
IBM Tivoli  Directory  Server

Programming Reference 

Version 6.1  

SC23-7836-00  

���





IBM Tivoli  Directory  Server

Programming Reference 

Version 6.1  

SC23-7836-00  

���



Note 

Before using this information  and the product it supports, read the general  information  under Appendix  J, “Notices,” on 

page 295.

This  edition  applies  to version  6, release  1, of IBM  Tivoli  Directory  Server  and  to all subsequent  releases  and  

modifications  until  otherwise  indicated  in new  editions.  

© Copyright  International  Business  Machines  Corporation  2002,  2007.  All rights  reserved.  

US  Government  Users  Restricted  Rights  – Use,  duplication  or disclosure  restricted  by GSA  ADP  Schedule  Contract  

with  IBM  Corp.

 



Contents  

About this book  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 

Intended  audience  for this  book   . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii  

Publications   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 

IBM  Tivoli  Directory  Server  version  6.1  library   . . . . . . . . . . . . . . . . . . . . . . xiii  

Related  publications   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv 

Accessing  terminology  online   . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv  

Accessing  publications  online   . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv 

Ordering  publications   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 

Accessibility   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv  

Tivoli  technical  training   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 

Support  information   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv  

Conventions  used  in this  book  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi  

Typeface  conventions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi  

Operating  system-dependent  variables  and  paths   . . . . . . . . . . . . . . . . . . . . . xvi 

Chapter 1. IBM Directory Programming Reference overview  . . . . . . . . . . . . . 1  

LDAP  version  support   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

LDAP  API  overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  

Typical API  usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

Displaying  results   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

Uniform  Resource  Locators  (URLs)   . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

Secure  Socket  Layer  (SSL)  support   . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  

Chapter 2. API categories  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

LDAP_ABANDON   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

Synopsis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

Usage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  

See  also   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

LDAP_ADD   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 

Synopsis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

Usage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  

See  also   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

LDAP_BIND  / UNBIND   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 

Synopsis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

LDAP_CODEPAGE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

 

© Copyright  IBM Corp. 2002, 2007 iii



LDAP_COMPARE   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 

LDAP  controls   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

Functions  to manipulate  controls   . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  

LDAP_CREATE_ABORT_TRANSACTION_REQUEST   . . . . . . . . . . . . . . . . . . . . . 26 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

LDAP_CREATE_COMMIT_TRANSACTION_REQUEST   . . . . . . . . . . . . . . . . . . . . 27 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

LDAP_CREATE_EFFECTIVE_PWDPOLICY_REQUEST  . . . . . . . . . . . . . . . . . . . . . 28  

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

LDAP_CREATE_GET_FILE_REQUEST   . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  

LDAP_CREATE_LIMIT_NUM_VALUES_CONTROL  . . . . . . . . . . . . . . . . . . . . . . 29  

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 

LDAP_CREATE_LOCATE_ENTRY_REQUEST   . . . . . . . . . . . . . . . . . . . . . . . . 30  

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  

Error   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  

LDAP_CREATE_ONLINE_BACKUP_REQUEST   . . . . . . . . . . . . . . . . . . . . . . . 31 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  

LDAP_CREATE_PASSWORD_POLICY_BIND_FINALIZE_REQUEST   . . . . . . . . . . . . . . . . 32  

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

 

iv Programming Reference



Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

Error   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

LDAP_CREATE_PASSWORD_POLICY_BIND_INIT_REQUEST   . . . . . . . . . . . . . . . . . . 32 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

Error   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

LDAP_CREATE_PERSISTENTSEARCH_CONTROL   . . . . . . . . . . . . . . . . . . . . . . 33 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

Error   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

LDAP_CREATE_PREPARE_TRANSACTION_REQUEST   . . . . . . . . . . . . . . . . . . . . 34  

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

LDAP_CREATE_PROXYAUTH_CONTROL  . . . . . . . . . . . . . . . . . . . . . . . . . 35  

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

LDAP_CREATE_RESUME_ROLE_REQUEST   . . . . . . . . . . . . . . . . . . . . . . . . 37 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

LDAP_CREATE_TRANSACTION_CONTROL   . . . . . . . . . . . . . . . . . . . . . . . . 38  

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 

LDAP_DELETE   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

LDAP_END_TRANSACTION   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  

 

Contents  v



Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

LDAP_ERROR   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

LDAP_EXTENDED_OPERATION   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  

Notes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

LDAP_FIRST_ATTRIBUTE   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  

Notes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 

LDAP_FIRST_ENTRY,  LDAP_FIRST_REFERENCE   . . . . . . . . . . . . . . . . . . . . . . 52 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 

LDAP_FREE_LIMIT_NUM_VALUES_RESPONSE  . . . . . . . . . . . . . . . . . . . . . . . 54  

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 

LDAP_GET_BIND_CONTROLS   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 

LDAP_GET_DN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  

Notes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 

LDAP_GET_TRAN_ID   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 

 

vi Programming Reference



Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 

LDAP_GET_VALUES   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 

LDAP_INIT   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  

LDAP_DEBUG   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 

LDAP_SET_OPTION  syntax  for  LDAP  V2 applications  . . . . . . . . . . . . . . . . . . . . 70  

Locating  default  LDAP  servers   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 

Multithreaded  applications   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 

Notes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 

LDAP_MEMFREE   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 

LDAP_MESSAGE   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 

LDAP_MODIFY   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 

LDAP_PAGED_RESULTS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  

Notes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 

LDAP_PARSE_EFFECTIVE_PWDPOLICY_RESPONSE   . . . . . . . . . . . . . . . . . . . . . 81  

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 

 

Contents  vii



LDAP_PARSE_ENTRYCHANGE_CONTROL   . . . . . . . . . . . . . . . . . . . . . . . . 82  

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  

Error   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  

LDAP_PARSE_EXTENDED_RESULT_W_CONTROLS   . . . . . . . . . . . . . . . . . . . . . 83 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  

LDAP_PARSE_LIMIT_NUM_VALUES_RESPONSE   . . . . . . . . . . . . . . . . . . . . . . 84 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 

LDAP_PARSE_RESULT   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 

LDAP_PASSWORD_POLICY   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 

LDAP_PLUGIN_REGISTRATION   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 

LDAP_PREPARE_TRANSACTION   . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 

LDAP_RENAME   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 

LDAP_RESULT   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 

 

viii Programming Reference



Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  

Notes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 

See  also  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 

LDAP_SEARCH  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  

Notes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 

See  also   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  

LDAP_SERVER_INFORMATION  IN  DNS  . . . . . . . . . . . . . . . . . . . . . . . . . 102 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

See  also   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

LDAP_SSL   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  

Options   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 

Notes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 

See  also   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  

LDAP_SSL_PKCS11   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128  

See  also   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  

LDAP_START_TRANSACTION   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  

See  also   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  

LDAP_START_TLS   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130  

See  also   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  

LDAP_STOP_TLS   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  

See  also   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  

LDAP_URL   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 

 

Contents  ix



Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  

Notes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  

See  also   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  

LDAP_SSL_ENVIRONMENT_INIT   . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 

See  also   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  

LDAP_SORT   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135  

Purpose   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 

Synopsis   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 

Input  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 

Output  parameters   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136  

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137  

Errors   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  

Notes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  

See  also   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140  

Chapter 3. IBM Tivoli Directory Server Java Naming and Directory Interface (JNDI) 

Toolkit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 

Implementing  extended  operations  using  Tivoli  Directory  Server  JNDI  Toolkit  . . . . . . . . . . . . 141  

Implementing  controls  using  Tivoli  Directory  Server  JNDI  Toolkit . . . . . . . . . . . . . . . . . 144 

LDAP  client  utilities   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146  

Chapter 4. Using gsk7IKM  . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 

Creating  a key  pair  and  requesting  a certificate  from  a Certificate  Authority   . . . . . . . . . . . . . 149 

Receiving  a certificate  into  a key  database  . . . . . . . . . . . . . . . . . . . . . . . . . 151 

Changing  a key  database  password   . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  

Showing  information  about  a key   . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 

Deleting  a key   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  

Making  a key  the  default  key  in the  key  database   . . . . . . . . . . . . . . . . . . . . . . 153  

Creating  a key  pair  and  certificate  request  for  self-signing   . . . . . . . . . . . . . . . . . . . 153 

Exporting  a key   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 

Importing  a key   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 

Designating  a key  as a trusted  root   . . . . . . . . . . . . . . . . . . . . . . . . . . . 155  

Removing  a key  as a trusted  root  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156  

Requesting  a certificate  for  an  existing  key   . . . . . . . . . . . . . . . . . . . . . . . . 156 

Migrating  a keyring  file  to  the  key  database  format   . . . . . . . . . . . . . . . . . . . . . 157  

Chapter 5. Change tracking in Tivoli Directory Server  . . . . . . . . . . . . . . . 159 

Persistent  search   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 

Event  notification   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 

Registration  request   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160  

Registration  response  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  

Unregistering  a client  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 

Example   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  

Change  log   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 

Chapter 6. LDAP client plug-in programming reference  . . . . . . . . . . . . . . 165 

Introduction  to client  SASL  plug-ins  . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 

Basic  processing   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 

Restrictions   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  

Initializing  a plug-in   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 

Writing your  own  SASL  plug-in   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 

Plug-in  APIs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 

ldap_plugin_pblock_get()   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 

 

x Programming  Reference



ldap_plugin_pblock_set()   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169  

ldap_plugin_sasl_bind_s()   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 

Sample  worker  function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 

Appendix A. Possible extended error codes returned by LDAP SSL function codes 173 

Appendix B. LDAP V3 schema  . . . . . . . . . . . . . . . . . . . . . . . . . 177 

Dynamic  schema   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  

Schema  queries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  

Dynamic  schema  changes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  

Appendix C. LDAP distinguished names . . . . . . . . . . . . . . . . . . . . . 183 

Informal  definition   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183  

Formal  definition   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 

Appendix D. LDAP data interchange format (LDIF)  . . . . . . . . . . . . . . . . 185 

LDIF  examples   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 

LDIF  example:  Content   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185  

LDIF  file:  Change  types   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 

Version  1 LDIF  support   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  

Version  1 LDIF  examples   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187  

IANA  character  sets  supported  by platform   . . . . . . . . . . . . . . . . . . . . . . . . 188 

Appendix E. Deprecated LDAP APIs . . . . . . . . . . . . . . . . . . . . . . . 191 

Appendix F. Object Identifiers (OIDs) for extended operations and controls  . . . . . 193 

OIDs  for  extended  operations   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 

Account  status  extended  operation   . . . . . . . . . . . . . . . . . . . . . . . . . . 196 

Attribute  type  extended  operations   . . . . . . . . . . . . . . . . . . . . . . . . . . 197  

Begin  transaction  extended  operation   . . . . . . . . . . . . . . . . . . . . . . . . . 200 

Cascading  replication  operation  extended  operation   . . . . . . . . . . . . . . . . . . . . 201 

Control  replication  extended  operation   . . . . . . . . . . . . . . . . . . . . . . . . . 204 

Control  queue  extended  operation   . . . . . . . . . . . . . . . . . . . . . . . . . . 205 

DN  normalization  extended  operation   . . . . . . . . . . . . . . . . . . . . . . . . . 207 

Dynamic  server  trace  extended  operation   . . . . . . . . . . . . . . . . . . . . . . . . 207 

Dynamic  update  requests  extended  operation   . . . . . . . . . . . . . . . . . . . . . . 209  

Effective  password  policy  extended  operation   . . . . . . . . . . . . . . . . . . . . . . 210 

End  transaction  extended  operation   . . . . . . . . . . . . . . . . . . . . . . . . . . 212 

Event  notification  register  request  extended  operation  . . . . . . . . . . . . . . . . . . . . 213  

Event  notification  unregister  request  extended  operation   . . . . . . . . . . . . . . . . . . . 214 

Group  evaluation  extended  operation   . . . . . . . . . . . . . . . . . . . . . . . . . 215  

Kill  connection  extended  operation   . . . . . . . . . . . . . . . . . . . . . . . . . . 216  

LDAP  trace  facility  extended  operation  . . . . . . . . . . . . . . . . . . . . . . . . . 217 

Locate  entry  extended  operation   . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  

LogMgmtControl  extended  operation   . . . . . . . . . . . . . . . . . . . . . . . . . 219 

Online  backup  extended  operation   . . . . . . . . . . . . . . . . . . . . . . . . . . 221 

Password  policy  bind  initialize  and  verify  extended  operation   . . . . . . . . . . . . . . . . . 222  

Password  policy  finalize  and  verify  bind  extended  operation   . . . . . . . . . . . . . . . . . 223  

Prepare  transaction  extended  operation  . . . . . . . . . . . . . . . . . . . . . . . . . 224  

Proxy  backend  server  resume  role  extended  operation  . . . . . . . . . . . . . . . . . . . . 224  

Quiesce  or unquiesce  replication  context  extended  operation   . . . . . . . . . . . . . . . . . 226 

Replication  error  log  extended  operation   . . . . . . . . . . . . . . . . . . . . . . . . 227  

Replication  topology  extended  operation   . . . . . . . . . . . . . . . . . . . . . . . . 228  

Start,  stop  server  extended  operations   . . . . . . . . . . . . . . . . . . . . . . . . . 229 

Start  TLS  extended  operation   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 

Unique  attributes  extended  operation   . . . . . . . . . . . . . . . . . . . . . . . . . 232  

Update  configuration  extended  operation   . . . . . . . . . . . . . . . . . . . . . . . . 233  

Update  event  notification  extended  operation   . . . . . . . . . . . . . . . . . . . . . . 234 

Update  log  access  extended  operation   . . . . . . . . . . . . . . . . . . . . . . . . . 235  

 

Contents  xi



User  type  extended  operation   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 

Log  access  extended  operations   . . . . . . . . . . . . . . . . . . . . . . . . . . . 236  

OIDs  for  controls   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241  

AES  bind  control   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243  

Audit  control   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244  

Do  not  replicate  control   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245  

Entry  change  notification  control   . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 

Group  authorization  control   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246  

Limit  number  of attribute  values  control   . . . . . . . . . . . . . . . . . . . . . . . . 248 

Manage  DSAIT  control   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 

Modify  groups  only  control   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  

No  replication  conflict  resolution  control   . . . . . . . . . . . . . . . . . . . . . . . . 250  

Omit  group  referential  integrity  control  . . . . . . . . . . . . . . . . . . . . . . . . . 251 

Paged  search  results  control   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252  

Password  policy  request  control   . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 

Persistent  search  control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 

Proxy  authorization  control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255  

Refresh  entry  control   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256  

Replication  supplier  bind  control  . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 

Replication  update  ID  control   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 

Server  administration  control   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 

Sorted  search  results  control   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259  

Subtree  delete  control   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261  

Transaction  control   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261  

Appendix G. Client libraries  . . . . . . . . . . . . . . . . . . . . . . . . . . 263 

Appendix H. Sample Makefile  . . . . . . . . . . . . . . . . . . . . . . . . . 265 

Appendix I. Limited transaction support  . . . . . . . . . . . . . . . . . . . . . 269 

Usage   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269  

Example   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270  

Appendix J. Notices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 

Trademarks   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296  

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

 

xii Programming  Reference



About  this  book  

IBM® Tivoli® Directory  Server  is the  IBM  implementation  of Lightweight  Directory  

Access  Protocol  for  supported  Windows®, AIX®, Linux® (xSeries®, zSeries®, 

pSeries®, and  iSeries™), Solaris,  and  Hewlett-Packard  UNIX® (HP-UX)  operating  

systems.  

IBM  Tivoli  Directory  Server  Version  6.1  Programming  Reference  contains  information  

on  writing  LDAP  client  applications  for  your  IBM  Tivoli  Directory  Server.  

This  book  also  includes:  

v   Sample  LDAP  client  programs  

v   Sample  Makefile

Intended audience for this book 

This  book  is  intended  for  programmers  who  write  LDAP  client  applications  for  

IBM  Tivoli  Directory  Server.  

Publications 

This  section  lists  publications  in  the  IBM  Tivoli  Directory  Server  version  6.1  library  

and  related  documents.  The  section  also  describes  how  to  access  Tivoli  publications  

online  and  how  to  order  Tivoli  publications.  

IBM Tivoli  Directory Server version 6.1 library 

The  following  documents  are  available  in  the  IBM  Tivoli  Directory  Server  version  

6.1  library:  

v   IBM  Tivoli  Directory  Server  Version  6.1  What's  New  for  This  Release, SC23-6539-00  

Provides  information  about  the  new  features  in  the  IBM  Tivoli  Directory  Server  

Version  6.1  release.  

v   IBM  Tivoli  Directory  Server  Version  6.1  Quick  Start  Guide, GI11-8172-00  

Provides  help  for  getting  started  with  IBM  Tivoli  Directory  Server  6.1.  Includes  a 

short  product  description  and  architecture  diagram,  as  well  as a pointer  to the  

product  Information  Center  and  installation  instructions.  

v   IBM  Tivoli  Directory  Server  Version  6.1  System  Requirements, SC23-7835-00  

Contains  the  minimum  hardware  and  software  requirements  for  installing  and  

using  IBM  Tivoli  Directory  Server  6.1  and  its  related  software.  Also  lists  the  

supported  versions  of corequisite  products  such  as  DB2® and  GSKit.  

v   IBM  Tivoli  Directory  Server  Version  6.1  Installation  and  Configuration  Guide, 

GC32-1560-00  

Contains  complete  information  for  installing,  configuring,  and  uninstalling  IBM  

Tivoli  Directory  Server.  Includes  information  about  upgrading  from  a previous  

version  of  IBM  Tivoli  Directory  Server.  

v   IBM  Tivoli  Directory  Server  Version  6.1  Administration  Guide, GC32-1564-00  

Contains  instructions  for  performing  administrator  tasks  through  the  Web 

Administration  Tool and  the  command  line.  

v   IBM  Tivoli  Directory  Server  Version  6.1  Command  Reference, SC23-7834-00  

 

© Copyright  IBM Corp. 2002, 2007 xiii



Describes  the  syntax  and  usage  of the  command-line  utilities  included  with  IBM  

Tivoli  Directory  Server.  

v   IBM  Tivoli  Directory  Server  Version  6.1  Server  Plug-ins  Reference, GC32-1565-00  

Contains  information  about  writing  server  plug-ins.  

v   IBM  Tivoli  Directory  Server  Version  6.1  Programming  Reference,  SC23-7836-00  

Contains  information  about  writing  Lightweight  Directory  Access  Protocol  

(LDAP)  client  applications  in  C  and  Java™. 

v   IBM  Tivoli  Directory  Server  Version  6.1  Performance  Tuning  and  Capacity  Planning  

Guide, SC23-7836-00  

Contains  information  about  tuning  the  directory  server  for  better  performance.  

Describes  disk  requirements  and  other  hardware  needs  for  directories  of 

different  sizes  and  with  various  read  and  write  rates.  Describes  known  working  

scenarios  for  each  of  these  levels  of directory  and  the  disk  and  memory  used;  

also  suggests  rough  rules of  thumb.  

v   IBM  Tivoli  Directory  Server  Version  6.1  Problem  Determination  Guide, GC32-1568-00  

Contains  information  about  possible  problems  and  corrective  actions  that  can  be  

tried  before  contacting  IBM  Software  Support.  

v   IBM  Tivoli  Directory  Server  Version  6.1  Messages  Guide, GC32-1567-00  

Contains  a list  of all  informational,  warning,  and  error  messages  associated  with  

IBM  Tivoli  Directory  Server  6.1.  

v   IBM  Tivoli  Directory  Server  Version  6.1  White  Pages, SC23-7837-00  

Describes  the  Directory  White  Pages  application,  which  is provided  with  IBM  

Tivoli  Directory  Server  6.1.  Contains  information  about  installing,  configuring,  

and  using  the  application  for  both  administrators  and  users.

Related publications 

The  following  documents  also  provide  useful  information:  

v   Java  Naming  and  Directory  Interface™ 1.2.1  Specification  on  the  Sun  Microsystems  

Web site  at  http://java.sun.com/products/jndi/1.2/javadoc/index.html.  

IBM  Tivoli  Directory  Server  Version  6.1  uses  the  Java  Naming  and  Directory  

Interface  (JNDI)  client  from  Sun  Microsystems.  See  this  document  for  

information  about  the  JNDI  client.

Accessing terminology online 

The  Tivoli  Software  Glossary  includes  definitions  for  many  of  the  technical  terms  

related  to  Tivoli  software.  The  Tivoli  Software  Glossary  is available  at the  following  

Tivoli  software  library  Web site:  

http://publib.boulder.ibm.com/tividd/glossary/tivoliglossarymst.htm  

The  IBM  Terminology  Web site  consolidates  the  terminology  from  IBM  product  

libraries  in  one  convenient  location.  You can  access  the  Terminology  Web site  at the  

following  Web address:  

http://www.ibm.com/software/globalization/terminology  

Accessing publications online 

IBM  posts  publications  for  this  and  all  other  Tivoli  products,  as  they  become  

available  and  whenever  they  are  updated,  to  the  Tivoli  Information  Center  Web 

site  at  http://publib.boulder.ibm.com/tividd/td/link/tdprodlist.html.  

 

xiv Programming Reference

http://java.sun.com/products/jndi/1.2/javadoc/index.html
http://publib.boulder.ibm.com/tividd/glossary/tivoliglossarymst.htm
http://www.ibm.com/software/globalization/terminology
http://publib.boulder.ibm.com/tividd/td/link/tdprodlist.html


In  the  Tivoli  Information  Center  window,  click  Tivoli  product  manuals.  Click  the  

letter  that  matches  the  first  letter  of your  product  name  to  access  your  product  

library.  For  example,  click  M  to access  the  IBM  Tivoli  Monitoring  library  or  click  O  

to  access  the  IBM  Tivoli  OMEGAMON® library.  

Note:   If  you  print  PDF  documents  on  other  than  letter-sized  paper,  set  the  option  

in  the  File  → Print  window  that  allows  Adobe® Reader  to  print  letter-sized  

pages  on  your  local  paper.  

Ordering publications 

You can  order  many  Tivoli  publications  online  at http://
www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi.  

You can  also  order  by  telephone  by  calling  one  of  these  numbers:  

v   In the  United  States:  800-879-2755  

v   In Canada:  800-426-4968  

In  other  countries,  contact  your  software  account  representative  to order  Tivoli  

publications.  To locate  the  telephone  number  of your  local  representative,  perform  

the  following  steps:  

1.   Go  to  http://www.elink.ibmlink.ibm.com/public/applications/publications/
cgibin/pbi.cgi.  

2.   Select  your  country  from  the  list  and  click  Go. 

3.   Click  About  this  site  in  the  main  panel  to see  an  information  page  that  

includes  the  telephone  number  of your  local  representative.

Accessibility 

Accessibility  features  help  users  with  a physical  disability,  such  as  restricted  

mobility  or  limited  vision,  to  use  software  products  successfully.  With  this  product,  

you  can  use  assistive  technologies  to  hear  and  navigate  the  interface.  You can  also  

use  the  keyboard  instead  of  the  mouse  to  operate  all  features  of  the  graphical  user  

interface.  

For  additional  information,  see  the  Accessibility  Appendix  in the  IBM  Tivoli  

Directory  Server  Version  6.1  Installation  and  Configuration  Guide. 

Tivoli  technical training 

For  Tivoli  technical  training  information,  refer  to the  following  IBM  Tivoli  

Education  Web site  at http://www.ibm.com/software/tivoli/education.  

Support information 

If  you  have  a problem  with  your  IBM  software,  you  want  to  resolve  it quickly.  IBM  

provides  the  following  ways  for  you  to obtain  the  support  you  need:  

v   IBM  Support  Assistant:  You can  search  across  a large  collection  of known  

problems  and  workarounds,  Technotes,  and  other  information  at 

http://www.ibm.com/software/support/isa.  

v   Obtaining  fixes:  You can  locate  the  latest  fixes  that  are  already  available  for  your  

product.  

 

About  this book xv

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/support/isa


v   Contacting  IBM  Software  Support:  If  you  still  cannot  solve  your  problem,  and  

you  need  to  work  with  someone  from  IBM,  you  can  use  a variety  of ways  to  

contact  IBM  Software  Support.  

For  more  information  about  resolving  problems,  see  the  IBM  Tivoli  Directory  Server  

Version  6.1  Problem  Determination  Guide. 

Conventions used in this book 

This  book  uses  several  conventions  for  special  terms  and  actions,  operating  

system-dependent  commands  and  paths,  and  margin  graphics.  

Typeface  conventions 

This  book  uses  the  following  typeface  conventions:  

Bold  

v   Lowercase  commands  and  mixed  case  commands  that  are  otherwise  

difficult  to  distinguish  from  surrounding  text  

v   Interface  controls  (check  boxes,  push  buttons,  radio  buttons,  spin  

buttons,  fields,  folders,  icons,  list  boxes,  items  inside  list  boxes,  

multicolumn  lists,  containers,  menu  choices,  menu  names,  tabs,  property  

sheets),  labels  (such  as Tip:,  and  Operating  system  considerations:) 

v   Keywords  and  parameters  in  text

Italic  

v   Citations  (examples:  titles  of  books,  diskettes,  and  CDs)  

v   Words  defined  in  text  (example:  a nonswitched  line  is called  a 

point-to-point  line) 

v   Emphasis  of words  and  letters  (words  as  words  example:  "Use  the  word  

that  to  introduce  a restrictive  clause.";  letters  as  letters  example:  "The  

LUN  address  must  start  with  the  letter  L.")  

v   New  terms  in  text  (except  in  a definition  list):  a view  is a frame  in a 

workspace  that  contains  data.  

v   Variables  and  values  you  must  provide:  ... where  myname  represents....

Monospace  

v   Examples  and  code  examples  

v   File  names,  programming  keywords,  and  other  elements  that  are  difficult  

to  distinguish  from  surrounding  text  

v   Message  text  and  prompts  addressed  to  the  user  

v   Text that  the  user  must  type  

v   Values  for  arguments  or  command  options

Operating system-dependent variables and paths 

This  book  uses  the  UNIX  convention  for  specifying  environment  variables  and  for  

directory  notation.  

When  using  the  Windows  command  line,  replace  $variable  with  %  variable%  for  

environment  variables  and  replace  each  forward  slash  (/)  with  a backslash  (\)  in  

directory  paths.  The  names  of  environment  variables  are  not  always  the  same  in 

the  Windows  and  UNIX  environments.  For  example,  %TEMP%  in  Windows  

environments  is equivalent  to $TMPDIR  in UNIX  environments.  

 

xvi Programming Reference



Note:   If  you  are  using  the  bash  shell  on  a Windows  system,  you  can  use  the  UNIX  

conventions.

 

About this book xvii



xviii Programming Reference



Chapter  1.  IBM  Directory  Programming  Reference  overview  

The  Lightweight  Directory  Access  Protocol  (LDAP)  provides  TCP/IP  access  to 

LDAP-compliant  servers.  The  IBM  Tivoli  Directory  Server  Programming  Reference  

includes  various  sample  LDAP  client  programs,  and  an  LDAP  client  library  used  

to  provide  application  access  to  the  LDAP  servers.  

See  the  following  sections  for  more  information:  

v   “LDAP  version  support”  

v   “LDAP  API  overview”

LDAP version support 

The  IBM  Tivoli  Directory  Server  C-Client  SDK  provides  support  for  both  LDAP  

Version  2 and  LDAP  Version  3 application  programming  interfaces  (APIs)  and  

protocols.  The  LDAP  SDK  APIs  are  based  upon  the  Internet  Draft,  ″C  LDAP  

Application  Program  Interface  ″, which  is  classified  as a work  in  progress.  

The  LDAP  API  provides  typical  directory  functions  such  as  read,  write  and  search.  

With  the  advent  of support  for  LDAP  Version  3 APIs  and  protocols,  the  following  

features  are  also  supported:  

v   LDAP  V3  referrals  and  search  references.  

v   Improved  internationalization  with  UTF-8  support  for  Distinguished  Names  

(DNs)  and  strings  that  are  passed  into,  and  returned  from,  the  LDAP  APIs.  

Support  for  converting  string  data  between  the  local  code  page  and  UTF-8  is 

also  provided.  When  running  as  an  LDAP  V2  application,  DNs  and  strings  

remain  limited  to  the  IA5  character  set.  

v   As  provided  by  the  IBM  Directory  server’s  dynamic  schema  capability,  an  LDAP  

application  can  add,  modify  and  change  elements  of  the  schema  (see  

Appendix  B, “LDAP  V3  schema,”  on  page  177  for  more  information).  

v   Controls  for  the  LDAP  server  and  client.

With  the  C-Client  SDK,  an  application  that  uses  the  ldap_open  API  defaults  to  the  

LDAP  V2  protocol.  Existing  LDAP  applications  continue  to work  and  can  

interoperate  with  both  LDAP  V2  servers  and  LDAP  V3  servers.  

An  application  that  uses  the  ldap_init  API  defaults  to  the  LDAP  V3  protocol  with  

optional  bind.  An  LDAP  V3  application  does  not  necessarily  interoperate  with  an  

LDAP  server  that  supports  only  LDAP  V2  protocols.  

Note:   An  application  can  use  the  ldap_set_option  API  to  change  its  LDAP  protocol  

version.  This  is done  after  using  ldap_open  or  ldap_init  but  before  issuing  a 

bind  or  any  other  operation  that  results  in  contacting  the  server.  

LDAP API overview 

The  set  of  LDAP  APIs  is designed  to provide  a suite  of functions  that  can  be  used  

to  develop  directory-enabled  applications.  Directory-enabled  applications  typically  

connect  to  one  or  more  directories  and  perform  various  directory-related  

operations,  such  as:  

v   Adding  entries  

 

© Copyright  IBM Corp. 2002, 2007 1

http://www.ietf.org/proceedings/99jul/I-D/draft-ietf-ldapext-ldap-c-api-03.txt
http://www.ietf.org/proceedings/99jul/I-D/draft-ietf-ldapext-ldap-c-api-03.txt


v   Searching  the  directories  and  obtaining  the  resulting  list  of entries  

v   Deleting  entries  

v   Modifying  entries  

v   Renaming  entries

The  type  of  information  that  is managed  in  the  directory  depends  on  the  nature  of 

the  application.  Directories  often  are  used  to  provide  public  access  to  information  

about  people.  For  example:  

v   phone  numbers  

v   e-mail  addresses  

v   fax  numbers  

v   mailing  addresses

Increasingly,  directories  are  being  used  to manage  and  publish  other  types  of  

information.  For  example:  

v   Configuration  information  

v   Public  key  certificates  (managed  by  certification  authorities  (CAs))  

v   Access  control  information  

v   Locating  information  (how  to find  a service)

The  LDAP  API  provides  for  both  synchronous  and  asynchronous  access  to a 

directory.  Asynchronous  access  enables  your  application  to  do  other  work  while  

waiting  for  the  results  of  a directory  operation  to  be  returned  by  the  server.  

Source  code,  example  makefile,  and  executable  programs  are  provided  for  

performing  the  following  operations:  

v   ldapsearch  (searches  the  directory)  

v   ldapmodify  (modifies  information  in the  directory)  

v   ldapdelete  (deletes  information  from  the  directory)  

v   ldapmodrdn  (modifies  the  Relative  Distinguished  Name  (RDN)  of  an  entry  in 

the  directory)

See  IBM  Tivoli  Directory  Server  Version  6.1  Command  Reference,  to  know  more  about  

the  syntax  and  usage  of the  command-line  utilities.  

Typical  API usage 

The  basic  interaction  is as  follows:  

1.   A connection  is  made  to  an  LDAP  server  by  calling  either  ldap_init  or  

ldap_ssl_init,  which  is used  to  establish  a secure  connection  over  Secure  Sockets  

Layer  (SSL).  

2.   An  LDAP  bind  operation  is performed  by  calling  ldap_simple_bind.  The  bind  

operation  is  used  to  authenticate  to  the  directory  server.  Note  that  the  LDAP  V3  

API  and  protocol  permits  the  bind  to be  skipped,  in  which  case  the  access  

rights  associated  with  anonymous  access  are  obtained.  

3.   Other  operations  are  performed  by  calling  one  of the  synchronous  or  

asynchronous  routines  (for  example,  ldap_search_s  or  ldap_search  followed  by  

ldap_result).  

4.   Results  returned  from  these  routines  are  interpreted  by  calling  the  LDAP  

parsing  routines,  which  include  operations  such  as:  

v   ldap_first_entry,  ldap_next_entry  

v   ldap_get_dn  

 

2 Programming  Reference



v   ldap_first_attribute,  ldap_next_attribute  

v   ldap_get_values  

v   ldap_parse_result  (new  for  LDAP  V3)
5.   The  LDAP  connection  is terminated  by  calling  ldap_unbind.

When  handling  a client  referral  to another  server,  the  ldap_set_rebind_proc  routine  

defines  the  entry  point  of a routine  called  when  an  LDAP  bind  operation  is 

needed.  

Displaying results 

Results  obtained  from  the  LDAP  search  routines  can  be  accessed  by  calling:  

v   ldap_first_entry  and  ldap_next_entry  to  step  through  the  entries  returned  

v   ldap_first_attribute  and  ldap_next_attribute  to  step  through  an  entry’s  attributes  

v   ldap_get_values  to  retrieve  a given  attribute’s  value  

v   printf  or  some  other  display  or  usage  method

Uniform Resource Locators (URLs) 

Use  the  ldap_url  routines  to  test  a URL  to  see  if it is an  LDAP  URL,  to parse  

LDAP  URLs  into  their  component  pieces,  and  to initiate  searches  directly  using  an  

LDAP  URL.  Some  examples  of these  routines  are  ldap_url_parse,  

ldap_url_search_s,  and  ldap_is_ldap_url.  

Secure Socket Layer (SSL) support 

The  LDAP  API  has  been  extended  to  support  connections  that  are  protected  by  the  

SSL  protocol.  This  can  be  used  to provide  strong  authentication  between  the  client  

and  server,  as  well  as  data  encryption  of  LDAP  messages  that  flow  between  the  

client  and  the  LDAP  server.  The  ldap_ssl_client_init()  and  ldap_ssl_init()  APIs  are  

provided  to  initialize  the  SSL  function,  and  to create  a secure  SSL  connection.  

 

Chapter  1. IBM Directory Programming Reference overview 3



4 Programming  Reference



Chapter  2.  API  categories  

The  following  sets  of  APIs  are  supported  by  the  IBM  Tivoli  Directory  Server:  

v   “LDAP_ABANDON”  on  page  6 

v   “LDAP_ADD”  on  page  7 

v   “LDAP_BIND  / UNBIND”  on  page  9 

v   “LDAP_CODEPAGE”  on  page  16  

v   “LDAP_COMPARE”  on  page  23  

v   “LDAP  controls”  on  page  25  

v   “LDAP_CREATE_ABORT_TRANSACTION_REQUEST”  on  page  26  

v   “LDAP_CREATE_COMMIT_TRANSACTION_REQUEST”  on  page  27  

v   “LDAP_CREATE_EFFECTIVE_PWDPOLICY_REQUEST”  on  page  28  

v   “LDAP_CREATE_GET_FILE_REQUEST”  on  page  28  

v   “LDAP_CREATE_LIMIT_NUM_VALUES_CONTROL”  on  page  29  

v   “LDAP_CREATE_LOCATE_ENTRY_REQUEST”  on  page  30  

v   “LDAP_CREATE_ONLINE_BACKUP_REQUEST”  on  page  31  

v   “LDAP_CREATE_PASSWORD_POLICY_BIND_FINALIZE_REQUEST”  on  page  

32  

v   “LDAP_CREATE_PASSWORD_POLICY_BIND_INIT_REQUEST”  on  page  32 

v   “LDAP_CREATE_PERSISTENTSEARCH_CONTROL”  on  page  33  

v   “LDAP_CREATE_PREPARE_TRANSACTION_REQUEST”  on  page  34  

v   “LDAP_CREATE_PROXYAUTH_CONTROL”  on  page  35  

v   “LDAP_CREATE_RESUME_ROLE_REQUEST”  on  page  37  

v   “LDAP_CREATE_TRANSACTION_CONTROL”  on  page  38  

v   “LDAP_DELETE”  on  page  38  

v   “LDAP_END_TRANSACTION”  on  page  40  

v   “LDAP_ERROR”  on  page  41  

v   “LDAP_EXTENDED_OPERATION”  on  page  48  

v   “LDAP_FIRST_ATTRIBUTE”  on  page  50 

v   “LDAP_FIRST_ENTRY,  LDAP_FIRST_REFERENCE”  on  page  52  

v   “LDAP_FREE_LIMIT_NUM_VALUES_RESPONSE”  on  page  54  

v   “LDAP_GET_BIND_CONTROLS”  on  page  55  

v   “LDAP_GET_DN”  on  page  56 

v   “LDAP_GET_TRAN_ID”  on  page  58  

v   “LDAP_GET_VALUES”  on  page  59  

v   “LDAP_INIT”  on  page  61  

v   “LDAP_MEMFREE”  on  page  72  

v   “LDAP_MESSAGE”  on  page  73  

v   “LDAP_MODIFY”  on  page  75  

v   “LDAP_PAGED_RESULTS”  on  page  78  

v   “LDAP_PARSE_EFFECTIVE_PWDPOLICY_RESPONSE”  on  page  81  

v   “LDAP_PARSE_ENTRYCHANGE_CONTROL”  on  page  82  

v   “LDAP_PARSE_EXTENDED_RESULT_W_CONTROLS”  on  page  83  

 

© Copyright  IBM Corp. 2002, 2007 5



v   “LDAP_PARSE_LIMIT_NUM_VALUES_RESPONSE”  on  page  84  

v   “LDAP_PARSE_RESULT”  on  page  85  

v   “LDAP_PASSWORD_POLICY”  on  page  88  

v   “LDAP_PLUGIN_REGISTRATION”  on  page  89  

v   “LDAP_PREPARE_TRANSACTION”  on  page  92  

v   “LDAP_RENAME”  on  page  93  

v   “LDAP_RESULT”  on  page  95  

v   “LDAP_SEARCH”  on  page  97  

v   “LDAP_SERVER_INFORMATION  IN  DNS”  on  page  102  

v   “LDAP_SSL”  on  page  119 

v   “LDAP_SSL_PKCS11”  on  page  126  

v   “LDAP_START_TRANSACTION”  on  page  129  

v   “LDAP_START_TLS”  on  page  130  

v   “LDAP_STOP_TLS”  on  page  131  

v   “LDAP_SSL_ENVIRONMENT_INIT”  on  page  134  

v   “LDAP_SORT”  on  page  135  

v   “LDAP_URL”  on  page  131

LDAP_ABANDON 

   ldap_abandon  

   ldap_abandon_ext

Purpose 

Abandon  an  LDAP  operation  in progress.  

Synopsis 

#include  <ldap.h> 

  

  

int  ldap_abandon(  

       LDAP             *ld,  

       int              msgid)  

  

int  ldap_abandon_ext(  

       LDAP             *ld,  

       int              msgid,  

       LDAPControl      **serverctrls,  

       LDAPControl      **clientctrls)  

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init()  or  ldap_open().  

msgid  The  message  ID  of an  outstanding  LDAP  operation,  as returned  by  a call  

to  an  asynchronous  LDAP  operation  such  as  ldap_search  and  ldap_modify,  

and  so  forth.  

serverctrls   

Specifies  a list  of LDAP  server  controls.  This  parameter  can  be  set  to 

NULL.  See  “LDAP  controls”  on  page  25  for  more  information  about  server  

controls.  

 

6 Programming  Reference



clientctrls   

Specifies  a list  of LDAP  client  controls.  This  parameter  can  be  set  to NULL.  

See  “LDAP  controls”  on  page  25  for  more  information  about  client  

controls.

Usage 

The  ldap_abandon()  and  ldap_abandon_ext()  APIs  are  used  to abandon  or  cancel  

an  LDAP  operation  in  progress.  The  msgid  passed  must  be  the  message  ID  of  an  

outstanding  LDAP  operation,  as  returned  by  a call  to  an  asynchronous  LDAP  

operation  such  as  ldap_search(),  ldap_modify(),  and  so  forth.  

Both  APIs  check  to see  if the  result  of  the  operation  has  already  been  returned  by  

the  server.  If  the  result  of the  operation  has  been  returned,  both  APIs  delete  the  

result  of  the  operation  from  the  queue  of  pending  messages.  If not,  both  APIs  send  

an  LDAP  abandon  operation  to  the  LDAP  server.  

The  result  of  an  abandoned  operation  is not  returned  from  a future  call  to  

ldap_result().  

The  ldap_abandon()  API  returns  0 if the  abandon  was  successful  or  -1  if 

unsuccessful;  it does  not  support  LDAP  V3  server  controls  or  client  controls.  The  

ldap_abandon_ext()  API  returns  the  constant  LDAP_SUCCESS  if the  abandon  was  

successful,  or  another  LDAP  error  code  if not.  

Errors 

ldap_abandon()  returns  0 if the  operation  is successful,  -1 if unsuccessful,  setting  

ld_errno  appropriately.  See  “LDAP_ERROR”  on  page  41  for  details.  

ldap_abandon_ext()  returns  LDAP_SUCCESS  if successful  and  returns  an  LDAP  

error  code  if unsuccessful.  

See also 

ldap_result,  ldap_error  

LDAP_ADD 

   ldap_add  

   ldap_add_s  

   ldap_add_ext  

   ldap_add_ext_s

Purpose 

Perform  an  LDAP  operation  to  add  an  entry.  

Synopsis 

#include  <ldap.h> 

  

  

int  ldap_add(  

       LDAP            *ld,  

       const  char      *dn,  

       LDAPMod         *attrs[])  

  

int  ldap_add_s(  

       LDAP            *ld,

 

Chapter  2. API categories  7



const  char      *dn,  

       LDAPMod         *attrs[])  

  

int  ldap_add_ext(  

       LDAP            *ld,  

       const  char      *dn,  

       LDAPMod         *attrs[],  

       LDAPControl     **serverctrls,  

       LDAPControl     **clientctrls,  

       int             *msgidp)  

  

int  ldap_add_ext_s(  

       LDAP            *ld,  

       const  char      *dn,  

       LDAPMod         *attrs[],  

       LDAPControl     **serverctrls,  

       LDAPControl     **clientctrls)  

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init()  or  ldap_open().  

dn  The  DN  of  the  entry  to add.  

attrs  The  entry’s  attributes,  specified  using  the  LDAPMod  structure,  as defined  

for  ldap_modify().  The  mod_type  and  mod_vals  fields  must  be  filled  in.  

The  mod_op  field  is ignored  unless  ORed  with  the  constant  

LDAP_MOD_BVALUES.  In this  case,  the  mod_op  field  is used  to  select  the  

mod_bvalues  case  of  the  mod_vals  union.  

serverctrls   

Specifies  a list  of LDAP  server  controls.  This  parameter  can  be  set  to 

NULL.  See  “LDAP  controls”  on  page  25  for  more  information  about  server  

controls.  

clientctrls   

Specifies  a list  of LDAP  client  controls.  This  parameter  can  be  set  to NULL.  

See  “LDAP  controls”  on  page  25  for  more  information  about  client  

controls.

Output parameters 

msgidp  

This  result  parameter  is set  to the  message  ID  of  the  request  if the  

ldap_add_ext()  call  succeeds.

Usage 

The  ldap_add()  and  associated  APIs  are  used  to  perform  an  LDAP  add  operation.  

They  take  dn,  the  DN  of  the  entry  to  add,  and  attrs, a NULL-terminated  array  of 

the  entry’s  attributes.  The  LDAPMod  structure  (as  defined  for  ldap_modify())  is 

used  to  represent  attributes,  with  the  mod_type  and  mod_values  fields  being  filled  

in  and  used  as  described  for  ldap_modify().  The  mod_op  field  is  ignored  unless  

ORed  with  the  constant  LDAP_MOD_BVALUES.  In  this  case,  the  mod_op  field  is 

used  to  select  the  mod_bvalues  case  of the  mod_vals  union.  

Note:   All  entries  except  those  specified  by  the  last  component  in  the  given  DN  

must  already  exist.  

The  ldap_add_ext()  API  initiates  an  asynchronous  add  operation  and  returns  the  

constant  LDAP_SUCCESS  if the  request  was  successfully  sent,  or  another  LDAP  

 

8 Programming  Reference



error  code  if not.  If successful,  ldap_add_ext()  places  the  message  ID  of the  request  

in  *msgidp.  A  subsequent  call  to ldap_result()  can  be  used  to  obtain  the  result  of 

the  operation.  After  the  operation  has  completed,  ldap_result()  returns  a result  that  

contains  the  status  of  the  operation  (in  the  form  of  an  error  code).  The  error  code  

indicates  whether  the  operation  completed  successfully.  The  ldap_parse_result()  

API  is  used  to  check  the  error  code  in  the  result.  

Similarly,  the  ldap_add()  API  initiates  an  asynchronous  add  operation  and  returns  

the  message  ID  of  the  operation  initiated.  A subsequent  call  to ldap_result(),  can  be  

used  to  obtain  the  result  of the  add.  In  case  of  error, ldap_add()  returns  -1,  setting  

the  session  error  parameters  in  the  LDAP  structure  appropriately,  which  can  be  

obtained  by  using  ldap_get_errno().  

See  “LDAP_ERROR”  on  page  41  for  more  details.  

The  ldap_add_ext()  and  ldap_add_ext_s()  APIs  both  support  LDAP  V3  server  

controls  and  client  controls.  

Errors 

ldap_add()  returns  -1  in  case  of error  initiating  the  request.  ldap_add_s()  and  

ldap_add_ext_s()  returns  an  LDAP  error  code  directly;  LDAP_SUCCESS  if the  call  

was  successful,  an  LDAP  error  if the  call  was  unsuccessful.  

See also 

ldap_modify  

LDAP_BIND / UNBIND 

   ldap_sasl_bind  

   ldap_sasl_bind_s  

   ldap_simple_bind  

   ldap_simple_bind_s  

   ldap_unbind  

   ldap_unbind_ext  

   ldap_unbind_s  

   ldap_set_rebind_proc  

   ldap_bind  (deprecated)  

   ldap_bind_s  (deprecated)

Purpose 

LDAP  routines  for  binding  and  unbinding.  

Synopsis 

#include  <ldap.h> 

  

  

int  ldap_sasl_bind(  

       LDAP             *ld,  

       const  char       *dn,  

       const  char       *mechanism,  

       const  struct  berval  *cred,  

       LDAPControl      **servctrls,  

       LDAPControl      **clientctrls,

 

Chapter  2. API categories  9



int              *msgidp)  

  

int  ldap_sasl_bind_s(  

       LDAP             *ld,  

       const  char       *dn,  

       const  char       *mechanism,  

       const  struct  berval  *cred,  

       LDAPControl      **servctrls,  

       LDAPControl      **clientctrls,  

       struct  berval    **servercredp)  

  

int  ldap_simple_bind(  

       LDAP             *ld,  

       const  char       *dn,  

       const  char       *passwd)  

  

  

int  ldap_simple_bind_s(  

       LDAP             *ld,  

       const  char       *dn,  

       const  char       *passwd)  

  

int  ldap_unbind(  

       LDAP             *ld)  

  

int  ldap_unbind_s(  

       LDAP             *ld)  

  

int  ldap_unbind_ext(  

       LDAP             *ld,  

       LDAPControl      **servctrls,  

       LDAPControl      **clientctrls)  

  

void  ldap_set_rebind_proc(  

       LDAP             *ld,  

       LDAPRebindProc   rebindproc)  

  

int  ldap_bind(  

       LDAP             *ld,  

       const  char       *dn,  

       const  char       *cred,  

       int              method)  

  

int  ldap_bind_s(  

       LDAP             *ld,  

       const  char       *dn,  

       const  char       *cred,  

       int              method)  

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init()  or  ldap_open().  

dn  Specifies  the  Distinguished  Name  ( DN)  of  the  entry  to bind  as.  

mechanism  

Although  a variety  of  mechanisms  have  been  IANA  (Internet  Assigned  

Numbers  Authority)  registered,  the  only  native  mechanisms  supported  by 

the  LDAP  library  at this  time  are:  

v   LDAP_MECHANISM_EXTERNAL  mechanism,  represented  by  the  string  

EXTERNAL. 

v   LDAP_MECHANISM_GSSAPI  mechanism,  represented  by  the  string  

GSSAPI. 

 

10 Programming Reference



v   LDAP_MECHANISM_DIGEST_MD5  mechanism,  represented  by  the  

string  DIGEST-MD5.

Note:   The  CRAM-MD5  mechanism  is not  supported  in a bind  operation.

The  LDAP_MECHANISM_EXTERNAL  mechanism  indicates  to  the  server  

that  information  external  to  SASL  must  be  used  to  determine  whether  the  

client  is authorized  to  authenticate.  For  this  implementation,  the  system  

providing  the  external  information  must  be  SSL.  For  example,  if the  client  

sets  the  DN  and  credentials  to  NULL  (the  value  of the  pointers  must  be  

NULL),  with  mechanism  set  to LDAP_MECHANISM_EXTERNAL,  the  

client  is requesting  that  the  server  use  the  strongly  authenticated  identity  

from  the  client’s  X.509  certificate  that  was  used  to  authenticate  the  client  to 

the  server  during  the  SSL  handshake.  The  server  can  then  use  the  strongly  

authenticated  identity  to  access  the  directory.  

The  LDAP_MECHANISM_GSSAPI  mechanism  is used  to  enable  Kerberos  

authentication.  In  Kerberos  authentication,  a client  presents  valid  

credentials  obtained  from  a Kerberos  key  distribution  center  (KDC)  to  an  

application  server.  The  server  decrypts  and  verifies  the  credentials  using  its 

service  key.  

 When  mechanism  is set  to a NULL  pointer,  the  SASL  bind  request  is 

interpreted  as  a request  for  simple  authentication,  that  is,  equivalent  to 

using  ldap_simple_bind()  or  ldap_simple_bind_s().  

 See  “LDAP_PLUGIN_REGISTRATION”  on  page  89 for  more  information  

about  using  LDAP  client  plug-ins.  See  Chapter  6,  “LDAP  client  plug-in  

programming  reference,”  on  page  165  for  more  information  about  

developing  an  LDAP  client  plug-in.  

 The  LDAP_MECHANISM_DIGEST_MD5  mechanism  is used  to  

authenticate  your  ID  and  password  with  the  server  using  a 

challenge/response  protocol  that  protects  the  clear-text  password  over  the  

wire  and  prevents  replay  attacks.  

 This  mechanism  is  useful  only  when  the  LDAP  server  can  retrieve  the  

user’s  password.  If the  password  is  stored  in  a hashed  form,  for  example,  

crypt  or  SHA,  then  authentication  using  the  DIGEST-MD5  mechanism  fails.  

When  using  the  DIGEST-MD5  mechanism,  the  hostname  supplied  on  the  

ldap_init  call  must  resolve  to  the  fully  qualified  hostname  of the  server.  

 The  application  must  supply  a username  on  the  ldap_sasl_bind_s  call  by  

using  the  IBM_CLIENT_MD5_USER_NAME_OID  client  control.  The  

application  can  optionally  supply  a realm  on  the  ldap_sasl_bind_s  call  by  

using  the  IBM_CLIENT_MD5_REALM_NAME_OID  client  control.  The  

application  can  optionally  supply  an  authorization  ID  as  the  dn  parameter.  

cred  Specifies  the  credentials  with  which  to  authenticate.  Arbitrary  credentials  

can  be  passed  using  this  parameter.  In  most  cases,  this  is the  user’s  

password.  When  using  a Simple  Authentication  Security  Layer  (SASL)  

bind,  the  format  and  content  of the  credentials  depends  on  the  setting  of  

the  mechanism  parameter.  

method  

Selects  the  authentication  method  to  use.  Specify  LDAP_AUTH_SIMPLE  

for  simple  authentication  or  LDAP_AUTH_SASL  for  SASL  bind.  Note  that  

use  of  the  ldap_bind  and  ldap_bind_s  APIs  is deprecated.  

 

Chapter  2. API categories  11



password  

Specifies  the  password  used  in  association  with  the  DN  of the  entry  in  

which  to  bind.  

serverctrls  

Specifies  a list  of LDAP  server  controls.  See  “LDAP  controls”  on  page  25 

for  more  information  about  server  controls.  

clientctrls   

Specifies  a list  of LDAP  client  controls.  See  “LDAP  controls”  on  page  25  for  

more  information  about  client  controls.  

rebindproc  

Specifies  the  entry-point  of  a routine  that  is called  to  obtain  bind  

credentials  used  when  a new  server  is contacted  following  an  LDAP  

referral.

Output parameters 

msgidp  

This  result  parameter  is set  to the  message  ID  of  the  request  if the  

ldap_sasl_bind()  call  succeeds.  

servercredp  

This  result  parameter  is set  to the  credentials  returned  by  the  server.  If no  

credentials  are  returned,  it is set  to  NULL.

Usage 

These  routines  provide  various  interfaces  to  the  LDAP  bind  operation.  After  using  

ldap_init,  ldap_ssl_init  or  ldap_open  to  create  an  LDAP  handle,  a bind  can  be  

performed  before  other  operations  are  attempted  over  the  connection.  Both  

synchronous  and  asynchronous  versions  of each  variant  of  the  bind  call  are  

provided.  

A  bind  is  optional  when  communicating  with  an  LDAP  server  that  supports  the  

LDAP  V3  protocol.  The  absence  of  a bind  is  interpreted  by  the  LDAP  V3  server  as  

a request  for  unauthenticated  access.  A bind  is required  by  LDAP  servers  that  only  

support  the  LDAP  V2  protocol.  

The  ldap_simple_bind()  and  ldap_simple_bind_s()  APIs  provide  simple  

authentication,  using  a user  ID  or  dn  and  a password  passed  in clear-text  to  the  

LDAP  API.  

The  ldap_bind()  and  ldap_bind_s()  provide  general  authentication  routines,  where  

an  authentication  method  can  be  chosen.  In  this  toolkit,  method  must  be  set  to 

LDAP_AUTH_SIMPLE.  Because  the  use  of these  two  APIs  is deprecated,  

ldap_simple_bind  and  ldap_simple_bind_s  must  be  used  instead.  

The  ldap_sasl_bind  and  ldap_sasl_bind_s  APIs  can  be  used  to do  general  and  

extensible  authentication  over  LDAP  through  the  use  of  the  SASL.  

All  bind  routines  take  ld  as  their  first  parameter  as  returned  from  ldap_init,  

ldap_ssl_init,  or  ldap_open.  

Simple authentication 

The  simplest  form  of the  bind  call  is ldap_simple_bind_s().  It takes  the  DN  to bind  

and  the  user’s  password  (supplied  in  password).  It  returns  an  LDAP  error  

indication  (see  “LDAP_ERROR”  on  page  41).  The  ldap_simple_bind()  call  is  

 

12 Programming Reference



asynchronous,  taking  the  same  parameters  but  only  initiating  the  bind  operation  

and  returning  the  message  ID  of  the  request  it sent.  The  result  of the  operation  can  

be  obtained  with  a subsequent  call  to  ldap_result().  

General authentication 

The  ldap_bind()  and  ldap_bind_s()  routines  are  deprecated.  

The  deprecated  APIs  can  be  used  when  the  authentication  method  is selected  at 

runtime.  They  both  take  an  extra  method  parameter  when  selecting  the  

authentication  method  to  use.  However,  when  using  this  toolkit,  method  must  be  

set  to  LDAP_AUTH_SIMPLE,  to  select  simple  authentication.  ldap_bind()  and  

ldap_simple_bind()  return  the  message  ID  of  the  initiated  request.  ldap_bind_s()  

and  ldap_simple_bind_s()  return  an  LDAP  error  indication  on  unsuccessful  

completion,  or  LDAP_SUCCESS  on  successful  completion.  

SASL authentication 

Five  categories  of  SASL  authentication  are  supported:  

v   SASL  authentication  using  the  EXTERNAL  mechanism  

v   SASL  authentication  using  the  GSSAPI  mechanism  (Kerberos  is supported  and  

implemented  as  a plug-in)  

v   SASL  authentication  using  the  DIGEST-MD5  mechanism  (implemented  as  a 

plug-in)  

v   SASL  authentication  using  a user-supplied  SASL  plug-in  library  

v   SASL  authentication  using  a SASL  mechanism  implemented  by  the  application  

itself

When  the  input  parameter  mechanism  is set  to  a NULL  pointer,  the  SASL  bind  

request  is interpreted  as  a request  for  simple  authentication,  that  is, equivalent  to  

using  ldap_simple_bind()  or ldap_simple_bind_s().  

Also  note  that  the  SASL  authentication  mechanism  provides  a facility  for  the  LDAP  

server  to  return  server  credentials  to  the  client.  An  application  can  obtain  the  

server  credentials  returned  from  the  server  in  the  SASL  bind  result  with  the  

ldap_parse_sasl_bind_result()  API.  

EXTERNAL  SASL  binds:    The  primary  reason  for  using  the  EXTERNAL  SASL  

bind  mechanism  is to  use  the  client  authentication  mechanism  provided  by  SSL  to 

strongly  authenticate  to the  directory  server  using  the  client’s  X.509  certificate.  For  

example,  the  client  application  can  use  the  following  logic:  

v   ldap_ssl_client_init  (initialize  the  SSL  library)  

v   ldap_ssl_init  (host,  port,  name),  where  name  references  a public/private  key  pair  

in  the  client’s  key  database  file  

v   ldap_sasl_bind_s  (ld,  dn=NULL,  mechanism=LDAP_MECHANISM_EXTERNAL,  

cred=NULL)

A server  that  supports  this  mechanism,  such  as  the  IBM  Directory  server,  can  then  

access  the  directory  using  the  strongly  authenticated  client  identity  as  extracted  

from  the  client’s  X.509  certificate.  

GSSAPI  SASL  binds:    Kerberos  authentication  is supported  in  this  release.  If the  

input  parameters  for  ldap_sasl_bind  or  ldap_sasl_bind_s  are  mechanism==GSSAPI  

and  cred==NULL,  then  it is assumed  that  the  user  has  already  authenticated  to  a 

Kerberos  security  server  and  has  obtained  a ticket  granting  ticket  (TGT),  either  

through  a desktop  log-on  process,  or by  using  a program  such  as kinit.  The  

GSSAPI  credential  handle  used  to initiate  a security  context  on  the  LDAP  client  

 

Chapter  2. API categories  13



side  is obtained  from  the  current  login  context.  If  the  input  parameters  for  these  

two  SASL  bind  functions  are  mechanism==GSSAPI  and  cred!=NULL,  the  caller  of 

the  functions  must  provide  the  GSSAPI  credential  handle  for  the  LDAP  client  to  

initiate  a security  context  with  an  LDAP  server.  For  example,  an  LDAP  server  can  

call  a SASL  bind  function  with  a credential  handle  that  the  server  received  from  a 

client  as a delegated  credential  handle.  

DIGEST-MD5  SASL  binds:    The  server  accepts  SASL  bind  requests  using  the  

DIGEST-MD5  mechanism.  There  are  two  types  of  DIGEST-MD5  bind  requests:  

Initial  Authentication  bind  requests  and  Subsequent  Authentication  bind  requests.  

Initial  Authentication  is required  and  supported  by  IBM  Tivoli  Directory  Server.  

Subsequent  Authentication  support  is optional,  and  is  not  supported  by  IBM  Tivoli  

Directory  Server.  

The  server  responds  to  a DIGEST-MD5  SASL  bind  request  with  a digest-challenge.  

The  challenge  contains  the  values  required  by  RFC2831  section  2.1.1,  with  the  

following  implementation-specific  behavior:  

v   realm  - The  server  always  sends  the  realm  that  the  server  is configured  to  be  in. 

v   nonce  - The  server  generates  a random  nonce.  

v   qop-options  - The  server  supports  ″auth″ only.

The  next  response  from  the  client  to  the  server  must  be  another  DIGEST-MD5  

SASL  bind  message.  The  response  includes  several  fields  containing  values  that  the  

server  uses  as  follows:  

v   username  - The  server  uses  the  username  value  to  determine  whether  the  user  is 

binding  as an  administrator  or  to  find  an  entry  in the  primary  rdbm  backend.  If 

the  username  is an  administrator’s  DigestUsername,  then  the  server  uses  that  

administrator  to  bind.  If the  username  was  not  an  administrator’s,  then  the  

server  searches  the  primary  rdbm  for  a user  with  that  username.  If the  username  

doesn’t  correspond  to  a single  entry  or  the  entry  doesn’t  have  a userpassword  

value,  the  server  returns  LDAP_INVALID_CREDENTIALS.  It will  also  print  out  

the  appropriate  error  message.  

v   realm  - The  value  in  the  realm  field  must  match  the  realm  that  the  server  is  

configured  to  be  in.  If the  realm  value  does  not  match  the  realm  that  the  server  

is configured  to  be  in,  the  server  returns  LDAP_PROTOCOL_ERROR.  

v   nonce  - The  value  in  the  nonce  field  must  match  the  nonce  value  that  the  server  

sent  the  client  with  the  digest-challenge.  If the  value  does  not  match,  the  server  

returns  LDAP_PROTOCOL_ERROR.  

v   response  - The  value  in the  response  field  contains  a hash  of  the  password.  For  

each  of  the  userpassword  values  that  the  server  can  get  from  the  user  entry,  it 

generates  the  DIGEST-MD5  hash  and  compares  it with  the  hash  sent  by  the  

client.  If  one  matches,  the  server  returns  LDAP_SUCCESS  and  the  user  is bound  

as  that  user. Otherwise,  the  server  returns  LDAP_INVALID_CREDENTIALS  and  

prints  out  an  error  message.  

v   authzid  - The  value  in  the  authzid  field  can  contain  a ″dn:″- or  ″u:″-style  

authorization  ID  from  RFC  2829  that  the  server  will  use  for  authority  checking  

after  the  bind,  rather  than  the  entry  found  for  the  username,  similar  to  Proxied  

Authentication.  The  entry  that  the  username  corresponds  to  needs  to have  the  

authority  to  use  the  other  DN.  If the  authzid  contains  a ″u:″-style  authorization  

ID,  the  server  maps  the  value  to an  entry  the  same  as  was  done  for  the  

username  parameter.  If the  mapping  fails  the  server  returns  

LDAP_INVALID_CREDENTIALS.

 

14 Programming Reference



User-supplied  SASL  plug-ins:    The  application  developer,  or  a third  party,  can  

implement  additional  SASL  mechanisms  using  the  IBM  Tivoli  Directory  Server  

C-Client  SASL  plug-in  facility.  For  example,  a client  and  server  SASL  plug-in  can  

be  developed  that  supports  a new  authentication  mechanism  based  upon  a retinal  

scan.  If  the  mechanism  associated  with  this  new  authentication  mechanism  is 

retscan,  the  application  simply  invokes  ldap_sasl_bind()  with  mechanism  set  to 

retscan.  Depending  on  how  the  mechanism  and  plug-in  are  designed,  the  

application  might  be  required  to  also  supply  the  user’s  DN  and  credentials.  

Alternatively,  the  plug-in  itself  might  be  responsible  for  obtaining  the  user’s  

identity  and  credentials,  which  are  derived  in  some  way  from  a retinal  scan  image.  

If  the  retinal  scan  plug-in  is not  defined  in  ibmldap.conf,  the  application  must  

explicitly  register  the  plug-in,  using  the  ldap_register_plugin()  API.  See  “Defining  a 

SASL  plug-in”  for  information  about  defining  a SASL  plug-in  for  use  with  an  

application.  See  “LDAP_PLUGIN_REGISTRATION”  on  page  89  for  more  

information  about  using  an  LDAP  client  plug-in.  See  Chapter  6,  “LDAP  client  

plug-in  programming  reference,”  on  page  165  for  more  information  about  

developing  an  LDAP  client  plug-in.  

SASL  mechanisms  implemented  by  the  application:    In  some  cases,  the  SASL  

mechanism  might  not  require  the  presence  of a plug-in,  or  any  special  support  in  

the  LDAP  library.  If the  application  can  invoke  the  ldap_sasl_bind()  or  

ldap_sasl_bind_s()  API  with  the  parameters  appropriate  to  the  mechanism,  the  

LDAP  library  simply  encodes  the  SASL  bind  request  and  sends  it  to  the  server.  If a 

plug-in  is defined  for  the  specified  mechanism,  the  request  is diverted  to  the  

plug-in,  which  can  perform  additional  processing  before  sending  the  SASL  bind  to  

the  server.  

SASL  mechanisms  supported  by  the  LDAP  server:    The  application  can  query  the  

LDAP  server’s  root  DSE,  using  ldap_search()  with  the  following  settings:  

v   base  DN  set  to  NULL  

v   scope  set  to  base  

v   filter  set  to  ″(objectclass=*)″

If  the  LDAP  server  supports  one  or  more  SASL  mechanisms,  the  search  results  

include  one  or  more  values  for  the  supportedsaslmechanisms  attribute  type.  

Defining  a SASL  plug-in:    When  the  application  issues  an  ldap_sasl_bind_s()  API  

with  a mechanism  that  is supported  by  a particular  SASL  plug-in,  the  LDAP  

library  must  be  able  to  locate  the  plug-in  shared  library.  Two  mechanisms  are  

available  for  making  an  LDAP  client  plug-in  known  to  the  LDAP  library:  

v   The  plug-in  for  the  specified  SASL  mechanism  is defined  in the  ibmldap.conf  

file.  

v   The  plug-in  has  been  explicitly  registered  by  the  application,  using  the  

ldap_register_plugin()  API.

See  “Finding  the  Plug-in  library”  on  page  91  for  more  information  about  locating  a 

plug-in  library  and  defining  plug-ins  in  the  ibmldap.conf  file.  

Unbinding 

ldap_unbind_ext(),  ldap_unbind(),  and  ldap_unbind_s()  are  synchronous  APIs,  in  

the  sense  that  they  send  an  unbind  request  to  the  server,  close  all  open  connections  

associated  with  the  LDAP  session  handle,  and  dispose  of  all  resources  associated  

with  the  session  handle  before  returning.  Note  that  there  is no  server  response  to  

an  LDAP  unbind  operation.  All  three  of the  unbind  functions  return  

LDAP_SUCCESS  or  another  LDAP  error  code  if the  request  cannot  be  sent  to  the  

 

Chapter  2. API categories  15



LDAP  server.  After  a call  to  one  of  the  unbind  functions,  the  session  handle  ld  is 

invalid  and  it is  illegal  to  make  any  further  LDAP  API  calls  using  the  ld.  

The  ldap_unbind()  and  ldap_unbind_s()  APIs  behave  identically.  The  

ldap_unbind_ext()  API  allows  server  and  client  controls  to  be  included  explicitly,  

but  note  that  because  there  is no  server  response  to  an  unbind  request  there  is no  

way  to  receive  a response  to  a server  control  sent  with  an  unbind  request.  

Re-binding while following referrals 

The  ldap_set_rebind_proc()  call  is used  to  set  the  entry-point  of a routine  that  is 

called  back  to  obtain  bind  credentials  for  use  when  a new  server  is contacted  

following  an  LDAP  referral  or  search  reference.  Note  that  this  function  is available  

only  when  LDAP_OPT_REFERRALS  is set.  This  is the  default  setting.  If  

ldap_set_rebind_proc()  is never  called,  or  if it is called  with  a NULL  rebindproc  

parameter,  an  unauthenticated  simple  LDAP  bind  is always  done  when  chasing  

referrals.  The  SSL  characteristics  of the  connections  to  the  referred  to  servers  are  

preserved  when  chasing  referrals.  In addition,  if the  original  bind  was  an  LDAP  V3  

bind,  an  LDAP  V3  bind  is used  to  connect  to the  referred-to  servers.  If  the  original  

bind  was  an  LDAP  V2  bind,  an  LDAP  V2  bind  is used  to  connect  to each  

referred-to  server.  

rebindproc  must  be  a function  that  is declared  like  the  following:  

  int  rebindproc(  LDAP  *ld,  char  **whop,  char  **credp,  

  

      int  *methodp,  int  freeit  ); 

  

The  LDAP  library  first  calls  the  rebindproc  to  obtain  the  referral  bind  credentials,  

and  the  freeit  parameter  is zero.  The  whop, credp, and  methodp  parameters  must  

be  set  as  appropriate.  If  the  rebindproc  returns  LDAP_SUCCESS,  referral  

processing  continues,  and  the  rebindproc  is called  a second  time  with  freeit  

nonzero  to  give  the  application  a chance  to  free  any  memory  allocated  in  the  

previous  call.  

If anything  other  than  LDAP_SUCCESS  is returned  by  the  first  call  to  the  

rebindproc,  referral  processing  is stopped  and  the  error  code  is returned  for  the  

original  LDAP  operation.  

Errors 

Asynchronous  routines  return  -1  in  case  of  error. However,  in  the  case  of the  

asynchronous  bind  routine  ldap_sasl_bind(),  it returns  LDAP  result  code  other  than  

LDAP_SUCCESS  if the  request  sent  was  unsuccessful.  To obtain  the  LDAP  result  

code  of  the  asynchronous  bind  routine,  ldap_sasl_bind(),  use  the  ldap_result()  API.  

To obtain  the  LDAP  error,  use  the  ldap_get_errno()  API.  Synchronous  routines  

return  the  LDAP  error  code  resulting  from  the  operation.  

See also 

ldap_error,  ldap_open  

LDAP_CODEPAGE  

   ldap_xlate_local_to_utf8  

   ldap_xlate_utf8_to_local  

   ldap_xlate_local_to_unicode  

   ldap_xlate_unicode_to_local  

 

16 Programming Reference



ldap_set_locale  

   ldap_get_locale  

   ldap_set_iconv_local_codepage  

   ldap_get_iconv_locale_codepage  

   ldap_set_iconv_local_charset  

   ldap_char_size

Purpose 

Functions  for  managing  the  conversion  of  strings  between  UTF-8  and  a local  code  

page.  

Synopsis 

#include  <ldap.h> 

  

  

int   ldap_xlate_local_to_utf8(  

       char            *inbufp,  

       unsigned  long   *inlenp,  

       char            *outbufp,  

       unsigned  long   *outlenp)  

  

int   ldap_xlate_utf8_to_local(  

       char            *inbufp,  

       unsigned  long   *inlenp,  

       char            *outbufp,  

       unsigned  long   *outlenp)  

  

int   ldap_xlate_local_to_unicode(  

       char            *inbufp,  

       unsigned  long   *inlenp,  

       char            *outbufp,  

       unsigned  long   *outlenp)  

  

int   ldap_xlate_unicode_to_local(  

       char            *inbufp,  

       unsigned  long   *inlenp,  

       char            *outbufp,  

       unsigned  long   *outlenp)  

  

int   ldap_set_locale(  

       const  char            *locale)  

  

char  *ldap_get_locale(  ) 

  

int   ldap_set_iconv_local_codepage  

       char            *codepage)  

  

char  *ldap_get_iconv_local_codepage(  ) 

  

int   ldap_set_iconv_local_charset(  

       char            *charset)  

  

int   ldap_char_size(  

       char            *p)  

Input parameters 

inbufp  

A  pointer  to  the  address  of  the  input  buffer  containing  the  data  to  be  

translated  

 

Chapter  2. API categories  17



inlenp  Length  in  bytes  of  the  inbufp  input  buffer  

outbufp  

A  pointer  to the  address  of  the  output  buffer  for  translated  data  

outlenp  

Length  in  bytes  of  the  outbufp  input  buffer  

Note:   The  output  buffer  must  be  three  times  as  large  as  the  input  buffer  if 

the  intent  is to  translate  the  entire  input  buffer  in  a single  call.

charset  

Specifies  the  character  set  to  be  used  when  converting  strings  between  

UTF-8  and  the  local  code  page.  See  “IANA  character  sets  supported  by 

platform”  on  page  188  for  the  specific  charset  values  that  are  supported  for  

each  operating  system  platform.  

Note:   The  supported  values  for  charset  are  the  same  values  supported  for  

the  charset  tag  that  is optionally  defined  in Version  1 LDIF  files.

codepage  

Specifies  a code  page  or  code  set  for  overriding  the  active  code  page  for  

the  currently  defined  locale.  See  the  system  documentation  for  the  code  

pages  supported  for  a particular  operating  system.  

locale  Specifies  the  locale  to  be  used  by  LDAP  when  converting  to and  from  

UTF-8  or  Unicode.  If the  locale  is not  explicitly  set,  the  LDAP  library  uses  

the  application’s  default  locale.  To force  the  LDAP  library  to  use  another  

locale,  specify  the  appropriate  locale  string.  

 For  applications  running  on  the  Windows  platform,  supported  locales  are  

defined  in  ldaplocale.h.  For  example,  the  following  is  an  excerpt  from  

ldaplocale.h  and  shows  the  available  French  locales:  

/*       French  - France                                  */ 

     #define  LDAP_LOCALE_FRFR850              "Fr_FR"  

     #define  LDAP_LOCALE_FRFRISO8859_1        "fr_FR"  

For  applications  running  on  the  AIX  operating  system,  see  the  locale  

definitions  defined  in  the  ″Understanding  Locale″ chapter  of AIX  System  

Management  Guide:  Operating  System  and  Devices. System-defined  locales  are  

located  in  /usr/lib/nls/loc  on  the  AIX  operating  system.  For  example,  

Fr_FR  and  fr_FR  are  two  system-supported  French  locales.  

 For  Solaris  applications,  see  the  system  documentation  for  the  set  of 

system-supported  locale  definitions.

Note:   The  specified  locale  is applicable  to all  conversions  by  the  LDAP  

library  within  the  applications  address  space.  The  LDAP  locale  is set  

or  changed  only  when  there  is no  other  LDAP  activity  occurring  

within  the  application  on  other  threads.

p  Returns  the  number  of bytes  constituting  the  character  pointed  to by  p. For  

ASCII  characters,  this  is 1.  For  other  character  sets,  it can  be  greater  than  1.

Output parameters 

inbufp  

A  pointer  to the  address  of  the  input  buffer  containing  the  data  to  be  

translated  

 

18 Programming Reference



inlenp  Length  in  bytes  of  the  inbufp  input  buffer  

outbufp  

A  pointer  to  the  address  of  the  output  buffer  for  translated  data  

outlenp  

Length  in  bytes  of  the  outbufp  input  buffer

Note:   The  output  buffer  must  be  three  times  as large  as the  input  buffer  if 

the  intent  is to  translate  the  entire  input  buffer  in a single  call.

locale  When  returned  from  the  ldap_get_locale()  API,  locale  specifies  the  

currently  active  locale  for  LDAP.  See  the  system  documentation  for  the  

locales  supported  for  a particular  operating  system.  For  applications  

running  in  the  Windows  environment,  see  ldaplocale.h.  

codepage  

When  returned  from  ldap_get_iconv_local_codepage()  API,  codepage  

specifies  the  currently  active  code  page,  as  associated  with  the  currently  

active  locale.  See  the  system  documentation  for  the  code  pages  supported  

for  a particular  operating  system.

Usage 

These  routines  described  in  the  sections  below  are  used  to  manage  

application-level  conversion  of data  between  the  local  code  page  and  UTF-8,  which  

is  used  by  LDAP  when  communicating  with  an  LDAP  V3  compliant  server.  For  

more  information  on  the  UTF-8  standard,  see  ″UTF-8,  a Transformation  Format  of  

ISO  10646″. 

When  connected  to  an  LDAP  V3  server,  the  LDAP  APIs  are  designed  to  accept  and  

return  string  data  UTF-8  encoded.  This  is  the  default  mode  of operation.  

Alternatively,  your  application  can  rely  on  the  LDAP  library  to  convert  LDAP  V3  

string  data  to  and  from  UTF-8  by  using  the  ldap_set_option()  API  to set  the  

LDAP_OPT_UTF8_IO  option  to  LDAP_UTF8_XLATE_ON.  Once  set,  the  following  

connection-based  APIs,  that  is,  those  that  accept  an  ld as  input,  expect  string  data  

to  be  supplied  as  input  in  the  local  code  page,  and  return  string  data  to the  

application  in  the  local  code  page.  In other  words,  the  following  LDAP  routines  

and  related  APIs  automatically  convert  string  data  to  and  from  the  UTF-8  wire  

protocol:  

v   ldap_add  (and  family)  

v   ldap_bind  (and  family)  

v   ldap_compare  (and  family)  

v   ldap_delete  (and  family)  

v   ldap_parse_reference  

v   ldap_get_dn  

v   ldap_get_values  

v   ldap_modify  (and  family)  

v   ldap_parse_result  

v   ldap_rename  (and  family)  

v   ldap_search  (and  family)  

v   ldap_url_search  (and  family)

The  following  APIs  are  not  associated  with  a connection,  and  always  expect  string  

data,  for  example,  DNs,  to  be  supplied  and  returned  UTF-8  encoded:  

 

Chapter  2. API categories  19

http://www.cis.ohio-state.edu/htbin/rfc/rfc2279.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc2279.html


v   ldap_explode_dn  

v   ldap_explode_dns  

v   ldap_explode_rdn  

v   ldap_server_locate  

v   ldap_server_conf_save  

v   ldap_is_ldap_url  

v   ldap_url_parse  

v   ldap_default_dn_set

The  APIs  described  in  this  section  provide  assistance  in converting  your  

application  data  to  and  from  the  locale  code  page.  There  are  several  reasons  for  

using  these  APIs:  

v   The  application  is  using  one  or  more  of the  non-connection  oriented  APIs,  and  

needs  to  convert  strings  to UTF-8  from  the  local  code  page  before  using  the  

APIs.  

v   The  application  is  designed  to  send  and  receive  strings  as  UTF-8  when  using  the  

LDAP  APIs,  but  needs  to  convert  selected  strings  to  the  local  code  page  before  

presenting  to  the  user. When  the  directory  contains  heterogeneous  data,  that  is,  

data  is obtained  from  multiple  countries,  or  locales,  this  might  be  the  desired  

approach.

If your  application  might  be  extracting  string  data  from  the  directory  that  has  

originated  from  other  countries  or  locales,  design  the  application  with  the  

following  considerations  in mind:  

v   Consider  splitting  your  application  into  a presentation  component,  and  an  LDAP  

worker  component.  

–   The  presentation  component  is responsible  for  obtaining  data  from  external  

sources,  for  example,  graphical  user  interfaces  (GUIs),  command-lines,  files,  

and  so  forth,  as  well  as  displaying  the  data  to  a GUI,  standard  out,  files,  and  

so  forth.  This  component  typically  deals  with  string  data  that  is represented  

in  the  local  code  page.  

–   The  LDAP  worker  component  is responsible  for  interfacing  directly  with  the  

LDAP  programming  interfaces.  The  LDAP  worker  component  can  be  

implemented  to  deal  strictly  in UTF-8  when  handling  string  data.  The  default  

mode  of  operation  for  the  LDAP  library  is to  handle  strings  encoded  as  

UTF-8.  

–   String  conversion  between  UTF-8  and  the  local  code  page  occurs  when  data  is 

passed  to  and  from  the  presentation  component  and  the  LDAP  worker  

component.

Consider  the  following  scenario:  

The  LDAP  worker  component  issues  an  LDAP  search,  and  returns  a list  of  

entries  from  the  directory.  To ensure  that  no  data  is lost,  the  default  mode  is 

used  and  the  LDAP  library  does  not  convert  string  data.  In  this  case,  this  means  

the  DNs  of  the  entries  returned  from  the  search  are  represented  in  UTF-8.  

The  application  needs  to display  this  list  of  DNs  on  a panel,  so  the  user  can  

select  the  desired  entry,  and  the  application  then  retrieves  additional  attributes  

for  the  selected  DN.  Since  the  DN  is represented  in  UTF-8,  it  must  be  converted  

to  the  local  code  page  prior  to  display.  

The  converted  DN  might  not  be  a faithful  representation  of  the  UTF-8  DN.  For  

example,  if the  DN  was  created  in  China,  it can  contain  Chinese  characters.  If 

 

20 Programming Reference



the  application  is running  in a French  locale,  certain  Chinese  characters  might  

not  be  converted  correctly,  and  are  replaced  with  a replacement  character.  

The  application  can  display  the  converted  DN,  but  certain  characters  might  be 

displayed  as  bobs.  Assuming  there  is enough  information  for  the  end-user  to  

select  the  desired  DN,  the  application  accesses  the  LDAP  directory  with  the  

selected  DN  to  get  additional  information,  for  example,  a jpeg  image  so  it can  

display  the  user’s  photograph.  Since  jpeg  images  might  be  large,  the  application  

is designed  to  obtain  the  jpeg  attribute  after  the  user  selects  the  specific  DN  

only.  

In  order  to  ensure  that  the  search  to  get  the  jpeg  attribute  using  the  selected  DN  

works,  the  search  must  be  done  with  the  original  UTF-8  version  of  the  selected  

DN,  not  the  version  of the  DN  that  was  converted  to  the  local  code  page.  This  

implies  that  the  application  maintains  a correlation  between  the  original  UTF-8  

version  of  the  DN,  and  the  version  that  was  converted  to  the  local  code  page.  

v   If the  application  is designed  to  accept  user  input,  generate  one  or  more  LDAP  

searches,  then  display  the  information  without  passing  the  results  back  into  the  

LDAP  library.  The  application  can  be  designed  to  let  the  LDAP  library  perform  

the  conversions,  even  though  some  data  loss  might  theoretically  occur. 

Automatic  conversion  of  string  data  for  a specific  ld can  be  enabled  by  using  

ldap_set_option()  with  the  LDAP_OPT_UTF8_IO  option  set  to  

LDAP_UTF8_XLATE_ON.

ldap_char_size  returns  the  number  of bytes  constituting  the  character  pointed  to  by  

p.  For  ASCII  characters,  this  is 1.  For  other  character  sets,  it can  be  greater  than  1. 

Translate local code page to UTF-8 

The  ldap_xlate_local_to_utf8()  API  is used  to convert  a string  from  the  local  code  

page  to  a UTF-8  encoding.  Since  the  output  string  from  the  conversion  process  can  

be  larger  than  the  input  string,  therefore  the  output  buffer  should  be  at least  twice  

as  large  as  the  input  buffer.  LDAP_SUCCESS  is returned  if the  conversion  is 

successful.  

Translate UTF-8 to local code page 

The  ldap_xlate_utf8_to_local()  API  is used  to convert  a UTF-8  encoded  string  to  the  

local  code  page  encoding.  Since  the  output  string  from  the  conversion  process  can  

be  larger  than  the  input  string,  therefore  the  output  buffer  should  be  at least  twice  

as  large  as  the  input  buffer.  LDAP_SUCCESS  is returned  if the  conversion  is 

successful.  

Note:   Translation  of strings  from  a UTF-8  encoding  to  local  code  page  can  result  in 

loss  of  data  when  one  or  more  characters  in  the  UTF-8  encoding  cannot  be 

represented  in  the  local  code  page.  When  this  occurs,  a substitution  

character  replaces  any  UTF-8  characters  that  cannot  be  converted  to the  local  

code  page.  

Translate local code page to unicode 

The  ldap_xlate_local_to_unicode()  API  is  used  to convert  a string  from  the  local  

code  page  to  the  UCS-2  encoding  as  defined  by  ISO/IEC  10646-1.  This  same  set  of 

characters  is  also  defined  in  the  UNICODE  standard.  Since  the  output  string  from  

the  conversion  process  can  be  larger  than  the  input  string,  therefore  the  output  

buffer  should  be  at least  twice  as  large  as  the  input  buffer.  LDAP_SUCCESS  is  

returned  if the  conversion  is successful.  

Translate unicode to local code page 

The  ldap_xlate_unicode_to_local()  API  is  used  to convert  a UCS-2-encoded  string  

to  the  local  code  page  encoding.  Since  the  output  string  from  the  conversion  

 

Chapter  2. API categories  21



process  can  be  larger  than  the  input  string,  therefore  the  output  buffer  should  be  at  

least  twice  as  large  as  the  input  buffer.  LDAP_SUCCESS  is  returned  if the  

conversion  is successful.  

Note:   Translation  of  strings  from  a UCS-2  (UNICODE)  encoding  to local  code  page  

can  result  in  loss  of  data  when  one  or  more  characters  in  the  UCS-2  

encoding  cannot  be  represented  in the  local  code  page.  When  this  occurs,  a 

substitution  character  replaces  any  UCS-2  characters  that  cannot  be  

converted  to  the  local  code  page.  

Set locale 

The  ldap_set_locale()  API  is used  to  change  the  locale  used  by  LDAP  for  

conversions  between  the  local  code  page  and  UTF-8  (or  Unicode).  Unless  explicitly  

set  with  the  ldap_set_locale()  API,  LDAP  uses  the  application’s  default  locale.  To 

force  the  LDAP  library  to  use  another  locale,  specify  the  appropriate  locale  string.  

For  UNIX  systems,  see  the  system  documentation  for  the  locale  definitions.  For  

Windows  operating  systems,  see  ldaplocale.h.  

Get locale 

The  ldap_get_locale()  API  is used  to obtain  the  active  LDAP  locale.  Values  that  can  

be  returned  are  system-specific.  

Set codepage 

The  ldap_set_iconv_local_codepage()  API  is used  to  override  the  code  page  

associated  with  the  active  locale.  See  the  system  documentation  for  the  code  pages  

supported  for  a particular  operating  system.  

Get codepage 

The  ldap_get_iconv_local_codepage()  API  is used  to  obtain  the  code  page  

associated  with  the  active  locale.  See  the  system  documentation  for  the  code  pages  

supported  for  a particular  operating  system.  See  “IANA  character  sets  supported  

by  platform”  on  page  188  for  the  specific  charset  values  that  are  supported  for  

each  operating  system  platform.  Note  that  the  supported  values  for  charset  are  the  

same  values  supported  for  the  charset  tag  that  is  optionally  defined  in  Version  1 

LDIF  files.  

Japanese and Korean currency considerations 

The  generally  accepted  convention  for  converting  the  backslash  character  ( \ ) 

(single  byte  X’5C’)  from  the  Japanese  or  Korean  locale  into  Unicode  is to  convert  

X’5C’  to  the  Unicode  yen  for  Japanese,  or  the  Unicode  won  for  Korean.  

To change  the  default  behavior,  set  the  LDAP_BACKSLASH  environment  variable  

to  YES  prior  to  using  any  of  the  LDAP  APIs.  When  LDAP_BACKSLASH  is set  to  

YES,  the  X’5C’  character  is converted  to the  Unicode  ( \ ) , instead  of the  Japanese  

yen  or  Korean  won.  

Errors 

Each  of  the  LDAP  user  configuration  APIs  returns  a nonzero  LDAP  return  code  if 

an  error  occurs.  See  “LDAP_ERROR”  on  page  41  for  more  details.  

See also 

ldap_error  

 

22 Programming Reference



LDAP_COMPARE  

   ldap_compare  

   ldap_compare_s  

   ldap_compare_ext  

   ldap_compare_ext_s

Purpose 

Performs  an  LDAP  compare  operation.  

Synopsis 

#include  <ldap.h> 

  

  

int  ldap_compare(  

       LDAP            *ld,  

       const  char      *dn,  

       const  char      *attr,  

       const  char      *value)  

  

int  ldap_compare_s(  

       LDAP            *ld,  

       const  char      *dn,  

       const  char      *attr,  

       const  char      *value)  

  

int  ldap_compare_ext(  

       LDAP            *ld,  

       const  char      *dn,  

       const  char      *attr,  

       const  struct  berval  *bvalue,  

       LDAPControl     **serverctrls,  

       LDAPControl     **clientctrls,  

       int             *msgidp)  

  

int  ldap_compare_ext_s(  

       LDAP            *ld,  

       const  char      *dn,  

       const  char      *attr,  

       const  struct  berval  *bvalue,  

       LDAPControl     **serverctrls,  

       LDAPControl     **clientctrls)  

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init()  or  ldap_open().  

dn  Specifies  the  DN  of  the  entry  on  which  to  perform  the  comparison.  

attr  Specifies  the  attribute  type  to use  in  the  comparison.  

bvalue  

Specifies  the  attribute  value  to compare  against  the  entry  value.  This  

parameter  is used  in  the  ldap_compare_ext  and  ldap_compare_ext_s  

routines,  and  is  a pointer  to a struct berval,  making  it  possible  to  compare  

binary  values.  See  “LDAP_GET_VALUES”  on  page  59 

 

Chapter  2. API categories  23



serverctrls  

Specifies  a list  of LDAP  server  controls.  This  parameter  can  be  set  to 

NULL.  See  “LDAP  controls”  on  page  25  for  more  information  about  server  

controls.  

clientctrls   

Specifies  a list  of LDAP  client  controls.  This  parameter  can  be  set  to NULL.  

See  “LDAP  controls”  on  page  25  for  more  information  about  client  

controls.

Output parameters 

msgidp  

This  result  parameter  is set  to the  message  ID  of  the  request  if the  

ldap_compare_ext()  call  succeeds.

Usage 

The  various  LDAP  compare  routines  are  used  to perform  LDAP  compare  

operations.  They  take  dn,  the  DN  of the  entry  upon  which  to  perform  the  compare,  

and  attr  and  value, the  attribute  type  and  value  to  compare  to  those  found  in  the  

entry.  

The  ldap_compare_ext()  API  initiates  an  asynchronous  compare  operation  and  

returns  the  constant  LDAP_SUCCESS  if the  request  was  successfully  sent,  or  

another  LDAP  error  code  if it was  not  successfully  sent.  If  successful,  

ldap_compare_ext()  places  the  message  ID  of the  request  in  *msgidp. A  subsequent  

call  to  ldap_result()  obtains  the  result  of  the  operation.  After  the  operation  has  

completed,  ldap_result()  returns  the  status  of  the  operation  in  the  form  of  an  error  

code.  The  error  code  indicates  whether  the  operation  completed  successfully  

(LDAP_COMPARE_TRUE  or  LDAP_COMPARE_FALSE).  

Similarly,  the  ldap_compare()  API  initiates  an  asynchronous  compare  operation  and  

returns  the  message  ID  of that  operation.  Use  a subsequent  call  to  ldap_result()  to  

obtain  the  result  of  the  compare.  In  case  of error,  ldap_compare()  returns  -1,  setting  

the  session  error  parameters  in  the  LDAP  structure  appropriately.  The  session  error  

parameters  can  be  obtained  by  using  ldap_get_errno().  

See  “LDAP_ERROR”  on  page  41 for  more  details.  

Use  the  synchronous  ldap_compare_s()  and  ldap_compare_ext_s  APIs  to perform  

LDAP  compare  operations.  These  APIs  return  an  LDAP  error  code,  which  can  be  

LDAP_COMPARE_TRUE  if the  entry  contains  the  attribute  value  and  

LDAP_COMPARE_FALSE  if it  does  not.  Otherwise,  some  error  code  is returned.  

The  ldap_compare_ext()  and  ldap_compare_ext_s()  APIs  both  support  LDAP  V3  

server  controls  and  client  controls.  

Errors 

ldap_compare_s()  API  returns  an  LDAP  error  code  that  can  be  interpreted  by  

calling  one  of  the  ldap_error  routines.  The  ldap_compare()  API  returns  -1 if the  

initiation  request  was  unsuccessful.  It returns  the  message  ID  of the  request  if 

successful.  

See also 

ldap_error  

 

24 Programming Reference



LDAP controls 

Certain  LDAP  Version  3 operations  can  be  extended  with  the  use  of  controls.  

Controls  can  be  sent  to  a server  or returned  to the  client  with  any  LDAP  message.  

This  type  of  control  is called  a server  control.  

The  LDAP  API  also  supports  a client-side  extension  mechanism,  which  can  be  used  

to  define  client  controls.  The  client-side  controls  affect  the  behavior  of  the  LDAP  

client  library  and  are  never  sent  to  the  server.  Note  that  client-side  controls  are  not  

defined  for  this  client  library.  

A common  data  structure  is used  to represent  both  server-side  and  client-side  

controls:  

      typedef  struct  ldapcontrol  { 

              char             *ldctl_oid;  

              struct  berval    ldctl_value;  

              char             ldctl_iscritical;  

      } LDAPControl,  *PLDAPControl;  

The  LDAPControl  fields  have  the  following  definitions:  

ldctl_oid  

Specifies  the  control  type,  represented  as  a string.  

ldctl_value  

Specifies  the  data  associated  with  the  control.  Note  that  the  control  might  

not  include  data.  

ldctl_iscritical  

Specifies  whether  the  control  is  critical  or  not.  If the  field  is  nonzero,  the  

operation  is carried  out  only  if it is recognized  and  supported  by  the  

server  or  the  client  for  client-side  controls.

Functions to manipulate controls 

   ldap_insert_control  

   ldap_add_control  

   ldap_remove_control  

   ldap_copy_controls

Purpose 

Add,  remove,  or  copy  controls.  

Synopsis 

#include  <ldap.h> 

  

int  ldap_insert_control(  

       LDAPControl  *newControl,  

       LDAPControl  ***ctrlList);  

  

int  ldap_add_control(  

       const  char  *oid,  ber_len_t  len , 

       char  *value,  

       int  isCritical,  

       LDAPControl  ***ctrlList);  

  

int  ldap_remove_control(  

       LDAPControl  *delControl,  

       LDAPControl  ***ctrlList,  

       int  freeit);

 

Chapter  2. API categories  25



int  ldap_copy_controls(  

       LDAPControl  ***to_here,  

       LDAPControl  **from);  

Input parameters 

newcontrol  

Specifies  a control  to  be  inserted  into  a list  of  controls.  

ctrlList  

Specifies  a list  of LDAP  server  controls  

oid  Specifies  the  control  type,  represented  as  a string.  

len  Specifies  the  length  of  the  value  string.  

value  Specifies  the  data  associated  with  the  control.  

isCritical  

Specifies  whether  the  control  is critical  or  not.  

delControl  

Specifies  the  control  to  be  deleted.  

freeit  Specifies  whether  or  not  to  free  the  control.  If  set  to  TRUE,  the  control  will  

be  freed.  If  set  to  FALSE,  the  control  will  not  be  freed.  

to_here  

Specifies  the  location  to  which  to  copy  the  control  list.  

from  Specifies  the  location  of  the  control  list  to be  copied.

Usage 

The  ldap_insert_control()  API  inserts  the  control  *newcontrol  into  a list  of  controls  

specified  by  ***ctrlList. The  function  will  allocate  space  in  the  list  for  the  control,  

but  will  not  allocate  the  actual  control.  Returns  LDAP_SUCCESS  if the  request  was  

successfully  sent  or  LDAP_NO_MEMORY  if the  control  could  not  be  inserted.  

The  ldap_add_control()  API  creates  a control  (using  the  oid,  len,  value  and  isCritical  

values)  and  inserts  it  into  a list  of controls  specified  by  ***ctrlList. The  function  will  

allocate  space  in  the  list  for  the  control.  Returns  LDAP_SUCCESS  if the  request  

was  successfully  sent  or  LDAP_NO_MEMORY  if the  control  could  not  be  added.  

The  ldap_remove_control()  API  removes  the  control  from  the  list.  If  freeit  is not  0, 

the  control  will  be  freed.  If  freeit  is set  to  0, the  control  will  not  be  freed.  Returns  

LDAP_SUCCESS  if the  request  was  successfully  sent  or  LDAP_NO_MEMORY  if 

the  control  could  not  be  removed.  

The  ldap_copy_controls()  API  makes  a copy  of the  control  list.  Returns  

LDAP_SUCCESS  if the  request  was  successfully  sent  or  LDAP_NO_MEMORY  if 

the  control  list  could  not  be  copied.  

LDAP_CREATE_ABORT_TRANSACTION_REQUEST  

Purpose 

This  LDAP  routine  is used  to create  an  abort  transaction  request.  

 

26 Programming Reference



Synopsis 

  

#include  <ldap.h> 

  

     struct  berval  * ldap_create_abort_transaction_request  ( const  char  *tran_id  ); 

  

Input parameters 

tran_id  

Specifies  the  transaction  ID  as  a string.

Output parameters 

The  ldap_create_abort_transaction_request()  routine  returns  a berval  struct  

containing  the  abort  transaction  request.  

Usage 

This  routine  is  used  to  create  the  abort  transaction  request  that  can  be  passed  to  

ldap_extended_operation()  or  ldap_extended_operation_s()  API.  

Errors 

If  an  error  is  encountered,  this  routine  returns  a null  value.  

See also 

ldap_start_transaction,  ldap_start_transaction_s,  ldap_prepare_transaction,  

ldap_prepare_transaction_s,  ldap_end_transaction,  ldap_end_transaction_s,  

ldap_get_tran_id,  ldap_create_transaction_control,  

ldap_create_commit_transaction_request,  ldap_create_prepare_transaction_request  

LDAP_CREATE_COMMIT_TRANSACTION_REQUEST  

Purpose 

This  LDAP  routine  is used  to create  a commit  transaction  request.  

Synopsis 

  

#include  <ldap.h> 

  

     struct  berval  * ldap_create_commit_transaction_request  ( const  char  *tran_id  ); 

  

Input parameters 

tran_id  

Specifies  the  transaction  ID  as  a string.

Output parameters 

The  ldap_create_commit_transaction_request()  routine  returns  a berval  struct  

containing  the  commit  transaction  request.  

Usage 

This  routine  is  used  to  create  a commit  transaction  request  that  can  be  passed  to 

the  ldap_extended_operation()  or  ldap_extended_operation_s()  API.  

 

Chapter  2. API categories  27



Errors 

If an  error  is  encountered,  this  routine  returns  a null  value.  

See also 

ldap_start_transaction,  ldap_start_transaction_s,  ldap_prepare_transaction,  

ldap_prepare_transaction_s,  ldap_end_transaction,  ldap_end_transaction_s,  

ldap_get_tran_id,  ldap_create_transaction_control,  

ldap_create_abort_transaction_request,  ldap_create_prepare_transaction_request  

LDAP_CREATE_EFFECTIVE_PWDPOLICY_REQUEST  

Purpose 

An  LDAP  routine  for  creating  an  extended  operation  request  to  query  a user’s  or  a 

group’s  effective  password  policy.  

Synopsis 

#include  <ldap.h> 

  

     struct  berval  *ldap_create_effective_pwdpolicy_request  (char  *dn);  

  

  

Input parameters 

dn  Specifies  the  DN  of  a user  or  a group  entry.

Usage 

This  routine  encodes  the  request  value  for  the  effective  password  policy  extended  

operation.  The  returned  value  can  be  used  as  an  input  parameter  to  

ldap_extended_operation_s  or  ldap_extended_operation  function.  

Errors 

The  ldap_create_effective_pwdpolicy_request  routine  returns  an  LDAP  error  code  if 

it encounters  an  error  when  encoding  the  request.  

See also 

ldap_extended  operation,  ldap_extended  operation_s,  

ldap_parse_effective_pwdpolicy_response  

LDAP_CREATE_GET_FILE_REQUEST  

Purpose 

This  LDAP  routine  creates  a berval  request  that  can  be  sent  on  the  get  file  

extended  operation.  

Synopsis 

  

#include  <ldap.h> 

  

     struct  berval*  ldap_create_get_file_request  (

 

28 Programming Reference



int       fileNumber;  

           char*     fileName  

     ); 

  

Input parameters 

fileNumber  

Specifies  the  file  option  defined  in  ldap.h.  The  various  file  options  are  

listed:  

v   Other(0)  

v   V3.ibm.at(1),  V3.ibm.oc(2),  

v   V3.user.at(3),  V3.user.oc(4),  

v   V3.config.at(5),  V3.config.oc(6),  

v   V3.system.at(7),  V3.system.oc(8),  

v   V3.modifiedschema(9),  V3.ldapsyntaxes(10),  

v   V3.matchingrules(11),  

v   key  ring  file(12),  key  database  file(13)

fileName  

Specifies  the  file  name  when  the  fileNumber  is 0.  The  value  of this  

parameter  must  be  set  to NULL  when  the  fileNumber  is in  the  range  from  

1 through  11 and  13.  The  fileName  parameter  must  either  be  provided  as  a 

full  path  to  the  file  or  the  system  should  be  able  to  resolve  the  file  name  

with  the  set  path  for  the  environment.  The  fileName  parameter  can  either  

be  a file  that  is in  the  configuration  file  of  the  server  under  the  

ibm-slapdIncludeSchema  or  ibm-slapdSchemaAdditions  attributes,  or  a 

keytab  file  of a proxy  server  backend.

Usage 

The  ldap_create_get_file_request  routine  is used  to create  a berval  request  that  can  

be  sent  on  the  get  file  extended  operation.  

Errors 

This  routine  does  not  return  any  return  code.  The  berval  returned  will  be  NULL,  if 

the  routine  encounters  any  errors.  

LDAP_CREATE_LIMIT_NUM_VALUES_CONTROL  

Purpose 

This  LDAP  routine  is used  for  creating  the  Limit  Number  of Attribute  Values  

Control.  

Synopsis 

#include  <ldap.h> 

  

    int  ldap_create_limit_num_values_control(  

              LDAP         *ld,  

              int          maxTotalValues,  

              int          maxValuesPerAttribute,  

              int          returnDetails,  

              int          isCritical,  

              LDAPControl  **control);

 

Chapter  2. API categories  29



Input parameters 

ld  Specifies  a pointer  to  the  LDAP  structure  representing  an  LDAP  

connection.  

maxTotalValues  

An  integer  that  indicates  the  maximum  number  of attribute  values  that  can  

be  returned  for  an  entry.  

maxValuesPerAttribute  

An  integer  that  indicates  the  maximum  number  of attribute  values  that  can  

be  returned  for  an  attribute  in  an  entry.  

returnDetails  

An  integer  that  indicates  the  type  of response  desired.  If the  value  of 

returnDetails  is 0,  no  response  controls  are  returned  with  the  entries.  

Otherwise,  response  controls  are  returned  with  the  entries.  

isCritical  

An  integer  that  indicates  if the  criticality  of the  control  should  be  critical  or  

not  critical.  If the  value  is 0, the  criticality  of the  control  is set  to  not  

critical.  If  the  value  is  non-zero,  the  criticality  of  the  control  is set  to  

critical.  

control  

Specifies  the  address  of  a pointer  to  an  LDAPControl  structure,  where  the  

created  control  will  be  built  if the  API  is successful.

Usage 

The  ldap_create_limit_num_values_control  routine  is used  for  creating  the  Limit  

Number  of  Attribute  Values  Control.  

Errors 

The  ldap_create_limit_num_values_control  routine  returns  an  LDAP  error  code  if 

the  routine  encounters  an  error. 

The  errors  returned  by  the  ldap_create_limit_num_values_control  routine  are  listed:  

v   LDAP_PARAM_ERROR  //  bad  input  parameter  

v   LDAP_NO_MEMORY  //  server  is out  of memory  

v   LDAP_SUCCESS  //  operation  was  successful  

v   LDAP_ENCODING_ERROR  //  an  encoding  error  was  encountered

See also 

ldap_parse_limit_num_values_response,  ldap_free_limit_num_values_response  

LDAP_CREATE_LOCATE_ENTRY_REQUEST  

Purpose 

This  routine  creates  a berval  request  for  the  locate  entry  extended  operation.  

 

30 Programming Reference



Synopsis 

#include  <ldap.h> 

  

  

struct  berval  *ldap_create_locate_entry_request  (const  char  *entryDN)  

  

Input parameters 

entryDN  

Specifies  the  entry  DN,  for  which  the  location  details  are  to be  determined.

Usage 

This  routine  is  used  by  the  client  to  create  a berval  for  the  locate  entry  extended  

operation  request.  

Error 

If  any  errors  were  encountered,  the  returned  berval  will  be  null.  If berval  request  

was  created  successfully,  the  berval  will  be  a valid  berval  for  the  group  evaluation  

extended  operation.  

LDAP_CREATE_ONLINE_BACKUP_REQUEST  

Purpose 

This  LDAP  routine  creates  a berval  that  can  be  sent  on  the  online  backup  extended  

operation.  

Synopsis 

#include  <ldap.h> 

  

    struct  berval*  ldap_create_online_backup_request  (char*  directoryPath);  

  

Input parameters 

directoryPath  

Specifies  a path  to  which  the  target  system  has  write  access.  This  path  is 

used  by  the  DB2  online  backup  command  to store  the  backup  image.  The  

value  of  the  path  should  not  be  NULL.

Usage 

The  ldap_create_online_backup_request  routine  is used  to  create  a berval  that  can  

be  sent  on  the  online  backup  extended  operation.  

Errors 

This  routine  does  not  return  any  return  code.  The  berval  returned  will  be  NULL,  if 

the  routine  encounters  any  errors.  

 

Chapter  2. API categories  31



LDAP_CREATE_PASSWORD_POLICY_BIND_FINALIZE_REQUEST  

Purpose 

An  LDAP  routine  for  creating  the  password  policy  bind  finalize  and  verifying  

extended  operation  request.  

Synopsis 

  

#include  <ldap.h> 

  

  

struct  berval  *ldap_create_password_policy_bind_finalize_request  ( 

                const  char  *bind_dn,  

                const  int  ldap_rc  ); 

  

Input parameters 

bind_dn  

The  bind  DN  used  for  performing  bind  password  policy  checks.

ldap_rc  

The  return  code  for  the  bind.

Output parameters 

berval  The  berval  struct  containing  the  password  policy  finalize  and  verify  bind  

extended  operation  request.

Usage 

The  ldap_create_password_policy_bind_finalize_request  ()  API  is used  to  create  the  

prebind  password  policy  request  that  be  used  as  input  parameter  to  the  

ldap_extended_operation  or  ldap_extended_operation_s  function.  

Error 

This  routine  returns  a null  value  if it  encounters  an  error. 

LDAP_CREATE_PASSWORD_POLICY_BIND_INIT_REQUEST  

Purpose 

An  LDAP  routine  for  creating  the  password  policy  bind  initialize  and  verifying  

extended  operation  request.  

Synopsis 

  

#include  <ldap.h> 

  

  

struct  berval  *ldap_create_password_policy_bind_init_  request  ( 

               const  char  *bind_dn);  

 

 

32 Programming Reference



Input parameters 

bind_dn  

The  bind  DN  used  for  performing  password  policy  checks.

Output parameters 

berval  The  berval  struct  containing  the  password  policy  bind  initialize  and  verify  

extended  operation  request.

Usage 

The  ldap_create_password_policy_bind_init_request()  API  is  used  to  create  the  

prebind  password  policy  request  that  can  be  used  as  input  parameter  to the  

ldap_extended_operation  or  ldap_extended_operation_s  function.  

Error 

This  routine  returns  a null  value  if it encounters  an  error.  

LDAP_CREATE_PERSISTENTSEARCH_CONTROL  

Purpose 

This  function  creates  a persistent  search  control  that  can  be  passed  to  the  

ldap_search_ext()  or  ldap_search_ext_s()  function  to initiate  a persistent  search.  

Synopsis 

#include  <ldap.h> 

  

  

#define  LDAP_CHANGETYPE_ADD       1 

#define  LDAP_CHANGETYPE_DELETE    2 

#define  LDAP_CHANGETYPE_MODIFY    4 

#define  LDAP_CHANGETYPE_MODDN     8 

#define  LDAP_CHANGETYPE_ANY       (1|2|4|8)  

  

#define  LDAP_CONTROL_PERSISTENTSEARCH    "2.16.840.1.113730.3.4.3"  

  

int  ldap_create_peristentsearch_control(  

         LDAP        *ld,  

         int         changetypes,  

         int         changesonly,  

         int         return_echg_ctls,  

         char        ctl_iscritical,  

         LDAPControl  **ctrlp);  

  

Input parameters 

ld  Specifies  the  LDAP  pointer,  which  acts  as a LDAP  session  handle,  returned  

by  previous  call  to  ldap_init(),  ldap_ssl_init(),  or  ldap_open().

changetypes  

Specifies  a bit  field  that  indicates  the  client  about  the  type  of changes.  The  

value  of  the  field  can  be  LDAP_CHANGETYPE_ANY  or  any  logical-OR  

combination  of  one  or  more  of the  following:  

v   LDAP_CHANGETYPE_ADD  

v   LDAP_CHANGETYPE_DELETE  

v   LDAP_CHANGETYPE_MODIFY  

 

Chapter  2. API categories  33



v   LDAP_CHANGETYPE_MODDN

This  field  corresponds  to  the  changeType  element  of  the  BER-encoded  

persistent  search  control  value.

changesonly  

 A  Boolean  field  that  specifies  whether  the  searchResultEntry  messages  for  

entries  that  are  changed  or  all  the  static  entries  that  match  the  search  

criteria  should  be  returned  to the  client.  

 If  the  value  is non  zero,  the  entries  that  are  changed  are  returned.  If zero,  

all  the  static  entries  that  match  search  criteria  are  returned  before  the  

server  sends  change  notification.  This  field  corresponds  to the  changesOnly  

element  of  the  BER-encoded  persistent  search  control  value.

return_echg_ctls  

A  Boolean  field  that  specifies  the  behavior  of  the  server  regarding  the  

returning  of  an  Entry  Change  Notification  control  with  each  

searchResultEntry  when  an  entry  is  changed.  If the  value  of  this  field  is 

non  zero,  the  Entry  Change  Notification  controls  are  requested.  If  zero,  the  

Entry  Change  Notification  controls  are  not  requested.  This  field  

corresponds  to  the  returnECs  element  of the  BER-encoded  persistent  search  

control  value.

ctl_iscritical  

Sets  the  ctl_iscritical  flag  within  the  resulting  LDAPControl  structure.  A  

non-zero  value  indicates  that  the  persistent  search  control  is critical  and  a 

zero  value  indicates  that  this  control  is not  critical.

Output parameters 

ctrlp  This  result  parameter  is assigned  the  address  of an  LDAPControl  structure  

that  contains  the  Persistent  Search  control  created  by  this  routine.

Note:   The  caller  must  free  the  memory  occupied  by  the  LDAPControl  

structure  after  its  use  by  calling  ldap_control_free().

Usage 

This  routine  is used  to  create  a persistent  search  control  that  can  be  passed  to  the  

ldap_search_ext()  or  ldap_search_ext_s()  function  to  initiate  a persistent  search.  If 

the  operation  is  successful,  LDAP_SUCCESS  is returned.  

Error 

This  routine  returns  an  LDAP  error  code  if the  operation  is a failure.  

See  “LDAP_ERROR”  on  page  41 for  a list  of  the  LDAP  error  codes.  

LDAP_CREATE_PREPARE_TRANSACTION_REQUEST  

Purpose 

This  LDAP  routine  is used  to create  a prepare  transaction  request.  

 

34 Programming Reference



Synopsis 

  

#include  <ldap.h> 

  

     struct  berval  * ldap_create_prepare_transaction_request(  

                          const  char  *tran_id  ); 

  

Input parameters 

tran_id  

Specifies  the  transaction  ID  as  a string.

Output parameters 

The  ldap_create_prepare_transaction_request  ()  routine  returns  a berval  struct  

containing  the  prepare  transaction  request.  

Usage 

This  routine  is  used  to  create  the  prepare  transaction  request  that  can  be  passed  to  

ldap_extended_operation()  or  ldap_extended_operation_s()  API.  

Errors 

If  an  error  is  encountered,  this  routine  returns  a null  value.  

See also 

ldap_start_transaction,  ldap_start_transaction_s,  ldap_prepare_transaction,  

ldap_prepare_transaction_s,  ldap_end_transaction,  ldap_end_transaction_s,  

ldap_get_tran_id,  ldap_create_transaction_control,  

ldap_create_abort_transaction_request,  ldap_create_commit_transaction_request  

LDAP_CREATE_PROXYAUTH_CONTROL  

   ldap_create_proxyauth_control  

   ldap_proxy_dn_prefix

Purpose 

Creates  an  LDAP  control  that  will  allow  a bind  entity  to  assume  a proxy  identity.  

Synopsis 

#include  <ldap.h> 

  

  

int  ldap_create_proxyauth_control(  

       LDAP             *ld,  

       char      *proxyDN,  

       int              iscritical,  

       LDAPControl      **controlp)  

  

  

int  ldap_proxy_dn_prefix(  

       char             **proxyDN,  

       char             *parm)  

 

Chapter  2. API categories  35



Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init()  or  ldap_open().  

proxyDN  

Specifies  the  DN  of  the  entry  whose  identity  the  client  will  assume.  

iscritical   

Specifies  whether  the  persistent  search  control  is critical  to  the  current  

operation.  This  should  be  set  to  a non-zero  value.  

controlp  

Pointer  to  a pointer  of  a structure  that  is created  by  this  function.  This  

control  should  be  freed  by  calling  ldap_control_free()  function,  when  it is 

done  using  the  control.

Usage 

This  API  is  used  to  create  an  LDAP  control  containing  the  proxy  authorization  

identity.  The  created  proxy  authorization  control  will  then  be  included  in  LDAP  

operations  to  request  an  operation  from  the  server.  

Using  the  proxy  authorization  control  mechanism,  a client  can  bind  to  the  LDAP  

directory  using  its  own  identity,  but  is  granted  proxy  authorization  rights  of  

another  user  to  access  the  target  directory.  

When  the  LDAP  server  receives  an  operation  with  proxy  authorization  control,  the  

bind  DN  is  validated  against  the  administrative  group  and/or  the  predefined  

proxy  authorization  group  to determine  whether  the  bind  DN  should  be  granted  

the  proxy  authorization  right.  In  other  words,  the  bound  application  client  must  be  

a member  of  the  administrative  group  or  proxy  authorization  group  in  order  to  

request  a proxy  authorization  operation.  

For  a specific  DN,  the  ldap_proxy_dn_prefix  function  ensures  that  the  DN  has  the  

proxy  DN  prefix.  The  DN  is passed  in  using  the  param  parameter.  The  value  is 

returned  using  the  proxyDN  parameter.  If the  passed  in DN  already  has  the  ″dn:″ 

prefix,  the  parameter  is simply  copied  into  the  return  value.  If the  passed  in  DN  

does  not  have  the  ″dn:″ prefix,  then  a new  string  is allocated  with  the  ″dn:″ prefix.  

The  return  code  can  be:  

v   LDAP_PARAM_ERROR  if the  param  is null  

v   LDAP_NO_MEMORY  if the  function  failed  to  allocate  memory  

v   LDAP_SUCCESS  if a new  proxyDN  was  successfully  allocated

If  LDAP_SUCCESS  is returned,  it is the  caller’s  responsibility  to free  the  returned  

proxyDN.  

Errors 

LDAP_PARAM_ERROR  returns  if an  invalid  parameter  was  passed.  

LDAP_NO_MEMORY  returns  if memory  cannot  be  allocated.  

LDAP_ENCODING_ERROR  returns  if an  error  occurred  when  encoding  the  

control.  

LDAP_UNAVAILABLE_CRITICAL_EXTENSION  returns  if server  does  not  support  

proxy  authorization  and  iscritical  is set  to  a non-zero  value.  

 

36 Programming Reference



See also 

ldap  controls,  ldap_bind,  ldap_search,  ldap_modify,  ldap_delete,  ldap_add  

LDAP_CREATE_RESUME_ROLE_REQUEST  

Purpose 

Creates  a berval  that  can  be  sent  using  the  proxy  backend  server  resume  role  

extended  operation.  

Synopsis 

#include  <ldap.h> 

  

  

struct  berval*  ldap_create_resume_role_request  ( 

   int    RequestType,  

   char    *PartitionName,  

   char    *ServerName)  

Input parameters 

RequestType  

One  of  the  request  types  defined  in  ldap.h.  The  value  of  the  request  type  

can  be  one  of  the  following:  

 v   All  (0)  

v   Partition  (1)  

v   Server  (2)  

v   ServerInAPartition  (3)

PartitionName  

Specifies  the  partition  name  for  the  request.  If request  value  is 1 or  3,  

PartitionName  must  not  be  NULL.  The  partition  name  is either  

ibm-slapdProxySplitName=<Name>  or  ibm-
slapdProxyPartitionIndex=<index  value>,  ibm-
slapdProxySplitName=<Name>  configured  in  the  configuration  file.

ServerName  

Specifies  the  server  URL  for  the  request.  If  request  value  is 2 or  3, 

ServerName  must  not  be  NULL.

Usage 

This  API  routine  creates  a berval  that  is sent  using  the  proxy  backend  server  

resume  role  extended  operation.  

Errors 

This  routine  does  not  return  any  return  code.  If  any  errors  are  encountered,  the  

value  of  the  returned  berval  is set  to  NULL.  

See also 

See  “LDAP_ERROR”  on  page  41  for  a list  of the  LDAP  error  codes.  

 

Chapter  2. API categories  37



LDAP_CREATE_TRANSACTION_CONTROL  

Purpose 

This  LDAP  routine  is used  to create  a transaction  control  that  is send  using  the  

update  operation  within  a transaction.  

Synopsis 

#include  <ldap.h> 

  

  

LDAPControl  *ldap_create_transaction_control(  

          string        tran_id);  

  

Input parameters 

tran_id  

Specifies  the  transaction  id  in  a string  format.

Output parameters 

This  routine  returns  a transaction  control  with  the  transaction  id and  is set  to the  

value  passed  in  the  routine.  

Usage 

This  routine  creates  a control  that  is used  with  update  operation  within  a 

transaction.  

Errors 

If an  error  occurs,  this  routine  returns  a NULL  value  for  the  control.  

See also 

ldap_start_transaction,  ldap_start_transaction_s,  ldap_prepare_transaction,  

ldap_prepare_transaction_s,  ldap_end_transaction,  ldap_end_transaction_s,  

ldap_get_tran_id,  ldap_create_transaction_control  

LDAP_DELETE 

   ldap_delete  

   ldap_delete_s  

   ldap_delete_ext  

   ldap_delete_ext_s

Purpose 

Performs  an  LDAP  operation  to delete  a leaf  entry.  

Synopsis 

#include  <ldap.h> 

  

  

int  ldap_delete(  

       LDAP            **ld,  

       const  char      *dn)  

 

 

38 Programming Reference



int  ldap_delete_s(  

       LDAP            *ld,  

       const  char      *dn)  

  

int  ldap_delete_ext(  

       LDAP            *ld,  

       const  char      *dn,  

       LDAPControl     **serverctrls,  

       LDAPControl     **clientctrls,  

       int             *msgidp)  

  

int  ldap_delete_ext_s(  

       LDAP            *ld,  

       const  char      *dn,  

       LDAPControl     **serverctrls,  

       LDAPControl     **clientctrls)  

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init()  or  ldap_open().  

dn  Specifies  the  DN  of  the  entry  to  be  deleted.  

serverctrls  

Specifies  a list  of LDAP  server  controls.  This  parameter  can  be  set  to  

NULL.  See  “LDAP  controls”  on  page  25  for  more  information  about  server  

controls.  

clientctrls  

Specifies  a list  of LDAP  client  controls.  This  parameter  can  be  set  to NULL.  

See  “LDAP  controls”  on  page  25  for  more  information  about  client  

controls.

Output parameters 

msgidp  

This  result  parameter  is set  to the  message  ID  of  the  request  if the  

ldap_delete_ext()  call  succeeds.

Usage 

Note:   The  entry  to  delete  must  be  a leaf  entry,  that  is,  it must  have  no  children.  

Deletion  of  entire  subtrees  in  a single  operation  is not  supported  by  LDAP.  

 The  ldap_delete_ext()  API  initiates  an  asynchronous  delete  operation  and  returns  

the  constant  LDAP_SUCCESS  if the  request  was  successfully  sent,  or  returns  

another  LDAP  error  code  if the  request  was  not  successful.  If  successful,  

ldap_delete_ext()  places  the  message  ID  of  the  request  in  *msgidp.  ldap_result()  

returns  the  status  of an  operation  as  an  error  code.  The  error  code  indicates  

whether  the  operation  completed  successfully.  The  ldap_parse_result()  API  checks  

the  error  code.  

Similarly,  the  ldap_delete()  API  initiates  an  asynchronous  delete  operation  and  

returns  the  message  ID  of  that  operation.  A subsequent  call  to  ldap_result()  can  be  

used  to  obtain  the  result  of the  ldap_delete()  operation.  In case  of  an  error,  

ldap_delete()  returns  -1,  setting  the  session  error  parameters  in  the  LDAP  structure  

appropriately.  These  error  parameters  can  be  obtained  by  using  ldap_get_errno().  

See  “LDAP_ERROR”  on  page  41  for  more  details.  

 

Chapter  2. API categories  39



Use  the  synchronous  ldap_delete_s()  and  ldap_delete_ext_s()  APIs  to  perform  

LDAP  delete  operations.  The  results  of both  operations  are  output  parameters.  

These  routines  return  either  the  constant  LDAP_SUCCESS  if the  operation  was  

successful,  or  another  LDAP  error  code  returns  if the  operation  was  not  successful.  

Both  the  ldap_delete_ext()  and  ldap_delete_ext_s()  APIs  both  support  LDAP  V3  

server  controls  and  client  controls.  

Errors 

ldap_delete_s()  returns  an  LDAP  error  code  that  can  be  interpreted  by  calling  an  

ldap_error  routine.  The  ldap_delete()  API  returns  -1  if the  request  initiation  was  

unsuccessful.  It returns  the  message  ID  of  the  request  if successful.  

See also 

ldap_error  

LDAP_END_TRANSACTION 

v   ldap_end_transaction  

v   ldap_end_transaction_s

Purpose 

This  LDAP  API  routine  invokes  an  end  transaction  request.  

Synopsis 

#include  <ldap.h> 

  

  

int  ldap_end_transaction(  

       LDAP            *ld,  

       string          tran_id,  

       int             abort,  

       LDAPControl     **serverctrls,  

       LDAPControl     **clientctrls,  

       int             *msgidp)  

  

int  ldap_end_transaction_s(  

       LDAP            *ld,  

       string          tran_id,  

       int             abort,  

       LDAPControl     **serverctrls,  

       LDAPControl     **clientctrls)  

  

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init(),  or  ldap_open().  

tran_id  

Specifies  the  transaction  id  of the  end  transaction.  

abort  Specifies  the  request  type  sent  to  the  transaction.  The  request  type  can  be  

one  of  the  following:  

v   0 – commit  transaction  

v   1 – abort  transaction

 

40 Programming Reference



serverctrls  

Specifies  a list  of LDAP  server  controls.  

clientctrls  

Specifies  a list  of LDAP  client  controls.

Output parameters 

msgidp  

This  parameter  contains  the  message  id of  the  request.

Usage 

This  API  routine  is used  to initiate  an  end  transaction  request  against  the  server.  

Errors 

This  routine  returns  an  LDAP  error  code  if the  operation  is unsuccessful.  

See also 

ldap_start_transaction,  ldap_start_transaction_s,  ldap_prepare_transaction,  

ldap_prepare_transaction_s,  ldap_end_transaction,  ldap_end_transaction_s,  

ldap_get_tran_id,  ldap_create_transaction_control  

LDAP_ERROR 

   ldap_get_errno  

   ldap_get_lderrno  

   ldap_set_lderrno  

   ldap_perror  (deprecated)  

   ldap_result2error  (deprecated)  

   ldap_err2string  

   ldap_get_exterror

Purpose 

LDAP  protocol  error  handling  routines.  

Synopsis 

#include  <ldap.h> 

  

  

int  ldap_get_errno(  

         LDAP         *ld)  

  

int  ldap_get_lderrno  ( 

         LDAP         *ld,  

         char         **dn,  

         char         **errmsg)  

  

int  ldap_set_lderrno  ( 

         LDAP         *ld,  

         int          errnum,  

         char         *dn,  

         char         *errmsg)  

  

void  ldap_perror(  

        LDAP          *ld,  

        const  char    *s)

 

Chapter  2. API categories  41



int  ldap_result2error(  

        LDAP          *ld,  

        LDAPMessage   *res,  

        int           freeit)  

  

const  char  *ldap_err2string(  

        int           err)  

  

int  ldap_get_exterror(  

         LDAP         *ld)  

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init()  or  ldap_open().  

dn  Specifies  a DN  that  identifies  an  existing  entry,  indicating  how  much  of the  

name  in  the  request  was  recognized  by  the  server.  The  DN  is returned  

when  an  LDAP_NO_SUCH_OBJECT  error  is returned  from  the  server.  The  

matched  DN  string  must  be  freed  by  calling  ldap_memfree().  

errmsg  

Specifies  the  text  of the  error  message,  as returned  from  the  server.  The  

error  message  string  must  be  freed  by  calling  ldap_memfree().  

s Specifies  the  message  prefix,  which  is prepended  to  the  string  form  of the  

error  code  held  stored  under  the  LDAP  structure.  The  string  form  of  the  

error  is  the  same  string  that  is returned  by  a call  to  ldap_err2string().  

res  Specifies  the  result,  as produced  by  ldap_result()  or  ldap_search_s(),  to  be  

converted  to  the  error  code  with  which  it is associated.  

freeit  Specifies  whether  or  not  the  result,  res,  must  be  freed  as  a result  of  calling  

ldap_result2error().  If  nonzero,  the  result,  res, is freed  by  the  call.  If zero,  

res  is  not  freed  by  the  call.  

errnum  

Specifies  the  LDAP  error  code,  as  returned  by  ldap_parse_result()  or  

another  LDAP  API  call.

Usage 

These  routines  provide  interpretation  of  the  various  error  codes  returned  by  the  

LDAP  protocol  and  LDAP  library  routines.  

The  ldap_get_errno()  and  ldap_get_lderrno()  APIs  obtain  information  for  the  most  

recent  error  that  occurred  for  an  LDAP  operation.  When  an  error  occurs  at the  

LDAP  server,  the  server  returns  the  following  information  back  to the  client:  

v   The  LDAP  result  code  for  the  error  that  occurred.  

v   A message  containing  any  additional  information  about  the  error  from  the  

server.

If the  error  occurred  because  an  entry  specified  by  a DN  cannot  be  found,  the  

server  might  also  return  the  portion  of the  DN  that  identifies  an  existing  entry.  

Both  APIs  return  the  server’s  error  result  code.  Use  ldap_get_lderrno()  to  obtain  

the  message  and  matched  DN.  

 

42 Programming Reference



The  ldap_set_lderrno()  API  sets  an  error  code  and  other  information  about  an  error  

in  the  specified  LDAP  structure.  This  function  can  be  called  to  set  error  

information  that  is retrieved  by  subsequent  ldap_get_lderrno()  calls.  

The  ldap_result2error()  routine  takes  res,  a result  as  produced  by  ldap_result()  or  

ldap_search_s(),  and  returns  the  corresponding  error  code.  Possible  error  codes  

follow  ( see  “Errors”).  If the  freeit  parameter  is nonzero,  it indicates  that  the  res  

parameter  must  be  freed  by  a call  to  ldap_msgfree()  after  the  error  code  has  been  

extracted.  The  ld_errno  field  in ld  is set  and  returned.  

The  returned  value  can  be  passed  to  ldap_err2string(),  which  returns  a pointer  to  a 

character  string  which  is a textual  description  of the  LDAP  error  code.  The  

character  string  must  not  be  freed  when  use  of  the  string  is complete.  

The  ldap_perror()  routine  can  be  called  to  print  an  indication  of  the  error  on  

standard  error. 

The  ldap_get_exterror()  routine  returns  the  current  extended  error  code  returned  

by  an  LDAP  server  or  other  library,  such  as  Kerberos  or  SSL,  for  the  LDAP  session.  

For  some  error  codes,  it might  be  possible  to further  interpret  the  error  condition.  

For  example,  for  SSL  errors  the  extended  error  code  might  indicate  why  an  SSL  

handshake  failed.  

Errors 

The  possible  values  for  an  LDAP  error  code  are  shown  in  the  following  tables.  

 Table 1. General  return  codes  

Dec  

value  

Value  Hex  

value  

Brief  description  Detailed  description  

00 LDAP_SUCCESS  00 Success  The  request  was  

successful.  

00 LDAP_OPERATIONS_ERROR  01 Operations  error  An operations  error  

occurred.  

02 LDAP_PROTOCOL_ERROR  02 Protocol  error  A protocol  violation  was  

detected.  

03 LDAP_TIMELIMIT_EXCEEDED  03 Time  limit  exceeded  An LDAP  time  limit  was  

exceeded.  

04 LDAP_SIZELIMIT_EXCEEDED  04 Size  limit  exceeded  An LDAP  size  limit  was 

exceeded.  

05 LDAP_COMPARE_FALSE  05 Compare  false  A compare  operation  

returned  false.  

06 LDAP_COMPARE_TRUE  06 Compare  true  A compare  operation  

returned  true.  

07 LDAP_STRONG_AUTH_NOT_SUPPORTED  07 Strong  authentication  

not  supported  

The  LDAP  server  does  

not  support  strong  

authentication.  

08 LDAP_STRONG_AUTH_REQUIRED  08 Strong  authentication  

required  

Strong  authentication  is 

required  for the  

operation.  

09 LDAP_PARTIAL_RESULTS  09 Partial  results  and  

referral  received  

Partial  results  only  

returned.  

10 LDAP_REFERRAL  0A Referral  returned  Referral  returned.  

 

Chapter  2. API categories  43



Table 1. General  return  codes  (continued)  

Dec  

value  

Value  Hex  

value  

Brief  description  Detailed  description  

11 LDAP_ADMIN_LIMIT_EXCEEDED  0B Administration  limit  

exceeded  

Administration  limit  

exceeded.  

12 LDAP_UNAVAILABLE_CRITICAL_EXTENSION  0C Critical  extension  not  

supported  

Critical  extension  is not  

supported.  

13 LDAP_CONFIDENTIALITY_REQUIRED  0D Confidentiality  is 

required  

Confidentiality  is 

required.  

14 LDAP_SASLBIND_IN_PROGRESS  0E SASL  bind  in progress  An  SASL  bind  is in 

progress.  

16 LDAP_NO_SUCH_ATTRIBUTE  10 No  such  attribute  The  attribute  type  

specified  does  not  exist  

in the  entry.  

17 LDAP_UNDEFINED_TYPE  11 Undefined  attribute  

type  

The  attribute  type  

specified  is not  valid.  

18 LDAP_INAPPROPRIATE_MATCHING  12 Inappropriate  matching  Filter  type  not  supported  

for the  specified  

attribute.  

19 LDAP_CONSTRAINT_VIOLATION  13 Constraint  violation  An  attribute  value  

specified  violates  some  

constraint  (for  example,  a 

postal  address  has  too 

many  lines,  or a line that  

is too long).  

20 LDAP_TYPE_OR_VALUE_EXISTS  14 Type or value  exists  An  attribute  type  or 

attribute  value  specified  

already  exists  in the 

entry.  

21 LDAP_INVALID_SYNTAX  15 Invalid  syntax  An  attribute  value  that  is 

not  valid  was  specified.  

32 LDAP_NO_SUCH_OBJECT  20 No  such  object  The  specified  object  does  

not  exist  in the directory.  

33 LDAP_ALIAS_PROBLEM  21 Alias  problem  An  alias  in the  directory  

points  to a nonexistent  

entry.  

34 LDAP_INVALID_DN_SYNTAX  22 Invalid  DN  syntax  A DN that  is 

syntactically  not  valid  

was  specified.  

35 LDAP_IS_LEAF  23 Object  is a leaf  The  object  specified  is a 

leaf.  

36 LDAP_ALIAS_DEREF_PROBLEM  24 Alias  dereferencing  

problem  

A problem  was  

encountered  when  

dereferencing  an alias.  

48 LDAP_INAPPROPRIATE_AUTH  30 Inappropriate  

authentication  

Inappropriate  

authentication  was  

specified  (for  example,  

LDAP_AUTH_SIMPLE  

was  specified  and  the 

entry  does  not  have  a 

userPassword  attribute).  

 

44 Programming Reference



Table 1. General  return  codes  (continued)  

Dec  

value  

Value  Hex  

value  

Brief  description  Detailed  description  

49 LDAP_INVALID_CREDENTIALS  31 Invalid  credentials  Invalid  credentials  were  

presented  (for  example,  

the  wrong  password).  

50 LDAP_INSUFFICIENT_ACCESS  32 Insufficient  access  The  user  has  insufficient  

access  to perform  the 

operation.  

51 LDAP_BUSY  33 DSA  is busy  The  DSA  is busy.  

52 LDAP_UNAVAILABLE  34 DSA  is unavailable  The  DSA  is unavailable.  

53 LDAP_UNWILLING_TO_PERFORM  35 DSA  cannot  perform  The  DSA  cannot  perform  

the  operation.  

54 LDAP_LOOP_DETECT  36 Loop  detected  A loop  was  detected.  

64 LDAP_NAMING_VIOLATION  40 Naming  violation  A naming  violation  

occurred.  

65 LDAP_OBJECT_CLASS_VIOLATION  41 Object  class  violation  An object  class  violation  

occurred  (for  example,  a 

″required″ attribute  was  

missing  from  the  entry).  

66 LDAP_NOT_ALLOWED_ON_NONLEAF  42 Operation  not  allowed  

on nonleaf  

The  operation  is not  

allowed  on a nonleaf  

object.  

67 LDAP_NOT_ALLOWED_ON_RDN  43 Operation  not  allowed  

on RDN  

The  operation  is not  

allowed  on an RDN.  

68 LDAP_ALREADY_EXISTS  44 Already  exists  The  entry  already  exists.  

69 LDAP_NO_OBJECT_CLASS_MODS  45 Cannot  modify  object  

class  

Object  class  

modifications  are  not 

allowed.  

70 LDAP_RESULTS_TOO_LARGE  46 Results  too large  Results  too large.  

71 LDAP_AFFECTS_MULTIPLE_DSAS  47 Affects  multiple  DSAs  Affects  multiple  DSAs.  

80 LDAP_OTHER  50 Unknown  error  An unknown  error  

occurred.  

81 LDAP_SERVER_DOWN  51 Can’t  contact  LDAP  

server  

The  LDAP  library  cannot  

contact  the  LDAP  server. 

82 LDAP_LOCAL_ERROR  52 Local  error  Some  local  error  

occurred.  This  is usually  

a failed  memory  

allocation.  

83 LDAP_ENCODING_ERROR  53 Encoding  error  An error  was  

encountered  encoding  

parameters  to send  to the 

LDAP  server.  

84 LDAP_DECODING_ERROR  54 Decoding  error  An error  was  

encountered  decoding  a 

result  from  the LDAP  

server.  

85 LDAP_TIMEOUT  55 Timed  out  A time  limit  was  

exceeded  while  waiting  

for a result.  

 

Chapter  2. API categories  45



Table 1. General  return  codes  (continued)  

Dec  

value  

Value  Hex  

value  

Brief  description  Detailed  description  

86 LDAP_AUTH_UNKNOWN  56 Unknown  

authentication  method  

The  authentication  

method  specified  on  a 

bind  operation  is not  

known.  

87 LDAP_FILTER_ERROR  57 Bad  search  filter  An  invalid  filter  was  

supplied  to ldap_search  

(for  example,  unbalanced  

parentheses).  

88 LDAP_USER_CANCELLED  58 User  cancelled  

operation  

The  user  cancelled  the 

operation.  

89 LDAP_PARAM_ERROR  59 Bad  parameter  to an 

LDAP  routine  

An  LDAP  routine  was  

called  with  a bad  

parameter  (for  example,  

a NULL  ld pointer,  etc.).  

90 LDAP_NO_MEMORY  5A  Out  of memory  A memory  allocation  (for  

example  malloc)  call  

failed  in an  LDAP  library  

routine.  

91 LDAP_CONNECT_ERROR  5B Connection  error  Connection  error. 

92 LDAP_NOT_SUPPORTED  5C Not  supported  Not  supported.  

93 LDAP_CONTROL_NOT_FOUND  5D Control  not  found  Control  not  found.  

94 LDAP_NO_RESULTS_RETURNED  5E No  results  returned  No results  returned.  

95 LDAP_MORE_RESULTS_TO_RETURN  5F More  results  to return  More  results  to return.  

96 LDAP_URL_ERR_NOTLDAP  60 URL  doesn’t  begin  with  

ldap://  

The  URL  does  not  begin  

with  ldap://.  

97 LDAP_URL_ERR_NODN  61 URL  has  no DN  

(required)  

The  URL  does  not  have  a 

DN  (required).  

98 LDAP_URL_ERR_BADSCOPE  62 URL  scope  string  is 

invalid  

The  URL  scope  string  is 

not  valid.  

99 LDAP_URL_ERR_MEM  63 Can’t  allocate  memory  

space  

Cannot  allocate  memory  

space.  

100  LDAP_CLIENT_LOOP  64 Client  loop  Client  loop.  

101  LDAP_REFERRAL_LIMIT_EXCEEDED  65 Referral  limit  exceeded  Referral  limit  exceeded.  

112 LDAP_SSL_ALREADY_INITIALIZED  70 ldap_ssl_client_init  

successfully  called  

previously  in this  

process  

The  ldap_ssl_client_init  

was  successfully  called  

previously  in this  

process.  

113 LDAP_SSL_INITIALIZE_FAILED  71 Initialization  call  failed  SSL  Initialization  call  

failed.  

114 LDAP_SSL_CLIENT_INIT_NOT_CALLED  72 Must  call  

ldap_ssl_client_init  

before  attempting  to  

use  SSL  connection  

Must  call  

ldap_ssl_client_init  

before  attempting  to use  

the  SSL  connection.  

115 LDAP_SSL_PARAM_ERROR  73 Invalid  SSL  parameter  

previously  specified  

An  SSL  parameter  that  

was  not  valid  was  

previously  specified.  

 

46 Programming Reference



Table 1. General  return  codes  (continued)  

Dec  

value  

Value  Hex  

value  

Brief  description  Detailed  description  

116 LDAP_SSL_HANDSHAKE_FAILED  74 Failed  to connect  to SSL  

server  

Failed  to connect  to SSL  

server.  

117 LDAP_SSL_GET_CIPHER_FAILED  75 Not  used  Deprecated  

118 LDAP_SSL_NOT_AVAILABLE  76 SSL  library  cannot  be 

located  

Ensure  that  GSKit  has  

been  installed  

128  LDAP_NO_EXPLICIT_OWNER  80 No explicit  owner  

found  

No explicit  owner  was  

found  

129  LDAP_NO_LOCK  81 Could  not  obtain  lock  Client  library  was  not  

able  to lock  a required  

resource
  

In  addition,  the  following  DNS-related  error  codes  are  defined  in  the  ldap.h  file:

 Table 2. DNS-related  return  codes  

Dec  

value  

Value  Hex  

value  

Detailed  description  

133  LDAP_DNS_NO_SERVERS  85 No  LDAP  servers  found  

134  LDAP_DNS_TRUNCATED  86 Warning:  truncated  DNS  results  

135  LDAP_DNS_INVALID_DATA  87 Invalid  DNS  Data  

136  LDAP_DNS_RESOLVE_ERROR  88 Can’t  resolve  system  domain  or 

nameserver  

137  LDAP_DNS_CONF_FILE_ERROR  89 DNS  Configuration  file  error
  

The  following  UTF8-related  error  codes  are  defined  in  the  ldap.h  file:

 Table 3. UTF8-related  return  codes  

Dec  

value  

Value  Hex  

value  

Detailed  description  

160  LDAP_XLATE_E2BIG  A0 Output  buffer  overflow  

161  LDAP_XLATE_EINVAL  A1 Input  buffer  truncated  

162  LDAP_XLATE_EILSEQ  A2 Unusable  input  character  

163  LDAP_XLATE_NO_ENTRY  A3 No codeset  point  to map  to 

176  LDAP_REG_FILE_NOT_FOUND  B0 NT  Registry  file  not  found  

177  LDAP_REG_CANNOT_OPEN  B1 NT  Registry  cannot  open  

178  LDAP_REG_ENTRY_NOT_FOUND  B2 NT  Registry  entry  not  found  

192  LDAP_CONF_FILE_NOT_OPENED  C0 Plug-in  configuration  file  not  opened  

193  LDAP_PLUGIN_NOT_LOADED  C1 Plug-in  library  not  loaded  

194  LDAP_PLUGIN_FUNCTION_  

NOT_RESOLVED  

C2 Plug-in  function  not  resolved  

195  LDAP_PLUGIN_NOT_INITIALIZED  C3 Plug-in  library  not  initialized  

196  LDAP_PLUGIN_COULD_NOT_BIND  C4 Plug-in  function  could  not  bind  

208  LDAP_SASL_GSS_NO_SEC_CONTEXT  D0 gss_init_sec_context  failed
 

 

Chapter  2. API categories  47



See also 

ldap_memfree,  ldap_parse  routines  

LDAP_EXTENDED_OPERATION  

   ldap_extended_operation  

   ldap_extended_operation_s

Purpose 

Performs  extended  operations  and  parse  extended  result.  

Synopsis 

#include  <ldap.h> 

  

  

int      ldap_extended_operation(  

                LDAP             *ld,  

                const  char       *reqoid,  

                const  struct  berval  *reqdata,  

                LDAPControl      **serverctrls,  

                LDAPControl      **clientctrls,  

                int              *msgidp)  

  

int      ldap_extended_operation_s(  

                LDAP             *ld,  

                const  char       *reqoid,  

                const  struct  berval  *reqdata,  

                LDAPControl      **serverctrls,  

                LDAPControl      **clientctrls,  

                char             **retoidp,  

                struct  berval    **retdatap)  

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init()  or  ldap_open().  

reqoid  Specifies  the  dotted-object  identifier  (OID)  text  string  that  identifies  the  

extended  operation  to  be  performed  by  the  server.  

reqdata  

Specifies  the  arbitrary  data  required  by  the  extended  operation  (if  NULL,  

no  data  is  sent  to the  server).  

serverctrls  

Specifies  a list  of LDAP  server  controls.  This  parameter  can  be  set  to 

NULL.  See  “LDAP  controls”  on  page  25  for  more  information  about  server  

controls.  

clientctrls  

Specifies  a list  of LDAP  client  controls.  This  parameter  can  be  set  to NULL.  

See  “LDAP  controls”  on  page  25  for  more  information  about  client  

controls.

Output parameters 

msgidp  

This  result  parameter  is set  to the  message  ID  of  the  request  if the  

ldap_extended_operation()  call  is successfully  sent  to the  server.  To check  

the  result  of this  operation,  call  the  ldap_result()  and  ldap_parse_result()  

 

48 Programming Reference



APIs.  The  server  can  also  return  an  OID  and  result  data.  Because  the  

asynchronous  ldap_extended_operation  does  not  directly  return  the  results,  

use  ldap_parse_extended_result()  to get  the  results.  

retoidp  

This  result  parameter  is set  to point  to a character  string  that  is set  to  an  

allocated,  dotted-OID  text  string  returned  from  the  server.  This  string  must  

be  disposed  of using  the  ldap_memfree()  API.  If no  OID  is returned,  

*retoidp  is set  to NULL.  

retdatap  

This  result  parameter  is set  to a pointer  to  a berval  structure  pointer  that  is 

set  to  an  allocated  copy  of the  data  returned  by  the  server.  This  struct  

berval  must  be  disposed  of  using  ber_bvfree().  If no  data  is returned,  

*retdatap  is set  to  NULL.

Usage 

The  ldap_extended_operation()  function  is used  to  initiate  an  asynchronous  

extended  operation,  which  returns  LDAP_SUCCESS  if the  extended  operation  was  

successfully  sent,  or  an  LDAP  error  code  is returned  if the  operation  was  not  

successful.  If  successful,  the  ldap_extended_operation()  API  places  the  message  ID  

of  the  request  in  *msgidp.  A subsequent  call  to  ldap_result()  can  be  used  to  obtain  

the  result  of  the  extended  operation,  which  can  then  be  passed  to 

ldap_parse_extended_result()  to  obtain  the  OID  and  data  contained  in  the  

response.  

The  ldap_extended_operation_s()  function  is used  to  initiate  a synchronous  

extended  operation,  which  returns  the  result  of the  operation:  either  

LDAP_SUCCESS  if the  operation  was  successful,  or  it returns  another  LDAP  error  

code  if it  was  not  successful.  The  retoid  and  retdata  parameters  are  filled  in  with  

the  OID  and  data  from  the  response.  If no  OID  or  data  was  returned,  these  

parameters  are  set  to  NULL.  

If  the  LDAP  server  does  not  support  the  extended  operation,  the  server  rejects  the  

request.  IBM  Tivoli  Directory  Server  v6.0  and  later  versions  provide  a server  

plug-in  interface  that  can  be  used  to  add  extended  operation  support.  For  more  

information,  see  the  IBM  Tivoli  Directory  Server  Version  6.1:  Server  Plug-ins  Reference. 

To determine  if the  requisite  extended  operation  is supported  by  the  server,  get  the  

rootDSE  of  the  LDAP  server  and  check  for  the  supportedExtension  attribute.  If the  

values  for  this  attribute  include  the  OID  of your  extended  operation,  then  the  

server  supports  the  extended  operation.  If the  supportedExtension  attribute  is not  

present  in  the  rootDSE,  then  the  server  is not  configured  to support  any  extended  

operations.  

A list  of  OIDs  for  supported  extended  operations  can  be  found  in  Appendix  F, 

“Object  Identifiers  (OIDs)  for  extended  operations  and  controls,”  on  page  193.  

Errors 

The  ldap_extended_operation_s()  API  returns  the  LDAP  error  code  for  the  

operation.  

The  ldap_extended_operation()  API  returns  -1 instead  of a valid  msgid  if an  error  

occurs,  setting  the  session  error  in  the  LD  structure.  The  session  error  can  be  

obtained  by  using  ldap_get_errno().  

 

Chapter  2. API categories  49



See  “LDAP_ERROR”  on  page  41 for  more  details.  

Notes 

These  routines  allocate  storage.  Use  ldap_memfree  to free  the  returned  OID.  Use  

ber_bvfree  to  free  the  returned  struct berval.  

See also 

ldap_result,  ldap_error  

LDAP_FIRST_ATTRIBUTE  

   ldap_count_attributes  

   ldap_first_attribute  

   ldap_next_attribute

Purpose 

Step  through  LDAP  entry  attributes.  

Synopsis 

#include  <ldap.h> 

  

  

int  ldap_count_attributes(  

       LDAP            *ld,  

       LDAPMessage     *entry)  

  

char  *ldap_first_attribute(  

       LDAP            *ld,  

       LDAPMessage     *entry,  

       BerElement      **berptr)  

  

char  *ldap_next_attribute(  

       LDAP            *ld,  

       LDAPMessage     *entry,  

       BerElement      *berptr)  

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init()  or  ldap_open().  

entry  Pointer  to  the  LDAPMessage  representing  an  entry.

Output parameters 

berptr   

This  is an  output  parameter  returned  from  ldap_first_attribute(),  which  

returns  a pointer  to  a BerElement  that  has  been  allocated  to  keep  track  of 

current  position.  It is an  input  and  output  parameter  for  subsequent  calls  

to  ldap_next_attribute(),  where  it specifies  a pointer  to  a BerElement  that  

was  allocated  by  the  previous  call  to ldap_first_attribute().  The  BerElement  

structure  is  opaque  to the  application.

 

50 Programming Reference



Usage 

The  ldap_count_attributes()  routine  returns  a count  of the  number  of attributes  in 

an  LDAP  entry.  If  a NULL  entry  is returned  from  ldap_first_entry()  or  

ldap_next_entry(),  and  is passed  as  input  to ldap_count_attributes(),  -1  is returned.  

The  ldap_first_attribute()  and  ldap_next_attribute()  routines  are  used  to step  

through  the  attributes  in  an  LDAP  entry.  

ldap_first_attribute()  takes  an  entry  as  returned  by  ldap_first_entry()  or  

ldap_next_entry()  and  returns  a pointer  to  a buffer  containing  the  first  attribute  

type  in  the  entry.  

The  pointer  returned  by  ldap_first_attribute  in  berptr  must  be  passed  to  

subsequent  calls  to  ldap_next_attribute  and  is  used  to step  through  the  entry’s  

attributes.  When  there  are  no  attributes  left  to  be  retrieved,  ldap_next_attribute()  

returns  NULL  and  sets  the  error  code  to  LDAP_SUCCESS.  If an  error  occurs,  

NULL  is returned  and  an  error  code  is set.  The  memory  allocated  for  the  

BerElement  buffer  must  be  freed  using  ldap_ber_free().  

Therefore,  when  NULL  is returned,  the  ldap_get_errno()  API  must  be  used  to 

determine  whether  or  not  an  error  has  occurred.  

If  the  caller  fails  to  call  ldap_next_attribute()  a sufficient  number  of  times  to  

exhaust  the  list  of attributes,  the  caller  is responsible  for  freeing  the  BerElement  

pointed  to  by  berptr  when  it  is no  longer  needed  by  calling  ldap_ber_free().  

The  attribute  names  returned  by  ldap_first_attribute()  and  ldap_next_attribute()  are  

suitable  for  inclusion  in a call  to  ldap_get_values().  

ldap_next_attribute()  returns  a string  that  contains  the  name  of the  next  type  in  the  

entry.  This  string  must  be  freed  using  ldap_memfree()  when  its  use  is completed.  

The  attribute  names  returned  by  ldap_next_attribute()  are  suitable  for  inclusion  in 

a call  to  ldap_get_values()  to  retrieve  the  attribute’s  values.  

Errors 

If  the  ldap_first_attribute()  call  results  in  an  error, then  NULL  is returned,  the  error  

code  is  set.  

The  ldap_get_errno()  API  can  be  used  to obtain  the  error  code.  See  

“LDAP_ERROR”  on  page  41  for  a description  of possible  error  codes.  

Notes 

The  ldap_first_attribute()  and  ldap_next_attribute()  routines  allocate  memory  that  

might  need  to  be  freed  by  the  caller  through  ldap_memfree.  

See also 

ldap_first_entry,  ldap_get_values,  ldap_memfree,  ldap_error  

 

Chapter  2. API categories  51



LDAP_FIRST_ENTRY, LDAP_FIRST_REFERENCE 

   ldap_first_entry  

   ldap_next_entry  

   ldap_count_entries  

   ldap_get_entry_controls_np  

   ldap_first_reference  

   ldap_next_reference  

   ldap_count_references  

   ldap_parse_reference_np

Purpose 

LDAP  result  entry  and  continuation  reference  parsing  and  counting  routines.  Note  

that  APIs  with  the  _np  suffix  are  preliminary  implementations,  and  are  not  

documented  in  the  Internet  Draft,  ″C  LDAP  Application  Program  Interface″.  

Synopsis 

#include  <ldap.h> 

  

  

LDAPMessage  *ldap_first_entry(  

                LDAP            *ld,  

                LDAPMessage     *result)  

  

LDAPMessage  *ldap_next_entry(  

                LDAP            *ld,  

                LDAPMessage     *entry)  

  

int  ldap_count_entries(  

                LDAP            *ld,  

                LDAPMessage     *result)  

  

int  ldap_get_entry_controls_np(  

                LDAP            *ld,  

                LDAPMessage     *entry  

                LDAPControl     ***serverctrlsp)  

  

LDAPMessage  *ldap_first_reference(  

                LDAP            *ld,  

                LDAPMessage     *result)  

  

LDAPMessage  *ldap_next_reference(  

                LDAP            *ld,  

                LDAPMessage     *ref)  

                LDAPMessage     *result)  

  

int  ldap_count_references(  

                LDAP            *ld,  

                LDAPMessage     *result)  

  

int  ldap_parse_reference_np(  

                LDAP            *ld,  

                LDAPMessage     *ref,  

                char            ***referralsp,  

                LDAPControl     ***serverctrlsp,  

                int             freeit  ) 

 

52 Programming Reference

http://www.ietf.org/proceedings/99jul/I-D/draft-ietf-ldapext-ldap-c-api-03.txt


Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init()  or  ldap_open().  

result  Specifies  the  result  returned  by  a call  to  ldap_result()  or  one  of  the  

synchronous  search  routines,  such  as ldap_search_s(),  ldap_search_st()  or  

ldap_search_ext_s().  

entry  Specifies  a pointer  to  an  entry  returned  on  a previous  call  to  

ldap_first_entry()  or  ldap_next_entry().  

serverctrlsp  

Specifies  a pointer  to  a result  parameter  that  is filled  in  with  an  allocated  

array  of  controls  copied  out  of  the  LDAPMessage  message.  The  control  

array  must  be  freed  by  calling  ldap_controls_free().  

ref  Specifies  a pointer  to  a search  continuation  reference  returned  on  a 

previous  call  to ldap_first_reference()  or  ldap_next_reference().  

referralsp  

Specifies  a pointer  to  a result  parameter  that  is filled  in  with  the  contents  

of  the  referrals  field  from  the  LDAPMessage  message.  The  LDAPMessage  

message  indicates  zero  or  more  alternate  LDAP  servers  where  the  request  

must  be  retried.  The  referrals  array  must  be  freed  by  calling  

ldap_value_free().  Supply  NULL  for  this  parameter  to ignore  the  referrals  

field.  

freeit  Specifies  a Boolean  value  that  determines  if the  LDAP  result  chain,  as  

specified  by  ref,  is to be  freed.  Any  nonzero  value  results  in  the  LDAP  

result  chain  being  freed  after  the  requested  information  is extracted.  

Alternatively,  the  ldap_msgfree()  API  can  be  used  to  free  the  LDAP  result  

chain  at  a later  time.

Usage 

These  routines  are  used  to  parse  results  received  from  ldap_result()  or  the  

synchronous  LDAP  search  operation  routines  ldap_search_s(),  ldap_search_st(),  and  

ldap_search_ext_s().  

Processing entries 

The  ldap_first_entry()  and  ldap_next_entry()  APIs  are  used  to step  through  and  

retrieve  the  list  of  entries  from  a search  result  chain.  When  an  LDAP  operation  

completes  and  the  result  is obtained  as  described,  a list  of  LDAPMessage  structures  

is  returned.  This  list  is referred  to as the  search  result  chain.  A pointer  to the  first  

of  these  structures  is  returned  by  ldap_result()  and  ldap_search_s().  

The  ldap_first_entry()  routine  is used  to  retrieve  the  first  entry  in  a chain  of search  

results.  It takes  the  result  returned  by  a call  to ldap_result(),  ldap_search_s(),  

ldap_search_st()  or  ldap_search_ext_s()  and  returns  a pointer  to  the  first  entry  in  

the  result.  

This  pointer  must  be  supplied  on  a subsequent  call  to  ldap_next_entry()  to get  the  

next  entry,  and  so  on  until  ldap_next_entry()  returns  NULL.  The  ldap_next_entry()  

API  returns  NULL  when  there  are  no  more  entries.  The  entries  returned  from  these  

calls  are  used  in  calls  to  the  routines  ldap_get_dn(),  ldap_first_attribute(),  

ldap_get_values(),  and  so  forth.  

The  ldap_get_entry_controls_np()  routine  is used  to  retrieve  an  array  of server  

controls  returned  in  an  individual  entry  in  a chain  of search  results.  

 

Chapter  2. API categories  53



Processing continuation references 

The  ldap_first_reference()  and  ldap_next_reference()  APIs  are  used  to  step  through  

and  retrieve  the  list  of  continuation  references  from  a search  result  chain.  They  

return  NULL  when  no  more  continuation  references  exist  in  the  result  set  to  be  

returned.  

The  ldap_first_reference()  routine  is used  to  retrieve  the  first  continuation  reference  

in  a chain  of  search  results.  It takes  the  result  as  returned  by  a call  to  ldap_result(),  

ldap_search_s(),  ldap_search_st(),  or  ldap_search_ext_s()  and  returns  a pointer  to  

the  first  continuation  reference  in the  result.  

The  pointer  returned  from  ldap_first_reference()  must  be  supplied  on  a subsequent  

call  to  ldap_next_reference()  to  get  the  next  continuation  reference.  

The  ldap_parse_reference_np()  routine  is used  to  retrieve  the  list  of  alternate  

servers  returned  in  an  individual  continuation  reference  in  a chain  of  search  

results.  This  routine  is also  used  to  obtain  an  array  of server  controls  returned  in 

the  continuation  reference.  

Counting entries and references 

The  ldap_count_entries()  API  returns  the  number  of entries  contained  in  a search  

result  chain.  It can  also  be  used  to  count  the  number  of entries  that  remain  in  a 

chain  if called  with  a message,  entry,  or  continuation  reference  returned  by  

ldap_first_message(),  ldap_next_message(),  ldap_first_entry(),  ldap_next_entry(),  

ldap_first_reference()  or  ldap_next_reference().  

The  ldap_count_references()  API  is used  to count  the  number  of  continuation  

references  returned.  It can  also  be  used  to  count  the  number  of  continuation  

references  that  remain  in a chain.  

Errors 

If an  error  occurs  in ldap_first_entry(),  ldap_next_entry(),  ldap_first_reference(),  or  

ldap_next_reference(),  NULL  is returned,  and  ldap_get_errno()  API  can  be  used  to  

obtain  the  error  code.  

If an  error  occurs  in ldap_count_entries()  or  ldap_count_references(),  -1 is returned,  

and  ldap_get_errno()  can  be  used  to  obtain  the  error  code.  The  

ldap_get_entry_controls_np()  and  ldap_parse_reference_np()  APIs  return  an  LDAP  

error  code  directly,  for  example,  LDAP_SUCCESS  if the  call  was  successful,  an  

LDAP  error  if the  call  was  unsuccessful.  

See  “LDAP_ERROR”  on  page  41 for  a description  of  possible  error  codes.  

See also 

ldap_result(),  ldap_search(),  ldap_first_attribute(),  ldap_get_values(),  ldap_get_dn()  

LDAP_FREE_LIMIT_NUM_VALUES_RESPONSE  

Purpose 

This  LDAP  routine  is used  for  freeing  an  LDAPNumValuesResponse  structure.  

 

54 Programming Reference



Synopsis 

 #include  <ldap.h> 

  

  void  ldap_free_limit_num_values_response(  

      LDAPNumValuesResponse  **numValuesResponse);  

Input parameters 

numValuesResponse  

Specifies  the  address  of  a pointer  to  an  LDAPNumValuesResponse  

structure  to  free.  The  structure  is freed  and  the  pointer  is set  to  NULL.

Usage 

The  ldap_free_limit_num_values_response  routine  is used  for  freeing  an  

LDAPNumValuesResponse  structure.  

See also 

ldap_parse_limit_num_values_response  

LDAP_GET_BIND_CONTROLS 

   ldap_get_bind_controls

Purpose 

Allows  client  using  ldap_sasl_bind_s  methods  to  get  controls  sent  by  the  server.  

Synopsis 

int  ldap_get_bind_controls  LDAP_P(  

   LDAP  *ld,  

  LDAPControl  ***bind_controls  ); 

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init()  or  ldap_open().  

bind_controls  

Cannot  be  NULL.

Output parameters 

bind_controls  will  have  a copy  of the  bind  controls,  or  NULL  if there  are  no  

controls.  

Usage 

After  calling  ldap_sasl_bind_s,  the  application  calls  ldap_get_bind_controls  to  get  a 

NULL-terminted  array  of controls  that  the  server  returned  on  the  bind.  The  caller  

is  responsible  for  freeing  the  controls  by  using  ldap_controls_free().  If  the  caller  

hasn’t  called  ldap_sasl_bind_s  for  the  supplied  ld,  the  client  will  set  bind_controls  

to  NULLreturn  

Errors 

LDAP_PARAM_ERROR:  If bind_controls=NULL,  error  code  if ld  not  valid  

 

Chapter  2. API categories  55



See also 

ldap_copy_controls  

LDAP_GET_DN 

   ldap_dn2ufn  

   ldap_get_dn  

   ldap_explode_dn  

   ldap_explode_dns  

   ldap_explode_rdn

Purpose 

LDAP  DN  and  RDN  handling  routines.  

Synopsis 

#include  <ldap.h> 

  

  

char  *ldap_dn2ufn(  

        const  char  *dn)  

  

char  *ldap_get_dn(  

        LDAP         *ld,  

        LDAPMessage  *entry)  

  

char  **ldap_explode_dn(  

         const  char  *dn,  

         int         notypes)  

  

char  **ldap_explode_dns(  

         const  char  *dn)  

  

char  **ldap_explode_rdn(  

         const  char  *rdn,  

         int         notypes)  

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init(),  or  ldap_open().  

dn  Specifies  the  DN  to be  exploded  (as  returned  from  ldap_get_dn())  or  

converted  to  a simple  form  (as  returned  from  ldap_dn2ufn()).  

rdn  Specifies  the  RDN  to  be  exploded  (as  returned  from  ldap_explode_dn()).  

entry  Specifies  the  entry  whose  dn  is to be  retrieved.  

notypes  

Specifies  if type  names  are  to  be  returned  for  each  RDN.  If  nonzero,  the  

type  information  is stripped.  If  zero,  the  type  information  is  retained.  For  

example,  setting  notypes  to  1 can  result  in  the  RDN  ″cn=Fido″  being  

returned  as  Fido.

Usage 

The  ldap_dn2ufn()  routine  takes  a DN  and  converts  it into  a simple  representation  

by  removing  the  attribute  type  that  is associated  with  each  RDN.  For  example,  the  

DN  ″cn=John  Doe,  ou=Widget  Division,  ou=Austin,  o=sample″ is returned  in  its  

 

56 Programming Reference



simple  form  as ″John  Doe,  Widget  Division,  Austin,  sample″.  Space  for  the  simple  

name  is  obtained  by  the  LDAP  API,  and  must  be  freed  by  a call  to ldap_memfree().  

The  ldap_get_dn()  routine  takes  an  entry  as  returned  by  ldap_first_entry()  or  

ldap_next_entry()  and  returns  a copy  of  the  entry’s  DN.  Space  for  the  DN  is 

obtained  by  the  LDAP  API,  and  must  be  freed  by  a call  to ldap_memfree().  

The  ldap_explode_dn()  routine  takes  a DN  (perhaps  as  returned  by  ldap_get_dn())  

and  breaks  it up  into  its  component  parts.  Each  part  is known  as  a Relative  

Distinguished  Name,  or  RDN.  The  ldap_explode_dn()  API  returns  a 

NULL-terminated  array  of character  strings,  each  component  of which  contains  an  

RDN  from  the  DN.  The  notypes  parameter  is used  to  request  that  only  the  RDN  

values,  and  not  their  types,  be  returned.  For  example,  the  DN  ″cn=Bob,c=US″  

returns  an  array  as  either  {″cn=Bob″,″c=US″,NULL}  or  {″Bob″,″US″,NULL}  

depending  on  whether  notypes  was  0 or  1.  The  result  can  be  freed  by  calling  

ldap_value_free().  

The  ldap_explode_dns()  routine  takes  a DNS-style  DN  and  breaks  it up  into  its  

component  parts.  It  returns  a NULL-terminated  array  of  character  strings.  For  

example,  the  DN  ″austin.ibm.com″ returns  { ″austin″, ″ibm″, ″com″, NULL  }. The  

result  can  be  freed  by  calling  ldap_value_free().  

The  ldap_explode_rdn()  routine  takes  an  RDN  (perhaps  as  returned  by  

ldap_explode_dn()  ) and  breaks  it up  into  its  component  parts.  The  

ldap_explode_rdn()  API  returns  a NULL-terminated  array  of character  strings.  The  

notypes  parameter  is used  to request  that  only  the  component  values  be  returned,  

not  their  types.  For  example,  the  RDN  ″ou=Research  + cn=Bob″ returns  as  either  

{″ou=Research″,  ″cn=Bob″,  NULL}  or  {″Research″,″Bob″, NULL},  depending  on  

whether  notypes  was  0 or  1. The  result  can  be  freed  by  calling  ldap_value_free().  

The  client  DN  processing  functions  normalize  attribute  values  that  contain  

compound  RDNs,  escaped  hex  representations  of UTF-8  characters  and  

ber-encoded  values.  The  functions  also  check  that  the  DN  passed  in is  in  a correct  

format  according  to  RFC  2253.  ldap_explode_rdn  removes  back  slashes  ( \ ) from  

in  front  of  special  characters.  

ldap_dn2ufn,  ldap_explode_dn  and  ldap_explode_rdn  normalize  attribute  values  

by  doing  the  following:  

v   A back  slash  followed  by  a two-digit  hex  representation  of a UTF-8  character  is  

converted  to  the  character  representation.  For  example,  cn=\4A\6F\68\6E  Doe  is  

converted  to  cn=John  Doe. 

v   A ber-encoded  value  is converted  to a UTF-8  value.  For  example,  

cn=#04044A6F686E20446F65  is  converted  to  cn=John  Doe.

ldap_dn2ufn,  ldap_explode_dn  and  ldap_explode_rdn  check  that  the  DN  passed  in  

is  valid.  If  the  DN  is invalid,  NULL  is returned.  A DN  is  invalid  if the  attribute  

type  or  value  are  in  invalid  formats.  See  RFC  2253  for  more  specific  information.  

ldap_dn2ufn,  ldap_explode_dn  and  ldap_explode_rdn  handle  compound  RDNs.  

For  example:  

v   The  DN  cn=John+sn=Doe  passed  into  ldap_dn2ufn  returns  John+Doe  

v   ldap_explode_dn  with  notype  returns  John+Doe  

v   ldap_explode_rdn  with  notype  returns  [0]=John  [1]=Doe

 

Chapter  2. API categories  57



ldap_explode_rdn  removes  the  back  slash  from  in  front  of  special  characters.  For  

example,  when  calling  ldap_explode_rdn(cn=Doe\<Jane+ou=LDAP+o=sample,1),  

ldap_explode_rdn  returned:  

v   [0]  = Doe<Jane  

v   [1]  = LDAP  

v   [2]  =sample

Errors 

If an  error  occurs  in ldap_dn2ufn(),  ldap_get_dn(),  ldap_explode_dn(),  or  

ldap_explode_rdn(),  NULL  is  returned.  If ldap_get_dn()  returns  NULL,  the  

ldap_get_errno()  API  can  be  used  to  obtain  the  error  code.  See  “LDAP_ERROR”  on  

page  41  for  a description  of possible  error  codes.  

Notes 

These  routines  allocate  memory  that  the  caller  must  deallocate.  

See also 

ldap_first_entry,  ldap_error,  ldap_value_free  

LDAP_GET_TRAN_ID 

Purpose 

This  LDAP  routine  gets  the  transaction  id  from  the  berval  struct  that  is returned  by  

the  start  transaction.  

Synopsis 

#include  <ldap.h> 

  

  

char  *ldap_get_tran_id(  

          struct  berval       *tran_id_bv);  

  

Input parameters 

tran_id_bv  

Specifies  the  transaction  id  in  berval  format  that  is returned  by  the  

ldap_start_transaction  routine.

Output parameters 

This  routine  returns  a string  value  of the  transaction  id.

Note:   The  caller  must  free  the  allocated  memory  returned  by  the  call  after  its  use.  

Usage 

This  routine  retrieves  the  transaction  id from  the  result  returned  by  the  start  

transaction.  

Errors 

If an  error  occurs,  this  routine  returns  a NULL  value  for  the  transaction  id.  

 

58 Programming Reference



See also 

ldap_start_transaction,  ldap_start_transaction_s,  ldap_prepare_transaction,  

ldap_prepare_transaction_s,  ldap_end_transaction,  ldap_end_transaction_s,  

ldap_get_tran_id,  ldap_create_transaction_control  

LDAP_GET_VALUES  

   ldap_get_values  

   ldap_get_values_len  

   ldap_count_values  

   ldap_count_values_len  

   ldap_value_free  

   ldap_value_free_len

Purpose 

LDAP  attribute  value  handling  routines.  

Synopsis 

#include  <ldap.h> 

  

  

  struct  berval  { 

      unsigned  long  bv_len;  

      char  *bv_val;  

  };  

  

  

char  **ldap_get_values(  

          LDAP           *ld,  

          LDAPMessage    *entry,  

          const  char     *attr)  

  

struct  berval  **ldap_get_values_len(  

          LDAP           *ld,  

          LDAPMessage    *entry,  

          const  char     *attr)  

  

int  ldap_count_values(  

          char           **vals)  

  

int  ldap_count_values_len(  

          struct  berval  **bvals)  

  

void  ldap_value_free(  

          char           **vals)  

  

void  ldap_value_free_len(  

        struct  berval    **bvals)  

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init()  or  ldap_open().  

attr  Specifies  the  attribute  whose  values  are  desired.  

entry  Specifies  an  LDAP  entry  as  returned  from  ldap_first_entry()  or  

ldap_next_entry().  

 

Chapter  2. API categories  59



vals  Specifies  a pointer  to  a NULL-terminated  array  of  attribute  values,  as 

returned  by  ldap_get_values().  

bvals  Specifies  a pointer  to  a NULL-terminated  array  of  pointers  to  berval  

structures,  as  returned  by  ldap_get_values_len().

Usage 

These  routines  are  used  to  retrieve  and  manipulate  attribute  values  from  an  LDAP  

entry  as returned  by  ldap_first_entry()  or  ldap_next_entry().  

An  attribute’s  values  can  be  represented  in  two  forms:  

v   A NULL-terminated  array  of  strings.  This  representation  is appropriate  when  the  

attribute  contains  string  data,  for  example,  a title,  description  or  name.  

v   A NULL-terminated  array  of  berval  structures.  This  representation  is appropriate  

when  the  attribute  contains  binary  data,  for  example,  a JPEG  file.

String values 

Use  ldap_get_values()  to obtain  attribute  values  as  an  array  of  strings.  The  

ldap_get_values()  API  takes  the  entry  and  the  attribute  attr  whose  values  are  

desired  and  returns  a NULL-terminated  array  of  character  strings  that  represent  

the  attribute’s  values.  The  attr  can  be  an  attribute  type  as  returned  from  

ldap_first_attribute()  or  ldap_next_attribute(),  or  if the  attribute  type  is known  it  

can  simply  be  provided.  

The  number  of  values  in  the  array  of  character  strings  can  be  counted  by  calling  

ldap_count_values().  The  array  of  values  returned  can  be  freed  by  calling  

ldap_value_free().  

If your  application  is designed  to  rely  on  the  LDAP  library  to  convert  LDAP  V3  

string  data  from  UTF-8  to the  local  code  page  (enabled  on  a per-connection  basis  

by  using  the  ldap_set_option()  API  with  the  LDAP_OPT_UTF8_IO),  strings  

returned  in  the  NULL-terminated  array  of  string  values  can  contain  multi-byte  

characters,  as  defined  in  the  local  code  page.  In  this  case,  the  application  must  use  

string  handling  routines  that  are  properly  enabled  to handle  multi-byte  strings.  

Binary values 

If the  attribute  values  are  binary  in  nature,  and  thus  not  suitable  to  be  returned  as  

an  array  of  character  strings,  the  ldap_get_values_len()  routine  can  be  used  instead.  

It  takes  the  same  parameters  as ldap_get_values()  but  returns  a NULL-terminated  

array  of  pointers  to  berval  structures,  each  containing  the  length  of,  and  a pointer  

to,  a value.  

The  number  of  values  in  the  array  of  bervals  can  be  counted  by  calling  

ldap_count_values_len().  The  array  of  values  returned  can  be  freed  by  calling  

ldap_value_free_len().  

Errors 

If an  error  occurs  in ldap_get_values()  or  ldap_get_values_len(),  NULL  is returned  

and  the  ldap_get_errno()  API  can  be  used  to obtain  the  error  code.  See  

“LDAP_ERROR”  on  page  41  for  a description  of  possible  error  codes.  

See also 

ldap_first_entry,  ldap_first_attribute,  ldap_error  

 

60 Programming Reference



LDAP_INIT 

   ldap_init  

   ldap_open  (deprecated)  

   ldap_set_option  

   ldap_get_option  

   ldap_version

Purpose 

Initializes  the  LDAP  library,  opens  a connection  to  an  LDAP  server,  and  gets  or 

sets  options  for  an  LDAP  connection.  

Synopsis 

#include  <ldap.h> 

  

  

LDAP  *ldap_init(  

         const  char  *host,  

         int       port)  

  

LDAP  *ldap_open(  

         const  char  *host,  

         int       port)  

  

int  ldap_set_option(  

         LDAP      *ld,  

         int       optionToSet,  

         void      *optionValue)  

  

int  ldap_get_option(  

         LDAP      *ld,  

         int       optionToGet,  

         void      *optionValue)  

  

int  ldap_version(  

         LDAPVersion   *version)  

  

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init()  or  ldap_open().  

host  Several  methods  are  supported  for  specifying  one  or  more  target  LDAP  

servers,  including  the  following:  

Explicit  Host  List   

Specifies  the  name  of the  host  on  which  the  LDAP  server  is 

running.  The  host  parameter  can  contain  a blank-separated  list  of  

hosts  to  try  to  connect  to,  and  each  host  can  optionally  be  of the  

form  host:port.  If  present,  the  :port  overrides  the  port  parameter  

supplied  on  ldap_init(),  ldap_ssl_init()  or  ldap_open().  The  

following  are  typical  examples:  

ld=ldap_init  ("server1",  ldap_port);  

ld=ldap_init  ("server2:1200",  ldap_port);  

ld=ldap_init  ( "server1:800  server2:2000  server3",  ldap_port);  

Localhost  

If  the  host  parameter  is NULL,  the  LDAP  server  is assumed  to  be 

running  on  the  local  host.  

 

Chapter  2. API categories  61



Default  Hosts  

If  the  host  parameter  is set  to  ″ldap://″  the  LDAP  library  attempts  

to  locate  one  or  more  default  LDAP  servers,  with  non-SSL  ports,  

using  the  IBM  Tivoli  Directory  Server  ldap_server_locate()  function.  

The  port  specified  on  the  call  is  ignored,  because  

ldap_server_locate()  returns  the  port.  For  example,  the  following  

are  equivalent:  

ld=ldap_init  ("ldap://",  ldap_port);  

and  

ld=ldap_init  (LDAP_URL_PREFIX,  LDAP_PORT);  

If  more  than  one  default  server  is located,  the  list  is processed  in 

sequence  until  an  active  server  is found.  

 The  LDAP  URL  can  include  a distinguished  name,  used  as a filter  

for  selecting  candidate  LDAP  servers  based  on  the  server’s  suffixes.  

If  the  most  significant  portion  of the  DN  is an  exact  match  with  a 

server’s  suffix  after  normalizing  for  case,  the  server  is  added  to  the  

list  of  candidate  servers.  For  example,  the  following  example  

returns  default  LDAP  servers  that  have  a suffix  that  supports  the  

specified  DN  only:  

ld=ldap_init  ("ldap:///cn=fred,  dc=austin,  

        dc=ibm,  dc=com",  LDAP_PORT);  

In this  case,  a server  that  has  a suffix  of ″dc=austin,  dc=ibm,  

dc=com″  matches.  If more  than  one  default  server  is located,  the  

list  is processed  in sequence,  until  an  active  server  is found.  

 If  the  LDAP  URL  contains  a host  name  and  optional  port,  the  host  

is  used  to  create  the  connection.  No  attempt  is made  to locate  the  

default  servers,  and  the  DN,  if present,  is ignored.  For  example,  the  

following  examples  are  equivalent:  

ld=ldap_init  ("ldap://myserver",  LDAP_PORT);  

and  

ld=ldap_init  ("myserver",  LDAP_PORT);  

See  “Locating  default  LDAP  servers”  on  page  71  for  more  

information  about  the  algorithm  used  to  locate  default  LDAP  

servers.  

Local  Socket   

If  the  host  parameter  is prefixed  with  a forward  slash  ( / ), the  

host  parameter  is assumed  to  be  the  name  of a UNIX  socket,  that  

is,  family  is AF_UNIX,  and  port  is ignored.  Use  of a UNIX  socket  

requires  the  LDAP  server  to  be  running  on  the  local  host.  In  

addition,  the  local  operating  system  must  support  UNIX  sockets  

and  the  LDAP  server  must  be  listening  on  the  specified  UNIX  

socket.  UNIX  variants  of  the  IBM  Tivoli  Directory  Server  listen  on  

the  /tmp/s.slapd  local  socket,  in  addition  to  any  configured  

TCP/IP  ports.  For  example:  

ld=ldap_init  ("/tmp/s.slapd",  ldap_port);  

Host  with  Privileged  Port  

On  platforms  that  support  the  rresvport  function,  typically  UNIX  

 

62 Programming Reference



platforms,  if a specified  host  is prefixed  with  ″privport://″, then  

the  LDAP  library  uses  the  rresvport()  function  to  attempt  to  obtain  

one  of  the  reserved  ports  (512  through  1023),  instead  of an  

ephemeral  port.  The  search  for  a reserved  port  starts  at 1023  and  

stops  at 512.  If  a reserved  port  cannot  be  obtained,  the  function  call  

fails.  For  example:  

ld=ldap_init  ("privport://server1",  ldap_port);  

ld=ldap_init  ("privport://server2:1200",  ldap_port);  

ld=ldap_init  ("privport://server1:800  server2:2000  

  privport://server3",  ldap_port);  

port  Specifies  the  port  number  to connect  to.  If the  default  IANA-assigned  port  

of  389  is desired,  LDAP_PORT  must  be  specified.  To use  the  default  SSL  

port  636  for  SSL  connections,  use  LDAPS_PORT.  

optionToSet  

Identifies  the  option  value  that  is to  be  set  on  the  ldap_set_option()  call.  

See  “Usage”  on  page  64  for  the  list  of supported  options.  

optionToGet  

Identifies  the  option  value  that  is to  be  queried  on  the  ldap_get_option()  

call.  See  “Usage”  on  page  64  for  the  list  of supported  options.  

optionValue  

Specifies  the  address  of  the  value  to  set  using  ldap_set_option()  or  the  

address  of  the  storage  in which  the  queried  value  is returned  using  

ldap_get_option().  

version  

Specifies  the  address  of  an  LDAPVersion  structure  that  contains  the  

following  returned  values:  

sdk_version  

SDK  version,  multiplied  by  100.  

protocol_version  

Highest  LDAP  protocol  supported,  multiplied  by  100.  

SSL_version  

SSL  version  supported,  multiplied  by  100.  

security_level  

Level  of  encryption  supported,  in  bits.  Set  to  

LDAP_SECURITY_NONE  if SSL  not  enabled.  

ssl_max_cipher  

A  string  containing  the  default  ordered  set  of  ciphers  supported  by  

this  installation.  See  “LDAP_SET_OPTION  syntax  for  LDAP  V2  

applications”  on  page  70  for  more  information  about  changing  the  

set  of ciphers  used  to  negotiate  the  secure  connection  with  the  

server.  

sdk_vendor  

A  pointer  to a static  string  that  identifies  the  supplier  of  the  LDAP  

library.  This  string  must  not  be  freed  by  the  application.  

sdk_build_level  

A  pointer  to a static  string  that  identifies  the  build  level,  including  

the  date  when  the  library  was  built.  This  string  must  not  be  freed  

by  the  application.

 

Chapter  2. API categories  63



Usage 

The  ldap_init()  API  initializes  a session  with  an  LDAP  server.  The  server  is not  

actually  contacted  until  an  operation  is performed  that  requires  the  server,  

allowing  various  options  to be  set  after  initialization,  but  before  actually  contacting  

the  host.  It allocates  an  LDAP  structure  that  is used  to  identify  the  connection  and  

maintain  per-connection  information.  

Although  still  supported,  ldap_open()  is deprecated.  The  ldap_open()  API  allocates  

an  LDAP  structure  and  opens  a connection  to  the  LDAP  server.  Use  ldap_init()  

instead  of  ldap_open().  

The  ldap_init()  and  ldap_open()  APIs  return  a pointer  to  an  LDAP  structure,  which  

must  be  passed  to  subsequent  calls  to  ldap_set_option(),  ldap_simple_bind(),  

ldap_search(),  and  so  forth.  

The  LDAP  structure  is opaque  to the  application.  Direct  manipulation  of  the  LDAP  

structure  should  be  avoided.  The  ldap_version()  API  returns  the  toolkit  version  

(multiplied  by  100).  It  also  sets  information  in  the  LDAPVersion  structure  (see  63).  

Setting and getting session settings 

The  ldap_set_option()  API  sets  options  for  the  specified  LDAP  connection.  The  

ldap_get_option()  API  queries  settings  associated  with  the  specified  LDAP  

connection.  

The  following  session  settings  can  be  set  and  retrieved  using  the  ldap_set_option()  

and  ldap_get_option()  APIs:  

LDAP_OPT_SIZELIMIT  

Get  or  set  maximum  number  of entries  that  can  be  returned  on  a search  

operation.  

LDAP_OPT_TIMELIMIT  

Get  or  set  maximum  number  of seconds  to  wait  for  search  results.  

LDAP_OPT_REFHOPLIMIT  

Get  or  set  maximum  number  of referrals  in  a sequence  that  the  client  can  

follow.  

LDAP_OPT_DEREF  

Get  or  set  rules for  following  aliases  at the  server.  

LDAP_OPT_REFERRALS  

Get  or  set  whether  or  not  referrals  must  be  followed  by  the  client.  

LDAP_OPT_DEBUG  

Get  or  set  debug  options.  

LDAP_OPT_SSL_CIPHER  

Get  or  set  SSL  ciphers  to  use.  

LDAP_OPT_SSL_TIMEOUT  

Get  or  set  SSL  timeout  for  refreshing  session  keys.  

LDAP_OPT_REBIND_FN  

Get  or  set  address  of application’s  setrebindproc  procedure.  

LDAP_OPT_PROTOCOL_VERSION  

Get  or  set  LDAP  protocol  version  to  use  (V2  or  V3).  

LDAP_OPT_SERVER_CONTROLS  

Get  or  set  default  server  controls.  

 

64 Programming Reference



LDAP_OPT_CLIENT_CONTROLS  

Get  or  set  default  client  library  controls.  

LDAP_OPT_UTF8_IO  

Get  or  set  mode  for  converting  string  data  between  the  local  code  page  

and  UTF-8.  

LDAP_OPT_HOST_NAME  

Get  current  host  name  (cannot  be  set).  

LDAP_OPT_ERROR_NUMBER  

Get  error  number  (cannot  be  set).  

LDAP_OPT_ERROR_STRING  

Get  error  string  (cannot  be  set).  

LDAP_OPT_API_INFO  

Get  API  version  information  (cannot  be  set).  

LDAP_OPT_EXT_ERROR  

Get  extended  error  code.

See  “LDAP_SET_OPTION  syntax  for  LDAP  V2  applications”  on  page  70  for  

important  information  if your  LDAP  application  is based  on  the  LDAP  V2  APIs  

and  uses  the  ldap_set_option()  or  ldap_get_option()  functions;  that  is,  you  are  

using  ldap_open,  or  your  application  uses  ldap_init()  and  ldap_set_option()  to  

switch  from  the  default  of  LDAP  V3  to use  the  LDAP  V2  protocol  and  

subsequently  uses  the  ldap_set_option()  or  ldap_get_option()  calls.  

Additional  details  on  specific  options  for  ldap_set_option()  and  ldap_get_option()  

are  provided  in  the  following  sections.  

LDAP_OPT_SIZELIMIT:    Specifies  the  maximum  number  of entries  that  can  be  

returned  on  a search  operation.  

Note:   The  actual  size  limit  for  operations  is also  bounded  by  the  maximum  

number  of  entries  that  the  server  is  configured  to return.  Therefore,  the  

actual  size  limit  is the  lesser  of  the  value  specified  on  this  option  and  the  

value  configured  in  the  LDAP  server.  

The  default  sizelimit  is unlimited,  specified  with  a value  of zero,  thus  deferring  to 

the  sizelimit  setting  of  the  LDAP  server.  

For  example:  

sizevalue=50;  

ldap_set_option(  ld, LDAP_OPT_SIZELIMIT,  &sizevalue);  

ldap_get_option(  ld, LDAP_OPT_SIZELIMIT,  &sizevalue);  

LDAP_OPT_TIMELIMIT:    Specifies  the  number  of  seconds  to  wait  for  search  

results.  

Note:   The  actual  time  limit  for  operations  is also  bounded  by  the  maximum  time  

that  the  server  is configured  to  allow. Therefore,  the  actual  time  limit  is the  

lesser  of  the  value  specified  on  this  option  and  the  value  configured  in  the  

LDAP  server.  

The  default  is  unlimited  (specified  with  a value  of  zero).  For  example:  

timevalue=50;  

ldap_set_option(  ld, LDAP_OPT_TIMELIMIT,  &timevalue);  

ldap_get_option(  ld, LDAP_OPT_TIMELIMIT,  &timevalue);

 

Chapter  2. API categories  65



LDAP_OPT_REFHOPLIMIT:    Specifies  the  maximum  number  of hops  that  the  

client  library  takes  when  chasing  referrals.  The  default  is 10.  For  example:  

hoplimit=7;  

ldap_set_option(  ld,  LDAP_OPT_REFHOPLIMIT,  &hoplimit);  

ldap_get_option(  ld,  LDAP_OPT_REFHOPLIMIT,  &hoplimit);  

LDAP_OPT_DEREF:    Specifies  alternative  rules  for  following  aliases  at  the  server.  

The  default  is LDAP_DEREF_NEVER.  

Supported  values:  

   LDAP_DEREF_NEVER  0 

   LDAP_DEREF_SEARCHING  1 

   LDAP_DEREF_FINDING  2 

   LDAP_DEREF_ALWAYS  3

For  example:  

   int  deref  = LDAP_DEREF_NEVER;  

   ldap_set_option(  ld,  LDAP_OPT_DEREF,  &deref);  

   ldap_get_option(  ld,  LDAP_OPT_DEREF,  &deref);  

LDAP_OPT_REFERRALS:    Specifies  whether  the  LDAP  library  automatically  

follows  referrals  returned  by  LDAP  servers  or  not.  It can  be  set  to  one  of the  

constants  LDAP_OPT_ON  or  LDAP_OPT_OFF.  By  default,  the  LDAP  client  follows  

referrals.  For  example:  

  int  value;  

  ldap_set_option(  ld,  LDAP_OPT_REFFERALS,  (void  *)LDAP_OPT_ON);  

  ldap_get_option(  ld,  LDAP_OPT_REFFERALS,  &value);  

LDAP_OPT_DEBUG:    Specifies  a bitmap  that  indicates  the  level  of debug  trace  

for  the  LDAP  library.  

Supported  values:  

  /* Debug  levels  */ 

  

   LDAP_DEBUG_OFF          0x000  

   LDAP_DEBUG_TRACE        0x001  

   LDAP_DEBUG_PACKETS      0x002  

   LDAP_DEBUG_ARGS         0x004  

   LDAP_DEBUG_CONNS        0x008  

   LDAP_DEBUG_BER          0x010  

   LDAP_DEBUG_FILTER       0x020  

   LDAP_DEBUG_CONFIG       0x040  

   LDAP_DEBUG_ACL          0x080  

   LDAP_DEBUG_STATS        0x100  

   LDAP_DEBUG_STATS2       0x200  

   LDAP_DEBUG_SHELL        0x400  

   LDAP_DEBUG_PARSE        0x800  

   LDAP_DEBUG_ANY          0xffff  

For  example:  

  int  value;  

   int  debugvalue=  LDAP_DEBUG_TRACE  | LDAP_DEBUG_PACKETS;  

   ldap_set_option(  ld,  LDAP_OPT_DEBUG,  &debugvalue);  

   ldap_get_option(  ld,  LDAP_OPT_DEBUG,  &value  );  

LDAP_OPT_SSL_CIPHER:    Specifies  a set  of one  or  more  ciphers  to  be  used  

when  negotiating  the  cipher  algorithm  with  the  LDAP  server.  Choose  the  first  

cipher  in  the  list  that  is common  with  the  list  of  ciphers  supported  by  the  server.  

The  default  value  is  ″05040A090306″.  

 

66 Programming Reference



Note:   If  you  try  to  get  an  SSL  cipher  and  you  are  not  running  on  an  SSL  version  of  

IBM  Tivoli  Directory  Server,  an  error  is returned.  

Supported  ciphers:  

   LDAP_SSL_RC4_MD5_EX  ″03″  

   LDAP_SSL_RC2_MD5_EX  ″06″  

   LDAP_SSL_RC4_SHA_US  ″05″  

   LDAP_SSL_RC4_MD5_US  ″04″  

   LDAP_SSL_DES_SHA_US  ″09″  

   LDAP_SSL_3DES_SHA_US  ″0A″

For  example:  

   char  *setcipher  = "090A";  

   char  *getcipher;  

   ldap_set_option(  ld, LDAP_OPT_SSL_CIPHER,  setcipher);  

   ldap_get_option(  ld, LDAP_OPT_SSL_CIPHER,  &getcipher  ); 

Use  ldap_memfree()  to  free  the  memory  returned  by  the  call  to ldap_get_option().  

LDAP_OPT_SSL_TIMEOUT:    Specifies  in  seconds  the  SSL  inactivity  timer.  After  

the  number  of  seconds  specified,  in  which  no  SSL  activity  has  occurred,  the  SSL  

connection  is  refreshed  with  new  session  keys.  A  smaller  value  can  help  increase  

security,  but  has  a small  impact  on  performance.  The  default  SSL  timeout  value  is 

43200  seconds.  For  example:  

   value  = 100;  

   ldap_set_option(  ld, LDAP_OPT_SSL_TIMEOUT,  &value  );  

   ldap_get_option(  ld, LDAP_OPT_SSL_TIMEOUT,  &value)  

Note:   If  you  use  LDAP_OPT_SSL_TIMEOUT  and  you  are  not  running  on  an  SSL  

version  of IBM  Tivoli  Directory  Server,  an  error  is returned.  

LDAP_OPT_REBIND_FN:    Specifies  the  address  of  a routine  to be  called  by  the  

LDAP  library  to  authenticate  a connection  with  another  LDAP  server  when  

chasing  a referral  or  search  reference.  If a routine  is not  defined,  referrals  are  

chased  using  the  identity  and  credentials  specified  on  the  bind  sent  to  the  original  

server.  A default  routine  is  not  defined.  For  example:  

  extern  LDAPRebindProc  proc_address;  

  LDAPRebindProc  value;  

  ldap_set_option(  ld,  LDAP_OPT_REBIND_FN,  &proc_address);  

  ldap_get_option(  ld,  LDAP_OPT_REBIND_FN,  &value);  

LDAP_OPT_PROTOCOL_VERSION:    Specifies  the  LDAP  protocol  to  be  used  by  

the  LDAP  client  library  when  connecting  to an  LDAP  server.  Also  used  to 

determine  which  LDAP  protocol  is being  used  for  the  connection.  For  an  

application  that  uses  ldap_init()  to  create  the  LDAP  connection,  the  default  value  

of  this  option  is  LDAP_VERSION3  for  communicating  with  the  LDAP  server.  The  

default  value  of this  option  is LDAP_VERSION2  if the  application  uses  the  

deprecated  ldap_open()  API.  In  either  case,  the  LDAP_OPT_PROTOCOL_VERSION  

option  can  be  used  with  ldap_set_option()  to  change  the  default.  The  LDAP  

protocol  version  must  be  reset  prior  to  issuing  the  bind  (or  any  operation  that  

causes  an  implicit  bind).  For  example:  

   version2  = LDAP_VERSION2;  

   version3  = LDAP_VERSION3;  

/* Example  for  Version  3 application  setting  version  to version  2 */ 

   ldap_set_option(  ld, LDAP_OPT_PROTOCOL_VERSION,  &version2);

 

Chapter  2. API categories  67



/* Example  of Version  2 application  setting  version  to version  3 */ 

   ldap_set_option(  ld,  LDAP_OPT_PROTOCOL_VERSION,  &version3);  

   ldap_get_option(  ld,  LDAP_OPT_PROTOCOL_VERSION,  &value);  

LDAP_OPT_SERVER_CONTROLS:    Specifies  a default  list  of server  controls  to  

be  sent  with  each  request.  The  default  list  can  be  overridden  by  specifying  a server  

control,  or  list  of  server  controls,  on  specific  APIs.  By  default,  there  are  no  settings  

for  server  controls.  For  example:  

ldap_set_option(  ld,  LDAP_OPT_SERVER_CONTROLS,  &ctrlp);  

LDAP_OPT_CLIENT_CONTROLS:    Specifies  a default  list  of client  controls  to  be  

processed  by  the  client  library  with  each  request.  Because  client  controls  are  not  

defined  for  this  version  of  the  library,  the  ldap_set_option()  API  can  be  used  to  

define  a set  of  default,  non-critical  client  controls.  If  one  or  more  client  controls  in  

the  set  is  critical,  the  entire  list  is rejected  with  a return  code  of  

LDAP_UNAVAILABLE_CRITICAL_EXTENSION  

LDAP_OPT_UTF8_IO:    Specifies  whether  the  LDAP  library  automatically  converts  

string  data  to  and  from  the  local  code  page.  It  can  be  set  to either  

LDAP_UTF8_XLATE_ON  or  LDAP_UTF8_XLATE_OFF.  By  default,  the  LDAP  

library  does  not  convert  string  data.  

When  conversion  is disabled  by  default,  the  LDAP  library  assumes  that  data  

received  from  the  application  using  LDAP  APIs  is already  represented  in  UTF-8.  

Similarly,  the  LDAP  library  assumes  that  the  application  is  prepared  to  receive  

string  data  from  the  LDAP  library  represented  in  UTF-8,  or  as  binary.  

When  LDAP_UTF8_XLATE_ON  is set,  the  LDAP  library  assumes  that  string  data  

received  from  the  application  using  LDAP  APIs  is in  the  default  (or  explicitly  

designated)  code  page.  Similarly,  all  string  data  returned  from  the  LDAP  library  

back  to  the  application  is converted  to the  designated  local  code  page.  

It  is important  to  note  that  only  string  data  supplied  on  connection-based  APIs  is 

translated,  that  is,  only  those  APIs  that  include  an  ld are  subject  to translation.  

It  is also  important  to  note  that  translation  of  strings  from  a UTF-8  encoding  to  

local  code  page  can  result  in  loss  of  data  when  one  or  more  characters  in  the  

UTF-8  encoding  cannot  be  represented  in  the  local  code  page.  When  this  occurs,  a 

substitution  character  replaces  any  UTF-8  characters  that  cannot  be  converted  to  

the  local  code  page.  

For  more  information  on  explicitly  setting  the  locale  for  conversions,  see  

ldap_set_locale().  For  example:  

  int  value;  

  ldap_set_option(  ld,  LDAP_OPT_UTF8_IO,  (void*)LDAP_UTF8_XLATE_ON);  

  ldap_get_option(  ld,  LDAP_OPT_UTF8_IO,  &value);  

LDAP_OPT_HOST_NAME:    This  is a read-only  option  that  returns  a pointer  to  

the  hostname  for  the  original  connection  (as  specified  on  ldap_init(),  ldap_open(),  

or  ldap_ssl_init()).  For  example:  

  char  *hostname;  

  ldap_get_option(  ld,  LDAP_OPT_HOST_NAME,  &hostname);  

Use  ldap_memfree  to  free  the  memory  returned  by  the  call  to  ldap_get_option().  

 

68 Programming Reference



LDAP_OPT_ERROR_NUMBER:    This  is a read-only  option  that  returns  the  error  

code  associated  with  the  most  recent  LDAP  error  that  occurred  for  the  specified  

LDAP  connection.  For  example:  

int  error;  

ldap_get_option(  ld, LDAP_OPT_ERROR_NUMBER,  &error);  

LDAP_OPT_ERROR_STRING:    This  is a read-only  option  that  returns  the  text  

message  associated  with  the  most  recent  LDAP  error  that  occurred  for  the  specified  

LDAP  connection.  For  example:  

char  *error_string;  

ldap_get_option(  ld, LDAP_OPT_ERROR_STRING,  &error_string);  

Use  ldap_memfree()  to  free  the  memory  returned  by  the  call  to ldap_get_option().  

LDAP_OPT_API_INFO:    This  is a read-only  option  that  returns  basic  information  

about  the  API  and  about  the  specific  implementation  being  used.  The  ld parameter  

to  ldap_get_option()  can  be  either  NULL  or  a valid  LDAP  session  handle  that  was  

obtained  by  calling  ldap_init(),  ldap_ssl_init()  or  ldap_open().  The  optdata  

parameter  to  ldap_get_option()  must  be  the  address  of an  LDAPAPIInfo  structure,  

which  is  defined  as  follows:  

   typedef  struct  ldapapiinfo  { 

       int   ldapai_info_version;      /* version  of this  struct  (1)  */ 

       int   ldapai_api_version;       /* revision  of API supported  */  

       int   ldapai_protocol_version;  /* highest  LDAP  version  supported  */ 

       char  **ldapai_extensions;      /* names  of API  extensions  */ 

       const  char  *ldapai_vendor_name;      /* name  of supplier  */ 

       int   ldapai_vendor_version;    /* supplier-specific  version  times  100  */ 

   } LDAPAPIInfo;  

  

Note:   The  ldapai_info_version  field  of  the  LDAPAPIInfo  structure  must  be  set  to  

the  value  LDAP_API_INFO_VERSION  before  calling  ldap_get_option()  so  

that  it can  be  checked  for  consistency.  All  other  fields  are  set  by  the  

ldap_get_option()  function.  

The  members  of  the  LDAPAPIInfo  structure  are:  

ldapai_info_version  

A  number  that  identifies  the  version  of the  LDAPAPIInfo  structure.  This  

must  be  set  to  the  value  LDAP_API_INFO_VERSION  before  calling  

ldap_get_option().  If the  value  received  is not  recognized  by  the  API  

implementation,  the  ldap_get_option()  function  sets  ldapai_info_version  to  

a valid  value  that  can  be  recognized,  sets  ldapai_api_version  to the  correct  

value,  and  returns  an  error  without  filling  in  any  of the  other  fields  in  the  

LDAPAPIInfo  structure.  

ldapai_api_version  

A  number  that  matches  that  assigned  to  the  C LDAP  API  RFC  supported  

by  the  API  implementation.  This  number  must  match  the  value  of  the  

LDAP_API_VERSION  define.  

ldapai_protocol_version  

The  highest  LDAP  protocol  version  supported  by  the  implementation.  For  

example,  if LDAP  V3  is the  highest  version  supported  then  this  field  is set  

to  3.  

ldapai_extensions  

A  NULL-terminated  array  of character  strings  that  lists  the  names  of  API  

 

Chapter  2. API categories  69



extensions.  The  caller  is responsible  for  disposing  of the  memory  occupied  

by  this  array  by  passing  it  to  ldap_value_free().

LDAP_OPT_EXT_ERROR:    This  is a read-only  option  that  returns  the  extended  

error  code.  For  example,  if an  SSL  error  occurred  when  attempting  to  invoke  an  

ldap_search_s  API,  the  actual  SSL  error  can  be  obtained  by  using  

LDAP_OPT_EXT_ERROR:  

int  error;  

ldap_get_option(  ld,  LDAP_OPT_EXT_ERROR,  &exterror);  

LDAP_OPT_EXT_ERROR  returns  errors  reported  by  the  SSL  library.  

Errors 

If an  error  occurs,  a nonzero  return  code  is returned  from  ldap_set_option  and  

ldap_get_option.  

LDAP_DEBUG 

To obtain  debug  information  from  a client  application  built  using  the  IBM  Tivoli  

Directory  Server  LDAP  C-API,  you  can  set  the  environment  variables  

LDAP_DEBUG  and  LDAP_DEBUG_FILE.  

For  UNIX,  enter  the  following  command  before  running  your  application:  

export  LDAP_DEBUG=65535  

For  the  Windows  NT® and  Windows  2000  operating  systems,  enter  the  following  

command  before  running  your  application:  

set  LDAP_DEBUG=65535  

Trace  messages  in  the  LDAP  C-API  library  are  output  to standard  error. Use  

LDAP_DEBUG_FILE=xxxxx to send  the  trace  output  to the  file  xxxxx. 

These  environment  variables  affect  only  applications  run in  the  same  shell  (or  

command  window)  session.  You can  also  call  ldap_set_option()  in  your  application  

to  enable  and  disable  the  library’s  trace  messages.  

LDAP_SET_OPTION syntax for LDAP V2 applications 

To maintain  compatibility  with  older  versions  of the  LDAP  client  library  

(pre-LDAP  V3),  the  ldap_set_option()  API  expects  the  value  of  the  following  option  

values  to  be  supplied,  instead  of  the  address  of the  value,  when  the  application  is 

running  as  an  LDAP  V2  application:  

v   LDAP_OPT_SIZELIMIT  

v   LDAP_OPT_TIMELIMIT  

v   LDAP_OPT_SSL_TIMEOUT  

v   LDAP_OPT_DEREF  

v   LDAP_OPT_DEBUG

The  value  returned  by  ldap_get_option()  when  LDAP_OPT_PROTOCOL_VERSION  

is specified  can  be  used  to  determine  how  parameters  must  be  passed  to the  

ldap_set_option()  call.  The  easiest  way  to work  with  this  compatibility  feature  is to  

guarantee  that  calls  to  ldap_set_option()  are  all  performed  while  the  

LDAP_OPT_PROTOCOL_VERSION  is set  to  the  same  value.  If this  cannot  be  

guaranteed  by  the  application,  then  follow  the  format  of  the  following  example  

when  coding  the  call  to  ldap_set_option():  

 

70 Programming Reference



int  sizeLimit=100;  

  

   int  protocolVersion;  

  

   ldap_get_option(  ld, LDAP_OPT_PROTOCOL_VERSION,  &protocolVersion  ); 

  

   if ( protocolVersion  == LDAP_VERSION2  ) { 

      ldap_set_option(  ld,  LDAP_OPT_SIZELIMIT,  (void  *)sizeLimit  ); 

   } else  { /* the  protocol  version  is LDAP_VERSION3  */ 

      ldap_set_option(  ld,  LDAP_OPT_SIZELIMIT,  &sizeLimit  ); 

   } 

An  LDAP  application  is typically  running  as  LDAP  V2  when  it uses  ldap_open()  to 

create  the  LDAP  connection.  An  LDAP  application  is typically  running  as  LDAP  

V3  when  it uses  ldap_init()  to create  the  LDAP  connection.  However,  it was  

possible  with  the  LDAP  V2  API  to  call  ldap_init(),  so  there  can  be  cases  in  which  

this  is not  true. Note  that  LDAP_OPT_PROTOCOL_VERSION  can  be  used  to 

toggle  the  protocol,  in  which  case  the  behavior  of  ldap_set_option()  changes.  

Locating default LDAP servers 

When  the  ldap_init(),  ldap_open(),  or  ldap_ssl_init()  APIs  are  invoked  with  an  

LDAP  URL  of  the  following  forms,  the  ldap_server_locate()  function  is used  to  

obtain  a set  of  one  or  more  default  LDAP  servers:  

ld=ldap_init  ("ldap://",  ldap_port);           /* locate  servers  with  

        non-secure  ports  */ 

ld=ldap_ssl_init  ("ldaps://",  ldap_port);      /* locate  servers  with  

        secure  SSL  ports  */  

The  ldap_server_locate()  API  provides  several  options  for  searching  for  default  

LDAP  servers.  An  application  using  ldap_server_locate()  in  an  explicit  fashion  can  

control  these  options.  When  ldap_server_locate()  is  used  implicitly,  as described  

here,  the  following  options  are  used:  

Security  

If  the  non-secure  LDAP  URL  is specified  (ldap://),  servers  with  a 

non-secure  security  type  are  used  as  candidate  servers  only.  If the  secure  

LDAP  URL  is  specified,  (ldaps://),  servers  with  a secure  security  type  are  

used  as candidate  servers  only.  

Source  for  Server  Information  

The  ldap_server_locate()  API  can  be  used  to  find  default  LDAP  server  

information  in  either  a local  configuration  file,  or  published  in  the  Domain  

Name  System  (DNS).  In  this  case,  the  default  behavior  is used.  The  

ldap_server_locate()  API  looks  for  a local  configuration  file  first,  and  

attempts  to  find  one  or  more  LDAP  servers  that  meet  the  search  criteria  

(security  and  suffix  filter).  If nothing  is found,  it then  searches  DNS.  See  

ldap_server_conf_save()  for  additional  information  about  using  a local  

configuration  file.  

DNS  Domain  Name  

When  searching  the  local  configuration  and  DNS,  the  ldap_server_locate()  

API  assumes  that  your  default  LDAP  servers  are  published  in  your  locally  

configured  TCP/DNS,  for  example,  ibm.com.  

Service  Name  and  Protocol  

A  complete  search  is performed  using  ldap  for  the  service  name  and  tcp  

for  the  protocol.  If no  servers  are  located,  the  search  is rerun  using  _ldap  

and  _tcp.

 

Chapter  2. API categories  71



Note:   If  the  default  behavior  as described  here  is not  appropriate  for  your  

application,  consider  using  the  ldap_server_locate()  API  explicitly,  prior  to  

invoking  the  ldap_init()  or  ldap_ssl_init()  API.  

Multithreaded applications 

The  LDAP  client  library  is re-entrant.  While  a multithreaded  application  can  safely  

use  the  LDAP  library  on  multiple  threads  within  the  application,  there  are  a few  

considerations  to  keep  in mind:  

v   The  ldap_get_errno()  API  obtains  information  with  respect  to  the  most  recent  

error  that  occurred  on  the  current  thread  for  the  specified  LDAP  connection.  It  

does  not  return  the  most  recent  LDAP  error  that  occurred  on  any  thread.  

v   If  an  operation  results  in  more  than  one  response  message  from  a server,  then  all 

the  response  messages  will  be  returned  to  only  one  thread.  The  thread  that  reads  

the  first  response  message  for  that  operation  must  read  all  the  remaining  

response  messages  as  well.  

v   Note  that  the  locale  is applicable  to  all  conversions  by  the  LDAP  library  within  

the  application’s  address  space.  The  LDAP  locale  must  be  set  or  changed  only  

when  there  is  no  other  LDAP  activity  occurring  within  the  application  on  other  

threads.

Notes 

Do  not  make  any  assumptions  about  the  order  or  location  of  elements  in the  

opaque  LDAP  structure.  

See also 

ldap_bind  

LDAP_MEMFREE 

   ldap_memfree  

   ldap_ber_free  

   ldap_control_free  

   ldap_controls_free  

   ldap_msgfree

Purpose 

Free  storage  allocated  by  the  LDAP  library.  

Synopsis 

#include  <ldap.h> 

  

  

void  ldap_memfree(  

        char              *mem)  

  

void  ldap_ber_free(  

        BerElement        *berptr)  

  

void  ldap_control_free  ( 

        LDAPControl       *ctrl)  

  

void  ldap_controls_free)

 

72 Programming Reference



LDAPControl       **ctrls)  

  

int  ldap_msgfree(  

       LDAPMessage        *msg)  

Input parameters 

mem  Specifies  the  address  of  storage  that  was  allocated  by  the  LDAP  library.  

berptr  Specifies  the  address  of  the  BerElement  returned  from  ldap_first_attribute()  

and  ldap_next_attribute().  

ctrl  Specifies  the  address  of  an  LDAPControl  structure.  

ctrls  Specifies  the  address  of  an  LDAPControl  list,  represented  as  a 

NULL-terminated  array  of  pointers  to  LDAPControl  structures.

Usage 

The  ldap_memfree()  API  is used  to  free  storage  that  has  been  allocated  by  the  

LDAP  library  (libldap).  Use  this  routine  as  directed  when  using  ldap_get_option(),  

ldap_first_attribute(),  ldap_default_dn_get()  and  ldap_enetwork_domain_get().  

The  ldap_ber_free()  API  is used  to free  the  BerElement  pointed  to  by  berptr.  The  

LDAP  library  automatically  frees  the  BerElement  when  ldap_next_attribute()  

returns  NULL.  The  application  is  responsible  for  freeing  the  BerElement  if it does  

not  invoke  ldap_next_attribute()  until  it returns  NULL.  

For  those  LDAP  APIs  that  allocate  an  LDAPControl  structure,  the  

ldap_control_free()  API  can  be  used.  

For  those  LDAP  APIs  that  allocate  an  array  of LDAPControl  structures,  the  

ldap_controls_free()  API  can  be  used.  

The  ldap_msgfree()  routine  is used  to  free  the  memory  allocated  for  an  LDAP  

message  by  ldap_result,  ldap_search_s,  ldap_search_ext_s(),  or  ldap_search_st().  It 

takes  a pointer  to  the  result  to  be  freed  and  returns  the  type  of the  message  it  

freed.  

See also 

ldap_controls  

LDAP_MESSAGE 

   ldap_first_message  

   ldap_next_message  

   ldap_count_messages

Purpose 

Steps  through  the  list  of  messages  of a result  chain,  as returned  by  ldap_result().  

Synopsis 

#include  <ldap.h> 

  

  

LDAPMessage  *ldap_first_message(  

                LDAP            *ld,  

                LDAPMessage     *result)

 

Chapter  2. API categories  73



LDAPMessage  *ldap_next_message(  

                LDAP            *ld,  

                LDAPMessage     *msg)  

  

int  ldap_count_messages(  

                LDAP            *ld,  

                LDAPMessage     *result)  

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init(),  or  ldap_open().  

result  Specifies  the  result  returned  by  a call  to  ldap_result()  or  one  of the  

synchronous  search  routines  (ldap_search_s(),  ldap_search_st(),  or  

ldap_search_ext_s()).  

msg  Specifies  the  message  returned  by  a previous  call  to  ldap_first_message()  or  

ldap_next_message().

Usage 

These  routines  are  used  to  step  through  the  list  of  messages  in  a result  chain,  as  

returned  by  ldap_result().  

For  search  operations,  the  result  chain  can  include:  

v   Referral  messages  

v   Entry  messages  

v   Result  messages

The  ldap_count_messages()  API  is used  to  count  the  number  of  messages  returned.  

The  ldap_msgtype()  API  can  be  used  to  distinguish  between  the  different  message  

types.  Unlike  ldap_first_entry(),  ldap_first_message()  returns  any  of the  three  types  

of  messages.  

The  ldap_first_message()  and  ldap_next_message()  APIs  return  NULL  when  no  

more  messages  exist  in  the  result  set  to  be  returned.  NULL  is also  returned  if an  

error  occurs  while  stepping  through  the  entries.  When  such  an  error  occurs,  

ldap_get_errno()  can  be  used  to obtain  the  error  code.  

The  ldap_count_messages()  API  can  also  be  used  to  count  the  number  of  messages  

that  remain  in  a chain  if called  with  a message,  entry,  or  reference  returned  by  

ldap_first_message(),  ldap_next_message(),  ldap_first_entry(),  ldap_next_entry(),  

ldap_first_reference(),  and  ldap_next_reference().  

Errors 

If an  error  occurs  in ldap_first_message()  or  ldap_next_message(),  the  

ldap_get_errno()  API  can  be  used  to  obtain  the  error  code.  

If an  error  occurs  in ldap_count_messages(),  -1  is returned,  and  ldap_get_errno()  

can  be  used  to  obtain  the  error  code.  See  “LDAP_ERROR”  on  page  41  for  a 

description  of  possible  error  codes.  

See also 

ldap_result,  ldap_first_entry,  ldap_next_entry,  ldap_first_reference,  

ldap_next_reference,  ldap_get_errno,  ldap_msgtype.  

 

74 Programming Reference



LDAP_MODIFY 

   ldap_modify  

   ldap_modify_ext  

   ldap_modify_s  

   ldap_modify_ext_s  

   ldap_mods_free

Purpose 

Performs  various  LDAP  modify  operations.  

Synopsis 

#include  <ldap.h> 

  

  

 typedef  struct  ldapmod  { 

        int  mod_op;  

        char  *mod_type;  

        union  { 

        char  **modv_strvals;  

        struct  berval  **modv_bvals;  

        } mod_vals;  

    } LDAPMod;  

    #define  mod_values  mod_vals.modv_strvals  

    #define  mod_bvalues  mod_vals.modv_bvals  

  

  

int  ldap_modify(  

       LDAP            *ld,  

       const  char      *dn,  

       LDAPMod         *mods[])  

  

int  ldap_modify_ext(  

       LDAP            *ld,  

       const  char      *dn,  

       LDAPMod         *mods[],  

       LDAPControl     **serverctrls,  

       LDAPControl     **clientctrls,  

       int             *msgidp)  

  

int  ldap_modify_s(  

       LDAP            *ld,  

       const  char      *dn,;  

       LDAPMod         *mods[])  

  

int  ldap_modify_ext_s(  

       LDAP            *ld,  

       const  char      *dn,  

       LDAPMod         *mods[],  

       LDAPControl     **serverctrls,  

       LDAPControl     **clientctrls)  

  

void  ldap_mods_free(  

       LDAPMod         **mods,  

       int             *freemods)  

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init(),  or  ldap_open().  

 

Chapter  2. API categories  75



dn  Specifies  the  distinguished  name  (DN)  of  the  entry  to  be  modified.  See  

Appendix  C,  “LDAP  distinguished  names,”  on  page  183  for  more  

information  about  DNs.  

mods  Specifies  a NULL-terminated  array  of  entry  modifications.  Each  element  of 

the  mods  array  is a pointer  to  an  LDAPMod  structure.  

freemods  

Specifies  whether  or  not  the  mods  pointer  is to  be  freed,  in  addition  to the  

NULL-terminated  array  of  mod  structures.  

serverctrls  

Specifies  a list  of LDAP  server  controls.  This  parameter  can  be  set  to 

NULL.  See  “LDAP  controls”  on  page  25  for  more  information  about  server  

controls.  

clientctrls   

Specifies  a list  of LDAP  client  controls.  This  parameter  can  be  set  to NULL.  

See  “LDAP  controls”  on  page  25  for  more  information  about  client  

controls.

Output parameters 

msgidp  

This  result  parameter  is set  to the  message  ID  of  the  request  if the  

ldap_modify_ext()  call  succeeds.

Usage 

The  various  modify  APIs  are  used  to  perform  an  LDAP  modify  operation.  DN  is 

the  distinguished  name  of  the  entry  to  modify,  and  mods  is a NULL-terminated  

array  of  modifications  to  make  to  the  entry.  Each  element  of the  mods  array  is a 

pointer  to  an  LDAPMod  structure.  

The  mod_op  field  is  used  to specify  the  type  of modification  to  perform  and  must  

be  one  of  the  following:  

v   LDAP_MOD_ADD  (0x00)  

v   LDAP_MOD_DELETE  (0x01)  

v   LDAP_MOD_REPLACE  (0x02)

This  field  also  indicates  the  type  of values  included  in  the  mod_vals  union.  For  

binary  data,  you  must  also  logically  OR  the  operation  type  with  

LDAP_MOD_BVALUES  (0x80).  This  type  indicates  that  the  values  are  specified  in 

a NULL-terminated  array  of struct  berval  structures.  Otherwise,  the  mod_values  

are  used,  that  is,  the  values  are  assumed  to  be  a NULL-terminated  array  of  

NULL-terminated  character  strings.  

The  mod_type  field  specifies  the  name  of  the  attribute  to  add,  modify  or  delete.  

The  mod_vals  field  specifies  a pointer  to a NULL-terminated  array  of  values  to 

add,  modify,  or  delete.  Only  one  of the  mod_values  or  mod_bvalues  variants  must  

be  used,  with  mod_bvalues  being  selected  by  ORing  the  mod_op  field  with  the  

constant  LDAP_MOD_BVALUES.  

The  mod_values  array  is NULL-terminated.  Because  the  ldap_add()  API  converts  

the  string  from  the  local  code  page  to  UTF-8,  the  strings  must  be  in  the  local  code  

page  if the  LDAP_OPT_UTF8_IO  option  has  been  set  to  LDAP_UTF8_XLATE_ON  

 

76 Programming Reference



for  the  connection.  If the  UTF-8  translation  option  is  not  set,  the  array  of  strings  

must  be  composed  of NULL-terminated  UTF-8  strings  (note  that  US-ASCII  is a 

proper  subset  of  UTF-8).  

mod_bvalues  is a NULL-terminated  array  of berval  structures  that  can  be  used  to  

pass  binary  values  such  as images.  

For  LDAP_MOD_ADD  modifications,  the  given  values  are  added  to  the  entry,  

creating  the  attribute  if necessary.  

For  LDAP_MOD_DELETE  modifications,  the  given  values  are  deleted  from  the  

entry,  removing  the  attribute  if no  values  remain.  If  the  entire  attribute  is to be  

deleted,  the  mod_values  field  must  be  set  to  NULL.  

For  LDAP_MOD_REPLACE  modifications,  the  attribute  has  the  listed  values  after  

the  modification,  having  been  created  if necessary,  or  removed  if the  mod_vals  

field  is NULL.  

All  modifications  are  performed  in  the  order  in  which  they  are  listed.  

The  ldap_modify_ext()  API  initiates  an  asynchronous  modify  operation  and  returns  

the  constant  LDAP_SUCCESS  if the  request  was  successfully  sent,  or  it returns  

another  LDAP  error  code  if it is not  successful.  If  successful,  ldap_modify_ext()  

places  the  message  ID  of  the  request  in  *msgidp.  A subsequent  call  to  ldap_result()  

can  be  used  to  obtain  the  result  of the  operation.  When  the  operation  has  

completed,  ldap_result()  returns  the  status  of the  operation  in the  form  of an  error  

code.  The  error  code  indicates  whether  the  operation  completed  successfully.  The  

ldap_parse_result()  API  checks  the  error  code  in  the  result.  

The  ldap_modify()  API  initiates  an  asynchronous  modify  operation  and  returns  the  

message  ID  of this  operation.  A  subsequent  call  to  ldap_result(),  can  be  used  to  

obtain  the  result  of  the  modify.  In  case  of  an  error, ldap_modify()  returns  -1,  setting  

the  session  error  parameters  in  the  LDAP  structure  appropriately,  which  can  be  

obtained  by  using  ldap_get_errno().  See  “LDAP_ERROR”  on  page  41  for  more  

details.  

The  synchronous  ldap_modify_ext_s()  and  ldap_modify_s()  APIs  both  return  the  

result  of  the  operation,  either  the  constant  LDAP_SUCCESS  if the  operation  was  

successful,  or  another  LDAP  error  code  if it was  not.  

The  ldap_modify_ext()  and  ldap_modify_ext_s()  APIs  support  LDAP  V3  server  

controls  and  client  controls.  

The  ldap_modify_s()  API  returns  the  LDAP  error  code  resulting  from  the  modify  

operation.  This  code  can  be  interpreted  by  ldap_perror()  or  ldap_err2string().  

The  ldap_modify()  operation  works  the  same  way  as  ldap_modify_s(),  except  that  

it is  asynchronous,  returning  the  message  ID  of the  request  it  initiates,  or  -1  on  

error.  The  result  of  the  operation  can  be  obtained  by  calling  ldap_result().  

ldap_mods_free()  can  be  used  to free  each  element  of a NULL-terminated  array  of  

LDAPMod  structures.  If freemods  is nonzero,  the  mods  pointer  is freed  as  well.  

 

Chapter  2. API categories  77



Errors 

ldap_modify_s()  and  ldap_modify_ext_s()  return  the  resulting  LDAP  error  code  

from  the  modify  operation.  

ldap_modify()  and  ldap_modify_ext()  return  -1  instead  of a valid  msgid  if an  error  

occurs,  setting  the  session  error  in  the  LD  structure,  which  can  be  obtained  by  

using  ldap_get_errno().  See  “LDAP_ERROR”  on  page  41  for  more  details.  

See also 

ldap_error,  ldap_add  

LDAP_PAGED_RESULTS  

   ldap_create_page_control  

   ldap_parse_page_control

Purpose 

Used  to  request  simple  paged  results  of  entries  returned  by  the  servers  that  match  

the  filter  specified  on  a search  operation.  

Synopsis 

#include  <ldap.h>  

  

int  ldap_create_page_control(  

   LDAP               *ld,  

   unsigned  long      pageSize,  

   struct  berval      *cookie,  

   const  char         isCritical,  

   LDAPControl        **control)  

  

int  ldap_parse_page_control(  

   LDAP               *ld,  

   LDAPControl        **serverControls,  

   unsigned  long      *totalCount,  

   struct  berval      **cookie)  

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  previous  call  to  ldap_init(),  

ldap_ssl_init()  or  ldap_open().  Must  not  be  NULL.  

pageSize  

Number  of  entries  that  are  returned  for  this  paged  results  search  request.  

cookie  Opaque  structure  returned  by  the  server.  No  assumptions  must  be  made  

about  the  internal  organization  or  value.  The  cookie  is  used  on  subsequent  

paged  results  search  requests  when  more  entries  are  to  be  retrieved  from  

the  results  set.  The  cookie  must  be  the  value  of  the  cookie  returned  on the  

last  response  returned  from  the  server  on  all  subsequent  paged  results  

search  requests.  The  cookie  is empty  when  there  are  no  more  entries  to be  

returned  by  the  server,  or  when  the  client  abandons  the  paged  results  

request  by  sending  in  a zero  page  size.  After  the  paged  results  search  

request  is  completed,  the  cookie  must  not  be  used  because  it is no  longer  

valid.  

isCritical  

Specifies  the  criticality  of  paged  results  on  the  search.  Whether  the  

criticality  of  paged  results  is TRUE  or  FALSE,  and  the  server  finds  a 

 

78 Programming Reference



problem  with  the  sort  criteria,  the  search  does  not  continue.  If the  server  

does  not  find  any  problem  with  the  paged  results  criteria,  the  search  

continues  and  entries  are  returned  one  page  at a time.  

serverControls  

A  list  of  LDAP  server  controls.  See  “LDAP  controls”  on  page  25  for  more  

information  about  server  controls.  These  controls  are  returned  to the  client  

when  calling  the  ldap_parse_result()  function  on  the  set  of results  returned  

by  the  server.

Output parameters 

control  

A  result  parameter  that  is filled  in  with  an  allocated  array  of one  control  

for  the  sort  function.  The  control  must  be  freed  by  calling  

ldap_control_free().  

totalCount  

Estimate  of  the  total  number  of  entries  for  this  search,  can  be  zero  if the  

estimate  cannot  be  provided.  

cookie  Opaque  structure  returned  by  the  server.  No  assumptions  must  be  made  

about  the  internal  organization  or  value.  The  cookie  is used  on  subsequent  

paged  results  search  requests  when  more  entries  are  to be  retrieved  from  

the  results  set.  The  cookie  must  be  the  value  of the  cookie  returned  on  the  

last  response  returned  from  the  server  on  all  subsequent  paged  results  

search  requests.  The  cookie  is empty  when  there  are  no  more  entries  to be  

returned  by  the  server,  or  when  the  client  abandons  the  paged  results  

request  by  sending  in  a zero  page  size.  Once  the  paged  results  search  

request  is  completed,  the  cookie  must  not  be  used  because  it is no  longer  

valid.

Usage 

The  ldap_create_page_control()  function  uses  the  page  size  and  the  cookie  to  build  

the  paged  results  control.  The  control  output  from  ldap_create_page_control()  

function  includes  the  criticality  set  based  on  the  value  of the  isCritical  flag.  This  

control  is added  to  the  list  of  client  controls  sent  to  the  server  on  the  LDAP  search  

request.  

When  a paged  results  control  is returned  by  the  server,  the  

ldap_parse_page_control()  function  can  be  used  to retrieve  the  values  from  the  

control.  The  function  takes  as  input  the  server  controls  returned  by  the  server,  and  

returns  a cookie  to  be  used  on  the  next  paged  results  request  for  this  search  

operation.  

Note:   If  the  page  size  is greater  than  or  equal  to the  search  sizeLimit  value  , the  

server  ignores  the  paged  results  control  because  the  request  can  be  satisfied  

in  a single  page.  No  paged  results  control  value  is returned  by  the  server  in 

this  case.  In  all  other  cases,  error  or  not,  the  server  returns  a paged  results  

control  to  the  client.  

Simple paged results of search results 

Simple  Paged  Results  provides  paging  capabilities  for  LDAP  clients  that  want  to 

receive  just  a subset  of search  results  (page)  instead  of the  entire  list.  The  next  page  

of  entries  is  returned  to  the  client  application  for  each  subsequent  paged  results  

search  request  submitted  by  the  client  until  the  operation  is canceled  or the  last  

result  is  returned.  The  server  ignores  a simple  paged  results  request  if the  page  

 

Chapter  2. API categories  79



size  is  greater  than  or  equal  to  the  sizeLimit  value  for  the  server  because  the  

request  can  be  satisfied  in  a single  operation.  

The  ldap_create_page_control()  API  takes  as  input  a page  size  and  a cookie,  and  

outputs  an  LDAPControl  structure  that  can  be  added  to  the  list  of  client  controls  

sent  to  the  server  on  the  LDAP  search  request.  The  page  size  specifies  how  many  

search  results  must  be  returned  for  this  request,  and  the  cookie  is an  opaque  

structure  returned  by  the  server.  (On  the  initial  paged  results  search  request,  the  

cookie  must  be  a zero-length  string).  No  assumptions  must  be  made  about  the  

internal  organization  or  value  of  the  cookie.  The  cookie  is used  on  subsequent  

paged  results  search  requests  when  more  entries  are  to  be  retrieved  from  the  

results  set.  The  cookie  must  be  the  value  of  the  cookie  returned  on  the  last  

response  returned  from  the  server  on  all  subsequent  paged  results  search  requests.  

The  cookie  is  empty  when  there  are  no  more  entries  to  be  returned  by  the  server,  

or  when  the  client  application  abandons  the  paged  results  request  by  sending  in a 

zero  page  size.  After  the  paged  results  search  request  has  been  completed,  the  

cookie  must  not  be  used  because  it  is no  longer  valid.  

The  LDAPControl  structure  returned  by  ldap_create_page_control()  can  be  used  as  

input  to  ldap_search_ext()  or  ldap_search_ext_s(),  which  are  used  to  make  the  

actual  search  request.

Note:   Server  side  simple  paged  results  is an  optional  extension  of the  LDAP  v3  

protocol,  so  the  server  you  have  bound  to  prior  to the  ldap_search_ext()  or  

ldap_search_ext_s()  call  might  not  support  this  function.  

Upon  completion  of  the  search  request  you  submitted  using  ldap_search_ext()  or  

ldap_search_ext_s(),  the  server  returns  an  LDAP  result  message  that  includes  a 

paged  results  control.  The  client  application  can  parse  this  control  using  

ldap_parse_page_control(),  which  takes  the  returned  server  response  controls  (a 

null  terminated  array  of pointers  to  LDAPControl  structures)  as  input.  

ldap_parse_page_control()  outputs  a cookie  and  the  total  number  of entries  in the  

entire  search  result  set.  Servers  that  cannot  provide  an  estimate  for  the  total  

number  of  entries  might  set  this  value  to  zero.  Use  ldap_controls_free()  to free  the  

memory  used  by  the  client  application  to  hold  the  server  controls  when  you  are  

finished  processing  all  controls  returned  by  the  server  for  this  search  request.  

The  server  might  limit  the  number  of  outstanding  paged  results  operations  from  a 

given  client  or  for  all  clients.  A server  with  a limit  on  the  number  of  outstanding  

paged  results  requests  might  return  either  LDAP_UNWILLING_TO_PERFORM  in  

the  sortResultsDone  message  or  age  out  an  older  paged  results  request.  There  is no  

guarantee  to  the  client  application  that  the  results  of a search  query  have  remained  

unchanged  throughout  the  life  of  a set  of paged  results  request/response  

sequences.  If the  result  set  for  that  query  has  changed  since  the  initial  search  

request  specifying  paged  results,  the  client  application  might  not  receive  all  the  

entries  matching  the  given  search  criteria.  When  chasing  referrals,  the  client  

application  must  send  in  an  initial  paged  results  request,  with  the  cookie  set  to  

null,  to  each  of  the  referral  servers.  It is up  to  the  application  using  the  client’s  

services  to  decide  whether  or  not  to  set  the  criticality  as  to  the  support  of  paged  

results,  and  to  handle  a lack  of support  of this  control  on  referral  servers  as  

appropriate,  based  on  the  application.  Additionally,  the  LDAP  server  does  not  

ensure  that  the  referral  server  supports  the  paged  results  control.  Multiple  lists  can  

be  returned  to  the  client  application,  some  not  paged.  It  is the  client  application’s  

decision  as  to  how  best  to present  this  information  to  the  end  user. Possible  

solutions  include:  

v   Combine  all  referral  results  before  presenting  to the  end  user  

 

80 Programming Reference



v   Show  multiple  lists  and  the  corresponding  referral  server  host  name  

v   Take no  extra  steps  and  show  all  results  to  the  end  user  as  they  are  returned  

from  the  server

The  client  application  must  turn  off  referrals  to  get  one  truly paged  list;  otherwise,  

when  chasing  referrals  with  the  paged  results  search  control  specified,  

unpredictable  results  might  occur.  

More  information  about  the  simple  paged  results  search  control,  with  control  OID  

of  1.2.840.113556.1.4.319,  can  be  found  in RFC  2686  - LDAP  Control  Extension  for  

Simple  Paged  Results  Manipulation.  

Errors 

The  sort  routines  return  an  LDAP  error  code  if they  encounter  an  error  parsing  the  

result.  See  “LDAP_ERROR”  on  page  41  for  a list  of the  LDAP  error  codes.  

Notes 

Controls,  serverControls,  and  cookie  must  be  freed  by  the  caller.  

See also 

ldap_search,  ldap_parse_result  

LDAP_PARSE_EFFECTIVE_PWDPOLICY_RESPONSE  

Purpose 

An  LDAP  routine  for  extracting  information  from  results  returned  by  the  

ldap_parse_effective_pwdpolicy_request()  routine.  

Synopsis 

#include  <ldap.h> 

  

  

int  ldap_parse_effective_pwdpolicy_response(  

                         char              *resOid,  

                         struct  berval     **resVal,  

                         LDAPAttr          **attrs,  

                         char              **dns);  

  

  

Input parameters 

resOid  

Represents  the  effective  password  policy  response  OID.

resVal  Specifies  a berval  structure  that  contains  the  response  value  of the  effective  

password  policy  extended  operation.  This  resVal  should  be  an  output  of  

ldap_extended_operation  or  ldap_extended_operation_s  function.

Output parameters 

attrs  Specifies  an  array  of pointers  pointing  to structures  that  stores  the  

requested  user’s  or  group’s  effective  password  policy  attribute  types  and  

values.

 

Chapter  2. API categories  81



dns  Specifies  an  array  of  pointers  pointing  to entry  DNs  from  which  the  

requested  effective  password  policy  is derived.

Usage 

This  API  is  used  to  obtain  the  attribute  types  and  attribute  values  contained  in  the  

returned  response  of  an  effective  password  policy  extended  operation.  If the  bind  

DN  of  this  extended  operation  is an  administrative  user,  the  DN  of the  password  

policy  entries  with  which  the  effective  password  policy  is evaluated  is also  

returned.  

Errors 

The  ldap_parse_effective_pwdpolicy_response  routine  returns  an  LDAP  error  code  

if it encounters  an  error  in parsing  the  result.  

See also 

ldap_create_effective_pwdpolicy_request,  ldap_extended_operation,  

ldap_extended_operation_s  

LDAP_PARSE_ENTRYCHANGE_CONTROL  

Purpose 

This  routine  is used  by  a client  application  to parse  the  control  when  the  client  

application  receives  entries  that  contain  Entry  Change  Notification  controls.  

Synopsis 

#include  <ldap.h> 

  

  

#define  LDAP_CONTROL_ENTRYCHANGE    "2.16.840.1.113730.3.4.7"  

  

int  ldap_parse_entrychange_control(  

           LDAP            *ld,  

           LDAPControl     **ctrls,  

           int             *chgtypep,  

           char            **prevdnp,  

           int             *chgnumpresentp,  

           long            *chgnump);  

  

Input parameters 

ld  Specifies  the  LDAP  pointer,  which  acts  as  a LDAP  session  handle,  returned  

by  previous  call  to  ldap_init(),  ldap_ssl_init(),  or  ldap_open().

ctrls  Specifies  the  address  of  a NULL-terminated  array  of  LDAPControl  

structures  that  are  obtained  by  calling  ldap_get_entry_controls().

Output parameters 

chgtypep  

This  result  parameter  contains  the  value  that  indicates  the  type  of change  

made  that  caused  the  entry  to  be  returned.  The  value  for  this  result  

parameter  is  obtained  from  the  changeType  element  of  the  BER-encoded  

EntryChangeNotification  control  value.  The  value  that  the  parameter  can  

contain  is  one  of the  following  : 

 

82 Programming Reference



v   LDAP_CHANGETYPE_ADD  (1)  

v   LDAP_CHANGETYPE_DELETE  (2)  

v   LDAP_CHANGETYPE_MODIFY  (4)  

v   LDAP_CHANGETYPE_MODDN  (8)  

v   NULL

If this  parameter  is NULL,  the  change  type  information  is not  returned.

prevdnp  

This  result  parameter  is filled  in  with  the  DN  that  an  entry  had  before  the  

DN  was  renamed  and/or  moved  by  the  modifyDN  operation.  For  other  

type  of  changes,  the  value  of  parameter  is set  to  NULL.  If  the  parameter  is 

NULL,  the  previous  DN  information  is not  returned.  The  value  for  this  

result  parameter  is pulled  from  the  previousDN  element  of the  

BER-encoded  EntryChangeNotification  control  value.

chgnumpresentp  

This  result  parameter  contains  a non-zero  value  if a change  was  returned  

in  the  EntryChangeNotification  control.  If this  parameter  is NULL,  there  

will  be  no  indication  whether  the  change  number  was  present.  

Note:   Even  if the  parameter  contains  a non-zero  value,  the  server  may  

choose  not  to  return  the  change  number  because  it is optional.

chgnump  

This  result  parameter  contains  the  change  number  if a change  was  

returned  in  the  EntryChangeNotification  control.  If this  parameter  contains  

a non  NULL  value,  the  chgnumpresentp  parameter  will  be  filled  in  with  a 

non-zero  value.  If this  parameter  is NULL,  the  change  number  is not  

returned.  The  value  for  this  result  parameter  is pulled  from  the  optional  

changeNumber  element  of the  BER-encoded  EntryChangeNotification  

control  value.

Usage 

This  routine  is  used  by  a client  application  to search  for  the  control  and  parse  the  

control  when  the  client  application  receives  entries  that  contain  Entry  Change  

Notification  controls.  If the  operation  is  successful,  LDAP_SUCCESS  is returned.  

Error 

This  routine  returns  LDAP  error  code  that  indicates  whether  an  

EntryChangeNotification  control  was  found  and  the  parsing  was  successful.  If the  

ctrls  array  does  not  include  an  EntryChangeNotification  control  

LDAP_CONTROL_NOT_FOUND  is returned.  

LDAP_PARSE_EXTENDED_RESULT_W_CONTROLS  

Purpose 

An  LDAP  routine  that  parses  the  extended  response  result  and  returns  any  

response  controls  sent  on  the  response.  

Synopsis 

  

#include  <ldap.h> 

  

 

 

Chapter  2. API categories  83



int  ldap_parse_extended_result_w_controls  ( 

           LDAP                  *ld,  

           LDAPMessage           *res,  

           char                  **resultoidp,  

           struct  berval         **resultdata,  

           int                   freeit,  

           LDAPControl           ***serverctrlsp);  

  

Input parameters 

ld  Specifies  a pointer  to  the  LDAP  structure  representing  an  LDAP  

connection.

res  Specifies  a pointer  to  LDAPMessage  structure  pointing  to  the  result  of the  

operation  returned  by  ldap_result().

resultoidp  

A  character  pointer  specifying  the  location  of  the  dotted-OID  text  

representing  the  name  of  the  extended  operation.  A NULL  value  can  be 

passed  to  this  parameter.

resultdata  

A  pointer  to the  struct  berval  that  points  to  the  data  in  the  extended  

operation  response.  A NULL  value  can  be  passed  to  this  parameter.

freeit  An  integer  variable,  which  indicates  whether  the  result  parameter  should  

be  freed  after  the  information  is  extracted.

Output parameters 

serverctrlsp  

Specifies  a pointer  to  a result  parameter  that  is filled  in  with  an  allocated  

array  of  controls  copied  out  of the  LDAPMessage  structure.  The  control  

array  must  be  freed  by  calling  ldap_controls_free().

LDAP  Return  code  

The  return  code  is set  as  listed  for  ldap_parse_extended_result.

Usage 

The  ldap_parse_extended_result_w_controls()  API  is used  after  calling  

ldap_extended_operation  to get  the  results.  This  routine  should  be  called  if controls  

are  returned  as  part  of  the  extended  operation  result.  

LDAP_PARSE_LIMIT_NUM_VALUES_RESPONSE  

Purpose 

This  LDAP  routine  is used  for  extracting  information  from  the  results  returned  by  

the  Limit  Number  of  Attribute  Values  Control.  

Synopsis 

 #include  <ldap.h> 

  

    int  ldap_parse_limit_num_values_response(  

            LDAP                    *ld,  

            LDAPCONTROL             **serverControls,  

            LDAPNumValuesResponse   **numValuesResponse);

 

84 Programming Reference



Input parameters 

ld  Specifies  a pointer  to  the  LDAP  structure  representing  an  LDAP  

connection.  

serverControls  

Specifies  an  array  of LDAPCONTROL  pointers  returned  by  a previous  call  

to  ldap_parse_result().  

numValuesResponse  

Specifies  the  address  of  a pointer  to  an  LDAPNumValuesResponse  

structure  in  which  the  control’s  results  will  be  placed.

Usage 

The  ldap_parse_limit_num_values_response  routine  is used  for  obtaining  the  

results  of  the  Limit  Number  of  Attribute  Values  Control  that  was  used  in  a search  

operation.  The  results  are  built  into  an  LDAPNumValuesResponse  structure.

Note:   The  LDAPNumValuesResponse  structure  created  by  this  routine  must  be  

freed  by  calling  the  ldap_free_limit_num_values_response()  API.  

Errors 

The  errors  returned  by  the  ldap_parse_limit_num_values_response  routine  are  

listed:  

v   LDAP_SUCCESS  //  is returned  if the  operation  is successful  

v   LDAP_DECODING_ERROR  //  is returned  if the  response  cannot  be  parsed  

v   LDAP_PARAM_ERROR  //  is returned  if an  input  parameter  is not  valid  

v   LDAP_NO_MEMORY  //  is returned  if the  server  runs out  of memory  

v   LDAP_OPERATIONS_ERROR  //is  returned  if any  other  internal  error  occurs

See also 

ldap_parse_result,  ldap_free_limit_num_values_response  

LDAP_PARSE_RESULT  

   ldap_parse_result  

   ldap_parse_sasl_bind_result  

   ldap_parse_extended_result

Purpose 

LDAP  routines  for  extracting  information  from  results  returned  by  other  LDAP  API  

routines.  

Synopsis 

#include  <ldap.h> 

  

  

int  ldap_parse_result(  

       LDAP             *ld;  

       LDAPMessage      *res,  

       int              *errcodep,  

       char             **matcheddnp,  

       char             **errmsgp,  

       char             ***referralsp,  

       LDAPControl      ***servctrlsp,

 

Chapter  2. API categories  85



int              freeit)  

  

int  ldap_parse_sasl_bind_result(  

       LDAP             *ld;  

       LDAPMessage      *res,  

       struct  berval    **servercredp,  

       int              freeit)  

  

int  ldap_parse_extended_result(  

       LDAP             *ld,  

       LDAPMessage      *res,  

       char             **resultoidp,  

       struct  berval    **resultdatap,  

       int              freeit)  

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init(),  or  ldap_open().  

res  Specifies  the  result  of an  LDAP  operation  as  returned  by  ldap_result()  or  

one  of  the  synchronous  LDAP  API  operation  calls.  

errcodep  

Specifies  a pointer  to  the  result  parameter  that  is filled  in  with  the  LDAP  

error  code  field  from  the  LDAPMessage  message.  The  LDAPResult  

message  is  produced  by  the  LDAP  server,  and  indicates  the  outcome  of  the  

operation.  NULL  can  be  specified  for  errcodep  if the  LDAPResult  message  

is  to  be  ignored.  

matcheddnp  

Specifies  a pointer  to  a result  parameter.  When  LDAP_NO_SUCH_OBJECT  

is  returned  as  the  LDAP  error  code,  this  result  parameter  is  filled  in  with  a 

Distinguished  Name  indicating  how  much  of the  name  in  the  request  was  

recognized  by  the  server.  NULL  can  be  specified  for  matcheddnp  if the  

matched  DN  is to  be  ignored.  The  matched  DN  string  must  be  freed  by  

calling  ldap_memfree().  

errmsgp  

Specifies  a pointer  to  a result  parameter  that  is filled  in  with  the  contents  

of  the  error  message  from  the  LDAPMessage  message.  The  error  message  

string  must  be  freed  by  calling  ldap_memfree().  

referralsp  

Specifies  a pointer  to  a result  parameter  that  is filled  in  with  the  contents  

of  the  referrals  field  from  the  LDAPMessage  message,  indicating  zero  or  

more  alternate  LDAP  servers  where  the  request  must  be  retried.  The  

referrals  array  must  be  freed  by  calling  ldap_value_free().  NULL  can  be  

supplied  for  this  parameter  to  ignore  the  referrals  field.  

resultoidp  

This  result  parameter  specifies  a pointer  that  is set  to point  to an  allocated,  

dotted-OID  text  string  returned  from  the  server.  This  string  must  be  

disposed  of  using  the  ldap_memfree()  API.  If  no  OID  is returned,  

*resultoidp  is set  to  NULL.  

resultdatap  

This  result  parameter  specifies  a pointer  to a berval  structure  pointer  that  

is  set  to  an  allocated  copy  of the  data  returned  by  the  server.  This  struct 

berval  must  be  disposed  of using  ber_bvfree().  If  no  data  is returned,  

*resultdatap  is set  to  NULL.  

 

86 Programming Reference



serverctrlsp  

Specifies  a pointer  to  a result  parameter  that  is filled  in  with  an  allocated  

array  of  controls  copied  out  of  LDAPMessage.  The  control  array  must  be 

freed  by  calling  ldap_controls_free().  

freeit  Specifies  a Boolean  value  that  determines  if the  LDAP  result  (as  specified  

by  res)  is to  be  freed.  Any  nonzero  value  results  in  res  being  freed  after  the  

requested  information  is extracted.  The  ldap_msgfree()  API  can  be  used  to 

free  the  result  at a later  time.  

servercredp  

Specifies  a pointer  to  a result  parameter.  For  SASL  bind  results,  this  result  

parameter  is filled  in with  the  credentials  returned  by  the  server  for  

mutual  authentication,  if  the  credentials  are  returned.  The  credentials  are  

returned  in  a struct  berval  structure.  NULL  might  be  supplied  to  ignore  

this  field.  

err  Specifies  an  LDAP  error  code,  used  as  input  to  ldap_err2string(),  so that  a 

text  description  of  the  error  can  be  obtained.

Usage 

The  ldap_parse_result()  API  is used  to:  

v   Obtain  the  LDAP  error  code  field  associated  with  an  LDAPMessage  message.  

v   Obtain  the  portion  of the  DN  that  the  server  recognizes  for  a failed  operation.  

v   Obtain  the  text  error  message  associated  with  the  error  code  returned  in  an  

LDAPMessage  message.  

v   Obtain  the  list  of alternate  servers  from  the  referrals  field.  

v   Obtain  the  array  of  controls  that  can  be  returned  by  the  server.

The  ldap_parse_sasl_bind_result()  API  is used  to obtain  server  credentials,  as  a 

result  of  an  attempt  to  perform  mutual  authentication.  

Both  the  ldap_parse_sasl_bind_result()  and  the  ldap_parse_extended_result()  APIs  

ignore  messages  of type  LDAP_RES_SEARCH_ENTRY  and  

LDAP_RES_SEARCH_REFERENCE  when  looking  for  a result  message  to  parse.  

They  both  return  LDAP_SUCCESS  if the  result  was  successfully  located  and  

parsed,  and  an  LDAP  error  code  if the  result  was  not  successfully  parsed.  

The  ldap_err2string()  API  is used  to convert  the  numeric  LDAP  error  code,  as  

returned  by  any  of the  LDAP  APIs,  into  a NULL-terminated  character  string  that  

describes  the  error. The  character  string  is returned  as  static  data  and  must  not  be  

freed  by  the  application.  

Errors 

The  parse  routines  return  an  LDAP  error  code  if they  encounter  an  error  parsing  

the  result.  

See  “LDAP_ERROR”  on  page  41  for  a list  of the  LDAP  error  codes.  

See also 

ldap_error,  ldap_result  

 

Chapter  2. API categories  87



LDAP_PASSWORD_POLICY  

   ldap_parse_pwdpolicy_reponse  

   ldap_pwdpolicy_err2string

Purpose 

LDAP  routines  for  extracting  information  from  results  returned  in  the  Password  

Policy  Control  Structure.  

Synopsis 

#include  <ldap.h> 

  

int  ldap_parse_pwdpolicy_response(LDAPCONTROL  **serverControls,  

       int  *controlerr,  

       int  *controlwarn,  

       int  *controlres)  

  

const  char  *ldap_pwdpolicy_err2string(int  err);  

Input parameters 

serverControls  

Specifies  an  array  of  LDAPCONTROL  pointers  returned  by  a previous  call  

to  ldap_parse_result().  

controlerr  

Specifies  a pointer  to  the  result  parameter  that  is filled  in  with  the  LDAP  

Password  Policy  error  code,  which  can  be  used  as  input  to  

ldap_pwdpolicy_err2string(),  so  that  a text  description  of the  error  can  be  

obtained.  

controlwarn  

Specifies  a pointer  to  the  result  parameter  that  is filled  in  with  the  LDAP  

Password  Policy  warning  code,  which  can  be  used  as  input  to  

ldap_pwdpolicy_err2string(),  so  that  a text  description  of the  warning  can  

be  obtained.  

controlres  

Specifies  a pointer  to  the  result  parameter  that  is filled  in  with  the  LDAP  

Password  Policy  warning  result  value.  

err  Specifies  an  integer  value  returned  from  ldap_parse_pwdpolicy_response()  

containing  the  Password  Policy  warning  or  error  code.

Usage 

The  ldap_parse_pwdpolicy_response()  API  is  used  to:  

v   Obtain  the  LDAP  Password  Policy  error  or  warning  codes  from  the  Password  

Policy  Response  Control  associated  with  an  LDAPMessage  message.  

v   Obtain  the  LDAP  Password  Policy  warning  result  code  from  the  Password  

Policy  Response  Control  that  is associated  with  the  returned  Password  Policy  

warning  code.  

v   This  function  takes  in  an  array  of  LDAPCONTROL  structure  pointers,  parses  

these  structures  and  then  returns  three  integers  containing  the  Password  Policy  

response  values.

The  ldap_pwdpolicy_err2string()  API  is used  to convert  the  numeric  LDAP  

Password  Policy  error  or  warning  code,  as  returned  by  

 

88 Programming Reference



ldap_parse_pwdpolicy_response(),  into  a NULL-terminated  character  string  that  

describes  the  error  or  warning.  The  character  string  is returned  as  static  data  and  

must  not  be  freed  by  the  application.  

Errors 

The  ldap_parse_pwdpolicy_response  routine  returns  an  LDAP  error  code  if it 

encounters  an  error  parsing  the  result.  

See  “LDAP_ERROR”  on  page  41  for  a list  of the  LDAP  error  codes.  

See also 

ldap_parse_result  

LDAP_PLUGIN_REGISTRATION  

   ldap_register_plugin  

   ldap_query_plugin  

   ldap_free_query_plugin

Purpose 

LDAP  routines  that:  

v   Register  an  LDAP  client  plug-in.  

v   Obtain  information  about  plug-ins  that  have  been  registered  by  the  application,  

as  well  as  plug-ins  that  are  defined  in  ibmldap.conf.  

v   Free  the  array  of plug-in  information  returned  from  the  ldap_query_plugin()  AP.

Synopsis 

#include  <ldap.h> 

  

  

int  ldap_register_plugin(  

       LDAP_File_Plugin_Info  *plugin_info)  

  

int  ldap_query_plugin(  

       LDAP_File_Plugin_Info   plugin_infop  ) 

  

int  ldap_free_query_plugin(  

       LDAP_File_Plugin_Info   ***plugin_infop  ) 

  

typedef  struct  ldap_file_plugin_info  { 

    char     *type;               /* plugin  type                 */ 

    char     *subtype;            /* plugin  subtype              */ 

    char     *path;               /* path  to plugin  library      */ 

    char     *init;               /* initialization  routine      */ 

    char     *paramlist;          /* plugin  parameter  list       */ 

} LDAP_File_Plugin_Info;  

  

Input parameters 

plugin_info  

A  structure  that  contains  information  about  a specific  type  of  SASL  plug-in.  

An  instance  of the  structure  contains  the  following  fields:  

type  NULL-terminated  string  that  defines  the  plug-in  type.  The  only  

type  currently  supported  is sasl.  

 

Chapter  2. API categories  89



subtype  

NULL-terminated  string  that  specifies  the  subtype  of  the  plug-in  

being  registered.  When  type=sasl,  the  subtype  is used  to  specify  

the  SASL  mechanism  supported  by  the  plug-in.  For  example,  

fingerprint  might  be  specified  for  any  SASL  plug-in  that  supports  

the  fingerprint  mechanism.  

path  NULL-terminated  string  that  specifies  the  path  to  the  plug-in’s  

shared  library.  The  plug-in  path  can  be  a fully-qualified  path  

including  file  name,  or  only  the  file  name  with  or  without  the  file  

extension.  If  only  the  file  name  is supplied,  the  LDAP  library  

attempts  to  find  it using  standard  operating  system  search  criteria.  

init  NULL-terminated  string  that  specifies  the  initialization  routine  for  

the  plug-in.  If NULL,  the  name  of the  initialization  routine  is 

assumed  to  be  ldap_plugin_init.  

parmlist  

NULL-terminated  string  that  specifies  arbitrary  parameter  

information  that  is used  by  the  plug-in.  For  example,  if the  plug-in  

needs  to  access  a remote  security  server,  the  host  name  of  the  

remote  security  server  can  be  supplied  as  a value  in  the  parameter  

list.

plugin_infop  

Specifies  the  address  that  points  to  a NULL-terminated  array  of  

LDAP_Plugin_Info  structures.  Each  LDAP_Plugin_Info  structure  defined  in  

the  list  contains  information  about  a registered  plug-in.  For  example:  

LDAP_File_Plugin_Info   **plugin_infop;  

  

             rc = ldap_query_plugin  (&plugin_infop);  

Output parameters 

plugin_infop  

Upon  successful  return  from  ldap_query_plugin(),  plugin_infop  points  to  a 

NULL-terminated  array  of  LDAP_Plugin_Info  pointers.  If there  are  no  

plug-ins  registered,  the  plugin_infop  data  structure  is  set  to  NULL  and  no  

memory  is  allocated.

Usage 

Two  mechanisms  are  available  for  making  an  LDAP  client  plug-in  known  to  the  

LDAP  library:  

v   The  plug-in  is  defined  in  the  ibmldap.conf  file.  

v   The  plug-in  has  been  explicitly  registered  by  the  application,  using  the  

ldap_register_plugin()  API.

An  application  can  override  the  definition  of  a plug-in  in the  ibmldap.conf  file  by  

using  the  ldap_register_plugin()  API.  A plug-in  is uniquely  identified  by  the  

combination  of  its  type  and  subtype.  For  example,  an  application  can  choose  to use  

its  own  DIGEST-MD5  plug-in  (as  defined  in  ibmldap.conf)  by  invoking  

ldap_register_plugin()  and  defining  another  shared  library  with  type=″sasl″ and  

subtype=″DIGEST-MD5″. Note  that  plug-ins  registered  with  the  

ldap_register_plugin()  API  are  defined  for  the  application.  

 

90 Programming Reference



Finding the Plug-in library 

When  a plug-in  is  not  explicitly  registered  by  the  application  with  the  

ldap_register_plugin()  API,  the  LDAP  library  must  find  the  appropriate  plug-in  

shared  library.  To find  information  about  the  plug-in,  the  LDAP  library  must  find  

the  ibmldap.conf  file.  Note  that  the  attempt  to  locate  the  ibmldap.conf  file  is made  

on  behalf  of  the  application  in  whichever  of  the  following  events  occurs  first:  

v   The  ldap_register_plugin()  API  is invoked.  

v   The  ldap_sasl_bind_s()  API  is invoked.

After  the  ibmldap.conf  file  is accessed,  all  information  in  the  file  is stored  

internally  for  subsequent  use.  The  file  is  not  re-accessed  until  the  application  is 

restarted.  However,  the  application  can  use  the  ldap_register_plugin()  API  to  add  

additional  plug-in  definitions,  or  to override  definitions  obtained  from  the  

ibmldap.conf  file.  

The  ibmldap.conf  file:    The  ibmldap.conf  file  contains  information  required  to  

load  and  initialize  default  plug-ins.  It  can  also  include  additional  plug-in-specific  

configuration  information.  The  following  might  be  defined  for  each  plug-in  in the  

ibmldap.conf  file:  

v   The  plug-in  type  (for  example,  sasl)  

v   The  plug-in  subtype  (for  example,  mechanism,  if type=sasl)  

v   The  path  to  the  plug-in  shared  library  

v   The  plug-in’s  initialization  routine  

v   The  user-defined  parameter  string

The  ibmldap.conf  file  might  contain  one  or  more  records,  each  defining  this  

information  for  a plug-in.  Each  record  takes  the  following  form:  

plugin  type   subtype   path   init-routine  parameters  

For  example:  

# 

#   keyword  type    subtype           path                init       parameters  

# 

    plugin   sasl    fpauth     x:\security\fplib          fpinit     parm2  parm3  

    plugin   sasl    hitech     hitechlib                  hitekinit  parm5  parm6  

This  example  defines  two  plug-ins  (fpauth,  and  hitek),  along  with  associated  

information.  

Note:   If  the  extension  is omitted,  then  an  appropriate  extension  is assumed  for  the  

platform;  for  example,  .a on  the  AIX  operating  system  or  .dll  on  a Windows  

operating  system.  If  the  fully-qualified  path  is omitted,  standard  operating  

system  search  rules are  applied.  

Lines  beginning  with  a number  sign  ( # ) are  ignored.  

The  algorithm  used  to locate  the  ibmldap.conf  file  is platform  specific:  

v   On  a UNIX  system,  the  following  search  order  is  used:  

1.   Query  the  environment  variable  IBMLDAP_CONF  for  the  path  to  the  

ibmldap.conf  file.  

2.   Look  for  the  ibmldap.conf  file  in  the  /etc  directory.
v    On  a Windows  system,  the  following  search  order  is  used:  

1.   Query  the  environment  variable  IBMLDAP_CONF  for  the  path  to  the  

ibmldap.conf  file.  

 

Chapter  2. API categories  91



2.   Look  in  the  current  directory  for  the  ibmldap.conf  file.  

3.   Look  for  the  ibmldap.conf  file  in the  \etc  directory  under  the  LDAP  

installation  directory;  for  example,  c:\Program  Files\IBM\LDAP\v6.1\etc.

If  the  definition  for  a SASL  plug-in  is not  available,  the  LDAP  library  encodes  the  

SASL  bind  and  transmits  it  directly  to  the  LDAP  server,  bypassing  the  plug-in  

facility.  

Errors 

These  routines  return  an  LDAP  error  code  when  an  error  is encountered.  To obtain  

a string  description  of  the  LDAP  error, use  the  ldap_err2string()  API.  

See also 

ldap_error  

LDAP_PREPARE_TRANSACTION  

v   ldap_prepare_transaction  

v   ldap_prepare_transaction_s

Purpose 

This  LDAP  API  routine  invokes  a prepare  transaction  request.  

Synopsis 

#include  <ldap.h> 

  

  

int  ldap_prepare_transaction(  

       LDAP            *ld,  

       string          tran_id,  

       LDAPControl     **serverctrls,  

       LDAPControl     **clientctrls,  

       int             *msgidp)  

  

int  ldap_prepare_transaction_s(  

       LDAP            *ld,  

       string          tran_id,  

       LDAPControl     **serverctrls,  

       LDAPControl     **clientctrls)  

  

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init(),  or  ldap_open().  

tran_id  

Specifies  the  transaction  id  of a prepare  transaction.  

serverctrls  

Specifies  a list  of LDAP  server  controls.  

clientctrls  

Specifies  a list  of LDAP  client  controls.

 

92 Programming Reference



Output parameters 

msgidp  

This  parameter  contains  the  message  id of  the  request.

Usage 

This  API  routine  is used  to initiate  a prepare  transaction  request  against  the  server.  

Errors 

This  routine  returns  an  LDAP  error  code  if the  operation  is unsuccessful.  

See also 

ldap_start_transaction,  ldap_start_transaction_s,  ldap_prepare_transaction,  

ldap_prepare_transaction_s,  ldap_end_transaction,  ldap_end_transaction_s,  

ldap_get_tran_id,  ldap_create_transaction_control  

LDAP_RENAME 

   ldap_rename  

   ldap_rename_s  

   ldap_modrdn  

   ldap_modrdn_s

Purpose 

Perform  an  LDAP  rename  operation.  

Synopsis 

#include  <ldap.h> 

  

  

int  ldap_rename(  

       LDAP           *ld,  

       const  char     *dn,  

       const  char     *newrdn,  

       const  char     *newparent,  

       int            deleteoldrdn,  

       LDAPControl    **serverctrls,  

       LDAPControl    **clientctrls,  

       int            *msgidp)  

  

int  ldap_rename_s(  

       LDAP           *ld,  

       const  char     *dn,  

       const  char     *newrdn,  

       const  char     *newparent,  

       int            deleteoldrdn,  

       LDAPControl    **serverctrls,  

       LDAPControl    **clientctrls)  

  

int  ldap_modrdn(  

       LDAP           *ld,  

       const  char     *dn,  

       const  char     *newrdn,  

       int            deleteoldrdn)  

  

int  ldap_modrdn_s(

 

Chapter  2. API categories  93



LDAP           *ld,  

       const  char     *dn,  

       const  char     *newrdn,  

       int            deleteoldrdn)  

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init(),  or  ldap_open().  

dn  Specifies  the  DN  of  the  entry  whose  DN  is to be  changed.  When  specified  

with  the  ldap_modrdn()  and  ldap_modrdn_s()  APIs,  dn  specifies  the  DN  of 

the  entry  whose  RDN  is to  be  changed.  

newrdn  

Specifies  the  new  RDN  given  to  the  entry.  

newparent  

Specifies  the  new  parent,  or  superior  entry.  If this  parameter  is NULL,  only  

the  RDN  of  the  entry  is changed.  The  root  DN  can  be  specified  by  passing  

a zero  length  string,  ″″.  The  newparent  parameter  is always  NULL  when  

using  version  2 of  the  LDAP  protocol;  otherwise  the  server’s  behavior  is 

undefined.  

deleteoldrdn  

Specifies  an  integer  value.  When  set  to 1, the  old  RDN  value  is to be  

deleted  from  the  entry.  When  set  to 0, the  old  RDN  value  must  be  retained  

as  a non-distinguished  value.  With  respect  to  the  ldap_rename()  and  

ldap_rename_s()  APIs,  this  parameter  has  meaning  only  if newrdn  is 

different  from  the  old  RDN.  

serverctrls  

Specifies  a list  of LDAP  server  controls.  This  parameter  can  be  set  to 

NULL.  See  “LDAP  controls”  on  page  25  for  more  information  about  server  

controls.  

clientctrls  

Specifies  a list  of LDAP  client  controls.  This  parameter  can  be  set  to NULL.  

See  “LDAP  controls”  on  page  25  for  more  information  about  client  

controls.

Output parameters 

msgidp  

This  result  parameter  is set  to the  message  ID  of  the  request  if the  

ldap_rename()  call  succeeds.

Usage 

In  LDAP  V2,  the  ldap_modrdn()  and  ldap_modrdn_s()  APIs  were  used  to  change  

the  name  of  an  LDAP  entry.  They  can  be  used  to  change  the  least  significant  

component  of  a name  (the  RDN  or  relative  distinguished  name)  only.  LDAP  V3  

provides  the  Modify  DN  protocol  operation  that  allows  more  general  name  change  

access.  The  ldap_rename()  and  ldap_rename_s()  routines  are  used  to  change  the  

name  of  an  entry.  

The  ldap_rename()  API  initiates  an  asynchronous  modify  DN  operation  and  

returns  the  constant  LDAP_SUCCESS  if the  request  was  successfully  sent,  or  

another  LDAP  error  code  if not.  If successful,  ldap_rename()  places  the  message  ID  

of  the  request  in  *msgidp.  A  subsequent  call  to  ldap_result()  can  be  used  to obtain  

 

94 Programming Reference



the  result  of  the  operation.  After  the  operation  has  completed,  ldap_result()  returns  

the  status  of  the  operation  in the  form  of an  error  code.  The  error  code  indicates  

whether  the  operation  completed  successfully.  The  ldap_parse_result()  API  is used  

to  check  the  error  code  in  the  result.  

Similarly,  the  ldap_modrdn()  API  initiates  an  asynchronous  modify  RDN  operation  

and  returns  the  message  ID  of the  operation.  A  subsequent  call  to  ldap_result()  can  

be  used  to  obtain  the  result  of  the  modify.  In case  of  error, ldap_modrdn()  returns  

-1,  setting  the  session  error  parameters  in  the  LDAP  structure  appropriately,  which  

can  be  obtained  by  using  ldap_get_errno().  

The  synchronous  ldap_rename_s()  API  returns  the  result  of  the  operation,  either  

the  constant  LDAP_SUCCESS  if the  operation  was  successful,  or  another  LDAP  

error  code  if it was  not.  

The  ldap_rename()  and  ldap_rename_s()  APIs  both  support  LDAP  V3  server  

controls  and  client  controls.  

The  ldap_modrdn()  and  ldap_modrdn_s()  routines  perform  an  LDAP  modify  RDN  

operation.  They  both  take  dn,  the  DN  of the  entry  whose  RDN  is to be  changed,  

and  newrdn,  the  new  RDN  to give  to  the  entry.  ldap_modrdn_s()  is synchronous,  

returning  the  LDAP  error  code  indicating  the  success  or  failure  of  the  operation.  In 

addition,  they  both  take  the  deleteoldrdn  parameter,  which  is  used  as  an  integer  

value  to  indicate  whether  the  old  RDN  values  must  be  deleted  from  the  entry.  

Errors 

The  synchronous  version  of this  routine  returns  an  LDAP  error  code,  either  

LDAP_SUCCESS  or  an  error  code  if there  was  an  error. The  asynchronous  version  

returns  -1  in  case  of  an  error. If  the  asynchronous  API  is successful,  ldap_result()  is 

used  to  obtain  the  results  of the  operation.  See  “LDAP_ERROR”  on  page  41  for  

more  details.  

See also 

ldap_error  ldap_result  

LDAP_RESULT  

   ldap_result  

   ldap_msgtype  

   ldap_msgid

Purpose 

Wait for  the  result  of an  asynchronous  LDAP  operation,  obtain  LDAP  message  

types,  or  obtain  the  message  ID  of  an  LDAP  message.  

Synopsis 

#include  <sys/time.h>  /* for  struct  timeval  definition  */ 

#include  <ldap.h> 

  

  

int  ldap_result(  

       LDAP               *ld,  

       int                msgid,  

       int                all,  

       struct  timeval     *timeout,

 

Chapter  2. API categories  95



LDAPMessage        **result)  

  

int  ldap_msgtype(  

       LDAPMessage        *msg)  

  

int  ldap_msgid(  

       LDAPMessage        *msg)  

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init(),  or  ldap_open().  

msgid  Specifies  the  message  ID  of  the  operation  whose  results  are  to be  returned.  

The  parameter  can  be  set  to  LDAP_RES_ANY  if any  result  is desired.  

all  This  parameter  has  meaning  only  for  search  results.  For  search  results,  use  

all  to  specify  how  many  search  result  messages  are  returned  in  a single  call  

to  ldap_result().  Specify  LDAP_MSG_ONE  to retrieve  one  search  result  

message  at  a time.  Specify  LDAP_MSG_ALL  to  request  that  all  results  of  a 

search  be  received.  ldap_result()  waits  until  all  results  are  received  before  

returning  all  results  in  a single  chain.  Specify  LDAP_MSG_RECEIVED  to  

indicate  that  all  results  retrieved  so  far  are  to be  returned  in  the  result  

chain.  

timeout  

Specifies  how  long  in  seconds  to  wait  for  results  to  be  returned  from  

ldap_result,  as identified  by  the  supplied  msgid.  A NULL  value  causes  

ldap_result()  to  wait  until  results  are  available.  To poll,  the  timeout  

parameter  is  non-NULL,  pointing  to  a zero-valued  timeval  structure.  

msg  Specifies  a pointer  to  a result,  as  returned  from  ldap_result(),  

ldap_search_s(),  ldap_search_st(),  or  ldap_search_ext().

Output parameters 

result  Contains  the  result  of  the  asynchronous  operation  identified  by  msgid.  This  

result  is passed  to an  LDAP  parsing  routine  such  as  ldap_first_entry().

 If ldap_result()  is  unsuccessful,  it returns  -1 and  sets  the  appropriate  LDAP  error,  

which  can  be  retrieved  by  using  ldap_get_errno().  If ldap_result()  times  out,  it 

returns  0.  If  successful,  it returns  one  of  the  following  result  types:  

  

  

      #define  LDAP_RES_BIND              0x61L  

      #define  LDAP_RES_SEARCH_ENTRY      0x64L  

      #define  LDAP_RES_SEARCH_RESULT     0x65L  

      #define  LDAP_RES_MODIFY            0x67L  

      #define  LDAP_RES_ADD               0x69L  

      #define  LDAP_RES_DELETE            0x6bL  

      #define  LDAP_RES_MODRDN            0x6dL  

      #define  LDAP_RES_COMPARE           0x6fL  

      #define  LDAP_RES_SEARCH_REFERENCE  0X73L  

      #define  LDAP_RES_EXTENDED          0X78L  

      #define  LDAP_RES_ANY               (-1L)  

      #define  LDAP_RES_RENAME    LDAP_RES_MODRDN  

Usage 

The  ldap_result()  routine  is used  to  wait  for  and  return  the  result  of  an  operation  

previously  initiated  by  one  of the  LDAP  asynchronous  operation  routines;  for  

example,  ldap_search(),  ldap_modify(),  and  so  forth.  These  routines  return  a msgid  

 

96 Programming Reference



that  uniquely  identifies  the  request.  The  msgid  can  then  be  used  to request  the  

result  of  a specific  operation  from  ldap_result().  

The  ldap_msgtype()  API  returns  the  type  of  LDAP  message,  based  on  the  LDAP  

message  passed  as  input  using  the  msg  parameter.  

The  ldap_msgid()  API  returns  the  message  ID  associated  with  the  LDAP  message  

passed  as input  using  the  msg  parameter.  

Errors 

ldap_result()  returns  0 if the  timeout  expires,  and  -1  if an  error  occurs.  The  

ldap_get_errno()  routine  can  be  used  to  get  an  error  code.  

Notes 

This  routine  allocates  memory  for  results  that  it receives.  The  memory  can  be  

deallocated  by  calling  ldap_msgfree().  

See also 

ldap_search  

LDAP_SEARCH 

   ldap_search  

   ldap_search_s  

   ldap_search_ext  

   ldap_search_ext_s  

   ldap_search_st

Purpose 

Perform  various  LDAP  search  operations.  

Synopsis 

#include  <sys/time.h>  /* for  struct  timeval  definition  */ 

#include  <ldap.h> 

  

  

int  ldap_search(  

       LDAP            *ld,  

       const  char      *base,  

       int             scope,  

       const  char      *filter,  

       char            *attrs[],  

       int             attrsonly)  

  

int  ldap_search_ext(  

       LDAP            *ld,  

       const  char      *base,  

       int             scope,  

       const  char      *filter,  

       char             *attrs[],  

       int             attrsonly,  

       LDAPControl     **serverctrls,  

       LDAPControl     **clientctrls,  

       struct  timeval  *timeout,  

       int             sizelimit,  

       int             *msgidp)  

 

 

Chapter  2. API categories  97



int  ldap_search_s(  

       LDAP            *ld,  

       const  char      *base,  

       int             scope,  

       const  char      *filter,  

       char            *attrs[],  

       int             attrsonly,  

       LDAPMessage     **res)  

  

int  ldap_search_ext_s(  

       LDAP            *ld,  

       const  char      *base,  

       int             scope,  

       const  char      *filter,  

       char            *attrs[],  

       int             attrsonly,  

       LDAPControl     **serverctrls,  

       LDAPControl     **clientctrls,  

       struct  timeval  *timeout,  

       int             sizelimit,  

       LDAPMessage     **res)  

  

int  ldap_search_st(  

       LDAP            *ld,  

       const  char      *base,  

       int             scope,  

       const  char      *filter,  

       char            *attrs[],  

       int             attrsonly,  

       struct  timeval  *timeout,  

       LDAPMessage     **res)  

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init()  or  ldap_open().  

base  Specifies  the  DN  of  the  entry  the  search  starts.  

scope  Specifies  the  scope  of  the  search.  It  can  be  LDAP_SCOPE_BASE  (to  search  

the  object  itself),  or  LDAP_SCOPE_ONELEVEL  (to  search  the  object’s  

immediate  children),  or  LDAP_SCOPE_SUBTREE  (to  search  the  object  and  

all  its  descendants).  

filter  Specifies  a string  representation  of the  filter  to  apply  in  the  search.  Simple  

filters  can  be  specified  as  attributetype=attributevalue.  More  complex  filters  

are  specified  using  a prefix  notation  according  to  the  following  BNF:  

<filter> ::=’(’<filtercomp>’)’  

<filtercomp>  ::= <and>|<or>|<not>|<simple>  

<and>  ::=  ’&’  <filterlist>  

<or>  ::=  ’|’  <filterlist>  

<not>  ::=  ’!’  <filter> 

<filterlist>  ::= <filter>|<filter><filtertype>  

<simple> ::=  <attributetype><filtertype> 

<attributevalue> 

<filtertype>  ::= ’=’|’~=’|’<=’|’>=’  

The  ’~=’  construct  is used  to  specify  approximate  matching.  The  

representation  for  <attributetype> and  <attributevalue> are  as  described  in  

″RFC  2252,  LDAP  V3  Attribute  Syntax  Definitions″. In  addition,  

<attributevalue>  can  be  a single  * to  achieve  an  attribute  existence  test,  or  

can  contain  text  and  asterisks  ( * ) interspersed  to  achieve  substring  

matching.  

 

98 Programming Reference

http://www.ietf.org/rfc/rfc2252.txt


For  example,  the  filter  ″(mail=*)″  finds  any  entries  that  have  a mail  

attribute.  The  filter  ″(mail=*@student.of.life.edu)″ finds  any  entries  that  

have  a mail  attribute  ending  in  the  specified  string.  To put  parentheses  in a 

filter,  escape  them  with  a backslash  ( \ ) character.  See  ″RFC  2254,  A String  

Representation  of  LDAP  Search  Filters″ for  a more  complete  description  of  

allowable  filters.  

attrs  Specifies  a NULL-terminated  array  of character  string  attribute  types  to  

return  from  entries  that  match  filter. If NULL  is specified,  all  user  

attributes  are  returned.  

 The  attrs  parameter  consists  of  an  array  of  attribute  type  names  to  be  

returned  for  each  entry  that  matches  the  search  filter. By  default,  a search  

request  returns  only  user  attributes.  Operational  attributes,  for  example  

createtimestamp  and  modifytimestamp,  are  returned  only  when  specifically  

provided  in  the  attrs  parameter.  The  following  attributes  types  that  are  

listed  when  specified  in  the  attrs  parameter  have  special  meaning  in  LDAP  

searches  and  can  be  combined  with  other  attribute  types.  

* Returns  all  user  attributes.  

1.1  Specifies  to  return  no  attributes  and  is used  to request  that  a search  

return  only  the  matching  distinguished  names.  

+ Returns  all  operational  attributes.  

+ibmaci   

Returns  the  access  control  related  operational  attributes  excluding  

those  attributes  that  are  expensive  to return.  

+ibmentry  

Returns  a core  set  of  operational  attributes  that  all  entries  in  the  

directory  server  contain,  such  as  creatorsName  and  

createTimestamp.  This  excludes  those  attributes  that  are  expensive  

to  return.  

+ibmrepl  

Returns  operational  attributes  related  to replication  excluding  those  

attributes  that  are  expensive  to  return.  

+ibmpwdpolicy  

Returns  operational  attributes  related  to password  policy  excluding  

those  attributes  that  are  expensive  to return.  

++  Returns  all  operational  attributes,  including  those  considered  

expensive  to return,  such  as  ibm-allGroups  and  

ibm-replicationPendingChanges.  

++ibmaci  

Returns  all  access  control  related  operational  attributes.  

++ibmentry  

Returns  all  operational  attributes  every  entry  contains,  such  as  

numsubordinates  and  ibm-entryChecksum.  

++ibmrepl  

Returns  all  operational  attributes  related  to replication.  

++ibmpwdpolicy  

Returns  all  operational  attributes  related  to password  policy.

 

Chapter  2. API categories  99

http://www.ietf.org/rfc/rfc2254.txt
http://www.ietf.org/rfc/rfc2254.txt


See  “the  Supported  special  attributes  and  associated  list  of  operational  

attributes  table”  in  IBM  Tivoli  Directory  Server  Version  6.1  Administration  

Guide, to know  more  about  the  list  of specific  attributes  the  server  returns  

for  “+”  and  “++”  attributes.

Note:   Server  support  for  “+”  and  “++”  is  optional,  and  the  list  of 

attributes  returned  may  not  include  all  operational  attributes  due  to  

security  or  performance  concerns.  A server  indicates  support  for  the  

all  operational  attributes  feature  by  returning  the  value  

1.3.6.1.4.1.4203.1.5.1  in  the  supportedfeatures  root  DSE  attribute.  

See  IBM  Tivoli  Directory  Server  Version  6.1  Command  Reference,  to know  more  

about  the  syntax  and  usage  of  the  command-line  utilities,  idsldapsearch  

and  ldapsearch.  

attrsonly  

Specifies  attribute  information.  The  attrsonly  parameter  must  be  set  to 1 to  

request  attribute  types  only  or  set  to  0 to request  both  attribute  types  and  

attribute  values.  

sizelimit  

Specifies  the  maximum  number  of  entries  to  return.  Note  that  the  server  

can  set  a lower  limit  which  is enforced  at the  server.  

timeout  

The  ldap_search_st()  API  specifies  the  local  search  timeout  value.  The  

ldap_search_ext()  and  ldap_search_ext_s()  APIs  specify  both  the  local  

search  timeout  value  and  the  operation  time  limit  that  is sent  to the  server  

within  the  search  request.  

 The  local  search  timeout  refers  to  the  timeout  parameter’s  address  that  is  

passed  to  the  API,  such  as  ldap_search_st  and  ldap_search_ext.  The  local  

search  timeout  structure  has  two  member  variables,  long  int  tv_sec  and  

long  int  tv_usec.  

v   long  int  tv_sec  - Represents  elapsed  time  in  seconds.  

v   long  int  tv_usec  - Represents  the  rest  of  elapsed  time  in  microseconds.

Since  the  timeout  value  for  local  search  timeout  is tv_sec  + tv_usec,  if 

tv_sec  is  0 then  the  timeout  value  is  in  microseconds.  

 The  operation  timeout  limit  refers  to  the  value  set  in  the  LDAP  handle,  ld,  

using  calls  to  ldap_set_option(ld,  LDAP_OPT_TIMELIMIT,  

value_in_seconds).  

serverctrls  

Specifies  a list  of LDAP  server  controls.  This  parameter  can  be  set  to 

NULL.  See  “LDAP  controls”  on  page  25  for  more  information  about  server  

controls.  

clientctrls  

Specifies  a list  of LDAP  client  controls.  This  parameter  can  be  set  to NULL.  

See  “LDAP  controls”  on  page  25  for  more  information  about  client  

controls.

Output parameters 

res  Contains  the  result  of  the  asynchronous  operation  identified  by  msgid,  or  

returned  directly  from  ldap_search_s()  or  ldap_search_ext_s().  This  result  is  

passed  to  the  LDAP  parsing  routines  (see  “LDAP_RESULT”  on  page  95).  

 

100 Programming  Reference



msgidp  

This  result  parameter  is set  to the  message  ID  of  the  request  if the  

ldap_search_ext()  call  succeeds.

Usage 

These  routines  are  used  to  perform  LDAP  search  operations.  

The  ldap_search_ext()  API  initiates  an  asynchronous  search  operation  and  returns  

the  constant  LDAP_SUCCESS  if the  request  was  successfully  sent,  or  another  

LDAP  error  code  if not.  

If  successful,  ldap_search_ext()  places  the  message  ID  of  the  request  in *msgidp.  

Use  a subsequent  call  to  ldap_result()  to  obtain  the  results  from  the  search.  

Similar  to  ldap_search_ext(),  the  ldap_search()  API  initiates  an  asynchronous  search  

operation  and  returns  the  message  ID  of this  operation.  If  an  error  occurs,  

ldap_search()  returns  -1,  setting  the  session  error  in  the  LD  structure,  which  can  be  

obtained  by  using  ldap_get_errno().  If successful,  use  a subsequent  call  to 

ldap_result()  to  obtain  the  results  from  the  search.  

The  synchronous  ldap_search_ext_s(),  ldap_search_s(),  and  ldap_search_st()  

functions  all  return  the  result  of the  operation:  either  the  constant  LDAP_SUCCESS  

if the  operation  was  successful  or  an  LDAP  error  code  if the  operation  was  not  

successful.  See  “LDAP_ERROR”  on  page  41  for  more  information  about  possible  

errors  and  how  to  interpret  them.  If  any  entries  are  returned  from  the  search,  they  

are  contained  in  the  res  parameter.  This  parameter  is  opaque  to  the  caller.  Entries,  

attributes,  values,  and  so  forth,  must  be  extracted  by  calling  the  result  parsing  

routines.  The  memory  allocated  for  res  must  be  freed  when  no  longer  in  use,  

whether  or  not  the  operation  was  successful,  by  calling  ldap_msgfree().  

The  ldap_search_ext()  and  ldap_search_ext_s()  APIs  support  LDAP  V3  server  

controls  and  client  controls,  and  allow  varying  size  and  time  limits  to  be  easily  

specified  for  each  search  operation.  The  ldap_search_st()  API  is identical  to  

ldap_search_s(),  except  that  it  requires  an  additional  parameter  specifying  a local  

timeout  for  the  search.  

There  are  three  options  in  the  session  handle  ld which  potentially  can  affect  how  

the  search  is  performed.  They  are:  

LDAP_OPT_SIZELIMIT  

A  limit  on  the  number  of entries  returned  from  the  search.  0 means  no  

limit.  Note  that  the  value  from  the  session  handle  is ignored  when  using  

the  ldap_search_ext()  or  ldap_search_ext_s()  functions.  

LDAP_OPT_TIMELIMIT  

A  limit  on  the  number  of seconds  to  spend  on  the  search.  Zero  means  no  

limit.  

Note:   The  value  from  the  session  handle  is  ignored  when  using  the  

ldap_search_ext()  or ldap_search_ext_s()  functions.

LDAP_OPT_DEREF  

One  of  LDAP_DEREF_NEVER  (0x00),  LDAP_DEREF_SEARCHING  (0x01),  

LDAP_DEREF_FINDING  (0x02),  or  LDAP_DEREF_ALWAYS  (0x03),  

specifying  how  aliases  must  be  handled  during  the  search.  The  

LDAP_DEREF_SEARCHING  value  means  aliases  must  be  dereferenced  

during  the  search  but  not  when  locating  the  base  object  of  the  search.  The  

 

Chapter 2. API categories  101



LDAP_DEREF_FINDING  value  means  aliases  must  be  dereferenced  when  

locating  the  base  object  but  not  during  the  search.

These  options  are  set  and  queried  using  the  ldap_set_option()  and  

ldap_get_option()  APIs.  

Reading an entry 

LDAP  does  not  support  a read  operation  directly.  Instead,  this  operation  is 

emulated  by  a search  with  base  set  to the  DN  of the  entry  to  read,  scope  set  to 

LDAP_SCOPE_BASE,  and  filter  set  to  ″(objectclass=*)″.  The  attrs  parameter  

optionally  contains  the  list  of  attributes  to  return.  

Listing the children of an entry 

LDAP  does  not  support  a list  operation  directly.  Instead,  this  operation  is emulated  

by  a search  with  base  set  to  the  DN  of the  list  entry,  scope  set  to  

LDAP_SCOPE_ONELEVEL,  and  filter  set  to ″(objectclass=*)″.  The  attrs  parameter  

optionally  contains  the  list  of  attributes  to  return  for  each  child  entry.  If  only  the  

distinguished  names  of child  entries  are  desired,  the  attrs  parameter  must  specify  a 

NULL-terminated  array  of  one-character  strings  that  has  the  value  dn.  

Errors 

ldap_search_s(),  ldap_search_ext_s  and  ldap_search_st()  return  the  LDAP  error  

code  from  the  search  operation.  

ldap_search()  and  ldap_search_ext()  return  -1 instead  of  a valid  msgid  if an  error  

occurs,  setting  the  session  error  in  the  LD  structure.  The  session  error  can  be  

obtained  by  using  ldap_get_errno().  

See  “LDAP_ERROR”  on  page  41 for  more  details.  

Notes 

These  routines  allocate  storage  returned  by  the  res  parameter.  Use  ldap_msgfree()  

to  free  this  storage.  

See also 

ldap_result,  ldap_error,  ldap_sort,  ldap_paged_results  

LDAP_SERVER_INFORMATION  IN DNS 

   ldap_server_locate  

   ldap_server_free_list  

   ldap_server_conf_save

Purpose 

These  LDAP  APIs  are  provided  to  perform  the  following  operations:  

v   Use  LDAP  server  information  published  in  the  Domain  Name  System  (DNS)  to  

locate  one  or  more  LDAP  servers,  and  associated  information.  Server  

information  is  returned  as  a linked  list  of  server  information  structures.  

v   Free  all  storage  associated  with  a linked  list  of server  information  structures.  

v   Store  information  about  one  or more  LDAP  servers  in  a local  configuration  

repository.  The  local  configuration  can  be  used  to  mimic  information  that  can  

also  be  published  in  DNS.

 

102 Programming  Reference



Synopsis 

#include  <ldap.h> 

  

  

int  ldap_server_locate  ( 

       LDAPServerRequest  *server_request,  

       LDAPServerInfo     **server_info_listpp);  

  

int   ldap_server_free_list(  

        LDAPServerInfo  *server_info_listp);  

  

int  ldap_server_conf_save(  

       char             *filename,  

       unsigned  long    ttl,  

       LDAPServerInfo   *server_info_listp));  

  

typedef  struct  LDAP_Server_Request  { 

    int      search_source;       /* Source  for server  info      */  

#define  LDAP_LSI_CONF_DNS   0    /* Config  first,  then  DNS  (def)*/  

#define  LDAP_LSI_CONF_ONLY  1    /* Local  Config  file  only      */ 

#define  LDAP_LSI_DNS_ONLY   2    /* DNS  only                    */ 

    char     *conf_filename       /* pathname  of  config  file     */ 

    int      reserved;            /* Reserved,  set  to zero       */ 

    char     *service_key;        /* Service  string              */ 

    char     *enetwork_domain;    /*  eNetwork  domain  (eDomain)   */  

    char     **name_servers;      /* Array  of name  server  addrs  */ 

    char     **dns_domains;       /* Array  of DNS  domains        */ 

    int      connection_type;     /* Connection  type             */ 

#define  LDAP_LSI_UDP_TCP  0      /* Use  UDP,  then  TCP  (default)*/  

#define  LDAP_LSI_UDP  1          /* Use UDP only                */ 

#define  LDAP_LSI_TCP  2          /* Use TCP only                */ 

    int      connection_timeout;  /* connect  timeout  (seconds)   */ 

    char     *DN_filter;          /* DN suffix  filter            */ 

    char     *proto_key           /* Symbolic  protocol  name      */ 

    unsigned  char  reserved2[60];  /* reserved  fields,  set to 0 */ 

} LDAPServerRequest;  

  

  

typedef  struct  LDAP_Server_Info  { 

    char     *lsi_host;         /* LDAP  server’s  hostname  */ 

    unsigned  short  lsi_port;   /* LDAP  port               */ 

    char     *lsi_suffix;       /* Server’s  LDAP  suffix    */ 

    char     *lsi_query_key;    /* service_key[.edomain]   */ 

    char     *lsi_dns_domain;   /* Publishing  DNS  domain   */  

    int       lsi_replica_type;/*  master  or replica       */  

#define  LDAP_LSI_MASTER   1    /* LDAP  Master             */ 

#define  LDAP_LSI_REPLICA  2    /* LDAP  Replica            */ 

    int       lsi_sec_type;     /* SSL  or non-SSL          */ 

#define  LDAP_LSI_NOSSL    1    /* Non-SSL                 */ 

#define  LDAP_LSI_SSL      2    /* Secure  Server           */ 

    unsigned  short  lsi_priority;  /* Server  priority      */ 

    unsigned  short  lsi_weight;  /* load  balancing  weight  */ 

    char     *lsi_vendor_info;   /* vendor  information     */ 

    char     *lsi_info;         /* LDAP  Info  string        */ 

    struct  LDAP_Server_Info  *prev;  /*  linked  list  previous  ptr  */ 

    struct  LDAP_Server_Info  *next;  /*  linked  list  next  ptr      */ 

} LDAPServerInfo;  

  

  

Input parameters 

server_request  

Specifies  a pointer  to  an  LDAPServerRequest  structure,  which  must  be  

initialized  to  zero  before  setting  specific  parameters.  This  ensures  that  

 

Chapter 2. API categories  103



defaults  are  used  when  a parameter  is not  explicitly  set.  If the  default  

behavior  is desired  for  all  possible  input  parameters,  simply  set  

server_request  to  NULL.  This  is equivalent  to  setting  the  

LDAPServerRequest  structure  to zero.  Otherwise,  supply  the  address  of the  

LDAPServerRequest  structure,  containing  the  following  fields:  

search_source  

Specifies  where  to find  the  server  information.  search_source  can  

be  one  of the  following:  

v   Access  the  local  LDAP  DNS  configuration  file.  If the  file  is not  

found,  or  the  file  does  not  contain  information  for  a combination  

of  the  service_key,  enetwork_domain  and  any  of  the  DNS  

domains  as  specified  by  the  application,  then  access  DNS.  

v   Search  the  local  LDAP  DNS  configuration  file  only.  

v   Search  DNS  only.

conf_filename  

Specifies  an  alternative  configuration  filename.  Specify  NULL  to  

get  the  default  filename  and  location.  

reserved  

Represents  a reserved  area  for  future  function,  which  must  be  

initialized  to zero.  

service_key  

Specifies  the  search  key,  for  example,  the  service  name  string  to  be  

used  when  obtaining  a list  of  Service  records  (SRV),  pseudo-SRV  

Text records  (TXT),  or  CNAME  alias  records  from  DNS.  If  not  

specified,  the  default  is ″ldap.″

Note:   Standards  are  moving  towards  the  use  of  an  underscore  ( _ ) 

as a prefix  for  service  name  strings.  Over  time,  it  is expected  

that  ″_ldap″ is the  preferred  service  name  string  for  

publishing  LDAP  services  in  DNS.  If the  application  does  

not  specify  service_key  and  no  entries  are  returned  using  the  

default  ldap  service  name,  the  search  is automatically  rerun  

using  ″_ldap″ as  the  service  name.  As  an  alternative,  the  

application  can  explicitly  specify  ″_ldap″ as  the  service  

name,  and  the  search  is directed  specifically  at DNS  SRV  

records  that  use  ″_ldap″ as  the  service  name.

enetwork_domain  

Indicates  that  LDAP  servers  grouped  within  the  specified  

eNetwork  domain  are  to  be  located.  An  eNetwork  domain  is 

simply  a naming  construct,  implemented  by  the  LDAP  

administrator,  to  further  subdivide  a set  of  LDAP  servers  (as  

published  in DNS)  into  logical  groupings.  By  specifying  an  

eNetwork  domain,  only  the  LDAP  servers  grouped  within  the  

specified  eNetwork  domain  are  returned  by  the  

ldap_server_locate()  API.  This  can  be  very  useful  when  

applications  need  access  to a particular  set  of  LDAP  servers.  For  

example,  the  research  division  within  a company  might  use  a 

dedicated  set  of LDAP  directories,  for  example,  masters  and  

replicas.  By  publishing  this  set  of LDAP  servers  in  DNS  with  an  

eNetwork  domain  of  research,  applications  that  need  access  to  

information  published  in  research’s  LDAP  servers  can  selectively  

obtain  the  hostnames  and  ports  of research’s  LDAP  servers.  Other  

LDAP  servers  also  published  in  DNS  are  not  returned.  

 

104 Programming  Reference



The  criterion  for  searching  DNS  to locate  the  appropriate  LDAP  

servers  is constructed  by  concatenating  the  following  information:  

v   service_key  (defaults  to ldap)  

v   enetwork_domain  

v   tcp  

v   DNS  domain

For example,  if:  

v   The  default  service_key  of ldap  is  used  

v   The  eNetwork  domain  is sales5  

v   The  client’s  default  DNS  domain  is midwest.acme.com

then  the  DNS  value  used  to search  DNS  for  the  set  of  LDAP  

servers  belonging  to  the  sales5  eNetwork  domain  is 

ldap.sales5.tcp.midwest.acme.com.  

 If  enetwork_domain  is set  to  zero,  the  following  steps  are  taken  to  

determine  the  enetwork_domain:  

v   The  locally  configured  default,  if set,  is used.  

v   If a locally  configured  default  is not  set,  then  a platform-specific  

value  is used.  On  a Windows  NT  operating  system,  the  user’s  

logon  domain  is used.  

v   If a platform-specific  eNetwork  domain  is not  defined,  then  the  

eNetwork  domain  component  in  the  DNS  value  is omitted.  In  

the  above  example,  this  results  in  the  following  string  being  

used:  ldap.midwest.tcp.acme.com.  

If  enetwork_domain  is set  to  a NULL  string,  then  the  eNetwork  

domain  component  in  the  DNS  value  is omitted.  This  might  be  

useful  for  finding  a default  eNetwork  domain  when  a specific  

eNetwork  domain  is not  known.

Note:   If  the  search  is  performed  with  a non-NULL  value  for  

enetwork_domain,  and  the  search  fails,  the  search  is  issued  

again  with  a NULL  enetwork_domain,  using  the  specified  

service_key,  which  defaults  to  ldap.  The  second  search  with  

NULL  enetwork_domain  is attempted  after  a complete  

search  is concluded  without  results.  For  example,  if 

search_source  is set  to the  default  LDAP_LSI_CONF_DNS,  

then  the  first  search  is not  considered  to be  complete  until  

both  the  local  configuration  and  DNS  have  been  queried.  If 

both  of these  searches  fail,  then  both  the  local  configuration  

and  DNS  are  re-queried  with  a NULL  enetwork_domain.  

The  intent  is to  find  a set  of LDAP  servers  that  are  

published  under  the  default  service  key,  that  is, ldap,  when  

nothing  can  be  found  published  under  

ldap.enetwork_domain.  The  application  can  determine  if the  

located  servers  are  published  in  an  enetwork_domain  by  

examining  the  lsi_query_key  field,  as  returned  in  the  

server_info_list  structures  returned  on  the  

ldap_server_locate()  API.  If the  returned  lsi_query_key  

consists  solely  of  the  specified  service_key,  then  the  located  

servers  were  not  published  in  DNS  with  the  specified  

enetwork_domain.

 

Chapter 2. API categories  105



name_servers  

Specifies  a NULL-terminated  array  of  DNS  name  server  IP  address  in  

dotted  decimal  format,  for  example,  122.122.33.49.  If not  specified,  the  

locally  configured  DNS  name  servers  are  used.  

dns_domains  

Specifies  a NULL-terminated  array  of  one  or  more  DNS  domain  names.  If 

not  specified,  the  local  DNS  domain  configuration  is used.  

Note:   The  domain  names  supplied  here  can  take  the  following  forms:  

v   austin.ibm.com  (standard  DNS  format)  

v   cn=fred,  ou=accounting,  dc=austin,  dc=ibm,  dc=com

With  respect  to  providing  a domain  name,  these  are  equivalent.  Both  result  

in  a domain  name  of  austin.ibm.com.  This  approach  makes  it  easier  for  an  

application  to  locate  LDAP  servers  for  binding  (based  on  a user  name  

space  mapped  into  the  DNS  name  space).  See  “DNS  domains  and  

configuration  file”  on  page  109  for  more  information.  

connection_type  

Specifies  the  type  of  connection  to use  when  communicating  with  the  DNS  

name  server.  The  following  options  are  supported:  

v   Use  UDP  first.  If no  response  is received,  or  data  truncation  occurs,  then  

use  TCP.  

v   Only  use  UDP.  

v   Only  use  TCP.

If  set  to  zero,  the  default  is to  use  UDP  first  (then  TCP).  

UDP  is  the  preferred  connection  type,  and  typically  performs  well.  You 

might  want  to  consider  using  TCP/IP  if: 

v   The  amount  of  data  being  returned  does  not  fit  in  the  512-byte  UDP  

packet.  

v   The  transmission  and  receipt  of UDP  packets  turns  out  to  be  unreliable.  

This  might  depend  on  network  characteristics.

connection_timeout  

Specifies  a timeout  value  when  querying  DNS  (for  both  TCP  and  UDP).  If 

LDAP_LSI_UDP_TCP  is  specified  for  connection_type  and  a response  is 

not  received  in  the  specified  time  period  for  UDP,  TCP  is attempted.  A  

value  of  zero  results  in  an  infinite  timeout.  When  the  LDAPServerRequest  

parameter  is  set  to NULL,  the  default  is ten  seconds.  When  passing  the  

LDAPServerRequest  parameter,  this  parameter  must  be  set  to a nonzero  

value  if an  indefinite  timeout  is not  desired.  

DN_filter  

Specifies  a Distinguished  Name  to  be  used  as  a filter, for  selecting  

candidate  LDAP  servers  based  on  the  server’s  suffixes.  If  the  most  

significant  portion  of  the  DN  is an  exact  match  with  a server’s  suffix  (after  

normalizing  for  case),  an  LDAPServerInfo  structure  is returned  for  the  

server/suffix  combination.  If it  doesn’t  match,  an  LDAPServerInfo  

structure  is  not  returned  for  the  server/suffix  combination.  

proto_key  

Specifies  the  protocol  key,  for  example,  tcp  or  _tcp,  to  be  used  when  

obtaining  a list  of SRV,  pseudo-SRV  TXT  or  CNAME  alias  records  from  

DNS.  If  not  specified,  the  default  is tcp.  

 

106 Programming  Reference



Note:   Standards  are  moving  towards  the  use  of  an  underscore  ( _ ) as  a 

prefix  for  the  protocol.  Over  time,  it is expected  that  _tcp  will  

become  the  preferred  protocol  string  for  publishing  LDAP  and  other  

services  in DNS.  If the  application  does  not  specify  protocol_key  and  

no  entries  are  returned  using  the  default  tcp  protocol  key,  the  search  

is  automatically  rerun  using  _tcp  as  the  protocol.  As  an  alternative,  

the  application  can  explicitly  specify  _tcp  as  the  protocol,  and  the  

search  is directed  specifically  at  DNS  SRV  records  that  use  _tcp  as  

the  protocol.

reserved2  

Represents  a reserved  area  for  future  function,  which  must  be  initialized  to  

zero.  

server_info_listpp  

Specifies  the  address  that  is set  to point  to a linked  list  of LDAPServerInfo  

structures.  Each  LDAPServerInfo  structure  defined  in  the  list  contains  

server  information  obtained  from  either  of  the  following:  

v   DNS  

v   Local  configuration

filename  

Specifies  an  alternative  configuration  file  name.  Specify  NULL  to  get  the  

default  file  name  and  location.  

ttl   Specifies  the  time-to-live,  in minutes,  for  server  information  saved  in  the  

configuration  file.  Set  ttl  to zero  if it is intended  to  be  a permanent  

repository  of information.  

 When  the  ldap_server_locate()  API  is  used  to  access  the  configuration  file  

with  search_source  set  to  LDAP_LSI_CONF_ONLY,  and  the  configuration  

file  has  not  been  refreshed  in  ttl  minutes,  the  LDAP_TIMEOUT  error  code  

is returned.  

 When  the  ldap_server_locate()  API  is  used  to  access  the  configuration  file  

with  search_source  set  to  LDAP_LSI_CONF_DNS,  and  the  configuration  

file  has  not  been  refreshed  in  ttl  minutes,  then  network  DNS  is  accessed  to  

obtain  server  information.  

server_info_listp  

Specifies  the  address  of  a linked  list  of  LDAPServerInfo  structures.  This  

linked  list  might  have  been  returned  from  the  ldap_server_locate()  API,  or  

might  be  constructed  by  the  application.

Output parameters 

Returns  0 if successful.  If  an  error  is encountered,  an  appropriate  return  code  as 

defined  in  the  ldap.h  file  is returned.  If  successful,  the  address  of a linked  list  of 

LDAPServerInfo  structures  is returned.  

server_info_listpp  

Upon  successful  return  from  ldap_server_locate(),  server_info_listpp  points  

to  a linked  list  of LDAPServerInfo  structures.  The  LDAPServerInfo  

structure  contains  the  following  fields:  

lsi_host  

Fully-qualified  hostname  of  the  target  server  (NULL-terminated  

string).  

lsi_port  

Integer  representation  of the  LDAP  server’s  port.  

 

Chapter 2. API categories  107



lsi_suffix  

String  that  specifies  a supported  suffix  for  the  LDAP  server  

(NULL-terminated  string).  

lsi_query_key  

Specifies  the  eNetwork  domain  to which  the  LDAP  server  belongs,  

prefixed  by  the  service  key.  For  example,  if service  key  is ldap  and  

eNetwork  domain  is sales,  then  lsi_query_key  is set  to  ldap.sales.  If 

the  server  is not  associated  with  an  eNetwork  domain  (as  

published  in DNS),  then  lsi_query_key  consists  solely  of the  service  

key  value.  Also,  for  example,  if the  service  key  is _ldap  and  the  

eNetwork  domain  is marketing,  then  lsi_query_key  is set  to  

_ldap.marketing.  

lsi_dns_domain  

DNS  domain  in  which  the  LDAP  server  was  published.  For  

example,  the  DNS  search  might  have  been  for  

ldap.sales.tcp.austin.ibm.com,  but  the  resulting  servers  have  a 

fully-qualified  DNS  host  name  of ldap2.raleigh.ibm.com.  In  this  

example,  lsi_host  is set  to  ldap2.raleigh.ibm.com  while  

lsi_dns_domain  is set  to  austin.ibm.com.  The  actual  domain  in  

which  the  server  was  published  might  be  of  interest,  particularly  

when  multiple  DNS  domains  are  configured  or  supplied  as input.  

lsi_replica_type  

Specifies  the  type  of  server,  LDAP_LSI_MASTER  or  

LDAP_LSI_REPLICA.  If  set  to  zero,  the  type  is unknown.  

lsi_sec_type  

Specifies  the  port’s  security  type,  LDAP_LSI_NOSSL  or  

LDAP_LSI_SSL.  This  value  is derived  from  the  ldap  or  ldaps  prefix  

in  the  LDAP  URL.  If  the  LDAP  URL  is not  defined,  the  security  

type  is unknown  and  lsi_sectype  is  set  to  zero.  

lsi_priority  

The  priority  value  obtained  from  the  SRV  RR  (or  the  pseudo-SRV  

TXT  RR).  Set  to zero  if unknown  or  not  available.  

lsi_weight  

The  weight  value  obtained  from  the  SRV  RR  or  the  pseudo-SRV  

TXT  RR.  Set  to  zero  if unknown  or  not  available.  

lsi_vendor_info  

NULL-terminated  string  obtained  from  the  ldapvendor  TXT  RR,  if 

defined.  It might  be  used  to  identify  the  LDAP  server  

vendor/version  information.  

lsi_info  

NULL-terminated  information  string  obtained  from  the  ldapinfo  

TXT  RR,  if defined.  If not  defined,  lsi_info  is set  to NULL.  This  

information  string  can  be  used  by  the  LDAP  or  network  

administrator  to  publish  additional  information  about  the  target  

LDAP  server.

prev  Points  to  the  previous  LDAP_Server_Info  element  in  the  linked  list.  This  

value  is  NULL  if at the  top  of the  list.  

next   Points  to  the  next  LDAP_Server_Info  element  in  the  linked  list.  This  value  

is  NULL  if at  the  end  of the  list.

 

108 Programming  Reference



Usage 

DNS domains and configuration file 

The  local  configuration  file  can  contain  server  information  for  combinations  of  the  

following:  

v   Service  key  (typically  set  to ldap  or  _ldap)  

v   eNetwork  domain  

v   DNS  domains

When  the  application  sets  search_source  to  the  default  LDAP_LSI_CONFIG_DNS,  

the  ldap_server_locate()  API  attempts  to find  server  information  in  the  

configuration  file  for  the  designated  service  key,  eNetwork  domain,  and  DNS  

domains.  

If  the  configuration  file  does  not  contain  information  that  matches  this  criteria,  the  

locator  API  searches  DNS,  using  the  specified  service  key,  eNetwork  domain,  and  

DNS  domains.  For  example:  

v   The  application  supplies  the  following  three  DNS  domains:  

–   austin.ibm.com  

–   raleigh.ibm.com  

–   miami.ibm.com

Also,  the  application  uses  the  default  service  key,  that  is,  ldap,  and  specifies  

sales  for  the  eNetwork  domain.  

v   The  configuration  file  contains  server  information  for  austin.ibm.com  and  

miami.ibm.com,  with  the  default  service  key  and  eNetwork  domain  of sales.  

v   Information  is also  published  in DNS  for  raleigh.ibm.com,  with  the  default  

service  key  and  eNetwork  domain  of  sales.  

v   The  search_source  parameter  is set  to LDAP_LSI_CONFIG_DNS,  which  indicates  

that  both  the  configuration  file  and  DNS  are  to be  used  if necessary.  

v   The  locator  API  builds  a single  ordered  list  of server  entries,  with  the  following:  

–   Server  entries  for  the  austin.ibm.com  DNS  domain,  as  extracted  from  the  

configuration  file.  

–   Server  entries  for  the  raleigh.ibm.com  DNS  domain,  as obtained  from  DNS  

over  the  network.  

–   Server  entries  for  the  miami.ibm.com  DNS  domain,  as  extracted  from  the  

configuration  file.

The  resulting  list  of servers  contains  all  the  austin.ibm.com  servers  first,  followed  

by  the  raleigh.ibm.com  servers,  followed  by  the  miami.ibm.com  servers.  Within  

each  group  of  servers,  the  entries  are  sorted  by  priority  and  weight.  

API usage 

These  routines  are  used  to  perform  operations  related  to finding  and  saving  LDAP  

server  information.  

ldap_server_locate()  

The  ldap_server_locate()  API  is used  to  locate  one  or  more  suitable  LDAP  

servers.  In  general,  an  application  uses  the  ldap_server_locate()  API  as  

follows:  

v   Before  connecting  to an  LDAP  server  in  the  enterprise,  use  

ldap_server_locate()  to  obtain  a list  of  one  or  more  LDAP  servers  that  

have  been  published  in DNS  or  in  the  local  configuration  file.  Typically,  

an  application  can  simply  use  the  default  request  settings  by  passing  a 

 

Chapter 2. API categories  109



NULL  for  the  LDAPServerRequest  parameter.  By  default,  the  API  looks  

for  server  information  in  the  local  configuration  file  first,  then  moves  on  

to  DNS  if the  local  configuration  file  does  not  exist  or  has  expired.  

Note:   If  no  server  entries  are  found,  and  the  application  does  not  specify  

the  service  key  (which  defaults  to  ldap),  then  the  

ldap_server_locate()  function  runs the  complete  search  again,  

using  the  alternative  ″_ldap″ for  the  service  key.  The  results  of  this  

second  search,  if any,  are  returned  to  the  application.  

v   After  the  application  has  obtained  the  list  of servers,  it must  walk  the  

list,  using  the  first  server  that  meets  its  needs.  This  maximizes  the  

advantage  that  can  be  derived  from  using  the  priority  and  weighting  

scheme  implemented  by  the  administrator.  The  application  might  not  

want  to  use  the  first  server  in  the  list  for  several  reasons:  

–   The  client  needs  to specifically  connect  using  SSL  or  non-SSL.  For  

each  server  in  the  list,  the  application  can  query  the  rootDSE  to 

determine  if the  server  supports  a secure  SSL  port.  This  is  the  

preferred  approach.  Alternatively,  the  application  can  walk  the  list  

until  it finds  a server  entry  with  the  appropriate  security  type.  Note  

that  an  LDAP  server  might  be  listening  on  both  an  SSL  and  non-SSL  

port.  In  this  case,  the  server  has  two  entries  in  the  server  list:  

–   The  client  specifically  needs  to  connect  to  a Master  or  Replica.  

–   The  client  needs  to connect  to  a server  that  supports  a particular  

suffix.

Note:   Specify  DN_filter  to filter  out  servers  that  do  not  have  a suffix.  

The  DN  resides  under  this  suffix.  To confirm  that  a server  

actually  supports  the  suffix,  query  the  server’s  rootDSE.  

–   Some  other  characteristic  associated  with  the  desired  server  exists,  

perhaps  defined  in  the  ldapinfo  string.
v    After  the  client  has  selected  a server,  it then  issues  the  ldap_init  or  

ldap_ssl_init  API.  If the  selected  server  is unavailable,  the  application  is 

free  to  move  down  the  list  of servers  until  either  it finds  a suitable  

server  it can  connect  to,  or  the  list  is  exhausted.

ldap_server_free_list()  

To free  the  list  of servers  and  associated  LDAPServerInfo  structures,  the  

application  must  use  the  ldap_server_free_list()  API.  The  

ldap_server_free_list()  API  frees  the  linked  list  of  LDAPServerInfo  

structures  and  all  associated  storage  as  returned  from  the  

ldap_server_locate()  API.  

ldap_server_conf_save()  

The  ldap_server_conf_save()  API  is used  to store  server  information  into  

local  configuration.  The  format  for  specifying  the  server  information  on  the  

ldap_server_conf_save()  API  is identical  to the  format  returned  from  the  

ldap_server_locate()  API.  

 The  application  that  writes  information  into  the  configuration  file  can  

specify  an  optional  time-to-live  for  the  information  stored  in  the  file.  When  

an  application  uses  the  locator  API  to access  DNS  server  information,  the  

configuration  file  is  considered  to  be  stale  if:  

date/time_file_last_updated  + ttl  > current_date/time  

If  the  application  uses  the  default  behavior  for  using  the  configuration  file,  

it  bypasses  a stale  configuration  file  and  attempts  to  find  all  needed  

 

110  Programming Reference



information  from  DNS.  Otherwise,  the  ttl  must  be  set  to  zero  (indefinite  

ttl),  in  which  case  the  information  is considered  to be  good  indefinitely.  

 Setting  a nonzero  ttl  is most  useful  when  an  application  or  other  

mechanism  exists  for  refreshing  the  local  configuration  file  on  a periodic  

basis.

Note:   Sub-second  response  time  can  be  expected  in  many  cases,  when  

using  UDP  to query  DNS.  Since  most  applications  get  the  server  

information  during  initialization,  repetitive  invocation  of the  locator  

API  is usually  unnecessary.  

By  default,  the  configuration  file  is stored  in  the  following  platform-specific  

location:  

UNIX  /etc/ldap_server_info.conf  

Windows  NT  and  Windows  2000  

\drivers\etc\ldap_server_info.conf

Format  of  local  configuration  file:    The  following  is a sample  definition  for  a local  

configuration  file  that  is created  with  the  ldap_server_conf_save()  API.  You should  

create  the  file  by  using  the  ldap_server_conf_save()  API.  However,  with  careful  

editing,  it  can  also  be  created  and  maintained  manually.  

Some  basic  rules for  managing  this  file  manually:  

v   Comment  fields  must  begin  with  a number  sign  ( # ). Comment  fields  are  

ignored.  

v   All  parameters  are  positional.  

v   The  first  non-comment  line  must  contain  the  time-to-live  value  for  the  file.
#####################################################################  

# Local  LDAP  DNS  configuration  file.  

# 

# The  following  line  holds  the  file’s  expiration  time,  which  is 

# a UNIX  time_t  value  (time  in seconds  since  January  1,  1970  UTC).  

# A value  of 0 indicates  that  the  file  will  not expire.  

#907979782  

0 

# Each  of the  following  lines  in this  file  represents  a known  

# LDAP  server.  The  lines  have  the following  format:  

# 

# service  domain  host  priority  weight  port  replica  sec "suffix"  

        "vendor  info"  "general  info"  

# 

# where:  

# 

#  service=  service_key[.eNetwork_domain]  

# 

#  domain=   DNS  domain  

# 

#  host=     fully  qualified  DNS  name  of the  LDAP  Server  host  

# 

#  priority=  target  host  with  the lowest  priority  tried  first  

# 

#  weight=   load  balancing  method.   When  multiple  hosts  have  the  

#           same  priority,  the host  to be contacted  first  is determined  

#           by the  weight  value.   Set  to 0 if load  balancing  is not  needed.  

# 

#  port=     The  port  to use  to contact  the  LDAP  Server.  

# 

#  replica=  Use  "1"  to indicate  Master.  

#           "2"  to indicate  Replica.

 

Chapter 2. API categories  111



# 

#  sec=      Use  "1"  to indicate  Non-SSL  

#           "2"  to indicate  SSL.  

# 

#  suffix=   A suffix  on the  server.  

# 

#  vendor  info=  a string  that  identifies  the LDAP  server  vendor  

# 

#  general  info=     Any  informational  text  you  wish  to include.  

# 

ldap      austin.ibm.com  ldapserver1.austin.ibm.com  1 1 389 1 1 

        "ou=users,o=sample"  "IBM  SecureWay"  "phoneinfo"  

ldap      austin.ibm.com  ldapserver2.austin.ibm.com  1 1 389 2 1 

        "ou=users,o=sample"  "IBM  SecureWay"  "phoneinfo  replica"  

ldap.gso  austin.ibm.com  gso3.austin.ibm.com  1 1 636  1 2 "" "" 

ldap.gso  austin.ibm.com  gso3.austin.ibm.com  1 1 636  1 2 

        "cn=GSO,o=sample"  

ldap.gso  austin.ibm.com  gso3.austin.ibm.com  1 1 636  1 2 

        "ou=Austin,o=sample"  "IBM"  "GSO  ePersonbase"  

ldap.gso  austin.ibm.com  gso3.austin.ibm.com  1 1 389  1 1 "" "" 

ldap.gso  austin.ibm.com  gso3.austin.ibm.com  1 1 389  1 1 

        "cn=GSO,o=sample"  

ldap.gso  austin.ibm.com  gso3.austin.ibm.com  1 1 389  1 1 

        "ou=Austin,o=sample"  "IBM"  "GSO  ePersonbase"  

ldap.sales  raleigh.ibm.com  saleshost1.raleigh.ibm.com  1 1 389 1 1 

        "dc=raleigh,dc=ibm,  dc=com"  "IBM"  "Sales  Marketing"  

ldap.sales  raleigh.ibm.com  saleshost2.raleigh.ibm.com  2 1 389 2 1 

        "dc=raleigh,dc=ibm,  dc=com"  "IBM"  "Sales  Marketing  Replica"  

# 

#####################################################################  

The  newer  form  of  service  keys  can  also  be  used  in  the  configuration  file.  For  

example,  the  following  is an  excerpt  that  uses  _ldap  as  the  service  key:  

_ldap      austin.ibm.com  ldapserver1.austin.ibm.com  1 1 389 1 1 

        "ou=users,o=sample"  "IBM  SecureWay"  "phoneinfo"  

_ldap      austin.ibm.com  ldapserver2.austin.ibm.com  1 1 389 2 1 

        "ou=users,o=sample"  "IBM  SecureWay"  "phoneinfo  replica"  

_ldap.gso  austin.ibm.com  gso3.austin.ibm.com  1 1 636  1 2 "" "" 

_ldap.gso  austin.ibm.com  gso3.austin.ibm.com  1 1 636  1 2 

        "cn=GSO,o=sample"  

_ldap.gso  austin.ibm.com  gso3.austin.ibm.com  1 1 636  1 2 

        "ou=Austin,o=sample"  "IBM"  "GSO  ePersonbase"  

_ldap.gso  austin.ibm.com  gso3.austin.ibm.com  1 1 389  1 1 "" "" 

_ldap.gso  austin.ibm.com  gso3.austin.ibm.com  1 1 389  1 1 

        "cn=GSO,o=sample"  

_ldap.gso  austin.ibm.com  gso3.austin.ibm.com  1 1 389  1 1 

        "ou=Austin,o=sample"  "IBM"  "GSO  ePersonbase"  

_ldap.sales  raleigh.ibm.com  saleshost1.raleigh.ibm.com  1 1 389  1 1 

        "dc=raleigh,dc=ibm,dc=com"  "IBM"  "Sales  Marketing"  

_ldap.sales  raleigh.ibm.com  saleshost2.raleigh.ibm.com  2 1 389  2 1 

        "dc=raleigh,dc=ibm,dc=com"  "IBM"  "Sales  Marketing  Replica"  

Publishing LDAP server information in DNS 

If DNS  is  used  to  publish  LDAP  server  information,  the  LDAP  administrator  must  

configure  the  relevant  DNS  name  servers  with  the  appropriate  SRV  and  TXT  

records  that  reflect  the  LDAP  servers  available  in  the  enterprise.  

v   If  SRV  records  are  supported  by  the  DNS  servers  in  the  enterprise,  SRV  records  

can  be  created  that  identify  the  LDAP  servers,  along  with  appropriate  weighting  

and  priority  settings.  For  more  information  on  SRV  records  and  how  they  are  

used,  see  A.  Gulbrandsen,  P.  Vixie,  ″A  DNS  RR  for  Specifying  the  Location  of 

Services  (DNS  SRV)″, Internet  RFC  2782,  Troll Technologies,  Vixie  Enterprises,.  

February,  2000,  which  obsoletes  RFC  2052.  

 

112  Programming Reference

http://www.networksorcery.com/enp/rfc/rfc2782.txt
http://www.networksorcery.com/enp/rfc/rfc2782.txt
http://www.networksorcery.com/enp/rfc/rfc2782.txt


v   TXT  records  must  be  associated  with  the  A record  of each  LDAP  server.  The  TXT  

records  include  the  LDAP  URL  records  which  specify  host  name,  port,  base  DN  

and  port  type,  for  example,  ldap  for  non-SSL,  and  ldaps  for  SSL.  

v   If SRV  records  are  not  being  used,  the  list  of  available  servers  must  be  specified  

with  a set  of  TXT  records  which  emulate  the  SRV  RR  format.

The  LDAP  server  locator  API:  

v   Provides  access  to a list  of LDAP  servers.  By  default,  the  locator  API  queries  a 

local  configuration  file  for  the  required  information.  If the  file  was  updated  with  

a nonzero  time-to-live,  and  the  file  has  become  stale,  or  the  file  does  not  contain  

the  required  information,  the  locator  API  then  accesses  DNS.  By  default,  the  

local  configuration  file  has  no  time-to-live,  and  is  considered  to be  good  

indefinitely.  

Note:   The  configuration  file  is designed  to hold  the  same  level  of information  

per  server  that  can  be  obtained  from  DNS.  

v   Gathers  data  relevant  to  each  of the  LDAP  servers  from  DNS,  using  three  

sequenced  algorithms:  

1.   SRV  records  

2.   Pseudo-SRV  records  (using  TXT  records)  

3.   A CNAME  alias  referencing  a single  host’s  A record

The  algorithms  are  attempted  in  sequence  until  results  are  returned  for  one  of 

the  algorithms.  For  example,  if no  SRV  records  are  found,  but  pseudo-SRV  

records  are  found,  the  list  of  servers  is built  from  the  pseudo-SRV  records.  

v   Builds  a list  of  LDAP  servers,  with  the  first  server  in  the  list  classified  as  the  

preferred  or  default  server.  Depending  on  how  DNS  is used  to  publish  LDAP  

servers,  the  preferred  LDAP  server  can  actually  be  a reflection  of  how  the  

administrator  has  organized  the  LDAP  information  in  DNS.  The  application  has  

access  to  the  additional  data  that  was  retrieved  from  DNS.  The  additional  

information  for  each  LDAP  server  information  structure  can  consist  of  the  

following:  

–   Host  name  and  port  

–   eNetwork  domain  of  the  server  

–   Fully-qualified  DNS  domain  where  the  hostname  is  published  

–   Suffix  

–   Replication  type  (master  or  replica)  

–   Security  type  (SSL  or  non-SSL)  

–   Vendor  ID  

–   Administrator-defined  data

The  application  can  use  ldap_server_locate()  to  obtain  a list  of one  or  more  LDAP  

servers  that  exist  in  the  enterprise,  and  have  been  published  in  either  DNS  or  the  

local  configuration  file.  The  additional  data  might  be  used  by  the  application  to 

select  the  appropriate  server.  For  example,  the  application  might  need  a server  that  

supports  a specific  suffix,  or  might  need  to specifically  access  the  master  for  

update  operations.  

As  input  to  the  API,  the  application  can  supply:  

v   A list  of  one  or  more  DNS  name  server  IP  addresses.  The  default  is to use  the  

locally  configured  list  of name  server  addresses.  Once  an  active  name  server  is 

located,  it  is used  for  all  subsequent  processing.  

 

Chapter  2. API categories  113



v   The  service  key.  The  default  is ldap.  The  service  key  is used  to  query  DNS  for  

information  specific  to the  LDAP  protocol.  For  example,  when  searching  for  SRV  

records  in  the  austin.ibm.com  DNS  domain,  the  search  is for  

ldap.tcp.austin.ibm.com  with  type=SRV.  This  example  assumes  the  search  does  

not  include  an  eNetwork  domain  component.  The  application  can  also  specify  

_ldap  as  the  service  key  and  _tcp  for  the  protocol,  in  which  case  the  search  is for  

_ldap._tcp.austin.ibm.com  with  type=SRV.  

v   The  name  of  the  eNetwork  domain.  The  eNetwork  domain  is typically  the  name  

used  to  identify  the  LDAP  user’s  authentication  domain,  and  to further  qualify  

the  search  for  relevant  LDAP  servers,  as published  in  the  user’s  DNS  domain.  

For  example,  when  searching  for  SRV  records  in  the  austin.ibm.com  DNS  

domain,  with  an  eNetwork  domain  of  marketing  the  search  is for  

ldap.marketing.tcp.austin.ibm.com  with  type=SRV.  

v   A list  of  one  or  more  fully-qualified  DNS  domain  names.  The  default  is to  use  

the  locally  configured  domains.  

If  multiple  domains  are  supplied,  either  in  the  default  configuration  or  explicitly  

supplied  by  the  application,  information  is gathered  from  each  DNS  domain.  

The  server  information  returned  from  the  locator  API  is grouped  by  DNS  

domain.  If  two  domains  are  supplied,  for  example,  austin.ibm.com  and  

raleigh.ibm.com,  the  entries  for  LDAP  servers  published  in  the  austin.ibm.com  

domain  appear  first  in  the  list,  with  the  austin.ibm.com  servers  sorted  by  

priority  and  weight.  Entries  for  LDAP  servers  published  in  the  raleigh.ibm.com  

domain  follow  the  entire  set  of  austin.ibm.com  servers  (with  the  raleigh.ibm.com  

servers  sorted  by  priority  and  weight).  

Note:   All  entries  returned  by  the  locator  API  are  associated  with  a single  

<service_key>.<edomain> combination.  

DNS  domain  names  supplied  here  can  take  two  forms:  

–   austin.ibm.com  (standard  DNS  format)  

–   cn=fred,  ou=accounting,  dc=austin,  dc=ibm,  dc=com

With  respect  to  providing  a fully-qualified  DNS  domain  name,  these  are  

equivalent.  Both  result  in  a DNS  domain  name  of austin.ibm.com.  This  approach  

makes  it easier  for  an  application  to  locate  LDAP  servers  it needs  to bind  with,  

based  on  a user  name  space  mapped  into  the  DNS  name  space.  

v   The  connection  type  (UDP  or  TCP).  

v   A DN  for  comparison  against  the  suffix  defined  for  each  LDAP  server  entry.  

This  string,  if supplied,  is used  as  a filter.  Only  server  entries  that  define  a suffix  

that  compares  with  the  DN  are  returned  by  the  locator  API.  For  example,  a DN  

of  ″cn=fred,  ou=accounting,  o=sample″ matches  the  first  of  the  following,  but  

not  the  second:  

–   o=sample  

–   o=tivoli,  c=us

The  ability  to  filter  based  upon  each  LDAP  server’s  suffix  is supplied  as  a 

convenience,  so  the  application  does  not  need  to step  through  the  list  of  servers,  

comparing  a DN  with  each  entry’s  suffix.  

v   The  application  can  specify  how  information  in  the  local  configuration  file  is 

used.  The  default  is to  look  in  the  local,  configuration  file  for  the  desired  

information.  If  the  information  is not  found,  then  DNS  servers  on  the  network  

are  accessed.  The  application  can  specify  the  following:  

–   Look  in  the  configuration  file  first,  then  access  the  network  (default).  

–   Look  in  the  configuration  file  only.  

 

114  Programming Reference



–   Access  DNS  only.

When  using  the  default  configuration  file,  the  application  does  not  need  to  

specify  the  location.  Alternatively,  the  application  can  provide  a path  name  to  a 

configuration  file.  

Note:   Information  stored  in  the  configuration  file  takes  the  same  form  as 

information  obtained  from  DNS.  The  difference  is that  it  is saved  in  the  

file  by  an  application.  The  file  can  also  be  constructed  and  distributed  to  

end-users  by  the  administrator.
Maximum  benefit  is obtained  when  applications  can  use  the  defaults  for  all  the  

parameters,  thus  minimizing  application  knowledge  of  the  specifics  related  to  

locating  LDAP  servers.

Using  SRV and  TXT  records:    The  DNS-lookup  routine  looks  for  SRV  records  

first.  If  one  or  more  servers  are  found,  then  the  server  information  is returned  and  

the  second  algorithm,  based  on  TXT  records  that  emulate  SRV  records,  is not  

invoked.  

The  use  of  SRV  records  for  finding  the  address  of  servers,  for  a specific  protocol  

and  domain,  is described  in  RFC  2052,  ″A  DNS  RR  for  Specifying  the  Location  of 

Services  (DNS  SRV).″ Correct  use  of  the  SRV  RR  permits  the  administrator  to  

distribute  a service  across  multiple  hosts  within  a domain,  to  move  the  service  

from  host  to  host  without  disruption,  as well  as  to  designate  certain  hosts  as  

primary  and  others  as  alternates,  or  backups,  by  using  a priority  and  weighting  

scheme.  

TXT  stands  for  text.  TXT  records  are  simply  strings.  BIND  versions  prior  to  4.8.3  

do  not  support  TXT  records.  To fully  implement  the  technique  described  in  RFC  

2052,  the  DNS  name  servers  must  use  a version  of  BIND  that  supports  SRV  records  

as  well  as  TXT  records.  A  SRV  resource  record  (RR)  has  the  following  components,  

as  described  in  RFC  2052:  

service.proto.name  ttl  class  SRV  priority  weight  port  target  

where:  

service  

Symbolic  name  of the  desired  service.  By  default,  the  service  name  or  

service  key  is ldap.  When  used  to publish  servers  that  are  associated  with  

an  eNetwork  domain,  the  service  value  is derived  by  concatenating  the  

service  key,  for  example,  ldap,  with  the  eNetwork  domain  name,  for  

example,  marketing.  In  this  example,  the  resulting  service  is 

ldap.marketing.  

proto  Protocol,  typically  tcp  or  udp,  or  _tcp  or  _udp.  

name  Domain  name  associated  with  the  RR.  

ttl  Time-to-live,  standard  DNS  meaning.  

class  Standard  DNS  meaning  (for  example,  IN).  

Priority  

Target  host  with  lowest  number  priority  must  be  attempted  first.  

weight  

Load  balancing  mechanism.  When  multiple  target  hosts  have  the  same  

priority,  the  chance  of  contacting  one  of the  hosts  first  must  be  

proportional  to its  weight.  Set  to  0 if load  balancing  is not  necessary.  

 

Chapter  2. API categories  115



port  Port  on  the  target  host  for  the  service.  

target  Target  host  name  must  have  one  or  more  A records  associated  with  it.

The  approach  is  to  use  SRV  records  to define  a list  of candidate  LDAP  servers,  and  

to  then  use  TXT  records  associated  with  each  host’s  A record  to get  additional  

information  about  each  LDAP  server.  Three  forms  of TXT  records  are  understood  

by  the  LDAP  client  DNS  lookup  routines:  

v   The  service  TXT  record  provides  a standard  LDAP  URL,  that  is,  provides  host,  

port  and  base  DN.  

v   The  ldaptype  TXT  record  identifies  whether  the  LDAP  server  is a master  or  

replica.  

v   The  ldapvendor  TXT  record  identifies  the  vendor.
ldap                   A       199.23.45.296  

                      TXT      "service:ldap://ldap.ibm.com:389/o=foo,c=us"  

                      TXT      "ldaptype:  master"  

                      TXT      "ldapvendor:  IBMeNetwork"  

                      TXT      "ldapinfo:  ldapver=3,  keyx=fastserver"  

The  ldapinfo  free-form  TXT  record  provides  additional  information,  as  defined  by  

the  LDAP  or  network  administrator.  As  in  the  example  above,  the  information  can  

be  keyword  based.  The  ldapinfo  record  is  available  to  the  application.  

In  combination,  the  name  server  might  contain  the  following,  which  effectively  

publishes  the  set  of  LDAP  servers  that  reside  in  the  marketing  eNetwork  domain:  

ldap.marketing.tcp     SRV      0  0  0    ldapm  

                      SRV      0  0  0    ldapmsec  

                      SRV      0  0  0    ldapmsuffix  

                      SRV      1  1  0    ldapr1  

                      SRV      1  2  0    ldapr2  

                      SRV      1  2  0    ldapr2sec  

                      SRV      2  1  2222  ldapr3.raleigh.ibm.com.  

  

ldapm                  A       199.23.45.296  

                      TXT      "service:ldap://ldapm.austin.ibm.com:389/o=foo,c=us"  

                      TXT      "ldaptype:  master"  

  

ldapmsec               A       199.23.45.296  

                      TXT      "service:ldaps://ldapm.austin.ibm.com:686/o=foo,c=us"  

                      TXT      "ldaptype:  master"  

  

ldapmsuffix            A       199.23.45.296  

                      TXT      "service:ldaps://ldapm.austin.ibm.com:389/o=moo,c=us"  

                      TXT      "ldaptype:  master"  

  

ldapr1                 A       199.23.45.297  

                      TXT      "service:ldap://ldapr1:389/o=foo,c=us"  

                      TXT      "ldaptype:  replica"  

  

ldapr2                 A       199.23.45.298  

                      TXT      "service:ldap://ldapr2:389/o=foo,c=us"  

                      TXT      "ldaptype:  replica"  

  

ldapr2sec              A       199.23.45.298  

                      TXT      "service:ldaps://ldapr2/o=foo,c=us"  

                      TXT      "ldaptype:  replica"  

                      TXT      "ldapinfo:  ca=verisign,  authtype=server"  

  

ldapr3.raleigh.ibm.com.    A   199.23.45.299  

 

 

116  Programming Reference



In  this  example,  a DNS  search  for  ibmldap.marketing.tcp.austin.ibm.com  with  

type=SRV  returns  seven  SRV  records,  which  represent  entries  for  four  hosts.  Note  

that  an  SRV  record  is needed  for  each  port/suffix  combination  supported  by a 

server.  For  example,  a server  that  supports  an  SSL  and  non-SSL  port  might  have  at  

least  two  SRV  records  and  two  corresponding  A records  that  point  to the  same  IP 

address.  In  this  example,  the  A  RR  combinations  for  ldapm/ldapmsec/ldapmsuffix  

and  ldapr2/ldapr2sec  map  to  the  same  host  address.  

Note:   ldapmsuffix  provides  an  alternate  suffix  for  the  199.23.45.296  host.  

The  port  specified  on  the  SRV  record  is ignored  if the  target  host  has  a TXT  record  

containing  an  LDAP  URL.  If  the  URL  is specified  without  a port,  the  default  port  

is  used  (389  for  non-SSL,  686  for  SSL).  

Some  rules for  constructing  strings  associated  with  the  TXT  records:  

v   If the  string  contains  white  space,  the  entire  string  following  TXT  must  be 

enclosed  in  double  quotes.  

v   If the  string  contains  characters  not  supported  by  DNS,  for  example,  the  suffix  

might  contain  characters  not  supported  by  DNS,  an  escape  is supported,  based  

on  the  technique  described  in  ″Uniform  Resource  Locators  (URL)″, Internet  RFC  

1738,  December  1994.  For  example:  

TXT      "service:ldaps://ldapr2/o=foo%f0,c=us"  

permits  the  x’f0’  character  to  be  included  in  the  LDAP  URL.

The  algorithm  for  the  use  of LDAP  servers  is outlined  below.  The  LDAP  servers  

are  ordered  in  the  list  based  on  this  algorithm.  The  application  has  the  freedom  of  

using  the  first  server  in  the  list  based  on  priority  and  weight.  It  also  has  the  

freedom  to  select  a different  server,  based  upon  its  needs.  

Using  pseudo-SRV  TXT  records:    If the  SRV  algorithm  does  not  return  any  

servers,  the  secondary  algorithm  is invoked.  Instead  of  looking  for  SRV  records,  

the  lookup  routine  performs  a TXT  query  using  the  service  name  string  supplied  

on  ldap_server_locate(),  which  defaults  to  ldap.tcp.  

The  intent  is  to  emulate  the  scheme  provided  with  SRV  records,  but  using  a search  

for  TXT  records  instead.  To duplicate  the  previous  example  using  TXT  records  

instead  of  SRV  records,  the  following  definition  is used:  

ldap.marketing.tcp     TXT      0  0  0    ldapm  

                      TXT      0  0  0    ldapmsec  

                      TXT      0  0  0    ldapmsuffix  

                      TXT      1  1  0    ldapr1  

                      TXT      1  2  0    ldapr2  

                      TXT      1  2  0    ldapr2sec  

                      TXT      2  1  2222  ldapr3.raleigh.ibm.com.  

  

ldapm                  A       199.23.45.296  

                      TXT      "service:ldap://ldapm.austin.ibm.com:389/o=foo,c=us"  

                      TXT      "ldaptype:  master"  

  

ldapmsec               A       199.23.45.296  

                      TXT      "service:ldaps://ldapm.austin.ibm.com:686/o=foo,c=us"  

                      TXT      "ldaptype:  master"  

  

ldapmsuffix            A       199.23.45.296  

                      TXT      "service:ldaps://ldapm.austin.ibm.com:389/o=moo,c=us"  

                      TXT      "ldaptype:  master"  

  

ldapr1                 A       199.23.45.297

 

Chapter  2. API categories  117

http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html
http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html


TXT      "service:ldap://ldapr1:389/o=foo,c=us"  

                      TXT      "ldaptype:  replica"  

  

ldapr2                 A       199.23.45.298  

                      TXT      "service:ldap://ldapr2:389/o=foo,c=us"  

                      TXT      "ldaptype:  replica"  

  

ldapr2sec              A       199.23.45.298  

                      TXT      "service:ldaps://ldapr2/o=foo,c=us"  

                      TXT      "ldaptype:  replica"  

                      TXT      "ldapinfo:  ca=verisign,  authtype=server"  

  

ldapr3.raleigh.ibm.com.    A   199.23.45.299  

  

The  LDAP  resolver  routine  assumes  that  the  default  domain  is in  effect  when  the  

SRV-type  TXT  records  do  not  contain  fully  qualified  domain  names.  

Note:   The  pseudo-SRV  TXT  records,  in  many  cases,  can  exactly  replicate  the  syntax  

of  SRV  records,  with  the  exception  that  SRV  is replaced  by  TXT. This  makes  

for  consistent  parsing  of  the  records  by  the  resolver  routines,  plus  it  makes  it 

very  simple  to  switch  between  the  two  mechanisms  when  inserting  this  

information  into  the  DNS  database.  However,  some  versions  of  DNS  require  

data  associated  with  the  TXT  records  to  be  enclosed  in  double  quotes,  as 

follows:  

ldap.marketing.tcp     TXT     "0  0  0    ldapm"  

                      TXT     "0  0  0    ldapmsec"  

The  ldap_server_locate()  API  handles  either  format.  

Using  a CNAME  alias  record:    If the  pseudo-SRV  algorithm  does  not  return  any  

servers,  the  third  algorithm  is  invoked.  Instead  of  looking  for  TXT  records,  the  

lookup  routine  performs  a standard  query  using  the  service  name  string  supplied  

on  ldap_server_locate(),  which  defaults  to ldap.  

ldap.marketing.tcp     CNAME    ldapm  

  

ldapm                  A       199.23.45.296  

                      TXT      "service:ldap://ldapm.austin.ibm.com:389/o=foo,c=us"  

                      TXT      "ldaptype:  master"  

If TXT  records  are  not  associated  with  the  A record,  defaults  are  assumed  for  port  

and  ldaptype.  

Alternative scheme for publishing LDAP server information in 

DNS 

A  more  recent  Internet  Engineering  Task Force  (IETF)  draft  describes  a scheme  

where  service  keys  and  the  protocol  are  prefixed  with  an  underscore  ( _ ). See  the  

following  internet  draft  for  more  information  on  this  new  scheme:  A.  Gulbrandsen,  

P.  Vixie,  ″A  DNS  RR  for  Specifying  the  Location  of Services  (DNS  SRV)″, Internet  

RFC  2052,  Troll  Technologies,  Vixie  Enterprises.  January  1999.  

When  services  are  published  in  DNS  using  the  approach  proposed  in  this  IETF  

draft,  service  names  and  protocol  are  prefixed  with  an  underscore  ( _ ). 

For  instance,  a previous  example  might  be  defined  as  follows:  

_ldap.marketing._tcp     SRV      0  0  0    ldapm  

                        SRV      0  0  0    ldapmsec  

                        SRV      0  0  0    ldapmsuffix  

                        SRV      1  1  0    ldapr1

 

118  Programming Reference

http://www.ietf.org/rfc/rfc2052.txt
http://www.ietf.org/rfc/rfc2052.txt
http://www.ietf.org/rfc/rfc2052.txt


SRV      1  2  0    ldapr2  

                        SRV      1  2  0    ldapr2sec  

                        SRV      2  1  2222  ldapr3.raleigh.ibm.com.  

If  all  LDAP  service  information  is published  within  your  enterprise  this  way,  the  

application  can  choose  to not  specify  service  key  or  protocol,  and  the  

ldap_server_locate()  API  first  performs  its  search  using  ldap  and  tcp.  The  search  

does  not  find  any  entries,  and  the  API  automatically  runs the  search  again  using  

_ldap  and  _tcp  for  service  key  and  protocol,  which  returns  the  information  

published  with  the  alternative  scheme.  

If  information  is  published  with  both  schemes,  the  application  must  explicitly  

define  the  service  key  and  protocol,  to ensure  that  the  desired  information  is 

returned.  

Errors 

ldap_server_locate(),  ldap_server_free_list  and  ldap_server_conf_save()  return  the  

LDAP  error  code  resulting  from  the  operation.  

See  “LDAP_ERROR”  on  page  41  for  more  details.  

See also 

ldap_error  

LDAP_SSL 

   ldap_ssl_client_init  

   ldap_ssl_init  

   ldap_ssl_start  (deprecated)  

   ldap_set_cipher  

   ldap_ssl_set_fips_mode_np

Purpose 

Routines  for  initializing  the  Secure  Socket  Layer  (SSL)  function  for  an  LDAP  

application,  and  creating  a secure  connection  to  an  LDAP  server.  

For  ldap_ssl_set_fips_mode_np(),  the  FIPS  processing  mode  is set  prior  to  creating  

an  SSL  environment  used  for  securing  server  connections.  

Synopsis 

#include  <ldap.h> 

#include  <ldapssl.h> 

  

int  ldap_ssl_client_init(  

       char        *keyring,  

       char        *keyring_pw,  

       int         ssl_timeout,  

       int         *pSSLReasonCode)  

  

LDAP  *ldap_ssl_init(  

       char        *host,  

       int          port,  

       const  char        *name)  

  

int  ldap_ssl_start(  

       LDAP        *ld,

 

Chapter  2. API categories  119



char        *keyring,  

       char        *keyring_pw,  

       char        *name)  

  

int  ldap_set_cipher(  

       LDAP        *ld,  

       char        *option)  

  

int  ldap_ssl_set_fips_mode_np(  

   int          mode)  

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init()  or  ldap_open().  

host  Several  methods  are  supported  for  specifying  one  or  more  target  LDAP  

servers,  including  the  following:  

Explicit  host  list  

Specifies  the  name  of  the  host  the  LDAP  server  runs on.  The  host  

parameter  can  contain  a blank-separated  list  of  hosts  to  connect  to,  

and  each  host  might  optionally  be  of  the  form  host:port. If present,  

the  :port  overrides  the  port  parameter  supplied  on  ldap_init(),  

ldap_ssl_init()  or  ldap_open().  The  following  are  typical  examples:  

ld=ldap_ssl_init  ("server1",  ldap_port,  name);  

ld=ldap_ssl_init  ("server2:636,  ldap_port,  name);  

ld=ldap_ssl_init  ( "server1:636  server2:2000  server3",  

        ldap_port,  name);  

Local  host  

If  the  host  parameter  is NULL,  the  LDAP  server  is assumed  to be  

running  on  the  local  host.  

Default  hosts  

If  the  host  parameter  is set  to  ldaps://,  the  LDAP  library  attempts  

to  locate  one  or  more  default  LDAP  servers,  with  secure  SSL  ports,  

using  the  IBM  Tivoli  Directory  Server  ldap_server_locate()  function.  

The  port  specified  on  the  call  is  ignored,  because  

ldap_server_locate()  returns  the  port.  For  example,  the  following  

two  are  equivalent:  

ld=ldap_ssl_init  ("ldaps://",  ldap_port,  name);  

ld=ldap_ssl_init  (LDAPS_URL_PREFIX,  LDAPS_PORT,  name);  

Note:   ldaps  or  LDAPS_URL_PREFIX  must  be  used  to obtain  

servers  with  secure  ports.  If more  than  one  default  server  is  

located,  the  list  is processed  in  sequence,  until  an  active  

server  is found.
The  LDAP  URL  can  include  a Distinguished  Name,  used  as  a filter  

for  selecting  candidate  LDAP  servers  based  on  the  server’s  suffixes.  

If  the  most  significant  portion  of the  DN  is an  exact  match  with  a 

server’s  suffix  after  normalizing  for  case,  the  server  is  added  to  the  

list  of  candidate  servers.  For  example,  the  following  returns  default  

LDAP  servers  that  have  a suffix  that  supports  the  specified  DN  

only:  

ld=ldap_ssl_init  ("ldaps:///cn=fred,  dc=austin,  dc=ibm,  

        dc=com",  LDAPS_PORT,  name);  

 

120 Programming  Reference



In  this  case,  a server  that  has  a suffix  of ″dc=austin,  dc=ibm,  

dc=com″  matches.  If  more  than  one  default  server  is located,  the  

list  is processed  in sequence,  until  an  active  server  is found.  

 If  the  LDAP  URL  contains  a host  name  and  optional  port,  the  host  

is  used  to  create  the  connection.  No  attempt  is made  to locate  the  

default  servers,  and  the  DN,  if present,  is ignored.  For  example,  the  

following  two  are  equivalent:  

ld=ldap_ssl_init  ("ldaps://myserver",  LDAPS_PORT,  name);  

ld=ldap_ssl_init  ("myserver",  LDAPS_PORT,  name);  

See  “Locating  default  LDAP  servers”  on  page  71  for  more  

information  about  the  algorithm  used  to  locate  default  LDAP  

servers.  

Host  with  privileged  port  

On  platforms  that  support  the  rresvport  function  (typically  UNIX  

platforms),  if a specified  host  is prefixed  with  ″privport://″, then  

the  LDAP  library  uses  the  rresvport()  function  to  attempt  to  obtain  

one  of  the  reserved  ports  (512  through  1023),  instead  of an  

ephemeral  port.  The  search  for  a reserved  port  starts  at 1023  and  

stops  at 512.  If  a reserved  port  cannot  be  obtained,  the  function  call  

fails.  For  example:  

 ld=ldap_ssl_init  ("privport://server1,  ldap_port,  name);  

ld=ldap_ssl_init  ("privport://server2:1200,  ldap_port,  

        name);  

ld=ldap_ssl_init  ( "privport://server1:800  server2:2000  

        privport://server3",  ldap_port,  name);   port  

port  Specifies  the  port  number  to connect  to.  If you  want  the  default  

IANA-assigned  SSL  port  of 636,  specify  LDAPS_PORT.  

keyring  

Specifies  the  name  of  a key  database  file  (with  kdb  extension).  The  key  

database  file  typically  contains  one  or  more  certificates  of CAs  that  are  

trusted  by  the  client.  These  types  of  X.509  certificates  are  also  known  as  

trusted  roots.  A  key  database  can  also  be  used  to  store  the  client’s  private  

keys  and  associated  client  certificates.  A private  key  and  associated  client  

certificate  are  required  only  if the  LDAP  server  is configured  to  require  

client  and  server  authentication.  If the  LDAP  server  is configured  to  

provide  only  server  authentication,  a private  key  and  client  certificate  are  

not  required.  

Default  keyring  and  password  

Applications  can  use  the  default  keyring  file,  as installed  with  the  

LDAP  support,  by  specifying  NULL  pointers  for  keyring  and  

keyring_pw.  The  default  keyring  file,  that  is,  ldapkey.kdb,  and  the  

associated  password  stash  file,  that  is,  ldapkey.sth,  are  installed  in 

the  /etc  directory  under  <LDAPHOME>,  where  <LDAPHOME>  is 

the  path  to  the  installed  LDAP  support.  <LDAPHOME>  varies  by  

operating  system  platform:  

v   AIX  - /usr/ldap  

v   Solaris  - /usr/IBMldaps  

v   HP-UX  - /usr/IBMldap  

v   Windows  - C:\Program  Files\IBM\LDAP

 

Chapter 2. API categories  121



Note:   This  is the  default  install  location.  The  actual  

<LDAPHOME>  is determined  during  installation.

Applications  typically  use  the  default  keyring  file  when  the  LDAP  

servers  used  by  the  applications  are  configured  with  X.509  

certificates  issued  by  one  of the  well-known  default  CA.  A trusted  

root  key  is  the  public  key  and  associated  Distinguished  Name  of  a 

CA.  The  following  trusted  roots  are  automatically  defined  in the  

default  LDAP  key  database  file  (ldapkey.kdb):  

v   Integrion  Certification  Authority  Root  

v   IBM  World  Registry  Certification  Authority  

v   Thawte  Personal  Premium  CA  

v   Thawte  Personal  Freeemail  CA  

v   Thawte  Personal  Basic  CA  

v   Thawte  Premium  Server  CA  

v   VeriSign  Test CA  Root  Certificate  

v   RSA  Secure  Server  Certification  Authority  

v   VeriSign  Class  1 Public  Primary  Certification  Authority  

v   VeriSign  Class  2 Public  Primary  Certification  Authority  

v   VeriSign  Class  3 Public  Primary  Certification  Authority  

v   VeriSign  Class  4 Public  Primary  Certification  Authority

Note:   Each  of  these  certificates  are  initially  set  to be  trusted.
If  the  default  keyring  file  cannot  be  located,  this  set  of trusted  roots  

is  also  built-in  to  the  LDAP/SSL  code,  and  is used  by  default.  

By  modifying  the  contents  of ldapkey.kdb,  as  located  in 

<<LDAPHOME>>\etc,  all  LDAP  applications  that  use  SSL  and  

specify  NULL  pointers  to keyring  and  keyring_pw  use  the  revised  

key  database  without  change  to  each  application.  There  are  a 

variety  of reasons  for  changing  or  customizing  a keyring  file,  

including:  

v   Adding  one  or  more  new  trusted  roots  (that  is,  adding  trust for  

additional  CAs).  

v   Removing  trust. For  example,  your  enterprise  might  obtain  all  of  

its  server  certificates  from  VeriSign.  In this  case,  it is appropriate  

to  mark  the  VeriSign  certificates  as trusted  only.

Note:   For  the  default  LDAP  keyring  file  to  be  generally  useful  to  a 

set  of  applications,  it needs  to  be  readable  by  each  of  the  

applications.  It  is not  suitable  to  store  client  certificates  with  

private  keys  in  a keyring  file  that  is readable  by  users  other  

than  the  owner  of the  private  keys.  Therefore,  the  client  

certificates  with  private  keys  should  not  be  stored  in  the  

default  LDAP  keyring  file.  They  must  be  stored  in  keyring  

files  that  can  be  accessed  by  the  appropriate  user  only.  Care  

must  be  taken  to  ensure  that  local  file  system  permissions  

are  set  so  that  the  keyring  file  and  associated  stash  file,  if 

used,  are  accessible  by  the  appropriate  user  only.
The  password  defined  for  the  default  ldapkey.kdb  file  is 

ssl_password. Use  this  password  when  initially  accessing  the  

default  keyring  database  with  the  gsk7ikm  utility.  This  default  

password  is also  encrypted  into  the  default  keyring  password  stash  

 

122 Programming  Reference



file,  ldapkey.sth,  located  in  the  same  directory  as  ldapkey.kdb.  Use  

the  gsk7ikm  utility  to change  the  password.  

 If  keyring  is specified,  you  must  specify  a filename  with  

fully-qualified  path.  If a filename  without  a fully-qualified  path  is 

specified,  the  LDAP  library  looks  in  the  current  directory  for  the  

file.  The  key  database  file  specified  here  must  have  been  created  

using  the  gsk7ikm  utility.  

 For  more  information  on  using  gsk7ikm  to manage  the  contents  of  

a key  database,  see  Chapter  4,  “Using  gsk7IKM,”  on  page  149.

Note:   Although  still  supported,  use  of  the  ldap_ssl_start()  is 

discouraged,  as  its  use  has  been  deprecated.  Any  application  

using  the  ldap_ssl_start()  API  must  use  a single  key  

database  per  application  process  only.

keyring_pw  

Specifies  the  password  that  is used  to  protect  the  contents  of the  

key  database.  This  password  is important,  particularly  when  it 

protects  one  or  more  private  keys  stored  in  the  key  database.  The  

password  is specified  when  the  key  database  is initially  created,  

and  can  be  changed  using  the  gsk7ikm  utility.  In  lieu  of  specifying  

the  password  each  time  the  application  opens  the  keyring  

database,  the  password  can  be  obtained  from  a password  stash  file  

that  contains  an  encrypted  version  of the  password.  The  password  

stash  file  can  be  created  using  the  gsk7ikm  utility.  To obtain  the  

password  from  the  password  stash  file,  specify  a NULL  pointer  for  

keyring_pw.  It  is assumed  that  the  password  stash  file  has  the  

same  name  as the  keyring  database  file,  but  with  an  extension  of 

.sth  instead  of .kdb.  It  is also  assumed  that  the  password  stash  file  

resides  in  the  same  directory  as  the  keyring  database  file.  

Note:   The  default  keyring  file  (ldapkey.kdb)  is initially  configured  

to  have  ssl_password  as its  password.  This  password  is also  

initially  configured  in  the  default  password  stash  file  

(ldapkey.sth).

name  Specifies  the  name,  or label,  associated  with  the  client  private  

key/certificate  pair  in  the  key  database.  It is used  to  uniquely  

identify  a private  key/certificate  pair, as  stored  in the  key  database,  

and  might  be  something  like:  Digital  ID  for  Fred  Smith.  

 If  the  PKCS#11  interface  is used  to  perform  SSL  connection  using  a 

crypto  device,  then  the  user  must  pass  the  token  label  of  the  crypto  

device  and  the  certificate  that  need  to  be  used  for  the  connection  in 

the  following  format:  TOKENLABEL:CERTIFICATENAME.  Here,  

the  certificate  is  stored  in  the  key  storage  device  using  this  format.  

 If  the  LDAP  server  is configured  to  perform  Server  Authentication,  

a client  certificate  is not  required  and  name  can  be  set  to  NULL. If 

the  LDAP  server  is configured  to  perform  Client  and  Server  

Authentication,  a client  certificate  is required.  name  can  be  set  to  

NULL  if a default  certificate/private  key  pair  has  been  designated  

as  the  default.  See  Chapter  4,  “Using  gsk7IKM,”  on  page  149.  

Similarly,  name  can  be  set  to  NULL  if there  is a single  

certificate/private  key  pair  in  the  designated  key  database.  

 

Chapter 2. API categories  123



ssl_timeout  

Specifies  the  SSL  timeout  value  in  seconds.  The  timeout  value  

controls  the  frequency  with  which  the  SSL  protocol  stack  

regenerates  session  keys.  If ssl_timeout  is set  to  0,  the  default  value  

SSLV3_CLIENT_TIMEOUT  is used.  Otherwise,  the  value  supplied  

is  used,  provided  it is less  than  or  equal  to 86,400  (number  of  

seconds  in  a day).  If  ssl_timeout  is greater  than  86,400,  then  

LDAP_PARAM_ERROR  is returned.  

pSSLReasonCode  

Specifies  a pointer  to the  SSL  Reason  Code,  which  provides  

additional  information  in  the  event  that  an  error  occurs  during  

initialization  of the  SSL  stack,  when  ldap_ssl_client_init()  is 

invoked.  See  ldapssl.h  for  reason  codes  that  can  be  returned.  

mode  For  ldap_ssl_set_fips_mode_np(),  mode  specifies  whether  FIPS  

processing  mode  should  be  on  (1)  or  off  (0).

Usage 

The  U.S.  government’s  regulations  regarding  the  export  of SDKs  which  provide  

support  for  encryption  continue  to evolve.  

The  point  of  control,  with  respect  to available  levels  of encryption,  is now  the  

application.  

Any  LDAP  application  that  uses  the  IBM  Tivoli  Directory  Server  C-Client  SDK  

Version  6.0  with  the  required  level  of GSKit  6.0.3  or  higher  has  default  access  to 

SSL  encryption  algorithms.  

The  ldap_ssl_client_init()  routine  is used  to  initialize  the  SSL  protocol  stack  for  an  

application  process.  Initialization  includes  establishing  access  to  the  specified  key  

database  file.  The  ldap_ssl_client_init()  API  must  be  invoked  once  per  application  

process,  prior  to  making  any  other  SSL-related  LDAP  calls,  such  as  ldap_ssl_init().  

Once  ldap_ssl_client_init()  has  been  successfully  invoked,  any  subsequent  

invocations  return  a return  code  of  LDAP_SSL_ALREADY_INITIALIZED.  This  also  

means  that  a particular  key  database  file  is  effectively  bound  to an  application  

process.  To change  the  key  database,  the  application  or  one  of its  processes  must  

be  restarted.  

Note:   The  ldap_ssl_client_init()  routine  is deprecated  but  is  still  supported.  

The  ldap_ssl_environment_init()  routine  can  be  used  instead  of  

ldap_ssl_client_init()  with  the  advantage  of  being  able  to  be  called  more  than  once  

in  the  same  process.  Each  call  creates  a new  SSL  environment  which  is utilized  for  

subsequent  SSL  sessions  initiated  by  calling  ldap_ssl_init().  These  SSL  

environments  persist  as  long  as the  LDAP  sessions  that  were  created  using  them  

persist.  

The  ldap_ssl_init()  routine  is the  SSL  equivalent  of  ldap_init().  It is used  to  

initialize  a secure  SSL  session  with  a server.  

Note:   The  server  is not  actually  contacted  until  an  operation  is performed  that  

requires  it,  allowing  various  options  to be  set  after  initialization.
After  the  secure  connection  is established  for  the  LDAP  session,  all  subsequent  

LDAP  messages  that  flow  over  the  secure  connection  are  encrypted,  including  the  

ldap_simple_bind()  parameters,  until  ldap_unbind()  is invoked.  

 

124 Programming  Reference



ldap_ssl_init()  returns  a session  handle,  a pointer  to  an  opaque  data  structure  that  

must  be  passed  to  subsequent  calls  that  pertain  to the  session.  These  subsequent  

calls  return  NULL  if the  session  cannot  actually  be  established  with  the  server.  Use  

ldap_get_option()  to  determine  why  the  call  failed.  

The  LDAP  session  handle  returned  by  ldap_ssl_init  and  ldap_init  is a pointer  to an  

opaque  data  type  representing  an  LDAP  session.  The  ldap_get_option()  and  

ldap_set_option()  APIs  are  used  to access  and  set  a variety  of  session-wide  

parameters.  See  “LDAP_INIT”  on  page  61  for  more  information  about  

ldap_get_option()  and  ldap_set_option().  

Note:   When  connecting  to  an  LDAP  V2  server,  one  of  the  ldap_simple_bind()  or  

ldap_bind()  calls  must  be  completed  before  other  operations  can  be  

performed  on  the  session,  with  the  exception  of  ldap_set/get_option().  The  

LDAP  V3  protocol  does  not  require  a bind  operation  before  performing  

other  operations.  

Although  still  supported,  the  use  of  the  ldap_ssl_start()  API  is now  deprecated.  

The  ldap_ssl_client_init()  and  ldap_ssl_init()  APIs  must  be  used  instead.  The  

ldap_ssl_start()  API  starts  a secure  connection  to  an  LDAP  server  using  SSL.  

ldap_ssl_start()  accepts  the  ld from  an  ldap_open()  and  performs  an  SSL  

handshake  to  a server.  ldap_ssl_start()  must  be  invoked  after  ldap_open()  and  prior  

to  ldap_bind().  Once  the  secure  connection  is established  for  the  ld,  all  subsequent  

LDAP  messages  that  flow  over  the  secure  connection  are  encrypted,  including  the  

ldap_bind()  parameters,  until  ldap_unbind()  is invoked.  

The  following  scenario  depicts  the  calling  sequence,  where  the  entire  set  of LDAP  

transactions  are  protected  by  using  a secure  SSL  connection,  including  the  dn  and  

password  that  flow  on  the  ldap_simple_bind():  

 rc = ldap_ssl_client_init  (keyfile,  keyfile_pw,  timeout,  

        &reasoncode);  

 ld = ldap_ssl_init(ldaphost,  ldapport,  label  ); 

 rc = ldap_set_option(  ld,  LDAP_OPT_SSL_CIPHER,  &ciphers);  

 rc = ldap_simple_bind_s(ld,  binddn,  passwd);  

  

 ...additional  LDAP  API calls  

  

 rc = ldap_unbind(  ld ); 

Note:   The  sequence  of  calls  for  the  deprecated  APIs  is ldap_open/init(),  

ldap_ssl_start(),  followed  by  ldap_bind().  

The  following  ciphers  are  attempted  for  the  SSL  handshake  by  default,  in  the  order  

shown:  

AES_256  

AES_128  

RC4_SHA_US  

RC4_MD5_US  

DES_SHA_US  

3DES_SHA_US  

RC4_MD5_EXPORT  

RC2_MD5_EXPORT  

See  ldap_get/set_option()  for  more  information  on  setting  the  ciphers  to be  used.  

To specify  the  number  of seconds  for  the  SSL  session-level  timer,  use:  

ldap_set_option(ld,LDAP_OPT_SSL_TIMEOUT,  &timeout)  

 

Chapter 2. API categories  125



where  timeout  specifies  timeout  in  seconds.  When  timeout  occurs,  SSL  again  

establishes  the  session  keys  for  the  session,  for  increased  security.  To specify  a 

specific  cipher,  or  set  of  ciphers,  to  be  used  when  negotiating  with  the  server,  use  

ldap_set_option()  to  define  a sequence  of ciphers.  For  example,  the  following  

defines  a sequence  of  three  ciphers  to be  used  when  negotiating  with  the  server.  

The  first  cipher  that  is found  to  be  in  common  with  the  server’s  list  of ciphers  is 

used.  

ldap_set_cipher  is  the  same  as  calling  ldap_set_option  (ld,  

LDAP_OPT_SSL_CIPHER,  option).  Either  function  checks  the  validity  of  the  input  

string.  The  cipher  is used  when  the  SSL  connection  is established  by  ldap_ssl_init().  

See  “LDAP_INIT”  on  page  61  for  more  information  about  ldap_set_option.  

ldap_ssl_set_fips_mode_np()  can  be  called  before  calling  

ldap_ssl_environment_init()  or  ldap_ssl_client_int()  to  set  FIPS  processing  mode.  If 

FIPS  processing  mode  is supposed  to be  on,  SSL  uses  the  FIPS  certified  encryption  

libraries  for  encryption  and  sets  the  processing  mode  to on.  FIPS  processing  mode  

does  not  change  any  existing  SSL  environments.  

Options 

Options  are  supported  for  controlling  the  nature  of  the  secure  connection.  These  

options  are  set  using  the  ldap_set_option()  API.  

ldap_set_option(  ld,  LDAP_OPT_SSL_CIPHER,  

(void  *) LDAP_SSL_3DES_SHA_US  

LDAP_SSL_RC4_MD5_US);  

The  following  ciphers  are  defined  in  ldap.h:  

#define  LDAP_SSL_RC4_SHA_US  "05"  

#define  LDAP_SSL_RC4_MD5_US  "04"  

#define  LDAP_SSL_DES_SHA_US  "09"  

#define  LDAP_SSL_3DES_SHA_US  "0A"  

#define  LDAP_SSL_RC4_MD5_EX  "03"  

#define  LDAP_SSL_RC2_MD5_EX  "06"  

For  more  information  on  ldap_set_option,  see  “LDAP_INIT”  on  page  61.  

Notes 

ldapssl.h  contains  return  codes  that  are  specific  for  ldap_ssl_client_init(),  

ldap_ssl_init()  and  ldap_ssl_start().  

The  SSL  versions  of  these  utilities  include  RSA  Security  Inc.  software.  

The  ldap_ssl_client_init(),  ldap_ssl_init()  and  ldap_ssl_start()  APIs  are  only  

supported  for  the  versions  of  the  LDAP  library  that  include  the  SSL  component.  

ldap_ssl_set_fips_mode_np()  returns  LDAP_SUCCESS  if the  client  library  supports  

SSL,  otherwise  it  returns  LDAP_SSL_NOT_AVAILABLE.  

See also 

ldap_init,  ldap_ssl_environment_init,  ldap_ssl_client_init  

LDAP_SSL_PKCS11  

v   ldap_ssl_pkcs11_client_init  

v   ldap_ssl_pkcs11_environment_init

 

126 Programming  Reference



Purpose 

These  LDAP  routines  are  used  for  setting  up  the  SSL  and  PKCS#11  environment  

for  GSKit.  

Synopsis 

#include  <ldap.h> 

#include  <ldapssl.h> 

  

  

typedef   struct  { 

         char        *Libpath,  

         char        *TokenLabel,  

         char        *TokenPw,  

         int         Keystorage,  

         int         Accelerator}  PKCS11arg;  

  

int  ldap_ssl_pkcs11_client_init(  

         char        *keydatabase,  

         char        *keydatabase_pwd,  

         int         ssl_timeout,  

         int         *pSSLReasonCode,  

         PKCS11arg   *pkcs11arg);  

  

ldap_ssl_pkcs11_environment_init(  

         char        *keydatabase,  

         char        *keydatabase_pwd,  

         int         ssl_timeout,  

         int         *pSSLReasonCode,  

         PKCS11arg   *pkcs11arg);  

  

  

Input parameters 

keydatabase  

 Specifies  the  name  of  the  key  database  file  with  kdb  extension.  The  key  

database  file  typically  contains  one  or  more  certificates  from  the  certificate  

authorities  (CAs)  that  are  trusted  by  the  clients.  If the  LDAP  server  is 

configured  to  provide  only  server  authentication  then  a private  key  and  

client  certificate  are  not  required.  If the  user  wants  to  use  the  crypto  device  

under  key  storage  mode  only  then  the  keydatabase  parameter  can  be 

NULL.  If  the  client  needs  the  crypto  device  to work  only  in  accelerator  

mode  then  the  kdb  file  must  be  specified.  If the  key  database  file  and  

password  are  NULL  then  the  default  ldapkey.kdb  file  will  be  used  as  the  

key  database  and  the  password  will  be  used  from  default  ldapkey.sth  file.  

 User  is  given  a provision  to  have  some  keys  stored  on  device,  which  can  

be  Personal  Certificates  with  private  key,  and  some  in  the  key  database  file,  

which  can  be  Signer  Certificates  with  public  keys.  Therefore,  a specific  

certificate  will  be  selected  either  from  the  local  kdb  file  or  from  crypto  

device  based  on  the  certificate  label  used.  

keydatabase_pwd  

Specifies  the  password  that  is used  to  protect  the  contents  of the  key  

database  file.  This  password  is important,  particularly  when  it protects  one  

or  more  private  keys  stored  in  the  key  database  file.  If NULL  is passed  to  

this  parameter  and  the  key  database  file  is NULL,  then  password  for  the  

default  ldapkey.kdb  file  will  be  taken  from  ldapkey.sth  file.  

 

Chapter 2. API categories  127



ssl_timeout  

Specifies  the  SSL  timeout  value  in  seconds.  The  timeout  value  controls  the  

frequency  with  which  the  SSL  protocol  stack  regenerates  session  keys.  If 

ssl_timeout  is set  to  0, then  the  default  value  SSLV3_CLIENT_TIMEOUT  is 

used.  Otherwise,  the  value  specified  in  the  parameter  is  used,  this  value  

should  be  less  than  or  equal  to  86,400  (number  of seconds  in  a day).  If 

ssl_timeout  is greater  than  86,400,  then  LDAP_PARAM_ERROR  is 

returned.  

pSSLReasonCode  

Specifies  a pointer  to  the  SSL  reason  code  that  contains  additional  

information  in  event  of  an  error  occurs  during  the  initialization  of  the  SSL  

stack.  See  ldapssl.h  for  reason  codes  that  can  be  returned.  

pkcs11arg  

Specifies  a struct  data  type  that  contains  information  about  the  different  

crypto  device  settings  to  enable  key  storage  and  accelerator  mode.  

 An  instance  of a structure  contain  following  fields:  

Libpath  

Specifies  a null  terminated  string  that  defines  the  driver  path  of  the  

file  that  need  to be  used  to  access  PKCS11  device.  

Token_label  

Specifies  a null  terminated  string  that  defines  the  label  that  is 

assigned  to  the  PKCS11  device  for  access.  

Token_pwd  

Specifies  a null  terminated  string  that  defines  the  password  phrase  

to  access  the  PKCSC11  device.  

Keystorage  

The  value  of  this  parameter  can  be  0 or  1.  If  set  to  1,  it indicates  

that  the  crypto  device  need  to  be  used  as  key  storage.  If set  to  0, it 

indicates  that  the  crypto  device  will  not  function  as  key  storage.  

Accelerator  

Specifies  an  integer  value  determining  the  type  of  accelerated  

operation  that  a client  need  from  the  PKCS11  device.  

 Under  acceleration  mode,  the  PKCS11  device  can  be  configured  to  

do  three  different  operations:  Symmetric  operation,  Digest  

operation,  and  Random  Data  Generation  operation.  

 The  accelerator  value  should  be  one  of  the  options  listed  below:  

#define  LDAP_SSL_ACCELERATION_MODE_NONE           0 

#define  LDAP_SSL_ACCELERATION_MODE_SYM            1 

#define  LDAP_SSL_ACCELERATION_MODE_DIG            2 

#define  LDAP_SSL_ACCELERATION_MODE_SYM_DIG        3 

#define  LDAP_SSL_ACCELERATION_MODE_RND            4 

#define  LDAP_SSL_ACCELERATIONi_MODE_RND_SYM       5 

#define  LDAP_SSL_ACCELERATION_MODE_RND_DIG        6 

#define  LDAP_SSL_ACCELERATION_MODE_SYM_DIG_RND    7 

  

Usage 

The  ldap_ssl_pkcs11_client_init()  routine  is used  to  initialize  the  SSL  and  PKCS#11  

environment  for  an  application  process.  For  every  application  process,  the  

ldap_ssl_pkcs11_client_init()  API  must  be  invoked  before  making  any  other  

SSL-related  LDAP  calls,  such  as ldap_ssl_init().  Once  ldap_ssl_pkcs11_client_init()  

has  been  successfully  invoked,  any  subsequent  invocations  return  a return  code  of 

 

128 Programming  Reference



LDAP_SSL_ALREADY_INITIALIZED.  This  indicates  that  a particular  key  database  

file  and  PKCS#11  settings  are  effectively  bound  to  an  application  process.  To 

change  the  SSL  configuration  in  use,  the  application  or  one  of  its  processes  must  be  

restarted.  

The  ldap_ssl_pkcs11_environment_init()  routine  can  be  used  instead  of 

ldap_ssl_pkcs11_client_init().  This  API  can  be  called  more  than  once  in  the  same  

process,  where  each  call  creates  a new  SSL  environment  that  is used  for  subsequent  

SSL  sessions  initiated  by  calling  ldap_ssl_init().  In  these  cases,  the  SSL  

environments  persist  as  long  as  the  LDAP  sessions  that  were  created  using  them  

persist.  

See also 

ldap_ssl_environment_init,  ldap_ssl_client_init,  ldap_ssl_init  

LDAP_START_TRANSACTION  

v   ldap_start_transaction  

v   ldap_start_transaction_s

Purpose 

This  LDAP  routine  invokes  a start  transaction  request.  

Synopsis 

#include  <ldap.h> 

  

  

int  ldap_start_transaction(  

       LDAP            *ld,  

       LDAPControl     **serverctrls,  

       LDAPControl     **clientctrls,  

       int             *msgidp)  

  

int  ldap_start_transaction_s(  

       LDAP            *ld,  

       LDAPControl     **serverctrls,  

       LDAPControl     **clientctrls,  

       struct  berval   **retdatap)  

  

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init(),  or  ldap_open().  

serverctrls  

Specifies  a list  of LDAP  server  controls.  

clientctrls  

Specifies  a list  of LDAP  client  controls.

Output parameters 

msgidp  

This  parameter  contains  the  message  id of  the  request.  

retdatap  

This  parameter  specifies  the  result  of  the  start  transaction  operation.  This  

result  contains  the  transaction  id  of  the  transaction.

 

Chapter 2. API categories  129



Usage 

This  API  routine  is used  to  initiate  a start  transaction  request  against  the  server.  

Errors 

This  API  routine  returns  an  LDAP  error  code  if the  operation  is unsuccessful.  

See also 

ldap_start_transaction,  ldap_start_transaction_s,  ldap_prepare_transaction,  

ldap_prepare_transaction_s,  ldap_end_transaction,  ldap_end_transaction_s,  

ldap_get_tran_id,  ldap_create_transaction_control  

LDAP_START_TLS  

   ldap_start_tls_s_np

Purpose 

Start  a TLS  session.  

Synopsis 

#include  <ldap.h>  

  

int  ldap_start_tls_s_np  ( 

 LDAP   *ld,  

 const  char  *certificateName)  

Input parameters 

ld  Specifies  the  LDAP  pointer  used  in  the  ldap_start_tls_s_np()  call.  

certificateName  

Specifies  the  name  of the  certificate  to  use.  It’s  the  same  as  the  parameter  

used  in  the  ldap_ssl_environment_init()  API  and  may  be  NULL.

Usage 

The  ldap_start_tls_s_np()  API  is used  to  secure  a previously  unsecured  connection.  

It  takes  a handle  from  an  existing  LDAP  connection  and  the  name  of  the  certificate  

to  use.  If  the  command  is  successful,  then  communication  on  the  connection  will  

be  secure  until  either  the  connection  is closed  or  an  ldap_stop_tls_s_np()  call  is 

made.  

The  secure  environment  must  be  initialized,  either  by  calling  

ldap_ssl_environment_init  or  ldap_ssl_client_init,  before  ldap_start_tls_s_np()  is 

called.  

Errors 

ldap_start_tls_s_np()  returns  LDAP_SUCCESS  if the  call  was  successful,  or  an  

LDAP  error  if the  call  was  unsuccessful.  

If the  connection  is  already  secure,  either  by  going  against  the  SSL  port  or  by  

already  establishing  a TLS  session,  then  LDAP_OPERATIONS_ERROR  is returned.  

If the  secure  environment  has  not  been  initialized  through  a call  to  

ldap_ssl_client_init  or  ldap_ssl_environment_init,  then  

LDAP_TLS_CLIENT_INIT_NOT_CALLED  is returned.  

 

130 Programming  Reference



If  the  TLS  handshake  with  the  server  fails,  LDAP_TLS_HANDSHAKE_FAILED  is 

returned.  

If  the  server  is  not  configured  to  allow  TLS,  then  LDAP_PROTOCOL_ERROR  is 

returned.  

If  the  GSKit  environment  was  not  previously  initialized,  then  

LDAP_SSL_CLIENT_INIT_NOT_CALLED  is returned.  

If  the  server  does  not  support  TLS,  then  LDAP_REFERRAL  is returned.  The  

referred  to  server  might  support  TLS.  

If  the  server  is  configured  to do  TLS,  but  is  currently  unable  to  establish  TLS  

connections,  then  LDAP_UNAVAILABLE  is returned  

See also 

ldap_stop_tls_s_np,  ldap_ssl_environment_init,  ldap_ssl_client_init  

LDAP_STOP_TLS  

   ldap_stop_tls_s_np

Purpose 

Abandons  an  open  LDAP  connection  over  TLS.  

Synopsis 

#include  <ldap.h>  

  

int  ldap_stop_tls_s_np(  

 LDAP   *ld)  

Input parameters 

ld  Specifies  the  LDAP  pointer  used  in  the  ldap_start_tls_s_np()  call.

Usage 

The  ldap_stop_tls_s_np()  API  is used  to  end  the  TLS  session  on  a connection.  

Note  that  this  call  closes  the  connection  to  the  server.  

Errors 

ldap_stop_tls_s_np()  returns  LDAP_SUCCESS  if the  call  was  successful,  an  LDAP  

error  if the  call  was  unsuccessful.  

See also 

ldap_start_tls_s_np,  ldap_ssl_environment_init,  ldap_ssl_client_init  

LDAP_URL 

   ldap_is_ldap_url  

   ldap_url_parse  

   ldap_free_urldesc  

   ldap_url_search  

 

Chapter 2. API categories  131



ldap_url_search_s  

   ldap_url_search_st

Purpose 

LDAP  Uniform  Resource  Locator  routines.  

Synopsis 

#include  <sys/time.h>  /* for  struct  timeval  definition  */  

  

#include  <ldap.h> 

  

  

int  ldap_is_ldap_url(  

       char            *url)  

  

int  ldap_url_parse(  

       char            *url,  

       LDAPURLDesc     **ludpp)  

  

typedef  struct  ldap_url_desc  { 

    char     *lud_host;       /* LDAP  host  to  contact  */  

    int       lud_port;       /* port  on host  */ 

    char     *lud_dn;         /* base  for  search  */ 

    char    **lud_attrs;      /* NULL-terminate  list  of attributes  */ 

    int       lud_scope;      /*  a valid  LDAP_SCOPE_...  value  */ 

    char     *lud_filter;     /*  LDAP  search  filter  */ 

    char     *lud_string;     /*  for  internal  use  only  */ 

} LDAPURLDesc;  

  

ldap_free_urldesc(  

       LDAPURLDesc     *ludp)  

  

int  ldap_url_search(  

       LDAP            *ld,  

       char            *url,  

       int             attrsonly)  

  

int  ldap_url_search_s(  

       LDAP            *ld,  

       char            *url,  

       int             attrsonly,  

       LDAPMessage     **res)  

  

int  ldap_url_search_st(  

       LDAP            *ld,  

       char            *url,  

       int             attrsonly,  

       struct  timeval  *timeout,  

       LDAPMessage     **res)  

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  a previous  call  to  ldap_init(),  

ldap_ssl_init()  or  ldap_open().  

url  Specifies  a pointer  to  the  URL  string.  

attrsonly  

Specifies  attribute  information.  Set  to 1 to request  attribute  types  only.  Set  

to  0 to  request  both  attribute  types  and  attribute  values.  

 

132 Programming  Reference



timeout  

Specifies  a timeout  value  for  a synchronous  search  issued  by  the  

ldap_url_search_st()  routine.  

ludp  Points  to  the  LDAP  URL  description,  as  returned  by  ldap_url_parse().

Output parameters 

ludpp  Points  to  the  LDAP  URL  description,  as  returned  by  ldap_url_parse().  

res  Contains  the  result  of the  asynchronous  operation  identified  by  msgid,  as  

returned  from  ldap_url_search_s()  or  ldap_url_search_st().  This  result  must  

be  passed  to  the  LDAP  parsing  routines.

Usage 

These  routines  support  the  use  of LDAP  URLs.  LDAP  URLs  look  like  the  

following:  

ldap://[hostname]/dn[?attributes[?scope[?filter]]]  

where:  

v   hostname  is  a host  name  with  an  optional  :portnumber. 

v   dn  is the  base  DN  to be  used  for  an  LDAP  search  operation.  

v   attributes  is  a comma-separated  list  of  attributes  to  be  retrieved.  

v   scope  is  one  of  the  following  three  strings:  base,  one,  or  sub.  The  default  is base.  

v   filter  is  the  LDAP  search  filter  as  used  in  a call  to  ldap_search.

For  example:  

ldap://ldap.itd.umich.edu/c=US?o,description?one?o=umich  

URLs  that  are  wrapped  in  angle-brackets  or  preceded  by  URL:  or  both  are  also  

tolerated,  including  the  following  forms:  

v   URL:ldapurl  

For  example:  

URL:ldap://ldap.itd.umich.edu/c=US?o,description?one?o=umich  

v   <URL:ldapurl>  

For  example:  

<URL:ldap://ldap.itd.umich.edu/c=US?o,description?one?o=umich>  

ldap_is_ldap_url()  returns  a nonzero  value  if url  begins  with  ldap://. It  can  be used  

as  a quick  check  for  an  LDAP  URL;  the  ldap_url_parse()  routine  is  used  to  extract  

the  various  components  of  the  URL.  

ldap_url_parse()  breaks  down  an  LDAP  URL  passed  in  url  into  its  component  

pieces.  If  successful,  zero  is returned,  an  LDAP  URL  description  is allocated  and  

filled  in,  and  ludpp  is set  to point  to it.  If an  error  occurs,  one  of these  values  is 

returned:  

      LDAP_URL_ERR_NOTLDAP     - URL  doesn’t  begin  with  "ldap://"  

      LDAP_URL_ERR_NODN    - URL has no DN (required)  

      LDAP_URL_ERR_BADSCOPE    - URL  scope  string  is invalid  

      LDAP_URL_ERR_MEM     - can’t  allocate  memory  space  

ldap_free_urldesc()  is called  to  free  an  LDAP  URL  description  that  was  obtained  

from  a call  to  ldap_url_parse().  

 

Chapter 2. API categories  133



ldap_url_search()  initiates  an  asynchronous  LDAP  search  based  on  the  contents  of 

the  URL  string.  This  routine  acts  just  like  ldap_search  except  that  the  search  

parameters  are  pulled  out  of  the  URL.  

ldap_url_search_s()  performs  a synchronous  LDAP  search  based  on  the  contents  of  

the  URL  string.  This  routine  acts  just  like  ldap_search_s()  except  that  the  search  

parameters  are  pulled  out  of  the  URL.  

ldap_url_search_st()  performs  a synchronous  LDAP  URL  search  with  a specified  

timeout.  This  routine  acts  just  like  ldap_search_st()  except  that  the  search  

parameters  are  pulled  out  of  the  URL.  

Notes 

For  search  operations,  if hostport  is omitted,  host  and  port  for  the  current  

connection  are  used.  If hostport  is specified,  and  is different  from  the  host  and  port  

combination  used  for  the  current  connection,  the  search  is directed  to  hostport,  

instead  of  using  the  current  connection.  In  this  case,  the  underlying  referral  

mechanism  is used  to  bind  to  hostport.  

If the  LDAP  URL  does  not  contain  a search  filter, the  filter  defaults  to  

objectClass=*.  

See also 

ldap_search  

LDAP_SSL_ENVIRONMENT_INIT 

Purpose 

The  ldap_ssl_environment_init()  routine  has  the  same  parameters  as  

ldap_ssl_client_int()  but  can  be  called  more  than  once.  It  returns  LDAP_SUCCESS  

or  the  appropriate  LDAP  error  code.  It does  not  return  

LDAP_SSL_ALREADY_INITIALIZED.  An  application  that  requires  SSL  connections  

to  different  servers  can  initialize  environments  in  separate  calls  to  this  function,  

with  different  key  database  files.  The  environment  created  is used  by  all  SSL  

connections  established  by  calling  ldap_ssl_init()  until  the  next  call  is made  to 

ldap_ssl_environment_init().  Subsequent  calls  to  ldap_ssl_environment_init()  do  not  

affect  existing  SSL  connections.  

Note:   This  routine  is deprecated  but  is still  supported.  

Synopsis 

#include  <ldap.h>  

#include  <ldapssl.h>  

  

int  ldap_ssl_environment_init(  

 const  char        *keydatabase,  

 const  char        *keydatabase_pw,  

 int               ssl_timeout,  

 int               *pSSLReasonCode)  

Input parameters 

keydatabase  

Specifies  the  name  of a key  database  file  with  .kdb  extension.  The  key  

database  file  typically  contains  one  or  more  certificates  of  CAs  that  are  

 

134 Programming  Reference



trusted  by  the  client.  These  types  of  X.509  certificates  are  also  known  as  

trusted  roots.  A  key  database  can  be  used  to  store  the  client’s  private  keys  

and  associated  client  certificates.  A private  key  and  associated  client  

certificate  are  required  if the  LDAP  server  is configured  to  require  client  

and  server  authentication  only.  If the  LDAP  server  is configured  to  provide  

only  server  authentication,  a private  key  and  client  certificate  are  not  

required.  

keydatabase_pw  

Specifies  the  password  that  is used  to  protect  the  contents  of the  key  

database.  This  password  is important,  particularly  when  it protects  one  or  

more  private  keys  stored  in  the  key  database.  The  password  is specified  

when  the  key  database  is initially  created,  and  can  be  changed  using  the  

gsk7ikm  utility.  Instead  of  specifying  the  password  each  time  the  

application  opens  the  key  database,  the  password  can  be  obtained  from  a 

password  stash  file  that  contains  an  encrypted  version  of the  password.  

The  password  stash  file  can  be  created  using  the  gsk7ikm  utility.  To obtain  

the  password  from  the  password  stash  file,  specify  a NULL  pointer  for  

keydatabase_pw.  It is assumed  that  the  password  stash  file  has  the  same  

name  as the  key  database  file,  but  with  a .sth  extension  instead  of .kdb.  It  

is assumed  that  the  password  stash  file  resides  in  the  same  directory  as  the  

key  database  file.  

Note:   The  default  key  database  file,  ldapkey.kdb,  is initially  configured  to 

have  ssl_password  as  its  password.  This  password  is also  initially  

configured  in the  default  password  stash  file  (ldapkey.sth).

ssl_timeout  

Specifies  the  SSL  timeout  value  in seconds.  The  timeout  value  controls  the  

frequency  with  which  the  SSL  protocol  stack  regenerates  session  keys.  If 

ssl_timeout  is set  to  0, a default  value  is used.  Otherwise,  the  value  

supplied  is used,  provided  it is less  than  or  equal  to  86,400,  the  number  of  

seconds  in  a day.  If  ssl_timeout  is greater  than  86,400,  

LDAP_PARAM_ERROR  is returned.  

pSSLReasonCode  

Specifies  a pointer  to  the  SSL  Reason  Code,  which  provides  additional  

information  in  the  event  that  an  error  occurs  during  initialization  of the  

SSL  stack,  when  ldap_ssl_environment_init()  is invoked.  See  ldapssl.h  for  

reason  codes  that  can  be  returned.

See also 

ldap_ssl_pkcs11_client_init  , ldap_ssl_pkcs11_environment_init  

LDAP_SORT 

   ldap_create_sort_keylist  

   ldap_free_sort_keylist  

   ldap_create_sort_control  

   ldap_parse_sort_control

Purpose 

Used  to  request  sort  of entries  returned  by  the  servers  that  match  the  filter  

specified  on  a search  operation.  

 

Chapter 2. API categories  135



Synopsis 

#include  <ldap.h>  

  

int  ldap_create_sort_keylist(  

   LDAPsortkey        ***sortKeyList,  

   const  char         *sortString);  

  

int  ldap_create_sort_control(  

   LDAP               *ld,  

   LDAPsortkey        **sortKeyList,  

   const  char         isCritical,  

   LDAPControl        **control)  

  

void  ldap_free_sort_keylist(  

   LDAPsortkey        **sortKeyList)  

  

int  ldap_parse_sort_control(  

   LDAP               *ld,  

   LDAPControl        **serverControls,  

   unsigned  long      *sortRC,  

   char               **attribute)  

Input parameters 

ld  Specifies  the  LDAP  pointer  returned  by  previous  call  to  ldap_init(),  

ldap_ssl_init()  or  ldap_open().  Must  not  be  NULL.  

sortString  

String  with  one  or  more  attributes  to be  used  to  sort  entries  returned  by 

the  server.  

sortKeyList  

Pointer  to  an  array  of LDAPsortkey  structures,  which  represent  attributes  

that  the  server  uses  to sort  returned  entries.  Input  when  used  for  

ldap_create_sort_control()  and  ldap_free_sort_keylist().  

isCritical  

Specifies  the  criticality  of  sort  on  the  search.  If the  criticality  of sort  is 

FALSE,  and  the  server  finds  a problem  with  the  sort  criteria,  the  search  

continues  but  entries  returned  are  not  sorted.  If the  criticality  of  sort  is 

TRUE,  and  the  server  finds  a problem  with  the  sort  criteria,  the  search  

does  not  continue,  no  sorting  is done,  and  no  entries  are  returned.  If the  

server  does  not  find  any  problem  with  the  sort  criteria,  the  search  and  sort  

continues  and  entries  are  returned  sorted.  

serverControls  

A  list  of LDAP  server  controls.  See  “LDAP  controls”  on  page  25 for  more  

information  about  server  controls.  These  controls  are  returned  to the  client  

when  calling  the  ldap_parse_result()  function  on  the  set  of results  returned  

by  the  server.

Output parameters 

sortKeyList  

Pointer  to  an  array  of LDAPsortkey  structures,  which  represent  attributes  

the  server  uses  to  sort  returned  entries.  Output  when  used  for  

ldap_create_sort_keylist().  

 

136 Programming  Reference



control  

A  result  parameter  that  is filled  in  with  an  allocated  array  of one  control  

for  the  sort  function.  The  control  must  be  freed  by  calling  

ldap_control_free().  

sortRC  

LDAP  return  code  retrieved  from  the  sort  results  control  returned  by  the  

server.  

attribute  

Returned  by  the  server,  this  is the  name  of  the  attribute  in  error.

Usage 

These  routines  are  used  to  perform  sorting  of  entries  returned  from  the  server  

following  an  LDAP  search  operation.  

The  ldap_create_sort_keylist()  function  builds  a list  of  LDAPsortkey  structures  

based  on  the  list  of attributes  included  in  the  incoming  string.  A sort  key  is  made  

up  of  three  possible  values:  

v   Name  of  attribute  used  to  sort  entries  returned  by  the  server  

v   OID  of a matching  rule for  that  attribute  

v   Whether  or  not  the  sort  must  be  done  in  reverse  order

The  syntax  of  the  attributes  in the  sortString,  [-]<attribute  name>[:<matching  rule 

OID>],  specifies  whether  or  not  there  is a matching  rule OID  that  must  be  used  for  

the  attribute,  and  whether  or  not  the  attribute  must  be  sorted  in  reverse  order.  In 

the  following  example  sortString,  the  search  results  are  sorted  first  by  surname  and  

then  by  given  name,  with  the  given  name  being  sorted  in  reverse  (descending  

order)  as  specified  by  the  prefixed  minus  sign  ( - ): 

 sn -givenname  

Thus,  the  syntax  of  the  sort  parameter  is as  follows:  

 [-]<attribute  name>[:<matching  rule  OID>]  

where  

v   attribute  name  is  the  name  of  the  attribute  you  want  to  sort  by.  

v   matching  rule  OID  is the  optional  OID  of a matching  rule that  you  want  to  use  

for  sorting.  

v   the  minus  sign  ( - ) indicates  that  the  results  must  be  sorted  in  reverse  order.

The  sortKeyList,  output  from  the  ldap_create_sort_keylist()  function,  can  be  used  

as  input  into  the  ldap_create_sort_control()  function.  The  sortKeyList  is an  ordered  

array  of  LDAPsortkey  structures  such  that  the  key  with  the  highest  precedence  is 

at  the  front  of  the  array.  The  control  output  form  ldap_create_sort_control()  

function  includes  the  criticality  set  based  on  the  value  of the  isCritical  flag.  This  

control  is added  to  the  list  of  client  controls  sent  to  the  server  on  the  LDAP  search  

request.  

The  ldap_free_sort_keylist()  function  cleans  up  all  the  memory  used  by  the  sort  

key  list.  This  function  must  be  called  after  the  ldap_create_sort_control()  function  

has  completed.  

When  a sort  results  control  is returned  by  the  server,  the  ldap_parse_sort_control()  

function  can  be  used  to  retrieve  the  values  from  the  control.  The  function  takes  as  

input  the  server  controls  returned  by  the  server,  and  returns  the  value  of the  sort  

control  return  code  and  possibly  an  attribute  name  if the  return  code  is not  

 

Chapter 2. API categories  137



LDAP_SUCCESS.  If  there  was  an  error  parsing  the  sort  criteria  for  the  search  or  

there  were  no  entries  returned  for  the  search,  no  sort  control  is returned  to  the  

client.  

Server side sorting of search results 

Sorted  Search  Results  provides  sort  capabilities  for  LDAP  clients  that  have  limited  

or  no  sort  functionality.  Sorted  Search  Results  enables  an  LDAP  client  to  receive  

sorted  search  results  based  on  a list  of criteria,  where  each  criteria  represents  a sort  

key.  The  sort  criteria  includes  attribute  types,  matching  rules,  or  descending  order.  

The  server  must  use  this  criteria  to  sort  search  results  before  returning  them.  This  

moves  the  responsibility  of  sorting  from  the  client  application  to  the  server,  where  

it might  be  done  much  more  efficiently.  For  example,  a client  application  might  

want  to  sort  the  list  of  employees  at their  Grand  Cayman  site  by  surname,  

common  name,  and  telephone  number.  Instead  of  building  the  search  list  twice  so  

it can  be  sorted  (once  at  the  server  and  then  again  at  the  client  when  all  the  results  

are  returned),  the  search  list  is built  once,  and  then  sorted,  before  returning  the  

results  to  the  client  application.  

In  the  following  example  sortString,  the  search  results  are  sorted  first  by  surname  

(sn),  then  by  given  name  (givenname),  with  the  given  name  being  sorted  in  reverse  

(descending)  order  as  specified  by  the  prefixed  minus  sign  ( - ). 

sn -givenname  

The  sortKeyList  output  from  ldap_create_sort_keylist()  can  be  used  as  input  to 

ldap_create_sort_control().  The  sortKeyList  is an  ordered  array  of LDAPsortkey  

structures  such  that  the  key  with  the  highest  precedence  is at  the  front  of the  array.  

ldap_create_sort_control()  outputs  a LDAPControl  structure  which  can  be  added  to 

the  list  of  client  controls  sent  to the  server  on  the  LDAP  search  request.  The  

LDAPControl  structure  returned  by  the  ldap_create_sort_control()  API  can  be  used  

as  input  to  ldap_search_ext()  or  ldap_search_ext_s(),  which  are  used  to  make  the  

actual  search  request.  

Note:   Server  side  sorting  is an  optional  extension  of  the  LDAP  v3  protocol,  so the  

server  you  have  bound  to  prior  to  the  ldap_search_ext()  or  

ldap_search_ext_s()  call  might  not  support  this  function.  

Now  that  you  have  created  the  server  side  control,  you  can  free  the  sortKeyList  

output  from  ldap_create_sort_keylist()  using  ldap_free_sort_keylist().  

Upon  completion  of  the  search  request  you  submitted  using  ldap_search_ext()  or  

ldap_search_ext_s(),  the  server  returns  an  LDAP  result  message  that  includes  a sort  

results  control.  The  client  application  can  parse  this  control  using  

ldap_parse_sort_control()  which  takes  the  returned  server  response  controls  (a null  

terminated  array  of  pointers  to LDAPControl  structures)  as  input.  

ldap_parse_sort_control()  outputs  a return  code  that  indicates  whether  or  not  the  

sort  request  was  successful.  If the  sort  was  not  successful,  the  name  of  the  attribute  

in  error  might  be  output  from  ldap_parse_sort_control().  Use  ldap_controls_free()  

to  free  the  memory  used  by  the  client  application  to hold  the  server  controls  when  

you  are  done  processing  all  controls  returned  by  the  server  for  this  search  request.  

The  server  returns  a successful  return  code  of  LDAP_SUCCESS  in  the  sort  response  

control  (sortKeyResponseControl)  in  the  search  result  (searchResultDone)  message  

if the  server  supports  sorting  and  can  sort  the  search  results  using  the  specified  

keys.  If the  search  fails  for  any  reason  or  there  are  no  search  results,  then  the  

server  omits  the  sortKeyResponseControl  from  the  searchResultsDone  message.  

 

138 Programming  Reference



If  the  server  does  not  support  sorting  and  the  criticality  specified  on  the  sort  

control  for  the  search  request  is TRUE,  the  server  does  not  return  any  search  

results,  and  the  sort  response  control  return  code  is set  to  

LDAP_UNAVAILABLE_CRITICAL_EXTENSION.  If the  server  does  not  support  

sorting  and  the  criticality  specified  on  the  sort  control  for  the  search  request  is  

FALSE,  the  server  returns  all  search  results  and  the  sort  control  is ignored.  

If  the  server  does  support  sorting  and  the  criticality  specified  on  the  sort  control  

for  the  search  request  is TRUE,  but  for  some  reason  the  server  cannot  sort  the  

search  results,  then  the  sort  response  control  return  code  is set  to 

LDAP_UNAVAILABLE_CRITICAL_EXTENSION  and  no  search  results  are  

returned.  If  the  server  does  support  sorting  and  the  criticality  specified  on  the  sort  

control  for  the  search  request  is FALSE,  and  for  some  reason  the  server  cannot  sort  

the  search  results,  then  the  sort  response  control  return  code  is set  to  the  

appropriate  return  code  and  all  search  results  are  returned  unsorted.  

The  following  return  codes  might  be  returned  by  the  server  in the  

sortKeyResponseControl  of  the  searchResultDone  message:  

v   LDAP_SUCCESS  - the  results  are  sorted  

v   LDAP_OPERATIONS_ERROR  - server  internal  failure  

v   LDAP_TIMELIMIT_EXCEEDED  - time  limit  reached  before  sorting  was  

completed  

v   LDAP_STRONG_AUTH_REQUIRED  - refused  to  return  sorted  results  using  

insecure  protocol  

v   LDAP_ADMIN_LIMIT_EXCEEDED  - too  many  matching  entries  for  the  server  

to  sort  

v   LDAP_NO_SUCH_ATTRIBUTE  - unrecognized  attribute  type  in  sort  key  

v   LDAP_INAPPROPRIATE_MATCHING  - unrecognized  or  inappropriate  

matching  rule in  sort  key  

v   LDAP_INSUFFICIENT_ACCESS  - refused  to  return  sorted  results  to  this  client  

v   LDAP_BUSY  - too  busy  to  process  

v   LDAP_UNWILLING_TO_PERFORM  - unable  to sort  

v   LDAP_OTHER  - unable  to  sort  due  to  reasons  other  than  those  specified  above

There  are  other  rules that  must  be  taken  into  consideration  when  requesting  sort  

from  the  server,  These  rules include  the  following:  

v   The  matching  rule must  be  one  that  is valid  for  the  sort  attribute  it applies  to. 

The  server  returns  LDAP_INAPPROPRIATE_MATCHING  if it is not.  

v   If the  matching  rule is omitted  from  a sort  key,  the  ordering  matching  rule 

defined  for  use  with  this  sort  attribute  must  be  used.  

v   A server  can  restrict  the  number  of  keys  supported  for  a sort  control,  such  as  

supporting  only  one  key.  (A  sort  key  list  of at  least  one  key  must  be  supported).  

v   If a search  result  meets  the  search  criteria  but  is missing  a value  for  the  sort  key  

(sort  attribute  value  is  NULL),  then  this  search  result  is considered  a larger  value  

than  any  other  valid  values  for  that  key.

When  sorted  search  is requested  along  with  simple  paged  results,  the  

sortKeyResponseControl  is returned  on  every  searchResultsDone  message,  not  just  

the  last  one  of  the  paged  results  request.  Of  course,  the  sortKeyResponseControl  

might  not  be  returned  if there  is an  error  processing  the  paged  results  request  or  

there  are  no  search  results  to return.  Additionally,  when  sorted  search  is requested  

along  with  simple  paged  results,  the  server  sends  the  search  results  sorted  based  

 

Chapter 2. API categories  139



on  the  entire  search  result  set  and  does  not  simply  sort  each  page.  See  “Simple  

paged  results  of  search  results”  on  page  79 for  more  information.  

When  chasing  referrals,  the  client  application  must  send  in a sorted  search  request  

to  each  of  the  referral  servers.  It  is up  to  the  application  using  the  client’s  services  

to  decide  whether  or  not  to  set  the  criticality  as to  the  support  of sorted  search  

results,  and  to  handle  a lack  of support  of this  control  on  referral  servers  as  

appropriate  based  on  the  application.  Additionally,  the  LDAP  server  does  not  

ensure  that  the  referral  server  supports  the  sorted  search  control.  Multiple  lists  

might  be  returned  to  the  client  application,  some  of  which  are  not  sorted.  It  is the  

client  application’s  decision  as  to how  best  to  present  this  information  to the  end  

user. Possible  solutions  include:  

v   Combine  all  referral  results  before  presenting  to the  end  user  

v   Show  multiple  lists  and  the  corresponding  referral  server  host  name  

v   Take no  extra  steps  and  show  all  results  to the  end  user  as they  are  returned  

from  the  server

The  client  application  must  turn  off  referrals  to get  one  truly sorted  list;  otherwise,  

when  chasing  referrals  with  the  sorted  search  control  specified,  unpredictable  

results  can  occur.  

More  information  about  the  server  side  sorted  search  control,  with  control  OID  of 

1.2.840.113556.1.4.473,  can  be  found  in  RFC  2891  - LDAP  Control  Extension  for  

Server  Side  Sorting  of Search  Results.  

Errors 

The  sort  routines  return  an  LDAP  error  code  if they  encounter  an  error  parsing  the  

result.  See  “LDAP_ERROR”  on  page  41  for  a list  of the  LDAP  error  codes.  

Notes 

SortString,  sortKeyList,  controls,  serverControls,  and  attribute  must  be  freed  by  the  

caller.  

See also 

ldap_search,  ldap_parse_result  

 

140 Programming  Reference



Chapter  3.  IBM  Tivoli Directory  Server  Java  Naming  and  

Directory  Interface  (JNDI)  Toolkit  

IBM  Tivoli  Directory  Server  provides  Java  Naming  and  Directory  Interface  (JNDI)  

Toolkit  that  contains  Java  classes  for  most  of  the  extended  operations  and  controls  

in  Tivoli  Directory  Server.  

Implementing extended operations using Tivoli  Directory Server JNDI 

Toolkit  

An  extended  operation  is  a mechanism  that  allows  additional  operations  that  are  

not  defined  in the  LDAP  protocol  to  be  supported  for  services  provided  by  LDAP  

V3  servers.  All  additional  operations  that  a server  supports  are  to  be  sent  by the  

client  as  an  extended  operation.  An  extended  operation  is invoked  when  a client  

sends  an  extended  request  and  receives  an  extended  response  in  response  from  the  

server.  This  communication  between  the  client  and  server  is broadly  sequences  as:  

1.   A client  sends  an  extended  request  to  the  server.  

2.   If  the  server  recognizes  the  request,  it performs  the  operation.  

3.   An  extended  response  is sent  back  with  the  result,  if any,  for  the  operation.

When  an  extended  operation  is implemented  using  JNDI,  each  extended  operation  

has  a request  class  and  a response  class.  An  extended  request  is made  of two  parts:  

requestName  

The  requestName  field  contains  a unique  dotted-decimal  representation  of  

the  OID  (Object  Identifier)  that  identifies  the  request.  The  OID  namespace  

is hierarchically  divided,  every  authority  that  can  define  an  OID  is 

assigned  a prefix  that  it uses  to  identify  its  OID.  

requestValue  

The  requestValue  field  contains  data  needed  to  execute  the  request.  The  

format  of  the  data  is predefined  for  every  extended  operation.  Some  

extended  operations  do  not  require  any  data  to  be  associated  with  a 

request.

The  extended  request  is encoded  before  being  sent  to  the  server.  Tivoli  Directory  

Server  expects  its  extended  request  to be  ASN.1  BER  encoded.  

The  javax.naming.ldap.ExtendedRequest  interface  describes  an  extended  operation  

request.  This  interface  contains  methods  getID()  and  getEncodedValue()  that  retrieve  

the  two  properties  of  an  extended  operation  request,  requestName  and  

requestValue.  A  request  class  implements  the  javax.naming.ldap.ExtendedRequest  

interface  and  overrides  the  following  methods  of  this  interface  public  String  getID()  

and  public  byte[]  getEncodedValue(). This  method  retrieves  ASN.1  BER  encoded  value  

from  the  LDAP  extended  operation  request  and  constructs  request  sequence  for  the  

extended  operation  using  the  com.ibm.asn1.BEREncoder  class.  This  method  then  

converts  the  encoded  request  sequence  to byte  array  to  be  returned  by  the  method.  

The  createExtendedResponse  method  creates  the  response  object  corresponding  to  a 

request.  When  a caller  sends  the  extended  operation  request  to  the  LDAP  server,  a 

response  from  the  server  is sent  back.  If the  operation  fails,  the  caller  will  throw  

the  NamingException  exception,  and  if the  operation  succeeds,  the  caller  will  

 

© Copyright  IBM Corp. 2002, 2007 141



invoke  this  method  using  the  data  that  it received  in  the  response.  The  purpose  of  

this  method  is  to  return  an  object  of  class  that  implements  the  ExtendedResponse  

interface  that  is appropriate  for  the  extended  operation  request.  

  

public  ExtendedResponse  createExtendedResponse(  

             String  id,  

             byte[]  berValue,  

             int  offset,  length)  throws  NamingException  

  

The  parameters  passed  to  this  method:  

id  An  object  identifier  of the  response  control.  

berValue  

An  ASN.1  BER  encoded  value  of  the  response  control.  This  is the  raw  BER  

bytes  including  the  tag  and  length  of  the  response  value.  It does  not  

include  the  response  OID.  

offset  The  starting  position  in the  berValue  of the  bytes  to  use.  

length  The  number  of bytes  to use  from  berValue.

The  structure  of  the  extended  response  is similar  to  extended  request,  it can  

contain  the  OID  and  value  both  of  which  are  optional,  and  a field  describing  the  

result  code  of  the  operation.  An  extended  response  is made  of  three  parts:  

resultcode  

The  resultcode  field  contains  result  code  of  the  operation.  The  result  code  

can  contain  one  of  the  defined  LDAP  error  codes,  for  example,  

LDAP_SUCCESS  and  LDAP_OPERATIONS_ERROR.  

responseName  

The  responseName  field  contains  OID  of  the  response.  It might  or  might  

not  be  same  as  the  request  OID.  

responseValue  

The  responseValue  field  contains  the  result  of the  operation,  if any.

The  response  from  the  server  is encoded  in  ASN.1  BER  code  and  should  be  

decoded  by  the  client  when  received.  

The  javax.naming.ldap.ExtendedResponse  interface  describes  an  extended  operation  

response.  A response  class  implements  the  javax.naming.ldap.ExtendedResponse  

interface.  The  methods  in  this  class  can  be  used  by  the  application  to  get  low  level  

information  about  the  extended  operation  response.  This  class  parses  the  extended  

response  and  provides  methods  specific  to  that  extended  operations  to  return  

response  values.  It uses  com.ibm.asn1.BERDecoder  class  to  parse  the  response  from  

the  LDAP  server.  The  BEREncoder  and  BERDecoder  classes  are  part  of  current  

IBMLDAPJavaBer.jar  shipped  with  Tivoli  Directory  Server.  

The  Java  classes  for  extended  operations  provided  in  Tivoli  Directory  Server  JNDI  

Toolkit  are  listed.  

 Table 4. Java  classes  for extended  operations  provided  in Tivoli Directory  Server  JNDI  

Toolkit 

Extended  operations  

Java  classes  

Request  OID/Response  

OID  

Account  status  AccountStatusRequest  

AccountStatusResponse  

1.3.18.0.2.12.58/  

1.3.18.0.2.12.59  

 

142 Programming  Reference



Table 4. Java  classes  for extended  operations  provided  in Tivoli Directory  Server  JNDI  

Toolkit (continued)  

Extended  operations  

Java  classes  

Request  OID/Response  

OID  

Attribute  type  GetAttributesRequest  

GetAttributesResponse  

1.3.18.0.2.12.46  / 

1.3.18.0.2.12.47  

Begin  transaction  TransactionStartRequest  

TransactionStartResponse  

1.3.18.0.2.12.5  

Cascading  replication  

operation  

CascadingReplicationRequest  

CascadingReplicationResponse  

1.3.18.0.2.12.15  

Clear  log  ClearLogRequest  

ClearLogResponse  

1.3.18.0.2.12.20  / 

 1.3.18.0.2.12.21  

Control  replication  ControlReplicationRequest  

ControlReplicationResponse  

1.3.18.0.2.12.16  

Control  queue  ControlQueueRequest  

ControlQueueResponse  

1.3.18.0.2.12.17  

DN  normalization  NormalizeDNRequest  

NormalizeDNResponse  

1.3.18.0.2.12.30  

Dynamic  server  trace  ControlTracingRequest  

ControlTracingResponse  

1.3.18.0.2.12.40  

End  transaction  TransactionEndRequest  

TransactionEndResponse  

1.3.18.0.2.12.6  

Effective  password  

policy  

EffectivePwdPolicyRequest  

EffectivePwdPolicyResponse  

1.3.18.0.2.12.75/  

 1.3.18.0.2.12.77  

Event  notification  

register  request  

RegisterEventRequest  

RegisterEventResponse  

1.3.18.0.2.12.1  

Event  notification  

unregister  request  

UnregisterEventRequest  

UnregisterEventResponse  

1.3.18.0.2.12.3  

Get  lines  ReadLogRequest  

ReadLogResponse  

1.3.18.0.2.12.22  / 

1.3.18.0.2.12.23  

Get  number  of lines  GetLogSizeRequest  

GetLogSizeResponse  

1.3.18.0.2.12.24  / 

1.3.18.0.2.12.25  

Group  evaluation  EvaluateGroupsRequest  

EvaluateGroupsResponse  

1.3.18.0.2.12.50  / 

1.3.18.0.2.12.52  

Kill  connection  UnbindRequest  

UnbindResponse  

1.3.18.0.2.12.35  / 

1.3.18.0.2.12.36  

LDAP  trace  facility  RemoteTraceExecutionRequest  

RemoteTraceExecutionResponse  

1.3.18.0.2.12.41  

Quiesce  or  unquiesce  

replication  context  

QuiesceRequest  

QuiesceResponse  

1.3.18.0.2.12.19  

Replication  error  log  ControlReplErrorRequest  

ControlReplErrorResponse  

1.3.18.0.2.12.56  

Replication  topology  ReplicationTopologyRequest  

ReplicationTopologyResponse  

1.3.18.0.2.12.54  / 

1.3.18.0.2.12.55  

Start,  stop  server  StartStopServerRequest  

StartStopServerResponse  

1.3.18.0.2.12.26  

Start  TLS  StartTLSRequest  

StartTLSResponse  

1.3.6.1.4.1.1466.20037  

 

Chapter  3. IBM Tivoli Directory Server Java Naming  and Directory Interface  (JNDI)  Toolkit  143



Table 4. Java  classes  for extended  operations  provided  in Tivoli Directory  Server  JNDI  

Toolkit (continued)  

Extended  operations  

Java  classes  

Request  OID/Response  

OID  

Unique  attributes  UniqueAttributeRequest  

UniqueAttributeResponse  

1.3.18.0.2.12.44  / 

 1.3.18.0.2.12.45  

Update  configuration  ReadConfigurationRequest  

ReadConfigurationResponse  

1.3.18.0.2.12.28  / 

 1.3.18.0.2.12.29  

User  type  UserTypeRequest  

UserTypeResponse  

1.3.18.0.2.12.37  / 

 1.3.18.0.2.12.38  

  

Implementing controls using Tivoli  Directory Server JNDI Toolkit  

The  LDAP  V3  uses  controls  to send  and  receive  additional  data  to  affect  the  

behavior  of  predefined  LDAP  operations.  The  controls  are  tagged  along  with  

LDAP  operations  and  are  sent  to  the  server  and  are  sent  to as  request  controls.  For  

example,  a sort  control  can  be  sent  with  an  LDAP  search  operation  to  request  for  

the  results  be  returned  in  a particular  order.  Solicited  and  unsolicited  controls  can  

also  be  returned  along  with  responses  from  the  server  and  are  referred  to as  

response  controls.  For  example,  an  LDAP  server  might  define  a special  control  to  

return  change  or  event  notifications.  All  the  supported  controls  in  Tivoli  Directory  

Server  are  also  available  in Java  classes,  in  addition  to C APIs.  For  a control,  both  

the  request  control  class  and  the  response  control  class  for  controls  that  have  

response  are  available.  For  example,  Limit  number  of  attribute  values  on  a Search  

Control  will  have  both  request  and  response  classes.  The  request  and  response  

control  classes  override  the  fields  for  ID,  criticality,  and  the  constructor  for  creation  

of  control  using  supplied  arguments  by  application  programs.  The  request  control  

class  also  has  setter  methods  specific  to a control  and  has  constructors  allowing  the  

application  to  construct  the  control  in  all  supported  ways.  A  response  control  class  

has  getter  methods  for  the  fields  that  can  be  retrieved  for  the  control.  

A  class  representing  a control  will  extend  the  javax.naming.ldap.BasicControl  class.  

This  class  defines  following  constructors  and  methods:  

BasicControl(String  id)   

This  constructor  creates  a noncritical  control.  

BasicControl(String  id,  boolean  criticality,  byte[]  value)  

This  constructor  creates  a control  using  the  supplied  arguments.  

public  String  getID()  

This  method  retrieves  the  object  identifier  assigned  for  the  LDAP  control.  

public  boolean  isCritical()   

This  method  determines  the  criticality  of  an  LDAP  control.  Tivoli  Directory  

Server  must  not  ignore  a critical  control,  that  is,  if a server  receives  a 

critical  control  that  it does  not  support,  regardless  of  whether  the  control  

makes  sense  for  the  operation,  the  operation  will  not  be  performed  and  an  

OperationNotSupportedException  exception  will  be  thrown.  This  method  

takes  the  value  true as  parameter  if control  is critical  and  false  otherwise.  

public  byte[]  getEncodedValue()  

This  method  retrieves  the  ASN.1  BER  encoded  value  of an  LDAP  control.  

The  result  is  raw  BER  bytes  that  include  the  tag  and  length  of the  control’s  

value.  The  result  does  not  include  the  control’s  OID  or  criticality.  If  the  

 

144 Programming  Reference



value  is  absent,  NULL  is returned.  This  can  be  decoded  using  

com.ibm.asn1.BERDecoder  in  the  IBM  LDAP  java  BER  package.

An  example  of  implementation  control  class:  

  

public  class  DoNotReplicateControl  extends  javax.naming.ldap.BasicControl  

{ 

      private  static  final  String  OID = "1.3.18.0.2.10.50";  

      private  byte[]  berMess;  

      private  boolean  criticality  = false;  

  

      public  DoNotReplicateControl()  { 

            berMess  = null;  

      } 

  

    public  DoNotReplicateControl(boolean  criticality)  { 

            this.riticality  = criticality;  

            berMess  = null;  

      } 

} 

  

The  Java  classes  for  controls  provided  in  Tivoli  Directory  Server  JNDI  Toolkit  are  

listed.  

 Table 5. Java  classes  for controls  provided  in Tivoli Directory  Server  JNDI  Toolkit 

Controls  Java  classes  OID  

Audit  AuditChainControl  1.3.18.0.2.10.22  

Do  not  replicate  DoNotReplicateControl  1.3.18.0.2.10.23  

Entry  change  notification  EntryChangeRequestControl  

EntryChangeResponseControl  

2.16.840.1.113730.3.4.7  

Group  authorization  GroupAuthorizationControl  1.3.18.0.2.10.21  

Limit  number  of attribute  

values  

LimitAttributesSearchControl  

LimitAttributesSearchResponse  

                                  Control  

1.3.18.0.2.10.30  

ibm-
saslDigestBindRealmName  

MD5RealmConnectionControl  1.3.18.0.2.10.12  

ibm-
saslDigestBindUserName  

MD5UserConnectionControl  1.3.18.0.2.10.13  

Manage  DSAIT  ManageDSAITControl  2.16.840.1.113730.3.4.2  

Modify  groups  only  ModifyGroupsOnlyControl  1.3.18.0.2.10.25  

No  replication  conflict  

resolution  

DoNotResoveReplication  

CoflictControl  

1.3.18.0.2.10.27  

Omit  group  referential  

integrity  

OmitGroupReferential  

IntegrityControl  

1.3.18.0.2.10.26  

Paged  search  results  PagedResultsControl  

PagedResultsResponseControl  

1.2.840.113556.1.4.319  

Password  policy  request  PasswordPolicyRequestControl  

PasswordPolicyResponseControl  

1.3.6.1.4.1.42.2.27.8.5.1/  

1.3.6.1.4.1.42.2.27.8.5.1  

Persistent  search  PersistentSearchControl  2.16.840.1.113730.3.4.3  

Proxy  authorization  ProxiedAuthorizationControl  2.16.840.1.113730.3.4.18  

Server  administration  ServerAdminControl  1.3.18.0.2.10.15  

 

Chapter  3. IBM Tivoli Directory Server Java Naming  and Directory Interface  (JNDI)  Toolkit  145



Table 5. Java  classes  for controls  provided  in Tivoli Directory  Server  JNDI  

Toolkit (continued)  

Controls  Java  classes  OID  

Sorted  search  results  SortedResultsControl  

 SortedResultsResponseControl  

1.2.840.113556.1.4.473  

Transaction  TransactionControl  1.3.18.0.2.10.5  

Subtree  delete  TreeDeleteControl  1.2.840.113556.1.4.805
  

LDAP client utilities 

Currently,  example  source  codes  for  some  of the  LDAP  client  utilities  for  basic  

LDAP  operations  like  add,  modify  delete,  search,  and  modrdn  are  provided  both  

in  C and  Java,  which  can  be  used  to  build  your  own  version  of these  LDAP  client  

utilities.  The  java  classes  for  each  of these  operations  use  JNDI  APIs  for  performing  

the  operations  on  directory  server.  The  Java  classes  for  the  LDAP  client  utilities  are  

provided  in  the  <TDS_INSTALL_ROOT>/examples/java  directory.

Note:   Javadoc  HTML  documentation  for  the  extended  operations  and  controls  are  

zipped  into  TDSJNDIToolkitJavaDocs.zip  and  is available  in the  

<TDS_INSTALL_ROOT>/javalib  directory.  

The  following  LDAP  client  utilities  in Java  are  available  in  the  examples/java  

directory:  

v   LDAPAdd  – To add  LDAP  entries  to  the  server.  

v   LDAPModify  – To modify  LDAP  entries  on  the  server.  

v   LDAPDelete  – To delete  LDAP  entries  from  the  server.  

v   LDAPModRDN  – To modify  the  RDN/DN  of the  entries  on  the  server.  

v   LDAPExop  – To run extended  operations  on  the  server.  

v   LDAPSearch  – To search  entries  on  the  server.

The  LDAP  client  utilities  are  compiled  as  Java  class  files.  The  table  lists  Java  class  

files  associated  with  their  corresponding  LDAP  clients:  

 Table 6. LDAP  clients  and  corresponding  Java  classes  

LDAP  clients  Java  class  file  

LDAPAdd  com.ibm.ldap.bp.client.ldapadd.LDAPAdd  

LDAPModify  com.ibm.ldap.bp.client.ldapmodify.LDAPModify  

LDAPDelete  com.ibm.ldap.bp.client.ldapdelete.LDAPDelete  

LDAPModRDN  com.ibm.ldap.bp.client.ldapmodrdn.LDAPModRDN  

LDAPExop  com.ibm.ldap.bp.client.ldapexop.LDAPExop  

LDAPSearch  com.ibm.ldap.bp.client.ldapsearch.LDAPSearch
  

To run the  LDAP  clients,  you  require  IBM  Java  5 or  latter  versions.  For  the  LDAP  

clients  to  run, the  classpath  must  be  correct  and  the  path  of the  jar  files  should  be  

provided  in  the  classpath.  The  jar  files,  TDSJNDIToolkit.jar  and  

IBMLDAPJavaBer.jar  are  available  in  the  <TDS_INSTALL_ROOT>/javalib  directory.

Note:   In  order  to  make  Java  clients  to  work  over  SSL  and  with  key  database  files  

(with  kdb  extension),  you  need  to  register  a security  provider  for  reading  

 

146 Programming  Reference



CMS  in  the  java.security  file.  For  this,  on  UNIX  platform,  you  must  copy  the  

gsk7cls.jar  file  in  the  /usr/opt/ibm/gsksa/classes  directory  to  the  

<TDS_INSTALL_ROOT>/java/jre/lib/ext  directory.  On  Windows  platform,  the  

gsk7cls.jar  file  in  the  C:\Program  Files\IBM\gsk7\classes  directory  must  be  

copied  to  the  <TDS_INSTALL_ROOT>\jave\jre\lib\ext  directory.  The  

gsk7cls.jar  contains  the  security  provider  for  reading  CMS  registered  in  the  

java.security  file.  

To compile  the  source  files  to  a desired  location,  you  can  use  the  build  script  

available  in  the  <TDS_INSTALL_ROOT>/examples/java  directory.  On  Windows  

platform,  the  build  script  is provided  as a batch  file,  build.bat,  and  on  UNIX  

platforms,  it  is  provided  as  a shell  script,  build.sh.  

To run the  script  on  UNIX  platform,  enter  the  following  command  at  command  

prompt:  

  

# ./build.sh  

  

This  script  compiles  all  the  LDAP  java  clients  to the  bin  folder.  To run the  script  

with  parameters,  check  the  usage  instructions  for  the  script  by  providing  “-?”  on  

Windows  platform  and  “--help”  on  UNIX  platform.  

After  the  clients  are  compiled  at  the  default  location,  <TDS_INSTALL_ROOT>/
examples/java/bin,  the  following  command  can  be  used  to display  the  LDAPAdd  

client  usage  on  a UNIX  platform:  

  

# pwd  /opt/ibm/ldap/V6.1/examples/java/bin  

  

# ../../../java/bin/java  -classpath  

.:../../../javalib/TDSJNDIToolkit.jar:../../../javalib/IBMLDAPJavaBer.jar  com.\  

                                   ibm.ldap.bp.client.ldapadd.LDAPAdd  -?  

 

 

Chapter  3. IBM Tivoli Directory Server Java Naming  and Directory Interface  (JNDI)  Toolkit  147



148 Programming  Reference



Chapter  4.  Using  gsk7IKM  

The  following  key-management  program  is provided  with  the  Global  Security  Kit  

(GSKit):  

v   gsk7IKM  - A user-friendly  GUI  for  managing  key  database  files,  implemented  as 

a Java  applet.

Note:   On  the  AIX  operating  systems,  if you  are  prompted  to  set  JAVA_HOME,  you  

can  set  it to  either  the  system-installed  Java  or  the  Java  version  included  

with  the  IBM  Tivoli  Directory  Server.  If  you  use  the  IBM  Tivoli  Directory  

Server  version,  you  also  need  to  set  the  LIBPATH  environment  variable  as  

follows:  

export  LIBPATH=<JAVA_home_directory>/bin:/usr/ldap/java/bin/classic:$LIBPATH  

Use  this  utility  to  create  public-private  key  pairs  and  certificate  requests,  receive  

certificate  requests  into  a key  database  file,  and  manage  keys  in  a key  database  file.  

The  tasks  you  can  perform  with  gsk7IKM  include:  

v   Creating  a key  pair  and  requesting  a certificate  from  a certificate  authority  

v   Receiving  a certificate  into  a key  database  file  

v   Managing  keys  and  certificates  

–   Changing  a key  database  password  

–   Showing  information  about  a key  

–   Deleting  a key  

–   Making  a key  the  default  key  in  the  key  database  

–   Creating  a key  pair  and  certificate  request  for  self-signing  

–   Exporting  a key  

–   Importing  a key  into  a key  database  

–   Designating  a key  as  a trusted  root  

–   Removing  trusted  root  key  designation  

–   Requesting  a certificate  for  an  existing  key  

v   Migrating  a keyring  file  to  the  key  database  format

Creating a key pair and requesting a certificate from a Certificate 

Authority 

If  your  client  application  is connecting  to an  LDAP  server  that  requires  client  and  

server  authentication,  then  you  need  to create  a public-private  key  pair  and  a 

certificate.  

If  your  client  application  is connecting  to an  LDAP  server  that  only  requires  server  

authentication,  it is  not  necessary  to  create  a public-private  key  pair  and  a 

certificate.  It  is  sufficient  to  have  a certificate  in  your  client  key  database  file  that  is 

marked  as  a trusted  root.  If  the  Certification  Authority  (CA)  that  issued  the  

server’s  certificate  is not  already  defined  in  your  client  key  database,  you  need  to 

request  the  CA’s  certificate  from  the  CA,  receive  it into  your  key  database,  and  

mark  it  as  trusted.  See  “Designating  a key  as  a trusted  root”  on  page  155.  

 

© Copyright  IBM Corp. 2002, 2007 149



Your client  uses  its  private  key  to  sign  messages  sent  to  servers.  The  server  sends  

its  public  key  to  clients  so  that  they  can  encrypt  messages  to the  server,  which  the  

server  decrypts  with  its  private  key.  

To send  its  public  key  to  a server,  the  client  needs  a certificate.  The  certificate  

contains  the  client’s  public  key,  the  Distinguished  Name  associated  with  the  client’s  

certificate,  the  serial  number  of  the  certificate,  and  the  expiration  date  of the  

certificate.  A certificate  is issued  by  a CA,  which  verifies  the  identity  of the  client.  

The  basic  steps  to  create  a certificate  that  is signed  by  a CA  are:  

1.   Create  a certificate  request  using  gsk7IKM.  

2.   Submit  the  certificate  request  to  the  CA.  This  can  be  done  using  e-mail  or  an  

on-line  submission  from  the  CA’s  Web page.  

3.   Receive  the  response  from  the  CA  to  an  accessible  location  on  the  file  system  of  

your  server.  

4.   Receive  the  certificate  into  your  key  database  file.

Note:   If  you  are  obtaining  a signed  client  certificate  from  a CA  that  is not  in  the  

default  list  of  trusted  CAs,  you  need  to  obtain  the  CA’s  certificate,  receive  it 

into  your  key  database  and  mark  it as  trusted.  This  must  be  done  before  

receiving  your  signed  client  certificate  into  the  key  database  file.  

To create  a public-private  key  pair  and  request  a certificate:  

 1.   Start  gsk7IKM  Java  utility  by  typing:  

gsk7IKM  

 2.   Select  Key  Database  File. 

 3.   Select  New  (or  Open  if the  key  database  already  exists).  

 4.   Specify  key  database  file  name  and  location.  Type OK.

Note:   A  key  database  is  a file  that  the  client  or  server  uses  to store  one  or  

more  key  pairs  and  certificates.  

 5.   When  prompted,  supply  password  for  the  key  database  file.  Click  OK. 

 6.   Select  Create. 

 7.   Select  New  Certificate  Request.  

 8.   Supply  user-assigned  label  for  key  pair. The  label  identifies  the  key  pair  and  

certificate  in the  key  database  file.  

 9.   If  you  are  requesting  a low-assurance  client  certificate,  enter  the  common  

name.  This  must  be  unique  and  the  full  name  of  the  user. 

10.   If  you  are  requesting  a high-assurance  secure  server  certificate,  then:  

v   Enter  the  X.500  common  name  of  the  server.  Usually  this  is the  TCP/IP  

fully  qualified  host  name,  for  example,  www.ibm.com.  For  a VeriSign  server  

certificate,  it must  be  the  fully  qualified  host  name.  

v   Enter  the  organization  name.  This  is the  name  of  your  organization.  For  a 

VeriSign  secure  server  certificate,  if you  already  have  an  account  with  

VeriSign,  the  name  in  this  field  must  match  the  name  on  that  account.  

v   Enter  the  organizational  unit  name.  This  is an  optional  field.  

v   Enter  the  locality/city  where  the  server  is located.  This  is  an  optional  field.  

v   Enter  a three-character  abbreviation  of  the  state/province  where  the  server  

is  located.  

v   Enter  the  postal  code  appropriate  for  the  server’s  location.  

v   Enter  the  two-character  country  code  where  the  server  is  located.

 

150 Programming  Reference



11.   Click  OK. 

12.   A  message  identifying  the  name  and  location  of  the  certificate  request  file  is 

displayed.  Click  OK. 

13.   Send  the  certificate  request  to the  CA.  

If  this  is  a request  for  a VeriSign  low  assurance  certificate  or  secure  server  

certificate,  you  must  e-mail  the  certificate  request  to  VeriSign.  

You can  mail  the  low  assurance  certificate  request  to  VeriSign  immediately.  A 

secure  server  certificate  request  requires  more  documentation.  To find  out  

what  VeriSign  requires  for  a secure  server  certificate  request,  go  to  the  

following  URL:  http://www.verisign.com/ibm.  

14.   When  you  receive  the  certificate  from  the  CA,  use  gsk7IKM  to  receive  it into  

the  key  database  where  you  stored  the  key  pair. See  “Receiving  a certificate  

into  a key  database.”

Note:   Change  the  key  database  password  frequently.  If  you  specify  an  expiration  

date,  you  need  to keep  track  of  when  you  need  to change  the  password.  If 

the  password  expires  before  you  change  it, the  key  database  is not  usable  

until  the  password  is changed.  

Receiving a certificate into a key database 

After  receiving  a response  from  your  CA,  you  need  to  receive  the  certificate  into  a 

key  database.  

To receive  a certificate  into  a key  database:  

1.   Type  gsk7IKM  to  start  the  Java  utility.  

2.   Select  Key  Database  File. 

3.   Select  Open. 

4.   Specify  key  database  file  name  and  location.  Type  OK. 

5.   When  prompted,  supply  password  for  the  key  database  file,  click  OK. 

6.   Select  Create. 

7.   Select  Personal  Certificates  in  the  middle  display  window.  

8.   Click  Receive. 

9.   Enter  name  and  location  of  the  certificate  file  that  contains  the  signed  

certificate,  as  received  from  the  CA.  Click  OK.

Changing a key database password 

To change  a key  database  password:  

 1.   Type  gsk7IKM  to  start  the  Java  utility.  

 2.   Select  Key  Database  File. 

 3.   Select  Open. 

 4.   Specify  key  database  file  name  and  location.  Type OK. 

 5.   When  prompted,  supply  password  for  the  key  database  file.  Click  OK. 

 6.   Select  Key  Database  File. 

 7.   Select  Change  Password. 

 8.   Enter  <New  Password>.  

 9.   Confirm  <New  Password>.  

10.   Select  and  set  optional  password  expiration  time.  

 

Chapter  4. Using gsk7IKM  151

http://www.verisign.com/ibm


11.   Select  Stash  the  password  to  a file?  if you  want  the  password  to be  encrypted  

and  stored  on  disk.  

12.   Click  OK. 

13.   A message  is  displayed  with  the  file  name  and  location  of the  stash  password  

file.  Click  OK.

Note:   The  password  is important  because  it protects  the  private  key.  The  private  

key  is the  only  key  that  can  sign  documents  or  decrypt  messages  encrypted  

with  the  public  key.  

Showing information about a key 

To show  information  about  a key,  such  as  its  name,  size  or  whether  it is a trusted  

root:  

1.   Type  gsk7IKM  to  start  the  Java  utility.  

2.   Select  Key  Database  File. 

3.   Select  Open. 

4.   Specify  key  database  file  name  and  location.  Type OK.  

5.   When  prompted,  supply  password  for  the  key  database  file.  Click  OK. 

6.   To see  information  about  keys  designated  as  Personal  Certificates:  

v   Select  Personal  Certificates  at  the  top  of the  Key  database  content  window.  

v   Select  a certificate.  

v   Click  View/Edit  to  display  information  about  the  selected  key.  

v   Click  OK  to  return  to the  list  of Personal  Certificates.
7.   To see  information  about  keys  that  are  designated  as  Signer  Certificates:  

v   Select  Signer  Certificates  at the  top  of the  Key  database  content  window.  

v   Select  a certificate  . 

v   Click  View/Edit  to  display  information  about  the  selected  key.  

v   Click  OK  to  return  to the  list  of Signer  Certificates.

Deleting a key 

To delete  a key:  

1.   Type  gsk7IKM  to  start  the  Java  utility.  

2.   Select  Key  Database  File. 

3.   Select  Open. 

4.   Specify  key  database  file  name  and  location.  Type OK.  

5.   When  prompted,  supply  password  for  the  key  database  file.  Click  OK. 

6.   Select  the  type  of  key  you  want  to  delete  at the  top  of the  Key  database  

content  window  (Personal  Certificates,  Signer  Certificates,  or  Personal  

Certificate  Requests).  

7.   Select  a certificate.  

8.   Click  Delete. 

9.   Click  Yes to  confirm.

 

152 Programming  Reference



Making a key the default key in the key database 

The  default  key  must  be  the  private  key  the  server  uses  for  its  secure  

communications.  

To make  a key  the  default  key  in  the  key  database:  

1.   Type  gsk7IKM  to  start  the  Java  utility.  

2.   Select  Key  Database  File. 

3.   Select  Open. 

4.   Specify  key  database  file  name  and  location.  Type  OK.  

5.   When  prompted,  supply  password  for  the  key  database  file.  Click  OK. 

6.   Select  Personal  Certificates  at the  top  of  the  Key  database  content  window.  

7.   Select  the  desired  certificate.  

8.   Click  View/Edit.  

9.   Select  the  Set  the  certificates  as  the  default  box.  Click  OK.

Creating a key pair and certificate request for self-signing 

By  definition,  a secure  server  must  have  a public-private  key  pair  and  a certificate.  

The  server  uses  its  private  key  to  sign  messages  to  clients.  The  server  sends  its  

public  key  to  clients  so  they  can  encrypt  messages  to  the  server,  which  the  server  

decrypts  with  its  private  key.  

The  server  needs  a certificate  to  send  its  public  key  to  clients.  The  certificate  

contains  the  server’s  public  key,  the  Distinguished  Name  associated  with  the  

server’s  certificate,  the  serial  number  of  the  certificate,  and  the  expiration  date  of  

the  certificate.  A certificate  is issued  by  a CA,  who  verifies  the  identity  of the  

server.  

You can  request  one  of the  following  certificates:  

v   A low  assurance  certificate  from  VeriSign,  best  for  non-commercial  purposes,  

such  as  a beta  test  of your  secure  environment  

v   A server  certificate  to  do  commercial  business  on  the  Internet  from  VeriSign  or  

some  other  CA  

v   A self-signed  server  certificate  if you  plan  to  act  as  your  own  CA  for  a private  

Web network

For  information  about  using  a CA  such  as  VeriSign  to  sign  the  server  certificate,  

see  “Creating  a key  pair  and  requesting  a certificate  from  a Certificate  Authority”  

on  page  149.  

The  basic  steps  to  creating  a self-signed  certificate  are:  

1.   Type  gsk7IKM  to  start  the  Java  utility.  

2.   Select  Key  Database  File. 

3.   Select  New, or  Open  if the  key  database  already  exists.  

4.   Specify  key  database  file  name  and  location.  Type  OK.

Note:   A  key  database  is a file  that  the  client  or  server  uses  to  store  one  or  more  

key  pairs  and  certificates.  

5.   When  prompted,  supply  password  for  the  key  database  file.  Click  OK. 

6.   Click  New  Self-signed. 

 

Chapter  4. Using gsk7IKM  153



7.   Supply  the  following:  

v   User-assigned  label  for  key  pair. The  label  identifies  the  key  pair  and  

certificate  in  the  key  database  file.  

v   Select  the  desired  certificate  Version.  

v   Select  the  desired  Key  Size.  

v   Enter  the  X.500  common  name  of  the  server.  Usually  this  is the  TCP/IP  fully  

qualified  host  name,  for  example,  www.ibm.com.  

v   Enter  the  organization  name.  This  is the  name  of  your  organization.  

v   Enter  the  organizational  unit  name.  This  is an  optional  field.  

v   Enter  the  locality/city  where  the  server  is located.  This  is an  optional  field.  

v   Enter  a three-character  abbreviation  of the  state/province  where  the  server  is  

located.  

v   Enter  the  zipcode  appropriate  for  the  server’s  location.  

v   Enter  the  two-character  country  code  where  the  server  is located.  

v   Enter  the  Validity  Period  for  the  certificate.
8.   Click  OK.

. 

Exporting a key 

If you  need  to  transfer  a key  pair  or  certificate  to  another  computer,  you  can  export  

the  key  pair  from  its  key  database  to  a file.  On  the  other  computer,  you  can  import  

the  key  pair  into  a key  ring.  

To export  a key  from  a key  database:  

 1.   Type gsk7IKM  to  start  the  Java  utility.  

 2.   Select  Key  Database  File. 

 3.   Select  Open. 

 4.   Specify  key  database  file  name  and  location.  Type OK.  

 5.   When  prompted,  supply  password  for  the  key  database  file.  Click  OK. 

 6.   Select  Personal  Certificates  at the  top  of  the  Key  database  content  window.  

 7.   Select  the  desired  certificate.  

 8.   Click  Export/Import. 

 9.   For  Action  Type, select  Export  Key. 

10.   Select  the  Key  file  type:  

v   PKCS12  file  

v   CMS  Key  database  file  

v   Keyring  file  (as  used  by  mkkf)  

v   SSLight  key  database  class
11.   Specify  a file  name.  

12.   Specify  location.  

13.   Click  OK. 

14.   Enter  the  required  password  for  the  file.  Click  OK.

 

154 Programming  Reference



Importing a key 

To import  a key  into  a key  ring:  

 1.   Type  gsk7IKM  to  start  the  Java  utility.  

 2.   Select  Key  Database  File. 

 3.   Select  Open. 

 4.   Specify  key  database  file  name  and  location.  Type OK.  

 5.   When  prompted,  supply  password  for  the  key  database  file.  Click  OK. 

 6.   Select  Personal  Certificates  at the  top  of  the  Key  database  content  window.  

 7.   Select  the  desired  certificate.  

 8.   Click  Export/Import.  

 9.   For  Action  Type, select  Import  Key. 

10.   Select  the  desired  Key  file  type.  

11.   Enter  the  file  name  and  location.  

12.   Click  OK. 

13.   Enter  the  required  password  for  the  source  file.  Click  OK.

Designating a key as a trusted root 

A trusted  root  key  is the  public  key  and  associated  Distinguished  Name  of a CA.  

The  following  trusted  roots  are  automatically  defined  in  each  new  key  database:  

v   Integrion  Certification  Authority  Root  

v   IBM  World  Registry  Certification  Authority  

v   Thawte  Personal  Premium  CA  

v   Thawte  Personal  Freeemail  CA  

v   Thawte  Personal  Basic  CA  

v   Thawte  Premium  Server  CA  

v   VeriSign  Test CA  Root  Certificate  

v   RSA  Secure  Server  Certification  Authority  

v   VeriSign  Class  1 Public  Primary  Certification  Authority  

v   VeriSign  Class  2 Public  Primary  Certification  Authority  

v   VeriSign  Class  3 Public  Primary  Certification  Authority  

v   VeriSign  Class  4 Public  Primary  Certification  Authority

Note:   Each  of  these  trusted  roots  are  initially  set  to be  trusted  roots  by  default.  

To designate  a key  as  a trusted  root:  

 1.   Type  gsk7IKM  to  start  the  Java  utility.  

 2.   Select  Key  Database  File. 

 3.   Select  Open. 

 4.   Specify  key  database  file  name  and  location.  Type OK.  

 5.   When  prompted,  supply  password  for  the  key  database  file.  Click  OK. 

 6.   Select  Signer  Certificates  at the  top  of  the  Key  database  content  window.  

 7.   Select  the  desired  certificate.  

 8.   Click  View/Edit.  

 9.   Check  the  Set  the  certificate  as a trusted  root  box,  and  click  OK. 

10.   Select  Key  Database  File  and  then  select  Close.

 

Chapter  4. Using gsk7IKM  155



Removing a key as a trusted root 

A  trusted  root  key  is  the  public  key  and  associated  Distinguished  Name  of  a CA.  

The  following  trusted  roots  are  automatically  defined  in each  new  key  database:  

v   Integrion  Certification  Authority  Root  

v   IBM  World  Registry  Certification  Authority  

v   Thawte  Personal  Premium  CA  

v   Thawte  Personal  Freeemail  CA  

v   Thawte  Personal  Basic  CA  

v   Thawte  Premium  Server  CA  

v   VeriSign  Test CA  Root  Certificate  

v   RSA  Secure  Server  Certification  Authority  

v   VeriSign  Class  1 Public  Primary  Certification  Authority  

v   VeriSign  Class  2 Public  Primary  Certification  Authority  

v   VeriSign  Class  3 Public  Primary  Certification  Authority  

v   VeriSign  Class  4 Public  Primary  Certification  Authority

Note:   Each  of  these  trusted  roots  are  initially  set  to be  trusted  roots  by  default.  

To remove  the  trusted  root  status  of  a key:  

 1.   Type gsk7IKM  to  start  the  Java  utility.  

 2.   Select  Key  Database  File. 

 3.   Select  Open. 

 4.   Specify  key  database  file  name  and  location.  Type OK.  

 5.   When  prompted,  supply  password  for  the  key  database  file.  Click  OK. 

 6.   Select  Signer  Certificates  at the  top  of  the  Key  database  content  window.  

 7.   Select  the  desired  certificate.  

 8.   Click  View/Edit.  

 9.   Clear  the  Set  the  certificate  as  a trusted  root  check  box.  Click  OK. 

10.   Select  Key  Database  File  and  then  select  Close.

Requesting a certificate for an existing key 

To create  a certificate  request  for  an  existing  key:  

 1.   Type gsk7IKM  to  start  the  Java  utility.  

 2.   Select  Key  Database  File. 

 3.   Select  Open. 

 4.   Specify  key  database  file  name  and  location.  Type OK.  

 5.   When  prompted,  supply  password  for  the  key  database  file.  Click  OK. 

 6.   Select  Personal  Certificates  at the  top  of  the  Key  database  content  window.  

 7.   Select  the  desired  certificate.  

 8.   Click  Export/Import. 

 9.   For  Action  Type, select  Export  Key. 

10.   Select  the  desired  Data  Type:  

v   Base-64-encoded  ASCII  data  

v   Binary  DER  data  

v   SSLight  Key  Database  Class

 

156 Programming  Reference



11.   Enter  the  certificate  file  name  and  location.  

12.   Click  OK. 

13.   Select  Key  Database  File  and  then  select  Close.

Send  the  certificate  request  to the  CA.  

If  this  is  a request  for  a VeriSign  low  assurance  certificate  or  secure  server  

certificate,  you  must  e-mail  the  certificate  request  to  VeriSign.  

You can  mail  the  low  assurance  certificate  request  to  VeriSign  immediately.  A 

secure  server  certificate  request  requires  more  documentation.  To find  out  what  

VeriSign  requires  for  a secure  server  certificate  request,  go  to the  following  URL:  

http://www.verisign.com/ibm.  

Migrating a keyring file to the key database format 

The  gsk7IKM  program  can  be  used  to  migrate  an  existing  keyring  file,  as  created  

with  mkkf,  to  the  format  used  by  gsk7IKM.  

To migrate  a keyring  file:  

 1.   Type  gsk7IKM  to  start  the  Java  utility.  

 2.   Select  Key  Database  File. 

 3.   Select  Open. 

 4.   Specify  key  database  file  name  and  location.  Type OK.  

 5.   When  prompted,  supply  password  for  the  keyring  file.  Click  OK. 

 6.   Select  Key  Database  File. 

 7.   Select  Save  As.... 

 8.   Select  CMS  key  database  file  as  the  Key  database  type.  

 9.   Specify  a file  name.  

10.   Specify  location.  

11.   Click  OK.

 

Chapter  4. Using gsk7IKM  157

http://www.verisign.com/ibm


158 Programming  Reference



Chapter  5.  Change  tracking  in  Tivoli Directory  Server  

Tivoli  Directory  Server  v6.1  provides  different  ways  to  track  changes  made  to  the  

directory  data.  Change  tracking  mechanism  can  be  broadly  categorized  into  

notification  based  and  poll  based.  

v   In notification  based  change  tracking  mechanism,  clients  are  notified  about  the  

changes  to  the  directory  data  as and  when  they  occur.  Persistent  search  and  

event  notification  are  the  two  notification  based  change  tracking  techniques.  

v   In poll  based  change  tracking  mechanism,  clients  are  required  to query  the  

directory  server  for  changes.  LDAP  clients  can  use  the  change  log  generated  by  

Tivoli  Directory  Server  to poll  for  changes.

Persistent search 

Persistent  search  is an  extended  form  of  the  standard  LDAP  search  operation.  

Persistent  search  sends  the  set  of entries  that  match  the  search  criteria.  

Additionally,  it  also  provides  clients  a means  to  receive  notification  of changes  to  

the  LDAP  server  on  entries  within  the  result  set  that  were  sent  to the  client.  

The  persistent  search  control  can  be  included  in  the  Controls  portion  of an  LDAP  

V3  search  request  message.  The  controlType  for  the  persistent  search  control  is 

″2.16.840.1.113730.3.4.3″.  

  

PersistentSearch  ::= SEQUENCE  { 

                       changeTypes  INTEGER,  

                       changesOnly  BOOLEAN,  

                       returnECs  BOOLEAN  

                     } 

  

On  receiving  this  control,  Tivoli  Directory  Server  processes  the  request  as  a 

standard  LDAP  V3  search  with  the  following  exceptions:  

v   If changesOnly  is TRUE,  the  server  does  not  return  any  existing  entries  that  

match  the  search  criteria.  Entries  are  only  returned  when  they  are  changed  by  an  

update  operation  such  as  add,  modify,  delete,  or  modifyDN  operation.  

v   After  the  changes  are  made  to  the  server,  the  affected  entries  that  match  the  

search  criteria  are  returned  to  the  client  only  if the  operation  that  caused  the  

change  is included  in  the  changeTypes  field.  The  changeTypes  field  is  the  logical  

OR  of  one  or  more  of  these  values:  add  (1),  delete  (2),  modify  (4),  and  modDN  

(8).  

v   After  the  operation  is performed,  the  server  does  not  return  a SearchResultDone  

message.  Instead,  the  search  operation  is kept  active  until  the  client  unbinds.  

v   If the  value  in  the  returnECs  field  is TRUE,  the  server  returns  the  Entry  Change  

Notification  control  with  each  entry  returned  as  the  result  of changes.

The  ldap_create_persistentsearch_control()  API  can  be  used  to create  the  persistent  

search  control  that  can  then  be  passed  to the  controls  section  of the  

ldap_search_ext()  or  ldap_search_ext_s()  API  to  initiate  a persistent  search.  

The  entry  change  notification  control  provides  additional  information  about  the  

change  that  caused  a particular  entry  to  be  returned  on  performing  a persistent  

search.  The  controlType  for  the  entry  change  notification  control  is 

″2.16.840.1.113730.3.4.7″.  

 

© Copyright  IBM Corp. 2002, 2007 159



If a client  sets  the  returnECs  field  to  TRUE  in  the  persistent  search  control,  then  

Tivoli  Directory  Server  includes  the  entry  change  notification  control  in  the  

Controls  portion  of  each  SerachResultEntry  that  is returned  due  to an  entry  being  

added,  deleted,  or  modified.  

  

EntryChangeNotification  ::=  SEQUENCE  { 

            changeType  ENUMERATED  { 

               add              (1),  

               delete           (2),  

               modify           (4),  

               modDN            (8) 

            }, 

            previousDN    LDAPDN   OPTIONAL,   # modifyDN  operations  only  

            changeNumber  INTEGER  OPTIONAL   # if supported  

} 

  

where,  

changeType  

This  parameter  indicates  the  type  of  LDAP  operation  that  caused  the  entry  

to  be  returned.  

previousDN  

The  value  of  this  parameter  will  be  present  only  for  modifyDN  operations.  

This  parameter  contains  the  DN  of the  entry  before  it was  renamed  or  

moved.  This  optional  field  is included  only  when  returning  change  

notifications  as  a result  of  modifyDN  operations.  

changeNumber  

This  parameter  contains  the  change  number,  [CHANGELOG],  assigned  by 

the  server  for  a change  on  an  entry.

The  ldap_parse_entrychange_control()  API  goes  through  a list  of controls  received  

from  a persistent  search  operation,  retrieves  the  entry  change  control  from  it and  

parses  that  control  for  change  information.  

See  the  ldapsearch.c  example  source  code  in  the  <TDS_INSTALL_ROOT>/
examples  directory  to know  how  to  use  persistent  search.  

Event notification 

The  event  notification  function  allows  a server  to  notify  a registered  client  that  an  

entry  in  the  directory  tree  has  been  changed,  added  or  deleted.  This  notification  is 

in  the  form  of  an  unsolicited  message.  

Registration request 

In  order  to  register,  the  client  must  use  a bound  connection.  To register  a client  use  

the  supported  client  APIs  for  extended  operations.  An  LDAP  v3  extended  

operation  request  has  the  form:  

        ExtendedRequest  ::=  [APPLICATION  23] SEQUENCE  { 

                requestName       [0]  LDAPOID,  

                requestValue      [1]  OCTET  STRING  OPTIONAL  } 

where  the  requestValue  has  the  form:  

requestValue  ::=  SEQUENCE  { 

                eventID          ENUMERATED  { 

                        LDAP_CHANGE  (0)},  

                baseObject       LDAPDN,

 

160 Programming  Reference



scope            ENUMERATED  { 

                        baseObject               (0),  

                        singleLevel              (1),  

                        wholeSubtree             (2)  }, 

                type     INTEGER  OPTIONAL  } 

  

and  where  type  has  the  form:  

        changeType  ::=  ENUMERATED  { 

                        changeAdd                (1),  

                        changeDelete             (2),  

                        changeModify             (4),  

                        changeModDN              (8)  } 

Note:   If  the  type  field  is not  specified,  it defaults  to  all  changes.  

An  LDAP  v3  extended  operation  response  has  the  form:  

        ExtendedResponse  ::=  [APPLICATION  24] SEQUENCE  { 

                COMPONENTS  OF LDAPResult,  

                responseName      [10]  LDAPOID  OPTIONAL,  

                response          [11]  OCTET  STRING  OPTIONAL  } 

Registration response 

If  the  registration  is  successful,  the  server  returns  the  following  message  and  a 

unique  registration  ID:  

LDAP_SUCCESS  <registration  ID>  

If  the  registration  fails,  the  server  returns  one  of  the  following:  

LDAP_UNWILLING_TO_PERFORM  

This  error  code  is  returned  if: 

v   The  event  notification  function  is turned  off  in  the  server.  

v   The  event  ID  requested  by  the  client  cannot  be  handled  by  the  server.  

v   The  client  is  unbound.
LDAP_NO_SUCH_OBJECT  

This  error  code  is  returned  if: 

v   The  base  DN  supplied  by  the  client  does  not  exist  or  is not  visible  to  the  client.
LDAP_NOT_SUPPORTED  

This  error  code  is  returned  if: 

v   The  change  type  supplied  by  the  client  cannot  be  handled  by  the  server.

Usage 

When  an  event  occurs,  the  server  sends  a message  to  the  client  as  an  LDAP  v3  

unsolicited  notification.  The  message  ID  is 0 and  the  message  is in  the  form  of an  

extended  operation  response.  The  responseName  field  is set  to the  registration  

OID.  The  response  field  contains  the  unique  registration  ID  and  a timestamp  for  

when  the  event  occurred.  The  time  field  is in  Coordinated  Universal  Time  (UTC)  

format.  

Note:   When  a transaction  occurs,  the  event  notifications  for  the  transaction  steps  

cannot  be  sent  until  the  entire  transaction  is completed.

 

Chapter  5. Change  tracking  in Tivoli  Directory Server 161



Unregistering a client 

Set  the  requestName  field  to the  unregister  request  OID.  In  the  requestValue  field  

type  the  unique  registration  ID  returned  by  the  server  from  the  registration  

request:  

        requestValue  ::= OCTET  STRING  

If the  registration  is  successfully  removed,  the  LDAPResult  field  contains  

LDAP_SUCCESS  and  the  response  field  contains  the  registration  ID  that  was  

removed.  

If the  unregistration  request  was  unsuccessful,  NO_SUCH_OBJECT  is returned.  

Example 

#include  <stdio.h>  

#include  <string.h>  

#include  <ldap.h>  

  

  

struct  berval  *create_reg(int  id,char  *base,int  scope,int  type){  

  struct  berval  *ret;  

  BerElement  *ber;  

  

  if((ber  = ber_alloc_t(1))  == NULL){  

    printf("ber_alloc_t  failed\n");  

    return  NULL;  

  } 

  if(ber_printf(ber,"{esi",id,base,scope)  == (-1)){  

    printf("first  ber_printf  failed\n");  

    return  NULL;  

  } 

  if(type  != (-1)){  

    if(ber_printf(ber,"i",type)  == (-1)){  

      printf("type  ber_printf  failed\n");  

      return  NULL;  

    } 

  } 

  if(ber_printf(ber,"}")  == (-1)){  

    printf("closing  ber_printf  failed\n");  

    return  NULL;  

  } 

  

  if(ber_flatten(ber,&ret)  == (-1)){  

    printf("ber_flatten  failed\n");  

    return  NULL;  

  } 

  ber_free(ber,1);  

  return  ret;  

} 

  

int  main(int  argc,char  **argv){  

  LDAP  *ld;  

  char  *oidreq  = "1.3.18.0.2.12.1";  

  char  *oidres;  

  struct  berval  *valres  = NULL;  

  struct  berval  *registration;  

  int  rc,version,  port;  

  LDAPMessage  *res;  

  BerElement  *ber;  

  char  *regID;  

  

  argc--;  argv++;  

  

  port  = 389;

 

162 Programming  Reference



if(argc  > 0){  

    if(argc  > 1) sscanf(argv[1],"%d",&port);  

    ld = ldap_init(argv[0],port);  

  } 

  else  

    ld = ldap_init("localhost",389);  

  if(ld  ==  NULL){  

    printf("ldap_init  failed\n");  

    ldap_unbind(ld);  

    return  -1;  

  } 

  version  = 3; 

  ldap_set_option(ld,LDAP_OPT_PROTOCOL_VERSION,&version);  

  

  if(ldap_simple_bind_s(ld,"cn=admin","secret")  != LDAP_SUCCESS){  

    printf("Couldn’t  bind\n");  

    ldap_unbind(ld);  

    return  -1;  

  } 

  

  registration  = create_reg(0,"o=sample",2,15);  

  rc  = ldap_extended_operation_s(ld,oidreq,registration,NULL,NULL,  

                                 &oidres,&valres);  

  if(rc  ==  LDAP_SUCCESS){  

    if(valres  != NULL){  

      if((ber  = ber_init2(valres))  == NULL)  

        printf("ber_init2  failed\n");  

      else{  

        if(ber_scanf(ber,"a",&regID)  == LBER_ERROR)  

          printf("ber_scanf  failed\n");  

        printf("registration  ID: %s\n",regID);  

        ber_free(ber,1);  

      } 

    } 

    else{  

      printf("valres  NULL\n");  

    } 

  } 

  else{  

    printf("extended  operation  failed  0x%x\n",rc);  

  } 

  

  ldap_memfree(regID);  

  ldap_unbind(ld);  

  return  0;  

} 

Change log 

Tivoli  Directory  Servers  records  changes  made  to  the  LDAP  data  in the  change  log  

database.  Entries  in  the  change  log  database  can  be  queried  using  the  standard  

LDAP  APIs.  All  update  operations  to the  directory  server  are  recorded  in  this  

database.  

LDAP  client  applications  that  depend  on  polling  for  identifying  changes  can  query  

the  change  log  periodically  with  appropriate  filters  (based  on  chronological  change  

numbers).  

All  change  log  entries  are  of objectclass  ibm-changelog  and  is derived  from  

changelogentry  objectclass.  They  are  located  under  the  DN  entry  ″cn=changelog”.  

Listed  below  are  the  attributes  of the  ibm-changelog  objectclass  containing  

description  of  a change.  

 

Chapter  5. Change  tracking  in Tivoli  Directory Server 163



Table 7. Attributes  in the ibm-changelog  objectclass  and  their  description  

Attribute  Description  

changenumber  A number  that  uniquely  identifies  a change  made  to a 

directory  entry.  This  integer  value  increases  as new  entries  are  

added  and  is unique  for a given  instance.  

targetdn  DN  of the entry  that  was  added,  deleted,  or modified.  In case  

of modrdn  operation,  it gives  the  DN  of the entry  before  it was 

modified.  

changetype  Type of change  made  to the  entry:  add,  modify,  delete,  or 

modrdn.  

changes  The  changes  made  to the  directory  server  published  in LDIF. 

newRDN  The  new  RDN  of an entry,  if changetype  is modrdn.  

deleteOldRDN  This  is a Boolean  attribute.  If the value  is TRUE,  it indicates  

that  the RDN  should  not  be retained  as a distinguished  

attribute  of the  entry.  If false,  it indicates  that  the  RDN  should  

be retained  as a distinguished  attribute.  

newSuperior  If present,  it gives  the name  of the  immediate  parent  of the  

existing  entry.  

changetime  Time  when  the  change  was  done.  

ibm-changeInitiatorsName  DN  of the user  who  initiated  the  change.

 

164 Programming  Reference



Chapter  6.  LDAP  client  plug-in  programming  reference  

The  following  sections  provide  information  about  writing  client  plug-ins.  

Introduction to client SASL plug-ins 

Client-side  SASL  plug-ins  are  used  to  extend  the  authentication  capabilities  of  the  

LDAP  client  library.  They  work  by  intercepting  the  application’s  invocation  of the  

ldap_sasl_bind_s()  API.  Note  that  SASL  plug-ins  are  not  designed  to  intercept  

asynchronous  SASL  binds.  

Basic processing 

The  following  describes  the  typical  flow  when  a SASL  plug-in  is  used  to provide  

an  extended  authentication  function.  This  flow  assumes  the  SASL  plug-in  shared  

library  has  already  been  loaded  by  the  LDAP  library:  

1.   Application  invokes  ldap_sasl_bind_s(),  with  a mechanism  supported  by  a 

configured  SASL  plug-in.  

2.   The  LDAP  library  invokes  the  SASL  bind  worker  function,  as  provided  by  the  

appropriate  plug-in.  The  parameters  supplied  on  the  original  ldap_sasl_bind_s()  

API  are  passed  to the  plug-in  as  elements  of  a pblock  structure.  

3.   The  plug-in’s  worker  function  receives  control,  and  extracts  the  parameters  

from  the  pblock  using  the  ldap_plugin_pblock_get()  API.  The  following  

SASL-related  information  can  be  obtained  from  the  pblock  by  the  plug-in:  

v   Distinguished  Name  (dn)  

v   Credentials  

v   Server  controls  

v   Client  controls  

v   Mechanism  (plug-in  subtype)

In  addition  to  these  parameters,  the  plug-in  can  also  obtain  other  information  

using  the  ldap_plugin_pblock_get(),  including:  

v   Plug-in  configuration  information  (that  is,  configuration  information  supplied  

in  ARGC  and  ARGV  form)  

v   Target  LDAP  server  host  name
4.   The  plug-in  performs  its  mechanism-specific  logic.  Here  are  some  sample  

mechanisms  that  can  be  implemented  as  SASL  plug-ins,  and  thus  be  made  

available  to  all  LDAP  applications  running  on  the  system:  

Authentication  based  on  a user’s  fingerprint  (for  example,  

mechanism=userfp)  

When  the  fingerprint  plug-in  gets  control,  it  uses  the  DN  supplied  on  

the  ldap_sasl_bind_s()  API  to  obtain  an  image  of  the  user’s  fingerprint.  

This  can  entail  prompting  the  user  to use  a fingerprint  scanning  device.  

In  this  example,  the  fingerprint  image,  however  obtained,  represents  

the  user’s  credentials.  

 Once  the  credentials  are  obtained,  the  plug-in  is ready  to perform  the  

actual  SASL  bind.  This  is done  by  invoking  the  

ldap_plugin_sasl_bind_s()  API,  supplying  the  appropriate  parameters  

(DN,  credentials,  mechanism,  server  controls).  This  is a synchronous  

API  that  sends  the  SASL  bind  request  to  the  LDAP  server.  Two items  

 

© Copyright  IBM Corp. 2002, 2007 165



are  returned  to  the  plug-in  when  the  bind  result  is returned  from  the  

server,  and  control  is returned  to  the  plug-in:  

v   Bind  result  error  code  

v   Server  credentials  

If  the  server  credentials  are  to be  returned  to  the  application,  they  must  

be  set  in  the  pblock  prior  to  returning  control  to  the  LDAP  library,  and  

subsequently  to the  application.  This  is done  by  using  

ldap_plugin_pblock_set().  In  this  example,  the  plug-in’s  work  is 

complete,  and  it returns,  supplying  the  bind  result  error  code  as the  

return  code.  

Authentication  using  credentials  previously  established  by  the  operating  

system   

When  the  plug-in  gets  control,  it  queries  the  local  security  context  to  

obtain  the  user’s  identity  and  security  token.  For  this  example,  we  

assume  the  user’s  identity,  as  associated  with  the  local  security  context,  

is  used  to  construct  the  DN,  and  information  from  the  security  token  is  

used  for  credentials.  

 After  the  credentials  are  obtained,  the  plug-in  invokes  

ldap_plugin_sasl_bind_s(),  supplying  the  appropriate  parameters  (DN,  

credentials,  mechanism,  server  controls).  As  in  the  previous  example,  

the  plug-in  waits  for  the  results  of  the  bind  request,  then  returns  to the  

LDAP  library,  again  setting  server  credentials  in  the  pblock,  if 

appropriate.  Control  is then  returned  to  the  application,  along  with  the  

optional  server  credentials.  

Authentication  using  multiple  binds  (mechanism=DIGEST-MD5)  

Some  SASL  mechanisms  require  multiple  transactions  between  the  

client  and  the  server  (for  example,  the  SASL  DIGEST-MD5  mechanism).  

For  this  type  of mechanism,  once  the  plug-in  gains  control,  it actually  

invokes  the  ldap_plugin_sasl_bind_s()  API  multiple  times.  On  each  

bind  operation,  the  plug-in  can  supply  DN,  credentials,  mechanism  and  

server  controls,  which  are  passed  to  the  server.  The  LDAP  server  can  

return  a result  and  server  credentials  back  to  the  client.  The  plug-in  can  

use  this  information  to  formulate  another  bind,  again  sent  to  the  server  

using  ldap_plugin_sasl_bind_s().  Once  the  multi-bind  flow  is complete,  

the  plug-in  returns  control  to  the  LDAP  library  with  the  result  and  

optional  server  credentials.

Restrictions 

The  plug-in  must  not  use  any  LDAP  APIs  which  accept  ld as  the  input.  This  

results  in  deadlock,  since  the  ld  is locked  until  the  bind  processing  is complete.  

Initializing a plug-in 

A  typical  LDAP  SASL  plug-in  contains  two  entry  points:  

v   An  initialization  routine  

v   A worker  routine,  which  implements  the  authentication  function

When  an  instance  of  an  application  uses  a SASL  plug-in  for  the  first  time,  the  

LDAP  library  obtains  the  configuration  information  for  the  plug-in.  The  

configuration  information  can  come  from  ibmldap.conf  or  might  have  been  

supplied  explicitly  by  the  application  with  the  ldap_register_plugin()  API.  

 

166 Programming  Reference



Once  the  configuration  information  is  located,  the  LDAP  library  loads  the  plug-in’s  

shared  library  and  invoke  its  initialization  routine.  By  default,  the  name  of  the  

initialization  routine  for  a plug-in  is ldap_plugin_init().  A different  entry  point  can  

be  defined  in  ibmldap.conf,  or  supplied  on  the  ldap_plugin_register()  API  if the  

plug-in  is explicitly  registered  by  the  application.  

The  plug-in’s  initialization  routine  is responsible  for  supplying  the  address  of  its  

worker  routine’s  entry  point,  which  actually  implements  the  authentication  

function.  This  is  done  by  using  ldap_plugin_pblock_set()  to  define  the  address  of  

the  worker  routine’s  entry  point  in  the  pblock.  For  example,  the  following  code  

segment  depicts  a typical  initialization  routine,  where  

authenticate_with_fingerprint  is the  name  of  the  routine  provided  by  the  plug-in  to  

perform  a fingerprint-based  authentication:  

int  ldap_plugin_init  ( LDAP_Pblock       *pb  ) 

{ 

        int  rc;  

  

        rc =  ldap_plugin_pblock_set  ( pb,  LDAP_PLUGIN_SASL_BIND_S_FN,  ( void  * ) 

              authenticate_with_fingerprint  ); 

        if ( rc != LDAP_SUCCESS  ) printf("ldap_plugin_init  couldn’t  initialize  

              worker  function\n");  

        return  ( rc ); 

} 

A pblock  is  an  opaque  structure  in  which  parameters  are  stored.  A  pblock  is used  

to  communicate  between  the  LDAP  client  library  and  a plug-in.  The  

ldap_plugin_pblock_set  and  ldap_plugin_pblock_get  APIs  are  provided  for  your  

plug-in  to  set,  or  get,  parameters  in  the  pblock  structure.  

Using  ldap_plugin_pblock_get(),  the  plug-in  can  also  access  configuration  

parameters.  For  example,  the  following  code  segment  depicts  how  the  plug-in  can  

access  its  configuration  information:  

   int  argc;  

   char  ** argv;  

  

   rc = ldap_plugin_pblock_get  ( pb, LDAP_PLUGIN_ARGC,  &argc  ); 

   if (rc  != LDAP_SUCCESS)  

      return  (rc);  

   rc = ldap_plugin_pblock_get(  pb,  LDAP_PLUGIN_ARGV,  &argv  ); 

   if (rc  != LDAP_SUCCESS)  

      return  (rc);  

If  the  plug-in’s  initialization  processing  is  significant,  and  the  results  need  to  be 

preserved  and  made  available  to  the  plug-in’s  worker  function,  the  initialization  

routine  can  store  the  results  of  initialization  as private  instance  data  in  its  shared  

library.  When  the  plug-in’s  worker  function  is  subsequently  invoked,  it can  access  

this  private  instance  data.  For  example,  during  initialization,  the  plug-in  might  

need  to  establish  a session  with  a remote  security  server.  Session  information  can  

be  retained  in  the  private  instance  data,  which  can  be  accessed  later  by  the  

plug-in’s  worker  function.  

After  your  plug-in  is correctly  initialized,  its  worker  function  can  be  used  by  the  

LDAP  library.  Continuing  the  example  shown  above,  if the  mechanism  supported  

by  the  plug-in  is userfp,  the  authenticate_with_fingerprint  function  of your  plug-in  

is  invoked  when  the  application  issues  an  ldap_sasl_bind_s()  function  with  

mechanism=″userfp″. See  “Sample  worker  function”  on  page  170  for  an  example  of 

a plug-in’s  worker  function.  

 

Chapter  6. LDAP client plug-in programming reference 167



Writing  your own SASL plug-in 

Do  the  following  to  write  your  own  SASL  plug-in:  

1.   Implement  your  own  initialization  and  worker  functions.  Include  ldap.h,  where  

you  can  find  all  the  parameters  that  can  be  obtained  from  the  pblock,  as well  as  

the  function  prototypes  for  the  available  plug-in  functions:  

v   ldap_plugin_pblock_get()  

v   ldap_plugin_pblock_set()  

v   ldap_plugin_sasl_bind_s()
2.   Identify  the  input  parameters  to  your  initialization  and  worker  functions.  

Note:   The  LDAP  library  can  pass  parameters  to  your  plug-in  initialization  

function  by  way  of the  argument  list  that  is specified  in ibmldap.conf,  or  

by  way  of  the  plugin_parmlist  parameter  on  the  ldap_register_plugin()  

API.  Information  might  also  be  supplied  as  client-side  controls.  

3.   The  initialization  function  must  call  the  ldap_plugin_pblock_set  API  in  order  to  

register  your  plug-in’s  worker  function.  

4.   Implement  your  worker  function.  The  worker  function  is responsible  for  

obtaining  the  user’s  credentials  and  implementing  the  authentication  function.  

Typically  this  involves  invoking  the  ldap_plugin_sasl_bind_s()  API  one  or  more  

times.  If  the  authentication  is successful,  LDAP_SUCCESS  must  be  returned.  

Otherwise,  the  unsuccessful  LDAP  result  must  be  returned  as  the  return  code.  

If  appropriate,  the  worker  function  can  also  return  a value  for  server  

credentials.  

5.   Export  your  initialization  function  from  your  plug-in  library.  Use  an  .exp  file  

for  the  AIX  operating  system  or  Solaris  operating  system,  or  a .def  (or  

dllexport)  file  for  the  Windows  NT  operating  system  to  export  your  

initialization  function.  

6.   Compile  your  client  plug-in  functions.  Set  the  include  path  to include  ldap.h,  

and  to  link  to  ldap.lib.  Compile  and  link  all  your  LDAP  plug-in  object  files  

with  whatever  libraries  you  need,  including  ldap.lib.  Make  sure  that  the  

initialization  function  is exported  from  the  .dll  you  created.  

7.   Add  a plug-in  directive  in  the  LDAP  plug-in  configuration  file,  ibmldap.conf.  

Alternatively,  the  application  can  define  the  plug-in  by  calling  the  

ldap_register_plugin()  API.

Plug-in APIs 

For  pblock  access:  

int  ldap_plugin_pblock_get(  LDAP_PBlock  *pb,  int  arg,  void  **value  ); 

int  ldap_plugin_pblock_set(  LDAP_PBlock  *pb,  int  arg,  void  *value  ); 

For  sending  an  LDAP  bind  to  the  server:   

int  ldap_plugin_sasl_bind_s  ( 

        LDAP             *ld,  

        char             *dn,  

        char             *mechanism,  

        struct  berval    *credentials,  

        LDAPControl      **serverctrls,  

        LDAPControl      **clientctrls,  

        struct  berval    **servercredp)  

ldap_plugin_pblock_get()  

The  ldap_plugin_pblock_get()  API  returns  the  value  associated  with  the  specified  

pblock  tag.  

 

168 Programming  Reference



Syntax 

#include  "ldap.h"  

int  ldap_plugin_pblock_get(  LDAP_PBlock  *pb,  int arg,  void  **value  ) 

Parameters 

pb  Specifies  the  address  of  a pblock.  

arg  Specifies  the  tag  or  ID  of  the  tag-value  pair  that  you  want  to obtain  from  

the  pblock.  

value  Specifies  a pointer  to  the  address  of  the  returned  value.

Returns 

Returns  0 if successful,  or  -1  if an  error  occurs.  

ldap_plugin_pblock_set() 

The  ldap_plugin_pblock_set  API  sets  the  value  associated  with  the  specified  pblock  

tag.  

Syntax 

#include  "ldap.h"  

int  ldap_plugin_pblock_set(  LDAP_PBlock  *pb,  int arg,  void  *value  ); 

Parameters 

pb  Specifies  the  address  of  a pblock.  

arg  Specifies  the  tag  or  ID  of  the  tag-value  pair  that  you  want  to set  in the  

pblock.  

value  Specifies  a pointer  to  the  value  that  you  want  to  set  in  the  parameter  block.

Returns 

Returns  0 if successful,  or  -1  if an  error  occurs.  

ldap_plugin_sasl_bind_s() 

The  ldap_plugin_sasl_bind_s  API  is used  by  the  plug-in  to transmit  an  LDAP  

SASL  bind  operation  to  the  LDAP  server.  

Syntax 

#include  "ldap.h"  

int  ldap_plugin_sasl_bind_s(  

                        LDAP             *ld,  

                        char             *dn,  

                        char             *mechanism,  

                        struct  berval    *credentials,  

                        LDAPControl      **serverctrls,  

                        LDAPControl      **clientctrls,  

                        struct  berval    **servercredp)  

Parameters 

ld  Specifies  the  LDAP  pointer  associated  with  the  application’s  invocation  of 

ldap_sasl_bind_s().  The  plug-in  obtains  the  LD  with  the  

ldap_plugin_pblock_get()  API.  

dn  Specifies  the  Distinguished  Name  to bind  the  entry.  The  DN  might  have  

been  supplied  by  the  application  and  obtained  using  

ldap_plugin_pblock_get(),  or  it might  have  been  obtained  by  other  means.  

 

Chapter  6. LDAP client plug-in programming reference 169



credentials  

Specifies  the  credentials  to  authenticate  with.  Arbitrary  credentials  can  be  

passed  using  this  parameter.  The  credentials  might  have  been  supplied  by 

the  application  and  obtained  using  ldap_plugin_pblock_get(),  or  they  

might  have  been  obtained  by  other  means.  

mechanism  

Specifies  the  SASL  mechanism  to  be  used  when  binding  to  the  server.  If a 

plug-in  can  be  invoked  for  more  than  one  mechanism,  the  plug-in  can  

obtain  the  mechanism  that  was  specified  by  the  application  with  the  

ldap_plugin_pblock_get()  API.  

serverctrls  

Specifies  a list  of LDAP  server  controls.  See  “LDAP  controls”  on  page  25 

for  more  information  about  server  controls.  The  server  controls  might  have  

been  supplied  by  the  application  and  obtained  using  

ldap_plugin_pblock_get(),  or  they  might  have  been  obtained  by  other  

means.  

clientctrls  

Specifies  a list  of LDAP  client  controls.  See  “LDAP  controls”  on  page  25  for  

more  information  about  client  controls.  

Note:   The  client  controls  are  not  supported  at this  time  for  the  

ldap_plugin_sasl_bind_s()  API.

Returns 

error  code  

The  error  code  is  set  to  LDAP_SUCCESS  if the  bind  succeeded.  Otherwise  it is 

set  to  a nonzero  error  code.  

servercredp  

This  result  parameter  is set  to the  credentials  returned  by  the  server.  If no  

credentials  are  returned,  it is set  to  NULL.

Sample worker function 

/*  Sample  SASL  Plugin               */ 

  

#include  <ldap.h>  

#include  <string.h>  

  

  

int  ldap_plugin_sasl_bind_s_prepare  ( LDAP_Pblock    *pb  ) 

{ 

        LDAP                     *ld;  

        char                     *dn;  

        char                     *mechanism;  

        struct  berval            *cred;  

        LDAPControl              **serverctrls;  

        LDAPControl              **clientctrls;  

        struct  berval            *servercredp  = NULL;  

  

        void  *                  data;  

        int                      rc; 

  

        /**************************************************************************/  

        /* Query  pblock  to obtain  ld,  dn, mechanism,  credentials,  server  controls  */ 

        /* and  client  controls,  as supplied  by application  when  it invoked  the     */ 

        /* ldap_sasl_bind_s()  API.                                                 */ 

        /**************************************************************************/  

 

 

170 Programming  Reference



if ( rc = ( ldap_plugin_pblock_get  ( pb, LDAP_PLUGIN_LD,  &data  ))){  

                printf(  "Could  not  get parameter  for  bind  operation\n"  ); 

                return  ( rc  ); 

        } 

        ld = ( LDAP  * ) data;  

        if ( rc = ( ldap_plugin_pblock_get  ( pb, LDAP_PLUGIN_SASL_DN,  

          &data  )))  

                return  ( rc  ); 

        dn = ( char  * ) data;  

        if ( rc = ( ldap_plugin_pblock_get  ( pb, LDAP_PLUGIN_SASL_BIND_MECHANISM,  

          &data  )))  

                return  ( rc  ); 

        mechanism  = ( char  * ) data;  

        if ( rc = ( ldap_plugin_pblock_get  ( pb, LDAP_PLUGIN_SASL_BIND_CREDENTIALS,  

          &data  )))  

                return  ( rc  ); 

        cred  = ( struct  berval  * ) data;  

        if ( rc = ( ldap_plugin_pblock_get  ( pb, LDAP_PLUGIN_SASL_BIND_SERVERCTRLS,  

          &data  )))  

                return  ( rc  ); 

        serverctrls  = ( LDAPControl  ** ) data;  

        if ( rc = ( ldap_plugin_pblock_get  ( pb, LDAP_PLUGIN_SASL_BIND_CLIENTCTRLS,  

          &data  )))  

                return  ( rc  ); 

        clientctrls  = ( LDAPControl  ** ) data;  

  

        /**************************************************************************/  

        /* Perform  plugin  specific  logic  here  to alter  or obtain  the  user’s        */ 

        /* distinguished  name,  credentials,  etc.   This  could  include  obtaining     */ 

        /* additional  data  from  the pblock,  including:                             */ 

        /*                                                                        */ 

        /*   LDAP_PLUGIN_TYPE        (e.g.  "sasl")                                  */ 

        /*   LDAP_PLUGIN_ARGV        plugin  config  variables                        */ 

        /*   LDAP_PLUGIN_ARGC        plugin  config  variable  count                   */ 

        /*                                                                        */ 

        /**************************************************************************/  

  

        if ( rc = ( ldap_plugin_sasl_bind_s  ( 

                                                ld,  

                                                dn,  

                                                mechanism,  

                                                cred,  

                                                serverctrls,  

                                                clientctrls,  

                                                &servercredp)))  

                return  rc; 

  

        data  = ( void  * ) servercredp;  

  

        if ( rc = ( ldap_plugin_pblock_set  ( pb, LDAP_PLUGIN_SASL_SERVER_CREDS,  

          &data  )))  

                return  rc; 

  

  

        return  ( LDAP_SUCCESS  ); 

} 

  

  

ldap_plugin_init  ( LDAP_Pblock   *pb  ) 

{ 

        int              argc;  

        char             **argv;  

  

        if ( rc = (ldap_plugin_pblock_set  ( pb,  LDAP_PLUGIN_SASL_BIND_S_FN,  

                                          ( void  * ) 

          ldap_plugin_sasl_bind_s_prepare  ))) 

            return  ( rc );

 

Chapter  6. LDAP client plug-in programming reference 171



return  ( LDAP_SUCCESS  ); 

} 

  

 

172 Programming  Reference



Appendix  A.  Possible  extended  error  codes  returned  by  LDAP  

SSL  function  codes  

The  following  are  values  returned  by  all  function  calls:  

v   0 –The  task  completed  successfully.  Issued  by  every  function  call  that  completes  

successfully.  

v   1 – The  environment  or  SSL  handle  is not  valid.  The  specified  handle  was  not  

the  result  of  a successful  open  function  call.  

v   2 – The  dynamic  link  library  unloaded  (Windows  only).  

v   3 – An  internal  error  occurred.  Report  this  error  to service.  

v   4 – Main  memory  is insufficient  to perform  the  operation.  

v   5 – The  handle  is in  an  invalid  state  for  operation,  such  as  performing  an  init  

operation  on  a handle  twice.  

v   6 – Specified  key  label  not  found  in keyfile.  

v   7 – Certificate  not  received  from  partner.  

v   8 – Certificate  validation  error. 

v   9 – Error  processing  cryptography.  

v   10  – Error  validating  Abstract  Syntax  Notation  (ASN)  fields  in  certificate.  

v   11 – Error  connecting  to  LDAP  server.  

v   12  – Internal  unknown  error. Report  problem  to  service.  

v   101  – Internal  unknown  error.  Report  problem  to  service.  

v   102  – I/O  error  reading  keyfile.  

v   103  – Keyfile  has  an  invalid  internal  format.  Re-create  keyfile.  

v   104  – Keyfile  has  two  entries  with  the  same  key.  Use  iKeyman  to  remove  the  

duplicate  key.  

v   105  – Keyfile  has  two  entries  with  the  same  label.  Use  iKeyman  to  remove  the  

duplicate  label.  

v   106  – The  keyfile  password  is used  as  an  integrity  check.  Either  the  keyfile  has  

become  corrupted  or  the  password  ID  is incorrect.  

v   107  – The  default  key  in  the  keyfile  has  an  expired  certificate.  Use  iKeyman  to  

remove  certificates  that  are  expired.  

v   108  – There  was  an  error  loading  one  of  the  GSKdynamic  link  libraries.  Be  sure  

GSK  was  installed  correctly.  

v   109  – Indicates  that  a connection  is  trying  to  be  made  in  a gsk  environment  after  

the  GSK_ENVIRONMENT_CLOSE_OPTIONS  has  been  set  to  

GSK_DELAYED_ENVIRONMENT_CLOSE  and  gsk_environment_close()  

function  has  been  called.  

v   201  – Neither  the  password  nor  the  stash-file  name  was  specified,  so  the  key  file 

could  not  be  initialized.  

v   202  – Unable  to  open  the  key  file.  Either  the  path  was  specified  incorrectly  or  

the  file  permissions  did  not  allow  the  file  to  be  opened.  

v   203  – Unable  to  generate  a temporary  key  pair. Report  this  error  to  service.  

v   204  – A  User  Name  object  was  specified  that  is  not  found  

v   205  – A  Password  used  for  an  LDAP  query  is  not  correct  

v   206  – An  index  into  the  Fail  Over  list  of LDAP  servers  was  not  correct.  

 

© Copyright  IBM Corp. 2002, 2007 173



v   301  – Indicates  that  the  GSK  environment  close  request  was  not  properly  

handled.  Cause  is most  likely  due  to  a gsk_secure_socket*()  command  being  

attempted  after  a gsk_close_environment()  call.  

v   401  – The  system  date  was  set  to an  invalid  value.  

v   402  – Neither  SSLv2  nor  SSLv3  is enabled.  

v   403  – The  required  certificate  was  not  received  from  partner.  

v   404  – The  received  certificate  was  formatted  incorrectly.  

v   405  – The  received  certificate  type  was  not  supported.  

v   406  – An  IO  error  occurred  on  a data  read  or  write.  

v   407  – The  specified  label  in the  key  file  could  not  be  found.  

v   408  – The  specified  key  file  password  is incorrect.  The  key  file  could  not  be  

used.  The  key  file  may  also  be  corrupt.  

v   409  – In  a restricted  cryptography  environment,  the  key  size  is too  long  to  be  

supported.  

v   410  – An  incorrectly  formatted  SSL  message  was  received  from  the  partner.  

v   411 – The  message  authentication  code  (MAC)  was  not  successfully  verified.  

v   412  – Unsupported  SSL  protocol  or  unsupported  certificate  type.  

v   413  – The  received  certificate  contained  an  incorrect  signature.  

v   414  – Incorrectly  formatted  certificate  received  from  partner.  

v   415  – Invalid  SSL  protocol  received  from  partner.  

v   416  – Internal  error. Report  problem  to  service.  

v   417  – The  self-signed  certificate  is not  valid.  

v   418  – The  read  failed.  Report  this  error  to service.  

v   419  – The  write  failed.  Report  this  error  to  service.  

v   420  – The  partner  closed  the  socket  before  the  protocol  completed.  

v   421  – The  specified  V2  cipher  is not  valid.  

v   422  – The  specified  V3  cipher  is not  valid.  

v   423  – Internal  error. Report  problem  to  service.  

v   424  – Internal  error. Report  problem  to  service.  

v   425  – The  handle  could  not  be  created.  Report  this  internal  error  to  service.  

v   426  – Initialization  failed.  Report  this  internal  error  to  service.  

v   427  – When  validating  a certificate,  unable  to access  the  specified  LDAP  

directory.  

v   428  – The  specified  key  did  not  contain  a private  key.  

v   429  – A failed  attempt  was  made  to load  the  specified  Public-Key  Cryptography  

Standards  (PKCS)  #11 shared  library.  

v   430  – The  PKCS  #11 driver  failed  to find  the  token  specified  by  the  caller.  

v   431  – A PKCS  #11 token  is not  present  in  the  slot.  

v   432  – The  password/pin  to  access  the  PKCS  #11 token  is invalid.  

v   433  – The  SSL  header  received  was  not  a properly  SSLV2  formatted  header.  

v   501  – The  buffer  size  is negative  or  zero.  

v   502  – Used  with  non-blocking  I/O.  Refer  to  the  non-blocking  section  for  usage.  

v   601  – SSLV3  is  required  for  reset_cipher,  and  the  connection  uses  SSLV2.  

v   602  – An  invalid  ID  was  specified  for  the  gsk_secure_soc_misc  function  call.  

v   701  – The  function  call  has  an  invalid  ID.  This  may  also  be  caused  by  specifying  

an  environment  handle  when  a handle  for  a SSL  connection  should  be  used.  

 

174 Programming  Reference



v   702  – The  attribute  has  a negative  length,  which  is invalid.  

v   703  – The  enumeration  value  is invalid  for  the  specified  enumeration  type.  

v   704  – Invalid  parameter  list  for  replacing  the  SID  cache  routines.  

v   705  – When  setting  a numeric  attribute,  the  specified  value  is invalid  for  the  

specific  attribute  being  set.  

v   706  – Conflicting  parameters  have  been  set  for  additional  certificate  validation.

 

Appendix  A. Possible  extended  error codes returned by LDAP  SSL function  codes 175



176 Programming  Reference



Appendix  B.  LDAP  V3  schema  

Use  the  following  sections  for  information  about  the  LDAP  V3  schema.  

Dynamic schema 

The  IBM  Tivoli  Directory  Server  Version  6.0  and  the  later  versions  of  C-Client  SDK  

require  that  the  schema  defined  for  a server  be  stored  in  the  directory’s  

subschemasubentry.  

To access  the  schema,  you  must  first  determine  the  subschemasubentry’s  DN,  

which  is  obtained  by  searching  the  root  DSE.  To obtain  this  information  from  the  

command-line,  issue  the  following  command:  

    ldapsearch  -h  hostname  -p 389  -b "" -s base  "objectclass=*"  

The  root  DSE  information  returned  from  an  LDAP  V3  server,  such  as  the  IBM  

Directory  server,  includes  the  following:  

    subschemasubentry=cn=schema  

where  subschemasubentry’s  DN  is ″cn=schema″. 

Using  the  subschemasubentry’s  DN  returned  by  searching  the  root  DSE,  schema  

information  can  be  accessed  with  the  following  command-line  search:  

ldapsearch  -h hostname  -p 389 -b "cn=schema"  -s base  "objectclass=subschema"  

The  schema  contains  the  following  information:  

Object  class  

A  collection  of  attributes.  A class  can  inherit  attributes  from  one  or  more  

parent  classes.  

Attribute  types  

Contain  information  about  the  attribute,  such  as  the  name,  oid,  syntax  and  

matching  rules. 

IBM  attribute  types  

The  IBM  LDAP  directory  implementation-specific  attributes,  such  as  

database  table  name,  column  name,  SQL  type,  and  the  maximum  length  of 

each  attribute.  

Syntaxes  

Specific  LDAP  syntaxes  available  for  attribute  definitions.  

Matching  rules  

Specific  matching  rules available  for  attribute  definitions.

Schema queries 

The  ldapsearch  utility  can  be  used  to  query  the  subschema  entry.  This  search  can  

be  performed  by  any  application  using  the  ldap_search  APIs.  

To retrieve  all  the  values  of one  or  more  selected  attribute  types,  specify  the  

specific  attributes  desired  for  the  LDAP  search.  Schema-related  attribute  types  

include  the  following:  

v   objectclass  

 

© Copyright  IBM Corp. 2002, 2007 177



v   objectclasses  

v   attributetypes  

v   ldapsyntaxes  

v   ibmattributetypes  

v   matchingrules

For  example,  to  retrieve  all  the  values  for  ldapsyntaxes,  specify:  

ldapsearch  -h  host  -b  "cn=schema"  -s  base  objectclass=*  ldapsyntaxes  

which  returns  something  like:  

cn=schema  

ldapSyntaxes=(  1.3.6.1.4.1.1466.115.121.1.10  DESC  ’Certificate  Pair’  ) 

ldapSyntaxes=(  1.3.6.1.4.1.1466.115.121.1.11  DESC  ’Country  String’  ) 

ldapsyntaxes=(  1.3.6.1.4.1.1466.115.121.1.12  DESC  ’DN’  ) 

ldapSyntaxes=(  1.3.6.1.4.1.1466.115.121.1.14  DESC  ’Delivery  Method’  ) 

ldapsyntaxes=(  1.3.6.1.4.1.1466.115.121.1.15  DESC  ’Directory  String’  ) 

ldapsyntaxes=(  1.3.6.1.4.1.1466.115.121.1.16  DESC  ’DIT  Content  Rule  

        Description’  ) 

ldapsyntaxes=(  1.3.6.1.4.1.1466.115.121.1.17  DESC  ’DIT  Structure  Rule  

        Description’  ) 

ldapSyntaxes=(  1.3.6.1.4.1.1466.115.121.1.21  DESC  ’Enhanced  Guide’  ) 

ldapSyntaxes=(  1.3.6.1.4.1.1466.115.121.1.22  DESC  

       ’Facsimile  Telephone  Number’  ) 

ldapSyntaxes=(  1.3.6.1.4.1.1466.115.121.1.23  DESC  ’Fax’  ) 

ldapsyntaxes=(  1.3.6.1.4.1.1466.115.121.1.24  DESC  ’Generalized  Time’  ) 

ldapSyntaxes=(  1.3.6.1.4.1.1466.115.121.1.25  DESC  ’Guide’  ) 

ldapsyntaxes=(  1.3.6.1.4.1.1466.115.121.1.26  DESC  ’IA5  String’  ) 

ldapsyntaxes=(  1.3.6.1.4.1.1466.115.121.1.27  DESC  ’INTEGER’  ) 

ldapSyntaxes=(  1.3.6.1.4.1.1466.115.121.1.28  DESC  ’JPEG’  ) 

ldapsyntaxes=(  1.3.6.1.4.1.1466.115.121.1.3  DESC  ’Attribute  Type  

        Description’  ) 

ldapsyntaxes=(  1.3.6.1.4.1.1466.115.121.1.30  DESC  ’Matching  Rule  

        Description’  ) 

ldapsyntaxes=(  1.3.6.1.4.1.1466.115.121.1.31  DESC  ’Matching  Rule  Use  

        Description’  ) 

ldapSyntaxes=(  1.3.6.1.4.1.1466.115.121.1.33  DESC  ’MHS  OR  Address’  ) 

ldapSyntaxes=(  1.3.6.1.4.1.1466.115.121.1.34  DESC  ’Name  And Optional  UID’  ) 

ldapsyntaxes=(  1.3.6.1.4.1.1466.115.121.1.35  DESC  ’Name  Form  

        Description’  ) 

ldapSyntaxes=(  1.3.6.1.4.1.1466.115.121.1.36  DESC  ’Numeric  String’  ) 

ldapsyntaxes=(  1.3.6.1.4.1.1466.115.121.1.37  DESC  ’Object  Class  

        Description’  ) 

ldapsyntaxes=(  1.3.6.1.4.1.1466.115.121.1.38  DESC  ’OID’  ) 

ldapSyntaxes=(  1.3.6.1.4.1.1466.115.121.1.39  DESC  ’Other  Mailbox’  ) 

ldapSyntaxes=(  1.3.6.1.4.1.1466.115.121.1.40  DESC  ’Octet  String’  ) 

ldapSyntaxes=(  1.3.6.1.4.1.1466.115.121.1.41  DESC  ’Postal  Address’  ) 

ldapSyntaxes=(  1.3.6.1.4.1.1466.115.121.1.42  DESC  ’Protocol  Information’  ) 

ldapSyntaxes=(  1.3.6.1.4.1.1466.115.121.1.43  DESC  ’Presentation  Address’  ) 

ldapSyntaxes=(  1.3.6.1.4.1.1466.115.121.1.44  DESC  ’Printable  String’  ) 

ldapSyntaxes=(  1.3.6.1.4.1.1466.115.121.1.49  DESC  ’Supported  Algorithm’  ) 

ldapsyntaxes=(  1.3.6.1.4.1.1466.115.121.1.5  DESC  ’Binary’  ) 

ldapsyntaxes=(  1.3.6.1.4.1.1466.115.121.1.50  DESC  ’Telephone  

        Number’  ) 

ldapSyntaxes=(  1.3.6.1.4.1.1466.115.121.1.51  DESC  

       ’Teletex  Terminal  Identifier’  ) 

ldapSyntaxes=(  1.3.6.1.4.1.1466.115.121.1.52  DESC  ’Telex  Number’  ) 

ldapsyntaxes=(  1.3.6.1.4.1.1466.115.121.1.53  DESC  ’UTC  Time’  ) 

ldapsyntaxes=(  1.3.6.1.4.1.1466.115.121.1.54  DESC  ’LDAP  Syntax  

        Description’  ) 

ldapSyntaxes=(  1.3.6.1.4.1.1466.115.121.1.58  DESC  ’Substring  Assertion’  ) 

ldapSyntaxes=(  1.3.6.1.4.1.1466.115.121.1.6  DESC  ’Bit  String’  ) 

ldapsyntaxes=(  1.3.6.1.4.1.1466.115.121.1.7  DESC  ’Boolean’  )

 

178 Programming  Reference



ldapSyntaxes=(  1.3.6.1.4.1.1466.115.121.1.8  DESC  ’Certificate’  ) 

ldapSyntaxes=(  1.3.6.1.4.1.1466.115.121.1.9  DESC  ’Certificate  List’  ) 

ldapsyntaxes=(  IBMAttributeType-desc-syntax-oid  DESC  ’IBM  Attribute  

        Type  Description’  ) 

Similarly,  to  obtain  the  values  for  matching  rules,  specify:  

 ldapsearch  -h host  -b "cn=schema"  -s base  objectclass=*  matchingrules  

which  returns  something  like:  

cn=schema  

     MatchingRules=  ( 1.3.6.1.4.1.1466.109.114.3  NAME  \ 

       ’caseIgnoreIA5SubstringsMatch’  SYNTAX  1.3.6.1.4.1.1466.115.121.1.58  ) 

     MatchingRules=  ( 2.5.13.5  NAME  ’caseExactMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.26  ) 

     MatchingRules=  ( 2.5.13.2  NAME  ’caseIgnoreMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.15  ) 

     MatchingRules=  ( 2.5.13.7  NAME  ’caseExactSubstringsMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.58  ) 

     MatchingRules=  ( 2.5.13.6  NAME  ’caseExactOrderingMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.15  ) 

     MatchingRules=  ( 2.5.13.4  NAME  ’caseIgnoreSubstringsMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.58)  

     MatchingRules=  ( 2.5.13.3  NAME  ’caseIgnoreOrderingMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.15  ) 

     MatchingRules=  ( 1.3.18.0.2.4.405  NAME  ’distinguishedNameOrderingMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.12  ) 

     MatchingRules=  ( 2.5.13.1  NAME  ’distinguishedNameMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.12  ) 

     MatchingRules=  ( 2.5.13.28  NAME  ’generalizedTimeOrderingMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.24  ) 

     MatchingRules=  ( 2.5.13.27  NAME  ’generalizedTimeMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.24  ) 

     MatchingRules=  ( 1.3.6.1.4.1.1466.109.114.2  NAME  ’caseIgnoreIA5Match’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.26  ) 

     MatchingRules=  ( 1.3.6.1.4.1.1466.109.114.1  NAME  ’caseExactIA5Match’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.26  ) 

     MatchingRules=  ( 2.5.13.29  NAME  ’integerFirstComponentMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.27  ) 

     MatchingRules=  ( 2.5.13.10  NAME  ’numericStringSubstringsMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.58  ) 

     MatchingRules=  ( 2.5.13.11  NAME  ’caseIgnoreListMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.41  ) 

     MatchingRules=  ( 2.5.13.12  NAME  ’caseIgnoreListSubstringsMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.58  ) 

     MatchingRules=  ( 2.5.13.13  NAME  ’booleanMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.7  ) 

     MatchingRules=  ( 2.5.13.14  NAME  ’integerMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.27  ) 

     MatchingRules=  ( 2.5.13.15  NAME  ’integerOrderingMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.27  ) 

     MatchingRules=  ( 2.5.13.16  NAME  ’bitStringMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.6  ) 

     MatchingRules=  ( 2.5.13.17  NAME  ’octetStringMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.5  ) 

     MatchingRules=  ( 2.5.13.18  NAME  ’octetStringOrderingMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.40  ) 

     MatchingRules=  ( 2.5.13.0  NAME  ’objectIdentifierMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.38  ) 

     MatchingRules=  ( 2.5.13.30  NAME  ’objectIdentifierFirstComponentMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.38  ) 

     MatchingRules=  ( 2.5.13.21  NAME  ’telephoneNumberSubstringsMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.58  ) 

     MatchingRules=  ( 2.5.13.20  NAME  ’telephoneNumberMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.50  ) 

     MatchingRules=  ( 2.5.13.22  NAME  ’presentationAddressMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.43  )

 

Appendix  B. LDAP V3 schema  179



MatchingRules=  ( 2.5.13.23  NAME  ’uniqueMemberMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.34  ) 

     MatchingRules=  ( 2.5.13.24  NAME  ’protocolInformationMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.42  ) 

     MatchingRules=  ( 2.5.13.25  NAME  ’uTCTimeMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.53  ) 

     MatchingRules=  ( 2.5.13.8  NAME  ’numericStringMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.36  ) 

     MatchingRules=  ( 2.5.13.9  NAME  ’numericStringOrderingMatch’  \ 

       SYNTAX  1.3.6.1.4.1.1466.115.121.1.36  ) 

Dynamic schema changes 

To perform  a dynamic  schema  change,  use  LDAP  modify  with  a DN  of  

″cn=schema″. It is  permissible  to  add,  delete  or  replace  only  one  schema  entity,  for  

example,  an  attribute  type  or an  object  class,  at a time.  

To delete  a schema  entity,  you  can  simply  provide  the  oid  in parentheses:  

( oid  ) 

A  full  description  might  also  be  provided.  In  either  case,  the  matching  rule used  to 

find  the  schema  entity  to  delete  is objectIdentifierFirstComponentMatch  as  

mandated  by  the  LDAP  V3  protocol.  

To add  or  replace  a schema  entity,  you  must  provide  the  LDAP  V3  definition  and  

you  can  provide  the  IBM  definition.  

In  all  cases,  you  must  only  provide  the  definitions  of the  schema  entity  you  wish  

to  affect.  For  example,  to  delete  the  attribute  type  cn  (its  OID  is 2.5.4.3),  invoke  

ldap_modify()  with:  

      LDAPMod   attr;  

      LDAPMod  *attrs[]  = { &attr,  NULL  }; 

      char     *vals  []  = { "( 2.5.4.3  )",  NULL  }; 

      attr.mod_op       = LDAP_MOD_DELETE;  

      attr.mod_type     = "attributeTypes";  

      attr.mod_values   = vals;  

      ldap_modify_s(ldap_session_handle,  "cn=schema",  attrs);  

To add  a new  attribute  type  foo  with  OID  20.20.20  which  is a NAME  of length  20 

chars:  

      char     *vals1[]  = { "( 20.20.20  NAME  ’foo’  SUP NAME  )",  NULL  }; 

      char     *vals2[]  = { "( 20.20.20  LENGTH  20 )", NULL  }; 

      LDAPMod   attr1;  

      LDAPMod   attr2;  

      LDAPMod  *attrs[]  = { &attr1,  &attr2,  NULL  }; 

      attr1.mod_op  = LDAP_MOD_ADD;  

      attr1.mod_type  = "attributeTypes";  

      attr1.mod_values  = vals1;  

      attr2.mod_op  = LDAP_MOD_ADD;  

      attr2.mod_type  = "IBMattributeTypes";  

      attr2.mod_values  = vals2;  

      ldap_modify_s(ldap_session_handle,  "cn=schema",  attrs);  

  

To change  the  object  class  top  so  it allows  a MAY  attribute  type  called  foo  (this  

assumes  the  attribute  type  foo  has  been  defined  in  the  schema):  

      LDAPMod   attr;  

      LDAPMod  *attrs[]  = { &attr,  NULL  }; 

      attr.mod_op  = LDAP_MOD_REPLACE;  

      attr.mod_type  = "objectClasses";

 

180 Programming  Reference



attr.mod_values  = "( 2.5.6.0  NAME  ’top’  ABSTRACT  " 

                         "MUST  objectClass  MAY  foo  )";  

      ldap_modify_s(ldap_session_handle,  "cn=schema",  attrs);  

 

Appendix  B. LDAP V3 schema  181



182 Programming  Reference



Appendix  C.  LDAP  distinguished  names  

Distinguished  names  (DNs)  are  used  to  uniquely  identify  entries  in  an  LDAP  or  

X.500  directory.  DNs  are  user-oriented  strings,  typically  used  whenever  you  must  

add,  modify  or  delete  an  entry  in  a directory  using  the  LDAP  programming  

interface,  as  well  as when  using  the  LDAP  utilities  ldapmodify, ldapsearch, 

ldapmodrdn, and  ldapdelete. 

See  IBM  Tivoli  Directory  Server  Version  6.1  Command  Reference,  to  know  more  about  

the  syntax  and  usage  of the  command-line  utilities.  

A DN  is  typically  composed  of  an  ordered  set  of  attribute  type/attribute  value  

pairs.  Most  DNs  are  composed  of pairs  in the  following  order:  

v   common  name  (cn)  

v   organization  (o)  or  organizational  unit  (ou)  

v   country  (c)

The  following  string-type  attributes  represent  the  set  of standardized  attribute  

types  for  accessing  an  LDAP  directory.  A  DN  can  be  composed  of  attributes  with  

an  LDAP  syntax  of  Directory  String,  including  the  following:  

v   CN  - CommonName  

v   L - LocalityName  

v   ST  - StateOrProvinceName  

v   O - OrganizationName  

v   OU  - OrganizationalUnitName  

v   C - CountryName  

v   STREET  - StreetAddress

Informal definition 

This  notation  is  designed  to  be  convenient  for  common  forms  of  name.  Most  DNs  

begin  with  CommonName  (CN),  and  progress  up  the  naming  tree  of the  directory.  

Typically,  as you  read  from  left  to  right,  each  component  of the  name  represents  

increasingly  larger  groupings  of  entries,  ending  with  CountryName  (C).  Remember  

that  sequence  is  important.  For  example,  the  following  two  DNs  do  not  identify  

the  same  entry  in  the  directory:  

   CN=wiley  coyote,  O=acme,  O=anvils,  C=US  

  

   CN=wiley  coyote,  O=anvils,  O=acme,  C=US  

Some  examples  follow.  The  author  of  RFC  2253,  ″UTF-8  String  Representation  of  

Distinguished  Names″ is specified  as:  

   CN=Steve  Kille,  O=ISODE  Consortium,  C=GB  

Another  name  might  be:  

   CN=Christian  Huitema,  O=INRIA,  C=FR  

A semicolon  ( ; ) can  be  used  as an  alternate  separator.  The  separators  might  be 

mixed,  but  this  usage  is discouraged.  

   CN=Christian  Huitema;  O=INRIA;  C=FR  

 

© Copyright  IBM Corp. 2002, 2007 183



Here  is  an  example  of a multi-valued  Relative  Distinguished  Name,  where  the  

namespace  is flat  within  an  organization,  and  department  is used  to  disambiguate  

certain  names:  

   OU=Sales  + CN=J.  Smith,  O=Widget  Inc.,  C=US  

The  final  examples  show  both  methods  of entering  a comma  in  an  Organization  

name:  

   CN=L.  Eagle,  O="Sue,  Grabbit  and  Runn",  C=GB  

  

   CN=L.  Eagle,  O=Sue,  Grabbit  and  Runn,  C=GB  

Formal definition 

For  a formal,  and  more  complete,  definition  of Distinguished  Names  that  can  be  

used  with  the  LDAP  interfaces,  see  ″RFC  2253,  UTF-8  String  Representation  of 

Distinguished  Names″. 

 

184 Programming  Reference

http://www.ietf.org/rfc/rfc2253.txt
http://www.ietf.org/rfc/rfc2253.txt


Appendix  D.  LDAP  data  interchange  format  (LDIF)  

This  documentation  describes  the  LDAP  Data  Interchange  Format  (LDIF),  as  used  

by  the  ldapmodify, ldapsearch, and  ldapadd  utilities.  The  LDIF  specified  here  is 

also  supported  by  the  server  utilities  provided  with  the  IBM  Directory.  See  IBM  

Tivoli  Directory  Server  Version  6.1  Command  Reference,  to  know  more  about  the  

syntax  and  usage  of the  command-line  utilities.  

LDIF  is  used  to  represent  LDAP  entries  in  text  form.  The  basic  form  of an  LDIF  

entry  is:  

dn:  <distinguished  name> 

<attrtype> : <attrvalue> 

<attrtype> : <attrvalue> 

...  

A line  can  be  continued  by  starting  the  next  line  with  a single  space  or  tab  

character,  for  example:  

      dn:  cn=John  E Doe,  o=University  of High  

       er Learning,  c=US  

Multiple  attribute  values  are  specified  on  separate  lines,  for  example:  

      cn:  John  E Doe  

      cn:  John  Doe  

If  an  <attrvalue>  contains  a non-US-ASCII  character,  or  begins  with  a space  or  a 

colon  ( : ), the  <attrtype>  is followed  by  a double  colon  and  the  value  is encoded  in 

base-64  notation.  For  example,  the  value  begins  with  a space  is encoded  as:  

      cn::  IGJlZ2lucyB3aXRoIGEgc3BhY2U=  

Multiple  entries  within  the  same  LDIF  file  are  separated  by  a blank  line.  Multiple  

blank  lines  are  considered  a logical  end-of-file.  

LDIF examples 

LDIF example: Content 

An  LDIF  content  file  contains  entries  that  can  be  loaded  to the  directory.  Here  is  an  

example  of  an  LDIF  content  file  containing  three  entries:  

      dn:  cn=John  E Doe,  o=University  of High  

       er Learning,  c=US  

      cn:  John  E Doe  

      cn:  John  Doe  

      objectclass:  person  

      sn:  Doe  

  

      dn:  cn=Bjorn  L Doe,  o=University  of High  

       er Learning,  c=US  

      cn:  Bjorn  L Doe 

      cn:  Bjorn  Doe  

      objectclass:  person  

      sn:  Doe  

  

      dn:  cn=Jennifer  K. Doe,  o=University  of High  

       er Learning,  c=US  

      cn:  Jennifer  K. Doe

 

© Copyright  IBM Corp. 2002, 2007 185



cn:  Jennifer  Doe  

      objectclass:  person  

      sn:  Doe  

      jpegPhoto::  /9j/4AAQSkZJRgABAAAAAQABAAD/2wBDABALD  

       A4MChAODQ4SERATGCgaGBYWGDEjJR0oOjM9PDkzODdASFxOQ  

       ERXRTc4UG1RV19iZ2hnPk1xeXBkeFxlZ2P/2wBDARESEhgVG  

      ...  

The  jpegPhoto  in  Jennifer  Doe’s  entry  is  encoded  using  base-64.  The  textual  

attribute  values  can  also  be  specified  in  base-64  format.  However,  if this  is the  case,  

the  base-64  encoding  must  be  in  the  code  page  of  the  wire  format  for  the  protocol,  

that  is, for  LDAP  V2,  the  IA5  character  set  and  for  LDAP  V3,  the  UTF-8  encoding.  

LDIF file: Change types 

An  LDIF  file  that  contains  change  types  allows  you  to modify  and  delete  existing  

directory  entries.  For  example,  the  following  LDIF  file  entry  shows  the  object  class  

insectopia  being  added  to  the  existing  entry  dn=  cn=foo,  ou=bar  using  the  modify  

change  type:  

dn:  cn=foo,  ou=bar  

changetype:  modify  

add:  objectclass  

objectclass:  insectopia  

For  a complete  list  of  change  types,  see  RFC  2849.  

LDAP controls 

Change  type  files  can  also  contain  LDAP  controls.  LDAP  controls  can  be  used  to 

extend  certain  LDAP  Version  3 operations.  

A  control  must  contain  a unique  object  identifier  (OID)  that  identifies  the  control.  

Make  sure  your  server  supports  the  control  you  want  to use.  

The  following  example  shows  the  LDAP  control  syntax.  Brackets  indicate  optional  

data;  only  the  OID  is required.  

control:  <OID>  [true||false]  [string  || :: <64string>] 

Where:  

v   OID  is  the  OID  that  identifies  the  control  you  want  to  use.  

v   string  is  a string  that  does  not  include  Line  Feed,  Carriage  Return,  NULL,  colon,  

space  or  <  symbol.  

v   64string  is a base-64  encoded  string.

The  following  example  uses  the  Subtree  delete  control  to delete  the  ou=Product  

Development,  dc=airius,  dc=com  entry:  

dn:  ou=Product  Development,  dc=airius,  dc=com  

control:  1.2.840.113556.1.4.805  true  

changetype:  delete  

When  controls  are  included  in  an  LDIF  file,  implementations  might  choose  to 

ignore  some  or  all  of  them.  This  might  be  necessary  if the  changes  described  in  the  

LDIF  file  are  being  sent  on  an  LDAPv2  connection  (LDAPv2  does  not  support  

controls),  or  the  particular  controls  are  not  supported  by  the  remote  server.  If the  

criticality  of  a control  is ″true″,  then  the  implementation  must  either  include  the  

control,  or  must  not  send  the  operation  to a remote  server.  

 

186 Programming  Reference



See  “LDAP  controls”  on  page  25  and  Appendix  F, “Object  Identifiers  (OIDs)  for  

extended  operations  and  controls,”  on  page  193  for  more  information.  

Version 1 LDIF support 

The  client  utilities  (ldapmodify  and  ldapadd)  have  been  enhanced  to  recognize  the  

latest  version  of  LDIF,  which  is identified  by  the  presence  of the  version:  1 tag  at  

the  head  of  the  file.  Unlike  the  original  version  of LDIF, the  newer  version  of LDIF  

supports  attribute  values  represented  in  UTF-8,  instead  of the  very  limited  

US-ASCII.  

However,  manual  creation  of an  LDIF  file  containing  UTF-8  values  can  be  difficult.  

In  order  to  simplify  this  process,  a charset  extension  to the  LDIF  format  is 

supported.  This  extension  allows  an  IANA  character  set  name  to  be  specified  in  the  

header  of  the  LDIF  file,  along  with  the  version  number.  A limited  set  of  the  IANA  

character  sets  are  supported.  See  “IANA  character  sets  supported  by  platform”  on  

page  188  for  the  specific  charset  values  that  are  supported  for  each  operating  

system  platform.  

The  version  1 LDIF  format  also  supports  file  URLs.  This  provides  a more  flexible  

way  to  define  a file  specification.  File  URLs  take  the  following  form:  

      attribute:<  file:///path  

          (where  path  syntax  depends  on platform)  

For  example,  the  following  are  valid  file  Web addresses:  

      jpegphoto:<  file:///d:\temp\photos\myphoto.jpg  

           (DOS/Windows  style  paths)  

      jpegphoto:<  file:///etc/temp/photos/myphoto.jpg  

           (Unix  style  paths)  

Note:   The  IBM  Tivoli  Directory  Server  utilities  support  both  the  new  file  URL  

specification  as  well  as  the  older  style,  for  example,  jpegphoto:  

/etc/temp/myphoto,  regardless  of the  version  specification.  In  other  words,  

the  new  file  URL  format  can  be  used  without  adding  the  version  tag  to your  

LDIF  files.  

Version 1 LDIF examples 

You can  use  the  optional  charset  tag  so  that  the  utilities  automatically  convert  from  

the  specified  character  set  to  UTF-8  as  in  the  following  example:  

 version:  1 

 charset:  ISO-8859-1  

  

 dn:  cn=Juan  Griego,  o=University  of  New Mexico,  c=US  

 cn:  Juan  Griego  

 sn:  Griego  

 description::  V2hhdCBhIGNhcmVmdWwgcmVhZGVyIHlvd  

 title:  Associate  Dean  

 title:  [title  in Spanish]  

 jpegPhoto:<  file:///usr/local/photos/jgriego.jpg  

In  this  instance,  all  values  following  an  attribute  name  and  a single  colon  are  

translated  from  the  ISO-8859-1  character  set  to  UTF-8.  Values  following  an  attribute  

name  and  a double  colon  (such  as  description::  V2hhdCBhIGNhcm...  ) must  be  

base-64  encoded,  and  are  expected  to  be  either  binary  or  UTF-8  character  strings.  

Values  read  from  a file,  such  as  the  jpegPhoto  attribute  specified  by  the  Web 

 

Appendix  D. LDAP  data interchange format (LDIF) 187



address  in  the  previous  example,  are  also  expected  to  be  either  binary  or  UTF-8.  

No  translation  from  the  specified  charset  to  UTF-8  is done  on  those  values.  

In  this  example  of  an  LDIF  file  without  the  charset  tag,  content  is expected  to  be  in  

UTF-8,  or  base-64  encoded  UTF-8,  or  base-64  encoded  binary  data:  

# IBM  Directory  sample  LDIF  file  

# 

# The  suffix  "o=sample"  should  be defined  before  attempting  to load  

# this  data.  

  

 version:  1 

  

 dn:  o=sample  

 objectclass:  top  

 objectclass:  organization  

 o: sample  

  

 dn:  ou=Austin,  o=sample  

 ou:  Austin  

 objectclass:  organizationalUnit  

 seealso:  cn=Linda  Carlesberg,  ou=Austin,  o=sample  

This  same  file  can  be  used  without  the  version:  1 header  information,  as  in 

previous  releases  of  the  IBM  Tivoli  Directory  Server  version  C-Client  SDK:  

 # IBM  Directory  sample  LDIF  file  

 # 

 # The  suffix  "o=sample"  should  be defined  before  attempting  to load  

 # this  data.  

  

 dn:  o=sample  

 objectclass:  top  

 objectclass:  organization  

 o: sample  

  

 dn:  ou=Austin,  o=sample  

 ou:  Austin  

 objectclass:  organizationalUnit  

 seealso:  cn=Linda  Carlesberg,  ou=Austin,  o=sample  

Note:   The  textual  attribute  values  can  be  specified  in  base-64  format.  

IANA character sets supported by platform 

The  following  table  defines  the  set  of  Internet  Assigned  Numbers  Authority  

(IANA)-defined  character  sets  that  can  be  defined  for  the  charset  tag  in a Version  1 

LDIF  file,  on  a per-platform  basis.  The  value  in  the  left-most  column  defines  the  

text  string  that  can  be  assigned  to  the  charset  tag.  An  X indicates  that  conversion  

from  the  specified  charset  to  UTF-8  is  supported  for  the  associated  platform,  and  

that  all  string  content  in  the  LDIF  file  is assumed  to  be  represented  in  the  specified  

charset.  n/a  indicates  that  the  conversion  is not  supported  for  the  associated  

platform.  

String  content  is defined  to be  all  attribute  values  that  follow  an  attribute  name  

and  a single  colon.  

See  IANA  Character  Sets  for  more  information  about  IANA-registered  character  

sets.  

 

188 Programming  Reference

http://www.iana.org/assignments/character-sets


Table 8. IANA-defined  character  sets  by platform  

Character  Conversion  Supported  

Set  Name  Windows  AIX  Solaris  Linux  HP-UX  

ISO-8859–1  X X X X X 

ISO-8859–2  X X X X X 

ISO-8859–5  X X X X X 

ISO-8859–6  X X X X X 

ISO-8859–7  X X X X X 

ISO-8859–8  X X X X X 

ISO-8859–9  X X X X X 

ISO-8859–15  NA  X X X 

IBM437  X NA  NA  NA  

IBM850  X X NA  NA  

IBM852  X NA  NA  NA  

IBM857  X NA  NA  NA  

IBM862  X NA  NA  NA  

IBM864  X NA  NA  NA  

IBM866  X NA  NA  NA  

IBM869  X X NA  NA  

IBM1250  X NA  NA  NA  

IBM1251  X NA  NA  NA  

IBM1253  X NA  NA  NA  

IBM1254  X NA  NA  NA  

IBM1255  X NA  NA  NA  

IBM1256  X NA  NA  NA  

TIS-620  X X NA  NA  

EUC-JP  NA  X X X X 

EUC-KR  NA  X X* NA  

EUC-CN  NA  X X NA  

EUC-TW  NA  X X X 

Shift-JIS  X X X X NA  

KSC  X X NA  NA  

GBK  X X X* NA  

Big5  X X X X 

GB18030  X X X X NA  

HP15CN  X (with  

non-GB18030)
  

* Supported  on  Solaris  7 and  higher  only.  

The  new  Chinese  character  set  standard  (GB18030)  is supported  with  appropriate  

patches  available  from  www.sun.com  and  www.microsoft.com:

 

Appendix  D. LDAP  data interchange format (LDIF) 189



Note:   On  Windows  2000,  you  must  set  the  environment  variable  

zhCNGB18030=TRUE.

 

190 Programming  Reference



Appendix  E.  Deprecated  LDAP  APIs  

Although  the  following  APIs  are  still  supported,  their  use  is deprecated.  Use  of the  

newer  replacement  APIs  is strongly  encouraged:  

v   ldap_ssl_start()—use  ldap_ssl_client_init()  and  ldap_ssl_init().  See  “LDAP_SSL”  

on  page  119.  

v   ldap_open()—use  ldap_init().  See“LDAP_INIT”  on  page  61.  

v   ldap_bind()—use  ldap_simple_bind().  See  “LDAP_BIND  / UNBIND”  on  page  9. 

v   ldap_bind_s()—use  ldap_simple_bind_s().  See  “LDAP_BIND  / UNBIND”  on  

page  9.  

v   ldap_result2error()—use  ldap_parse_result().  See  “LDAP_PARSE_RESULT”  on  

page  85.  

v   ldap_perror()—use  ldap_parse_result().  See  “LDAP_PARSE_RESULT”  on  page  

85.  

v   ldap_get_entry_controls_np—use  ldap_get_entry_controls.  See  

“LDAP_FIRST_ENTRY,  LDAP_FIRST_REFERENCE”  on  page  52.  

v   ldap_parse_reference_np—use  ldap_parse_reference.  See  “LDAP_FIRST_ENTRY,  

LDAP_FIRST_REFERENCE”  on  page  52.

 

© Copyright  IBM Corp. 2002, 2007 191



192 Programming  Reference



Appendix  F.  Object  Identifiers  (OIDs)  for  extended  operations  

and  controls  

The  extended  operation  and  control  OIDs  in  this  section  are  in  the  root  DSE  of  the  

IBM  Tivoli  Directory  Server  6.0  and  later  versions.  In  this  appendix,  each  OID  is  

defined  and  its  syntax  specified  in  the  following  formats:  

Extended  operations:  

Description  

Gives  a brief  description  of  the  extended  operation.  

Request  

OID  and  syntax  for  the  extended  operation  request.  A  request  generally  sets  the  

requestValue  field.  

Response  

OID  and  syntax  for  the  extended  operation  response.  

Behavior  

How  the  extended  operation  behaves;  who  is enabled  to  send  the  extended  

operation;  possible  return  codes.  

Scope  The  scope  of  the  extended  operation.  

Auditing  (if  applicable)  

How  this  extended  operation  is  audited.

Controls:  

Description  

Gives  a brief  description  of  the  control.  

OID  OID  for  the  extended  operation.  

Syntax  

Syntax  for  the  control.  

Behavior  

How  the  control  behaves;  who  is enabled  to  call  the  control;  possible  return  codes.  

Scope  The  scope  of  the  control.  

Auditing  (if  applicable)  

How  this  control  is audited.

OIDs for extended operations 

The  following  table  shows  OIDs  for  extended  operations.  Click  on  a short  name  or  

go  to  the  specified  page  number  for  more  information  about  an  extended  

operation’s  syntax  and  usage.  

 

© Copyright  IBM Corp. 2002, 2007 193



Table 9. OIDs  for extended  operations  

Short  name  Description  OID  assigned  

“Account  status  extended  

operation”  on page  196  

This  extended  operation  sends  the  server  a DN  

of an entry  which  contains  a userPassword  

attribute,  and  the server  sends  back  the  status  of 

the  user  account  being  queried:  

v   open  

v   locked  

v   expired  

1.3.18.0.2.12.58  

“Attribute  type  extended  

operations”  on page  197  

Retrieve  attributes  by supported  capability:  

operational,  language  tag,  attribute  cache,  unique  

or configuration.  

1.3.18.0.2.12.46  

“Begin  transaction  extended  

operation”  on page  200  

Begin  a Transactional  context.  1.3.18.0.2.12.5  

“Cascading  replication  

operation  extended  operation”  

on page  201  

This  operation  performs  the  requested  action  on 

the  server  it is issued  to  and  cascades  the call  to 

all consumers  beneath  it in the replication  

topology.  

1.3.18.0.2.12.15  

“Clear  log  extended  

operation”  on page  237  

Request  to Clear  log  file.  1.3.18.0.2.12.20  

“Control  replication  extended  

operation”  on page  204  

This  operation  is used  to force  immediate  

replication,  suspend  replication,  or resume  

replication  by  a supplier.  This  operation  is 

allowed  only  when  the  client  has  update  

authority  to the replication  agreement  

1.3.18.0.2.12.16  

“Control  queue  extended  

operation”  on page  205  

This  operation  marks  items  as ″already  

replicated″ for  a specified  agreement.  This  

operation  is allowed  only  when  the  client  has  

update  authority  to the  replication  agreement.  

1.3.18.0.2.12.17  

“DN  normalization  extended  

operation”  on page  207  

Request  to normalize  a DN or a sequence  of 

DNs.  

1.3.18.0.2.12.30  

“Dynamic  server  trace  

extended  operation”  on  page  

207  

Activate  or deactivate  tracing  in the  IBM  Tivoli  

Directory  Server.  

1.3.18.0.2.12.40  

“Dynamic  update  requests  

extended  operation”  on  page  

209  

Request  to update  server  configuration  for IBM  

Tivoli  Directory  Server.  

1.3.18.0.2.12.28  

“Effective  password  policy  

extended  operation”  on  page  

210  

Used  for querying  effective  password  policy  for a 

user  or a group.  

1.3.18.0.2.12.75  

“End  transaction  extended  

operation”  on page  212  

End  Transactional  context  (commit/rollback).  1.3.18.0.2.12.6  

“Event  notification  register  

request  extended  operation”  

on page  213  

Request  registration  for  events  notification.  1.3.18.0.2.12.1  

“Event  notification  unregister  

request  extended  operation”  

on page  214  

Unregister  for  events  that  were  registered  for 

using  an Event  Registration  Request.  

1.3.18.0.2.12.3  

“Get  file  extended  operation”  

on page  238  

Returns  the  contents  of a given  file  on the  server.  1.3.18.0.2.12.73  

“Get  lines  extended  operation”  

on page  239  

Request  to get  lines  from  a log  file.  1.3.18.0.2.12.22  

 

194 Programming  Reference



Table 9. OIDs  for  extended  operations  (continued)  

Short  name  Description  OID  assigned  

“Get  number  of lines  extended  

operation”  on page  240  

Request  number  of lines  in a log  file.  1.3.18.0.2.12.24  

“Group  evaluation  extended  

operation”  on page  215  

Requests  all the  groups  that  a given  user  belongs  

to. 

1.3.18.0.2.12.50  

“Kill  connection  extended  

operation”  on page  216  

Request  to kill connections  on the  server.  The  

request  can  be to kill  all connections  or kill 

connections  by  bound  DN,  IP,  or a bound  DN  

from  a particular  IP.  

1.3.18.0.2.12.35  

“LDAP  trace  facility  extended  

operation”  on page  217  

Use  this  extended  operation  to control  LDAP  

Trace Facility  remotely  using  the  Administration  

Daemon.  

1.3.18.0.2.12.41  

“Locate  entry  extended  

operation”  on page  218  

This  extended  operation  is used  to extract  the 

back-end  server  details  of a given  set of entry  

DNs  and  provide  the  details  to the client.  

1.3.18.0.2.12.71  

“LogMgmtControl  extended  

operation”  on page  219  

The  LogMgmtControl  extended  operation  is used  

to  start,  stop,  and  query  the  status  of the log 

management  for  an IBM  Tivoli  Directory  Server  

instance  running  on a server.  

1.3.18.0.2.12.70  

“Online  backup  extended  

operation”  on page  221  

Performs  online  backup  of the  directory  server  

instance’s  DB2  database.  

1.3.18.0.2.12.74  

“Password  policy  bind  

initialize  and  verify  extended  

operation”  on page  222  

The  Password  policy  bind  initialize  and  verify  

extended  operation  extended  operation  performs  

password  policy  bind  initialization  and  

verification  for  a specified  user.  

1.3.18.0.2.12.79  

“Password  policy  finalize  and  

verify  bind  extended  

operation”  on page  223  

The  Password  policy  finalize  and  verify  bind  

extended  operation  extended  operation  performs  

password  policy  post-bind  processing  for  a 

specified  user.  

1.3.18.0.2.12.80  

“Prepare  transaction  extended  

operation”  on page  224  

Using  the  prepare  transaction  extended  operation  

the  client  requests  the  server  to start  processing  

the  operations  sent  in a transaction.  

1.3.18.0.2.12.64  

“Proxy  backend  server  resume  

role  extended  operation”  on  

page  224  

This  extended  operation  enables  a proxy  server  

to  resume  the  configured  role  of a back-end  

server  in a distributed  directory  environment.  

1.3.18.0.2.12.65  

“Quiesce  or unquiesce  

replication  context  extended  

operation”  on page  226  

This  operation  puts  the  subtree  into  a state  where  

it does  not  accept  client  updates  (or  terminates  

this  state),  except  for  updates  from  clients  

authenticated  as directory  administrators  where  

the  Server  Administration  control  is present.  

1.3.18.0.2.12.19  

“Replication  error  log  

extended  operation”  on  page  

227  

Maintenance  of a replication  error  table.  1.3.18.0.2.12.56  

“Replication  topology  

extended  operation”  on  page  

228  

Trigger a replication  of replication  

topology-related  entries  under  a given  replication  

context.  

1.3.18.0.2.12.54  

“Start,  stop  server  extended  

operations”  on  page  229  

Request  to start,  stop  or restart  an LDAP  server.  1.3.18.0.2.12.26  

“Start  TLS  extended  

operation”  on page  231  

Request  to start  Transport  Layer  Security.  1.3.6.1.4.1.1466.20037  

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  195



Table 9. OIDs  for extended  operations  (continued)  

Short  name  Description  OID  assigned  

“Unique  attributes  extended  

operation”  on page  232  

The  unique  attributes  extended  operation  

provides  a list  of all  non-unique  (duplicate)  

values  for a particular  attribute.  

1.3.18.0.2.12.44  

“Update  configuration  

extended  operation”  on  page  

233  

Request  to update  server  configuration  for IBM  

Tivoli  Directory  Server.  

1.3.18.0.2.12.28  

“Update  event  notification  

extended  operation”  on  page  

234  

Request  that  the event  notification  plug-in  get 

the  updated  configuration  from  the  server.  

1.3.18.0.2.12.31  

“Update  log  access  extended  

operation”  on page  235  

Request  that  the log  access  plug-in  get  the  

updated  configuration  from  the  server.  

1.3.18.0.2.12.32  

“User  type  extended  

operation”  on page  236  

Request  to get  the  User  Type of the  bound  user.  1.3.18.0.2.12.37

  

Account status extended operation 

Description  

This  extended  operation  sends  the  server  a DN  of an  entry  which  contains  

a userPassword  attribute,  and  the  server  sends  back  the  status  of  the  user  

account  being  queried:  

v   open  

v   locked  

v   expired

Note:   This  extended  operation  is always  enabled.

Request  

OID  1.3.18.0.2.12.58  

Syntax  

SEQUENCE  { 

     dn     LDAPDN  

} 

Response  

OID  1.3.18.0.2.12.59  

Syntax  

SEQUENCE  { 

   status     INTEGER{open(0),  locked(1),  expired(2)};  

} 

Behavior  

This  extended  operation  requests  the  account  status  of a user  account.  The  

DN  is  the  DN  of the  user  account  that  is being  queried.  The  server  sends  

back  the  status  of  the  user  account  being  queried.  

 The  following  are  enabled  to  call  the  extended  operation:  

v   Primary  Directory  Administrator  

v   Local  Administration  Group  members  with  DirDataAdmin  and  

PasswordAdmin  roles  

v   Global  Administration  Group  members

 

196 Programming  Reference



Note:   If  the  extended  operation  is called  by  a user  who  does  not  have  

access,  LDAP_INSUFFICIENT_ACCESS  is returned.  

 This  extended  operation  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_NO_MEMORY  

v   LDAP_OPERATIONS_ERROR  

v   LDAP_NO_RESULTS_RETURNED  

v   LDAP_PROTOCAL_ERROR

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  The  extended  operation  only  affects  the  current  operation.

Attribute type extended operations 

Description  

The  server  needs  to provide  a way  for  LDAP  clients  to determine  type  of  

attributes  in  the  schema.  This  extended  operation  is used  to  list  attributes  

having  a specific  characteristic.  The  extended  operation  also  provides  a 

way  for  LDAP  clients  to  query  about  the  following  attributes:  

v   Operational  - The  operational  attributes  of the  server.  

v   Language  Tag - The  attributes  that  can  use  language  tags.  

v   Attribute  Cache  - The  attributes  that  can  be  attribute  cached.  

v   Unique  - The  attributes  that  can  be  marked  as  unique.  

v   Configuration  - The  configuration  attributes  of the  server.  

v   OS400  - The  attributes  used  by  the  i5/OS  system  projection  backend  

(i5/OS  V5R4).  

v   Encryptable  - The  attributes  that  can  be  defined  as  encryptable  (v6.1).  

v   Encrypted  - The  attributes  that  are  currently  defined  as  encrypted  in the  

server  schema  (v6.1).  This  returns  a subset  of encryptable  attributes  that  

might  have  any  of the  encryption  related  settings:  ENCRYPT,  

RETURN-VALUE,  SECURE-CONNECTION-REQUIRED  or  

NONMATCHABLE.

Request  

OID  1.3.18.0.2.12.46  

Syntax  

RequestValue  ::=  SEQUENCE  { 

  AttributeTypeRequest   ENUMERATED  { 

        OPERATIONAL       (0),  

        LANGUAGE  TAG     (1),  

        ATTRIBUTE  CACHE   (2),  

        UNIQUE            (3),  

        CONFIGURATION      (4),  

        OS400             (5),  #i5/OS  V5R4  or later  

        ENCRYPTABLE       (6),  # v6.1  or later  

        ENCRYPTED         (7)  # v6.1  or later  

  }, 

hasCharacteristic         BOOLEAN  } 

The  extended  operation  request  value  takes  two  parameters  on  the  

request.  The  first  parameter  is  an  enumeration  that  tells  the  server  

the  attribute  type  (characteristic)  that  is being  requested.  The  

extended  operation  supports  queries  for  the  following  attributes:  

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  197



v   Operational  

v   Language  Tag 

v   Attribute  Cache  

v   Unique  

v   OS400  

v   Encryptable  

v   Encrypted

The  second  parameter  is a Boolean  value  that  determines  whether  

to  return  the  attributes  that  have  the  specified  attribute  

characteristic.  A value  of  FALSE  returns  a list  of attribute  names  

that  do  not  fall  into  the  specified  attribute  category.  A value  of  

TRUE  returns  a list  of attribute  names  that  do  fall  into  the  

specified  attribute  category.

Response  

OID  1.3.18.0.2.12.47  

Syntax  

ResponseValue  ::=  SEQUENCE  of AttributeNames;  #LDAPString  or OCTET  STRING  

Result  codes  

A standard  LDAP  result  code  is returned  in  the  resultCode  

component  of the  extended  response  message.  

Note:   If  the  result  code  is LDAP_SUCCESS,  a list  of  the  attributes  

matching  the  request  criteria  is returned  in  the  response  

value.

Behavior  

This  extended  operation  enables  the  user  to  do  the  following:  

v   Retrieves  a list  of all  operational  attributes.  

v   Retrieves  a list  of all  attributes  that  can  use  language  tags  (not  a list  of 

attributes  that  are  using  language  tags).  

v   Retrieves  a list  of all  attributes  that  can  be  cached  (not  a list  of  attributes  

that  are  being  cached).  

v   Retrieves  a list  of all  attributes  that  can  made  unique  attributes  (not  a 

list  of  attributes  that  are  currently  unique  attributes).  

v   Allows  the  user  to  retrieve  a list  of  all  attributes  that  are  configuration  

attributes.  These  are  attributes  defined  in the  configuration  schema.  

v   Retrieves  a list  of attributes  used  by  the  i5/OS  system  projection.  

v   Retrieves  a list  of attributes  that  can  be  defined  as  encryptable  (v6.1).  

v   Retrieves  a list  of attributes  that  are  currently  defined  as  encrypted  in 

the  server  schema  (v6.1).

This  extended  operation  also  provides  an  option  to return  the  inverse  of  

any  attribute  characteristic  for  which  the  user  queries.  For  example,  the  

user  must  be  able  to ask  for  all  attributes  that  are  not  operational  

attributes.  

If  the  encryption  setting  of  a schema  attribute  type  definition  is changed,  it 

is  audited  as  a new  audit  event,  

AU_EVENT_ATTR_ENCRYPTION_CHANGED.  The  audit  event  message  

string  will  be:  

 

198 Programming  Reference



"GLPSCH045I  Encryption  setting  for  attribute  ’%1$s’  

changed  to ENCRYPT=%2$s  SECURE-CONNECTION-ONLY=%3$s  RETURN-VALUE=%4$s\n"  

  

The  ENCRYPT  value  will  be  ″none″ or  the  specified  scheme.  The  

SECURE-CONNECTION-ONLY  value  can  be  either  ’true’ or  ’false’.  The  

RETURN-VALUE  value  can  be  ″cleartext″  or  the  specified  scheme.  

 All  user  types,  including  anonymous  users,  are  enabled  to  call  this  

extended  operation.This  extended  operation  has  the  following  possible  

return  codes:  

v   LDAP_SUCCESS  

v   LDAP_NO_MEMORY  

v   LDAP_OTHER  

v   LDAP_PROTOCAL_ERROR  

v   LDAP_OPERATIONS_ERROR  

v   LDAP_INSUFFICIENT_ACCESS

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

The  authorization  required  to  for  using  this  extended  operation  depends  

on  the  attribute  type  requested.  The  attribute  type  and  the  authority  

required  are  listed  in  the  table.  

 Table 10.  Authorization  required  for  attributes  

Attribute  Type Authority  Required  

Operational  Anonymous  

Language  Tag Anonymous  

Attribute  Cache  Anonymous  

Unique  Anonymous  

Configuration  Anonymous  

OS400  Anonymous  

Encryptable  Primary  Directory  Administrator  or Local  

Administration  Group  members  with  

DirDataAdmin  and  SchemaAdmin  roles  

Encrypted  Primary  Directory  Administrator  or Local  

Administration  Group  members  with  

DirDataAdmin  and  SchemaAdmin  roles
  

Scope  This  extended  operation  has  no  affect  on  subsequent  requests.  

Auditing  

The  Attribute  Type extended  operation  has  an  audit  string  of  the  following  

form:  

AttributeType:  <Type> 

where  <Type>  is one  of the  following:  

v   Operational  

v   Language  Tag 

v   Attribute  Cache  

v   Unique  Attribute  

v   Configuration  

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  199



v   OS400  

v   Encryptable  

v   Encrypted
hasCharacteristic:  <Boolean> 

where  <Boolean>  is one  of  the  following:  

v   FALSE  

v   TRUE

Begin transaction extended operation 

Description  

The  Begin  transaction  extended  operation  sends  requests  to  the  server  to  

start  a transaction  context  on  the  connection.

Note:   This  extended  operation  is enabled  by  default,  but  can  be  disabled  

by  changing  the  value  of the  ibm-slapdTransactionEnable  attribute  

in  the  configuration  file.  

The  ibm-slapdTransactionEnable  attribute  is in  the  cn=Transaction,  

cn=Configuration  entry  in  the  configuration  file.  If  the  value  of this  

attribute  is set  to  FALSE,  transactions  are  disabled.  If  the  value  is set  

to  TRUE,  transactions  are  enabled.  Transactions  can  also  be  enabled  

or  disabled  using  the  Web Administration  tool.  

Request  

OID  1.3.18.0.2.12.5  

Syntax  

There  is no  request  value.

Response  

OID  1.3.18.0.2.12.5  

Syntax  

The  response  value  is a string  containing  the  transaction  ID.  The  

transaction  ID  is not  BER  encoded.

Note:   A transaction  ID  is a string  value  generated  by  the  directory  

server  in  response  to  a start  transaction  request.

Behavior  

This  extended  operation  puts  the  connection  in  the  transaction  state.  

 All  users  can  perform  this  extended  operation.  

 This  extended  operation  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_NO_MEMORY  

v   LDAP_OPERATIONS_ERROR  

v   LDAP_UNWILLING_TO_PERFORM

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  This  extended  operation  changes  the  state  of the  connection  for  future  

operations.  This  connection  remains  in the  transaction  state  until  a stop  

transaction  extended  operation  is sent,  or  an  error  occurs.

 

200 Programming  Reference



Cascading replication operation extended operation 

Description  

Perform  a replication  extended  operation  on  every  server  in  the  full  

replication  topology.  This  extended  operation  performs  the  requested  

action  on  the  server  on  which  it is issued  and  cascades  the  call  to  all 

consumers  beneath  it in  a replication  topology.  

Note:   This  extended  operation  is always  enabled.

Request  

OID  1.3.18.0.2.12.15  

Syntax  

requestValue  ::=  SEQUENCE  { 

action  ActionValue,  

subtreeDN  DistinguishedName,  

timeout  INTEGER  

} 

ActionValue  ::=  INTEGER  { 

quiesce  (0),  

unquiesce  (1),  

replicateNow  (2),  

waitForReplication  (3)  

} 

Response  

OID  1.3.18.0.2.12.15  

Syntax  

responseValue  ::= SEQUENCE  { 

    # LDAPResult  fields  

  resultCode  INTEGER  (0..MAX),  

    errorMessage  LDAPString  

  

  # Operation  specific  failure  information:  

    supplier  LDAPString,  

    consumer  LDAPString,  

  

    # Additional  optional  fields:  

    additionalResultCode  [1]  INTEGER  OPTIONAL,  

    agreementDN  [2]  LDAPString  OPTIONAL  

  

} 

When  the  resultCode  is LDAP_TIMEOUT,  the  

additionalResultCode  field  should  be  set  to one  of the  following  

values:  

  additionalResultCode  ENUMERATED  { 

       LDAP_REPLICATION_SUSPENDED       [1],  

       LDAP_REPLICATION_RETRYING        [2],  

       LDAP_REPLICATION_ERROR_LOG_FULL  [3]  

    } 

Note:   The  additionalResultCode  and  agreementDN  fields  will  not  

be  present  for  servers  earlier  than  Tivoli  Directory  Server  

v6.1.  

The  following  are  possible  return  codes:  

v   LDAP_SUCCESS  - Operation  was  successful  

v   LDAP_NO_SUCH_OBJECT  - Replication  context  or  agreement  

does  not  exist  

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  201



v   LDAP_UNWILLING_TO_PERFORM  - Object  is not  a replication  

context  

v   LDAP_NO_MEMORY  

v   LDAP_OPERATIONS_ERROR  

v   LDAP_INSUFFICIENT_ACCESS  - Not  authorized  to perform  

operation  

v   LDAP_PARAM_ERROR  

v   LDAP_ENCODING_ERROR  

v   LDAP_LOCAL_ERROR  

v   LDAP_TIMEOUT  - Operation  did  not  complete  within  specified  

time

Behavior  

The  requested  operation  is performed  on  the  target  server  and  on  all  

replicas  of the  target  server.  This  extended  operation  performs  the  

requested  action  on  the  server  it is issued  on  and  cascades  the  call  to  all  

consumers  beneath  it in  a replication  topology.  The  operation  returns  when  

one  of  the  following  conditions  occurs:  

v   The  request  has  been  completed  on  all  servers.  

v   A failure  has  occurred  on  a server  (result  indicates  the  failure  and  the  

server).  

v   The  timeout  value  has  been  exceeded.

This  extended  operation  is allowed  only  when  the  client  is authenticated  

with  update  authority  to all  agreements  in  the  specified  subtree  or  is 

authenticated  as a master  server  for  the  specified  subtree.  

Sometimes  when  a “wait  for  replication”  is called  during  the  add  replica,  

add  master,  or  move  operation  in  a replication,  wait  for  replication  time  

out  and  no  error  is displayed  that  resulted  in  time  out.  This  error  is 

occurred  because  the  cascaded  replication  times  out.  To facilitate  a better  

diagnosis,  the  replication  response  structure  is updated.  When  the  return  

code  is  LDAP_TIMEOUT,  the  additionalResultCode  and  agreementDN  

fields  will  be  set.  

 The  additionalResultCode  field  will  be  populated  with  error  message.  Here  

are  the  examples  illustrating  how  the  server  would  handle  the  cascaded  

replication  timeout  cases  and  the  possible  error  messages:  

v   resultCode  = LDAP_TIMEOUT  without  additionalResultCode,  would  

mean  a Tivoli  Directory  Server  version  earlier  that  v6.1  

Web Administration  tool  and  ldapexop  would  display  message,  for  

example:  

Replication  from  supplier  replica  Supreplica_1  to  consumer  replica  

<hostname:  port>  did  not  complete.  

Replication  agreement  xxx  is suspended.  

v   resultCode  = LDAP_TIMEOUT  with  additionalResultCode  = 

LDAP_REPLICATION_SUSPENDED  

Web Administration  tool  and  ldapexop  would  display  message,  for  

example:  

Replication  from  supplier  replica  Supreplica_1  to  consumer  replica  

<hostname:  port>  did  not  complete.  

Replication  agreement  xxx  is suspended.  

 

202 Programming  Reference



v   resultCode  = LDAP_TIMEOUT  with  additionalResultCode  = 

LDAP_REPLICATION_RETRYING  

Web Administration  tool  and  ldapexop  would  display  message,  for  

example:  

Replication  from  supplier  replica  Supreplica_1  to  consumer  replica  

<hostname:  port>  did  not  complete.  

Replication  agreement  xxx  is blocked  on  a failing  change.  

v   resultCode  = LDAP_TIMEOUT  with  additionalResultCode  = 

LDAP_REPLICATION_ERROR_LOG_FULL  

Web Administration  tool  and  ldapexop  would  display  message,  for  

example:  

Replication  from  supplier  replica  Supreplica_1  to  consumer  replica  

<hostname:  port>  did  not  complete.  

The  replication  error  log  is  full  for  agreement  xxx. 

The  agreementDN  field  contains  the  DN  of the  associated  replication  

agreement.  This  field  would  be  set  whenever  the  server  detecting  the  error  

is working  with  a particular  agreement.  

 This  response  will  be  sent  for  all  requests  from  servers  that  have  a 

well-formed  request  value.  The  response  value  consists  of  a resultCode  

with  errorMessage  and  information  about  where  the  error  was  detected.  

 The  supplier  field  will  contain  the  DNS  host  name  of  the  server  reporting  

the  error.  If  the  error  occurs  while  working  with  a consumer  server  (i.e.  

timed  out  waiting  for  a response  from  a consumer),  the  consumer  field  will  

contain  the  DNS  host  name  of  the  consumer  server.  In  this  case,  the  

supplier  field  will  always  be  completed  but  the  consumer  field  may  be  

empty.  Since  it is an  error  condition,  the  agreementDN  field  would  be  

populated,  which  provides  information  about  the  supplier  and  consumer.  

 The  following  are  enabled  to  call  the  extended  operation:  

v   Primary  Directory  Administrator  

v   Local  Administration  Group  members  with  DirDataAdmin  and  

ReplicationAdmin  roles  

v   Global  Administration  Group  members  

v    Master  Server  DN  

v   Authenticated  Directory  User

Note:   If  the  extended  operation  is called  by  a user  who  does  not  have  

access,  LDAP_INSUFFICIENT_ACCESS  is returned.
This  extended  operation  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_PROTOCOL_ERROR  

v   LDAP_NO_MEMORY  

v   LDAP_DECODING_ERROR  

v   LDAP_UNDEFINED_TYPE  

v   LDAP_INVALID_DN_SYNTAX

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  This  extended  operation  only  affects  the  current  operation.  

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  203



Auditing  

Action:  [Quiesce  | Unquiesce  | ReplNow  | Wait  | Unknown]  

Context  DN:  <context  DN>  

Timeout:  <timeout> 

Control replication extended operation 

Description  

This  extended  operation  is used  to  control  the  following  aspects  of  

currently-running  replications:  

v   Suspend  replication  

v   Resume  replication  

v   Cause  changes  to  be  replicated  immediately

Request  

OID  1.3.18.0.2.12.16  

Syntax  

requestValue  ::=  SEQUENCE  { 

action  ActionValue,  

scope  ScopeValue  

entryDN  DistinguishedName  

} 

ActionValue  ::=  INTEGER  { 

suspend  (0),  

resume  (1),  

replicateNow  (2),  

terminateFullReplication  (3)  

} 

ScopeValue  ::=  INTEGER  { 

singleAgreement  (0),  

allAgreements  (1)  

} 

Response  

OID  1.3.18.0.2.12.16  

Syntax  

Response  Value  ::= SEQUENCE  { 

#fields  of interest  from  LDAPResult:  

resultCode  INTEGER  (0..MAX),  

errorMessage  LDAPString,  

consumer  LDAPString  

} 

The  following  are  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_NO_SUCH_OBJECT  

v   LDAP_UNWILLING_TO_PERFORM  

v   LDAP_OPERATIONS_ERROR  

v   LDAP_INSUFFICIENT_ACCESS  

v   LDAP_NO_MEMORY

Behavior  

This  extended  operation  is used  to  control  the  following  aspects  of  

currently-running  replications:  

Suspend  replication  

Changes  are  not  replicated  for  the  replication  agreement  or  for  all  

 

204 Programming  Reference



replication  agreements  for  the  context  until  the  resume  replication  

or  replicate  immediately  operation  is used.  

Resume  replication  

If  the  replication  agreement  is suspended,  then  replication  resumes.  

Cause  changes  to  be  replicated  immediately  

If  the  replication  agreement  is suspended  or  is waiting  for  

scheduled  replication  to occur,  any  outstanding  changes  are  

replicated.

The  following  are  enabled  to  call  the  extended  operation:  

v   Primary  Directory  Administrator  

v   Local  Administration  Group  members  with  DirDataAdmin  and  

ReplicationAdmin  roles  

v   Global  Administration  Group  members  

v    Master  Server  DN  

v   Authenticated  Directory  User

Note:   If  the  extended  operation  is called  by  a user  who  does  not  have  

access,  LDAP_INSUFFICIENT_ACCESS  is returned.  

 This  extended  operation  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_PROTOCOL_ERROR  

v   LDAP_DECODING_ERROR  

v   LDAP_NO_MEMORY  

v   LDAP_UNDEFINED_TYPE  

v   LDAP_INVALID_DN_SYNTAX

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  This  extended  operation  only  affects  the  current  operation.  

Auditing  

Action:  [Suspend  | Resume  | ReplNow  | Unknown]  

Scope:  [Single  | All  | Unknown]  

DN:  <dn>  

Control queue extended operation 

Description  

This  extended  operation  is used  to skip  changes  in  the  replication  queue  

for  an  agreement.  

Request  

OID  1.3.18.0.2.12.17  

Syntax  

requestValue  ::=  SEQUENCE  { 

action  ActionValue,  

agreementDN  DistinguishedName,  

changeId  LDAPString  

} 

ActionValue  ::=  INTEGER  { 

skipAll  (0),  

skipSingle  (1)  

} 

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  205



Response  

OID  1.3.18.0.2.12.17  

Syntax  

Response  Value  ::= SEQUENCE  { 

#fields  of interest  from  LDAPResult:  

resultCode  INTEGER  (0..MAX),  

errorMessage  LDAPString,  

#operation  information:  

changesSkipped  INTEGER  (0..MAX)  

} 

The  following  are  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_NO_SUCH_OBJECT  

v   LDAP_UNWILLING_TO_PERFORM  

v   LDAP_OPERATIONS_ERROR  

v   LDAP_INSUFFICIENT_ACCESS  

v   LDAP_NO_MEMORY

Behavior  

This  extended  operation  skips  changes  in  the  replication  agreements  queue.  

If  skipSingle  is used,  and  changeID  is the  next  ID  in  the  replication  

agreements  queue,  then  changeID  is skipped  over. If changeID  is not  at  the  

head  of  the  list  of  pending  changes,  the  operation  fails.  If  skipAll  is used,  

then  all  outstanding  changes  in  the  replication  agreements  queue  are  

skipped.  

 The  following  are  enabled  to  call  the  extended  operation:  

v   Primary  Directory  Administrator  

v   Local  Administration  Group  members  with  DirDataAdmin  and  

ReplicationAdmin  roles  

v   Global  Administration  Group  members  

v    Master  Server  DN  

v   Authenticated  Directory  User

Note:   If the  extended  operation  is called  by  a user  who  does  not  have  

access,  LDAP_INSUFFICIENT_ACCESS  is returned.  

 This  extended  operation  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_PROTOCOL_ERROR  

v   LDAP_DECODING_ERROR  

v   LDAP_NO_MEMORY  

v   LDAP_UNDEFINED_TYPE  

v   LDAP_INVALID_DN_SYNTAX

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  This  extended  operation  only  affects  the  current  operation.  

Auditing  

Skip:  [ All  | <changeId> | Unknown  ] 

Agreement  DN:  <agreementDn> 

 

206 Programming  Reference



DN normalization extended operation 

Description  

The  DN  normalization  extended  operation  normalizes  a DN  or  a list  of 

DNs.  The  normalization  is based  on  the  server’s  schema.

Note:   This  extended  operation  is always  enabled.

Request  

OID  1.3.18.0.2.12.30  

Syntax  

RequestValue  ::=  SEQUENCE  { 

     case    INTEGER  {preserve(0),  normalize  (1)};  

     SEQUENCE  of DistinguishedName;  

 } 

Response  

OID  1.3.18.0.2.12.30  

Syntax  

ResultValue  ::=  SEQUENCE  { 

  SEQUENCE  of SEQUENCE  { 

  Return  code   INTEGER;  

  DN   Normalized  DistinguishedName;  

 } 

 } 

Each  DN  has  its  own  return  code.  If the  return  code  is not  

SUCCESS,  a DN  of  zero  length  is returned  for  every  DN  passed  in  

on  the  original  request.  The  order  of  DN  values  in  the  response  

matches  the  order  of  DN  values  passed  in  the  request.  

 LDAP  Return  Code  Error  Condition  

Success  The  DN  was  normalized  successfully.  

UndefinedAttributeType  An attribute  in the  DN  is undefined.  

InvalidDNSyntax  The  DN  syntax  is invalid.
  

Behavior  

The  extended  operation  normalizes  a DN,  or  list  of DNs.  The  

normalization  is based  on  the  schema.  See  ″slapi_dn_normalize_v3″ in the  

IBM  Tivoli  Directory  Server  Plug-ins  Reference  Version  6.1.  

 All  users  can  perform  this  extended  operation.  

 This  extended  operation  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_PROTOCOL_ERROR  

v   LDAP_OTHER  

v   LDAP_OPERATIONS_ERROR

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  The  extended  operation  only  affects  the  current  operation.

Dynamic server trace extended operation 

Description  

Use  this  extended  operation  to  do  the  following:  

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  207



v   Start  or  stop  server  tracing  dynamically  

v   Set  the  level  of  debug  data  collected  

v   Name  the  debug  output  file

This  extended  operation  depends  on  the  LDAP  Trace Facility  to  be  

initialized  with  either  the  ldtrc  command  or  the  successful  completion  of  

the  LDAP  trace  facility  extended  operation  request  on  the  IBM  Tivoli  

Directory  Server  (see  “LDAP  trace  facility  extended  operation”  on  page  

217).

Note:   

1.   This  extended  operation  is  always  enabled.  

2.   Global  administrative  group  members  have  authority  to  perform  

the  dynamic  server  trace  extended  operation  when  it is directed  

to  the  directory  server.  However,  global  administrative  group  

members  do  not  have  this  authority  when  they  request  the  

extended  operation  against  the  Administration  Daemon.

Request  

OID  1.3.18.0.2.12.40  

Syntax  

The  value  consists  of  2 integer  values  and  an  optional  string.  The  

first  integer  turns  tracing  on  (1)  or  off  (0).  The  second  integer  sets  

the  debug  level  (0  to  65535)  that  controls  the  debug  data  that  is 

directed  to standard  error  (stderr)  or  a file.  If  the  integers  are  

missing,  the  request  fails.  If the  value  is  -1,  no  change  is made.  The  

string  value  provides  the  file  name  and  is optional.  If no  name  is 

provided,  the  name  is unchanged.  If no  name  is ever  provided,  the  

debug  output  goes  to  stderr.

Response  

OID  1.3.18.0.2.12.42  

Syntax  

The  response  is a string:  

Trace  settings<actual>: enable=%d<%d>  trcEvents=%ld<%ld>  

 level=0x%x<0x%x>  log=[%s]<%s>  

where  values  in  the  brackets  show  the  state  after  attempting  the  

extended  operation.  If tracing  is on,  enable  will  be  1.  The  

trcEvents  will  be  0 if the  LDAP  Trace Facility  is not  enabled.  

Non-zero  values  indicate  that  the  server  was  successful  in  

attaching  to  the  LDAP  Trace Facility’s  shared  memory  buffer.  The  

debug  level  is shown  in hex.  The  log  values  is the  name  of  the  file  

used  to  collect  the  debug  output.  It  might  show  stderr  if the  

output  is  going  to the  console.

Behavior  

This  extended  operation  changes  the  global  variables  used  to control  

debugging  and  tracing  in  the  server.  If trace  is enabled  but  the  debug  level  

is  0, trace  data  (function  entry  and  exit  points  and  so  forth)  is captured  in  

shared  memory  and  nothing  is written  to  the  debug  file  or  stderr. If the  

debug  level  is between  0 and  65535,  different  levels  of  debug  data  are  

output  to  the  debug  file  or  stderr.  If  the  LDAP  Trace facility  is  not  

initialized,  no  trace  output  is captured  and  no  debug  output  is written.  

 

208 Programming  Reference



The  following  are  enabled  to  call  the  extended  operation:  

v   Primary  Directory  Administrator  

v   Local  Administration  Group  members  with  DirDataAdmin  role

Note:   If  the  extended  operation  is called  by  a user  who  does  not  have  

access,  LDAP_INSUFFICIENT_ACCESS  is returned.  

 This  extended  operation  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_INSUFFICIENT_ACCESS  

v   LDAP_PROTOCOL_ERROR

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  Only  the  current  server  session  is affected  by  this  operation.  

Auditing  

The  additional  information  in  the  audit  log  is:  

Trace=%d  [1=on|0=off]  debug=0x%x  log=[%s]  

Dynamic update requests extended operation 

Description  

The  Dynamic  update  extended  operation  requests  that  the  server  reread  its  

configuration.

Note:   This  extended  operation  is always  enabled.

Request  

OID  1.3.18.0.2.12.28  

Syntax  

RequestValue  ::=  SEQUENCE  { 

 action  INTEGER  {rereadFile(0),  

         rereadAttribute(1),  

         rereadEntry(2),  

         rereadSubtree(3)};  

 entry    [0]  DistinguishedName  OPTIONAL;  

 attribute   [1]  DirectoryString  OPTIONAL;  

} 

Response  

OID  1.3.18.0.2.12.29  

Syntax  

There  is no  response  value.

Behavior  

This  extended  operation  forces  the  server  to  reread  the  configuration  file.  

The  request  can  be  to reread  the  entire  file,  a subtree,  an  entry  or  a specific  

attribute.  When  the  server  receives  the  request,  the  server  rereads  the  

configuration  file  and  updates  all  the  internal  server  settings  to  use  the  

new  settings  from  the  configuration  file.  Only  the  dynamic  attributes  are  

reread.  

 Only  Primary  Directory  Administrator  and  Local  Administration  Group  

members  with  DirDataAdmin  role  are  enabled  to  call  this  extended  

operation.  Local  Administration  Group  members  cannot  update  attributes  

of  other  Local  Administration  Group  members.

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  209



Note:   If the  control  is sent  by  a user  who  does  not  have  access,  

LDAP_INSUFFICIENT_ACCESS  is returned.  

 This  control  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_UNDEFINED_TYPE  

v   LDAP_INSUFFICIENT_ACCESS  

v   LDAP_INVALID_SYNTAX  

v   LDAP_INVALID_DN_SYNTAX  

v   LDAP_UNWILLING_TO_PERFORM  

v   LDAP_OBJECT_CLASS_VIOLATION  

v   LDAP_OTHER  

v   LDAP_PROTOCOL_ERROR  

v   LDAP_NO_SUCH_ATTRIBUTE  

v   LDAP_NO_SUCH_OBJECT  

v   LDAP_NO_MEMORY  

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  This  extended  operation  causes  the  server  to reread  its  configuration,  

which  can  affect  subsequent  operations.  

Auditing  

Scope:  <Scope  Value> 

where  <Scope  Value>  can  be  one  of the  following:  

v   Entire  - entire  configuration  file  

v   Single  - for  a single  attribute  

v   Entry  - for  an  entry  

v   Subtree  - for  a subtree

DN:  <Entry  DN>  – This  is required  for  Single,  Entry  and  Subtree.  

 Attribute:  <Attribute> – This  is  required  for  Single  only.

Effective password policy extended operation 

Description  

For  a user  in  a DIT, there  are  three  different  password  policies  that  can  be  

used  to  control  the  user’s  login  and  password  modifications.  An  

administrator  can  use  this  extended  operation  to  obtain  users’  effective  

password  policy  and  manage  users  and  their  passwords.  In addition,  

administrators  can  also  use  this  extended  operation  to  query  the  effective  

password  policy  of  a group.  By  specifying  a group  DN  in the  operation,  

administrators  can  obtain  a combination  of  the  group’s  password  policy  

attributes  and  the  global  password  policy  attributes  with  the  group  policy  

attribute  values  overriding  the  global  policy  values.

Note:   This  extended  operation  is always  enabled.

Request  

OID  1.3.18.0.2.12.75  

 

210 Programming  Reference



Syntax  

  

RequestValue  ::=  SEQUENCE  { 

       dn    LDAPDN  

} 

  

Response  

OID   1.3.18.0.2.12.77  

Syntax  

  

ResponseValue  ::= SEQUENCE  { 

     attributes      SEQUENCE  OF SEQUENCE  { 

                   attributeType      AttributeDescription,  

                   values             SET OF AttributeValue  

     } 

     objectNames     [0]  SEQUENCE  { 

                   objectName         LDAPDN  

     } OPTIONAL  

} 

  

where,  

v   attributes:  Represents  password  policy  attribute  types  and  values  

that  are  contained  in  the  user's  or  group's  effective  password  

policy.  

v   objectNames:  Represents  the  DN’s  of all  the  password  policy  

entries  from  which  the  effective  password  policy  is derived.  This  

field  is not  returned  if the  extended  operation  is requested  by  a 

non-administrative  user.

Behavior  

 The  information  related  to  the  effective  password  policy  for  a user  or  

group  is  calculated  at runtime  and  is not  stored  in  the  server,  such  as  in 

the  DIT. An  administrator  or  a user  can  use  this  information,  which  is 

calculated  based  on  the  three  types  of  password  policies  global,  group,  and  

individual,  to  manage  passwords.  

 This  extended  operation  can  be  used  by  primary  directory  administrators,  

local  administration  group  members  with  password  or  directory  

administrative  role,  and  global  administration  group  members.  In  

additions,  users  are  allowed  to  use  this  extended  operation  to  their  own  

effective  password  policy,  provided  their  user  account  are  not  locked  out.  If  

the  extended  operation  is called  by  a non-authorized  user, a return  code  

LDAP_INSUFFICIENT_ACCESS  is returned.  

 This  extended  operation  is not  supported  by  the  Administration  Daemon.  

 This  extended  operation  has  the  following  possible  return  codes:  

v   LDAP_INSUFFICIENT  ACCESS  - returned  if a non-authorized  user  tries  

to  perform  this  extended  operation  

v   LDAP_NO_SUCH_OBJECT  – returned  if the  DN  specified  is not  in  the  

directory  

v   LDAP_NO_MEMORY  – returned  if there  was  insufficient  memory  to  

perform  the  operation  

v   LDAP_OPERATIONS_ERROR  – returned  if invalid  data  was  given  on  

the  call  to the  password  policy  routines  

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls 211



v   LDAP_INVALID_DN_SYNTAX  – returned  if the  DN  specified  is not  a 

valid  DN  

v   LDAP_PROTOCOL_ERROR  – returned  if the  encoding  of  the  BER  was  

invalid  

v   LDAP_SUCCESS  – returned  if the  operation  completed  successfully

Scope  This  extended  operation  only  affects  the  current  operation.  

Auditing  

The  addition  information  in  the  audit  log  is:  

  

DN:  <entry  dn>  

  

End transaction extended operation 

Description  

The  End  transaction  extended  operation  sends  requests  to  the  server  to 

commit  all  the  operations  performed  inside  the  transaction  and  change  the  

state  of  the  connection  so  it is no  longer  in the  transactional  state.

Note:   This  extended  operation  is enabled  by  default,  but  can  be  disabled  

by  changing  the  value  of the  ibm-slapdTransactionEnable  attribute  

in  the  configuration  file.  

The  ibm-slapdTransactionEnable  attribute  is in  the  cn=Transaction,  

cn=Configuration  entry  in  the  configuration  file.  If  the  value  of this  

attribute  is set  to  FALSE,  transactions  are  disabled.  If  the  value  is set  

to  TRUE,  transactions  are  enabled.  Transactions  can  also  be  enabled  

or  disabled  using  the  Web Administration  tool.  

Request  

OID  1.3.18.0.2.12.6  

Syntax  

A string  consisting  of  commit/rollback  value  followed  by  the  

transaction  ID  value  from  the  Begin  transaction  response,  where  

the  commit/rollback  has  the  following  values:  

 commit  = 0 

 rollback  = 1

Response  

OID  1.3.18.0.2.12.6  

Syntax  

The  response  value  is a string  containing  the  transaction  ID.  The  

transaction  ID  is not  BER  encoded.

Behavior  

The  extended  operation  commits  the  transaction  and  removes  the  

connection  from  the  transaction  state.  

 All  users  can  perform  this  extended  operation.  

 This  extended  operation  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_NO_MEMORY  

v   LDAP_OPERATIONS_ERROR  

 

212 Programming  Reference



v   LDAP_UNWILLING_TO_PERFORM  

v   LDAP_TIMELIMIT_EXCEEDED  

v   LDAP_SIZELIMIT_EXCEEDED

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  This  extended  operation  changes  the  state  of  the  connection  for  future  

operations.  The  extended  operation  takes  the  connection  out  of the  

transactional  state.  

An  Example  

An  example  illustrating  the  difference  in  the  transaction  ID  value  in a 

Begin  transaction  extended  operation  and  an  End  transaction  extended  

operation  is exemplified.  

 If  in  a Begin  transaction  extended  operation,  the  response  value  returned  is 

the  following  24  byte:  

0x31  0x31  0x33  0x37  0x33  0x35  0x34  0x33
0x33  0x37  0x31  0x32  0x37  0x2E  0x30  0x2E
0x30  0x2E  0x31  0x34  0x38  0x39  0x30  0x38  

In  the  End  transaction  extended  operation,  the  request  value  for  a commit  

(commit  =  0)  would  be  the  following  25  byte:  

0x00  0x31  0x31  0x33  0x37  0x33  0x35  0x34
0x33  0x33  0x37  0x31  0x32  0x37  0x2E  0x30
0x2E  0x30  0x2E  0x31  0x34  0x38  0x39  0x30
0x38  

In  the  End  transaction  extended  operation,  the  request  value  for  a rollback  

(rollback  = 1) would  be  the  following  25  byte:  

0x01  0x31  0x31  0x33  0x37  0x33  0x35  0x34
0x33  0x33  0x37  0x31  0x32  0x37  0x2E  0x30
0x2E  0x30  0x2E  0x31  0x34  0x38  0x39  0x30
0x38  

Event notification register request extended operation 

Description  

The  operation  allows  a client  to  request  that  the  server  notify  the  client  

when  a portion  of  the  tree  has  changed.

Note:   Event  notification  can  be  turned  off  by  setting  the  attribute  

ibm-slapdEnableEventNotification  in  the  entry  cn=Event  

Notification,  cn=Configuration  to  FALSE.

Request  

OID  1.3.18.0.2.12.1  

Syntax  

changeType  ::=  ENUMERATED  { 

   changeAdd       (1),  

   changeDelete    (2),  

   changeModify    (4),  

   changeModDN     (8)  } 

 requestValue  = SEQUENCE  { 

  eventID   ENUMERATED  { 

   LDAP_CHANGE  (0)},  

  baseObject  LDAPDN,  

                scope            ENUMERATED  {

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  213



baseObject               (0),  

                        singleLevel              (1),  

                        wholeSubtree             (2) }, 

  type  INTEGER  OPTIONAL  } 

Response  

OID  1.3.18.0.2.12.1  

Syntax  

response  ::= OCTET  STRING  

Behavior  

If  successful,  the  server  sends  an  unsolicited  notification  to  the  client  when  

a modification  happens  that  the  client  is interested  in.  

 All  users  other  than  anonymous  can  perform  this  extended  operation.  

 This  extended  operation  has  the  following  possible  return  codes:  

v   LDAP_UNWILLING_TO_PERFORM  

v   LDAP_NO_SUCH_OBJECT  

v   LDAP_UNDEFINED_TYPE

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  If  successful,  the  client  may  receive  unsolicited  notifications  from  the  

server.  

Auditing  

eventID:  LDAP_change  

base:  baseDn  

scope:  baseObject,  singleLevel,  or wholeSubtree  

Event notification unregister request extended operation 

Description  

The  operation  allows  a client  to  request  that  the  server  stop  notifying  the  

client  when  a portion  of the  tree  has  changed.

Note:   Event  notification  can  be  turned  off  by  setting  the  attribute  

ibm-slapdEnableEventNotification  in the  entry  cn=Event  

Notification,  cn=Configuration  to  FALSE.

Request  

OID  1.3.18.0.2.12.3  

Syntax  

requestValue  ::=  OCTET  STRING  

Response  

OID  1.3.18.0.2.12.4  

Syntax  

If  the  registration  is successfully  removed,  the  LDAPResult  field  

contains  LDAP_SUCCESS  and  the  response  field  contains  the  

registration  ID  that  was  removed.

Behavior  

If  successful,  the  server  will  stop  sending  unsolicited  notifications  to  the  

client  when  a modification  happens  that  the  client  was  interested  in.  

 All  users  other  than  anonymous  can  perform  this  extended  operation.  

 This  extended  operation  has  the  following  possible  return  codes:  

 

214 Programming  Reference



v   LDAP_UNWILLING_TO_PERFORM  

v   LDAP_NO_SUCH_OBJECT  

v   LDAP_UNDEFINED_TYPE

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  If  successful,  the  client  will  stop  receiving  unsolicited  notifications  from  the  

server.  

Auditing  

ID:  hostname.uuid  

Group evaluation extended operation 

Description  

The  Group  evaluation  extended  operation  requests  that  the  server  return  

the  set  of  groups  to  which  the  requested  user  belongs.

Note:   This  extended  operation  is always  enabled.

Request  

OID  1.3.18.0.2.12.50  

Syntax  

GroupEvaluationRequestValue::  = SEQUENCE   { 

    dn  LDAPDN,  

                attributes  AttributeList   OPTIONAL  

} 

Response  

OID  1.3.18.0.2.12.52  

Syntax  

Group  ::=  SEQUENCE  { groupName  LDAPString  } 

GroupEvaluationResponseValue  :: = SEQUENCE{  

      normalized   INTEGER{unnormzlied(0),  normalized(1)};  

      Sequence  of Group  } 

Behavior  

This  extended  operation  determines  to which  groups  the  requested  user  

belongs.  

 The  following  are  enabled  to  call  the  extended  operation:  

v   Primary  Directory  Administrator  

v   Local  Administration  Group  members  with  DirDataAdmin  role  

v   Global  Administrators

Note:   If  the  extended  operation  is called  by  a user  who  does  not  have  

access,  LDAP_INSUFFICIENT_ACCESS  is returned.  

 This  control  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_NO_MEMORY  

v   LDAP_OPERATIONS_ERROR  

v   LDAP_INVALID_DN_SYNTAX  

v   LDAP_NO_RESULTS_RETURNED  

v   LDAP_PROTOCAL_ERROR  

v   LDAP_NO_SUCH_ATTRIBUTE

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  215



This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  The  extended  operation  only  affects  the  current  operation.  

Auditing  

The  group  evaluation  extended  operation  sets  the  audit  string  to  

DN:  <the  DN sent  in the group  evaluation  extended  operation> \n 

If  ibm-auditAttributesOnGroupEvalOp  is TRUE,  the  audit  string  will  

contain  a list  of  attribute  value  pairs  separated  by  a new  line.  If the  

ibm-auditAttributesOnGroupEvalOp  is FALSE,  the  string  will  contain:  

sentAttrs:  <true|false>  

The  value  will  be  FALSE  if no  attributes  were  sent  on  the  request

Kill connection extended operation 

Description  

The  Kill  connection  extended  operation  requests  that  the  server  stop  the  

specified  connections.  Connections  can  be  stopped  based  on  the  following:  

v   Connection  IP  

v   Connection  DN  

v   Combination  of IP  and  DN  

v   All  connections

Note:   This  extended  operation  is always  enabled.

Request  

OID  1.3.18.0.2.12.35  

Syntax  

ReqType  ::= ENUMERATED  { 

DN (1),  

IP (2)  

} 

RequestValue  ::=  SEQUENCE  { 

SET   {type   ReqType  

               value   Directory  String}  OPTIONAL  

SET   {type   ReqType  

               value   Directory  String}  OPTIONAL  

} 

For  a DN-specific  or  IP-specific  request,  only  one  set  of type  and  

value  is needed.  For  a combination  DN/IP  request,  both  sets  of  

type  and  value  are  needed.  If  there  is no  value  specified,  all  

connections  are  stopped.

Response  

OID  1.3.18.0.2.12.36  

Syntax  

ResponseValue  ::=  { int numberKilled  

                int  numberPending  } 

Each  DN  has  its  own  return  code.  If the  return  code  is not  

SUCCESS,  a DN  of  zero  length  is returned  for  every  DN  passed  in 

on  the  original  request.  The  order  of  DN  values  in  the  response  

matches  the  order  of DN  values  passed  in  the  request.

 

216 Programming  Reference



Behavior  

This  extended  operation  stops  the  requested  connections.  

 The  following  are  enabled  to  call  the  extended  operation:  

v   Primary  Directory  Administrator  

v   Local  Administration  Group  members  with  DirDataAdmin  role  

v   Global  Administrators

Note:   If  the  extended  operation  is called  by  a user  who  does  not  have  

access,  LDAP_INSUFFICIENT_ACCESS  is returned.  

 This  extended  operation  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_NO_SUCH_OBJECT  

v   LDAP_INSUFFICIENT_ACCESS  

v   LDAP_INVALID_DN_SYNTAX  

v   LDAP_OTHER  

v   LDAP_PROTOCAL_ERROR

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  The  extended  operation  only  affects  the  current  operation.  

Auditing  

The  DN  or  IP  or  both  will  be  provided:  

DN:  <DN>  

IP:  <IP>  

If  neither  the  DN  nor  the  IP  is present,  then  the  request  was  to stop  all  

connections.

LDAP trace facility extended operation 

Description  

Use  this  extended  operation  to  control  LDAP  Trace Facility  remotely  using  

the  Administration  Daemon.

Note:   This  extended  operation  is always  enabled  on  the  Administration  

Daemon.  It  is not  supported  on  the  Directory  Server.

Request  

OID  1.3.18.0.2.12.41  

Syntax  

The  value  consists  of 1 integer  value  and  a string.  The  first  integer  

has  the  following  values:  

v   1–  Enables  the  LDAP  Trace Facility  

v   2–  Disables  the  LDAP  Trace Facility  

v   3–  Enables  changing  masks  or  other  parameters  

v   4–  Clears  data  already  collected  in  the  shared  memory  buffer  

v   5–  Shows  information  about  the  current  state  

v   6–  Creates  a file  from  the  data  already  captured  in shared  

memory

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  217



The  optional  string  contains  additional  parameters  understood  by  

the  ldtrc  command,  such  as the  size  of  the  buffer  (1)  or  the  name  

of  the  output  file  for  dump  (6).

Response  

OID  1.3.18.0.2.12.43  

Syntax  

The  response  is a string  containing  the  output  from  the  ldtrc  

command  submitted  remotely.

Behavior  

The  extended  operation  submits  an  ldtrc  command  on  the  host  machine  

and  captures  its  output  to return  to the  client.  

 The  following  are  enabled  to  call  the  extended  operation:  

v   Primary  Directory  Administrator  

v   Local  Administration  Group  members  with  DirDataAdmin  role

Note:   If the  extended  operation  is called  by  a user  who  does  not  have  

access,  LDAP_INSUFFICIENT_ACCESS  is returned.  

 This  extended  operation  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_INSUFFICIENT_ACCESS  

v   LDAP_PROTOCOL_ERROR

This  extended  operation  is supported  by  the  Administration  Daemon  only.  

Scope  The  extended  operation  runs until  the  machine  is rebooted,  the  root  

manually  issues  IPC  commands,  the  ldtrc  command  is issued  on  the  

machine  or  another  request  is made.  

Auditing  

The  additional  information  in  the  audit  log  is:  

OPTIONS:  <request  value><optional  string> 

where  <request  value> is the  request  value  (1-6)  and  <optional  string> is any  

additional  parameters  for  ldtrc.

Locate entry extended operation 

Description  

This  extended  operation  is used  to  extract  the  back-end  server  details  of a 

given  set  of  entry  DNs  and  provide  the  details  to  the  client.

Request  

OID  1.3.18.0.2.12.71  

Syntax  

RequestValue  ::=  SEQUENCE  { 

  DN DistinguishedName;  

            //a  normalized  DN is passed  to a proxy  server  

} 

Response  

OID  1.3.18.0.2.12.72  

 

218 Programming  Reference



Syntax  

ResultValue  ::=  SEQUENCE  { 

  partitionInformationObject  PIO;  //depends  on the  access  rights  

} 

where,  the  partitionInformationObject  constitutes:  

v   split  name  

v   partition  base  DN  

v   partition  index  

v   server  group  

v   list  of  the  server  URLs

Behavior  

 In  a distributed  directory  setup,  data  are  distributed  across  a set  of 

back-end  servers.  Also,  the  back-end  servers  are  made  transparent  to the  

end  users,  by  placing  a proxy  server  in  front  of this  set  back-end  server.  

There  are  situations,  where  administrators  may  want  to  locate  the  back-end  

servers  on  which  a given  set  of entries  reside.  In  such  cases,  this  extended  

operation  can  be  used  to extract  the  back-end  server  details  of a given  set  

of  entry  DNs  and  provide  the  details  to  the  client.  

 This  extended  operation  for  locating  entries  on  the  backend-servers  can  

only  be  performed  by  Primary  Directory  Administrator,  Local  

Administration  Group  members  with  DirDataAdmin  role,  and  Global  

Administration  Group  members.  If a non-authorized  user  attempts  to  

perform  this  extended  operation,  LDAP_INSUFFICIENT_ACCESS  is 

returned.

Note:   There  is no  mechanism  in  place  to  restrict  the  administrators  from  

locating  the  entries.  

 This  extended  operation  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_INVALID_DN_SYNTAX  

v   LDAP_INSUFFICIENT_ACCESS  

v   LDAP_SERVER_DOWN  

v   LDAP_NO_SUCH_OBJECT  

v   LDAP_ENCODING_ERROR  

v   LDAP_DECODING_ERROR

Scope  This  extended  operation  does  not  affect  the  subsequent  operations  on  the  

connection.

LogMgmtControl extended operation 

Description  

The  LogMgmtControl  extended  operation  is used  to  start,  stop,  and  query  

the  status  of the  log  management  for  an  IBM  Tivoli  Directory  Server  

instance  running  on  a server.  

Request  

OID  1.3.18.0.2.12.70  

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  219



Syntax  

    requestValue  ::=  SEQUENCE  { 

            action               ActionValue,  

            commandLineOptions   LDAPString  OPTIONAL  

    } 

     ActionValue  ::=  ENUMERATED  { 

       start     (1),  

       stop      (2),  

       status    (3) 

     } 

  

Response  

Syntax  

   ResponseValue  ::=  SEQUENCE  { 

       resultCode        ENUMERATED  { 

            success                     (0),  

            insufficientAccessRights    (1),  

            operationsError             (2),  

            logmgmtRunningStatus        (3),  

            logmgmtStoppedStatus        (4)  

     } 

  } 

  

The  possible  return  codes  for  the  LDAP  result  value  and  the  

enabling  conditions  are  as  follows:  

 Table 11.  Possible  return  codes  

LDAP  Result  Value  Conditions  

Success  (0)  Issued  command  to idslogmgmt  successfully.  

Insufficient  Access  Rights  (1) User  is not  the  server  administrator  or an 

administrative  group  member.  

Operations  Error  (2) Bad action  value  or any  other  error. 

Log  Management  Running  Status  (3)  The  log  management  for  this Tivoli  

Directory  Server  instance  is currently  

running.  

Log  Management  Stopped  Status  (4) The  log  management  for  this Tivoli  

Directory  Server  instance  is currently  

stopped.
  

Behavior  

The  LogMgmtControl  extended  operation  can  be  used  to  start  or  stop  the  

log  management  for  a Tivoli  Directory  Server  instance.  This  extended  

operation  also  provides  the  status  of  the  log  management  indicating  

whether  it is  running  or  not.  

 The  following  have  the  authority  to  call  this  extended  operation:  

v   Primary  Directory  Administrator  

v   Local  Administration  Group  members  with  AuditAdmin  and  

ServerConfigGroupMember  roles  

This  extended  operation  is supported  by  Administration  Daemon  and  has  

the  same  behavior  as  in  a directory  server.  

Scope  Only  the  current  server  session  is affected  by  this  operation.

 

220 Programming  Reference



Online backup extended operation 

Description  

This  extended  operation  performs  online  backup  of the  directory  server  

instance’s  DB2  database.  

Request  

OID  1.3.18.0.2.12.74  

Syntax  

  

RequestValue  ::=  SEQUENCE  { 

      directoryPath  directoryString;  

} 

  

Response  

OID  1.3.18.0.2.12.74  

Syntax  

  

ResponseValue  ::= SEQUENCE  { 

      resultCode     INTEGER  (0..MAX)  

} 

  

Behavior  

A  client  sends  the  online  backup  request  to  the  server  in  order  to  perform  

an  online  backup  of  the  directory  server  instance’s  DB2  database.  

 The  following  are  enabled  to  call  the  extended  operation:  

v   Primary  Directory  Administrator  

v   Local  Administration  Group  members  with  DirDataAdmin  role

Note:   If  the  extended  operation  is called  by  a user  who  does  not  have  the  

required  access,  LDAP_INSUFFICIENT_ACCESS  is returned.  

 This  extended  operation  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  - If the  backup  was  successfully  performed.  

v   LDAP_PROTOCOL_ERROR  - If  there  is an  error  in  the  format  of  the  

request.  

v   LDAP_INSUFFICIENT_ACCESS  - If  the  request  is  from  users  who  do  

not  have  the  required  access.  

v   LDAP_OPERATIONS_ERROR  - Internal  Server  error, database  is not  

configured  for  online  backup.  

v   LDAP_NO_SUCH_OBJECT  - The  specified  directory  path  does  not  exist.  

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  The  extended  operation  only  affects  the  current  operation.  

Auditing  

The  following  information  is audited  for  this  extended  operation:  

  

Online  backup  requested:  <directoryPath>  

 

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  221



Password policy bind initialize and verify extended operation 

Description  

This  extended  operation  performs  password  policy  bind  initialization  and  

verification  for  a specified  user.  This  extended  operation  checks  to see  if an  

account  is locked.  The  extended  operation  provides  a mechanism  for  the  

proxy  server  to  support  bind  plug-ins.  

Request  

OID  1.3.18.0.2.12.79  

Syntax  

requestValue  ::=  SEQUENCE  {targetDN  DirectoryString}  

Response  

OID  1.3.18.0.2.12.79  

Syntax  

responseValue  ::=  SEQUENCE  {ReturnCode  Integer}  

Behavior  

This  extended  operation  performs  prebind  processing  related  to  password  

policy,  that  is,  bind  initialization  and  verification  for  a specified  user. This  

extended  operation  also  checks  if an  account  is locked.  The  extended  

operation  provides  a mechanism  for  the  proxy  server  to  support  bind  

plug-ins.  This  extended  operation  can  be  enabled  or  disabled  by  setting  the  

ibm-slapdEnableRemotePWPExOps  attribute  in  the  “cn=Directory,  

cn=RDBM  Backends,  cn=IBM  Directory,  cn=Schemas,  cn=Configuration”  

entry  in  the  configuration  file  to  ”true”  or  “false”,  respectively.  

 The  following  are  enabled  to  call  this  extended  operation:  

v   Primary  Directory  Administrator  

v   Local  Administration  Group  members  with  DirDataAdmin  role  

v   Global  administration  group  members

Note:   If this  extended  operation  is called  by  a user  who  does  not  have  

enough  access,  LDAP_INSUFFICIENT_ACCESS  is returned.  

 This  extended  operation  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  - The  operation  completed  successfully,  caller  must  

check  the  return  code  in  the  result  value.  

v   LDAP_OPERATIONS_ERROR  – The  operation  did  not  complete  

successfully  because  of an  internal  server  error. There  will  not  be  any  

result  value.  

v   LDAP_INSUFFICIENT_ACCESS  – The  operation  did  not  complete  

because  the  requestor  does  not  have  permission  to perform  this  

operation.  There  will  not  be  any  result  value.  

v   LDAP_UNWILLING_TO_PERFORM  - The  user’s  account  is locked.  

v   LDAP_INVALID_CREDENTIALS-  Invalid  DN  or  password.  

v   LDAP_NO_MEMORY  

This  extended  operation  is not  supported  by  the  Administration  daemon.  

Scope  This  extended  operation  only  affects  the  current  operation.  

 

222 Programming  Reference



Auditing  

The  additional  information  in  the  audit  log  for  this  extended  operation  is  

listed.  The  target  DN  will  be  audited  in  the  following  format:  

targetDN:  <DN value>  

Password policy finalize and verify bind extended operation 

Description  

This  extended  operation  performs  password  policy  post-bind  processing  

for  a specified  user. This  extended  operation  provides  a mechanism  for  the  

proxy  server  to support  bind  plug-ins.  Post  bind  processing  includes  

checking  for  expired  passwords,  grace  logins,  and  updating  failed  and  

successful  bind  counters.  

Request  

OID  1.3.18.0.2.12.80  

Syntax  

requestValue  ::=  SEQUENCE  { 

            targetDN       DirectoryString,  

            bindResult     Integer  

} 

Response  

OID  1.3.18.0.2.12.80  

Syntax  

ResponseValue  ::= SEQUENCE  { 

          PasswordEvaluationReturnCode     Integer  

} 

Behavior  

The  password  policy  finalize  and  verify  bind  extended  operation  performs  

all  the  post-bind  processing  related  to  password  policy  and  checks  for  

expired  accounts  and  grace  login  period.  In  addition,  failed  and  successful  

bind  counts  are  updated  for  the  target  entry.  

 This  extended  operation  can  be  enabled  or  disabled  by  setting  the  

ibm-slapdEnableRemotePWPExOps  attribute  in  the  “cn=Directory,  

cn=RDBM  Backends,  cn=IBM  Directory,  cn=Schemas,  cn=Configuration”  

entry  in  the  configuration  file  to  ”true”  or  “false”,  respectively.  

 The  following  are  enabled  to  call  this  extended  operation:  

v   Primary  Directory  Administrator  

v   Local  administration  group  members  with  DirDataAdmin  role  

v   Global  administration  group  members

Note:   If  this  extended  operation  is called  by  a user  who  does  not  have  

enough  access,  LDAP_INSUFFICIENT_ACCESS  is returned.  

 This  extended  operation  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  - The  operation  completed  successfully,  caller  must  

check  the  return  code  in  the  result  value.  

v   LDAP_OPERATIONS_ERROR  – The  operation  did  not  complete  

successfully  because  of  an  internal  server  error. There  will  not  be  any  

result  value.  

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  223



v   LDAP_INSUFFICIENT_ACCESS  – The  operation  did  not  complete  

because  the  requestor  does  not  have  permission  to perform  this  

operation.  There  will  not  be  any  result  value.  

v   LDAP_UNWILLING_TO_PERFORM  - The  user’s  account  is locked.  

v   LDAP_INVALID_CREDENTIALS-  Invalid  DN  or  password.  

v   LDAP_NO_MEMORY  

This  extended  operation  is not  supported  by  the  Administration  daemon.  

Scope  This  extended  operation  only  affects  the  current  operation.  

Auditing  

The  additional  information  in  the  audit  log  for  this  extended  operation  is 

listed.  The  target  DN  and  bind  result  will  be  audited  in  the  following  

format:  

targetDN:  <targer  DN>  

bindResult:  <rc>  

Prepare transaction extended operation 

Description  

The  prepare  transaction  extended  operation  can  be  sent  by  any  client.  

Using  this  extended  operation  the  client  requests  the  server  to  start  

processing  the  operations  sent  in  a transaction.  This  extended  operation  

should  be  called  after  a start  transaction  has  been  issued  and  all  the  

operations  within  a transaction  has  been  sent.  On  getting  a request,  the  

server  starts  processing  each  operation  without  committing  the  changes.  

This  extended  operation  is enabled  only  when  transactions  are  enabled.  

Request  

OID  1.3.18.0.2.12.64  

Syntax  

requestValue  ::=  { transactionId   String;  } 

Response  

OID  1.3.18.0.2.12.64  

Syntax  

This  extended  operation  returns  the  return  code  for  the  operation.

Behavior  

When  the  server  receives  the  extended  operation,  the  server  checks  

whether  the  connection  is currently  in  the  transactional  state  and  no  

commit  or  prepare  request  have  been  sent.  If  these  checks  pass,  the  server  

starts  processing  each  operation  in  the  transaction  without  a commit.  

Auditing  

No  additional  auditing  information  will  be  provided  for  this  operation.  

 Note:   There  is no  need  to  audit  the  transaction  id  because  this  value  is  

already  audited  when  it is sent  using  the  transaction  control.

Proxy backend server resume role extended operation 

Description  

This  extended  operation  enables  a proxy  server  to  resume  the  configured  

role  of  a back-end  server  in  a distributed  directory  environment.  

 

224 Programming  Reference



Request  

OID  1.3.18.0.2.12.65  

Syntax  

requestValue  ::=  SEQUENCE  { 

  action      INTEGER  { 

                          All (0),  

                         Partition  (1),  

                         Server  (2),  

                         ServerInAPartition  (3)  

         };  

  

  PartitionName        DirectoryString;  

  ServerURL            DirectoryString;  

} 

Response  

OID  1.3.18.0.2.12.65  

Syntax  

responseValue  ::= SEQUENCE  { 

  numObjectsImpacted       INTEGER  

} 

Behavior  

This  extended  operation  tells  a proxy  server  to bring  a back-end  server  

back  to  its  configured  role.  The  proxy  server  will  only  resume  a back-end  

server’s  role  if the  back-end  server  is online  and  accepting  connections  

from  the  proxy  server.  The  extended  operation  uses  the  5 second  reconnect  

interval  or  the  health  check  thread  to  connect  with  the  back-end  server.  

 The  following  are  authorized  to call  this  extended  operation:  

v   Primary  Directory  Administrator  

v   Local  Administration  Group  members  with  DirDataAdmin  role  

v   Global  Administration  Group  members

Note:   If  this  extended  operation  is called  by  a user  who  does  not  have  

access,  LDAP_INSUFFICIENT_ACCESS  is returned.  

This  extended  operation  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  - Server  matched  the  request,  and  no  internal  errors  

were  encountered.  

v   LDAP_PROTOCOL_ERROR  - If  there  is an  error  in  the  format  of  the  

request.  

v   LDAP_INSUFFICIENT_ACCESS  - If  the  request  is  from  a user  who  does  

not  have  the  required  access.  

v   LDAP_OPERATIONS_ERROR  

v   LDAP_NO_SUCH_OBJECT  - If  the  requested  target  does  not  exist.  

v   LDAP_INVALID_SYNTAX  - If the  format  of  the  URL  or  partition  name  

is  invalid.

This  extended  operation  is not  supported  by  Administrator  Daemon.  

Scope  This  extended  operation  affects  requests  are  routed  through  the  proxy  

server.  

Auditing  

The  additional  information  added  to audit  log  by  the  proxy  backend  server  

resume  role  extended  operation  are:  

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  225



RequestType:  <Type>  

where  <Type>  is one  of  the  following:  

v   All  

v   Partition  

v   Server  

v   ServerInAPartition
  

  

Partition:  <PartitionName>  

  

Server:  <ServerURL>  

Note:   If PartitionName  or  ServerURL  is not  specified  in  the  request,  'None'  

will  be  audited.

Quiesce or unquiesce replication context extended operation 

Description  

This  extended  operation  is used  for  the  following:  

v   Disable  non-replication  topology-related  changes  in  the  replication  

context.  

v   Enable  non-replication  topology-related  changes.

Request  

OID  1.3.18.0.2.12.19  

Syntax  

requestValue  ::=  SEQUENCE  { 

quiesce  BOOLEAN,  

subtreeDn  DistinguishedName  

} 

Response  

OID  1.3.18.0.2.12.19  

Syntax  

ResponseValue  ::=  SEQUENCE  { 

#fields  of interest  from  LDAPResult:  

resultCode  INTEGER  (0..MAX),  

errorMessage  LDAPString,  

} 

The  following  are  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_NO_SUCH_OBJECT  

v   LDAP_UNWILLING_TO_PERFORM  

v   LDAP_OPERATIONS_ERROR  

v   LDAP_INSUFFICIENT_ACCESS  

v   LDAP_NO_MEMORY  

v   LDAP_REPL_QUIESCE_BAD_STATE

Behavior  

This  extended  operation  is used  for  the  following:  

v   Disable  non-replication  topology-related  changes  in  the  replication  

context.  

 

226 Programming  Reference



v   Enable  non-replication  topology-related  changes.

If  the  quiesce  Boolean  is TRUE,  then  only  replication  topology-related  

changes  are  enabled.  

The  following  are  enabled  to  call  the  extended  operation:  

v   Primary  Directory  Administrator  

v   Local  Administration  Group  members  with  DirDataAdmin  and  

ReplicationAdmin  roles  

v   Global  Administration  Group  members  

v    Master  Server  DN  

v   Authenticated  Directory  User

Note:   If  the  extended  operation  is called  by  a user  who  does  not  have  

access,  LDAP_INSUFFICIENT_ACCESS  is returned.  

 This  extended  operation  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_PROTOCOL_ERROR  

v   LDAP_DECODING_ERROR  

v   LDAP_NO_MEMORY  

v   LDAP_UNDEFINED_TYPE  

v   LDAP_INVALID_DN_SYNTAX

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  This  extended  operation  only  affects  the  current  operation.  

Auditing  

Action:  [ Quiesce  | Unquiesce  ] 

Context  DN:  <dn>  

Replication error log extended operation 

Description  

Use  this  extended  operation  to  monitor  replication  errors  and  correct  any  

problems  that  occur  as  data  fails  to  be  replicated.  

Note:   This  extended  operation  is always  enabled.

Request  

OID  1.3.18.0.2.12.56  

Syntax  

The  value  consists  of an  integer  which  indicates  the  type  of request  

and  two  strings  in  BER  format.  The  first  string  identifies  which  

failure  or  failures  are  to  be  deleted,  attempted  again  or displayed.  

The  value  will  either  be  0 for  all,  or  the  ID  of the  failed  change.  

The  second  string  provides  the  DN  for  the  replication  agreement.

Response  

OID  1.3.18.0.2.12.57  

Syntax  

The  response  is  a string  indicating  any  problem  that  occurred,  or  if 

successful,  how  many  failed  changes  were  deleted  or  present  to the  

consumer.

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  227



Behavior  

The  extended  operation  acts  on  the  table  that  maintains  the  updates  that  

failed  on  any  of the  current  server’s  consumer  servers.  The  data  for  any  

single  failure  can  be  displayed.  Any  or  all  failed  changes  can  be  deleted  or 

attempted  again.  Deleted  changes  are  removed  from  the  table.  Changes  

attempted  again  are  sent  individually  to  the  consumer.  If the  update  

succeeds,  the  failure  is removed  from  the  table.  If the  update  fails  again,  it 

is  added  back  as a new  failure  with  the  number  of  attempts,  last  time  

attempted  and  result  code  updated  to  reflect  this.  The  original  failure  is  

removed.  The  worker  thread  handling  the  extended  operation  connects  to 

the  consumer  and  sends  these  changes.  Replica  threads  can  send  updates  

to  the  consumer  at the  same  time.  

 The  following  are  enabled  to  call  the  extended  operation:  

v   Primary  Directory  Administrator  

v   Local  Administration  Group  member  

v   Users  with  write  access  to the  replica  group

Note:   If the  extended  operation  is called  by  a user  who  does  not  have  

access,  LDAP_INSUFFICIENT_ACCESS  is returned.  

 This  extended  operation  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_INSUFFICIENT_ACCESS  

v   LDAP_DECODING_ERROR  

v   LDAP_PROTOCOL_ERROR  

v   LDAP_UNWILLING_TO_PERFORM  

v   LDAP_NO_SUCH_OBJECT

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  If  the  errors  are  deleted  or  successfully  attempted  again,  they  are  removed  

from  the  table  permanently.  

Auditing  

The  additional  information  in  the  audit  log  is consists  of  three  lines:  

Replication  Error  Log  Management  Option:  [ SHOW  | RETRY  | DELETE  | UNKNOWN  ] 

Replication  Error  ID:  <numeric  value> 

Replication  Agreement  DN:  DN or empty  string.  

Replication topology extended operation 

Description  

This  extended  operation  propagates  replication  topology-related  entries  

from  a supplier  to  the  consumers  in  the  network.  This  extended  operation  

is  useful  to  synchronize  replication  topology  data  for  every  server  in the  

network  before  replication  of directory  entries  can  begin.  

Request  

OID  1.3.18.0.2.12.54  

Syntax  

RequestValue  ::=  SEQUENCE  { 

 replicationContextDn    DistingushedName,  

 timeout     INTERGER,  

 replicationAgreementDn  DistingushedName  OPTIONAL  

}

 

228 Programming  Reference



Response  

OID  1.3.18.0.2.12.55  

Syntax  

ResponseValue  ::= SEQUENCE  { 

 resultCode    INTEGER(0..MAX),  

 errorMessage    LDAPString,  

 #operation  specific  failure  information:  

 supplier   LDAPString,  

 consumer   LDAPString,  

} 

Behavior  

A  supplier  gathers  its  replication  topology-related  entries  under  a 

replication  context  and  propagates  them  to  the  consumer  servers.  The  

supplier  can  add  the  entries  to the  consumer  or  modify  the  existing  entries  

on  the  consumer  or  delete  the  extra  entries  from  the  consumer.  As  a result  

of  the  extended  operation,  the  replication  topology  related  entries  under  

the  specified  context  on  both  the  supplier  and  the  consumers  are  in sync.  

 The  operation  is enabled  when  the  client  is authenticated  with  update  

authority  to  all  agreements  in  the  specified  subtree,  or  is authenticated  as a 

master  server  for  the  specified  subtree.  Primary  Directory  Administrator  

and  Local  Administration  Group  members  with  DirDataAdmin  and  

ReplicationAdmin  roles  are  authorized  to call  this  extended  operation.

Note:   If  the  extended  operation  is called  by  a user  who  does  not  have  

access,  LDAP_INSUFFICIENT_ACCESS  is returned.  

This  extended  operation  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_NO_MEMORY  

v   LDAP_OPERATIONS_ERROR  

v   LDAP_UNWILLING_TO_PERFORM  

v   LDAP_PROTOCOL_ERROR

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  The  extended  operation  will  not  affect  subsequent  operation  on  the  

connection.  

Auditing  

Context  DN,  Replication  Agreement  DN  and  Timeout  are  audited.

Start, stop server extended operations 

Description  

The  Start,  stop  server  extended  operation,  when  sent  to the  Administration  

Daemon,  requests  that  the  Administration  Daemon  start,  stop,  restart,  give  

the  status  of the  LDAP  server,  or  stop  the  Administration  Daemon.  The  

Start  Stop  Server  Extended  Operation,  when  sent  to the  LDAP  Server,  

requests  that  the  LDAP  Server  stop.

Note:   This  extended  operation  is always  enabled.

Request  

OID  1.3.18.0.2.12.26  

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  229



Syntax  

actionType  ::=  ENUMERATED  { 

   startServer   (0),  

   stopServer   (1),  

   restartServer   (2),  

   serverStatus   (3),  

   admStop                 (4)}  

  

 requestValue  :: = SEQUENCE  { 

  action   actionType  

  command  options   string  OPTIONAL  

} 

Response  

OID  1.3.18.0.2.12.27  

Syntax  

ResultValue  :: SEQUENCE  { 

   Status   Integer  

   ErrorString  String  

   } 

Behavior  

When  sent  to  the  Administration  Daemon,  the  request  does  one  of  the  

following:  

v   Start  

v   Restart  

v   Stop  

v   Request  the  server’s  status  

v   Stop  the  Administration  Daemon

When  sent  to  the  LDAP  Server,  the  server  only  honors  the  request  to stop  

the  server.  Any  other  request  sent  to  the  LDAP  Server  results  in a return  

code  of  LDAP_UNWILLING_TO_PERFORM.  

When  the  request  is sent  to the  Administration  Daemon,  only  a Primary  

Directory  Administrator  or  Local  Administration  Group  members  with  

ServerStartStopAdmin  role  has  the  authority  to make  the  request.  

 When  the  request  is sent  to the  LDAP  server,  only  Primary  Directory  

Administrator,  Local  Administration  Group  members  with  

ServerStartStopAdmin  role,  or  a global  administration  group  member  has  

the  authority  to make  the  request.  

 This  control  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_OTHER  

v   LDAP_UNWILLING_TO_PERFORM  

v   LDAP_INSUFFICIENT_ACCESS  

v   LDAP_PROTOCAL_ERROR

This  extended  operation  is supported  by  the  Administration  Daemon.  This  

extended  operation  with  the  stop  request  is  supported  in  the  LDAP  Server.  

Scope  The  extended  operation  only  affects  the  current  operation,  unless  the  

request  is  to  stop  Administrator  Daemon.  

Auditing  

In  the  LDAP  server,  the  additional  information  contains:  

Operation:  <Start  | Stop  | Restart  | Admin  Stop  | Status>  

 

230 Programming  Reference



In  the  Administration  Daemon,  the  additional  information  contains:  

Operation:  <Start  | Stop  | Restart  | Admin  Stop  | Status>  

On  a start  or  restart  operation  the  following  line  is audited:  

Options:  <Additional  Value> 

For  example,  a request  to  start  the  server  with  the  -a option  audits  the  

following:  

Operation:  Start  

Options:  ---a  

Start TLS extended operation 

Description  

This  extended  operation  requests  that  the  server  start  using  encrypted  

communications  over  the  connection.

Note:   This  extended  operation  is always  enabled.

Request  

OID  1.3.6.1.4.1.1466.20037  

Syntax  

There  is no  request  value  for  the  extended  operation.

Response  

OID  1.3.6.1.4.1.1466.20037  

Syntax  

v   LDAP_SUCCESS  

v   LDAP_OPERATIONS_ERROR  

v   LDAP_PROTOCOL_ERROR

Behavior  

The  extended  operation  is used  to  request  that  communication  on  the  

connection  be  encrypted.  The  server  will  expect  a TLS  handshake  on  the  

connection.  

 All  Local  Administration  Group  members  irrespective  of  their  roles  and  all 

users  can  perform  this  extended  operation.

Note:   If  the  extended  operation  is called  by  a user  who  does  not  have  

access,  LDAP_INSUFFICIENT_ACCESS  is returned.  

This  extended  operation  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_OPERATIONS_ERROR  

v   LDAP_PROTOCOL_ERROR

This  extended  operation  is supported  by  the  Administration  Daemon.  

Scope  Once  a TLS  handshake  is  performed,  all  communication  on  the  connection  

is encrypted  until  a TLS  closure  alert  is sent  or  the  connection  is closed.

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  231



Unique attributes extended operation 

Description  

The  unique  attributes  extended  operation  provides  a list  of  all  non-unique  

(duplicate)  values  for  a particular  attribute.

Note:   This  extended  operation  can  be  disabled.  Commenting  out  or  

removing  the  statement  in  the  configuration  file  for  the  unique  

attribute  extended  operation  plug-in  will  disable  this  extended  

operation.  For  example,  commenting  out  the  statement:  

ibm-slapdPlugin:  extendedop  /bin/libback-rdbm.dll  initUniqueAttr  

from  the  configuration  file  will  disable  this  extended  operation  on  

Windows  systems.

Request  

OID  1.3.18.0.2.12.44  

Syntax  

ExtendedRequest  ::= SEQUENCE  { 

  requestName  LDAPOID  // OID  for  the IBM Unique  Attributes  

  requestValue  LDAPOID  // OID  for  an attribute  requiring  uniqueness  

} 

where  LDAPOID  is an  OCTET  STRING.

Response  

OID  1.3.18.0.2.12.45  

Syntax  

ExtendedResponse  ::= SEQUENCE  { 

 COMPONENTS  OF LDAPResult,  

 responseName    LDAPOID  // OID  for the  IBM  Unique  Attributes  

 Response      AttributeValueList  // list  of all  

   conflicting  attribute  values  

} 

where  AttributeValueList  is a SEQUENCE  OF  AttributeValue  and  

LDAPOID  is an  OCTET  STRING

Behavior  

The  extended  operation  lists  all  non-unique  values  for  a particular  

attribute.  

 The  following  are  enabled  to  call  the  extended  operation:  

v   Primary  Directory  Administrator  

v   Local  Administration  Group  members  with  DirDataAdmin  role  

v   Global  Administration  Group  members  

v   Master  Server  DN

Note:   If the  extended  operation  is called  by  a user  who  does  not  have  

access,  LDAP_INSUFFICIENT_ACCESS  is returned.  

 This  extended  operation  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_INSUFFICIENT_ACCESS  

v   LDAP_NO_MEMORY  

 

232 Programming  Reference



v   LDAP_PARAM_ERROR  

v   LDAP_OPERATIONS_ERROR  

v   LDAP_OTHER

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  This  extended  operation  only  affects  the  current  operation.

Update configuration extended operation 

Description  

Request  to  update  server  configuration  for  IBM  Tivoli  Directory  Server.  

Note:   This  extended  operation  is always  enabled.

Request  

OID  1.3.18.0.2.12.28  

Syntax  

RequestValue  ::=  SEQUENCE  { 

 action    INTEGER  {rereadFile(0),  

                       rereadAttribute(1),  

                       rereadEntry(2),  

                       rereadSubtree(3)};  

  

entry    [0] DistinguishedName  OPTIONAL;  

 attribute   [1]  DirectoryString  OPTIONAL;  

} 

Response  

OID  1.3.18.0.2.12.29  

Syntax  

This  response  has  no  value.

Behavior  

This  extended  operation  forces  the  server  to  read  the  configuration  file.  The  

request  can  be  to  read  the  entire  file,  a sub-tree,  an  entry  or  a specific  

attribute.  When  the  server  receives  the  request  it reads  the  configuration  

file  and  updates  all  the  internal  server  settings  to  use  the  new  settings  

from  the  configuration  file.  Only  those  attributes  which  are  dynamic  are  

read.  

 The  following  are  enabled  to  call  the  extended  operation:  

v   Primary  Directory  Administrator  

v   Local  Administration  Group  members  with  AuditAdmin,  

ReplicationAdmin,  and  ServerConfigGroupMember  roles

Notes:   

1.   Local  Administration  Group  members  cannot  update  other  Local  

Administration  Group  member’s  attributes.  

2.   If the  extended  operation  is called  by  a user  who  does  not  have  access,  

LDAP_INSUFFICIENT_ACCESS  is returned.  

This  extended  operation  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_INSUFFICIENT_ACCESS  

v   LDAP_DECODING_ERROR  

v   LDAP_PROTOCOL_ERROR  

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  233



v   LDAP_UNWILLING_TO_PERFORM  

v   LDAP_NO_SUCH_OBJECT  

v   LDAP_UNDEFINED_TYPE  

v   LDAP_INVALID_SYNTAX  

v   LDAP_INVALID_DN_SYNTAX  

v   LDAP_OBJECT_CLASS_VIOLATION  

v   LDAP_NO_SUCH_ATTRIBUTE  

v   LDAP_NO_MEMORY

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  This  extended  operation  causes  the  server  to read  its  configuration,  which  

might  affect  subsequent  operations.  

Auditing  

The  Scope  will  be  provided  along  with  the  entry  dn,  and/or  attribute  

when  necessary:  

Scope:  <Scope  Value> 

Where  Scope  Value  is one  of  the  following:  

v   Entire  - entire  configuration  file  

v   Single  - for  a single  attribute  

v   Entry  - for  an  entry  

v   Subtree  - for  a subtree
DN:  <Entry  DN>   * this  is required  for Single,  Entry  and  subtree  

Attribute:  <Attribute> *this  is required  for  single  only.  

Update event notification extended operation 

Description  

The  Update  event  notification  extended  operation  requests  that  the  event  

notification  plug-in  get  the  updated  configuration  from  the  server.  This  

operation  can  only  be  requested  by  the  server.  A Client  application  cannot  

request  this  operation.  The  operation  is initiated  by  the  server  after  

receiving  a dynamic  update  request  that  affects  the  event  notification  

plug-in.

Note:   This  extended  operation  is always  enabled.

Request  

OID  1.3.18.0.2.12.31  

Syntax  

There  is no  request  value  for  the  extended  operation.

Response  

OID  1.3.18.0.2.12.31  

Syntax  

There  is no  response  value  for  the  extended  operation.

Behavior  

The  extended  operation  forces  the  event  notification  plug-in  to get  the  

maximum  events  and  maximum  events  per  connection  settings  from  the  

server  using  the  global  pblock.  

 

234 Programming  Reference



Only  the  server  or  an  internal  server  plug-in  are  enabled  to  call  this  

extended  operation.  

Note:   If  the  control  is sent  by  a user  who  does  not  have  access,  

LDAP_INSUFFICIENT_ACCESS  is returned.  

 This  control  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_INSUFFICIENT_ACCESS  

v   LDAP_NO_MEMORY  

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  This  extended  operation  changes  the  event  settings  which  can  affect  all  

subsequent  operations.

Update log access extended operation 

Description  

The  Update  log  access  extended  operation  requests  that  the  log  access  

plug-in  get  the  updated  configuration  from  the  server.  This  operation  can  

only  be  requested  by  the  server.  A Client  application  cannot  request  this  

operation.  The  operation  is initiated  by  the  server  after  receiving  a 

dynamic  update  request  that  affects  the  log  Access  plug-in.

Note:   This  extended  operation  is always  enabled.

Request  

OID  1.3.18.0.2.12.32  

Syntax  

There  is no  request  value  for  the  extended  operation.

Response  

OID  1.3.18.0.2.12.32  

Syntax  

There  is no  response  value  for  the  extended  operation.

Behavior  

The  extended  operation  forces  the  log  access  plug-in  to  get  the  latest  log  

file  locations  from  the  server.  

 Only  the  server  or  an  internal  server  plug-in  are  enabled  to  call  this  

extended  operation.  

Note:   If  the  control  is sent  by  a user  who  does  not  have  access,  

LDAP_INSUFFICIENT_ACCESS  is returned.  

 This  control  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_INSUFFICIENT_ACCESS  

v   LDAP_NO_MEMORY  

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  This  extended  operation  changes  the  log  access  settings  which  can  affect  all 

subsequent  log  access  operations.

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  235



User type extended operation 

Description  

This  extended  operation  can  be  used  by  a bound  user  to determine  the  

user  type  and  roles  the  user  has  on  the  IBM  Tivoli  Directory  Server.  

Without  the  extended  operation,  there  is no  programmatic  way  to 

determine  what  general  capabilities  a user  has  and  where  the  DN  and  

password  for  the  user  are  stored.  

 It  is  possible  for  a user  to  belong  to  a user  type  and  have  different  

capabilities  and  store  passwords  under  different  types  of entries  or  

attributes.  

 Additionally,  the  extended  operation  provides  a way  to  distinguish  the  root  

administrator  from  an  administrative  group  member  when  a client  must  

use  the  Administration  Daemon  to authenticate  a user.

Note:   This  extended  operation  is always  enabled.

Request  

OID  1.3.18.0.2.12.37  

Syntax  

There  is no  request  value  for  the  extended  operation.

Response  

OID  1.3.18.0.2.12.38  

Syntax  

ResponseValue  ::=  SEQUENCE  { 

              STRING  (UserType)  

              INTEGER  (Number  of UserRoles)  

              SEQUENCE  OPTIONAL  

                      { 

                        STRING  (UserRole)  

                      } 

} 

Behavior  

This  extended  operation  can  be  used  by  a bound  user  to determine  the  

user  type  and  roles  the  user  has  on  the  IBM  Tivoli  Directory  Server.  

 All  users,  including  anonymous,  are  enabled  to send  the  control.  

 This  control  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_NO_MEMORY  

v   LDAP_OPERATIONS_ERROR  

v   LDAP_NO_RESULTS_RETURNED  

v   LDAP_PROTOCAL_ERROR

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  The  extended  operation  only  affects  the  current  operation.

Log access extended operations 

Three  types  of  extended  operation  requests  support  access  to the  log  files.  The  IBM  

Tivoli  Directory  Server  administrator  supports  the  following  log  access  extended  

operations:  

v   “Clear  log  extended  operation”  on  page  237  

 

236 Programming  Reference



v   “Get  lines  extended  operation”  on  page  239  

v   “Get  number  of  lines  extended  operation”  on  page  240

The  server  provides  access  to  the  following  log  files:  

v   ibmslapd.log  

v   db2cli.log  

v   db2clicmds.log  

v   audit.log  

v   bulkload.log  

v   ibmdiradm.log  

v   lostandfound.log  

v   idstools.log  

v   db2load.log  

v   tracemsg.log  

v   adminAudit.log  (this  file  is available  only  if the  Administration  Daemon  audit  

log  OID  (1.3.18.0.2.32.11)  is in  the  list  of  supported  capabilities  in  the  root  DSE)  

v   ibmslapd.trace.log  (this  file  is available  only  if the  trace  log  OID  (1.3.18.0.2.32.14)  

is in  the  list  of  supported  capabilities  in  the  root  DSE)

Lines  are  numbered  starting  with  line  0.  A line  is  considered  all  characters  up  to  

and  including  a new  line  or  400  characters,  whichever  comes  first.  

To make  the  log  access  request,  a client  application  can  use  the  client  APIs  for  

extended  operations.  An  LDAP  v3  extended  operation  request  has  the  form:  

 ExtendedRequest  ::=  [APPLICATION  23] SEQUENCE  { 

                requestName       [0] LDAPOID,  

                requestValue      [1]  OCTET  STRING  OPTIONAL  } 

All  the  extended  requests  use  a LogType.  LogType  is defined  as:  

LogType  ::=  ENUMERATED  { 

 SlapdErrors   (1),  

 CLIErrors   (2),  

 AuditLog   (4),  

 BulkloadLog   (8),  

 AdminErrors   (16),  

 AdminAudit              (32),  

 DebugOutputFile         (64),  

 LostAndFound            (128).  

 ConfigToolsLog          (256)}  

RequestValue  ::=  { log  LogType;  } 

Clear log extended operation 

Description  

The  Clear  log  extended  operation  requests  that  the  server  clear  the  

requested  log.  Once  the  log  is cleared  a line  is written  to  the  log  file  with  

the  date  and  time  stating  that  the  log  file  was  cleared.

Note:   This  extended  operation  is always  enabled.

Request  

OID  1.3.18.0.2.12.20  

Syntax  

RequestValue  ::=  { log  LogType;  } 

Response  

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  237



OID  1.3.18.0.2.12.21  

Syntax  

There  is no  response  value.

Behavior  

The  extended  operation  clears  the  requested  log  file  and  writes  a message  

in  the  log  with  the  date  and  time  stating  that  the  log  was  cleared.  

 Only  the  Primary  Directory  Administrator  or  Local  Administration  Group  

members  with  AuditAdmin  and  ServerConfigGroupMember  roles  are  

authorized  to  call  this  extended  operation.  Only  the  Primary  Directory  

Administrato  can  clear  the  audit  log.  A Local  Administration  Group  

member  does  not  have  access  to  clear  the  audit  log.

Note:   If the  control  is sent  by  a user  who  does  not  have  access,  

LDAP_INSUFFICIENT_ACCESS  is returned.  

 This  control  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_INSUFFICIENT_ACCESS  

v   LDAP_UNWILLING_TO_PERFORM  

v   LDAP_PROTOCOL_ERROR  

v   LDAP_NO_MEMORY  

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  This  extended  operation  only  affects  the  current  operation.  

Auditing  

Log:  <Log  name> 

Get file extended operation 

Description  

This  extended  operation  returns  the  contents  of a given  file  on  the  server.  

Request  

OID  1.3.18.0.2.12.73  

Syntax  

  

RequestValue  ::=  SEQUENCE  { 

        fileNumber  INTEGER  {Other(0),  

                         V3.ibm.at(1),  V3.ibm.oc(2),  

                         V3.user.at(3),  V3.user.oc(4),  

                         V3.config.at(5),  V3.config.at(6),  

                         V3.system.at(7),  V3.system.oc(8),  

                         V3.modifiedschema(9),  V3.ldapsyntaxes(10),  

                         V3.matchingrules(11),  

                         KeyRingFile(12),  KeyDBFile(13)};  

       fileName  String;  

} 

  

Response  

OID  1.3.18.0.2.12.73  

 

238 Programming  Reference



Syntax  

  

ResponseValue  ::= SEQUENCE  { 

        length     INTEGER,  // The  length  of the file.  

        lines      OCTET  STRING  // The  lines  from  the file.  

} 

  

Behavior  

A  client  uses  the  get  file  request  to  retrieve  the  contents  of  schema  related  

files  or  SSL  related  files  from  the  server.  If  the  connection  between  the  

client  and  server  is  not  over  SSL,  the  SSL  related  files  will  not  be  returned.  

 The  following  are  enabled  to  call  the  extended  operation:  

v   Primary  Directory  Administrator

Note:   If  the  extended  operation  is called  by  a user  who  does  not  have  the  

required  access,  LDAP_INSUFFICIENT_ACCESS  is returned.  

 This  extended  operation  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  - If the  file  was  successfully  read.  

v   LDAP_PROTOCOL_ERROR  - If  there  is an  error  in  the  format  of  the  

request.  

v   LDAP_INSUFFICIENT_ACCESS  – If  the  request  is from  users  other  than  

the  administrators.  

v   LDAP_OPERATIONS_ERROR  - Internal  Server  error. 

v   LDAP_NO_SUCH_OBJECT  - The  requested  file  does  not  exist.  

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  The  extended  operation  only  affects  the  current  operation.  

Auditing  

The  following  information  is audited  for  this  extended  operation:  

File:  [<fileName>  | V3.ibm.at  | V3.ibm.oc  | 

       V3.user.at  | V3.user.oc  | 

       V3.config.at  | V3.config.at  | 

       V3.system.at  | V3.system.oc  | 

       V3.modifiedschema  | V3.ldapsyntaxes  | 

       V3.matchingrules]  

  

Get lines extended operation 

Description  

The  Get  lines  extended  operation  requests  that  the  server  read  the  specified  

lines  from  the  requested  log  and  return  them  to the  client.

Note:   This  extended  operation  is always  enabled.

Request  

OID  1.3.18.0.2.12.22  

Syntax  

RequestValue  :==  SEQUENCE  

 { 

  Log    LogType;  

  firstLine    INTEGER;  

  lastLine    INTEGER;  

 }

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  239



Response  

OID  1.3.18.0.2.12.23  

Syntax  

There  is a response  value  only  if the  return  code  is 

LDAP_SUCCESS.

Behavior  

This  extended  operation  reads  the  requested  set  of  lines  from  the  requested  

file  and  returns  the  lines  to  the  user. 

 Only  the  Primary  Directory  Administrator  and  Local  Administration  Group  

members  with  any  roles  other  than  NoAdmin  role  are  enabled  to call  this  

extended  operation.

Note:   If the  control  is sent  by  a user  who  does  not  have  access,  

LDAP_INSUFFICIENT_ACCESS  is returned.  

 This  control  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_INSUFFICIENT_ACCESS  

v   LDAP_UNWILLING_TO_PERFORM  

v   LDAP_PROTOCOL_ERROR  

v   LDAP_NO_MEMORY  

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  This  extended  operation  only  affects  the  current  operation.  

Auditing  

Log:  <Log  name> 

Get number of lines extended operation 

Description  

The  Get  number  of  lines  extended  operation  requests  that  the  server  

determine  the  number  of  lines  in  the  requested  log  file.  

Note:   This  extended  operation  is always  enabled.

Request  

OID  1.3.18.0.2.12.24  

Syntax  

LogType  ::= ENUMERATED  {SlapdErrors   (1),  

   CLIErrors   (2),  

   AuditLog   (4),  

   BulkloadLog   (8),  

   AdminErrors   (16),  

                     AdminAudit              (32),  

                     DebugOutputFile         (64),  

                     LostAndFound            (128).  

                     ConfigToolsLog          (256)}  

 RequestValue  ::= { log  LogType;  } 

Response  

OID  1.3.18.0.2.12.25  

Syntax  

ResponeValue::  = <number  of lines> 

 

240 Programming  Reference



Behavior  

The  extended  requests  that  the  server  read  the  log  file  and  determine  the  

number  of  lines  in  the  requested  log  file.  

 Primary  Directory  Administrator  and  Local  Administration  Group  

members  with  any  roles  other  than  NoAdmin  role  are  enabled  to call  this  

extended  operation.

Note:   If  the  control  is sent  by  a user  who  does  not  have  access,  

LDAP_INSUFFICIENT_ACCESS  is returned.  

 This  control  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_INSUFFICIENT_ACCESS  

v   LDAP_UNWILLING_TO_PERFORM  

v   LDAP_PROTOCOL_ERROR  

v   LDAP_NO_MEMORY  

This  extended  operation  is not  supported  by  the  Administration  Daemon.  

Scope  This  extended  operation  only  affects  the  current  operation.  

Auditing  

Log:  <Log  name> 

 See  the  section  "Creating  the  administrative  group"  in IBM  Tivoli  Directory  Server  

Version  6.1  Administration  Guide  to  know  more  about  administrative  roles,  

authorization  required  to  issue  various  extended  operations,  and  permissions  

required  to  access  various  objects.  

OIDs for controls 

The  following  table  shows  OIDs  for  controls.  Click  on  the  short  name  or  go  the  

specified  page  number  for  more  information  about  a control’s  syntax  and  usage.  

 Table 12. OIDs  for controls  

Short  name  Description  OID  assigned  

“AES  bind  control”  on  page  

243  

This  control  enables  the  IBM  Tivoli  Directory  

Server  to send  updates  to the  consumer  server  

with  passwords  already  encrypted  using  AES.  

1.3.18.0.2.10.28  

“Audit  control”  on  page  244  The  control  sends  a sequence  of uniqueid  

strings  and  a source  ip string  to the  server.  

When  the  server  receives  the  control,  it audits  

the  list  of uniqueids  and  sourceip  in the  audit  

record  of the  operation.  

1.3.18.0.2.10.22  

“Do  not  replicate  control”  on  

page  245  

This  control  can  be specified  on an update  

operation  (add,  delete,  modify,modDn,  

modRdn).  

1.3.18.0.2.10.23  

“Entry  change  notification  

control”  on page  245  

This  control  provides  additional  information  

about  the  changes  that  caused  a particular  

entry  to  be  returned  as the  result  of a 

persistent  search.  

2.16.840.1.113730.3.4.7  

“Group  authorization  control”  

on page  246  

The  control  sends  a list of groups  that  a user  

belongs  to. 

1.3.18.0.2.10.21  

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  241



Table 12. OIDs  for  controls  (continued)  

Short  name  Description  OID  assigned  

“Limit  number  of attribute  

values  control”  on  page  248  

This  control  limits  the  number  of attribute  

values  returned  for  an entry  in a search  

operation.  

1.3.18.0.2.10.30  

“Manage  DSAIT  control”  on  

page  249  

Causes  entries  with  the  ″ref″  attribute  to be 

treated  as normal  entries,  allowing  clients  to 

read  and  modify  these  entries.  

2.16.840.1.113730.3.4.2  

Attached  to a delete  or modify  DN  request  to 

cause  the  server  to do  only  the  group  

referential  integrity  processing  for  the  delete  

or rename  request  without  doing  the  actual  

delete  or rename  of the entry  itself.  The  entry  

named  in the  delete  or modfiy  DN  request  

does  not  need  to exist  on the  server.  

1.3.18.0.2.10.25  

“No  replication  conflict  

resolution  control”  on  page  

250  

When  present,  a replica  server  accepts  a 

replicated  entry  without  trying  to resolve  any  

replication  conflict  for this  entry.  

1.3.18.0.2.10.27  

“Omit  group  referential  

integrity  control”  on page  251  

Omits  the  group  referential  integrity  

processing  on  a delete  or modrdn  request.  

When  present  on a delete  or rename  

operation,  the  entry  is deleted  from  or 

renamed  in the  directory,  but the  entry’s  

membership  is  not  removed  or renamed  in 

the  groups  in which  the  entry  is a member.  

1.3.18.0.2.10.26  

“Paged  search  results  control”  

on page  252  

Allows  management  of the  amount  of data  

returned  from  a search  request.  

1.2.840.113556.1.4.319  

“Password  policy  request  

control”  on page  253  

Password  policy  request  or response  1.3.6.1.4.1.42.2.27.8.5.1  

“Persistent  search  control”  on  

page  254  

This  control  provide  clients  a means  to receive  

notification  of changes  in the LDAP  server.  

2.16.840.1.113730.3.4.3  

“Proxy  authorization  control”  

on page  255  

The  Proxy  Authorization  Control  enables  a 

bound  user  to  assert  another  user’s  identity.  

The  server  uses  this  asserted  identity  in the  

evaluation  of ACLs  for the  operation.  

2.16.840.1.113730.3.4.18  

“Refresh  entry  control”  on  

page  256  

This  control  is returned  when  a target  server  

detects  a conflict  during  a replicated  modify  

operation.  

1.3.18.0.2.10.24  

“Replication  supplier  bind  

control”  on page  257  

This  control  is added  by the  supplier, if the  

supplier  is a gateway  server.  

1.3.18.0.2.10.18  

“Replication  update  ID 

control”  on page  257  

This  control  was  created  for serviceability.  If 

the  supplier  server  is set to  issue  the control,  

each  replicated  update  is accompanied  by  this  

control.  

1.3.18.0.2.10.29  

“Server  administration  

control”  on page  258  

Allows  an update  operation  by  the  

administrator  under  conditions  when  the  

operation  would  normally  be refused  (server  

is quiesced,  a read-only  replica,  etc.)  

1.3.18.0.2.10.15  

“Sorted  search  results  

control”  on page  259  

Allows  a client  to receive  search  results  sorted  

by a list  of criteria,  where  each  criterion  

represents  a sort  key.  

1.2.840.113556.1.4.473  

 

242 Programming  Reference



Table 12. OIDs  for controls  (continued)  

Short  name  Description  OID  assigned  

“Subtree  delete  control”  on  

page  261  

This  control  is attached  to a Delete  request  to 

indicate  that  the  specified  entry  and  all 

descendent  entries  are  to be deleted.  

1.2.840.113556.1.4.805  

“Transaction  control”  on  page  

261  

Marks  the  operation  as part  of a transactional  

context.  

1.3.18.0.2.10.5

  

AES bind control 

Description  

This  control  enables  the  IBM  Tivoli  Directory  Server  to  send  updates  to  the  

consumer  server  with  passwords  already  encrypted  using  AES.  If the  

consumer  server  does  not  support  AES  encryption  of passwords,  or  the  

seed  or  salt  values  do  not  match,  the  IBM  Tivoli  Directory  Server  decrypts  

the  userpassword  and  secretkey  values  in  updates  to  be  replicated.

Note:   This  control  is always  enabled.

OID  1.3.18.0.2.10.28  

Syntax  

This  control  has  no  value.  

Behavior  

 The  criticality  must  be  set  to  TRUE  in  order  to protect  clients  from  

submitting  a request  with  an  unauthorized  identity.This  control  can  operate  

independent  of other  controls.  However,  it is often  sent  with  the  Proxy  

Authorization  Control.  This  control  is registered  for  the  following  

operations:  

v   Bind

The  following  are  enabled  to  send  the  control:  

v   Primary  Directory  Administrator  

v   Master  Server  DN  

v   Local  Administration  Group  members  

v   Global  Administration  Group  members

Note:   If  the  control  is sent  by  a user  who  does  not  have  access,  

LDAP_INSUFFICIENT_ACCESS  is returned.
This  control  has  the  following  possible  return  codes:  

v   LDAP_INSUFFICIENT_ACCESS

This  control  is  not  supported  by  the  Administration  Daemon.  

Scope  The  control  lasts  for  the  life  of  the  bind  session,  to allow  for  multiple  write  

operations.  

 The  use  of  the  control  implies  that  cryptographic  consistency  has  been  

verified  by  the  caller. At  bind  time  the  presence  of  this  control,  along  with  

the  proper  authorization,  causes  the  c_isConsistent  flag  in  the  connection  

structure  to  be  set  to TRUE.  This  causes  any  write  operations  containing  

pre-encrypted  AES  data  to be  accepted  by  the  server.  Without  the  presence  

of  the  control,  the  connection  flag  is set  to  FALSE,  and  a write  operation  of  

this  type  is rejected  by  the  server.  The  RDBM  backend  is the  only  backend  

that  sets,  and  evaluates,  the  c_isConsistent  flag.

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  243



Audit control 

Description  

The  Audit  Control  enables  a client  to  send  additional  information  on  an  

operation.  This  additional  information  is a unique  ID  and  an  IP  address.  

The  additional  information  is audited  in  the  audit  log.

Note:   This  control  is always  enabled.

OID  1.3.18.0.2.10.22  

Syntax  

requestID  DirectoryString  

  

controlValue:=SEQUENCE  { 

{SEQUENCE  of requestID}  

clientIP   String  

} 

Behavior  

This  control  is registered  for  the  following  operations:  

v   Any  

v   Add  

v   Bind  

v   Compare  

v   Delete  

v   Extended  Operations  

v   Search  

v   Modify  

v   Modrdn

All  users  including  anonymous  are  enabled  to send  the  control.  However,  

there  is  an  environment  variable,  

SLAPD_AUDIT_DISABLE_NON_ADMIN,  which  when  set,  restricts  the  

control  to  the  following:  

v   Primary  Directory  Administrator  

v   Local  Administration  Group  members  

v   Global  Administration  Group  members

If  SLAPD_AUDIT_DISABLE_NON_ADMIN  is set  to TRUE,  only  audit  

controls  sent  by  administrators  are  audited.  By  default  the  server  enables  

any  user  to  send  this  control.

Note:   If non-admin  users  are  disabled,  and  the  control  is sent  by  a 

non-admin,  the  control  is ignored,  even  if it  is critical.
If  there  is additional  information  required  for  the  control,  the  error  is 

ignored,  and  the  information  is audited  

The  Administration  Daemon  honors  the  control,  but  audits  only  one  of 

these  controls  per  operation.  The  behavior  for  the  Administration  Daemon  

is  the  same.  

Scope  The  control  lasts  for  the  term  of one  operation.  Each  operation  treats  the  

control  the  same.  If  the  operation  is audited,  the  additional  information  

sent  in  the  control  is audited  as  well.  

 

244 Programming  Reference



Auditing  

When  the  server  receives  this  control  the  audit  plug-in  will  add  the  

following  lines  to  the  audit  entry:  

controlType:  <control  ID>  

criticality:  <true  | false>  

requestID:  <request  ID sent  in the  control> 

requestID:  <request  ID sent  in the  control> 

requestID:  <request  ID sent  in the  control> 

clientIP:  <client  IP  sent  in the  control> 

Do not replicate control 

Description  

This  control  can  be  specified  for  an  update  operation.  When  present,  a 

server  will  not  replicate  the  update  to any  consumers.  

OID  1.3.18.0.2.10.23  

Syntax  

This  control  has  no  value.  

Behavior  

This  control  is  registered  for  the  following  operations:  

Add  When  the  control  is detected  in  an  add  operation,  the  replication  

threads  in  a supplier  will  not  replicate  the  add  operation  to  the  

consumer.  

Delete  When  the  control  is detected  in  a delete  operation,  the  replication  

threads  in  a supplier  will  not  replicate  the  delete  operation  to  the  

consumer.  

Modify  

When  the  control  is defected  in  a modify  operation,  the  replication  

threads  in  a supplier  will  not  replicate  the  modify  operation  to  the  

consumer.  

Modrdn  

When  the  control  is defected  in  a modrdn  operation,  the  replication  

threads  in  a supplier  will  not  replicate  the  modify  operation  to  the  

consumer.

Any  kind  of  administrators  and  the  Master  Server  DN  are  able  to  send  the  

control.  

The  Administration  Daemon  does  not  support  this  control.  

Scope  The  control  lasts  for  the  term  of  one  operation.

Entry change notification control 

Description  

This  control  provides  additional  information  about  the  changes  that  caused  

a particular  entry  to  be  returned  as  the  result  of  a persistent  search.  

OID  2.16.840.1.113730.3.4.7  

Syntax  

EntryChangeNotification  ::=  SEQUENCE  { 

                     changeType  ENUMERATED  { 

                             add        (1),  

                             delete     (2),  

                             modify     (4),

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  245



modDN      (8)},  

                     previousDN      LDAPDN  OPTIONAL,  

                     changeNumber    INTEGER  OPTIONAL  

} 

  

Behavior  

If  the  client  set  the  returnECs  Boolean  to  TRUE  in  the  persistent  search  

control,  the  server  must  include  the  entry  change  notification  control  in the  

controls  portion  of  each  SearchResultEntry  that  is returned  due  to  an  entry  

being  added,  deleted,  or  modified.  

 The  value  of  changeType  field  indicates  what  LDAP  operation  caused  the  

entry  to  be  returned.  

 The  previousDN  is present  in  modifyDN  operations  and  is used  to  retrieve  

the  DN  of  the  entry  before  it was  renamed  and/or  moved.  This  optional  

field  should  be  included  by  servers  when  returning  change  notifications  as 

a result  of modifyDN  operations.  

 The  changeNumber  field  represents  is the  change  number  [CHANGELOG]  

assigned  by  a server  for  the  change.  If a server  supports  an  LDAP  change  

log  it should  include  this  field.  

 If  the  search  code  determines  the  persistent  search  control  is present,  the  

control  will  be  parsed  and  the  operation  is performed  as  specified  in  the  

control.  After  the  operation,  the  pBlock  will  be  handed  off  to the  plug-in  

for  its  record  keeping,  and  the  client  search  is left  open.  The  returnECs  

control  will  be  returned  from  the  plug-in  and  not  the  inline  search  code.

Note:   It is  up  to  the  server  administrator  to  configure  change  log  for  the  

client.  If the  change  log  is not  set  up  properly,  the  client  will  receive  

no  change  numbers.

Group authorization control 

Description  

The  Group  Authorization  Control  enables  a bound  user  to assert  group  

membership.  The  server  uses  this  set  of groups  in the  evaluation  of  ACLs  

for  the  operation.  The  control  was  introduced  as a tool  for  the  proxy  

server.  However,  this  control  can  be  sent  by  any  client.

Note:   This  control  is always  enabled.

OID  1.3.18.0.2.10.21  

Syntax  

Group  ::=  SEQUENCE  { groupName  LDAPString  } 

RequestValue  :: = SEQUENCE{  

    normalized      INTEGER{unnormzlied(0),  normalized(1)};  

    Sequence  of Group  

} 

The  criticality  must  be  set  to  TRUE  in  order  to  protect  clients  from  

submitting  a request  with  an  unauthorized  identity.  

Behavior  

This  control  can  operate  independent  of  other  controls.  However,  it  is often  

sent  with  the  Proxy  Authorization  Control.  This  control  is  registered  for  the  

following  operations:  

v   Any  

 

246 Programming  Reference



v   Add  

v   Bind  

v   Compare  

v   Delete  

v   Extended  Operations  

v   Search  

v   Modify  

v   Modrdn

The  following  are  enabled  to  send  the  control:  

v   Primary  Directory  Administrator  

v   Proxy  Authorization  Group  members  

v   Local  Administration  Group  members  

v   Global  Administration  Group  members

Only  Primary  Directory  Administrator  and  Local  Administration  Group  

members  can  assert  group  membership  into  the  global  administration  

group.  Proxy  group  members  and  global  administration  group  members  

do  not  have  the  authority  to  assert  group  membership  into  the  global  

administration  group.

Note:   If  the  control  is sent  by  a user  who  does  not  have  access,  

LDAP_INSUFFICIENT_ACCESS  is returned.
If  there  is additional  information  required  for  the  control,  and  there  is an  

error  in the  formatting  of that  information,  the  following  error  returns  

might  occur:  

v   Missing  information  – LDAP_OPERATIONS_ERROR  

v   Additional  information  – LDAP_OPERATIONS_ERROR  

v   Invalid  information  – LDAP_OPERATIONS_ERROR

This  control  has  the  following  possible  return  codes:  

v   LDAP_INSUFFICIENT_ACCESS  

v   LDAP_OPERATIONS_ERROR

This  control  is  not  supported  by  the  Administration  Daemon.  

Scope  The  control  lasts  for  the  term  of  one  operation.  Each  operation  treats  the  

control  the  same.  The  operation  is performed  assuming  that  the  user  is a 

member  of the  stated  groups.  This  applies  to all  back-end  servers.  

Auditing  

This  control  has  a special  flag  to  indicate  whether  additional  information  

must  be  audited.  If  the  audit  flag  ibm-auditGroupsOnGroupControl  is set  

to  FALSE,  then  the  control  OID  and  criticality  only  are  audited.  If  

ibm-auditGroupsOnGroupControl  is  TRUE,  then  the  following  additional  

information  is  audited:  

controlType:  <control  ID>  

criticality:  {true  | false}  

Normalized:  {true  | false}  

Group:  <group  sent  in request> 

Group:  <group  sent  in request> 

Group:  <group  sent  in request> 

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  247



Limit number of attribute values control 

Description  

This  control  limits  the  number  of  attribute  values  returned  for  an  entry  in  a 

search  operation.  The  limit  number  of attribute  values  control  is used  to  

limit  the  number  of values  returned  for  the  entire  entry.  This  control  can  

also  be  used  to limit  the  number  of  values  returned  for  attribute  of an  

entry.  

OID  1.3.18.0.2.10.30  

Syntax  

  Control  ::=  SEQUENCE{  

        controlType       1.3.18.0.2.10.30,  

        criticality      BOOLEAN  DEFAULT  FALSE,  

        controlValue     OCTET  STRING  OPTIONAL}  

where,  the  OCTET  STRING  value  is a BER  encoded  value  with  the  

following  format:  

  RequestValue  ::= SEQUENCE{  

     MaxValuesPerEntry      INTEGER(0..maxInt),  // maximum  number  of values  for  

                                               // entire  entry  where  0 means  unlimited  

     MaxValuesPerAttribute  INTEGER(0..maxInt),  //  maximum  number  of  values  per  

                                               // attribute  where  0 means  unlimited  

     ReturnDetails        BOOLEAN  DEFAULT  FALSE  // FALSE  indicates  that  no response  

                                               // controls  should  be  returned  

 } 

The  response  sent  with  each  entry  whose  attributes  were  partially  returned  

when  ReturnDetails  is true is:  

  ResultValue  ::=  SEQUENCE{  

     DN            LDAPString,         //  The  name  of the  attribute  

                                      // in the same  format  returned  by search.  

     AttributeList  PartialAttributes   // The list  of partially  returned  

                                      // attributes  for  an entry.  

 } 

where,  PartialAttributes  value  is the  BER  encoded  value  with  the  following  

format:  

  PartialAttributes  ::=  SEQUENCE  of SEQUENCE{  

    attributeName          LDAPString,         //The  name  of the attribute  in the 

                                             //same  format  as returned  by search.  

    numberValuesReturned   INTEGER(0..maxInt),//number  of values  returned  for 

                                             //an  attribute  

    numberValuesAvailable  INTEGER(-1..maxInt)//number  of values  available,  

                                             //-1  if unknown  

 } 

Behavior  

The  limit  number  of  attribute  values  control  is registered  to  be  used  along  

with  the  search  operation.  At  a time,  the  control  can  only  be  used  in  one  

search  operation,  that  is,  the  life  of  the  control  lasts  only  for  a single  search  

operation.  All  the  users  are  authorized  to  use  this  control.  

 When  the  control  is used  in  a search  operation,  the  total  number  of  

attribute  values  returned  for  each  entry  is less  that  or  equal  to the  

maximum  total  number  of values  specified  on  the  control.  Also,  the  

number  of  values  returned  for  each  attribute  is less  than  or  equal  to the  

maximum  number  of values  returned  per  attribute.  If  details  are  requested  

on  the  control,  a response  control  is also  returned  with  each  entry  whose  

attributes  were  partially  returned.  This  control  is only  supported  by  the  

RDBM  back-end.  

 

248 Programming  Reference



The  limit  number  of  attribute  values  control  operates  independent  of  all 

other  controls  and  does  not  affect  the  behavior  of  any  other  controls.  

 If  there  is any  additional  information  required  for  this  control,  and  an  error  

in  the  formatting  of  that  information  occurs  then  the  following  error  codes  

might  be  returned:  

v   Missing  information  - LDAP_DECODING_ERROR  

v   Additional  information  - LDAP_DECODING_ERROR  

v   Invalid  information  - LDAP_DECODING_ERROR  

This  control  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_DECODING_ERROR  

v   LDAP_OPERATIONS_ERROR  

v   LDAP_NO_MEMORY  

v   LDAP_OTHER  

v   LDAP_UNWILLING_TO_PERFORM  

This  control  is  not  supported  by  Administrator  Daemon.  

Auditing  

In  this  control  no  additional  information  is audited.

Manage DSAIT control 

Description  

Causes  entries  with  the  ″ref″  attribute  to be  treated  as  normal  entries,  

allowing  clients  to  read  and  modify  these  entries.  

OID  2.16.840.1.113730.3.4.2  

Syntax  

This  control  has  no  value.  

Behavior  

This  control  is  registered  for  any  operation.  

 All  users  are  enabled  to  send  the  control.  

Scope  The  control  lasts  for  one  operation.

Modify groups only control 

Description  

This  control  can  be  used  with  a delete,  modrdn,  or  moddn  operation  to 

cause  the  server  to  modify  the  groups  in  which  it is in  a member  without  

deleting  or  modifying  the  entry  itself.  The  entry  named  in  the  delete,  

modrdn,  or  moddn  request  does  not  need  to exist  on  the  server.  

Note:   This  control  is always  enabled.

OID  1.3.18.0.2.10.25  

Syntax  

This  control  has  no  value.  

Behavior  

This  control  is  registered  for  the  following  operations:  

v   Delete  

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  249



v   Modrdn

The  following  are  enabled  to  send  the  control:  

v   Primary  Directory  Administrator  

v   Local  Administration  Group  members  

v   Global  Administration  Group  members

Note:   If the  control  is sent  by  a user  who  does  not  have  access,  

LDAP_INSUFFICIENT_ACCESS  is returned.
This  control  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_DECODING_ERROR  

v   LDAP_UNWILLING_TO_PERFORM

The  Administration  Daemon  does  not  support  this  control.  

Scope  The  control  lasts  for  the  term  of one  operation.  The  control  is only  honored  

when  a delete,  moddn,  or  modrdn  request  goes  to the  RDBM  backend.  

Auditing  

When  the  server  receives  this  control  the  audit  plug-in  will  add  the  

following  lines  to the  audit  entry:  

controlType:  <control  ID>  

criticality:  <true  | false>  

No replication conflict resolution control 

Description  

When  present,  a replica  server  accepts  a replicated  entry  without  trying  to  

resolve  any  replication  conflict  for  this  entry.  This  control  can  be  used  by  

the  replication  topology  extended  operation  to  ensure  data  consistency  

between  a supplier  and  a consumer.

Note:   If environment  variable  

IBMSLAPD_REPL_NO_CONFLICT_RESOLUTION  is set  on  a 

replica,  a replica  server  acts  as  if all  the  update  requests  coming  

from  the  suppliers  are  specified  with  this  control.  The  replica  accepts  

the  replicated  entries  without  attempting  to  resolve  any  replication  

conflicts.  This  environment  variable  is useful  in a network  topology  

in  which  one  supplier  and  one  or  multiple  consumers  are  defined.

OID  1.3.18.0.2.10.27  

Syntax  

This  control  has  no  value.  

Behavior  

This  control  is registered  for  the  following  operations:  

v   Add  

v   Delete  

v   Modify  

v   Modrdn

Add  Upon  receiving  such  a control  in  a replicated  Add  request,  a 

replica  server  will  not  try  to resolve  any  replication  conflict  for  this  

update  but  accept  it  and  apply  it to  the  replica.  

 

250 Programming  Reference



Modify  

Upon  receiving  such  a control  in  a replicated  Modify  request,  a 

replica  server  will  not  try  to  resolve  any  replication  conflict  for  this  

update,  but  accept  it and  apply  it  to  the  replica.

Only  the  Master  Server  DN  is able  to  send  the  control.

Note:   If  the  control  is sent  by  a user  who  does  not  have  access,  

LDAP_INSUFFICIENT_ACCESS  is returned.  

The  Administration  Daemon  does  not  support  this  control.  

Scope  The  control  lasts  for  the  term  of  one  operation.

Omit group referential integrity control 

Description  

This  control  enables  an  administrator  to request  that  group  referential  

integrity  not  be  performed.  The  control  only  applies  to modrdn  and  delete  

operations.  When  present  on  a delete  or  rename  operation,  the  entry  is 

deleted  from  or  renamed  in the  directory,  but  the  entry’s  membership  is 

not  removed  or  renamed  in  the  groups  in  which  the  entry  is a member.  

Note:   This  control  is always  enabled.

OID  1.3.18.0.2.10.26  

Syntax  

This  control  has  no  value.  

Behavior  

This  control  is  registered  for  the  following  operations:  

v   Delete  

v   Modrdn

The  following  are  enabled  to  send  the  control:  

v   Primary  Directory  Administrator  

v   Local  Administration  Group  members  

v   Global  Administration  Group  members

Note:   If  the  control  is sent  by  a user  who  does  not  have  access,  

LDAP_INSUFFICIENT_ACCESS  is returned.
This  control  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_DECODING_ERROR  

v   LDAP_UNWILLING_TO_PERFORM

The  Administration  Daemon  does  not  honor  the  control.  

Scope  The  control  lasts  for  the  term  of  one  operation.  The  control  is only  honored  

when  a delete,  moddn,  or  modrdn  request  goes  to the  RDBM  backend.  

Auditing  

When  the  server  receives  this  control  the  audit  plug-in  will  add  the  

following  lines  to  the  audit  entry:  

controlType:  <control  ID>  

criticality:  <true  | false>

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  251



Paged search results control 

Description  

The  paged  results  control  is enabled  on  a search  operation  and  enables  a 

client  to  request  a subset  of entries.  Subsequent  search  requests  using  this  

control  continue  to result  in  the  next  page  of  results  until  the  operation  is 

canceled  or  the  last  result  is returned.

Note:   This  control  can  be  disabled  by  setting  the  Paged  Result  Limit  to  0. 

There  is also  a configuration  option  which  enables  an  administrator  

to  grant  or  deny  the  use  of  this  control  to  non-administrators  

(administrators  in  this  case  refers  to the  primary  directory  

administrator,  local  administration  group  members,  and  global  

administration  group  members).  If the  ibm-
slapdPagedResAllowNonAdmin  attribute  in the  cn=RDBM  

Backends,  cn=IBM  Directory,  cn=Schemas,  cn=Configuration  entry  is 

set  to  TRUE,  all  users  can  send  paged  search  requests.  If set  to  

FALSE,  only  administrators  can  send  paged  search  requests.  

OID  1.2.840.113556.1.4.319  

Syntax  

realSearchControlValue  ::= SEQUENCE  { 

 Size   INTEGER(0..maxInt),  

    -- requested  page  size  from  client  

    -- result  set  size  estimate  from  server  

 Cookie   OCTET  STRING  } 

Behavior  

This  control  is registered  for  the  following  operations:  

v   Search

In a default  user  installation,  any  user  can  send  this  control.  If the  

ibm-slapdSortSrchAllowNonAdmin  is set  to  FALSE,  the  use  of  this  control  

is  restricted  to administrative  users:  

v   Primary  Directory  Administrator  

v   Local  Administration  Group  members  

v   Global  Administration  Group  members

Note:   If the  control  is sent  by  a user  who  does  not  have  access,  

LDAP_INSUFFICIENT_ACCESS  is returned.
If  there  is additional  information  required  for  the  control,  and  there  is an  

error  in  the  formatting  of that  information,  the  following  error  returns  

might  occur:  

v   Missing  information  – LDAP_DECODING_ERROR  

v   Additional  information  – LDAP_DECODING_ERROR  

v   Invalid  information  – LDAP_DECODING_ERROR

This  control  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_DECODING_ERROR  

v   LDAP_OPERATIONS_ERROR  

v   LDAP_INSUFFICIENT_ACCESS  

v   LDAP_OTHER

The  Administration  Daemon  does  not  support  this  control.  

 

252 Programming  Reference



Scope  The  control  lasts  for  the  term  of  one  operation.  The  control  changes  the  

behavior  of  a search  operation  that  goes  against  the  RDBM  backend.  The  

control  requests  that  the  server  return  the  entries  in  a sorted  order.  The  

configuration  back-end  and  schema  back-ends  do  no  support  this  control.  

Auditing  

When  the  server  receives  this  control  the  audit  plug-in  will  add  the  

following  lines  to  the  audit  entry:  

controlType:  <control  ID>  

criticality:  <true  | false>  

Password policy request control 

Description  

This  control  is  sent  by  the  client  application  with  the  requested  operation.  

This  control  indicates  to the  server  that  this  client  understands  Password  

Policy  return  values.  If the  client  sends  the  Password  policy  request  control  

with  the  request,  the  server  can  send  the  Password  policy  request  control  

with  the  response.  The  Password  policy  request  control  contains  extra  

information  about  why  an  operation  failed  due  to  a Password  Policy  

problem  such  as  if a client  bind  request  failed  because  the  user’s  account  is 

locked  out.  This  information  is sent  to  the  client  on  the  response  in  the  

Password  Policy  Response  Control’s  value  field.

Note:   If  the  Password  Policy  is  disabled,  then  the  Password  policy  request  

control  is ignored,  so  no  Password  policy  request  control  is sent  

with  the  response.

Request  

OID  1.3.6.1.4.1.42.2.27.8.5.1  

Syntax  

There  is no  request  value  for  the  control.

Response  

OID  1.3.6.1.4.1.42.2.27.8.5.1  

Syntax  

SEQUENCE  { 

      warning    [0] CHOICE  OPTIONAL  { 

         timeBeforeExpiration   [0]  INTEGER  (0 .. MaxInt),  

         graceLoginsRemaining   [1]  INTEGER  (0 .. maxInt)  } 

      error      [1]  ENUMERATED  OPTIONAL  { 

         passwordExpired        (0),  

         accountLocked          (1),  

         changeAfterReset       (2),  

         passwordModNotAllowed  (3),  

         mustSupplyOldPassword  (4),  

         invalidPasswordSyntax  (5),  

         passwordTooShort       (6),  

         passwordTooYoung       (7),  

         passwordInHistory      (8)  } } 

Behavior  

This  control  is  registered  for  the  following  operations:  

v   Any  

v   Add  

v   Bind  

v   Compare  

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  253



v   Delete  

v   Extended  Operations  

v   Search  

v   Modify  

v   Modrdn

All  users  are  enabled  to send  the  control.This  control  has  the  following  

possible  return  codes:  

v   LDAP_INSUFFICIENT_ACCESS  

v   LDAP_INVALID_CREDENTIALS  

v   LDAP_CONSTRAINT_VIOLATION  

v   LDAP_UNWILLING_TO_PERFORM

The  Administration  Daemon  supports  this  control.  The  Administration  

Daemon  checks  for  this  control  on  the  bind  operation,  and  returns  the  

Password  policy  response  control  and  values  if needed.  If  the  Root  

Administrator  has  too  many  bad  binds  in  a row, the  Administration  

Daemon  locks  out  the  account  and  sends  the  Password  Policy  response  

that  the  account  is locked.  

Scope  The  control  lasts  for  the  term  of one  operation.  This  control  indicates  to the  

server  that  the  client  application  has  knowledge  of Password  Policy  and  so  

the  server  sends  a Password  policy  response  control  with  its  response.  

Along  with  this  response  control,  there  can  be  a response  control  value  

which  contains  the  Password  Policy  error  or  warning  code  and  message  if 

one  is needed.  The  other  back-ends  have  no  knowledge  of  this  control  and  

so  it  is ignored.

Persistent search control 

Description  

This  control  provide  clients  a means  to  receive  notification  of changes  in 

the  LDAP  server.  

OID  2.16.840.1.113730.3.4.3  

Syntax  

PersistentSearch  ::=   SEQUENCE  { 

          changeTypes       INTEGER,  

          changesOnly       BOOLEAN,  

          returnECs         BOOLEAN}  

  

Behavior  

This  control  can  be  used  by  all  LDAP  users.  

 If  changesOnly  is TRUE,  then  the  server  will  not  return  any  existing  entries  

that  match  the  search  criteria.  Also,  no  entries  are  returned  until  an  update  

on  an  entry  occurs  that  matches  the  initial  search  filter. Entries  are  only  

returned  after  successful  update  operations.  For  example,  if data  is loaded  

in  the  server  and  a search  is  issued  against  it,  the  matching  entries  are  

returned.  However,  if the  persistent  search  control  is present  the  entries  

may  or  may  not  be  returned  initially.  This  is determined  by  the  

changesOnly  field.  

 If  changesOnly  is FALSE,  then  the  server  returns  all  the  entries  that  match  

the  search  filter. Also,  the  connection  is left  open  and  any  changes  or  

updates  on  entries  that  match  the  search  filter  from  that  point  triggers  

entries  to  be  returned.  

 

254 Programming  Reference



The  changeTypes  is the  logical  OR  of  one  or  more  of these  values:  

v   add  (1)  

v   delete  (2)  

v   modify  (4)  

v   modDN  (8)  

If  returnECs  is TRUE,  the  server  will  return  an  entry  change  notification  

control  with  each  entry  returned  as the  result  of changes.

Proxy authorization control 

Description  

The  Proxy  Authorization  Control  enables  a bound  user  to  assert  another  

user’s  identity.  The  server  uses  this  asserted  identity  in  the  evaluation  of  

ACLs  for  the  operation.

Note:   This  extended  operation  is always  enabled.

OID  2.16.840.1.113730.3.4.18  

Syntax  

User  DN  can  be  one  of  the  following:  

dn:  <dn  value> 

<dn  value> 

RequestValue::  = User  DN 

Behavior  

This  control  can  operate  independent  of  other  controls.  However,  it is often  

sent  with  the  Proxy  Authorization  Control.  This  control  is registered  for  the  

following  operations:  

v   Add  

v   Bind  

v   Compare  

v   Delete  

v   Extended  Operations  

v   Search  

v   Modify  

v   Modrdn

The  following  are  enabled  to  send  the  control:  

v   Primary  Directory  Administrator  

v   Proxy  Authorization  Group  members  

v   Local  Administration  Group  members  

v   Global  Administration  Group  members

No  user  can  assert  the  identity  of  the  primary  directory  administrator  or  

local  administration  group  members.  Only  a primary  directory  

administrator  or  local  administration  group  members  can  assert  the  

identity  of  a global  administration  group  member.  Global  administration  

group  members  and  proxy  group  members  cannot  assert  the  identity  of  a 

global  administration  group  member.

Note:   If  the  control  is sent  by  a user  who  does  not  have  access,  

LDAP_INSUFFICIENT_ACCESS  is returned.

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  255



If  there  is additional  information  required  for  the  control,  and  there  is an  

error  in  the  formatting  of that  information,  the  following  error  returns  

might  occur:  

v   Missing  information  – LDAP_OPERATIONS_ERROR  

v   Additional  information  – LDAP_OPERATIONS_ERROR  

v   Invalid  information  – LDAP_OPERATIONS_ERROR

This  control  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_OPERATIONS_ERROR  

v   LDAP_INSUFFICIENT_ACCESS  

v   LDAP_UNWILLING_TO_PERFORM  

v   LDAP_OTHER  

v   LDAP_NO_MEMORY  

v   LDAP_OPERATIONS_ERROR  

v   LDAP_PARAM_ERROR

This  control  is not  supported  by  the  Administration  Daemon.  

Scope  The  control  lasts  for  the  term  of one  operation.  Each  operation  treats  the  

control  the  same.  The  operation  is performed  assuming  the  asserted  user’s  

identity.  The  control  is  honored  on  all  operations.  

Auditing  

When  the  server  receives  this  control  the  audit  plug-in  will  add  the  

following  lines  to the  audit  entry:  

ProxyDN:  <proxy  dn>  

Refresh entry control 

Description  

This  control  is returned  to  a supplier  when  a consumer  server  detects  a 

replication  conflict  during  a replicated  modify  operation.  Upon  receiving  

such  a control  along  with  an  LDAP_OTHER  return  code,  the  supplier  will  

retrieve  its  copy  of  the  entry  and  send  the  entry  again  to the  consumer  

using  an  add  operation  to refresh  the  consumer’s  version  of  the  entry.  

OID  1.3.18.0.2.10.24  

Syntax  

This  control  has  no  value.  

Behavior  

This  control  is registered  for  the  following  operations:  

v   Modify

This  control  is sent  in  an  LDAP  response  protocol  after  a conflict  is 

detected  on  a replicated  entry  on  a consumer.  The  consumer  does  not  have  

to  specifically  bind  to  the  supplier  to  return  such  a control.  The  supplier  

has  already  bound  to  the  consumer.  If anybody  sends  such  a control  in an  

LDAP  request  to  any  server,  the  control  will  be  ignored  and  will  have  no  

effect  on  the  server.  

The  Administration  Daemon  does  not  support  this  control.  

Scope  The  control  lasts  for  the  term  of one  operation.  This  control  is used  by  a 

consumer  to  communicate  to  its  supplier  when  a replication  conflict  is 

detected  on  the  consumer.  Once  the  supplier  gets  the  control  along  with  an  

 

256 Programming  Reference



LDAP_OTHER  return  code,  the  supplier  sends  the  entry  again  with  an  

intention  of  bringing  the  consumer  back  in sync.

Replication supplier bind control 

Description  

Gateway  servers  only  send  the  changes  they  receive  from  a gateway  to  

their  local  servers  (servers  that  reside  in  the  same  site  as the  gateway  

server,  including  peer, forwarder  or  pelican  server).  They  do  not  send  these  

changes  to the  other  gateway  servers.  The  Replication  supplier  bind  control  

helps  a gateway  server  to  decide  which  servers  to  send  to  and  what  to  

send  them.  When  a gateway  server  binds  to its  consumers,  it sends  the  

control  with  its  serverID  as the  control  value.  When  a gateway  server  

receives  such  a control  in  a bind  request,  it knows  that  a gateway  server  is  

bound  as  a supplier.  

OID  1.3.18.0.2.10.18  

Syntax  

controlValue  ::  SEQUENCE  { 

 SupplierServerId    LDAPString  

} 

Behavior  

This  control  is  registered  for  the  following  operations:  

v   Bind

Only  the  Master  DN  is enabled  to  send  this  control.

Note:   If  the  control  is sent  by  a user  who  does  not  have  access,  

LDAP_UNWILLING_TO_PERFORM  is returned.
If  there  is additional  information  required  for  the  control,  and  there  is an  

error  in the  formatting  of that  information,  the  following  error  returns  

might  occur:  

v   Missing  information  – LDAP_OPERATIONS_ERROR  

v   Additional  information  – ignored  

v   Invalid  information  – ignored

This  control  has  the  following  possible  return  codes:  

v   LDAP_PROTOCOL_ERROR  

v   LDAP_UNWILLING_TO_PERFORM  

The  Administration  Daemon  does  not  support  this  control.  

Scope  The  control  lasts  for  the  life  of  the  bind  session.  When  the  control  is  

received,  a server  knows  that  a gateway  server  is bound  as  a supplier.  

Depending  on  the  supplier  information,  the  server  can  decide  to which  

consumers  an  entry  is to be  replicated.

Replication update ID control 

Description  

This  control  was  created  for  serviceability.  If the  supplier  server  is set  to  

issue  the  control,  each  replicated  update  is  accompanied  by  this  control.  

The  data  in  this  control  can  be  used  to  identify  problems  with  

multi-threaded  replication  and  replication  conflict  resolution.  By  default,  no  

supplier  includes  this  control.

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  257



Note:   This  control  is always  enabled.

OID  1.3.18.0.2.10.29  

Syntax  

<replication  agreement  DN>:<replication  change  ID>  

These  values  are  set  by  the  supplier.  

Behavior  

This  control  is not  registered  by  any  operations.  

 All  users  are  enabled  to send  the  control.  

 The  Administration  Daemon  does  not  support  this  control.  

Scope  The  control  lasts  for  one  operation.  

Auditing  

When  the  server  receives  this  control  the  audit  plug-in  will  add  the  

following  lines  to the  audit  entry:  

controlType:  OID 

criticality:  false  

value:  Replication  agreement  DN:change  ID 

Server administration control 

Description  

Allows  an  update  operation  by  the  administrator  under  conditions  when  

the  operation  is normally  refused  (for  example,  the  server  is quiesced,  the  

server  is  a read-only  replica,  and  so  forth).  

 This  control  can  be  specified  on  an  update  operation  (add,  modify,  

modRdn,  modDn,  delete)  by  a client  bound  as  an  administrator.  This  

control  can  also  be  specified  on  a bind  related  operations.  On  a bind  

operation  this  control  specifies  that  this  is  an  administrative  connection  

and  the  connection  should  not  be  dropped  when  cleaning  up  the  idle  

connections.  This  control  is only  honored  if a client  is bound  as a primary  

directory  administrator  or  as a member  of the  administrative  group  with  

any  role  other  than  the  “NoAdmin”  role.  When  present,  a server  that  

would  normally  refuse  updates  (quiesced  server,  forwarder  or  replica),  

allows  the  update.  The  updates  are  replicated  like  other  updates.

Note:   This  control  needs  to be  used  with  user’s  discretion.  With  the  

control,  entry  updates  are  allowed  under  unusual  circumstances.  

Therefore,  it is the  user’s  responsibility  to ensure  the  server  being  

updated  ends  up  in  a state  consistent  with  the  other  servers,  for  

example,  the  timestamp  of an  entry  which  is used  as the  base  for  

replication  conflict  resolution  in IBM  Tivoli  Directory  Server  6.0  and  

later  versions  might  be  different  on  different  servers  if the  entry  gets  

updated  individually  on  those  servers  with  this  control.

OID  1.3.18.0.2.10.15  

Syntax  

This  control  has  no  value.  

Behavior  

This  control  is registered  for  the  following  operations:  

v   Add  

v   Delete  

 

258 Programming  Reference



v   Modify  

v   Modrdn  

v   Moddn  

v   Bind  

v   Unbind  

v   Search

Administrator  Daemon  supports  the  following  extended  operations:  

v   Attribute  type  

v   DN  normalization  

v   Get  lines  

v   Get  number  of  lines  

v   LDAP  trace  facility  

v   LogMgmtControl  

v   Start  TLS  

v   Start,  stop  server  

v   Update  configuration  

v   User  type  

Administrator  Daemon  supports  the  following  controls:  

v   Audit  control  

v   Password  policy  request  control  

v   Server  administration  control

The  following  are  enabled  to  send  the  control:  

v   Primary  Directory  Administrator  

v   Local  Administration  Group  Member  

v   Global  Administration  Group  Member

Note:   If  the  control  is sent  by  a user  who  does  not  have  access,  

LDAP_INSUFFICIENT_ACCESS  is returned.  

The  Administration  Daemon  does  not  support  this  control.  

Scope  The  control  lasts  for  one  operation.  When  the  control  is received,  a server  

knows  that  a gateway  server  is bound  as  a supplier.  Depending  on  the  

supplier  information,  the  server  can  decide  to which  consumers  an  entry  is 

to  be  replicated.

Sorted search results control 

Description  

The  sorted  search  results  control  enables  a client  to receive  search  results  

sorted  by  a sort  key.

Note:   This  control  can  be  disabled  by  setting  the  ibm-slapdSortKeyLimit  to  

0.  

There  is also  a configuration  option  which  enables  an  administrator  

to  grant  or  deny  the  use  of this  control  to  non-administrators  

(administrators  in  this  case  refers  to  the  primary  directory  

administrator,  local  administration  group  members,  and  global  

administration  group  members).  If the  ibm-

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  259



slapdSortSrchAllowNonAdmin  attribute  in  the  cn=RDBM  Backends,  

cn=IBM  Directory,  cn=Schemas,  cn=Configuration  entry  is  set  to  

TRUE,  then  all  users  are  enabled  to use  the  sorted  search.  If set  to 

FALSE,  only  administrators  can  use  the  sorted  search.  

OID  1.2.840.113556.1.4.473  

Syntax  

The  controlValue  is an OCTET  STRING  who value  is  the 

BER  encoding  of a value  with  the  following  SEQUENCE:  

  

SortKeyList  ::=  SEQUENCE  of SEQUENCE  { 

 AttributeType   AttributeDescription,  

 OrderingRule  [0]  MatchingRuleId  OPTIONAL,  

 ReverseOrder  [1]  BOOLEAN  DEFAULT  FALSE  } 

Behavior  

This  control  is registered  for  the  following  operations:  

v   Search

In a default  user  installation,  any  user  can  send  this  control.  If the  

ibm-slapdSortSrchAllowNonAdmin  is set  to  FALSE,  the  use  of  this  control  

is  restricted  to administrative  users:  

v   Primary  Directory  Administrator  

v   Local  Administration  Group  members  

v   Global  Administration  Group  members

Note:   If the  control  is sent  by  a user  who  does  not  have  access,  

LDAP_INSUFFICIENT_ACCESS  is returned.
If  there  is additional  information  required  for  the  control,  and  there  is an  

error  in  the  formatting  of that  information,  the  following  error  returns  

might  occur:  

v   Missing  information  – LDAP_DECODING_ERROR  

v   Additional  information  – LDAP_DECODING_ERROR  

v   Invalid  information  – LDAP_DECODING_ERROR

This  control  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_DECODING_ERROR  

v   LDAP_OPERATIONS_ERROR  

v   LDAP_INSUFFICIENT_ACCESS  

v   LDAP_OTHER

The  Administration  Daemon  does  not  support  this  control.  

Scope  The  control  lasts  for  the  term  of one  operation.  The  control  changes  the  

behavior  of  a search  operation  that  goes  against  the  RDBM  backend.  The  

control  requests  that  the  server  return  the  entries  in  a sorted  order.  The  

configuration  back-end  and  schema  back-ends  do  no  support  this  control.  

Auditing  

When  the  server  receives  this  control  the  audit  plug-in  will  add  the  

following  lines  to the  audit  entry:  

controlType:  <control  ID>  

criticality:  <true  | false>

 

260 Programming  Reference



Subtree delete control 

Description  

This  control  is  attached  to  a delete  request.  This  control  indicates  that  the  

specified  entry  and  all  descendent  entries  are  to  be  deleted.  However,  if the  

subtree  is  an  active  replication  context,  the  control  does  not  take  effect  and  

an  LDAP_UNWILLING_TO_PERFORM  message  is returned.  This  means  if 

the  subtree  to be  deleted  contains  any  replication  agreements  that  the  

server  uses  to replicate,  then  the  subtree  cannot  be  deleted  using  this  

control.  

OID  1.2.840.113556.1.4.805  

Syntax  

This  control  has  no  value.  

Behavior  

This  control  is  registered  for  the  following  operations:  

v   Delete

The  following  are  enabled  to  send  the  control:  

v   Primary  Directory  Administrator  

v   Local  Administration  Group  members  

v   Global  Administration  Group  members  

v   Master  server  DN

Note:   If  the  control  is sent  by  a user  who  does  not  have  access,  

LDAP_INSUFFICIENT_ACCESS  is returned.  

This  control  has  the  following  possible  return  codes:  

v   LDAP_INSUFFICIENT_ACCESS  

v   LDAP_UNWILLING_TO_PERFORM  

The  Administration  Daemon  does  not  support  this  control.  

Scope  The  control  lasts  for  the  term  of  one  delete  operation.  The  delete  operation  

not  only  deletes  the  base  entry  specified  in  the  request,  but  also  deletes  all  

the  descendent  entries.

Transaction control 

Description  

The  Transaction  control  is sent  along  with  update  operations  performed  

within  a transaction.

Note:   This  control  is enabled  by  default,  but  can  be  disabled  by  changing  

the  value  in the  configuration  file  for  the  ibm-
slapdTransactionEnable  attribute.  

The  ibm-slapdTransactoinEnabled  attribute  is in the  configuration  

file  in  the  cn=Transaction,cn=configuration  entry.  If the  value  is set  

to  FALSE,  transactions  are  not  enabled.  If set  to  TRUE,  transactions  

are  enabled.  Transactions  can  also  be  enabled  or  disabled  using  the  

Web Administration  tool.  

OID  1.3.18.0.2.10.5  

 

Appendix  F.  Object Identifiers  (OIDs) for extended  operations  and controls  261



Syntax  

The  controlValue  is set  to  the  transaction  ID  returned  in  the  

StartTransaction  response.  

Behavior  

This  control  is registered  for  the  following  operations:  

v   Add  

v   Delete  

v   Modify  

v   Modrdn

Any  user  can  send  this  control.  

If  there  is additional  information  required  for  the  control,  and  the  

transaction  ID  sent  in  the  control  does  not  match  the  transaction  ID  on  the  

connection,  then  LDAP_PROTOCOL_ERROR  is returned.  

 This  control  has  the  following  possible  return  codes:  

v   LDAP_SUCCESS  

v   LDAP_PROTOCOL_ERROR  

v   LDAP_TIMELIMIT_EXCEEDED  

v   LDAP_SIZELIMIT_EXCEEDED  

The  Administration  Daemon  does  not  support  this  control.  

Scope  The  control  lasts  for  the  term  of one  operation,  but  must  be  sent  only  in  a 

transactional  context.  When  the  control  is sent  only  with  an  update  

operation  to  the  RDBM  backend,  the  server  holds  the  update  until  an  

end-transaction  request  is received.  The  control  is only  supported  on  

updated  operations  performed  in  a transactional  context  (a start  transaction  

extended  operation  must  be  performed  first).  

Auditing  

When  the  server  receives  this  control  the  audit  plug-in  will  add  the  

following  lines  to the  audit  entry:  

controlType:  <control  ID>  

criticality:  <true  | false>

 

262 Programming  Reference



Appendix  G.  Client  libraries  

Both  the  32-bit  as  well  as  the  64-bit  libraries  have  the  same  names.  The  following  

table  lists  the  libraries  being  built  for  IBM  Tivoli  Directory  Server  6.0  and  later  

versions  as  part  of  client:  

 Libraries  Operating  Systems  

AIX  HPUX  Linux  Solaris  Windows  – 

IA32  

idsldap_  

plugin_  

ibm_gsskrb  

Y NA NA NA  NA  

idsldap_  

plugin_  

sasl_  

digest-md5  

Y Y Y Y Y 

libidsldap  Y Y Y Y Y 

libidsldapn  Y NA NA NA  Y 

libids  

ldapstatic  

Y Y Y Y Y 

libids  

ldapstaticn  

Y NA NA NA  Y 

libids  

ldapiconv  

Y Y Y Y Y 

libidsldif  NA Y Y NA  NA  

libids  

ldifstatic  

Y Y Y Y Y 

libibm  

ldapdbg  

Y Y Y Y Y 

ldap  NA NA NA NA  Y 

ldapstatic  NA NA NA NA  Y
  

Note:   The  dynamic  version  of libldif  is available  on  Linux,  but  not  on  Solaris.  

Legend:  

Y This  library  is 64-bit  recertified  on  the  corresponding  operating  system.  

NA  This  library  is not  64-bit  recertified,  or  it is not  valid  for  the  corresponding  

operating  system.

 

© Copyright  IBM Corp. 2002, 2007 263



Hence  the  architecture  (32-bit  or  64-bit)  used  for  those  binaries  is the  one  that  will  

be  used  for  these  libraries,  as well.  Consequently  these  libraries  will  be  placed  in 

the  appropriate  folder  (lib  or  lib64).  

Please  note  that  the  following  library  extensions  are  applicable  for  each  platform:  

 Platform  Static  library  Shared  (Dynamic)  library  

AIX  .a .a 

Linux  .a .so 

Solaris  .a .so 

Windows  .lib .dll
  

The  following  table  identifies  the  library  name  changes  in  IBM  Tivoli  Directory  

Server  6.0  and  later  versions  with  regards  to  IBM  Tivoli  Directory  Server  5.2:  

 Library  Name  in IBM  Tivoli  Directory  Server  

5.2  

Library  Name  in IBM  Tivoli  Directory  Server  

6.0 and  later  versions  

libldapstatic  libidsldapstatic  

libldapstaticn  libidsldapstaticn  

libldif  (Static  Version)  libidsldifstatic

 

264 Programming  Reference



Appendix  H.  Sample  Makefile  

In  IBM  Tivoli  Directory  Server  6.1,  the  sample  Makefile  (makefile.ex)  is updated  

with  the  rules and  information  on  building  64-bit  clients.  These  updates  are  in 

addition  to  the  already  existing  rules and  information  on  building  32-bit  clients.  

The  sample  Makefile  lists  the  64-bit  compilers/linkers  to be  used  along  with  the  

relevant  flags  to  be  passed.  It also  lists  the  64-bit  libraries,  needed  to  build  the  

customized  LDAP  clients.

Note:   You must  have  the  prerequisite  compat-glibc  library.  Use  the  following  

command  to  retrieve  this  library:  

up2date  compat-glibc  

This  library  is available  on  your  operating  system  CD.  Without  this  library,  

you  will  get  the  following  errors  when  compiling:  

# make  -f makefile.ex  ldapdelete  

mkdir  -p 32 

gcc  -I../include  -I/usr/include  -DLINUX  -D_GCC3  -o 32/ldapdelete  

 ldapdelete.c  -L../lib  -L/opt/ibm/ldap/V6.1/lib  -lpthread  -ldl  

 -libmldapstatic  -libmldapdbgstatic  -lldifstatic  -lldapiconvstatic  

 -lmsgstatic  

../lib/libibmldapstatic.a(ldap_open.o)(.text+0x2b7):  In 

 function  `lower’:  /project/ldapdev/build/ldapdevsb/src/libraries  

 /libldap/ldap_open.c:338:  undefined  reference  to `__ctype_b’  

../lib/libibmldapstatic.a(ldap_utils.o)(.text+0x609):  In 

 function  `ldap_path_is_found’:  /project/ldapdev/build/ldapdevsb  

 /src/libraries/libldap/ldap_utils.c:362:  undefined  reference  

 to `__ctype_b’  

../lib/libibmldapstatic.a(ldapdns.o)(.text+0x56):  In 

 function  `dumpBuf’:  /project/ldapdev/build/ldapdevsb/src  

 /librarie  s/libldap/ldapdns.c:234:  undefined  reference  

 to `__ctype_b’  

../lib/libibmldapstatic.a(ldapdns.o)(.text+0x478):  In 

 function  `readConfName’:  /project/ldapdev/build/ldapdevsb/src  

 /libraries/libldap/ldapdns.c:401:  undefined  reference  

 to `__ctype_b’  

../lib/libibmldapstatic.a(ldapdns.o)(.text+0x4f6):/project  

 /ldapdev/build/ldapdevsb/src/libraries/libldap/ldapdns.c:411:  

 undefined  reference  to `__ctype_b’  

../lib/libibmldapstatic.a(ldapdns.o)(.text+0x58c):/project  

 /ldapdev/build/ldapdevsb/src/libraries/libldap/ldapdns.c:430:  

 more  undefined  references  to `__ctype_b’  follow  

collect2:  ld returned  1 exit  status  

make:  ***  [ldapdelete]  Error  1 

The  following  is the  sample  makefile  for  Linux:  

  

# 

# 

#-----------------------------------------------------------------------------  

# 

# COMPONENT_NAME:  examples  

# 

# ABSTRACT:  makefile  to generate  the example  LDAP  client  programs  

# 

# ORIGINS:  202,27  

# 

# (C)  COPYRIGHT  International  Business  Machines  Corp.  1997,  1998,  2001,2002

 

© Copyright  IBM Corp. 2002, 2007 265



# All  Rights  Reserved  

# Licensed  Materials  - Property  of IBM  

# 

# US Government  Users  Restricted  Rights  - Use,  duplication  or 

# disclosure  restricted  by  GSA ADP Schedule  Contract  with  IBM  Corp.  

# 

#-----------------------------------------------------------------------------  

# Copyright  (c)  1994  Regents  of the University  of Michigan.  

# All  rights  reserved.  

# 

# Redistribution  and  use in source  and  binary  forms  are  permitted  

# provided  that  this  notice  is preserved  and  that  due  credit  is given  

# to the  University  of Michigan  at Ann  Arbor.  The  name  of the University  

# may  not  be used  to endorse  or promote  products  derived  from  this  

# software  without  specific  prior  written  permission.  This  software  

# is provided  ``as  is’’  without  express  or implied  warranty.  

#-----------------------------------------------------------------------------  

# 

# This  makefile  will  build  the  example  programs  whose  source  is contained  

# in this  directory.   The  four  programs  generated  are:  

#  ldapsearch  

#  ldapmodify  

#  ldapadd  (a hard-link  to ldapmodify)  

#  ldapmodrdn  

#  ldapdelete  

#  ldapchangepwd  

#  ldapexop  

# In addition  to being  examples  of the  use  of the  LDAP  client  api,  these  

# programs  are  useful  command  line  utilities.   See the  README  file  for  

# more  details.  

  

# 

# default  definitions  for  Unix  utilities  (may  be  changed  here)  

CC      = gcc  

RM      = rm -f 

HARDLN   = ln 

MKDIR    = mkdir  -p 

  

# Change  this  BITS  flag  to 32/64  depending  upon  the architecture  of the  output  

# binaries  desired.  In addition  you would  need  to comment/uncomment  the 

# appropriate  rules  under  the 32-bit  and  64-bit  sections  

  

BITS     = 32 

  

#############################################################################  

## General  compiler  options                                                 ## 

#############################################################################  

  

DEFINES  = -DLINUX  -D_GCC3  

# Note:  replace  ../include  with  the appropriate  path  to the  LDAP  header  files.  

INCLUDES=  -I/opt/ibm/ldap/V6.1/include  -I../include  

CFLAGS   = $(INCLUDES)  $(DEFINES)  

  

#############################################################################  

## Options  for  building  32-bit  targets  on ppc  linux                         ## 

#############################################################################  

# The  following  libraries  and flags  need  to be used  (uncommented)  for  

# building  32-bit  targets  

#--------------------------------------------------------------------  

# Use  the  following  definition  to link  the  sample  programs  with  

# the  shared  LDAP  library  dynamically.  

  CLIENT_LIBS  = -lidsldif  -libmldap  

  LIBS  = -L/opt/ibm/ldap/V6.1/lib  -L/usr/lib  -lpthread  -ldl  

#--------------------------------------------------------------------  

# 

# Or use  this  definition  to link  the  LDAP  library  statically:  

#  CLIENT_LIBS  = -lidsldifstatic  -libmldapstatic

 

266 Programming  Reference



#  LIBS  =  -L/opt/ibm/ldap/V6.1/lib  -L../lib  -L/usr/lib  -lpthread  -ldl  

#--------------------------------------------------------------------  

  LFLAGS   = -Wl,-rpath,/opt/ibm/ldap/V6.1/lib  $(LIBS)  $(CLIENT_LIBS)  

#############################################################################  

  

##############################################################################  

## Options  for  building  64-bit  targets  on ppc  linux  

##############################################################################  

# The  following  libraries  and flags  need  to be used  (uncommented)  for 

# building  64-bit  targets  

#----------------------------------------------------------------  

# Use  the  following  definition  to link  the  sample  programs  with  

# the  shared  LDAP  library.  

# CLIENT_LIBS  = -libmldapdbg  -libmldap  -lidsldif  -lidsldapiconv  

# LIBS     = -L/opt/ibm/ldap/V6.1/lib64  -L/usr/lib64  -L/usr/lib  -lpthread  -ldl  -lgcc  

#----------------------------------------------------------------  

# Or use  this  definition  to link  the  LDAP  library  statically:  

# CLIENT_LIBS  = -libmldapstatic  -lidsldifstatic  

# LIBS     = -L/opt/ibm/ldap/V6.1/lib64  -L../lib64  -L/usr/lib64  -L/usr/lib  -lpthread  -ldl  

# ---------------------------------------------------------------  

# CFLAGS  += -fPIC  -m64  

# LFLAGS   = -Wl,-rpath,/opt/ibm/ldap/V6.1/lib64  $(LIBS)  $(CLIENT_LIBS)  

#############################################################################  

  

#############################################################################  

## Targets                                                                  ## 

#############################################################################  

  

all:     ldapsearch  ldapmodify  ldapdelete  ldapmodrdn  ldapadd  ldapchangepwd  ldapexop  

  

ldapsearch:  

        $(MKDIR)  $(BITS)  

        $(CC)  $(CFLAGS)  -o $(BITS)/$@  ldapsearch.c  $(LFLAGS)  

  

ldapmodify:  

        $(MKDIR)  $(BITS)  

        $(CC)  $(CFLAGS)  -o $(BITS)/$@  ldapmodify.c  $(LFLAGS)  

  

ldapdelete:  

        $(MKDIR)  $(BITS)  

        $(CC)  $(CFLAGS)  -o $(BITS)/$@  ldapdelete.c  $(LFLAGS)  

  

ldapmodrdn:  

        $(MKDIR)  $(BITS)  

        $(CC)  $(CFLAGS)  -o $(BITS)/$@  ldapmodrdn.c  $(LFLAGS)  

  

ldapchangepwd:  

        $(MKDIR)  $(BITS)  

        $(CC)  $(CFLAGS)  -o $(BITS)/$@  ldapchangepwd.c  $(LFLAGS)  

  

ldapexop:  

        $(MKDIR)  $(BITS)  

        $(CC)  $(CFLAGS)  -o $(BITS)/$@  ldapexop.c  $(LFLAGS)  

  

ldapadd:         ldapmodify  

        $(RM)  $(BITS)/$@  

        $(HARDLN)  $(BITS)/ldapmodify  $(BITS)/ldapadd  

  

clean:  

        $(RM)  *.o  core  a.out  $(BITS)/*.o  $(BITS)/core  $(BITS)/a.out  $(BITS)/ldapsearch  \ 

        $(BITS)/ldapmodify  $(BITS)/ldapdelete  $(BITS)/ldapmodrdn  $(BITS)/ldapadd  \ 

        $(BITS)/ldapchangepwd  $(BITS)/ldapexop  

You can  find  the  sample  Makefile  (makefile.ex)  in  <ldap_home>/examples.  

 

Appendix  H. Sample Makefile  267



268 Programming  Reference



Appendix  I. Limited  transaction  support  

Transactions  have  four  critical  properties:  

atomicity  

The  transaction  must  be  performed  completely.  If any  part  of the  

transaction  fails,  the  entire  transaction  is  rolled  back  preserving  the  original  

state  of  the  directory.  

consistency  

The  transaction  preserves  the  internal  consistency  of  the  database.  

isolation  

The  transaction  is serialized  by  a global  lock  so  that  it  is performed  

independently  of  any  other  transactions.  

durability  

The  results  of a committed  transaction  are  backed  up  in  stable  storage,  

usually  a disk.

Usage 

Transactions  are  limited  to a single  connection  to  a single  IBM  Directory  server  and  

are  supported  by  the  LDAP  extended  operations  APIs.  Only  one  transaction  at  a 

time  can  be  running  over  the  same  connection.  During  the  transaction,  no  

nontransactional  operations  can  be  issued  over  the  same  connection.  

A transaction  consists  of three  parts:  

v   An  extended  request  to  start  the  transaction  

v   Update  operations:  

–   add  

–   modify  

–   modify  rdn  

–   delete

Note:   The  current  release  does  not  support  some  operations,  for  example,  bind,  

unbind,  search,  extended  op,  and  so  forth  operations.  Referral  objects  can  

be  updated  only  with  manageDsaIT  control  specified.  

v   An  extended  request  to  end  the  transaction

In  order  to  start  a transaction,  the  client  must  send  an  extended  request  in  the  form  

of:  

ExtendedRequest  ::=  [APPLICATION  23]  SEQUENCE  { 

  

  

requestValue  [1]  OCTET  STRING  OPTIONAL  } 

When  the  server  receives  the  request,  it generates  a unique  transaction  ID.  It then  

sends  back  an  extended  response  in  the  form  of:  

ExtendedResponse  ::= [APPLICATION  24]SEQUENCE{  

  

COMPONENTS  OF LDAPResult,

 

© Copyright  IBM Corp. 2002, 2007 269



responseName  [10]  LDAPOID  OPTIONAL,  

  

response  [11]  OCTET  STRING  OPTIONAL  } 

The  client  submits  subsequent  update  operations  asynchronously  with  a control  

attached  to  all  operations.  The  control  contains  the  transaction  ID  returned  in  the  

StartTransaction  response.  The  control  has  the  form  of:  

Control  ::=  SEQUENCE  { 

  

controlType  LDAPOID,  

  

criticality  BOOLEAN  DEFAULT  FALSE,  

  

controlValue  OCTET  STRING  OPTIONAL  } 

The  server  does  not  process  update  operations  immediately.  Instead,  it saves  the  

necessary  information  of operations  in  a queue.  

The  client  sends  an  extended  request  to  end  the  transaction  that  either  commits  or  

rolls  back  the  transaction.  If the  server  receives  the  commit  operation  result,  it  uses  

a global  writer  lock  to  serialize  the  transaction.  It  then  retrieves  the  set  of  update  

operations  identified  by  the  transaction  ID  from  the  queue  and  begins  to  perform  

these  operations.  If  all  operations  succeed,  the  results  are  committed  to  the  

database  and  the  server  sends  back  the  success  return  code.  

As  each  operation  is performed  it generates  a success  return  code  unless  an  error  

occurs  during  the  transaction,  in  which  case  an  unsuccessful  return  code  is 

returned  for  all  the  operations.  If any  operation  fails,  the  server  rolls  back  the  

transaction  and  sends  back  the  error  return  code  of  the  failed  operation  to  the  

operation  in  the  client  that  caused  the  failure.  The  EndTransaction  operation  also  

receives  an  unsuccessful  return  code  if the  transaction  is not  successful.  For  any  

subsequent  update  operations  that  still  remain  in the  queue,  an  unsuccessful  return  

code  is  generated.  When  the  transaction  times  out,  the  connection  is dropped  and  

any  subsequent  operations  receive  an  unsuccessful  return  code.  

The  server  releases  the  global  lock  after  the  commit  or  the  roll  back  is performed.  

The  event  notification  and  change  log  operations  are  performed  only  if the  

transaction  has  succeeded.  

Example 

The  following  example  is an  ldapmod.c  example  file,  modified  for  limited  

transaction  capability:  

static  char  sccsid[]  = "@(#)17   1.35  11/18/02  progref.idd,  ldap,  5.1 15:20:20";  

/* 

 * COMPONENT_NAME:  ldap.clients  

 * 

 * ABSTRACT:  generic  program  to modify  or add entries  using  LDAP  with  a transaction  

 * 

 * ORIGINS:  202,27  

 * 

 * (C)  COPYRIGHT  International  Business  Machines  Corp.  2002  

 * All  Rights  Reserved  

 * Licensed  Materials  - Property  of IBM 

 * 

 * US Government  Users  Restricted  Rights  - Use,  duplication  or 

 * disclosure  restricted  by GSA  ADP Schedule  Contract  with  IBM  Corp.  

 */ 

 

 

270 Programming  Reference



/* 

 * Copyright  (c)  1995  Regents  of the  University  of Michigan.  

 * All  rights  reserved.  

 * 

 * Redistribution  and  use  in source  and binary  forms  are permitted  

 * provided  that  this  notice  is preserved  and that  due  credit  is given  

 * to the  University  of Michigan  at Ann  Arbor.  The  name  of  the University  

 * may  not  be used  to endorse  or promote  products  derived  from  this  

 * software  without  specific  prior  written  permission.  This  software  

 * is provided  ``as  is’’  without  express  or implied  warranty.  

 */ 

  

/* ldaptxmod.c  - generic  program  to modify  or add  entries  using  LDAP  

using  a single  transaction  */ 

  

#include  <ldap.h>  

  

#include  <stdio.h>  

#include  <string.h>  

#include  <stdlib.h>  

#include  <ctype.h>  

#include  <sys/types.h>  

#include  <sys/stat.h>  

  

#if  !defined(  WIN32  ) 

#include  <sys/file.h>  

#include  <fcntl.h>  

#include  <unistd.h>  

#endif  

#define  LDAPMODIFY_REPLACE  1 

#define  LDAPMODIFY_ADD   2 

  

#if  defined(  WIN32  ) 

#define  strcasecmp  stricmp  

#endif  

  

#define  safe_realloc(  ptr,  size  ) ( ptr  == NULL  ? malloc(  size  ) : \ 

      realloc(  ptr,  size  )) 

  

#define  MAX_SUPPLIED_PW_LENGTH  256  

#define  LDAPMOD_MAXLINE   4096  

  

/* Strings  found  in replog/LDIF  entries  (mostly  lifted  from  slurpd/slurp.h)  */ 

#define  T_REPLICA_STR   "replica"  

#define  T_DN_STR    "dn"  

#define  T_CHANGETYPESTR   "changetype"  

#define  T_ADDCTSTR    "add"  

#define  T_MODIFYCTSTR   "modify"  

#define  T_DELETECTSTR   "delete"  

#define  T_MODRDNCTSTR   "modrdn"  

#define  T_MODDNCTSTR    "moddn"  

#define  T_MODOPADDSTR   "add"  

#define  T_OPERSTR  "transaction_operation"  

#define  T_MODOPREPLACESTR  "replace"  

#define  T_MODOPDELETESTR  "delete"  

#define  T_MODSEPSTR    "-"  

#define  T_NEWRDNSTR    "newrdn"  

#define  T_DELETEOLDRDNSTR  "deleteoldrdn"  

#define  T_NEWSUPERIORSTR   "newsuperior"  

#define  T_CONTROLSTR  "control"  

  

extern  char  * str_getline(char**);  

char  * getPassword(void);  

char  * read_one_record(FILE  *fp);  

  

#if  defined  _WIN32  

int  getopt  (int,  char**,  char*);

 

Appendix  I. Limited  transaction  support 271



#endif  

#ifndef  -win32  

#ifdef  -GCC3  

#include  <errno.h>  

#else  

extern  int  errno;  

#endif  

#endif  

  

/*Required  for  password  prompting*/  

#ifdef  -win32  

#include  <conio.h>  

#else  

/*termios.h  is defined  by POSIX*/  

#include  <termios.h>  

#endif  

  

/* Global  variables  */ 

static  LDAP      *ld          = NULL;   /* LDAP  sesssion  handle  */ 

static  FILE      *fp          = NULL;   /* input  file  handle  */ 

static  char  *prog        = NULL;   /* program  name  */  

static  char  *binddn      = NULL;   /* bind  DN */ 

static  char  *passwd      = NULL;   /* bind  password  */ 

static  char  *ldaphost    = "localhost";   /* server  host  name  */ 

static  char      *mech        = NULL;   /* bind  mechanism  */ 

static  char      *charset     = NULL;   /*  character  set for  input  */ 

static  char      *keyfile     = NULL;   /*  SSL key  database  file  name*/  

static  char      *keyfile_pw  = NULL;   /* SSL  key  database  password  */ 

static  char      *cert_label  = NULL;   /* client  certificate  label  */ 

static  int       hoplimit   = 10;      /* limit  for  referral  chasing  */ 

static  int  ldapport   = LDAP_PORT;  /* server  port  number  */ 

static  int  doit       = 1;       /* 0 to make  believe  */ 

static  int  verbose    = 0;       /* 1 for  more  trace  messages  */ 

static  int  contoper   = 0;       /* 1 to continue  after  errors  */ 

static  int  force      = 0; 

static  int  valsfromfiles  = 0; 

static  int  operation    = LDAPMODIFY_REPLACE;  

static  int  referrals    = LDAP_OPT_ON;  

static  int  ldapversion  = LDAP_VERSION3;  

static  int  DebugLevel   = 0;          /* 1 to activate  library  traces  */ 

static  int  ssl          = 0;          /* 1 to use SSL */ 

static  int   manageDsa   = LDAP_FALSE;  /* LDAP_TRUE  to modify  referral  objects  */ 

  

static  LDAPControl  manageDsaIT  = { 

  "2.16.840.1.113730.3.4.2",  /* OID  */ 

  { 0, NULL  },               /* no value  */  

  LDAP_OPT_ON                 /* critical  */ 

}; 

  

/* NULL  terminated  array  of server  controls*/  

static  LDAPControl  *Server_Controls[3]  = {NULL,  NULL,  NULL};  

  

static  int  Num_Operations  = 0;  /*  count  of times  one  must  go to 

        ldap_result  to check  result  codes  */ 

static  int  Message_ID  = 0;      /* message  ID returned  by async  

        ldap  operation,  currently  not tracked*/  

static  int  abort_flag  = 0;      /* abort  transaction  flag  set by 

        -A parameter  */ 

  

/* Implement  getopt()  for Windows  to  parse  command  line  arguments.  */ 

#if  defined(_WIN32)  

char  *optarg  = NULL;  

int    optind  = 1; 

int    optopt  = 0; 

#define  EMSG  "" 

  

int  getopt(int  argc,  char  **argv,  char  *ostr)  {

 

272 Programming  Reference



static  char  *place  = EMSG;  

  register  char  *oli;  

  

  if  (!*place)  { 

    if (optind  >= argc  || *(place  = argv[optind])  != ’-’  || !*++place)  { 

      return  EOF;  

    } 

    if (*place  == ’-’)  { 

      ++optind;  

      return  EOF;  

    } 

  } 

  if  ((optopt  = (int)*place++)  == (int)’:’  || !(oli  = strchr(ostr,  optopt)))  { 

    if (!*place)  { 

      ++optind;  

    } 

    fprintf(stderr,  "%s:  %s:  %c\n",  "getopt",  "illegal  option",  optopt);  

    return  ( ’?’  ); 

  } 

  if  (*++oli  != ’:’)  { 

    optarg  = NULL;  

    if (!*place)  

      ++optind;  

  } else  { 

    if (*place)  { 

      optarg  = place;  

    } else  if (argc  <= ++optind)  { 

      place  = EMSG;  

      fprintf(stderr,  "%s:  %s:  %c\n",  "getopt",  "option  requires  an argument",  

   optopt);  

      return  0; 

    } else  { 

      optarg  = argv[optind];  

    } 

    place  = EMSG;  

    ++optind;  

  } 

  return  optopt;  

} 

#endif  

  

/* Display  usage  statement  and exit.  */ 

void  usage()  

{ 

  fprintf(stderr,  "\nSends  modify  or add requests  to an LDAP  server.\n");  

  fprintf(stderr,  "usage:\n");  

  fprintf(stderr,  "    %s [options]  [-f file]\n",  prog);  

  fprintf(stderr,  "where:\n");  

  fprintf(stderr,  "    file:  name  of input  file\n");  

  fprintf(stderr,  "note:\n");  

  fprintf(stderr,  "    standard  input  is used  if file  is not specified\n");  

  fprintf(stderr,  "options:\n"  ); 

  fprintf(stderr,  "    -h host       LDAP  server  host  name\n");  

  fprintf(stderr,  "    -p port       LDAP  server  port  number\n");  

  fprintf(stderr,  "    -D dn        bind  DN\n");  

  fprintf(stderr,  "    -w password   bind  password  or ’?’ for non-echoed  prompt\n");  

  fprintf(stderr,  "    -Z           use a secure  ldap  connection  (SSL)\n");  

  fprintf(stderr,  "    -K keyfile    file  to use for  keys\n");  

  fprintf(stderr,  "    -P key_pw     keyfile  password\n");  

  fprintf(stderr,  "    -N key_name   private  key  name  to use  in keyfile\n");  

  fprintf(stderr,  "    -R           do not  chase  referrals\n");  

  fprintf(stderr,  "    -M           Manage  referral  objects  as normal  entries.\n");  

  fprintf(stderr,  "    -m mechanism  perform  SASL  bind  with  the given  mechanism\n");  

  fprintf(stderr,  "    -O maxhops    maximum  number  of referrals  to follow  in a 

   sequence\n");  

  fprintf(stderr,  "    -V version    LDAP  protocol  version  (2 or 3; only  3 is 

   supported)\n");

 

Appendix  I. Limited  transaction  support 273



fprintf(stderr,  "    -C charset    character  set name  to use,  as registered  with  

   IANA\n");  

  fprintf(stderr,  "    -a           force  add operation  as default\n");  

  fprintf(stderr,  "    -r           force  replace  operation  as default\n");  

  fprintf(stderr,  "    -b           support  binary  values  from  files  (old  style  

   paths)\n");  

  fprintf(stderr,  "    -c           continuous  operation;  do  not  stop  processing  

   on error\n");  

  fprintf(stderr,  "    -n           show  what  would  be done  but  don’t  actually  do 

   it\n");  

  fprintf(stderr,  "    -v           verbose  mode\n");  

  fprintf(stderr,  "    -A           set  transaction  abort  flag\n");  

  fprintf(stderr,  "    -d level      set  debug  level  in LDAP  library\n");  

  exit(1);  

} 

  

/* Parse  command  line  arguments.  */ 

void  parse_arguments(int  argc,  char  **argv)  { 

  int  i = 0; 

  int  port  = 0; 

  char  *optpattern  = "FaAbcRMZnrv?h:V:p:D:w:d:f:K:P:N:C:O:m:";  

#ifndef  _WIN32  

  extern  char  *optarg;  

  extern  int  optind;  

#endif  

  

  fp = stdin;  

  while  ((i  = getopt(argc,  argv,  optpattern))  != EOF)  { 

    switch  ( i ) { 

    case  ’V’:  

      ldapversion  = atoi(optarg);  

      if (ldapversion  != LDAP_VERSION3)  { 

 fprintf(stderr,  "Unsupported  version  level  supplied.\n");  

 usage();  

      } 

      break;  

    case  ’A’:        /* force  all  changes  records  to be used  */ 

      abort_flag  = 1; 

      break;  

    case  ’a’:  

      operation  = LDAPMODIFY_ADD;  

      break;  

    case  ’b’:  /* read  values  from  files  (for  binary  attributes)*/  

      valsfromfiles  = 1; 

      break;  

    case  ’c’:  /* continuous  operation*/  

      contoper  = 1; 

      break;  

    case  ’F’:  /* force  all changes  records  to be used*/  

      force  = 1; 

      break;  

    case  ’h’:  /* ldap  host*/  

      ldaphost  = strdup(  optarg  ); 

      break;  

    case  ’D’:  /* bind  DN */ 

      binddn  = strdup(  optarg  ); 

      break;  

    case  ’w’:  /* password*/  

      if (optarg  && optarg[0]  == ’?’)  { 

 passwd  = getPassword();  

      } else  

 if (!(passwd  = strdup(  optarg  ))) 

   perror("password");  

      break;  

    case  ’d’:  

      DebugLevel  = atoi(optarg);  

      break;

 

274 Programming  Reference



case  ’f’:  /* read  from  file  */ 

      if ((optarg[0]  == ’-’)  && (optarg[1]  == ’\0’))  

 fp = stdin;  

      else  if ((fp  = fopen(  optarg,  "r" )) == NULL)  { 

 perror(  optarg  ); 

 exit(  1 ); 

      } 

      break;  

    case  ’p’:  

      ldapport  = atoi(  optarg  ); 

      port  = 1; 

      break;  

    case  ’n’:  /* print  adds,  don’t  actually  do them*/  

      doit  = 0; 

      break;  

    case  ’r’:  /* default  is to replace  rather  than  add values*/  

      operation  = LDAPMODIFY_REPLACE;  

      break;  

    case  ’R’:   /* don’t  automatically  chase  referrals*/  

      referrals  = LDAP_OPT_OFF;  

      break;  

    case  ’M’:    /*  manage  referral  objects  as normal  entries  */ 

      manageDsa  = LDAP_TRUE;  

      break;  

    case  ’O’:    /*  set  maximum  referral  hop count   */ 

      hoplimit  = atoi(  optarg  ); 

      break;  

    case  ’m’:    /*  use  SASL  bind  mechanism   */ 

      if (!(mech  = strdup  ( optarg  )))  

 perror("mech");  

      break;  

    case  ’v’:    /*  verbose  mode  */ 

      verbose++;  

      break;  

    case  ’K’:  

      keyfile  = strdup(  optarg  ); 

      break;  

    case  ’P’:  

      keyfile_pw  = strdup(  optarg  ); 

      break;  

    case  ’N’:  

      cert_label  = strdup(  optarg  ); 

      break;  

    case  ’Z’:  

      ssl  = 1;  

      break;  

    case  ’C’:  

      charset  = strdup(optarg);  

      break;  

    case  ’?’:  

    default:  

      usage();  

    } 

  } 

  

  if  (argc  - optind  !=  0) 

    usage();  

  

  /*  Use  default  SSL  port  if  none  specified*/  

  if  ((  port  ==  0 ) && ( ssl  )) 

    ldapport  = LDAPS_PORT;  

  

  if  ( ! DebugLevel  ) { 

    char  *debug_ptr  = NULL;  

  

    if ( ( debug_ptr  = getenv  ( "LDAP_DEBUG"  ) ) ) 

      DebugLevel  = atoi  ( debug_ptr  );

 

Appendix  I. Limited  transaction  support 275



} 

} 

  

/* Get  a password  from  the  user  but  don’t  display  it.  */ 

char*  getPassword(  void  ) { 

  char  supplied_password[  MAX_SUPPLIED_PW_LENGTH  + 1 ]; /* Buffer  for  password  */ 

  

#ifdef  _WIN32  

  char  in  = ’\0’;                  /* Input  character  */ 

  int   len  = 0;                    /* Length  of password  */ 

#else  

  struct  termios  echo_control;  

  struct  termios  save_control;  

  

  int  fd = 0;                 /* File  descriptor  */ 

  int  attrSet  = 0;            /* Checked  later  for  reset  */ 

  

  /* Get  the  file  descriptor  associated  with  stdin.  */ 

  fd = fileno(  stdin  ); 

  

  if (tcgetattr(  fd,  &echo_control  ) != -1)  { 

    save_control  = echo_control;  

    echo_control.c_lflag  &= ~( ECHO  | ECHONL  );  

  

    if  (tcsetattr(  fd,  TCSANOW,  &echo_control  ) == -1) { 

      fprintf(stderr,  "Internal  error  setting  terminal  attribute.\n");  

      exit(  errno  ); 

    } 

  

    attrSet  = 1;  

  } 

#endif  

  

  /* Prompt  for  a password.  */ 

  fputs(  "Enter  password  ==> ", stdout  ); 

  fflush(  stdout  ); 

  

#ifdef  _WIN32  

  /* Windows  9x/NT  will  always  read  from  the console,  i.e.,  

     piped  or redirected  input  will  be ignored.  */ 

  while  ( in != ’\r’  &&  len <= MAX_SUPPLIED_PW_LENGTH  ) { 

    in  = _getch();  

  

    if  (in  != ’\r’)  { 

      supplied_password[len]  = in; 

      len++;  

    } else  { 

      supplied_password[len]  = ’\0’;  

    } 

  } 

#else  

  /* Get  the  password  from  stdin.  */ 

  fgets(  supplied_password,  MAX_SUPPLIED_PW_LENGTH,  stdin  );  

  

  /* Remove  the  newline  at the  end.  */ 

  supplied_password[strlen(  supplied_password  ) - 1] = ’\0’;  

  

#endif  

  

#ifndef  _WIN32  

  /* Reset  the  terminal.  */ 

  if (attrSet  && tcsetattr(  fd,  TCSANOW,  &save_control  ) == -1) { 

    fprintf(stderr,  "Unable  to reset  the  display.\n");  

  } 

#endif  

  fprintf(  stdout,  "\n"  ); 

 

 

276 Programming  Reference



return  ( supplied_password  == NULL  )? supplied_password  : 

   strdup(  supplied_password  ); 

} 

  

/* Rebind  callback  function.  */ 

int  rebindproc(LDAP  *ld,  char  **dnp,  char  **pwp,  int  *methodp,  int  freeit)  { 

  if  ( !freeit  ) { 

    *methodp  = LDAP_AUTH_SIMPLE;  

    if ( binddn  != NULL  ) { 

      *dnp  = strdup(  binddn  ); 

      *pwp  = strdup  ( passwd  ); 

    } else  { 

      *dnp  = NULL;  

      *pwp  = NULL;  

    } 

  } else  { 

    free  ( *dnp  ); 

    free  ( *pwp  ); 

  } 

  return  LDAP_SUCCESS;  

} 

  

/* Connect  and  bind  to server.  */ 

void  connect_to_server()  { 

  int  failureReasonCode,  rc,  authmethod;  

  struct  berval   ber;  

  struct  berval   *server_creds;  

  

  /*  call  ldap_ssl_client_init  if V3 and SSL  */ 

  if  (ssl  &&  (ldapversion  == LDAP_VERSION3))  { 

    if ( keyfile  == NULL  ) { 

      keyfile  = getenv("SSL_KEYRING");  

      if (keyfile  != NULL)  { 

 keyfile  = strdup(keyfile);  

      } 

    } 

  

    if (verbose)  

      printf(  "ldap_ssl_client_init(  %s,  %s,  0, &failureReasonCode  )\n",  

       ((keyfile)  ? keyfile  : "NULL"),  

       ((keyfile_pw)  ? keyfile_pw  : "NULL"));  

#ifdef  LDAP_SSL_MAX  

    rc = ibm_set_unrestricted_cipher_support();  

    if (rc  != 0) { 

      fprintf(  stderr,  "Warning:  ibm_gsk_set_unrestricted_cipher_support  failed!  

        rc == %d\n",  rc ); 

    } 

#endif  

  

    rc = ldap_ssl_client_init(  keyfile,  keyfile_pw,  0, &failureReasonCode  ); 

    if (rc  != LDAP_SUCCESS)  { 

      fprintf(  stderr,  

        "ldap_ssl_client_init  failed!  rc == %d,  failureReasonCode  == %d\n",  

        rc,  failureReasonCode  ); 

      exit(  1 ); 

    } 

  } 

  

  /*  Open  connection  to server  */ 

  if  (ldapversion  == LDAP_VERSION3)  { 

    if (ssl)  { 

      if (verbose)  

 printf("ldap_ssl_init(  %s,  %d, %s )\n",  ldaphost,  ldapport,  

        ((cert_label)  ? cert_label  : "NULL"));  

      ld = ldap_ssl_init(  ldaphost,  ldapport,  cert_label  ); 

      if (ld  == NULL)  { 

 fprintf(  stderr,  "ldap_ssl_init  failed\n"  );

 

Appendix  I. Limited  transaction  support 277



perror(  ldaphost  ); 

 exit(  1 ); 

      } 

    } else  { 

      if (verbose)  

 printf("ldap_init(%s,  %d)  \n",  ldaphost,  ldapport);  

      if ((ld  = ldap_init(ldaphost,  ldapport))  == NULL)  { 

 perror(ldaphost);  

 exit(1);  

      } 

    } 

  } 

  

  /* Set  options  */ 

  ldap_set_option  (ld,  LDAP_OPT_PROTOCOL_VERSION,  (void  * )&ldapversion);  

  

  if (ldapversion  == LDAP_VERSION3)  { 

    ldap_set_option  (ld,  LDAP_OPT_DEBUG,  (void  * )&DebugLevel);  

    ldap_set_option(  ld,  LDAP_OPT_REFHOPLIMIT,  (void  *)&hoplimit);  

  } 

  ldap_set_option  (ld,  LDAP_OPT_REFERRALS,  (void  * )referrals);  

  if (binddn  != NULL)  

    ldap_set_rebind_proc(  ld, (LDAPRebindProc)rebindproc  ); 

  if (charset  != NULL)  { 

    if  (ldap_set_iconv_local_charset(charset)  != LDAP_SUCCESS)  { 

      fprintf(stderr,  "unsupported  charset  %s\n",  charset);  

      exit(0);  

    } 

    ldap_set_option(ld,  LDAP_OPT_UTF8_IO,  (void  *)LDAP_UTF8_XLATE_ON);  

  } 

  

  /* Bind  to server  */ 

  if (ldapversion  == LDAP_VERSION3)  { 

    if  ( ! mech  ) /* Use  simple  bind  */ { 

      rc = ldap_simple_bind_s(ld,  binddn,  passwd);  

      if ( rc != LDAP_SUCCESS  ) { 

 ldap_perror(  ld,  "ldap_simple_bind"  ); 

 /* LDAP_OPT_EXT_ERROR  only  valuable  for  ssl  communication.  

    In  this  example,  for  LDAP  v3,  the  bind  is the first  

    instance  in which  communication  actually  flows  to the  

    server.   So,  if there  is an ssl  configuration  error  or 

    other  ssl  problem,  this  will  be the first  instance  where  

    it  will  be  detected.  */ 

 if (ssl)  { 

   ldap_get_option(  ld,  LDAP_OPT_EXT_ERROR,  &failureReasonCode);  

   fprintf(  stderr,  "Attempted  communication  over  SSL.\n");  

   fprintf(  stderr,  "  The  extended  error  is %d.\n",  failureReasonCode);  

 } 

 exit(  rc ); 

      } 

    } else  /* Presence  of mechanism  means  SASL  bind  */ { 

      /* Special  case  for mech="EXTERNAL".   Unconditionally  set bind  DN 

  and  credentials  to NULL.   This  option  should  be used  in tandem  

  with  SSL  and  client  authentication.   For  other  SASL  mechanisms,  

  use  the  specified  bind  DN and credentials.  */ 

      if (strcmp(mech,  LDAP_MECHANISM_EXTERNAL)  == 0) { 

 rc = ldap_sasl_bind_s  (ld,  NULL,  mech,  NULL,  NULL,  NULL,  &server_creds);  

 if (rc  != LDAP_SUCCESS  ) { 

   ldap_perror  ( ld,  "ldap_sasl_bind_s"  ); 

   exit(  rc ); 

 } 

      } else  { 

 if (strcmp(mech,  LDAP_MECHANISM_GSSAPI)  == 0) { 

   rc = ldap_sasl_bind_s  (ld,  NULL,  mech,  NULL,  NULL,  NULL,  &server_creds);  

   if (rc  != LDAP_SUCCESS  ) { 

     ldap_perror  ( ld,  "ldap_sasl_bind_s"  ); 

     exit(  rc );

 

278 Programming  Reference



} 

 } else  /* other  SASL  mechanisms  */ { 

   ber.bv_len  = strlen  ( passwd  ); 

   ber.bv_val  = passwd;  

   rc = ldap_sasl_bind_s  (ld,  binddn,  mech,  &ber,  NULL,  NULL,  &server_creds);  

   if (rc  != LDAP_SUCCESS  ) { 

     ldap_perror  ( ld, "ldap_sasl_bind_s"  ); 

     exit(  rc ); 

   } 

 } 

      } 

    } 

  } 

} 

  

/* Read  a record  from  the  file.  */ 

char  * read_one_record(FILE  *fp)  

{ 

  int  len  = 0;  

  int  lcur  = 0; 

  int    lmax  = 0; 

  char  line[LDAPMOD_MAXLINE];  

  char  temp[LDAPMOD_MAXLINE];  

  char  *buf  = NULL;  

  

  /*  Reads  in  and  changes  to ldif  form  */ 

  while  ((  fgets(  line,  sizeof(line),  fp ) != NULL  )) { 

    if (!(strncmp(line,"changenumber",10)))  

      {do  

 fgets(line,sizeof(line),fp);  

      while(strncmp(line,"targetdn",8));  /*changes  the = to : for parse*/  

      line[8]=’:’;}  

  

    if (!(strncmp(line,"changetype",9)))  

      line[10]=’:’;  

    if (!(strncmp(line,"changetype:delete",16)))  

      (fgets(temp,sizeof(line),fp));  /*gets  rid  of the  changetime  line  after  

   a delete.*/  

    if (!(strncmp(line,"changetime",9)))  

      {fgets(line,sizeof(line),fp);  

      if (!(strncmp(line,"newrdn",6)))  

 line[6]=’:’;  

      else  

 line[7]=’:’;  

      } 

    if (!(strncmp(line,"deleteoldrdn",12)))  

      line[12]=’:’;  

    if ( *line  != ’\n’  ) { 

      len  = strlen(  line  ); 

      if ( lcur  + len  + 1 > lmax  ) { 

 lmax  = LDAPMOD_MAXLINE  

   *((  lcur  + len  + 1 ) / LDAPMOD_MAXLINE  + 1 ); 

 if (( buf  = (char  *)safe_realloc(  buf,  lmax  )) == NULL  ) { 

   perror(  "safe_realloc"  ); 

   exit(  1 ); 

 } 

      } 

      strcpy(  buf  + lcur,  line  ); 

      lcur  += len;  

    } 

    else  { 

      if ( buf  == NULL  ) 

 continue;  /* 1st  line  keep  going  */ 

      else  

 break;  

    } 

  }

 

Appendix  I. Limited  transaction  support 279



return  buf;  

} 

  

/* Read  binary  data  from  a file.  */ 

int  fromfile(char  *path,  struct  berval  *bv)  { 

  FILE  *fp   = NULL;  

  long   rlen  = 0; 

  int   eof   = 0; 

  

  /* "r"  changed  to "rb",  defect  39803.  */ 

  if (( fp = fopen(  path,  "rb"  ))  == NULL  ) { 

    perror(  path  ); 

    return  -1;  

  } 

  

  if ( fseek(  fp,  0L,  SEEK_END  ) != 0 ) { 

    perror(  path  ); 

    fclose(  fp );  

    return  -1;  

  } 

  

  bv->bv_len  = ftell(  fp ); 

  

  if (( bv->bv_val  = (char  *)malloc(  bv->bv_len  )) == NULL  ) { 

    perror(  "malloc"  ); 

    fclose(  fp );  

    return  -1;  

  } 

  

  if ( fseek(  fp,  0L,  SEEK_SET  ) != 0 ) { 

    perror(  path  ); 

    fclose(  fp );  

    return  -1;  

  } 

  

  rlen  = fread(  bv->bv_val,  1, bv->bv_len,  fp ); 

  eof  = feof(  fp ); 

  fclose(  fp ); 

  

  if ( rlen  != (bv->bv_len)  ) { 

    perror(  path  ); 

    return  -1;  

  } 

  

  return  bv->bv_len;  

} 

  

/* Read  binary  data  from  a file  specified  with  a URL.  */ 

int  fromfile_url(char  *value,  struct  berval  *bv)  { 

  char  *file  = NULL;  

  char  *src   = NULL;  

  char  *dst   = NULL;  

  

  if (strncmp(value,  "file:///",  8))  

    return  -1;  

  

  /* unescape  characters  */ 

  for  (dst  = src  = &value[8];  (*src  != ’\0’);  ++dst)  { 

    *dst  = *src;  

    if  (*src++  !=  ’%’)  

      continue;  

    if  ((*src  >=  ’0’)  && (*src  <= ’9’))  

      *dst  = (*src++  - ’0’)  << 4;  

    else  if  ((*src  >= ’a’)  && (*src  <= ’f’))  

      *dst  = (*src++  - ’a’  + 10)  << 4; 

    else  if  ((*src  >= ’A’)  && (*src  <= ’F’))

 

280 Programming  Reference



*dst  = (*src++  - ’A’  + 10) << 4; 

    else  

      return  -1;  

    if ((*src  >= ’0’)  && (*src  <= ’9’))  

      *dst  += (*src++  - ’0’);  

    else  if ((*src  >=  ’a’)  && (*src  <= ’f’))  

      *dst  += (*src++  - ’a’ + 10);  

    else  if ((*src  >=  ’A’)  && (*src  <= ’F’))  

      *dst  += (*src++  - ’A’+  10);  

    else  

      return  -1;  

  } 

  *dst  = ’\0’;  

  

  /*  On  WIN32  platforms  the URL  must  begin  with  a drive  letter.  

     On UNIX  platforms  the initial  ’/’ is kept  to indicate  absolute  

     file  path.  

  */  

#ifdef  _WIN32  

  file  = value  + 8; 

#else  

  file  = value  + 7; 

#endif  

  return  fromfile(file,  bv);  

} 

  

/* Add  operation  to the modify  structure.  */ 

void  addmodifyop(LDAPMod  ***pmodsp,  int  modop,  char  *attr,  

   char  *value,  int  vlen,  int  isURL,  int isBase64)  

{ 

  LDAPMod  **pmods  = NULL;  

  int  i = 0; 

  int  j = 0; 

  struct  berval  *bvp  = NULL;  

  

  /*  Data  can  be treated  as binary  (wire  ready)  if one  of the 

     following  applies:  

     1) it was  base64  encoded  

     2) charset  is not  defined  

     3) read  from  an external  file  

  */  

  if  (isBase64  || 

      (charset  == NULL)  || 

      isURL  || 

      ((value  != NULL)  && valsfromfiles  && (*value  == ’/’)))  { 

    modop  |= LDAP_MOD_BVALUES;  

  } 

  

  i = 0; 

  pmods  = *pmodsp;  

  if  ( pmods  != NULL  ) { 

    for  (; pmods[  i ] != NULL;  ++i  ) { 

      if ( strcasecmp(  pmods[  i ]->mod_type,  attr  ) == 0 && 

    pmods[  i ]->mod_op  == modop  ) { 

 break;  

      } 

    } 

  } 

  

  if  ( pmods  == NULL  || pmods[  i ] == NULL  ) { 

    if (( pmods  = (LDAPMod  * *)safe_realloc(  pmods,  (i + 2) * 

          sizeof(  LDAPMod  * ))) == NULL  ) { 

      perror(  "safe_realloc"  ); 

      exit(  1 ); 

    } 

    *pmodsp  = pmods;  

    pmods[  i + 1 ] = NULL;

 

Appendix  I. Limited  transaction  support 281



if  ((  pmods[  i ] = (LDAPMod  * )calloc(  1, sizeof(  LDAPMod  ))) == NULL  ) { 

      perror(  "calloc"  ); 

      exit(  1 ); 

    } 

    pmods[  i ]->mod_op  = modop;  

    if  ((  pmods[  i ]->mod_type  = strdup(  attr  )) == NULL  ) { 

      perror(  "strdup"  ); 

      exit(  1 ); 

    } 

  } 

  

  if ( value  != NULL  ) { 

    if  (modop  & LDAP_MOD_BVALUES)  { 

      j = 0; 

      if ( pmods[  i ]->mod_bvalues  != NULL  ) { 

 for  (; pmods[  i ]->mod_bvalues[  j ] != NULL;  ++j ) { 

   ; 

 } 

      } 

      if (( pmods[  i ]->mod_bvalues  = 

     (struct  berval  **)safe_realloc(  pmods[  i ]->mod_bvalues,  

         (j + 2) * sizeof(  struct  berval  *)))  == NULL  ) { 

 perror(  "safe_realloc"  );  

 exit(  1 ); 

      } 

  

      pmods[  i ]->mod_bvalues[  j + 1 ] = NULL;  

      if (( bvp  = (struct  berval  *)malloc(  sizeof(  struct  berval  )))  

   == NULL  ) { 

 perror(  "malloc"  ); 

 exit(  1 ); 

      } 

      pmods[  i ]->mod_bvalues[  j ] = bvp;  

  

      /* get  value  from  file  */ 

      if ( valsfromfiles  && *value  == ’/’  ) { 

 if (fromfile(  value,  bvp  ) < 0 ) 

   exit(1);  

      } else  if (isURL)  { 

 if (fromfile_url(value,  bvp)  < 0) 

   exit(1);  

      } else  { 

 bvp->bv_len  = vlen;  

 if (( bvp->bv_val  = (char  *)malloc(  vlen  + 1 ))  == NULL  ) { 

   perror(  "malloc"  ); 

   exit(  1 );  

 } 

 memmove(  bvp->bv_val,  value,  vlen  ); 

 bvp->bv_val[  vlen  ] = ’\0’;  

      } 

    } else  { 

      j = 0; 

      if ( pmods[  i ]->mod_values  !=  NULL  ) { 

 for  ( ; pmods[  i ]->mod_values[  j ] != NULL;  ++j  ) { 

   ; 

 } 

      } 

      if (( pmods[  i ]->mod_values  = 

     (char  **)safe_realloc(  pmods[  i ]->mod_values,  

       (j + 2) * sizeof(  char  *)))  ==  NULL  ) { 

 perror(  "safe_realloc"  );  

 exit(  1 ); 

      } 

      pmods[  i ]->mod_values[  j + 1 ] = NULL;  

      if (( pmods[  i ]->mod_values[  j ] = strdup(  value  )) == NULL)  { 

 perror(  "strdup"  ); 

 exit(  1 );

 

282 Programming  Reference



} 

    } 

  } 

} 

  

/* Delete  record  */ 

int  dodelete(  char  *dn  ) { 

  int  rc = 0; 

  

  printf(  "%sdeleting  entry  %s\n",  (!doit)  ? "!"  : "",  dn ); 

  if  (!doit)  

    return  LDAP_SUCCESS;  

  

  rc  = ldap_delete_ext(  ld, dn,  

   Server_Controls,  

   NULL,  &Message_ID);  

  if  ( rc != LDAP_SUCCESS  ) 

    ldap_perror(  ld,  "ldap_delete"  ); 

  else  

    printf(  "delete  complete\n"  ); 

  

  putchar(’\n’);  

  /*  Increment  results  to check  after  end  transaction.  */ 

  Num_Operations++;  

  return  rc;  

} 

  

/* Copy  or move  an entry.  */ 

int  domodrdn(  char  *dn,  char  *newrdn,  int deleteoldrdn  ) { 

  int  rc = 0; 

  

  printf(  "%s%s  %s to  %s\n",  ((!doit)  ? "!"  : ""),  

   ((deleteoldrdn)  ? "moving"  : "copying"),  dn,  newrdn);  

  if  (!doit)  

    return  LDAP_SUCCESS;  

  

  rc  = ldap_rename(  ld,  dn, newrdn,  NULL,  deleteoldrdn,  

      Server_Controls  , NULL,  

      &Message_ID  ); 

  if  ( rc != LDAP_SUCCESS  ) 

    ldap_perror(  ld,  "ldap_rename"  ); 

  else  

    printf(  "rename  operation  complete\n"  ); 

  putchar(’\n’);  

  

  /*  Increment  the  count  of results  to check  after  end  transaction  is sent  */ 

  Num_Operations++;  

  return  rc;  

} 

  

/* Print  a binary  value.  If charset  is not  specified  then  check  to  

   see  if string  is  printable  anyway.  */ 

void  print_binary(struct  berval  *bval)  { 

  int  i = 0; 

  int  binary  = 0;  

  

  printf(  "\tBINARY  (%ld  bytes)  ", bval->bv_len);  

  if  (charset  == NULL)  { 

    binary  = 0; 

    for  (i = 0; (i < (bval->bv_len))  && (!binary);  ++i)  

      if (!isprint(bval->bv_val[i]))  

 binary  = 1; 

    if (!binary)  

      for  (i = 0; (i  < (bval->bv_len));  ++i)  

 putchar(bval->bv_val[i]);  

  } 

  putchar(’\n’);

 

Appendix  I. Limited  transaction  support 283



} 

  

/* Modify  or add  an entry.  */ 

int  domodify(  char  *dn,  LDAPMod  **pmods,  int  newentry  ) { 

  int  i, j, op,  rc;  

  struct  berval  *bvp;  

  

  if ( pmods  == NULL  ) { 

    fprintf(  stderr,  "%s:  no attributes  to change  or add  (entry  %s)\n",  

      prog,  dn ); 

    return  LDAP_PARAM_ERROR;  

  } 

  

  if ( verbose  ) { 

    for  ( i = 0; pmods[  i ] !=  NULL;  ++i  ) { 

      op = pmods[  i ]->mod_op  & ~LDAP_MOD_BVALUES;  

      printf(  "%s  %s:\n",  op == LDAP_MOD_REPLACE  ? 

       "replace"  : op == LDAP_MOD_ADD  ? 

       "add"  : "delete",  pmods[  i ]->mod_type  ); 

      if (pmods[i]->mod_op  & LDAP_MOD_BVALUES)  { 

 if (pmods[  i ]->mod_bvalues  != NULL)  { 

   for  (j = 0;  pmods[i]->mod_bvalues[j]  != NULL;  ++j)  

     print_binary(pmods[i]->mod_bvalues[j]);  

 } 

      } else  { 

 if (pmods[i]->mod_values  != NULL)  { 

   for  (j = 0;  pmods[i]->mod_values[j]  != NULL;  ++j)  

     printf("\t%s\n",  pmods[i]->mod_values[j]);  

 } 

      } 

    } 

  } 

  

  if ( newentry  ) 

    printf(  "%sadding  new entry  %s as a transaction\n",  (!doit)  ? "!" : "",  dn ); 

  else  

    printf(  "%smodifying  entry  %s as a transaction\n",  (!doit)  ? "!"  : "", dn ); 

  if (!doit)  

    return  LDAP_SUCCESS;  

  

  if ( newentry  ) { 

    rc  = ldap_add_ext(  ld,  dn,  pmods,  

         Server_Controls,  NULL,  

         &Message_ID);  

  } else  { 

    rc  = ldap_modify_ext(  ld,  dn,  pmods,  

     Server_Controls,  NULL,  

     &Message_ID  ); 

  } 

  if ( rc != LDAP_SUCCESS  ) { 

    ldap_perror(  ld,  newentry  ? "ldap_add"  : "ldap_modify"  ); 

  } else  if ( verbose  ) { 

    printf(  "%s  operation  complete\n",  newentry  ? "add"  : "modify"  ); 

  } 

  putchar(  ’\n’  ); 

  

  /* Increment  the  count  of results  to check  after  end transaction  is sent  */ 

  Num_Operations++;  

  return  rc;  

} 

  

/* Process  an ldif  record.  */ 

int  process_ldif_rec(char  *rbuf)  { 

  char  *line      = NULL;  

  char  *dn        = NULL;  

  char  *type      = NULL;  

  char  *value     = NULL;

 

284 Programming  Reference



char  *newrdn    = NULL;  

  char  *p        = NULL;  

  int  is_url    = 0; 

  int    is_b64    = 0; 

  int  rc       = 0; 

  int    linenum   = 0; 

  int    vlen      = 0; 

  int    modop     = 0; 

  int    replicaport    = 0; 

  int  expect_modop   = 0;  

  int    expect_sep     = 0; 

  int    expect_ct      = 0; 

  int    expect_newrdn  = 0; 

  int  expect_deleteoldrdn  = 0; 

  int    deleteoldrdn   = 1; 

  int  saw_replica    = 0; 

  int  use_record       = force;  

  int  new_entry  = (operation  == LDAPMODIFY_ADD);  

  int  delete_entry  = 0; 

  int  got_all  = 0;  

  LDAPMod  **pmods  = NULL;  

  int  version  = 0;  

  int  str_rc   = 0; 

  

  while  ( rc == 0 && ( line  = str_getline(  &rbuf  )) != NULL  ) { 

    ++linenum;  

  

    /* Is this  a separator  line  ("-")?  */ 

    if ( expect_sep  && strcasecmp(  line,  T_MODSEPSTR  ) ==  0 ) { 

      /* If modifier  has  not  been  added  yet  then  go ahead  and add 

  it.  The  can  happen  on sequences  where  there  are no  

  attribute  values,  such  as: 

  DELETE:  title  

  - 

      */ 

      if (value  !=  NULL)  

 addmodifyop(&pmods,  modop,  value,  NULL,  0, 0, 0);  

      value  = NULL;  

      expect_sep  = 0; 

      expect_modop  = 1; 

      continue;  

    } 

  

    str_rc  = str_parse_line_v_or_bv(line,  &type,  &value,  &vlen,  1, &is_url,  

   &is_b64);  

    if ((strncmp(type,"changes",7))==0)  

      {str_parse_line_v_or_bv(value,  &type,  &value,  &vlen,  1, &is_url,  &is_b64);}  

    if ((linenum  ==  1) && (strcmp(type,  "version")  == 0))  { 

      version  = atoi(value);  

      continue;  

    } 

  

    if ((linenum  ==  2) && (version  == 1) && 

 (strcmp(type,  "charset")  == 0))  { 

      if (charset  != NULL)  

 free(charset);  

      charset  = strdup(value);  

      if ((rc  = ldap_set_iconv_local_charset(charset))  != LDAP_SUCCESS)  { 

 fprintf(stderr,  "unsupported  charset  %s\n",  charset);  

 break;  

      } 

      ldap_set_option(ld,  LDAP_OPT_UTF8_IO,  (void  *)LDAP_UTF8_XLATE_ON);  

      continue;  

    } 

  

    if ( dn == NULL  ) { 

      if ( !use_record  && strcasecmp(  type,  T_REPLICA_STR  ) == 0 ) {

 

Appendix  I. Limited  transaction  support 285



++saw_replica;  

 if (( p = strchr(  value,  ’:’ )) == NULL  ) { 

   replicaport  = LDAP_PORT;  

 } else  { 

   *p++  = ’\0’;  

   replicaport  = atoi(  p ); 

 } 

 if ( strcasecmp(  value,  ldaphost  ) == 0 && 

      replicaport  == ldapport  ) { 

   use_record  = 1; 

 } 

      } else  if ( strcasecmp(  type,  T_DN_STR  ) == 0 ) { 

 if (( dn = strdup(  value  )) == NULL  ) { 

   perror(  "strdup"  ); 

   exit(  1 );  

 } 

 expect_ct  = 1; 

      } 

      continue;  /* skip  all  lines  until  we see  "dn:"  */ 

    } 

  

    if  ( expect_ct  ) { 

      expect_ct  = 0; 

      if ( !use_record  && saw_replica  ) { 

 printf(  "%s:  skipping  change  record  for  entry:  %s\n\t(LDAP  host/port  does  

        not  match  replica:  lines)\n",  prog,  dn ); 

 free(  dn ); 

 return  0; 

      } 

  

      /* this  is an ldif-change-record  */ 

      if ( strcasecmp(  type,  T_CHANGETYPESTR  ) == 0 ) { 

 if ( strcasecmp(  value,  T_MODIFYCTSTR  ) == 0 ) { 

   new_entry  = 0; 

   expect_modop  = 1; 

 } else  if ( strcasecmp(  value,  T_ADDCTSTR  ) == 0 ) { 

   modop  = LDAP_MOD_ADD;  

   new_entry  = 1; 

 } else  if ( strcasecmp(  value,  T_MODRDNCTSTR  ) == 0 ) { 

   expect_newrdn  = 1; 

 } else  if ( strcasecmp(  value,  T_DELETECTSTR  ) == 0 ) { 

   got_all  = delete_entry  = 1; 

 } else  { 

   fprintf(  stderr,  

     "%s:   unknown  %s \"%s\"  (line  %d of entry:  %s)\n",  

     prog,  T_CHANGETYPESTR,  value,  linenum,  dn ); 

   rc = LDAP_PARAM_ERROR;  

 } 

 continue;  

  

 /* this  is an ldif-attrval-record  */ 

      } else  { 

 if (operation  == LDAPMODIFY_ADD)  { 

   new_entry  = 1; 

   modop  = LDAP_MOD_ADD;  

 } else  

   modop  = LDAP_MOD_REPLACE;  

      } 

    } 

  

    if  (expect_modop)  { 

      expect_modop  = 0; 

      expect_sep  = 1; 

      if ( strcasecmp(  type,  T_MODOPADDSTR  ) == 0 ) { 

 modop  = LDAP_MOD_ADD;  

 continue;  

      } else  if ( strcasecmp(  type,  T_MODOPREPLACESTR  ) == 0 ) {

 

286 Programming  Reference



modop  = LDAP_MOD_REPLACE;  

 continue;  

      } else  if ( strcasecmp(  type,  T_MODOPDELETESTR  ) == 0 ) { 

 modop  = LDAP_MOD_DELETE;  

 continue;  

      } else  { 

 fprintf(stderr,  

  "%s:  unknown  mod_spec  \"%s\"  (line  %d of entry:  %s)\n",  

  prog,  type,  linenum,  dn);  

 rc = LDAP_PARAM_ERROR;  

 continue;  

      } 

    } 

  

    if ( expect_newrdn  ) { 

      if ( strcasecmp(  type,  T_NEWRDNSTR  ) == 0 ) { 

 if (( newrdn  = strdup(  value  )) ==  NULL  ) { 

   perror(  "strdup"  ); 

   exit(  1 ); 

 } 

 expect_deleteoldrdn  = 1; 

 expect_newrdn  = 0; 

      } else  { 

 fprintf(  stderr,  "%s:  expecting  \"%s:\"  but  saw \"%s:\"  (line  %d of entry  %s)\n",  

   prog,  T_NEWRDNSTR,  type,  linenum,  dn ); 

 rc = LDAP_PARAM_ERROR;  

      } 

    } else  if ( expect_deleteoldrdn  ) { 

      if ( strcasecmp(  type,  T_DELETEOLDRDNSTR  ) == 0 ) { 

 deleteoldrdn  = ( *value  == ’0’  ) ? 0 : 1; 

 got_all  = 1; 

      } else  { 

 fprintf(  stderr,  "%s:  expecting  \"%s:\"  but  saw \"%s:\"  (line  %d of entry  %s)\n",  

   prog,  T_DELETEOLDRDNSTR,  type,  linenum,  dn ); 

 rc = LDAP_PARAM_ERROR;  

      } 

    } else  if ( got_all  ) { 

      fprintf(  stderr,  "%s:  extra  lines  at end  (line  %d of  entry  %s)\n",  

        prog,  linenum,  dn ); 

      rc = LDAP_PARAM_ERROR;  

    } else  { 

  

      addmodifyop(&pmods,  modop,  type,  value,  vlen,  is_url,  is_b64);  

      type  = NULL;  

      value  = NULL;  

    } 

  } 

  

  /*  If  last  separator  is missing  go ahead  and  handle  it anyway,  even  

     though  it is technically  invalid  ldif  format.  */ 

  if  (expect_sep  && (value  != NULL))  

    addmodifyop(&pmods,  modop,  value,  NULL,  0, 0, 0);  

  

  if  ( rc == 0 ) { 

    if (delete_entry)  

      rc = dodelete(  dn  ); 

  

    else  if (newrdn  != NULL)  

      rc = domodrdn(  dn,  newrdn,  deleteoldrdn  ); 

    else  if (dn  != NULL)  

      rc = domodify(  dn,  pmods,  new_entry  ); 

  } 

  

  if  (dn  != NULL)  

    free(  dn ); 

  if  ( newrdn  != NULL  ) 

    free(  newrdn  );

 

Appendix  I. Limited  transaction  support 287



if ( pmods  != NULL  ) 

    ldap_mods_free(  pmods,  1 ); 

  

  return  rc;  

} 

  

/* Process  a mod  record.  */ 

int  process_ldapmod_rec(  char  *rbuf  ) { 

  char  *line       = NULL;  

  char  *dn         = NULL;  

  char  *p         = NULL;  

  char  *q         = NULL;  

  char  *attr       = NULL;  

  char  *value      = NULL;  

  int  rc        = 0; 

  int    linenum    = 0; 

  int    modop      = 0;  

  LDAPMod  **pmods  = NULL;  

  

  while  ( rc == 0 && rbuf  != NULL  && *rbuf  != ’\0’  ) { 

    ++linenum;  

    if  ((  p = strchr(  rbuf,  ’\n’  )) == NULL  ) { 

      rbuf  = NULL;  

    } else  { 

      if ( *(p  - 1) ==  ’\\’  ) { /* lines  ending  in  ’\’  are  continued  */ 

 strcpy(  p - 1, p );  

 rbuf  = p; 

 continue;  

      } 

      *p++  = ’\0’;  

      rbuf  = p; 

    } 

  

    if  ( dn == NULL  ) { /* first  line  contains  DN */ 

      if (( dn = strdup(  line  )) == NULL  ) { 

 perror(  "strdup"  ); 

 exit(  1 ); 

      } 

    } else  { 

      if (( p = strchr(  line,  ’=’  )) == NULL  ) { 

 value  = NULL;  

 p = line  + strlen(  line  ); 

      } else  { 

 *p++  = ’\0’;  

 value  = p; 

      } 

  

      for  ( attr  = line;  *attr  !=  ’\0’  && isspace(  *attr  ); ++attr  ) { 

 ; /* skip  attribute  leading  white  space  */ 

      } 

  

      for  ( q = p - 1; q > attr  && isspace(  *q ); --q  ) { 

 *q = ’\0’;  /*  remove  attribute  trailing  white  space  */  

      } 

  

      if ( value  != NULL  ) { 

 while  ( isspace(  *value  )) { 

   ++value;   /*  skip  value  leading  white  space  */ 

 } 

 for  ( q = value  + strlen(  value  ) - 1; q > value  && 

  isspace(  *q ); --q  ) { 

   *q = ’\0’;  /* remove  value  trailing  white  space  */ 

 } 

 if ( *value  == ’\0’  ) { 

   value  = NULL;  

 } 

      }

 

288 Programming  Reference



if ((value  == NULL)  && (operation  == LDAPMODIFY_ADD))  { 

 fprintf(  stderr,  "%s:  missing  value  on line  %d (attr  is %s)\n",  

   prog,  linenum,  attr  ); 

 rc = LDAP_PARAM_ERROR;  

      } else  { 

 switch  ( *attr  ) { 

 case  ’-’:  

   modop  = LDAP_MOD_DELETE;  

   ++attr;  

   break;  

 case  ’+’:  

   modop  = LDAP_MOD_ADD;  

   ++attr;  

   break;  

 default:  

   modop  = (operation  ==  LDAPMODIFY_REPLACE)  

     ? LDAP_MOD_REPLACE  : LDAP_MOD_ADD;  

   break;  

 } 

  

 addmodifyop(  &pmods,  modop,  attr,  value,  

       ( value  == NULL  ) ? 0 : strlen(  value  ), 0, 0); 

      } 

    } 

    line  = rbuf;  

  } 

  

  if  ( rc == 0 ) { 

    if ( dn == NULL  ) 

      rc = LDAP_PARAM_ERROR;  

    else  

      rc = domodify(dn,  pmods,  (operation  == LDAPMODIFY_ADD));  

  } 

  

  if  ( pmods  != NULL  ) 

    ldap_mods_free(  pmods,  1 ); 

  if  ( dn != NULL  ) 

    free(  dn ); 

  

  return  rc;  

} 

  

main(  int  argc,  char  **argv  ) { 

  char  *rbuf  = NULL;  

  char  *start  = NULL;  

  char  *p = NULL;  

  char  *q = NULL;  

  char  *tmpstr  = NULL;  

  int  rc = 0; 

  int    i = 0; 

  int    use_ldif  = 0; 

  int    num_checked  = 0; 

  char   *Start_Transaction_OID       = LDAP_START_TRANSACTION_OID;  

  char   *End_Transaction_OID         = LDAP_END_TRANSACTION_OID;  

  char   *Control_Transaction_OID     = LDAP_TRANSACTION_CONTROL_OID;  

  char   *Returned_OID                = NULL;  

  struct  berval  *Returned_BerVal     = NULL;  

  struct  berval  Request_BerVal       = {0,0};  

  char   *Berval                      = NULL;  

  LDAPMessage  *LDAP_result           = NULL;  

  

  /*  Strip  off  any  path  info  on program  name  */ 

#if  defined(  _WIN32  ) 

  if  ((prog  = strrchr(argv[0],  ’\\’))  != NULL)  

    ++prog;  

  else

 

Appendix  I. Limited  transaction  support 289



prog  = argv[0];  

#else  

  if (prog  = strrchr(argv[0],  ’/’))  

    ++prog;  

  else  

    prog  = argv[0];  

#endif  

  

#if  defined(  _WIN32  ) 

  /* Convert  string  to lowercase  */ 

  for  (i = 0; prog[i]  != ’\0’;  ++i)  

    prog[i]  = tolower(prog[i]);  

  

  /* Strip  ending  .exe  from  program  name  */ 

  if ((tmpstr  = strstr(prog,  ".exe"))  != NULL)  

    *tmpstr  = ’\0’;  

#endif  

  if ( strcmp(  prog,  "ldaptxadd"  ) == 0 ) 

    operation  = LDAPMODIFY_ADD;  

  

  /* Parse  command  line  arguments.  */ 

  parse_arguments(argc,  argv);  

  

  /* Connect  to server.  */ 

  if (doit)  

    connect_to_server();  

  

  /* Disable  translation  if reading  from  file  (they  must  specify  the 

     translation  in the  file).  */ 

  if (fp  != stdin)  

    ldap_set_option(ld,  LDAP_OPT_UTF8_IO,  (void  *)LDAP_UTF8_XLATE_OFF);  

  

  /* Do the  StartTransaction  extended  operation.  

     The  transaction  ID  returned  must  be  put into  the  server  control  

     sent  with  all  update  operations.  */  

  rc = ldap_extended_operation_s  ( ld,  Start_Transaction_OID,  

       &Request_BerVal,  NULL,  NULL,  

       &Returned_OID,  

       &Returned_BerVal);  

  if (verbose)  { 

    printf("ldap_extended_operation(start  transaction)  RC=%d\n",  rc);  

  } 

  

  if ( rc != LDAP_SUCCESS)  { 

    fprintf(stderr,  "Start  transaction  rc=%d  -> %s\n",  

     rc,  ldap_err2string(rc));  

    exit(  rc ); 

  } 

  

  /* Allocate  the  server  control  for  transactions.  */ 

  if (( Server_Controls[0]  = 

 (LDAPControl  *)malloc(  sizeof(  LDAPControl  ))) ==  NULL  ) { 

    perror("malloc");  

    exit(  1 ); 

  } 

  

  /* Allocate  the  server  control’s  berval.  */ 

  if ((Server_Controls[0]->ldctl_value.bv_val  = 

       (char  *) calloc  (1,  Returned_BerVal->bv_len  + 1)) == NULL)  { 

    perror("calloc");  

    exit(1);  

  } 

  

  /* Copy  the  returned  berval  length  and  value  into  the server  control  */ 

  Server_Controls[0]->ldctl_value.bv_len  = Returned_BerVal->  bv_len;  

  memcpy(Server_Controls[0]->ldctl_value.bv_val,  

  Returned_BerVal->bv_val  , Returned_BerVal->bv_len);

 

290 Programming  Reference



/*  Set  the  control  type  to  Transaction_Control_OID  */ 

  Server_Controls[0]->ldctl_oid  = Control_Transaction_OID;  

  

  /*  Set  the  criticality  in the  control  to  TRUE  */ 

  Server_Controls[0]->ldctl_iscritical  = LDAP_OPT_ON;  

  

  /*  If  referral  objects  are  to be modified  directly,  */ 

  if  (manageDsa  == LDAP_TRUE)  { 

    /* then  set  that  server  control  as well.  */ 

    Server_Controls[1]  = &manageDsaIT  

  } 

  

  /*  Initialize  the  count  of operations  that  will  be in the  transaction.  

     This  count  will  be incremented  by each  operation  that  is performed.  

     The  count  will  be the number  of calls  that  must  be made  to ldap_result  

     to get  the  results  for  the operations.  

  */  

  Num_Operations  = 0;  

  

  /*  Do  operations  */ 

  rc  = 0; 

  while  ((rc  == 0 || contoper)  && (rbuf  = read_one_record(  fp ))  != NULL  ) { 

    /* We assume  record  is ldif/slapd.replog  if  the first  line  

       has  a colon  that  appears  to the left  of any  equal  signs,  OR 

       if the  first  line  consists  entirely  of digits  (an  entry  id).  */ 

  

    use_ldif=1;  

    start  = rbuf;  

  

    if ( use_ldif  ) 

      rc = process_ldif_rec(  start  ); 

    else  

      rc = process_ldapmod_rec(  start  ); 

    free(  rbuf  ); 

  } 

  

  /*  Finish  the  transaction,  committing  or rolling  back  based  on input  parameter.  */ 

  rc  = 0; 

  Request_BerVal.bv_len  = Returned_BerVal->bv_len  + 1; 

  if  ((Berval  = 

       ( char  *) malloc  (Returned_BerVal->bv_len  + 1)) == NULL)  { 

    perror("malloc");  

    exit(1);  

  } 

  

  memcpy  (&Berval[1],  Returned_BerVal->bv_val,  Returned_BerVal->bv_len);  

  Berval[0]  = abort_flag  ? ’\1’  : ’\0’;  

  Request_BerVal.bv_val  = Berval;  

  

  rc  = ldap_extended_operation_s  ( ld,  

       End_Transaction_OID,  

     &Request_BerVal,  NULL,  NULL,  

       &Returned_OID,  

       &Returned_BerVal);  

  if  (verbose)  { 

    printf("ldap_extended_operation(end  transaction)  RC=%d\n",  rc);  

  } 

  

  if  ( rc != LDAP_SUCCESS)  { 

    fprintf(stderr,  "End  transaction  rc=%d  -> %s\n",  

     rc,  ldap_err2string(rc));  

    exit(  rc ); 

  } 

  

  /*  Process  the  results  of the  operations  in the transaction.  

     At this  time  we will  not be concerned  about  the correctness

 

Appendix  I. Limited  transaction  support 291



of the  message  numbers,  just  whether  the  operations  succceeded  or not.  

     We could  keep  track  of the operation  types  and  make  sure  they  are all  

     accounted  for.  */  

  

  for  ( num_checked  = 0; num_checked  < Num_Operations;  num_checked++  ) { 

    if  (verbose)  { 

      printf("processing  %d of %d operation  results\n",  

      1 + num_checked,  Num_Operations);  

    } 

  

    rc  = ldap_result  (ld  , LDAP_RES_ANY,  LDAP_MSG_ONE,  NULL,  &LDAP_result);  

    if  ( rc <= 0) { 

      if (rc  == 0) 

 fprintf(stderr,  "Operation  %d timed  out\n",  num_checked);  

      if (rc  < 0 ) 

 fprintf(stderr,  "Operation  %d failed\n",  num_checked);  

      exit(  1 ); 

    } 

  } 

  

  /* Unbind  and  exit  */ 

  if (doit)  

    ldap_unbind(ld);  

  

  exit(0);  

} 

The  following  is an  example  makefile:  

#-----------------------------------------------------------------------------  

# COMPONENT_NAME:  examples  

# 

# ABSTRACT:  makefile  to  generate  LDAP  client  programs  for transactions  

# 

# ORIGINS:  202,27  

# 

# (C)  COPYRIGHT  International  Business  Machines  Corp.  2002  

# All  Rights  Reserved  

# Licensed  Materials  - Property  of IBM  

# 

# US Government  Users  Restricted  Rights  - Use,  duplication  or 

# disclosure  restricted  by  GSA ADP Schedule  Contract  with  IBM  Corp.  

# 

#############################################################################  

# Default  definitions  

#############################################################################  

CC = cl.exe  

LD      = link.exe  

RM = erase  /f 

HARDLN  = copy  

###  Note:  Your  install  path  may  be different  

<LDAPHOME> = D:\Program  Files\IBM\LDAP\V6.1  

  

#############################################################################  

# General  compiler  options  

#############################################################################  

  

DEFINES  = /DNDEBUG  /DWIN32  /D_CONSOLE  /D_MBCS  /DNT  /DNEEDPROTOS  

INCLUDES=  /I"$(<LDAPHOME>)/include"  

CFLAGS  = /nologo  /MD  /GX  /Z7  $(INCLUDES)  $(DEFINES)  

  

#############################################################################  

# General  linker  options  

#############################################################################  

  

LIBS     = kernel32.lib  user32.lib  gdi32.lib  winspool.lib  comdlg32.lib\  

 advapi32.lib  shell32.lib  ole32.lib  oleaut32.lib  uuid.lib  odbc32.lib\

 

292 Programming  Reference



odbccp32.lib  wsock32.lib  

  

# Use  the  following  definition  to link  the  sample  programs  statically.  

#CLIENT_LIBS  = ldapstatic.lib  libidsldifstatic.lib  setloci.lib  iconvi.lib  

  

# Use  the  following  definition  to link  the  sample  programs  with  

# the  LDAP  shared  library.  

CLIENT_LIBS  = ldap.lib  libldif.lib  setloci.lib  

LDIR  = /LIBPATH:"$(<LDAPHOME>)"/lib 

LFLAGS   = /nologo  /subsystem:console  /incremental:no   \ 

 $(LDIR)  $(LIBS)  $(CLIENT_LIBS)  

  

#############################################################################  

# Targets  

#############################################################################  

  

all:  ldaptxmod.exe  ldaptxadd.exe  

  

ldaptxmod.exe:  ldaptxmod.obj  

 $(LD)  $(LFLAGS)  /out:$@  $**  

  

ldaptxadd.exe:  ldaptxmod.exe  

 $(RM)  $@ 

 $(HARDLN)  ldaptxmod.exe  ldaptxadd.exe  

  

.c.obj::  

   $(CC)  $(CFLAGS)  /c  $<  

  

ldaptxmod.obj:  ldaptxmod.c  

  

clean:  

 $(RM)  ldaptxmod.exe  ldaptxadd.exe  ldaptxmod.obj  

  

See  the  source  file,  ldapmodify.c,  in  the  <TDS_INSTALL_ROOT>/examples  for  more  

information  about  transaction.  

 

Appendix  I. Limited  transaction  support 293



294 Programming  Reference



Appendix  J.  Notices  

This  information  was  developed  for  products  and  services  offered  in  the  U.S.A.  

IBM  might  not  offer  the  products,  services,  or  features  discussed  in  this  document  

in  other  countries.  Consult  your  local  IBM  representative  for  information  on  the  

products  and  services  currently  available  in  your  area.  Any  reference  to  an  IBM  

product,  program,  or  service  is not  intended  to  state  or  imply  that  only  that  IBM  

product,  program,  or  service  may  be  used.  Any  functionally  equivalent  product,  

program,  or  service  that  does  not  infringe  any  IBM  intellectual  property  right  may  

be  used  instead.  However,  it  is the  user’s  responsibility  to  evaluate  and  verify  the  

operation  of  any  non-IBM  product,  program,  or  service.  

IBM  may  have  patents  or  pending  patent  applications  covering  subject  matter  in  

this  document.  The  furnishing  of  this  document  does  not  give  you  any  license  to  

these  patents.  You can  send  license  inquiries,  in  writing,  to:  

IBM  Director  of  Licensing  

IBM  Corporation  

North  Castle  Drive  

Armonk,  NY  10504-1785  

U.S.A.

For  license  inquiries  regarding  double-byte  (DBCS)  information,  contact  the  IBM  

Intellectual  Property  Department  in your  country  or  send  inquiries,  in  writing,  to:

IBM  World  Trade Asia  Corporation  Licensing  

2-31  Roppongi  3-chome,  Minato-ku  

Tokyo  106,  Japan

The  following  paragraph  does  not  apply  to  the  United  Kingdom  or  any  other  

country  where  such  provisions  are  inconsistent  with  local  law:  

INTERNATIONAL  BUSINESS  MACHINES  CORPORATION  PROVIDES  THIS  

PUBLICATION  “AS  IS”  WITHOUT  WARRANTY  OF  ANY  KIND,  EITHER  

EXPRESS  OR  IMPLIED,  INCLUDING,  BUT  NOT  LIMITED  TO,  THE  IMPLIED  

WARRANTIES  OF  NON-INFRINGEMENT,  MERCHANTABILITY  OR  FITNESS  

FOR  A  PARTICULAR  PURPOSE.  Some  states  do  not  allow  disclaimer  of  express  or  

implied  warranties  in  certain  transactions,  therefore,  this  statement  may  not  apply  

to  you.  

This  information  could  include  technical  inaccuracies  or  typographical  errors.  

Changes  are  periodically  made  to  the  information  herein;  these  changes  will  be 

incorporated  in  new  editions  of the  information.  IBM  may  make  improvements  

and/or  changes  in  the  product(s)  and/or  the  program(s)  described  in  this  

information  at  any  time  without  notice.  

Any  references  in  this  information  to  non-IBM  Web sites  are  provided  for  

convenience  only  and  do  not  in  any  manner  serve  as  an  endorsement  of  those  Web 

sites.  The  materials  at those  Web sites  are  not  part  of  the  materials  for  this  IBM  

product  and  use  of  those  Web sites  is at your  own  risk.  

IBM  may  use  or  distribute  any  of  the  information  you  supply  in any  way  it 

believes  appropriate  without  incurring  any  obligation  to you.  

 

© Copyright  IBM Corp. 2002, 2007 295



Licensees  of  this  program  who  wish  to have  information  about  it for  the  purpose  

of  enabling:  (i)  the  exchange  of information  between  independently  created  

programs  and  other  programs  (including  this  one)  and  (ii)  the  mutual  use  of  the  

information  which  has  been  exchanged,  should  contact:  

IBM  Corporation  

Department  MU5A46  

11301  Burnet  Road  

Austin,  TX  78758  

U.S.A.

Such  information  may  be  available,  subject  to  appropriate  terms  and  conditions,  

including  in  some  cases,  payment  of a fee.  

The  licensed  program  described  in  this  document  and  all  licensed  material  

available  for  it are  provided  by  IBM  under  terms  of  the  IBM  Customer  Agreement,  

IBM  International  Program  License  Agreement,  or  any  equivalent  agreement  

between  us.  

Any  performance  data  contained  herein  was  determined  in  a controlled  

environment.  Therefore,  the  results  obtained  in other  operating  environments  may  

vary  significantly.  Some  measurements  may  have  been  made  on  development-level  

systems  and  there  is  no  guarantee  that  these  measurements  will  be  the  same  on  

generally  available  systems.  Furthermore,  some  measurement  may  have  been  

estimated  through  extrapolation.  Actual  results  may  vary.  Users  of  this  document  

should  verify  the  applicable  data  for  their  specific  environment.  

Information  concerning  non-IBM  products  was  obtained  from  the  suppliers  of  

those  products,  their  published  announcements  or  other  publicly  available  sources.  

IBM  has  not  tested  those  products  and  cannot  confirm  the  accuracy  of  

performance,  compatibility  or  any  other  claims  related  to non-IBM  products.  

Questions  on  the  capabilities  of non-IBM  products  should  be  addressed  to  the  

suppliers  of  those  products.  

This  information  contains  examples  of  data  and  reports  used  in  daily  business  

operations.  To illustrate  them  as  completely  as possible,  the  examples  include  the  

names  of  individuals,  companies,  brands,  and  products.  All  of  these  names  are  

fictitious  and  any  similarity  to the  names  and  addresses  used  by  an  actual  business  

enterprise  is  entirely  coincidental.  

If you  are  viewing  this  information  softcopy,  the  photographs  and  color  

illustrations  may  not  appear.  

Trademarks 

The  following  terms  are  trademarks  of International  Business  Machines  

Corporation  in  the  United  States,  or  other  countries,  or  both:  

 AIX  

Database  2 

DB2  

developerWorks  

eServer  

IBM  

ibm.com  

iSeries  

Lotus  

OMEGAMON  

Passport  Advantage  

pSeries  

RACF  

Rational  

Redbooks  

Tivoli  

WebSphere  

World Registry  

z/OS  

zSeries  

 

 

296 Programming  Reference



Adobe,  the  Adobe  logo,  PostScript®, and  the  PostScript  logo  are  either  registered  

trademarks  or  trademarks  of Adobe  Systems  Incorporated  in the  United  States,  

and/or  other  countries.  

Microsoft®, Windows,  Windows  NT, and  the  Windows  logo  are  trademarks  of 

Microsoft  Corporation  in  the  United  States,  other  countries,  or  both.  

Java  and  all  Java-based  trademarks  are  trademarks  of  Sun  Microsystems,  Inc.  in the  

United  States,  other  countries,  or  both.  

Linux  is  a registered  trademark  of  Linus  Torvalds  in  the  United  States,  other  

countries,  or  both.  

Intel®, Intel  logo,  Intel  Inside®, Intel  Inside  logo,  Intel  Centrino™, Intel  Centrino  

logo,  Celeron®, Intel  Xeon™, Intel  SpeedStep®, Itanium®, and  Pentium® are  

trademarks  or  registered  trademarks  of  Intel  Corporation  or  its  subsidiaries  in  the  

United  States  and  other  countries.  

UNIX  is  a registered  trademark  of  The  Open  Group  in  the  United  States  and  other  

countries.  

Other  company,  product,  and  service  names  may  be  trademarks  or  service  marks  

of  others.  

 

Appendix  J. Notices  297



298 Programming  Reference



Index  

A
accessibility  xv 

Account  status extended  operation  196 

AES bind control 243 

API
categories  5 

deprecated 191 

plug-ins  168 

usage  2 

Attribute  type extended  operations  197 

attributes
ldap 50 

Audit control  244 

B
Begin transaction  extended  

operation  200 

binding
sasl 9 

secure  9 

simple  9 

books
see publications  xiii, xiv 

C
Cascading  replication operation  extended  

operation  201 

certificate  authority  149 

distinguished  names  155 

receiving a certificate  151 

certificate  requests  153 

certificates  149 

Certificate  Authority  149 

receiving a certificate  151 

change tracking  159 

Clear log extended  operation  237 

client controls 25 

client libraries 263 

code page
getting  16 

setting  16 

translating  16 

compare operations  23 

Control  queue  extended  operation  205 

Control  replication  extended  

operation  204 

controls 55 

ldap 25 

OIDs  193, 241 

conventions
typeface xvi 

counting
entries 52 

references 52 

counting  values  59 

create  abort transaction  request  26 

create  commit  transaction  request 27 

create  effective  pwdpolicy  request  28 

create get file request 28 

create limit number values control 29 

create locate entry request 30 

create online backup request 31 

create prepare transaction  request 34 

create transaction  control 38 

D
data interchange format 185 

deleting
keys 152 

deleting  entries 38 

directory  names, notation xvi 

directory  operations  1 

Directory programming reference 

overview  1 

distinguished  name 183 

formal  definition  184 

informal  definition  183 

DN normalization  extended  

operation  207 

DNs 183 

DNS 102 

DNS configuration  file
examples  111  

Do not replicate control 245 

dynamic  schema 177 

changes  180 

Dynamic  server trace extended  

operation  207 

Dynamic  update requests extended  

operation  209 

E
education

see Tivoli  technical training  xv 

Effective  password  policy extended  

operation  210 

end transaction  40 

End transaction  extended  operation 212 

entry
adding 7 

counting  52 

deleting  38 

referencubg  52 

Entry change notification  control 245 

entrychange  control 82 

environment  variables,  notation  xvi 

error codes 173 

error numbers  41, 43 

errors
ldap 41, 43 

event notification  160 

example  162 

registration  request  160 

registration  response  161 

unregistering 162 

Event notification  register request 

extended  operation  213 

Event notification  unregister request 

extended  operation  214 

example
event notification  162 

LDIF 185 

Version  1 187 

limited transaction  support  270 

examples
DNS configuration  file 111 

exporting
keys 154 

extended  operations  48 

OIDs 193 

resume  role 37 

extended  result  w controls 83 

F
free limit number  of values response 54 

freeing storage
BER 72 

controls 72 

memory 72 

messages 72 

G
Get file extended operation  238 

Get lines extended  operation  239 

Get number  of lines extended 

operation  240 

getting transaction  id 58 

getting values 59 

global security  149 

Group authorization  control 246 

Group evaluation  extended  

operation  215 

GSKit 149 

H
handling  routines 56 

I
IANA  character  sets 188 

iconv 16 

importing
keys 155 

initializing  libraries  61 

J
JNDI Toolkit  141 

 

© Copyright  IBM Corp. 2002, 2007 299



K
key

certificate  request  for existing  

key 156 

changing  the database  password  151 

defaults  153 

deleting  152 

exporting  154 

importing  155 

private  149 

public  149 

self-signing  153 

showing  information  about 152 

trusted  root removal  156 

trusted  roots 155 

key pairs 149 

keyring  file
migration  157 

Kill connection  extended  operation  216 

L
language  support  188 

LDAP
API overview  1 

version  support  1 

ldap attributes  50 

ldap controls
client  25 

server  25 

LDAP SSL  function  codes 173 

LDAP trace facility extended  

operation  217 

ldap_abandon  6 

ldap_add  7 

LDIF 185 

leaving  an operation  6 

libraries
client 263 

initialization  61 

Limit number  of attribute  values 

control 248 

limited transactions  269 

Locate entry extended  operation  218 

Log access extended  operations  236 

LogMamtControl extended  

operation  219 

M
makefile

sample 265 

Manage  DSAIT  control  249 

manuals
see publications  xiii, xiv 

memory
freeing  72 

messages
ldap 73 

migration
keyring file 157 

Modify  groups only control 249 

modify  operations  75 

N
No replication  conflict resolution 

control 250 

notation
environment  variables xvi 

path names xvi 

typeface xvi 

notification
event 160 

O
OIDs

AES bind control 243 

Audit control 244 

controls 193, 241 

Do not replicate  control 245 

Entry change notification  control 245 

extended  operations  193 

Group authorization  control 246 

Limit number of attribute values 

control 248 

Locate entry  extended  operation  218 

LogMamtControl  extended  

operation  219 

Manage  DSAIT  control 249 

Modify  groups only control 249 

No replication conflict  resolution 

control 250 

Omit group referential integrity  

control 251 

Paged search results  control 252 

Password  policy bind initialize  and 

verify  extended  operation  222 

Password  policy finalize  and verify  

bind extended  operation  223 

Password  policy request control 253 

Persistent  search control 254 

Prepare transaction  extended  

operation  224 

Proxy authorization  control  255 

Proxy backend server resume role 

extended  operation 224 

Refresh entry  control 256 

Replication  supplier  bind control  257 

Replication  update  ID control 257 

Server administration  control 258 

Sorted search results control 259 

Subtree delete control 261 

Transaction control 261 

OIDS
Account status extended  

operation  196 

Attribute type extended  

operations  197 

Begin transaction  extended  

operation  200 

Cascading  replication  operation  

extended  operation 201 

Clear log extended  operation 237 

Control queue extended  

operation  205 

Control replication  extended  

operation  204 

DN normalization  extended  

operation  207 

OIDS (continued)
Dynamic server trace extended  

operation  207 

Dynamic  update  requests  extended 

operation  209 

Effective  password policy extended  

operation  210 

End transaction  extended  

operation  212 

Event notification  register request 

extended operation 213 

Event notification  unregister request 

extended operation 214 

Get file extended  operation 238 

Get lines extended  operation  239 

Get number  of lines extended  

operation  240 

Group evaluation  extended  

operation  215 

Kill connection  extended  

operation  216 

LDAP trace facility  extended  

operation  217 

Log access extended  operations  236 

Online  backup extended  

operation  221 

Quiesce  or unquiesce  replication 

context extended  operation  226 

Replication  error log extended  

operation  227 

Replication  topology  extended  

operation  228 

Start TLS extended operation  231 

Start, stop server extended  

operations  229 

Unique attributes  extended 

operation  232 

Update  configuration  extended  

operation  233 

Update  event notification  extended 

operation  234 

Update  log access extended  

operation  235 

User type extended  operation  236 

Omit group referential integrity  

control 251 

Online  backup  extended operation  221 

online  publications
accessing  xiv 

operations
comparing  23 

creating  transaction  control 38 

directory-related  1 

end transaction  40 

extended  48 

get transaction  id 58 

initializing  SSL PKCS11  client 126 

initializing  SSL PKCS11  

environment 126 

prepare transaction  92 

renaming 93 

results 95 

searching 97 

start transaction  129 

ordering  publications  xv 

 

300 Programming  Reference



P
paged  results  78 

Paged search results control 252 

parse effective  pwdpolicy  response  81 

parse limit number  of values 

response 84 

parsing 85 

entrychange  control  82 

password policy 88 

password policy bind and finalize  

request 32 

password policy bind and initialize  

request 32 

Password policy  bind  initialize  and verify 

extended  operation  222 

Password policy  finalize  and verify bind 

extended  operation  223 

Password policy  request control 253 

path names,  notation  xvi 

pblock  165 

persistent  search  33 

Persistent  search control 254 

plug-ins
APIs 168 

initializing  166 

registration 89 

restrictions 166 

sample  SASL plug-in 170 

SASL  165 

writing  your own SASL plug-in 168 

prepare transaction  92 

Prepare transaction  extended  

operation  224 

proxy  authorization  35 

Proxy authorization  control 255 

Proxy backend  server  resume  role 

extended  operation  224 

proxy  server
resume role  37 

publications  xiii 

accessing  online  xiv 

ordering xv 

Q
Quiesce  or unquiesce  replication context  

extended  operation  226 

R
rebinding  9 

records
SRV 115 

TXT 115 

reference
entry 52 

Refresh  entry  control  256 

registration
plug-ins 89 

rename  operations  93 

Replication  error log extended  

operation  227 

Replication  supplier  bind control 257 

Replication  topology  extended  

operation  228 

Replication  update  ID control  257 

results  95 

displaying  3 

routines
handling  56 

S
sample makefile  265 

schema
changes 180 

dynamic  177 

queries 177 

searching 97 

secure connections  119 

secure socket layer 3 

security  149 

self-signing  keys 153 

Server administration  control 258 

server  controls 25 

server  information
DNS  102 

Sorted Search and Paged Results
Server  side sorting of search 

results 138 

Simple  paged results of search  

results 79 

Sorted search results  control 259 

SRV records 115 

SSL 3 

cipher support  119 

starting  119 

SSL environment  134 

ssl_environment_init  134 

Start TLS extended  operation  231 

start transaction  129 

Start, stop server extended 

operations  229 

storage
freeing 72 

Subtree delete control 261 

T
Tivoli  software information  center xiv 

Tivoli  technical  training  xv 

TLS 130, 131 

training,  Tivoli  technical  xv 

Transaction control 261 

transactions
limited support  269 

translating  locales 16 

trusted root  155 

trusted roots  122 

TXT records 115 

typeface  conventions  xvi 

U
unbinding  9 

Unique attributes  extended 

operation  232 

Update  configuration  extended  

operation  233 

Update  event notification  extended  

operation  234 

Update  log access extended  

operation  235 

URLs 3, 131 

User type extended  operation  236 

UTF-8 16, 188 

V
values

counting  59 

getting 59 

variables,  notation  for xvi 

version 3 1 

version support  1

 

Index  301



302 Programming  Reference





����

  

Printed in USA 

 

  

SC23-7836-00  

              

 


	Contents
	About this book
	Intended audience for this book
	Publications
	IBM Tivoli Directory Server version 6.1 library
	Related publications
	Accessing terminology online
	Accessing publications online
	Ordering publications

	Accessibility
	Tivoli technical training
	Support information
	Conventions used in this book
	Typeface conventions
	Operating system-dependent variables and paths


	Chapter 1. IBM Directory Programming Reference overview
	LDAP version support
	LDAP API overview
	Typical API usage
	Displaying results
	Uniform Resource Locators (URLs)
	Secure Socket Layer (SSL) support


	Chapter 2. API categories
	LDAP_ABANDON
	Purpose
	Synopsis
	Input parameters
	Usage
	Errors
	See also

	LDAP_ADD
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	See also

	LDAP_BIND / UNBIND
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Simple authentication
	General authentication
	SASL authentication
	Unbinding
	Re-binding while following referrals

	Errors
	See also

	LDAP_CODEPAGE
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Translate local code page to UTF-8
	Translate UTF-8 to local code page
	Translate local code page to unicode
	Translate unicode to local code page
	Set locale
	Get locale
	Set codepage
	Get codepage
	Japanese and Korean currency considerations

	Errors
	See also

	LDAP_COMPARE
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	See also

	LDAP controls
	Functions to manipulate controls
	Purpose
	Synopsis
	Input parameters
	Usage


	LDAP_CREATE_ABORT_TRANSACTION_REQUEST
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	See also

	LDAP_CREATE_COMMIT_TRANSACTION_REQUEST
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	See also

	LDAP_CREATE_EFFECTIVE_PWDPOLICY_REQUEST
	Purpose
	Synopsis
	Input parameters
	Usage
	Errors
	See also

	LDAP_CREATE_GET_FILE_REQUEST
	Purpose
	Synopsis
	Input parameters
	Usage
	Errors

	LDAP_CREATE_LIMIT_NUM_VALUES_CONTROL
	Purpose
	Synopsis
	Input parameters
	Usage
	Errors
	See also

	LDAP_CREATE_LOCATE_ENTRY_REQUEST
	Purpose
	Synopsis
	Input parameters
	Usage
	Error

	LDAP_CREATE_ONLINE_BACKUP_REQUEST
	Purpose
	Synopsis
	Input parameters
	Usage
	Errors

	LDAP_CREATE_PASSWORD_POLICY_BIND_FINALIZE_REQUEST
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Error

	LDAP_CREATE_PASSWORD_POLICY_BIND_INIT_REQUEST
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Error

	LDAP_CREATE_PERSISTENTSEARCH_CONTROL
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Error

	LDAP_CREATE_PREPARE_TRANSACTION_REQUEST
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	See also

	LDAP_CREATE_PROXYAUTH_CONTROL
	Purpose
	Synopsis
	Input parameters
	Usage
	Errors
	See also

	LDAP_CREATE_RESUME_ROLE_REQUEST
	Purpose
	Synopsis
	Input parameters
	Usage
	Errors
	See also

	LDAP_CREATE_TRANSACTION_CONTROL
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	See also

	LDAP_DELETE
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	See also

	LDAP_END_TRANSACTION
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	See also

	LDAP_ERROR
	Purpose
	Synopsis
	Input parameters
	Usage
	Errors
	See also

	LDAP_EXTENDED_OPERATION
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	Notes
	See also

	LDAP_FIRST_ATTRIBUTE
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	Notes
	See also

	LDAP_FIRST_ENTRY, LDAP_FIRST_REFERENCE
	Purpose
	Synopsis
	Input parameters
	Usage
	Processing entries
	Processing continuation references
	Counting entries and references

	Errors
	See also

	LDAP_FREE_LIMIT_NUM_VALUES_RESPONSE
	Purpose
	Synopsis
	Input parameters
	Usage
	See also

	LDAP_GET_BIND_CONTROLS
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	See also

	LDAP_GET_DN
	Purpose
	Synopsis
	Input parameters
	Usage
	Errors
	Notes
	See also

	LDAP_GET_TRAN_ID
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	See also

	LDAP_GET_VALUES
	Purpose
	Synopsis
	Input parameters
	Usage
	String values
	Binary values

	Errors
	See also

	LDAP_INIT
	Purpose
	Synopsis
	Input parameters
	Usage
	Setting and getting session settings

	Errors
	LDAP_DEBUG
	LDAP_SET_OPTION syntax for LDAP V2 applications
	Locating default LDAP servers
	Multithreaded applications
	Notes
	See also

	LDAP_MEMFREE
	Purpose
	Synopsis
	Input parameters
	Usage
	See also

	LDAP_MESSAGE
	Purpose
	Synopsis
	Input parameters
	Usage
	Errors
	See also

	LDAP_MODIFY
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	See also

	LDAP_PAGED_RESULTS
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Simple paged results of search results

	Errors
	Notes
	See also

	LDAP_PARSE_EFFECTIVE_PWDPOLICY_RESPONSE
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	See also

	LDAP_PARSE_ENTRYCHANGE_CONTROL
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Error

	LDAP_PARSE_EXTENDED_RESULT_W_CONTROLS
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage

	LDAP_PARSE_LIMIT_NUM_VALUES_RESPONSE
	Purpose
	Synopsis
	Input parameters
	Usage
	Errors
	See also

	LDAP_PARSE_RESULT
	Purpose
	Synopsis
	Input parameters
	Usage
	Errors
	See also

	LDAP_PASSWORD_POLICY
	Purpose
	Synopsis
	Input parameters
	Usage
	Errors
	See also

	LDAP_PLUGIN_REGISTRATION
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Finding the Plug-in library

	Errors
	See also

	LDAP_PREPARE_TRANSACTION
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	See also

	LDAP_RENAME
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	See also

	LDAP_RESULT
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	Notes
	See also

	LDAP_SEARCH
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Reading an entry
	Listing the children of an entry

	Errors
	Notes
	See also

	LDAP_SERVER_INFORMATION IN DNS
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	DNS domains and configuration file
	API usage
	Publishing LDAP server information in DNS
	Alternative scheme for publishing LDAP server information in DNS

	Errors
	See also

	LDAP_SSL
	Purpose
	Synopsis
	Input parameters
	Usage
	Options
	Notes
	See also

	LDAP_SSL_PKCS11
	Purpose
	Synopsis
	Input parameters
	Usage
	See also

	LDAP_START_TRANSACTION
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Errors
	See also

	LDAP_START_TLS
	Purpose
	Synopsis
	Input parameters
	Usage
	Errors
	See also

	LDAP_STOP_TLS
	Purpose
	Synopsis
	Input parameters
	Usage
	Errors
	See also

	LDAP_URL
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Notes
	See also

	LDAP_SSL_ENVIRONMENT_INIT
	Purpose
	Synopsis
	Input parameters
	See also

	LDAP_SORT
	Purpose
	Synopsis
	Input parameters
	Output parameters
	Usage
	Server side sorting of search results

	Errors
	Notes
	See also


	Chapter 3. IBM Tivoli Directory Server Java Naming and Directory Interface (JNDI) Toolkit
	Implementing extended operations using Tivoli Directory Server JNDI Toolkit
	Implementing controls using Tivoli Directory Server JNDI Toolkit
	LDAP client utilities

	Chapter 4. Using gsk7IKM
	Creating a key pair and requesting a certificate from a Certificate Authority
	Receiving a certificate into a key database
	Changing a key database password
	Showing information about a key
	Deleting a key
	Making a key the default key in the key database
	Creating a key pair and certificate request for self-signing
	Exporting a key
	Importing a key
	Designating a key as a trusted root
	Removing a key as a trusted root
	Requesting a certificate for an existing key
	Migrating a keyring file to the key database format

	Chapter 5. Change tracking in Tivoli Directory Server
	Persistent search
	Event notification
	Registration request
	Registration response
	Usage
	Unregistering a client
	Example

	Change log

	Chapter 6. LDAP client plug-in programming reference
	Introduction to client SASL plug-ins
	Basic processing
	Restrictions

	Initializing a plug-in
	Writing your own SASL plug-in
	Plug-in APIs
	ldap_plugin_pblock_get()
	Syntax
	Parameters
	Returns

	ldap_plugin_pblock_set()
	Syntax
	Parameters
	Returns

	ldap_plugin_sasl_bind_s()
	Syntax
	Parameters
	Returns


	Sample worker function

	Appendix A. Possible extended error codes returned by LDAP SSL function codes
	Appendix B. LDAP V3 schema
	Dynamic schema
	Schema queries
	Dynamic schema changes

	Appendix C. LDAP distinguished names
	Informal definition
	Formal definition

	Appendix D. LDAP data interchange format (LDIF)
	LDIF examples
	LDIF example: Content
	LDIF file: Change types
	LDAP controls


	Version 1 LDIF support
	Version 1 LDIF examples
	IANA character sets supported by platform

	Appendix E. Deprecated LDAP APIs
	Appendix F. Object Identifiers (OIDs) for extended operations and controls
	OIDs for extended operations
	Account status extended operation
	Attribute type extended operations
	Begin transaction extended operation
	Cascading replication operation extended operation
	Control replication extended operation
	Control queue extended operation
	DN normalization extended operation
	Dynamic server trace extended operation
	Dynamic update requests extended operation
	Effective password policy extended operation
	End transaction extended operation
	Event notification register request extended operation
	Event notification unregister request extended operation
	Group evaluation extended operation
	Kill connection extended operation
	LDAP trace facility extended operation
	Locate entry extended operation
	LogMgmtControl extended operation
	Online backup extended operation
	Password policy bind initialize and verify extended operation
	Password policy finalize and verify bind extended operation
	Prepare transaction extended operation
	Proxy backend server resume role extended operation
	Quiesce or unquiesce replication context extended operation
	Replication error log extended operation
	Replication topology extended operation
	Start, stop server extended operations
	Start TLS extended operation
	Unique attributes extended operation
	Update configuration extended operation
	Update event notification extended operation
	Update log access extended operation
	User type extended operation
	Log access extended operations
	Clear log extended operation
	Get file extended operation
	Get lines extended operation
	Get number of lines extended operation


	OIDs for controls
	AES bind control
	Audit control
	Do not replicate control
	Entry change notification control
	Group authorization control
	Limit number of attribute values control
	Manage DSAIT control
	Modify groups only control
	No replication conflict resolution control
	Omit group referential integrity control
	Paged search results control
	Password policy request control
	Persistent search control
	Proxy authorization control
	Refresh entry control
	Replication supplier bind control
	Replication update ID control
	Server administration control
	Sorted search results control
	Subtree delete control
	Transaction control


	Appendix G. Client libraries
	Appendix H. Sample Makefile
	Appendix I. Limited transaction support
	Usage
	Example

	Appendix J. Notices
	Trademarks

	Index

