
IBM Tivoli Directory Server

Performance Tuning and Capacity

Planning Guide

Version 6.1

SC23-6540-00

���

IBM Tivoli Directory Server

Performance Tuning and Capacity

Planning Guide

Version 6.1

SC23-6540-00

���

This edition applies to version 6, release 1, of IBM Tivoli Directory Server and to all subsequent releases and

modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this book v

Intended audience for this book v

Publications v

IBM Tivoli Directory Server version 6.1 library . . v

Related publications vi

Accessing terminology online vi

Accessing publications online vi

Ordering publications vii

Accessibility vii

Tivoli technical training vii

Support information vii

Conventions used in this book viii

Typeface conventions viii

Operating system-dependent variables and

paths viii

Chapter 1. IBM Tivoli Directory Server

tuning general overview 1

IBM Tivoli Directory Server application components 1

LDAP caches and DB2 buffer pools 2

Memory allocation between LDAP caches and

buffer pools 3

IBM Tivoli Directory Server tuning overview . . . 3

DB2 tuning overview 3

Performance impact due to multiple password policy 4

Enforcing minimum ulimits 4

Generic LDAP application tips 4

Chapter 2. IBM Tivoli Directory Server

tuning 7

LDAP caches 7

LDAP attribute cache 7

LDAP filter cache 11

Entry cache 13

ACL cache 14

Measuring cache entry sizes 15

LDAP cache configuration variables 15

Configuring attribute caching 16

Setting other LDAP cache configuration variables 17

Directory size 19

Chapter 3. Tuning DB2 and LDAP

caches 23

DB2 buffer pool tuning 24

Buffer pool sizes 24

The Performance Tuning Tool (idsperftune) 26

Basic tuning 26

Advanced tuning 28

Optimization and organization (reorgchk and reorg) 29

Optimization 29

Database organization (reorgchk and reorg) . . 30

Data Row Compression 34

Indexes 35

Other DB2 configuration parameters 36

Database backup and restore considerations . . . 37

Chapter 4. AIX operating system tuning 39

Enabling large files 39

Setting MALLOCTYPE 39

Setting other environment variables 40

Viewing ibmslapd environment variables (AIX

operating system only) 40

Chapter 5. Hardware tuning 43

Disk speed improvements 43

Chapter 6. IBM Tivoli Directory Server

features 45

Bulkload 45

Effects of using the -k option 45

Replication tuning 47

Number of replication threads 48

Replication context cache size 48

Replication ready size limit 49

Proxy server tuning 50

Monitoring performance 51

ldapsearch with ″cn=monitor″ 51

ldapsearch with ″cn=workers,cn=monitor″ . . . 56

ldapsearch with ″cn=connections,cn=monitor″ . . 56

ldapsearch with ″cn=changelog,cn=monitor″ . . 56

When to configure the LDAP change log 57

Chapter 7. Capacity Planning 59

Disk requirements 60

Bulkload time and space information 60

Memory requirements 65

CPU requirements 65

CPU scaling comparison for throughput (searches

and updates) 65

Splitting the database across multiple disks . . . 67

Simultaneous multithreading 68

SMT on AIX FAQs 69

Appendix A. Workload description . . . 71

Appendix B. Modifying TCP/IP settings 73

Appendix C. Platform configurations 75

Appendix D. Notices 77

Trademarks 78

Index 81

© Copyright IBM Corp. 2007 iii

iv Performance Tuning and Capacity Planning Guide

About this book

IBM® Tivoli® Directory Server is the IBM implementation of Lightweight Directory

Access Protocol for supported Windows®, AIX®, Linux® (xSeries®, zSeries®,

pSeries®, and iSeries™), Solaris, and Hewlett-Packard UNIX® (HP-UX) operating

systems.

IBM Tivoli Directory Server version 6.1 Performance Tuning and Capacity Planning

Guide contains information about tuning the directory server for better

performance.

Intended audience for this book

This book is for system administrators, network administrators, information

technology architects, and application developers.

Readers need to know how to use the operating system on which IBM Tivoli

Directory Server will be installed.

Publications

This section lists publications in the IBM Tivoli Directory Server version 6.1 library

and related documents. The section also describes how to access Tivoli publications

online and how to order Tivoli publications.

IBM Tivoli Directory Server version 6.1 library

The following documents are available in the IBM Tivoli Directory Server version

6.1 library:

v IBM Tivoli Directory Server Version 6.1 What's New for This Release, SC23-6539-00

Provides information about the new features in the IBM Tivoli Directory Server

Version 6.1 release.

v IBM Tivoli Directory Server Version 6.1 Quick Start Guide, GI11-8172-00

Provides help for getting started with IBM Tivoli Directory Server 6.1. Includes a

short product description and architecture diagram, as well as a pointer to the

product Information Center and installation instructions.

v IBM Tivoli Directory Server Version 6.1 System Requirements, SC23-7835-00

Contains the minimum hardware and software requirements for installing and

using IBM Tivoli Directory Server 6.1 and its related software. Also lists the

supported versions of corequisite products such as DB2® and GSKit.

v IBM Tivoli Directory Server Version 6.1 Installation and Configuration Guide,

GC32-1560-00

Contains complete information for installing, configuring, and uninstalling IBM

Tivoli Directory Server. Includes information about upgrading from a previous

version of IBM Tivoli Directory Server.

v IBM Tivoli Directory Server Version 6.1 Administration Guide, GC32-1564-00

Contains instructions for performing administrator tasks through the Web

Administration Tool and the command line.

v IBM Tivoli Directory Server Version 6.1 Command Reference, SC23-7834-00

© Copyright IBM Corp. 2007 v

Describes the syntax and usage of the command-line utilities included with IBM

Tivoli Directory Server.

v IBM Tivoli Directory Server Version 6.1 Server Plug-ins Reference, GC32-1565-00

Contains information about writing server plug-ins.

v IBM Tivoli Directory Server Version 6.1 Programming Reference, SC23-7836-00

Contains information about writing Lightweight Directory Access Protocol

(LDAP) client applications in C and Java™.

v IBM Tivoli Directory Server Version 6.1 Performance Tuning and Capacity Planning

Guide, SC23-6540-00

Contains information about tuning the directory server for better performance.

Describes disk requirements and other hardware needs for directories of

different sizes and with various read and write rates. Describes known working

scenarios for each of these levels of directory and the disk and memory used;

also suggests rough rules of thumb.

v IBM Tivoli Directory Server Version 6.1 Problem Determination Guide, GC32-1568-00

Contains information about possible problems and corrective actions that can be

tried before contacting IBM Software Support.

v IBM Tivoli Directory Server Version 6.1 Messages Guide, GC32-1567-00

Contains a list of all informational, warning, and error messages associated with

IBM Tivoli Directory Server 6.1.

v IBM Tivoli Directory Server Version 6.1 White Pages, SC23-7837-00

Describes the Directory White Pages application, which is provided with IBM

Tivoli Directory Server 6.1. Contains information about installing, configuring,

and using the application for both administrators and users.

Related publications

The following documents also provide useful information:

v Java Naming and Directory Interface™ 1.2.1 Specification on the Sun Microsystems

Web site at http://java.sun.com/products/jndi/1.2/javadoc/index.html.

IBM Tivoli Directory Server Version 6.1 uses the Java Naming and Directory

Interface (JNDI) client from Sun Microsystems. See this document for

information about the JNDI client.

Accessing terminology online

The Tivoli Software Glossary includes definitions for many of the technical terms

related to Tivoli software. The Tivoli Software Glossary is available at the following

Tivoli software library Web site:

http://publib.boulder.ibm.com/tividd/glossary/tivoliglossarymst.htm

The IBM Terminology Web site consolidates the terminology from IBM product

libraries in one convenient location. You can access the Terminology Web site at the

following Web address:

http://www.ibm.com/software/globalization/terminology

Accessing publications online

IBM posts publications for this and all other Tivoli products, as they become

available and whenever they are updated, to the Tivoli Information Center Web

site at http://publib.boulder.ibm.com/tividd/td/link/tdprodlist.html.

vi Performance Tuning and Capacity Planning Guide

http://java.sun.com/products/jndi/1.2/javadoc/index.html
http://publib.boulder.ibm.com/tividd/glossary/tivoliglossarymst.htm
http://www.ibm.com/software/globalization/terminology
http://publib.boulder.ibm.com/tividd/td/link/tdprodlist.html

In the Tivoli Information Center window, click Tivoli product manuals. Click the

letter that matches the first letter of your product name to access your product

library. For example, click M to access the IBM Tivoli Monitoring library or click O

to access the IBM Tivoli OMEGAMON® library.

Note: If you print PDF documents on other than letter-sized paper, set the option

in the File → Print window that allows Adobe® Reader to print letter-sized

pages on your local paper.

Ordering publications

You can order many Tivoli publications online at http://
www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi.

You can also order by telephone by calling one of these numbers:

v In the United States: 800-879-2755

v In Canada: 800-426-4968

In other countries, contact your software account representative to order Tivoli

publications. To locate the telephone number of your local representative, perform

the following steps:

1. Go to http://www.elink.ibmlink.ibm.com/public/applications/publications/
cgibin/pbi.cgi.

2. Select your country from the list and click Go.

3. Click About this site in the main panel to see an information page that

includes the telephone number of your local representative.

Accessibility

Accessibility features help users with a physical disability, such as restricted

mobility or limited vision, to use software products successfully. With this product,

you can use assistive technologies to hear and navigate the interface. You can also

use the keyboard instead of the mouse to operate all features of the graphical user

interface.

For additional information, see the IBM Tivoli Directory Server Version 6.1 Installation

and Configuration Guide.

Tivoli technical training

For Tivoli technical training information, refer to the following IBM Tivoli

Education Web site at http://www.ibm.com/software/tivoli/education.

Support information

If you have a problem with your IBM software, you want to resolve it quickly. IBM

provides the following ways for you to obtain the support you need:

v IBM Support Assistant: You can search across a large collection of known

problems and workarounds, Technotes, and other information at

http://www.ibm.com/software/support/isa.

v Obtaining fixes: You can locate the latest fixes that are already available for your

product.

About this book vii

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/support/isa

v Contacting IBM Software Support: If you still cannot solve your problem, and

you need to work with someone from IBM, you can use a variety of ways to

contact IBM Software Support.

For more information about resolving problems, see the IBM Tivoli Directory Server

Version 6.1 Problem Determination Guide.

Conventions used in this book

This book uses several conventions for special terms and actions, operating

system-dependent commands and paths, and margin graphics.

Typeface conventions

This book uses the following typeface conventions:

Bold

v Lowercase commands and mixed case commands that are otherwise

difficult to distinguish from surrounding text

v Interface controls (check boxes, push buttons, radio buttons, spin

buttons, fields, folders, icons, list boxes, items inside list boxes,

multicolumn lists, containers, menu choices, menu names, tabs, property

sheets), labels (such as Tip:, and Operating system considerations:)

v Keywords and parameters in text

Italic

v Citations (examples: titles of books, diskettes, and CDs)

v Words defined in text (example: a nonswitched line is called a

point-to-point line)

v Emphasis of words and letters (words as words example: "Use the word

that to introduce a restrictive clause."; letters as letters example: "The

LUN address must start with the letter L.")

v New terms in text (except in a definition list): a view is a frame in a

workspace that contains data.

v Variables and values you must provide: ... where myname represents....

Monospace

v Examples and code examples

v File names, programming keywords, and other elements that are difficult

to distinguish from surrounding text

v Message text and prompts addressed to the user

v Text that the user must type

v Values for arguments or command options

Operating system-dependent variables and paths

This book uses the UNIX convention for specifying environment variables and for

directory notation.

When using the Windows command line, replace $variable with % variable% for

environment variables and replace each forward slash (/) with a backslash (\) in

directory paths. The names of environment variables are not always the same in

the Windows and UNIX environments. For example, %TEMP% in Windows

environments is equivalent to $TMPDIR in UNIX environments.

viii Performance Tuning and Capacity Planning Guide

Note: If you are using the bash shell on a Windows system, you can use the UNIX

conventions.

About this book ix

x Performance Tuning and Capacity Planning Guide

Chapter 1. IBM Tivoli Directory Server tuning general

overview

This guide provides tuning information for IBM Tivoli Directory Server and the

related IBM Database 2™ (DB2) database. IBM Tivoli Directory Server is a

Lightweight Directory Access Protocol (LDAP) directory that provides a layer on

top of DB2, allowing users to efficiently organize, manipulate, and retrieve data

stored in the DB2 database. Tuning for optimal performance is primarily a matter

of adjusting the relationships between the LDAP server and DB2 according to the

nature of your workload.

Because each workload is different, instead of providing exact values for tuning

settings, guidelines are provided, where appropriate, for how to determine the best

settings for your system.

 Attention: Measurements in this guide were captured in a lab environment. The

workload driving this test included a mixture of searches and binds, including

wildcard searches which return multiple entries. Your results might differ from the

lab results shown in this guide.

IBM Tivoli Directory Server application components

The following figure illustrates how IBM Tivoli Directory Server components

interact with each other. Tuning these components can result in improved

performance.

 The arrows in Figure 1 represent the path of a query issued from a client computer.

The query follows a path from the IBM Tivoli Directory Server client to the LDAP

server, to DB2, to the physical disks in search of entries that match the query’s

search filter settings. The shorter the path to matching entries, the better overall

performance you can expect from your system.

For example, if a query locates all the matching entries in the LDAP server, access

to DB2 and the disks is not necessary. If the matching entries are not found in the

Figure 1. IBM Tivoli Directory Server

© Copyright IBM Corp. 2007 1

LDAP server, the query continues on to DB2 and, if necessary, to the physical disks

as a last resort. Because of the time and resources it takes to retrieve data from

disk, it is better from a performance standpoint to allocate a significant amount of

memory to the LDAP server caches and DB2 buffer pools.

LDAP caches and DB2 buffer pools

Caches and buffer pools store previously retrieved data and can significantly

improve performance by reducing disk access. When requested data is found

within a cache or buffer pool, it is called a cache hit. A cache miss occurs when

requested data is not located in a cache or buffer pool.

Because the type of information in each cache and buffer pool is different, it is

useful to understand how and when each cache is accessed.

LDAP caches

Search operations attempt to use one or more caches when resolving the search

filter as well as returning the individual matching entries. Most base-scoped

searches can be resolved directly in memory by retrieving the base entry from the

entry cache or the database bufferpool and performing the comparison of the entry

with the filter.

If a base-scoped search cannot be resolved directly in memory or the search is not

base-scoped, an attempt is made to use the attribute cache to resolve the filter in

memory or to use the filter cache to retrieve the results of a previously run search

operation. If LDAP caches cannot be used to resolve the filter, the filter will be

resolved using DB2. When the individual entries are returned to the client, they are

retrieved from memory using the entry cache, if possible. If the individual entries

are not found in the entry cache, they are retrieved from DB2

The four LDAP caches are:

v LDAP attribute cache

v LDAP filter cache

v Entry cache

v ACL cache

For more information on these caches, see “LDAP caches” on page 7.

DB2 buffer pools

There are two DB2 buffer pools:

LDAPBP

LDAPBP contains cached entry data (ldap_entry) and all of the associated

indexes. LDAPBP is similar to the entry cache, except that LDAPBP uses

different algorithms in determining which entries are cached. It is possible

that an entry that is not cached in the entry cache is located in LDAPBP. If

the requested data is not found in the entry cache or LDAPBP, the query

must access the physical disks.

 See “LDAPBP buffer pool size” on page 25 for more information.

IBMDEFAULTBP

DB2 system information, including system tables and other LDAP

information, is cached in the IBMDEFAULTBP. You might need to adjust

the IBMDEFAULTBP cache settings for better performance. See

“IBMDEFAULTBP buffer pool size” on page 25 for more information.

2 Performance Tuning and Capacity Planning Guide

Memory allocation between LDAP caches and buffer pools

The LDAP caches are generally more efficient as a means of caching LDAP

searches; however, parts of the LDAP cache get invalidated on updates and must

be reloaded before performance benefits return. Some experimentation between the

two caching schemes is required to find the best memory allocation for your

workload.

IBM Tivoli Directory Server tuning overview

Tuning the LDAP server can significantly improve performance by storing useful

data in the caches. It is important to remember, however, that tuning the LDAP

server alone is insufficient. Some tuning of DB2 is also required for optimal

performance.

The most significant performance tuning related to the IBM Tivoli Directory Server

involves the LDAP caches. LDAP caches are fast storage buffers in memory used

to store LDAP information such as queries, answers, and user authentication for

future use. While LDAP caches are useful mostly for applications that frequently

retrieve repeated cached information, they can greatly improve performance by

avoiding calls to the database. See “LDAP caches” on page 7 for information about

how to tune the LDAP caches.

DB2 tuning overview

DB2 serves as the data storage component of the IBM Tivoli Directory Server.

Tuning DB2 results in overall improved performance.

This guide contains several recommendations for tuning DB2, but the most

commonly tuned items are:

v DB2 buffer pools – Buffer pools are DB2 data caches. Each buffer pool is a data

cache between the applications and the physical database files. Adjusting the

size of the DB2 buffer pools can result in improved performance. See “DB2

buffer pool tuning” on page 24 for information about buffer pool tuning.

v Optimization and organization – After initially loading a directory, or after a

number of updates have been performed, it is very important to update

database statistics and organization for DB2 to perform optimally. See

“Optimization and organization (reorgchk and reorg)” on page 29 for more

information.

v Indexes – Indexes can make locating data on disk very fast, providing a

significant boost to performance. For information about how to create indexes,

see “Indexes” on page 35.

Attention: You should place the DB2 log on a physical disk drive separate from

the data. For improved data-integrity, have the DB2 log and the data on separate

drives. Use the following command to set the path to the DB2 log file directory:

DB2 UPDATE DATABASE CONFIGURATION FOR database_alias USING NEWLOGPATH path

Be sure the database instance owner has write access to the specified path or the

command fails. For more information on using DB2 commands, see Chapter 3,

“Tuning DB2 and LDAP caches,” on page 23.

Chapter 1. IBM Tivoli Directory Server tuning general overview 3

Performance impact due to multiple password policy

To evaluate a user’s effective password policy, the directory server takes into

consideration all the password policies associated with a user. This means that the

directory server evaluates the individual, group, and global password policies to

determine a user’s effective password policy.

However, in order to authenticate a user during bind, the bind performance could

be degraded. This is because during bind time a user’s group password policy

must be determined and to determine a user’s group policy, group membership

must be resolved.

To improve performance, during server startup time, a flag is set if password

policy entries (except for the global password policy) exist in the DIT and

references to group and individual password policy entries are defined. If the flag

is set, then a user’s effective password policy is evaluated by searching the user’s

individual and group policies. If the flag is not set, then there is no attempt to

search for a user’s individual or group policy and the global policy, if it is turned

on, is used as the user’s effective policy.

After server startup, this flag is set when attribute ibm-pwdGroupPolicyDN or

ibm-pwdIndividualPolicy Dn is added to the DIT. After the flag is set, it will not

be reset by any delete or replace operations. It can be reset only when the server is

restarted and the flag is reevaluated.

Enforcing minimum ulimits

The directory server tries to enforce minimum ulimit option values that are

considered important for the smooth running of the server. To accomplish this, the

directory server first checks if the ulimit option values for the current process are

greater than or equal to the prescribed ulimit option values specified in the

configuration file. In case the ulimit option values for the current process are lesser

than the prescribed values, the server attempts to set the ulimit option values of

the current process to the prescribed values.

Note: The directory server tries to enforce minimum ulimit option values that are

considered important for the smooth running of the server. However, an

administrator can modify the minimum ulimit option values using the web

administration tool or through command line.

Generic LDAP application tips

The following are some tips that can help improve performance:

v Perform searches on indexed attributes only. See “Indexes” on page 35 for

instructions for defining and verifying indexes for IBM Tivoli Directory Server.

v Open a connection only once and reuse it for many operations if possible.

v Minimize the number of searches by retrieving multiple attribute values at one

time.

v Retrieve only the attributes you need. Do not use ALL by default. For example,

when you search for the groups a user belongs to, ask for only the Distinguished

Names (DNs), and not the entire group. Do not request the member or

uniquemember attributes if possible.

v Minimize and batch updates (add, modify, modrdn, delete) when possible.

4 Performance Tuning and Capacity Planning Guide

v Use base-scoped searches whenever possible rather than one-level or subtree

searches. A base-scoped search is a search done using the ldapsearch utility,

where the scope of the search is defined as a base object.

v Avoid using wildcard searches where the wildcard is in any position other than

the leading character in a term, or a trailing character. Use wildcard searches

that are similar to the following (leading character):

sn=*term

or the following (trailing character):

sn=term*

Note: A filter such as sn=*term* is less efficient than the examples given.

v When using nested groups, keep the depth of nesting to 50 groups or less.

Greater nesting depths can result in greater processing times when performing

add or delete operations that involve updates to the nested group hierarchy.

v Set server search limits to prevent accidental long-running searches.

v Use the ldap_modify interface to add members to or delete members from a

group. Do not do a search to retrieve all members, edit the returned list, then

send the updated list as a modify-replace operation. This modify-replace

scenario will not perform well with large groups.

v For the Proxy server, do not set the value in the Connection pool size field to be

less than 5.

Chapter 1. IBM Tivoli Directory Server tuning general overview 5

6 Performance Tuning and Capacity Planning Guide

Chapter 2. IBM Tivoli Directory Server tuning

This chapter discusses the following performance tuning tasks for the IBM Tivoli

Directory Server:

v Tuning LDAP caches

v Determining how directory size affects performance

LDAP caches

LDAP caches are fast storage buffers in memory used to store LDAP information

such as queries, answers, and user authentication for future use. Tuning the LDAP

caches is crucial to improving performance.

An LDAP search that accesses the LDAP cache can be faster than one that requires

a connection to DB2, even if the information is cached in DB2. For this reason,

tuning LDAP caches can improve performance by avoiding calls to the database.

The LDAP caches are especially useful for applications that frequently retrieve

repeated cached information. See Figure 1 on page 1 for an illustration of the

LDAP caches.

The following sections discuss each of the LDAP caches and demonstrate how to

determine and set the best cache settings for your system. Keep in mind that every

workload is different, and some experimentation will likely be required in order to

find the best settings for your workload.

Note: Cache sizes for the filter cache, ACL cache, and entry cache are measured in

numbers of entries.

LDAP attribute cache

The attribute cache stores configured attributes and their values in memory. When

a one-level or sub-tree search is performed, or a base-scoped search is performed

that cannot be resolved directly in memory, the attribute cache manager resolves

the search operation in memory if all attributes used in the filter are cached and

the filter is a type supported by the attribute cache manager. Resolving filters in

memory leads to improved search performance over resolving filters using DB2.

There are two things that can happen when a query arrives at the attribute cache:

v All attributes used in the search filter are cached and the filter is of a type

that can be resolved by the attribute cache manager. If this is the case, the list

of matching entry IDs is resolved in memory using the attribute cache manager.

This list of matching IDs is then sent to the entry cache. For this reason, the

attribute cache is most efficient when used in combination with the entry cache

The attribute cache manager can resolve simple filters of the following types:

– exact match filters

– presence filters

The attribute cache manager can also resolve complex filters that are conjunctive

or disjunctive. Additionally, the subfilters within complex filters must be exact

match, presence, conjunctive, or disjunctive.

– exact match filters

– presence filters

© Copyright IBM Corp. 2007 7

– conjunctive filters

– disjunctive filters

Filters containing attributes with language tags are not resolved by the attribute

cache manager.

For example, if the attributes objectclass, uid, and cn are all cached, the

following filters can be resolved in memory within the attribute cache manager:

– (cn=Karla)

– (cn=*)

– (&(objectclass=eperson)(cn=Karla))

– (&(objectclass=eperson)(cn=*)(uid=1234567))

– (&(&(objectclass=eperson)(cn=*))(uid=1234567))

– (&(uid=1234567)(&(objectclass=eperson)(cn=*)))

v Some or all of the attributes used in the search filter are not cached or the

filter is of a type that cannot be resolved by the attribute cache manager. If

this is the case, the query is sent to the filter cache for further processing.

Note: If there are no attributes in the attribute cache, the attribute cache

manager determines this quickly, and the query is sent to the filter cache.

For example, if the attributes objectclass, uid, and cn are the only cached

attributes, the following filters will not be able to be resolved in memory by the

attribute cache manager:

– (sn=Smith)

– (cn=K*)

– (|(objectclass=eperson)(cn~=Karla))

– (&(objectclass=eperson)(cn=K*)(uid=1234567))

– (&(&(objectclass=eperson)(cn<=Karla))(uid=1234567))

– (&(uid=1234567)(&(objectclass=eperson)(sn=*)))

Note: Choosing to cache member, uniquemember, or ibm-membergroup can lead

to slower performance of delete and modrdn operations. If the entry being

deleted or renamed is a member of many groups, or large groups, then the

attribute caches need to be updated to reflect this change for every group in

which the entry was a member.

Determining which attributes to cache

To determine which attributes to cache, experiment with adding some or all of the

attributes listed in the cached_attribute_candidate_hit attribute to the attribute

cache. Then run your workload and measure the differences in operations per

second. For information about the cached_attribute_candidate_hit attribute, see

“ldapsearch with ″cn=monitor″” on page 51.

Note: Choosing to cache member, uniquemember, or ibm-membergroup can lead

to slower performance of delete and modrdn operations. If the entry being

deleted or renamed is a member of many groups or large groups, the

attribute caches are updated to reflect this change for every group in which

the entry was a member. This additional processing can lead to slower

performance of these types of operations.

Examples: Information about attributes that are cached, their individual sizes in

kilobytes, and their hit counts can be retrieved during cn=monitor searches. Also,

up to ten attributes that are most often used in search filters that can be processed

by the attribute cache manager, but are not yet cached, can be retrieved during

8 Performance Tuning and Capacity Planning Guide

cn=monitor searches. Use a combination of the output from cn=monitor searches

and knowledge of the types of searches your applications use to determine which

attributes to cache.

Example 1: The following results are for a cn=monitor search for a server that had

no attributes configured for attribute caching:

ldapsearch -h ldaphost -s base -b cn=monitor objectclass=*

 cached_attribute_total_size

cached_attribute_configured_size cached_attribute_hit cached_attribute_size

cached_attribute_candidate_hit

cn=monitor

cached_attribute_total_size=0

cached_attribute_configured_size=1200

cached_attribute_candidate_hit=mail:50000

cached_attribute_candidate_hit=uid:45000

cached_attribute_candidate_hit=givenname:500

cached_attribute_candidate_hit=sn:200

If this cn=monitor search produced these results, you can assume that the

attributes to cache must be uid and mail. Even though givenname and sn were

used in search filters that have been resolved by the attribute cache manager had

those attributes been cached, their hit counts are very low in comparison to the

attributes uid and mail, and using memory to store givenname and sn is not

realistic.

After the attributes uid and mail are cached and the application or performance

test is rerun, the cn=monitor search should be performed again to determine if

there is enough memory configured to cache both attributes. If there is not enough

memory, then additional memory must be configured, or the least-used attribute

must be removed from the list of attributes to cache.

Example 2: In this example, givenname and sn are already cached. The hit count for

objectclass is very high. Also, the hit rates for uid and mail are very high:

ldapsearch -h ldaphost -s base -b cn=monitor objectclass=*

 cached_attribute_total_size

cached_attribute_configured_size cached_attribute_hit cached_attribute_size

cached_attribute_candidate_hit

cn=monitor

cached_attribute_total_size=1000

cached_attribute_configured_size=1200

cached_attribute_hit=givenname:500

cached_attribute_size=givenname:300

cached_attribute_hit=sn:200

cached_attribute_size=sn:400

cached_attribute_candidate_hit=objectclass:110000

cached_attribute_candidate_hit=mail:90000

cached_attribute_candidate_hit=uid:85000

cached_attribute_candidate_hit=workloc:25000

Note: cached_attribute_total_size is the amount of memory used by the directory

attribute cache, in kilobytes. This number includes additional memory used

to manage the cache that is not charged to the individual attribute caches.

Consequently, this total is larger than the sum of the memory used by all

the individual attribute caches.

As in the previous example, givenname and sn are not good choices for caching

because of their relatively low hit count, in comparison to the other attributes

listed. You can assume that objectclass is the best choice and that uid and mail

are also excellent choices. If attribute caching is reconfigured to cache objectclass,

uid and mail, you might discover after caching is complete and after rerunning

Chapter 2. IBM Tivoli Directory Server tuning 9

your performance tests under the same conditions, that your performance isn’t

what you expect. Also, the cn=monitor search yields the following unexpected

results which show that only objectclass is cached, and its hit count is much lower

than when it was a candidate:

ldapsearch -h ldaphost -s base -b cn=monitor objectclass=*

 cached_attribute_total_size

cached_attribute_configured_size cached_attribute_hit cached_attribute_size

cached_attribute_candidate_hit

cn=monitor

cached_attribute_total_size=1000

cached_attribute_configured_size=1200

cached_attribute_hit=objectclass:10000

cached_attribute_size=objectclass:750

cached_attribute_candidate_hit=mail:90000

cached_attribute_candidate_hit=uid:85000

cached_attribute_candidate_hit=workloc:25000

cached_attribute_candidate_hit=givenname:300

cached_attribute_candidate_hit=sn:200

Two things occurred to cause these results:

1. The objectclass attribute table was large in comparison to the other attribute

tables. Even though objectclass, uid and mail were all configured to be

cached, objectclass was the only attribute that fit within the maximum

memory configured for attribute caching.

2. Further analysis of the search filters used by your application reveals that

objectclass was not used in search filters by itself very often. The attribute

cache manager could not resolve many filters because not all attributes in the

filter were cached. A combination of the cn=monitor output and analysis of the

filters used by your application is necessary to determine which attributes to

cache. The following search filters were used in this example:

(objectclass=*) 10000 hits

(givenname=*) 300 hits

(sn=*) 200 hits

(mail=*) 50000 hits

(uid=*) 45000 hits

(workloc=* 5000 hits

(&(objectclass=person)(mail=*)) 40000 hits

(&(objectclass=person)(uid=*)) 40000 hits

(&(objectclass=person)(workloc=*)) 20000 hits

You can see from the above filter analysis that objectclass, when used alone, had

only 10000 hits. Therefore, if the only attribute cached is objectclass, the attribute

cache manager can only resolve 10000 out of the 210500 total search filters. If the

server is reconfigured to have enough memory to hold both the objectclass and

mail attributes, 100000 of the search filters can be resolved in the attribute cache

manager. If objectclass, uid and mail were all configured and enough memory

was available, 185000 of the search filters can be resolved by the attribute cache

manager. However, if memory is constrained and only one attribute can be cached,

the best choice is mail with 50000 hits. If both uid and mail can be cached, 95000

filters can be resolved in the attribute cache manager, which is almost as many hits

as caching objectclass and mail instead.

Because caching uid and mail likely consumes less memory than caching

objectclass and mail, caching uid and mail instead of objectclass and mail

might be a better choice if not enough memory is available on your server.

Therefore, it is necessary to understand and consider the types of search filters

used by your application in order to determine the appropriate attributes to cache

as well as to consider the amount of memory that you want the attribute cache to

be able to use.

10 Performance Tuning and Capacity Planning Guide

LDAP filter cache

The filter cache contains cached entry IDs that match a search filter that was

previously resolved in DB2. When the client issues a query for some data and that

query is not a base-scoped search that can be resolved in memory nor is it a filter

that can be resolved in memory by the attribute cache manager, the query goes to

the filter cache. There are two things that can happen when a query arrives at the

filter cache:

v The IDs that match the filter settings used in the query are located in the

filter cache. If this is the case, the list of the matching entry IDs is sent to the

entry cache.

v The matching entry IDs are not cached in the filter cache. In this case, the

query must access DB2 in search of the desired data.

Filter cache size

To determine how big your filter cache should be, run your workload with the

filter cache set to different values and measure the differences in operations per

second. For example, Figure 2 shows varying operations per second based on

different filter cache sizes for one installation:

For this workload it appears that a filter cache large enough to hold 55,000 entries

results in the best performance. There is no benefit in making the filter cache any

larger than this. See “LDAP cache configuration variables” on page 15 to set the

filter cache size.

Filter cache size with updates

Figure 3 on page 12 shows that, for the test installation, there is no performance

benefit in allocating any memory to the filter cache if even a small fraction of the

operations in the workload are updates.

Figure 2. Varying the size of the filter cache

Chapter 2. IBM Tivoli Directory Server tuning 11

If this proves to be the case for your workload, the only way to retain the

performance advantage of a filter cache when updates are involved is to batch

your updates. This allows long intervals during which there are only searches. If

you cannot batch updates, specify a filter cache size of zero and allocate more

memory to other caches and buffer pools. See “LDAP cache configuration

variables” on page 15 for instructions on how to set configuration variables such as

filter cache size.

Filter cache bypass limits

The filter cache bypass limit configuration variable limits the size of entries that

can be added to the filter cache. For example, if the bypass limit variable is set to

1,000, search filters that match more than 1,000 entries are not added to the filter

cache. This prevents large, uncommon searches from overwriting useful cache

entries. To determine the best filter cache bypass limit for your workload,

repeatedly run your workload with the filter cache bypass limits set to different

values and measure the operations per second.

For example, Figure 4 on page 13 shows operations per second based on varying

cache bypass limit sizes:

Figure 3. Effect of updates on the performance of the filter cache

12 Performance Tuning and Capacity Planning Guide

For the workload in Figure 4, setting the limit too low downgrades performance by

preventing valuable filters from being cached. Setting the filter bypass limit to

approximately 100 appears to be the best size for this workload. Setting it any

larger benefits performance only slightly.

See “LDAP cache configuration variables” on page 15 to set the filter cache bypass

limit.

Entry cache

The entry cache contains cached entry data. Entry IDs are sent to the entry cache.

If the entries that match the entry IDs are in the entry cache, then the results are

returned to the client. If the entry cache does not contain the entries that

correspond to the entry IDs, the query goes to DB2 in search of the matching

entries.

Entry cache size

To determine how big your entry cache should be, run your workload with the

entry cache set to different sizes and measure the differences in operations per

second. For example, Figure 5 on page 14 shows varying operations per second

based on different entry cache sizes:

Figure 4. Varying the filter cache bypass limit

Chapter 2. IBM Tivoli Directory Server tuning 13

From the results in Figure 5, it appears that an entry cache large enough to hold

460,000 entries results in the best performance. There is no benefit to making the

entry cache any larger than this. Setting the entry cache at 460,000 results in 4

times as many operations per second than if entry cache was set to zero. To find

the best cache size for your workload, you must run your workload with different

cache sizes. See “LDAP cache configuration variables” on page 15 to set the filter

cache size.

Note: The test with Entry Cache size at 345k resulted in unpredictable

performance due to the nature of the test case and the relationship to the

chosen cache size. Certain parts of the workload were in cache while others

not, resulting in a harmonics effect.

Group members cache

The group members cache is an extension of the Entry cache. This cache stores

member and uniquemember attribute values with their entries. The group entries

will only be a part of the group members cache if the entry structures actually

have members and uniquemembers. Otherwise, they will be a part of the regular

entry cache. Group member caching can be controlled using two new configuration

options:

v ibm-slapdGroupMembersCacheSize: This defines the number of groups whose

members will be cached. The default value for this configuration option is 25.

v ibm-slapdGroupMembersCacheBypassLimit: This defines the maximum

number of members a group can have in order for it to be cached in the group

members cache. The default value of this configuration option is 25000.

ACL cache

The Access Control List (ACL) cache contains information about the access

permissions of recently queried entries, such as the entry owner and whether the

entry’s permissions are explicit or inherited. Having this information cached in

Figure 5. Varying the size of the entry cache

14 Performance Tuning and Capacity Planning Guide

memory can speed up the process of determining whether the user who submitted

the query is authorized to see all, some, or none of its results.

Measuring cache entry sizes

Filter cache and entry cache sizes are measured in numbers of entries. When

determining how many entries to allow in your LDAP caches, it can be useful to

know how big the entries in your cache are.

The following example shows how to measure the size of cached entries:

Note: This example calculates the average size of an entry in a sample entry cache,

but the average filter cache entry size can be calculated similarly.

1. From the LDAP server:

a. Set the filter cache size to zero.

b. Set the entry cache size to a small value; for example, 200.

c. Start ibmslapd.
2. From the client:

a. Run your application.

b. Find the entry cache population (call this population1) using the following

command:

ldapsearch -h servername -s base -b cn=monitor objectclass=* | grep

 entry_cache_current

3. From the LDAP Server:

a. Find the memory used by ibmslapd (call this ibmslapd1):

v On AIX operating systems, use the following command:

ps -e -o vsz -o command | grep ibmslapd

v On Windows operating systems, use the VM size column in the Task

Manager.
b. Stop ibmslapd.

c. Increase the size of the entry cache but keep it smaller than your working

set.

d. Start ibmslapd.
4. Run your application again and find the entry cache population (call this

population2). See step 2b for the command syntax.

5. Find the memory used by ibmslapd (call this ibmslapd2). See step 3a for the

command syntax.

6. Calculate the size of an entry cache entry using the following formula:

(ibmslapd size2 - ibmslapd size1) /

(entry cache population2 - entry cache population1)

For example, using this formula with a 500,000-entry database results in the

following measurement:

(192084 KB – 51736 KB) / (48485 – 10003) = 3.65 KB per entry

LDAP cache configuration variables

LDAP cache configuration variables allow you to set the LDAP cache sizes, bypass

limits, and other variables that affect performance.

Chapter 2. IBM Tivoli Directory Server tuning 15

Configuring attribute caching

The attribute cache size is measured by the amount of memory the attribute cache

requires. You can configure the maximum amount of memory allowed to be used

for attribute caching.

You can configure attribute caching for the directory database, the changelog

database, or both. Typically, there is no benefit from configuring attribute caching

for the changelog database unless you perform very frequent searches of the

changelog.

Using the Web Administration Tool

To configure the attribute cache using the Web Administration Tool:

Expand the Manage server properties category in the navigation area of the Web

Administration Tool, select the Attribute cache tab.

1. You can change the amount of memory in kilobytes available to the directory

cache. The default is 16384 kilobytes (16 MB).

2. You can change the amount of memory in kilobytes available to the changelog

cache. The default is 16384 kilobytes (16 MB).

Note: This selection is disabled if a changelog has not been configured.

To enable directory automatic attribute caching, perform the following steps:

1. Select the Enable directory automatic attribute cache check box. This enables

other elements within this group.

2. Enter the start time for directory automatic attribute caching in the Start Time

text box.

3. From the Interval combo box, select the interval at which the directory

automatic attribute caching is to be performed again.

To enable change log automatic attribute caching, perform the following steps:

1. Select the Enable change log automatic attribute cache check box. This enables

other elements within this group.

2. Enter the start time for change log automatic attribute caching in the Start

Time text box.

3. From the Interval combo box, select the interval at which the change log

automatic attribute caching is to be performed again.

Note: Automatic attribute caching for change log should not be enabled unless

frequent searches within the change log are required and the performance of

these searches are critical.

To add an attribute:

1. Select the attribute that you want to cache from the Available attributes

drop-down menu. Only those attributes that can be designated as cached

attributes are displayed in this menu. For example, sn.

Note: An attribute remains in the list of available attributes until it has been

placed in both the Directory and the Changelog containers.

2. Click either Add to Database or Add to Change log button. The attribute is

displayed in the appropriate list box. You can list the same attribute in both

containers.

3. Repeat this process for each attribute you want to cache.

16 Performance Tuning and Capacity Planning Guide

Note: An attribute is removed from the drop-down list when it is added to

both the Cached attributes under Database and Cached attributes

under Change log listboxes. If changelog is not enabled, then the Add to

Change log button is disabled and the entry cannot be added to Cached

attributes under Change log list box. The attribute is removed from the

available attributes list when it is added to Cached attributes under

Database list box.

4. When you are finished, click Apply to save your changes without exiting, or

click OK to apply your changes and exit, or click Cancel to exit this panel

without making any changes.

Using the command line

To configure the attribute cache through the command line, issue the following

command:

ldapmodify -D <adminDN> -w<adminPW> -i<filename>

where <filename> contains the following, for example.

v For the directory database:

dn: cn=Directory, cn=RDBM Backends, cn=IBM Directory,

 cn=Schemas, cn=Configuration

changetype: modify

add: ibm-slapdCachedAttribute

ibm-slapdCachedAttribute: sn

-

add: ibm-slapdCachedAttribute

ibm-slapdCachedAttribute: cn

-

replace: ibm-SlapdCachedAttributeSize

ibm-SlapdCachedAttributeSize: 262144

v For the changelog database:

dn: cn=change log, cn=RDBM Backends, cn=IBM Directory,

 cn=Schemas, cn=Configuration

changetype: modify

add: ibm-slapdCachedAttribute

ibm-slapdCachedAttribute: changetype

-

replace: ibm-SlapdCachedAttributeSize

ibm-SlapdCachedAttributeSize: 32768

See the IBM Tivoli Directory Server Version 6.1 Administration Guide for more

information.

Setting other LDAP cache configuration variables

You can set LDAP configuration variables using the Web Administration Tool or

the command line.

Using the Web Administration Tool

To set LDAP configuration variables using the Web Administration Tool:

1. Expand the Manage server properties category in the navigation area of the

Web Administration tool.

2. Click Performance.

3. You can modify any of the following configuration variables:

v Cache ACL information — This option must be selected for the Maximum

number of elements in ACL cache settings to take effect.

v Maximum number of elements in ACL cache (ACL cache size) — The

default is 25,000.

Chapter 2. IBM Tivoli Directory Server tuning 17

v Maximum number of elements in entry cache (entry cache size) — Specify

the maximum number of elements in the entry cache. The default is 25,000.

See “Entry cache” on page 13 for more information about the entry cache.

v Maximum number of elements in search filter cache (filter cache size) —

The search filter cache consists of the requested search filters and resulting

entry identifiers that matched. On an update operation, all filter cache entries

are invalidated. The default is 25,000. See “LDAP filter cache” on page 11 for

more information about the filter cache.

v Maximum number of elements from a single search added to search filter

cache (filter cache bypass limit) — If you select Elements, you must enter a

number. The default is 100. Otherwise select Unlimited. Search filters that

match more entries than the number specified here are not added to the

search filter cache. See “Filter cache bypass limits” on page 12 for more

information about bypass limits.
4. When you are finished, click OK to apply your changes, or click Cancel to exit

the panel without making any changes.

Using the command line

To set LDAP configuration variables using the command line, issue the following

command:

ldapmodify -DAdminDN -wAdminpassword -ifilename

where the file filename contains:

dn: cn=Directory,cn=RDBM Backends,cn=IBM Directory,

 cn=Schemas,cn=Configuration

changetype: modify

replace: ibm-slapdDbConnections

ibm-slapdDbConnections: 15

dn: cn=Front End, cn=Configuration

changetype: modify

replace: ibm-slapdACLCache

ibm-slapdACLCache: TRUE

-

replace: ibm-slapdACLCacheSize

ibm-slapdACLCacheSize: 25000

-

replace: ibm-slapdEntryCacheSize

ibm-slapdEntryCacheSize: 25000

-

replace: ibm-slapdFilterCacheSize

ibm-slapdFilterCacheSize: 25000

-

replace: ibm-slapdFilterCacheBypassLimit

ibm-slapdFilterCacheBypassLimit: 100

Additional settings

There are several additional settings that affect performance by putting limits on

client activity, minimizing the impact to server throughput and resource usage,

such as:

v ibm-slapdSizeLimit: 500

v ibm-slapdTimeLimit: 900

v ibm-slapdIdleTimeOut: 300

18 Performance Tuning and Capacity Planning Guide

v ibm-slapdMaxEventsPerConnection: 100

v ibm-slapdMaxEventsTotal: 0

v ibm-slapdMaxNumOfTransactions: 20

v ibm-slapdMaxOpPerTransaction: 5

v ibm-slapdMaxTimeLimitOfTransactions: 300

v ibm-slapdPagedResAllowNonAdmin: TRUE

v ibm-slapdPagedResLmt: 3

v ibm-slapdSortKeyLimit: 3

v ibm-slapdSortSrchAllowNonAdmin: TRUE

For more information about these settings, see ″Appendix R. IBM Tivoli Directory

Server configuration schema″ in IBM Tivoli Directory Server Version 6.1 Installation

and Configuration Guide.

Note: Default values are shown.

The IBM Tivoli Directory Server response time for searches with alias dereferencing

option set to always or searching is significantly greater than that of searches with

the dereferencing option set to never. A server-side configuration option

ibm-slapdDerefAliases under dn: cn=Configuration can be used to override the

dereference option specified in the client search requests. The allowed values are:

v never

v find

v search

v always

By setting the value to never, the server does not attempt to dereference possible

aliases, and the response time for searches improves.

Directory size

It is important when you run your workload that you consider several

measurements. For example, measuring the number of operations per second as

shown in Figure 6 on page 20, it appears that performance degrades significantly

as the database size grows.

Chapter 2. IBM Tivoli Directory Server tuning 19

However, the benchmark tool test includes a large fraction of wildcard searches

and exact-match searches, such as ″(sn=Smith)″ that return all entries where the sn

value is ″Smith″. Both of these types of searches typically return multiple entries in

response to a single search request. As Figure 7 on page 21 shows, as the size of

the directory grows, so does the number of entries returned in response to

wildcard and exact-match search requests.

Figure 6. Operations per second

20 Performance Tuning and Capacity Planning Guide

In this situation, the number of entries returned per second is a truer measure of

throughput than operations per second, because each operation requires more

work to be performed as the size of the database grows.

Note: As your directory grows, it might become necessary to readjust the sizes of

the LDAP caches and DB2 buffer pools. You can determine the optimal sizes

for your caches and buffer pools using the guidelines in “LDAP caches” on

page 7 and “DB2 buffer pool tuning” on page 24.

Figure 7. Entries returned per second

Chapter 2. IBM Tivoli Directory Server tuning 21

22 Performance Tuning and Capacity Planning Guide

Chapter 3. Tuning DB2 and LDAP caches

IBM Tivoli Directory Server uses DB2 as the data store and Structured Query

Language (SQL) as the query retrieval mechanism. While the LDAP server caches

LDAP queries, answers, and authentication information, DB2 caches tables,

indexes, and statements.

Many DB2 configuration parameters affect either the memory (buffer pools) or disk

resources. Since disk access is usually much slower than memory access, the key

database performance tuning objective is to decrease the amount of disk activity.

This chapter covers the following areas:

v DB2 buffer pool tuning

v Tuning DB2 and LDAP caches using the idsperftune tool

v Optimization and organization (reorgchk and reorg)

v Other DB2 configuration parameters

v Backing up and restoring the database (backup and restore)

v Data row compression feature

For detailed information about DB2 commands, see the DB2 documentation at the

following Web site: http://www.ibm.com/software/data/db2/library/

 Attention: Only users listed as database administrators can run the DB2

commands. Be sure the user ID running the DB2 commands is a user in the

dbsysadm group (UNIX operating systems) or a member of the Administrator

group (Windows operating systems.) This includes the DB2 instance owner and

root.

If you have any trouble running the DB2 commands, check to ensure that the DB2

environment variables have been established by running db2profile (if not, the

db2 get and db2 update commands will not work). The script file db2profile is

located in the sqllib subdirectory under the instance owner’s home directory. If you

need to tailor this file, follow the comments inside the file to set your instance

name, user paths, and default database name (the default path is

/home/ldapdb2/sqllib/db2profile.) It is assumed that the user is logged in as

ibm-slapdDbUserId. If logged in as the root user on a UNIX operating system, it

is possible to switch to the instance owner as follows:

su - instance_owner

where instance_owner is the defined owner of the LDAP database.

To log on as the database administrator on a Windows 2000 operating system, run

the following command:

runas /user:instance_owner db2cmd

where instance_owner is the defined owner of the LDAP database.

Notes:

1. If you have problems connecting to the database on Windows systems, check

the DB2INSTANCE environment variable. By default this variable is set to DB2.

However, to connect to the database, the environment variable must be set to

© Copyright IBM Corp. 2007 23

http://www.ibm.com/software/data/db2/library

the database instance name. For additional stability and performance

enhancements, upgrade to the latest version of DB2.

2. In Version 9.1, the self_tuning_mem database configuration parameter is

automatically set to ON when you create a single-partition database and sets

the following values to AUTOMATIC.

v pckcachesz

v locklist

v maxlocks

v sortheap

v sheapthres_shr

v database_memory (You can set database_memory to AUTOMATIC only on

Windows and AIX platforms.)

DB2 buffer pool tuning

DB2 buffer pool tuning is one of the most significant types of DB2 performance

tuning. A buffer pool is a data cache between LDAP and the physical DB2

database files for both tables and indexes. DB2 buffer pools are searched when

entries and their attributes are not found in the entry cache. Buffer pool tuning

typically needs to be done when the database is initially loaded and when the

database size changes significantly.

There are several considerations to keep in mind when tuning the DB2 buffer

pools; for example:

v If there are no buffer pools, all database activity results in disk access.

v If the size of each buffer pool is too small, LDAP must wait for DB2 disk activity

to satisfy DB2 SQL requests.

v If one or more buffer pools is too large, memory on the LDAP server might be

wasted.

v If the total amount of space used by the LDAP caches and both buffer pools is

larger than physical memory available on the server, operating system paging

(disk activity) will occur.

To get the current DB2 buffer pool sizes, run the following commands:

db2 connect to database_name

db2 "select bpname,npages,pagesize from sysibm.sysbufferpools"

where database_name is the name of the database.

The following example output shows the default settings for the example above:

BPNAME NPAGES PAGESIZE

------------------ ----------- -----------

IBMDEFAULTBP 29500 4096

LDAPBP 1230 32768

 2 record(s) selected.

Buffer pool sizes

The LDAP directory database (DB2) has two buffer pools: LDAPBP and

IBMDEFAULTBP. The size of each buffer pool needs to be set separately, but the

method for determining how big each should be is the same: Run your workload

with the buffer pool sizes set to different values and measure the differences in

operations per second.

24 Performance Tuning and Capacity Planning Guide

Note: DB2 does not allow buffer pools to be set to zero.

LDAPBP buffer pool size

This buffer pool contains cached entry data (ldap_entry) and all of the associated

indexes. LDAPBP is similar to the entry cache, except that LDAPBP uses different

algorithms in determining which entries to cache. It is possible that an entry that is

not cached in the entry cache is located in LDAPBP.

To determine the best size for your LDAPBP buffer pool, run your workload with

the LDAPBP buffer pool size set to different values and measure the differences in

operations per second. For example, Figure 8 shows varying operations per second

based on different LDAPBP buffer pool sizes:

For the workload in the above example, the best performance results from a

LDAPBP size of approximately 15,000 32K pages. However, the performance gain

of 15,000 over a size of 9,800 is slight. In a memory-constrained environment,

setting the LDAPBP size to 9,800 saves approximately 166 MB of memory.

IBMDEFAULTBP buffer pool size

DB2 system information, including system tables and other information that is

useful in resolving filters, is cached in the IBMDEFAULTBP buffer pool. You might

need to adjust the IBMDEFAULTBP cache settings for better performance in the

LDAPBP.

To determine the best size for your IBMDEFAULTBP buffer pool, run your

workload with the buffer pool sizes set to different values and measure the

differences in operations per second. For example, Figure 9 on page 26 shows

varying operations per second based on different IBMDEFAULTBP buffer pool

sizes:

Figure 8. Varying the size of LDAPBP

Chapter 3. Tuning DB2 and LDAP caches 25

For the workload in the above example, setting the IBMDEFAULTBP large enough

to hold the working set improves throughput approximately 20 percent over a

small buffer pool size. There is little additional benefit to setting IBMDEFAULTBP

larger than 20,000 4K pages.

Setting buffer pool sizes

Use the alter bufferpool command to set the IBMDEFAULTBP and LDAPBP

buffer pool sizes. The following example shows the IBMDEFAULTBP and LDAPBP

buffer pools being set:

db2 alter bufferpool ibmdefaultbp size 20000

db2 alter bufferpool ldapbp size 9800

db2 force applications all

db2stop

db2start

Note: The LDAP server (idsslapd) must be stopped while setting buffer pool sizes.

The Performance Tuning Tool (idsperftune)

The IBM Tivoli Directory sever provides a tool named idsperftune (the

Performance Tuning Tool) that enables administrators to achieve higher directory

server performance by tuning different caches, DB2 buffer pools, and DB2

parameters. The idsperftune tool works in two modes: basic and advanced.

Basic tuning

The basic tuning mode of operation deals with the tuning of the LDAP caches and

the DB2 buffer pools. The LDAP caches include entry cache, filter cache, group

member cache, and group member cache bypass limit while the DB2 buffer pools

include IBMDEFAULTBP and LDAPBP. The basic tuning mode recommends

optimum tuning values for LDAP caches and DB2 buffer pools and also updates

the LDAP cache and DB2 buffer pool parameters to the settings that are specified.

Figure 9. Varying the size of IBMDEFAULTBP

26 Performance Tuning and Capacity Planning Guide

The tool takes inputs from a property file named perftune_input.conf. The

administrators must provide all inputs in the property file. Following are the input

values that are taken from the property file. If values are not specified, then the

default values are taken into consideration.

v Amount of system memory (%) to be allotted to Tivoli Directory Server instance:

This is the total memory that will be allocated to an instance and will be used as

an input to the tool while tuning the size of entry cache, filter cache, and group

member cache. If not specified, then the default value of 90% of system memory

will be taken.

v Total number of entries that will reside in the directory:

This value is used as an input to the tool to estimate the size that should be

assigned to the cache.

Note: The idsperftune tool provides a command line option to calculate the

total number of entries and average size of entries that are present in the

directory. For instance, if an administrator provides the command line

option ″-s ″ then idsperftune will compute total number of entries and

average size of entries and log the details in the perftune_input.conf file.

If the administrator does not provide the command line option, then the

total number of entries is set to 10000. For further information about the

idsperftune tool refer IBM Tivoli Directory Server version 6.1 Command

Reference. For information about running the Performance Tuning Tool

through the Configuration Tool, see the IBM Tivoli Directory Server version

6.1 Installation and Configuration Guide.

v Average size of entry (in bytes):

This value represents the average size of an entry that is expected to reside in

memory. The average size of an entry and the total number of entries is used by

the idsperftune tool to calculate the total size of the directory. Based on this, the

size that should be allotted to Entry and Filter cache is calculated.

Note: The idsperftune tool provides a command line option to calculate the

total number of entries and average size of entries that are present in the

directory. For instance, if an administrator provides the command line

option ″-s ″ then idsperftune will compute total number of entries and

average size of entries and log the details in the perftune_input.conf file.

If the administrator does not provide the command line option, then the

total number of entries is set to 10000. For further information about the

idsperftune tool refer IBM Tivoli Directory Server version 6.1 Command

Reference.

v Update Frequency:

The administrator must specify whether frequent updates, or only batch

updates, are expected. If the administrator specifies that frequent updates are

expected, then the filter cache is set to 0. Otherwise it is set to 1 KB.

v Total number of groups to be cached:

An administrator can tune this value by providing an estimate of the total

number of groups whose members need to be cached. This should be the

number of groups frequently used. If not specified, the default value of 25 is

used.

v Average number of members in a group:

An administrator can tune this value to set the total number of members within

a group that will be cached. If not specified, the default value of 25000 is used.

v Server instance name:

Chapter 3. Tuning DB2 and LDAP caches 27

This value is taken from IDS_LDAP_INSTANCE environment variable. If this

environment variable is not set then the server instance name is set to the name

of the directory server instance that is present. However, if more then one

instance is present and no instance name is provided by the administrator, then

an appropriate error message is displayed.

The basic mode of operation also involves the tuning of the DB2 buffer pools

IBMDEFAULTBP and LDAPBP. On execution of idsperftune, the size that is to be

allotted to LDAP entry cache is calculated. If the system memory allotted to the

directory server is sufficient to cache 80% of directory entries then the LDAP entry

cache size is set to the size required to cache 80% of total entries. The DB2 buffer

pools will then be set to the remaining available system memory.

On the other hand, if the system memory allotted to the directory server is not

enough to cache 80% of total entries present in the directory then the entry cache is

set to a minimum value which is 1000. Filter cache size is set to 0 and group

member cache and bypass limit is set to 25 and 25000 respectively. The DB2 buffer

pools are then assigned the amount of system memory that remains after allocation

of the default values to LDAP caches. The system memory will be divided between

DB2 bufferpools, IBMDEFAUTBP and LDAPBP, in the ratio of 1:3.

Advanced tuning

For this phase of tuning, the directory server should be deployed and populated

with entries. Also, the directory server should be servicing client requests for some

period of time. Administrators can run idsperftune with appropriate advanced

tuning option to monitor different DB2 parameters. Different DB2 parameters that

can be monitored for tuning at run time are as follows:

v CATALOGCACHE_SZ

v PCKCACHESZ

v LOGFILSIZ

v LOCKLIST

v SORTHEAP

v MAXFILOP

v DBHEAP

v CHNGPGS_THRESH

v NUM_IOSERVERS

v NUM_IOCLEANERS

To monitor DB2 parameters SORTHEAP, MAXFILPO, DBHEAP,

CHNGPGS_THRESH, NUM_IOSERVERS, and NUM_IOCLEANERS, monitor

switches BUFFERPOOL and SORTHEAP must be enabled. These switches allow

DB2 to collect additional runtime data. However, enabling these monitor switches

will have some negative impact on the performance of the directory server. If

monitor switches BUFFERPOOL and SORTHEAP are not enabled then the status of

these parameters is displayed as “Not Collected” in the property file.

Information gathered during the advanced tuning phase is logged in the property

file perftune_stat.log. The information gathered describes if a particular DB2

parameter value needs to be increased or decreased in order to get better

performance out of the directory server. Given below is a section from the property

file perftune_stat.log.

28 Performance Tuning and Capacity Planning Guide

DB2 PARAMETER STATUS

#--

CATALOGCACHE_SZ= OK

SORTHEAP= Increase

MAXFILOP= OK

CHNGPGS_THREASH= Decrease

SORTHEAP= Not Collected

--

Description of DB2 parameter status as mentioned above:

v OK: The value currently used for the DB2 parameter is optimal.

v Increase: The value of DB2 parameter must be increased to achieve optimal

performance.

v Decrease: The value of DB2 parameter must be decreased to achieve optimal

performance.

v Not Collected: The value of DB2 parameter is not monitored, this state will be

observed for the DB2 parameters which need monitor switches to be turned on.

Optimization and organization (reorgchk and reorg)

DB2 uses a sophisticated set of algorithms to optimize the access to data stored in

a database. These algorithms depend upon many factors, including the

organization of the data in the database, and the distribution of that data in each

table. Distribution of data is represented by a set of statistics maintained by the

database manager.

In addition, IBM Tivoli Directory Server creates a number of indexes for tables in

the database. These indexes are used to minimize the data accessed in order to

locate a particular row in a table.

In a read-only environment, the distribution of the data changes very little.

However, with updates and additions to the database, it is not uncommon for the

distribution of the data to change significantly. Similarly, it is quite possible for

data in tables to become ordered in an inefficient manner.

To remedy these situations, DB2 provides tools to help optimize the access to data

by updating the statistics and to reorganize the data within the tables of the

database.

Optimization

Optimizing the database updates statistics related to the data tables, which

improves performance and query speed. Optimize the database periodically or

after heavy database updates (for example, after importing database entries). The

Optimize database task in the IBM Tivoli Directory Server Configuration Tool uses

the DB2 runstats command to update statistical information used by the query

optimizer for all the LDAP tables.

Note: The reorgchk command also updates statistics. If you are planning to do a

reorgchk, optimizing the database is unnecessary. See “Database

organization (reorgchk and reorg)” on page 30 for more information about

the reorgchk command.

To optimize the database using the Configuration Tool:

1. Start the Configuration Tool by typing idsxcfg on the command line.

2. Click Optimize database on the left side of the window.

Chapter 3. Tuning DB2 and LDAP caches 29

3. On the Optimize database window, click Optimize.

After a message displays indicating the database was successfully optimized, you

must restart the server for the changes to take effect.

To optimize the database using the command line, run the following command:

runstats -I <instancename>

See ″idsrunstats, runstats″ in the IBM Tivoli Directory Server Version 6.1

Administration Guide for more information.

Run the following commands to update more db2 stats that might improve

performance:

DB2 RUNSTATS ON TABLE table_name WITH DISTRIBUTION AND DETAILED INDEXES ALL SHRLEVEL

 REFERENCE

DB2 RUNSTATS ON TABLE ldapdb2.objectclass WITH DISTRIBUTION AND DETAILED INDEXES

 ALL SHRLEVEL REFERENCE

where table_name is the name of the table.

Note: Use the runstats utility to update the database statistics. This utility

preserves some LDAP-specific tuning done on statistics. If you use the DB2

RUNSTATS command, do the following to restore the LDAP-specific settings:

db2 "connect to database <ldap_db_name>"

db2 "update sysstat.tables set card=9E18 where tabname=’LDAP_DESC’

 and card<>9E18"

db2 "terminate"

Database organization (reorgchk and reorg)

Tuning the organization of the data in DB2 using the reorgchk and reorg

commands is important for optimal performance.

The reorgchk command updates statistical information to the DB2 optimizer to

improve performance, and reports statistics on the organization of the database

tables.

The reorg command, using the data generated by reorgchk, reorganizes table

spaces to improve access performance and reorganizes indexes so that they are

more efficiently clustered. The reorgchk and reorg commands can improve both

search and update operation performance.

Note: Tuning organizes the data on disk in a sorted order. Sorting the data on disk

is beneficial only when accesses occur in a sorted order, which is not

typically the case. For this reason, organizing the table data on disk typically

yields little change in performance.

Performing a reorgchk

After a number of updates have been performed against DB2, table indexes can

become sub-optimal and performance can degrade. Correct this situation by

performing a DB2 reorgchk as follows:

db2 connect to ldapdb2

db2 reorgchk update statistics on table all

Where ldapdb2 is the name of your database.

30 Performance Tuning and Capacity Planning Guide

To generate a reorgchk output file (recommended if you plan to run the reorg

command) add the name of the file to the end of the command, for example:

db2 reorgchk update statistics on table all > reorgchk.out

The following is a sample reorgchk report:

db2 => reorgchk current statistics on table all

Table statistics:

F1: 100 * OVERFLOW / CARD < 5

F2: 100 * TSIZE / ((FPAGES-1) * (TABLEPAGESIZE-76)) > 70

F3: 100 * NPAGES / FPAGES > 80

CREATOR NAME CARD OV NP FP TSIZE F1 F2 F3 REORG

--

LDAPDB2 ACLPERM 2 0 1 1 138 0 - 100 ---

LDAPDB2 ACLPROP 2 0 1 1 40 0 - 100 ---

LDAPDB2 ALIASEDOBJECT - - - - - - - - ---

LDAPDB2 AUDIT 1 0 1 1 18 0 - 100 ---

LDAPDB2 AUDITADD 1 0 1 1 18 0 - 100 ---

LDAPDB2 AUDITBIND 1 0 1 1 18 0 - 100 ---

LDAPDB2 AUDITDELETE 1 0 1 1 18 0 - 100 ---

LDAPDB2 AUDITEXTOPEVENT 1 0 1 1 18 0 - 100 ---

LDAPDB2 AUDITFAILEDOPONLY 1 0 1 1 18 0 - 100 ---

LDAPDB2 AUDITLOG 1 0 1 1 77 0 - 100 ---

...

SYSIBM SYSINDEXCOLUSE 480 0 6 6 22560 0 100 100 ---

SYSIBM SYSINDEXES 216 114 14 28 162216 52 100 50 *-*

...

SYSIBM SYSPLAN 79 0 6 6 41554 0 100 100 ---

SYSIBM SYSPLANAUTH 157 0 3 3 9106 0 100 100 ---

SYSIBM SYSPLANDEP 35 0 1 2 5985 0 100 50 --*

--

Index statistics:

F4: CLUSTERRATIO or normalized CLUSTERFACTOR > 80

F5: 100 * (KEYS * (ISIZE+8) + (CARD-KEYS) * 4) / (NLEAF * INDEXPAGESIZE) > 50

F6: (100-PCTFREE) * (INDEXPAGESIZE-96) / (ISIZE+12) ** (NLEVELS-2) * (INDEXPAGES

IZE-96) / (KEYS * (ISIZE+8) + (CARD-KEYS) * 4) < 100

CREATOR NAME CARD LEAF LVLS ISIZE KEYS F4 F5 F6 REORG

--

Table: LDAPDB2.ACLPERM

Chapter 3. Tuning DB2 and LDAP caches 31

LDAPDB2 ACLPERM_INDEX 2 1 1 6 2 100 - - ---

Table: LDAPDB2.ACLPROP

LDAPDB2 ACLPROP_INDEX 2 1 1 6 2 100 - - ---

Table: LDAPDB2.ALIASEDOBJECT

LDAPDB2 ALIASEDOBJECT - - - - - - - - ---

LDAPDB2 ALIASEDOBJECTI - - - - - - - - ---

LDAPDB2 RALIASEDOBJECT - - - - - - - - ---

Table: LDAPDB2.AUDIT

LDAPDB2 AUDITI 1 1 1 4 1 100 - - ---

Table: LDAPDB2.AUDITADD

LDAPDB2 AUDITADDI 1 1 1 4 1 100 - - ---

Table: LDAPDB2.AUDITBIND

LDAPDB2 AUDITBINDI 1 1 1 4 1 100 - - ---

Table: LDAPDB2.AUDITDELETE

LDAPDB2 AUDITDELETEI 1 1 1 4 1 100 - - ---

Table: LDAPDB2.AUDITEXTOPEVENT

...

Table: LDAPDB2.SN

LDAPDB2 RSN 25012 148 2 14 25012 99 90 0 ---

LDAPDB2 SN 25012 200 3 12 25012 99 61 119 --*

LDAPDB2 SNI 25012 84 2 4 25012 99 87 1 ---

...

Table: LDAPDB2.TITLE

LDAPDB2 TITLEI - - - - - - - - ---

Table: LDAPDB2.UID

LDAPDB2 RUID 25013 243 3 17 25013 0 62 79 *--

LDAPDB2 UID 25013 273 3 17 25013 100 55 79 ---

LDAPDB2 UIDI 25013 84 2 4 25012 100 87 1 ---

Table: LDAPDB2.UNIQUEMEMBER

LDAPDB2 RUNIQUEMEMBER 10015 224 3 47 10015 1 60 44 *--

LDAPDB2 UNIQUEMEMBER 10015 284 3 47 10015 100 47 44 -*-

LDAPDB2 UNIQUEMEMBERI 10015 14 2 4 7 100 69 8 ---

...

Table: SYSIBM.SYSFUNCTIONS

SYSIBM IBM127 141 1 1 13 141 65 - - *--

SYSIBM IBM25 141 2 2 34 141 100 72 60 ---

SYSIBM IBM26 141 2 2 32 141 78 68 63 *--

SYSIBM IBM27 141 1 1 23 68 80 - - *--

SYSIBM IBM28 141 1 1 12 2 99 - - ---

SYSIBM IBM29 141 1 1 4 141 100 - - ---

SYSIBM IBM30 141 3 2 59 141 78 76 38 *--

SYSIBM IBM55 141 2 2 34 141 99 72 60 ---

...

--

CLUSTERRATIO or normalized CLUSTERFACTOR (F4) will indicate REORG is necessary

for indexes that are not in the same sequence as the base table. When multiple

indexes are defined on a table, one or more indexes may be flagged as needing

REORG. Specify the most important index for REORG sequencing.

Note: After performing a reorgchk, do the following to restore the LDAP-specific

settings:

db2 "connect to database <ldap_db_name>"

db2 "update sysstat.tables set card=9E18 where tabname=’LDAP_DESC’

 and card<>9E18"

db2 "terminate"

See the information about the idsrunstats command in the IBM Tivoli

Directory Server Version 6.1 Command Reference.

32 Performance Tuning and Capacity Planning Guide

Using the statistics generated by reorgchk, run reorg to update database table

organization. See “Performing a reorg.”

Keep in mind that reorgchk needs to be run periodically. For example, reorgchk

might need to be run after a large number of updates have been performed. Note

that LDAP tools such as ldapadd, ldif2db, and bulkload can potentially do large

numbers of updates that require a reorgchk. The performance of the database

should be monitored and a reorgchk performed when performance starts to

degrade. See “Monitoring performance” on page 51 for more information.

reorgchk must be performed on all LDAP replicas because each replica uses a

separate database. The LDAP replication process does not include the propagation

of database optimizations.

Because LDAP caches prepared DB2 statements, you must stop and restart

ibmslapd for DB2 changes to take effect.

Performing a reorg

After you have generated organizational information about the database using

reorgchk, the next step in reorganization is finding the tables and indexes that

need reorganizing and attempting to reorganize them. This can take a long time.

The time it takes to perform the reorganization process increases as the DB2

database size increases.

In general, reorganizing a table takes more time than updating statistics. Therefore,

performance might be improved significantly by updating statistics first.

To reorganize database table information:

1. If you have not done so already, run reorgchk:

db2 reorgchk update statistics on table all > reorgchk.out

The reorgchk update statistics report has two sections; the first section is the

table information and the second section is the indexes. An asterisk in the last

column indicates a need for reorganization.

2. To reorganize the tables with an asterisk in the last column:

db2 reorg table table_name

where table_name is the name of the table to be reorganized; for example,

LDAPDB2.LDAP_ENTRY.

Generally speaking, because most data in LDAP is accessed by index,

reorganizing tables is usually not as beneficial as reorganizing indexes.

3. To reorganize the indexes with an asterisk in the last column:

db2 reorg table table_name index index_name

where

v table_name is the name of the table; for example, LDAPDB2.LDAP_ENTRY.

v index_name is the name of the index; for example,

SYSIBM.SQL000414155358130.
4. Run reorgchk again. The output from reorgchk can then be used to determine

whether the reorganization worked and whether it introduced other tables and

indexes that need reorganizing.

Some guidelines for performing a reorganization are:

Chapter 3. Tuning DB2 and LDAP caches 33

v If the number on the column that has an asterisk is close to the recommended

value described in the header of each section and one reorganization attempt has

already been done, you can probably skip a reorganization on that table or

index.

v In the table LDAPDB2.LDAP_ENTRY there exists a LDAP_ENTRY_TRUNC

index and a SYSIBM.SQL index. Preference should be given to the SYSIBM.SQL

index if attempts to reorganize them seem to alternate between one or the other

needing reorganization.

v When an attribute length is defined to be less than or equal to 240 bytes, the

attribute table contains three columns: EID, attribute and reversed attribute

columns. In this case, the forward index is created using the EID and attribute

columns as index keys. For example, the attribute SN is defined to have the

maximum length which is less than or equal to 240 bytes, so the attribute table

contains the EID, SN and RSN columns and the following indexes are created

for this attribute table:

LDAPDB2.RSN <------ A reverse index whose defined index keys are the EID

 and RSN columns.

LDAPDB2.SN <------ A forward index whose defined index keys are the EID

 and SN columns.

LDAPDB2.SNI <------ An update index whose defined index key is the EID column.

v Reorganize all the attributes that you want to use in searches. In most cases you

will want to reorganize to the forward index, but in cases with searches

beginning with ‘*’, reorganize to the reverse index.

v When an attribute length is defined to be greater than 240 bytes, the attribute

table contains four columns: EID, attribute, truncated attribute and reversed

truncated attribute columns. In this case, the forward index is created using the

EID and truncated attribute columns as index keys. For example, the attribute

CN is defined to have the maximum length which is greater than 240 bytes, so

the attribute table contains the EID, CN, CN_T and RCN_T columns and the

following indexes are created for this attribute table:

LDAPDB2.RCN <------ A reverse index whose defined index keys are the EID

 and RCN_T columns.

LDAPDB2.CN <------ A forward index whose defined index keys are the EID

 and CN_T columns.

LDAPDB2.CNI <------ An update index whose defined index key is the EID column.

The following is another example showing reverse, forward, and update indexes

example:

 Table: LDAPDB2.SECUUID

LDAPDB2 RSECUUID <— This is a reverse index

LDAPDB2 SECUUID <— This is a forward index

LDAPDB2 SECUUIDI <— This is an update index

Data Row Compression

The data row compression feature provided by DB2 V9 reduces disk space

requirements and also enhances the overall performance of the Tivoli Directory

Server. The performance improvement in case of a compressed database could be

as much as 10% more than databases without compression.

Use the DB2 commands in this section to estimate the possible storage savings for

a given table. The examples demonstrate how to estimate the savings for

OBJECTCLASS table. The following command creates a file called

objectclass.inspect in the sqllib/db2dump directory:

34 Performance Tuning and Capacity Planning Guide

db2 inspect rowcompestimate table name OBJECTCLASS results keep objectclass.inspect

The following command formats a binary file to a readable format. The resulting

file ″objectclass.out″ indicates the amount of disk space the compression would

save on OBJECTCLASS table.

db2inspf objectclass.inspect objectclass.out

Notes:

1. Tables with reported saving estimate of more than 50% are good candidates for

compression.

2. In a typical Tivoli Directory Server deployment, compression on LDAP_ENTRY

and OBJECTCLASS tables is recommended.

Use the following steps to compress a DB2 table:

1. db2 ALTER TABLE <db2instance>.<tableName> COMPRESS YES

2. db2 REORG TABLE <db2instance>.<tableName>

3. db2 REORG INDEXES ALL FOR TABLE <db2instance>.<tableName>

4. db2 RUNSTATS ON TABLE <db2instance>.<tableName> WITH DISTRIBUTION AND

DETAILED INDEXES ALL

Indexes

Indexing results in a considerable reduction in the amount of time it takes to locate

requested data. For this reason, it can be very beneficial from a performance

standpoint to index all attributes used in searches.

Use the following DB2 commands to verify that a particular index is defined. In

the following example, the index being checked is for the attribute seeAlso:

db2 connect to database_name

db2 list tables for all | grep -i seeAlso

db2 describe indexes for table database_name.seeAlso

Where database_name is the name of your database.

If the second command fails or the last command does not return three entries, the

index is not properly defined. The last command should return the following

results:

IndexSchema Index Name Unique Rule Number of Columns

 ------------- ------------------- ---------- -------------

LDAPDB2 SEEALSOI D 1

LDAPDB2 SEEALSO D 2

LDAPDB2 RSEEALSO D 2

 3 record (s) selected.

To have IBM Tivoli Directory Server create an index for an attribute, do one of the

following:

v To create an index using the Web Administration Tool:

1. Expand Schema management in the navigation area, and click Manage

attributes.

2. Click Edit attribute.

3. On the IBM extensions tab, select the Equality check box under Indexing

rules.
v To create an index from the command line, issue the following command:

Chapter 3. Tuning DB2 and LDAP caches 35

ldapmodify -D cn=root -w root -i addindex.ldif

The addindex.ldif file should look like the following:

dn: cn=schema

changetype: modify

replace: attributetypes

attributetypes: (2.5.4.34

 NAME ’seeAlso’

 DESC ’Identifies another directory server entry that may

 contain information related to this entry.’

 SUP 2.5.4.49

 EQUALITY 2.5.13.1

 USAGE userApplications)

-

replace: ibmattributetypes

ibmattributetypes: (2.5.4.34

 DBNAME(’seeAlso’ ’seeAlso’)

 ACCESS-CLASS normal

 LENGTH 1000

 EQUALITY)

Note: After adding an index, you should run reorgchk to update statistical

information for the DB2 optimizer regarding Index statistics for the new

index.

Other DB2 configuration parameters

Performance benefits can come from setting other DB2 configuration parameters,

such as APPLHEAPZ and LOGFILSIZ. The current setting of parameters can be

obtained by issuing the following command:

db2 get database configuration for database name

where database name is the name of your database.

This command returns the settings of other DB2 configuration parameters as well.

The following command also shows the DB2 configuration parameters for the

entire database instance:

db2 get database manager configuration

To set the DB2 configuration parameters use the following syntax:

db2 update database configuration for database name using \

parm name parm value

db2 force applications all

db2stop

db2start

where database name is the name of your database and where parm name is the

parameter to change and parm value is the value it is to be assigned.

Changes to DB2 configuration parameters do not take effect until the database is

restarted with db2stop and db2start.

Note: If applications are currently connected to the database, you must also do a

db2 force applications all command prior to the db2stop.

For a list of DB2 parameters that affect performance, visit the DB2 Web site:

http://www.ibm.com/software/data/db2

36 Performance Tuning and Capacity Planning Guide

http://www.ibm.com/software/data/db2

Note: If DB2 recognizes that a parameter is configured insufficiently, the problem

is posted to the diagnostic log (db2diag.log). For example, if the DB2 buffer

pools are too large, DB2 overrides the buffer pool settings and uses a

minimal configuration. No notice of the change in buffer pool sizes is given

except in the diagnostic log, so it is important to view the log if you are

experiencing poor performance. The db2diag.log file is located in the

sqllib/db2dump directory under the instance owner’s home directory. For

example, the ldapdb2 instance can find the db2diag.log file in the

/home/ldapdb2/sqllib/db2dump directory.

Database backup and restore considerations

When using the database backup and restore commands it is important to keep in

mind that when you restore over an existing database, any tuning that has been

done on that existing database is lost.

Chapter 3. Tuning DB2 and LDAP caches 37

38 Performance Tuning and Capacity Planning Guide

Chapter 4. AIX operating system tuning

This chapter discusses the following performance tuning tasks for the AIX

operating system:

v Enabling large files

v Setting MALLOCTYPE

v Setting other environment variables

v Viewing ibmslapd environment variables

Enabling large files

The underlying AIX operating system files that hold the contents of a large

directory can grow beyond the default size limits imposed by the AIX operating

system. If the size limits are reached, the directory ceases to function correctly. The

following steps make it possible for files to grow beyond default limits on an AIX

operating system:

1. When you create the file systems that are expected to hold the directory’s

underlying files, you should create them as Enhanced Journaled File Systems or

as Journaled File Systems with Large File Enabled. The file system containing

the DB2 instance’s home directory, and, if bulkload is used, the file system

containing the bulkload temporary directory, are file systems that can be

created this way.

Note: The default path is:

<instance_home>/tmp

2. Set the soft file size limit for the root, ldap, and the DB2 instance owner users

to -1. A soft file size limit of -1 for a user specifies the maximum file size for

that user as unlimited. The soft file size limit can be changed using the smitty

chuser command. Each user must log off and log back in for the new soft file

size limit to take effect. You must also restart DB2.

Setting MALLOCTYPE

Set the MALLOCTYPE environment variable as follows:

On all AIX 5.x versions

Set MALLOCTYPE as follows:

export MALLOCTYPE=buckets

Note: If you want to use MALLOCTYPE buckets, you must use ML03 (contains

the fix for APAR IY50668) or higher. You can get this from IBM Support

(www.ibm.com/support). If you are using MALLOCTYPE buckets, you

must set ulimits for the LDAP instance to the following:

ulimit -m unlimited

ulimit -d unlimited

You can find more information about MALLOCTYPE in the AIX documentation.

It is essential to note that the following environment variables improve the

performance of the IBM Tivoli Directory server:

v SPINLOOPTIME=650 (for SMP systems)

© Copyright IBM Corp. 2007 39

v MALLOCMULTIHEAP=1 (for SMP systems)

Setting other environment variables

You might experience better performance by setting the AIXTHREAD_SCOPE and

NODISCLAIM environment as shown in the following commands. Check the AIX

documentation to see if these settings might be right for your installation.

AIXTHREAD_SCOPE

To set AIXTHREAD_SCOPE, use the following command:

export AIXTHREAD_SCOPE=S

NODISCLAIM

To set NODISCLAIM, use the following command:

export NODISCLAIM=TRUE

Viewing ibmslapd environment variables (AIX operating system only)

To view the environment settings and variables for your ibmslapd process, run the

following command:

ps ewww PID | tr ’ ’ ’\012’ | grep = | sort

where PID is the ibmslapd process ID.

Example output:

ACLCACHE=YES

ACLCACHESIZE=25000

AIXTHREAD_SCOPE=S

AUTHSTATE=compat

A__z=!

CLASSPATH=/home/ldapdb2/sqllib/java/db2java.zip:/home/ldapdb2/sqllib/java/

 db2jcc.jar:/home/ldapdb2/sqllib/function:/home/ldapdb2/sqllib/java/

 db2jcc_license_cisuz.jar:/home/ldapdb2/sqllib/java/db2jcc_license_cu.jar:.

DB2CODEPAGE=1208

DB2INSTANCE=ldapdb2

HOME=/

IDS_LDAP_HOME=/opt/IBM/ldap/V6.1

LANG=en_US

LC__FASTMSG=true

LD_LIBRARY_PATH=/home/ldapdb2/sqllib/lib

LIBPATH=/opt/IBM/ldap/V6.1/lib64:/usr/lib:/home/ldapdb2/idsslapd-ldapdb2/

 db2instance/lib:/opt/IBM/ldap/V6.1/db2/lib64:/usr/lib:/lib:/home/ldapdb2/

 sqllib/lib:.

LOCPATH=/usr/lib/nls/loc

LOGIN=root

LOGNAME=root

MAIL=/usr/spool/mail/root

MAILMSG=[YOU

MALLOCTYPE=buckets

NLSPATH=/opt/IBM/ldap/V6.1/nls/msg/%L/%N:/opt/IBM/ldap/V6.1/nls/msg/%L/%N.cat:/

 usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat

NODISCLAIM=TRUE

ODBCCONN=15

ODMDIR=/etc/objrepos

PATH=/opt/IBM/ldap/V6.1/sbin:/opt/IBM/ldap/V6.1:/usr/bin:/etc:/usr/sbin:/usr/

 ucb:/usr/bin/X11:/sbin:/usr/java14/jre/bin:/usr/java14/bin:/usr/java131/jre/

 bin:/usr/java131/bin:/home/ldapdb2/sqllib/bin:/home/ldapdb2/sqllib/adm:/

 home/ldapdb2/sqllib/misc

PWD=/home/ldapdb2/idsslapd-ldapdb2/workdir

RDBM_CACHE_BYPASS_LIMIT=100

RDBM_CACHE_SIZE=25000

RDBM_FCACHE_SIZE=25000

40 Performance Tuning and Capacity Planning Guide

SHELL=/usr/bin/ksh

SSH_CLIENT=9.48.85.122

SSH_CONNECTION=9.48.85.122

SSH_TTY=/dev/pts/1

TERM=xterm

TISDIR=/opt/IBM/ldap/V6.1

TZ=CST6CDT

USER=root

VWSPATH=/home/ldapdb2/sqllib

_=/opt/IBM/ldap/V6.1/sbin/64/ibmslapd

instname=ldapdb2

location=/home/ldapdb2

Chapter 4. AIX operating system tuning 41

42 Performance Tuning and Capacity Planning Guide

Chapter 5. Hardware tuning

This chapter contains some suggestions for improving disk drive performance.

Disk speed improvements

With millions of entries in LDAP server, it can become impossible to cache all of

them in memory. Even if a smaller directory size is cacheable, update operations

must go to disk. The speed of disk operations is important. Here are some

considerations for helping to improve disk drive performance:

v Use fast disk drives

v Use a hardware write cache

v Spread data across multiple disk drives

v Spread the disk drives across multiple I/O controllers

v Put log files and data on separate physical disk drives

© Copyright IBM Corp. 2007 43

44 Performance Tuning and Capacity Planning Guide

Chapter 6. IBM Tivoli Directory Server features

The sections in this chapter briefly describe the following additional

performance-related IBM Tivoli Directory Server features.

v Bulk loading (bulkload)

v Replication

v Monitoring Performance

v When to configure the LDAP change log

Bulkload

The bulkload utility accepts many command line options introduced in previous

releases for performance tuning. Many of these tuning options are deprecated. The

default for the following options are optimal and should not be specified.

-A <yes|no>

Specifies whether to process the ACL information contained in the LDIF

file. The default is yes. The no parameter loads the default acls.

-c | -C <yes|no>

Allows you to skip index recreation. For example, if you are running

successive idsbulkloads and you want to skip recreation between loads,

you can postpone index creation until the last idsbulkload. Issue the final

idsbulkload with -c yes.

-e <yes|no>

Drop indexes before load.

Effects of using the -k option

The -k option enables users to bulkload their data in smaller chunks. It is

especially useful for systems where memory is limited. What happens when

utilizing this option is that the parsing and corresponding loading is done in

smaller increments.

Note: Saving on memory by specifying small chunksize can result in the user

experiencing longer bulkload times.

© Copyright IBM Corp. 2007 45

This graph illustrates the effects on memory usage. As the chunk size increases, the

amount of memory utilized increases.

 This graph illustrates that as the chunk size increases, the load time decreases. The

recommendation is to use chunk sizes of one million entries at least.

Figure 10. Effects of using the -k option

Figure 11. Effects of using the -k option

46 Performance Tuning and Capacity Planning Guide

Replication tuning

Replication is a technique used by directory servers to improve performance,

availability, and reliability. The replication process synchronizes data stored in

multiple directory servers.

Using multi-threaded (asynchronous) replication, administrators can replicate using

multiple threads. These features were added to improve overall throughput of

replication. For more information about asynchronous replication, see

″Multi-threaded (asynchronous) replication″ in the IBM Tivoli Directory Server

Version 6.1 Administration Guide.

Anyone with a replication backlog might consider switching to multi-threaded

(asynchronous) replication. Candidate environments can include the following:

v A high update rate

v No downlevel servers

v Common AES salt and synchronization if encryption is AES and passwords are

updated often

v Small fanout (for example, 8 connections per agreement with 24 replicas might

be too complicated depending on system configuration)

v Available servers and reliable network

v Real-time data consistency is not critical

v All replication schedules are immediate

v Multiprocessor machines

Multi-threaded (asynchronous) replication is difficult to administer if servers or

networks are not reliable.

When errors occur, the errors are logged and can be replayed by the administrator,

but the error logs must be monitored closely. The following is a search to show the

replication backlog for all agreements supplied by one server:

ldapsearch -h supplier-host -D cn=admin -w ? -s sub -b <replication_context>

 objectclass=ibm-replicationagreement

 ibm-replicationpendingchangecount ibm-replicationstate

If the replication state is active, and the pending count is growing, there is a

backlog that won’t decrease unless the update rate decreases or the replication

mode is changed from synchronous to asynchronous (multi-threaded).

Replication also adds to the workload on the master server where the updates are

first applied. In addition to updating its copy of the directory data, the master

server must send the changes to all replica servers. If your application or users do

not depend on immediate replication, then careful scheduling of replication to

avoid peak activity times will help minimize the impact to throughput on the

master server. See ″Creating replication schedules″ in the IBM Tivoli Directory Server

Version 6.1 Administration Guide.

The following are areas where tuning adjustment can be made to improve

performance:

v Number of replication threads per supplier and consumer

v Replication context cache size

v Replication ready size limit

Chapter 6. IBM Tivoli Directory Server features 47

Number of replication threads

The number of replication threads (ibm-replicaconsumerconnections) attribute

represents the number of connections used for each replication agreement. In

testing, as the number of threads on both the supplier and consumer are increased,

the transaction rate also increased. In the following graph, a transaction is defined

as a queued replication record that is sent over, in this case an ldap_modify, to the

supplier. The queued replication records (ldap_modify) are run with replication in

a pending state. The replication state is then changed to resume, which starts the

replication process.

Note: As the number of threads increases, so does the CPU usage on both supplier

and consumer systems. Adjust this attribute as needed based on acceptable

CPU usage and desired throughput.

 As the throughput increased, the CPU consumption on both the supplier and

consumer increased. The CPU cost per transaction on the consumer increased

slightly when adding threads, as there were more threads to manage.

Replication context cache size

The replication context cache size (ibm-slapdReplContextCacheSize) is an attribute

that specifies, in bytes, the size in memory that is allocated to cache updates to be

replicated. The default setting is 100,000 bytes. This attribute cannot be updated

dynamically.

Figure 12. Number of replication threads

48 Performance Tuning and Capacity Planning Guide

Replication ready size limit

The replication ready size limit (environment variable

IBMSLAPD_REPL_READY_SIZE_LIMIT) controls the size of the queues of

replication operations from the list of updates still to be replicated. The default size

is 10. There is one queue per connection to a given replica. Related updates (for

example, modifications or children of new entries) will be placed in the same

queue. If the size of this queue exceeds the specified size limit, the main replication

thread waits for the queue size to get below the limit again. This prevents the main

replication thread from using too much CPU determining dependencies between

the updates. In testing, the size of this queue was varied from 1 entry up to 200

entries. Although an increase in raw throughput was not evident, CPU savings

were realized at certain settings of this parameter. The following chart displays

throughput normalized to 100% CPU. Absolute throughput did not change in this

test. A larger number in this graph means less CPU cost per transaction. In this

graph a transaction is defined as a queued replication record (ldap_modify) that is

sent to the supplier.

Figure 13. Replication context cache size

Chapter 6. IBM Tivoli Directory Server features 49

Proxy server tuning

The proxy server is recommended for use in environments where the size of the

data store exceeds the processing power and physical capacity of a single machine.

Directory sizes greater than 40 M entries are candidates for a distributed directory

environment. The proxy server gives customers the ability to distribute data across

multiple backend servers.

Throughput performance of the proxy server can be affected by the size of the

connection pool. This is a parameter configured on the Proxy server. For best

results, the following guidelines to set an appropriate connection pool size must be

followed:

v Configure more than one connection to the back-end server.

v Limit the connection pool size to the number of connections the operating

system can support. The connection pool is a static pool of connections that the

proxy server sets up during the proxy server startup. The operating system

imposes a limit on the number of open file descriptors. The connection pool size

should be less than this limit.

v Ensure that the connection pool size is less than the number of database

connections configured with the back-end server, keeping a buffer for replication

and changelog.

For better performance, all back-end servers and the proxy server should share the

same stash files.

Figure 14. Replication ready size limit

50 Performance Tuning and Capacity Planning Guide

Monitoring performance

The ldapsearch command can be used to monitor performance, as shown in the

following sections.

ldapsearch with ″cn=monitor″

The following ldapsearch command uses ″cn=monitor″.

ldapsearch -h ldap_host -s base -b cn=monitor objectclass=*

where ldap_host is the name of the LDAP host.

The monitor search returns some of the following attributes of the server:

cn=monitor

version=IBM Tivoli Directory, Version 6.1

total connections

The total number of connections since the server was started.

current connections

The number of active connections.

maxconnections

The maximum number of active connections allowed.

writewaiters

The number of threads sending data back to the client.

readwaiters

The number of threads reading data from the client.

livethreads

The number of worker threads being used by the server.

filter_cache_size

The maximum number of filters allowed in the cache.

filter_cache_current

The number of filters currently in the cache.

filter_cache_hit

The number of filters retrieved from the cache rather than being resolved

in DB2.

filter_cache_miss

The number of filters that were not found in the cache that then needed to

be resolved by DB2.

filter_cache_bypass_limit

Search filters that return more entries than this limit are not cached.

entry_cache_size

The maximum number of entries allowed in the cache.

entry_cache_current

The number of entries currently in the cache.

entry_cache_hit

The number of entries that were retrieved from the cache.

entry_cache_miss

The number of entries that were not found in the cache that then needed

to be retrieved from DB2.

Chapter 6. IBM Tivoli Directory Server features 51

acl_cache

A Boolean value indicating that the ACL cache is active (TRUE) or inactive

(FALSE).

acl_cache_size

The maximum number of entries in the ACL cache.

currenttime

The current time on the server. The current time is in the format:

year month day hour:minutes:seconds GMT

Note: If expressed in local time the format is

day month date hour:minutes:seconds timezone year

starttime

The time the server was started. The start time is in the format:

year month day hour:minutes:seconds GMT

Note: If expressed in local time the format is

day month date hour:minutes:seconds timezone year

en_currentregs

The current number of client registrations for event notification.

en_notificationssent

The total number of event notifications sent to clients since the server was

started.

The following attributes are for operation counts:

bindsrequested

The number of bind operations requested since the server was started.

bindscompleted

The number of bind operations completed since the server was started.

unbindsrequested

The number of unbind operations requested since the server was started.

unbindscompleted

The number of unbind operations completed since the server was started.

addsrequested

The number of add operations requested since the server was started.

addscompleted

The number of add operations completed since the server was started.

deletesrequested

The number of delete operations requested since the server was started.

deletescompleted

The number of delete operations completed since the server was started.

modrdnsrequested

The number of modify RDN operations requested since the server was

started.

modrdnscompleted

The number of modify RDN operations completed since the server was

started.

52 Performance Tuning and Capacity Planning Guide

modifiesrequested

The number of modify operations requested since the server was started.

modifiescompleted

The number of modify operations completed since the server was started.

comparesrequested

The number of compare operations requested since the server was started.

comparescompleted

The number of compare operations completed since the server was started.

abandonsrequested

The number of abandon operations requested since the server was started.

abandonscompleted

The number of abandon operations completed since the server was started.

extopsrequested

The number of extended operations requested since the server was started.

extopscompleted

The number of extended operations completed since the server was

started.

unknownopsrequested

The number of unknown operations requested since the server was started.

unknownopscompleted

The number of unknown operations completed since the server was

started. Unrecognized operations are rejected with a result message to the

client including the LDAP_UNWILLING_TO_PERFORM result code.

opsinitiated

The number of initiated requests since the server was started.

opscompleted

The number of completed requests since the server was started.

entriessent

The number of entries sent by the server since the server was started.

searchesrequested

The number of initiated searches since the server was started.

searchescompleted

The number of completed searches since the server was started.

The following attributes are for server logging counts:

slapderrorlog_messages

The number of server messages recorded since the server was started or

since a reset was performed.

slapdclierrors_messages

The number of DB2 error messages recorded since the server was started

or since a reset was performed.

auditlog_messages

The number of audit messages recorded since the server was started or

since a reset was performed.

auditlog_failedop_messages

The number of failed operation messages recorded since the server was

started or since a reset was performed.

Chapter 6. IBM Tivoli Directory Server features 53

The following attributes are for connection type counts:

total_ssl_connections

The total number of SSL connections since the server was started.

total_tls_connections

The total number of TLS connections since the server was started.

The following attributes are for tracing:

trace_enabled

The current trace value for the server. TRUE, if collecting trace data,

FALSE, if not collecting trace data.

trace_message_level

The current ldap_debug value for the server. The value is in hexadecimal

form, for example:

0x0=0

0xffff=65535

trace_message_log

The current LDAP_DEBUG_FILE environment variable setting for the

server.

The following attributes are for denial of service prevention:

available_workers

The number of worker threads available for work.

current_workqueue_size

The current depth of the work queue.

largest_workqueue_size

The largest size that the work queue has ever reached.

idle_connections_closed

The number of idle connections closed by the Automatic Connection

Cleaner.

auto_connection_cleaner_run

The number of times that the Automatic Connection Cleaner has run.

The following attribute is for alias dereference processing:

bypass_deref_aliases

The server runtime value that indicates if alias processing can be bypassed.

It displays TRUE if no alias object exists in the directory, and FALSE if at

least one alias object exists in the directory.

The following attributes are for the attribute cache:

cached_attribute_total_size

The amount of memory used by the directory attribute cache, in kilobytes.

This number includes additional memory used to manage the cache that is

not charged to the individual attribute caches. Consequently, this total is

larger than the sum of the memory used by all the individual attribute

caches.

cached_attribute_configured_size

The maximum amount of memory, in kilobytes, that is enabled to be used

by the directory attribute cache.

54 Performance Tuning and Capacity Planning Guide

cached_attribute_hit

The number of times the attribute has been used in a filter that could be

processed by the attribute cache. The value is reported as follows:

cached_attribute_hit=attrname:#####

cached_attribute_size

The amount of memory used for this attribute in the attribute cache. This

value is reported in kilobytes as follows:

cached_attribute_size=attrname:######

cached_attribute_candidate_hit

A list of up to ten most frequently used noncached attributes that have

been used in a filter that could have been processed by the directory

attribute cache if all of the attributes used in the filter had been cached.

The value is reported as follows:

cached_attribute_candidate_hit=attrname:#####

You can use this list to help you decide which attributes you want to

cache. Typically, you want to put a limited number of attributes into the

attribute cache because of memory constraints.

Examples

The following sections show examples of using values returned by the ldapsearch

command with ″cn=monitor″ to calculate the throughput of the server and the

number of add operations completed on the server in a certain timeframe.

Throughput example: The following example shows how to calculate the

throughput of the server by monitoring the server statistic called opscompleted,

which is the number of operations completed since the LDAP server started.

Suppose the values for the opscompleted attribute obtained by issuing two

ldapsearch commands to monitor the performance statistics, one at time t1 and the

other at a later time t2, were opscompleted (t1) and opscompleted (t2). The average

throughput at the server during the interval between t1 and t2 can be calculated

as:

(opscompleted(t2) - opscompleted(t1) - 3)/(t2 -t1)

(3 is subtracted to account for the number of operations performed by the

ldapsearch command itself.)

Workload example: The monitor attributes can be used to characterize the

workload, similar to the throughput example but split out by type of operation.

For example, you can calculate the number of add operations that were completed

in a certain amount of time.

Suppose the values for the addscompleted attribute obtained by issuing two

ldapsearch commands to monitor the performance statistics, one at time t1 and the

other at a later time t2, were addscompleted (t1) and addscompleted (t2). The

number of add operations completed on the server during the interval between t1

and t2 can be calculated as:

(addscompleted(t2) - addscompleted(t1) /(t2 -t1)

Similar calculations can be done for other operations, such as searchescompleted,

bindscompleted, deletescompleted, and modifiescompleted.

Chapter 6. IBM Tivoli Directory Server features 55

ldapsearch with ″cn=workers,cn=monitor″

An administrator can run a search using ″cn=workers,cn=monitor″ to get

information about what worker threads are doing and when they started doing it.

ldapsearch -D <adminDN> -w <adminpw> -b cn=workers,cn=monitor -s base objectclass=*

This information is most useful when a server is performing poorly or not

functioning as expected. It should be used only when needed to give insight into

what the server is currently doing or not doing.

The ″cn=workers, cn=monitor″ search returns detailed activity information only if

auditing is turned on. If auditing is not on, ″cn=workers, cn=monitor″ returns only

thread information for each of the workers.

 Attention: The ″cn=workers,cn=monitor″ search suspends all server activity until

it is completed. For this reason, a warning should be issued from any application

before issuing this feature. The response time for this command will increase as the

number of server connections and active workers increase.

For more information, see the IBM Tivoli Directory Server Version 6.1 Administration

Guide.

ldapsearch with ″cn=connections,cn=monitor″

An administrator can run a search using ″cn=connections,cn=monitor″ to get

information about server connections:

ldapsearch -D<adminDN> -w <adminPW> -h <servername> -p <portnumber>

 -b cn=connections,cn=monitor -s base objectclass=*

This command returns information in the following format:

cn=connections,cn=monitor

connection=1632 : 9.41.21.31 : 2002-10-05 19:18:21 GMT : 1 : 1 : CN=ADMIN : :

connection=1487 : 127.0.0.1 : 2002-10-05 19:17:01 GMT : 1 : 1 : CN=ADMIN : :

Note: If appropriate, an SSL or a TLS indicator is added on each connection.

For more information, see the IBM Tivoli Directory Server Version 6.1 Administration

Guide.

ldapsearch with ″cn=changelog,cn=monitor″

You can run a search using ″cn=changelog,cn=monitor″ to obtain information

about the changelog attribute cache. (See “When to configure the LDAP change

log” on page 57 for information about the change log.) The command returns the

following information:

cached_attribute_total_size

The amount of memory used by the changelog attribute cache, in kilobytes.

This number includes additional memory used to manage the cache that is

not charged to the individual attribute caches. Consequently, this total is

larger than the sum of the memory used by all the individual attribute

caches.

cached_attribute_configured_size

The maximum amount of memory, in kilobytes, that is enabled to be used

by the changelog attribute cache

56 Performance Tuning and Capacity Planning Guide

cached_attribute_hit

The number of times the attribute has been used in a filter that could be

processed by the changelog attribute cache. The value is reported as

follows:

cached_attribute_hit=attrname:#####

cached_attribute_size

The amount of memory used for this attribute in the changelog attribute

cache. This value is reported in kilobytes as follows:

cached_attribute_size=attrname:######

cached_attribute_candidate_hit

A list of up to ten most frequently used noncached attributes that have

been used in a filter that could have been processed by the changelog

attribute cache if all of the attributes used in the filter had been cached.

The value is reported as follows:

cached_attribute_candidate_hit=attrname:#####

You can use this list to help you decide which attributes you want to

cache. Typically, you want to put a limited number of attributes into the

attribute cache because of memory constraints.

When to configure the LDAP change log

IBM Tivoli Directory Server has a function called change log that results in a

significantly slower LDAP update performance. The change log function should be

configured only if needed.

The change log function causes all updates to LDAP to be recorded in a separate

change log DB2 database (that is, a different database from the one used to hold

the LDAP server Directory Information Tree). The change log database can be used

by other applications to query and track LDAP updates. The change log function is

disabled by default.

One way to check for existence of the change log function is to look for the suffix

CN=CHANGELOG. If it exists, the change log function is enabled.

Chapter 6. IBM Tivoli Directory Server features 57

58 Performance Tuning and Capacity Planning Guide

Chapter 7. Capacity Planning

There are several hardware decisions to be made before deploying IBM Tivoli

Directory Server. Hardware resources to consider are:

v Hard disk

v Memory

v CPUs

IBM Tivoli Directory Server can perform differently for various hardware

configurations, and it is important to understand which hardware configurations

cause the directory server to perform best.

Several tuning measures were taken to find the best settings under which the

server provides best results. Tuning factors tested were:

IBM Tivoli Directory Server tuning

LDAP Entry cache

DB2 tuning

v DB2 bufferpool

– LDAP bufferpool

– IBMDEFAULT bufferpool
v Optimization and organization (reorgchk and reorg)

v Other DB2 configuration parameters

v Backing up and restoring the database (backup and restore)

v Splitting of database

The capacity planning information in this chapter includes results observed from

data loading (using the bulkload utility) and running specific benchmarks on a

variety of AIX and Linux systems.

The results provided were obtained through the following methods: Two types of

LDIF files were used. The first type of LDIF file contains small entries with a flat

tree structure. The other type of LDIF file contains larger entry sizes as well as a

deeper tree structure. LDIF files with 100,000 and 1 million entries were created. A

5-million-entry LDIF file is created for the smaller entries. The first type of LDIF

file was used only for search operations. The second type was used for both

searches and updates. In each case, a directory server instance is created on the

system. The LDIF file is loaded into the database and the benchmark is run.

Operating system information and information related to the directory server

instance is collected at intervals throughout the load and the benchmark run.

Note: The statistics reported here are specific to the particular hardware setups

used and were generated in a lab environment. These results might not be

reproducible in other environments. The results reported here should be

used only as guidelines.

The LDAP server performance was monitored by running various workloads on

different hardware configurations. These workloads were run on a number of AIX

and Linux systems.

© Copyright IBM Corp. 2007 59

The systems had the following software installed:

v IBM Tivoli Directory Server 6.0

v DB2 8.2 with fix pack 8

Disk requirements

Because large amounts of data are stored in the directory server, it would be useful

to have a formula that determines the capacity of the hard disk that is required to

store the complete data. Also useful is a measure of how much CPU, memory, and

time is required to load this large amount of data into the directory server from an

LDIF file. The two most important factors here are:

v Time required to load the data into the directory server

v Space required to store the data on the hard disk

Bulkload time and space information

Two types of LDIF files were used to gather data statistics. The first is a flat

structured LDIF file with small entries. The second is a deeper tree with larger

entries. There are no access control lists (ACLs) or groups in either LDIF file.

Example small entry, approximately 415 bytes:

dn: cn=Joline Hickey, ou=Accounting, o=IBM.com

objectClass: top

objectClass: person

objectClass: organizationalPerson

cn: Joline Hickey

sn: Hickey

description: Joline_Hickey

facsimileTelephoneNumber: +1 71 631-7308

l: Palo Alto

ou: Accounting

postalAddress: IBM.com$Accounting$Dept # 363$Room # 890

telephoneNumber: +1 408 995-7674

title: Supreme Accounting Mascot

userPassword: yekciHenil

seeAlso: cn=Joline

Example large entry, approximately 10,390 bytes:

dn: mdsListName=List219, mdsContainerName=container22, mdsUID=22, mdso=393, mdsc=C1,

 dc=IBM, dc=com

objectclass: MDSBlobList

mdsListName: List219

mdsHeadTitle: Listen Titel 9

mdsdata:: XXX

XXXXXXXXXXXXXXXXXXXXXX

XX

XX

XXXXXXXXXXXXXXXXXXXXXX

XX

XX

XXXXXXXXXXXXXXXXXXXXXX

...

XXX

XXXXXXXXXX XX

XXXXXXXXXXXXXXXXXXXXX

XXX

XXXXXXXXXX

XXX

XXX

XXXXXXXXXXXXXXXXXXXX

60 Performance Tuning and Capacity Planning Guide

The attribute “mdsdata” contains binary data. Binary data is not stored in attribute

tables and has a big impact on total disk space and on parsing and loading times.

Time Information

The following graphs and tables show results from running the bulkload utility

with sizes of 100,000 entries and 1 million entries (for small and large entries), as

well as 5 million small entries. The bulkload was run in two passes, first the parse

and then the load. The information was collected on an AIX 5.3 system with two

1656 MHz POWER5 processors and 3792 MB of RAM. No tuning was done on the

database settings before running the bulkload utility. For the smaller entry data, an

index for the seeAlso attribute was added.

Note: The following results were obtained by using the bulkload utility with DB2

v8.1.

Times for bulkload for LDIF files with 100,000 entries

 Table 1. Bulkload times for 100,000 entries

Time in seconds Small entries Large entries

Parse time 35 127

Load time 47 128

Total time 82 255

Times for bulkload for LDIF files with 1,000,000 entries

 Table 2. Bulkload times for 1,000,000 entries

Time in minutes Small entries Large entries

Parse time 5 25

Load time 8 112

Total time 13 137

Chapter 7. Capacity Planning 61

Times for bulkload for LDIF file with 5,000,000 small entries

 Table 3. Bulkload times for 5,000,000 small entries

Time in seconds Small entries

Parse time 25

Load time 112

Total time 137

 By comparing the bulkload times for the same LDIF file on three different systems,

the time variations and impact of the hardware can be observed. The following

graph and table show the results for three bulkload runs with the 1,000,000 small

entries LDIF file. The three systems used were:

System1

AIX 5.2 with 4 RS64-IV 752 MHz processors and 6144 MB of RAM

System2

AIX 5.2 with 4 1453 MHz POWER4 processors and 8192 MB of RAM

System3

AIX 5.3 with 2 1656 MHz POWER5 processors and 3792 MB of RAM

Times for bulkload for LDIF file with 1,000,000 small entries

 Table 4. Bulkload times for 1,000,000 small entries on three different systems

Time (minutes) System1 System2 System3

Parse time 9.5 6.2 5

Load time 14.6 10.8 8

Total time 24.1 17 13

62 Performance Tuning and Capacity Planning Guide

The AIX 5.3 system performed the bulkload operation in about half the time that it

took the AIX 5.2 system for the same operation. The bulkload utility is single

threaded, so improvements in time come from the CPU speed and disk speed of

the hardware being used. This is shown by the improvement on the AIX 5.2

system when run with the faster, POWER4 processors.

In general, the parse time increases linearly as the number of entries in the LDIF

file increases. For example, the parse time for 100,000 small entries was 35 seconds

and the parse time for 1,000,000 small entries was roughly 10 times that, or 5

minutes. This is not true for the load times, however. Load time does not increase

linearly with respect to the data set size.

During the parse phase, intermediate files are generated; these files are used in the

load phase. If the input LDIF file is large, more data is written to the intermediate

files. The time increase is mostly in disk I/O, and it can be seen in the results

obtained for the different LDIF files. The average entry parse time per second is

significantly greater for the larger entry size LDIF. For the 100,000 entry LDIF file

with smaller sized entries, an average of 2800 entries were parsed per second. For

the larger sized entries, however, only 780 entries were parsed per second.

Space information

The space needed in three different filesystem directories was calculated for each

of the five LDIF files that were created. The first was the space in the temporary

directory used by the parse phase of the bulkload operation. This can be referred

as the parse size. The second is the space needed in the actual directory where the

database is stored. This can be referred as the database size. The third is the space

needed to hold a backup of the database. This can be referred as the backup size.

The charts displayed below show these statistics for both the small and large entry

files, and for 100,000, 1,000,000, and 5,000,000 entries (for small entries only), along

with the size of the corresponding LDIF file.

Space used for bulkload for LDIF file with 100,000 entries

 Table 5. Bulkload space for 100,000 entries

Size in MB Small entries Large entries

LDIF file size in MB 41 859

Parse space in MB 139 927

Database space in MB 304 1213

Backup space in MB 320 1233

Chapter 7. Capacity Planning 63

Space used for bulkload for LDIF file with 1,000,000 entries

 Table 6. Bulkload space for 1,000,000 entries

Size in MB Small entries Large entries

LDIF size in MB 407 8597

Parse space in MB 1405 9294

Database space in MB 2779 11864

Backup space in MB 2793 11866

Space used for bulkload for LDIF file with 5,000,000 small entries

 Table 7. Bulkload space for 5,000,000 small entries

Size in MB Small entries

LDIF size in MB 2033

Parse space in MB 7116

Database space in MB 13780

Backup space in MB 13815

 From this data, you can generalize the amount of space needed per entry for the

different types of entries. For the smaller entries about 3 KB of space per entry is

needed for database storage. For the larger entries, the requirement increases to 12

KB per entry.

The space needed to back up the database is roughly equivalent to the space

needed for the database itself. The space needed for the parse phase of the

64 Performance Tuning and Capacity Planning Guide

bulkload is about 3.5 times the size of the LDIF file for the smaller entries (or 1.5

KB per entry), and about 1.2 times the size of the LDIF file for the larger entries (or

9.5 KB per entry).

Memory requirements

When the LDAP server is tuned for performance gain, it is generally done by

tuning the size of the LDAP caches or by setting the DB2 bufferpool. However,

while doing this the memory capacity of the system must be considered. Allocating

a very large amount for the bufferpool or caches or both will result in an increase

in the overall memory requirement. Therefore, bufferpool and cache sizes must be

allocated carefully. See Chapter 2, “IBM Tivoli Directory Server tuning,” on page 7

and Chapter 3, “Tuning DB2 and LDAP caches,” on page 23 for information.

CPU requirements

To ensure that the CPU is used at its optimum level, here are some guidelines:

v Ensuring that the required data is available in the caches or bufferpool results in

low disk accesses, which are generally slower than memory accesses. This

decreases the time that the CPU must wait for input/output to occur.

v Enabling simultaneous multithreading (SMT) on systems that are capable of

hyperthreading increases the processing capability and the application

throughput. See “Simultaneous multithreading” on page 68 for more

information.

v Systems with fewer CPUs but greater CPU frequency work more efficiently than

systems with more CPUs but lower CPU frequency. For example, a system with

2 processors with 1200 MHz speed performs better than a system with 4

processors with 600 MHz speed.

CPU scaling comparison for throughput (searches and

updates)

The processor plays an important role in the overall performance of any

application. There are two important factors for a processor that add to the overall

performance:

v Number of processors

v Processor speed

Scaling of throughput for varying number of processors

To determine the effect of the number of processors on the overall performance of

the directory server, all the hardware configurations were kept common, except for

the number of processors. The workloads were run on 3 different AIX 5.3 systems

with 1, 2, and 4 POWER V processors (1499 MHz) and 6144 MB RAM.

On each system, the directory server was loaded with 100,000 entries. The same

update and search workload was run on all the systems. The update workload

consisted of modify and modrdn operations, while the search workload consisted

of rootdse searches along with subtree searches. The entry cache size was set to the

default value of 25 KB. The results for the search and update workloads with

varied number of processors are shown in the following sections.

Search throughput: The following table shows the throughput figures for a

directory server with 100,000 entries:

Chapter 7. Capacity Planning 65

Table 8. Search throughput with 1, 2, and 4 CPUs

Number of

CPUs Throughput

CPU User

time

CPU system

time

CPU idle

time

CPU wait

time

1 CPU 11129.1 65 35 0 0

2 CPUs 14899.9 59 34 7 0

4 CPUs 18199.5 37 23 40 0

The results for a dual processor configuration are far better than the results for a

computer with a single processor. Best results can be obtained using a

multiprocessor computer.

The following graph shows the scaling of the search throughput across varying

number of processors.

Update throughput: The following table shows the throughput figures for a

directory server loaded with 100,000 entries:

 Table 9. Update throughput for 1, 2, and 4 CPUs

Number of

CPUs Throughput

CPU User

time

CPU system

time

CPU idle

time CPU wait time

1 CPU 383.5 65 35 0 0

2 CPUs 398.7 59 34 7 0

3 CPUs 400.4 37 23 40 0

The following graph shows the scaling of the update throughput with varying

numbers of processors.

66 Performance Tuning and Capacity Planning Guide

The SMT option can be used to simulate the computer having more processors

than are physically present. For more information about SMT, see “Simultaneous

multithreading” on page 68.

Scaling of throughput with varying processor speeds

To determine the impact of the CPU speed on the overall performance, the search

workload was run on the following systems:

v AIX 5.2 with 4 Power4 752 MHz processors

v AIX 5.2 with 4 Power4 1453 MHz processors

The workload consisted of LDAP search operations for various attributes in

varying rates. The parameters that were configured for this workload are:

 Table 10. Parameter settings for search workload

Parameter Bind

UID

searches

CN

wildcard

searches

Exact

match on

Given

name

Exact

match on

SN

Exact

match on

CN

Not

found

Setting After

every 5

operations

28% 24%; * at

the end

of the

value

searched

for

16% 8% 16% 8%

The results of running this workload on a directory server with 100,000 and

1,000,000 entries are as follows:

v For a directory with 100,000 entries:

 Table 11. Throughput for search for 100,000 entry directory

CPU speed Throughput CPU % Idle % Wait %

752MHz 1125 93 6 0

1453 MHz 1618 80 19 0

v For a directory with 1,000,000 entries:

 Table 12. Throughput for search for 1,000,000 entry directory

CPU speed Throughput CPU % Idle % Wait %

752MHz 152 100 0 0

1453 MHz 246 97 1 0

The frequency of the second processor is almost double that of the first one. For a

directory with 100,000 entries there is an increase in throughput of 43% and for a

directory with 1,000,000 entries there is an increase of 61%. This shows that for an

increase in the CPU frequency the throughput increases by the same factor as the

CPU frequency.

Splitting the database across multiple disks

The tests showed that when the database is split across two different disks instead

of residing on one disk, the throughput achieved is doubled. CPU utilization is one

important factor that is responsible for this. The following tables show the effect on

CPU utilization of splitting the database across two hard disks.

Chapter 7. Capacity Planning 67

Effect on search throughput of splitting the database across two hard disks

 Table 13. Search throughput with one and two hard disks

Database Throughput IB LB CPU % Idle % Wait %

AVM

(MB)

Memory

(KB)

Normal 260 95 74 23 68 8 191 389044

Split 416 95 74 46 37 16 179 378464

The update workload consists of search and modify operations on a directory with

1 million entries. The computer is a Linux system with 2 Xeon 2400 MHz

processors and 4001 MB RAM. The CPU idle % is reduced to half when the

database is split across two different disks. The results can be further enhanced by

using a high speed hard disk drive to save I/O time as well.

Effect on update throughput of splitting the database across two hard disks

 Table 14. Update throughput with one and two hard disks

Database Throughput IB LB CPU % Idle % Wait %

AVM

(MB)

Memory

(KB)

Normal 118 92 73 23 68 9 496 400736

Split 237 93 72 47 36 16 451 398960

For information about splitting the database across multiple disks, see the redpaper

entitled "Performance Tuning for IBM Tivoli Directory Server."

Simultaneous multithreading

Simultaneous multithreading is a processor design that combines hardware

multithreading with superscalar processor technology to allow multiple threads to

issue instructions each cycle. Unlike other hardware multithreaded architectures in

which only a single hardware context (or thread) is active on any given cycle, SMT

permits all thread contexts to simultaneously compete for and share processor

resources. Unlike conventional superscalar processors, which suffer from a lack of

per-thread instruction-level parallelism, simultaneous multithreading uses multiple

threads to compensate for low single-thread instruction-level parallelism.

Simultaneous multithreading allows multiple threads to run different instructions

in the same clock cycle, using the execution units that the first thread left spare.

This is done without great changes to the basic processor architecture: the main

additions needed are the ability to fetch instructions from multiple threads in a

cycle, and a larger register file to hold data from multiple threads. The number of

concurrent threads can be decided by the chip designers, but practical restrictions

on chip complexity usually limit the number to 2, 4 or sometimes 8 concurrent

threads.

The performance consequence is significantly higher instruction throughput and

program speedups on a variety of workloads that include commercial databases,

web servers and scientific applications in both multiprogrammed and parallel

environments.

68 Performance Tuning and Capacity Planning Guide

SMT on AIX FAQs

How would I know if my system is capable of using simultaneous

multithreading)?

Your system is capable of SMT if it is a POWER5-based system running

AIX 5L Version 5.3.

How would I know if SMT is enabled for my system?

If you run the smtctl command without any options, the response tells you

if SMT is enabled or not.

Is SMT supported for the 32-bit kernel?

Yes, SMT is supported for both 32-bit and 64-bit kernel.

How do I enable or disable SMT?

You can enable or disable SMT by running the smtctl command. The

following is the syntax:

smtctl [-m off | on [-w boot | now]]

The following options are available:

-m off Sets SMT mode to disabled.

-m on Sets SMT mode to enabled.

-w boot

Makes the SMT mode change effective on next and subsequent

restarts if you run the bosboot command before the next system

restart.

-w now

Makes the SMT mode change immediately but the change does not

persist across restart.

If neither the -w boot or the -w now options are specified, the mode

change is made immediately. It persists across subsequent restarts if you

run the bosboot command before the next system restart.

Chapter 7. Capacity Planning 69

70 Performance Tuning and Capacity Planning Guide

Appendix A. Workload description

The tests used in this document contain a mixture of searches and binds, including

wildcard searches, which return multiple entries.

Each scenario consists of two phases, a warmup phase and a run phase. During

the warmup phase, the searches primarily request entries that are not in the LDAP

caches; most of these requests require interaction with the DB2 backing store. For

all the measurements reported in this document, warmup consisted of running all

queries at least once; consequently, during the run phase all entries requested are

potentially already in LDAP caches in memory if the caches are large enough to

hold all of them. Thus the warmup phase and the run phase comprise two

distinctly different workloads.

During the run phase of the mixed search and bind test, a number of client threads

issue search requests to the IBM Tivoli Directory Server from predetermined

scripts. The scripts include a number of different kinds of searches, including

wildcard and other searches that return multiple entries per request. The client

threads run through their scripts continuously for three minutes. Throughput is

measured on the server for each three-minute interval, and then each client starts

over at the beginning of its script. Each three-minute interval is referred to as a

run. The server is not restarted between runs.

© Copyright IBM Corp. 2007 71

72 Performance Tuning and Capacity Planning Guide

Appendix B. Modifying TCP/IP settings

Closed TCP/IP connections between the client and the LDAP server are cleaned at

system-specified intervals. In environments where the connections are opened or

closed at a high frequency, this can degrade LDAP server performance. To shorten

the cleaning intervals, modify the registry keys.

Do the following to modify the registry keys on a Windows platform:

1. Type the following at a command prompt to open Registry Editor:

regedit

2. Go to HKey_Local_Machine\System\CurrentControlSet\Services\Tcpip\
Parameters.

3. Add TcpTimedWaitDelay entry (if not already in the registry).

4. Set the DWORD value to 1e for 30 seconds.

5. Add StrictTimeWaitSeqCheck entry (if not already in the registry).

6. Set DWORD Value to 1

7. Reboot the machine.

Do the following to modify the TCP/IP settings on an AIX platform:

1. Use the following command

no -o <attributename>=<value>

to set the following attributes and values for performance tuning:

tcp_keepidle

Specifies the length of time to keep the connection active. This value is

defined in 1/2 second units, and defaults to 14,400 (7200 seconds or 2

hours). tcp_keepidle is a runtime attribute.

tcp_keepinit

Sets the initial timeout value for a tcp connection. This value is defined

in 1/2 second units, and defaults to 150 (75 seconds). It can be changed

to any value with the -o option. tcp_keepinit is a runtime attribute.

tcp_keepintvl

Specifies the interval between packets sent to validate the connection.

This value is defined in 1/2 second units, and defaults to 150 (75

seconds). tcp_keepintvl is a runtime attribute.

Note: This applies to both client and server machines.

© Copyright IBM Corp. 2007 73

74 Performance Tuning and Capacity Planning Guide

Appendix C. Platform configurations

The performance tuning examples in this guide use the following platform

configurations:

v Clients

– Four 1.8GHz, 512MB RAM, Intel® PRO/100 VE

– Windows 2000 Professional with SP2
v Server

– 4-Way 450MHz, pSeries(TM) eServer(TM) Model 7026-B80 with 1 or 4

processors active, 4 GB RAM.

– IBM 10/100 Ethernet Adapter.

– AIX 5.2

– IBM Tivoli Directory Server Version 6.1

– AIXTHREAD_SCOPE=S

– MALLOCTYPE=buckets

– NODISCLAIM=true (1way).

– RDBM_CACHE_SIZE=460000 except where noted.

– RDBM_FCACHE_SIZE=75000 except where noted.

– RDBM_CACHE_BYPASS_LIMIT=100 except where noted.

– Necessary Indexes created (for attribute seeAlso).

– No ACLs were set. By default, anyone can search and compare. The directory

administrator can update.
v DB2 v 8.1.1.16

– maxlocks 100 sortheap 2500 dbheap 5000 ibmdefaultbp 20000 (4K pages)

ldapbp 9800 (32K pages)

– logfilsiz 2048, logprimary 6
v Miscellaneous

– Caches were warmed up by running all scripts once.

– Measurements were taken using 50 client threads except where noted.

– DB2 log files are not on the same disk as the containers.

© Copyright IBM Corp. 2007 75

76 Performance Tuning and Capacity Planning Guide

Appendix D. Notices

This information was developed for products and services offered in the U.S.A.

IBM might not offer the products, services, or features discussed in this document

in other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in

this document. The furnishing of this document does not give you any license to

these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the information. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

information at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2007 77

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Department MU5A46

11301 Burnet Road

Austin, TX 78758

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, or other countries, or both:

 AIX

DB2

i5/OS

IBM

iSeries

Lotus

OMEGAMON

OS/400

Passport Advantage

pSeries

SecureWay

Tivoli

WebSphere

World Registry

xSeries

z/OS

zSeries

78 Performance Tuning and Capacity Planning Guide

Adobe, the Adobe logo, PostScript®, and the PostScript logo are either registered

trademarks or trademarks of Adobe Systems Incorporated in the United States,

and/or other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Microsoft®, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

Appendix D. Notices 79

80 Performance Tuning and Capacity Planning Guide

Index

A
accessibility vii

ACL cache
description 14

AIX environment variables
AIXTHREAD_SCOPE 40

MALLOCTYPE 39

NODISCLAIM 40

viewing 40

AIX, enabling large files 39

AIXTHREAD_SCOPE, setting 40

alter bufferpool command 26

APPLHEAPZ 36

attribute cache
adding attributes to

using command line 17

complex filters resolved by 7

configuring 16

using command line 17

determining attributes for 8

language tags 8

processing queries 7

simple filters resolved by 7

B
books

see publications v, vi

buffer pools
Memory 3

bulkload 45

-k option 45

C
cache configuration variables, setting

using command line 18

using Web Administration Tool 17

cache entry sizes, determining 15

caches, LDAP
configuration variables 15

description 3

directory size 21

listed 2

tuning to improve performance 7

change log
checking for existence of 57

use of 57

components
IBM Tivoli Directory Server 1

configurations used
client 75

DB2 75

miscellaneous 75

server 75

conventions
typeface viii

D
DB2 buffer pools 2

and directory size 21

determining best size for 24

IBMDEFAULTBP 2

LDAPBP 2

setting sizes 26

tuning considerations 24

tuning overview 23

DB2 configuration parameters
determining current settings 36

setting 36

DB2 tuning
backup command 37

buffer pools 24

database organization 30

optimization and organization

overview 29

optimizing
overview 29

using command line 30

using Configuration Tool 29

restore command 37

directory names, notation viii

directory size
measuring effect on performance 19

size of DB2 buffer pools 21

size of LDAP caches 21

disk speed, improving 43

E
education

see Tivoli technical training vii

entry cache
description 13

determining best size for 13

determining entry size 15

environment variables, notation viii

F
filter cache

determining best size for 11

determining entry size 15

processing queries 11

size with updates 11

filter cache bypass limit, determining

best 12

I
IBM Tivoli Directory Server

components 1

IBM Tivoli Directory Server features
bulkload 45

change log 57

monitoring performance 51

Proxy server 50

IBM Tivoli Directory Server features

(continued)
replication 47

IBMDEFAULTBP
description 2

determining best size for 25

improving disk speed 43

indexes, DB2 35

L
large files, enabling on AIX 39

LDAP attribute cache 7

LDAP caches 2

Memory 3

LDAP filter cache 11

LDAPBP
description 2

determining best size for 25

ldapsearch
″cn=changelog,cn=monitor″ 56

″cn=connections,cn=monitor″ 56

″cn=monitor″ 51

″cn=workers,cn=monitor″ 56

LOGFILSIZ 36

M
MALLOCTYPE, setting 39

manuals
see publications v, vi

monitoring performance 51

N
NODISCLAIM, setting 40

notation
environment variables viii

path names viii

typeface viii

O
online publications

accessing vi

ordering publications vii

P
path names, notation viii

performance, monitoring 51

Proxy server 50

publications v

accessing online vi

ordering vii

© Copyright IBM Corp. 2007 81

R
reorg command 33

reorgchk command 30

replication 47

context cache size 48

number of replication threads 48

ready size limit 49

RUNSTATS command 30

S
settings

ibm-slapdIdleTimeOut 18

ibm-
slapdMaxEventsPerConnection 18

ibm-slapdMaxEventsTotal 18

ibm-slapdMaxNumOfTransactions 18

ibm-slapdMaxOpPerTransaction 18

ibm-
slapdMaxTimeLimitOfTransactions 18

ibm-
slapdPagedResAllowNonAdmin 18

ibm-slapdPagedResLmt 18

ibm-slapdSizeLimit 18

ibm-slapdSortKeyLimit 18

ibm-
slapdSortSrchAllowNonAdmin 18

ibm-slapdTimeLimit 18

T
TCP/IP settings

modifying 73

tips for improving performance
disk speed 43

generic 4

Tivoli software information center vi

Tivoli technical training vii

training, Tivoli technical vii

tuning
LDAP 1

overview 1

tuning, DB2 3

tuning, LDAP
overview 3

tips 4

typeface conventions viii

V
variables, notation for viii

W
Workload description 71

82 Performance Tuning and Capacity Planning Guide

����

Printed in USA

SC23-6540-00

	Contents
	About this book
	Intended audience for this book
	Publications
	IBM Tivoli Directory Server version 6.1 library
	Related publications
	Accessing terminology online
	Accessing publications online
	Ordering publications

	Accessibility
	Tivoli technical training
	Support information
	Conventions used in this book
	Typeface conventions
	Operating system-dependent variables and paths

	Chapter 1. IBM Tivoli Directory Server tuning general overview
	IBM Tivoli Directory Server application components
	LDAP caches and DB2 buffer pools
	LDAP caches
	DB2 buffer pools

	Memory allocation between LDAP caches and buffer pools

	IBM Tivoli Directory Server tuning overview
	DB2 tuning overview
	Performance impact due to multiple password policy
	Enforcing minimum ulimits
	Generic LDAP application tips

	Chapter 2. IBM Tivoli Directory Server tuning
	LDAP caches
	LDAP attribute cache
	Determining which attributes to cache

	LDAP filter cache
	Filter cache size
	Filter cache size with updates
	Filter cache bypass limits

	Entry cache
	Entry cache size
	Group members cache

	ACL cache

	Measuring cache entry sizes
	LDAP cache configuration variables
	Configuring attribute caching
	Using the Web Administration Tool
	Using the command line

	Setting other LDAP cache configuration variables
	Using the Web Administration Tool
	Using the command line
	Additional settings

	Directory size

	Chapter 3. Tuning DB2 and LDAP caches
	DB2 buffer pool tuning
	Buffer pool sizes
	LDAPBP buffer pool size
	IBMDEFAULTBP buffer pool size
	Setting buffer pool sizes

	The Performance Tuning Tool (idsperftune)
	Basic tuning
	Advanced tuning

	Optimization and organization (reorgchk and reorg)
	Optimization
	Database organization (reorgchk and reorg)
	Performing a reorgchk
	Performing a reorg

	Data Row Compression

	Indexes
	Other DB2 configuration parameters
	Database backup and restore considerations

	Chapter 4. AIX operating system tuning
	Enabling large files
	Setting MALLOCTYPE
	Setting other environment variables
	Viewing ibmslapd environment variables (AIX operating system only)

	Chapter 5. Hardware tuning
	Disk speed improvements

	Chapter 6. IBM Tivoli Directory Server features
	Bulkload
	Effects of using the -k option

	Replication tuning
	Number of replication threads
	Replication context cache size
	Replication ready size limit

	Proxy server tuning
	Monitoring performance
	ldapsearch with "cn=monitor"
	Examples

	ldapsearch with "cn=workers,cn=monitor"
	ldapsearch with "cn=connections,cn=monitor"
	ldapsearch with "cn=changelog,cn=monitor"

	When to configure the LDAP change log

	Chapter 7. Capacity Planning
	Disk requirements
	Bulkload time and space information
	Time Information
	Space information

	Memory requirements
	CPU requirements
	CPU scaling comparison for throughput (searches and updates)
	Scaling of throughput for varying number of processors
	Scaling of throughput with varying processor speeds

	Splitting the database across multiple disks

	Simultaneous multithreading
	SMT on AIX FAQs

	Appendix A. Workload description
	Appendix B. Modifying TCP/IP settings
	Appendix C. Platform configurations
	Appendix D. Notices
	Trademarks

	Index

