
IBM Security Directory Server
Version 6.3.1.5

Server Plug-ins Reference

SC27-2750-02

���

IBM Security Directory Server
Version 6.3.1.5

Server Plug-ins Reference

SC27-2750-02

���

Note
Before using this information and the product it supports, read the general information under “Notices” on page 81.

Edition notice

Note: This edition applies to version 6.3.1.5 of IBM Security Directory Server (product number 5724-J39) and to all
subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1999, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this publication v
Access to publications and terminology v
Accessibility vii
Technical training vii
Support information vii
Statement of Good Security Practices vii

Chapter 1. Introduction to server
plug-ins 1

Chapter 2. Writing a plug-in 3

Chapter 3. Operation plug-ins 7
Pre-operation plug-ins 7
Post-operation plug-ins 7
Extended operation plug-ins 8

Input parameters 8
Output parameters 8

Audit plug-ins 9
Configuration options 10
Examples 12

Chapter 4. Parameter reference 15
Parameters for registering plug-in functions . . . 15

Pre-operation or data validation plug-ins . . . 15
Post operation or data notification plug-ins . . . 16
Extended operation plug-ins. 17
DN partitioning plug-ins 17

Parameters accessible to all plug-ins 17
Information about the database 17
Information about the connection 18
Information about the operation 19
Information about the plug-ins 19

Parameters for the configuration function 20
Parameters for the Bind function 21
Parameters for the Search function 21
Parameters for the Add function. 22
Parameters for the Compare function 22
Parameters for the Delete function 23
Parameters for the Modify function 23
Parameters for the Modify RDN function 23
Parameters for the Abandon function 24
Parameters for extended operations 24
Parameters for internal LDAP operations 25
Parameters for the DN partitioning function . . . 25

Chapter 5. Supported iPlanet APIs . . . 27
slapi_pblock_get() 28
slapi_pblock_get_int() 28
slapi_pblock_set() 29
slapi_pblock_new() 29
slapi_pblock_destroy() 29
slapi_ch_malloc() 29
slapi_ch_calloc() 30

slapi_ch_realloc() 30
slapi_ch_strcmp() 30
slapi_ch_strncmp() 30
slapi_ch_strdup() 31
slapi_compare_internal() 31
slapi_ch_free() 31
slapi_send_ldap_result() 32
slapi_dn_normalize() 32
slapi_dn_normalize_case() 33
slapi_dn_ignore_case() 33
slapi_dn_normalize_v3() 33
slapi_dn_normalize_case_v3() 34
slapi_dn_ignore_case_v3() 35
slapi_dn_compare_v3() 36
slapi_dn_issuffix() 36
slapi_entry2str() 36
slapi_str2entry() 37
slapi_entry_attr_find() 38
slapi_entry_attr_merge() 38
slapi_entry_attr_delete() 38
slapi_entry_get_dn() 39
slapi_entry_set_dn() 39
slapi_entry_alloc() 39
slapi_entry_dup() 40
slapi_send_ldap_search_entry() 40
slapi_entry_free() 40
slapi_attr_get_values() 41
slapi_str2filter() 41
slapi_filter_get_choice() 41
slapi_filter_get_ava() 42
slapi_filter_free(). 42
slapi_filter_list_first 43
slapi_filter_list_next() 43
slapi_is_connection_ssl() 44
slapi_get_client_port() 44
slapi_search_internal() 44
slapi_modify_internal() 45
slapi_add_internal() 46
slapi_add_entry_internal() 46
slapi_delete_internal() 47
slapi_modrdn_internal() 47
slapi_free_search_results_internal() 48
slapi_get_supported_saslmechanisms() 48
slapi_get_supported_extended_ops() 48
slapi_register_supported_saslmechanism() 49
slapi_get_supported_controls() 49
slapi_register_supported_control() 49
slapi_control_present() 50
slapi_log_error() 50

Chapter 6. SLAPI API Categories . . . 53
slapi_alloc_internal_pthread_mem() 53
slapi_audit_extop() 53
slapi_dn2ldapdn() 54
slapi_dn_get_rdn() 54

© Copyright IBM Corp. 1999, 2014 iii

slapi_dn_get_rdn_count() 55
slapi_dn_free_ldapdn() 55
slapi_dn_free_rdn() 56
slapi_get_response_controls() 56
slapi_set_response_controls() 57
slapi_moddn_internal() 57
slapi_get_bind_dn(). 58
slapi_get_client_ip() 59
slapi_get_proxied_dn(). 59
slapi_get_source_ip() 60

Chapter 7. Plug-in examples 61
Referential integrity plug-in 61

An example of SASL bind plug-in 68
An example of DN partitioning function. 73

Chapter 8. Deprecated plug-in APIs . . 77

Index 79

Notices 81

iv IBM Security Directory Server: Server Plug-ins Reference

About this publication

IBM® Security Directory Server, previously known as IBM Tivoli® Directory Server,
is an IBM implementation of Lightweight Directory Access Protocol for the
following operating systems:
v Microsoft Windows
v AIX®

v Linux (System x®, System z®, System p®, and System i®)
v Solaris
v Hewlett-Packard UNIX (HP-UX) (Itanium)

IBM Security Directory Server Version 6.3.1.5 Server Plug-ins Reference contains
information about using and writing plug-ins that extend the capabilities of your
IBM Security Directory Server

Access to publications and terminology
This section provides:
v A list of publications in the “IBM Security Directory Server library.”
v Links to “Online publications” on page vi.
v A link to the “IBM Terminology website” on page vi.

IBM Security Directory Server library

The following documents are available in the IBM Security Directory Server
library:
v IBM Security Directory Server, Version 6.3.1.5 Product Overview, GC27-6212-01

Provides information about the IBM Security Directory Server product, new
features in the current release, and system requirements information.

v IBM Security Directory Server, Version 6.3.1.5 Quick Start Guide, GI11-9351-02
Provides help for getting started with IBM Security Directory Server. Includes a
short product description and architecture diagram, and a pointer to the product
documentation website and installation instructions.

v IBM Security Directory Server, Version 6.3.1.5 Installation and Configuration Guide,
SC27-2747-02
Contains complete information for installing, configuring, and uninstalling IBM
Security Directory Server. Includes information about upgrading from a previous
version of IBM Security Directory Server.

v IBM Security Directory Server, Version 6.3.1.5 Administration Guide, SC27-2749-02
Contains instructions for administrative tasks through the Web Administration
tool and the command line.

v IBM Security Directory Server, Version 6.3.1.5 Reporting Guide, SC27-6531-00
Describes the tools and software for creating reports for IBM Security Directory
Server.

v IBM Security Directory Server, Version 6.3.1.5 Command Reference, SC27-2753-02
Describes the syntax and usage of the command-line utilities included with IBM
Security Directory Server.

© Copyright IBM Corp. 1999, 2014 v

v IBM Security Directory Server, Version 6.3.1.5 Server Plug-ins Reference ,
SC27-2750-02
Contains information about writing server plug-ins.

v IBM Security Directory Server, Version 6.3.1.5 Programming Reference, SC27-2754-02
Contains information about writing Lightweight Directory Access Protocol
(LDAP) client applications in C and Java™.

v IBM Security Directory Server, Version 6.3.1.5 Performance Tuning and Capacity
Planning Guide, SC27-2748-02
Contains information about tuning the directory server for better performance.
Describes disk requirements and other hardware requirements for directories of
different sizes and with various read and write rates. Describes known working
scenarios for each of these levels of directory and the disk and memory used;
also suggests rules of thumb.

v IBM Security Directory Server, Version 6.3.1.5 Troubleshooting Guide, GC27-2752-02
Contains information about possible problems and corrective actions that can be
taken before you contact IBM Software Support.

v IBM Security Directory Server, Version 6.3.1.5 Error Message Reference, GC27-2751-02
Contains a list of all warning and error messages associated with IBM Security
Directory Server.

Online publications

IBM posts product publications when the product is released and when the
publications are updated at the following locations:

IBM Security Directory Server documentation website
The http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/
com.ibm.IBMDS.doc/welcome.htm site displays the documentation
welcome page for this product.

IBM Security Systems Documentation Central and Welcome page
IBM Security Systems Documentation Central provides an alphabetical list
of all IBM Security Systems product documentation. You can also find links
to the product documentation for specific versions of each product.

Welcome to IBM Security Systems documentation provides and
introduction to, links to, and general information about IBM Security
Systems documentation.

IBM Publications Center
The http://www-05.ibm.com/e-business/linkweb/publications/servlet/
pbi.wss site offers customized search functions to help you find all the IBM
publications you need.

IBM Terminology website

The IBM Terminology website consolidates terminology for product libraries in one
location. You can access the Terminology website at http://www.ibm.com/
software/globalization/terminology.

vi IBM Security Directory Server: Server Plug-ins Reference

http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDS.doc/welcome.htm
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.IBMDS.doc/welcome.htm
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/IBM%20Security%20Systems%20Documentation%20Central/page/Welcome
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/index.jsp
http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/software/globalization/terminology
http://www.ibm.com/software/globalization/terminology

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. With this product,
you can use assistive technologies to hear and navigate the interface. You can also
use the keyboard instead of the mouse to operate all features of the graphical user
interface.

For more information, see the Accessibility Appendix in the IBM Security Directory
Server Product Overview.

Technical training
For technical training information, see the following IBM Education website at
http://www.ibm.com/software/tivoli/education.

Support information
IBM Support assists with code-related problems and routine, short duration
installation or usage questions. You can directly access the IBM Software Support
site at http://www.ibm.com/software/support/probsub.html.

IBM Security Directory Server Troubleshooting Guide provides details about:
v What information to collect before you contact IBM Support.
v The various methods for contacting IBM Support.
v How to use IBM Support Assistant.
v Instructions and problem-determination resources to isolate and fix the problem

yourself.

Note: The Community and Support tab on the product information center can
provide additional support resources.

Statement of Good Security Practices
IT system security involves protecting systems and information through
prevention, detection, and response to improper access from within and outside
your enterprise. Improper access can result in information being altered, destroyed,
misappropriated, or misused or can result in damage to or misuse of your systems,
including for use in attacks on others. No IT system or product should be
considered completely secure and no single product, service or security measure
can be completely effective in preventing improper use or access. IBM systems,
products and services are designed to be part of a comprehensive security
approach, which will necessarily involve additional operational procedures, and
may require other systems, products or services to be most effective. IBM DOES
NOT WARRANT THAT ANY SYSTEMS, PRODUCTS OR SERVICES ARE
IMMUNE FROM, OR WILL MAKE YOUR ENTERPRISE IMMUNE FROM, THE
MALICIOUS OR ILLEGAL CONDUCT OF ANY PARTY.

About this publication vii

http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/support/probsub.html

viii IBM Security Directory Server: Server Plug-ins Reference

Chapter 1. Introduction to server plug-ins

Use the IBM Security Directory Server plug-ins reference to help you create
plug-ins that extend the capabilities of your IBM Security Directory Server. Server
plug-ins extend the capabilities of your directory server. They are dynamically
loaded into the LDAP server's address space when it is started. Once the plug-ins
are loaded, the server calls the functions in a shared library by using function
pointers.

A server front end listens to the wire, receives and parses requests from clients,
and then processes the requests by calling an appropriate database back-end
function.

A server back-end reads and writes data to the database that contains the directory
entries. In addition to the default database operations, the LDAP server's DB2®

back-end also provides functions for supporting replication and dynamic schema
updates.

If the front end fails to process a request it returns an error message to the client;
otherwise, the back-end is called. After the back-end is called, it must return a
message to the client. Either the front end or the back-end, but not both can return
a message to the client.

Note: This differs from the iPlanet server plug-in in that only the front-end of the
iPlanet plug-in can send a message back to the client.

In this IBM Security Directory Server release the following types of server plug-ins
are supported:

Database plug-ins
The database plug-in is used to integrate database as a back-end to the
server. For example, the rdbm database back-end is a database plug-in. It
provides functions that enable the server to interact with the DB2 database.
In IBM Security Directory Server, customized database plug-in is not
supported.

Pre-operation plug-ins
Functions that are executed before an LDAP operation are performed. For
example, you can write a plug-in that checks new entries before they are
added to the directory.

Post-operation plug-ins
Functions that are executed after an LDAP operation is performed. For
example, you can write a post operation plug-in to perform group
referential integrity check after a delete or modrdn operation.

Extended operation plug-ins
Are used to handle extended operations protocol that is defined in the
LDAP V3 protocol. For example, a plug-in that clears a server log file.

Audit plug-ins
Are used to improve the security of the directory server. A default audit
plug-in is provided with the server. Depending on the audit configuration
parameters, this plug-in might log an audit entry in the default or specified
audit log for each LDAP operation the server processed. The IBM Security

© Copyright IBM Corp. 1999, 2014 1

Directory Server administrator can use the activities that are stored in the
audit log to check for suspicious patterns of activity in an attempt to detect
security violations. If security is violated, the audit log can be used to
determine how and when the problem occurred and perhaps the amount
of damage done. This information is useful, both for recovery from the
violation and, possibly, in the development of better security measures to
prevent future problems. You can also write your own audit plug-ins to
either replace, or add more processing to, the default audit plug-in.

DN partitioning plug-ins
IBM Security Directory Server Proxy Server provides an option to users to
dynamically load customer written DN partitioning function during server
run time. With DN partitioning function implemented as a plug-in, the
existing hash algorithm can be easily replaced with the customer written
DN partitioning plug-in resulting in the directory server being more
flexible and adaptive. The existing hash algorithm however remains as the
default DN partitioning plug-in, which is loaded during server startup if
no customized code is available.

A server plug-in can return a message to the client as well. However, make sure
that the server returns only one message.

2 IBM Security Directory Server: Server Plug-ins Reference

Chapter 2. Writing a plug-in

Server plug-ins extend the capabilities of your directory server. They are
dynamically loaded into the LDAP server's address space when it is started. After
the plug-ins are loaded, the server calls the functions in a shared library by using
function pointers.

Before you begin
v You must write the plug-ins by using reentrant system calls.
v There is no global mutex issue that the plug-in writer has to be concerned about

in terms of interacting with the server. The plug-ins call server-provided slapi
APIs so that a server's shared resource is protected by the APIs. However,
because each request is serviced by a thread, and each thread might exercise the
plug-in code, if there is any shared resource that the plug-in code creates, then
mutex might protect the resources.

About this task

A pblock is an opaque structure in which many parameters are stored. It is used to
communicate between the server and your plug-ins. The application programming
interfaces (APIs) are provided for your plug-ins to get (or set) parameters in this
structure.

The following examples show supported compilers:

Table 1. Supported compilers

Operating system Compilers

Windows 32-bit MS V.Studio 7.1

Windows 64-bit MS 14.00.40310.41

Windows (IA64) Itanium MS SDK 2003 SP1

AIX platforms XL C/C++ V10.1

Linux x86, Linux s390, Linux ppc GCC 4.1.x

Solaris SPARC SunStudio 11

Solaris on x86 GCC 4.1.x

HP IA64 aCC 6.06

To write your own plug-in, complete the following steps:

Procedure
1. Start by writing your functions. Include slapi-plugin.h (where you can find all

the parameters that can be defined in the pblock). You also can find a set of
function prototypes for the available functions in the slapi-plugin.h file.

2. Decide the input parameters for your functions. Depending on the type of
plug-in you are writing, you might work with a different set of parameters.

3. The following output is received from your functions:

return code
You can have the return code set to 0, which means that the server
continues the operation. A return code of non-zero means that the

© Copyright IBM Corp. 1999, 2014 3

server stops processing the operation. For example, if you have a
pre-operation bind function that authenticates a user, it returns a
non-zero after the successful authentication. Otherwise, you can return
0 to continue the authentication process with the default bind
operation.

return a message to the client
You might want your plug-in (a pre-operation, a database operation, or
a post-operation) to send an LDAP result to the client. For each
operation, make sure that there is only one LDAP result sent.

output parameter
You might want to update parameters in the pblock that were passed
to your function. For example, after your pre-operation bind function
authenticates a user, you might want your plug-in to return the bound
user's DN to the server. The server can then use it to continue with the
processing of the operations that are requested by the user.

4. Call slapi APIs in the libslapi library file. See Chapter 5, “Supported iPlanet
APIs,” on page 27 for information about the APIs supported in this release.

5. Write an initialization function for your plug-in to register your plug-in
functions.

6. Export your initialization function from your plug-in shared library. Use an
.exp file for AIX or a .def (or dllexport) file for Windows NT to export your
initialization function. For Linux, and Solaris platforms, the exportation of the
function is automatic when you create the shared library.

7. Compile and link your server plug-in object files with whatever libraries you
need, and libslapi library file.

8. Add a plug-in directive in the server configuration file. The syntax of the
plug-in directive is:attributeName: plugin-type plugin-path init-func args
...

9. On a Windows NT operating system, in the ibmslapd.conf file, the plug-in
directive is as follows:
dn: cn=Directory, cn=RDBM Backends, cn=IBM Directory,
cn=Schemas, cn=Configuration
ibm-slapdPlugin: database /lib/libback-rdbm.dll rdbm_backend_init

Note: For the AIX, Linux, and Solaris operating systems, the .dll extension is
replaced with the appropriate extension:
v For AIX and Linux operating systems - .a
v For Solaris operating systems - .so

The following rules apply when you place a plug-in directive in the
configuration file:
v Multiple pre-operations or post-operations are called in the order they

appear in the configuration file.
v The server can pass parameters to your plug-in initialization function by way

of the argument list that is specified in the plug-in directive.

ibm-slapdPlugin is the attribute that is used to specify a plug-in which can be
loaded by the server. This attribute is one of the attributes that are contained in
objectclasses, such as ibm-slapdRdbmBackend and ibm-slapdLdcfBackend. For
instance, in ibmslapd.conf, there is an entry which identifies the rdbm back-end.
In this entry, a database plug-in is specified by using the ibm-slapdPlugin
attribute so that the server knows where and how to load this plug-in. If there
is another plug-in to be loaded, such as a changelog plug-in, then specify it
using another ibm-slapdPlugin attribute.

4 IBM Security Directory Server: Server Plug-ins Reference

dn: cn=Directory, cn=RDBM Backends, cn=IBM Directory,
cn=Schemas, cn=Configuration

...
ibm-slapdPlugin: database libback-rdbm.dll rdbm_backend_init
ibm-slapdPlugin: preoperation libcl.dll CLInit "cn=changelog"
...
objectclass: ibm-slapdRdbmBackend

Chapter 2. Writing a plug-in 5

6 IBM Security Directory Server: Server Plug-ins Reference

Chapter 3. Operation plug-ins

Before or after an LDAP operation, you can perform the following plug-in
functions.

Pre-operation plug-ins
Before an LDAP operation is performed, you can execute the following
pre-operation functions.

SLAPI_PLUGIN_PRE_BIND_FN
A function to call before the Directory Server executes an LDAP bind
operation.

SLAPI_PLUGIN_PRE_UNBIND_FN
A function to call before the Directory Server executes an LDAP unbind
operation.

SLAPI_PLUGIN_PRE_ADD_FN
A function to call before the Directory Server executes an LDAP add
operation.

SLAPI_PLUGIN_PRE_DELETE_FN
A function to call before the Directory Server executes an LDAP delete
operation.

SLAPI_PLUGIN_PRE_SEARCH_FN
A function to call before the Directory Server executes an LDAP search
operation.

SLAPI_PLUGIN_PRE_COMPARE_FN
A function to call before the Directory Server executes an LDAP compare
operation.

SLAPI_PLUGIN_PRE_MODIFY_FN
A function to call before the Directory Server executes an LDAP modify
operation.

SLAPI_PLUGIN_PRE_MODRDN_FN
A function to call before the Directory Server executes an LDAP modify
RDN database operation.

Post-operation plug-ins
After an LDAP operation is performed, you can execute the following
post-operation plug-in functions.

SLAPI_PLUGIN_POST_BIND_FN
A function to call after the Directory Server executes an LDAP bind
operation.

SLAPI_PLUGIN_POST_UNBIND_FN
A function to call after the Directory Server executes an LDAP unbind
operation.

SLAPI_PLUGIN_POST_ADD_FN
A function to call after the Directory Server executes an LDAP add
operation.

© Copyright IBM Corp. 1999, 2014 7

SLAPI_PLUGIN_POST_DELETE_FN
A function to call after the Directory Server executes an LDAP delete
operation.

SLAPI_PLUGIN_POST_SEARCH_FN
A function to call after the Directory Server executes an LDAP search
operation.

SLAPI_PLUGIN_POST_COMPARE_FN
A function to call after the Directory Server executes an LDAP compare
operation.

SLAPI_PLUGIN_POST_MODIFY_FN
A function to call after the Directory Server executes an LDAP modify
operation.

SLAPI_PLUGIN_POST_MODRDN_FN
A function to call after the Directory Server executes an LDAP modify
RDN database operation.

Extended operation plug-ins
You can extend an LDAP operation with your own extended operation functions
provided by a plug-in.

An extended operation function might have an interface such as:
int myExtendedOp(Slapi_PBlock *pb);

In this function, you can obtain the following two input parameters from the
pblock passed in and communicate back to the server front end with the following
two output parameters:
v Input parameters
v Output parameters

Input parameters
These parameters can be obtained by calling the slapi_pblock_get API.

SLAPI_EXT_OP_REQ_OID (char *)
The object identifier that is specified in a client's request.

SLAPI_EXT_OP_REQ_VALUE (struct berval *)
The information in a form that is defined by that request.

Output parameters
These parameters can be put to the parameter block passed in by the server by
calling the slapi_pblock_set API.

SLAPI_EXT_OP_RET_OID (char *)
The object identifier that the plug-in function wants to send back to the
client.

SLAPI_EXT_OP_RET_VALUE (struct berval *)
The value that the plug-in function wants to send back to the client.

After you receive and process an extended operation request, an extended
operation plug-in function might itself send an extended operation response back
to a client or let the server send such a response. If the plug-in decides to send a
response, it might call the slapi_send_ldap_result() function and return a result

8 IBM Security Directory Server: Server Plug-ins Reference

code SLAPI_PLUGIN_EXTENDED_SENT_RESULT to the server that indicates that the
plug-in sent an LDAP result message to the client. If the plug-in is not sent an
LDAP result message to the client, the plug-in returns an LDAP result code and
the server sends this result code back to the client.

To register an extended operation function, the initialization function of the
extended operation plug-in might call slapi_pblock_set() to set the
SLAPI_PLUGIN_EXT_OP_FN to the extended operation function and the
SLAPI_PLUGIN_EXT_OP_OIDLIST parameter to the list of extended operation OIDs
supported by the function. The list of OIDs which is listed in the ibm-slapdPlugin
directive in ibmslapd.conf can be obtained by getting the SLAPI_PLUGIN_ARGV
parameter from the pblock passed in. The server keeps a list of all the OIDs that
are set by plug-ins by using the parameter SLAPI_PLUGIN_EXT_OP_OIDLIST. You can
query the list of the extended operations by performing a search of the root DSE.
For example, in the Windows NT environment to specify an extended operation
plug-in in the ibmslapd.conf file for the database rdbm add the following
information.

dn: cn=Directory, cn=RDBM Backends, cn=IBM SecureWay,
cn=Schemas, cn=Configuration

ibm-slapdPlugin database /bin/libback-rdbm.dll rdbm_backend_init
ibm-slapdPlugin extendedop /tmp/myextop.dll
myExtendedOpInit 123.456.789

File paths that start with a forward slash (/) are relative to the LDAP installation
directory. /tmp is changed to <ldap>\tmp, but C:\tmp is unchanged. It indicates that
the function myExtendedOpInit that can be found in the /path/myextop.dll shared
library is executed when the server starts. The myExtendedOp function that is
registered in the initialization is used to handle the extended-operations. This
function handles extended operations with the object identifier (OID) 123.456.789.

Note: For the AIX, Linux, and Solaris operating platforms, the .dll extension is
replaced with the appropriate extension:
v For AIX and Linux operating systems - .a
v For Solaris operating systems - .so

Remember that plug-in directives are per-database.

Audit plug-ins
Operating system administrators might want to use the system audit facilities to
log the LDAP audit record with the system-defined record format. To allow
flexibility in logging and record formats, a plug-in interface is provided.

The server uses this interface to provide three types of auditing-related data to the
external audit plug-ins if the auditing configuration is set to ON. The data is passed
to the external audit plug-ins through the standard plug-in's pblock interfaces,
slapi_pblock_set() and slapi_pblock_get().

Audit Configuration Information
This information is used to inform the external audit plug-in that at least
one of the audit configuration options are changed. The server expects the
plug-in to determine whether to log the audit data that is associated with a
particular LDAP operation, so it is important for the plug-in to have the
current audit configuration information that is maintained by the server.

Audit Event Information
This information is used to inform the audit plug-in that certain events

Chapter 3. Operation plug-ins 9

happened. Event IDs along with a message text that describes the event are
sent by the server to the audit plug-in when such events occur. For
example, Auditing Started, Auditing Ended, or Audit Configuration
Options Changed.

Audit Record Information
This information is the audit data that is associated with each LDAP
request received by the server. For each LDAP request, if the ibm-audit
configuration option is set, the server provides the header data, control
structure (if available), and operation-specific data to the audit plug-in. It is
up to the audit plug-in to check its own copy of the LDAP audit
configuration options or its platform-specific audit policy to determine
whether to log and how to log the audit data.

The header file audit-plugin.h that defines the audit plug-in interface and
data structures is shipped with the IBM Security Directory Server C-Client
SDK.

A default audit plug-in is provided and configured with the server. This
plug-in performs the logging and formatting of the LDAP audit record.
This default plug-in can be replaced with the platform-specific audit
plug-in, if available, by changing the plug-in configuration lines in the
ibmslapd.conf configuration file or through the IBM Security Directory
Server Web Administration Tool.

Note: There is no plug-in interface to the administration server audit.

Configuration options
The audit service has the following configuration options.

ibm-auditLog
Specifies the path name of the audit log. The default is
directory_server_instance_name\logs for AIX, Linux, and Solaris systems
and directory_server_instance_name\logs for Windows systems.

ibm-audit: TRUE|FALSE
Enables or disables the audit service. Default is FALSE.

ibm-auditFailedOPonly: TRUE|FALSE
Indicates whether to log only failed operations. Default is TRUE.

ibm-auditBind: TRUE|FALSE
Indicates whether to log the Bind operation. Default is TRUE.

ibm-auditUnbind: TRUE|FALSE
Indicates whether to log the Unbind operation. Default is TRUE.

ibm-auditSearch: TRUE|FALSE
Indicates whether to log the Search operation. Default is FALSE.

ibm-auditAdd: TRUE|FALSE
Indicates whether to log the Add operation. Default is FALSE.

ibm-auditModify: TRUE|FALSE
Indicates whether to log the Modify operation. Default is FALSE.

ibm-auditDelete: TRUE|FALSE
Indicates whether to log the Delete operation. Default is FALSE.

ibm-auditModifyDN: TRUE|FALSE
Indicates whether to log the ModifyRDN operation. Default is FALSE.

10 IBM Security Directory Server: Server Plug-ins Reference

ibm-auditExtOPEvent: TRUE|FALSE
Indicates whether to log LDAP V3 Event Notification extended operations.
Default is FALSE.

ibm-auditExtOp: TRUE|FALSE
Indicates whether to log extended operations other than event notification
extended operations. Default is FALSE.

ibm-auditCompare: TRUE|FALSE
Indicates whether to log compare operations. Default is FALSE.

ibm-auditVersion: 1|2|3
Indicates the auditing version. Default is 3. The audit versions are:

Audit Version 1
Basic Audit functionality.

Audit Version 2
Audit version 2 was introduced in IBM Security Directory Server,
version 5.2. Audit version 2 writes the audit version into the audit
header, enables the auditing of Transport Layer Security (TLS) in
the audit header, and enables auditing of additional information
about controls.

Audit Version 3
Audit version 3 was introduced in IBM Security Directory Server,
version 6.0. Audit version 3 does everything that is done in audit
versions 1 and 2 and also enables auditing of unique IDs.

ibm-auditAttributesOnGroupEvalOp: TRUE|FALSE
Indicates whether to log the attributes that are sent on a group evaluation
extended operation. This setting is used only if ibm-auditExtOp is set to
TRUE. Default is FALSE.

ibm-auditGroupsOnGroupControl: TRUE|FALSE
Indicates whether to log the groups that are sent on a group control. This
setting is only used if ibm-auditVersion is set to 2 or greater. Default is
FALSE.

ibm-auditPerformance: TRUE|FALSE
Indicates whether to log in performance profile information audit logs. If
set to FALSE, the server does not output performance profile information
in audit logs. If TRUE, performance data profiles in the audit provided
auditing is enabled on the server instance. Default is FALSE.

ibm-auditPTABindInfo: TRUE|FALSE
Indicate whether to log pass-through authentication information that is
related to bind operations. Default is FALSE.

These options are stored in the LDAP directory to allow dynamic configuration.
They are contained in the cn=Audit, cn=Log Management, cn=Configuration entry.
The Primary Directory Administrator and Local Administrative Group member
with AuditAdmin role can modify this entry.

Note: For each modification of these option values, a message is logged in the
slapd error log as well as the audit log to indicate the change.

The values of the audit configuration options are returned when a search of
cn=monitor is requested by the LDAP administrator. These include:
v The value of the audit configuration options.

Chapter 3. Operation plug-ins 11

v The number of audit entries sent to the audit plug-in for the current auditing
session and for the current server session.

Examples
Use the examples for various operations.

For auditing version 1
2001-07-24-15:01:01.345-06:00--V3 Bind--
bindDN:cn=test--client:9.1.2.3:12345--ConnectionID:12--
received:2001-07-24-15:01:01.330-06:00--adminAuthority:Y--success
name: cn=test
authenticationChoice: simple

2001-07-24-15:01:02.367-06:00--V3 Search--
bindDN:cn=test--client:9.1.2.3:12345--ConnectionID:12--
received:2001-07-24-15:01:02.360-06:00--adminAuthority:Y--success
base: o=sample
scope: wholeSubtree
derefAliases: neverDerefAliases
typesOnly: false
filter: (&(cn=c*)(sn=a*))

Note: See the following examples for the format differences between
authenticated and unauthenticated requests.
2001-07-24-15:22:33.541-06:00--V3 unauthenticated Search--
bindDN: <*CN=NULLDN*>--client:9.1.2.2:32412--ConnectionID:18--
received:2001-07-24-15:22:33.539-06:00--adminAuthority:Y--success

2001-07-24-15:22:34.555-06:00--V3 SSL unauthenticated Search--
bindDN: <*CN=NULLDN*>--client:9.1.2.2:32412--ConnectionID:19--
received:2001-07-24-15:22:34.550-06:00--adminAuthority:Y--success

2001-07-24-15:01:03.123-06:00--V3 Add--
bindDN:cn=test--client:9.1.2.3:12345--ConnectionID:12--
received:2001-07-24-15:01:03.100-06:00--adminAuthority:Y--entryAlreadyExists
entry: cn=Jim Brown, ou=sales,o=sample
attributes: objectclass, cn, sn, telphonenumber

2001-07-24-15:01:04.378-06:00--V3 Delete--
bindDN:cn=test--client:9.1.2.3:12345--ConnectionID:12--
received:2001-07-24-15:01:04.370-06:00--adminAuthority:Y--success
entry: cn=Jim Brown, ou=sales,o=sample

2001-07-24-15:01:05.712-06:00--V3 Modify--
bindDN:cn=test--client:9.1.2.3:12345--ConnectionID:12--
received:2001-07-24-15:01:05.708-06:00--adminAuthority:Y--noSuchObject
object: cn=Jim Brown, ou=sales,o=sample
add: mail
delete: telephonenumber

2001-07-24-15:01:06.534-06:00--V3 ModifyDN--
bindDN:cn=test--client:9.1.2.3:12345--ConnectionID:12--
received:2001-07-24-15:01:06.530-06:00--adminAuthority:Y--noSuchObject
entry: cn=Jim Brown, ou=sales,o=sample
newrdn: ou=r&d
deleteoldrdn: true

2001-07-24-15:01:07.913-06:00--V3 Unbind--
bindDN:cn=test--client:9.1.2.3:12345--ConnectionID:12--
received:2001-07-24-15:01:07.910-06:00--adminAuthority:Y--success

For auditing versions 2 and 3

Note: The format is explicitly stated in Audit format section under the
Administering section of the IBM Security Directory Server documentation.
v Bind: (Administrator account status is displayed only if the bind is an

administrator bind.)
AuditV3--2005-07-19-10:01:12.630-06:00DST--V3 Bind--bindDN: cn=root--client:
127.0.0.1:43021--connectionID: 1--received: 2005-07-19-10:01:12.389-06:
00DST--Success
name: cn=root
authenticationChoice: simple
Admin Acct Status: Not Locked

Search:
AuditV3--2005-09-09-10:49:01.863-06:00DST--V3 Search--bindDN: cn=root--client:
127.0.0.1:40722--connectionID: 2--received: 2005-09-09-10:49:01.803-06:
00DST--Success
controlType: 1.3.6.1.4.1.42.2.27.8.5.1

12 IBM Security Directory Server: Server Plug-ins Reference

http://www-03preprod.ibm.com/support/knowledgecenter/SSVJJU/welcome

criticality: false
base: o=sample
scope: wholeSubtree
derefAliases: neverDerefAliases
typesOnly: false
filter: (&(cn=C*)(sn=A*))

v Compare:
AuditV3--2005-09-09-10:51:45.959-06:00DST--V3 Compare--bindDN:
cn=root--client:9.53.21.70:17037--connectionID: 5--received:
2005-09-09-10:51:45.949-06:00DST--Success
entry: cn=U1,ou=Austin,o=sample
attribute: postalcode

v Add:
AuditV3--2005-09-09-10:50:55.316-06:00DST--V3 Add--bindDN: cn=root--client:
9.53.21.70:16525--connectionID: 3--received: 2005-09-09-10:50:52.652-06:
00DST--Success
entry: cn=U1,ou=Austin,o=sample
attributes: objectclass, cn, sn, telephonenumber, internationaliSDNNumber,
title, seealso, postalcode,facsimiletelephonenumber, ibm-entryuuid

v Modify:
AuditV3--2005-09-09-10:51:07.103-06:00DST--V3 Modify--bindDN: cn=root--client:
9.53.21.70:16781--connectionID: 4--received: 2005-09-09-10:51:06.923-06:
00DST--Success
object: cn=U1,ou=Austin,o=sample
replace: postalcode

v Modify DN:
AuditV3--2005-09-09-10:52:14.590-06:00DST--V3 ModifyDN--bindDN: cn=root--client:
9.53.21.70:17293--connectionID: 6--received: 2005-09-09-10:52:14.230-06:
00DST--Success
entry: cn=U1,ou=Austin,o=sample
newrdn: cn=U1A
deleteoldrdn: true

v Delete:
AuditV3--2005-09-09-10:52:36.381-06:00DST--V3 Delete--bindDN: cn=root--client:
9.53.21.70:17549--connectionID: 7--received: 2005-09-09-10:52:35.971-06:
00DST--Success
controlType: 1.3.6.1.4.1.42.2.27.8.5.1
criticality: false
entry: cn=U1A,ou=Austin,o=sample

v Unbind:
AuditV3--2005-09-09-10:51:07.143-06:00DST--V3 Unbind--bindDN: cn=root--client:
9.53.21.70:16781--connectionID: 4--received: 2005-09-09-10:51:07.143-06:
00DST--Success

v Extended Operation:
AuditV3--2005-09-09-10:57:11.647-06:00DST--V3 extended operation--bindDN:
cn=root--client: 9.53.21.70:17805--connectionID: 8--received:
2005-09-09-10:57:11.557-06:00DST--Success OID: 1.3.18.0.2.12.6

Each extended operation can have its own specific data. See the
description of each extended operation in the IBM Security Directory
Server Programming Reference for specific details.

Auditing of Controls
Each control that is audited contains the controlType and the criticality. If
the audit version is set to version 2 or higher, the server audits more
information about the controls that are sent on an operation. This
information is placed just after the header and before the operation-specific
data. The following example is an add operation with the password policy
control.
AuditV3--2005-09-09-10:50:55.316-06:00DST--V3 Add--bindDN: cn=root--client:
9.53.21.70:16525--connectionID: 3--received: 2005-09-09-10:50:52.652-06:00DST
--Success controlType: 1.3.6.1.4.1.42.2.27.8.5.1
criticality: false
entry: cn=U1,ou=Austin,o=sample
attributes: objectclass, cn, sn, telephonenumber, internationaliSDNNumber, title,
seealso, postalcode, facsimiletelephonenumber, ibm-entryuuid

Auditing of a transaction
When the server receives an operation within a transaction, the transaction
ID is audited in both the audit header and in the list of controls. The

Chapter 3. Operation plug-ins 13

transaction ID is placed just before the results of the operation in the
header. The following example shows an add operation within a
transaction.
AuditV3--2005-09-09-10:57:11.607-06:00DST--V3 Add--bindDN: cn=root--client:
9.53.21.70:17805--connectionID: 8--received: 2005-09-09-10:57:11.447-06:00DST
--transactionID: 11262814319.53.21.7017805--Success
controlType: 1.3.18.0.2.10.5
criticality: true
entry: cn=U1,ou=Austin,o=sample
attributes: objectclass, cn, sn, telephonenumber, internationaliSDNNumber, title,
seealso, postalcode, facsimiletelephonenumber, ibm-entryuuid

Auditing of operation with the Proxy Authorization Control
The following example shows a control with more information that is
audited only if the version is set to 2 or higher:
AuditV3--2005-09-09-14:45:08.844-06:00DST--V3 Search--bindDN: cn=root--client: 1
27.0.0.1:4371--connectionID: 10--received: 2005-09-09-14:45:04.858-06:00DST
--Success
controlType: 2.16.840.1.113730.3.4.18
criticality: true
ProxyDN: dn:cn=user1,o=sample
base: o=sample
scope: wholeSubtree
derefAliases: neverDerefAliases
typesOnly: false
filter: (cn=A*)

14 IBM Security Directory Server: Server Plug-ins Reference

Chapter 4. Parameter reference

Know and use the parameters available in the Slapi_PBlock parameter block, the
type of data that is associated with each parameter, and the plug-in functions in
which these parameters are accessible. To get the values of these parameters, call
the slapi_pblock_get() function. To set the values of these parameters, call the
slapi_pblock_set() function.

Using these parameters, you can get and set the following information:
v “Parameters for registering plug-in functions”
v “Parameters accessible to all plug-ins” on page 17
v “Parameters for the configuration function” on page 20
v “Parameters for the Bind function” on page 21
v “Parameters for the Search function” on page 21
v “Parameters for the Add function” on page 22
v “Parameters for the Compare function” on page 22
v “Parameters for the Delete function” on page 23
v “Parameters for the Modify function” on page 23
v “Parameters for the Modify RDN function” on page 23
v “Parameters for the Abandon function” on page 24
v “Parameters for extended operations” on page 24
v “Parameters for internal LDAP operations” on page 25
v “Parameters for the DN partitioning function” on page 25

Parameters for registering plug-in functions
The parameters that are listed in the following section identify plug-in functions
that are recognized by the server. To register your plug-in function, set the value of
the appropriate parameter to the name of your function.

Note: You do not require to get the value of any of the plug-in function
parameters.
v “Pre-operation or data validation plug-ins”
v “Post operation or data notification plug-ins” on page 16
v “Extended operation plug-ins” on page 17
v “DN partitioning plug-ins” on page 17

Pre-operation or data validation plug-ins
To register your plug-in function, write an initialization function that sets the
values of the following parameters to your functions.

The following parameters are used to register pre-operation or data validation
plug-in functions.

© Copyright IBM Corp. 1999, 2014 15

Table 2. Parameters and their descriptions of pre-operation or data validation plug-ins

Parameter ID Description

SLAPI_PLUGIN_PRE_BIND_FN Called before an LDAP bind operation is
completed.

SLAPI_PLUGIN_PRE_UNBIND_FN Called before an LDAP unbind operation is
completed.

SLAPI_PLUGIN_PRE_SEARCH_FN Called before an LDAP search operation is
completed.

SLAPI_PLUGIN_PRE_COMPARE_FN Called before an LDAP compare operation is
completed.

SLAPI_PLUGIN_PRE_MODIFY_FN Called before an LDAP modify operation is
completed.

SLAPI_PLUGIN_PRE_MODRDN_FN Called before an LDAP modify RDN
operation is completed.

SLAPI_PLUGIN_PRE_ADD_FN Called before an LDAP add operation is
completed.

SLAPI_PLUGIN_PRE_DELETE_FN Called before an LDAP delete operation is
completed.

SLAPI_PLUGIN_START_FN Called at server startup.

SLAPI_PLUGIN_CLOSE_FN Called before the server shuts down. You
can specify a close function for each
pre-operation plug-in.

Post operation or data notification plug-ins
Use the following parameters to register post operation or data notification plug-in
functions.

Table 3. Parameters and their descriptions of post-operation or data notification plug-ins

Parameter ID Description

SLAPI_PLUGIN_POST_BIND_FN Called after an LDAP bind operation is
completed.

SLAPI_PLUGIN_POST_UNBIND_FN Called after an LDAP unbind operation is
completed.

SLAPI_PLUGIN_POST_SEARCH_FN Called after an LDAP search operation is
completed.

SLAPI_PLUGIN_POST_COMPARE_FN Called after an LDAP compare operation is
completed.

SLAPI_PLUGIN_POST_MODIFY_FN Called after an LDAP modify operation is
completed.

SLAPI_PLUGIN_POST_MODRDN_FN Called after an LDAP modify RDN
operation is completed.

SLAPI_PLUGIN_POST_ADD_FN Called after an LDAP add operation is
completed.

SLAPI_PLUGIN_POST_DELETE_FN Called after an LDAP delete operation is
completed.

SLAPI_PLUGIN_START_FN Called at server startup.

SLAPI_PLUGIN_CLOSE_FN Called before the server shuts down. You
can specify a close function for each
post-operation plug-in.

16 IBM Security Directory Server: Server Plug-ins Reference

Extended operation plug-ins
Use the following parameters to register the extended operation plug-in functions.

Table 4. Parameters and their descriptions of extended operation plug-ins

Parameter ID Data type Description

SLAPI_PLUGIN_EXT_
OP_FN

void * Your plug-in function for
handling an extended
operation.

SLAPI_PLUGIN_EXT_OP_
OIDLIST

char ** NULL-terminated array of
OIDs identifying the
extended operations that are
handled by the plug-in
function.

SLAPI_PLUGIN_START_FN void * Called at server startup.

SLAPI_PLUGIN_CLOSE_FN void * Called before the server
shuts down. You can specify
a close function for each
extended operation plug-in.

DN partitioning plug-ins
The purpose of the initialization function is to call slapi_pblock_set API to
register the user provided DN partitioning function. Use the parameter
SLAPI_PLUGIN_PROXY_DN_PARTITION_FN to set the function address.

Table 5. Parameters and their descriptions of DN partitioning plug-ins

Parameter ID Description

SLAPI_PLUGIN_PROXY_DN_
PARTITION_FN

Address of a customized DN partitioning
function.

Parameters accessible to all plug-ins
The parameters that are listed in the following section are accessible to all types of
plug-ins.

The parameters in the following section are organized in the following sections:
v “Information about the database”
v “Information about the connection” on page 18
v “Information about the operation” on page 19
v “Information about the plug-ins” on page 19

Information about the database
The following parameters specify information about the back-end database. These
parameters are available for all types of plug-ins.

Note: These specific parameters cannot be set by calling slapi_pblock_set(). You
can get these parameters by calling slapi_pblock_get().

Chapter 4. Parameter reference 17

Table 6. Parameters specifying information about the back-end database

Parameter ID Data type Description

SLAPI_BE_MONITORDN char * Note:

v Netscape Directory Server 3.x
releases only. DN used to monitor
the back-end database.

v Not supported in the Netscape
Directory Server 4.0 release.

SLAPI_BE_TYPE char * Type of back-end database that is
specified by the database directive in
the slapd.conf file.

SLAPI_BE_READONLY int Specifies whether the back-end
database is read-only. It is determined
by the read-only directive in the
slapd.conf file:

v 1 means that the database back-end
is read-only.

v 0 means that the database back-end
is writable.

SLAPI_DBSIZE int Specifies the size of the back-end
database. If you are using your own
database instead of the default
database, your SLAPI_DB_SIZE_FN
function must set the value of this
parameter.

Information about the connection
The following parameters specify information about the connection. These
parameters are available for all types of plug-ins.

Table 7. Parameters specifying information about the connection

Parameter ID
Data
type Description

SLAPI_CONN_ID int ID identifying the current connection.

SLAPI_CONN_DN char * DN of the user authenticated on the
current connection. The caller calls
slapi_ch_free() on this value only if
slapi_pblock_set() is called to set
SLAPI_CONN_DN to a new value.

18 IBM Security Directory Server: Server Plug-ins Reference

Table 7. Parameters specifying information about the connection (continued)

Parameter ID
Data
type Description

SLAPI_CONN_AUTHTYPE char * Method that is used to authenticate the
current user. This parameter can have one
of the following values:

SLAPD_AUTH_NONE
Specifies that no authentication
mechanism was used. For
example, in cases of anonymous
authentication.

SLAPD_AUTH_SIMPLE
Specifies that simple
authentication (user name and
password) was used to
authenticate the current user

SLAPD_AUTH_SSL
Specifies that SSL
(certificate-based authentication)
was used to authenticate the
current user.

SLAPD_AUTH_SASL
Specifies that a SASL (simple
authentication and security layer)
mechanism was used to
authenticate the current user.

SLAPI_CONN_CLIENTNETADDR_STR char * IP address of the client that requests the
operation.

SLAPI_CONN_SERVERNETADDR_STR char * IP address of the server to which the client
is connecting. You can use this parameter
if, for example, your server accepts
connections on multiple IP addresses.

Information about the operation
The following parameters specify information about the current operation. These
parameters are available for all types of plug-ins.

Table 8. Parameters specifying information about the current operation

Parameter ID Data type Description

SLAPI_OPINITIATED_TIME time_t Time when the server began
processing the operation.

SLAPI_TARGET_DN char * Specifies the DN to which
the operation applies. For
example, the DN of the entry
to be added or removed.

SLAPI_REQCONTROLS LDAPControl ** Array of the controls that is
specified in the request.

Information about the plug-ins
The following parameters specify information about the plug-in that is available to
all plug-in functions defined in the current library. These parameters are available
for all types of plug-ins.

Chapter 4. Parameter reference 19

Table 9. Parameters specifying information about the plug-in that is available to all plug-in
functions

Parameter ID Data type Description

SLAPI_PLUGIN_PRIVATE void * Private data that you want
passed to your plug-in
functions.

SLAPI_PLUGIN_TYPE int Specifies the type of plug-in
function.

SLAPI_PLUGIN_ARGV char ** NULL-terminated array of
command-line arguments
that are specified for the
plug-in directive in the
slapd.conf file.

SLAPI_PLUGIN_ARGC int Number of command-line
arguments that are specified
for the plug-in directive in
the slapd.conf file.

Types of plug-ins
The SLAPI_PLUGIN_TYPE parameter can have one of the following values, which
identifies the type of the current plug-in.

Table 10. Defined constants and their description of SLAPI_PLUGIN_TYPE parameter value

Defined Constant Description

SLAPI_PLUGIN_EXTENDEDOP Extended operation plug-in

SLAPI_PLUGIN_PREOPERATION Pre-operation or data validation plug-in

SLAPI_PLUGIN_POSTOPERATION Post-operation or data notification plug-in

SLAPI_PLUGIN_PROXYDNHASH DN partitioning plug-in

SLAPI_PLUGIN_AUDIT Audit plug-in

Parameters for the configuration function
The following table lists the parameters in the parameter block that is passed to
the database configuration function. If you are writing a pre-operation, database, or
post-operation configuration function, you can get these values by calling the
slapi_pblock_get() function.

Table 11. Parameters for the database configuration function

Parameter ID Data type Description

SLAPI_CONFIG_FILENAME char * Name of the configuration
file that is being read. For
example, slapd.conf.

SLAPI_CONFIG_LINENO int Line number of the current
directive in the configuration
file.

SLAPI_CONFIG_ARGC int Number of arguments in the
current directive.

SLAPI_CONFIG_ARGV char ** Array of the arguments from
the current directive.

20 IBM Security Directory Server: Server Plug-ins Reference

Parameters for the Bind function
The following table lists the parameters in the parameter block that is passed to
the database bind function. If you are writing a pre-operation, database, or
post-operation bind function, you can get these values by calling the
slapi_pblock_get() function.

Table 12. Parameters for the database bind function

Parameter ID Data type Description

SLAPI_BIND_TARGET char * DN of the entry to bind as.

SLAPI_BIND_METHOD int Authentication method that
is used. For example,
LDAP_AUTH_SIMPLE or
LDAP_AUTH_SASL.

SLAPI_BIND_
CREDENTIALS

struct berval * Credentials from the bind
request.

SLAPI_BIND_RET_
SASLCREDS

struct berval * Credentials that you want
sent back to the client.
Note: Set before you call
slapi_send_ldap_result()

SLAPI_BIND_
SASLMECHANISM

char * SASL mechanism that is
used. For
example,LDAP_SASL_EXTERNAL.

Parameters for the Search function
The following table lists the parameters in the parameter block that is passed to
the database search function. If you are writing a pre-operation, database, or
post-operation search function, you can get these values by calling the
slapi_pblock_get() function.

Table 13. Parameters for the database search function

Parameter ID Data type Description

SLAPI_SEARCH_TARGET char * DN of the base entry in the
search operation or the
starting point of the search.

SLAPI_SEARCH_SCOPE int The scope of the search. The
scope can be one of the
following values:

v LDAP_SCOPE_BASE

v LDAP_SCOPE_
ONELEVEL

v LDAP_SCOPE_SUBTREE

SLAPI_SEARCH_DEREF int Method for handling aliases
in a search. This method can
be one of the following
values:

v LDAP_DEREF_NEVER

v LDAP_DEREF_
SEARCHING

v LDAP_DEREF_FINDING

v LDAP_DEREF_ALWAYS

Chapter 4. Parameter reference 21

Table 13. Parameters for the database search function (continued)

Parameter ID Data type Description

SLAPI_SEARCH_SIZELIMIT int Maximum number of entries
to return in the search
results.

SLAPI_SEARCH_
TIMELIMIT

int Maximum amount of time
(in seconds) allowed for the
search operation.

SLAPI_SEARCH_FILTER Slapi_Filter * Slapi_Filter struct (an
opaque data structure)
representing the filter to be
used in the search.

SLAPI_SEARCH_STRFILTER char * String representation of the
filter to be used in the
search.

SLAPI_SEARCH_ATTRS char ** Array of attribute types to be
returned in the search
results.

SLAPI_SEARCH_
ATTRSONLY

int Specifies whether the search
results return attribute types
only or attribute types and
values:

v 0 means return both
attributes and values.

v 1 means return attribute
types only.

The following parameters are
set by the front-end and
back-end as part of the
process of executing the
search

SLAPI_NENTRIES int Number of search results
found.

Parameters for the Add function
The following table lists the parameters in the parameter block that is passed to
the database add function. If you are writing a pre-operation, database, or
post-operation add function, you can get these values by calling the
slapi_pblock_get() function.

Table 14. Parameters for the database add function

Parameter ID Data type Description

SLAPI_ADD_TARGET char * DN of the entry to be added.

SLAPI_ADD_ENTRY Slapi_Entry * The entry to be added.

Parameters for the Compare function
The following table lists the parameters in the parameter block that is passed to
the database compare function. If you are writing a pre-operation, database, or
post-operation compare function, you can get these values by calling the
slapi_pblock_get() function.

22 IBM Security Directory Server: Server Plug-ins Reference

Table 15. Parameters for the database compare function

Parameter ID Data type Description

SLAPI_COMPARE_TARGET char * DN of the entry to be
compared.

SLAPI_COMPARE_TYPE char * Attribute type to use in the
comparison.

SLAPI_COMPARE_VALUE struct berval * Attribute value to use in the
comparison.

Parameters for the Delete function
The following table lists the parameters in the parameter block that is passed to
the database delete function. If you are writing a pre-operation, database, or
post-operation delete function, you can get these values by calling the
slapi_pblock_get() function.

Table 16. Parameters for the database delete function

Parameter ID Data type Description

SLAPI_DELETE_TARGET char * DN of the entry to delete.

Parameters for the Modify function
The following table lists the parameters in the parameter block that is passed to
the database modify function. If you are writing a pre-operation, database, or
post-operation modify function, you can get these values by calling the
slapi_pblock_get() function.

Table 17. Parameters for the database modify function

Parameter ID Data type Description

SLAPI_MODIFY_TARGET char * DN of the entry to be
modified.

SLAPI_MODIFY_MODS LDAPMod ** A NULL-terminated array of
LDAPMod structures, which
represents the modifications
to be performed on the entry.

Parameters for the Modify RDN function
The following table lists the parameters in the parameter block passed to the
database modify RDN function. If you are writing a pre-operation, database, or
post-operation modify RDN function, you can get these values by calling the
slapi_pblock_get() function.

Table 18. Parameters for the database modify RDN function

Parameter ID Data type Description

SLAPI_MODRDN_TARGET char * DN of the entry that you
want to rename.

SLAPI_MODRDN_NEWRDN char * New RDN to assign to the
entry.

Chapter 4. Parameter reference 23

Table 18. Parameters for the database modify RDN function (continued)

Parameter ID Data type Description

SLAPI_MODRDN_
DELOLDRDN

int Specifies whether you want
to delete the old RDN:

v 0 means do not delete the
old RDN.

v 1 means delete the old
RDN.

SLAPI_MODRDN_
NEWSUPERIOR

char * DN of the new parent of the
entry, if the entry is being
moved to a new location in
the directory tree.

Parameters for the Abandon function
The following table lists the parameters in the parameter block that is passed to
the database abandon function. If you are writing a pre-operation, database, or
post-operation abandon function, you can get these values by calling the
slapi_pblock_get() function.

Table 19. Parameters for the database abandon function

Parameter ID Data type Description

SLAPI_ABANDON_MSGID unsigned long Message ID of the operation
to abandon.

Parameters for extended operations
The following table lists the parameters in the parameter block that is passed to
extended operation functions. If you are writing your own plug-in function for
performing this work, you can get these values by calling the slapi_pblock_get()
function.

Table 20. Parameters to extended operation functions

Parameter ID Data type Description

SLAPI_EXT_OP_REQ_OID char * Object ID (OID) of the
extended operation that is
specified in the request.

SLAPI_EXT_OP_REQ_
VALUE

struct berval* Value that is specified in the
request.

SLAPI_EXT_OP_RET_OID char * OID that you want sent back
to the client.

SLAPI_EXT_OP_RET_
VALUE

struct berval* Value that you want sent
back to the client.

24 IBM Security Directory Server: Server Plug-ins Reference

Parameters for internal LDAP operations
The following parameters are used with functions that you can call to perform
LDAP operations from a plug-in. These internal operations do not return any data
to a client.

Table 21. Parameters used with functions that performs LDAP operations from a plug-in

Parameter ID Data type Description

SLAPI_PLUGIN_INTOP_
RESULT

int Result code of the internal
LDAP operation.

SLAPI_PLUGIN_INTOP_
SEARCH_ENTRIES

Slapi_Entry ** Array of entries that is found
by an internal LDAP search
operation.

The following functions set both parameters:
v slapi_search_internal()
v slapi_search_internal_callback()

The following functions that set only the SLAPI_PLUGIN_INTOP_RESULT parameter:
v slapi_add_internal()
v slapi_add_entry_internal()
v slapi_delete_internal()
v slapi_modify_internal()
v slapi_modrdn_internal()

Parameters for the DN partitioning function
The following table lists the parameters in the parameter block that are passed
between the IBM Security Directory Server Proxy Server back-end and the plug-in
by using the slapi_pblock_set() and slapi_pblock_get() functions. If you are
writing your own DN partitioning plug-in, you can get value of these parameters
by calling slapi_pblock_get().

Table 22. Parameters for the DN partitioning function

Parameter ID Description

SLAPI_TARGET_DN Address of a DN for which the partition
value to be calculated. This DN is
normalized and is in the UTF-8 format.

SLAPI_PARTITION_BASE Address of a base DN that is the base or
suffix of the target DN. This base DN is
normalized and is in the UTF-8 format.

SLAPI_NUMBER_OF_PARTITIONS The number of partitions that are used for
the calculation of DN partition value.

SLAPI_PARTITION_NUMBER A plug-in calculated partition value.

Chapter 4. Parameter reference 25

26 IBM Security Directory Server: Server Plug-ins Reference

Chapter 5. Supported iPlanet APIs

The following iPlanet APIs are supported in the current release.

For pblock:
int slapi_pblock_get(Slapi_PBlock *pb, int arg, void *value);
int slapi_pblock_get_int(Slapi_PBlock *pb, int arg, int *value);
int slapi_pblock_set(Slapi_PBlock *pb, int arg, void *value);
Slapi_PBlock *slapi_pblock_new();
void slapi_pblock_destroy(Slapi_PBlock *pb);

For memory management:
char *slapi_ch_malloc(unsigned long size);
void slapi_ch_free(void *ptr);
char *slapi_ch_calloc(unsigned long nelem, unsigned long size);
char *slapi_ch_realloc(char *block, unsigned long size);
char *slapi_ch_strdup(char *s);

For sending results:
void slapi_send_ldap_result(Slapi_PBlock *pb, int err,
char *matched, char *text,
int nentries, struct berval **urls);

For LDAP specific objects:
char *slapi_dn_normalize(char *dn);
char *slapi_dn_normalize_case(char *dn);
char *slapi_dn_ignore_case(char *dn);
char *slapi_dn_normalize_v3(char *dn);
char *slapi_dn_normalize_case_v3(char *dn);
char *slapi_dn_ignore_case_v3(char *dn);
char *slapi_dn_compare_v3(char *dn1, char* dn2);
int slapi_dn_issuffix(char *dn, char *suffix);
char *slapi_entry2str(Slapi_Entry *e, int *len);
Slapi_Entry *slapi_str2entry(char *s, int flags);
int slapi_entry_attr_find(Slapi_Entry *e, char *type,

Slapi_Attr **attr);
int slapi_entry_attr_delete(Slapi_Entry *e, char *type);
int slapi_entry_attr_merge(Slapi_Entry *e,

const char *type, struct berval **vals);
char *slapi_entry_get_dn(Slapi_Entry *e);
void slapi_entry_set_dn(Slapi_Entry *e, char *dn);
Slapi_Entry *slapi_entry_alloc();
Slapi_Entry *slapi_entry_dup(Slapi_Entry *e);
init slapi_send_ldap_search_entry(Slapi_PBlock *pb,

Slapi_Entry *e, LDAPControl **ectrls,
char **attrs, int attrsonly);

void slapi_entry_free(Slapi_Entry *e);
int slapi_attr_get_values(Slapi_Attr *attr,

struct berval ***vals);
Slapi_Filter *slapi_str2filter(char *str);
init slapi_filter_get_choice(Slapi_Filter *f);
init slapi_filter_get_ava(Slapi_Filter *f,char

*type, struct berval **bvals);
void slapi_filter_free(Slapi_Filter *f, int recurse);
Slapi_Filter *slapi_filter_list_first(Slapi_Filter *f);
Slapi_Filter *slapi_filter_list_next(Slapi_Filter *f,

Slapi_Filter*fprev);
int slapi_is_connection_ssl(Slapi_PBlock *pPB, int *isSSL);
init slapi_get_client_port(Slapi_PBlock *pPB, int *fromPort);

For internal database operations:

© Copyright IBM Corp. 1999, 2014 27

Slapi_PBlock *slapi_search_internal(char *base, int scope, char *filter,
LDAPControl **controls, char **attrs, int attrsonly);

Slapi_PBlock *slapi_modify_internal(char *dn, LDAPMod **mods,
LDAPControl **controls);

Slapi_PBlock *slapi_add_internal(char * dn,
LDAPMod **attrs, LDAPControl **controls);

Slapi_PBlock *slapi_add_entry_internal(Slapi_Entry * e,
LDAPControl **controls, int log_change);

Slapi_PBlock *slapi_delete_internal(char * dn,
LDAPControl **controls);

Slapi_PBlock *slapi_modrdn_internal(char * olddn,
char * newrdn, char *newParent,
int deloldrdn, LDAPControl **controls);

void slapi_free_search_results_internal(Slapi_PBlock *pb);

/* logging routines */
void slapi_printmessage(int catid, int level, int num, ...);
int slapi_log_error(int severity, char *subsystem, char *fmt, ...);

For querying server information:
char **slapi_get_supported_saslmechanisms();

char **slapi_get_supported_extended_ops();

void slapi_register_supported_saslmechanism(char *mechanism);

int slapi_get_supported_controls(char ***ctrloidsp,
unsigned long **ctrlopsp);

void slapi_register_supported_control(char *controloid,
unsigned long controlops);

int slapi_control_present(LDAPControl **controls,
char *oid, struct berval **val, int * iscritical);

For logging routines:
int slapi_log_error(int severity, char *subsystem, char *fmt, ...);

slapi_pblock_get()
slapi_pblock_get() receives the value of a name-value pair from a parameter
block.

Syntax
#include "slapi-plugin.h"
int slapi_pblock_get(Slapi_PBlock *pb, int arg, void *value);

Parameters

pb A parameter block.

arg A pblock parameter that represents the data you want to receive.

value A pointer to the value retrieved from the parameter block.

Returns
If successful 0 is returned, -1 if there is an error.

slapi_pblock_get_int()
slapi_pblock_get_int() gets an integer value from the parameter block.

Syntax
#include "slapi-plugin.h"
int slapi_pblock_get_int(Slapi_PBlock *pb, int arg, int *value);

Parameters

28 IBM Security Directory Server: Server Plug-ins Reference

pb A pointer to a parameter block from which the value is to be
retrieved.

arg A pblock parameter that represents the data you want to receive.

value A pointer to the value retrieved from the parameter block.

Returns
If successful 0 is returned, -1 if an error occurs.

slapi_pblock_set()
slapi_pblock_set() sets the value of a name-value pair in a parameter block.

Syntax
#include "slapi-plugin.h"
int slapi_pblock_set(Slapi_PBlock *pb, int arg, void *value);

Parameters

pb A pointer to a parameter block.

arg The ID of the name-value pair that you want to set.

value A pointer to the value that you want to set in the parameter block.
Free the value only if the caller is replacing the value in the pblock
with a new value by calling slapi_pblock_set().

Returns
If successful 0 is returned, -1 if an error occurs.

slapi_pblock_new()
slapi_pblock_new() represents a new parameter block.

Syntax
#include "slapi-plugin.h"
Slapi_PBlock *slapi_pblock_new();

Returns
A pointer to the new parameter block is returned.

slapi_pblock_destroy()
slapi_pblock_destroy() frees the specified parameter block from memory.

Syntax
#include "slapi-plugin.h"
void slapi_pblock_destroy(Slapi_PBlock *pb);

Parameters

pb A pointer to the parameter block that you want to free.

slapi_ch_malloc()
slapi_ch_malloc() allocates space in memory, and calls the standard malloc() C
function. If the function fails to allocate memory, it returns NULL to the caller
function.

Syntax
#include "slapi-plugin.h"
char * slapi_ch_malloc(unsigned long size);

Parameters

Chapter 5. Supported iPlanet APIs 29

size The amount of space that you want memory that is allocated for.

slapi_ch_calloc()
slapi_ch_calloc() allocates space for an array of elements of a specified size. It
calls the calloc() C function. If the function fails to allocate memory, it returns
NULL to the caller function.

Syntax
#include "slapi-plugin.h"
char * slapi_ch_calloc(unsigned long nelem, unsigned long size);

Parameters

nelem The number of elements that you want to allocate memory for.

size The amount of memory of each element that you want to allocate
memory for.

slapi_ch_realloc()
slapi_ch_realloc() changes the size of a block of allocated memory. It calls the
standard realloc() C function. If the function fails to allocate memory, it returns
NULL to the caller function.

Syntax
#include "slapi-plugin.h"
char * slapi_ch_realloc(char *block, unsigned long size);

Parameters

block A pointer to an existing block of allocated memory.

size The new amount of the block of memory you want allocated.

Returns
A pointer to a newly allocated memory block with the requested size is
returned.

slapi_ch_strcmp()
slapi_ch_strcmp() compares two string parameters.

Syntax
#include "slapi-plugin.h"
int slapi_ch_strcmp(const char *str1, const char *str2);

Parameters

str1 The string that you want to compare.

str2 The string that you want the str1 to be compared with.

Returns
Returns a value less than 0 if str1 < str2, equal to 0 if str1 = str2, or
greater than 0 if str1 > str2.

slapi_ch_strncmp()
slapi_ch_strncmp() compares substrings within two strings.

Syntax
#include "slapi-plugin.h"
int slapi_ch_strncmp(const char *str1, const char *str2, size_t size);

30 IBM Security Directory Server: Server Plug-ins Reference

Parameters

str1 The string that you want to search for a specified substring.

str2 The string that you want to search.

size The number of characters to be searched.

Returns
Returns a value less than 0 if str1 < str2, equal to 0 if str1 = str2, or
greater than 0 if str1 > str2.

slapi_ch_strdup()
slapi_ch_strdup() makes a copy of an existing string. It calls the standard
strdup() C function.

Syntax
#include "slapi-plugin.h"
char * slapi_ch_strdup(char *s);

Parameters

s Refers to the string you want to copy.

Returns
A pointer to a copy of the string is returned. If space cannot be allocated
(for example, if no more virtual memory exists), a NULL pointer is
returned.

slapi_compare_internal()
The plug-in functions call slapi_compare_internal() to compare an entry in the
backend directly.

Syntax
*slapi_compare_internal(const char *dn, const char *type,
struct berval *value, LDAPControl **controls) {

Parameters

dn The dn of the entry on which to perform the compare. This
parameter cannot have a value of NULL.

type The attribute type on which to perform the compare. This
parameter cannot have a value of NULL.

value The berval value of the attribute that is compared. This parameter
cannot have a value of NULL.

controls
Any controls that are requested on the operation.

Returns
The slapi_pblock containing the return code.

slapi_ch_free()
The slapi_ch_free() frees space that is allocated by the slapi_ch_malloc(),
slapi_ch_calloc(), slapi_ch_realloc(), and slapi_ch_strdup() functions. It does
not set the pointer to NULL.
v slapi_ch_malloc()
v slapi_ch_calloc()

Chapter 5. Supported iPlanet APIs 31

v slapi_ch_realloc()
v slapi_ch_strdup()

Syntax
#include "slapi-plugin.h"
void slapi_ch_free(void *ptr);

Parameters

ptrk A pointer to the block of memory that you want to free. If it is
NULL, no action occurs.

slapi_send_ldap_result()
slapi_send_ldap_result() sends an LDAP result code back to the client.

Syntax
#include "slapi-plugin.h"
void slai_send_ldap_result(Slapi_PBlock *pb, int err,

char *matched, char *text, int nentries,
struct berval **urls);

Parameters

pb A pointer to a parameter block.

err The LDAP result code that you want sent back to the client.

matched
Used to specify the portion of the target DN that can be matched
when you send back an LDAP_NO_SUCH_OBJECT result. Otherwise,
you must pass NULL.

text The error message that you want sent back to the client. If you do
not want an error message that sent back, pass a NULL.

nentries
Used to specify the number of matching entries that found when
you send back the result code for an LDAP search operation.

urls Used to specify the array of the berval structure or to specify
referral URLs when you send back either an LDAP_PARTIAL_RESULTS
result code to an LDAP V2 client or an LDAP_REFERRAL result code to
an LDAP V3 client.

slapi_dn_normalize()
slapi_dn_normalize() converts a distinguished name (DN) to canonical format. It
means no leading or trailing spaces, no spaces between components, and no spaces
around the equals sign.

Note: A variable that is passed in as the DN argument is also converted in-place,
therefore this API is deprecated. See “slapi_dn_normalize_v3()” on page 33.
For example, for the following DN,
cn = John Doe, ou = Engineering , o = Darius

the function returns:
cn=john doe,ou=engineering,o=darius

Syntax
#include "slapi-plugin.h"
char *slapi_dn_normalize(char *dn);

32 IBM Security Directory Server: Server Plug-ins Reference

Parameters

dn The DN that you want to normalize.

Returns
The normalized DN.

slapi_dn_normalize_case()
slapi_dn_normalize_case() converts a distinguished name (DN) to canonical
format. It means no leading or trailing spaces, no spaces between components, and
no spaces around the equals sign and converts all characters to lowercase.

Note: A variable that is passed in as the DN argument is also converted in-place,
therefore this API is deprecated. See “slapi_dn_normalize_case_v3()” on page 34.
For example, for the following DN,
cn = John Doe, ou = Engineering , o = Darius

the function returns:
cn=John Doe,ou=Engineering,o=Darius

Syntax
#include "slapi-plugin.h"
char *slapi_dn_normalize_case (char *dn);

Parameters

dn The DN that you want to normalize and convert to lowercase.

Returns
The normalized DN with all characters in lowercase.

slapi_dn_ignore_case()
slapi_dn_ignore_case() converts all of the characters in a distinguished name
(DN) to lowercase.

Note: A variable that is passed in as the DN argument is also converted in-place,
therefore this API is deprecated. See “slapi_dn_ignore_case_v3()” on page 35.
For example, for the following DN,
DN: cn = John Doe, ou = Engineering , o = Darius

the function returns:
cn = john doe , ou = engineering , o = darius

Syntax
#include "slapi-plugin.h"
char *slapi_dn_ignore_case (char *dn);

Parameters

dn The DN that you want to convert to lowercase.

Returns
The DN with all characters in lowercase.

slapi_dn_normalize_v3()
slapi_dn_normalize_v3() converts a distinguished name(DN) to canonical format.
It means no leading or trailing spaces, no spaces between components and no
spaces around the equals sign.

Chapter 5. Supported iPlanet APIs 33

The API normalizes the attribute type name to the first textual type name in the
schema definition. Any semicolons that are used to separate relative distinguished
names (RDN) are converted to commas. A compound RDN is sorted alphabetically
by attribute name. For example, the following DN:
userName=johnDOE + commonName = John Doe ;
ou = Engineering , o = Darius the function returns:
cn=John Doe+userName=johnDOE,ou=Engineering,o=Darius

Special characters in a DN, if escaped by using double quotation marks, are
converted to use backslash (\) as the escape mechanism. For example, the
following DN:
cn="a + b", o=sample the function returns
cn=a \+ b,o=sample

An attribute value that contains a backslash followed by a two-digit hex
representation of a UTF-8 character is converted to the character representation.
For example, the following DN:
cn=\4A\6F\68\6E Doe,ou=Engineering,o=Darius
the function returns cn=John Doe,ou=Engineering,o=Darius

A ber-encoded attribute value is converted to a UTF-8 value. For example, the
following DN:
cn=#04044A6F686E20446F65,ou=Engineering,o=Darius
the function returns cn=John Doe,ou=Engineering,o=Darius

An invalid DN returns NULL.

Syntax
#include "slapi-plugin.h"
char *slapi_dn_normalize_v3(char *dn);

Parameters

dn The DN that you want to normalize. It is not modified by the
function.

Returns
The normalized DN in newly allocated space.

Note: It is the responsibility of the caller to free the normalized DN.

slapi_dn_normalize_case_v3()
slapi_dn_normalize_v3() converts a distinguished name (DN) to canonical format.
It means no leading or trailing spaces, no spaces between components and no
spaces around the equals sign.

The API normalizes the attribute type name to the first textual type name in the
schema definition. Any semicolons that are used to separate relative distinguished
names (RDN) are converted to commas. A compound RDN is sorted alphabetically
by attribute name. The case of attribute types is changed to uppercase in all cases.
The case of the attribute values is converted to uppercase only when the matching
rules are case-sensitive. If the matching rules for the attribute are case-sensitive, the
case of the attribute value is preserved. In the following example, user name is a
case-sensitive attribute and cn, ou, and o are case-sensitive. For example, the
following DN:

34 IBM Security Directory Server: Server Plug-ins Reference

userName=johnDOE + commonName = John Doe ;
ou = Engineering , o = Darius the function returns:
CN=JOHN DOE+USERNAME=johnDOE,OU=ENGINEERING,O=DARIUS

Special characters in a DN, if escaped by using double quotation marks, are
converted to use backslash (\) as the escape mechanism. For example, the
following DN:
cn="a + b", o=sample the function returns
CN=A \+ B,o=sample

An attribute value that contains a backslash followed by a two-digit hex
representation of a UTF-8 character is converted to the character representation.
For example, the following DN:
cn=\4A\6F\68\6E Doe,ou=Engineering,o=Darius
the function returns CN=JOHN DOE,OU=ENGINEERING,O=DARIUS

A ber-encoded attribute value is converted to a UTF-8 value. For example, the
following DN:
cn=#04044A6F686E20446F65,ou=Engineering,o=Darius
the function returns CN=JOHN DOE,OU=ENGINEERING,O=DARIUS

An invalid DN returns NULL.

Syntax
#include "slapi-plugin.h"
char *slapi_dn_normalize_case_v3(char *dn);

Parameters

dn The DN that you want to normalize and convert to lowercase. It is
not modified by the function.

Returns
The normalized DN in newly allocated space.

Note: It is the caller's responsibility to free the normalized DN.

slapi_dn_ignore_case_v3()
slapi_dn_ignore_case_v3() normalizes a distinguished name (DN) and converts
all of the characters to lowercase.

For example, the following DN:
userName=johnDOE + commonName = John Doe ; ou = Engineering , o = Darius

The function returns:
cn=john doe+username=johndoe,ou=engineering,o=darius

Syntax
#include "slapi-plugin.h"
char *slapi_dn_ignore_case _v3(char *dn);

Parameters

dn The DN that you want to normalize and convert to lowercase.

Returns
The DN normalized with all characters in lowercase.

Note: It is the caller's responsibility to free the normalized DN.

Chapter 5. Supported iPlanet APIs 35

slapi_dn_compare_v3()
slapi_dn_compare_v3() compares two distinguished names (DN).

Syntax
#include "slapi-plugin.h"
char *slapi_dn_compare_v3(char *dn1, char* dn2);

Parameters

dn1 A DN that you want to compare.

dn2 A DN that you want to compare.

Returns

v Less than 0 if the value of dn1 is lexicographically less than dn2.
v 0 if the value of dn1 is lexicographically equal to dn2.
v Greater than 0 if the value of dn1 is lexicographically greater than dn2.

slapi_dn_issuffix()
slapi_dn_issuffix() determines whether a DN is equal to the specified suffix.

Syntax
#include "slapi-plugin.h"
int slapi_dn_issuffix(char *dn, char *suffix);

Parameters

dn The DN that you want to check.

suffix The suffix you want compared against the DN.

Returns
A 1 is returned if the specified DN is the same as the specified suffix, or 0
is returned if the DN is not the same as the suffix.

slapi_entry2str()
slapi_entry2str() generates a description of an entry as a string.

The LDIF string has the following format:
dn: <dn>\n
*[<attr>: <value>\n]
*[<attr>:: <base_64_encoded_value>]

where:

* The operator "*" when it precedes an element indicates repetition. The full
form is: <a>* where <a> and are optional decimal values,
indicating at least <a> and at most occurrences of element.

Default values are 0 and infinity so that * allows any number, including
zero; 1* requires at least one; 3*3 allows exactly 3 and 1*2 allows one or
two.

dn Distinguished name

attr Attribute name

\n New line

value Attribute value

36 IBM Security Directory Server: Server Plug-ins Reference

For example,
dn: uid=rbrown2, ou=People, o=airius.com
cn: Robert Brown
sn: Brown
...

When you do not use the string, you can free it from memory by calling the
slapi_ch_free() function.

Call the slapi_str2entry() function to convert a string description in this format to
an entry of the Slapi_Entry data type.

Syntax
#include "slapi-plugin.h"
char *slapi_entry2str(Slapi_Entry *e, int *len);

Parameters

e Address of the entry that you want to generate a description for.

len Address of the length of the returned string.

Returns
The description of the entry as a string is returned or NULL if an error
occurs.

slapi_str2entry()
slapi_str2entry() converts an LDIF description of a directory entry (a string
value) into an entry of the Slapi_Entry data type that can be passed to other API
functions.

Note: The function modifies the s string argument, and you must make a copy of
this string before it is called.

If there are errors during the conversion process, the function returns a NULL
instead of the entry.

When you are through working with the entry, call the slapi_entry_free() function.

To convert an entry to a string description, call slapi_entry2str().

Syntax
#include "slapi-plugin.h"
Slapi_Entry *slapi_str2entry(char *s, int flags);

Parameters

s The description of an entry that you want to convert.

flags Specifies how the entry must be generated.

The flags argument can be one of the following values:
v SLAPI_STR2ENTRY_REMOVEDUPVALS - Removes any duplicate values in the

attributes of the entry.
v SLAPI_STR2ENTRY_ADDRDNVALS - Adds the relative distinguished name

(RDN) components.

Chapter 5. Supported iPlanet APIs 37

Returns
A pointer to the Slapi_Entry structure that represents the entry is returned,
or a NULL is returned if the string cannot be converted, for example, if no
DN is specified in the string.

slapi_entry_attr_find()
slapi_entry_attr_find() determines whether an entry has a specified attribute. If
it does, this function returns that attribute.

Syntax
#include "slapi-plugin.h"
int slapi_entry_attr_find(Slapi_Entry *e,

char *type,Slapi_Attr **attr);

Parameters

e An entry that you want to check.

type Indicates the name of the attribute that you want to check.

attr A pointer to the attribute (assuming that the attribute is in the
entry).

Returns
If the entry contains the specified attribute 0 is returned, or -1 is returned
if it does not.

slapi_entry_attr_merge()
slapi_entry_attr_merger() merges attributes of a specified type and stores it in a
specified entry.

Syntax
#include "slapi-plugin.h"
int slapi_entry_attr_merge (

Slapi_Entry *e,
const char *type,
struct berval **vals);

Parameters

e The entry in which the attribute is to be merged.

type Indicates the name of the attribute that you want to merge.

vals The parameter value is set to a pointer that indicates a
NULL-terminated array of berval structures (representing the
values of the attribute).

Returns
If successful, 0 is returned. Otherwise,-1 is returned.

slapi_entry_attr_delete()
slapi_entry_attr_delete() deletes an attribute from an entry.

Syntax
#include "slapi-plugin.h"
int slapi_entry_attr_delete (Slapi_Entry *e, char *type);

Parameters

e The entry from which you want to delete the attribute.

38 IBM Security Directory Server: Server Plug-ins Reference

type Indicates the name of the attribute that you want to delete.

Returns
If the attribute is successfully deleted, then 0 is returned, 1 is returned if
the specified attribute is not part of the entry, or -1 is returned if an error
occurs.

slapi_entry_get_dn()
slapi_entry_get_dn() receives the DN of the specified entry.

Syntax
#include "slapi-plugin.h"
char *slapi_entry_get_dn(Slapi_Entry *e);

Parameters

e Indicates an entry that contains the DN you want.

Returns
The DN of the entry is returned. A pointer to the actual DN in the entry is
returned, not a copy of the DN.

slapi_entry_set_dn()
slapi_entry_set_dn() sets the DN of an entry. It sets the pointer to the DN that
you specify.

Note: Because the old DN is not overwritten and is still in memory, you must first
call slapi_entry_get_dn() to get the pointer to the current DN, free the DN, and
then call slapi_entry_set_dn() to set the pointer to your new DN.

Syntax
#include "slapi-plugin.h"
void *slapi_entry_set_dn(Slapi_Entry *e char *dn);

Parameters

e Indicates the entry to which you want to assign the DN.

dn The DN that you want to assign to the entry.

slapi_entry_alloc()
slapi_entry_alloc() allocates memory for a new entry of the Slapi_Entry data
type. It returns an empty Slapi_Entry structure.

You can call other front-end functions to set the DN and attributes of this entry. If
the function fails to allocate memory, it returns NULL to the caller function. After
you work with the entry, it is the caller's responsibility to free the memory by
calling the slapi_entry_free() function.

Syntax
#include "slapi-plugin.h"
Slapi_Entry *slapi_entry_alloc();

Returns
A pointer to the newly allocated entry of the Slapi_Entry data type is
returned. If space cannot be allocated, the server program ends. For
example, if no more virtual memory exists.

Chapter 5. Supported iPlanet APIs 39

slapi_entry_dup()
slapi_entry_dup() makes a copy of an entry, its DN, and its attributes. You can
call other front-end functions to change the DN and attributes of this copy of an
existing Slapi_Entry structure.

If the function fails to allocate memory that is required to make a copy of an entry,
it returns NULL to the caller function. After you work with the entry, it is the
caller's responsibility to free the memory by calling the slapi_entry_free() function.

Syntax
#include "slapi-plugin.h"
Slapi_Entry *slapi_entry_dup(Slapi_Entry *e);

Parameters

e The entry that you want to copy.

Returns
The new copy of the entry. If the structure cannot be duplicated, the server
program ends. For example, if no more virtual memory exists.

slapi_send_ldap_search_entry()
slapi_send_ldap_search_entry() sends an entry found by a search back to the
client.

Syntax
#include "slapi-plugin.h"
int slapi_send_ldap_search_entry(Slapi_PBlock *pb,

Slapi_Entry *e, LDAPControl **ectrls,
char **attrs, int attrsonly);

Parameters

pb The parameter block.

e The pointer to the Slapi_Entry structure that represents the entry
that you want to send back to the client.

ectrls The pointer to the array of LDAPControl structures that represent
the controls that are associated with the search request.

attrs Attribute types that are specified in the LDAP search request.

attrsonly
Specifies whether the attribute values must be sent back with the
result.
v If set to 0, the values are included.
v If set to 1, the values are not included.

Returns
If successful 0 is returned, 1 is returned if the entry is not sent (for
example, if access control did not allow it to be sent), or a -1 is returned if
an error occurs.

slapi_entry_free()
slapi_entry_free() frees an entry, its DN, and its attributes from memory.

Syntax
#include "slapi-plugin.h"
void slapi_entry_free(Slapi_Entry *e);

40 IBM Security Directory Server: Server Plug-ins Reference

Parameters

e An entry that you want to free. If it is NULL, no action occurs.

slapi_attr_get_values()
slapi_attr_get_values() receives the value of the specified attribute.

Syntax
#include "slapi-plugin.h"
int slapi_attr_get_values(Slapi_Attr *attr,

struct berval ***vals);

Parameters

attr An attribute that you want to get the flags for.

vals When slapi_attr_get_values() is called, vals is set to a pointer
that indicates a NULL-terminated array of berval structures
(representing the values of the attribute). Do not free the array; the
array is part of the actual data in the attribute, not a copy of the
data.

Returns
If successful, 0 is returned.

slapi_str2filter()
slapi_str2filter() converts a string description of a search filter into a filter of
the Slapi_Filter type.

When you are done working with this filter, free the Slapi_Filter structure by
calling slapi_filter_free().

Syntax
#include "slapi-plugin.h"
Slapi_Filter *slapi_str2filter(char *str);

Parameters

str A string description of a search filter.

Returns
The address of the Slapi_Filter structure that represents the search filter
is returned, or a NULL is returned if the string cannot be converted (for
example, if an empty string is specified or if the filter syntax is incorrect).

slapi_filter_get_choice()
slapi_filter_get_choice() gets the type of the specified filter. For example,
LDAP_FILTER_EQUALITY.

Syntax
#include "slapi-plugin.h"
int slapi_filter_get_choice(Slapi_Filter *f);

Parameters

f The filter type that you want to get.

Returns
One of the following values is returned:

Chapter 5. Supported iPlanet APIs 41

v LDAP_FILTER_AND (AND filter) - For example,
(&(ou=Accounting)(l=Sunnyvale)).

v LDAP_FILTER_OR (OR filter) - For example,
(|(ou=Accounting)(l=Sunnyvale)).

v LDAP_FILTER_NOT (NOT filter) - For example, (!(l=Sunnyvale)).
v LDAP_FILTER_EQUALITY (equals filter) - For example, (ou=Accounting).
v LDAP_FILTER_SUBSTRINGS (substring filter) - For example,

(ou=Account*Department).
v LDAP_FILTER_GE ("greater than or equal to" filter) - For example,

(supportedLDAPVersion>=3).
v LDAP_FILTER_LE ("less than or equal to" filter) - For example,

(supportedLDAPVersion<=2).
v LDAP_FILTER_PRESENT (presence filter) - For example, (mail=*).
v LDAP_FILTER_APPROX (approximation filter) - For example,

(ou~=Sales).

slapi_filter_get_ava()
slapi_filter_get_ava() gets the attribute type and the value from the filter. It
applies only to filters of the types LDAP_FILTER_EQUALITY, LDAP_FILTER_GE,
LDAP_FILTER_LE, LDAP_FILTER_APPROX.

These filter types generally compare a value against an attribute. For example,
cn=John Doe. This filter finds entries in which the value of the cn attribute is equal
to John Doe.

(cn=John Doe)

Syntax
#include "slapi-plugin.h"
int slapi_filter_get_ava(Slapi_Filter *f,

char **type, struct berval **bval);

Parameters

f The address of the filter from which you want to get the attribute
and value.

type The pointer to the attribute type of the filter.

bval The pointer to the address of the berval structure that contains the
value of the filter.

Returns
If successful 0 is returned, -1 is returned if the filter is not one of the types
listed.

slapi_filter_free()
slapi_filter_free() frees the specified filter and optionally the set of filters that
comprise it. For example, the set of filters in an LDAP_FILTER_AND type filter.

Syntax
#include "slapi-plugin.h"
void slapi_filter_free(Slapi_Filter *f, int recurse);

Parameters

f The filter that you want to free.

42 IBM Security Directory Server: Server Plug-ins Reference

recurse
If set to 1, it recursively frees all filters that comprise this filter. If
set to 0, it frees only the filter that is specified by the f parameter.

slapi_filter_list_first
slapi_filter_list_first() gets the first filter that makes up the specified filter. It
applies only to filters of the types LDAP_FILTER_EQUALITY, LDAP_FILTER_GE,
LDAP_FILTER_LE, and LDAP_FILTER_APPROX.

These filter types generally consist of one or more other filters. For example, if the
filter is:
(&(ou=Accounting)(l=Sunnyvale))

the first filter in this list is:
ou=Accounting)

Use the slapi_filter_list_first() function to get the first filter in the list.

Syntax
#include "slapi-plugin.h"
Slapi_Filter *slapi_filter_list_first

(Slapi_Filter *f);

Parameters

f The filter from which you want to get the first component.

Returns
The first filter that makes up the filter that is specified by the f parameter
is returned.

slapi_filter_list_next()
slapi_filter_list_next() gets the next filter (following fprev) that makes up the
specified filter f. It applies only to filters of the types LDAP_FILTER_EQUALITY,
LDAP_FILTER_GE, LDAP_FILTER_LE, and LDAP_FILTER_APPROX.

These filter types generally consist of one or more other filters. For example, if the
filter is:
(&(ou=Accounting)(l=Sunnyvale))

the next filter after (ou=Accounting) in this list is:
(l=Sunnyvale)

Use the slapi_filter_list_first() function to get the first filter in the list. To
iterate through all filters that make up a specified filter, call the
slapi_filter_list_first() function and then call slapi_filter_list_next().

Syntax
#include "slapi-plugin.h"
Slapi_Filter *slapi_filter_list_next(Slapi_Filter
*f, Slapi_Filter *fprev);

Parameters

f The filter from which you want to get the next component (after
fprev).

fprev A filter within the filter that is specified by the f parameter.

Chapter 5. Supported iPlanet APIs 43

Returns
The next filter (after fprev) that makes up the filter that is specified by the
f parameter is returned.

slapi_is_connection_ssl()
slapi_is_connection_ssl() is used by the server to determine whether the
connection between it and a client is through a Secure Socket Layer (SSL).

Syntax
#include "slapi-plugin.h"
int slapi_is_connection_ssl(Slapi_PBlock *pPB,

int *isSSL);

Parameters

pPB Address of a Parameter Block.

isSSL Address of the output parameter. If the connection is through SSL
1 is returned, or 0 is returned if it is not through SSL.

Returns
If successful 0 is returned.

slapi_get_client_port()
slapi_get_client_port() is used by the server to determine the port number that
is used by a client to communicate to the server.

Syntax
#include "slapi-plugin.h"
int slapi_get_client_port(Slapi_PBlock *pPB,

int *fromPort);

Parameters

pPB An address of a parameter block.

fromPort
Address of the output parameter. It is the port number that is used
by the client.

Returns
If successful, 0 is returned.

slapi_search_internal()
slapi_search_internal() performs an LDAP search operation to search the
directory from your plug-in.

Syntax
#include "slapi-plugin.h"
Slapi_PBlock *slapi_search_internal(char *base, int scope,

char *filter, LDAPControl **controls,
char **attrs, int attrsonly);

Parameters

base The DN of the entry that serves as the starting point for the search.
For example, setting base o=Acme Industry, c=US restricts the
search to entries at Acme Industry in the United States.

scope Defines the scope of the search. It can be one of the following
values:

44 IBM Security Directory Server: Server Plug-ins Reference

v LDAP_SCOPE_BASE searches the entry that is specified by the base.
v LDAP_SCOPE_ONELEVEL searches all entries one level beneath the

entry that is specified by base.
v LDAP_SCOPE_SUBTREE searches the entry that is specified by base.

It also searches all entries at all levels beneath the entry that is
specified by base.

filter The string representation of the filter to apply in the search.

controls
The NULL-terminated array of an LDAP controls that you want
applied to the search operation.

attrs The NULL-terminated array of attribute types to return from
entries that match the filter. If you specify a NULL, all attributes
are returned.

attrsonly
Specifies whether attribute values are returned along with the
attribute types. It can have the following values:
v 0 specifies that both attribute types and attribute values are

returned.
v 1 specifies that only attribute types are returned.

Returns
Call the slapi_free_search_results_internal() and
slapi_pblock_destroy() to free the search results and the pblock that is
returned by slapi_search_internal.

slapi_modify_internal()
The slapi_modify_internal() performs an LDAP modify operation to modify an
entry in the directory from a plug-in.

Unlike the standard LDAP modify operation, no LDAP result code is returned to a
client; the result code is placed instead in a parameter block that is returned by the
function.

Syntax
#include "slapi-plugin.h"
Slapi_PBlock *slapi_modify_internal(char *dn,

LDAPMod **mods,
LDAPControl **controls, int l);

Parameters

dn A distinguished name (DN) of the entry that you want to modify.

mods A pointer to a NULL-terminated array of pointers to LDAPMod
structures that represent the attributes that you want to modify.

controls
A NULL-terminated array of LDAP controls.

l Included for compatibility only. It is not used.

Returns
A new parameter block with the following parameter set is returned:
v SLAPI_PLUGIN_INTOP_RESULT specifies the LDAP result code for the

internal LDAP operation.

Chapter 5. Supported iPlanet APIs 45

slapi_add_internal()
The slapi_add_internal() performs an LDAP add operation to add a new
directory entry (specified by a DN and a set of attributes) from your plug-in.

Unlike the standard LDAP add operation, no LDAP result code is returned to a
client. The result code is instead placed in a parameter block that is returned by
the function.

Syntax
#include "slapi-plugin.h"
Slapi_PBlock *slapi_add_internal(char * dn,

LDAPMod **mods,
LDAPControl **controls, int l);

Parameters

dn The Distinguished name (DN) of the entry that you want to add.

mods A pointer to a NULL-terminated array of pointers to LDAPMod
structures that represent the attributes of the new entry that you
want to add.

controls
A NULL-terminated array of LDAP controls that you want applied
to the add operation.

l Included for compatibility only. It is not used.

Returns
A new parameter block with the following parameter set is returned:
v SLAPI_PLUGIN_INTOP_RESULT specifies the LDAP result code for the

internal LDAP operation.

slapi_add_entry_internal()
slapi_add_entry_internal() performs an LDAP add operation to add a new
directory entry (specified by an Slapi_Entry structure) from a plug-in function.

Unlike the standard LDAP add operation, no LDAP result code is returned to a
client. Instead, the result code is placed in a parameter block that is returned by
the function.

Note: To add an entry that is specified by a string DN and an array of LDAPMod
structures, call slapi_add_internal() instead.

Syntax
#include "slapi-plugin.h"
Slapi_PBlock *slapi_add_entry_internal(Slapi_Entry * e,

LDAPControl **controls, int l);

Parameters

mods A pointer to an Slapi_Entry structure that represents the new entry
that you want to add.

controls
A NULL-terminated array of LDAP controls that you want applied
to the add operation.

l Included for compatibility only. It is not used.

46 IBM Security Directory Server: Server Plug-ins Reference

Returns
A new parameter block with the following parameter set is returned:
v SLAPI_PLUGIN_INTOP_RESULT specifies the LDAP result code for the

internal LDAP operation. For example, LDAP_SUCCESS if the operation is
successful or LDAP_PARAM_ERROR if an invalid parameter is used. If
the DN of the new entry has a suffix that is not served by the directory
server, SLAPI_PLUGIN_INTOP_RESULT is set to LDAP_REFERRAL.

slapi_delete_internal()
slapi_delete_internal() performs an LDAP delete operation to remove a
directory entry when it is called from your plug-in.

Unlike the standard LDAP delete operation, no LDAP result code is returned to a
client. The result code is instead placed in a parameter block that is returned by
the function.

Syntax
#include "slapi-plugin.h"
Slapi_PBlock *slapi_delete_internal(char * dn,

LDAPControl **controls, int l);

Parameters

dn The distinguished name (DN) of the entry that you want to delete.

controls
A NULL-terminated array of LDAP controls that you want applied
to the delete operation.

l Included for compatibility only. It is not used.

Returns
A new parameter block with the following parameter set is returned:
v SLAPI_PLUGIN_INTOP_RESULT specifies the LDAP result code for the

internal LDAP operation.

slapi_modrdn_internal()
slapi_modrdn_internal() perorms an LDAP modify RDN operation to rename a
directory entry from your plug-in.

Unlike the standard LDAP modify RDN operation, no LDAP result code is
returned to a client. The result code is instead placed in a parameter block that is
returned by the function.

Syntax
#include "slapi-plugin.h"
Slapi_PBlock *slapi_modrdn_internal(char * olddn,

char * newrdn, int deloldrdn, LDAPControl **controls,
int l);

Parameters

olddn The distinguished name (DN) of the entry that you want to
rename.

newdn The new relative distinguished name (RDN) of the entry.

deloldrdn
Specifies whether you want to remove the old RDN from the entry.
v If 1, remove the old RDN.

Chapter 5. Supported iPlanet APIs 47

v If 0, leave the old RDN as an attribute of the entry.

controls
A NULL-terminated array of LDAP controls that you want applied
to the modify RDN operation.

l Included for compatibility only. It is not used.

Returns
A new parameter block with the following parameter set is returned:
v SLAPI_PLUGIN_INTOP_RESULT specifies the LDAP result code for the

internal LDAP operation.

slapi_free_search_results_internal()
slapi_free_search_results_internal() frees the memory that is associated with
an LDAP entry returned by the search.

Syntax
#include "slapi-plugin.h"
void slapi_free_search_results_internal(Slapi_PBlock *pb);

Parameters

pb Is a pointer to a parameter block that is returned by a
slapi_free_search_internal function.

slapi_get_supported_saslmechanisms()
slapi_get_supported_saslmechanisms() obtains an array of the supported Simple
Authentication and Security Layer (SASL) mechanisms names.

Register new SASL mechanisms by calling the
slapi_register_supported_saslmechanism() function.

Syntax
#include "slapi-plugin.h"
char ** slapi_get_supported_saslmechanisms(void);

Returns
A pointer to an array of SASL mechanisms names that are supported by
the server is returned.

slapi_get_supported_extended_ops()
slapi_get_supported_extended_ops() gets an array of the object IDs (OIDs) of the
extended operations that are supported by the server.

Register new extended operations by putting the OID in the
SLAPI_PLUGIN_EXT_OP_OIDLIST parameter and calling the slapi_pblock_set()
function.

Syntax
#include "slapi-plugin.h"
char **slapi_get_supported_extended_ops(void);

Returns
A pointer to an array of the OID of the extended operations that are
supported by the server is returned.

48 IBM Security Directory Server: Server Plug-ins Reference

slapi_register_supported_saslmechanism()
slapi_register_supported_saslmechanism() registers the specified Simple
Authentication and Security Layer (SASL) mechanism with the server.

Syntax
#include "slapi-plugin.h"
void slapi_register_supported_saslmechanism(char *mechanism);

Parameters

mechanism
Indicates the name of the SASL mechanism.

slapi_get_supported_controls()
slapi_get_supported_controls() obtains an array of OIDs, which represent the
controls that are supported by the directory server.

Register new controls by calling the slapi_register_supported_control() function.

Syntax
#include "slapi-plugin.h"
int slapi_get_supported_controls(char ***ctrloidsp,

unsigned long **ctrlopsp);

Parameters

ctrloidsp
A pointer to an array of OIDs, which represent the controls that are
supported by the server.

ctrlopsp
A pointer to an array of IDs which specifies LDAP operations that
support each control.

Returns
If successful, 0 is returned.

slapi_register_supported_control()
slapi_register_supported_control() registers the specified control with the
server. It also associates the control with an OID.

When the server receives a request that specifies this OID, the server uses this
information to determine whether the control is supported. For example, to register
a control for Add and Delete operation:
slapi_register_supported_control(<Control OID>,

SLAPI_OPERATION_ADD | SLAPI_OPERATION_DELETE);

Syntax
#include "slapi-plugin.h"
void slapi_register_supported_control(char *controloid,

unsigned long controlops);

Parameters

controloid
The OID of the control you want to register.

controlops
The operation that the control is applicable to. It can have one or
more of the following values:

Chapter 5. Supported iPlanet APIs 49

v SLAPI_OPERATION_BIND - Applies to the LDAP bind operation.
v SLAPI_OPERATION_UNBIND - Applies to the LDAP unbind

operation.
v SLAPI_OPERATION_SEARCH - Applies to the LDAP search operation.
v SLAPI_OPERATION_MODIFY - Applies to the LDAP modify

operation.
v SLAPI_OPERATION_ADD - Applies to the LDAP add operation.
v SLAPI_OPERATION_DELETE - Applies to the LDAP delete operation.
v SLAPI_OPERATION_MODDN - Applies to the LDAP modify DN

operation.
v SLAPI_OPERATION_MODRDN - Applies to the LDAP V3 modify RDN

operation.
v SLAPI_OPERATION_COMPARE - Applies to the LDAP compare

operation.
v SLAPI_OPERATION_ABANDON - Applies to the LDAP abandon

operation.
v SLAPI_OPERATION_EXTENDED - Applies to the LDAP V3 extended

operation.
v SLAPI_OPERATION_ANY - Applies to any LDAP operation.
v SLAPI_OPERATION_NONE - Applies to none of the LDAP operations.

slapi_control_present()
slapi_control_present() determines whether the specified OID identifies a control
that might be present in a list of controls.

Syntax
#include "slapi-plugin.h"
int slapi_control_present(LDAPControl **controls, char *oid,

struct berval **val, int *iscritical);

Parameters

controls
The list of controls that you want to check.

oid Refers to the OID of the control that you want to find.

val Specifies the pointer to the berval structure that contains the value
of the control (if the control is present in the list of controls).

iscritical
Specifies whether the control is critical to the operation of the
server (if the control is present in the list of controls).
v 0 means that the control is not critical to the operation.
v 1 means that the control is critical to the operation.

Returns
A 1 is returned if the specified control is present in the list of controls, or 0
if the control is not present.

slapi_log_error()
Writes a message to the error log for the directory server.

50 IBM Security Directory Server: Server Plug-ins Reference

Syntax
#include "slapi-plugin.h"
int slapi_log_error(int severity, char *subsystem, char *fmt, ...);

Parameters

severity
Level of severity of the message. In combination with the severity
level specified by ibm-slapdSysLogLevel in the ibmslapd.conf file,
determines whether the message is written to the log. The severity
must be one of the following values :
v LDAP_MSG_LOW

v LDAP_MSG_MED

v LDAP_MSG_HIGH

The following entry in the ibmslapd.conf file results in a medium
logging level:
#ibm-slapdSysLogLevel must be one of l/m/h (l=terse, h=verbose)
ibm-slapdSysLogLevel: m

With this example in your ibmslapd.conf file, log messages with
severity LDAP_MSG_HIGH or LDAP_MSG_MED are logged. The messages
with severity LDAP_MSG_LOW are not logged. If the slapdSysLogLevel
is set to h, all messages are logged.

subsystem
Name of the subsystem in which this function is called. The string
that you specify here appears in the error log in the following
format:<subsystem>: <message>

fmt, ...
Message that you want written. This message can be in
printf()-style format. For example: ..., "%s\n", myString);

Returns
If successful 0 is returned, -1 if an unknown severity level is specified.

Chapter 5. Supported iPlanet APIs 51

52 IBM Security Directory Server: Server Plug-ins Reference

Chapter 6. SLAPI API Categories

The following SLAPI APIs are supported by IBM Security Directory Server.
v “slapi_alloc_internal_pthread_mem()”
v “slapi_audit_extop()”
v “slapi_dn2ldapdn()” on page 54
v “slapi_dn_get_rdn()” on page 54
v “slapi_dn_get_rdn_count()” on page 55
v “slapi_dn_free_ldapdn()” on page 55
v “slapi_dn_free_rdn()” on page 56
v “slapi_get_response_controls()” on page 56
v “slapi_set_response_controls()” on page 57
v “slapi_moddn_internal()” on page 57
v “slapi_get_bind_dn()” on page 58
v “slapi_get_client_ip()” on page 59
v “slapi_get_proxied_dn()” on page 59
v “slapi_get_source_ip()” on page 60

slapi_alloc_internal_pthread_mem()
The slapi_alloc_internal_pthread_mem() routine allocates memory for a thread as
required by the server.

Syntax
#include "slapi-plugin.h"
int slapi_alloc_internal_pthread_mem();

Returns
LDAP_SUCCESS is returned if memory is successfully allocated, or
LDAP_NO_MEMORY is returned if not able to allocate the required memory.

slapi_audit_extop()
The slapi_audit_extop() routine sets specific audit information in an extended
operation.

Syntax
#include "slapi-plugin.h"
int slapi_audit_extop (Slapi_PBlock *pb, char *str);

Parameters

pb Specifies the parameter block for the operation.

str Specifies the string to be audited.

Returns
If string is successfully set in the pblock, the function returns
LDAP_SUCCESS. If the string cannot be set in the pblock returns LDAP_OTHER,
or if pblock is NULL returns LDAP_PARAM_ERROR.

© Copyright IBM Corp. 1999, 2014 53

slapi_dn2ldapdn()
This routine converts a DN string to an internal SLAPI_LDAPDN structure.

Syntax
#include <slapi-plugin.h>
int slapi_dn2ldapdn(
char *dn,
SLAPI_LDAPDN **ldapdn);

Input Parameters

dn Specifies the DN to be parsed. The DN must be normalized and
must be in UTF-8 format.

ldapdn Specifies the address of an internal SLAPI_LDAPDN structure. This
returned structure must be used as an input parameter to other
DN-related SLAPI calls.

Usage This routine converts a DN string to a SLAPI_LDAPDN structure. This
structure is an LDAP internal DN structure and must be used as an input
parameter for other DN-related SLAPI calls, such as slapi_dn_get_rdn()
and slapi_dn_get_rdn_count(). After you use the SLAPI_LDAPDN structure,
the caller must free the SLAPI_LDAPDN structure by calling
slapi_dn_free_ldapdn().

Errors This routine returns an LDAP error code if it encounters an error while
you parse the DN.

See also
slapi_dn_free_ldapdn(), slapi_dn_get_rdn(), and slapi_dn_get_rdn_count().

slapi_dn_get_rdn()
This routine gets an RDN that make up the specified DN.

Syntax
#include <slapi-plugin.h>
int slapi_dn_get_rdn(
SLAPI_LDAPDN *ldapdn,
long rdnOrder,
char **strRDN,
Slapi_ldapRDN ***ldapRDNs);

Input Parameters

ldapdn Specifies the address of an internal SLAPI_LDAPDN structure. The
address of this structure is obtained by calling slapi_dn2ldapdn().

rdnOrder
Specifies the order of an RDN in a DN. The rdnOrder for the
left-most RDN is 1.

Output Parameters

strRDN Specifies the address of a pointer that points to the requested RDN.

ldapRDNs
Specifies the address of a NULL terminated array of pointers that
points to the attribute types or values which make up the specified
RDN. For instance, for a compound RDN cn=Joe Smith+uid=12345,
the output is an array that consists of three elements with the first
element that points to a Slapi_ldapRDN structure that points to cn

54 IBM Security Directory Server: Server Plug-ins Reference

and Joe Smith, the second element that points to a Slapi_ldapRDN
structure that points to uid and 12345, and the third element that is
a NULL pointer.

Usage This routine is used to obtain the wanted RDN in a DN by using the order
number of the RDN. The order number of the left-most RDN is 1.

For instance, for extracting the RDN ou=Austin from a DN cn=Joe
Smith+uid=12345, ou=Austin,o=sample, the input parameter to the function
is a SLAPI_LDAPDN structure that can be obtained by calling
slapi_dn2ldapdn(), and a rdnNumber of 2. In this case, the output is a
string value, ou=Austin, and an array that consists of two elements with
the first element that points to a Slapi_ldapRDN structure and the second
element a NULL pointer. The Slapi_ldapRDN structure that is defined in the
slapi-plugin.h file has two char pointers that point to ou and Austin. The
user must free the returned RDN string by calling slapi_ch_free() and the
returned array of Slapi_ldapRDN structure by calling slapi_dn_free_rdn().

Errors This routine returns an LDAP error code if it encounters an error while
you parse the RDN.

See also
slapi_dn2ldapdn() and slapi_dn_get_rdn_count().

slapi_dn_get_rdn_count()
This routine returns the number of RDNs in a DN.

Syntax
#include <slapi-plugin.h>
long slapi_dn_get_rdn_count(
SLAPI_LDAPDN *ldapdn);

Input Parameters

ldapdn Specifies the address of an internal SLAPI_LDAPDN structure. The
address of this structure is obtained by calling slapi_dn2ldapdn().

Usage This routine obtains the number of RDNs in a DN.

Errors This routine returns the number of RDNs in an LDAP DN structure.

See also
slapi_dn2ldapdn() and slapi_dn_get_rdn().

slapi_dn_free_ldapdn()
This routine frees the SLAPI_LDAPDN structure. This structure must be allocated and
returned by calling slapi_dn2ldapdn().

Syntax
#include <slapi-plugin.h>
void slapi_dn_free_ldapdn(
SLAPI_LDAPDN **ldapdn);

Input Parameters

ldapdn Specifies the address of an address of a SLAPI_LDAPDN structure.
The address of a SLAPI_LDAPDN structure must be an address that is
returned by slapi_dn2ldapdn().

Usage This routine frees the memory that is allocated by slapi_dn2ldapdn(). This
function takes the address of an address of a SLAPI_LDAPDN structure.

Chapter 6. SLAPI API Categories 55

Errors This routine returns the number of RDNs in an LDAP DN structure.

See also
slapi_dn2ldapdn().

slapi_dn_free_rdn()
This routine frees all the Slapi_ldapRDN structures pointed by an array of
Slapi_ldapRDN pointers that include the memory that is allocated for the array
itself. The array address must be the address that is returned by
slapi_dn_get_rdn().

Syntax
#include <slapi-plugin.h>
void slapi_dn_free_rdn(
Slapi_ldapRDN **ldapRDNs);

Input Parameters

ldapRDNs
Specifies the address of an array of address to the Slapi_ldapRDN
structures. This Slapi_ldapRDN address must be the address that is
returned by slapi_dn_get_rdn().

Usage This routine frees the memory that is allocated for all the components,
including the attribute types and attribute values that are specified in an
RDN.

See also
slapi_dn_get_rdn().

slapi_get_response_controls()
This slapi routine calls and accesses the list of response controls.

Syntax
#include <slapi-plugin.h>
int slapi_get_response_controls(
Slapi_PBlock *pb,
LDAPControl ***responseControls);

Input Parameters

pb A parameter block. The Slapi_PBlock must contain:
v SLAPI_CONNECTION - Connection structure that represents the

client.
v SLAPI_OPERATION - Operation structure.

Output Parameters

responseControls
Specifies a pointer that returns a deep copy of the response
controls that the server currently is associated with the operation.
Response controls are the controls that are returned to the client
when the response is sent. Return codes are listed:
v LDAP_SUCCESS - Successfully retrieved the list of controls.
v LDAP_PARAM_ERROR - Parameters that are passed in were invalid.

Usage The slapi_get_response_controls() routine must be called when the
program accesses the list of response controls that the server is associated
with a single operation. The caller must free the local list of controls after
its use.

56 IBM Security Directory Server: Server Plug-ins Reference

slapi_set_response_controls()
This slapi routine sets the list of response controls.

Note: The current list of response controls is entirely replaced with the new list.

Syntax
#include <slapi-plugin.h>
int slapi_set_response_controls(
Slapi_PBlock *pb,
LDAPControl ***responseControls);

Input Parameters

pb A parameter block. The Slapi_PBlock must contain:
v SLAPI_CONNECTION - Connection structure that represents the

client.
v SLAPI_OPERATION - Operation structure.

Output Parameters
Returns the following LDAP return code:
v LDAP_SUCCESS - The controls are successfully set on the operation.
v LDAP_NO_MEMORY - Server ran out of memory while you process the

request.
v LDAP_INVALID_PARAM - The parameters for the function are invalid.
v LDAP_UNWILLING_TO_PERFORM - The list of response controls contains an

unsupported control.

Usage The slapi_set_response_controls() routine must be called when the
program replaces all the response controls with a new list of response
controls. This list of LDAPControls that are passed must not be freed.

slapi_moddn_internal()
This slapi routine moves an entry that is under a parent entry to another parent
entry. In addition, it allows changing the RDN portion in a DN.

Syntax
#include <slapi-plugin.h>
Slapi_PBlock *slapi_moddn_internal(
char *olddn,
char *newrdn,
char *newsuperior,
int deloldrdn,
LDAPControl **controls,
int l);

Input Parameters

olddn Specifies the distinguished name (DN) of an entry that is to be
renamed.

newrdn Specifies the new relative distinguished name (RDN) of an entry.

newsuperior
Specifies the DN of the parent entry to which the entry is being
moved. It is provided when the entry is being moved to a new
location in the directory tree.

deloldrdn
Specifies whether or not the old RDN from the entry should be

Chapter 6. SLAPI API Categories 57

removed. If the value is 1, remove the old RDN. If the value is 0,
leave the RDN as an attribute of the entry.

controls
A NULL-terminated array of LDAP controls that is used in the
modify RDN operation.

1 Used for compatibility with slapi APIs provided by other vendors.
It is not used.

Returns
A new parameter block with the following parameter set is returned. The
result code SLAPI_PLUGIN_INTOP_RESULT specifies the LDAP result code for
the internal LDAP operation.

Usage This slapi routine moves an entry that is under a specific parent entry to
another parent entry. In addition, it allows changing the RDN portion in a
DN. For example, if we provide the following information’s to the API:
newsuperior = “o=ABC, c=YZ”
olddn = "cn=Modify Me, o=PQR, c=XY”
newrdn = “cn=The New Me”
deloldrdn = 1

In this case, the API modifies the RDN of the Modify Me entry from
Modify Me to The New Me. In addition, the entry is moved from o=PQR, c=XY
to o=ABC, c=YZ.

Errors This routine returns an error code SLAPI_PLUGIN_INTOP_RESULT, if it
encounters an error.

See also
“slapi_modrdn_internal()” on page 47.

slapi_get_bind_dn()
This slapi routine returns the bind DN of the client.

Syntax
#include <slapi-plugin.h>
int slapi_get_bind_dn(
Slapi_PBlock *pb,
char **bindDN);

Input Parameters

pb A pointer to a parameter block.

bindDN Specifies the bind DN of the client.

Returns
If the return code is LDAP_SUCCESS and the bind DN is set, this API
retrieves the bind DN of the client.

Usage The slapi_get_bind_dn() routine returns the bind DN of the client. The
caller is responsible for freeing the memory that is allocated for the
returned bind DN if the return code is LDAP_SUCCESS and the bind DN is
set.

Errors This API returns the following error codes:
v LDAP_PARAM_ERROR - If the pb parameter is null
v LDAP_OPERATIONS_ERROR - If the API encounters error that processes the

request
v LDAP_NO_MEMORY - Failed to allocate required memory.

58 IBM Security Directory Server: Server Plug-ins Reference

See also
“slapi_modrdn_internal()” on page 47.

slapi_get_client_ip()
This slapi routine returns the IP address of the client that is bound to the server.

Syntax
#include <slapi-plugin.h>
int slapi_get_client_ip(
Slapi_PBlock *pb,
char **clientIP);

Input Parameters

pb A pointer to a parameter block.

clientIP
The IP address of the client connection.

Returns
If the return code is LDAP_SUCCESS and the client IP is set, this API retrieves
the IP address of the client connection.

Usage A slapi API that returns the IP address of the client that is bound to the
server.

Note: The user must free the returned client IP after its use.

Errors This API returns the following error codes:
v LDAP_PARAM_ERROR - If the pb parameter is null
v LDAP_OPERATIONS_ERROR - If the API encounters error that processes the

request
v LDAP_NO_MEMORY - Failed to allocate required memory.

See also
slapi_get_source_ip().

slapi_get_proxied_dn()
This slapi routine returns the proxied DN of the client.

Syntax
#include <slapi-plugin.h>
int slapi_get_proxied_dn(
lapi_PBlock *pb,
char **proxiedDN);

Input Parameters

pb A pointer to a parameter block.

proxiedDN
The DN that is used for the connection.

Returns
If the return code is LDAP_SUCCESS and proxiedDN is set, this DN is used for
the operation. If the return code is LDAP_SUCCESS and proxiedDN is not set,
then the proxy authentication control was not called.

Usage A slapi API that returns the proxied DN of the client.

Note: The user must free the returned proxiedDN after its use.

Chapter 6. SLAPI API Categories 59

Errors This API returns the following error codes:
v LDAP_PARAM_ERROR - If the pb parameter is null
v LDAP_OPERATIONS_ERROR - If the API encounters error that processes the

request
v LDAP_NO_MEMORY - Failed to allocate required memory.

See also
slapi_entry_get_dn().

slapi_get_source_ip()
This slapi routine returns the IP address that is sent in the audit control.

Syntax
#include <slapi-plugin.h>
int slapi_get_source_ip(
Slapi_PBlock *pb,
char ** sourceIP);

Input Parameters

pb A pointer to a parameter block.

sourceIP
The IP address of the connection source.

Returns
If the return code is LDAP_SUCCESS and sourceIP is set, then this source IP
is used for connection.

Usage A slapi API that returns the IP address that is sent in the audit control.

Note: The user must free the returned sourceIP after its use. In addition, it
must be checked that the clientIP is from a trusted proxy web
administration or application.

Errors This API returns the following error codes:
v LDAP_PARAM_ERROR - If the pb parameter is null
v LDAP_OPERATIONS_ERROR - If the API encounters error that processes the

request
v LDAP_NO_MEMORY - Failed to allocate required memory.

See also
slapi_get_client_ip().

60 IBM Security Directory Server: Server Plug-ins Reference

Chapter 7. Plug-in examples

Referential integrity plug-in
Building from source files

All the necessary files to build the plug-in library files on the Windows NT
systems are available in the <TDS_INSTALL_ROOT>\examples\plug-in
directory, and for AIX, Linux, and Solaris systems are available in the
<TDS_INSTALL_ROOT>/examples/plug-in directory. The example source code
files for the referential integrity plug-in are also available in the directory.
To build the source files on a particular operating system, run the
following commands:
v For Windows NT systems: nmake –f makefile.plugin

v For AIX, Solaris, and Linux systems: make –f makefile.plugin

Note: On Solaris, you might need the -KPIC compiler flag to create
position independent code.

Note: The makefile might require changes that are based on the
differences in individual machine configurations. An example makefile to
build the library files on a Linux system:
###
Linux Makefile
###
#DEFINES=-D LINUX -D LDAP_STATIC_LINK -DLOCAL_LDAP_CACHE

IDS_LDAP_HOME=/opt/ibm/ldap/V6.3.1
IDS_LDAP_INCLUDES= -I$(IDS_LDAP_HOME)/include

#**
------ Options for building 32-bit targets
#**

IDS_LDAP_LIBS = $(IDS_LDAP_HOME)/lib
OS_LIBS = /usr/lib COMPILER_TARGET_FLAG =

#**
------ Options for building 64-bit targets
#**
#IDS_LDAP_LIBS = $(IDS_LDAP_HOME)/lib64
#OS_LIBS = /usr/lib64
#COMPILER_TARGET_FLAG = -m64

DEBUG=-g
OPTIMIZED=-O2
OPT=${DEBUG}

CC_ARGS=$(DEFINES) $(IDS_LDAP_INCLUDES) $(CFLAGS)

CC=/usr/bin/gcc -g -DSTRINGS $(COMPILER_TARGET_FLAG)

LD=/usr/bin/gcc -g -shared $(COMPILER_TARGET_FLAG)

#To work with 64-bit compiler use the -fPIC flag
#CC=/usr/bin/gcc -g -DSTRINGS $(COMPILER_TARGET_FLAG) -fPIC
#LD=/usr/bin/gcc -g -shared $(COMPILER_TARGET_FLAG)

API_LIB_DIR=./lib

© Copyright IBM Corp. 1999, 2014 61

API_OBJ_DIR=./obj

API_I_POSTFILE=libpostrefint.so
API_I_POST=${API_LIB_DIR}/${API_I_POSTFILE}
API_I_PREFILE=libprerefint.so
API_I_PRE=${API_LIB_DIR}/${API_I_PREFILE}

LDAPLIB=-lslapi -lldap -lpthread -L$(OS_LIBS)-L$(IDS_LDAP_LIBS)

TAR_FILE=${API_OBJ_DIR}/libdelref.tar
TAR_SOURCE=$(API_E)

API_OBJS_POST= \
${API_OBJ_DIR}/DeleteReference.o\
${API_OBJ_DIR}/ModRdnReference.o \
${API_OBJ_DIR}/ReferenceUtils.o \
${API_OBJ_DIR}/PostReferenceUtils.o

API_OBJS_PRE= \
${API_OBJ_DIR}/AddReference.o \
${API_OBJ_DIR}/ReferenceUtils.o \
${API_OBJ_DIR}/ModReference.o \
${API_OBJ_DIR}/PreReferenceUtils.o

all: debug

debug:
@OPT="${DEBUG}" make -f makefile.plugin -e build

optimized:
@OPT="${OPTIMIZED}" make -e build

build: libpost libpre

${API_LIB_DIR}:
mkdir -p ${API_LIB_DIR}

${API_OBJ_DIR}:
mkdir -p ${API_OBJ_DIR}

libpost: ${API_LIB_DIR} ${API_OBJ_DIR} $(API_I_POST)

libpre: ${API_LIB_DIR} ${API_OBJ_DIR} $(API_I_PRE)

$(API_I_POST): $(API_OBJS_POST)
rm -f $(API_I_POST)
$(LD) -o ${API_I_POST} $(API_OBJS_POST) $(LDAPLIB)

$(API_I_PRE): $(API_OBJS_PRE)
rm -f $(API_I_PRE)
$(LD) -o ${API_I_PRE}$(API_OBJS_PRE) $(LDAPLIB)

$(TAR_FILE).tar.Z: ${TAR_SOURCE}
rm -f ${TAR_FILE}.*
tar cvf $(TAR_FILE).tar $(TAR_SOURCE)
compress $(TAR_FILE).tar

${API_OBJ_DIR}/DeleteReference.o: DeleteReference.c
${CC} -c ${CC_ARGS} DeleteReference.c -o $@

${API_OBJ_DIR}/ModRdnReference.o: ModRdnReference.c
${CC} -c ${CC_ARGS} ModRdnReference.c -o $@

${API_OBJ_DIR}/ReferenceUtils.o:ReferenceUtils.c
${CC} -c ${CC_ARGS} ReferenceUtils.c -o $@

${API_OBJ_DIR}/PostReferenceUtils.o:PostReferenceUtils.c

62 IBM Security Directory Server: Server Plug-ins Reference

${CC} -c ${CC_ARGS} PostReferenceUtils.c -o $@

${API_OBJ_DIR}/AddReference.o: AddReference.c
${CC} -c ${CC_ARGS} AddReference.c -o $@

${API_OBJ_DIR}/ModReference.o: ModReference.c
${CC} -c ${CC_ARGS} ModReference.c -o $@

${API_OBJ_DIR}/PreReferenceUtils.o:PreReferenceUtils.c
${CC} -c ${CC_ARGS} PreReferenceUtils.c -o $@

clean:
rm -rf ${API_OBJ_DIR} ${API_LIB_DIR}

Output directory of the library files
The referential integrity plug-in library files that are generated as a result
of build are stored in the <TDS_INSTALL_ROOT>/examples/plug-in/lib
directory on AIX, Linux, and Solaris systems and in the
<TDS_INSTALL_ROOT>\examples\plug-in\lib directory on the Windows NT
system. On Windows NT system, the library files are libprerefint.dll
and libpostrefint.dll. On AIX, Linux, and Solaris systems, the library
files are libprerefint.so and libpostrefint.so.

Input and log files of referential integrity plug-in

Input file
The referential integrity plug-in is initialized by reading referential
integrity constraint information from the file that is specified by
<input-file-path>, which is a requirement for using the plug-in.
Here in the examples, the refIntegInput file is used. You can use
any input file that has constraint in the following format:
at=<DN-style-attribute><\n> dn=<search-base-DN><\n>

The input file can contain multiple DN style attribute, and search
base DN entry in any order. The plug-in treats each entry as it is
and therefore white space before and after the specification is not
allowed and might lead to undesirable results. On a Linux system
an example input file, refIntegInput, is provided in the
<TDS_INSTALL_ROOT>/examples/plug-in/input directory, and an
example ldif file, add.ldif, in the <TDS_INSTALL_ROOT>/examples/
plug-in/ldif directory. A copy of example input file,
refIntegInput, is used that is stored in the <instance_home>/
idsslapd-myinst1/etc directory. In the example input file, the
constraints is checked against the following format:
at=seeAlso dn=o=ibm,c=us

Here, the attribute seeAlso is checked for referential integrity
constraints for entries that fall under the DN o=ibm, c=us.

Log file
The plug-in performs referential integrity checks for the LDAP
operations that it is designed for and logs the report to the
ibmslapd.log file. If the debug version of the plug-in initialization
function is used, the log status becomes more verbose and can be
used to trace execution.

Registering the referential integrity plug-in
To use referential integrity plug-in libraries, they must be registered with
IBM Security Directory Server. To register the plug-in, first you must add
an entry for the plug-in the configuration file, ibmslapd.conf. It is done by

Chapter 7. Plug-in examples 63

adding ibm-slapdPlugin specifications to the ibmslapd.conf file. You can
add an entry to the configuration file by using the ldapmodify command,
provided you must have the required permissions. The plug-in
initialization functions that are used in the <init-function> specification
are preReferenceInit and postReferenceInit. For debugging purposes, the
preReferenceInitDebug, and postReferenceInitDebug can be substituted in
the <init-function> specification to get more verbose logging. To add
entries, issue the idsldapmodify command of the following format:
idsldapmodify -p 3389 -D cn=root -w root -f <filename>

where, <filename> contains:
dn: cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration
changetype: modify
add: ibm-slapdPlugin
ibm-slapdPlugin: preoperation /opt/ibm/ldap/V6.3.1/examples/plug-in/lib/libprerefint.so
preReferenceInit /home/myinst1/idsslapd-myinst1/etc/refIntegInput
-
add: ibm-slapdPlugin
ibm-slapdPlugin: postoperation /opt/ibm/ldap/V6.3.1/examples/plug-in/lib/libpostrefint.so
postReferenceInit /home/myinst1/idsslapd-myinst1/etc/refIntegInput

To verify that the entries are added under the specified entry DN, issue the
idsldapsearch command of the following format:
idsldapsearch -D cn=root -w root -p 3389 -s sub -b \
"cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration"\
-L objectclass=*

dn: cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration
cn: Directory
ibm-slapdDbAlias: ldapdb2b
ibm-slapdDbConnections: 15
ibm-slapdDbInstance: myinst1
ibm-slapdDbLocation: /home/myinst1
ibm-slapdDbName: myinst1
ibm-slapdDbUserID: myinst1
ibm-slapdDbUserPW: {AES256}hCUF8fpN7J0gVcFaZau8jw==
ibm-slapdEnableRemotePWPExOps: TRUE
ibm-slapdGroupMembersCacheBypassLimit: 25000
ibm-slapdGroupMembersCacheSize: 25
ibm-slapdLanguageTagsEnabled: FALSE
ibm-slapdNumRetry: 5
ibm-slapdPagedResAllowNonAdmin: TRUE
ibm-slapdPagedResLmt: 3
ibm-slapdPlugin: database libback-rdbm.so rdbm_backend_init
ibm-slapdPlugin: replication libldaprepl.so replInit
ibm-slapdPlugin: preoperation /opt/ibm/ldap/V6.3.1/examples/plug-in/lib/libprerefint.so
preReferenceInit /home/myinst1/idsslapd-myinst1/etc/refIntegInput
ibm-slapdPlugin: postoperation /opt/ibm/ldap/V6.3.1/examples/plug-in/lib/libpostrefint.so
postReferenceInit /home/myinst1/idsslapd-myinst1/etc/refIntegInput
ibm-slapdReadOnly: FALSE
ibm-slapdSortKeyLimit: 3
ibm-slapdSortSrchAllowNonAdmin: TRUE
ibm-slapdSuffix: cn=localhost
ibm-slapdSuffix: cn=ibmpolicies
ibm-slapdSuffix: cn=Deleted Objects
ibm-slapdSuffix: o=ibm, c=us
ibm-slapdTombstoneEnabled: FALSE
ibm-slapdTombstoneLifetime: 168
objectclass: top
objectclass: ibm-slapdConfigEntry
objectclass: ibm-slapdRdbmBackend

After you add the referential integrity plug-in entries in the configuration
file, you must restart directory server instance for the registration and
loading of the library files to take effect. An example excerpt of the
messages that the directory server generates at starting the instance:
ibmslapd -I myinst1 -n –c

GLPSRV041I Server starting.

64 IBM Security Directory Server: Server Plug-ins Reference

GLPCTL113I Largest core file size creation limit for the process
(in bytes): ’0’(Soft limit) and ’-1’(Hard limit).

GLPCTL119I Maximum Data Segment(Kbytes) soft ulimit for the process
is -1 and the prescribed minimum is 262144.

GLPCTL119I Maximum File Size(512 bytes block) soft ulimit for the process
is -1 and the prescribed minimum is 2097152.

GLPCTL122I Maximum Open Files soft ulimit for the process
is 1024 and the prescribed minimum is 500.

GLPCTL119I Maximum Stack Size(Kbytes) soft ulimit for the process is -1
and the prescribed minimum is 10240.

GLPCTL119I Maximum Virtual Memory(Kbytes) soft ulimit for the process is -1
and the prescribed minimum is 1048576.
GLPCOM024I The extended Operation plug-in is successfully loaded from libevent.so.
GLPCOM024I The extended Operation plug-in is successfully loaded from libtranext.so.
GLPCOM024I The extended Operation plug-in is successfully loaded from libldaprepl.so.
GLPSRV155I The DIGEST-MD5 SASL Bind mechanism is enabled in the configuration file.
...
GLPCOM024I The extended Operation plug-in is successfully loaded from libpsearch.so.
GLPCOM022I The database plug-in is successfully loaded from libback-rdbm.so.
GLPCOM010I Replication plug-in is successfully loaded from libldaprepl.so.
GLPCOM021I The preoperation plug-in is successfully loaded from
/opt/ibm/ldap/V6.3.1/examples/plug-in/lib/libprerefint.so.
GLPCOM023I The postoperation plug-in is successfully loaded from
/opt/ibm/ldap/V6.3.1/examples/plug-in/lib/libpostrefint.so.
GLPSRV189I Virtual list view support is enabled.
GLPCOM021I The preoperation plug-in is successfully loaded from libpta.so.
...
GLPSRV180I Pass-through authentication is disabled.
GLPCOM003I Non-SSL port initialized to 3389.
GLPRPL137I Restricted Access to the replication topology is set to false.
GLPSRV009I 6.3.1.0 server started.
GLPRPL136I Replication conflict resolution mode is set to true.
GLPSRV048I Started 15 worker threads to handle client requests.

Examples

Examples to verify the working of referential integrity plug-in
After you create and configure a directory server instance, add
data to directory server instance from the example ldif file,
add.ldif, available in the <TDS_INSTALL_ROOT>/examples/plug-in/
ldif directory on a Linux system. An example of the idsldapadd
command with its output:
#idsldapadd -p 3389 -D cn=root -w root -f add.ldif
Operation 0 adding new entry o=ibm, c=us
Operation 1 adding new entry cn=sullyBoss,o=ibm,c=us
Operation 2 adding new entry cn=sullyEmp,o=ibm,c=us
Operation 3 adding new entry cn=sully1,o=IBM,c=US

To search for the newly added entries, run the idsldapsearch
command. An example of the idsldapsearch command with its
output:
#idsldapsearch -p 3389 -s sub -b "o=ibm, c=us" objectclass=*
o=ibm,c=us
objectclass=organization
objectclass=top
o=ibm

cn=sullyBoss,o=ibm,c=us
objectclass=inetOrgPerson
objectclass=organizationalPerson
objectclass=person objectclass=top
objectclass=ePerson
sn=sullyEmpSN
cn=sullyEmp
cn=sullyBoss

cn=sullyEmp,o=ibm,c=us
objectclass=inetOrgPerson
objectclass=organizationalPerson
objectclass=person objectclass=top

Chapter 7. Plug-in examples 65

objectclass=ePerson
sn=sullyEmpSN
cn=sullyEmp
seealso=cn=sullyBoss,o=ibm,c=us

cn=sully1,o=IBM,c=US
objectclass=person
objectclass=organizationalPerson
objectclass=top
cn=sully1
sn=sullivan
telephonenumber=1-812-855-8541
internationalisdnnumber=755-8541
title=Mechanical Ana. Thermal
seealso=cn=sullyBoss,o=ibm,c=us
postalcode=4502

Checking the plug-in for pre-operation referential integrity
To check for pre-operation referential integrity when, you add
wrong data. An example of the idsldapadd command with its
output:
#idsldapadd -p 3389 -D cn=root -w root
cn=sully2,o=ibm,c=us
objectclass=person
objectclass=organizationalPerson
objectclass=top
cn=sully2
sn=bob
seealso=cn=sully1, o=sample
Operation 0 adding new entry cn=sully2,o=ibm,c=us
ldap_add: Unknown error
ldap_add: additional info: plug-in function failed

To check for pre-operation referential integrity when you modify
an existing entry. An example of the idsldapmodify command with
its output:
#idsldapmodify -p 3389 -D cn=root -w root
dn: cn=sully1,o=IBM,c=US
changetype: modify
replace: seealso
seealso:
Operation 0 modifying entry cn=sully1,o=IBM,c=US
ldap_modify: Unknown error
ldap_modify: additional info: plug-in function failed

Checking the plug-in for post-operation referential integrity
To check for post-operation referential integrity by modifying the
RDN. An example of the idsldapmodrdn command with its output:
idsldapmodrdn -p 3389 -D cn=root -w root cn=sullyBoss,o=ibm,\
c=us cn=sullyManager
copying cn=sullyBoss,o=ibm,c=us to cn=sullyManager

Verifying the data in the directory server:
idsldapsearch -p 3389 -s sub -b "o=ibm, c=us" objectclass=*
o=ibm,c=us
objectclass=organization
objectclass=top
o=ibm

cn=sullyManager,o=ibm,c=us
objectclass=inetOrgPerson
objectclass=organizationalPerson
objectclass=person
objectclass=top

66 IBM Security Directory Server: Server Plug-ins Reference

objectclass=ePerson
sn=sullyEmpSN
cn=sullyEmp
cn=sullyBoss
cn=sullyManager

cn=sullyEmp,o=ibm,c=us
objectclass=inetOrgPerson
objectclass=organizationalPerson
objectclass=person
objectclass=top
objectclass=ePerson
sn=sullyEmpSN
cn=sullyEmp
seeAlso=cn=sullyManager, o=ibm,c=us

cn=sully1,o=IBM,c=US
objectclass=person
objectclass=organizationalPerson
objectclass=top
cn=sully1
sn=sullivan
telephonenumber=1-812-855-8541
internationalisdnnumber=755-8541
title=Mechanical Ana. Thermal
postalcode=4502
seeAlso=cn=sullyManager,o=ibm,c=us

Notice the changes that are made to the values of the seeAlso
attribute in other entries. To check for post-operation referential
integrity by deleting an entry that is referred to by the seeAlso
attribute. An example of the idsldapdelete command with its
output:
#idsldapdelete -p 3389 -D cn=root -w root cn=sullyManager,\
o=ibm,c=us
Deleting entry cn=sullyManager,o=ibm,c=us

Verifying the data in the directory server:
idsldapsearch -p 3389 -s sub -b "o=ibm, c=us" objectclass=*
o=ibm,c=us
objectclass=organization
objectclass=top
o=ibm

cn=sullyEmp,o=ibm,c=us
objectclass=inetOrgPerson
objectclass=organizationalPerson
objectclass=person
objectclass=top
objectclass=ePerson
sn=sullyEmpSN
cn=sullyEmp

cn=sully1,o=IBM,c=US
objectclass=person
objectclass=organizationalPerson
objectclass=top
cn=sully1
sn=sullivan
telephonenumber=1-812-855-8541
internationalisdnnumber=755-8541
title=Mechanical Ana. Thermal
postalcode=4502

Chapter 7. Plug-in examples 67

Notice that the references to the value
cn=sullyManager,o=ibm,c=us, in the seeAlso attribute is removed
along with the deletion of the entry cn=sullyManager,o=ibm,c=us.

An example of SASL bind plug-in
The following sample C code creates a simple SASL bind plug-in that uses the
mechanism SAMPLE_BIND. It compares the password that is sent across the wire to
the password stored in the directory for the bind DN. It is important to realize that
this example is meant only to illustrate the basic operation of servicing a simple
bind request, and how the operations are implemented by way of a user developed
plug-in. Actual processing of a simple bind request as part of the fundamental
operation of the LDAP server involves more processing.
#include <stdio.h>
#include <string.h>
#include <strings.h>

#include <slapi-plugin.h>

#define FALSE 0

/* Let the next plug-in try the operation */
#define NEXTPLUGIN 0
/* We handled the operation, so don’t run any other plug-ins */
#define STOP_PLUGIN_SEARCH 1

/* SASL mechanism type */
#define SAMPLE_MECH "SAMPLE_BIND"

/* Subsystem to use for slapi_log_error calls */
#define SAMPLE_SUBSYSTEM "SAMPLE"

/* Filter used when searching for the entry DN */
#define FILTER "objectclass=*"
/* Password attribute name */
#define PWATTR "userpassword"

/* Forward declaration of our bind plug-in function */
int sampleBind(Slapi_PBlock *pb);

/* Initialization function */
int sampleInit(Slapi_PBlock *pb)
{
int argc = 0;
char ** argv = NULL;

/* to register the Sample_Bind function as the pre-operation
* bind funtion */
if (slapi_pblock_set(pb, SLAPI_PLUGIN_PRE_BIND_FN, (void*) sampleBind) != 0)
{
slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,

"sampleInit couldn’t set plug-in function\n");
return (-1);
}

/* Get the plug-in argument count. These arguments are defined
* in the plug-in directive in the configuration file. */
if (slapi_pblock_get(pb, SLAPI_PLUGIN_ARGC, &argc) != 0)
{
slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,

"sampleInit couldn’t get argc\n");
return (-1);
}

68 IBM Security Directory Server: Server Plug-ins Reference

/* Get the plug-in argument array */
if(slapi_pblock_get(pb, SLAPI_PLUGIN_ARGV, &argv) != 0)
{
slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,

"sampleInit couldn’t get argv\n");
return (-1);
}

/* Low "severity" means high importance. */
slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,

"Hello from sample\n");

/** Register SAMPLE_BIND as one of the supported SASL mechanisms
* so that it shows up when the RootDSE is queried. */
slapi_register_supported_saslmechanism(SAMPLE_MECH);
return LDAP_SUCCESS;
}

/* * Function to get the password for the specified dn.*/
int getEntryPassword(char *dn, char ** passwd)
{
Slapi_PBlock *pb = NULL;
int rc = LDAP_SUCCESS;
int numEntries = 0;
Slapi_Entry **entries = NULL;
Slapi_Attr *a = NULL;
struct berval **attr_vals = NULL;

/** Do an internal search to get the entry for the given dn*/
pb = slapi_search_internal(dn, /* Entry to retrieve */
LDAP_SCOPE_BASE,
/* Only get the entry asked for */
FILTER, /* Search filter */
NULL, /* No controls */
NULL, /* Get all attributes */
FALSE);

/* Get attribute values (names only is false) */
if (pb == NULL)
{
slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,

"Search failed for dn = %s\n", dn);
return (LDAP_OPERATIONS_ERROR);
}

/* Get the return code from the search */
slapi_pblock_get(pb, SLAPI_PLUGIN_INTOP_RESULT, &rc);
if (rc != LDAP_SUCCESS)
{
/* Search failed */
slapi_pblock_destroy(pb);
return (rc);
}

/* Get the number of entries returned from the search */
slapi_pblock_get(pb, SLAPI_NENTRIES, &numEntries);
if (numEntries == 0)
{
/* Couldn’t find entry */
slapi_free_search_results_internal(pb);
slapi_pblock_destroy(pb);
return (LDAP_NO_SUCH_OBJECT);
}

/* Get the entries */
slapi_pblock_get(pb, SLAPI_PLUGIN_INTOP_SEARCH_ENTRIES, &entries);
/** Since we did a base level search, there can only be one entry returned.

Chapter 7. Plug-in examples 69

* Get the value of the "userpassword" attribute from the entry. */
if (slapi_entry_attr_find(entries[0], PWATTR, &a) == 0)
{
/* Copy the password into the out parameter */
slapi_attr_get_values(a, &attr_vals);
(*passwd) = slapi_ch_strdup(attr_vals[0]->bv_val);

}
else
{
/* No userpassword attribute */
slapi_free_search_results_internal(pb);
slapi_pblock_destroy(pb);
return (LDAP_INAPPROPRIATE_AUTH);
}

slapi_free_search_results_internal(pb);
slapi_pblock_destroy(pb);
return (LDAP_SUCCESS);
}

/* Function to handle a bind request */
int sampleBind(Slapi_PBlock *pb)
{
char * mechanism = NULL;
char * dn = NULL;
char * passwd = NULL;
char * connDn = NULL;
char * aString = NULL;
struct berval * credentials = NULL;
int rc = LDAP_SUCCESS;

/* Get the target DN */
if (slapi_pblock_get(pb, SLAPI_BIND_TARGET, &dn) != 0
{
slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,

"sampleBind couldn’t get bind target\n");
return (NEXTPLUGIN);
}

/* Get the password */
if (slapi_pblock_get(pb, SLAPI_BIND_CREDENTIALS, &credentials) != 0)
{
lapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEMs,

"sampleBind couldn’t get bind target\n");
return (NEXTPLUGIN);
}

/* Get the bind mechanism */
if (slapi_pblock_get(pb, SLAPI_BIND_SASLMECHANISM, &mechanism) != 0)
{
slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,

"sampleBind couldn’t get bind target\n");
return (NEXTPLUGIN);
}

/** If the requested mechanism isn’t SAMPLE, then we’re not going to
* handle it.
*/
if ((mechanism == NULL)|| (strcmp(mechanism, SAMPLE_MECH) != 0))
{
return (NEXTPLUGIN);
}

rc = getEntryPassword(dn, &passwd);
if (rc != LDAP_SUCCESS)

70 IBM Security Directory Server: Server Plug-ins Reference

{
slapi_send_ldap_result(pb, rc, NULL, NULL, 0, NULL);
return (STOP_PLUGIN_SEARCH);
}

/*Check if they gave the correct password */
if ((credentials->bv_val == NULL) || (passwd == NULL) ||

(strcmp(credentials->bv_val,passwd) != 0))
{
slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,

"Bind as %s failed\n", dn);
rc = LDAP_INVALID_CREDENTIALS;
}
else
{
/*
* Make a copy of the DN and authentication method and set them
* in the pblock. The server will use them for the connection.
*/
connDn = slapi_ch_strdup(dn);
if (connDn == NULL)
{
slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,

"Could not duplicate connection DN\n");
slapi_send_ldap_result(pb, LDAP_NO_MEMORY, NULL, NULL,0, NULL);
slapi_ch_free(passwd);
return (STOP_PLUGIN_SEARCH);
}

/** The authentication method string will look something like
* "SASL SAMPLE_BIND" */
aString = slapi_ch_malloc(strlen(SLAPD_AUTH_SASL) +

strlen(SAMPLE_MECH) + 2);
if (aString == NULL)
{
slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,

"Could not duplicate authString\n");
slapi_ch_free(passwd);
slapi_ch_free(connDn);
slapi_send_ldap_result(pb, LDAP_NO_MEMORY, NULL, NULL,0, NULL);
return (STOP_PLUGIN_SEARCH);
}
sprintf(aString, "%s%s", SLAPD_AUTH_SASL, SAMPLE_MECH);

/* Set the connection DN */
if (slapi_pblock_set(pb, SLAPI_CONN_DN,(void *) connDn) != 0)
{
slapi_log_error(LDAP_MSG_LOW,SAMPLE_SUBSYSTEM,

"Could not set SLAPI_CONN_DN\n");
slapi_ch_free(passwd);
slapi_ch_free(connDn);
slapi_ch_free(aString);
slapi_send_ldap_result(pb, LDAP_OPERATIONS_ERROR,

NULL, NULL, 0, NULL);
return (STOP_PLUGIN_SEARCH);
}

/* Set the authentication type */
if (slapi_pblock_set(pb, SLAPI_CONN_AUTHTYPE, (void *) aString) != 0)
{
slapi_log_error(LDAP_MSG_LOW,SAMPLE_SUBSYSTEM,

"Could not set SLAPI_CONN_AUTHTYPE\n");
slapi_ch_free(passwd);
slapi_ch_free(connDn);
slapi_ch_free(aString);
slapi_send_ldap_result(pb, LDAP_OPERATIONS_ERROR,

NULL, NULL, 0, NULL);

Chapter 7. Plug-in examples 71

return (STOP_PLUGIN_SEARCH);
}
rc = LDAP_SUCCESS;
}

/* Send the result back to the client */
slapi_send_ldap_result(pb, rc, NULL, NULL, 0, NULL);

/*Free the memory allocated by the plug-in */
slapi_ch_free(passwd);
return (STOP_PLUGIN_SEARCH);
}

To use the plug-in you must:
1. Compile it. Use the following makefile to compile the plug-in:

CC = gcc
LINK = gcc -shared
WARNINGS = -Wall -Werror
LDAP_HOME = /usr/ldap

INCDIRS = -I${LDAP_HOME}/include
LIBDIRS = -L${LDAP_HOME}/lib

CFLAGS = -g ${WARNINGS} ${INCDIRS}
LINK_FLAGS = ${LIBDIRS} ${LIBS}

PLUGIN = libsample.so
OBJECTS = sample.o

.PHONY: clean

all: ${PLUGIN}

.c.o:
$(CC) ${CFLAGS} -c -o $@ $<

${PLUGIN}: ${OBJECTS}
${LINK} -o $@ $< ${LINK_FLAGS}

clean:
${RM} ${PLUGIN}
${RM} ${OBJECTS}

2. Add the following information to the ibmslapd.conf file by using the
ldapmodify command:
ldapmodify -D <adminDN> -w<adminPW> -i<filename>

where <filename> contains:
dn: cn=SchemaDB, cn=LDCF Backends, cn=IBM Directory,

cn=Schemas, cn=Configuration
changetype: modify
add: ibm-slapdPlugin
ibm-slapdPlugin: preoperation <path to plug-in>/libsample.so sampleInit

3. Restart the server. If the plug-in was loaded, its initialization function writes a
message to the ibmslapd.log file similar to the following messages:
08/25/2003 01:28:50 PM SAMPLE: Hello from sample

4. Perform an LDAP operation:
ldapsearch -D cn=bob,o=sample -w hello -p 1234

-b o=sample objectclass=*

72 IBM Security Directory Server: Server Plug-ins Reference

The search succeeds if the entry cn=bob,o=sampleexists and has a user
password attribute with the value hello. If the entry does not exist, an
authentication denied error is returned.

An example of DN partitioning function
A sample DN partition program that gets the rdn "cn=ck" from the dn
"cn=ck,ou=India,o=sample" regardless of what the base or suffix is, and generates
a partition number that is based on the rdn value, in this case it is "ck"

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <slapi-plugin.h>

#ifdef __cplusplus
extern "C" {
#endif

int MyDNInit(Slapi_PBlock *pb);
#ifdef __cplusplus
}
#endif

int get_value_from_dn_fn(Slapi_PBlock *pb);

static char * get_hash_rdn(const char * dn, const char * base)
{

char * rdn = NULL;
size_t rdnLen = 0;
size_t dnLen = 0;
size_t baseLen = 0;
size_t startNdx = 0;
size_t endNdx = 0;

if ((dn == NULL) || (base == NULL))
return NULL;

dnLen = strlen(dn);
baseLen = strlen(base);

/* If the base is longer than the dn, there’s no rdn */
if (baseLen > dnLen)

return NULL;

/* If the dn and base are the same, there’s no rdn */
if ((dnLen == baseLen) && (strcmp(dn, base) == 0))

return NULL;

/* Check if the dn is under the base */
if ((dn[dnLen - baseLen - 1] != ’,’) ||

(strcmp([&dn[dnLen - baseLen], base) != 0))
return NULL;

/* Find the next previous comma */
endNdx = dnLen - baseLen - 2;
for (startNdx = endNdx; startNdx > 0; startNdx--)
{

if (dn[startNdx] == ’,’)
{

startNdx++;
break;

}
}

rdnLen = endNdx - startNdx + 1;

Chapter 7. Plug-in examples 73

rdn = (char *) calloc(1, rdnLen + 1);
memcpy(rdn, &dn[startNdx], rdnLen);

return rdn;
}

/* The function takes the RDN as input and generates the Partition number. */
/* If you add an entry with RDN ’cn=wrong’ then it generates wrong partition number.

This will help to check if client utility gives
Operation Error for wrong partition number.

*/

int ck_new_get_hash_value(const char * str, int numPartitions)
{

char temp[100];
// static int cnt = 0;

char *sub_string;
unsigned int sum = 0;

int len, partitionNum,i=0;

sub_string = strchr (str, ’=’);
sub_string++;
strcpy(temp , sub_string);

/* Remove the comment for code below if you want to check the Server
behavior for wrong partition number generation at Start up.

*/

/* if (strcasecmp ("ibmpolicies",temp) == 0 && cnt == 1)
{
return (numPartitions + 5) ;
} */

if (strcasecmp ("WRONG",temp) == 0)
{
return (numPartitions + 5) ;

}
else
{

len = strlen(temp);

for(i = 0; i < len; str++, i++)
{

sum += temp[i] ;
}

partitionNum = ((sum * len) % numPartitions) + 1 ;

return (partitionNum);
}

}

// Function registered for generating Partition Number

int get_value_from_dn_fn(Slapi_PBlock *pb)
{

int rc = 0;
char *dn = NULL;
char *base = NULL;

74 IBM Security Directory Server: Server Plug-ins Reference

int numPartitions = 0;
char * rdn = NULL;
int value = 0;
SLAPI_LDAPDN *ldapDn ;
Slapi_ldapRDN **ret_rdn = NULL;

// Get the parameters from PBlock

if ((rc = slapi_pblock_get((Slapi_PBlock *)pb, SLAPI_TARGET_DN,
(void *)&dn) != 0) || (rc = slapi_pblock_get((Slapi_PBlock *)pb,
SLAPI_PARTITION_BASE, (void *) &base) != 0) || (rc =
slapi_pblock_get((Slapi_PBlock *)pb, SLAPI_NUMBER_OF_PARTITIONS,
(void *) &numPartitions) != 0))

{
fprintf(stderr, "Cannot get the PBlock values!\n");
return -1;

}

if ((dn == NULL) || (base == NULL) || (numPartitions <= 0))
{

fprintf(stderr,"Wrong values set in PBlock");
return -1;

}

/* If the DN and base are the same, it hashes 1 */
if (strcasecmp(dn, base) == 0)
{

fprintf(stderr, "Since the Base and DN are same set the
SLAPI_PARTITION_NUMBER to 1\n");

if ((rc = slapi_pblock_set((Slapi_PBlock *)pb,
SLAPI_PARTITION_NUMBER, (void *)1)) != 0)

{
fprintf(stderr, "Was not able to set value in PBlock!\n");
return -1;

}
else
{
return 0;
}
}

// Get the Partition number based on the leftmost rdn value

rdn = get_hash_rdn(dn, base);
value = ck_new_get_hash_value(rdn , numPartitions);
fprintf(stderr,"\n\n*** Partition Value is : %d",value);

if ((rc = slapi_pblock_set((Slapi_PBlock *)pb,
SLAPI_PARTITION_NUMBER, (void *)value)) != 0)

{
fprintf(stderr, "Failed to set value in PBlock!\n");
free(rdn);
return -1;

}

slapi_dn_free_ldapdn(&ldapDn);

slapi_dn_free_rdn(ret_rdn);

Chapter 7. Plug-in examples 75

free(rdn);

return 0;
}

// My Initialization Function

int MyDNInit(Slapi_PBlock * pb)
{

if (slapi_pblock_set(pb, SLAPI_PLUGIN_PROXY_DN_PARTITION_FN,
(void *) get_value_from_dn_fn) != 0)

{

fprintf(stderr,"Cannot register Function in PBlock \n");
return (-1);

}

return (0);
}

76 IBM Security Directory Server: Server Plug-ins Reference

Chapter 8. Deprecated plug-in APIs

Although the following APIs are still supported, their use is deprecated. Use of the
newer replacement APIs is encouraged.
v slapi_dn_normalize. See “slapi_dn_normalize_v3()” on page 33.
v slapi_dn_normalize_case. See “slapi_dn_normalize_case_v3()” on page 34.
v slapi_dn_ignore_case. See “slapi_dn_ignore_case_v3()” on page 35.

© Copyright IBM Corp. 1999, 2014 77

78 IBM Security Directory Server: Server Plug-ins Reference

Index

A
accessibility vii
APIs 27
audit

configuration 9
event 9
record 10

audit configuration options 10
ibm-audit 10
ibm-auditAdd 10
ibm-

auditAttributesOnGroupEvalOp 11
ibm-auditBind 10
ibm-auditCompare 11
ibm-auditDelete 10
ibm-auditExtOp 11
ibm-auditExtOPEvent 11
ibm-auditFailedOPonly 10
ibm-auditGroupsOnGroupControl 11
ibm-auditLog: 10
ibm-auditModify 10
ibm-auditModifyDN 10
ibm-auditPerformance 11
ibm-auditPTABindInfo 11
ibm-auditSearch 10
ibm-auditUnbind 10
ibm-auditVersion 11

audit plug-ins 9

C
configuration

audit 9
configuration options

audit services 10

E
education vii
event

audit 9
examples

plug-ins 61
extended operation plug-ins 8

input parameters 8
SLAPI_EXT_OP_REQ_VALUE

(struct berval *) 8
SLAPI_EXT_OP_RET_OID (char

*) 8
output parameters 8

SLAPI_EXT_OP_RET_OID (char
*) 8

SLAPI_EXT_OP_RET_VALUE
(struct berval *) 8

H
header file

audit 10

I
IBM

Software Support vii
Support Assistant vii

input parameters
extended operation plug-ins 8

introduction
plug-ins 1
server plug-ins 1

iPlanet APIs 27
compare 31
internal database operations 28, 44
LDAP specific objects 27, 32, 33, 34,

35, 36
logging routines 28
memory management 27, 29
pblock 27, 28
querying server information 28, 48
sending results 27, 32

O
online

publications v
terminology v

operation plug-ins 7
output parameters

extended operation plug-ins 8

P
parameter reference 15

all plug-ins 17
back-end

information 17
connection

information 18
database

information 17
extended operation plug-ins 17
operation

information 19
plug-ins

information 20
post-operation/data notification

plug-ins 16
pre-operation/data validation

plug-ins 15
registering plug-in functions 15
types of plug-ins 20

parameters
abandon function 24
add function 22
bind function 21
compare function 23
configuration function 20
delete function 23
DN Partitioning 25
extended operations 24

parameters (continued)
input

extended operations 8
internal LDAP operations 25
modify function 23
modify rdn function 23
output

extended operations 8
search function 21

plug-in APIs
deprecated 77

plug-ins
audit 9
extended operation 8
introduction 1
operation 7
post-operation 7
pre-operation 7
types of 1
writing 3

post-operation plug-ins 7
pre-operation plug-ins 7
problem-determination vii
publications

accessing online v
list of for this product v

R
record

audit 10

S
server plug-ins

introduction 1
SLAPI

API Categories 53

T
terminology v
training vii
troubleshooting vii

© Copyright IBM Corp. 1999, 2014 79

80 IBM Security Directory Server: Server Plug-ins Reference

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law :

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1999, 2014 81

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to

82 IBM Security Directory Server: Server Plug-ins Reference

IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information in softcopy form, the photographs and color
illustrations might not be displayed.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 83

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are
trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

84 IBM Security Directory Server: Server Plug-ins Reference

����

Printed in USA

SC27-2750-02

	Contents
	About this publication
	Access to publications and terminology
	Accessibility
	Technical training
	Support information
	Statement of Good Security Practices

	Chapter 1. Introduction to server plug-ins
	Chapter 2. Writing a plug-in
	Chapter 3. Operation plug-ins
	Pre-operation plug-ins
	Post-operation plug-ins
	Extended operation plug-ins
	Input parameters
	Output parameters

	Audit plug-ins
	Configuration options
	Examples

	Chapter 4. Parameter reference
	Parameters for registering plug-in functions
	Pre-operation or data validation plug-ins
	Post operation or data notification plug-ins
	Extended operation plug-ins
	DN partitioning plug-ins

	Parameters accessible to all plug-ins
	Information about the database
	Information about the connection
	Information about the operation
	Information about the plug-ins
	Types of plug-ins

	Parameters for the configuration function
	Parameters for the Bind function
	Parameters for the Search function
	Parameters for the Add function
	Parameters for the Compare function
	Parameters for the Delete function
	Parameters for the Modify function
	Parameters for the Modify RDN function
	Parameters for the Abandon function
	Parameters for extended operations
	Parameters for internal LDAP operations
	Parameters for the DN partitioning function

	Chapter 5. Supported iPlanet APIs
	slapi_pblock_get()
	slapi_pblock_get_int()
	slapi_pblock_set()
	slapi_pblock_new()
	slapi_pblock_destroy()
	slapi_ch_malloc()
	slapi_ch_calloc()
	slapi_ch_realloc()
	slapi_ch_strcmp()
	slapi_ch_strncmp()
	slapi_ch_strdup()
	slapi_compare_internal()
	slapi_ch_free()
	slapi_send_ldap_result()
	slapi_dn_normalize()
	slapi_dn_normalize_case()
	slapi_dn_ignore_case()
	slapi_dn_normalize_v3()
	slapi_dn_normalize_case_v3()
	slapi_dn_ignore_case_v3()
	slapi_dn_compare_v3()
	slapi_dn_issuffix()
	slapi_entry2str()
	slapi_str2entry()
	slapi_entry_attr_find()
	slapi_entry_attr_merge()
	slapi_entry_attr_delete()
	slapi_entry_get_dn()
	slapi_entry_set_dn()
	slapi_entry_alloc()
	slapi_entry_dup()
	slapi_send_ldap_search_entry()
	slapi_entry_free()
	slapi_attr_get_values()
	slapi_str2filter()
	slapi_filter_get_choice()
	slapi_filter_get_ava()
	slapi_filter_free()
	slapi_filter_list_first
	slapi_filter_list_next()
	slapi_is_connection_ssl()
	slapi_get_client_port()
	slapi_search_internal()
	slapi_modify_internal()
	slapi_add_internal()
	slapi_add_entry_internal()
	slapi_delete_internal()
	slapi_modrdn_internal()
	slapi_free_search_results_internal()
	slapi_get_supported_saslmechanisms()
	slapi_get_supported_extended_ops()
	slapi_register_supported_saslmechanism()
	slapi_get_supported_controls()
	slapi_register_supported_control()
	slapi_control_present()
	slapi_log_error()

	Chapter 6. SLAPI API Categories
	slapi_alloc_internal_pthread_mem()
	slapi_audit_extop()
	slapi_dn2ldapdn()
	slapi_dn_get_rdn()
	slapi_dn_get_rdn_count()
	slapi_dn_free_ldapdn()
	slapi_dn_free_rdn()
	slapi_get_response_controls()
	slapi_set_response_controls()
	slapi_moddn_internal()
	slapi_get_bind_dn()
	slapi_get_client_ip()
	slapi_get_proxied_dn()
	slapi_get_source_ip()

	Chapter 7. Plug-in examples
	Referential integrity plug-in
	An example of SASL bind plug-in
	An example of DN partitioning function

	Chapter 8. Deprecated plug-in APIs
	Index
	A
	C
	E
	H
	I
	O
	P
	R
	S
	T

	Notices

