<|lI!

IBM Tivoli Directory Server

Server Plug-ins Reference

Version 6.1

GC32-1565-00

<|lI!

IBM Tivoli Directory Server

Server Plug-ins Reference

Version 6.1

GC32-1565-00

Note
Before using this information and the product it supports, read the general information under|Appendix G, “Notices,” on

This edition applies to version 6, release 1, of IBM Tivoli Directory Server and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1999, 2007. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book v
Intended audience for this book.v
Publications v
IBM Tivoli Dlrectory Server version 6 1 hbrary v
Related publications . . I
Accessing terminology onhne R |
Accessing publications onlinevi
Ordering publications.vii
Accessibility . . . G 1
Tivoli technical trammg I
Support information . . . B 4
Conventions used in this book B i
Typeface conventions. Viid
Operating system-dependent varlables and
paths vii

Chapter 1. Introduction to server
plug-ins.1

Chapter 2. Writing a plug-in 3

Chapter 3. Database plug-ins7
LDAP protocol-related functions.7
Back-end-related functions.7

Chapter 4. Operation plug ins9

Pre-operation plug-ins . . . oo o009
Post-operation plug-ins.9
Extended operation plug-ins.10
Input parameters10
Output parameters10
Audit plug-ins11
Configuration options12
Examples13

Appendix A. Supported database
functions.17
Output parameters18

Appendix B. Parameter Reference . . . 19

Parameters for Registering Plug-in Functions . . . 19
Database Plug-ins 019
Pre-Operation/Data Vahdatlon Plug ins. . . .20
Post-Operation/Data Notification Plug-ins . . . 21
Extended Operation Plug-ins21
DN Partitioning Plug-ins . . . o022

Parameters Accessible to All Plug-ins.22
Information About the Database22
Information About the Connection.23
Information About the Operation24
Information About the Plug-ins.25

Parameters for the Configuration Function 26

Parameters for the Bind Function26

Parameters for the Search Function26

© Copyright IBM Corp. 1999, 2007

Parameters for the Add Function .
Parameters for the Compare Function
Parameters for the Delete Function
Parameters for the Modify Function . .
Parameters for the Modify RDN Function .
Parameters for the Abandon Function
Parameters for Database Import

Parameters for Database Export

Parameters for Database Archive
Parameters for Database Restore
Parameters for Extended Operations .
Parameters for Internal LDAP Operations
Parameters for the DN Partitioning Function .

Appendix C. Supported iPlanet APIs .

slapi_pblock_get() .
slapi_pblock_set()
slapi_pblock_new() .
slapi_pblock_destroy() .
slapi_ch_malloc()
slapi_ch_calloc() .
slapi_ch_realloc()
slapi_ch_strdup()
slapi_compare_internal() .
slapi_ch_free()
slapi_send_ldap_ result()
slapi_dn_normalize() .
slapi_dn_normalize_case()
slapi_dn_ignore_case().
slapi_dn_normalize_v3() .
slapi_dn_normalize_case_v3()
slapi_dn_ignore_case_v3()
slapi_dn_compare_v3()
slapi_dn_issuffix() .
slapi_entry2str() .
slapi_str2entry() .
slapi_entry_attr_find() .
slapi_entry_attr_delete() .
slapi_entry_get_dn()
slapi_entry_set_dn()
slapi_entry_alloc() .
slapi_entry_dup() . .
slapi_send_ldap_search entry()
slapi_entry_free() .
slapi_attr_get_values() .
slapi_str2filter() .
slapi_filter_get_choice()
slapi_filter_get_ava()
slapi_filter_free().
slapi_filter_list_first() .
slapi_filter_list_next() .
slapi_is_connection_ssl() .
slapi_get_client_port() .
slapi_search_internal() .
slapi_modify_internal()

. 28
. 28
. 28
. 28
.29
. 29
.29
. 30
. 30
. 30
.31
.31
. 32

. 33
. 34
. 34
. 35
. 35
. 35
. 35
. 36
. 36
. 36
. 37
. 37
. 37
. 38
. 38
. 39
. 39
. 40
. 40
.41
.41
.42
.43
. 43
. 43
. 43
. 44
. 44
. 44
. 45
. 45
. 45
. 46
. 46
. 47
. 47
. 48
. 48
. 48
. 49
. 49

iii

slapi_add_internal()
slapi_add_entry_internal()
slapi_delete_internal() .
slapi_modrdn_internal() .
slapi_free_search_results_internal()
slapi_get_supported_saslmechanisms()
slapi_get_supported_extended_ops() .
slapi_register_supported_saslmechanism() .
slapi_get_supported_controls() .
slapi_register_supported_control() .
slapi_control_present().
slapi_log_error() .

Appendix D. SLAPI API Categorles
slapi_dn2ldapdn() .

Purpose

Syntax . .

Input parameters

Usage

Errors

See also. .
slapi_dn_get_rdn() .

Purpose

Syntax . .

Input parameters

Output parameters .

Usage

Errors

See also.
slapi_dn_get_rdn count()

Purpose .

Syntax . .

Input parameters

Usage

Errors

See also. .
slapi_dn_free ldapdn()

Purpose

Syntax .

Input parameters

Usage

See also.
slapi_dn_free rdn()

Purpose

Syntax . .

Input parameters

Usage

See also. .
slapi_get_response_ controls()

Purpose

Syntax .

Input parameters

iV Server Plug-ins Reference

. 50
. 51
. 51
. 52
. 52
. 53
. 53
. 53
. 54
. 55
. 55

. 57
. 57
. 57
. 57
. 57
. 57
. 57
. 58
. 58
. 58
. 58
. 58
. 58
. 58
. 59
. 59
. 59
. 59
. 59
. 59
. 59
. 59
. 59
. 59
. 59
. 59
. 60
. 60
. 60
. 60
. 60
. 60
. 60
. 60
. 60
. 60
. 60
. 60
. 61

Output parameters .

Usage
slapi_set_response_ controls()

Purpose

Syntax . .

Input parameters

Output parameters .

Usage . .
slapi_moddn mternal()

Purpose

Syntax .

Input parameters

Returns.

Usage

Error

See also.
slapi_get_client 1p()

Purpose

Syntax .

Input parameters

Returns.

Usage

Error

See also. .
slapi_get_proxied_ dn().

Purpose .

Syntax .

Input parameters

Returns.

Usage

Error

See also.
slapi_get_source_ip()

Purpose

Syntax . .

Input parameters

Returns.

Usage

Error

See also.

Appendix E. Plug-in examples.

An example of DN partitioning function.

Appendix F. Deprecated plug-in APIs

Appendix G. Notices .

Trademarks

Index

. 61
. 61
. 61
. 61
. 61
. 61
. 62
. 62
. 62
. 62
. 62
. 62
. 63
. 63
. 63
. 63
. 63
. 63
. 63
. 63
. 63
. 64
. 64
. 64
. 64
. 64
. 64
. 64
. 64
. 64
. 64
. 65
. 65
. 65
. 65
. 65
. 65
. 65
. 65
. 65

. 67
.72

. 79
. 80

. 83

About this book

IBM® Tivoli® Directory Server is the IBM implementation of Lightweight Directory
Access Protocol for s_upported Windows®, AIX®, Linux® (xSeries®, zSeries®,
pSeries®, and iSeries™), Solaris, and Hewlett-Packard UNIX® (HP-UX) operating
systems.

IBM Tivoli Directory Server Version 6.1 Server Plug-ins Reference contains information
about using and writing plug-ins that extend the capabilities of your IBM Tivoli
Directory Server.

Intended audience for this book

This book is intended for directory server administrators who are responsible for
maintaining and troubleshooting IBM Tivoli Directory Server and programmers.

Publications

This section lists publications in the IBM Tivoli Directory Server version 6.1 library
and related documents. The section also describes how to access Tivoli publications
online and how to order Tivoli publications.

IBM Tivoli Directory Server version 6.1 library

The following documents are available in the IBM Tivoli Directory Server version

6.1 library:

* IBM Tivoli Directory Server Version 6.1 What's New for This Release, SC23-6539-00
Provides information about the new features in the IBM Tivoli Directory Server
Version 6.1 release.

* IBM Tivoli Directory Server Version 6.1 Quick Start Guide, GI11-8172-00
Provides help for getting started with IBM Tivoli Directory Server 6.1. Includes a

short product description and architecture diagram, as well as a pointer to the
product Information Center and installation instructions.

 IBM Tivoli Directory Server Version 6.1 System Requirements, SC23-7835-00

Contains the minimum hardware and software requirements for installing and
using IBM Tivoli Directory Server 6.1 and its related software. Also lists the
supported versions of corequisite products such as DB2® and GSKit.

 IBM Tivoli Directory Server Version 6.1 Installation and Configuration Guide,
G(C32-1560-00

Contains complete information for installing, configuring, and uninstalling IBM
Tivoli Directory Server. Includes information about upgrading from a previous
version of IBM Tivoli Directory Server.

* IBM Tivoli Directory Server Version 6.1 Administration Guide, GC32-1564-00

Contains instructions for performing administrator tasks through the Web
Administration Tool and the command line.

* IBM Tivoli Directory Server Version 6.1 Command Reference, SC23-7834-00

Describes the syntax and usage of the command-line utilities included with IBM
Tivoli Directory Server.

 IBM Tivoli Directory Server Version 6.1 Server Plug-ins Reference, GC32-1565-00
Contains information about writing server plug-ins.

© Copyright IBM Corp. 1999, 2007 \%

vi

* IBM Tivoli Directory Server Version 6.1 Programming Reference, SC23-7836-00

Contains information about writing Lightweight Directory Access Protocol
(LDAP) client applications in C and Java'.

* IBM Tivoli Directory Server Version 6.1 Performance Tuning and Capacity Planning
Guide, SC23-7836-00
Contains information about tuning the directory server for better performance.
Describes disk requirements and other hardware needs for directories of
different sizes and with various read and write rates. Describes known working
scenarios for each of these levels of directory and the disk and memory used;
also suggests rough rules of thumb.

 IBM Tivoli Directory Server Version 6.1 Problem Determination Guide, GC32-1568-00

Contains information about possible problems and corrective actions that can be
tried before contacting IBM Software Support.

* IBM Tivoli Directory Server Version 6.1 Messages Guide, GC32-1567-00

Contains a list of all informational, warning, and error messages associated with
IBM Tivoli Directory Server 6.1.

 IBM Tivoli Directory Server Version 6.1 White Pages, SC23-7837-00

Describes the Directory White Pages application, which is provided with IBM
Tivoli Directory Server 6.1. Contains information about installing, configuring,
and using the application for both administrators and users.

Related publications

The following documents also provide useful information:

s Java Naming and Directory Interface” 1.2.1 Specification on the Sun Microsystems
Web site at |http:/ /java.sun.com/products/indi/ 1.2 /javadoc/index.htmi}

IBM Tivoli Directory Server Version 6.1 uses the Java Naming and Directory
Interface (JNDI) client from Sun Microsystems. See this document for
information about the JNDI client.

Accessing terminology online

The Tivoli Software Glossary includes definitions for many of the technical terms
related to Tivoli software. The Tivoli Software Glossary is available at the following
Tivoli software library Web site:

http:/ /publib.boulder.ibm.com /tividd / glossary / tivoliglossarymst.htm|

The IBM Terminology Web site consolidates the terminology from IBM product
libraries in one convenient location. You can access the Terminology Web site at the
following Web address:

lhttp: / /www.ibm.com /software/ globalization / terminologyl|

Accessing publications online

IBM posts publications for this and all other Tivoli products, as they become
available and whenever they are updated, to the Tivoli Information Center Web
site at |ttp:/ /publib.boulder.ibm.com/tividd /td /link/ tdprodlist.html|

In the Tivoli Information Center window, click Tivoli product manuals. Click the
letter that matches the first letter of your product name to access your product
library. For example, click M to access the IBM Tivoli Monitoring library or click O
to access the IBM Tivoli OMEGAMON? library.

Server Plug-ins Reference

http://java.sun.com/products/jndi/1.2/javadoc/index.html
http://publib.boulder.ibm.com/tividd/glossary/tivoliglossarymst.htm
http://www.ibm.com/software/globalization/terminology
http://publib.boulder.ibm.com/tividd/td/link/tdprodlist.html

Note: If you print PDF documents on other than letter-sized paper, set the option
in the File » Print window that allows Adobe® Reader to print letter-sized
pages on your local paper.

Ordering publications

You can order many Tivoli publications online at |http: // |
www.elink.ibmlink.ibm.com /public/applications / publications / cgibin / pbi.cgil

You can also order by telephone by calling one of these numbers:
* In the United States: 800-879-2755
* In Canada: 800-426-4968

In other countries, contact your software account representative to order Tivoli

publications. To locate the telephone number of your local representative, perform

the following steps:

1. Go to http://www.elink.ibmlink.ibm.com/public/applications/publications/
cgibin/pbi.cgi.

2. Select your country from the list and click Go.

3. Click About this site in the main panel to see an information page that
includes the telephone number of your local representative.

Accessibility

Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. With this product,
you can use assistive technologies to hear and navigate the interface. You can also
use the keyboard instead of the mouse to operate all features of the graphical user
interface.

For additional information, see the Accessibility Appendix in the IBM Tivoli
Directory Server Version 6.1 Installation and Configuration Guide.

Tivoli technical training

For Tivoli technical training information, refer to the following IBM Tivoli
Education Web site at fhttp://www.ibm.com /software /tivoli/education}

Support information

If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:

* IBM Support Assistant: You can search across a large collection of known
problems and workarounds, Technotes, and other information at
[http:/ /www.ibm.com /software/support/isal

* Obtaining fixes: You can locate the latest fixes that are already available for your
product.

* Contacting IBM Software Support: If you still cannot solve your problem, and
you need to work with someone from IBM, you can use a variety of ways to
contact IBM Software Support.

For more information about resolving problems, see the IBM Tivoli Directory Server
Version 6.1 Problem Determination Guide.

About this book Vil

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/support/isa

Conventions used in this book

viii

This book uses several conventions for special terms and actions, operating
system-dependent commands and paths, and margin graphics.

Typeface conventions
This book uses the following typeface conventions:

Bold

Italic

Monospace

Lowercase commands and mixed case commands that are otherwise
difficult to distinguish from surrounding text

Interface controls (check boxes, push buttons, radio buttons, spin
buttons, fields, folders, icons, list boxes, items inside list boxes,
multicolumn lists, containers, menu choices, menu names, tabs, property
sheets), labels (such as Tip:, and Operating system considerations:)

Keywords and parameters in text

Citations (examples: titles of books, diskettes, and CDs)

Words defined in text (example: a nonswitched line is called a
point-to-point line)

Emphasis of words and letters (words as words example: "Use the word

that to introduce a restrictive clause."; letters as letters example: "The
LUN address must start with the letter L.")

New terms in text (except in a definition list): a view is a frame in a
workspace that contains data.

Variables and values you must provide: ... where myname represents....

Examples and code examples

File names, programming keywords, and other elements that are difficult
to distinguish from surrounding text

Message text and prompts addressed to the user
Text that the user must type
Values for arguments or command options

Operating system-dependent variables and paths

This book uses the UNIX convention for specifying environment variables and for
directory notation.

When using the Windows command line, replace $variable with % variable% for
environment variables and replace each forward slash (/) with a backslash (\) in
directory paths. The names of environment variables are not always the same in
the Windows and UNIX environments. For example, %TEMP% in Windows
environments is equivalent to $TMPDIR in UNIX environments.

Note: If you are using the bash shell on a Windows system, you can use the UNIX
conventions.

Server Plug-ins Reference

Chapter 1. Introduction to server plug-ins

Use the IBM Tivoli Directory Server Plug-ins Reference to help you create plug-ins
that extend the capabilities of your IBM Tivoli Directory Server.

Server plug-ins extend the capabilities of your Directory Server. They are
dynamically loaded into the LDAP server’s address space when it is started. Once
the plug-ins are loaded, the server calls the functions in a shared library by using
function pointers.

A server front-end listens to the wire, receives and parses requests from clients,
and then processes the requests by calling an appropriate database back-end
function.

A server back-end reads and writes data to the database containing the directory
entries. In addition to the default database operations, the LDAP server Database

2" (DB2) back-end also provides functions for supporting replication and dynamic
schema updates.

If the front-end fails to process a request it returns an error message to the client;
otherwise, the back-end is called. After the back-end is called, it must return a
message to the client. Either the front-end or the back-end, but not both can return
a message to the client.

Note: This differs from the iPlanet server plug-in in that only the front-end of the
iPlanet plug-in can send a message back to the client.

In this release of the IBM Tivoli Directory Server the following types of server
plug-ins are supported:

[Database plug-ins|
Can be used to integrate your own database as a back-end to the server. A
database plug-in can consist of all or only a portion of the functions
discussed in this document. For example, the rdbm database back-end is a
database plug-in. It provides functions that enable the server to interact
with the DB2 database.

[Pre-operation plug-ins|
Functions that are executed before an LDAP operation is performed. For
example, you can write a plug-in that checks new entries before they are
added to the directory.

IPost-operation plug-ins|
Functions that are executed after an LDAP operation is performed.

[Extended operation plug-ins|
Are used to handle extended operations protocol that are defined in the
LDAP V3 protocol.

Are used to improve the security of the directory server. A default audit
plug-in is provided with the server. Depending on the audit configuration
parameters, this plug-in might log an audit entry in the default or specified
audit log for each LDAP operation the server processed. The IBM Tivoli
Directory Server administrator can use the activities stored in the audit log

© Copyright IBM Corp. 1999, 2007 1

2

to check for suspicious patterns of activity in an attempt to detect security
violations. If security is violated, the audit log can be used to determine
how and when the problem occurred and perhaps the amount of damage
done. This information is very useful, both for recovery from the violation
and, possibly, in the development of better security measures to prevent
future problems. You can also write your own audit plug-ins to either
replace, or add more processing to, the default audit plug-in.

DN partitioning plug-ins

Tivoli Directory Server provides an option to users to dynamically load
customer written DN partitioning function during server runtime. The
existing hash algorithm that is used to partition data is statically linked by
the Tivoli Directory Server. However, with DN partitioning function
implemented as a plug-in, the existing hash algorithm can be easily
replaced with the customer written DN partitioning plug-in resulting in the
Tivoli Directory Server being more flexible and adaptive. The existing hash
algorithm however remains as the default DN partitioning plug-in, which
is loaded during server startup if no customized code is available.

A server plug-in can return a message to the client as well. However, make sure
that the server returns only one message.

Server Plug-ins Reference

Chapter 2. Writing a plug-in

A pblock is an opaque structure in which many parameters are stored. It is used to
communicate between the server and your plug-ins. Application program
interfaces (APIs) are provided for your plug-ins to get (or set) parameters in this
structure.

Notes:

1. Plug-ins must be written using reentrant system calls.

2. There is no global mutex issue that the plug-in writer has to be concerned
about in terms of interacting with the server. As long as the plug-ins call
server-provided slapi APIs, a server’s shared resource is protected by the APIs.
However, because each request is serviced by a thread, and each thread might
exercise the plug-in code, if there is any shared resource that the plug-in code
creates, then mutex might be needed to protect the resources.

The following are examples of supported compilers:

+ For Windows platforms—MS Visual C++ 6.0 and IBM VisualAge® C++ 3.5
* For AIX platforms—IBM VisualAge C++ 6.0

* For Linux/x86 platforms—GCC 3.2.3

* Linux/s390 platforms—GCC 3.2

¢ Linux/ppc platforms—GCC 3.2

* For Solaris platforms—Forte 6.1

* For HP-PARISC platforms—aCC A.03.30

* For HP IA64 platforms—aCC A.03.30

To write your own plug-in:
1. Start by writing your functions. Include slapi-plugin.h (where you can find all

the parameters that can be defined in the pblock). You also can find a set of
function prototypes for the available functions in the slapi-plugin.h file.

2. Decide the input parameters for your functions. Depending on the type of
plug-in you are writing, you might need to work with a different set of
parameters. See |[Appendix A, “Supported database functions,” on page 17| for
more information.

3. The following output is received from your functions:

return code
You can have the return code set to 0, which means that the server
continues the operation. A return code of non-zero means that the
server stops processing the operation. For example, if you have a
pre-operation bind function that authenticates a user, it returns a
non-zero after the authentication has been completed successfully.
Otherwise, you can return a 0 and let the default bind operation
continue the authentication process.

return a message to the client
You might want your plug-in (a pre-operation, a database operation, or
a post-operation) to send an LDAP result to the client. For each
operation, make sure there is only one LDAP result sent.

© Copyright IBM Corp. 1999, 2007 3

Note: The IBM Tivoli Directory Server default database plug-in always
sends back a message. If you use the default database, do not
have the post-operation return a message to the client.

output parameter
You might want to update parameters in the pblock that were passed
to your function. For example, after your pre-operation bind function
authenticates a user, you might want your plug-in to return the bound
user’s DN to the server. The server can then use it to continue with the
processing of the operations requested by the user. See
[“Supported database functions,” on page 17| for possible output
parameters.

4. Call slapi APIs in the libslapi library file. See [Appendix C, “Supported iPlanef]
[APIs,” on page 33|for information about the APIs supported in this release.

5. Write an initialization function for your plug-in to register your plug-in
functions.

6. Export your initialization function from your plug-in shared library. Use an
.exp file for AIX or a .def (or dllexport) file for Windows NT® to export your
initialization. For other UNIX platforms, the exportation of the function is
automatic when you create the shared library.

7. Compile and link your server plug-in object files with whatever libraries you
need, and libslapi library file.

8. Add a plug-in directive in the server configuration file. The syntax of the
plug-in directive is:
attributeName: plugin-type plugin-path init-func args ...

9. On a Windows NT operating system, in the ibmslapd.conf file, the plug-in
directive is as follows:
dn: cn=Directory, cn=RDBM Backends, cn=IBM Directory,

cn=Schemas, cn=Configuration
ibm-sTapdPTugin: database /1ib/Tibback-rdbm.d11 rdbm_backend_init

Note: For the AIX, Linux, Solaris and HP operating platforms, the .dll
extension is replaced with the appropriate extension:

* For AIX and Linux operating systems - .a
* For Solaris operating systems - .so
* For HP-UX operating systems - .sl

The following rules apply when you place a plug-in directive in the configuration

file:

* Multiple pre- or post-operations are called in the order they appear in the
configuration file.

* The server can pass parameters to your plug-in initialization function by way of
the argument list that is specified in the plug-in directive.

ibm-slapdPlugin is the attribute used to specify a plug-in which can be loaded by
the server. This attribute is one of the attributes contained in objectclasses, such as
ibm-slapdRdbmBackend and ibm-slapdLdcfBackend. For instance, in
ibmslapd.conf, there is an entry which identifies the rdbm backend. In this entry, a
database plug-in is specified by using the ibm-slapdPlugin attribute so that the
server knows where and how to load this plug-in. If there is another plug-in to be
loaded, such as a changelog plug-in, then specify it using another ibm-slapdPlugin
attribute.

4 Server Plug-ins Reference

dn: cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration

objectclass: ibm-slapdRdbmBackend
ibm-slapdPlugin: database Tibback-rdbm.d11 rdbm_backend_init
ibm-sTapdPlugin: preoperation 1libcl.d11 CLInit "cn=changelog"

Chapter 2. Writing a plug-in 5

6 Server Plug-ins Reference

Chapter 3. Database plug-ins

Database plug-ins can be used to integrate your own database as a back-end to the
server. A database plug-in can consist of all or a portion of the functions discussed
in this section.

[LDAP protocol-related functions|
Are the default database functions. When you write a database plug-in you
might not want to provide every function to handle the default database
operations. You might need to provide some stub functions, however,
which are used to send back an unwilling to perform message to the
client when a particular function is not active.

[Back-end-related functions)
Are used to initialize or shut down the back-end and to handle
back-end-specific configuration.

LDAP protocol-related functions

The following LDAP protocol-related functions are also the default database
functions:

SLAPI_PLUGIN_DB_BIND_FN
Allows authentication information to be exchanged between the client and
server.

SLAPI_PLUGIN_DB_UNBIND_FN
Terminates a protocol session.

SLAPI_PLUGIN_DB_ADD_FN
Adds an entry to the directory.

SLAPI_PLUGIN_DB_DELETE_FN
Deletes an entry.

SLAPI_PLUGIN_DB_SEARCH_FN
An LDAP back-end search routine.

SLAPI_PLUGIN_DB_COMPARE_FN
Gets the entry DN information and compares it with the attributes and
values used in the compare function.

SLAPI_PLUGIN_DB_MODIFY_FN
Modifies an entry.

SLAPI_PLUGIN_DB_MODRDN_FN
Changes the last component of the name of an entry.

Back-end-related functions

These database back-end-related functions are used to initialize or shut down the
back-end and to handle back-end-specific configuration:

SLAPI_PLUGIN_DB_INIT_FN
An LDAP back-end initialization routine.

SLAPI_PLUGIN_START_FN
An LDAP routine called at server startup.

© Copyright IBM Corp. 1999, 2007 7

SLAPI_PLUGIN_CLOSE_FN
An LDAP back-end close routine.

Note: Stand-alone, user-supplied server back-end plug-ins are not supported.

However, they are supported when used in parallel with IBM-supplied
server back-end plug-ins.

8 Server Plug-ins Reference

Chapter 4. Operation plug-ins

The following plug-in functions can be performed before or after an LDAP
operation.

Pre-operation plug-ins

The following pre-operation functions can be executed before an LDAP operation
is performed:

SLAPI_PLUGIN_PRE_BIND_FN
A function to call before the Directory Server executes an LDAP bind
operation.

SLAPI_PLUGIN_PRE_UNBIND_FN
A function to call before the Directory Server executes an LDAP unbind
operation.

SLAPI_PLUGIN_PRE_ADD_FN
A function to call before the Directory Server executes an LDAP add
operation.

SLAPI_PLUGIN_PRE_DELETE_FN
A function to call before the Directory Server executes an LDAP delete
operation.

SLAPI_PLUGIN_PRE_SEARCH_FN
A function to call before the Directory Server executes an LDAP search
operation.

SLAPI_PLUGIN_PRE_COMPARE_FN
A function to call before the Directory Server executes an LDAP compare
operation.

SLAPI_PLUGIN_PRE_MODIFY_FN
A function to call before the Directory Server executes an LDAP modify
operation.

SLAPI_PLUGIN_PRE_MODRDN_EFN
A function to call before the Directory Server executes a modify RDN
database operation.

Post-operation plug-ins

The following post-operation plug-in functions can be executed after an LDAP
operation is performed:

SLAPI_PLUGIN_POST_BIND_FN
A function to call after the Directory Server executes an LDAP bind
operation.

SLAPI_PLUGIN_POST_UNBIND_FN
A function to call after the Directory Server executes an LDAP unbind
operation.

SLAPI_PLUGIN_POST_ADD_FN
A function to call after the Directory Server executes an LDAP add
operation.

© Copyright IBM Corp. 1999, 2007

SLAPI_PLUGIN_POST_DELETE_FN
A function to call after the Directory Server executes an LDAP delete
operation.

SLAPI_PLUGIN_POST_SEARCH_FN
A function to call after the Directory Server executes an LDAP search
operation.

SLAPI_PLUGIN_POST_COMPARE_FN
A function to call after the Directory Server executes an LDAP compare
operation.

SLAPI_PLUGIN_POST_MODIFY_FN
A function to call after the Directory Server executes an LDAP modify
operation.

SLAPI_PLUGIN_POST_MODRDN_FN
A function to call after the Directory Server executes an LDAP modify
RDN database operation.

Extended operation plug-ins

10

LDAP operations can be extended with your own extended operation functions
provided by a plug-in. An extended operation function might have an interface
such as:

int myExtendedOp(STapi_PBlock *pb) ;

In this function, you can obtain the following two input parameters from the
pblock passed in and communicate back to the server front-end with the following
two output parameters:

Input parameters

These parameters can be obtained by calling the slapi_pblock_get API.

SLAPI_EXT_OP_RET_OID (char *)
The object identifier specified in a client’s request.

SLAPI_EXT_OP_REQ_VALUE (struct berval *)
The information in a form defined by that request.

Output parameters

These parameters can be put to the parameter block passed in by the server by
calling the slapi_pblock_set APL

SLAPI_EXT_OP_RET_OID (char *)
The object identifier that the plug-in function wants to send back to the
client.

SLAPI_EXT_OP_RET_VALUE (struct berval *)
The value that the plug-in function wants to send back to the client.

After receiving and processing an extended operation request, an extended
operation plug-in function might itself send an extended operation response back
to a client or let the server send such a response. If the plug-in decides to send a
response, it might call the slapi_send_ldap_result() function and return a result
code SLAPI_PLUGIN_EXTENDED_SEND_RESULT to the server indicating that the
plug-in has already sent an LDAP result message to the client. If the plug-in has
not sent an LDAP result message to the client, the plug-in returns an LDAP result
code and the server sends this result code back to the client.

Server Plug-ins Reference

To register an extended operation function, the initialization function of the
extended operation plug-in might call slapi_pblock_set() to set the
SLAPI_PLUGIN_EXT_OP_EN to the extended operation function and the
SLAPI_PLUGIN_EXT_OP_OIDLIST parameter to the list of extended operation
OIDs supported by the function. The list of OIDs which is listed in the
ibm-slapdPlugin directive in ibmslapd.conf can be obtained by getting the
SLAPI_PLUGIN_ARGYV parameter from the pblock passed in.

The server keeps a list of all the OIDs that are set by plug-ins using the parameter
SLAPI_PLUGIN_EXT_OP_OIDLIST. This list of extended operations can be queried
by performing a search of the root DSE.

For example, in the Windows NT environment to specify an extended operation
plug-in in the ibmslapd.conf file for the database rdbm add the following;:
dn: cn=Directory, cn=RDBM Backends, cn=IBM SecureWay, cn=Schemas, cn=Configuration

ibm-s1apdPTlugin database /bin/Tibback-rdbm.d11 rdbm_backend_init
ibm-slapdPlugin extendedop /tmp/myextop.d11 myExtendedOpInit 123.456.789

File paths starting with a forward slash (/) are relative to the LDAP install
directory; /tmp is changed to <ldap>\tmp, but C:\tmp is unchanged. This
indicates that the function myExtendedOplInit that can be found in the
/path/myextop.dll shared library is executed when the server starts. The
myExtendedOp function that is registered in the initialization is used to handle the
extended-operations. This function handles extended operations with the Object
Identifier (OID) 123.456.789.

Note: For the AIX, Linux, Solaris and HP operating platforms, the .dll extension is
replaced with the appropriate extension:

* For AIX and Linux operating systems - .a
* For Solaris operating systems - .so
* For HP-UX operating systems - .sl

Remember that plug-in directives are per-database.

Audit plug-ins

Administrators on some operating systems might want to use the system audit
facilities to log the LDAP audit record with the system-defined record format. To
allow flexibility in logging and record formats, a plug-in interface is provided. The
server uses this interface to provide three types of auditing-related data to the
external audit plug-ins if the auditing configuration is set to on. The data is passed
to the external audit plug-ins through the standard plug-in’s pblock interfaces,
slapi_pblock_set() and slapi_pblock_get().

The three types of audit data available to the external audit plug-ins are:

Audit Configuration Information
This information is used to inform the external audit plug-in that at least
one of the audit configuration options has been changed. The server
expects the plug-in to determine whether to log the audit data associated
with a particular LDAP operation, so it is important for the plug-in to have
the current audit configuration information maintained by the server.

Audit Event Information
This information is used to inform the audit plug-in that certain events
have happened. Event IDs, such as Auditing Started, Auditing Ended, or

Chapter 4. Operation plug-ins 11

12

Audit Configuration Options Changed, along with a message text
describing the event, are sent by the server to the audit plug-in when such
events occur.

Audit Record Information
This information is the audit data associated with each LDAP request
received by the server. For each LDAP request, if the ibm-audit
configuration option is set, the server provides the header data, control
structure (if available), and operation-specific data to the audit plug-in. It is
up to the audit plug-in to check its own copy of the LDAP audit
configuration options or its platform-specific audit policy to determine
whether to log and how to log the audit data.

The header file, audit-plugin.h, that defines the audit plug-in interface and data
structures is shipped with the IBM Tivoli Directory Server C-Client SDK.

A default audit plug-in is provided and configured with the server. This plug-in
performs the logging and formatting of the LDAP audit record. This default
plug-in can be replaced with the platform-specific audit plug-in, if available, by
changing the plug-in configuration lines in the ibmslapd.conf configuration file or
through the IBM Tivoli Directory Server Web Administration Tool.

Note: There is no plug-in interface to the administration daemon audit.

Configuration options
The Audit Service has the following configuration options:
ibm-slapdLog
Specifies the path name of the audit log. The default is

directory_server_instance_name/logs for AIX, Linux, Solaris, and HP-UX
systems and directory_server_instance_name\logs for Windows systems.

ibm-audit: TRUE | FALSE
Enables or disables the audit service. Default is FALSE.

ibm-auditFailedOPonly: TRUE | FALSE
Indicates whether to log only failed operations. Default is TRUE.

ibm-auditBind: TRUE | FALSE
Indicates whether to log the Bind operation. Default is TRUE.

ibm-auditUnbind: TRUE | FALSE
Indicates whether to log the Unbind operation. Default is TRUE.

ibm-auditSearch: TRUE | FALSE
Indicates whether to log the Search operation. Default is FALSE.

ibm-auditAdd: TRUE|FALSE
Indicates whether to log the Add operation. Default is FALSE.

ibm-auditModify: TRUE | FALSE
Indicates whether to log the Modify operation. Default is FALSE.

ibm-auditDelete: TRUE | FALSE
Indicates whether to log the Delete operation. Default is FALSE.

ibm-auditModifyDN: TRUE | FALSE
Indicates whether to log the ModifyRDN operation. Default is FALSE.

Server Plug-ins Reference

ibm-auditExtOPEvent: TRUE | FALSE
Indicates whether to log LDAP V3 Event Notification extended operations.
Default is FALSE.

ibm-auditExtOp: TRUE | FALSE
Indicates whether to log extended operations other than event notification
extended operations. Default is FALSE.

ibm-auditCompare: TRUE | FALSE
Indicates whether to log compare operations. Default is FALSE.

ibm-auditVersion: 11213
Indicates the auditing version. Default is 3. The audit versions are:

Audit Version 1
Basic Audit functionality.

Audit Version 2
Audit version 2 was introduced in IBM Tivoli Directory Server 5.2.
Audit version 2 writes the audit version into the audit header,
enables the auditing of Transport Layer Security (TLS) in the audit
header, and enables auditing of additional information about
controls.

Audit Version 3
Audit version 3 was introduced in IBM Tivoli Directory Server 6.0.
Audit version 3 does everything that is done in audit versions 1
and 2 and also enables auditing of unique IDs.

ibm-auditAttributesOnGroupEvalOp: TRUE | FALSE
Indicates whether to log the attributes sent on a group evaluation extended
operation. This setting is used only if ibm-auditExtOp is set to TRUE.
Default is FALSE.

ibm-auditGroupsOnGroupControl: TRUE | FALSE
Indicates whether to log the groups sent on a group control. This setting is
only used if ibm-auditVersion is set to 2 or greater. Default is FALSE.

These options are stored in the LDAP directory to allow dynamic configuration.
They are contained in the cn=Audit, cn=Log Management, cn=Configuration
entry. Only the directory administrator has access to modify this entry.

Note: For each modification of these option values, a message is logged in the
slapd error log as well as the audit log to indicate the change.

The values of the audit configuration options are returned when a search of
cn=monitor is requested by the LDAP administrator. These include:

* The value of the audit configuration options.

¢ The number of audit entries sent to the Audit plug-in for the current auditing
session and for the current server session.

Examples

The following are examples of the various operations.

For auditing version 1:

2001-07-24-15:01:01.345-06:00--V3 Bind--
bindDN:cn=test--client:9.1.2.3:12345--ConnectionID:12--
received:2001-07-24-15:01:01.330-06:00--adminAuthority:Y--success
name: cn=test

Chapter 4. Operation plug-ins 13

14

authenticationChoice: simple

2001-07-24-15:01:02.367-06:00--V3 Search--
bindDN:cn=test--client:9.1.2.3:12345--ConnectionID:12--
received:2001-07-24-15:01:02.360-06:00--adminAuthority:Y--success
base: o=sample
scope: wholeSubtree
derefAliases: neverDerefAliases
typesOnly: false
filter: (&(cn=c*)(sn=ax%))

Note: See the following examples for the format differences between authenticated
and unauthenticated requests:

2001-07-24-15:22:33.541-06:00--V3 unauthenticated Search--
bindDN: <*CN=NULLDN*>--client:9.1.2.2:32412--ConnectionID:18--
received:2001-07-24-15:22:33.539-06:00--adminAuthority:Y--success

2001-07-24-15:22:34.555-06:00--V3 SSL unauthenticated Search--
bindDN: <*CN=NULLDN*>--client:9.1.2.2:32412--ConnectionID:19--
received:2001-07-24-15:22:34.550-06:00--adminAuthority:Y--success

2001-07-24-15:01:03.123-06:00--V3 Add--
bindDN:cn=test--client:9.1.2.3:12345--ConnectionID:12--
received:2001-07-24-15:01:03.100-06:00--adminAuthority:Y--entryAlreadyExists
entry: cn=Jim Brown, ou=sales,o=sample
attributes: objectclass, cn, sn, telphonenumber

2001-07-24-15:01:04.378-06:00--V3 Delete--
bindDN:cn=test--client:9.1.2.3:12345--ConnectionID:12--
received:2001-07-24-15:01:04.370-06:00--adminAuthority:Y--success
entry: cn=Jim Brown, ou=sales,o=sample

2001-07-24-15:01:05.712-06:00--V3 Modify--
bindDN:cn=test--client:9.1.2.3:12345--ConnectionID:12--
received:2001-07-24-15:01:05.708-06:00--adminAuthority:Y--noSuchObject
object: cn=Jim Brown, ou=sales,o=sample
add: mail
delete: telephonenumber

2001-07-24-15:01:06.534-06:00--V3 ModifyDN--
bindDN:cn=test--client:9.1.2.3:12345--ConnectionID:12--
received:2001-07-24-15:01:06.530-06:00--adminAuthority:Y--noSuchObject
entry: cn=Jim Brown, ou=sales,o=sample
newrdn: ou=r&d
deleteoldrdn: true

2001-07-24-15:01:07.913-06:00--V3 Unbind--
bindDN:cn=test--client:9.1.2.3:12345--ConnectionID:12--
received:2001-07-24-15:01:07.910-06:00--adminAuthority:Y--success

For auditing versions 2 and 3:

Note: The format is explicitly stated in the IBM Tivoli Directory Server
Administration Guide in the Appendix named “Audit format.”

* Bind: (Administrator account status is displayed only if the bind is an
administrator bind.)

Server Plug-ins Reference

AuditV3--2005-07-19-10:01:12.630-06:00DST--V3 Bind--bindDN: cn=root--client:
127.0.0.1:43021--connectionID: 1--received: 2005-07-19-10:01:12.389-06:00DST--Success
name: cn=root

authenticationChoice: simple

Admin Acct Status: Not Locked

Search:

AuditV3--2005-09-09-10:49:01.863-06:00DST--V3 Search--bindDN: cn=root--client:
127.0.0.1:40722--connectionID: 2--received: 2005-09-09-10:49:01.803-06:00DST--Success
controlType: 1.3.6.1.4.1.42.2.27.8.5.1

criticality: false

base: o=sample

scope: wholeSubtree

derefAliases: neverDerefAliases

typesOnly: false

filter: (&(cn=Cx)(sn=Ax))

Compare:

AuditV3--2005-09-09-10:51:45.959-06:00DST--V3 Compare--bindDN:
cn=root--client:9.53.21.70:17037--connectionID: 5--received:
2005-09-09-10:51:45.949-06:00DST--Success

entry: cn=Ul,ou=Austin,o=sample

attribute: postalcode

Add:

AuditV3--2005-09-09-10:50:55.316-06:00DST--V3 Add--bindDN: cn=root--client:
9.53.21.70:16525--connectionID: 3--received: 2005-09-09-10:50:52.652-06:00DST--Success
entry: cn=Ul,ou=Austin,o=sample

attributes: objectclass, cn, sn, telephonenumber, internationaliSDNNumber,

title, seealso, postalcode,facsimiletelephonenumber, ibm-entryuuid

Modify:

AuditV3--2005-09-09-10:51:07.103-06:00DST--V3 Modify--bindDN: cn=root--client:
9.53.21.70:16781--connectionID: 4--received: 2005-09-09-10:51:06.923-06:00DST--Success
object: cn=Ul,ou=Austin,o=sample

replace: postalcode

Modify DN:

AuditV3--2005-09-09-10:52:14.590-06:00DST--V3 ModifyDN--bindDN: cn=root--client:
9.53.21.70:17293--connectionID: 6--received: 2005-09-09-10:52:14.230-06:00DST--Success
entry: cn=Ul,ou=Austin,o=sample

newrdn: cn=UlA

deleteoldrdn: true

Delete:

AuditV3--2005-09-09-10:52:36.381-06:00DST--V3 Delete--bindDN: cn=root--client:
9.53.21.70:17549--connectionID: 7--received: 2005-09-09-10:52:35.971-06:00DST--Success
controlType: 1.3.6.1.4.1.42.2.27.8.5.1

criticality: false

entry: cn=UlA,ou=Austin,o=sample

Unbind:

AuditV3--2005-09-09-10:51:07.143-06:00DST--V3 Unbind--bindDN: cn=root--client:
9.53.21.70:16781--connectionID: 4--received: 2005-09-09-10:51:07.143-06:00DST--Success
Extended Operation:

AuditV3--2005-09-09-10:57:11.647-06:00DST--V3 extended operation--bindDN: cn=root--client:

9.53.21.70:17805--connectionID: 8--received: 2005-09-09-10:57:11.557-06:00DST--Success
0ID: 1.3.18.0.2.12.6

Each extended operation can have its own specific data. See the description of
each extended operation in the IBM Tivoli Directory Server Programming Reference
for specific details.

Auditing of Controls: Each control audited contains the controlType and the
criticality. If the audit version is set to version 2 or higher, the server audits
additional information about the controls sent on an operation. This information

Chapter 4. Operation plug-ins 15

16

is placed just after the header and before the operation specific data. The
following example is an add operation with the password policy control.

AuditV3--2005-09-09-10:50:55.316-06:00DST--V3 Add--bindDN: cn=root--client:
9.53.21.70:16525--connectionID: 3--received: 2005-09-09-10:50:52.652-06:00DST--Success
controlType: 1.3.6.1.4.1.42.2.27.8.5.1

criticality: false

entry: cn=Ul,ou=Austin,o=sample

attributes: objectclass, cn, sn, telephonenumber, internationaliSDNNumber, title,
seealso, postalcode, facsimiletelephonenumber, ibm-entryuuid

Auditing of a transaction: When the server receives an operation within a
transaction, the transaction ID is audited in both the audit header and in the list
of controls. Note that the transaction ID is placed just before the results of the
operation in the header. The following is an example of an add operation within
a transaction.

AuditV3--2005-09-09-10:57:11.607-06:00DST--V3 Add--bindDN: cn=root--client:
9.53.21.70:17805--connectionID: 8--received: 2005-09-09-10:57:11.447-06:00DST--transactionID:
11262814319.53.21.7017805--Success

controlType: 1.3.18.0.2.10.5

criticality: true

entry: cn=Ul,ou=Austin,o=sample

attributes: objectclass, cn, sn, telephonenumber, internationaliSDNNumber, title,

seealso, postalcode, facsimiletelephonenumber, ibm-entryuuid

Auditing of operation with the Proxy Authorization Control: The following is
an example of a control with additional information that is audited only if the
version is set to 2 or higher:

AuditV3--2005-09-09-14:45:08.844-06:00DST--V3 Search--bindDN: cn=root--client: 1
27.0.0.1:4371--connectionID: 10--received: 2005-09-09-14:45:04.858-06:00DST--Suc
cess

controlType: 2.16.840.1.113730.3.4.18

criticality: true

ProxyDN: dn:cn=userl,o=sample

base: o=sample

scope: wholeSubtree

derefAliases: neverDerefAliases

typesOnly: false

filter: (cn=Ax%)

Server Plug-ins Reference

Appendix A. Supported database functions

The three parameters in the first stanza are passed to the nine default database
functions as input:

/* backend, connection, operation */
SLAPI_BACKEND

SLAPI_CONNECTION

SLAPI_OPERATION

/* arguments that are common to all operations =/
SLAPI_CONN_DN

SLAPI_CONN_AUTHTYPE

SLAPI_REQCONTROLS

/* add arguments */
SLAPI_ADD_TARGET
SLAPI_ADD_ENTRY

/* bind arguments */
SLAPI_BIND_TARGET
SLAPI_BIND_METHOD
SLAPI_BIND_CREDENTIALS
SLAPI_BIND_SASLMECHANISM
/* bind return values */
SLAPI_BIND RET_SASLCREDS

/* compare arguments =%/
SLAPI_COMPARE_TARGET
SLAPI_COMPARE_TYPE
SLAPI_COMPARE_VALUE

/* delete arguments =*/
SLAPI _DELETE_TARGET

/* modify arguments

Note: The input and output value for setting and getting SLAPI_MODIFY_MODS
in the slapi_pblock_set() and slapi_pblock_get() functions is a pointer to a
list of LDAPMod structures. This differs from the iPlanet implementation
which is a pointer to an array of LDAPMod pointers. Go to the LDAPMod
structure in the ldap.h file to see how to traverse the linked list using the
pointer to the next LDAPMod structure.

*/
SLAPI_MODIFY_TARGET
SLAPI_MODIFY_MODS

/* modrdn arguments »*/
SLAPI_MODRDN_TARGET
SLAPI_MODRDN_NEWRDN
SLAPI_MODRDN_DELOLDRDN
SLAPI_MODRDN_NEWSUPERIOR

/* search arguments x/
SLAPI_SEARCH_TARGET
SLAPI_SEARCH_SCOPE
SLAPI_SEARCH_DEREF
SLAPI_SEARCH_SIZELIMIT
SLAPI_SEARCH_TIMELIMIT
SLAPI_SEARCH_FILTER
SLAPI_SEARCH_STRFILTER

© Copyright IBM Corp. 1999, 2007 17

SLAPI_SEARCH_ATTRS
SLAPT_SEARCH_ATTRSONLY

/* abandon arguments =/
SLAPI_ABANDON_MSGID

/* plugin types supported */
#define SLAPI_PLUGIN_DATABASE
#define SLAPI_PLUGIN_EXTENDEDOP
#define SLAPI_PLUGIN_PREOPERATION
#define SLAPI_PLUGIN_POSTOPERATION
#define SLAPI_PLUGIN_AUDIT

/* plugin configuration params */
#define SLAPI_PLUGIN

#define SLAPI_PLUGIN_PRIVATE
#define SLAPI_PLUGIN_TYPE

#define SLAPI_PLUGIN_ARGV

#define SLAPI_PLUGIN_ARGC

/* audit plugin defines =/
#define SLAPI_PLUGIN_AUDIT_DATA
#define SLAPI_PLUGIN_AUDIT_FN

/* managedsait control =/
#define SLAPI_MANAGEDSAIT

/* config stuff =/

#define SLAPI_CONFIG_FILENAME
#define SLAPI_CONFIG_LINENO
#define SLAPI_CONFIG_ARGC
#define SLAPI_CONFIG_ARGV

/* operational params */
#define SLAPI_TARGET DN
#define SLAPI_REQCONTROLS

/* modrdn params */

#define SLAPI_MODRDN_TARGET UP
#define SLAPI_MODRDN_TARGET
#define SLAPI_MODRDN_NEWRDN
#define SLAPI_MODRDN_DELOLDRDN
#define SLAPI_MODRDN_NEWSUPERIOR

/* extended operation params */
#define SLAPI_EXT_OP_REQ 0ID
#define SLAPT_EXT_OP_REQ_VALUE

/* Search result params */
#define SLAPI_NENTRIES

Output parameters

The following are the output parameters of the default database functions:

/* common for internal plugin_ops */
SLAPI_PLUGIN_INTOP_RESULT
SLAPI_PLUGIN_INTOP_SEARCH_ENTRIES

SLAPI_CONN_DN
SLAPI_CONN_AUTHTYPE

/# Types of authentication (for SLAPI_CONN_AUTHTYPE) =*/

#define SLAPD_AUTH_NONE "none"

#define SLAPD_AUTH_SIMPLE "simple"

#define SLAPD_AUTH SSL "SSL"

#define SLAPD AUTH SASL "SASL " /x followed by the mechanism name */

18 Server Plug-ins Reference

Appendix B. Parameter Reference

This chapter describes the parameters available in the Slapi_PBlock parameter
block, the type of data associated with each parameter, and the plug-in functions in
which these parameters are accessible.

To get the values of these parameters, call the slapi_pblock_get() function. To set
the values of these parameters, call the slapi_pblock_set() function. Using these
parameters, you can get and set the following information:

« |“Parameters for Registering Plug-in Functions”|

e |“Parameters Accessible to All Plug—ins” on page Zgl

* |“Parameters for the Configuration Function” on page 26|

« |“Parameters for the Bind Function” on page 26|

* |[“Parameters for the Search Function” on page 26|

+ [“Parameters for the Add Function” on page 28

+ |[“Parameters for the Compare Function” on page 28|

+ |[“Parameters for the Delete Function” on page 28|

* [“Parameters for the Modify Function” on page 28

+ |[“Parameters for the Modify RDN Function” on page 29

+ |[“Parameters for the Abandon Function” on page 29|

+ |“Parameters for Database Import” on page 29|

+ |“Parameters for Database Export” on page 30|

* [“Parameters for Database Archive” on page 30|

* |“Parameters for Database Restore” on page 30|

+ |[“Parameters for Extended Operations” on page 31|

* |“Parameters for Internal LDAP Operations” on page 31|

* |“Parameters for the DN Partitioning Function” on page 32|

Parameters for Registering Plug-in Functions

The parameters listed in this section identify plug-in functions recognized by the
server. To register your plug-in function, set the value of the appropriate parameter
to the name of your function.

Note: You do not need to get the value of any of the plug-in function parameters.
The parameters for registering plug-in functions are organized in the following
sections:

+ [“Database Plug-ins”|

* |“Pre-Operation/Data Validation Plug-ins” on page 20|

* [“Post-Operation/Data Notification Plug-ins” on page 21|

+ [“Extended Operation Plug-ins” on page 21|

* |"DN Partitioning Plug-ins” on page 22|

Database Plug-ins

The following parameters are used to register database plug-in functions.

© Copyright IBM Corp. 1999, 2007 19

20

Each parameter corresponds to an operation performed by the back-end database.
When integrating your own database with the IBM Tivoli Directory Server, you
need to write and register your own plug-in functions that handle these

operations.

To register your plug-in function, write an initialization function that sets the
values of the following parameters to your functions:

Table 1. Parameters and their descriptions of database plug-ins

Parameter ID

Description

SLAPI_PLUGIN_DB_BIND_FN

Called in response to an LDAP bind request.

SLAPI_PLUGIN_DB_UNBIND_FN

Called in response to an LDAP unbind
request.

SLAPI_PLUGIN_DB_SEARCH_FN

Called in response to an LDAP search
request. The function collects a set of
candidates for the search results.

SLAPI_PLUGIN_DB_COMPARE_FN

Called in response to an LDAP compare
request.

SLAPI_PLUGIN_DB_MODIFY_FN

Called in response to an LDAP modify
request.

SLAPI_PLUGIN_DB_MODRDN_FN

Called in response to an LDAP modify RDN
request.

SLAPI_PLUGIN_DB_ADD_EN

Called in response to an LDAP add request.

SLAPI_PLUGIN_DB_DELETE_FN

Called in response to an LDAP delete
request.

SLAPI_PLUGIN_DB_ABANDON_FN

Called in response to an LDAP abandon
operation request.

SLAPI_PLUGIN_DB_CONFIG_FN

Called when the server is parsing the
slapd.conf configuration file. If the IBM
Tivoli Directory Server encounters a
directive that it does not recognize, then
IBM Tivoli Directory Server passes the
directive to the back-end using this routine.

SLAPI_PLUGIN_START_FN

Called during the server startup.

SLAPI_PLUGIN_CLOSE_FN

Called when the server is shutting down.
You can use this function to prepare your
back-end database for shutdown.

Pre-Operation/Data Validation Plug-ins

The following parameters are used to register pre-operation/data validation

plug-in functions.

To register your plug-in function, write an initialization function that sets the
values of the following parameters to your functions:

Table 2. Parameters and their descriptions of pre-operation/data validation plug-ins

Parameter ID

Description

SLAPI_PLUGIN_PRE_BIND_FN

Called before an LDAP bind operation is
completed.

SLAPI_PLUGIN_PRE_UNBIND_EFN

Called before an LDAP unbind operation is
completed.

Server Plug-ins Reference

Table 2. Parameters and their descriptions of pre-operation/data validation

plug-ins (continued)

SLAPI_PLUGIN_PRE_SEARCH_FN

Called before an LDAP search operation is
completed.

SLAPI_PLUGIN_PRE_COMPARE_FN

Called before an LDAP compare operation is
completed.

SLAPI_PLUGIN_PRE_MODIFY_FN

Called before an LDAP modify operation is
completed.

SLAPI_PLUGIN_PRE_MODRDN_FN

Called before an LDAP modify RDN
operation is completed.

SLAPI_PLUGIN_PRE_ADD_FN

Called before an LDAP add operation is
completed.

SLAPI_PLUGIN_PRE_DELETE_FN

Called before an LDAP delete operation is
completed.

SLAPI_PLUGIN_START_FN

Called at server startup.

SLAPI_PLUGIN_CLOSE_FN

Called before the server shuts down. You
can specify a close function for each
pre-operation plug-in.

Post-Operation/Data Notification Plug-ins

The following parameters are used to register post-operation/data notification

plug-in functions:

Table 3. Parameters and their descriptions of post-operation/data notification plug-ins

Parameter ID

Description

SLAPI_PLUGIN_POST_BIND_FN

Called after an LDAP bind operation is
completed.

SLAPI_PLUGIN_POST_UNBIND_FN

Called after an LDAP unbind operation is
completed.

SLAPI_PLUGIN_POST_SEARCH_FN

Called after an LDAP search operation is
completed.

SLAPI_PLUGIN_POST_COMPARE_FN

Called after an LDAP compare operation is
completed.

SLAPI_PLUGIN_POST_MODIFY_FN

Called after an LDAP modify operation is
completed.

SLAPI_PLUGIN_POST_MODRDN_FN

Called after an LDAP modify RDN
operation is completed.

SLAPI_PLUGIN_POST_ADD_FN

Called after an LDAP add operation is
completed.

SLAPI_PLUGIN_POST_DELETE_FN

Called after an LDAP delete operation is
completed.

SLAPI_PLUGIN_START_FN

Called at server startup.

SLAPI_PLUGIN_CLOSE_FN

Called before the server shuts down. You
can specify a close function for each
post-operation plug-in.

Extended Operation Plug-ins

The following parameters are used to register extended operation plug-in

functions:

Appendix B. Parameter Reference 21

Table 4. Parameters and their descriptions of extended operation plug-ins

Parameter ID Data Type Description
SLAPI_PLUGIN_EXT_ void * Your plug-in function for
OP_EN handling an extended
operation.
SLAPI_PLUGIN_EXT_OP_ |char ** NULL-terminated array of
OIDLIST OIDs identifying the

extended operations handled
by the plug-in function.

SLAPI_PLUGIN_START_EN |void * Called at server startup.

SLAPI_PLUGIN_CLOSE_EN |void * Called before the server
shuts down. You can specify
a close function for each
extended operation plug-in.

DN Partitioning Plug-ins

The main purpose of the initialization function is to call slapi_pblock_set API to
register the user provided DN partitioning function. The parameter
SLAPI_PLUGIN_PROXY_DN_PARTITION_EN should be used to set the function
address.

The following parameters are used to register DN partitioning plug-in functions:

Table 5. Parameters and their descriptions of DN partitioning plug-ins

Parameter ID Description
SLAPI_PLUGIN_PROXY_DN_ Address of a customized DN partitioning
PARTITION_FN function.

Parameters Accessible to All Plug-ins

22

The parameters listed in this section are accessible to all types of plug-ins. The
parameters in this section are organized in the following sections:

¢ |“Information About the Database’|

* |"Information About the Connection” on page 23|

¢ [“Information About the Operation” on page 24

* |"Information About the Plug-ins” on page 25|

Information About the Database

The following parameters specify information about the back-end database. These
parameters are available for all types of plug-ins.

Note: These specific parameters cannot be set by calling slapi_pblock_set(). You
can get these parameters by calling slapi_pblock_get().

Table 6. Parameters specifying information about the back-end database

Parameter ID Data Type | Description

Server Plug-ins Reference

Table 6. Parameters specifying information about the back-end database (continued)

SLAPI_BE_MONITORDN char * Note: Netscape Directory
Server 3.x releases only. DN
used to monitor the back-end
database.

Note: This is no longer
supported in the Netscape
Directory Server 4.0 release.

SLAPI_BE_TYPE char * Type of back-end database.
This is the type of back-end
database specified by the
database directive in the
slapd.conf file.

SLAPI_BE_READONLY int Specifies whether or not the
back-end database is
read-only. This is determined
by the read-only directive in
the slapd.conf file:

* 1 means that the database
back-end is read-only.

* 0 means that the database
back-end is writable.

SLAPI_DBSIZE int Specifies the size of the
back-end database. If you are
using your own database
instead of the default
database, your
SLAPI_DB_SIZE_FN function
must set the value of this
parameter.

Information About the Connection

The following parameters specify information about the connection. These
parameters are available for all types of plug-ins:

Table 7. Parameters specifying information about the connection

Parameter ID Data Type Description

SLAPI_CONN_ID int ID identifying the current
connection.

SLAPI_CONN_DN char * DN of the user

authenticated on the
current connection. The
caller should call
slapi_ch_free() on this
value only if
slapi_pblock_set() is
called to set
SLAPI_CONN_DN to a
new value.

Appendix B. Parameter Reference 23

24

Table 7. Parameters specifying information about the connection (continued)

SLAPI_CONN_AUTHTYPE

char *

Method used to
authenticate the current
user. This parameter can
have one of the following
values:

SLAPD_AUTH_NONE
Specifies that no
authentication
mechanism was
used (for
example, in
cases of
anonymous
authentication).

SLAPD_AUTH_SIMPLE
Specifies that
simple
authentication
(user name and
password) was
used to
authenticate the
current user.

SLAPD_AUTH_SSL
Specifies that
SSL
(certificate-based
authentication)
was used to
authenticate the
current user.

SLAPD_AUTH_SASL
Specifies that a
SASL (simple
authentication
and security
layer)
mechanism was
used to
authenticate the
current user.

SLAPI_CONN_CLIENTNETADDR_STR

char *

IP address of the client
requesting the operation.

SLAPI_CONN_SERVERNETADDR_STR

char *

IP address of the server
to which the client is
connecting. You can use
this parameter if, for
example, your server
accepts connections on
multiple IP addresses.

Information About the Operation

The following parameters specify information about the current operation. These

parameters are available for all types of plug-ins:

Server Plug-ins Reference

Table 8. Parameters specifying information about the current operation

Parameter ID Data Type Description

SLAPI_OPINITIATED_TIME | time_t Time when the server began
processing the operation.

SLAPI_TARGET_DN char * Specifies the DN to which

the operation applies, for
example, the DN of the entry
being added or removed.

SLAPI_REQCONTROLS

LDAPControl **

Array of the controls
specified in the request.

Information About the Plug-ins

The following parameters specify information about the plug-in that is available to
all plug-in functions defined in the current library. These parameters are available

for all types of plug-ins.

Table 9. Parameters specifying information about the plug-in that is available to all plug-in

functions

Parameter ID Data Type Description

SLAPI_PLUGIN_PRIVATE void * Private data that you want
passed to your plug-in
functions.

SLAPI_PLUGIN_TYPE int Specifies the type of plug-in
function.

SLAPI_PLUGIN_ARGV char ** NULL-terminated array of
command-line arguments
specified for the plug-in
directive in the slapd.conf
file.

SLAPI_PLUGIN_ARGC int Number of command-line

arguments specified for the
plug-in directive in the
slapd.conf file.

Types of Plug-ins

The SLAPI_PLUGIN_TYPE parameter can have one of the following values, which
identifies the type of the current plug-in:

Table 10. Defined constants and their description of SLAPI_PLUGIN_TYPE parameter value

Defined Constant

Description

SLAPI_PLUGIN_DATABASE

Database plug-in

SLAPI_PLUGIN_EXTENDEDOP

Extended operation plug-in

SLAPI_PLUGIN_PREOPERATION

Pre-operation/data validation plug-in

SLAPI_PLUGIN_POSTOPERATION

Post-operation/data notification plug-in

SLAPI_PLUGIN_SYNTAX

Syntax plug-in

Appendix B. Parameter Reference 25

Parameters for the Configuration Function

The following table lists the parameters in the parameter block passed to the
database configuration function. If you are writing a pre-operation, database, or
post-operation configuration function, you can get these values by calling the

slapi_pblock_get() function.

Table 11. Parameters for the database configuration function

Parameter ID Data Type Description

SLAPI_CONFIG_FILENAME |char * Name of the configuration
file that is being read, for
example, slapd.conf.

SLAPI_CONFIG_LINENO int Line number of the current
directive in the configuration
file.

SLAPI_CONFIG_ARGC int Number of arguments in the
current directive.

SLAPI_CONFIG_ARGV char ** Array of the arguments from

the current directive.

Parameters for the Bind Function

The following table lists the parameters in the parameter block passed to the
database bind function. If you are writing a pre-operation, database, or
post-operation bind function, you can get these values by calling the

slapi_pblock_get() function.

Table 12. Parameters for the database bind function

Parameter ID Data Type Description
SLAPI_BIND_TARGET char * DN of the entry to bind as.
SLAPI_BIND_METHOD int Authentication method used,

for example,
LDAP_AUTH_SIMPLE or
LDAP_AUTH_SASL.

SLAPI_BIND_ struct berval * Credentials from the bind

CREDENTIALS request.

SLAPI_BIND_RET_ struct berval * Credentials that you want

SASLCREDS sent back to the client.
Note: Set this before calling
slapi_send_ldap_result().

SLAPI_BIND_ char * SASL mechanism used, for

SASLMECHANISM example,

LDAP_SASL_EXTERNAL.

Parameters for the Search Function

26

The following table lists the parameters in the parameter block passed to the
database search function. If you are writing a pre-operation, database, or
post-operation search function, you can get these values by calling the

slapi_pblock_get() function.

Server Plug-ins Reference

Table 13. Parameters for the database search function

Parameter ID

Data Type

Description

SLAPI_SEARCH_TARGET

char *

DN of the base entry in the
search operation (the starting
point of the search).

SLAPI_SEARCH_SCOPE

int

The scope of the search. The
scope can be one of the
following values:

* LDAP_SCOPE_BASE

* LDAP_SCOPE_
ONELEVEL

* LDAP_SCOPE_SUBTREE

SLAPI_SEARCH_DEREF

int

Method for handling aliases
in a search. This method can
be one of the following
values:

* LDAP_DEREF_NEVER

* LDAP_DEREF_
SEARCHING

* LDAP_DEREF_FINDING
* LDAP_DEREF_ALWAYS

SLAPI_SEARCH_SIZELIMIT

int

Maximum number of entries
to return in the search
results.

SLAPI_SEARCH_
TIMELIMIT

int

Maximum amount of time
(in seconds) allowed for the
search operation.

SLAPI_SEARCH_FILTER

Slapi_Filter *

Slapi_Filter struct (an opaque
data structure) representing
the filter to be used in the
search.

SLAPI_SEARCH_STRFILTER

char *

String representation of the
filter to be used in the
search.

SLAPI_SEARCH_ATTRS

char **

Array of attribute types to be
returned in the search
results.

SLAPI_SEARCH_
ATTRSONLY

int

Specifies whether the search
results return attribute types
only or attribute types and
values:

* 0 means return both
attributes and values.

* 1 means return attribute
types only.

The following parameters are set by the front-end and back-end as part of the
process of executing the search:

Parameter ID

Data Type

Description

SLAPI_NENTRIES

int

Number of search results
found.

Appendix B. Parameter Reference 27

Parameters for the Add Function

The following table lists the parameters in the parameter block passed to the
database add function. If you are writing a pre-operation, database, or
post-operation add function, you can get these values by calling the
slapi_pblock_get() function.

Table 14. Parameters for the database add function

Parameter ID Data Type Description

SLAPI_ADD_TARGET char * DN of the entry to be added.

SLAPI_ADD_ENTRY Slapi_Entry * The entry to be added
(specified as the opaque
Slapi_Entry datatype).

Parameters for the Compare Function

The following table lists the parameters in the parameter block passed to the
database compare function. If you are writing a pre-operation, database, or
post-operation compare function, you can get these values by calling the
slapi_pblock_get() function.

Table 15. Parameters for the database compare function

Parameter ID Data Type Description

SLAPI_COMPARE_TARGET | char * DN of the entry to be
compared.

SLAPI_COMPARE_TYPE char * Attribute type to use in the
comparison.

SLAPI_COMPARE_VALUE |struct berval * Attribute value to use in the
comparison.

Parameters for the Delete Function

The following table lists the parameters in the parameter block passed to the
database delete function. If you are writing a pre-operation, database, or
post-operation delete function, you can get these values by calling the
slapi_pblock_get() function.

Table 16. Parameters for the database delete function

Parameter ID Data Type Description

SLAPI_DELETE_TARGET char * DN of the entry to delete.

Parameters for the Modify Function

The following table lists the parameters in the parameter block passed to the
database modify function. If you are writing a pre-operation, database, or
post-operation modify function, you can get these values by calling the
slapi_pblock_get() function.

28 Server Plug-ins Reference

Table 17. Parameters for the database modify function

Parameter ID Data Type Description

SLAPI_MODIFY_TARGET char * DN of the entry to be
modified.

SLAPI_MODIFY_MODS LDAPMod ** A NULL-terminated array of

LDAPMod structures, which
represent the modifications
to be performed on the entry.

Parameters for the Modify RDN Function

The following table lists the parameters in the parameter block passed to the
database modify RDN function. If you are writing a pre-operation, database, or
post-operation modify RDN function, you can get these values by calling the
slapi_pblock_get() function.

Table 18. Parameters for the database modify RDN function

Parameter ID Data Type Description
SLAPI_MODRDN_TARGET |char * DN of the entry that you
want to rename.
SLAPI_MODRDN_NEWRDN | char * New RDN to assign to the
entry.
SLAPI_MODRDN_ int Specifies whether you want
DELOLDRDN to delete the old RDN:
* 0 means don’t delete the
old RDN.
* 1 means delete the old
RDN.
SLAPI_MODRDN_ char * DN of the new parent of the
NEWSUPERIOR entry, if the entry is being
moved to a new location in
the directory tree.

Parameters for the Abandon Function

The following table lists the parameters in the parameter block passed to the
database abandon function. If you are writing a pre-operation, database, or
post-operation abandon function, you can get these values by calling the
slapi_pblock_get() function.

Table 19. Parameters for the database abandon function

Parameter ID Data Type Description
SLAPI_ABANDON_MSGID | unsigned long Message ID of the operation
to abandon.

Parameters for Database Import

The following table lists the parameters in the parameter block passed to the
database import function, which is responsible for importing LDIF files into the
database. If you are writing your own plug-in function for performing this work,
you can get these values by calling the slapi_pblock_get() function.

Appendix B. Parameter Reference 29

Table 20. Parameters to the database import function

Parameter ID Data Type Description
SLAPI_LDIF2DB_FILE char * LDIF file that needs to be
imported into the database.
SLAPI_LDIF2DB_ int Specifies whether or not the
REMOVEDUPVALS duplicate values of attributes

must be removed:

¢ If 1, remove any duplicate
attribute values when
creating an entry.

 If 0, do not remove any
duplicate attribute values
when creating an entry.

Parameters for Database Export

The following table lists the parameters in the parameter block passed to the
database export function, which is responsible for exporting LDIF files into the
database. If you are writing your own plug-in function for performing this work,
you can get these values by calling the slapi_pblock_get() function.

Table 21. Parameters to the database export function

Parameter ID Data Type Description

SLAPI_DB2LDIF_PRINTKEY |int Specifies whether or not the
database keys must be
printed out as well:

e If 1, include the database
key for each entry.

* If 0, do not include the
database key for each
entry.

Parameters for Database Archive

The following table lists the parameters in the parameter block passed to the
database archive function, which is responsible for archiving the database. If you
are writing your own plug-in function for performing this work, you can get these
values by calling the slapi_pblock_get() function.

Table 22. Parameters to the database archive function

Parameter ID Data Type Description

SLAPI_SEQ_VAL char * Specifies the directory in
which you want to store the
archive.

Parameters for Database Restore

The following table lists the parameters in the parameter block passed to the
database restore function, which is responsible for restoring the database from an
archive. If you are writing your own plug-in function for performing this work,
you can get these values by calling the slapi_pblock_get() function.

30 Server Plug-ins Reference

Table 23. Parameters to the database restore function

Parameter ID

Data Type

Description

SLAPI_SEQ_ VAL

char *

Specifies the directory
containing the archive.

Parameters for Extended Operations

The following table lists the parameters in the parameter block passed to extended
operation functions. If you are writing your own plug-in function for performing
this work, you can get these values by calling the slapi_pblock_get() function.

Table 24. Parameters to extended operation functions

Parameter ID

Data Type

Description

SLAPI_EXT_OP_REQ_OID

char *

Object ID (OID) of the
extended operation specified
in the request.

SLAPI_EXT_OP_REQ_
VALUE

struct berval*

Value specified in the
request.

SLAPI_EXT_OP_RET_OID

char *

OID that you want sent back
to the client.

SLAPI_EXT_OP_RET_
VALUE

struct berval*

Value that you want sent
back to the client.

Parameters for Internal LDAP Operations

The following parameters are used in conjunction with functions that you can call
to perform LDAP operations from a plug-in (these internal operations do not

return any data to a client).

Table 25. Parameters used in conjunction with functions that performs LDAP operations

from a plug-in

Parameter ID

Data Type

Description

SLAPI_PLUGIN_INTOP_
RESULT

int

Result code of the internal
LDAP operation.

SLAPI_PLUGIN_INTOP_
SEARCH_ENTRIES

Slapi_Entry **

Array of entries found by an
internal LDAP search
operation.

The following functions set both parameters:

¢ slapi_search_internal()

* slapi_search_internal_callback()

The following functions set only the SLAPI_ PLUGIN_INTOP_RESULT parameter:

¢ slapi_add_internal()

* slapi_add_entry_internal()

* slapi_delete_internal()

¢ slapi_modify_internal()
¢ slapi_modrdn_internal()

Appendix B. Parameter Reference 31

Parameters for the DN Partitioning Function

The following table lists the parameters in the parameter block that are passed
between the Proxy Server backend and the plug-in using the slapi_pblock_set()
and slapi_pblock_get() functions. If you are writing your own DN partitioning
plug-in, you can get value of these parameters by calling slapi_pblock_get().

32

Table 26. Parameters for the DN partitioning function

Parameter ID

Description

SLAPI_TARGET_DN

Address of a DN for which the partition
value needs to be calculated. This DN is
normalized and is in the UTF-8 format.

SLAPI_PARTITION_BASE

Address of a base DN that is the base or
suffix of the target DN. This base DN is
normalized and is in the UTF-8 format.

SLAPI_NUMBER_OF_PARTITIONS

The number of partitions used for the
calculation of DN partition value.

SLAPI_PARTITION_NUMBER

A plug-in calculated partition value.

Server Plug-ins Reference

Appendix C. Supported iPlanet APIs

The following iPlanet APIs are supported in this release.
For pblock:

int slapi_pblock_get(Slapi_PBlock *pb, int arg, void *value)
int slapi_pblock _set(Slapi_PBlock *pb, int arg, void *value)

Slapi_PBlock *slapi_pblock_new();
void slapi_pblock destroy(Slapi_PBlock *pb);

For memory management:

char *slapi_ch_malloc(unsigned Tong size);
void slapi_ch_free(void *ptr);

char *slapi_ch_calloc(unsigned Tong nelem, unsigned Tong size);

char *slapi_ch_realloc(char *block, unsigned long size);
char *slapi_ch_strdup(char *s);

For sending results:

void slapi_send_ldap_result(Slapi_PBlock *pb, int err, char
*matched, char *text,
int nentries, struct berval **urls);

For LDAP specific objects:

© Copyright IBM Corp. 1999, 2007

char *slapi_dn_normalize(char *dn);
char *slapi_dn_normalize_case(char *dn);
char *slapi_dn_ignore_case(char *dn);
char *slapi_dn_normalize v3(char *dn);
char *slapi_dn_normalize_case_v3(char xdn);
char *slapi_dn_ignore case v3(char *dn);
char *slapi_dn_compare_v3(char xdnl,
char* dn2);
int slapi_dn_issuffix(char *dn, char xsuffix);
char *slapi_entry2str(Slapi_Entry *e, int
*xTen);
Slapi_Entry *slapi_str2entry(char *s, int flags);
int slapi_entry attr find(Slapi_Entry xe, char *type,
Slapi_Attr **xattr);
int slapi_entry attr_delete(Slapi_Entry *e, char *type);
char *slapi_entry get dn(Slapi_Entry *e);
void slapi_entry_set_dn(STapi_Entry *e, char *dn);
Slapi_Entry *slapi_entry alloc();
Slapi_Entry *slapi_entry dup(Slapi_Entry =*e);

init slapi_send_ldap_search_entry(Slapi_PBlock *pb,
Slapi_Entry e, LDAPControl ==*ectrls,

char x*attrs, int attrsonly);

void slapi_entry free(Slapi_Entry *e);

int slapi_attr_get values(Slapi_ Attr xattr, struct berval
**xxvals);

Slapi_Filter *slapi_str2filter(char *str);
init slapi_filter_get_choice(Slapi_Filtersf);
init slapi_filter_get_ava(Slapi_Filter*f, char
xtype, struct berval *xbvals);
void slapi_filter free(Slapi_Filter*f, int recurse);
Slapi_Filter *slapi_filter_list_first(Slapi_Filterxf);
Slapi_Filter *slapi_filter_Tist_next(Slapi_Filterxf,
Slapi_Filterxfprev);

int slapi_is_connection_ss1(Slapi_PBlock *pPB, int *isSSL);

init slapi_get_client_port(Slapi_PBlock *pPB, int *fromPort);

33

For internal database operations:

Slapi_PBlock *slapi_search_internal(char xbase, int scope, char *filter,
LDAPControl =**controls, char xxattrs, int attrsonly);

Slapi_PBlock *slapi_modify internal(char *dn, LDAPMod **mods,
LDAPControl **controls);

Slapi_PBlock *slapi_add_internal(char * dn, LDAPMod **attrs,
LDAPControl **controls);

Slapi_PBlock *slapi_add_entry_internal(Slapi_Entry * e,
LDAPControl #=*controls,
int log_change);

Slapi_PBlock *slapi_delete internal(char * dn,
LDAPControl **controls);

Slapi_PBlock *slapi_modrdn_internal(char * olddn,
char * newrdn, char *newParent,
int deloldrdn, LDAPControl =*controls);

void slapi_free _search_results_internal(Slapi_PBlock *pb);

/* logging routines =*/
void slapi_printmessage(int catid, int level, int num, ...);
int slapi_log_error(int severity, char xsubsystem, char *fmt, ...);

For querying server information:
char **slapi_get_supported_sasimechanisms();

char **slapi_get_supported_extended_ops();
void slapi_register supported sasimechanism(char *mechanism);

int slapi_get_supported controls(char **xctrloidsp,
unsigned long **ctrlopsp);

void slapi_register_supported_control(char *controloid,
unsigned long controlops);

int slapi_control_present(LDAPControl **controls,
char *o0id, struct berval =*xval,
int * iscritical);

For logging routines:
int slapi_log_error(int severity, char xsubsystem, char *fmt, ...);

slapi_pblock_get()
slapi_pblock_get() receives the value of a name-value pair from a parameter block.

Syntax
#include "slapi-plugin.h"
int slapi_pblock get(Slapi_PBlock *pb, int arg, void xvalue);

Parameters
pb A parameter block.
arg A pblock parameter that represents the data you want to receive.
value A pointer to the value retrieved from the parameter block.

Returns
0 if successful, or -1 if there is an error.

slapi_pblock_set()

slapi_pblock_set() sets the value of a name-value pair in a parameter block.

Syntax
#include "slapi-plugin.h"
int slapi_pblock _set(Slapi_PBlock *pb, int arg, void xvalue);

Parameters

34 Server Plug-ins Reference

pb A pointer to a parameter block.
arg The ID of the name-value pair that you want to set.

value A pointer to the value that you want to set in the parameter block.
The value should be freed only if the caller is replacing the value
in the pblock with a new value by calling slapi_pblock_set().

Returns
0 if successful, or -1 if an error occurs.

slapi_pblock_new()
slapi_pblock_new() creates a new parameter block.

Syntax
#include "slapi-plugin.h"
Slapi_PBlock *slapi_pblock new();

Returns
A pointer to the new parameter block is returned.

slapi_pblock_destroy()

slapi_pblock_destroy() frees the specified parameter block from memory.

Syntax
#include "slapi-plugin.h"
void slapi_pblock destroy(Slapi_PBlock *pb);

Parameters

pb A pointer to the parameter block that you want to free.

slapi_ch_malloc()

slapi_ch_malloc() allocates space in memory, and calls the standard malloc() C
function. The slapd server is terminated with an accompanying out of memory
error message if memory cannot be allocated.

Syntax
#include "slapi-plugin.h"
char * slapi_ch_malloc(unsigned long size);

Parameters

size The amount of space that you want memory allocated for.

slapi_ch_calloc()

slapi_ch_calloc() allocates space for an array of elements of a specified size. It calls
the calloc() C function. The slapd server is terminated with an accompanying out
of memory error message if memory cannot be allocated.

Syntax
#include "slapi-plugin.h"
char * slapi_ch_calloc(unsigned Tong nelem,
unsigned long size);
Parameters

nelem The number of elements that you want to allocate memory for.

Appendix C. Supported iPlanet APIs 35

size The amount of memory of each element that you want to allocate
memory for.

slapi_ch_realloc()

slapi_ch_realloc() changes the size of a block of allocated memory. It calls the
standard realloc() C function. The slapd server is terminated with an
accompanying out of memory error message if memory cannot be allocated.

Syntax
#include "slapi-plugin.h"
char * slapi_ch_realloc(char *block, unsigned long size);

Parameters
block A pointer to an existing block of allocated memory.
size The new amount of the block of memory you want allocated.

Returns
A pointer to a newly-allocated memory block with the requested size is
returned.

slapi_ch_strdup()

slapi_ch_strdup() makes a copy of an existing string. It calls the standard strdup()
C function. The slapd server is terminated with an accompanying out of memory
error message if memory cannot be allocated.

Syntax
#include "slapi-plugin.h"
char * slapi_ch_strdup(char *s);

Parameters
S Refers to the string you want to copy.

Returns
A pointer to a copy of the string is returned. If space cannot be allocated
(for example, if no more virtual memory exists), a NULL pointer is
returned.

slapi_compare_internal()

Plug-in functions call slapi_compare_internal() to compare an entry in the backend
directly.

Syntax

xslapi_compare_internal(const char *dn, const char =*type,
struct berval *value, LDAPControl *xcontrols) {

Parameters

dn The dn of the entry on which to perform the compare. This
parameter cannot have a value of NULL.

type The attribute type on which to perform the compare. This
parameter cannot have a value of NULL.

value The berval value of the attribute being compared. This parameter
cannot have a value of NULL.

controls
Any controls requested on the operation.

36 Server Plug-ins Reference

Returns

The slapi_pblock containing the return code.

slapi_ch_free()

slapi_ch_free() frees space allocated by the [slapi_ch_malloc(), [slapi_ch_calloc(),

klapi_ch_realloc() and [slapi_ch_strdup()| functions. It does not set the pointer to

NULL.
Syntax

#include "slapi-plugin.h"
void slapi_ch_free(void *ptr);

Parameters

ptr

A pointer to the block of memory that you want to free. If it is
NULL, no action occurs.

slapi_send_Idap_resuli()

slapi_send_ldap_result() sends an LDAP result code back to the client.

Syntax

#include "slapi-plugin.h"
void slai_send ldap result(Slapi_PBlock *pb, int err,

char *matched, char *text, int nentries,
struct berval **urls);

Parameters

pb A pointer to a parameter block.

err The LDAP result code that you want sent back to the client.

matched
Used to specify the portion of the target DN that can be matched
when you send back an LDAP_NO_SUCH_OBJECT result.
Otherwise you must pass NULL.

text The error message that you want sent back to the client. If you do
not want an error message sent back, pass a NULL.

nentries

Used to specify the number of matching entries found when you

send back the result code for an LDAP search operation.

urls Used to specify the array of the berval structure or to specify

referral URLs when you send back either an

LDAP_PARTIAL_RESULTS result code to an LDAP V2 client or an

LDAP_REFERRAL result code to an LDAP V3 client.

slapi_dn_normalize()

Note: A variable passed in as the DN argument is also converted in-place,
therefore this API is deprecated. See|“slapi_dn_normalize_v3()” on page 39

slapi_dn_normalize() converts a distinguished name (DN) to canonical format (that
is, no leading or trailing spaces, no spaces between components, and no spaces
around the equals sign). As an example, for the following DN: cn = John Doe, ou
= Engineering , o = Darius the function returns:

cn=John Doe,ou=Engineering,o=Darius

Appendix C. Supported iPlanet APIs

37

Syntax
#include "slapi-plugin.h"
char *slapi_dn_normalize(char *dn);

Parameters
dn The DN that you want to normalize.

Returns
The normalized DN.

slapi_dn_normalize_case()

Note: A variable passed in as the DN argument is also converted in-place,
therefore this API is deprecated. See|“slapi_dn_normalize_case_v3()” on|

slapi_dn_normalize_case() converts a distinguished name (DN) to canonical format
(that is, no leading or trailing spaces, no spaces between components, and no
spaces around the equals sign) and converts all characters to lower case. As an
example, for the following DN: cn = John Doe, ou = Engineering, o = Darius the
function returns:

cn=john doe,ou=engineering,o=darius
Note: This function has the same effect as calling the slapi_dn_normalize()
function followed by the slapi_dn_ignore_case() function.

Syntax
#include "slapi-plugin.h"
char *slapi_dn_normalize_case (char *dn);

Parameters
dn The DN that you want to normalize and convert to lower case.

Returns
The normalized DN with all characters in lower case.

slapi_dn_ignore_case()

Note: A variable passed in as the DN argument is also converted in-place,
therefore this API is deprecated. See|“slapi_dn_ignore_case_v3()” on page|

slapi_dn_ignore_case() converts all of the characters in a distinguished name (DN)
to lower case. As an example, for the following DN: cn = John Doe, ou =
Engineering , o = Darius the function returns:

cn = john doe , ou = engineering , o = darius

Syntax

#include "slapi-plugin.h"

char *slapi_dn_ignore_case (char *dn);
Parameters

dn The DN that you want to convert to lower case.
Returns

The DN with all characters in lower case.

38 Server Plug-ins Reference

slapi_dn_normalize_v3()

slapi_dn_normalize_v3() converts a distinguished name(DN) to canonical format
(that is, no leading or trailing spaces, no spaces between components and no
spaces around the equals sign). The API normalizes the attribute type name to the
first textual type name in the schema definition. Any semicolons used to separate
relative distinguished names (RDN) are converted to commas. A compound RDN
is sorted alphabetically by attribute name. The following is an example DN:
userName=johnDOE + commonName = John Doe ;

ou = Engineering , o = Darius the function returns:
cn=John DoetuserName=johnDOE,ou=Engineering,o=Darius

Special characters in a DN, if escaped using double-quotes, are converted to use
backslash (\) as the escape mechanism. For example, the following DN:

cn="a + b", o=sample the function returns
cn=a \+ b,o=sample

An attribute value containing a backslash followed by a two-digit hex
representation of a UTF-8 character is converted to the character representation.
For example, the following DN:

cn=\4A\6F\68\6E Doe,ou=Engineering,o=Darius
the function returns cn=John Doe,ou=Engineering,o=Darius

A ber-encoded attribute value is converted to a UTF-8 value. For example, the
following DN:

cn=#04044A6F686E20446F65,0u=Engineering,o=Darius
the function returns cn=John Doe,ou=Engineering,o=Darius

An invalid DN returns NULL.

Syntax
#include "slapi-plugin.h"
char *slapi_dn_normalize_v3(char *dn);

Parameters

dn The DN that you want to normalize. It is not modified by the
function.

Returns
The normalized DN in newly allocated space.

Note: It is the responsibility of the caller to free the normalized DN.

slapi_dn_normalize_case_v3()

slapi_dn_normalize_v3() converts a distinguished name (DN) to canonical format
(that is, no leading or trailing spaces, no spaces between components and no
spaces around the equals sign). The API normalizes the attribute type name to the
first textual type name in the schema definition. Any semicolons used to separate
relative distinguished names (RDN) are converted to commas. A compound RDN
is sorted alphabetically by attribute name. The case of attribute types is changed to
upper case in all cases. The case of the attribute values is converted to upper case
only when the matching rules are case insensitive. If the matching rules for the
attribute are case sensitive, the case of the attribute value is preserved. In the
following example, userName is a case sensitive attribute and cn, ou and o are
case insensitive. For example, the following DN:

Appendix C. Supported iPlanet APIs 39

userName=johnDOE + commonName = John Doe ;
ou = Engineering , o = Darius the function returns:
CN=JOHN DOE+USERNAME=johnDOE,OU=ENGINEERING,0=DARIUS

Special characters in a DN, if escaped using double-quotes, are converted to use
backslash (\) as the escape mechanism. For example, the following DN:

cn="a + b", o=sample the function returns
CN=A \+ B,o=sample

An attribute value containing a backslash followed by a two-digit hex
representation of a UTF-8 character is converted to the character representation.
For example, the following DN:

cn=\4A\6F\68\6E Doe,ou=Engineering,o=Darius
the function returns CN=JOHN DOE,OU=ENGINEERING,0=DARIUS

A ber-encoded attribute value is converted to a UTF-8 value. For example, the
following DN:

cn=#04044A6F686E20446F65,0u=Engineering,o=Darius
the function returns CN=JOHN DOE,OU=ENGINEERING,0=DARIUS

An invalid DN returns NULL.

Syntax
#include "slapi-plugin.h"
char *slapi_dn_normalize_case_v3(char *dn);

Parameters

dn The DN that you want to normalize and convert to lower case. It is
not modified by the function.

Returns
The normalized DN in newly allocated space.

Note: It is the caller’s responsibility to free the normalized DN.

slapi_dn_ignore_case_v3()

slapi_dn_ignore_case_v3() normalizes a distinguished name (DN) and converts all
of the characters to lower case. For example, the following DN:

userName=johnDOE + commonName = John Doe ;

ou = Engineering , o = Darius

the function returns:

cn=john doetusername=johndoe,ou=engineering,o=darius

Syntax

#include "slapi-plugin.h"

char *slapi_dn_ignore_case _v3(char =*dn);
Parameters

dn The DN that you want to normalize and convert to lower case.
Returns

The DN normalized with all characters in lower case.

Note: It is the caller’s responsibility to free the normalized DN.

slapi_dn_compare_v3()

slapi_dn_compare_v3() compares two distinguished names (DN).

40 Server Plug-ins Reference

Syntax
#include "slapi-plugin.h"
char *slapi_dn_compare_v3(char *dnl, char* dn2);

Parameters
dnl A DN that you want to compare.
dn2 A DN that you want to compare.

Returns
* Less than 0 if the value of dnl is lexicographically less than dn2.
* 0 if the value of dnl is lexicographically equal to dn2.
* Greater than 0 if the value of dnl is lexicographically greater than dn2.

slapi_dn_issuffix()
slapi_dn_issuffix() determines whether a DN is equal to the specified suffix.

Syntax
#include "slapi-plugin.h"
int slapi_dn_issuffix(char *dn, char *suffix);

Parameters
dn The DN that you want to check.
suffix ~ The suffix you want compared against the DN.

Returns
A1 is returned if the specified DN is the same as the specified suffix, or a
0 is returned if the DN is not the same as the suffix.

slapi_entry2str()

slapi_entry2str() generates a description of an entry as a string. The LDIF string
has the following format:

dn: <dn>\n
x[<attr>: <value>\n]
x[<attr>:: <base_64_encoded value>]

where:

"sn

* The operator "*” when it precedes an element indicates repetition. The full
form is: <a>* where <a> and are optional decimal values,
indicating at least <a> and at most occurrences of element.

Default values are 0 and infinity so that *<element> allows any number,
including zero; 1*<element> requires at least one; 3*3<element> allows
exactly 3 and 1*2<element> allows one or two.

dn Distinguished name
attr Attribute name
\n New line

value Attribute value

For example:
dn: uid=rbrown2, ou=People, o=airius.com

cn: Robert Brown

Appendix C. Supported iPlanet APIs 41

sn: Brown

When you no longer need to use the string, you can free it from memory by
calling the fslapi_ch_free()| function.

Call the fslapi_str2entry()| function to convert a string description in this format to
an entry of the Slapi_Entry data type.

Syntax
#include "slapi-plugin.h"
char *slapi_entry2str(Slapi_Entry *e, int *len);

Parameters
e Address of the entry that you want to generate a description for.
len Address of the length of the returned string.

Returns
The description of the entry as a string is returned or NULL if an error
occurs.

slapi_str2entry()

42

slapi_str2entry() converts an LDIF description of a directory entry (a string value)

into an entry of the Slapi_Entry data type that can be passed to other API
functions.

Note: This function modifies the s string argument, and you must make a copy of
this string before it is called.

If there are errors during the conversion process, the function returns a NULL
instead of the entry.

When you are through working with the entry, call the [slapi_entry_free()| function.
To convert an entry to a string description, call[slapi_entry2str()|

Syntax
#include "slapi-plugin.h"
Slapi_Entry *slapi_str2entry(char *s, int flags);

Parameters
s The description of an entry that you want to convert.

flags Specifies how the entry must be generated.

The flags argument can be one of the following values:

SLAPI_STR2ENTRY_REMOVEDUPVALS
Removes any duplicate values in the attributes of the entry.

SLAPI_STR2ENTRY_ADDRDNVALS
Adds the relative distinguished name (RDN) components.

Returns

A pointer to the Slapi_Entry structure representing the entry is returned, or
a NULL is returned if the string cannot be converted, for example, if no
DN is specified in the string.

Server Plug-ins Reference

slapi_entry_attr_find()

slapi_entry_attr_find() determines if an entry has a specified attribute. If it does,
this function returns that attribute.

Syntax
#include "slapi-plugin.h"
int slapi_entry attr find(Slapi_Entry xe, char *type,
Slapi_Attr **xattr);
Parameters

e An entry that you want to check.
type Indicates the name of the attribute that you want to check.

attr A pointer to the attribute (assuming that the attribute is in the
entry).

Returns

A 0 is returned if the entry contains the specified attribute, or -1 is
returned if it does not.

slapi_entry_attr_delete()

slapi_entry_attr_delete() deletes an attribute from an entry.

Syntax
#include "slapi-plugin.h"
int slapi_entry attr _delete (Slapi_Entry *e, char =*type);

Parameters
e The entry from which you want to delete the attribute.
type Indicates the name of the attribute that you want to delete.

Returns
A 0 is returned if the attribute is successfully deleted, a 1 is returned if the
specified attribute is not part of the entry, or -1 is returned if an error has
occurred.

slapi_entry_get_dn()

slapi_entry_get_dn() receives the DN of the specified entry.

Syntax
#include "slapi-plugin.h"
char *slapi_entry get dn(Slapi_Entry *e);

Parameters
e Indicates an entry that contains the DN you want.

Returns

The DN of the entry is returned. A pointer to the actual DN in the entry is
returned, not a copy of the DN.

slapi_entry_set_dn()

slapi_entry_set_dn() sets the DN of an entry. It sets the pointer to the DN that you
specify.

Appendix C. Supported iPlanet APIs 43

Note: Because the old DN is not overwritten and is still in memory, you need to
first call slapi_entry_get_dn() to get the pointer to the current DN, free the
DN, and then call slapi_entry_set_dn() to set the pointer to your new DN.

Syntax
#include "slapi-plugin.h"
void *slapi_entry set dn(Slapi_Entry *e char *dn);

Parameters
e Indicates the entry to which you want to assign the DN.

dn The DN that you want to assign to the entry.

slapi_entry_alloc()

slapi_entry_alloc() allocates memory for a new entry of the Slapi_Entry data type.
It returns an empty Slapi_Entry structure. You can call other front-end functions to
set the DN and attributes of this entry. When you are through working with the
entry, free it by calling the [slapi_entry_free()| function.

Syntax
#include "slapi-plugin.h"
Slapi_Entry *slapi_entry alloc();

Returns
A pointer to the newly allocated entry of the Slapi_Entry data type is
returned. If space cannot be allocated (for example, if no more virtual
memory exists), the server program ends.

slapi_entry_dup()

slapi_entry_dup() makes a copy of an entry, its DN, and its attributes. You can call
other front-end functions to change the DN and attributes of this copy of an
existing Slapi_Entry structure. When you are through working with the entry, free
it by calling the [slapi_entry_free()| function.

Syntax
#include "slapi-plugin.h"
Slapi_Entry *slapi_entry dup(Slapi_Entry *e);

Parameters
e The entry that you want to copy.

Returns
The new copy of the entry. If the structure cannot be duplicated (for
example, if no more virtual memory exists), the server program ends.

slapi_send_Ildap_search_entry()

slapi_send_ldap_search_entry() sends an entry found by a search back to the client.

Syntax
#include "slapi-plugin.h"
int slapi_send_ldap_search_entry(Slapi_PBlock *pb,
Slapi_Entry e, LDAPControl ==*ectrls,
char **attrs, int attrsonly);

Parameters

pb The parameter block.

44 Server Plug-ins Reference

e The pointer to the Slapi_Entry structure representing the entry that
you want to send back to the client.

ectrls The pointer to the array of LDAPControl structures that represent
the controls associated with the search request.

attrs Attribute types specified in the LDAP search request.

attrsonly
Specifies whether the attribute values must be sent back with the
result.
e If set to 0, the values are included.

e If set to 1, the values are not included.

Returns
A 0 is returned if successful, a 1 is returned if the entry is not sent (for
example, if access control did not allow it to be sent), or a -1 is returned if
an error occurs.

slapi_entry_free()

slapi_entry_free() frees an entry, its DN, and its attributes from memory.

Syntax
#include "slapi-plugin.h"
void slapi_entry free(Slapi_Entry *e);

Parameters

e An entry that you want to free. If it is NULL, no action occurs.

slapi_attr_get_values()

slapi_attr_get_values() receives the value of the specified attribute.

Syntax
#include "slapi-plugin.h"
int slapi_attr_get_values(Slapi_Attr xattr, struct berval
xx*xvals);

Parameters
attr An attribute that you want to get the flags for.

vals When slapi_attr_get_values() is called, vals is set to a pointer that
indicates a NULL-terminated array of berval structures
(representing the values of the attribute). Do not free the array; the
array is part of the actual data in the attribute, not a copy of the
data.

Returns
A 0 is returned if it is successful.

slapi_str2filter()

slapi_str2filter() converts a string description of a search filter into a filter of the
Slapi_Filter type. When you are done working with this filter, free the Slapi_Filter
structure by calling [slapi_filter_free()}

Syntax
#include "slapi-plugin.h"
Slapi_Filter *slapi_str2filter(char *str);

Appendix C. Supported iPlanet APIs 45

Parameters
str A string description of a search filter.

Returns
The address of the Slapi_Filter structure representing the search filter is
returned, or a NULL is returned if the string cannot be converted (for
example, if an empty string is specified or if the filter syntax is incorrect).

slapi_filter_get_choice()

slapi_filter_get_choice() gets the type of the specified filter (for example,
LDAP_FILTER_EQUALITY).

Syntax
#include "slapi-plugin.h"
int slapi_filter_get_choice(Slapi_Filter *f);

Parameters
f The filter type that you want to get.

Returns
One of the following values is returned:

LDAP_FILTER_AND (AND filter)
For example: (&(ou=Accounting) (1=Sunnyvale))

LDAP_FILTER_OR (OR filter)
For example: (| (ou=Accounting) (1=Sunnyvale))

LDAP_FILTER_NOT (NOT filter)
For example: (! (1=Sunnyvale))

LDAP_FILTER_EQUALITY (equals filter)
For example: (ou=Accounting)

LDAP_FILTER_SUBSTRINGS (substring filter)
For example: (ou=Account*Department)

LDAP_FILTER_GE ("greater than or equal to” filter)
For example: (supportedLDAPVersion>=3)

LDAP_FILTER_LE ("less than or equal to” filter)
For example: (supportedLDAPVersion<=2)

LDAP_FILTER_PRESENT (presence filter)
For example: (mail=%*)

LDAP_FILTER_APPROX (approximation filter)
For example: (ou~=Sales)

slapi_filter_get_ava()

slapi_filter_get_ava() gets the attribute type and the value from the filter. This
applies only to filters of the types LDAP_FILTER_EQUALITY, LDAP_FILTER_GE,
LDAP_FILTER_LE, LDAP_FILTER_APPROX. These filter types generally compare
a value against an attribute. For example: (cn=John Doe) This filter finds entries in
which the value of the cn attribute is equal to John Doe.

Calling the slapi_filter_get_ava() function gets the attribute type and value from

this filter. In the case of the example, calling the slapi_filter_get_ava() function gets
the attribute type cn and the value John Doe.

46 Server Plug-ins Reference

Syntax
#include "slapi-plugin.h"
int slapi_filter_get_ava(Slapi_Filter *f,
char **type, struct berval **xbval);

Parameters

f The address of the filter from which you want to get the attribute
and value.

type The pointer to the attribute type of the filter.

bval ~ The pointer to the address of the berval structure that contains the
value of the filter.

Returns
A 0 is returned if successful, or a -1 is returned if the filter is not one of the
types listed.

slapi_filter_free()

slapi_filter_free() frees the specified filter and (optionally) the set of filters that
comprise it. For example, the set of filters in an LDAP_FILTER_AND type filter.

Syntax
#include "slapi-plugin.h"
void slapi_filter free(Slapi_Filter *f, int recurse);

Parameters
f The filter that you want to free.

recurse
If set to 1, it recursively frees all filters that comprise this filter. If
set to 0, it only frees the filter specified by the f parameter.

slapi_filter_list_first()

slapi_filter_list_first() gets the first filter that makes up the specified filter. This
applies only to filters of the types LDAP_FILTER_EQUALITY, LDAP_FILTER_GE,
LDAP_FILTER_LE, and LDAP_FILTER_APPROX. These filter types generally
consist of one or more other filters. For example, if the filter is:

(&(ou=Accounting) (1=Sunnyvale)) the first filter in this list is: (ou=Accounting).
Use the slapi_filter_list_first() function to get the first filter in the list.

Syntax
#include "slapi-plugin.h"
Slapi_Filter *slapi_filter_list_first
(Slapi_Filter *f);

Parameters
f The filter from which you want to get the first component.

Returns
The first filter that makes up the filter specified by the f parameter is
returned.

Appendix C. Supported iPlanet APIs 47

slapi_filter_list_next()

slapi_filter_list_next() gets the next filter (following fprev) that makes up the
specified filter f. This applies only to filters of the types
LDAP_FILTER_EQUALITY, LDAP_FILTER_GE, LDAP_FILTER_LE, and
LDAP_FILTER_APPROX. These filter types generally consist of one or more other
filters. For example, if the filter is: (&(ou=Accounting) (1=Sunnyvale)) the next filter
after (ou=Accounting) in this list is: (1=Sunnyvale). Use the slapi_filter_list_first()
function to get the first filter in the list.

To iterate through all filters that make up a specified filter, call the
slapi_filter_list_first() function and then call slapi_filter_list_next().

Syntax
#include "slapi-plugin.h"
Slapi_Filter *slapi_filter list next(Slapi Filter
*f, Slapi_Filter *fprev);

Parameters

f The filter from which you want to get the next component (after
fprev).
fprev A filter within the filter specified by the f parameter.
Returns

The next filter (after fprev) that makes up the filter specified by the f
parameter is returned.

slapi_is_connection_ssl()

slapi_is_connection_ssl() is used by the server to determine whether the connection
between it and a client is through a Secure Socket Layer (SSL).

Syntax
#include "slapi-plugin.h"
int slapi_is_connection_ss1(Slapi_PBlock *pPB,
int *isSSL);

Parameters
pPB Address of a Parameter Block.

isSSL Address of the output parameter. A 1 is returned if the connection
is through SSL or a 0 is returned if it is not through SSL.

Returns
A 0 is returned if successful.

slapi_get_client_port()
slapi_get_client_port() is used by the server to determine the port number used by

a client to communicate to the server.

Syntax
#include "slapi-plugin.h"
int slapi_get_client_port(Slapi_PBlock *pPB,
int *fromPort);

Parameters

pPB Address of a Parameter Block.

48 Server Plug-ins Reference

fromPort
Address of the output parameter. It is the port number used by the
client.

Returns
A 0 is returned if successful.

slapi_search_internal()

slapi_search_internal() performs an LDAP search operation to search the directory
from your plug-in.

Syntax
#include "slapi-plugin.h"
Slapi_PBlock *slapi_search_internal(char xbase, int scope,
char *filter, LDAPControl **controls,
char **attrs, int attrsonly);

Parameters

base The DN of the entry that serves as the starting point for the search.
For example, setting base o=Acme Industry, c=US restricts the
search to entries at Acme Industry located in the United States.

scope Defines the scope of the search. It can be one of the following
values:

* LDAP_SCOPE_BASE searches the entry that is specified by base.

¢ LDAP_SCOPE_ONELEVEL searches all entries one level beneath
the entry specified by base.

* LDAP_SCOPE_SUBTREE searches the entry specified by base. It
also searches all entries at all levels beneath the entry specified
by base .

filter The string representation of the filter to apply in the search.

controls
The NULL-terminated array of LDAP controls that you want
applied to the search operation.

attrs The NULL-terminated array of attribute types to return from
entries that match the filter. If you specify a NULL, all attributes
are returned.

attrsonly
Specifies whether or not attribute values are returned along with
the attribute types. It can have the following values:

* A 0 specifies that both attribute types and attribute values are
returned.

* A1 specifies that only attribute types are returned.

Returns
slapi_free_search_results_internal() and slapi_pblock_destroy() need to be
called to free the search results and the pblock that is returned by
slapi_search_internal.

slapi_modify_internal()

slapi_modify_internal() performs an LDAP modify operation to modify an entry in
the directory from a plug-in.

Appendix C. Supported iPlanet APIs 49

Unlike the standard LDAP modify operation, no LDAP result code is returned to a
client; the result code is placed instead in a parameter block that is returned by the
function.

Syntax
#include "slapi-plugin.h"
Slapi_PBlock *slapi_modify internal(char =*dn,
LDAPMod =**mods,
LDAPControl *xcontrols, int 1);

Parameters
dn A distinguished name (DN) of the entry that you want to modify.

mods A pointer to a NULL-terminated array of pointers to LDAPMod
structures representing the attributes that you want to modify.

controls
A NULL-terminated array of LDAP controls.

l Included for compatibility only. It is not used.

Returns
A new parameter block with the following parameter set is returned:

¢ SLAPI_PLUGIN_INTOP_RESULT specifies the LDAP result code for the
internal LDAP operation.

slapi_add_internal()

slapi_add_internal() performs an LDAP add operation in order to add a new
directory entry (specified by a DN and a set of attributes) from your plug-in.
Unlike the standard LDAP add operation, no LDAP result code is returned to a
client. The result code is instead placed in a parameter block that is returned by
the function.

Syntax
#include "slapi-plugin.h"
Slapi_PBlock *slapi_add_internal(char * dn,
LDAPMod **mods,
LDAPControl *xcontrols, int 1);
Parameters
dn The Distinguished name (DN) of the entry that you want to add.
mods A pointer to a NULL-terminated array of pointers to LDAPMod
structures representing the attributes of the new entry that you
want to add.
controls
A NULL-terminated array of LDAP controls that you want applied
to the add operation.
l Included for compatibility only. It is not used.
Returns

A new parameter block with the following parameter set is returned:

* SLAPI_PLUGIN_INTOP_RESULT specifies the LDAP result code for the
internal LDAP operation.

50 Server Plug-ins Reference

slapi_add_entry_internal()

slapi_add_entry_internal() performs an LDAP add operation to add a new
directory entry (specified by an Slapi_Entry structure) from a plug-in function.
Unlike the standard LDAP add operation, no LDAP result code is returned to a
client. Instead, the result code is placed in a parameter block that is returned by
the function.

Note: To add an entry specified by a string DN and an array of LDAPMod
structures, call slapi_add_internal() instead.

Syntax
#include "slapi-plugin.h"
Slapi_PBlock *slapi_add_entry_internal(Slapi_Entry =* e,
LDAPControl #**controls, int 1);

Parameters

mods A pointer to an Slapi_Entry structure representing the new entry
that you want to add.

controls
A NULL-terminated array of LDAP controls that you want applied
to the add operation.

[Included for compatibility only. It is not used.

Returns
A new parameter block with the following the following parameter set is
returned:

¢ SLAPI_PLUGIN_INTOP_RESULT specifies the LDAP result code for the
internal LDAP operation (for example, LDAP_SUCCESS if the operation
is successful or LDAP_PARAM_ERROR if an invalid parameter is used).
If the DN of the new entry has a suffix that is not served by the

Directory Server, SLAPI_PLUGIN_INTOP_RESULT is set to
LDAP_REFERRAL.

slapi_delete_internal()

slapi_delete_internal() performs an LDAP delete operation in order to remove a
directory entry when it is called from your plug-in.

Unlike the standard LDAP delete operation, no LDAP result code is returned to a
client. The result code is instead placed in a parameter block that is returned by
the function.

Syntax
#include "slapi-plugin.h"
Slapi_PBlock *slapi_delete internal(char =* dn,
LDAPControl **controls, int 1);

Parameters
dn The distinguished name (DN) of the entry that you want to delete.
controls
A NULL-terminated array of LDAP controls that you want applied
to the delete operation.
[Included for compatibility only. It is not used.

Appendix C. Supported iPlanet APIs 51

Returns
A new parameter block with the following parameter set is returned:

* SLAPI_PLUGIN_INTOP_RESULT specifies the LDAP result code for the
internal LDAP operation.

slapi_modrdn_internal()

slapi_modrdn_internal() performs an LDAP modify RDN operation in order to
rename a directory entry from your plug-in.

Unlike the standard LDAP modify RDN operation, no LDAP result code is
returned to a client. The result code is instead placed in a parameter block that is
returned by the function.

Syntax
#include "slapi-plugin.h"
Slapi_PBlock *slapi_modrdn_internal(char * olddn,
char * newrdn, int deloldrdn, LDAPControl **controls,
int 1);

Parameters

olddn The distinguished name (DN) of the entry that you want to
rename.

newdn The new relative distinguished name (RDN) of the entry.

deloldrdn

Specifies whether or not you want to remove the old RDN from
the entry.

e If a1, remove the old RDN.
* If a 0, leave the old RDN as an attribute of the entry.

controls

A NULL-terminated array of LDAP controls that you want applied
to the modify RDN operation.

l Included for compatibility only. It is not used.

Returns
A new parameter block with the following parameter set is returned:

¢ SLAPI_PLUGIN_INTOP_RESULT specifies the LDAP result code for the
internal LDAP operation.

slapi_free_search_results_internal()

slapi_free_search_results_internal() frees the memory associated with LDAP entries
returned by the search.

Syntax
#include "slapi-plugin.h"
void slapi_free_search_results_internal(Slapi_PBlock *pb);

Parameters

pb Is a pointer to a Parameter Block that is returned by a
slapi_free_search_internal function.

52 Server Plug-ins Reference

slapi_get_supported_sasimechanisms()

slapi_get_supported_saslmechanisms() obtains an array of the supported Simple
Authentication and Security Layer (SASL) mechanisms names. Register new SASL
mechanisms by calling the [slapi_register_supported_saslmechanism()| function.

Syntax
#include "slapi-plugin.h"
char ** slapi_get_supported_sasImechanisms(void);

Returns
A pointer to an array of SASL mechanisms names supported by the server
is returned.

slapi_get_supported_extended_ops()

slapi_get_supported_extended_ops() gets an array of the object IDs (OIDs) of the
extended operations supported by the server. Register new extended operations by
putting the OID in the SLAPI_PLUGIN_EXT_OP_OIDLIST parameter and calling
the slapi_pblock_set() function.

Syntax
#include "slapi-plugin.h"
char **slapi_get supported extended ops(void);

Returns
A pointer to an array of the OIDs of the extended operations supported by
the server is returned.

slapi_register_supported_sasimechanism()

slapi_register_supported_saslmechanism() registers the specified Simple
Authentication and Security Layer (SASL) mechanism with the server.

Syntax
#include "slapi-plugin.h"
void slapi_register_supported _saslmechanism(char *mechanism);

Parameters

mechanism
Indicates the name of the SASL mechanism.

slapi_get_supported_controls()

slapi_get_supported_controls() obtains an array of OIDs, which represent the
controls supported by the directory server. Register new controls by calling the
klapi_register_supported_control()| function.

Syntax
#include "slapi-plugin.h"
int slapi_get_supported_controls(char ***ctrloidsp,
unsigned long **ctrlopsp);

Parameters

ctrloidsp
A pointer to an array of OIDs, which represent the controls
supported by the server.

Appendix C. Supported iPlanet APIs 53

ctrlopsp
A pointer to an array of IDs which specify LDAP operations that
support each control.

Returns
A 0 is returned if successful.

slapi_register_supported_control()

slapi_register_supported_control() registers the specified control with the server. It
also associates the control with an OID. When the server receives a request that
specifies this OID, the server makes use of this information in order to determine if
the control is supported.

Syntax
#include "slapi-plugin.h"
void slapi_register_supported control(char *controloid,
unsigned long controlops);

Parameters

controloid
The OID of the control you want to register.

controlops
The operation that the control is applicable to. It can have one or
more of the following values:

SLAPI_OPERATION_BIND
The specified control that applies to the LDAP bind
operation.

SLAPI_OPERATION_UNBIND
The specified control that applies to the LDAP unbind
operation.

SLAPI_OPERATION_SEARCH
The specified control that applies to the LDAP search
operation.

SLAPI_OPERATION_MODIFY
The specified control that applies to the LDAP modity
operation.

SLAPI_OPERATION_ADD
The specified control that applies to the LDAP add
operation.

SLAPI_OPERATION_DELETE
The specified control that applies to the LDAP delete
operation.

SLAPI_OPERATION_MODDN
The specified control that applies to the LDAP modify DN
operation.

SLAPI_OPERATION_MODRDN
The specified control that applies to the LDAP V3 modify
RDN operation.

SLAPI_OPERATION_COMPARE
The specified control that applies to the LDAP compare
operation.

54 Server Plug-ins Reference

SLAPI_OPERATION_ABANDON
The specified control that applies to the LDAP abandon
operation.

SLAPI_OPERATION_EXTENDED
The specified control that applies to the LDAP V3 extended
operation.

SLAPI_OPERATION_ANY
The specified control that applies to any LDAP operation.

SLAPI_OPERATION_NONE
The specified control that applies to none of the LDAP
operations.

slapi_control_present()

slapi_control_present() determines whether or not the specified OID identifies a
control that might be present in a list of controls.

Syntax
#include "slapi-plugin.h"
int slapi_control_present(LDAPControl xcontrols, char *oid,
struct berval **val, int *iscritical);

Parameters

controls
The list of controls that you want to check.

oid Refers to the OID of the control that you want to find.

val Specifies the pointer to the berval structure containing the value of
the control (if the control is present in the list of controls).

iscritical
Specifies whether or not the control is critical to the operation of
the server (if the control is present in the list of controls).

* A 0 means that the control is not critical to the operation.
* A1 means that the control is critical to the operation.
Returns

A1 is returned if the specified control is present in the list of controls, or a
0 if the control is not present.

slapi_log_error()
Writes a message to the error log for the directory server.

Syntax
#include "slapi-plugin.h"
int slapi_log_error(int severity, char xsubsystem, char *fmt, ...);

Parameters

severity
Level of severity of the message. In combination with the severity
level specified by ibm-slapdSysLogLevel in the ibmslapd.conf file,
determines whether or not the message is written to the log. The
severity must be one of the following:
* LDAP_MSG_LOW

* LDAP_MSG_MED

Appendix C. Supported iPlanet APIs 55

56

* LDAP_MSG_HIGH

The following entry in the ibmslapd.conf file results in a medium
logging level:

#ibm-slapdSysLoglLevel must be one of 1/m/h (1=terse, h=verbose)
ibm-slapdSysLoglLevel: m

With this example in your ibmslapd.conf file, log messages with
severity LDAP_MSG_HIGH or LDAP_MSG_MED are logged. The
messages with severity LDAP_MSG_LOW are not logged. If the
slapdSysLogLevel is set to h, all messages are logged.

subsystem

fint, ..

Returns

Server Plug-ins Reference

Name of the subsystem in which this function is called. The string
that you specify here appears in the error log in the following
format:

<subsystem>: <message>
Message that you want written. This message can be in
printf()-style format. For example:

..y "%s\n", myString);

A 0 is returned if successful, -1 if an unknown severity level is specified.

Appendix D. SLAPI API Categories

The following SLAPI APIs are supported by IBM Tivoli Directory Server.
+ [“slapi_dn2ldapdn()”|
* |“slapi_dn_get_rdn()” on page 58|

» [“slapi_dn_get_rdn_count()” on page 59|

+ |“slapi_dn_free_ldapdn()” on page 59|

* |“slapi_dn_free_rdn()” on page 60

* |“slapi_get_response_controls()” on page 6

» [“slapi_set_response_controls()” on page 61|

* [“slapi_moddn_internal()” on page 62|

* [“slapi_get_client_ip()” on page 6—3|

+ [“slapi_get proxied_dn()” on page 64]

+ |“slapi_get source_ip()” on page 65|

slapi_dn2ldapdn()

Purpose
This routine converts a DN string to an internal SLAPI_LDAPDN structure.

Syntax
#include <slapi-plugin.h>
int slapi_dn21dapdn(

char *dn,
SLAPI_LDAPDN xxTdapdn) ;

Input parameters

dn This parameter specifies the DN to be parsed. The DN must be normalized
and should be in UTE-8 format.

ldapdn
This parameter specifies the address of an internal SLAPI_LDAPDN
structure. This returned structure should be used as an input parameter to
other DN-related SLAPI calls.

Usage

This routine converts a DN string to a SLAPI_LDAPDN structure. This structure is
an LDAP internal DN structure and should be used as an input parameter for
other DN-related SLAPI calls, such as slapi_dn_get_rdn() and
slapi_dn_get_rdn_count().

After using the SLAPI_LDAPDN structure, the caller should free the
SLAPI_LDAPDN structure by calling slapi_dn_free_ldapdn().

Errors

This routine returns an LDAP error code if it encounters an error while parsing the
DN.

© Copyright IBM Corp. 1999, 2007 57

See also
islapi_dn_free_ldapdn()} glapi_dn_get_rdn()} and [slapi_dn_get_rdn_count()|

slapi_dn_get_rdn()

Purpose
This routine gets an RDN that make up the specified DN.

Syntax

#include <slapi-plugin.h>

int slapi_dn_get rdn(
SLAPI_LDAPDN =1dapdn,
long rdnOrder,
char *xStrRDN,
Slapi_1dapRDN ***1dapRDNs);

Input parameters

ldapdn
This parameter specifies the address of an internal SLAPI_LDAPDN
structure. The address of this structure is obtained by calling
slapi_dn2ldapdny().

rdnOrder
This parameter specifies the order of a RDN in a DN. The rdnOrder for the
left-most RDN is 1.

Output parameters

strRDN
This parameter specifies the address of a pointer that points to the
requested RDN.

IdapRDNs
This parameter specifies the address of a NULL terminated array of
pointers that points to the attribute types/values which make up the
specified RDN. For instance, for a compound RDN “cn=]oe
Smith+uid=12345", the output will be an array that consists of three
elements with the first element pointing to a Slapi_ldapRDN structure that
points to “cn” and “Joe Smith”, the second element pointing to a
Slapi_ldapRDN structure that points to “uid” and “12345”, and the third
element being a NULL pointer.

Usage

This routine is used to obtain the desired RDN in a DN by using the order number
of the RDN. The order number of the left-most RDN is 1.

For instance, for extracting the RDN “ou=Austin” from a DN “cn=]oe
Smith+uid=12345, ou=Austin,o=sample”, the input parameter to the function is a
SLAPI_LDAPDN structure that can be obtained by calling slapi_dn2ldapdn(), and
a rdnNumber of 2. In this case, the output will be a string value, “ou=Austin”, and
an array consisting of two elements with the first element pointing to a
Slapi_ldapRDN structure and the second element a NULL pointer. The
Slapi_ldapRDN structure defined in the slapi-plugin.h file has two char pointers

58 Server Plug-ins Reference

pointing to “ou” and “Austin”, respectively. The user should free the returned
RDN string by calling slapi_ch_free() and the returned array of Slapi_ldapRDN
structure by calling slapi_dn_free_rdn().

Errors

This routine returns an LDAP error code if it encounters an error while parsing the
RDN.

See also
slapi_dn2ldapdn()| and slapi_dn_get_rdn_count()

slapi_dn_get_rdn_count()

Purpose
This routine returns the number of RDNs in a DN.

Syntax

#include <slapi-plugin.h>
Tong slapi_dn_get_rdn_count(
SLAPI_LDAPDN =*1dapdn);
Input parameters

ldapdn
This parameter specifies the address of a SLAPI_LDAPDN structure. The
address of the structure can be obtained by calling slapi_dn2ldapdn().

Usage
This routine obtains the number of RDNs in a DN.

Errors
This routine returns the number of RDNs in a LDAP DN structure.

See also
islapi_dn2ldapdn()| and flapi_dn_get_rdn()|

slapi_dn_free_ldapdn()

Purpose

This routine frees the SLAPI_LDAPDN structure. This structure should be
allocated and returned by calling slapi_dn2ldapdn().

Syntax

#include <slapi-plugin.h>

void slapi_dn_free Tdapdn(
SLAPI_LDAPDN **1dapdn);

Appendix D. SLAPI API Categories 59

Input parameters

ldapdn
This parameter specifies the address of an address of a SLAPI_LDAPDN
structure. The address of a SLAPI_LDAPDN structure should be an
address returned by slapi_dn2ldapdny().

Usage

This routine frees the memory allocated by slapi_dn2ldapdn(). This function takes
the address of an address of a SLAPI_LDAPDN structure.

See also
Islapi_dn2ldapdn()|

slapi_dn_free_rdn()

Purpose

This routine frees all the Slapi_IldapRDN structures pointed by an array of
Slapi_ldapRDN pointers including the memory allocated for the array itself. The
array address should be the address returned by slapi_dn_get_rdn().

Syntax

#include <slapi-plugin.h>
void slapi_dn_free_rdn(
Slapi_1dapRDN **1dapRDNs);
Input parameters

ldapRDNs
This parameter specifies the address of an array of address to the
Slapi_ldapRDN structures. This Slapi_ldapRDN address should be the
address returned by slapi_dn_get_rdn().

Usage

This routine frees the memory allocated for all the components, including the
attribute types and attribute values specified in a RDN.

See also
islapi_dn_get_rdn()|

slapi_get_response_controls()

Purpose

This slapi routine calls and accesses the list of response controls.
Syntax

#include <slapi-plugin.h>

60 Server Plug-ins Reference

int slapi_get_response_controls(
Slapi_PBlock *pb,
LDAPControl xxxresponseControls);

Input parameters
pb A parameter block.

Slapi_PBlock must contain the following;:
* SLAPI_CONNECTION - Connection structure representing the client.
e SLAPI_OPERATION - Operation structure

Output parameters

responseControls
Specifies a pointer that returns a deep copy of the response controls that
the server currently has associated with the operation. Response controls
are the controls that are returned to the client when the response is sent.
Return codes are listed:
* LDAP_SUCCESS - Successfully retrieved the list of controls.
¢ LDAP_PARAM_ERROR - Parameters passed in were invalid.

Usage

The slapi_get_response_controls() routine should be called when the program
needs to access the list of response controls that the server has associated with a
single operation. The caller must free the local list of controls after its use.

slapi_set_response_controls()

Purpose

This slapi routine sets the list of response controls.

Note: The current list of response controls will be entirely replaced with the new
list.

Syntax

#include <slapi-plugin.h>
int slapi_set_response_controls(

Slapi_PBlock *pb,
LDAPControl xxxresponseControls);

Input parameters
pb A parameter block.

Slapi_PBlock must contain the following:
* SLAPI_CONNECTION - Connection structure representing the client.
* SLAPI_OPERATION - Operation structure

Appendix D. SLAPI API Categories 61

Output parameters
Returns the following LDAP return code:
* LDAP_SUCCESS - The controls were successfully set on the operation.
* LDAP_NO_MEMORY - Server ran out of memory while processing the request.
e LDAP_INVALID_PARAM - The parameters for the function are invalid.

* LDAP_UNWILLING_TO_PERFORM - The list of response controls contains an
unsupported control.

Usage

The slapi_set_response_controls() routine should be called when the program
needs to replace all the response controls with a new list of response controls. This
list of LDAPControls that are passed should not be freed.

slapi_moddn_internal()

Purpose

This slapi routine moves an entry that is under a parent entry to another parent
entry. In addition, it allows changing the RDN portion in a DN.

Syntax

#include <slapi-plugin.h>

Slapi_PBlock *slapi_moddn_internal(

char *01ddn,

char *newrdn,

char *newsuperior,
int deToldrdn,
LDAPControl =*=*controls,
int 1);

Input parameters

olddn Specifies the distinguished name (DN) of an entry that is to be renamed.

newrdn
Specifies the new relative distinguished name (RDN) of an entry.

newsuperior
Specifies the DN of the parent entry to which the entry is being moved.
This is provided when the entry is being moved to a new location in the
directory tree.

deloldrdn
Specifies whether or not the old RDN from the entry should be removed.

If the value is 1, remove the old RDN.
If the value is 0, leave the RDN as an attribute of the entry.

controls
A NULL-terminated array of LDAP controls that is used in the modify
RDN operation.

1 Used for compatibility with slapi APIs provided by other vendors. It is not
used.

62 Server Plug-ins Reference

Returns
A new parameter block with the following parameter set is returned. The result

code SLAPI_PLUGIN_INTOP_RESULT specifies the LDAP result code for the
internal LDAP operation.

Usage

This slapi routine moves an entry that is under a specific parent entry to another
parent entry. In addition, it allows changing the RDN portion in a DN.

For example, if we provide the following information’s to the API:
newsuperior = "0=ABC, c=YZ"
olddn = "cn=Modify Me, o=PQR, c=XY"
newrdn = "cn=The New Me"
deloldrdn =1

In this case, the API modifies the RDN of the Modify Me entry from “Modify Me”
to “The New Me”. In addition, the entry is moved from “0=PQR, c=XY" to
“0=ABC, c=YZ".

Error
This routine returns an error code SLAPI PLUGIN_INTOP_RESULT, if it
encounters an error.

See also

slapi_modrdn_internal()

slapi_get_client_ip()

Purpose
This slapi routine returns the IP address of the client that is bound to the server.

Syntax
#include <slapi-plugin.h>
int slapi_get _client_ip(

Slapi_PBlock *pb,
char *xclientIP);

Input parameters

pb A pointer to a parameter block.

clientIP
The IP address of the client connection.

Returns

If the return code is LDAP_SUCCESS and the client IP is set, this API retrieves the
IP address of the client connection.

Appendix D. SLAPI API Categories 63

Usage
A slapi API that returns the IP address of the client that is bound to the server.

Note: The user must free the returned client IP after its use.

Error
This API returns the following error codes:
* LDAP_PARAM_ERROR - If the pb parameter is null.

* LDAP_OPERATIONS_ERROR - If the API encounters error processing the
request.

* LDAP_NO_MEMORY - Failed to allocate required memory.

See also
klapi_get_source_ip()

slapi_get_proxied_dn()

64

Purpose
This slapi routine returns the proxied DN of the client.

Syntax
#include <slapi-plugin.h>
int slapi_get proxied_dn(

lapi_PBTock *pb,
char xxproxiedDN);

Input parameters

pb A pointer to a parameter block.

proxiedDN
The DN that is used for the connection.

Returns

If the return code is LDAP_SUCCESS and proxiedDN is set, this DN is used for
the operation. If the return code is LDAP_SUCCESS and proxiedDN is not set,
then the proxy auth control was not called.

Usage
A slapi API that returns the proxied DN of the client.

Note: The user must free the returned proxiedDN after its use.

Error
This API returns the following error codes:
* LDAP_PARAM_ERROR - If the pb parameter is null.

e LDAP_OPERATIONS_ERROR - If the API encounter error processing the
request.

* LDAP_NO_MEMORY - Failed to allocate required memory.

Server Plug-ins Reference

See also
slapi_entry_get_dn()|

slapi_get_source_ip()

Purpose
This slapi routine returns the IP address sent in the audit control.

Syntax

#include <slapi-plugin.h>

int slapi_get_source ip(
Slapi_PBlock *pb,
char *% sourcelP);

Input parameters

pb A pointer to a parameter block.

sourcelP
The IP address of the connection source.

Returns

If the return code is LDAP_SUCCESS and sourcelP is set, then this source IP is
used for connection.

Usage
A slapi API that returns the IP address sent in the audit control.

Note: The user must free the returned sourcelP after its use. In addition, it must be
checked that the clientIP is from a trusted proxy web admin or application.

Error
This API returns the following error codes:
* LDAP_PARAM_ERROR - If the pb parameter is null.

¢ LDAP_OPERATIONS_ERROR - If the API encounter error processing the
request.

* LDAP_NO_MEMORY - Failed to allocate required memory.

See also
|slapi_get_c1ient_ip()|

Appendix D. SLAPI API Categories 65

66 Server Plug-ins Reference

Appendix E. Plug-in examples

The following sample C code creates a simple SASL bind plug-in that uses the

mechanism SAMPLE_BIND. It compares the password that is sent across the wire

to the password stored in the directory for the given bind DN. It is important to

realize that this example is meant only to illustrate the basic operation of servicing
a simple bind request, and how the operations are implemented by way of a user

developed plug-in. Actual processing of a simple bind request as part of the

fundamental operation of the LDAP server involves significantly more processing.

#include <stdio.h>
#include <string.h>
#include <strings.h>

#include <slapi-plugin.h>
#define FALSE 0

/* Let the next plugin try the operation x/

#define NEXTPLUGIN 0O

/* We handled the operation, so don't run any other plugins =*/
#define STOP_PLUGIN_SEARCH 1

/* SASL mechanism type */
#define SAMPLE_MECH "SAMPLE_BIND"

/* Subsystem to use for slapi_log_error calls */
#define SAMPLE_SUBSYSTEM "SAMPLE"

/* Filter used when searching for the entry DN =/
#define FILTER "objectclass=*"
/* Password attribute name */
#define PWATTR "userpassword"

/* Forward declaration of our bind plugin function */
int sampleBind(STapi_PBlock *pb);

/* Initialization function */
int sampleInit(Slapi_PBlock #pb)
{

int argc = 0;

char ** argv = NULL;

/* to register the Sample_Bind function as the pre-operation
* bind funtion
*/

if (slapi_pblock set(pb, SLAPI PLUGIN PRE BIND FN, (voidx) sampleBind) != 0)
{

slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,
"sampleInit couldn't set plugin function\n");
return (-1);

}

/* Get the plugin argument count. These arguments are defined
* in the plug-in directive in the configuration file.
*/
if (slapi_pblock_get(pb, SLAPI_PLUGIN_ARGC, &argc) != 0)
{
slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,
"samplelnit couldn't get argc\n");
return (-1);

© Copyright IBM Corp. 1999, 2007

67

/* Get the plugin argument array */
if(slapi_pblock get(pb, SLAPI PLUGIN ARGV, &argv) != 0)
{

slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,
"sampleInit couldn't get argv\n");
return (-1);

}

/* Low "severity" means high importance. */
slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,
"Hello from sample\n");

/*

* Register SAMPLE BIND as one of the supported SASL mechanisms
* so0 that it shows up when the RootDSE is queried.

*/

slapi_register_supported_sasIimechanism(SAMPLE_MECH) ;

return LDAP_SUCCESS;
}

/*
* Function to get the password for the specified dn.
*/

int getEntryPassword(char *dn, char ** passwd)

Slapi_PBlock *pb = NULL;

int rc = LDAP_SUCCESS;

int numEntries = 0;

STapi_Entry **entries = NULL;
Slapi_Attr xa = NULL;

struct berval =**attr_vals = NULL;

/*

* Do an internal search to get the entry for the given dn

*

/

pb = slapi_search_internal(dn, /* Entry to retrieve %/
LDAP_SCOPE_BASE,
/* Only get the entry asked for =/
FILTER, /* Search filter x/
NULL, /* No controls =/
NULL, /* Get all attributes =/
FALSE) ;
/* Get attribute values (names only is false) x/

if (pb == NULL)

slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,
"Search failed for dn = %s\n", dn);
return (LDAP_OPERATIONS_ERROR);
}

/* Get the return code from the search */
slapi_pblock get(pb, SLAPI_PLUGIN_INTOP_RESULT, &rc);
if (rc != LDAP_SUCCESS)

{
/* Search failed =/
slapi_pblock_destroy(pb);
return (rc);

}

/* Get the number of entries returned from the search */
slapi_pblock get(pb, SLAPI _NENTRIES, &numEntries);
if (numEntries == 0)

/* Couldn't find entry =/

68 Server Plug-ins Reference

slapi_free_search results_internal(pb);
slapi_pblock _destroy(pb);
return (LDAP_NO_SUCH_OBJECT);

}

/* Get the entries */
slapi_pblock_get(pb, SLAPI_PLUGIN_INTOP_SEARCH_ENTRIES, &entries);

/*
* Since we did a base level search, there can only be one entry returned.
* Get the value of the "userpassword" attribute from the entry.
*/
if (slapi_entry_attr_find(entries[0], PWATTR, &) == 0)
{
/* Copy the password into the out parameter =/
slapi_attr_get_values(a, &attr_vals);
(*passwd) = slapi_ch_strdup(attr_vals[0]->bv _val);

else

{
/* No userpassword attribute =/
slapi_free_search results_internal(pb);
slapi_pblock_destroy(pb);
return (LDAP_INAPPROPRIATE_AUTH);

}

slapi_free_search_results_internal(pb);
slapi_pblock_destroy(pb);
return (LDAP_SUCCESS);

}

/* Function to handle a bind request */
int sampleBind(STapi_PBlock #pb)

{
char * mechanism = NULL;
char * dn = NULL;
char * passwd = NULL;
char * connDn = NULL;

char * aString = NULL;
struct berval * credentials = NULL;
int rc = LDAP_SUCCESS;

/* Get the target DN =/
if (slapi_pblock_get(pb, SLAPI_BIND TARGET, &dn) != 0)

{
slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,
"sampleBind couldn't get bind target\n");
return (NEXTPLUGIN);
}

/* Get the password x/
if (slapi_pblock_get(pb, SLAPI_BIND CREDENTIALS, &credentials) != 0)
{
slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,
"sampleBind couldn't get bind target\n");
return (NEXTPLUGIN);
}

/* Get the bind mechanism */
if (slapi_pblock_get(pb, SLAPI_BIND SASLMECHANISM, &mechanism) != 0)
{
slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,
"sampleBind couldn't get bind target\n");
return (NEXTPLUGIN);

/*

Appendix E. Plug-in examples

* If the requested mechanism isn't SAMPLE, then we're not going to
* handle it.
*/

if ((mechanism == NULL) || (strcmp(mechanism, SAMPLE _MECH) != 0))

{

}

return (NEXTPLUGIN);

rc = getEntryPassword(dn, &passwd);

if (rc != LDAP_SUCCESS)

{
slapi_send_Tdap_result(pb, rc, NULL, NULL, O, NULL);
return (STOP_PLUGIN_SEARCH);

1

/* Check if they gave the correct password */
if ((credentials->bv_val == NULL) || (passwd == NULL) ||
(strcmp(credentials->bv_val, passwd) != 0))

slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,
"Bind as %s failed\n", dn);
rc = LDAP_INVALID CREDENTIALS;
}
else
{
/*
* Make a copy of the DN and authentication method and set them
* in the pblock. The server will use them for the connection.
*
/
connDn = slapi_ch_strdup(dn);
if (connDn == NULL)
{
slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,

"Could not duplicate connection DN\n");
slapi_send_Tdap_result(pb, LDAP_NO MEMORY, NULL, NULL, 0, NULL);
slapi_ch_free(passwd);
return (STOP_PLUGIN_SEARCH);

}

/*
* The authentication method string will Took something Tike
* "SASL SAMPLE_BIND"
*/
aString = slapi_ch_malloc(strlen(SLAPD_AUTH_SASL) +
strlen(SAMPLE_MECH) + 2);
if (aString == NULL)
{
slapi_log_error(LDAP_MSG_LOW, SAMPLE SUBSYSTEM,
"Could not duplicate authString\n");
slapi_ch_free(passwd);
slapi_ch_free(connDn);
slapi_send_ldap_result(pb, LDAP_NO MEMORY, NULL, NULL, 0, NULL);
return (STOP_PLUGIN_SEARCH);
1
sprintf(aString, "%s%s", SLAPD_AUTH_SASL, SAMPLE_MECH);

/* Set the connection DN */
if (slapi_pblock_set(pb, SLAPI_CONN_DN, (void *) connDn) != 0)
{
slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,
"Could not set SLAPI_CONN_DN\n");
slapi_ch_free(passwd);
slapi_ch_free(connDn);
slapi_ch_free(aString);
slapi_send_ldap_result(pb, LDAP_OPERATIONS_ERROR,
NULL, NULL, O, NULL);
return (STOP_PLUGIN_SEARCH);

70 Server Plug-ins Reference

}

/* Set the authentication type */
if (slapi_pblock_set(pb, SLAPI_CONN_AUTHTYPE, (void *) aString) != 0)
{

slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,
"Could not set SLAPI_CONN_AUTHTYPE\n");
slapi_ch_free(passwd);
slapi_ch_free(connDn);
slapi_ch_free(aString);
slapi_send_ldap_result(pb, LDAP_OPERATIONS_ERROR,
NULL, NULL, O, NULL);
return (STOP_PLUGIN_SEARCH);
}

rc = LDAP_SUCCESS;
}

/* Send the result back to the client =/
slapi_send_ldap_result(pb, rc, NULL, NULL, 0, NULL);

/*Free the memory allocated by the plug-in =/
slapi_ch_free(passwd);

return (STOP_PLUGIN_SEARCH);
}

To use the plug-in you must:
1. Compile it. Use the following makefile to compile the plug-in:

CC = gcc

LINK = gcc -shared
WARNINGS = -Wall -Werror
LDAP_HOME = /usr/ldap

INCDIRS
LIBDIRS

-I${LDAP_HOME}/include
-L${LDAP_HOME}/Tib

CFLAGS = -g ${WARNINGS} ${INCDIRS}
LINK_FLAGS = ${LIBDIRS} ${LIBS}

PLUGIN = libsample.so
OBJECTS = sample.o

.PHONY: clean
all: ${PLUGIN}

.C.0:
$(CC) ${CFLAGS} -c -o $0@ $<

${PLUGIN}: ${OBJECTS}
${LINK} -0 $@ $< ${LINK_FLAGS}

clean:
${RM} ${PLUGIN}
${RM} ${OBJECTS}

2. Add the following information to the ibmslapd.conf file using the ldapmodify
command:

1dapmodify -D <adminDN> -w<adminPW> -i<filename>

where <filename> contains:

Appendix E. Plug-in examples 71

DN: cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas,
cn=Configuration
changetype: modify
add: ibm-sTapdPlugin
ibm-slapdPlugin: preoperation <path to plugin>/1ibsample.so samplelnit
3. Restart the server. If the plug-in was loaded, its initialization function writes a
message to the ibmslapd.log file similar to the following;:

08/25/2003 01:28:50 PM SAMPLE: Hello from sample
4. Perform an LDAP operation like the following:

ldapsearch -D cn=bob,o=sample -w hello -p 1234
-b o=sample objectclass=*

The search succeeds if the entry cn=bob,o=sample exists and has a user
password attribute with the value hello. If the entry does not exist, an
authentication denied error is returned.

An example of DN partitioning function

A sample DN partition program that gets the rdn "cn=ck" from the dn
"cn=ck,ou=India,o=sample" regardless of what the base or suffix is, and generates a
partition number based on the rdn value, in this case it is "ck"

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <slapi-plugin.h>

#ifdef _ cplusplus
extern "C" {
#endif
int MyDNInit(STapi_PBlock #*pb);
#ifdef __cplusplus
}
#endif

int get_value_from_dn_fn(Slapi_PBlock *pb);

static char * get_hash_rdn(const char * dn, const char * base)
{

char * rdn = NULL;

size_t rdnLen = 0;

size_t dnLen = 0;

size_t baselen = 0;

size_t startNdx = 0;
size_t endNdx = 0;

if ((dn == NULL) || (base == NULL))
return NULL;

dnLen = strlen(dn);
baseLen = strlen(base);

/* If the base is Tonger than the dn, there's no rdn */
if (baseLen > dnLen)
return NULL;

/* If the dn and base are the same, there's no rdn */
if ((dnLen == baselLen) && (strcmp(dn, base) == 0))
return NULL;

/* Check if the dn is under the base */
if ((dn[dnLen - baselen - 1] != ',") ||

72 Server Plug-ins Reference

(strcmp([&dn[dnLen - baselLen], base) != 0))
return NULL;

/* Find the next previous comma */
endNdx = dnlLen - baselen - 2;
for (startNdx = endNdx; startNdx > 0; startNdx--)

{
if (dn[startNdx] == ',")
{
startNdx++;
break;
}
1

rdnLen = endNdx - startNdx + 1;
rdn = (char *) calloc(1, rdnLen + 1);
memcpy (rdn, &dn[startNdx], rdnLen);

return rdn;

/* The function takes the RDN as input and generates the Partition number. =*/

/* If you add an entry with RDN 'cn=wrong' then it generates wrong partition number.
This will help to check if client utility gives
Operation Error for wrong partition number.

*/

int ck_new_get_hash_value(const char * str, int numPartitions)
{
char temp[100];
// static int cnt = 0;
char *sub_string;
unsigned int sum = 0;
int len, partitionNum,i=0;

sub_string = strchr (str, '=');
sub_string++;
strcpy(temp , sub_string);

/* Remove the comment for code below if you want to check the Server
behavior for wrong partition number generation at Start up.

*/
/* if (strcasecmp ("ibmpolicies",temp) == 0 && cnt == 1)
{

return (numPartitions + 5) ;

boox/

if (strcasecmp ("WRONG",temp) == 0)
{

return (numPartitions + 5) ;

}

else

{

len = strlen(temp);

for(i = 0; i < len; str++, i++)
{
sum += temp[i] ;

}

partitionNum = ((sum * Ten) % numPartitions) + 1 ;

Appendix E. Plug-in examples 73

74

return (partitionNum);

// Function registered for generating Partition Number

int get_value_from_dn_fn(Slapi_PBlock *pb)
{

int rc = 0;

char *dn = NULL;

char *base = NULL;

int numPartitions = 0;

char * rdn = NULL;

int value = 0;

SLAPI_LDAPDN =TdapDn ;

Slapi_1dapRDN **ret_rdn = NULL;

// Get the parameters from PBlock

if ((rc = slapi_pblock _get((Slapi_PBlock *)pb, SLAPI_TARGET DN,
(void *)&dn) != 0) || (rc = slapi_pblock get((Slapi_PBlock *)pb,
SLAPI_PARTITION_BASE, (void) &base) !=0) || (rc =
slapi_pblock get((Slapi_PBlock *)pb, SLAPI NUMBER OF PARTITIONS,
(void *) &numPartitions) !=0))
{
fprintf(stderr, "Cannot get the PBlock values!\n");
return -1;

}
if ((dn == NULL) || (base == NULL) || (numPartitions <= 0))

fprintf(stderr,"Wrong values set in PBlock");
return -1;

/* If the DN and base are the same, it hashes 1 */
if (strcasecmp(dn, base) == 0)

{

fprintf(stderr, "Since the Base and DN are same set the
SLAPI_PARTITION_NUMBER to 1\n");

if ((rc = slapi_pblock_set((Slapi_PBlock *)pb,
SLAPI_PARTITION NUMBER, (void *)1)) !=0)

fprintf(stderr, "Was not able to set value in PBlock!\n");
return -1;

}

else

{

return 0;

}
}

// Get the Partition number based on the leftmost rdn value

rdn = get_hash_rdn(dn, base);
value = ck_new_get_hash_value(rdn , numPartitions);

Server Plug-ins Reference

fprintf(stderr,"\n\n*** Partition Value is : %d",value);

if ((rc = slapi_pblock set((STapi_PBlock *)pb,
SLAPI_PARTITION_NUMBER, (void *)value)) !=0)

fprintf(stderr, "Failed to set value in PBlock!\n");

free(rdn);
return -1;

slapi_dn_free_1dapdn(&1dapDn);
slapi_dn_free_rdn(ret_rdn);
free(rdn);

return 0;
}
// My Initialization Function

int MyDNInit(STapi_PBlock * pb)
{

if (slapi_pblock set(pb, SLAPI_PLUGIN_PROXY DN_PARTITION_FN,
(void *) get_value_from dn fn) !=0)
{

fprintf(stderr,"Cannot register Function in PBlock \n");
return (-1);

}

return (0);

}

Appendix E. Plug-in examples 75

76 Server Plug-ins Reference

Appendix F. Deprecated plug-in APIs

Although the following APIs are still supported, their use is deprecated. Use of the
newer replacement APIs is strongly encouraged.

* slapi_dn_normalize. See |“slapi_dn_normalize_v3()” on page 39.|

» slapi_dn_normalize_case. See[“slapi_dn_normalize_case_v3()” on page 39)

» slapi_dn_ignore_case. See |slapi_dn_ignore_case_v3()” on page 40|

© Copyright IBM Corp. 1999, 2007 77

78 Server Plug-ins Reference

Appendix G. Notices

This information was developed for products and services offered in the U.S.A.
IBM might not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1999, 2007 79

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Department MU5A46
11301 Burnet Road
Austin, TX 78758
US.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AIX

Database 2
DB2

IBM

iSeries
OMEGAMON
pSeries

Tivoli

80 Server Plug-ins Reference

VisualAge
xSeries
zSeries

Adobe, the Adobe logo, PostScript®, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,

and/or other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft®, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Appendix G. Notices 81

82 Server Plug-ins Reference

Index
A

accessibility vii

APIs 33

audit
configuration 11
event 11
record 12

audit configuration options 12
ibm-audit 12
ibm-auditAdd 12
ibm-
auditAttributesOnGroupEvalOp 13
ibm-auditBind 12
ibm-auditCompare 13
ibm-auditDelete 12
ibm-auditExtOp 13
ibm-auditExtOPEvent 12
ibm-auditFailedOPonly 12
ibm-auditGroupsOnGroupControl 13
ibm-auditLog: 12
ibm-auditModify 12
ibm-auditModifyDN 12
ibm-auditSearch 12
ibm-auditUnbind 12
ibm-auditVersion 13

audit plug-ins 11

back-end-related functions 7
SLAPI_PLUGIN_CLOSE_FN 7
SLAPI_PLUGIN_DB_INIT_FN 7

books
see publications v, vi

C

configuration
audit 11
configuration options
audit services 12
conventions
typeface viii

D

database functions 17

output parameters 18
database plug-ins

functions of 7
directory names, notation viii

E

education

see Tivoli technical training vii
environment variables, notation viii
event

audit 11

© Copyright IBM Corp. 1999, 2007

examples
plug-ins 67
extended operation plug-ins 10
input parameters 10
SLAPI_EXT_OP_REQ_VALUE
(struct berval *) 10
SLAPI_EXT_OP_RET_OID (char
*) 10
output parameters 10
SLAPI_EXT_OP_RET_OID (char
*) 10
SLAPI_EXT_OP_RET_VALUE
(struct berval *) 10

F

functions
back-end related 7
ldap protocol-related 7

H

header file
audit 12

input parameters
extended operation plug-ins 10
introduction
plug-ins 1
server plug-ins 1
iPlanet APIs 33
compare 36
internal database operations 34, 49
LDAP specific objects 33, 37, 38, 39,
40, 41
logging routines 34
memory management 33, 35
pblock 33, 34
querying server information 34, 53
sending results 33, 37

L

Idap protocol-related functions 7
SLAPI_PLUGIN_DB_ADD_EN 7
SLAPI_PLUGIN_DB_BIND_EN 7
SLAPI_PLUGIN_DB_COMPARE_EFN 7
SLAPI_PLUGIN_DB_DELETE_EN 7
SLAPI_PLUGIN_DB_MODIFY_EN 7
SLAPI_PLUGIN_DB_MODRDN_EN 7
SLAPI_PLUGIN_DB_SEARCH_FN 7
SLAPI_PLUGIN_DB_UNBIND_EN 7

M

manuals

see publications v, vi

N

notation
environment variables
path names viii
typeface viii

viii

O

online publications
accessing Vi
operation plug-ins 9
ordering publications vii
output parameters
extended operation plug-ins 10

P

parameter reference 19
all plug-ins 22
back-end
information 22
connection
information 23
database
information 22
database plug-ins 19
extended operation plug-ins 21
operation
information 24
plug-ins
information 25
post-operation/data notification
plug-ins 21
pre-operation/data validation
plug-ins 20
registering plug-in functions 19
types of plug-ins 25
parameters
abandon function 29
add function 28
bind function 26
compare function 28
configuration function 26
database archive 30
database export 30
database import 29
database restore 30
delete function 28
DN Partitioning 32
extended operations 31
input
extended operations 10
internal LDAP operations 31
modify function 28
modify rdn function 29
output
database functions 18
extended operations 10
search function 26
path names, notation viii

83

plug-in APIs
deprecated 77
plug-ins
audit 11
extended operation 10
introduction 1
operation 9
post-operation 9
pre-operation 9
types of 1
writing 3
post-operation plug-ins 9
SLAPI_PLUGIN_POST_ADD_EN 9
SLAPI_PLUGIN_POST_BIND_FN 9
SLAPI_PLUGIN_POST_COMPARE_FN 10
SLAPI_PLUGIN_POST_DELETE_FN 9
SLAPI_PLUGIN_POST_MODIFY_FN 10
SLAPI_PLUGIN_POST_MODRDN_FN 10
SLAPI_PLUGIN_POST_SEARCH_FN 10
SLAPI_PLUGIN_POST_UNBIND_FN 9
pre-operation plug-ins 9
SLAPI_PLUGIN_PRE_ADD_EN 9
SLAPI_PLUGIN_PRE_BIND_EN 9
SLAPI_PLUGIN_PRE_COMPARE_FN 9
SLAPI_PLUGIN_PRE_DELETE_EN 9
SLAPI_PLUGIN_PRE_MODIFY_EN 9
SLAPI_PLUGIN_PRE_MODRDN_EN 9
SLAPI_PLUGIN_PRE_SEARCH_FN 9
SLAPI_PLUGIN_PRE_UNBIND_EN 9
publications v
accessing online vi
ordering vii

R

record
audit 12

S

server plug-ins
introduction 1
SLAPI
API Categories 57

T

Tivoli software information center vi
Tivoli technical training vii

training, Tivoli technical vii

typeface conventions viii

\'

variables, notation for viii

84 Server Plug-ins Reference

Printed in USA

GC32-1565-00

	Contents
	About this book
	Intended audience for this book
	Publications
	IBM Tivoli Directory Server version 6.1 library
	Related publications
	Accessing terminology online
	Accessing publications online
	Ordering publications

	Accessibility
	Tivoli technical training
	Support information
	Conventions used in this book
	Typeface conventions
	Operating system-dependent variables and paths

	Chapter 1. Introduction to server plug-ins
	Chapter 2. Writing a plug-in
	Chapter 3. Database plug-ins
	LDAP protocol-related functions
	Back-end-related functions

	Chapter 4. Operation plug-ins
	Pre-operation plug-ins
	Post-operation plug-ins
	Extended operation plug-ins
	Input parameters
	Output parameters

	Audit plug-ins
	Configuration options
	Examples

	Appendix A. Supported database functions
	Output parameters

	Appendix B. Parameter Reference
	Parameters for Registering Plug-in Functions
	Database Plug-ins
	Pre-Operation/Data Validation Plug-ins
	Post-Operation/Data Notification Plug-ins
	Extended Operation Plug-ins
	DN Partitioning Plug-ins

	Parameters Accessible to All Plug-ins
	Information About the Database
	Information About the Connection
	Information About the Operation
	Information About the Plug-ins
	Types of Plug-ins

	Parameters for the Configuration Function
	Parameters for the Bind Function
	Parameters for the Search Function
	Parameters for the Add Function
	Parameters for the Compare Function
	Parameters for the Delete Function
	Parameters for the Modify Function
	Parameters for the Modify RDN Function
	Parameters for the Abandon Function
	Parameters for Database Import
	Parameters for Database Export
	Parameters for Database Archive
	Parameters for Database Restore
	Parameters for Extended Operations
	Parameters for Internal LDAP Operations
	Parameters for the DN Partitioning Function

	Appendix C. Supported iPlanet APIs
	slapi_pblock_get()
	slapi_pblock_set()
	slapi_pblock_new()
	slapi_pblock_destroy()
	slapi_ch_malloc()
	slapi_ch_calloc()
	slapi_ch_realloc()
	slapi_ch_strdup()
	slapi_compare_internal()
	slapi_ch_free()
	slapi_send_ldap_result()
	slapi_dn_normalize()
	slapi_dn_normalize_case()
	slapi_dn_ignore_case()
	slapi_dn_normalize_v3()
	slapi_dn_normalize_case_v3()
	slapi_dn_ignore_case_v3()
	slapi_dn_compare_v3()
	slapi_dn_issuffix()
	slapi_entry2str()
	slapi_str2entry()
	slapi_entry_attr_find()
	slapi_entry_attr_delete()
	slapi_entry_get_dn()
	slapi_entry_set_dn()
	slapi_entry_alloc()
	slapi_entry_dup()
	slapi_send_ldap_search_entry()
	slapi_entry_free()
	slapi_attr_get_values()
	slapi_str2filter()
	slapi_filter_get_choice()
	slapi_filter_get_ava()
	slapi_filter_free()
	slapi_filter_list_first()
	slapi_filter_list_next()
	slapi_is_connection_ssl()
	slapi_get_client_port()
	slapi_search_internal()
	slapi_modify_internal()
	slapi_add_internal()
	slapi_add_entry_internal()
	slapi_delete_internal()
	slapi_modrdn_internal()
	slapi_free_search_results_internal()
	slapi_get_supported_saslmechanisms()
	slapi_get_supported_extended_ops()
	slapi_register_supported_saslmechanism()
	slapi_get_supported_controls()
	slapi_register_supported_control()
	slapi_control_present()
	slapi_log_error()

	Appendix D. SLAPI API Categories
	slapi_dn2ldapdn()
	Purpose
	Syntax
	Input parameters
	Usage
	Errors
	See also

	slapi_dn_get_rdn()
	Purpose
	Syntax
	Input parameters
	Output parameters
	Usage
	Errors
	See also

	slapi_dn_get_rdn_count()
	Purpose
	Syntax
	Input parameters
	Usage
	Errors
	See also

	slapi_dn_free_ldapdn()
	Purpose
	Syntax
	Input parameters
	Usage
	See also

	slapi_dn_free_rdn()
	Purpose
	Syntax
	Input parameters
	Usage
	See also

	slapi_get_response_controls()
	Purpose
	Syntax
	Input parameters
	Output parameters
	Usage

	slapi_set_response_controls()
	Purpose
	Syntax
	Input parameters
	Output parameters
	Usage

	slapi_moddn_internal()
	Purpose
	Syntax
	Input parameters
	Returns
	Usage
	Error
	See also

	slapi_get_client_ip()
	Purpose
	Syntax
	Input parameters
	Returns
	Usage
	Error
	See also

	slapi_get_proxied_dn()
	Purpose
	Syntax
	Input parameters
	Returns
	Usage
	Error
	See also

	slapi_get_source_ip()
	Purpose
	Syntax
	Input parameters
	Returns
	Usage
	Error
	See also

	Appendix E. Plug-in examples
	An example of DN partitioning function

	Appendix F. Deprecated plug-in APIs
	Appendix G. Notices
	Trademarks

	Index

