(passwd = strdup(optarg)))
 perror("password");
 break;
 case 'd':
 DebugLevel = atoi(optarg);
 break;
 case 'f': /* read from file */
 if ((optarg[0] == '-') && (optarg[1] == '\0'))
 fp = stdin;
 else if ((fp = fopen(optarg, "r")) == NULL) {

252 IBM Security Directory Suite: Programming Reference

 perror(optarg);
 exit(1);
 }
 break;
 case 'p':
 ldapport = atoi(optarg);
 port = 1;
 break;
 case 'n': /* print adds, don't actually do them*/
 doit = 0;
 break;
 case 'r': /* default is to replace rather than add values*/
 operation = LDAPMODIFY_REPLACE;
 break;
 case 'R': /* don't automatically chase referrals*/
 referrals = LDAP_OPT_OFF;
 break;
 case 'M': /* manage referral objects as normal entries */
 manageDsa = LDAP_TRUE;
 break;
 case 'O': /* set maximum referral hop count */
 hoplimit = atoi(optarg);
 break;
 case 'm': /* use SASL bind mechanism */
 if (!(mech = strdup (optarg)))
 perror("mech");
 break;
 case 'v': /* verbose mode */
 verbose++;
 break;
 case 'K':
 keyfile = strdup(optarg);
 break;
 case 'P':
 keyfile_pw = strdup(optarg);
 break;
 case 'N':
 cert_label = strdup(optarg);
 break;
 case 'Z':
 ssl = 1;
 break;
 case 'C':
 charset = strdup(optarg);
 break;
 case '?':
 default:
 usage();
 }
 }

 if (argc - optind != 0)
 usage();

 /* Use default SSL port if none specified*/
 if ((port == 0) && (ssl))
 ldapport = LDAPS_PORT;

 if (! DebugLevel) {
 char *debug_ptr = NULL;

 if ((debug_ptr = getenv ("LDAP_DEBUG")))
 DebugLevel = atoi (debug_ptr);
 }
}

/* Get a password from the user but don't display it. */
char* getPassword(void) {
 char supplied_password[MAX_SUPPLIED_PW_LENGTH + 1]; /* Buffer for password */

#ifdef _WIN32
 char in = '\0'; /* Input character */
 int len = 0; /* Length of password */
#else
 struct termios echo_control;
 struct termios save_control;

 int fd = 0; /* File descriptor */
 int attrSet = 0; /* Checked later for reset */

 /* Get the file descriptor associated with stdin. */
 fd = fileno(stdin);

Chapter 2. Directory Server programming reference 253

 if (tcgetattr(fd, &echo_control) != -1) {
 save_control = echo_control;
 echo_control.c_lflag &= ~(ECHO | ECHONL);

 if (tcsetattr(fd, TCSANOW, &echo_control) == -1) {
 fprintf(stderr, "Internal error setting terminal attribute.\n");
 exit(errno);
 }

 attrSet = 1;
 }
#endif

 /* Prompt for a password. */
 fputs("Enter password ==> ", stdout);
 fflush(stdout);

#ifdef _WIN32
 /* Windows 9x/NT will always read from the console, i.e.,
 piped or redirected input will be ignored. */
 while (in != '\r' && len <= MAX_SUPPLIED_PW_LENGTH) {
 in = _getch();

 if (in != '\r') {
 supplied_password[len] = in;
 len++;
 } else {
 supplied_password[len] = '\0';
 }
 }
#else
 /* Get the password from stdin. */
 fgets(supplied_password, MAX_SUPPLIED_PW_LENGTH, stdin);

 /* Remove the newline at the end. */
 supplied_password[strlen(supplied_password) - 1] = '\0';

#endif

#ifndef _WIN32
 /* Reset the terminal. */
 if (attrSet && tcsetattr(fd, TCSANOW, &save_control) == -1) {
 fprintf(stderr, "Unable to reset the display.\n");
 }
#endif
 fprintf(stdout, "\n");

 return (supplied_password == NULL)? supplied_password :
 strdup(supplied_password);
}

/* Rebind callback function. */
int rebindproc(LDAP *ld, char **dnp, char **pwp, int *methodp, int freeit) {
 if (!freeit) {
 *methodp = LDAP_AUTH_SIMPLE;
 if (binddn != NULL) {
 *dnp = strdup(binddn);
 *pwp = strdup (passwd);
 } else {
 *dnp = NULL;
 *pwp = NULL;
 }
 } else {
 free (*dnp);
 free (*pwp);
 }
 return LDAP_SUCCESS;
}

/* Connect and bind to server. */
void connect_to_server() {
 int failureReasonCode, rc, authmethod;
 struct berval ber;
 struct berval *server_creds;

 /* call ldap_ssl_client_init if V3 and SSL */
 if (ssl && (ldapversion == LDAP_VERSION3)) {
 if (keyfile == NULL) {
 keyfile = getenv("SSL_KEYRING");
 if (keyfile != NULL) {
 keyfile = strdup(keyfile);

254 IBM Security Directory Suite: Programming Reference

 }
 }

 if (verbose)
 printf("ldap_ssl_client_init(%s, %s, 0, &failureReasonCode)\n",
 ((keyfile) ? keyfile : "NULL"),
 ((keyfile_pw) ? keyfile_pw : "NULL"));
#ifdef LDAP_SSL_MAX
 rc = ibm_set_unrestricted_cipher_support();
 if (rc != 0) {
 fprintf(stderr, "Warning: ibm_gsk_set_unrestricted_cipher_support failed!
 rc == %d\n", rc);
 }
#endif

 rc = ldap_ssl_client_init(keyfile, keyfile_pw, 0, &failureReasonCode);
 if (rc != LDAP_SUCCESS) {
 fprintf(stderr,
 "ldap_ssl_client_init failed! rc == %d, failureReasonCode == %d\n",
 rc, failureReasonCode);
 exit(1);
 }
 }

 /* Open connection to server */
 if (ldapversion == LDAP_VERSION3) {
 if (ssl) {
 if (verbose)
 printf("ldap_ssl_init(%s, %d, %s)\n", ldaphost, ldapport,
 ((cert_label) ? cert_label : "NULL"));
 ld = ldap_ssl_init(ldaphost, ldapport, cert_label);
 if (ld == NULL) {
 fprintf(stderr, "ldap_ssl_init failed\n");
 perror(ldaphost);
 exit(1);
 }
 } else {
 if (verbose)
 printf("ldap_init(%s, %d) \n", ldaphost, ldapport);
 if ((ld = ldap_init(ldaphost, ldapport)) == NULL) {
 perror(ldaphost);
 exit(1);
 }
 }
 }

 /* Set options */
 ldap_set_option (ld, LDAP_OPT_PROTOCOL_VERSION, (void *)&ldapversion);

 if (ldapversion == LDAP_VERSION3) {
 ldap_set_option (ld, LDAP_OPT_DEBUG, (void *)&DebugLevel);
 ldap_set_option(ld, LDAP_OPT_REFHOPLIMIT, (void *)&hoplimit);
 }
 ldap_set_option (ld, LDAP_OPT_REFERRALS, (void *)referrals);
 if (binddn != NULL)
 ldap_set_rebind_proc(ld, (LDAPRebindProc)rebindproc);
 if (charset != NULL) {
 if (ldap_set_iconv_local_charset(charset) != LDAP_SUCCESS) {
 fprintf(stderr, "unsupported charset %s\n", charset);
 exit(0);
 }
 ldap_set_option(ld, LDAP_OPT_UTF8_IO, (void *)LDAP_UTF8_XLATE_ON);
 }

 /* Bind to server */
 if (ldapversion == LDAP_VERSION3) {
 if (! mech) /* Use simple bind */ {
 rc = ldap_simple_bind_s(ld, binddn, passwd);
 if (rc != LDAP_SUCCESS) {
 ldap_perror(ld, "ldap_simple_bind");
 /* LDAP_OPT_EXT_ERROR only valuable for ssl communication.
 In this example, for LDAP v3, the bind is the first
 instance in which communication actually flows to the
 server. So, if there is an ssl configuration error or
 other ssl problem, this will be the first instance where
 it will be detected. */
 if (ssl) {
 ldap_get_option(ld, LDAP_OPT_EXT_ERROR, &failureReasonCode);
 fprintf(stderr, "Attempted communication over SSL.\n");
 fprintf(stderr, " The extended error is %d.\n", failureReasonCode);
 }
 exit(rc);

Chapter 2. Directory Server programming reference 255

 }
 } else /* Presence of mechanism means SASL bind */ {
 /* Special case for mech="EXTERNAL". Unconditionally set bind DN
 and credentials to NULL. This option should be used in tandem
 with SSL and client authentication. For other SASL mechanisms,
 use the specified bind DN and credentials. */
 if (strcmp(mech, LDAP_MECHANISM_EXTERNAL) == 0) {
 rc = ldap_sasl_bind_s (ld, NULL, mech, NULL, NULL, NULL, &server_creds);
 if (rc != LDAP_SUCCESS) {
 ldap_perror (ld, "ldap_sasl_bind_s");
 exit(rc);
 }
 } else {
 if (strcmp(mech, LDAP_MECHANISM_GSSAPI) == 0) {
 rc = ldap_sasl_bind_s (ld, NULL, mech, NULL, NULL, NULL, &server_creds);
 if (rc != LDAP_SUCCESS) {
 ldap_perror (ld, "ldap_sasl_bind_s");
 exit(rc);
 }
 } else /* other SASL mechanisms */ {
 ber.bv_len = strlen (passwd);
 ber.bv_val = passwd;
 rc = ldap_sasl_bind_s (ld, binddn, mech, &ber, NULL, NULL, &server_creds);
 if (rc != LDAP_SUCCESS) {
 ldap_perror (ld, "ldap_sasl_bind_s");
 exit(rc);
 }
 }
 }
 }
 }
}

/* Read a record from the file. */
char * read_one_record(FILE *fp)
{
 int len = 0;
 int lcur = 0;
 int lmax = 0;
 char line[LDAPMOD_MAXLINE];
 char temp[LDAPMOD_MAXLINE];
 char *buf = NULL;

 /* Reads in and changes to ldif form */
 while ((fgets(line, sizeof(line), fp) != NULL)) {
 if (!(strncmp(line,"changenumber",10)))
 {do
 fgets(line,sizeof(line),fp);
 while(strncmp(line,"targetdn",8)); /*changes the = to : for parse*/
 line[8]=':';}

 if (!(strncmp(line,"changetype",9)))
 line[10]=':';
 if (!(strncmp(line,"changetype:delete",16)))
 (fgets(temp,sizeof(line),fp)); /*gets rid of the changetime line after
 a delete.*/
 if (!(strncmp(line,"changetime",9)))
 {fgets(line,sizeof(line),fp);
 if (!(strncmp(line,"newrdn",6)))
 line[6]=':';
 else
 line[7]=':';
 }
 if (!(strncmp(line,"deleteoldrdn",12)))
 line[12]=':';
 if (*line != '\n') {
 len = strlen(line);
 if (lcur + len + 1 > lmax) {
 lmax = LDAPMOD_MAXLINE
 *((lcur + len + 1) / LDAPMOD_MAXLINE + 1);
 if ((buf = (char *)safe_realloc(buf, lmax)) == NULL) {
 perror("safe_realloc");
 exit(1);
 }
 }
 strcpy(buf + lcur, line);
 lcur += len;
 }
 else {
 if (buf == NULL)
 continue; /* 1st line keep going */
 else

256 IBM Security Directory Suite: Programming Reference

 break;
 }
 }

 return buf;
}

/* Read binary data from a file. */
int fromfile(char *path, struct berval *bv) {
 FILE *fp = NULL;
 long rlen = 0;
 int eof = 0;

 /* "r" changed to "rb", defect 39803. */
 if ((fp = fopen(path, "rb")) == NULL) {
 perror(path);
 return -1;
 }

 if (fseek(fp, 0L, SEEK_END) != 0) {
 perror(path);
 fclose(fp);
 return -1;
 }

 bv->bv_len = ftell(fp);

 if ((bv->bv_val = (char *)malloc(bv->bv_len)) == NULL) {
 perror("malloc");
 fclose(fp);
 return -1;
 }

 if (fseek(fp, 0L, SEEK_SET) != 0) {
 perror(path);
 fclose(fp);
 return -1;
 }

 rlen = fread(bv->bv_val, 1, bv->bv_len, fp);
 eof = feof(fp);
 fclose(fp);

 if (rlen != (bv->bv_len)) {
 perror(path);
 return -1;
 }

 return bv->bv_len;
}

/* Read binary data from a file specified with a URL. */
int fromfile_url(char *value, struct berval *bv) {
 char *file = NULL;
 char *src = NULL;
 char *dst = NULL;

 if (strncmp(value, "file:///", 8))
 return -1;

 /* unescape characters */
 for (dst = src = &value[8]; (*src != '\0'); ++dst) {
 *dst = *src;
 if (*src++ != '%')
 continue;
 if ((*src >= '0') && (*src <= '9'))
 *dst = (*src++ - '0') << 4;
 else if ((*src >= 'a') && (*src <= 'f'))
 *dst = (*src++ - 'a' + 10) << 4;
 else if ((*src >= 'A') && (*src <= 'F'))
 *dst = (*src++ - 'A' + 10) << 4;
 else
 return -1;
 if ((*src >= '0') && (*src <= '9'))
 *dst += (*src++ - '0');
 else if ((*src >= 'a') && (*src <= 'f'))
 *dst += (*src++ - 'a' + 10);
 else if ((*src >= 'A') && (*src <= 'F'))
 *dst += (*src++ - 'A'+ 10);
 else
 return -1;
 }

Chapter 2. Directory Server programming reference 257

 *dst = '\0';

 /* On WIN32 platforms the URL must begin with a drive letter.
 On UNIX platforms the initial '/' is kept to indicate absolute
 file path.
 */
#ifdef _WIN32
 file = value + 8;
#else
 file = value + 7;
#endif
 return fromfile(file, bv);
}

/* Add operation to the modify structure. */
void addmodifyop(LDAPMod ***pmodsp, int modop, char *attr,
 char *value, int vlen, int isURL, int isBase64)
{
 LDAPMod **pmods = NULL;
 int i = 0;
 int j = 0;
 struct berval *bvp = NULL;

 /* Data can be treated as binary (wire ready) if one of the
 following applies:
 1) it was base64 encoded
 2) charset is not defined
 3) read from an external file
 */
 if (isBase64 ||
 (charset == NULL) ||
 isURL ||
 ((value != NULL) && valsfromfiles && (*value == '/'))) {
 modop |= LDAP_MOD_BVALUES;
 }

 i = 0;
 pmods = *pmodsp;
 if (pmods != NULL) {
 for (; pmods[i] != NULL; ++i) {
 if (strcasecmp(pmods[i]->mod_type, attr) == 0 &&
 pmods[i]->mod_op == modop) {
 break;
 }
 }
 }

 if (pmods == NULL || pmods[i] == NULL) {
 if ((pmods = (LDAPMod * *)safe_realloc(pmods, (i + 2) *
 sizeof(LDAPMod *))) == NULL) {
 perror("safe_realloc");
 exit(1);
 }
 *pmodsp = pmods;
 pmods[i + 1] = NULL;
 if ((pmods[i] = (LDAPMod *)calloc(1, sizeof(LDAPMod))) == NULL) {
 perror("calloc");
 exit(1);
 }
 pmods[i]->mod_op = modop;
 if ((pmods[i]->mod_type = strdup(attr)) == NULL) {
 perror("strdup");
 exit(1);
 }
 }

 if (value != NULL) {
 if (modop & LDAP_MOD_BVALUES) {
 j = 0;
 if (pmods[i]->mod_bvalues != NULL) {
 for (; pmods[i]->mod_bvalues[j] != NULL; ++j) {
 ;
 }
 }
 if ((pmods[i]->mod_bvalues =
 (struct berval **)safe_realloc(pmods[i]->mod_bvalues,
 (j + 2) * sizeof(struct berval *))) == NULL) {
 perror("safe_realloc");
 exit(1);
 }

 pmods[i]->mod_bvalues[j + 1] = NULL;

258 IBM Security Directory Suite: Programming Reference

 if ((bvp = (struct berval *)malloc(sizeof(struct berval)))
 == NULL) {
 perror("malloc");
 exit(1);
 }
 pmods[i]->mod_bvalues[j] = bvp;

 /* get value from file */
 if (valsfromfiles && *value == '/') {
 if (fromfile(value, bvp) < 0)
 exit(1);
 } else if (isURL) {
 if (fromfile_url(value, bvp) < 0)
 exit(1);
 } else {
 bvp->bv_len = vlen;
 if ((bvp->bv_val = (char *)malloc(vlen + 1)) == NULL) {
 perror("malloc");
 exit(1);
 }
 memmove(bvp->bv_val, value, vlen);
 bvp->bv_val[vlen] = '\0';
 }
 } else {
 j = 0;
 if (pmods[i]->mod_values != NULL) {
 for (; pmods[i]->mod_values[j] != NULL; ++j) {
 ;
 }
 }
 if ((pmods[i]->mod_values =
 (char **)safe_realloc(pmods[i]->mod_values,
 (j + 2) * sizeof(char *))) == NULL) {
 perror("safe_realloc");
 exit(1);
 }
 pmods[i]->mod_values[j + 1] = NULL;
 if ((pmods[i]->mod_values[j] = strdup(value)) == NULL) {
 perror("strdup");
 exit(1);
 }
 }
 }
}

/* Delete record */
int dodelete(char *dn) {
 int rc = 0;

 printf("%sdeleting entry %s\n", (!doit) ? "!" : "", dn);
 if (!doit)
 return LDAP_SUCCESS;

 rc = ldap_delete_ext(ld, dn,
 Server_Controls,
 NULL, &Message_ID);
 if (rc != LDAP_SUCCESS)
 ldap_perror(ld, "ldap_delete");
 else
 printf("delete complete\n");

 putchar('\n');
 /* Increment results to check after end transaction. */
 Num_Operations++;
 return rc;
}

/* Copy or move an entry. */
int domodrdn(char *dn, char *newrdn, int deleteoldrdn) {
 int rc = 0;

 printf("%s%s %s to %s\n", ((!doit) ? "!" : ""),
 ((deleteoldrdn) ? "moving" : "copying"), dn, newrdn);
 if (!doit)
 return LDAP_SUCCESS;

 rc = ldap_rename(ld, dn, newrdn, NULL, deleteoldrdn,
 Server_Controls , NULL,
 &Message_ID);
 if (rc != LDAP_SUCCESS)
 ldap_perror(ld, "ldap_rename");
 else

Chapter 2. Directory Server programming reference 259

 printf("rename operation complete\n");
 putchar('\n');

 /* Increment the count of results to check after end transaction is sent */
 Num_Operations++;
 return rc;
}

/* Print a binary value. If charset is not specified then check to
 see if string is printable anyway. */
void print_binary(struct berval *bval) {
 int i = 0;
 int binary = 0;

 printf("\tBINARY (%ld bytes) ", bval->bv_len);
 if (charset == NULL) {
 binary = 0;
 for (i = 0; (i < (bval->bv_len)) && (!binary); ++i)
 if (!isprint(bval->bv_val[i]))
 binary = 1;
 if (!binary)
 for (i = 0; (i < (bval->bv_len)); ++i)
 putchar(bval->bv_val[i]);
 }
 putchar('\n');
}

/* Modify or add an entry. */
int domodify(char *dn, LDAPMod **pmods, int newentry) {
 int i, j, op, rc;
 struct berval *bvp;

 if (pmods == NULL) {
 fprintf(stderr, "%s: no attributes to change or add (entry %s)\n",
 prog, dn);
 return LDAP_PARAM_ERROR;
 }

 if (verbose) {
 for (i = 0; pmods[i] != NULL; ++i) {
 op = pmods[i]->mod_op & ~LDAP_MOD_BVALUES;
 printf("%s %s:\n", op == LDAP_MOD_REPLACE ?
 "replace" : op == LDAP_MOD_ADD ?
 "add" : "delete", pmods[i]->mod_type);
 if (pmods[i]->mod_op & LDAP_MOD_BVALUES) {
 if (pmods[i]->mod_bvalues != NULL) {
 for (j = 0; pmods[i]->mod_bvalues[j] != NULL; ++j)
 print_binary(pmods[i]->mod_bvalues[j]);
 }
 } else {
 if (pmods[i]->mod_values != NULL) {
 for (j = 0; pmods[i]->mod_values[j] != NULL; ++j)
 printf("\t%s\n", pmods[i]->mod_values[j]);
 }
 }
 }
 }

 if (newentry)
 printf("%sadding new entry %s as a transaction\n", (!doit) ? "!" : "", dn);
 else
 printf("%smodifying entry %s as a transaction\n", (!doit) ? "!" : "", dn);
 if (!doit)
 return LDAP_SUCCESS;

 if (newentry) {
 rc = ldap_add_ext(ld, dn, pmods,
 Server_Controls, NULL,
 &Message_ID);
 } else {
 rc = ldap_modify_ext(ld, dn, pmods,
 Server_Controls, NULL,
 &Message_ID);
 }
 if (rc != LDAP_SUCCESS) {
 ldap_perror(ld, newentry ? "ldap_add" : "ldap_modify");
 } else if (verbose) {
 printf("%s operation complete\n", newentry ? "add" : "modify");
 }
 putchar('\n');

 /* Increment the count of results to check after end transaction is sent */

260 IBM Security Directory Suite: Programming Reference

 Num_Operations++;
 return rc;
}

/* Process an ldif record. */
int process_ldif_rec(char *rbuf) {
 char *line = NULL;
 char *dn = NULL;
 char *type = NULL;
 char *value = NULL;
 char *newrdn = NULL;
 char *p = NULL;
 int is_url = 0;
 int is_b64 = 0;
 int rc = 0;
 int linenum = 0;
 int vlen = 0;
 int modop = 0;
 int replicaport = 0;
 int expect_modop = 0;
 int expect_sep = 0;
 int expect_ct = 0;
 int expect_newrdn = 0;
 int expect_deleteoldrdn = 0;
 int deleteoldrdn = 1;
 int saw_replica = 0;
 int use_record = force;
 int new_entry = (operation == LDAPMODIFY_ADD);
 int delete_entry = 0;
 int got_all = 0;
 LDAPMod **pmods = NULL;
 int version = 0;
 int str_rc = 0;

 while (rc == 0 && (line = str_getline(&rbuf)) != NULL) {
 ++linenum;

 /* Is this a separator line ("-")? */
 if (expect_sep && strcasecmp(line, T_MODSEPSTR) == 0) {
 /* If modifier has not been added yet then go ahead and add
 it. The can happen on sequences where there are no
 attribute values, such as:
 DELETE: title
 -
 */
 if (value != NULL)
 addmodifyop(&pmods, modop, value, NULL, 0, 0, 0);
 value = NULL;
 expect_sep = 0;
 expect_modop = 1;
 continue;
 }

 str_rc = str_parse_line_v_or_bv(line, &type, &value, &vlen, 1, &is_url,
 &is_b64);
 if ((strncmp(type,"changes",7))==0)
 {str_parse_line_v_or_bv(value, &type, &value, &vlen, 1, &is_url, &is_b64);}
 if ((linenum == 1) && (strcmp(type, "version") == 0)) {
 version = atoi(value);
 continue;
 }

 if ((linenum == 2) && (version == 1) &&
 (strcmp(type, "charset") == 0)) {
 if (charset != NULL)
 free(charset);
 charset = strdup(value);
 if ((rc = ldap_set_iconv_local_charset(charset)) != LDAP_SUCCESS) {
 fprintf(stderr, "unsupported charset %s\n", charset);
 break;
 }
 ldap_set_option(ld, LDAP_OPT_UTF8_IO, (void *)LDAP_UTF8_XLATE_ON);
 continue;
 }

 if (dn == NULL) {
 if (!use_record && strcasecmp(type, T_REPLICA_STR) == 0) {
 ++saw_replica;
 if ((p = strchr(value, ':')) == NULL) {
 replicaport = LDAP_PORT;
 } else {
 *p++ = '\0';

Chapter 2. Directory Server programming reference 261

 replicaport = atoi(p);
 }
 if (strcasecmp(value, ldaphost) == 0 &&
 replicaport == ldapport) {
 use_record = 1;
 }
 } else if (strcasecmp(type, T_DN_STR) == 0) {
 if ((dn = strdup(value)) == NULL) {
 perror("strdup");
 exit(1);
 }
 expect_ct = 1;
 }
 continue; /* skip all lines until we see "dn:" */
 }

 if (expect_ct) {
 expect_ct = 0;
 if (!use_record && saw_replica) {
 printf("%s: skipping change record for entry: %s\n\t(LDAP host/port does
 not match replica: lines)\n", prog, dn);
 free(dn);
 return 0;
 }

 /* this is an ldif-change-record */
 if (strcasecmp(type, T_CHANGETYPESTR) == 0) {
 if (strcasecmp(value, T_MODIFYCTSTR) == 0) {
 new_entry = 0;
 expect_modop = 1;
 } else if (strcasecmp(value, T_ADDCTSTR) == 0) {
 modop = LDAP_MOD_ADD;
 new_entry = 1;
 } else if (strcasecmp(value, T_MODRDNCTSTR) == 0) {
 expect_newrdn = 1;
 } else if (strcasecmp(value, T_DELETECTSTR) == 0) {
 got_all = delete_entry = 1;
 } else {
 fprintf(stderr,
 "%s: unknown %s \"%s\" (line %d of entry: %s)\n",
 prog, T_CHANGETYPESTR, value, linenum, dn);
 rc = LDAP_PARAM_ERROR;
 }
 continue;

 /* this is an ldif-attrval-record */
 } else {
 if (operation == LDAPMODIFY_ADD) {
 new_entry = 1;
 modop = LDAP_MOD_ADD;
 } else
 modop = LDAP_MOD_REPLACE;
 }
 }

 if (expect_modop) {
 expect_modop = 0;
 expect_sep = 1;
 if (strcasecmp(type, T_MODOPADDSTR) == 0) {
 modop = LDAP_MOD_ADD;
 continue;
 } else if (strcasecmp(type, T_MODOPREPLACESTR) == 0) {
 modop = LDAP_MOD_REPLACE;
 continue;
 } else if (strcasecmp(type, T_MODOPDELETESTR) == 0) {
 modop = LDAP_MOD_DELETE;
 continue;
 } else {
 fprintf(stderr,
 "%s: unknown mod_spec \"%s\" (line %d of entry: %s)\n",
 prog, type, linenum, dn);
 rc = LDAP_PARAM_ERROR;
 continue;
 }
 }

 if (expect_newrdn) {
 if (strcasecmp(type, T_NEWRDNSTR) == 0) {
 if ((newrdn = strdup(value)) == NULL) {
 perror("strdup");
 exit(1);
 }

262 IBM Security Directory Suite: Programming Reference

 expect_deleteoldrdn = 1;
 expect_newrdn = 0;
 } else {
 fprintf(stderr, "%s: expecting \"%s:\" but saw \"%s:\" (line %d of entry %s)\n",
 prog, T_NEWRDNSTR, type, linenum, dn);
 rc = LDAP_PARAM_ERROR;
 }
 } else if (expect_deleteoldrdn) {
 if (strcasecmp(type, T_DELETEOLDRDNSTR) == 0) {
 deleteoldrdn = (*value == '0') ? 0 : 1;
 got_all = 1;
 } else {
 fprintf(stderr, "%s: expecting \"%s:\" but saw \"%s:\" (line %d of entry %s)\n",
 prog, T_DELETEOLDRDNSTR, type, linenum, dn);
 rc = LDAP_PARAM_ERROR;
 }
 } else if (got_all) {
 fprintf(stderr, "%s: extra lines at end (line %d of entry %s)\n",
 prog, linenum, dn);
 rc = LDAP_PARAM_ERROR;
 } else {

 addmodifyop(&pmods, modop, type, value, vlen, is_url, is_b64);
 type = NULL;
 value = NULL;
 }
 }

 /* If last separator is missing go ahead and handle it anyway, even
 though it is technically invalid ldif format. */
 if (expect_sep && (value != NULL))
 addmodifyop(&pmods, modop, value, NULL, 0, 0, 0);

 if (rc == 0) {
 if (delete_entry)
 rc = dodelete(dn);

 else if (newrdn != NULL)
 rc = domodrdn(dn, newrdn, deleteoldrdn);
 else if (dn != NULL)
 rc = domodify(dn, pmods, new_entry);
 }

 if (dn != NULL)
 free(dn);
 if (newrdn != NULL)
 free(newrdn);
 if (pmods != NULL)
 ldap_mods_free(pmods, 1);

 return rc;
}

/* Process a mod record. */
int process_ldapmod_rec(char *rbuf) {
 char *line = NULL;
 char *dn = NULL;
 char *p = NULL;
 char *q = NULL;
 char *attr = NULL;
 char *value = NULL;
 int rc = 0;
 int linenum = 0;
 int modop = 0;
 LDAPMod **pmods = NULL;

 while (rc == 0 && rbuf != NULL && *rbuf != '\0') {
 ++linenum;
 if ((p = strchr(rbuf, '\n')) == NULL) {
 rbuf = NULL;
 } else {
 if (*(p - 1) == '\\') { /* lines ending in '\' are continued */
 strcpy(p - 1, p);
 rbuf = p;
 continue;
 }
 *p++ = '\0';
 rbuf = p;
 }

 if (dn == NULL) { /* first line contains DN */
 if ((dn = strdup(line)) == NULL) {

Chapter 2. Directory Server programming reference 263

 perror("strdup");
 exit(1);
 }
 } else {
 if ((p = strchr(line, '=')) == NULL) {
 value = NULL;
 p = line + strlen(line);
 } else {
 *p++ = '\0';
 value = p;
 }

 for (attr = line; *attr != '\0' && isspace(*attr); ++attr) {
 ; /* skip attribute leading white space */
 }

 for (q = p - 1; q > attr && isspace(*q); --q) {
 q = '\0'; / remove attribute trailing white space */
 }

 if (value != NULL) {
 while (isspace(*value)) {
 ++value; /* skip value leading white space */
 }
 for (q = value + strlen(value) - 1; q > value &&
 isspace(*q); --q) {
 q = '\0'; / remove value trailing white space */
 }
 if (*value == '\0') {
 value = NULL;
 }
 }

 if ((value == NULL) && (operation == LDAPMODIFY_ADD)) {
 fprintf(stderr, "%s: missing value on line %d (attr is %s)\n",
 prog, linenum, attr);
 rc = LDAP_PARAM_ERROR;
 } else {
 switch (*attr) {
 case '-':
 modop = LDAP_MOD_DELETE;
 ++attr;
 break;
 case '+':
 modop = LDAP_MOD_ADD;
 ++attr;
 break;
 default:
 modop = (operation == LDAPMODIFY_REPLACE)
 ? LDAP_MOD_REPLACE : LDAP_MOD_ADD;
 break;
 }

 addmodifyop(&pmods, modop, attr, value,
 (value == NULL) ? 0 : strlen(value), 0, 0);
 }
 }
 line = rbuf;
 }

 if (rc == 0) {
 if (dn == NULL)
 rc = LDAP_PARAM_ERROR;
 else
 rc = domodify(dn, pmods, (operation == LDAPMODIFY_ADD));
 }

 if (pmods != NULL)
 ldap_mods_free(pmods, 1);
 if (dn != NULL)
 free(dn);

 return rc;
}

main(int argc, char **argv) {
 char *rbuf = NULL;
 char *start = NULL;
 char *p = NULL;
 char *q = NULL;
 char *tmpstr = NULL;
 int rc = 0;

264 IBM Security Directory Suite: Programming Reference

 int i = 0;
 int use_ldif = 0;
 int num_checked = 0;
 char *Start_Transaction_OID = LDAP_START_TRANSACTION_OID;
 char *End_Transaction_OID = LDAP_END_TRANSACTION_OID;
 char *Control_Transaction_OID = LDAP_TRANSACTION_CONTROL_OID;
 char *Returned_OID = NULL;
 struct berval *Returned_BerVal = NULL;
 struct berval Request_BerVal = {0,0};
 char *Berval = NULL;
 LDAPMessage *LDAP_result = NULL;

 /* Strip off any path info on program name */
#if defined(_WIN32)
 if ((prog = strrchr(argv[0], '\\')) != NULL)
 ++prog;
 else
 prog = argv[0];
#else
 if (prog = strrchr(argv[0], '/'))
 ++prog;
 else
 prog = argv[0];
#endif

#if defined(_WIN32)
 /* Convert string to lowercase */
 for (i = 0; prog[i] != '\0'; ++i)
 prog[i] = tolower(prog[i]);

 /* Strip ending .exe from program name */
 if ((tmpstr = strstr(prog, ".exe")) != NULL)
 *tmpstr = '\0';
#endif
 if (strcmp(prog, "ldaptxadd") == 0)
 operation = LDAPMODIFY_ADD;

 /* Parse command line arguments. */
 parse_arguments(argc, argv);

 /* Connect to server. */
 if (doit)
 connect_to_server();

 /* Disable translation if reading from file (they must specify the
 translation in the file). */
 if (fp != stdin)
 ldap_set_option(ld, LDAP_OPT_UTF8_IO, (void *)LDAP_UTF8_XLATE_OFF);

 /* Do the StartTransaction extended operation.
 The transaction ID returned must be put into the server control
 sent with all update operations. */
 rc = ldap_extended_operation_s (ld, Start_Transaction_OID,
 &Request_BerVal, NULL, NULL,
 &Returned_OID,
 &Returned_BerVal);
 if (verbose) {
 printf("ldap_extended_operation(start transaction) RC=%d\n", rc);
 }

 if (rc != LDAP_SUCCESS) {
 fprintf(stderr, "Start transaction rc=%d -> %s\n",
 rc, ldap_err2string(rc));
 exit(rc);
 }

 /* Allocate the server control for transactions. */
 if ((Server_Controls[0] =
 (LDAPControl *)malloc(sizeof(LDAPControl))) == NULL) {
 perror("malloc");
 exit(1);
 }

 /* Allocate the server control's berval. */
 if ((Server_Controls[0]->ldctl_value.bv_val =
 (char *) calloc (1, Returned_BerVal->bv_len + 1)) == NULL) {
 perror("calloc");
 exit(1);
 }

 /* Copy the returned berval length and value into the server control */
 Server_Controls[0]->ldctl_value.bv_len = Returned_BerVal-> bv_len;

Chapter 2. Directory Server programming reference 265

 memcpy(Server_Controls[0]->ldctl_value.bv_val,
 Returned_BerVal->bv_val , Returned_BerVal->bv_len);

 /* Set the control type to Transaction_Control_OID */
 Server_Controls[0]->ldctl_oid = Control_Transaction_OID;

 /* Set the criticality in the control to TRUE */
 Server_Controls[0]->ldctl_iscritical = LDAP_OPT_ON;

 /* If referral objects are to be modified directly, */
 if (manageDsa == LDAP_TRUE) {
 /* then set that server control as well. */
 Server_Controls[1] = &manageDsaIT
 }

 /* Initialize the count of operations that will be in the transaction.
 This count will be incremented by each operation that is performed.
 The count will be the number of calls that must be made to ldap_result
 to get the results for the operations.
 */
 Num_Operations = 0;

 /* Do operations */
 rc = 0;
 while ((rc == 0 || contoper) && (rbuf = read_one_record(fp)) != NULL) {
 /* We assume record is ldif/slapd.replog if the first line
 has a colon that appears to the left of any equal signs, OR
 if the first line consists entirely of digits (an entry ID). */

 use_ldif=1;
 start = rbuf;

 if (use_ldif)
 rc = process_ldif_rec(start);
 else
 rc = process_ldapmod_rec(start);
 free(rbuf);
 }

 /* Finish the transaction, committing or rolling back based on input parameter. */
 rc = 0;
 Request_BerVal.bv_len = Returned_BerVal->bv_len + 1;
 if ((Berval =
 (char *) malloc (Returned_BerVal->bv_len + 1)) == NULL) {
 perror("malloc");
 exit(1);
 }

 memcpy (&Berval[1], Returned_BerVal->bv_val, Returned_BerVal->bv_len);
 Berval[0] = abort_flag ? '\1' : '\0';
 Request_BerVal.bv_val = Berval;

 rc = ldap_extended_operation_s (ld,
 End_Transaction_OID,
 &Request_BerVal, NULL, NULL,
 &Returned_OID,
 &Returned_BerVal);
 if (verbose) {
 printf("ldap_extended_operation(end transaction) RC=%d\n", rc);
 }

 if (rc != LDAP_SUCCESS) {
 fprintf(stderr, "End transaction rc=%d -> %s\n",
 rc, ldap_err2string(rc));
 exit(rc);
 }

 /* Process the results of the operations in the transaction.
 At this time we will not be concerned about the correctness
 of the message numbers, just whether the operations succceeded or not.
 We could keep track of the operation types and make sure they are all
 accounted for. */

 for (num_checked = 0; num_checked < Num_Operations; num_checked++) {
 if (verbose) {
 printf("processing %d of %d operation results\n",
 1 + num_checked, Num_Operations);
 }

 rc = ldap_result (ld , LDAP_RES_ANY, LDAP_MSG_ONE, NULL, &LDAP_result);
 if (rc <= 0) {
 if (rc == 0)

266 IBM Security Directory Suite: Programming Reference

 fprintf(stderr, "Operation %d timed out\n", num_checked);
 if (rc < 0)
 fprintf(stderr, "Operation %d failed\n", num_checked);
 exit(1);
 }
 }

 /* Unbind and exit */
 if (doit)
 ldap_unbind(ld);

 exit(0);
}

The following example shows the makefile:

#---
COMPONENT_NAME: examples
#
ABSTRACT: makefile to generate LDAP client programs for transactions
#
ORIGINS: 202,27
#
(C) COPYRIGHT International Business Machines Corp. 2002
All Rights Reserved
Licensed Materials - Property of IBM
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
###
Default definitions
###
CC = cl.exe
LD = link.exe
RM = erase /f
HARDLN = copy
Note: Your install path may be different
LDAPHOME = D:\Program Files\IBM\ldap\V8.0.1.x

###
General compiler options
###

DEFINES = /DNDEBUG /DWIN32 /D_CONSOLE /D_MBCS /DNT /DNEEDPROTOS
INCLUDES= /I"$(LDAPHOME)/include"
CFLAGS = /nologo /MD /GX /Z7 $(INCLUDES) $(DEFINES)

###
General linker options
###

LIBS = kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib\
 advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib\
 odbccp32.lib wsock32.lib

Use the following definition to link the sample programs statically.
#CLIENT_LIBS = ldapstatic.lib libidsldifstatic.lib setloci.lib iconvi.lib

Use the following definition to link the sample programs with
the LDAP shared library.
CLIENT_LIBS = ldap.lib libldif.lib setloci.lib
LDIR = /LIBPATH:"$(LDAPHOME)"/lib
LFLAGS = /nologo /subsystem:console /incremental:no \
 $(LDIR) $(LIBS) $(CLIENT_LIBS)

###
Targets
###

all: ldaptxmod.exe ldaptxadd.exe

ldaptxmod.exe: ldaptxmod.obj
 $(LD) $(LFLAGS) /out:$@ $**

ldaptxadd.exe: ldaptxmod.exe
 $(RM) $@
 $(HARDLN) ldaptxmod.exe ldaptxadd.exe

.c.obj::

Chapter 2. Directory Server programming reference 267

 $(CC) $(CFLAGS) /c $<

ldaptxmod.obj: ldaptxmod.c

clean:
 $(RM) ldaptxmod.exe ldaptxadd.exe ldaptxmod.obj

See the source file, ldapmodify.c, in the DS_INSTALL_ROOT/examples for more information about
transaction.

268 IBM Security Directory Suite: Programming Reference

Appendix A. Possible extended error codes returned
by LDAP SSL function codes

LDAP SSL function codes return possible extended error codes. The following information serves as a
good starting point for the problems.

The following list contains values that are returned by all function calls:

• 0 – The task completed successfully. Issued by every function call that
completes successfully.

• 1 – The environment or SSL handle is not valid. The specified handle was not
the result of a successful open function call.

• 2 – The dynamic link library unloaded (Windows only).
• 3 – An internal error occurred. Report this error to service.
• 4 – Main memory is insufficient to run the operation.
• 5 – The handle is in an invalid state for operation, such as running an init
operation on a handle twice.

• 6 – Specified key label not found in keyfile.
• 7 – Certificate not received from partner.
• 8 – Certificate validation error.
• 9 – Error processing cryptography.
• 10 – Error validating Abstract Syntax Notation (ASN) fields in certificate.
• 11 – Error connecting to LDAP server.
• 12 – Internal unknown error. Report problem to service.
• 101 – Internal unknown error. Report problem to service.
• 102 – I/O error reading keyfile.
• 103 – Keyfile has an invalid internal format. Re-create keyfile.
• 104 – Keyfile has two entries with the same key. Use iKeyman to remove the
duplicate key.

• 105 – Keyfile has two entries with the same label. Use iKeyman to remove the
duplicate label.

• 106 – The keyfile password is used as an integrity check. Either the keyfile
is corrupted or the password ID is incorrect.

• 107 – The default key in the keyfile has an expired certificate. Use iKeyman
to remove certificates that are expired.

• 108 – There was an error for loading one of the GSKdynamic link libraries. Be
sure that GSK was installed correctly.

• 109 – Indicates that a connection is trying to be made in a
gsk environment after the GSK_ENVIRONMENT_CLOSE_OPTIONS is set to
GSK_DELAYED_ENVIRONMENT_CLOSE and gsk_environment_close() function is called.

• 201 – Neither the password nor the stash-file name was specified, so the key
file could not be initialized.

• 202 – Unable to open the key file. Either the path was specified incorrectly
or the file permissions did not allow the file to be opened.

• 203 – Unable to generate a temporary key pair. Report this error to service.
• 204 – A User Name object was specified that is not found.
• 205 – A Password that is used for an LDAP query is not correct.

© Copyright IBM Corp. 2007, 2015 269

• 206 – An index into the Fail Over list of LDAP servers was not correct.
• 301 – Indicates that the GSK environment close request was not properly
handled. Cause is most likely because of a gsk_secure_socket*() command that
is being attempted after a gsk_close_environment() call.

• 401 – The system date was set to an invalid value.
• 402 – Neither SSLv2 nor SSLv3 is enabled.
• 403 – The required certificate was not received from partner.
• 404 – The received certificate was formatted incorrectly.
• 405 – The received certificate type was not supported.
• 406 – An IO error occurred on a data read or write.
• 407 – The specified label in the key file could not be found.
• 408 – The specified key file password is incorrect. The key file could not be
used. The key file might also be corrupted.

• 409 – In a restricted cryptography environment, the key size is too long to
be supported.

• 410 – An incorrectly formatted SSL message was received from the partner.
• 411 – The message authentication code (MAC) was not successfully verified.
• 412 – Unsupported SSL protocol or unsupported certificate type.
• 413 – The received certificate contained an incorrect signature.
• 414 – Incorrectly formatted certificate received from partner.
• 415 – Invalid SSL protocol received from partner.
• 416 – Internal error. Report problem to service.
• 417 – The self-signed certificate is not valid.
• 418 – The read failed. Report this error to service.
• 419 – The write failed. Report this error to service.
• 420 – The partner closed the socket before the protocol completed.
• 421 – The specified V2 cipher is not valid.
• 422 – The specified V3 cipher is not valid.
• 423 – Internal error. Report problem to service.
• 424 – Internal error. Report problem to service.
• 425 – The handle could not be created. Report this internal error to service.
• 426 – Initialization failed. Report this internal error to service.
• 427 – When validating a certificate, unable to access the specified LDAP
directory.

• 428 – The specified key did not contain a private key.
• 429 – A failed attempt was made to load the specified Public-Key Cryptography
Standards (PKCS) #11 shared library.

• 430 – The PKCS #11 driver failed to find the token specified by the caller.
• 431 – A PKCS #11 token is not present in the slot.
• 432 – The password or pin to access the PKCS #11 token is invalid.
• 433 – The SSL header received was not a properly SSLV2 formatted header.
• 501 – The buffer size is negative or zero.
• 502 – Used with non-blocking input or output. See the non-blocking section
for usage.

• 601 – SSLV3 is required for reset_cipher, and the connection uses SSLV2.

270 IBM Security Directory Suite: Programming Reference

• 602 – An invalid ID was specified for the gsk_secure_soc_misc function call.
• 701 – The function call has an invalid ID. This may also be caused by
specifying an environment handle when a handle for an SSL connection must be
used.

• 702 – The attribute has a negative length, which is invalid.
• 703 – The enumeration value is invalid for the specified enumeration type.
• 704 – Invalid parameter list for replacing the SID cache routines.
• 705 – When setting a numeric attribute, the specified value is invalid for
the specific attribute being set.

• 706 – Conflicting parameters have been set for additional certificate
validation.

Appendix A. Possible extended error codes returned by LDAP SSL function codes 271

272 IBM Security Directory Suite: Programming Reference

Appendix B. LDAP V3 schema
Use the following sections for information about the LDAP V3 schema.

Dynamic schema
IBM Security Directory Suite C-Client SDK require that the schema defined for a server is stored in the
subschemasubentry directory.

To access the schema, you must first determine the subschemasubentry DN, which is obtained by
searching the root DSE. To obtain this information from the command-line, issue the following command:

 ldapsearch -h hostname -p 389 -b "" -s base "objectclass=*"

The root DSE information that is returned from an LDAP V3 server, such as the IBM Directory Server,
includes the following subentry:

 subschemasubentry=cn=schema

where subschemasubentry DN is "cn=schema".

Using the subschemasubentry DN returned by searching the root DSE, schema information can be
accessed with the following command-line search:

ldapsearch -h hostname -p 389 -b "cn=schema" -s base "objectclass=subschema"

The schema contains the following information:
Object class

A collection of attributes. A class can inherit attributes from one or more parent classes.
Attribute types

Contain information about the attribute, such as the name, oid, syntax, and matching rules.
IBM attribute types

The IBM LDAP directory implementation-specific attributes, such as database table name, column
name, SQL type, and the maximum length of each attribute.

Syntaxes
Specific LDAP syntaxes available for attribute definitions.

Matching rules
Specific matching rules available for attribute definitions.

Schema queries
The ldapsearch utility can be used to query the subschema entry. This search can be run by any
application by using the ldap_search APIs.

To retrieve all the values of one or more selected attribute types, specify the specific attributes that are
wanted for the LDAP search. Schema-related attribute types include the following values:

• objectclass
• objectclasses
• attributetypes
• ldapsyntaxes
• ibmattributetypes
• matchingrules

© Copyright IBM Corp. 2007, 2015 273

For example, to retrieve all the values for ldapsyntaxes, specify:

ldapsearch -h host -b "cn=schema" -s base objectclass=* ldapsyntaxes

which returns something like:

cn=schema
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.10 DESC 'Certificate Pair')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.11 DESC 'Country String')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.12 DESC 'DN')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.14 DESC 'Delivery Method')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.15 DESC 'Directory String')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.16 DESC 'DIT Content Rule
 Description')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.17 DESC 'DIT Structure Rule
 Description')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.21 DESC 'Enhanced Guide')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.22 DESC
 'Facsimile Telephone Number')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.23 DESC 'Fax')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.24 DESC 'Generalized Time')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.25 DESC 'Guide')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.26 DESC 'IA5 String')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.27 DESC 'INTEGER')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.28 DESC 'JPEG')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.3 DESC 'Attribute Type
 Description')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.30 DESC 'Matching Rule
 Description')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.31 DESC 'Matching Rule Use
 Description')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.33 DESC 'MHS OR Address')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.34 DESC 'Name And Optional UID')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.35 DESC 'Name Form
 Description')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.36 DESC 'Numeric String')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.37 DESC 'Object Class
 Description')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.38 DESC 'OID')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.39 DESC 'Other Mailbox')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.40 DESC 'Octet String')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.41 DESC 'Postal Address')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.42 DESC 'Protocol Information')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.43 DESC 'Presentation Address')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.44 DESC 'Printable String')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.49 DESC 'Supported Algorithm')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.5 DESC 'Binary')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.50 DESC 'Telephone
 Number')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.51 DESC
 'Teletex Terminal Identifier')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.52 DESC 'Telex Number')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.53 DESC 'UTC Time')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.54 DESC 'LDAP Syntax
 Description')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.58 DESC 'Substring Assertion')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.6 DESC 'Bit String')
ldapsyntaxes=(1.3.6.1.4.1.1466.115.121.1.7 DESC 'Boolean')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.8 DESC 'Certificate')
ldapSyntaxes=(1.3.6.1.4.1.1466.115.121.1.9 DESC 'Certificate List')
ldapsyntaxes=(IBMAttributeType-desc-syntax-oid DESC 'IBM Attribute
 Type Description')

Similarly, to obtain the values for matching rules, specify:

 ldapsearch -h host -b "cn=schema" -s base objectclass=* matchingrules

which returns something like:

cn=schema
 MatchingRules= (1.3.6.1.4.1.1466.109.114.3 NAME \
 'caseIgnoreIA5SubstringsMatch' SYNTAX 1.3.6.1.4.1.1466.115.121.1.58)
 MatchingRules= (2.5.13.5 NAME 'caseExactMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)
 MatchingRules= (2.5.13.2 NAME 'caseIgnoreMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)
 MatchingRules= (2.5.13.7 NAME 'caseExactSubstringsMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.58)

274 IBM Security Directory Suite: Programming Reference

 MatchingRules= (2.5.13.6 NAME 'caseExactOrderingMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)
 MatchingRules= (2.5.13.4 NAME 'caseIgnoreSubstringsMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.58)
 MatchingRules= (2.5.13.3 NAME 'caseIgnoreOrderingMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)
 MatchingRules= (1.3.18.0.2.4.405 NAME 'distinguishedNameOrderingMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)
 MatchingRules= (2.5.13.1 NAME 'distinguishedNameMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)
 MatchingRules= (2.5.13.28 NAME 'generalizedTimeOrderingMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24)
 MatchingRules= (2.5.13.27 NAME 'generalizedTimeMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24)
 MatchingRules= (1.3.6.1.4.1.1466.109.114.2 NAME 'caseIgnoreIA5Match' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)
 MatchingRules= (1.3.6.1.4.1.1466.109.114.1 NAME 'caseExactIA5Match' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)
 MatchingRules= (2.5.13.29 NAME 'integerFirstComponentMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27)
 MatchingRules= (2.5.13.10 NAME 'numericStringSubstringsMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.58)
 MatchingRules= (2.5.13.11 NAME 'caseIgnoreListMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.41)
 MatchingRules= (2.5.13.12 NAME 'caseIgnoreListSubstringsMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.58)
 MatchingRules= (2.5.13.13 NAME 'booleanMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.7)
 MatchingRules= (2.5.13.14 NAME 'integerMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27)
 MatchingRules= (2.5.13.15 NAME 'integerOrderingMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.27)
 MatchingRules= (2.5.13.16 NAME 'bitStringMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.6)
 MatchingRules= (2.5.13.17 NAME 'octetStringMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.5)
 MatchingRules= (2.5.13.18 NAME 'octetStringOrderingMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.40)
 MatchingRules= (2.5.13.0 NAME 'objectIdentifierMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)
 MatchingRules= (2.5.13.30 NAME 'objectIdentifierFirstComponentMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.38)
 MatchingRules= (2.5.13.21 NAME 'telephoneNumberSubstringsMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.58)
 MatchingRules= (2.5.13.20 NAME 'telephoneNumberMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.50)
 MatchingRules= (2.5.13.22 NAME 'presentationAddressMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.43)
 MatchingRules= (2.5.13.23 NAME 'uniqueMemberMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.34)
 MatchingRules= (2.5.13.24 NAME 'protocolInformationMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.42)
 MatchingRules= (2.5.13.25 NAME 'uTCTimeMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.53)
 MatchingRules= (2.5.13.8 NAME 'numericStringMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.36)
 MatchingRules= (2.5.13.9 NAME 'numericStringOrderingMatch' \
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.36)

Dynamic schema changes
To run a dynamic schema change, use LDAP modify with a DN of "cn=schema". It is permissible to add,
delete, or replace only one schema entity, for example, an attribute type or an object class, at a time.

To delete a schema entity, you can provide the oid in parentheses:

(oid)

A full description might also be provided. In either case, the matching rule that is used to find the schema
entity to delete is objectIdentifierFirstComponentMatch as mandated by the LDAP V3 protocol.

To add or replace a schema entity, you must provide the LDAP V3 definition and you can provide the IBM
definition.

Appendix B. LDAP V3 schema 275

In all cases, you must provide only the definitions of the schema entity that you want to affect. For
example, to delete the attribute type cn (its OID is 2.5.4.3), call ldap_modify() with:

 LDAPMod attr;
 LDAPMod *attrs[] = { &attr, NULL };
 char *vals [] = { "(2.5.4.3)", NULL };
 attr.mod_op = LDAP_MOD_DELETE;
 attr.mod_type = "attributeTypes";
 attr.mod_values = vals;
 ldap_modify_s(ldap_session_handle, "cn=schema", attrs);

To add an attribute type foo with OID 20.20.20 which is a NAME of length 20 chars:

 char *vals1[] = { "(20.20.20 NAME 'foo' SUP NAME)", NULL };
 char *vals2[] = { "(20.20.20 LENGTH 20)", NULL };
 LDAPMod attr1;
 LDAPMod attr2;
 LDAPMod *attrs[] = { &attr1, &attr2, NULL };
 attr1.mod_op = LDAP_MOD_ADD;
 attr1.mod_type = "attributeTypes";
 attr1.mod_values = vals1;
 attr2.mod_op = LDAP_MOD_ADD;
 attr2.mod_type = "IBMattributeTypes";
 attr2.mod_values = vals2;
 ldap_modify_s(ldap_session_handle, "cn=schema", attrs);

To change the object class top so it allows a MAY attribute type called foo. It assumes that the attribute
type foo is defined in the schema:

 LDAPMod attr;
 LDAPMod *attrs[] = { &attr, NULL };
 attr.mod_op = LDAP_MOD_REPLACE;
 attr.mod_type = "objectClasses";
 attr.mod_values = "(2.5.6.0 NAME 'top' ABSTRACT "
 "MUST objectClass MAY foo)";
 ldap_modify_s(ldap_session_handle, "cn=schema", attrs);

276 IBM Security Directory Suite: Programming Reference

Appendix C. LDAP distinguished names

Distinguished names (DNs) are used to uniquely identify entries in an LDAP or X.500 directory. DNs are
user-oriented strings, typically used whenever you must add, modify, or delete an entry in a directory by
using the LDAP programming interface, and when you use the LDAP utilities ldapmodify, ldapsearch,
ldapmodrdn, and ldapdelete.

To know more about the syntax and usage of the command-line utilities, see the Command Reference
section of IBM Security Directory Suite documentation.

A DN is typically composed of an ordered set of attribute type or attribute value pairs. Most DNs are
composed of pairs in the following order:

• common name (cn)
• organization (o) or organizational unit (ou)
• country (c)

The following string-type attributes represent the set of standardized attribute types for accessing an
LDAP directory. A DN can be composed of attributes with an LDAP syntax of Directory String, including the
following ones:

• CN - CommonName
• L - LocalityName
• ST - StateOrProvinceName
• O - OrganizationName
• OU - OrganizationalUnitName
• C - CountryName
• STREET - StreetAddress

Informal definition
This notation is convenient for common forms of name. Most DNs begin with CommonName (CN), and
progress up the naming tree of the directory. Typically, as you read from left to right, each component of
the name represents increasingly larger groupings of entries, ending with CountryName (C). Remember
that sequence is important. For example, the following two DNs do not identify the same entry in the
directory:

 CN=wiley coyote, O=acme, O=anvils, C=US

 CN=wiley coyote, O=anvils, O=acme, C=US

Some examples follow. The author of RFC 2253, "UTF-8 String Representation of Distinguished Names" is
specified as:

 CN=Steve Kille, O=ISODE Consortium, C=GB

Another name might be:

 CN=Christian Huitema, O=INRIA, C=FR

A semicolon (;) can be used as an alternative separator. The separators might be mixed, but this usage is
discouraged.

 CN=Christian Huitema; O=INRIA; C=FR

© Copyright IBM Corp. 2007, 2015 277

https://www.ibm.com/docs/sdsu/8.0.1

Here is an example of a multi-valued Relative Distinguished Name, where the namespace is flat within an
organization, and department is used to disambiguate certain names:

 OU=Sales + CN=J. Smith, O=Widget Inc., C=US

The final examples show both methods of entering a comma in an Organization name:

 CN=L. Eagle, O="Sue, Grabbit and Runn", C=GB

 CN=L. Eagle, O=Sue, Grabbit and Runn, C=GB

Formal definition
For a formal, and complete, definition of Distinguished Names that can be used with the LDAP interfaces,
see "RFC 2253, UTF-8 String Representation of Distinguished Names".

278 IBM Security Directory Suite: Programming Reference

http://www.ietf.org/rfc/rfc2253.txt

Appendix D. LDAP data interchange format (LDIF)
This documentation describes the LDAP Data Interchange Format (LDIF), as used by the ldapmodify,
ldapsearch, and ldapadd utilities.

The LDIF specified here is also supported by the server utilities that are provided with the IBM Security
Directory Suite. To know more about the syntax and usage of the command-line utilities, see the
Command Reference section of the IBM Security Directory Suite documentation.

LDIF is used to represent LDAP entries in text form. The basic form of an LDIF entry is:

dn: distinguished name
attrtype : attrvalue
attrtype : attrvalue
...

A line can be continued by starting the next line with a single space or tab character, for example:

 dn: cn=John E Doe, o=University of High
 er Learning, c=US

Multiple attribute values are specified on separate lines, for example:

 cn: John E Doe
 cn: John Doe

If an attrvalue contains a non-US-ASCII character, or begins with a space or a colon (:), the attrtype is
followed by a double colon and the value is encoded in base-64 notation. For example, the value begins
with a space is encoded as:

 cn:: IGJlZ2lucyB3aXRoIGEgc3BhY2U=

Multiple entries within the same LDIF file are separated by a blank line. Multiple blank lines are
considered a logical end-of-file.

LDIF examples
An LDIF content file contains entries that can be loaded to the directory.

Here is an example of an LDIF content file that contains three entries:

 dn: cn=John E Doe, o=University of High
 er Learning, c=US
 cn: John E Doe
 cn: John Doe
 objectclass: person
 sn: Doe

 dn: cn=Bjorn L Doe, o=University of High
 er Learning, c=US
 cn: Bjorn L Doe
 cn: Bjorn Doe
 objectclass: person
 sn: Doe

 dn: cn=Jennifer K. Doe, o=University of High
 er Learning, c=US
 cn: Jennifer K. Doe
 cn: Jennifer Doe
 objectclass: person
 sn: Doe
 jpegPhoto:: /9j/4AAQSkZJRgABAAAAAQABAAD/2wBDABALD
 A4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9PDkzODdASFxOQ
 ERXRTc4UG1RV19iZ2hnPk1xeXBkeFxlZ2P/2wBDARESEhgVG
 ...

© Copyright IBM Corp. 2007, 2015 279

https://www.ibm.com/docs/en/sdsu/8.0.1?topic=reference-security-directory-suite-command
https://www.ibm.com/docs/sdsu/8.0.1

The jpegPhoto in the entry of Jennifer Doe is encoded by using base-64. The textual attribute values can
also be specified in base-64 format. However, if so, the base-64 encoding must be in the code page of
the wire format for the protocol. That is, for LDAP V2, the IA5 character set and for LDAP V3, the UTF-8
encoding.

LDIF example: Content

LDIF file: Change types
You can modify and delete existing directory entries when an LDIF file contains change types. For
example, the following LDIF file entry shows the object class insectopia being added to the existing
entry dn= cn=foo, ou=bar by using the modify change type:

dn: cn=foo, ou=bar
changetype: modify
add: objectclass
objectclass: insectopia

For a complete list of change types, see RFC 2849.

Change type files can also contain LDAP controls. LDAP controls can be used to extend certain LDAP
Version 3 operations.

A control must contain a unique object identifier (OID) that identifies the control. Make sure that your
server supports the control that you want to use.

The following example shows the LDAP control syntax. Brackets indicate optional data; only the OID is
required.

control: OID [true||false] [string || :: 64string]

Where:

• OID is the OID that identifies the control you want to use.
• string is a string that does not include Line Feed, Carriage Return, NULL, colon, space or < symbol.
• 64string is a base-64 encoded string.

The following example uses the Subtree delete control to delete the ou=Product Development,
dc=airius, dc=com entry:

dn: ou=Product Development, dc=airius, dc=com
control: 1.2.840.113556.1.4.805 true
changetype: delete

When controls are included in an LDIF file, implementations might choose to ignore some or all of them.
This implementation might be necessary if the changes described in the LDIF file are being sent on an
LDAPv2 connection (LDAPv2 does not support controls), or the particular controls are not supported by
the remote server. If the criticality of a control is "true", then the implementation must either include the
control, or must not send the operation to a remote server.

For more information, see “LDAP controls” on page 24 and “Object Identifiers (OIDs) for extended
operations and controls” on page 166.

LDAP controls

Version 1 LDIF support
The ldapmodify and ldapadd client utilities are enhanced to recognize the latest version of LDIF, which
is identified by the presence of the version: 1 tag at the head of the file.

Unlike the original version of LDIF, the newer version of LDIF supports attribute values that are
represented in UTF-8, instead of the limited ASCII.

280 IBM Security Directory Suite: Programming Reference

However, manual creation of an LDIF file that contains UTF-8 values can be difficult. To simplify this
process, a charset extension to the LDIF format is supported. This extension allows an IANA character
set name to be specified in the header of the LDIF file, along with the version number. A limited set of the
IANA character sets is supported. See “IANA character sets supported by platform” on page 164 for the
specific charset values that are supported for each operating system platform.

The version 1 LDIF format also supports file URLs. This format provides a more flexible way to define a file
specification. File URLs take the following form:

 attribute: file:///path
 (where path syntax depends on platform)

For example, the following addresses are valid file web addresses:

 jpegphoto: file:///d:\temp\photos\myphoto.jpg
 (DOS/Windows style paths)
 jpegphoto: file:///etc/temp/photos/myphoto.jpg
 (UNIX style paths)

Note: IBM Security Directory Suite utilities support both the new file URL specification and the older
style. For example, jpegphoto: /etc/temp/myphoto, regardless of the version specification. In other
words, the new file URL format can be used without adding the version tag to your LDIF files.

Version 1 LDIF examples
You can use the optional charset tag so that the utilities automatically convert from the specified
character set to UTF-8.

See the following example:

 version: 1
 charset: ISO-8859-1

 dn: cn=Juan Griego, o=University of New Mexico, c=US
 cn: Juan Griego
 sn: Griego
 description:: V2hhdCBhIGNhcmVmdWwgcmVhZGVyIHlvd
 title: Associate Dean
 title: [title in Spanish]
 jpegPhoto: file:///usr/local/photos/jgriego.jpg

In this instance, all values that follow an attribute name and a single colon are translated from the
ISO-8859-1 character set to UTF-8. Values following an attribute name and a double colon (such as
description:: V2hhdCBhIGNhcm...) must be base-64 encoded, and are expected to be either
binary or UTF-8 character strings. Values that are read from a file, such as the jpegPhoto attribute
specified by the web address in the previous example, are also expected to be either binary or UTF-8. No
translation from the specified charset to UTF-8 is done on those values.

In this example of an LDIF file without the charset tag, content is expected to be in UTF-8, or base-64
encoded UTF-8, or base-64 encoded binary data:

IBM Directory sample LDIF file
#
The suffix "o=sample" should be defined before attempting to load
this data.

 version: 1

 dn: o=sample
 objectclass: top
 objectclass: organization
 o: sample

 dn: ou=Austin, o=sample
 ou: Austin
 objectclass: organizationalUnit
 seealso: cn=Linda Carlesberg, ou=Austin, o=sample

Appendix D. LDAP data interchange format (LDIF) 281

This same file can be used without the version: 1 header information, as in previous releases of the IBM
Security Directory Server version C-Client SDK:

 # IBM Directory sample LDIF file
 #
 # The suffix "o=sample" should be defined before attempting to load
 # this data.

 dn: o=sample
 objectclass: top
 objectclass: organization
 o: sample

 dn: ou=Austin, o=sample
 ou: Austin
 objectclass: organizationalUnit
 seealso: cn=Linda Carlesberg, ou=Austin, o=sample

Note: The textual attribute values can be specified in base-64 format.

IANA character sets supported by platform
The following table defines the set of IANA-defined (Internet Assigned Numbers Authority) character sets
that can be defined for the charset tag in a Version 1 LDIF file, on a per-platform basis.

The value in the left-most column defines the text string that can be assigned to the charset tag. An X
indicates that conversion from the specified charset to UTF-8 is supported for the associated platform,
and that all string content in the LDIF file is assumed to be represented in the specified charset. n/a
indicates that the conversion is not supported for the associated platform.

String content is defined to be all attribute values that follow an attribute name and a single colon.

For more information about IANA-registered character sets, see IANA Character Sets.

Table 16. IANA-defined character sets by platform

Character Conversion Supported

Set Name Windows AIX Solaris Linux

ISO-8859–1 X X X X

ISO-8859–2 X X X X

ISO-8859–5 X X X X

ISO-8859–6 X X X X

ISO-8859–7 X X X X

ISO-8859–8 X X X X

ISO-8859–9 X X X X

ISO-8859–15 NA X X

IBM437 X NA NA

IBM850 X X NA

IBM852 X NA NA

IBM857 X NA NA

IBM862 X NA NA

IBM864 X NA NA

IBM866 X NA NA

IBM869 X X NA

282 IBM Security Directory Suite: Programming Reference

http://www.iana.org/assignments/character-sets

Table 16. IANA-defined character sets by platform (continued)

Character Conversion Supported

Set Name Windows AIX Solaris Linux

IBM1250 X NA NA

IBM1251 X NA NA

IBM1253 X NA NA

IBM1254 X NA NA

IBM1255 X NA NA

IBM1256 X NA NA

TIS-620 X X NA

EUC-JP NA X X X

EUC-KR NA X X*

EUC-CN NA X X

EUC-TW NA X X

Shift-JIS X X X X

KSC X X NA

GBK X X X*

Big5 X X X

GB18030 X X X X

HP15CN

* Supported on Solaris 7 and higher only.

The new Chinese character set standard (GB18030) is supported by appropriate patches available from
http://www.oracle.com/us/sun/index.htm and http://www.microsoft.com/en-us/default.aspx:

Note: On Windows 2000, you must set the environment variable zhCNGB18030=TRUE.

Appendix D. LDAP data interchange format (LDIF) 283

http://www.oracle.com/us/sun/index.htm
http://www.microsoft.com/en-us/default.aspx

284 IBM Security Directory Suite: Programming Reference

Appendix E. Deprecated LDAP APIs
Although the following APIs are still supported, their use is deprecated.

Use of the newer replacement APIs is encouraged:
ldap_ssl_start()

Use ldap_ssl_client_init() and ldap_ssl_init(). See “LDAP_SSL” on page 115.
ldap_open()

Use ldap_init(). See“LDAP_INIT” on page 58.
ldap_bind()

Use ldap_simple_bind(). See “LDAP_BIND / UNBIND” on page 10.
ldap_bind_s()

Use ldap_simple_bind_s(). See “LDAP_BIND / UNBIND” on page 10.
ldap_result2error()

Use ldap_parse_result(). See “LDAP_PARSE_RESULT” on page 84.
ldap_perror()

Use ldap_parse_result(). See “LDAP_PARSE_RESULT” on page 84.
ldap_get_entry_controls_np

Use ldap_get_entry_controls. See “LDAP_FIRST_ENTRY, LDAP_FIRST_REFERENCE” on page
50.

ldap_parse_reference_np
Use ldap_parse_reference. See “LDAP_FIRST_ENTRY, LDAP_FIRST_REFERENCE” on page 50.

© Copyright IBM Corp. 2007, 2015 285

286 IBM Security Directory Suite: Programming Reference

Appendix F. Object Identifiers (OIDs) for extended
operations and controls

The extended operation and control OIDs are in the root DSE of IBM Security Directory Suite.

In this appendix, each OID is defined and its syntax that is specified in the following formats:

Extended operations:
Description

Gives a brief description of the extended operation.
Request

OID and syntax for the extended operation request. A request generally sets the requestValue field.
Response

OID and syntax for the extended operation response.
Behavior

How the extended operation behaves; who is enabled to send the extended operation; possible return
codes.

Scope
The scope of the extended operation.

Auditing (if applicable)
How this extended operation is audited.

Controls:
Description

Gives a brief description of the control.
OID

OID for the extended operation.
Syntax

Syntax for the control.
Behavior

How the control behaves; who is enabled to call the control; possible return codes.
Scope

The scope of the control.
Auditing (if applicable)

How this control is audited.

OIDs for extended operations
The OIDs for extended operations provide support description about various servers.

The following table shows OIDs for extended operations. Click a short name or go to the specified page
number for more information about an extended operation syntax and usage.

© Copyright IBM Corp. 2007, 2015 287

Table 17. OIDs for extended operations

Short name with OID Description Supported
by the
Administrati
on Server

Supported by
full Directory
Server with
database

Supported by Proxy
Server

Without
partitione
d data

With
partitione
d data

“Account status
extended operation” on
page 172

1.3.18.0.2.12.58

This extended operation
sends the server a DN of
an entry which contains a
userPassword attribute,
and the server sends
back the status of the
user account that is being
queried:

open
locked
expired

No Yes No No

“Attribute type
extended operations”
on page 173

1.3.18.0.2.12.46

Retrieve attributes by
supported capability:
operational, language tag,
attribute cache, unique, or
configuration.

Note: Attribute cache is
deprecated. You must
avoid using attribute cache.

Yes Yes Yes Yes

“Begin transaction
extended operation” on
page 175

1.3.18.0.2.12.5

Begin a Transactional
context.

No Yes Yes Yes

“Cascading replication
operation extended
operation” on page 176

1.3.18.0.2.12.15

This operation calls the
requested action on the
server it is issued to and
cascades the call to all
consumers beneath it in
the replication topology.

No Yes No No

“Clear log extended
operation” on page 211

1.3.18.0.2.12.20

Request to clear log file. No Yes Yes Yes

“Control replication
extended operation” on
page 179

1.3.18.0.2.12.16

This operation is used
to force immediate
replication, suspend
replication, or resume
replication by a supplier.
This operation is allowed
only when the client owns
update authority to the
replication agreement.

No Yes No No

288 IBM Security Directory Suite: Programming Reference

Table 17. OIDs for extended operations (continued)

Short name with OID Description Supported
by the
Administrati
on Server

Supported by
full Directory
Server with
database

Supported by Proxy
Server

Without
partitione
d data

With
partitione
d data

“Control queue
extended operation” on
page 181

1.3.18.0.2.12.17

This operation marks items
as "already replicated" for
a specified agreement.
This operation is allowed
only when the client owns
update authority to the
replication agreement.

No Yes No No

“DN normalization
extended operation” on
page 182

1.3.18.0.2.12.30

Request to normalize a DN
or a sequence of DNs.

Yes Yes No No

“Dynamic server trace
extended operation” on
page 183

1.3.18.0.2.12.40

Activate or deactivate
tracing in the Directory
Server.

No Yes Yes Yes

“Dynamic update
requests extended
operation” on page 184

1.3.18.0.2.12.28

Request to update server
configuration for the
Directory Server.

Yes Yes Yes Yes

“Effective password
policy extended
operation” on page 185

1.3.18.0.2.12.75

Used for querying effective
password policy for a user
or a group.

No Yes No No

“End transaction
extended operation” on
page 187

1.3.18.0.2.12.6

End Transactional context
(commit or rollback).

No Yes Yes Yes

“Event notification
register request
extended operation” on
page 188

1.3.18.0.2.12.1

Request registration for
events notification.

No Yes No No

“Event notification
unregister request
extended operation” on
page 189

1.3.18.0.2.12.3

Unregister for events that
were registered for using
an Event Registration
Request.

No Yes No No

Appendix F. Object Identifiers (OIDs) for extended operations and controls 289

Table 17. OIDs for extended operations (continued)

Short name with OID Description Supported
by the
Administrati
on Server

Supported by
full Directory
Server with
database

Supported by Proxy
Server

Without
partitione
d data

With
partitione
d data

“Get file extended
operation” on page 212

1.3.18.0.2.12.73

Returns the contents of a
file on the server.

No Yes Yes Yes

“Get lines extended
operation” on page 213

1.3.18.0.2.12.22

Request to get lines from a
log file.

Yes Yes Yes Yes

“Get number of lines
extended operation” on
page 213

1.3.18.0.2.12.24

Request number of lines in
a log file.

Yes Yes Yes Yes

“Group evaluation
extended operation” on
page 190

1.3.18.0.2.12.50

Requests all the groups
that a user belongs to.

No Yes No No

“Kill connection
extended operation” on
page 191

1.3.18.0.2.12.35

Request to kill connections
on the server. The
request can be to kill
all connections or kill
connections by bound DN,
IP, or a bound DN from a
particular IP.

No Yes Yes Yes

“LDAP trace facility
extended operation” on
page 192

1.3.18.0.2.12.41

Use this extended
operation to control LDAP
Trace Facility remotely by
using the Administration
Server.

Yes Yes Yes Yes

“Locate entry extended
operation” on page 193

1.3.18.0.2.12.71

This extended operation is
used to extract the back-
end server details of a set
of entry DNs and provide
the details to the client.

No No Yes Yes

“LogMgmtControl
extended operation” on
page 194

1.3.18.0.2.12.70

The LogMgmtControl
extended operation is
used to start, stop, and
query the status of the
log management for a
Directory Server instance
that is running on a server.

Yes Yes Yes Yes

290 IBM Security Directory Suite: Programming Reference

Table 17. OIDs for extended operations (continued)

Short name with OID Description Supported
by the
Administrati
on Server

Supported by
full Directory
Server with
database

Supported by Proxy
Server

Without
partitione
d data

With
partitione
d data

“Online backup
extended operation” on
page 195

1.3.18.0.2.12.74

Runs online backup of the
Directory Server instance
DB2 database.

No Yes No No

“Password policy bind
initialize and verify
extended operation” on
page 196

1.3.18.0.2.12.79

The Password policy-
bind initialize and
verify extended operation
runs password policy
bind initialization and
verification for a specified
user.

No Yes No No

“Password policy
finalize and verify bind
extended operation” on
page 197

1.3.18.0.2.12.80

The Password policy-
finalize and verify bind
extended operation runs
password policy post-bind
processing for a specified
user.

No Yes No No

“Prepare transaction
extended operation” on
page 199

1.3.18.0.2.12.64

Using the prepare
transaction extended
operation the client
requests the server to start
processing the operations
that are sent in a
transaction.

No Yes Yes Yes

“Proxy back-end server
resume role extended
operation” on page 199

1.3.18.0.2.12.65

This extended operation
enables a Proxy Server
to resume the configured
role of a back-end server
in a distributed directory
environment.

No No Yes Yes

“Quiesce or unquiesce
replication context
extended operation” on
page 201

1.3.18.0.2.12.19

This operation puts the
subtree into a state where
it does not accept client
updates (or terminates
this state). Only the
updates from clients are
authenticated as directory
administrators where the
Server Administration
control is present.

No Yes No No

Appendix F. Object Identifiers (OIDs) for extended operations and controls 291

Table 17. OIDs for extended operations (continued)

Short name with OID Description Supported
by the
Administrati
on Server

Supported by
full Directory
Server with
database

Supported by Proxy
Server

Without
partitione
d data

With
partitione
d data

“Replication error log
extended operation” on
page 202

1.3.18.0.2.12.56

Maintenance of a
replication error log.

No Yes No No

“Replication topology
extended operation” on
page 203

1.3.18.0.2.12.54

Trigger a replication
of replication topology-
related entries under a
replication context.

No Yes No No

“ServerBackupRestore
extended operation” on
page 204

1.3.18.0.2.12.81

Issues request to the
Administration Server to do
the following actions:

• Back up a Directory
Server data and
configuration files

• Restore Directory Server
data and configuration
from an existing backup

Yes Yes No No

“Start, stop server
extended operations”
on page 206

1.3.18.0.2.12.26

Request to start, stop, or
restart an LDAP server.

Yes Yes Yes Yes

“Start TLS extended
operation” on page 207

1.3.6.1.4.1.1466.2003
7

Request to start Transport
Layer Security.

Yes Yes Yes Yes

“Unique attributes
extended operation” on
page 208

1.3.18.0.2.12.44

The unique attributes
extended operation
provides a list of all non-
unique (duplicate) values
for a particular attribute.

No Yes No No

“User type extended
operation” on page 209

1.3.18.0.2.12.37

Request to get the User
Type of the bound user.

Yes Yes Yes Yes

292 IBM Security Directory Suite: Programming Reference

Account status extended operation
The account status extended operation explains its use with the server and provides the results.
Description

This extended operation sends the server a DN of an entry which contains a userPassword attribute,
and the server sends back the status of the user account that is being queried:

• open
• locked
• expired

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.58
Syntax

SEQUENCE {
 dn LDAPDN
}

Response
OID

1.3.18.0.2.12.59
Syntax

SEQUENCE {
 status INTEGER{open(0), locked(1), expired(2)};
}

Behavior
This extended operation requests the account status of a user account. The DN is the DN of the user
account that is being queried. The server sends back the status of the user account that is being
queried.

The following persons are enabled to call the extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin and PasswordAdmin roles
• Global Administration Group members

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_NO_MEMORY
• LDAP_OPERATIONS_ERROR
• LDAP_NO_RESULTS_RETURNED
• LDAP_PROTOCAL_ERROR

This extended operation is not supported by the Administration Server.

Scope
The extended operation affects only the current operation.

Appendix F. Object Identifiers (OIDs) for extended operations and controls 293

Attribute type extended operations
The Attribute type extended operations explain their use with the server and provides the results.
Description

The server provides a way for LDAP clients to determine type of attributes in the schema. This
extended operation is used to list attributes that have a specific characteristic. The extended
operation also provides a way for LDAP clients to query about the following attributes:

• Operational - The operational attributes of the server.
• Language Tag - The attributes that can use language tags.
• Attribute Cache - The attributes that can be cached in attribute cache.

Note: Attribute cache is deprecated. You must avoid using attribute cache.
• Unique - The attributes that can be marked as unique.
• Configuration - The configuration attributes of the server.
• OS400 - The attributes that are used by the i5/OS system projection back-end (i5/OS V5R4).
• Encryptable - The attributes that can be defined as encryptable (version 6.1 and later).
• Encrypted - The attributes that are currently defined as encrypted in the server schema (version

6.1 and later). This returns a subset of encryptable attributes that might have any of the encryption-
related settings: ENCRYPT, RETURN-VALUE, SECURE-CONNECTION-REQUIRED or NONMATCHABLE.

Request
OID

1.3.18.0.2.12.46
Syntax

RequestValue ::= SEQUENCE {
 AttributeTypeRequest ENUMERATED {
 OPERATIONAL (0),
 LANGUAGE TAG (1),
 ATTRIBUTE CACHE (2),
 UNIQUE (3),
 CONFIGURATION (4),
 OS400 (5), #i5/OS V5R4 or later
 ENCRYPTABLE (6), # v6.1 or later
 ENCRYPTED (7) # v6.1 or later
 },
hasCharacteristic BOOLEAN }

The extended operation request value takes two parameters on the request. The first parameter is
an enumeration that tells the server that the attribute type (characteristic) is being requested. The
extended operation supports queries for the following attributes:

• Operational
• Language Tag
• Attribute Cache

Note: Attribute cache is deprecated. You must avoid using attribute cache.
• Unique
• OS400
• Encryptable
• Encrypted

The second parameter is a Boolean value that determines whether to return the attributes that
have the specified attribute characteristic. A value of FALSE returns a list of attribute names that
do not fall into the specified attribute category. A value of TRUE returns a list of attribute names
that do fall into the specified attribute category.

294 IBM Security Directory Suite: Programming Reference

Response
OID

1.3.18.0.2.12.47
Syntax

ResponseValue ::= SEQUENCE of AttributeNames; #LDAPString or OCTET STRING

Result codes
A standard LDAP result code is returned in the resultCode component of the extended response
message.

Note: If the result code is LDAP_SUCCESS, a list of the attributes that match the request criteria is
returned in the response value.

Behavior
This extended operation enables the user to do the following actions:

• Retrieves a list of all operational attributes.
• Retrieves a list of all attributes that can use language tags (not a list of attributes that are using

language tags).
• Retrieves a list of all attributes that can be cached (not a list of attributes that are being cached).
• Retrieves a list of all attributes that can be made unique attributes (not a list of attributes that are

currently unique attributes).
• Allows the user to retrieve a list of all attributes that are configuration attributes. These attributes

are defined in the configuration schema.
• Retrieves a list of attributes that are used by the i5/OS system projection.
• Retrieves a list of attributes that can be defined as encryptable (version 6.1 and later).
• Retrieves a list of attributes that are currently defined as encrypted in the server schema (version

6.1 and later).

This extended operation also provides an option to return the inverse of any attribute characteristic
for which the user queries. For example, the user must be able to ask for all attributes that are not
operational attributes.

If the encryption setting of a schema attribute type definition is changed, it is audited as a new audit
event, AU_EVENT_ATTR_ENCRYPTION_CHANGED. The audit event message string is:

"GLPSCH045I Encryption setting for attribute '%1$s'
changed to ENCRYPT=%2$s SECURE-CONNECTION-ONLY=%3$s RETURN-VALUE=%4$s\n"

The ENCRYPT value is none or the specified scheme. The SECURE-CONNECTION-ONLY value can be
either 'true' or 'false'. The RETURN-VALUE value can be cleartext or the specified scheme.

All user types, including anonymous users, are enabled to call this extended operation.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_NO_MEMORY
• LDAP_OTHER
• LDAP_PROTOCAL_ERROR
• LDAP_OPERATIONS_ERROR
• LDAP_INSUFFICIENT_ACCESS

This extended operation is supported by the Administration Server.

The authorization that is required for using this extended operation depends on the attribute type
requested. The attribute type and the authority that is required are listed in the table.

Appendix F. Object Identifiers (OIDs) for extended operations and controls 295

Table 18. Authorization required for attributes

Attribute Type Authority Required

Operational Anonymous

Language Tag Anonymous

Attribute Cache Anonymous

Unique Anonymous

Configuration Anonymous

OS400 Anonymous

Encryptable Primary Directory Administrator or Local
Administration Group members with
DirDataAdmin and SchemaAdmin roles

Encrypted Primary Directory Administrator or Local
Administration Group members with
DirDataAdmin and SchemaAdmin roles

Scope
This extended operation has no affect on subsequent requests.

Auditing
The Attribute Type extended operation has an audit string of the following form:

AttributeType: Type

where Type is one of the following types:

• Operational
• Language Tag
• Attribute Cache

Note: Attribute cache is deprecated. You must avoid using attribute cache.
• Unique Attribute
• Configuration
• OS400
• Encryptable
• Encrypted

hasCharacteristic: Boolean

where Boolean is one of the following values:

• FALSE
• TRUE

Begin transaction extended operation
The begin transaction extended operation explains its use with the server and provides the results.
Description

The Begin transaction extended operation sends requests to the server to start a transaction context
on the connection.

Note: This extended operation is enabled by default, but can be disabled by changing the value of the
ibm-slapdTransactionEnable attribute in the configuration file.

296 IBM Security Directory Suite: Programming Reference

The ibm-slapdTransactionEnable attribute is in the cn=Transaction, cn=Configuration
entry in the configuration file. If the value of this attribute is set to FALSE, transactions are disabled.
If the value is set to TRUE, transactions are enabled. Transactions can also be enabled or disabled by
using the web administration tool.

Request
OID

1.3.18.0.2.12.5
Syntax

There is no request value.
Response

OID
1.3.18.0.2.12.5

Syntax
The response value is a string that contains the transaction ID. The transaction ID is not BER
encoded.

Note: A transaction ID is a string value that is generated by the Directory Server in response to a
start transaction request.

Behavior
This extended operation puts the connection in the transaction state.

All users can run this extended operation.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_NO_MEMORY
• LDAP_OPERATIONS_ERROR
• LDAP_UNWILLING_TO_PERFORM

This extended operation is not supported by the Administration Server.

Scope
This extended operation changes the state of the connection for future operations. This connection
remains in the transaction state until a stop transaction extended operation is sent, or an error occurs.

Cascading replication operation extended operation
The cascading replication operation extended operation explains its use with the server and provides the
results.
Description

Run a replication extended operation on every server in the full replication topology. This extended
operation runs the requested action on the server on which it is issued. It cascades the call to all
consumers beneath it in a replication topology.

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.15
Syntax

requestValue ::= SEQUENCE {
action ActionValue,
subtreeDN DistinguishedName,
timeout INTEGER
}
ActionValue ::= INTEGER {
quiesce (0),

Appendix F. Object Identifiers (OIDs) for extended operations and controls 297

unquiesce (1),
replicateNow (2),
waitForReplication (3)
}

Response
OID

1.3.18.0.2.12.15
Syntax

responseValue ::= SEQUENCE {
 # LDAPResult fields
 resultCode INTEGER (0..MAX),
 errorMessage LDAPString

 # Operation specific failure information:
 supplier LDAPString,
 consumer LDAPString,

 # Additional optional fields:
 additionalResultCode [1] INTEGER OPTIONAL,
 agreementDN [2] LDAPString OPTIONAL

}

When the resultCode is LDAP_TIMEOUT, the additionalResultCode field must be set to one of
the following values:

 additionalResultCode ENUMERATED {
 LDAP_REPLICATION_SUSPENDED [1],
 LDAP_REPLICATION_RETRYING [2],
 LDAP_REPLICATION_ERROR_LOG_FULL [3]
 }

The following codes are possible return codes:

• LDAP_SUCCESS - Operation was successful
• LDAP_NO_SUCH_OBJECT - Replication context or agreement does not exist
• LDAP_UNWILLING_TO_PERFORM - Object is not a replication context
• LDAP_NO_MEMORY
• LDAP_OPERATIONS_ERROR
• LDAP_INSUFFICIENT_ACCESS - Not authorized to run the operation
• LDAP_PARAM_ERROR
• LDAP_ENCODING_ERROR
• LDAP_LOCAL_ERROR
• LDAP_TIMEOUT - Operation did not complete within specified time

Behavior
The requested operation is run on the target server and on all replicas of the target server. This
extended operation runs the requested action on the server it is issued on. It cascades the call to
all consumers beneath it in a replication topology. The operation returns when one of the following
conditions occurs:

• The request is completed on all servers.
• A failure occurred on a server (result indicates the failure and the server).
• The timeout value is exceeded.

This extended operation is allowed only when:

• The client is authenticated with update authority to all agreements in the specified subtree.
• The client is authenticated as a master server for the specified subtree.

298 IBM Security Directory Suite: Programming Reference

Sometimes when a "wait for replication" is called during the add replica, add master, or move
operation in a replication, wait for replication time-out. No error is displayed that resulted in
time-out. This error is occurred because the cascaded replication times out. To facilitate a better
diagnosis, the replication response structure is updated. When the return code is LDAP_TIMEOUT, the
additionalResultCode and agreementDN fields are set.

The additionalResultCode field is populated with error message. Following examples illustrate how
the server handles the cascaded replication timeout cases and the possible error messages:

• resultCode = LDAP_TIMEOUT without additionalResultCode means a Directory Server instance
earlier than 6.1.

Web Administration tool and ldapexop displays a message, for example:
Replication from supplier replica Supreplica_1 to consumer replica
 hostname: port did not complete.

Replication agreement xxx is suspended.

• resultCode = LDAP_TIMEOUT with additionalResultCode =
LDAP_REPLICATION_SUSPENDED

Web Administration tool and ldapexop displays a message, for example:
Replication from supplier replica Supreplica_1 to consumer replica
 hostname: port did not complete.

Replication agreement xxx is suspended.

• resultCode = LDAP_TIMEOUT with additionalResultCode =
LDAP_REPLICATION_RETRYING

Web Administration tool and ldapexop displays a message, for example:
Replication from supplier replica Supreplica_1 to consumer replica
 hostname: port did not complete.

Replication agreement xxx is blocked on a failing change.

• resultCode = LDAP_TIMEOUT with additionalResultCode =
LDAP_REPLICATION_ERROR_LOG_FULL

Web Administration tool and ldapexop displays a message, for example:
Replication from supplier replica Supreplica_1 to consumer replica
 hostname: port did not complete.

The replication error log is full for agreement xxx.

The agreementDN field contains the DN of the associated replication agreement. The agreementDN
field is set whenever the server that detects the error is working with a particular agreement.

This response is sent for all requests from servers that have a well-formed request value. The
response value consists of a resultCode with errorMessage and information about where the
error was detected.

The supplier field contains the DNS host name of the server that reports the error. If the error occurs
with a consumer server, the consumer field contains the DNS host name of the consumer server.
The error is the server that is timed out and waiting for a response from a consumer. In this case,
the supplier field is always completed but the consumer field might be empty. Since it is an error
condition, the agreementDN field is populated, which provides information about the supplier and
consumer.

The following persons are enabled to call the extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin and ReplicationAdmin roles
• Global Administration Group members
• Master Server DN
• Authenticated Directory User

Appendix F. Object Identifiers (OIDs) for extended operations and controls 299

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_PROTOCOL_ERROR
• LDAP_NO_MEMORY
• LDAP_DECODING_ERROR
• LDAP_UNDEFINED_TYPE
• LDAP_INVALID_DN_SYNTAX

This extended operation is not supported by the Administration Server.

Scope
This extended operation affects only the current operation.

Auditing

Action: [Quiesce | Unquiesce | ReplNow | Wait | Unknown]
Context DN: context DN
Timeout: timeout

Control replication extended operation
The control replication extended operation explains its use with the server and provides the results.
Description

This extended operation is used to control the following aspects of currently running replications:

• Suspend replication
• Resume replication
• Cause changes to be replicated immediately

Request
OID

1.3.18.0.2.12.16
Syntax

requestValue ::= SEQUENCE {
action ActionValue,
scope ScopeValue
entryDN DistinguishedName
}
ActionValue ::= INTEGER {
suspend (0),
resume (1),
replicateNow (2),
terminateFullReplication (3)
}
ScopeValue ::= INTEGER {
singleAgreement (0),
allAgreements (1)
}

Response
OID

1.3.18.0.2.12.16
Syntax

Response Value ::= SEQUENCE {
#fields of interest from LDAPResult:
resultCode INTEGER (0..MAX),
errorMessage LDAPString,

300 IBM Security Directory Suite: Programming Reference

consumer LDAPString
}

The following return codes are possible:

• LDAP_SUCCESS
• LDAP_NO_SUCH_OBJECT
• LDAP_UNWILLING_TO_PERFORM
• LDAP_OPERATIONS_ERROR
• LDAP_INSUFFICIENT_ACCESS
• LDAP_NO_MEMORY

Behavior
This extended operation is used to control the following aspects of currently running replications:
Suspend replication

Changes are not replicated for the replication agreement or for all replication agreements for the
context until the resume replication or replicate immediately operation is used.

Resume replication
If the replication agreement is suspended, then replication resumes.

Cause changes to be replicated immediately
If the replication agreement is suspended or is waiting for scheduled replication to occur, any
outstanding changes are replicated.

The following persons are enabled to call the extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin and ReplicationAdmin roles
• Global Administration Group members
• Master Server DN
• Authenticated Directory User

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_PROTOCOL_ERROR
• LDAP_DECODING_ERROR
• LDAP_NO_MEMORY
• LDAP_UNDEFINED_TYPE
• LDAP_INVALID_DN_SYNTAX

This extended operation is not supported by the Administration Server.

Scope
This extended operation affects only the current operation.

Auditing

Action: [Suspend | Resume | ReplNow | Unknown]
Scope: [Single | All | Unknown]
DN: dn

Appendix F. Object Identifiers (OIDs) for extended operations and controls 301

Control queue extended operation
The control queue extended operation explains its use with the server and provides the results.
Description

This extended operation is used to skip changes in the replication queue for an agreement.
Request

OID
1.3.18.0.2.12.17

Syntax

requestValue ::= SEQUENCE {
action ActionValue,
agreementDN DistinguishedName,
changeId LDAPString
}
ActionValue ::= INTEGER {
skipAll (0),
skipSingle (1)
}

Response
OID

1.3.18.0.2.12.17
Syntax

Response Value ::= SEQUENCE {
#fields of interest from LDAPResult:
resultCode INTEGER (0..MAX),
errorMessage LDAPString,
#operation information:
changesSkipped INTEGER (0..MAX)
}

The following codes are possible return codes:

• LDAP_SUCCESS
• LDAP_NO_SUCH_OBJECT
• LDAP_UNWILLING_TO_PERFORM
• LDAP_OPERATIONS_ERROR
• LDAP_INSUFFICIENT_ACCESS
• LDAP_NO_MEMORY

Behavior
This extended operation skips changes in the replication agreements queue. If skipSingle is used,
and changeID is the next ID in the replication agreements queue, then changeID is skipped over. If
changeID is not at the head of the list of pending changes, the operation fails. If skipAll is used,
then all outstanding changes in the replication agreements queue are skipped.

The following persons are enabled to call the extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin and ReplicationAdmin roles
• Global Administration Group members
• Master Server DN
• Authenticated Directory User

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

302 IBM Security Directory Suite: Programming Reference

• LDAP_SUCCESS
• LDAP_PROTOCOL_ERROR
• LDAP_DECODING_ERROR
• LDAP_NO_MEMORY
• LDAP_UNDEFINED_TYPE
• LDAP_INVALID_DN_SYNTAX

This extended operation is not supported by the Administration Server.

Scope
This extended operation affects only the current operation.

Auditing

Skip: [All | changeId | Unknown]
Agreement DN: agreementDn

DN normalization extended operation
The DN normalization extended operation explains its use with the server and provides the results.
Description

The DN normalization extended operation normalizes a DN or a list of DNs. The normalization is based
on the server schema.

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.30
Syntax

RequestValue ::= SEQUENCE {
 case INTEGER {preserve(0), normalize (1)};
 SEQUENCE of DistinguishedName;
 }

Response
OID

1.3.18.0.2.12.30
Syntax

ResultValue ::= SEQUENCE {
 SEQUENCE of SEQUENCE {
 Return code INTEGER;
 DN Normalized DistinguishedName;
 }
 }

Each DN has its own return code. If the return code is not SUCCESS, a DN of zero length is
returned for every DN passed in the original request. The order of DN values in the response
matches the order of DN values that are passed in the request. The LDAP return code and their
corresponding error condition for the extended operation is as follows:

• Success: The DN was normalized successfully.
• UndefinedAttributeType: An attribute in the DN is undefined.
• InvalidDNSyntax: The DN syntax is invalid.

Behavior
The extended operation normalizes a DN, or list of DNs. The normalization is based on the schema.
See "slapi_dn_normalize_v3" in the IBM Security Directory Suite Server Plug-ins Reference.

Appendix F. Object Identifiers (OIDs) for extended operations and controls 303

All users can run this extended operation.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_PROTOCOL_ERROR
• LDAP_OTHER
• LDAP_OPERATIONS_ERROR

This extended operation is supported by the Administration Server.

Scope
The extended operation affects only the current operation.

Dynamic server trace extended operation
The dynamic server trace extended operation explains its use with the server and provides the results.
Description

Use this extended operation to do the following actions:

• Start or stop server-tracing dynamically
• Set the level of debug data collected
• Name the debug output file

This extended operation depends on the LDAP Trace Facility to be initialized with either the ldtrc
command or the successful completion of the LDAP trace facility extended operation request on the
Directory Server. See “LDAP trace facility extended operation” on page 192.

Note:

1. This extended operation is always enabled.
2. Global administrative group members have authority to run the dynamic server trace extended

operation when it is directed to the Directory Server. However, global administrative group
members do not have this authority when they request the extended operation against the
Administration Server.

Request
OID

1.3.18.0.2.12.40
Syntax

The value consists of two integer values and an optional string. The first integer turns on tracing
(1) or off (0). The second integer sets the debug level (0 to 65535) that controls the debug data
that is directed to standard error (stderr) or a file. If the integers are missing, the request fails.
If the value is -1, no change is made. The string value provides the file name and is optional. If no
name is provided, the name is unchanged. If no name is ever provided, the debug output goes to
stderr.

Response
OID

1.3.18.0.2.12.42
Syntax

The response is a string:

Trace settingsactual: enable=%d%d trcEvents=%ld%ld
 level=0x%x0x%x log=[%s]%s

where values in the brackets show that the state after the extended operation is attempted. If
the tracing is on, enable is 1. The trcEvents is 0 if the LDAP Trace Facility is not enabled.
Non-zero values indicate that the server was successful in attaching to the LDAP Trace Facility

304 IBM Security Directory Suite: Programming Reference

shared memory buffer. The debug level is shown in hex. The log values is the name of the file that
is used to collect the debug output. It might show stderr if the output is going to the console.

Behavior
This extended operation changes the global variables that are used to control debugging and tracing
in the server. If trace is enabled but the debug level is 0, trace data (function entry and exit points,
and other data) is captured in shared memory and nothing is written to the debug file or stderr. If
the debug level is between 0 to 65535, different levels of debug data are output to the debug file or
stderr. If the LDAP Trace facility is not initialized, no trace output is captured and no debug output is
written.

The following persons are enabled to call the extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin role

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_INSUFFICIENT_ACCESS
• LDAP_PROTOCOL_ERROR

This extended operation is not supported by the Administration Server.

Scope
Only the current server session is affected by this operation.

Auditing
The additional information in the audit log is:

Trace=%d [1=on|0=off] debug=0x%x log=[%s]

Dynamic update requests extended operation
The dynamic update request extended operation explains its use with the server and provides the results.
Description

The Dynamic update extended operation requests that the server reread its configuration.

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.28
Syntax

RequestValue ::= SEQUENCE {
 action INTEGER {rereadFile(0),
 rereadAttribute(1),
 rereadEntry(2),
 rereadSubtree(3)};
 entry [0] DistinguishedName OPTIONAL;
 attribute [1] DirectoryString OPTIONAL;
}

Response
OID

1.3.18.0.2.12.29
Syntax

There is no response value.

Appendix F. Object Identifiers (OIDs) for extended operations and controls 305

Behavior
This extended operation forces the server to reread the configuration file. The request can be to
reread the entire file, a subtree, an entry, or a specific attribute. When the server receives the request,
the server reads the configuration file again. It updates all the internal server settings to use the new
settings from the configuration file. Only the dynamic attributes are read again.

Only Primary Directory Administrator and Local Administration Group members with DirDataAdmin
role are enabled to call this extended operation. Local Administration Group members cannot update
attributes of other Local Administration Group members.

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_UNDEFINED_TYPE
• LDAP_INSUFFICIENT_ACCESS
• LDAP_INVALID_SYNTAX
• LDAP_INVALID_DN_SYNTAX
• LDAP_UNWILLING_TO_PERFORM
• LDAP_OBJECT_CLASS_VIOLATION
• LDAP_OTHER
• LDAP_PROTOCOL_ERROR
• LDAP_NO_SUCH_ATTRIBUTE
• LDAP_NO_SUCH_OBJECT
• LDAP_NO_MEMORY

This extended operation is supported by the Administration Server.

Scope
This extended operation causes the server to reread its configuration, which can affect subsequent
operations.

Auditing
The Scope is provided along with the entry dn, or attribute when necessary.

Scope: Scope Value

where Scope Value can be one of the following values:

• Entire - entire configuration file
• Single - for a single attribute
• Entry - for an entry
• Subtree - for a subtree

DN: Entry DN – This DN is required for Single, Entry, and Subtree.

Attribute: Attribute – This attribute is required for Single only.

Effective password policy extended operation
The effective password policy extended operation explains its use with the server and provides the
results.
Description

For a user in a DIT, there are three different password policies that can be used to control the user’s
login and password modifications. An administrator can use this extended operation to obtain users’
effective password policy and manage users and their passwords. In addition, administrators can also

306 IBM Security Directory Suite: Programming Reference

use this extended operation to query the effective password policy of a group. By specifying a group
DN in the operation, administrators can obtain a combination of the group password policy attributes
and the global password policy attributes. The combination is with the group policy attribute values
overriding the global policy values.

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.75
Syntax

RequestValue ::= SEQUENCE {
 dn LDAPDN
}

Response
OID

1.3.18.0.2.12.77
Syntax

ResponseValue ::= SEQUENCE {
 attributes SEQUENCE OF SEQUENCE {
 attributeType AttributeDescription,
 values SET OF AttributeValue
 }
 objectNames [0] SEQUENCE {
 objectName LDAPDN
 } OPTIONAL
}

where,

• attributes: Represents password policy attribute types and values that are contained in the
user or group effective password policy.

• objectNames: Represents the DNs of all the password policy entries from which the effective
password policy is derived. The objectNames field is not returned if the extended operation is
requested by a non-administrative user.

Behavior

The information that is related to the effective password policy for a user or group is calculated at
run time. It is not stored in the server, such as in the DIT. An administrator or a user can use this
information, which is calculated on the three types of password policies global, group, and individual,
to manage passwords.

This extended operation can be used by primary directory administrators, local administration group
members with password or directory administrative role, and global administration group members.
In additions, users are allowed to use this extended operation to their own effective password policy,
provided their user account are not locked out. If the extended operation is called by a non-authorized
user, a return code LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_INSUFFICIENT ACCESS returned if a non-authorized user tries to run this extended
operation

• LDAP_NO_SUCH_OBJECT returned if the DN specified is not in the directory
• LDAP_NO_MEMORY returned if there was insufficient memory to run the operation
• LDAP_OPERATIONS_ERROR returned if invalid data was given on the call to the password policy

routines
• LDAP_INVALID_DN_SYNTAX returned if the DN specified is not a valid DN
• LDAP_PROTOCOL_ERROR returned if the encoding of the BER was invalid

Appendix F. Object Identifiers (OIDs) for extended operations and controls 307

• LDAP_SUCCESS returned if the operation completed successfully

This extended operation is not supported by the Administration Server.

Scope
This extended operation affects only the current operation.

Auditing
The additional information in the audit log is:

DN: entry dn

End transaction extended operation
The end transaction extended operation explains its use with the server and provides the results.
Description

The End transaction extended operation sends requests to the server to do the following actions:

• Commit all the operations that are run inside the transaction
• Change the state of the connection so it is no longer in the transactional state

Note: This extended operation is enabled by default, but can be disabled by changing the value of the
ibm-slapdTransactionEnable attribute in the configuration file.

The ibm-slapdTransactionEnable attribute is in the cn=Transaction, cn=Configuration
entry in the configuration file. If the value of this attribute is set to FALSE, transactions are disabled.
If the value is set to TRUE, transactions are enabled. Transactions can also be enabled or disabled by
using the web administration tool.

Request
OID

1.3.18.0.2.12.6
Syntax

A string that consists of commit or rollback value followed by the transaction ID value from the
Begin transaction response. The commit or rollback has the following values:

commit = 0

rollback = 1

Response
OID

1.3.18.0.2.12.6
Syntax

The response value is a string that contains the transaction ID. The transaction ID is not BER
encoded.

Behavior
The extended operation commits the transaction and removes the connection from the transaction
state.

All users can run this extended operation.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_NO_MEMORY
• LDAP_OPERATIONS_ERROR
• LDAP_UNWILLING_TO_PERFORM
• LDAP_TIMELIMIT_EXCEEDED
• LDAP_SIZELIMIT_EXCEEDED

308 IBM Security Directory Suite: Programming Reference

This extended operation is not supported by the Administration Server.

Scope
This extended operation changes the state of the connection for future operations. The extended
operation takes the connection out of the transactional state.

An Example
An example that illustrates the difference in the transaction ID value in a Begin transaction extended
operation and an End transaction extended operation is exemplified.

If in a Begin transaction extended operation, the response value that is returned is the following 24
byte:

0x31 0x31 0x33 0x37 0x33 0x35 0x34 0x33##linebreak##0x33 0x37 0x31 0x32
0x37 0x2E 0x30 0x2E##linebreak##0x30 0x2E 0x31 0x34 0x38 0x39 0x30 0x38

In the End transaction extended operation, the request value for a commit (commit = 0) can be the
following 25 byte:

0x00 0x31 0x31 0x33 0x37 0x33 0x35 0x34##linebreak##0x33 0x33 0x37 0x31
0x32 0x37 0x2E 0x30##linebreak##0x2E 0x30 0x2E 0x31 0x34 0x38 0x39
0x30##linebreak##0x38

In the End transaction extended operation, the request value for a rollback (rollback = 1) can be the
following 25 byte:

0x01 0x31 0x31 0x33 0x37 0x33 0x35 0x34##linebreak##0x33 0x33 0x37 0x31
0x32 0x37 0x2E 0x30##linebreak##0x2E 0x30 0x2E 0x31 0x34 0x38 0x39
0x30##linebreak##0x38

Event notification register request extended operation
The event notification register request extended operation explains its use with the server and provides
the results.
Description

The operation allows a client to request that the server notifies the client when a portion of the tree
changes.

Note: Event notification can be turned off by setting the attribute
ibm-slapdEnableEventNotification in the entry cn=Event Notification,
cn=Configuration to FALSE.

Request
OID

1.3.18.0.2.12.1
Syntax

changeType ::= ENUMERATED {
 changeAdd (1),
 changeDelete (2),
 changeModify (4),
 changeModDN (8) }
 requestValue = SEQUENCE {
 eventID ENUMERATED {
 LDAP_CHANGE (0)},
 baseObject LDAPDN,
 scope ENUMERATED {
 baseObject (0),
 singleLevel (1),
 wholeSubtree (2) },
 type INTEGER OPTIONAL }

Response
OID

1.3.18.0.2.12.1

Appendix F. Object Identifiers (OIDs) for extended operations and controls 309

Syntax

response ::= OCTET STRING

Behavior
If successful, the server sends an unsolicited notification to the client when a modification happens
that the client is interested in.

All users other than anonymous can run this extended operation.

This extended operation has the following possible return codes:

• LDAP_UNWILLING_TO_PERFORM
• LDAP_NO_SUCH_OBJECT
• LDAP_UNDEFINED_TYPE

This extended operation is not supported by the Administration Server.

Scope
If successful, the client might receive unsolicited notifications from the server.

Auditing

eventID: LDAP_change
base: baseDn
scope: baseObject, singleLevel, or wholeSubtree

Event notification unregister request extended operation
The event notification unregister request extended operation explains its use with the server and provides
the results.
Description

The operation allows a client to request that the server must stop notifying the client when a portion
of the tree changes.

Note: Event notification can be turned off by setting the attribute
ibm-slapdEnableEventNotification in the entry cn=Event Notification,
cn=Configuration to FALSE.

Request
OID

1.3.18.0.2.12.3
Syntax

requestValue ::= OCTET STRING

Response
OID

1.3.18.0.2.12.4
Syntax

If the registration is successfully removed, the LDAPResult field contains LDAP_SUCCESS and the
response field contains the registration ID that was removed.

Behavior
If successful, the server stops sending unsolicited notifications to the client when a modification
happens that the client was interested in.

All users other than anonymous can run this extended operation.

This extended operation has the following possible return codes:

• LDAP_UNWILLING_TO_PERFORM

310 IBM Security Directory Suite: Programming Reference

• LDAP_NO_SUCH_OBJECT
• LDAP_UNDEFINED_TYPE

This extended operation is not supported by the Administration Server.

Scope
If successful, the client stops receiving unsolicited notifications from the server.

Auditing

ID: hostname.uuid

Group evaluation extended operation
The group evaluation extended operation explains its use with the server and provides the results.
Description

The Group evaluation extended operation requests that the server return the set of groups to which
the requested user belongs.

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.50
Syntax

GroupEvaluationRequestValue:: = SEQUENCE {
 dn LDAPDN,
 attributes AttributeList OPTIONAL
}

Response
OID

1.3.18.0.2.12.52
Syntax

Group ::= SEQUENCE { groupName LDAPString }
GroupEvaluationResponseValue :: = SEQUENCE{
 normalized INTEGER{unnormzlied(0), normalized(1)};
 Sequence of Group }

Behavior
This extended operation determines to which groups the requested user belongs.

The following persons are enabled to call the extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin role
• Global Administrators

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_NO_MEMORY
• LDAP_OPERATIONS_ERROR
• LDAP_INVALID_DN_SYNTAX
• LDAP_NO_RESULTS_RETURNED
• LDAP_PROTOCAL_ERROR

Appendix F. Object Identifiers (OIDs) for extended operations and controls 311

• LDAP_NO_SUCH_ATTRIBUTE

This extended operation is not supported by the Administration Server.

Scope
The extended operation affects only the current operation.

Auditing
The group evaluation extended operation sets the audit string to

DN: the DN sent in the group evaluation extended operation \n

If ibm-auditAttributesOnGroupEvalOp is TRUE, the audit string contains a list of attribute value
pairs that are separated by a new line. If the ibm-auditAttributesOnGroupEvalOp is FALSE, the
string contains:

sentAttrs: true|false

The value is FALSE if no attributes were sent on the request.

Kill connection extended operation
The kill connection extended operation explains its use with the server and provides the results.
Description

The Kill connection extended operation requests that the server to stop the specified connections.
Connections can be stopped based on the following parameters:

• Connection IP
• Connection DN
• Combination of IP and DN
• All connections

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.35
Syntax

ReqType ::= ENUMERATED {
DN (1),
IP (2)
}
RequestValue ::= SEQUENCE {
SET {type ReqType
 value Directory String} OPTIONAL
SET {type ReqType
 value Directory String} OPTIONAL
}

For a DN-specific or IP-specific request, only one set of type and value is needed. For a
combination DN or IP request, both sets of type and value are needed. If there is no value that is
specified, all connections are stopped.

Response
OID

1.3.18.0.2.12.36
Syntax

ResponseValue ::= { int numberKilled
 int numberPending }

312 IBM Security Directory Suite: Programming Reference

Each DN has its own return code. If the return code is not SUCCESS, a DN of zero length is
returned for every DN passed in on the original request. The order of DN values in the response
matches the order of DN values that are passed in the request.

Behavior
This extended operation stops the requested connections.

The following persons are enabled to call the extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin role
• Global Administrators

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_NO_SUCH_OBJECT
• LDAP_INSUFFICIENT_ACCESS
• LDAP_INVALID_DN_SYNTAX
• LDAP_OTHER
• LDAP_PROTOCAL_ERROR

This extended operation is not supported by the Administration Server.

Scope
The extended operation affects only the current operation.

Auditing
The DN or IP or both are provided:

DN: DN
IP: IP

If the DN or the IP is not present, then the request was to stop all connections.

LDAP trace facility extended operation
The LDAP trace facility extended operation explains its use with the server and provides the results.
Description

Use this extended operation to control LDAP trace facility remotely by using the Administration Server.

Note: This extended operation is always enabled on the Administration Server. It is not supported on
the Directory Server.

Request
OID

1.3.18.0.2.12.41
Syntax

The value consists of one integer value and a string. The first integer has the following values:

• 1 enables the LDAP trace facility
• 2 disables the LDAP trace facility
• 3 enables changing masks or other parameters
• 4 clears data that is already collected in the shared memory buffer
• 5 shows information about the current state
• 6 creates a file from the data that is already captured in shared memory

Appendix F. Object Identifiers (OIDs) for extended operations and controls 313

The optional string contains more parameters that are understood by the ldtrc command, such
as the size of the buffer (1) or the name of the output file for memory dump (6).

Response
OID

1.3.18.0.2.12.43
Syntax

The response is a string that contains the output from the ldtrc command that is submitted
remotely.

Behavior
The extended operation submits an ldtrc command on the host computer and captures its output to
return to the client.

The following persons are enabled to call the extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin role

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_INSUFFICIENT_ACCESS
• LDAP_PROTOCOL_ERROR

This extended operation is supported by the Administration Server only.

Scope
The extended operation runs until the computer is rebooted, the root manually issues IPC commands,
the ldtrc command is issued on the computer, or another request is made.

Auditing
The additional information in the audit log is:

OPTIONS: request valueoptional string

where request value is the request value (1-6) and optional string is any additional parameters for
ldtrc.

Locate entry extended operation
The locate entry extended operation explains its use with the server and provides the results.
Description

This extended operation is used to extract the back-end server details of a set of entry DNs and
provide the details to the client.

Request
OID

1.3.18.0.2.12.71
Syntax

RequestValue ::= SEQUENCE {
 DN DistinguishedName;
 //a normalized DN is passed to a Proxy Server
}

Response
OID

1.3.18.0.2.12.72

314 IBM Security Directory Suite: Programming Reference

Syntax

ResultValue ::= SEQUENCE {
 partitionInformationObject PIO; //depends on the access rights
}

where, the partitionInformationObject constitutes:

• split name
• partition base DN
• partition index
• server group
• list of the server URLs

Behavior

In a distributed directory setup, data are distributed across a set of back-end servers. Also, the
back-end servers are made clear to the users, by placing a Proxy Server in front of this set back-end
server. There are situations, where administrators might want to locate the back-end servers on which
a set of entries exist. This extended operation can be used to extract the back-end server details of a
set of entry DNs and provide the details to the client.

This extended operation for locating entries on the backend-servers can be only run by Primary
Directory Administrator, Local Administration Group members with DirDataAdmin role, and Global
Administration Group members. If a non-authorized user attempts to run this extended operation,
LDAP_INSUFFICIENT_ACCESS is returned.

Note: There is no mechanism in place to restrict the administrators from locating the entries.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_INVALID_DN_SYNTAX
• LDAP_INSUFFICIENT_ACCESS
• LDAP_SERVER_DOWN
• LDAP_NO_SUCH_OBJECT
• LDAP_ENCODING_ERROR
• LDAP_DECODING_ERROR

This extended operation is not supported by the Administration Server.
Scope

This extended operation does not affect the subsequent operations on the connection.

LogMgmtControl extended operation
The LogMgmtControl extended operation explains its use with the server and provides the results.
Description

The LogMgmtControl extended operation is used to start, stop, and query the status of the log
management for a directory server instance and Proxy Server instance that are running on a system.

Request
OID

1.3.18.0.2.12.70
Syntax

 requestValue ::= SEQUENCE {
 action ActionValue,
 commandLineOptions LDAPString OPTIONAL
 }
 ActionValue ::= ENUMERATED {

Appendix F. Object Identifiers (OIDs) for extended operations and controls 315

 start (1),
 stop (2),
 status (3)
 }

Response
Syntax

 ResponseValue ::= SEQUENCE {
 resultCode ENUMERATED {
 success (0),
 insufficientAccessRights (1),
 operationsError (2),
 logmgmtRunningStatus (3),
 logmgmtStoppedStatus (4)
 }
 }

The possible return codes for the LDAP result value and the enabling conditions are as follows:

Table 19. Possible return codes

LDAP Result Value Conditions

Success (0) Issued command to idslogmgmt successfully.

Insufficient Access Rights (1) User is not the server administrator or an
administrative group member.

Operations Error (2) Bad action value or any other error.

Log Management Running Status (3) The log management for the Directory Server
instance is running.

Log Management Stopped Status (4) The log management for the Directory Server
instance is stopped.

Behavior
The LogMgmtControl extended operation can be used to start or stop the log management for a
Directory Server instance and Proxy Server instance. This extended operation also provides the status
of the log management that indicates whether it is running or not.

The following have the authority to call this extended operation:

• Primary Directory Administrator
• Local Administration Group members with AuditAdmin and ServerConfigGroupMember roles

This extended operation is supported by Administration Server and has the same behavior as in a
Directory Server.

Scope
Only the current server session is affected by this operation.

Online backup extended operation
The online backup extended operation explains its use with the server and provides the results.
Description

This extended operation runs online backup of the Directory Server instance DB2 database.
Request

OID
1.3.18.0.2.12.74

316 IBM Security Directory Suite: Programming Reference

Syntax

RequestValue ::= SEQUENCE {
 directoryPath directoryString;
}

Response
OID

1.3.18.0.2.12.74
Syntax

ResponseValue ::= SEQUENCE {
 resultCode INTEGER (0..MAX)
}

Behavior
A client sends the online backup request to the server for running an online backup of the Directory
Server instance DB2 database.

The following persons are enabled to call the extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin role

Note: If the extended operation is called by a user who does not have the required access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS - If the backup was successfully run.
• LDAP_PROTOCOL_ERROR - If there is an error in the format of the request.
• LDAP_INSUFFICIENT_ACCESS - If the request is from users who do not have the required access.
• LDAP_OPERATIONS_ERROR - Internal Server error, database is not configured for online backup.
• LDAP_NO_SUCH_OBJECT - The specified directory path does not exist.

This extended operation is not supported by the Administration Server.

Scope
The extended operation affects only the current operation.

Auditing
The following information is audited for this extended operation:

Online backup requested: directoryPath

Password policy bind initialize and verify extended operation
The password policy bind-initialize and verify extended operation explains its use with the server and
provides the results.
Description

This extended operation runs password policy bind initialization and verification for a specified
user. This extended operation checks to see whether an account is locked. The extended operation
provides a mechanism for the Proxy Server to support bind plug-ins.

Request
OID

1.3.18.0.2.12.79
Syntax

requestValue ::= SEQUENCE {targetDN DirectoryString}

Appendix F. Object Identifiers (OIDs) for extended operations and controls 317

Response
OID

1.3.18.0.2.12.79
Syntax

responseValue ::= SEQUENCE {ReturnCode Integer}

Behavior
This extended operation runs prebind processing that is related to password policy, that is, bind
initialization and verification for a specified user. This extended operation also checks whether
an account is locked. The extended operation provides a mechanism for the Proxy Server to
support bind plug-ins. This extended operation can be enabled or disabled by setting the ibm-
slapdEnableRemotePWPExOps attribute in the configuration file to TRUE or FALSE in the following
entry:

“cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration”

The following persons are enabled to call this extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin role
• Global administration group members

Note: If this extended operation is called by a user who does not have enough access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS - The operation is completed successfully, caller must check the return code in the
result value.

• LDAP_OPERATIONS_ERROR - The operation did not complete successfully because of an internal
server error. There is not any result value.

• LDAP_INSUFFICIENT_ACCESS - The operation did not complete because the requestor does not
have permission to run the operation. There is not any result value.

• LDAP_UNWILLING_TO_PERFORM - The user account is locked.
• LDAP_INVALID_CREDENTIALS - Invalid DN or password.
• LDAP_NO_MEMORY

This extended operation is not supported by the Administration Server.

Scope
This extended operation affects only the current operation.

Auditing
The additional information in the audit log for this extended operation is listed. The target DN is
audited in the following format:

targetDN: DN value

Password policy finalize and verify bind extended operation
The password policy-finalize and verify bind extended operation explains its use with the server and
provides the results.
Description

This extended operation runs password policy post-bind processing for a specified user. This
extended operation provides a mechanism for the Proxy Server to support bind plug-ins. Post bind
processing includes checking for expired passwords, grace logins, and updating failed and successful
bind counters.

318 IBM Security Directory Suite: Programming Reference

Request
OID

1.3.18.0.2.12.80
Syntax

requestValue ::= SEQUENCE {
 targetDN DirectoryString,
 bindResult Integer
}

Response
OID

1.3.18.0.2.12.80
Syntax

ResponseValue ::= SEQUENCE {
 PasswordEvaluationReturnCode Integer
}

Behavior
The password policy-finalize and verify bind extended operation runs all the post-bind processing that
is related to password policy. It checks for expired accounts and grace login period. In addition, failed
and successful bind counts are updated for the target entry.

This extended operation can be enabled or disabled by setting the ibm-
slapdEnableRemotePWPExOps attribute in the configuration file to TRUE or FALSE in the following
entry:

 “cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration”

The following persons are enabled to call this extended operation:

• Primary Directory Administrator
• Local administration group members with DirDataAdmin role
• Global administration group members

Note: If this extended operation is called by a user who does not have enough access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS - The operation is completed successfully, caller must check the return code in the
result value.

• LDAP_OPERATIONS_ERROR - The operation did not complete successfully because of an internal
server error. There is not any result value.

• LDAP_INSUFFICIENT_ACCESS - The operation did not complete because the requestor does not
have permission to run this operation. There is not any result value.

• LDAP_UNWILLING_TO_PERFORM - The user account is locked.
• LDAP_INVALID_CREDENTIALS - Invalid DN or password.
• LDAP_NO_MEMORY

This extended operation is not supported by the Administration Server.

Scope
This extended operation affects only the current operation.

Auditing
The additional information in the audit log for this extended operation is listed. The target DN and bind
result is audited in the following format:

Appendix F. Object Identifiers (OIDs) for extended operations and controls 319

targetDN: targer DN
bindResult: rc

Prepare transaction extended operation
The prepare transaction extended operation explains its use with the server and provides the results.
Description

The prepare transaction extended operation can be sent by any client. Using this extended operation,
the client requests the server to start processing the operations that are sent in a transaction. This
extended operation must be called after a start transaction is issued and all the operations within
a transaction are sent. On getting a request, the server starts processing each operation without
committing the changes. This extended operation is enabled only when transactions are enabled.

Request
OID

1.3.18.0.2.12.64
Syntax

requestValue ::= { transactionId String; }

Response
OID

1.3.18.0.2.12.64
Syntax

This extended operation returns the return code for the operation.
Behavior

When the server receives the extended operation, the server checks whether the connection is in
the transactional state and no commit or prepare request are sent. If these checks pass, the server
starts processing each operation in the transaction without a commit. This extended operation is not
supported by the Administration Server.

Auditing
No additional auditing information is provided for this operation.

Note: There is no requirement to audit the transaction ID because this value is already audited when
it is sent by using the transaction control.

Proxy back-end server resume role extended operation
The proxy back-end server resume role extended operation explains its use with the server and provides
the results.
Description

This extended operation enables a Proxy Server to resume the configured role of a back-end server in
a distributed directory environment.

Request
OID

1.3.18.0.2.12.65
Syntax

requestValue ::= SEQUENCE {
 action ENUMERATED {
 All (0),
 Partition (1),
 Server (2),
 ServerInAPartition (3)
 };
 PartitionName DirectoryString;

320 IBM Security Directory Suite: Programming Reference

 ServerURL DirectoryString;
}

Response
OID

1.3.18.0.2.12.65
Syntax

responseValue ::= SEQUENCE {
 numObjectsImpacted INTEGER
}

Behavior
This extended operation tells a Proxy Server to bring a back-end server back to its configured role.
The Proxy Server resumes only a back-end server role if the back-end server is online and accepting
connections from the Proxy Server. The extended operation uses the 5 second reconnect interval or
the health check thread to connect with the back-end server.

The following are authorized to call this extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin role
• Global Administration Group members

Note: If this extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS - Server matched the request, and no internal errors were encountered.
• LDAP_PROTOCOL_ERROR - If there is an error in the format of the request.
• LDAP_INSUFFICIENT_ACCESS - If the request is from a user who does not have the required

access.
• LDAP_OPERATIONS_ERROR
• LDAP_NO_SUCH_OBJECT - If the requested target does not exist.
• LDAP_INVALID_SYNTAX - If the format of the URL or partition name is invalid.

This extended operation is not supported by the Administration Server.

Scope
This extended operation affects requests are routed through the Proxy Server.

Auditing
The additional information added to audit log by the proxy back-end server resume role extended
operation are:

RequestType: Type

where Type is one of the following types:

• All
• Partition
• Server
• ServerInAPartition

Partition: PartitionName

Server: ServerURL

Note: If PartitionName or ServerURL is not specified in the request, None is audited.

Appendix F. Object Identifiers (OIDs) for extended operations and controls 321

Quiesce or unquiesce replication context extended operation
The quiesce or unquiesce replication context extended operation explains its use with the server and
provides the results.
Description

This extended operation is used for the following changes:

• Disable non-replication topology-related changes in the replication context.
• Enable non-replication topology-related changes.

Request
OID

1.3.18.0.2.12.19
Syntax

requestValue ::= SEQUENCE {
quiesce BOOLEAN,
subtreeDn DistinguishedName
}

Response
OID

1.3.18.0.2.12.19
Syntax

ResponseValue ::= SEQUENCE {
#fields of interest from LDAPResult:
resultCode INTEGER (0..MAX),
errorMessage LDAPString,
}

The following return codes are possible:

• LDAP_SUCCESS
• LDAP_NO_SUCH_OBJECT
• LDAP_UNWILLING_TO_PERFORM
• LDAP_OPERATIONS_ERROR
• LDAP_INSUFFICIENT_ACCESS
• LDAP_NO_MEMORY
• LDAP_REPL_QUIESCE_BAD_STATE

Behavior
This extended operation is used for the following changes:

• Disable non-replication topology-related changes in the replication context.
• Enable non-replication topology-related changes.

If the quiesce Boolean is TRUE, then only replication topology-related changes are enabled.

The following persons are enabled to call the extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin and ReplicationAdmin roles
• Global Administration Group members
• Master Server DN
• Authenticated Directory User

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

322 IBM Security Directory Suite: Programming Reference

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_PROTOCOL_ERROR
• LDAP_DECODING_ERROR
• LDAP_NO_MEMORY
• LDAP_UNDEFINED_TYPE
• LDAP_INVALID_DN_SYNTAX

This extended operation is not supported by the Administration Server.

Scope
This extended operation affects only the current operation.

Auditing

Action: [Quiesce | Unquiesce]
Context DN: dn

Replication error log extended operation
The replication error log extended operation explains its use with the server and provides the results.
Description

Use this extended operation to monitor replication errors and correct any problems that occur as data
fails to be replicated.

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.56
Syntax

The value consists of an integer which indicates the type of request and two strings in BER format.
The first string identifies which failure or failures are to be deleted, attempted again or displayed.
The value is either 0 for all, or the ID of the failed change. The second string provides the DN for
the replication agreement.

Response
OID

1.3.18.0.2.12.57
Syntax

The response is a string that indicates any problem that occurred, or if successful, how many
failed changes were deleted or present to the consumer.

Behavior
The extended operation acts on the table that maintains the updates that failed on any of the current
server consumer servers. The data for any single failure can be displayed. Any or all failed changes
can be deleted or attempted again. Deleted changes are removed from the table. Changes that
attempted again are sent individually to the consumer. If the update succeeds, the failure is removed
from the table. If the update fails again, it is added back as a new failure with the following results to
reflect this update:

• number of attempts
• last time that attempted
• result code that is updated

The original failure is removed. The worker thread that handles the extended operation connects to
the consumer and sends these changes. Replica threads can send updates to the consumer at the
same time.

Appendix F. Object Identifiers (OIDs) for extended operations and controls 323

The following persons are enabled to call the extended operation:

• Primary Directory Administrator
• Local Administration Group member
• Users with write access to the replica group

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_INSUFFICIENT_ACCESS
• LDAP_DECODING_ERROR
• LDAP_PROTOCOL_ERROR
• LDAP_UNWILLING_TO_PERFORM
• LDAP_NO_SUCH_OBJECT

This extended operation is not supported by the Administration Server.

Scope
If the errors are deleted or successfully attempted again, they are removed from the table
permanently.

Auditing
The additional information in the audit log is consists of three lines:

Replication Error Log Management Option: [SHOW | RETRY | DELETE | UNKNOWN]
Replication Error ID: numeric value
Replication Agreement DN: DN or empty string.

Replication topology extended operation
The replication topology extended operation explains its use with the server and provides the results.
Description

This extended operation propagates replication topology-related entries from a supplier to the
consumers in the network. This extended operation is useful to synchronize replication topology data
for every server in the network before replication of directory entries can begin.

Request
OID

1.3.18.0.2.12.54
Syntax

RequestValue ::= SEQUENCE {
 replicationContextDn DistingushedName,
 timeout INTERGER,
 replicationAgreementDn DistingushedName OPTIONAL
}

Response
OID

1.3.18.0.2.12.55
Syntax

ResponseValue ::= SEQUENCE {
 resultCode INTEGER(0..MAX),
 errorMessage LDAPString,
 #operation specific failure information:
 supplier LDAPString,
 consumer LDAPString,
}

324 IBM Security Directory Suite: Programming Reference

Behavior
A supplier gathers its replication topology-related entries under a replication context and propagates
them to the consumer servers. The supplier can add the entries to the consumer or modify the
existing entries on the consumer or delete the extra entries from the consumer. As a result of the
extended operation, the replication topology-related entries under the specified context on both the
supplier and the consumers are in sync.

The operation is enabled when the client is authenticated with update authority to all agreements
in the specified subtree. Or, it is authenticated as a master server for the specified subtree.
Primary Directory Administrator and Local Administration Group members with DirDataAdmin and
ReplicationAdmin roles are authorized to call this extended operation.

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_NO_MEMORY
• LDAP_OPERATIONS_ERROR
• LDAP_UNWILLING_TO_PERFORM
• LDAP_PROTOCOL_ERROR

This extended operation is not supported by the Administration Server.

Scope
The extended operation does not affect subsequent operation on the connection.

Auditing
Context DN, Replication Agreement DN, and Timeout are audited.

ServerBackupRestore extended operation
The ServerBackupRestore extended operation explains its use with the server and provides the
results.
Description

The ServerBackupRestore extended operation issues request to the Administration Server to back
up a Directory Server data and configuration files or restore a Directory Server data and configuration
files from an existing backup.

Request
OID

1.3.18.0.2.12.81
Syntax

requestValue ::= SEQUENCE {
 action ActionValue
}

ActionValue ::= ENUMERATED {
 backup (1),
 restore (2)
}

Response
OID

1.3.18.0.2.12.81
Syntax

responseValue ::= SEQUENCE {
 result OperationResult
}

Appendix F. Object Identifiers (OIDs) for extended operations and controls 325

OperationResult ::= ENUMERATED {
 No_Operation_Attempted (1),
 Backup_Submitted (2),
 Failed_Backup_Requires_Server_Stop (3),
 Failed_Backup_In_Progress (4),
 Unknown_Backup_Result (5),
 Restore_Submitted (6),
 Failed_Restore_Requires_Server_Stop (7),
 Failed_Restore_In_Progress (8),
 Failed_Restore_No_Backup_Exists (9),
 Unknown_Restore_Result (10),
 Failed_Backup_Requires_Onetime_Server_Stop (11)
}

Behavior

This extended operation requests the Administration Server to do the following actions:

• Back up a Directory Server data and configuration files
• Restore a Directory Server data and configuration files from an existing backup that depends on the

action value

This extended operation can be disabled by setting the ibm-slapdBackupEnabled attribute in the
server configuration file to FALSE.

This extended operation has the following possible return codes:

• LDAP_SUCCESS - If the request is submitted successfully.
• LDAP_INSUFFICIENT_ACCESS - If the bind DN does not have the required permission to send

request.
• LDAP_PROTOCOL_ERROR - If not an administration server, a Directory Server with RDBM, not
configured for backup and restore, or backup and restore not enabled.

• LDAP_OPERATIONS_ERROR - If the action value is unsupported or missing.

The backup and restore operations can be only run by the following users:

• Primary directory administrator
• Local administration group member that has DirDataAdmin, ServerStartStopAdmin,
ServerConfigGroupMember, and SchemaAdmin roles

This extended operation is only supported by the Administration Server.

Scope
At a time only one operation can be run. If a backup or restore operation is running, other backup or
restore requests results in error unless the earlier operation is completed. If a bulkload operation is
running, then backup or restore operation does not proceed.

Auditing

Action: [backup|restore]
Response: [1 - No Operation Attempted |
 2 - Backup_Submitted |
 3 - Failed_Backup_Requires_Server_Stop |
 4 - Failed_Backup_In_Progress |
 5 - Unknown_Backup_Result |
 6 - Restore_Submitted |
 7 - Failed_Restore_Requires_Server_Stop |
 8 - Failed_Restore_In_Progress |
 9 - Failed_Restore_No_Backup_Exists |
 10 - Unknown_Restore_Result |
 11 - Failed_Backup_Requires_Onetime_Server_Stop
]

326 IBM Security Directory Suite: Programming Reference

Start, stop server extended operations
The start and stop server extended operation explains its use with the server and provides the results.
Description

The Start, stop server extended operation, when sent to the Administration Server, requests that the
Administration Server does the following actions:

• Start
• Stop
• Restart
• Give the status of the LDAP server
• Stop the Administration Server

The Start Stop Server Extended Operation, when sent to the LDAP Server, requests that the LDAP
Server stop.

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.26
Syntax

actionType ::= ENUMERATED {
 startServer (0),
 stopServer (1),
 restartServer (2),
 serverStatus (3),
 admStop (4)}

 requestValue :: = SEQUENCE {
 action actionType
 command options string OPTIONAL
}

Response
OID

1.3.18.0.2.12.27
Syntax

ResultValue :: SEQUENCE {
 Status Integer
 ErrorString String
 }

Behavior
When sent to the Administration Server, the request does one of the following actions:

• Start
• Restart
• Stop
• Request the server status
• Stop the Administration Server

When sent to the LDAP Server, the server acknowledges only the request to stop the server. Any other
request sent to the LDAP Server results in a return code of LDAP_UNWILLING_TO_PERFORM.

When the request is sent to the Administration Server, only a Primary Directory Administrator or Local
Administration Group members with ServerStartStopAdmin role has the authority to make the
request.

Appendix F. Object Identifiers (OIDs) for extended operations and controls 327

When the request is sent to the LDAP server, only Primary Directory Administrator, Local
Administration Group members with ServerStartStopAdmin role, or a global administration group
member has the authority to make the request.

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_OTHER
• LDAP_UNWILLING_TO_PERFORM
• LDAP_INSUFFICIENT_ACCESS
• LDAP_PROTOCAL_ERROR

This extended operation is supported by the Administration Server. This extended operation with the
stop request is supported in the LDAP Server.

Scope
The extended operation affects only the current operation, unless the request is to stop Administrator
Server.

Auditing
In the LDAP server, the additional information contains:

Operation: Start | Stop | Restart | Admin Stop | Status

In the Administration Server, the additional information contains:

Operation: Start | Stop | Restart | Admin Stop | Status

On a start or restart operation the following line is audited:

Options: Additional Value

For example, a request to start the server with the -a option audits the following operation:

Operation: Start
Options: ---a

Start TLS extended operation
The start TLS extended operation explains its use with the server and provides the results.
Description

This extended operation requests that the server start by using encrypted communications over the
connection.

Note: This extended operation is always enabled.

Request
OID

1.3.6.1.4.1.1466.20037
Syntax

There is no request value for the extended operation.
Response

OID
1.3.6.1.4.1.1466.20037

Syntax

• LDAP_SUCCESS
• LDAP_OPERATIONS_ERROR
• LDAP_PROTOCOL_ERROR

328 IBM Security Directory Suite: Programming Reference

Behavior
The extended operation is used to request that communication on the connection must be encrypted.
The server expects a TLS handshake on the connection.

All Local Administration Group members irrespective of their roles and all users can run this extended
operation.

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_OPERATIONS_ERROR
• LDAP_PROTOCOL_ERROR

This extended operation is supported by the Administration Server.

Scope
When a TLS handshake is run, all communication on the connection is encrypted until a TLS closure
alert is sent or the connection is closed.

Unique attributes extended operation
The unique attributes extended operation explains its use with the server and provides the results.
Description

The unique attributes extended operation provides a list of all non-unique (duplicate) values for a
particular attribute.

Note: This extended operation can be disabled. Commenting out or removing the statement in
the configuration file for the unique attribute extended operation plug-in disables this extended
operation. For example, commenting out the statement:

ibm-slapdPlugin: extendedop /bin/libback-rdbm.dll initUniqueAttr

from the configuration file disables this extended operation on Windows systems.

Request
OID

1.3.18.0.2.12.44
Syntax

ExtendedRequest ::= SEQUENCE {
 requestName LDAPOID // OID for the IBM Unique Attributes
 requestValue LDAPOID // OID for an attribute requiring uniqueness
}

where LDAPOID is an OCTET STRING.
Response

OID
1.3.18.0.2.12.45

Syntax

ExtendedResponse ::= SEQUENCE {
 COMPONENTS OF LDAPResult,
 responseName LDAPOID // OID for the IBM Unique Attributes
 Response AttributeValueList // list of all
 conflicting attribute values
}

where AttributeValueList is a SEQUENCE OF AttributeValue and LDAPOID is an OCTET
STRING.

Appendix F. Object Identifiers (OIDs) for extended operations and controls 329

Behavior
The extended operation lists all non-unique values for a particular attribute.

The following persons are enabled to call the extended operation:

• Primary Directory Administrator
• Local Administration Group members with DirDataAdmin role
• Global Administration Group members
• Master Server DN

Note: If the extended operation is called by a user who does not have access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS
• LDAP_INSUFFICIENT_ACCESS
• LDAP_NO_MEMORY
• LDAP_PARAM_ERROR
• LDAP_OPERATIONS_ERROR
• LDAP_OTHER

This extended operation is not supported by the Administration Server.

Scope
This extended operation affects only the current operation.

User type extended operation
The user type extended operation explains its use with the server and provides the results.
Description

This extended operation can be used by a bound user to determine the user type and roles the user
has on a Directory Server instance. Without the extended operation, there is no programmatic way to
determine the general capabilities of a user and where the user DN and password is stored.

It is possible for a user to belong to a user type and have different capabilities and store passwords
under different types of entries or attributes.

Additionally, the extended operation distinguishes the root administrator from an administrative group
member when a client must use the Administration Server to authenticate a user.

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.37
Syntax

There is no request value for the extended operation.
Response

OID
1.3.18.0.2.12.38

Syntax

ResponseValue ::= SEQUENCE {
 STRING (UserType)
 INTEGER (Number of UserRoles)
 SEQUENCE OPTIONAL
 {
 STRING (UserRole)

330 IBM Security Directory Suite: Programming Reference

 }
}

Behavior
This extended operation can be used by a bound user to determine the user type and roles the user
has on a Directory Server instance.

All users, including anonymous, are enabled to send the control.

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_NO_MEMORY
• LDAP_OPERATIONS_ERROR
• LDAP_NO_RESULTS_RETURNED
• LDAP_PROTOCAL_ERROR

This extended operation is supported by the Administration Server.

Scope
The extended operation affects only the current operation.

Log access extended operations
The log access extended operation explains its use with the server and provides the results.

Three types of extended operation requests support access to the log files. IBM Security Directory Suite
Administration Server supports the following log access extended operations:

• “Clear log extended operation” on page 211
• “Get lines extended operation” on page 213
• “Get number of lines extended operation” on page 213

The server provides access to the following log files:

• ibmslapd.log
• db2cli.log
• db2clicmds.log
• audit.log
• bulkload.log
• ibmdiradm.log
• lostandfound.log
• idstools.log
• db2load.log
• tracemsg.log
• adminAudit.log (this file is available only if the Administration Server audit log OID

(1.3.18.0.2.32.11) is in the list of supported capabilities in the root DSE)
• ibmslapd.trace.log (this file is available only if the trace log OID (1.3.18.0.2.32.14) is in the list of

supported capabilities in the root DSE)

Lines are numbered starting with line 0. A line is considered all characters up to and including a new line
or 400 characters, whichever comes first.

To make the log access request, a client application can use the client APIs for extended operations. An
LDAP v3 extended operation request has the form:

 ExtendedRequest ::= [APPLICATION 23] SEQUENCE {
 requestName [0] LDAPOID,
 requestValue [1] OCTET STRING OPTIONAL }

Appendix F. Object Identifiers (OIDs) for extended operations and controls 331

All the extended requests use a LogType. LogType is defined as:

LogType ::= ENUMERATED {
 SlapdErrors (1),
 CLIErrors (2),
 AuditLog (4),
 BulkloadLog (8),
 AdminErrors (16),
 AdminAudit (32),
 DebugOutputFile (64),
}

RequestValue ::= { log LogType; }

Clear log extended operation
The Clear log extended operation explains its use with the server and provides the results.
Description

The Clear log extended operation requests that the server clear the requested log. When the log is
cleared, a line is written to the log file with the date and time that states when the log file was cleared.

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.20
Syntax

RequestValue ::= { log LogType; }

Response
OID

1.3.18.0.2.12.21
Syntax

There is no response value.
Behavior

The extended operation clears the requested log file and writes a message in the log. It writes the
date and time that states when the log was cleared.

Only the Primary Directory Administrator or Local Administration Group members with AuditAdmin
and ServerConfigGroupMember roles are authorized to call this extended operation. Only the
Primary Directory Administrator can clear the audit log. A Local Administration Group member does
not have access to clear the audit log.

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_INSUFFICIENT_ACCESS
• LDAP_UNWILLING_TO_PERFORM
• LDAP_PROTOCOL_ERROR
• LDAP_NO_MEMORY

This extended operation is not supported by the Administration Server.

Scope
This extended operation affects only the current operation.

332 IBM Security Directory Suite: Programming Reference

Auditing

Log: Log name

Get file extended operation
The get file extended operation explains its use with the server and provides the results.
Description

This extended operation returns the contents of a file on the server.
Request

OID
1.3.18.0.2.12.73

Syntax

RequestValue ::= SEQUENCE {
 fileNumber INTEGER {Other(0),
 V3.ibm.at(1), V3.ibm.oc(2),
 V3.user.at(3), V3.user.oc(4),
 V3.config.at(5), V3.config.at(6),
 V3.system.at(7), V3.system.oc(8),
 V3.modifiedschema(9), V3.ldapsyntaxes(10),
 V3.matchingrules(11),
 KeyRingFile(12), KeyDBFile(13)};
 fileName String;
}

Response
OID

1.3.18.0.2.12.73
Syntax

ResponseValue ::= SEQUENCE {
 length INTEGER, // The length of the file.
 lines OCTET STRING // The lines from the file.
}

Behavior
A client uses the get file request to retrieve the contents of schema-related files or SSL-related files
from the server. If the connection between the client and server is not over SSL, the SSL-related files
are not returned.

The Primary Directory Administrator is enabled to call the extended operation.

Note: If the extended operation is called by a user who does not have the required access,
LDAP_INSUFFICIENT_ACCESS is returned.

This extended operation has the following possible return codes:

• LDAP_SUCCESS - If the file was successfully read.
• LDAP_PROTOCOL_ERROR - If there is an error in the format of the request.
• LDAP_INSUFFICIENT_ACCESS – If the request is from users other than the administrators.
• LDAP_OPERATIONS_ERROR - Internal Server error.
• LDAP_NO_SUCH_OBJECT - The requested file does not exist.

This extended operation is not supported by the Administration Server.

Scope
The extended operation affects only the current operation.

Auditing
The following information is audited for this extended operation:

Appendix F. Object Identifiers (OIDs) for extended operations and controls 333

File: [fileName | V3.ibm.at | V3.ibm.oc |
 V3.user.at | V3.user.oc |
 V3.config.at | V3.config.at |
 V3.system.at | V3.system.oc |
 V3.modifiedschema | V3.ldapsyntaxes |
 V3.matchingrules]

Get lines extended operation
The get lines extended operation explains its use with the server and provides the results.
Description

The Get lines extended operation requests that the server read the specified lines from the requested
log and return them to the client.

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.22
Syntax

RequestValue :== SEQUENCE
 {
 Log LogType;
 firstLine INTEGER;
 lastLine INTEGER;
 }

Response
OID

1.3.18.0.2.12.23
Syntax

There is a response value only if the return code is LDAP_SUCCESS.
Behavior

This extended operation reads the requested set of lines from the requested file and returns the lines
to the user.

Only the Primary Directory Administrator and Local Administration Group members with any roles
other than NoAdmin role are enabled to call this extended operation.

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_INSUFFICIENT_ACCESS
• LDAP_UNWILLING_TO_PERFORM
• LDAP_PROTOCOL_ERROR
• LDAP_NO_MEMORY

This extended operation is supported by the Administration Server.

Scope
This extended operation affects only the current operation.

Auditing

Log: Log name

334 IBM Security Directory Suite: Programming Reference

Get number of lines extended operation
The Get number of lines extended operation explains its use with the server and provides the results.
Description

The Get number of lines extended operation requests that the server determine the number of lines in
the requested log file.

Note: This extended operation is always enabled.

Request
OID

1.3.18.0.2.12.24
Syntax

LogType ::= ENUMERATED {SlapdErrors (1),
 CLIErrors (2),
 AuditLog (4),
 BulkloadLog (8),
 AdminErrors (16),
 AdminAudit (32),
 DebugOutputFile (64),
 LostAndFound (128).
 ConfigToolsLog (256)}
 RequestValue ::= { log LogType; }

Response
OID

1.3.18.0.2.12.25
Syntax

ResponeValue:: = number of lines

Behavior
The extended requests that the server read the log file and determine the number of lines in the
requested log file.

Primary Directory Administrator and Local Administration Group members with any roles other than
NoAdmin role are enabled to call this extended operation.

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_INSUFFICIENT_ACCESS
• LDAP_UNWILLING_TO_PERFORM
• LDAP_PROTOCOL_ERROR
• LDAP_NO_MEMORY

This extended operation is supported by the Administration Server.

Scope
This extended operation affects only the current operation.

Auditing

Log: Log name

See the section "Creating the administrative group" in the Administering section in the IBM Security
Directory Suite documentation to know more about the following information:

• Administrative roles

Appendix F. Object Identifiers (OIDs) for extended operations and controls 335

https://www.ibm.com/docs/en/sdsu/8.0.1?topic=documentation-administering
https://www.ibm.com/docs/sdsu/8.0.1
https://www.ibm.com/docs/sdsu/8.0.1

• Authorization that is required to issue various extended operations
• Permissions that are required to access various objects

OIDs for controls
The OIDs for controls provide support description for various servers.

The following table shows OIDs for controls. Click the short name or go the specified page number for
more information about a control syntax and usage.

Table 20. OIDs for controls

Short name with OID Description Supported
by the
Administrati
on Server

Supported
by full
Directory
Server with
database

Supported by Proxy
Server

Without
partitioned
data

With
partitioned
data

“AES bind control” on
page 219

1.3.18.0.2.10.28

This control enables the
Directory Server to send
updates to the consumer
server with passwords
already encrypted using
AES.

No Yes No No

“Audit control” on page
220

1.3.18.0.2.10.22

The control sends a
sequence of uniqueid
strings and a source ip
string to the server. When
the server receives the
control, it audits the list of
uniqueids and sourceip
in the audit record of the
operation.

Yes Yes Yes Yes

“Do not replicate
control” on page 221

1.3.18.0.2.10.23

This control can be
specified on an update
operation (add, delete,
modify, modDn, modRdn).

No Yes No No

“Entry change
notification control” on
page 221

2.16.840.1.113730.3.4
.7

This control provides more
information about the
changes that caused a
particular entry to be
returned as the result of a
persistent search.

No Yes No No

“Group authorization
control” on page 222

1.3.18.0.2.10.21

The control sends a list of
groups that a user belongs
to.

No Yes No No

“LDAP delete operation
timestamp control” on
page 223

1.3.18.0.2.10.32

This control is used to send
the modified timestamp
values to a replica during a
delete operation.

No Yes No No

336 IBM Security Directory Suite: Programming Reference

Table 20. OIDs for controls (continued)

Short name with OID Description Supported
by the
Administrati
on Server

Supported
by full
Directory
Server with
database

Supported by Proxy
Server

Without
partitioned
data

With
partitioned
data

“Limit number of
attribute values
control” on page 224

1.3.18.0.2.10.30

This control limits the
number of attribute values
that are returned for an
entry in a search operation.

No Yes Yes Yes

“Manage DSAIT
control” on page 225

2.16.840.1.113730.3.4
.2

Causes entries with the
ref attribute to be treated
as normal entries, allowing
clients to read and modify
these entries.

* In IBM Security Directory
Suite Proxy Server (without
partitioned data), even if
this control is not included
in the request the Proxy
Server always sends the
Manage DSAIT control to
the back-end server.

No Yes Yes (*) No

“Modify groups only
control” on page 226

1.3.18.0.2.10.25

Attached to a delete or
modify DN request to cause
the server to do only the
group referential integrity
processing. The processing
is for the delete or rename
request without doing the
actual delete or rename of
the entry itself. The entry
that is named in the delete
or modify DN request does
not require to exist on the
server.

No Yes No No

“No replication conflict
resolution control” on
page 227

1.3.18.0.2.10.27

When present, a replica
server accepts a replicated
entry without trying to
resolve any replication
conflict for this entry.

No Yes No No

Appendix F. Object Identifiers (OIDs) for extended operations and controls 337

Table 20. OIDs for controls (continued)

Short name with OID Description Supported
by the
Administrati
on Server

Supported
by full
Directory
Server with
database

Supported by Proxy
Server

Without
partitioned
data

With
partitioned
data

“Omit group referential
integrity control” on
page 227

1.3.18.0.2.10.26

Omits the group referential
integrity processing on a
delete or modrdn request.
When present on a delete
or rename operation, the
entry is deleted from or
renamed in the directory.
But the entry membership
is not removed or renamed
in the groups in which the
entry is a member.

No Yes No No

“Paged search results
control” on page 228

1.2.840.113556.1.4.31
9

Allows management of the
amount of data that is
returned from a search
request.

No Yes Yes Yes

“Password policy
request control” on
page 229

1.3.6.1.4.1.42.2.27.8.5
.1

Password policy request or
response

Yes Yes Yes Yes

“Persistent search
control” on page 231

2.16.840.1.113730.3.4
.3

This control provides
clients a means to receive
notification of changes in
the LDAP server.

No Yes No No

“Proxy authorization
control” on page 231

2.16.840.1.113730.3.4
.18

The Proxy Authorization
Control enables a bound
user to assert another user
identity. The server uses
this asserted identity in the
evaluation of ACLs for the
operation.

No Yes No No

“Refresh entry control”
on page 233

1.3.18.0.2.10.24

This control is returned
when a target server
detects a conflict during
a replicated modify
operation.

No Yes No No

“Replication bind
failure timestamp
control” on page 233

1.3.18.0.2.10.34

The master server uses
the replication bind failure
timestamp control to
propagate the bind failure
timestamp value to a read-
only replica server.

No Yes No No

338 IBM Security Directory Suite: Programming Reference

Table 20. OIDs for controls (continued)

Short name with OID Description Supported
by the
Administrati
on Server

Supported
by full
Directory
Server with
database

Supported by Proxy
Server

Without
partitioned
data

With
partitioned
data

“Replication supplier
bind control” on page
234

1.3.18.0.2.10.18

This control is added by the
supplier, if the supplier is a
gateway server.

No Yes No No

“Replication update ID
control” on page 235

1.3.18.0.2.10.29

This control was created
for serviceability. If the
supplier server is set
to issue the control,
each replicated update
is accompanied by this
control.

No Yes No No

“Return deleted
objects control” on
page 236

1.3.18.0.2.10.33

This control when included
in a null base search
request, all entries in
the database that includes
those entries with attribute
isDeleted set to TRUE are
returned.

No Yes No No

“Server administration
control” on page 236

1.3.18.0.2.10.15

Allows an update operation
by the administrator
under conditions when the
operation would normally
be refused (server is
quiesced, a read-only
replica, and others).

* In IBM Security Directory
Suite Proxy Server, this
control is supported only
for bind operations.

Yes Yes Yes (*) Yes (*)

“Sorted search results
control” on page 238

1.2.840.113556.1.4.47
3

Allows a client to receive
search results that are
sorted by a list of criteria,
where each criterion
represents a sort key.

No Yes No No

“Subtree delete
control” on page 239

1.2.840.113556.1.4.80
5

This control is attached to
a Delete request to indicate
that the specified entry and
all descendant entries are
to be deleted.

No Yes No No

Appendix F. Object Identifiers (OIDs) for extended operations and controls 339

Table 20. OIDs for controls (continued)

Short name with OID Description Supported
by the
Administrati
on Server

Supported
by full
Directory
Server with
database

Supported by Proxy
Server

Without
partitioned
data

With
partitioned
data

“Transaction control”
on page 239

1.3.18.0.2.10.5

Marks the operation as part
of a transactional context.

* In IBM Security
Directory Suite Proxy
Server, transactions are
supported only when all
updates target a single
partition.

No Yes Yes (*) Yes (*)

“Virtual list view
control” on page 240

2.16.840.1.113730.3.4
.9

This control extends
the regular LDAP search
operation and includes a
server-side sorting control.

No Yes No No

AES bind control
The AES bind control explains its use with the server and provides the results.
Description

This control enables the Directory Server to send updates to the consumer server with passwords
already encrypted by using AES. If the consumer server does not support AES encryption of
passwords, or the seed or salt values do not match, the Directory Server decrypts the userpassword
and secretkey values in updates to be replicated.

Note: This control is always enabled.

OID
1.3.18.0.2.10.28

Syntax
This control has no value.

Behavior

The criticality must be set to TRUE to protect clients from submitting a request with an unauthorized
identity.

This control can operate independent of other controls. However, it is often sent with the Proxy
Authorization Control. This control is registered for the following operations:

• Bind

The following persons are enabled to send the control:

• Primary Directory Administrator
• Master Server DN
• Local Administration Group members
• Global Administration Group members

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

340 IBM Security Directory Suite: Programming Reference

This control has the possible return code as LDAP_INSUFFICIENT_ACCESS. This control is not
supported by the Administration Server.

Scope
The control lasts for the life of the bind session to allow for multiple write operations.

The use of the control implies that cryptographic consistency is verified by the caller. At bind time
the presence of this control, along with the appropriate authorization, causes the c_isConsistent
flag in the connection structure to be set to TRUE. This setting causes any write operations that
contain pre-encrypted AES data to be accepted by the server. Without the presence of the control, the
connection flag is set to FALSE, and a write operation of this type is rejected by the server. The RDBM
back-end is the only back-end that sets, and evaluates, the c_isConsistent flag.

Audit control
The Audit control explains its use with the server and provides the results.
Description

The Audit Control enables a client to send more information about an operation. This additional
information is a unique ID and an IP address. The additional information is audited in the audit log.

Note: This control is always enabled.

OID
1.3.18.0.2.10.22

Syntax

requestID DirectoryString

controlValue:=SEQUENCE {
{SEQUENCE of requestID}
clientIP String
}

Behavior
This control is registered for the following operations:

• Any
• Add
• Bind
• Compare
• Delete
• Extended Operations
• Search
• Modify
• Modrdn

All users that include anonymous are enabled to send the control. However, there is an environment
variable, SLAPD_AUDIT_DISABLE_NON_ADMIN, which when set, restricts the control to the following
members:

• Primary Directory Administrator
• Local Administration Group members
• Global Administration Group members

If SLAPD_AUDIT_DISABLE_NON_ADMIN is set to TRUE, only audit controls that are sent by
administrators are audited. By default the server enables any user to send this control.

Note: If non-admin users are disabled, and the control is sent by a non-admin, the control is ignored,
even if it is critical.

Appendix F. Object Identifiers (OIDs) for extended operations and controls 341

If there is more information that is required for the control, the error is ignored, and the information is
audited.

The Administration Server recognizes the control, but audits only one of these controls per operation.
The behavior for the Administration Server is the same.

Scope
The control lasts for the term of one operation. Each operation treats the control the same. If the
operation is audited, the additional information that is sent in the control is audited as well.

Auditing
When the server receives this control, the audit plug-in adds the following lines to the audit entry:

controlType: control ID
criticality: true | false
requestID: request ID sent in the control
requestID: request ID sent in the control
requestID: request ID sent in the control
clientIP: client IP sent in the control

Do not replicate control
The Do not replicate control explains its use with the server and provides the results.
Description

This control can be specified for an update operation. When present, a server does not replicate the
update to any consumers.

OID
1.3.18.0.2.10.23

Syntax
This control has no value.

Behavior
This control is registered for the following operations:
Add

When the control is detected in an add operation, the replication threads in a supplier does not
replicate the add operation to the consumer.

Delete
When the control is detected in a delete operation, the replication threads in a supplier does not
replicate the delete operation to the consumer.

Modify
When the control is defected in a modify operation, the replication threads in a supplier does not
replicate the modify operation to the consumer.

Modrdn
When the control is defected in a modrdn operation, the replication threads in a supplier does not
replicate the modify operation to the consumer.

Any administrators and the Master Server DN are able to send the control.

The Administration Server does not support this control.

Scope
The control lasts for the term of one operation.

Entry change notification control
The Entry change notification control explains its use with the server and provides the results.
Description

This control provides more information about the changes that caused a particular entry to be
returned as the result of a persistent search.

342 IBM Security Directory Suite: Programming Reference

OID
2.16.840.1.113730.3.4.7

Syntax

EntryChangeNotification ::= SEQUENCE {
 changeType ENUMERATED {
 add (1),
 delete (2),
 modify (4),
 modDN (8)},
 previousDN LDAPDN OPTIONAL,
 changeNumber INTEGER OPTIONAL
}

Behavior
If the client set the returnECs Boolean to TRUE in the persistent search control, the server must
include the entry change notification control in the controls portion of each SearchResultEntry
that is returned because of an entry that is added, deleted, or modified.

The value of changeType field indicates what LDAP operation caused the entry to be returned.

The previousDN is present in modifyDN operations and is used to retrieve the DN of the entry
before it was renamed or moved. The changeType optional field must be included by servers when it
returns change notifications as a result of modifyDN operations.

The changeNumber field represents the change number [CHANGELOG] that is assigned by a server
for the change. If a server supports an LDAP change log, it must include this field.

If the search code determines the persistent search control is present, the control is parsed and the
operation is run as specified in the control. After the operation, the pBlock will be handed off to the
plug-in for its record keeping, and the client search is left open. The returnECs control is returned
from the plug-in and not the inline search code.

Note: It is up to the server administrator to configure change log for the client. If the change log is not
set up properly, the client receives no change numbers.

This control is not supported by the Administration Server.

Group authorization control
The Group authorization control explains its use with the server and provides the results.
Description

The Group Authorization Control enables a bound user to assert group membership. The server uses
this set of groups in the evaluation of ACLs for the operation. The control was introduced as a tool for
the Proxy Server. However, this control can be sent by any client.

Note: This control is always enabled.

OID
1.3.18.0.2.10.21

Syntax

Group ::= SEQUENCE { groupName LDAPString }
RequestValue :: = SEQUENCE{
 normalized INTEGER{unnormzlied(0), normalized(1)};
 Sequence of Group
}

The criticality must be set to TRUE to protect clients from submitting a request with an unauthorized
identity.

Behavior
This control can operate independent of other controls. However, it is often sent with the Proxy
Authorization Control. This control is registered for the following operations:

• Any

Appendix F. Object Identifiers (OIDs) for extended operations and controls 343

• Add
• Bind
• Compare
• Delete
• Extended Operations
• Search
• Modify
• Modrdn

The following persons are enabled to send the control:

• Primary Directory Administrator
• Proxy Authorization Group members
• Local Administration Group members
• Global Administration Group members

Only Primary Directory Administrator and Local Administration Group members can assert group
membership into the global administration group. Proxy group members and global administration
group members do not have the authority to assert group membership into the global administration
group.

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

If more information is required for the control, and if an error is in the formatting of that information,
then the following error returns might occur:

• Missing information – LDAP_OPERATIONS_ERROR
• Additional information – LDAP_OPERATIONS_ERROR
• Invalid information – LDAP_OPERATIONS_ERROR

This control has the following possible return codes:

• LDAP_INSUFFICIENT_ACCESS
• LDAP_OPERATIONS_ERROR

This control is not supported by the Administration Server.
Scope

The control lasts for the term of one operation. Each operation treats the control the same. The
operation is run with the assumption that the user is a member of the stated groups. This operation
applies to all back-end servers.

Auditing
This control has a special flag to indicate whether more information must be audited. If the audit flag
ibm-auditGroupsOnGroupControl is set to FALSE, then the control OID and criticality are only
audited. If ibm-auditGroupsOnGroupControl is TRUE, then the following information is audited:

controlType: control ID
criticality: {true | false}
Normalized: {true | false}
Group: group sent in request
Group: group sent in request
Group: group sent in request

LDAP delete operation timestamp control
The LDAP delete operation timestamp control explains its use with the server and provides the results.
Description

This control is used to send the modified timestamp values to a replica during a delete operation.

344 IBM Security Directory Suite: Programming Reference

Note: This control is always enabled.

OID
1.3.18.0.2.10.32

Syntax

Control ::= SEQUENCE{
 controlType 1.3.18.0.2.10.32,
 criticality BOOLEAN FALSE,
 controlValue OCTET STRING
}

where, the OCTET STRING value is a BER encoded value that represents the timestamp value of the
delete operation.

Behavior

The LDAP delete operation timestamp control is registered for delete operations. This control contains
the modified timestamp value for a replicated delete operation. It is used on a replica to update
the corresponding value of a group entry, which undergoes group referential integrity check. This
control does not rely on other controls and operates independently of other controls. The additional
information is parsed to check for NULL value of timestamp for the control. If NULL is found,
appropriate error code is returned.

Only the master server DN and supplier DN are authorized to send this control, since this
control is used internally by the server replication code. If this control is sent by any other user,
LDAP_INSUFFICIENT_ACCESS is returned.

The control has the possible return code as LDAP_INSUFFICIENT_ACCESS. This control is not
supported by the Administration Server.

Scope
This control lasts for one delete operation.

Limit number of attribute values control
The Limit number of attribute values control explains its use with the server and provides
the results.
Description

This control limits the number of attribute values that are returned for an entry in a search operation.
The Limit number of attribute values control is used to limit the number of values that
are returned for the entire entry. This control can also be used to limit the number of values that are
returned for attribute of an entry.

OID
1.3.18.0.2.10.30

Syntax

 Control ::= SEQUENCE{
 controlType 1.3.18.0.2.10.30,
 criticality BOOLEAN DEFAULT FALSE,
 controlValue OCTET STRING OPTIONAL}

where, the OCTET STRING value is a BER encoded value with the following format:

 RequestValue ::= SEQUENCE{
 MaxValuesPerEntry INTEGER(0..maxInt), // maximum number of values
 // for entire entry where
 // 0 means unlimited
 MaxValuesPerAttribute INTEGER(0..maxInt), // maximum number of values
 // per attribute where
 // 0 means unlimited
 ReturnDetails BOOLEAN DEFAULT FALSE // FALSE indicates that no
 // response controls should
 // be returned
 }

Appendix F. Object Identifiers (OIDs) for extended operations and controls 345

The response that is sent with each entry whose attributes were partially returned when
ReturnDetails is true is:

 ResultValue ::= SEQUENCE{
 DN LDAPString, // The name of the attribute
 // in the same format returned
 // by search.
 AttributeList PartialAttributes // The list of partially returned
 // attributes for an entry.
 }

where, PartialAttributes value is the BER encoded value with the following format:

 PartialAttributes ::= SEQUENCE of SEQUENCE{
 attributeName LDAPString, // The name of the attribute
 // in the same format as
 // returned by search.
 numberValuesReturned INTEGER(0..maxInt),// number of values returned
 // for an attribute
 numberValuesAvailable INTEGER(-1..maxInt)// number of values available,
 // -1 if unknown
 }

Behavior
The Limit number of attribute values control is registered to be used along with the
search operation. At a time, the control can be only used in one search operation. That is, the life of
the control lasts only for a single search operation. All the users are authorized to use this control.

When the control is used in a search operation, a total number of attribute values are returned for
each entry. The number is less than or equal to the maximum total number of values that are specified
on the control. Also, the number of values that are returned per attribute is less than or equal to the
maximum number of values that are returned per attribute. If details are requested on the control,
a response control is also returned with each entry whose attributes were partially returned. This
control is only supported by the RDBM back-end.

The Limit number of attribute values control operates independent of all other controls
and does not affect the behavior of any other controls.

The following error codes might be returned if any additional information is required for this control
and an error occurs in the formatting of that information:

• Missing information - LDAP_DECODING_ERROR
• Additional information - LDAP_DECODING_ERROR
• Invalid information - LDAP_DECODING_ERROR

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_DECODING_ERROR
• LDAP_OPERATIONS_ERROR
• LDAP_NO_MEMORY
• LDAP_OTHER
• LDAP_UNWILLING_TO_PERFORM

This control is not supported by the Administration Server.

Auditing
In this control, no additional information is audited.

346 IBM Security Directory Suite: Programming Reference

Manage DSAIT control
The Manage DSAIT control explains its use with the server and provides the results.
Description

Causes entries with the ref attribute to be treated as normal entries, and allows clients to read and
modify these entries.

OID
2.16.840.1.113730.3.4.2

Syntax
This control has no value.

Behavior
This control enables entries with the ref attribute to be treated as normal entries, and allows clients
to read and modify these entries. In IBM Security Directory Suite Proxy Server, without partitioned
data, the request might not include this control. Even if the request does not include this control, the
Proxy Server always sends the Manage DSAIT control to the back-end server. This control is registered
for any operation. All users are enabled to send the control.

This control is not supported by the Administration Server.

Scope
The control lasts for one operation.

Modify groups only control
The Modify groups only control explains its use with the server and provides the results.
Description

This control can be used with a delete, modrdn, or moddn operation to cause the server to modify
the groups in which it is in a member without deleting or modifying the entry itself. The entry that is
named in the delete, modrdn, or moddn request does not require to exist on the server.

Note: This control is always enabled.

OID
1.3.18.0.2.10.25

Syntax
This control has no value.

Behavior
This control is registered for the following operations:

• Delete
• Modrdn

The following persons are enabled to send the control:

• Primary Directory Administrator
• Local Administration Group members
• Global Administration Group members

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_DECODING_ERROR
• LDAP_UNWILLING_TO_PERFORM

The Administration Server does not support this control.

Appendix F. Object Identifiers (OIDs) for extended operations and controls 347

Scope
The control lasts for the term of one operation. The control is only recognized when a delete, moddn,
or modrdn request goes to the RDBM back-end.

Auditing
When the server receives this control, the audit plug-in adds the following lines to the audit entry:

controlType: control ID
criticality: true | false

No replication conflict resolution control
The No replication conflict resolution control explains its use with the server and provides the results.
Description

When present, a replica server accepts a replicated entry without trying to resolve any replication
conflict for this entry. This control can be used by the replication topology extended operation to
ensure data consistency between a supplier and a consumer.

Note: If environment variable IBMSLAPD_REPL_NO_CONFLICT_RESOLUTION is set on a replica, a
replica server acts as if all the update requests that coming from the suppliers are specified with
this control. The replica accepts the replicated entries without attempting to resolve any replication
conflicts. This environment variable is useful in a network topology in which one supplier and one or
multiple consumers are defined.

OID
1.3.18.0.2.10.27

Syntax
This control has no value.

Behavior
This control is registered for the following operations:

• Add
• Delete
• Modify
• Modrdn

Add
Upon receiving such a control in a replicated Add request, a replica server does not try to resolve
any replication conflict for this update. It accepts and applies it to the replica.

Modify
Upon receiving such a control in a replicated Modify request, a replica server does not try to
resolve any replication conflict for this update. It accepts and applies it to the replica.

Only the Master Server DN is able to send the control.

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

The Administration Server does not support this control.

Scope
The control lasts for the term of one operation.

Omit group referential integrity control
The Omit group referential integrity control explains its use with the server and provides the results.
Description

This control enables an administrator to request that group referential integrity must not be run. The
control applies only to modrdn and delete operations. When present on a delete or rename operation,

348 IBM Security Directory Suite: Programming Reference

the entry is deleted from or renamed in the directory. But the entry membership is not removed or
renamed in the groups in which the entry is a member.

Note: This control is always enabled.

OID
1.3.18.0.2.10.26

Syntax
This control has no value.

Behavior
This control is registered for the following operations:

• Delete
• Modrdn

The following persons are enabled to send the control:

• Primary Directory Administrator
• Local Administration Group members
• Global Administration Group members

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_DECODING_ERROR
• LDAP_UNWILLING_TO_PERFORM

The Administration Server does not support this control.

Scope
The control lasts for the term of one operation. The control is only recognized when a delete, moddn,
or modrdn request goes to the RDBM back-end.

Auditing
When the server receives this control, the audit plug-in adds the following lines to the audit entry:

controlType: control ID
criticality: true | false

Paged search results control
The Paged search results control explains its use with the server and provides the results.
Description

The paged results control is enabled on a search operation and enables a client to request a subset
of entries. Subsequent search requests for using this control continue to result in the next results
page until the operation is canceled or the last result is returned. This control is supported by RDBM
back-end and by Proxy Server version 6.2 and later.

Note: This control can be disabled by setting the Paged result limit to 0.

There is also a configuration option which enables an administrator to grant or deny the use of
this control to non-administrators. The administrators in this case refer to the primary directory
administrator, local administration group members, and global administration group members.
If the ibm-slapdPagedResAllowNonAdmin attribute in the cn=RDBM Backends, cn=IBM
Directory, cn=Schemas, cn=Configuration entry is set to TRUE, all users can send paged
search requests. If set to FALSE, only administrators can send paged search requests against RDBM
back-end.

Appendix F. Object Identifiers (OIDs) for extended operations and controls 349

In a Proxy Server, if ibm-slapdPagedResAllowNonAdmin is set to FALSE, then only Global
Administration Group members are allowed to do page search. If primary directory administrator
or local administration group members runs page search when the attribute is set to FALSE, then
LDAP_INSUFFICIENT_ACCESS is retuned.

OID
1.2.840.113556.1.4.319

Syntax

realSearchControlValue ::= SEQUENCE {
 Size INTEGER(0..maxInt),
 -- requested page size from client
 -- result set size estimate from server
 Cookie OCTET STRING }

Behavior
This control is registered for the following operations:

• Search

In a default user installation, any user can send this control. If the ibm-
slapdSortSrchAllowNonAdmin is set to FALSE, the use of this control is restricted to
administrative users:

• Primary Directory Administrator
• Local Administration Group members
• Global Administration Group members

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

If more information is required for the control, and there is an error in the formatting of that
information, the following error returns might occur:

• Missing information – LDAP_DECODING_ERROR
• Additional information – LDAP_DECODING_ERROR
• Invalid information – LDAP_DECODING_ERROR

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_DECODING_ERROR
• LDAP_OPERATIONS_ERROR
• LDAP_INSUFFICIENT_ACCESS
• LDAP_OTHER

The Administration Server does not support this control.

Scope
The control lasts for the term of one operation. The control changes the behavior of a search operation
that goes against the RDBM back-end. The control requests that the server return the entries in a
sorted order. The configuration back-end and schema back-ends do no support this control.

Auditing
When the server receives this control, the audit plug-in adds the following lines to the audit entry:

controlType: control ID
criticality: true | false

350 IBM Security Directory Suite: Programming Reference

Password policy request control
The Password policy request control explains its use with the server and provides the results.
Description

This control is sent by the client application with the requested operation. This control indicates to
the server that this client understands Password Policy return values. If the client sends the Password
policy request control with the request, the server can send the Password policy request control with
the response. The Password policy request control contains extra information about why an operation
failed because of a Password Policy problem. For example, if a client bind request failed because the
user account is locked out. This information is sent to the client on the response in the Password
Policy Response Control value field.

Note: If the Password Policy is disabled, then the Password policy request control is ignored, so no
Password policy request control is sent with the response.

Request
OID

1.3.6.1.4.1.42.2.27.8.5.1
Syntax

There is no request value for the control.
Response

OID
1.3.6.1.4.1.42.2.27.8.5.1

Syntax

SEQUENCE {
 warning [0] CHOICE OPTIONAL {
 timeBeforeExpiration [0] INTEGER (0 .. MaxInt),
 graceLoginsRemaining [1] INTEGER (0 .. maxInt) }
 error [1] ENUMERATED OPTIONAL {
 passwordExpired (0),
 accountLocked (1),
 changeAfterReset (2),
 passwordModNotAllowed (3),
 mustSupplyOldPassword (4),
 invalidPasswordSyntax (5),
 passwordTooShort (6),
 passwordTooYoung (7),
 passwordInHistory (8) } }

Behavior
This control is registered for the following operations:

• Any
• Add
• Bind
• Compare
• Delete
• Extended Operations
• Search
• Modify
• Modrdn

All users are enabled to send the control.

This control has the following possible return codes:

• LDAP_INSUFFICIENT_ACCESS
• LDAP_INVALID_CREDENTIALS

Appendix F. Object Identifiers (OIDs) for extended operations and controls 351

• LDAP_CONSTRAINT_VIOLATION
• LDAP_UNWILLING_TO_PERFORM

The Administration Server supports this control. The Administration Server checks for this control on
the bind operation, and returns the Password policy response control and values if needed. If the Root
Administrator has too many bad binds in a row, the Administration Server locks out the account. It
sends the Password Policy response that the account is locked.

Scope
The control lasts for the term of one operation. This control indicates to the server that the client
application has information about Password Policy. Therefore, the server sends a Password policy
response control with its response. With this response control, there can be a response control value
which contains the Password Policy error or warning code and message if one is required. The other
back-ends have no knowledge of this control and so it is ignored.

Persistent search control
The Persistent search control explains its use with the server and provides the results.
Description

This control provides clients a means to receive notification of changes in the LDAP server.
OID

2.16.840.1.113730.3.4.3
Syntax

PersistentSearch ::= SEQUENCE {
 changeTypes INTEGER,
 changesOnly BOOLEAN,
 returnECs BOOLEAN}

Behavior
This control can be used by all LDAP users.

If changesOnly is TRUE, then the server does not return any existing entries that match the search
criteria. Also, no entries are returned until an update on an entry occurs that matches the initial search
filter. Entries are only returned after successful update operations. For example, if data is loaded
in the server and a search is issued against it, the matching entries are returned. However, if the
persistent search control is present the entries might or might not be returned initially. This search is
determined by the changesOnly field.

If changesOnly is FALSE, then the server returns all the entries that match the search filter. Also, the
connection is left open and any changes or updates on entries that match the search filter from that
point triggers entries to be returned.

The changeTypes is the logical OR of one or more of these values:

• add (1)
• delete (2)
• modify (4)
• modDN (8)

If returnECs is TRUE, the server returns an entry change notification control with each entry returned
as the result of changes.

This control is not supported by the Administration Server.

352 IBM Security Directory Suite: Programming Reference

Proxy authorization control
The Proxy authorization control explains its use with the server and provides the results.
Description

The Proxy Authorization Control enables a bound user to assert another user identity. The server uses
this asserted identity in the evaluation of ACLs for the operation.

Note: This extended operation is always enabled.

OID
2.16.840.1.113730.3.4.18

Syntax
User DN can be one of the following values:

dn: dn value
dn value
RequestValue:: = User DN

Behavior
This control can operate independent of other controls. However, it is often sent with the Proxy
Authorization Control. This control is registered for the following operations:

• Add
• Bind
• Compare
• Delete
• Extended Operations
• Search
• Modify
• Modrdn

The following persons are enabled to send the control:

• Primary Directory Administrator
• Proxy Authorization Group members
• Local Administration Group members
• Global Administration Group members

No user can assert the identity of the primary directory administrator or local administration group
members. Only a primary directory administrator or local administration group members can assert
the identity of a global administration group member. Global administration group members and proxy
group members cannot assert the identity of a global administration group member.

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

If more information is required for the control, and there is an error in the formatting of that
information, the following error returns might occur:

• Missing information – LDAP_OPERATIONS_ERROR
• Additional information – LDAP_OPERATIONS_ERROR
• Invalid information – LDAP_OPERATIONS_ERROR

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_OPERATIONS_ERROR
• LDAP_INSUFFICIENT_ACCESS
• LDAP_UNWILLING_TO_PERFORM

Appendix F. Object Identifiers (OIDs) for extended operations and controls 353

• LDAP_OTHER
• LDAP_NO_MEMORY
• LDAP_OPERATIONS_ERROR
• LDAP_PARAM_ERROR

This control is not supported by the Administration Server.
Scope

The control lasts for the term of one operation. Each operation treats the control the same. The
operation is run after you assume the asserted user identity. The control is recognized on all
operations.

Auditing
When the server receives this control, the audit plug-in adds the following lines to the audit entry:

ProxyDN: proxy dn

Refresh entry control
The Refresh entry control explains its use with the server and provides the results.
Description

This control is returned to a supplier when a consumer server detects a replication conflict during a
replicated modify operation. Upon receiving such a control along with an LDAP_OTHER return code,
the supplier retrieves its copy of the entry and send the entry again to the consumer by using an add
operation to refresh the consumer version of the entry.

OID
1.3.18.0.2.10.24

Syntax
This control has no value.

Behavior
This control is registered for the following operations:

• Modify

This control is sent in an LDAP response protocol after a conflict is detected on a replicated entry on a
consumer. The consumer does not require to specifically bind to the supplier to return such a control.
The supplier is already bound to the consumer. If anybody sends such a control in an LDAP request to
any server, the control is ignored and has no effect on the server.

The Administration Server does not support this control.

Scope
The control lasts for the term of one operation. This control is used by a consumer to communicate
to its supplier when a replication conflict is detected on the consumer. When the supplier gets along
the control with an LDAP_OTHER return code, the supplier sends the entry again with an intention of
bringing the consumer back in sync.

Replication bind failure timestamp control
The master server uses the replication bind failure timestamp control to propagate the bind failure
timestamp value to a read-only replica server.
Description

A master server in a replication topology supports this control only when the ibm-
replicateSecurityAttribute attribute is set to true.
A read-only replica notifies its master when a user attempts a bind operation against it that results in
password policy operational attributes update. The read-only replica server notifies its master server
only if the following conditions are met:

• The ibm-replicateSecurityAttribute attribute is set on a read-only replica server.

354 IBM Security Directory Suite: Programming Reference

• The ibm-replicareferralURL attribute is set with the IP address or fully qualified domain name
with ports of all its master servers.

The read-only replica server notifies its master server and provides the following values:

• Passes the replication bind failure timestamp control.
• Binds with the user credentials that resulted in password policy operational attributes update.

If the ibm-replicateSecurityAttribute attribute is set on the master server, it propagates bind
failure timestamp value to the read-only replica in its response. The read-only replica records the
failure timestamp in its database for the user entry. Therefore, both the read-only replica and master
server record the same password failure timestamp for the bind.
If the ibm-replicateSecurityAttribute attribute is not set on the master server, the master
server does not interpret the control that it receives from the read-only replica. If the master is unable
to interpret the control, it does not return the password failure timestamp in its response to the
read-only replica. However, master server updates its password failure count and then replicates it
to other servers. If the read-only replica does not receive the password failure timestamp from the
master, it records the password failure timestamp at its end in the database.

OID
1.3.18.0.2.10.34

Syntax
The master server sets the response value with the bind failure timestamp in the string format.

Behavior
This control is registered only for a bind operation.
A read-only replica server sends the control to an identified master as an internal request along
with the bind operation by using the same user credentials. The read-only replica sends the request
when a user attempts a bind operation that results in invalid credentials, password expiration, or
password grace use time. In the control response, the master server sends a timestamp value of
invalid credentials, password expiration, or password grace use time to the read-only replica. Only a
master server supports this control and is meant for an RDBM back-end server.
Any user can send this control. A master server expects this control from a read-only replica. If any
external client or user sends this control, the master server functions returns a password failure
timestamp. It is a non-critical control and return code does not vary.
No additional information is required for the control. The master server ignores any additional
information that is receives. The return response from the master server might contain a password
failure timestamp value.
A read-only replica uses the ldap_get_result_control call to parse the response for the
timestamp. If there is an error in the format of the timestamp, the read-only replica takes the
following actions:

• Ignores the timestamp from the master server.
• Records the timestamp of the read-only replica in the user entry.

This control operates independent of other controls. Therefore, the control does not depend on other
control and does not affect the behavior of other controls.
This control is not supported by the Administration Server.

Scope
The control lasts for one operation.

Auditing
In this control, the following information is audited:

• OID
• Timestamp in string format

Appendix F. Object Identifiers (OIDs) for extended operations and controls 355

Replication supplier bind control
The Replication supplier bind control explains its use with the server and provides the results.
Description

Gateway servers send only the changes they receive from a gateway to their local servers. The servers
are in the same site as the gateway server, including peer, forwarder, or pelican server. They do
not send these changes to the other gateway servers. The Replication supplier bind control helps a
gateway server to decide which servers to send to and what to send them. When a gateway server
binds to its consumers, it sends the control with its serverID as the control value. When a gateway
server receives such a control in a bind request, it knows that a gateway server is bound as a supplier.

OID
1.3.18.0.2.10.18

Syntax

controlValue :: SEQUENCE {
 SupplierServerId LDAPString
}

Behavior
This control is registered for the following operations:

• Bind

Only the Master DN is enabled to send this control.

Note: If the control is sent by a user who does not have access, LDAP_UNWILLING_TO_PERFORM is
returned.

If more information is required for the control, and there is an error in the formatting of that
information, the following error returns might occur:

• Missing information – LDAP_OPERATIONS_ERROR
• Additional information – ignored
• Invalid information – ignored

This control has the following possible return codes:

• LDAP_PROTOCOL_ERROR
• LDAP_UNWILLING_TO_PERFORM

The Administration Server does not support this control.

Scope
The control lasts for the life of the bind session. When the control is received, a server knows that a
gateway server is bound as a supplier. Depending on the supplier information, the server can decide to
which consumers an entry is to be replicated.

Replication update ID control
The Replication update ID control explains its use with the server and provides the results.
Description

This control was created for serviceability. If the supplier server is set to issue the control, each
replicated update is accompanied by this control. The data in this control can be used to identify
problems with multi-threaded replication and replication conflict resolution. By default, no supplier
includes this control.

Note: This control is always enabled.

OID
1.3.18.0.2.10.29

356 IBM Security Directory Suite: Programming Reference

Syntax

replication agreement DN:replication change ID

These values are set by the supplier.
Behavior

This control is not registered by any operations.

All users are enabled to send the control.

The Administration Server does not support this control.

Scope
The control lasts for one operation.

Auditing
When the server receives this control, the audit plug-in adds the following lines to the audit entry:

controlType: OID
criticality: false
value: Replication agreement DN:change ID

Return deleted objects control
The Return deleted objects control explains its use with the server and provides the results.
Description

The return deleted objects control when included in a null base search request, all entries in the
database and those entries with attribute isDeleted set to TRUE are returned.

OID
1.3.18.0.2.10.33

Syntax
This control has no value.

Behavior

When this control is included in a null base search request, all entries in the database and those
entries with attribute isDeleted set to TRUE are returned. Normally, all the entries under “cn=
Deleted Objects” have the attribute isDeleted set to TRUE, and entries under other subtree do
not have this attribute defined.

This control applies only to a server with RDBM back-end. When this control is included with search
base, cn=Deleted Objects, all the entries under the subtree are returned, even those entries with
attribute isDeleted not set to TRUE. When the control is included with search base other than
cn=Deleted Objects, no entries are returned.

Users with sufficient ACL to access the cn=Deleted Objects subtree are able to search and update
the entries under the subtree on a directory server instance. The users include primary administrator,
local administration group members with DirDataAdmin role, and global administrator group
members. Local administrator group members with Server Configuration group member rights
(ServerConfigGroupMember) are able to update the attributes of the entries that are related to
tombstone in the configuration file.

If the control is sent by users who do not have sufficient access permissions, then
LDAP_INSUFFICIENT_ACCESS is returned.

This control has the following possible return codes:

• LDAP_NO_SUCH_OBJECT
• LDAP_NO_MEMORY
• LDAP_INSUFFICIENT_ACCESS
• LDAP_OPERATIONS_ERROR

The Administration Server does not support this control.

Appendix F. Object Identifiers (OIDs) for extended operations and controls 357

Scope
This control lasts for one search operation.

Server administration control
The Server administration control explains its use with the server and provides the results.
Description

Allows an update operation by the administrator under conditions when the operation is normally
refused. For example, the server is quiesced, the server is a read-only replica, and others).

This control can be specified on an update operation (add, modify, modRdn, modDn, delete) by a client
that is bound as an administrator. This control can also be specified on a bind-related operation.
On a bind operation, this control specifies that it is an administrative connection and the connection
must not be dropped when the idle connections are cleaned. This control is only recognized if a
client is bound as a primary directory administrator, global admin group member, or member of the
administrative group with any role other than the “NoAdmin” role. When present, a server that would
normally refuse updates (quiesced server, forwarder, or replica), allows the update. The updates are
replicated like other updates.

Note: This control requires to be used with user discretion. With the control, entry updates are
allowed under unusual circumstances. Therefore, it is the responsibility of the user to ensure the
server that is updated ends up in a state consistent with the other servers. For example, the
timestamp of an entry which is used as the base for replication conflict resolution in IBM Security
Directory Suite. The timestamp might be different on different servers if the entry gets updated
individually on those servers with this control.

OID
1.3.18.0.2.10.15

Syntax
This control has no value.

Behavior
This control is registered for the following operations:

• Add
• Delete
• Modify
• Modrdn
• Moddn
• Bind
• Unbind
• Search

Administrator Server supports the following extended operations:

• Attribute type
• DN normalization
• Dynamic update requests
• Get lines
• Get number of lines
• LDAP trace facility
• LogMgmtControl
• ServerBackupRestore
• Start, stop server
• Start TLS

358 IBM Security Directory Suite: Programming Reference

• User type

Administrator Server supports the following controls:

• Audit
• Password policy request
• Server administration

The following persons are enabled to send the control:

• Primary Directory Administrator
• Local Administration Group Member
• Global Administration Group Member

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

Scope
The control lasts for one operation. When the control is received, a server knows that a gateway
server is bound as a supplier. Depending on the supplier information, the server can decide to which
consumers an entry is to be replicated.

Sorted search results control
The Sorted search results control explains its use with the server and provides the results.
Description

The sorted search results control enables a client to receive search results that are sorted by a sort
key.

Note: This control can be disabled by setting the ibm-slapdSortKeyLimit to 0.

There is also a configuration option which enables an administrator to grant or deny the use
of this control to non-administrators. In this case, administrators refer to the primary directory
administrator, local administration group members, and global administration group members.
If the ibm-slapdSortSrchAllowNonAdmin attribute in the cn=RDBM Backends, cn=IBM
Directory, cn=Schemas, cn=Configuration entry is set to TRUE, then all users are enabled to
use the sorted search. If set to FALSE, only administrators can use the sorted search.

OID
1.2.840.113556.1.4.473

Syntax

The controlValue is an OCTET STRING who value is the
BER encoding of a value with the following SEQUENCE:

SortKeyList ::= SEQUENCE of SEQUENCE {
 AttributeType AttributeDescription,
 OrderingRule [0] MatchingRuleId OPTIONAL,
 ReverseOrder [1] BOOLEAN DEFAULT FALSE }

Behavior
This control is registered for the following operations:

• Search

In a default user installation, any user can send this control. If the ibm-
slapdSortSrchAllowNonAdmin is set to FALSE, the use of this control is restricted to
administrative users:

• Primary Directory Administrator
• Local Administration Group members
• Global Administration Group members

Appendix F. Object Identifiers (OIDs) for extended operations and controls 359

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

If more information is required for the control, and there is an error in the formatting of that
information, the following error returns might occur:

• Missing information – LDAP_DECODING_ERROR
• Additional information – LDAP_DECODING_ERROR
• Invalid information – LDAP_DECODING_ERROR

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_DECODING_ERROR
• LDAP_OPERATIONS_ERROR
• LDAP_INSUFFICIENT_ACCESS
• LDAP_OTHER

The Administration Server does not support this control.

Scope
The control lasts for the term of one operation. The control changes the behavior of a search operation
that goes against the RDBM back-end. The control requests that the server return the entries in a
sorted order. The configuration back-end and schema back-ends do no support this control.

Auditing
When the server receives this control, the audit plug-in adds the following lines to the audit entry:

controlType: control ID
criticality: true | false

Subtree delete control
The Subtree delete control explains its use with the server and provides the results.
Description

This control is attached to a delete request. This control indicates that the specified entry and all
descendant entries are to be deleted. However, if the subtree is an active replication context, the
control does not take effect and an LDAP_UNWILLING_TO_PERFORM message is returned. This return
means that the subtree to be deleted might contain any replication agreements that the server uses to
replicate. If the subtree contains any replication agreements, then the subtree cannot be deleted by
using this control.

OID
1.2.840.113556.1.4.805

Syntax
This control has no value.

Behavior
This control is registered for the following operations:

• Delete

The following persons are enabled to send the control:

• Primary Directory Administrator
• Local Administration Group members
• Global Administration Group members
• Master server DN

Note: If the control is sent by a user who does not have access, LDAP_INSUFFICIENT_ACCESS is
returned.

360 IBM Security Directory Suite: Programming Reference

This control has the following possible return codes:

• LDAP_INSUFFICIENT_ACCESS
• LDAP_UNWILLING_TO_PERFORM

The Administration Server does not support this control.

Scope
The control lasts for the term of one delete operation. The delete operation not only deletes the base
entry that is specified in the request, but also deletes all the descendant entries.

Transaction control
The Transaction control explains its use with the server and provides the results.
Description

The Transaction control is sent along with update operations run within a transaction.

Note: This control is enabled by default, but can be disabled by changing the value in the
configuration file for the ibm-slapdTransactionEnable attribute.

The ibm-slapdTransactoinEnabled attribute is in the configuration file in the
cn=Transaction,cn=configuration entry. If the value is set to FALSE, transactions are not
enabled. If set to TRUE, transactions are enabled. Transactions can also be enabled or disabled by
using the web administration tool.

OID
1.3.18.0.2.10.5

Syntax
The controlValue is set to the transaction ID returned in the StartTransaction response.

Behavior
This control is registered for the following operations:

• Add
• Delete
• Modify
• Modrdn

Any user can send this control.

If more information is required for the control, and the transaction ID sent in the control does not
match the transaction ID on the connection, then LDAP_PROTOCOL_ERROR is returned.

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_PROTOCOL_ERROR
• LDAP_TIMELIMIT_EXCEEDED
• LDAP_SIZELIMIT_EXCEEDED

The Administration Server does not support this control.

Scope
The control lasts for the term of one operation, but must be sent only in a transactional context. When
the control is sent only with an update operation to the RDBM back-end, the server holds the update
until an end-transaction request is received. The control is only supported on updated operations that
are run in a transactional context (a start transaction extended operation must be run first).

Auditing
When the server receives this control, the audit plug-in adds the following lines to the audit entry:

controlType: control ID
criticality: true | false

Appendix F. Object Identifiers (OIDs) for extended operations and controls 361

Virtual list view control
The Virtual list view control explains its use with the server and provides the results.
Description

The Virtual list view control extends the regular LDAP search operation and includes a server-side
sorting control. With this control, the server returns a contiguous subset of entries that are taken from
an ordered result set that match a criteria of a target entry, rather than returning the complete set of
searchResultEntry messages.

Request
OID

2.16.840.1.113730.3.4.9
Syntax

VirtualListViewRequest ::= SEQUENCE {
 beforeCount INTEGER (0..maxInt),
 afterCount INTEGER (0..maxInt),
 target CHOICE {
 byOffset [0] SEQUENCE {
 offset INTEGER (1 .. maxInt),
 contentCount INTEGER (0 .. maxInt) },
 greaterThanOrEqual [1] AssertionValue },
 contextID OCTET STRING OPTIONAL }

where,

• beforeCount - Indicates the number of entries before the target entry that the client wants the
server to send.

• afterCount - Indicates the number of entries after the target entry that the client wants the
server to send.

• offset - Used to identify the target entry in the Virtual list view request control by determining
the target entry that is offset within the list. The server examines the contentCount and offset
given by the client and computes the corresponding offset within the list by using following
formula:

 Si = Sc * (Ci / Cc)

where,

– Si is the actual list offset that is used by the server
– Sc is the server estimate for content count
– Ci is the client submitted offset
– Cc is the client submitted content count

• contentCount - Used to identify the target entry.
• greaterThanOrEqual - Indicates a matching rule assertion value. If present, its value is used

to determine the target entry by comparing with the attribute values specified as the primary
sort key.

• contextID - Contains a value for the most recently received contextID field for the same list
view from the Virtual list view response control.

Response
OID

2.16.840.1.113730.3.4.10
Syntax

VirtualListViewResponse ::= SEQUENCE {
 targetPosition INTEGER (0 .. maxInt),
 contentCount INTEGER (0 .. maxInt),
 virtualListViewResult ENUMERATED {
 success (0),

362 IBM Security Directory Suite: Programming Reference

 operationsError (1),
 protocolError (2),
 unwillingToPerform (53),
 insufficientAccessRights (50),
 timeLimitExceeded (3),
 adminLimitExceeded (11),
 innapropriateMatching (18),
 sortControlMissing (60),
 offsetRangeError (61),
 other(80),
 ... },
 contextID OCTET STRING OPTIONAL }

where,

• targetPosition - Indicates the offset list for the target entry.
• contentCount - Indicates the number of entries in the list that is based on the server estimate.

The value of the count depends on the access rights over all the entries for the user who is
bound to the Directory Server.

• contextID - Server defined octet string.
• virtualListViewResult - Contains error messages that are related to the Virtual list view

operation. For example, insufficientAccessRights indicates that the server denies the
client the permission to run the Virtual list view operation.

Behavior

The Virtual list view control extends the regular LDAP Search operation and includes a server-side
sorting control. In this operation, the server returns a contiguous subset of entries that are taken from
an ordered result set that match a criteria of a target entry, rather than returning the complete set of
searchResultEntry messages.

When you send this control, it must have an accompanying server-side sorting control. If server-side
sorting control is not specified, the request is rejected with the LDAP_SORT_CONTROL_MISSING
error.

Directory Server recognizes the Virtual list view request control that is sent along with a search
request. The search request is then passed to the RDBM back-end from which the result set is
fetched. Then, the cursor is positioned at the required offset in the search result set.

All users are authorized to use this control. This control can be enabled or disabled on a server by
using a configuration option.

This control has the following possible return codes:

• LDAP_SUCCESS
• LDAP_OPERATIONS_ERROR
• LDAP_PROTOCOL_ERROR
• LDAP_UNWILLING_TO_PERFORM
• LDAP_INSUFFICIENT_ACCESS
• LDAP_TIMELIMIT_EXCEEDED
• LDAP_ADMINLIMIT_EXCEEDED
• LDAP_INAPPROPRIATE_MATCHING
• LDAP_SORT_CONTROL_MISSING
• LDAP_INDEX_RANGE_ERROR
• LDAP_OTHER

The Administrator Server does not support this control.

Scope
This control lasts only for one search operation.

Appendix F. Object Identifiers (OIDs) for extended operations and controls 363

364 IBM Security Directory Suite: Programming Reference

Appendix G. Client libraries
The 32-bit and the 64-bit libraries have the same names.

The following table lists the libraries that are built for IBM Security Directory Suite as part of client.

Table 21. Supported libraries on different platforms

Libraries Operating Systems

AIX Linux Solaris Windows

idsldap_

plugin_

ibm_gsskrb

Y NA NA NA

idsldap_

plugin_

sasl_

digest-md5

Y Y Y Y

libidsldap Y Y Y Y

libidsldapn Y NA NA Y

libids

ldapstatic

Y Y Y Y

libids

ldapstaticn

Y NA NA Y

libids

ldapiconv

Y Y Y Y

libidsldif NA Y NA NA

libids

ldifstatic

Y Y Y Y

libibm

ldapdbg

Y Y Y Y

ldap NA NA NA Y

ldapstatic NA NA NA Y

Note: The dynamic version of libldif is available on Linux, but not on Solaris.

Legend:
Y

This library is 64-bit recertified on the corresponding operating system.
NA

This library is not 64-bit recertified, or it is not valid for the corresponding operating system.

© Copyright IBM Corp. 2007, 2015 365

Hence the architecture (32-bit or 64-bit) that is used for those binary files is the one that is used for these
libraries, as well. Therefore, these libraries are placed in the appropriate folder (lib or lib64).

Note: The following library extensions are applicable for each platform:

Table 22. Library extensions on different platforms

Platform Static library Shared (Dynamic) library

AIX .a .a

Linux .a .so

Solaris .a .so

Windows .lib .dll

366 IBM Security Directory Suite: Programming Reference

Appendix H. Sample Makefile
The sample Makefile (makefile.ex) is updated with the rules and information about building 64-bit
clients.

The sample Makefile lists the 64-bit compilers or linkers to be used along with the relevant flags to be
passed. It also lists the 64-bit libraries, needed to build the customized LDAP clients.

The following sample shows the makefile for 64-bit Linux:

#--
#
ABSTRACT: makefile to generate the example LDAP client programs
#
Licensed Materials - Property of IBM
#
5725-Y17
#
(C) Copyright IBM Corp. 1997, 2007 All Rights Reserved
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
#--
Copyright (c) 1994 Regents of the University of Michigan.
All rights reserved.
#
Redistribution and use in source and binary forms are permitted
provided that this notice is preserved and that due credit is given
to the University of Michigan at Ann Arbor. The name of the University
may not be used to endorse or promote products derived from this
software without specific prior written permission. This software
is provided ``as is'' without express or implied warranty.
#--
#
This makefile will build the example programs whose source is contained
in this directory. The four programs generated are:
ldapsearch
ldapmodify
ldapadd (a hard-link to ldapmodify)
ldapmodrdn
ldapdelete
ldapchangepwd
ldapexop
In addition to being the examples of use of the LDAP client api, these
programs are useful command line utilities. See the README file for
more details.

#
default definitions for Unix utilities (may be changed here)
CC = gcc
RM = rm -f
HARDLN = ln
MKDIR = mkdir -p

The following variable indicates the architecture of the output binaries
on using this Makefile.

BITS = 64

###
General compiler options
###

DEFINES = -DLINUX -D_GCC3
#Note: Append the path to appropriate LDAP headers if not already present
#in the include list.
INCLUDES = -I/opt/ibm/ldap/V8.0.1.x/include -I../include -I/usr/include

###
Options for building 32-bit targets on AMD64 Linux
###
#---
Use the following definition to link the sample programs with
the shared LDAP library dynamically.
CLIENT_LIBS = -lidsldif -libmldap -libmldapdbg -lidsldapiconv

© Copyright IBM Corp. 2007, 2015 367

LIBS = -L/opt/ibm/ldap/V8.0.1.x/lib -L/usr/lib -lpthread -ldl
#---
Or use this definition to link the LDAP library statically:
CLIENT_LIBS = -libmldapstatic -lidsldifstatic
LIBS = -L/opt/ibm/ldap/V8.0.1.x/lib -L../lib -L/usr/lib -lpthread -ldl
#---
LFLAGS = -Wl,-rpath,/opt/ibm/ldap/V8.0.1.x/lib $(LIBS) $(CLIENT_LIBS)
CFLAGS = $(INCLUDES) $(DEFINES) -m32
###
Options for building 64 bit targets on AMD64 Linux
###
#--
Use the following definition to link the sample programs with
the shared LDAP library dynamically
 CLIENT_LIBS = -lidsldif -libmldap -libmldapdbg -lidsldapiconv
 LIBS = -L/opt/ibm/ldap/V8.0.1.x/lib64 -L/usr/lib64 -lpthread -ldl
#--
Or use this definition to link the LDAP library statically
CLIENT_LIBS = -libmldapstatic -lidsldifstatic
LIBS = -L/opt/ibm/ldap/V8.0.1.x/lib64 -L../lib64 -L/usr/lib64 -lpthread -ldl
#--
 LFLAGS = -Wl,-rpath,/opt/ibm/ldap/V8.0.1.x/lib64 $(LIBS) $(CLIENT_LIBS)
 CFLAGS = $(INCLUDES) $(DEFINES)
###
Targets
###

all: ldapsearch ldapmodify ldapdelete ldapmodrdn ldapadd ldapchangepwd ldapexop

ldapsearch:
 $(MKDIR) $(BITS)
 $(CC) $(CFLAGS) -o $(BITS)/$@ ldapsearch.c $(LFLAGS)

ldapmodify:
 $(MKDIR) $(BITS)
 $(CC) $(CFLAGS) -o $(BITS)/$@ ldapmodify.c $(LFLAGS)

ldapdelete:
 $(MKDIR) $(BITS)
 $(CC) $(CFLAGS) -o $(BITS)/$@ ldapdelete.c $(LFLAGS)

ldapmodrdn:
 $(MKDIR) $(BITS)
 $(CC) $(CFLAGS) -o $(BITS)/$@ ldapmodrdn.c $(LFLAGS)

ldapchangepwd:
 $(MKDIR) $(BITS)
 $(CC) $(CFLAGS) -o $(BITS)/$@ ldapchangepwd.c $(LFLAGS)

ldapexop:
 $(MKDIR) $(BITS)
 $(CC) $(CFLAGS) -o $(BITS)/$@ ldapexop.c $(LFLAGS)

ldapadd: ldapmodify
 $(RM) $(BITS)/$@
 $(HARDLN) $(BITS)/ldapmodify $(BITS)/ldapadd

clean:
 $(RM) *.o core a.out $(BITS)/*.o $(BITS)/core $(BITS)/a.out $(BITS)/ldapsearch \
 $(BITS)/ldapmodify $(BITS)/ldapdelete \
 $(BITS)/ldapmodrdn $(BITS)/ldapadd $(BITS)/ldapchangepwd $(BITS)/ldapexop

The following example shows a sample makefile for 64-bit Windows operating system:

#
#
#--
#
ABSTRACT: makefile to generate the example LDAP client programs
#
Licensed Materials - Property of IBM
#
5725-Y17
#
(C) Copyright IBM Corp. 1997, 2007 All Rights Reserved
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
#--

368 IBM Security Directory Suite: Programming Reference

Copyright (c) 1994 Regents of the University of Michigan.
All rights reserved.
#
Redistribution and use in source and binary forms are permitted
provided that this notice is preserved and that due credit is given
to the University of Michigan at Ann Arbor. The name of the University
may not be used to endorse or promote products derived from this
software without specific prior written permission. This software
is provided ``as is'' without express or implied warranty.
#--
#

This makefile will build the example programs whose source is contained
in this directory. The four programs generated are:
ldapsearch
ldapmodify
ldapadd (a hard-link to ldapmodify)
ldapmodrdn
ldapdelete
ldapchangepwd
ldapexop
In addition to being the examples of use of the LDAP client api, these
programs are useful command line utilities. See the LDAP Programming
Reference for more details.

#
default definitions for client utilities (may be changed here)
CC = $(SDKROOT)\bin\win64\x86\AMD64\cl.exe
LD = $(SDKROOT)\bin\win64\x86\AMD64\link.exe
RM = del /f
HARDLN = copy
MKDIR = md

Specify the directory where the C SDK is installed. In our case the Feb 2003
version of the VC SDK was used.
SDKROOT = C:\sdk\ms\2003_sp1

Specify the directory where ISDS 8.0.1.x clients are installed
INSTALLROOT = C:\Progra~1\IBM\ldap\V8.0.1.x

The following variable indicates the architecture of the output binaries
on using this Makefile.

BITS = 64

###
General compiler options
###

DEFINES = /DNDEBUG /DWIN32 /D_CONSOLE /D_MBCS /DNT
INCLUDES = /I$(INSTALLROOT)\include /I../include /I$(SDKROOT)\include\crt
 /I$(SDKROOT)\include\crt\sys /I$(SDKROOT)\include
CFLAGS = /nologo /MD /EHsc /Od $(INCLUDES) $(DEFINES) /Fo$(BITS)/

###
Options for building 64-bit targets for Windows (AMD64) ##
###
LIBS = kernel32.lib uuid.lib msvcrt.lib oldnames.lib Wsock32.lib
 AdvAPI32.lib bufferoverflowu.lib
#--
Use the following definition to link the sample programs with
the LDAP shared library.
CLIENT_LIBS = libidsldap.lib libibmldapdbg.lib libidsldifstatic.lib
LDIR = /LIBPATH:$(INSTALLROOT)\lib64 /LIBPATH:$(SDKROOT)\Lib\AMD64
#--
Use the following definition to link the sample programs statically.
#CLIENT_LIBS = libibmldapdbgstatic.lib libidsldapstatic.lib libidsldifstatic.lib
#LDIR = /LIBPATH:$(INSTALLROOT)\lib64 /LIBPATH:..\lib64 /LIBPATH:$(SDKROOT)\Lib\AMD64
#--
LFLAGS = /nologo /subsystem:console /incremental:no \
 $(LDIR) $(LIBS) $(CLIENT_LIBS)
Note : In case the libraries aren't picked up using the above syntax, modify
the env. variable PATH & LIB to point to the path of the requisite libraries.
#
###
Targets
###

all: ldapsearch.exe ldapmodify.exe ldapdelete.exe ldapmodrdn.exe
 ldapadd.exe ldapchangepwd.exe ldapexop.exe

ldapsearch.exe: $(BITS)/ldapsearch.obj $(BITS)/getopt.obj

Appendix H. Sample Makefile 369

 -@ $(MKDIR) $(BITS)
 $(CC) $(CFLAGS) /c getopt.c
 $(CC) $(CFLAGS) /c ldapsearch.c
 $(LD) $(LFLAGS) /out:$(BITS)/$@ $**
 $(RM) $(BITS)*.obj $(BITS)*.exp $(BITS)*.lib

ldapmodify.exe: $(BITS)/ldapmodify.obj $(BITS)/getopt.obj
 -@ $(MKDIR) $(BITS)
 $(CC) $(CFLAGS) /c getopt.c
 $(CC) $(CFLAGS) /c ldapmodify.c
 $(LD) $(LFLAGS) /out:$(BITS)/$@ $**
 $(RM) $(BITS)*.obj $(BITS)*.exp $(BITS)*.lib

ldapdelete.exe: $(BITS)/ldapdelete.obj $(BITS)/getopt.obj
 -@ $(MKDIR) $(BITS)
 $(CC) $(CFLAGS) /c getopt.c
 $(CC) $(CFLAGS) /c ldapdelete.c
 $(LD) $(LFLAGS) /out:$(BITS)/$@ $**
 $(RM) $(BITS)*.obj $(BITS)*.exp $(BITS)*.lib

ldapmodrdn.exe: $(BITS)/ldapmodrdn.obj $(BITS)/getopt.obj
 -@ $(MKDIR) $(BITS)
 $(CC) $(CFLAGS) /c getopt.c
 $(CC) $(CFLAGS) /c ldapmodrdn.c
 $(LD) $(LFLAGS) /out:$(BITS)/$@ $**
 $(RM) $(BITS)*.obj $(BITS)*.exp $(BITS)*.lib

ldapchangepwd.exe: $(BITS)/ldapchangepwd.obj $(BITS)/getopt.obj
 -@ $(MKDIR) $(BITS)
 $(CC) $(CFLAGS) /c getopt.c
 $(CC) $(CFLAGS) /c ldapchangepwd.c
 $(LD) $(LFLAGS) /out:$(BITS)/$@ $**
 $(RM) $(BITS)*.obj $(BITS)*.exp $(BITS)*.lib

ldapexop.exe: $(BITS)/ldapexop.obj $(BITS)/getopt.obj
 -@ $(MKDIR) $(BITS)
 $(CC) $(CFLAGS) /c getopt.c
 $(CC) $(CFLAGS) /c ldapexop.c
 $(LD) $(LFLAGS) /out:$(BITS)/$@ $**
 $(RM) $(BITS)*.obj $(BITS)*.exp $(BITS)*.lib

ldapadd.exe: ldapmodify.exe
 -@ del /f $(BITS)/$@
 $(HARDLN) $(BITS)\ldapmodify.exe $(BITS)\ldapadd.exe

clean:
 $(RM) *.obj *.exe *.exp *.lib $(BITS)*.obj $(BITS)*.exe $(BITS)*.exp
 $(BITS)*.lib

$(BITS)/getopt.obj: getopt.c

$(BITS)/ldapsearch.obj: ldapsearch.c

$(BITS)/ldapmodify.obj: ldapmodify.c

$(BITS)/ldapdelete.obj: ldapdelete.c

$(BITS)/ldapmodrdn.obj: ldapmodrdn.c

$(BITS)/ldapchangepwd.obj: ldapchangepwd.c

$(BITS)/ldapexop.obj: ldapexop.c

You can find the sample Makefile (makefile.ex) in ldap_home/examples.

370 IBM Security Directory Suite: Programming Reference

Appendix I. Limited transaction support
The limited transaction support provides information about its properties.

Transactions have four critical properties:
atomicity

The transaction must be run completely. If any part of the transaction fails, the entire transaction is
rolled back preserving the original state of the directory.

consistency
The transaction preserves the internal consistency of the database.

isolation
The transaction is serialized by a global lock so that it is run independently of any other transactions.

durability
The results of a committed transaction are backed up in stable storage, usually a disk.

Usage
Transactions are limited to a single connection to a single Directory Server and are supported by the LDAP
extended operations APIs.

Only one transaction at a time can be running over the same connection. During the transaction, no
non-transactional operations can be issued over the same connection.

A transaction consists of three parts:

• An extended request to start the transaction
• Update operations:

– add
– modify
– modify rdn
– delete

Note: The current release does not support some operations. For example, bind, unbind, search,
extended op, and other operations. Referral objects can be updated only with manageDsaIT control
specified.

• An extended request to end the transaction

To start a transaction, the client must send an extended request in the form of:

ExtendedRequest ::= [APPLICATION 23] SEQUENCE {

requestValue [1] OCTET STRING OPTIONAL }

When the server receives the request, it generates a unique transaction ID. It then sends back an
extended response in the form of:

ExtendedResponse ::= [APPLICATION 24]SEQUENCE{

COMPONENTS OF LDAPResult,

responseName [10] LDAPOID OPTIONAL,

response [11] OCTET STRING OPTIONAL }

© Copyright IBM Corp. 2007, 2015 371

The client submits subsequent update operations asynchronously with a control attached to all
operations. The control contains the transaction ID returned in the StartTransaction response. The
control has the form of:

Control ::= SEQUENCE {

controlType LDAPOID,

criticality BOOLEAN DEFAULT FALSE,

controlValue OCTET STRING OPTIONAL }

The server does not process update operations immediately. Instead, it saves the necessary information
of operations in a queue.

The client sends an extended request to end the transaction that either commits or rolls back the
transaction. If the server receives the commit operation result, it uses a global writer lock to serialize the
transaction. It then retrieves the set of update operations that are identified by the transaction ID from
the queue and begins to run these operations. If all operations succeed, the results are committed to the
database and the server sends back the success return code.

As each operation is run, it generates a success return code unless an error occurs during the transaction.
In this case, an unsuccessful return code is returned for all the operations. If any operation fails, the
server rolls back the transaction and sends back the error return code of the failed operation. It sends
to the operation in the client that caused the failure. The EndTransaction operation also receives an
unsuccessful return code if the transaction is not successful. For any subsequent update operations that
remain in the queue, an unsuccessful return code is generated. When the transaction times out, the
connection is dropped and any subsequent operations receive an unsuccessful return code.

The server releases the global lock after the commit or the rollback is run. The event notification and
change log operations are run only if the transaction succeeds.

Example
The ldapmod.c example file provides an understanding about the transaction capability.

The following example is an ldapmod.c example file, which is modified for limited transaction capability:

static char sccsid[] = "@(#)17 1.35 11/18/02 progref.idd, ldap, 5.2 15:20:20";
/*
 * COMPONENT_NAME: ldap.clients
 *
 * ABSTRACT: generic program to modify or add entries using LDAP with a transaction
 *
 * ORIGINS: 202,27
 *
 * (C) COPYRIGHT International Business Machines Corp. 2002
 * All Rights Reserved
 * Licensed Materials - Property of IBM
 *
 * US Government Users Restricted Rights - Use, duplication or
 * disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
 */

/*
 * Copyright (c) 1995 Regents of the University of Michigan.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms are permitted
 * provided that this notice is preserved and that due credit is given
 * to the University of Michigan at Ann Arbor. The name of the University
 * may not be used to endorse or promote products derived from this
 * software without specific prior written permission. This software
 * is provided ``as is'' without express or implied warranty.
 */

/* ldaptxmod.c - generic program to modify or add entries using LDAP
using a single transaction */

#include <ldap.h>

#include <stdio.h>

372 IBM Security Directory Suite: Programming Reference

#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/stat.h>

#if !defined(WIN32)
#include <sys/file.h>
#include <fcntl.h>
#include <unistd.h>
#endif
#define LDAPMODIFY_REPLACE 1
#define LDAPMODIFY_ADD 2

#if defined(WIN32)
#define strcasecmp stricmp
#endif

#define safe_realloc(ptr, size) (ptr == NULL ? malloc(size) : \
 realloc(ptr, size))

#define MAX_SUPPLIED_PW_LENGTH 256
#define LDAPMOD_MAXLINE 4096

/* Strings found in replog/LDIF entries (mostly lifted from slurpd/slurp.h) */
#define T_REPLICA_STR "replica"
#define T_DN_STR "dn"
#define T_CHANGETYPESTR "changetype"
#define T_ADDCTSTR "add"
#define T_MODIFYCTSTR "modify"
#define T_DELETECTSTR "delete"
#define T_MODRDNCTSTR "modrdn"
#define T_MODDNCTSTR "moddn"
#define T_MODOPADDSTR "add"
#define T_OPERSTR "transaction_operation"
#define T_MODOPREPLACESTR "replace"
#define T_MODOPDELETESTR "delete"
#define T_MODSEPSTR "-"
#define T_NEWRDNSTR "newrdn"
#define T_DELETEOLDRDNSTR "deleteoldrdn"
#define T_NEWSUPERIORSTR "newsuperior"
#define T_CONTROLSTR "control"

extern char * str_getline(char**);
char * getPassword(void);
char * read_one_record(FILE *fp);

#if defined _WIN32
int getopt (int, char**, char*);
#endif
#ifndef -win32
#ifdef -GCC3
#include <errno.h>
#else
extern int errno;
#endif
#endif

/*Required for password prompting*/
#ifdef -win32
#include <conio.h>
#else
/*termios.h is defined by POSIX*/
#include <termios.h>
#endif

/* Global variables */
static LDAP *ld = NULL; /* LDAP sesssion handle */
static FILE *fp = NULL; /* input file handle */
static char *prog = NULL; /* program name */
static char *binddn = NULL; /* bind DN */
static char *passwd = NULL; /* bind password */
static char *ldaphost = "localhost"; /* server host name */
static char *mech = NULL; /* bind mechanism */
static char *charset = NULL; /* character set for input */
static char *keyfile = NULL; /* SSL key database file name*/
static char *keyfile_pw = NULL; /* SSL key database password */
static char *cert_label = NULL; /* client certificate label */
static int hoplimit = 10; /* limit for referral chasing */
static int ldapport = LDAP_PORT; /* server port number */
static int doit = 1; /* 0 to make believe */
static int verbose = 0; /* 1 for more trace messages */

Appendix I. Limited transaction support 373

static int contoper = 0; /* 1 to continue after errors */
static int force = 0;
static int valsfromfiles = 0;
static int operation = LDAPMODIFY_REPLACE;
static int referrals = LDAP_OPT_ON;
static int ldapversion = LDAP_VERSION3;
static int DebugLevel = 0; /* 1 to activate library traces */
static int ssl = 0; /* 1 to use SSL */
static int manageDsa = LDAP_FALSE; /* LDAP_TRUE to modify referral objects */

static LDAPControl manageDsaIT = {
 "2.16.840.1.113730.3.4.2", /* OID */
 { 0, NULL }, /* no value */
 LDAP_OPT_ON /* critical */
};

/* NULL terminated array of server controls*/
static LDAPControl *Server_Controls[3] = {NULL, NULL, NULL};

static int Num_Operations = 0; /* count of times one must go to
 ldap_result to check result codes */
static int Message_ID = 0; /* message ID returned by async
 ldap operation, currently not tracked*/
static int abort_flag = 0; /* abort transaction flag set by
 -A parameter */

/* Implement getopt() for Windows to parse command line arguments. */
#if defined(_WIN32)
char *optarg = NULL;
int optind = 1;
int optopt = 0;
#define EMSG ""

int getopt(int argc, char **argv, char *ostr) {
 static char *place = EMSG;
 register char *oli;

 if (!*place) {
 if (optind >= argc || *(place = argv[optind]) != '-' || !*++place) {
 return EOF;
 }
 if (*place == '-') {
 ++optind;
 return EOF;
 }
 }
 if ((optopt = (int)*place++) == (int)':' || !(oli = strchr(ostr, optopt))) {
 if (!*place) {
 ++optind;
 }
 fprintf(stderr, "%s: %s: %c\n", "getopt", "illegal option", optopt);
 return ('?');
 }
 if (*++oli != ':') {
 optarg = NULL;
 if (!*place)
 ++optind;
 } else {
 if (*place) {
 optarg = place;
 } else if (argc <= ++optind) {
 place = EMSG;
 fprintf(stderr, "%s: %s: %c\n", "getopt", "option requires an argument",
 optopt);
 return 0;
 } else {
 optarg = argv[optind];
 }
 place = EMSG;
 ++optind;
 }
 return optopt;
}
#endif

/* Display usage statement and exit. */
void usage()
{
 fprintf(stderr, "\nSends modify or add requests to an LDAP server.\n");
 fprintf(stderr, "usage:\n");
 fprintf(stderr, " %s [options] [-f file]\n", prog);
 fprintf(stderr, "where:\n");

374 IBM Security Directory Suite: Programming Reference

 fprintf(stderr, " file: name of input file\n");
 fprintf(stderr, "note:\n");
 fprintf(stderr, " standard input is used if file is not specified\n");
 fprintf(stderr, "options:\n");
 fprintf(stderr, " -h host LDAP server host name\n");
 fprintf(stderr, " -p port LDAP server port number\n");
 fprintf(stderr, " -D dn bind DN\n");
 fprintf(stderr, " -w password bind password or '?' for non-echoed prompt\n");
 fprintf(stderr, " -Z use a secure ldap connection (SSL)\n");
 fprintf(stderr, " -K keyfile file to use for keys\n");
 fprintf(stderr, " -P key_pw keyfile password\n");
 fprintf(stderr, " -N key_name private key name to use in keyfile\n");
 fprintf(stderr, " -R do not chase referrals\n");
 fprintf(stderr, " -M Manage referral objects as normal entries.\n");
 fprintf(stderr, " -m mechanism perform SASL bind with the given mechanism\n");
 fprintf(stderr, " -O maxhops maximum number of referrals to follow in a
 sequence\n");
 fprintf(stderr, " -V version LDAP protocol version (2 or 3; only 3 is
 supported)\n");
 fprintf(stderr, " -C charset character set name to use, as registered with
 IANA\n");
 fprintf(stderr, " -a force add operation as default\n");
 fprintf(stderr, " -r force replace operation as default\n");
 fprintf(stderr, " -b support binary values from files (old style
 paths)\n");
 fprintf(stderr, " -c continuous operation; do not stop processing
 on error\n");
 fprintf(stderr, " -n show what would be done but don't actually do
 it\n");
 fprintf(stderr, " -v verbose mode\n");
 fprintf(stderr, " -A set transaction abort flag\n");
 fprintf(stderr, " -d level set debug level in LDAP library\n");
 exit(1);
}

/* Parse command line arguments. */
void parse_arguments(int argc, char **argv) {
 int i = 0;
 int port = 0;
 char *optpattern = "FaAbcRMZnrv?h:V:p:D:w:d:f:K:P:N:C:O:m:";
#ifndef _WIN32
 extern char *optarg;
 extern int optind;
#endif

 fp = stdin;
 while ((i = getopt(argc, argv, optpattern)) != EOF) {
 switch (i) {
 case 'V':
 ldapversion = atoi(optarg);
 if (ldapversion != LDAP_VERSION3) {
 fprintf(stderr, "Unsupported version level supplied.\n");
 usage();
 }
 break;
 case 'A': /* force all changes records to be used */
 abort_flag = 1;
 break;
 case 'a':
 operation = LDAPMODIFY_ADD;
 break;
 case 'b': /* read values from files (for binary attributes)*/
 valsfromfiles = 1;
 break;
 case 'c': /* continuous operation*/
 contoper = 1;
 break;
 case 'F': /* force all changes records to be used*/
 force = 1;
 break;
 case 'h': /* ldap host*/
 ldaphost = strdup(optarg);
 break;
 case 'D': /* bind DN */
 binddn = strdup(optarg);
 break;
 case 'w': /* password*/
 if (optarg && optarg[0] == '?') {
 passwd = getPassword();
 } else
 if (!(passwd = strdup(optarg)))
 perror("password");

Appendix I. Limited transaction support 375

 break;
 case 'd':
 DebugLevel = atoi(optarg);
 break;
 case 'f': /* read from file */
 if ((optarg[0] == '-') && (optarg[1] == '\0'))
 fp = stdin;
 else if ((fp = fopen(optarg, "r")) == NULL) {
 perror(optarg);
 exit(1);
 }
 break;
 case 'p':
 ldapport = atoi(optarg);
 port = 1;
 break;
 case 'n': /* print adds, don't actually do them*/
 doit = 0;
 break;
 case 'r': /* default is to replace rather than add values*/
 operation = LDAPMODIFY_REPLACE;
 break;
 case 'R': /* don't automatically chase referrals*/
 referrals = LDAP_OPT_OFF;
 break;
 case 'M': /* manage referral objects as normal entries */
 manageDsa = LDAP_TRUE;
 break;
 case 'O': /* set maximum referral hop count */
 hoplimit = atoi(optarg);
 break;
 case 'm': /* use SASL bind mechanism */
 if (!(mech = strdup (optarg)))
 perror("mech");
 break;
 case 'v': /* verbose mode */
 verbose++;
 break;
 case 'K':
 keyfile = strdup(optarg);
 break;
 case 'P':
 keyfile_pw = strdup(optarg);
 break;
 case 'N':
 cert_label = strdup(optarg);
 break;
 case 'Z':
 ssl = 1;
 break;
 case 'C':
 charset = strdup(optarg);
 break;
 case '?':
 default:
 usage();
 }
 }

 if (argc - optind != 0)
 usage();

 /* Use default SSL port if none specified*/
 if ((port == 0) && (ssl))
 ldapport = LDAPS_PORT;

 if (! DebugLevel) {
 char *debug_ptr = NULL;

 if ((debug_ptr = getenv ("LDAP_DEBUG")))
 DebugLevel = atoi (debug_ptr);
 }
}

/* Get a password from the user but don't display it. */
char* getPassword(void) {
 char supplied_password[MAX_SUPPLIED_PW_LENGTH + 1]; /* Buffer for password */

#ifdef _WIN32
 char in = '\0'; /* Input character */
 int len = 0; /* Length of password */
#else

376 IBM Security Directory Suite: Programming Reference

 struct termios echo_control;
 struct termios save_control;

 int fd = 0; /* File descriptor */
 int attrSet = 0; /* Checked later for reset */

 /* Get the file descriptor associated with stdin. */
 fd = fileno(stdin);

 if (tcgetattr(fd, &echo_control) != -1) {
 save_control = echo_control;
 echo_control.c_lflag &= ~(ECHO | ECHONL);

 if (tcsetattr(fd, TCSANOW, &echo_control) == -1) {
 fprintf(stderr, "Internal error setting terminal attribute.\n");
 exit(errno);
 }

 attrSet = 1;
 }
#endif

 /* Prompt for a password. */
 fputs("Enter password ==> ", stdout);
 fflush(stdout);

#ifdef _WIN32
 /* Windows 9x/NT will always read from the console, i.e.,
 piped or redirected input will be ignored. */
 while (in != '\r' && len <= MAX_SUPPLIED_PW_LENGTH) {
 in = _getch();

 if (in != '\r') {
 supplied_password[len] = in;
 len++;
 } else {
 supplied_password[len] = '\0';
 }
 }
#else
 /* Get the password from stdin. */
 fgets(supplied_password, MAX_SUPPLIED_PW_LENGTH, stdin);

 /* Remove the newline at the end. */
 supplied_password[strlen(supplied_password) - 1] = '\0';

#endif

#ifndef _WIN32
 /* Reset the terminal. */
 if (attrSet && tcsetattr(fd, TCSANOW, &save_control) == -1) {
 fprintf(stderr, "Unable to reset the display.\n");
 }
#endif
 fprintf(stdout, "\n");

 return (supplied_password == NULL)? supplied_password :
 strdup(supplied_password);
}

/* Rebind callback function. */
int rebindproc(LDAP *ld, char **dnp, char **pwp, int *methodp, int freeit) {
 if (!freeit) {
 *methodp = LDAP_AUTH_SIMPLE;
 if (binddn != NULL) {
 *dnp = strdup(binddn);
 *pwp = strdup (passwd);
 } else {
 *dnp = NULL;
 *pwp = NULL;
 }
 } else {
 free (*dnp);
 free (*pwp);
 }
 return LDAP_SUCCESS;
}

/* Connect and bind to server. */
void connect_to_server() {
 int failureReasonCode, rc, authmethod;
 struct berval ber;

Appendix I. Limited transaction support 377

 struct berval *server_creds;

 /* call ldap_ssl_client_init if V3 and SSL */
 if (ssl && (ldapversion == LDAP_VERSION3)) {
 if (keyfile == NULL) {
 keyfile = getenv("SSL_KEYRING");
 if (keyfile != NULL) {
 keyfile = strdup(keyfile);
 }
 }

 if (verbose)
 printf("ldap_ssl_client_init(%s, %s, 0, &failureReasonCode)\n",
 ((keyfile) ? keyfile : "NULL"),
 ((keyfile_pw) ? keyfile_pw : "NULL"));
#ifdef LDAP_SSL_MAX
 rc = ibm_set_unrestricted_cipher_support();
 if (rc != 0) {
 fprintf(stderr, "Warning: ibm_gsk_set_unrestricted_cipher_support failed!
 rc == %d\n", rc);
 }
#endif

 rc = ldap_ssl_client_init(keyfile, keyfile_pw, 0, &failureReasonCode);
 if (rc != LDAP_SUCCESS) {
 fprintf(stderr,
 "ldap_ssl_client_init failed! rc == %d, failureReasonCode == %d\n",
 rc, failureReasonCode);
 exit(1);
 }
 }

 /* Open connection to server */
 if (ldapversion == LDAP_VERSION3) {
 if (ssl) {
 if (verbose)
 printf("ldap_ssl_init(%s, %d, %s)\n", ldaphost, ldapport,
 ((cert_label) ? cert_label : "NULL"));
 ld = ldap_ssl_init(ldaphost, ldapport, cert_label);
 if (ld == NULL) {
 fprintf(stderr, "ldap_ssl_init failed\n");
 perror(ldaphost);
 exit(1);
 }
 } else {
 if (verbose)
 printf("ldap_init(%s, %d) \n", ldaphost, ldapport);
 if ((ld = ldap_init(ldaphost, ldapport)) == NULL) {
 perror(ldaphost);
 exit(1);
 }
 }
 }

 /* Set options */
 ldap_set_option (ld, LDAP_OPT_PROTOCOL_VERSION, (void *)&ldapversion);

 if (ldapversion == LDAP_VERSION3) {
 ldap_set_option (ld, LDAP_OPT_DEBUG, (void *)&DebugLevel);
 ldap_set_option(ld, LDAP_OPT_REFHOPLIMIT, (void *)&hoplimit);
 }
 ldap_set_option (ld, LDAP_OPT_REFERRALS, (void *)referrals);
 if (binddn != NULL)
 ldap_set_rebind_proc(ld, (LDAPRebindProc)rebindproc);
 if (charset != NULL) {
 if (ldap_set_iconv_local_charset(charset) != LDAP_SUCCESS) {
 fprintf(stderr, "unsupported charset %s\n", charset);
 exit(0);
 }
 ldap_set_option(ld, LDAP_OPT_UTF8_IO, (void *)LDAP_UTF8_XLATE_ON);
 }

 /* Bind to server */
 if (ldapversion == LDAP_VERSION3) {
 if (! mech) /* Use simple bind */ {
 rc = ldap_simple_bind_s(ld, binddn, passwd);
 if (rc != LDAP_SUCCESS) {
 ldap_perror(ld, "ldap_simple_bind");
 /* LDAP_OPT_EXT_ERROR only valuable for ssl communication.
 In this example, for LDAP v3, the bind is the first
 instance in which communication actually flows to the
 server. So, if there is an ssl configuration error or

378 IBM Security Directory Suite: Programming Reference

 other ssl problem, this will be the first instance where
 it will be detected. */
 if (ssl) {
 ldap_get_option(ld, LDAP_OPT_EXT_ERROR, &failureReasonCode);
 fprintf(stderr, "Attempted communication over SSL.\n");
 fprintf(stderr, " The extended error is %d.\n", failureReasonCode);
 }
 exit(rc);
 }
 } else /* Presence of mechanism means SASL bind */ {
 /* Special case for mech="EXTERNAL". Unconditionally set bind DN
 and credentials to NULL. This option should be used in tandem
 with SSL and client authentication. For other SASL mechanisms,
 use the specified bind DN and credentials. */
 if (strcmp(mech, LDAP_MECHANISM_EXTERNAL) == 0) {
 rc = ldap_sasl_bind_s (ld, NULL, mech, NULL, NULL, NULL, &server_creds);
 if (rc != LDAP_SUCCESS) {
 ldap_perror (ld, "ldap_sasl_bind_s");
 exit(rc);
 }
 } else {
 if (strcmp(mech, LDAP_MECHANISM_GSSAPI) == 0) {
 rc = ldap_sasl_bind_s (ld, NULL, mech, NULL, NULL, NULL, &server_creds);
 if (rc != LDAP_SUCCESS) {
 ldap_perror (ld, "ldap_sasl_bind_s");
 exit(rc);
 }
 } else /* other SASL mechanisms */ {
 ber.bv_len = strlen (passwd);
 ber.bv_val = passwd;
 rc = ldap_sasl_bind_s (ld, binddn, mech, &ber, NULL, NULL, &server_creds);
 if (rc != LDAP_SUCCESS) {
 ldap_perror (ld, "ldap_sasl_bind_s");
 exit(rc);
 }
 }
 }
 }
 }
}

/* Read a record from the file. */
char * read_one_record(FILE *fp)
{
 int len = 0;
 int lcur = 0;
 int lmax = 0;
 char line[LDAPMOD_MAXLINE];
 char temp[LDAPMOD_MAXLINE];
 char *buf = NULL;

 /* Reads in and changes to ldif form */
 while ((fgets(line, sizeof(line), fp) != NULL)) {
 if (!(strncmp(line,"changenumber",10)))
 {do
 fgets(line,sizeof(line),fp);
 while(strncmp(line,"targetdn",8)); /*changes the = to : for parse*/
 line[8]=':';}

 if (!(strncmp(line,"changetype",9)))
 line[10]=':';
 if (!(strncmp(line,"changetype:delete",16)))
 (fgets(temp,sizeof(line),fp)); /*gets rid of the changetime line after
 a delete.*/
 if (!(strncmp(line,"changetime",9)))
 {fgets(line,sizeof(line),fp);
 if (!(strncmp(line,"newrdn",6)))
 line[6]=':';
 else
 line[7]=':';
 }
 if (!(strncmp(line,"deleteoldrdn",12)))
 line[12]=':';
 if (*line != '\n') {
 len = strlen(line);
 if (lcur + len + 1 > lmax) {
 lmax = LDAPMOD_MAXLINE
 *((lcur + len + 1) / LDAPMOD_MAXLINE + 1);
 if ((buf = (char *)safe_realloc(buf, lmax)) == NULL) {
 perror("safe_realloc");
 exit(1);
 }

Appendix I. Limited transaction support 379

 }
 strcpy(buf + lcur, line);
 lcur += len;
 }
 else {
 if (buf == NULL)
 continue; /* 1st line keep going */
 else
 break;
 }
 }

 return buf;
}

/* Read binary data from a file. */
int fromfile(char *path, struct berval *bv) {
 FILE *fp = NULL;
 long rlen = 0;
 int eof = 0;

 /* "r" changed to "rb", defect 39803. */
 if ((fp = fopen(path, "rb")) == NULL) {
 perror(path);
 return -1;
 }

 if (fseek(fp, 0L, SEEK_END) != 0) {
 perror(path);
 fclose(fp);
 return -1;
 }

 bv->bv_len = ftell(fp);

 if ((bv->bv_val = (char *)malloc(bv->bv_len)) == NULL) {
 perror("malloc");
 fclose(fp);
 return -1;
 }

 if (fseek(fp, 0L, SEEK_SET) != 0) {
 perror(path);
 fclose(fp);
 return -1;
 }

 rlen = fread(bv->bv_val, 1, bv->bv_len, fp);
 eof = feof(fp);
 fclose(fp);

 if (rlen != (bv->bv_len)) {
 perror(path);
 return -1;
 }

 return bv->bv_len;
}

/* Read binary data from a file specified with a URL. */
int fromfile_url(char *value, struct berval *bv) {
 char *file = NULL;
 char *src = NULL;
 char *dst = NULL;

 if (strncmp(value, "file:///", 8))
 return -1;

 /* unescape characters */
 for (dst = src = &value[8]; (*src != '\0'); ++dst) {
 *dst = *src;
 if (*src++ != '%')
 continue;
 if ((*src >= '0') && (*src <= '9'))
 *dst = (*src++ - '0') << 4;
 else if ((*src >= 'a') && (*src <= 'f'))
 *dst = (*src++ - 'a' + 10) << 4;
 else if ((*src >= 'A') && (*src <= 'F'))
 *dst = (*src++ - 'A' + 10) << 4;
 else
 return -1;
 if ((*src >= '0') && (*src <= '9'))

380 IBM Security Directory Suite: Programming Reference

 *dst += (*src++ - '0');
 else if ((*src >= 'a') && (*src <= 'f'))
 *dst += (*src++ - 'a' + 10);
 else if ((*src >= 'A') && (*src <= 'F'))
 *dst += (*src++ - 'A'+ 10);
 else
 return -1;
 }
 *dst = '\0';

 /* On WIN32 platforms the URL must begin with a drive letter.
 On UNIX platforms the initial '/' is kept to indicate absolute
 file path.
 */
#ifdef _WIN32
 file = value + 8;
#else
 file = value + 7;
#endif
 return fromfile(file, bv);
}

/* Add operation to the modify structure. */
void addmodifyop(LDAPMod ***pmodsp, int modop, char *attr,
 char *value, int vlen, int isURL, int isBase64)
{
 LDAPMod **pmods = NULL;
 int i = 0;
 int j = 0;
 struct berval *bvp = NULL;

 /* Data can be treated as binary (wire ready) if one of the
 following applies:
 1) it was base64 encoded
 2) charset is not defined
 3) read from an external file
 */
 if (isBase64 ||
 (charset == NULL) ||
 isURL ||
 ((value != NULL) && valsfromfiles && (*value == '/'))) {
 modop |= LDAP_MOD_BVALUES;
 }

 i = 0;
 pmods = *pmodsp;
 if (pmods != NULL) {
 for (; pmods[i] != NULL; ++i) {
 if (strcasecmp(pmods[i]->mod_type, attr) == 0 &&
 pmods[i]->mod_op == modop) {
 break;
 }
 }
 }

 if (pmods == NULL || pmods[i] == NULL) {
 if ((pmods = (LDAPMod * *)safe_realloc(pmods, (i + 2) *
 sizeof(LDAPMod *))) == NULL) {
 perror("safe_realloc");
 exit(1);
 }
 *pmodsp = pmods;
 pmods[i + 1] = NULL;
 if ((pmods[i] = (LDAPMod *)calloc(1, sizeof(LDAPMod))) == NULL) {
 perror("calloc");
 exit(1);
 }
 pmods[i]->mod_op = modop;
 if ((pmods[i]->mod_type = strdup(attr)) == NULL) {
 perror("strdup");
 exit(1);
 }
 }

 if (value != NULL) {
 if (modop & LDAP_MOD_BVALUES) {
 j = 0;
 if (pmods[i]->mod_bvalues != NULL) {
 for (; pmods[i]->mod_bvalues[j] != NULL; ++j) {
 ;
 }
 }

Appendix I. Limited transaction support 381

 if ((pmods[i]->mod_bvalues =
 (struct berval **)safe_realloc(pmods[i]->mod_bvalues,
 (j + 2) * sizeof(struct berval *))) == NULL) {
 perror("safe_realloc");
 exit(1);
 }

 pmods[i]->mod_bvalues[j + 1] = NULL;
 if ((bvp = (struct berval *)malloc(sizeof(struct berval)))
 == NULL) {
 perror("malloc");
 exit(1);
 }
 pmods[i]->mod_bvalues[j] = bvp;

 /* get value from file */
 if (valsfromfiles && *value == '/') {
 if (fromfile(value, bvp) < 0)
 exit(1);
 } else if (isURL) {
 if (fromfile_url(value, bvp) < 0)
 exit(1);
 } else {
 bvp->bv_len = vlen;
 if ((bvp->bv_val = (char *)malloc(vlen + 1)) == NULL) {
 perror("malloc");
 exit(1);
 }
 memmove(bvp->bv_val, value, vlen);
 bvp->bv_val[vlen] = '\0';
 }
 } else {
 j = 0;
 if (pmods[i]->mod_values != NULL) {
 for (; pmods[i]->mod_values[j] != NULL; ++j) {
 ;
 }
 }
 if ((pmods[i]->mod_values =
 (char **)safe_realloc(pmods[i]->mod_values,
 (j + 2) * sizeof(char *))) == NULL) {
 perror("safe_realloc");
 exit(1);
 }
 pmods[i]->mod_values[j + 1] = NULL;
 if ((pmods[i]->mod_values[j] = strdup(value)) == NULL) {
 perror("strdup");
 exit(1);
 }
 }
 }
}

/* Delete record */
int dodelete(char *dn) {
 int rc = 0;

 printf("%sdeleting entry %s\n", (!doit) ? "!" : "", dn);
 if (!doit)
 return LDAP_SUCCESS;

 rc = ldap_delete_ext(ld, dn,
 Server_Controls,
 NULL, &Message_ID);
 if (rc != LDAP_SUCCESS)
 ldap_perror(ld, "ldap_delete");
 else
 printf("delete complete\n");

 putchar('\n');
 /* Increment results to check after end transaction. */
 Num_Operations++;
 return rc;
}

/* Copy or move an entry. */
int domodrdn(char *dn, char *newrdn, int deleteoldrdn) {
 int rc = 0;

 printf("%s%s %s to %s\n", ((!doit) ? "!" : ""),
 ((deleteoldrdn) ? "moving" : "copying"), dn, newrdn);
 if (!doit)

382 IBM Security Directory Suite: Programming Reference

 return LDAP_SUCCESS;

 rc = ldap_rename(ld, dn, newrdn, NULL, deleteoldrdn,
 Server_Controls , NULL,
 &Message_ID);
 if (rc != LDAP_SUCCESS)
 ldap_perror(ld, "ldap_rename");
 else
 printf("rename operation complete\n");
 putchar('\n');

 /* Increment the count of results to check after end transaction is sent */
 Num_Operations++;
 return rc;
}

/* Print a binary value. If charset is not specified then check to
 see if string is printable anyway. */
void print_binary(struct berval *bval) {
 int i = 0;
 int binary = 0;

 printf("\tBINARY (%ld bytes) ", bval->bv_len);
 if (charset == NULL) {
 binary = 0;
 for (i = 0; (i < (bval->bv_len)) && (!binary); ++i)
 if (!isprint(bval->bv_val[i]))
 binary = 1;
 if (!binary)
 for (i = 0; (i < (bval->bv_len)); ++i)
 putchar(bval->bv_val[i]);
 }
 putchar('\n');
}

/* Modify or add an entry. */
int domodify(char *dn, LDAPMod **pmods, int newentry) {
 int i, j, op, rc;
 struct berval *bvp;

 if (pmods == NULL) {
 fprintf(stderr, "%s: no attributes to change or add (entry %s)\n",
 prog, dn);
 return LDAP_PARAM_ERROR;
 }

 if (verbose) {
 for (i = 0; pmods[i] != NULL; ++i) {
 op = pmods[i]->mod_op & ~LDAP_MOD_BVALUES;
 printf("%s %s:\n", op == LDAP_MOD_REPLACE ?
 "replace" : op == LDAP_MOD_ADD ?
 "add" : "delete", pmods[i]->mod_type);
 if (pmods[i]->mod_op & LDAP_MOD_BVALUES) {
 if (pmods[i]->mod_bvalues != NULL) {
 for (j = 0; pmods[i]->mod_bvalues[j] != NULL; ++j)
 print_binary(pmods[i]->mod_bvalues[j]);
 }
 } else {
 if (pmods[i]->mod_values != NULL) {
 for (j = 0; pmods[i]->mod_values[j] != NULL; ++j)
 printf("\t%s\n", pmods[i]->mod_values[j]);
 }
 }
 }
 }

 if (newentry)
 printf("%sadding new entry %s as a transaction\n", (!doit) ? "!" : "", dn);
 else
 printf("%smodifying entry %s as a transaction\n", (!doit) ? "!" : "", dn);
 if (!doit)
 return LDAP_SUCCESS;

 if (newentry) {
 rc = ldap_add_ext(ld, dn, pmods,
 Server_Controls, NULL,
 &Message_ID);
 } else {
 rc = ldap_modify_ext(ld, dn, pmods,
 Server_Controls, NULL,
 &Message_ID);
 }

Appendix I. Limited transaction support 383

 if (rc != LDAP_SUCCESS) {
 ldap_perror(ld, newentry ? "ldap_add" : "ldap_modify");
 } else if (verbose) {
 printf("%s operation complete\n", newentry ? "add" : "modify");
 }
 putchar('\n');

 /* Increment the count of results to check after end transaction is sent */
 Num_Operations++;
 return rc;
}

/* Process an ldif record. */
int process_ldif_rec(char *rbuf) {
 char *line = NULL;
 char *dn = NULL;
 char *type = NULL;
 char *value = NULL;
 char *newrdn = NULL;
 char *p = NULL;
 int is_url = 0;
 int is_b64 = 0;
 int rc = 0;
 int linenum = 0;
 int vlen = 0;
 int modop = 0;
 int replicaport = 0;
 int expect_modop = 0;
 int expect_sep = 0;
 int expect_ct = 0;
 int expect_newrdn = 0;
 int expect_deleteoldrdn = 0;
 int deleteoldrdn = 1;
 int saw_replica = 0;
 int use_record = force;
 int new_entry = (operation == LDAPMODIFY_ADD);
 int delete_entry = 0;
 int got_all = 0;
 LDAPMod **pmods = NULL;
 int version = 0;
 int str_rc = 0;

 while (rc == 0 && (line = str_getline(&rbuf)) != NULL) {
 ++linenum;

 /* Is this a separator line ("-")? */
 if (expect_sep && strcasecmp(line, T_MODSEPSTR) == 0) {
 /* If modifier has not been added yet then go ahead and add
 it. The can happen on sequences where there are no
 attribute values, such as:
 DELETE: title
 -
 */
 if (value != NULL)
 addmodifyop(&pmods, modop, value, NULL, 0, 0, 0);
 value = NULL;
 expect_sep = 0;
 expect_modop = 1;
 continue;
 }

 str_rc = str_parse_line_v_or_bv(line, &type, &value, &vlen, 1, &is_url,
 &is_b64);
 if ((strncmp(type,"changes",7))==0)
 {str_parse_line_v_or_bv(value, &type, &value, &vlen, 1, &is_url, &is_b64);}
 if ((linenum == 1) && (strcmp(type, "version") == 0)) {
 version = atoi(value);
 continue;
 }

 if ((linenum == 2) && (version == 1) &&
 (strcmp(type, "charset") == 0)) {
 if (charset != NULL)
 free(charset);
 charset = strdup(value);
 if ((rc = ldap_set_iconv_local_charset(charset)) != LDAP_SUCCESS) {
 fprintf(stderr, "unsupported charset %s\n", charset);
 break;
 }
 ldap_set_option(ld, LDAP_OPT_UTF8_IO, (void *)LDAP_UTF8_XLATE_ON);
 continue;
 }

384 IBM Security Directory Suite: Programming Reference

 if (dn == NULL) {
 if (!use_record && strcasecmp(type, T_REPLICA_STR) == 0) {
 ++saw_replica;
 if ((p = strchr(value, ':')) == NULL) {
 replicaport = LDAP_PORT;
 } else {
 *p++ = '\0';
 replicaport = atoi(p);
 }
 if (strcasecmp(value, ldaphost) == 0 &&
 replicaport == ldapport) {
 use_record = 1;
 }
 } else if (strcasecmp(type, T_DN_STR) == 0) {
 if ((dn = strdup(value)) == NULL) {
 perror("strdup");
 exit(1);
 }
 expect_ct = 1;
 }
 continue; /* skip all lines until we see "dn:" */
 }

 if (expect_ct) {
 expect_ct = 0;
 if (!use_record && saw_replica) {
 printf("%s: skipping change record for entry: %s\n\t(LDAP host/port does
 not match replica: lines)\n", prog, dn);
 free(dn);
 return 0;
 }

 /* this is an ldif-change-record */
 if (strcasecmp(type, T_CHANGETYPESTR) == 0) {
 if (strcasecmp(value, T_MODIFYCTSTR) == 0) {
 new_entry = 0;
 expect_modop = 1;
 } else if (strcasecmp(value, T_ADDCTSTR) == 0) {
 modop = LDAP_MOD_ADD;
 new_entry = 1;
 } else if (strcasecmp(value, T_MODRDNCTSTR) == 0) {
 expect_newrdn = 1;
 } else if (strcasecmp(value, T_DELETECTSTR) == 0) {
 got_all = delete_entry = 1;
 } else {
 fprintf(stderr,
 "%s: unknown %s \"%s\" (line %d of entry: %s)\n",
 prog, T_CHANGETYPESTR, value, linenum, dn);
 rc = LDAP_PARAM_ERROR;
 }
 continue;

 /* this is an ldif-attrval-record */
 } else {
 if (operation == LDAPMODIFY_ADD) {
 new_entry = 1;
 modop = LDAP_MOD_ADD;
 } else
 modop = LDAP_MOD_REPLACE;
 }
 }

 if (expect_modop) {
 expect_modop = 0;
 expect_sep = 1;
 if (strcasecmp(type, T_MODOPADDSTR) == 0) {
 modop = LDAP_MOD_ADD;
 continue;
 } else if (strcasecmp(type, T_MODOPREPLACESTR) == 0) {
 modop = LDAP_MOD_REPLACE;
 continue;
 } else if (strcasecmp(type, T_MODOPDELETESTR) == 0) {
 modop = LDAP_MOD_DELETE;
 continue;
 } else {
 fprintf(stderr,
 "%s: unknown mod_spec \"%s\" (line %d of entry: %s)\n",
 prog, type, linenum, dn);
 rc = LDAP_PARAM_ERROR;
 continue;
 }

Appendix I. Limited transaction support 385

 }

 if (expect_newrdn) {
 if (strcasecmp(type, T_NEWRDNSTR) == 0) {
 if ((newrdn = strdup(value)) == NULL) {
 perror("strdup");
 exit(1);
 }
 expect_deleteoldrdn = 1;
 expect_newrdn = 0;
 } else {
 fprintf(stderr, "%s: expecting \"%s:\" but saw \"%s:\" (line %d of entry %s)\n",
 prog, T_NEWRDNSTR, type, linenum, dn);
 rc = LDAP_PARAM_ERROR;
 }
 } else if (expect_deleteoldrdn) {
 if (strcasecmp(type, T_DELETEOLDRDNSTR) == 0) {
 deleteoldrdn = (*value == '0') ? 0 : 1;
 got_all = 1;
 } else {
 fprintf(stderr, "%s: expecting \"%s:\" but saw \"%s:\" (line %d of entry %s)\n",
 prog, T_DELETEOLDRDNSTR, type, linenum, dn);
 rc = LDAP_PARAM_ERROR;
 }
 } else if (got_all) {
 fprintf(stderr, "%s: extra lines at end (line %d of entry %s)\n",
 prog, linenum, dn);
 rc = LDAP_PARAM_ERROR;
 } else {

 addmodifyop(&pmods, modop, type, value, vlen, is_url, is_b64);
 type = NULL;
 value = NULL;
 }
 }

 /* If last separator is missing go ahead and handle it anyway, even
 though it is technically invalid ldif format. */
 if (expect_sep && (value != NULL))
 addmodifyop(&pmods, modop, value, NULL, 0, 0, 0);

 if (rc == 0) {
 if (delete_entry)
 rc = dodelete(dn);

 else if (newrdn != NULL)
 rc = domodrdn(dn, newrdn, deleteoldrdn);
 else if (dn != NULL)
 rc = domodify(dn, pmods, new_entry);
 }

 if (dn != NULL)
 free(dn);
 if (newrdn != NULL)
 free(newrdn);
 if (pmods != NULL)
 ldap_mods_free(pmods, 1);

 return rc;
}

/* Process a mod record. */
int process_ldapmod_rec(char *rbuf) {
 char *line = NULL;
 char *dn = NULL;
 char *p = NULL;
 char *q = NULL;
 char *attr = NULL;
 char *value = NULL;
 int rc = 0;
 int linenum = 0;
 int modop = 0;
 LDAPMod **pmods = NULL;

 while (rc == 0 && rbuf != NULL && *rbuf != '\0') {
 ++linenum;
 if ((p = strchr(rbuf, '\n')) == NULL) {
 rbuf = NULL;
 } else {
 if (*(p - 1) == '\\') { /* lines ending in '\' are continued */
 strcpy(p - 1, p);
 rbuf = p;

386 IBM Security Directory Suite: Programming Reference

 continue;
 }
 *p++ = '\0';
 rbuf = p;
 }

 if (dn == NULL) { /* first line contains DN */
 if ((dn = strdup(line)) == NULL) {
 perror("strdup");
 exit(1);
 }
 } else {
 if ((p = strchr(line, '=')) == NULL) {
 value = NULL;
 p = line + strlen(line);
 } else {
 *p++ = '\0';
 value = p;
 }

 for (attr = line; *attr != '\0' && isspace(*attr); ++attr) {
 ; /* skip attribute leading white space */
 }

 for (q = p - 1; q > attr && isspace(*q); --q) {
 q = '\0'; / remove attribute trailing white space */
 }

 if (value != NULL) {
 while (isspace(*value)) {
 ++value; /* skip value leading white space */
 }
 for (q = value + strlen(value) - 1; q > value &&
 isspace(*q); --q) {
 q = '\0'; / remove value trailing white space */
 }
 if (*value == '\0') {
 value = NULL;
 }
 }

 if ((value == NULL) && (operation == LDAPMODIFY_ADD)) {
 fprintf(stderr, "%s: missing value on line %d (attr is %s)\n",
 prog, linenum, attr);
 rc = LDAP_PARAM_ERROR;
 } else {
 switch (*attr) {
 case '-':
 modop = LDAP_MOD_DELETE;
 ++attr;
 break;
 case '+':
 modop = LDAP_MOD_ADD;
 ++attr;
 break;
 default:
 modop = (operation == LDAPMODIFY_REPLACE)
 ? LDAP_MOD_REPLACE : LDAP_MOD_ADD;
 break;
 }

 addmodifyop(&pmods, modop, attr, value,
 (value == NULL) ? 0 : strlen(value), 0, 0);
 }
 }
 line = rbuf;
 }

 if (rc == 0) {
 if (dn == NULL)
 rc = LDAP_PARAM_ERROR;
 else
 rc = domodify(dn, pmods, (operation == LDAPMODIFY_ADD));
 }

 if (pmods != NULL)
 ldap_mods_free(pmods, 1);
 if (dn != NULL)
 free(dn);

 return rc;
}

Appendix I. Limited transaction support 387

main(int argc, char **argv) {
 char *rbuf = NULL;
 char *start = NULL;
 char *p = NULL;
 char *q = NULL;
 char *tmpstr = NULL;
 int rc = 0;
 int i = 0;
 int use_ldif = 0;
 int num_checked = 0;
 char *Start_Transaction_OID = LDAP_START_TRANSACTION_OID;
 char *End_Transaction_OID = LDAP_END_TRANSACTION_OID;
 char *Control_Transaction_OID = LDAP_TRANSACTION_CONTROL_OID;
 char *Returned_OID = NULL;
 struct berval *Returned_BerVal = NULL;
 struct berval Request_BerVal = {0,0};
 char *Berval = NULL;
 LDAPMessage *LDAP_result = NULL;

 /* Strip off any path info on program name */
#if defined(_WIN32)
 if ((prog = strrchr(argv[0], '\\')) != NULL)
 ++prog;
 else
 prog = argv[0];
#else
 if (prog = strrchr(argv[0], '/'))
 ++prog;
 else
 prog = argv[0];
#endif

#if defined(_WIN32)
 /* Convert string to lowercase */
 for (i = 0; prog[i] != '\0'; ++i)
 prog[i] = tolower(prog[i]);

 /* Strip ending .exe from program name */
 if ((tmpstr = strstr(prog, ".exe")) != NULL)
 *tmpstr = '\0';
#endif
 if (strcmp(prog, "ldaptxadd") == 0)
 operation = LDAPMODIFY_ADD;

 /* Parse command line arguments. */
 parse_arguments(argc, argv);

 /* Connect to server. */
 if (doit)
 connect_to_server();

 /* Disable translation if reading from file (they must specify the
 translation in the file). */
 if (fp != stdin)
 ldap_set_option(ld, LDAP_OPT_UTF8_IO, (void *)LDAP_UTF8_XLATE_OFF);

 /* Do the StartTransaction extended operation.
 The transaction ID returned must be put into the server control
 sent with all update operations. */
 rc = ldap_extended_operation_s (ld, Start_Transaction_OID,
 &Request_BerVal, NULL, NULL,
 &Returned_OID,
 &Returned_BerVal);
 if (verbose) {
 printf("ldap_extended_operation(start transaction) RC=%d\n", rc);
 }

 if (rc != LDAP_SUCCESS) {
 fprintf(stderr, "Start transaction rc=%d -> %s\n",
 rc, ldap_err2string(rc));
 exit(rc);
 }

 /* Allocate the server control for transactions. */
 if ((Server_Controls[0] =
 (LDAPControl *)malloc(sizeof(LDAPControl))) == NULL) {
 perror("malloc");
 exit(1);
 }

 /* Allocate the server control's berval. */

388 IBM Security Directory Suite: Programming Reference

 if ((Server_Controls[0]->ldctl_value.bv_val =
 (char *) calloc (1, Returned_BerVal->bv_len + 1)) == NULL) {
 perror("calloc");
 exit(1);
 }

 /* Copy the returned berval length and value into the server control */
 Server_Controls[0]->ldctl_value.bv_len = Returned_BerVal-> bv_len;
 memcpy(Server_Controls[0]->ldctl_value.bv_val,
 Returned_BerVal->bv_val , Returned_BerVal->bv_len);

 /* Set the control type to Transaction_Control_OID */
 Server_Controls[0]->ldctl_oid = Control_Transaction_OID;

 /* Set the criticality in the control to TRUE */
 Server_Controls[0]->ldctl_iscritical = LDAP_OPT_ON;

 /* If referral objects are to be modified directly, */
 if (manageDsa == LDAP_TRUE) {
 /* then set that server control as well. */
 Server_Controls[1] = &manageDsaIT
 }

 /* Initialize the count of operations that will be in the transaction.
 This count will be incremented by each operation that is performed.
 The count will be the number of calls that must be made to ldap_result
 to get the results for the operations.
 */
 Num_Operations = 0;

 /* Do operations */
 rc = 0;
 while ((rc == 0 || contoper) && (rbuf = read_one_record(fp)) != NULL) {
 /* We assume record is ldif/slapd.replog if the first line
 has a colon that appears to the left of any equal signs, OR
 if the first line consists entirely of digits (an entry ID). */

 use_ldif=1;
 start = rbuf;

 if (use_ldif)
 rc = process_ldif_rec(start);
 else
 rc = process_ldapmod_rec(start);
 free(rbuf);
 }

 /* Finish the transaction, committing or rolling back based on input parameter. */
 rc = 0;
 Request_BerVal.bv_len = Returned_BerVal->bv_len + 1;
 if ((Berval =
 (char *) malloc (Returned_BerVal->bv_len + 1)) == NULL) {
 perror("malloc");
 exit(1);
 }

 memcpy (&Berval[1], Returned_BerVal->bv_val, Returned_BerVal->bv_len);
 Berval[0] = abort_flag ? '\1' : '\0';
 Request_BerVal.bv_val = Berval;

 rc = ldap_extended_operation_s (ld,
 End_Transaction_OID,
 &Request_BerVal, NULL, NULL,
 &Returned_OID,
 &Returned_BerVal);
 if (verbose) {
 printf("ldap_extended_operation(end transaction) RC=%d\n", rc);
 }

 if (rc != LDAP_SUCCESS) {
 fprintf(stderr, "End transaction rc=%d -> %s\n",
 rc, ldap_err2string(rc));
 exit(rc);
 }

 /* Process the results of the operations in the transaction.
 At this time we will not be concerned about the correctness
 of the message numbers, just whether the operations succceeded or not.
 We could keep track of the operation types and make sure they are all
 accounted for. */

 for (num_checked = 0; num_checked < Num_Operations; num_checked++) {

Appendix I. Limited transaction support 389

 if (verbose) {
 printf("processing %d of %d operation results\n",
 1 + num_checked, Num_Operations);
 }

 rc = ldap_result (ld , LDAP_RES_ANY, LDAP_MSG_ONE, NULL, &LDAP_result);
 if (rc <= 0) {
 if (rc == 0)
 fprintf(stderr, "Operation %d timed out\n", num_checked);
 if (rc < 0)
 fprintf(stderr, "Operation %d failed\n", num_checked);
 exit(1);
 }
 }

 /* Unbind and exit */
 if (doit)
 ldap_unbind(ld);

 exit(0);
}

The following example shows the makefile:

#---
COMPONENT_NAME: examples
#
ABSTRACT: makefile to generate LDAP client programs for transactions
#
ORIGINS: 202,27
#
(C) COPYRIGHT International Business Machines Corp. 2002
All Rights Reserved
Licensed Materials - Property of IBM
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
###
Default definitions
###
CC = cl.exe
LD = link.exe
RM = erase /f
HARDLN = copy
Note: Your install path may be different
LDAPHOME = D:\Program Files\IBM\ldap\V8.0.1.x

###
General compiler options
###

DEFINES = /DNDEBUG /DWIN32 /D_CONSOLE /D_MBCS /DNT /DNEEDPROTOS
INCLUDES= /I"$(LDAPHOME)/include"
CFLAGS = /nologo /MD /GX /Z7 $(INCLUDES) $(DEFINES)

###
General linker options
###

LIBS = kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib\
 advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib\
 odbccp32.lib wsock32.lib

Use the following definition to link the sample programs statically.
#CLIENT_LIBS = ldapstatic.lib libidsldifstatic.lib setloci.lib iconvi.lib

Use the following definition to link the sample programs with
the LDAP shared library.
CLIENT_LIBS = ldap.lib libldif.lib setloci.lib
LDIR = /LIBPATH:"$(LDAPHOME)"/lib
LFLAGS = /nologo /subsystem:console /incremental:no \
 $(LDIR) $(LIBS) $(CLIENT_LIBS)

###
Targets
###

all: ldaptxmod.exe ldaptxadd.exe

390 IBM Security Directory Suite: Programming Reference

ldaptxmod.exe: ldaptxmod.obj
 $(LD) $(LFLAGS) /out:$@ $**

ldaptxadd.exe: ldaptxmod.exe
 $(RM) $@
 $(HARDLN) ldaptxmod.exe ldaptxadd.exe

.c.obj::
 $(CC) $(CFLAGS) /c $<

ldaptxmod.obj: ldaptxmod.c

clean:
 $(RM) ldaptxmod.exe ldaptxadd.exe ldaptxmod.obj

See the source file, ldapmodify.c, in the DS_INSTALL_ROOT/examples for more information about
transaction.

Appendix I. Limited transaction support 391

392 IBM Security Directory Suite: Programming Reference

Index

A
abandon an operation 7
accessibility vii
Account status extended operation 172, 293
add

entry 8
AES bind control 219, 340
API

categories 5
deprecated 165, 285
LDAP URLs 5
ldap_abandon 7
ldap_add 8
ldap_backup 9
ldap_set_option 69
ldap_ssl_set_extn_sigalg 133
ldap_ssl_set_suiteb_mode 134
plug-ins 150
usage 4

API support
secure socket layer 5

API, ldap_set_option
LDAP_OPT_SSL_CIPHER_EX 64
LDAP_OPT_SSL_SECURITY_PROTOCOL 65

Attribute type extended operations 173, 294
attributes

ldap 48
Audit control 220, 341

B
Begin transaction extended operation 175, 296
bind

secure 10

C
Cascading replication operation extended operation 176,
297
change tracking 142
Clear log extended operation 211, 332
client controls 24
client libraries 242, 365
client utilities 141
code page

getting 16
setting 16
translating 16

compare operations 22
Control queue extended operation 181, 302
Control replication extended operation 179, 300
controls

ldap 24
OIDs 166, 214, 287, 336

counting
entries 50

counting (continued)
references 50

counting values 56
create abort transaction request 26
create account status request 26
create commit transaction request 27
create effective pwdpolicy request 28
create get file request 28
create limit number values control 29
create locate entry request 30
create online backup request 30
create prepare transaction request 33
create return deleted objects control 36
create transaction control 37
create virtual list view control 37

D
data interchange format 160, 279
deleting entries 38
directory operations 3
directory programming reference

overview 3
Directory Server, API

ldap_set_option 69
ldap_ssl_set_extn_sigalg 133
ldap_ssl_set_suiteb_mode 134

distinguished name
formal definition 159, 277
informal definition 159, 277

DN normalization extended operation 182, 303
DNs 159, 277
DNS 101
DNS configuration file

examples 108
Do not replicate control 221, 342
dynamic schema 156, 273
Dynamic server trace extended operation 183, 304
Dynamic update requests extended operation 184, 305

E
Effective password policy extended operation 185, 306
end transaction 40
End transaction extended operation 187, 308
entry

counting 50
deleting 38
referencubg 50

Entry change notification control 221, 342
entrychange control 81
error codes 154, 269
error numbers 41
errors

ldap 41
event notification 144

Index 393

Event notification register request extended operation 188,
309
Event notification unregister request extended operation
189, 310
example

LDIF
Version 1 163, 281

limited transaction support 249, 372
examples

DNS configuration file 108
extended operations

OIDs 166, 287
resume role 35

extended result w controls 82

F
free limit number of values response 52
freeing storage

BER 72
controls 72
memory 72
messages 72

G
get bind controls 53
Get file extended operation 212, 333
Get lines extended operation 213, 334
Get number of lines extended operation 213, 335
getting transaction ID 55
getting values 56
Group authorization control 222, 343
Group evaluation extended operation 190, 311

H
handling routines 53

I
IANA character sets 164, 282
iconv 16
initializing libraries 58

J
JNDI Toolkit 136

K
Kill connection extended operation 191, 312

L
language support 164, 282
ldap

backup 9
bind 10
restore 94
unbind 10

LDAP

LDAP (continued)
API overview 3
version support 3

LDAP API
URLs 5

ldap attributes 48
ldap controls

client 24
server 24

LDAP SSL function codes 154, 269
LDAP trace facility extended operation 192, 313
ldap_plugin_pblock_get() 151
ldap_plugin_pblock_set() 151
ldap_plugin_sasl_bind_s() 151
LDIF 160, 279
libraries

client 242, 365
initialization 58

Limit number of attribute values control 224, 345
limited transactions 248, 371
Locate entry extended operation 193, 314
Log access extended operations 210, 331
LogMamtControl extended operation 194, 315

M
makefile

sample 244, 367
Manage DSAIT control 225, 347
memory

freeing 72
messages

ldap 73
Modify groups only control 226, 347
modify operations 74

N
No replication conflict resolution control 227, 348
notification

event 144

O
OIDs

AES bind control 219, 340
Audit control 220, 341
controls 166, 214, 287, 336
Do not replicate control 221, 342
Entry change notification control 221, 342
extended operations 166, 287
Group authorization control 222, 343
LDAP delete operation timestamp control 223, 344
Limit number of attribute values control 224, 345
Locate entry extended operation 193, 314
LogMamtControl extended operation 194, 315
Manage DSAIT control 225, 347
Modify groups only control 226, 347
No replication conflict resolution control 227, 348
Omit group referential integrity control 227, 348
Paged search results control 228, 349
Password policy bind initialize and verify extended
operation 196, 317

394 IBM Security Directory Suite: Programming Reference

OIDs (continued)
Password policy finalize and verify bind extended
operation 197, 318
Password policy request control 229, 351
Persistent search control 231, 352
Prepare transaction extended operation 199, 320
Proxy authorization control 231, 353
Proxy backend server resume role extended operation
199, 320
Refresh entry control 233, 354
Replication supplier bind control 234, 356
Replication update ID control 235, 356
Return deleted objects control 236, 357
Server administration control 236, 358
Sorted search results control 238, 359
Subtree delete control 239, 360
Transaction control 239, 361

OIDS
Account status extended operation 172, 293
Attribute type extended operations 173, 294
Begin transaction extended operation 175, 296
Cascading replication operation extended operation
176, 297
Clear log extended operation 211, 332
Control queue extended operation 181, 302
Control replication extended operation 179, 300
DN normalization extended operation 182, 303
Dynamic server trace extended operation 183, 304
Dynamic update requests extended operation 184, 305
Effective password policy extended operation 185, 306
End transaction extended operation 187, 308
Event notification register request extended operation
188, 309
Event notification unregister request extended operation
189, 310
Get file extended operation 212, 333
Get lines extended operation 213, 334
Get number of lines extended operation 213, 335
Group evaluation extended operation 190, 311
Kill connection extended operation 191, 312
LDAP trace facility extended operation 192, 313
Log access extended operations 210, 331
Online backup extended operation 195, 316
Quiesce or unquiesce replication context extended
operation 201, 322
Replication error log extended operation 202, 323
Replication topology extended operation 203, 324
ServerBackupRestore extended operation 204, 325
Start TLS extended operation 207, 328
Start, stop server extended operations 206, 327
Unique attributes extended operation 208, 329
User type extended operation 209, 330

Omit group referential integrity control 227, 348
Online backup extended operation 195, 316
operations

comparing 22
creating return deleted objects control 36
creating transaction control 37
directory-related 3
end transaction 40
extended 46
get transaction ID 55
initializing SSL PKCS11 client 121
initializing SSL PKCS11 environment 121

operations (continued)
prepare transaction 91
renaming 92
results 95
searching 96
start transaction 123

P
paged results 77
Paged search results control 228, 349
parse effective pwdpolicy response 80
parse limit number of values response 83
parse virtual list view control 86
parsing

entrychange control 81
password policy 87
password policy bind and finalize request 31
password policy bind and initialize request 31
Password policy bind initialize and verify extended operation
196, 317
Password policy finalize and verify bind extended operation
197, 318
Password policy request control 229, 351
pblock 147
persistent search 32, 143
Persistent search control 231, 352
plug-ins

APIs 150
initializing 149
registration 88
restrictions 148
sample SASL plug-in 152
SASL 147
writing your own SASL plug-in 150

prepare transaction 91
Prepare transaction extended operation 199, 320
programming reference

overview 3
proxy authorization 34
Proxy authorization control 231, 353
Proxy backend server resume role extended operation 199,
320
Proxy Server

resume role 35

Q
Quiesce or unquiesce replication context extended operation
201, 322

R
reference

entry 50
Refresh entry control 233, 354
registration

plug-ins 88
rename operations 92
Replication error log extended operation 202, 323
Replication supplier bind control 234, 356
Replication topology extended operation 203, 324
Replication update ID control 235, 356

Index 395

replication, control
replication bind failure timestamp 233, 354

restore 94
results

retrieval 5
Return deleted objects control 236, 357
routines

handling 53

S
sample makefile 244, 367
sasl bind

simple 10
schema

changes 156, 273
dynamic 156, 273
queries 156, 273

searching 96
secure connections 115
Server administration control 236, 358
server controls 24
server information

DNS 101
server, control

replication bind failure timestamp 233, 354
ServerBackupRestore extended operation 204, 325
Sorted search results control 238, 359
SSL

cipher support 115
starting 115

SSL environment 128
ssl_environment_init 128
Start TLS extended operation 207, 328
start transaction 123
Start, stop server extended operations 206, 327
storage

freeing 72
Subtree delete control 239, 360
support

LDIF
Version 1 162, 280

secure socket layer 5

T
TLS 124, 125
Transaction control 239, 361
transactions

limited support 248, 371
translating locales 16
trusted roots 117

U
Unique attributes extended operation 208, 329
URLs 126
usage

limited transaction support 248, 371
User type extended operation 209, 330
UTF-8 16, 164, 282

V
values

counting 56
getting 56

version support
version 3 3

396 IBM Security Directory Suite: Programming Reference

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

© Copyright IBM Corp. 2007, 2015 397

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

The performance data discussed herein is presented as derived under specific operating conditions.
Actual results may vary.

The client examples cited are presented for illustrative purposes only. Actual performance results may
vary depending on specific configurations and operating conditions.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products
and cannot confirm the accuracy of performance, compatibility or any other claims related to non-
IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject to change without
notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must include a copyright
notice as follows:
© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

398 Notices

http://www.ibm.com/legal/us/en/copytrade.shtml

Applicability
These terms and conditions are in addition to any terms of use for the IBM website.

Personal use
You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use
You may reproduce, distribute and display these publications solely within your enterprise provided
that all proprietary notices are preserved. You may not make derivative works of these publications, or
reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights
Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use
of the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS
ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,
AND FITNESS FOR A PARTICULAR PURPOSE.

Notices 399

400 IBM Security Directory Suite: Programming Reference

IBM®

	Contents
	About this publication
	Accessibility
	Statement of Good Security Practices

	Chapter 1. Virtual appliance REST APIs
	Viewing the REST APIs
	Downloading REST APIs

	Chapter 2. Directory Server programming reference
	LDAP version support
	LDAP API overview
	Typical API usage
	Retrieval of results
	Uniform Resource Locators (URLs)
	Secure Socket Layer (SSL) support

	API categories
	LDAP_ABANDON
	LDAP_ADD
	LDAP_BACKUP
	LDAP_BIND / UNBIND
	LDAP_CODEPAGE
	LDAP_COMPARE
	LDAP controls
	LDAP_CREATE_ABORT_TRANSACTION_REQUEST
	LDAP_CREATE_ACCOUNT_STATUS_REQUEST
	LDAP_CREATE_COMMIT_TRANSACTION_REQUEST
	LDAP_CREATE_EFFECTIVE_PWDPOLICY_REQUEST
	LDAP_CREATE_GET_FILE_REQUEST
	LDAP_CREATE_LIMIT_NUM_VALUES_CONTROL
	LDAP_CREATE_LOCATE_ENTRY_REQUEST
	LDAP_CREATE_ONLINE_BACKUP_REQUEST
	LDAP_CREATE_PASSWORD_POLICY_BIND_FINALIZE_REQUEST
	LDAP_CREATE_PASSWORD_POLICY_BIND_INIT_REQUEST
	LDAP_CREATE_PERSISTENTSEARCH_CONTROL
	LDAP_CREATE_PREPARE_TRANSACTION_REQUEST
	LDAP_CREATE_PROXYAUTH_CONTROL
	LDAP_CREATE_RESUME_ROLE_REQUEST
	LDAP_CREATE_RETURN_DELETED_OBJECTS_CONTROL
	LDAP_CREATE_TRANSACTION_CONTROL
	LDAP_CREATE_VLV_CONTROL
	LDAP_DELETE
	LDAP_END_TRANSACTION
	LDAP_ERROR
	LDAP_EXTENDED_OPERATION
	LDAP_FIRST_ATTRIBUTE
	LDAP_FIRST_ENTRY, LDAP_FIRST_REFERENCE
	LDAP_FREE_LIMIT_NUM_VALUES_RESPONSE
	LDAP_GET_BIND_CONTROLS
	LDAP_GET_DN
	LDAP_GET_TRAN_ID
	LDAP_GET_VALUES
	LDAP_INIT
	Setting and getting session settings
	LDAP_OPT_SIZELIMIT
	LDAP_OPT_TIMELIMIT
	LDAP_OPT_REFHOPLIMIT
	LDAP_OPT_DEREF
	LDAP_OPT_REFERRALS
	LDAP_OPT_DEBUG
	LDAP_OPT_CONNECT_TIMEOUT
	LDAP_OPT_SSL_CIPHER
	LDAP_OPT_SSL_CIPHER_EX
	LDAP_OPT_SSL_SECURITY_PROTOCOL
	LDAP_OPT_SSL_TIMEOUT
	LDAP_OPT_REBIND_FN
	LDAP_OPT_PROTOCOL_VERSION
	LDAP_OPT_SERVER_CONTROLS
	LDAP_OPT_CLIENT_CONTROLS
	LDAP_OPT_UTF8_IO
	LDAP_OPT_HOST_NAME
	LDAP_OPT_ERROR_NUMBER
	LDAP_OPT_ERROR_STRING
	LDAP_OPT_API_INFO
	LDAP_OPT_EXT_ERROR

	Errors
	LDAP_DEBUG
	LDAP_SET_OPTION syntax for LDAP V2 applications
	LDAP_SET_OPTION
	Locating default LDAP servers
	Multithreaded applications
	Notes
	See also

	LDAP_MEMFREE
	LDAP_MESSAGE
	LDAP_MODIFY
	LDAP_PAGED_RESULTS
	LDAP_PARSE_EFFECTIVE_PWDPOLICY_RESPONSE
	LDAP_PARSE_ENTRYCHANGE_CONTROL
	LDAP_PARSE_EXTENDED_RESULT_W_CONTROLS
	LDAP_PARSE_LIMIT_NUM_VALUES_RESPONSE
	LDAP_PARSE_RESULT
	LDAP_PARSE_VLV_CONTROL
	LDAP_PASSWORD_POLICY
	LDAP_PLUGIN_REGISTRATION
	LDAP_PREPARE_TRANSACTION
	LDAP_RENAME
	LDAP_RESTORE
	LDAP_RESULT
	LDAP_SEARCH
	LDAP_SERVER_INFORMATION IN DNS
	LDAP_SSL
	LDAP_SSL_PKCS11
	LDAP_START_TRANSACTION
	LDAP_START_TLS
	LDAP_STOP_TLS
	LDAP_URL
	LDAP_SSL_ENVIRONMENT_INIT
	LDAP_SORT
	LDAP_SSL_SET_EXTN_SIGALG
	LDAP_SSL_SET_SUITEB_MODE

	IBM Security Directory Server JNDI Toolkit
	Implementing extended operations by using IBM Security Directory Suite JNDI Toolkit
	Implementing controls by using IBM Security Directory Server JNDI Toolkit
	LDAP client utilities

	Change tracking in IBM Security Directory Suite
	Persistent search
	Event notification
	Change log

	LDAP client plug-in programming reference
	Introduction to client SASL plug-ins
	Basic processing
	Restrictions

	Initializing a plug-in
	Writing your own SASL plug-in
	Plug-in APIs
	ldap_plugin_pblock_get()
	ldap_plugin_pblock_set()
	ldap_plugin_sasl_bind_s()

	Sample worker function

	Possible extended error codes returned by LDAP SSL function codes
	LDAP V3 schema
	LDAP distinguished names
	LDAP data interchange format (LDIF)
	LDIF examples
	Version 1 LDIF support
	Version 1 LDIF examples
	IANA character sets supported by platform

	Deprecated LDAP APIs
	Object Identifiers (OIDs) for extended operations and controls
	OIDs for extended operations
	Account status extended operation
	Attribute type extended operations
	Begin transaction extended operation
	Cascading replication operation extended operation
	Control replication extended operation
	Control queue extended operation
	DN normalization extended operation
	Dynamic server trace extended operation
	Dynamic update requests extended operation
	Effective password policy extended operation
	End transaction extended operation
	Event notification register request extended operation
	Event notification unregister request extended operation
	Group evaluation extended operation
	Kill connection extended operation
	LDAP trace facility extended operation
	Locate entry extended operation
	LogMgmtControl extended operation
	Online backup extended operation
	Password policy bind initialize and verify extended operation
	Password policy finalize and verify bind extended operation
	Prepare transaction extended operation
	Proxy back-end server resume role extended operation
	Quiesce or unquiesce replication context extended operation
	Replication error log extended operation
	Replication topology extended operation
	ServerBackupRestore extended operation
	Start, stop server extended operations
	Start TLS extended operation
	Unique attributes extended operation
	User type extended operation
	Log access extended operations
	Clear log extended operation
	Get file extended operation
	Get lines extended operation
	Get number of lines extended operation

	OIDs for controls
	AES bind control
	Audit control
	Do not replicate control
	Entry change notification control
	Group authorization control
	LDAP delete operation timestamp control
	Limit number of attribute values control
	Manage DSAIT control
	Modify groups only control
	No replication conflict resolution control
	Omit group referential integrity control
	Paged search results control
	Password policy request control
	Persistent search control
	Proxy authorization control
	Refresh entry control
	Replication bind failure timestamp control
	Replication supplier bind control
	Replication update ID control
	Return deleted objects control
	Server administration control
	Sorted search results control
	Subtree delete control
	Transaction control
	Virtual list view control

	Client libraries
	Sample Makefile
	Limited transaction support
	Usage
	Example

	Appendix A. Possible extended error codes returned by LDAP SSL function codes
	Appendix B. LDAP V3 schema
	Appendix C. LDAP distinguished names
	Appendix D. LDAP data interchange format (LDIF)
	LDIF examples
	Version 1 LDIF support
	Version 1 LDIF examples
	IANA character sets supported by platform

	Appendix E. Deprecated LDAP APIs
	Appendix F. Object Identifiers (OIDs) for extended operations and controls
	OIDs for extended operations
	Account status extended operation
	Attribute type extended operations
	Begin transaction extended operation
	Cascading replication operation extended operation
	Control replication extended operation
	Control queue extended operation
	DN normalization extended operation
	Dynamic server trace extended operation
	Dynamic update requests extended operation
	Effective password policy extended operation
	End transaction extended operation
	Event notification register request extended operation
	Event notification unregister request extended operation
	Group evaluation extended operation
	Kill connection extended operation
	LDAP trace facility extended operation
	Locate entry extended operation
	LogMgmtControl extended operation
	Online backup extended operation
	Password policy bind initialize and verify extended operation
	Password policy finalize and verify bind extended operation
	Prepare transaction extended operation
	Proxy back-end server resume role extended operation
	Quiesce or unquiesce replication context extended operation
	Replication error log extended operation
	Replication topology extended operation
	ServerBackupRestore extended operation
	Start, stop server extended operations
	Start TLS extended operation
	Unique attributes extended operation
	User type extended operation
	Log access extended operations
	Clear log extended operation
	Get file extended operation
	Get lines extended operation
	Get number of lines extended operation

	OIDs for controls
	AES bind control
	Audit control
	Do not replicate control
	Entry change notification control
	Group authorization control
	LDAP delete operation timestamp control
	Limit number of attribute values control
	Manage DSAIT control
	Modify groups only control
	No replication conflict resolution control
	Omit group referential integrity control
	Paged search results control
	Password policy request control
	Persistent search control
	Proxy authorization control
	Refresh entry control
	Replication bind failure timestamp control
	Replication supplier bind control
	Replication update ID control
	Return deleted objects control
	Server administration control
	Sorted search results control
	Subtree delete control
	Transaction control
	Virtual list view control

	Appendix G. Client libraries
	Appendix H. Sample Makefile
	Appendix I. Limited transaction support
	Usage
	Example

	Notices
	Trademarks
	Terms and conditions for product documentation

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

