
IBM Tivoli Directory Server

Performance Tuning Guide

Version 6.0

SC32-1677-00

���

IBM Tivoli Directory Server

Performance Tuning Guide

Version 6.0

SC32-1677-00

���

First Edition (April, 2005)

This edition applies to version 6, release 0, of IBM Tivoli Directory Server and to all subsequent releases and

modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Preface v

Who should read this book v

Publications v

IBM Tivoli Directory Server library v

Related publications vi

Accessing publications online vi

Ordering publications vi

Accessibility vii

Tivoli software training vii

Support information vii

Conventions used in this book vii

Typeface conventions vii

Operating system differences vii

Chapter 1. IBM Tivoli Directory Server

tuning general overview 1

IBM Tivoli Directory Server 6.0 application

components 1

LDAP caches and DB2 buffer pools 2

Memory allocation between LDAP caches and

buffer pools 3

IBM Tivoli Directory Server tuning overview . . . 3

DB2 tuning overview 3

Generic LDAP application tips 3

Chapter 2. IBM Tivoli Directory Server

tuning 5

LDAP caches 5

LDAP attribute cache 5

LDAP filter cache 9

Entry cache 11

ACL cache 12

Measuring cache entry sizes 12

LDAP cache configuration variables 13

Configuring attribute caching 13

Setting other LDAP cache configuration variables 15

Directory size 16

objectclass table indexes on Linux 18

Chapter 3. DB2 tuning and commands 21

DB2 buffer pool tuning 22

Buffer pool sizes 22

Optimization and organization (reorgchk and reorg) 24

Optimization 25

Database organization (reorgchk and reorg) . . 25

Indexes 30

Other DB2 configuration parameters 31

Database backup and restore considerations . . . 32

Chapter 4. AIX operating system tuning 33

Enabling large files 33

Setting MALLOCTYPE 33

Setting other environment variables 34

Viewing ibmslapd environment variables (AIX

operating system only) 34

Chapter 5. Hardware tuning 37

Disk speed improvements 37

Chapter 6. IBM Tivoli Directory Server

features 39

Bulkload 39

Effects of using the -k option 39

Replication tuning 41

Number of replication threads 42

Replication context cache size 42

Replication ready size limit 43

Proxy server tuning 44

Monitoring performance 44

ldapsearch with ″cn=monitor″ 44

ldapsearch with ″cn=workers,cn=monitor″ . . . 49

ldapsearch with ″cn=connections,cn=monitor″ . . 50

ldapsearch with ″cn=changelog,cn=monitor″ . . 50

When to configure the LDAP change log 51

Appendix A. Workload description . . . 53

Appendix B. Modifying TCP/IP settings 55

Appendix C. Platform configurations 57

Appendix D. Support information . . . 59

Searching knowledge bases 59

Search the information center on your local

system or network 59

Search the Internet 59

Obtaining fixes 59

Contacting IBM Software Support 60

Determine the business impact of your problem 61

Describe your problem and gather background

information 61

Submit your problem to IBM Software Support 61

Appendix E. Notices 63

Trademarks 65

Index 67

© Copyright IBM Corp. 2005 iii

iv Performance Tuning Guide

Preface

The purpose of this document is to provide information about improving

performance for IBM® Tivoli® Directory Server.

Information such as performance limitations, ways to increase performance, and

examples are included.

Who should read this book

The target audience for this book includes:

v System installation and deployment administrators

v Network system administrators

v Information Technology architects

v Application developers

Publications

Read the descriptions of the IBM Tivoli Directory Server library, the prerequisite

publications, and the related publications to determine which publications you

might find helpful. After you determine the publications you need, see “Accessing

publications online” on page vi for information about accessing publications

online.

IBM Tivoli Directory Server library

The publications in the IBM Tivoli Directory Server library are:

IBM Tivoli Directory Server Version 6.0 Release Notes

Contains information about the new features in the IBM Tivoli Directory

Server Version 6.0 release.

IBM Tivoli Directory Server Version 6.0 Installation and Configuration Guide

Contains complete information for installing the IBM Tivoli Directory

Server client, server, and Web Administration Tool. Includes information

about migrating from a previous version of IBM Tivoli Directory Server or

SecureWay® Directory.

IBM Tivoli Directory Server Version 6.0 Performance Tuning Guide

Contains information about tuning your server for better performance.

IBM Tivoli Directory Server Version 6.0 Administration Guide

Contains instructions for performing administrator tasks through the Web

Administration Tool and the command line.

IBM Tivoli Directory Server Version 6.0 Plug-ins Reference

Contains information about writing server plug-ins.

IBM Tivoli Directory Server Version 6.0 C-Client SDK Programming Reference

Contains information about writing Lightweight Directory Access Protocol

(LDAP) client applications.

IBM Tivoli Directory Server Version 6.0 Problem Determination Guide

Contains information about possible problems and corrective actions that

can be tried before contacting Software Support.

© Copyright IBM Corp. 2005 v

IBM Tivoli Directory Server Version 6.0 Messages

Contains information about error messages that you might see.

Related publications

Information related to IBM Tivoli Directory Server is available in the following

publications:

v IBM Tivoli Directory Server Version 6.0 uses the JNDI client from Sun

Microsystems. For information about the JNDI client, refer to the Java™ Naming

and Directory Interface™ 1.2.1 Specification on the Sun Microsystems Web site at

http://java.sun.com/products/jndi/1.2/javadoc/index.html.

v The Tivoli Software Library provides a variety of Tivoli publications such as

white papers, datasheets, demonstrations, redbooks, and announcement letters.

The Tivoli Software Library is available on the Web at:

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html

v The Tivoli Software Glossary includes definitions for many of the technical terms

related to Tivoli software. The Tivoli Software Glossary is available from the

Glossary link on the left side of the Tivoli Software Library Web page

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html

Accessing publications online

The publications for this product are available online in Portable Document Format

(PDF) or Hypertext Markup Language (HTML) format, or both in the Tivoli

software library: http://publib.boulder.ibm.com/tividd/td/tdprodlist.html

To locate product publications in the library, click the first letter of the product

name or scroll until you find the product name. Then, click the product name.

Product publications include release notes, installation guides, user’s guides,

administrator’s guides, and developer’s references.

Note: To ensure proper printing of PDF publications, select the Fit to page check

box in the Adobe Acrobat Print window (which is available when you click

File → Print).

Ordering publications

You can order many Tivoli publications online at the following Web site:

http://www.elink.ibmlink.ibm.com/public/applications/

publications/cgibin/pbi.cgi

You can also order by telephone by calling one of these numbers:

v In the United States: 800-879-2755

v In Canada: 800-426-4968

In other countries, see the following Web site for a list of telephone numbers:

http://www.ibm.com/software/tivoli/order-lit/

vi Performance Tuning Guide

http://java.sun.com/products/jndi/1.2/javadoc/index.html
http://publib.boulder.ibm.com/tividd/td/tdprodlist.html
http://publib.boulder.ibm.com/tividd/td/tdprodlist.html
http://publib.boulder.ibm.com/tividd/td/tdprodlist.html
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.ibm.com/software/tivoli/order-lit/

Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. With this product,

you can use assistive technologies to hear and navigate the interface. You also can

use the keyboard instead of the mouse to operate all features of the graphical user

interface.

Tivoli software training

For Tivoli software training information, refer to the IBM Tivoli Education Web

site: http://www.ibm.com/software/tivoli/education.

Support information

If you have a problem with your IBM software, you want to resolve it quickly. IBM

provides the following ways for you to obtain the support you need:

v Searching knowledge bases: You can search across a large collection of known

problems and workarounds, Technotes, and other information.

v Obtaining fixes: You can locate the latest fixes that are already available for your

product.

v Contacting IBM Software Support: If you still cannot solve your problem, and

you need to work with someone from IBM, you can use a variety of ways to

contact IBM Software Support.

For more information about these three ways of resolving problems, see

Appendix D, “Support information,” on page 59.

Conventions used in this book

This reference uses several conventions for special terms and actions and for

operating system-dependent commands and paths.

Typeface conventions

The following typeface conventions are used in this reference:

Bold Lowercase commands or mixed case commands that are difficult to

distinguish from surrounding text, keywords, parameters, options, names

of Java classes, and objects are in bold.

Italic Variables, titles of publications, and special words or phrases that are

emphasized are in italic.

<Italic>

Variables are set off with < > and are in <italic>.

Monospace

Code examples, command lines, screen output, file and directory names

that are difficult to distinguish from surrounding text, system messages,

text that the user must type, and values for arguments or command

options are in monospace.

Operating system differences

This book uses the UNIX® convention for specifying environment variables and for

directory notation. When you are using the Windows® command line, replace

$variable with %variable% for environment variables and replace each forward

Preface vii

http://www.ibm.com/software/tivoli/education

slash (/) with a backslash (\) in directory paths. If you are using the bash shell on

a Windows system, you can use the UNIX conventions.

viii Performance Tuning Guide

Chapter 1. IBM Tivoli Directory Server tuning general

overview

This guide provides tuning information for IBM Tivoli Directory Server and the

related IBM Database 2™ (DB2®) database. IBM Tivoli Directory Server is a

Lightweight Directory Access Protocol (LDAP) directory that provides a layer on

top of DB2, allowing users to efficiently organize, manipulate, and retrieve data

stored in the DB2 database. Tuning for optimal performance is primarily a matter

of adjusting the relationships between the LDAP server and DB2 according to the

nature of your workload.

Because each workload is different, instead of providing exact values for tuning

settings, guidelines are provided, where appropriate, for how to determine the best

settings for your system.

 Attention: Measurements in this guide were captured in a lab environment. The

workload driving this test included a mixture of searches and binds, including

wildcard searches which return multiple entries. Your results might differ from the

lab results shown in this guide.

IBM Tivoli Directory Server 6.0 application components

The following figure illustrates how IBM Tivoli Directory Server components

interact with each other. Tuning these components can result in improved

performance.

 The arrows in Figure 1 represent the path of a query issued from a client computer.

The query follows a path from the IBM Tivoli Directory Server client to the LDAP

server, to DB2, to the physical disks in search of entries that match the query’s

search filter settings. The shorter the path to matching entries, the better overall

performance you can expect from your system.

Figure 1. IBM Tivoli Directory Server 6.0

© Copyright IBM Corp. 2005 1

For example, if a query locates all the matching entries in the LDAP server, access

to DB2 and the disks is not necessary. If the matching entries are not found in the

LDAP server, the query continues on to DB2 and, if necessary, to the physical disks

as a last resort. Because of the time and resources it takes to retrieve data from

disk, it is better from a performance standpoint to allocate a significant amount of

memory to the LDAP server caches and DB2 buffer pools.

LDAP caches and DB2 buffer pools

Caches and buffer pools store previously retrieved data and can significantly

improve performance by reducing disk access. When requested data is found

within a cache or buffer pool, it is called a cache hit. A cache miss occurs when

requested data is not located in a cache or buffer pool.

Because the type of information in each cache and buffer pool is different, it is

useful to understand how and when each cache is accessed.

LDAP caches

Search operations attempt to use one or more caches when resolving the search

filter as well as returning the individual matching entries. Most base-scoped

searches can be resolved directly in memory by retrieving the base entry from the

entry cache or the database bufferpool and performing the comparison of the entry

with the filter.

If a base-scoped search cannot be resolved directly in memory or the search is not

base-scoped, an attempt is made to use the attribute cache to resolve the filter in

memory or to use the filter cache to retrieve the results of a previously run search

operation. If LDAP caches cannot be used to resolve the filter, the filter will be

resolved using DB2. When the individual entries are returned to the client, they are

retrieved from memory using the entry cache, if possible. If the individual entries

are not found in the entry cache, they are retrieved from DB2

The four LDAP caches are:

v LDAP attribute cache

v LDAP filter cache

v Entry cache

v ACL cache

For more information on these caches, see “LDAP caches” on page 5.

DB2 buffer pools

There are two DB2 buffer pools:

LDAPBP

LDAPBP contains cached entry data (ldap_entry) and all of the associated

indexes. LDAPBP is similar to the entry cache, except that LDAPBP uses

different algorithms in determining which entries are cached. It is possible

that an entry that is not cached in the entry cache is located in LDAPBP. If

the requested data is not found in the entry cache or LDAPBP, the query

must access the physical disks.

 See “LDAPBP buffer pool size” on page 22 for more information.

IBMDEFAULTBP

DB2 system information, including system tables and other LDAP

information, is cached in the IBMDEFAULTBP. You might need to adjust

the IBMDEFAULTBP cache settings for better performance. See

“IBMDEFAULTBP buffer pool size” on page 23 for more information.

2 Performance Tuning Guide

Memory allocation between LDAP caches and buffer pools

The LDAP caches are generally more efficient as a means of caching LDAP

searches; however, parts of the LDAP cache get invalidated on updates and must

be reloaded before performance benefits return. Some experimentation between the

two caching schemes is required to find the best memory allocation for your

workload.

IBM Tivoli Directory Server tuning overview

Tuning the LDAP server can significantly improve performance by storing useful

data in the caches. It is important to remember, however, that tuning the LDAP

server alone is insufficient. Some tuning of DB2 is also required for optimal

performance.

The most significant performance tuning related to the IBM Tivoli Directory Server

involves the LDAP caches. LDAP caches are fast storage buffers in memory used

to store LDAP information such as queries, answers, and user authentication for

future use. While LDAP caches are useful mostly for applications that frequently

retrieve repeated cached information, they can greatly improve performance by

avoiding calls to the database. See “LDAP caches” on page 5 for information about

how to tune the LDAP caches.

DB2 tuning overview

DB2 serves as the data storage component of the IBM Tivoli Directory Server.

Tuning DB2 results in overall improved performance.

This guide contains several recommendations for tuning DB2, but the most

commonly tuned items are:

v DB2 buffer pools – Buffer pools are DB2 data caches. Each buffer pool is a data

cache between the applications and the physical database files. Adjusting the

size of the DB2 buffer pools can result in improved performance. See “DB2

buffer pool tuning” on page 22 for information about buffer pool tuning.

v Optimization and organization – After initially loading a directory, or after a

number of updates have been performed, it is very important to update

database statistics and organization for DB2 to perform optimally. See

“Optimization and organization (reorgchk and reorg)” on page 24 for more

information.

v Indexes – Indexes can make locating data on disk very fast, providing a

significant boost to performance. For information about how to create indexes,

see “Indexes” on page 30.

Attention: You should place the DB2 log on a physical disk drive separate from

the data. For improved data-integrity, have the DB2 log and the data on separate

drives. Use the following command to set the path to the DB2 log file directory:

DB2 UPDATE DATABASE CONFIGURATION FOR database_alias USING NEWLOGPATH path

Be sure the database instance owner has write access to the specified path or the

command fails. For more information on using DB2 commands, see Chapter 3,

“DB2 tuning and commands,” on page 21.

Generic LDAP application tips

The following are some tips that can help improve performance:

Chapter 1. IBM Tivoli Directory Server tuning general overview 3

v Perform searches on indexed attributes only. See “Indexes” on page 30 for

instructions for defining and verifying indexes for IBM Tivoli Directory Server.

v Open a connection only once and reuse it for many operations if possible.

v Minimize the number of searches by retrieving multiple attribute values at one

time.

v Retrieve only the attributes you need. Do not use ALL by default. For example,

when you search for the groups a user belongs to, ask for only the Distinguished

Names (DNs), and not the entire group. Do not request the member or

uniquemember attributes if possible.

v Minimize and batch updates (add, modify, modrdn, delete) when possible.

v Use base-scoped searches whenever possible rather than one-level or subtree

searches. A base-scoped search is a search done using the ldapsearch utility,

where the scope of the search is defined as a base object.

v Avoid using wildcard searches where the wildcard is in any position other than

the leading character in a term, or a trailing character. Use wildcard searches

that are similar to the following (leading character):

sn=*term

or the following (trailing character):

sn=term*

Note: A filter such as sn=*term* is less efficient than the examples given.

v When using nested groups, keep the depth of nesting to 50 groups or less.

Greater nesting depths can result in greater processing times when performing

add or delete operations that involve updates to the nested group hierarchy.

v Set server search limits to prevent accidental long-running searches.

v Use the ldap_modify interface to add members to or delete members from a

group. Do not do a search to retrieve all members, edit the returned list, then

send the updated list as a modify-replace operation. This modify-replace

scenario will not perform well with large groups.

v For the Proxy server in this release, do not set the value in the Connection pool

size field to be less than 5.

4 Performance Tuning Guide

Chapter 2. IBM Tivoli Directory Server tuning

This chapter discusses the following performance tuning tasks for the IBM Tivoli

Directory Server:

v Tuning LDAP caches

v Determining how directory size affects performance

LDAP caches

LDAP caches are fast storage buffers in memory used to store LDAP information

such as queries, answers, and user authentication for future use. Tuning the LDAP

caches is crucial to improving performance.

An LDAP search that accesses the LDAP cache can be faster than one that requires

a connection to DB2, even if the information is cached in DB2. For this reason,

tuning LDAP caches can improve performance by avoiding calls to the database.

The LDAP caches are especially useful for applications that frequently retrieve

repeated cached information. See Figure 1 on page 1 for an illustration of the

LDAP caches.

The following sections discuss each of the LDAP caches and demonstrate how to

determine and set the best cache settings for your system. Keep in mind that every

workload is different, and some experimentation will likely be required in order to

find the best settings for your workload.

Note: Cache sizes for the filter cache, ACL cache, and entry cache are measured in

numbers of entries.

LDAP attribute cache

The attribute cache stores configured attributes and their values in memory. When

a one-level or sub-tree search is performed, or a base-scoped search is performed

that cannot be resolved directly in memory, the attribute cache manager resolves

the search operation in memory if all attributes used in the filter are cached and

the filter is a type supported by the attribute cache manager. Resolving filters in

memory leads to improved search performance over resolving filters using DB2.

There are two things that can happen when a query arrives at the attribute cache:

v All attributes used in the search filter are cached and the filter is of a type

that can be resolved by the attribute cache manager. If this is the case, the list

of matching entry IDs is resolved in memory using the attribute cache manager.

This list of matching IDs is then sent to the entry cache. For this reason, the

attribute cache is most efficient when used in combination with the entry cache

The attribute cache manager can resolve simple filters of the following types:

– exact match filters

– presence filters

The attribute cache manager can resolve complex filters only if they are

conjunctive. In addition, the subfilters within the complex filters must be of the

following types:

– exact match filters

– presence filters

© Copyright IBM Corp. 2005 5

– conjunctive filters

Filters containing attributes with language tags are not resolved by the attribute

cache manager.

For example, if the attributes objectclass, uid, and cn are all cached, the

following filters can be resolved in memory within the attribute cache manager:

– (cn=Karla)

– (cn=*)

– (&(objectclass=eperson)(cn=Karla))

– (&(objectclass=eperson)(cn=*)(uid=1234567))

– (&(&(objectclass=eperson)(cn=*))(uid=1234567))

– (&(uid=1234567)(&(objectclass=eperson)(cn=*)))

v Some or all of the attributes used in the search filter are not cached or the

filter is of a type that cannot be resolved by the attribute cache manager. If

this is the case, the query is sent to the filter cache for further processing.

Note: If there are no attributes in the attribute cache, the attribute cache

manager determines this quickly, and the query is sent to the filter cache.

For example, if the attributes objectclass, uid, and cn are the only cached

attributes, the following filters will not be able to be resolved in memory by the

attribute cache manager:

– (sn=Smith)

– (cn=K*)

– (|(objectclass=eperson)(cn~=Karla))

– (&(objectclass=eperson)(cn=K*)(uid=1234567))

– (&(&(objectclass=eperson)(cn<=Karla))(uid=1234567))

– (&(uid=1234567)(&(objectclass=eperson)(sn=*)))

Note: Choosing to cache member, uniquemember, or ibm-membergroup can lead

to slower performance of delete and modrdn operations. If the entry being

deleted or renamed is a member of many groups, or large groups, then the

attribute caches need to be updated to reflect this change for every group in

which the entry was a member.

Determining which attributes to cache

To determine which attributes to cache, experiment with adding some or all of the

attributes listed in the cached_attribute_candidate_hit attribute to the attribute

cache. Then run your workload and measure the differences in operations per

second. For information about the cached_attribute_candidate_hit attribute, see

“ldapsearch with ″cn=monitor″” on page 44.

Note: Choosing to cache member, uniquemember, or ibm-membergroup can lead

to slower performance of delete and modrdn operations. If the entry being

deleted or renamed is a member of many groups or large groups, the

attribute caches are updated to reflect this change for every group in which

the entry was a member. This additional processing can lead to slower

performance of these types of operations.

Examples: Information about attributes that are cached, their individual sizes in

kilobytes, and their hit counts can be retrieved during cn=monitor searches. Also,

up to ten attributes that are most often used in search filters that can be processed

by the attribute cache manager, but are not yet cached, can be retrieved during

6 Performance Tuning Guide

cn=monitor searches. Use a combination of the output from cn=monitor searches

and knowledge of the types of searches your applications use to determine which

attributes to cache.

Example 1: The following results are for a cn=monitor search for a server that had

no attributes configured for attribute caching:

ldapsearch -h ldaphost -s base -b cn=monitor objectclass=*

 cached_attribute_total_size

cached_attribute_configured_size cached_attribute_hit cached_attribute_size

cached_attribute_candidate_hit

cn=monitor

cached_attribute_total_size=0

cached_attribute_configured_size=1200

cached_attribute_candidate_hit=mail:50000

cached_attribute_candidate_hit=uid:45000

cached_attribute_candidate_hit=givenname:500

cached_attribute_candidate_hit=sn:200

If this cn=monitor search produced these results, you can assume that the

attributes to cache must be uid and mail. Even though givenname and sn were

used in search filters that have been resolved by the attribute cache manager had

those attributes been cached, their hit counts are very low in comparison to the

attributes uid and mail, and using memory to store givenname and sn is not

realistic.

After the attributes uid and mail are cached and the application or performance

test is rerun, the cn=monitor search should be performed again to determine if

there is enough memory configured to cache both attributes. If there is not enough

memory, then additional memory must be configured, or the least-used attribute

must be removed from the list of attributes to cache.

Example 2: In this example, givenname and sn are already cached. The hit count for

objectclass is very high. Also, the hit rates for uid and mail are very high:

ldapsearch -h ldaphost -s base -b cn=monitor objectclass=*

 cached_attribute_total_size

cached_attribute_configured_size cached_attribute_hit cached_attribute_size

cached_attribute_candidate_hit

cn=monitor

cached_attribute_total_size=1000

cached_attribute_configured_size=1200

cached_attribute_hit=givenname:500

cached_attribute_size=givenname:300

cached_attribute_hit=sn:200

cached_attribute_size=sn:400

cached_attribute_candidate_hit=objectclass:110000

cached_attribute_candidate_hit=mail:90000

cached_attribute_candidate_hit=uid:85000

cached_attribute_candidate_hit=workloc:25000

Note: cached_attribute_total_size is the amount of memory used by the directory

attribute cache, in kilobytes. This number includes additional memory used

to manage the cache that is not charged to the individual attribute caches.

Consequently, this total is larger than the sum of the memory used by all

the individual attribute caches.

As in the previous example, givenname and sn are not good choices for caching

because of their relatively low hit count, in comparison to the other attributes

listed. You can assume that objectclass is the best choice and that uid and mail

are also excellent choices. If attribute caching is reconfigured to cache objectclass,

uid and mail, you might discover after caching is complete and after rerunning

Chapter 2. IBM Tivoli Directory Server tuning 7

your performance tests under the same conditions, that your performance isn’t

what you expect. Also, the cn=monitor search yields the following unexpected

results which show that only objectclass is cached, and its hit count is much lower

than when it was a candidate:

ldapsearch -h ldaphost -s base -b cn=monitor objectclass=*

 cached_attribute_total_size

cached_attribute_configured_size cached_attribute_hit cached_attribute_size

cached_attribute_candidate_hit

cn=monitor

cached_attribute_total_size=1000

cached_attribute_configured_size=1200

cached_attribute_hit=objectclass:10000

cached_attribute_size=objectclass:750

cached_attribute_candidate_hit=mail:90000

cached_attribute_candidate_hit=uid:85000

cached_attribute_candidate_hit=workloc:25000

cached_attribute_candidate_hit=givenname:300

cached_attribute_candidate_hit=sn:200

Two things occurred to cause these results:

1. The objectclass attribute table was large in comparison to the other attribute

tables. Even though objectclass, uid and mail were all configured to be

cached, objectclass was the only attribute that fit within the maximum

memory configured for attribute caching.

2. Further analysis of the search filters used by your application reveals that

objectclass was not used in search filters by itself very often. The attribute

cache manager could not resolve many filters because not all attributes in the

filter were cached. A combination of the cn=monitor output and analysis of the

filters used by your application is necessary to determine which attributes to

cache. The following search filters were used in this example:

(objectclass=*) 10000 hits

(givenname=*) 300 hits

(sn=*) 200 hits

(mail=*) 50000 hits

(uid=*) 45000 hits

(workloc=* 5000 hits

(&(objectclass=person)(mail=*)) 40000 hits

(&(objectclass=person)(uid=*)) 40000 hits

(&(objectclass=person)(workloc=*)) 20000 hits

You can see from the above filter analysis that objectclass, when used alone, had

only 10000 hits. Therefore, if the only attribute cached is objectclass, the attribute

cache manager can only resolve 10000 out of the 210500 total search filters. If the

server is reconfigured to have enough memory to hold both the objectclass and

mail attributes, 100000 of the search filters can be resolved in the attribute cache

manager. If objectclass, uid and mail were all configured and enough memory

was available, 185000 of the search filters can be resolved by the attribute cache

manager. However, if memory is constrained and only one attribute can be cached,

the best choice is mail with 50000 hits. If both uid and mail can be cached, 95000

filters can be resolved in the attribute cache manager, which is almost as many hits

as caching objectclass and mail instead.

Because caching uid and mail likely consumes less memory than caching

objectclass and mail, caching uid and mail instead of objectclass and mail

might be a better choice if not enough memory is available on your server.

Therefore, it is necessary to understand and consider the types of search filters

used by your application in order to determine the appropriate attributes to cache

as well as to consider the amount of memory that you want the attribute cache to

be able to use.

8 Performance Tuning Guide

LDAP filter cache

The filter cache contains cached entry IDs that match a search filter that was

previously resolved in DB2. When the client issues a query for some data and that

query is not a base-scoped search that can be resolved in memory nor is it a filter

that can be resolved in memory by the attribute cache manager, the query goes to

the filter cache. There are two things that can happen when a query arrives at the

filter cache:

v The IDs that match the filter settings used in the query are located in the

filter cache. If this is the case, the list of the matching entry IDs is sent to the

entry cache.

v The matching entry IDs are not cached in the filter cache. In this case, the

query must access DB2 in search of the desired data.

Filter cache size

To determine how big your filter cache should be, run your workload with the

filter cache set to different values and measure the differences in operations per

second. For example, Figure 2 shows varying operations per second based on

different filter cache sizes for one installation:

For this workload it appears that a filter cache large enough to hold 55,000 entries

results in the best performance. There is no benefit in making the filter cache any

larger than this. See “LDAP cache configuration variables” on page 13 to set the

filter cache size.

Filter cache size with updates

Figure 3 on page 10 shows that, for the test installation, there is no performance

benefit in allocating any memory to the filter cache if even a small fraction of the

operations in the workload are updates.

Figure 2. Varying the size of the filter cache

Chapter 2. IBM Tivoli Directory Server tuning 9

If this proves to be the case for your workload, the only way to retain the

performance advantage of a filter cache when updates are involved is to batch

your updates. This allows long intervals during which there are only searches. If

you cannot batch updates, specify a filter cache size of zero and allocate more

memory to other caches and buffer pools. See “LDAP cache configuration

variables” on page 13 for instructions on how to set configuration variables such as

filter cache size.

Filter cache bypass limits

The filter cache bypass limit configuration variable limits the size of entries that

can be added to the filter cache. For example, if the bypass limit variable is set to

1,000, search filters that match more than 1,000 entries are not added to the filter

cache. This prevents large, uncommon searches from overwriting useful cache

entries. To determine the best filter cache bypass limit for your workload,

repeatedly run your workload with the filter cache bypass limits set to different

values and measure the operations per second.

For example, Figure 4 on page 11 shows operations per second based on varying

cache bypass limit sizes:

Figure 3. Effect of updates on the performance of the filter cache

10 Performance Tuning Guide

For the workload in Figure 4, setting the limit too low downgrades performance by

preventing valuable filters from being cached. Setting the filter bypass limit to

approximately 100 appears to be the best size for this workload. Setting it any

larger benefits performance only slightly.

See “LDAP cache configuration variables” on page 13 to set the filter cache bypass

limit.

Entry cache

The entry cache contains cached entry data. Entry IDs are sent to the entry cache.

If the entries that match the entry IDs are in the entry cache, then the results are

returned to the client. If the entry cache does not contain the entries that

correspond to the entry IDs, the query goes to DB2 in search of the matching

entries.

Entry cache size

To determine how big your entry cache should be, run your workload with the

entry cache set to different sizes and measure the differences in operations per

second. For example, Figure 5 on page 12 shows varying operations per second

based on different entry cache sizes:

Figure 4. Varying the filter cache bypass limit

Chapter 2. IBM Tivoli Directory Server tuning 11

From the results in Figure 5, it appears that an entry cache large enough to hold

460,000 entries results in the best performance. There is no benefit to making the

entry cache any larger than this. Setting the entry cache at 460,000 results in 4

times as many operations per second than if entry cache was set to zero. To find

the best cache size for your workload, you must run your workload with different

cache sizes. See “LDAP cache configuration variables” on page 13 to set the filter

cache size.

Note: The test with Entry Cache size at 345k resulted in unpredictable

performance due to the nature of the test case and the relationship to the

chosen cache size. Certain parts of the workload were in cache while others

not, resulting in a harmonics effect.

ACL cache

The Access Control List (ACL) cache contains information about the access

permissions of recently queried entries, such as the entry owner and whether the

entry’s permissions are explicit or inherited. Having this information cached in

memory can speed up the process of determining whether the user who submitted

the query is authorized to see all, some, or none of its results.

Measuring cache entry sizes

Filter cache and entry cache sizes are measured in numbers of entries. When

determining how many entries to allow in your LDAP caches, it can be useful to

know how big the entries in your cache are.

The following example shows how to measure the size of cached entries:

Note: This example calculates the average size of an entry in a sample entry cache,

but the average filter cache entry size can be calculated similarly.

Figure 5. Varying the size of the entry cache

12 Performance Tuning Guide

1. From the LDAP server:

a. Set the filter cache size to zero.

b. Set the entry cache size to a small value; for example, 200.

c. Start ibmslapd.
2. From the client:

a. Run your application.

b. Find the entry cache population (call this population1) using the following

command:

ldapsearch -h servername -s base -b cn=monitor objectclass=* | grep

 entry_cache_current

3. From the LDAP Server:

a. Find the memory used by ibmslapd (call this ibmslapd1):

v On AIX® operating systems, use the following command:

ps -e -o vsz -o command | grep ibmslapd

v On Windows operating systems, use the VM size column in the Task

Manager.
b. Stop ibmslapd.

c. Increase the size of the entry cache but keep it smaller than your working

set.

d. Start ibmslapd.
4. Run your application again and find the entry cache population (call this

population2). See step 2b for the command syntax.

5. Find the memory used by ibmslapd (call this ibmslapd2). See step 3a for the

command syntax.

6. Calculate the size of an entry cache entry using the following formula:

(ibmslapd size2 - ibmslapd size1) /

(entry cache population2 - entry cache population1)

For example, using this formula with a 500,000-entry database results in the

following measurement:

(192084 KB – 51736 KB) / (48485 – 10003) = 3.65 KB per entry

LDAP cache configuration variables

LDAP cache configuration variables allow you to set the LDAP cache sizes, bypass

limits, and other variables that affect performance.

Configuring attribute caching

The attribute cache size is measured by the amount of memory the attribute cache

requires. You can configure the maximum amount of memory allowed to be used

for attribute caching.

You can configure attribute caching for the directory database, the changelog

database, or both. Typically, there is no benefit from configuring attribute caching

for the changelog database unless you perform very frequent searches of the

changelog.

Using the Web Administration Tool

To configure the attribute cache using the Web Administration Tool:

1. Expand the Manage server properties category in the navigation area of the

Web Administration Tool and select the Attribute cache tab.

Chapter 2. IBM Tivoli Directory Server tuning 13

2. You can change the amount of memory available to the directory attribute

cache by changing the Directory cached attribute size (in kilobytes) field. The

default is 16,384 KB (16 MB).

3. You can change the amount of memory available to the changelog attribute

cache by changing the Changelog cached attribute size (in kilobytes) field.

The default is 16,384 KB (16 MB).

Note: This selection is disabled if a changelog has not been configured.

To add attributes to the attribute cache:

1. Select the attribute that you want to add as a cached attribute from the

Available attributes menu. Only those attributes that can be cached are

displayed in this menu; for example, sn.

Note: An attribute remains in the list of available attributes until it has been

placed in both the cn=directory and the cn=changelog containers.

2. Click either Add to cn=directory or Add to cn=changelog. The attribute is

displayed in the appropriate list box. You can list the same attribute in both

containers.

Note: Add to cn=changelog is disabled if a changelog has not been configured.

3. Repeat this process for each attribute you want to cache.

4. When you are finished, click Apply to save your changes without exiting, or

click OK to apply your changes and exit, or click Cancel to exit this panel

without making any changes.

Using the command line

To configure the attribute cache through the command line, issue the following

command:

ldapmodify -D <adminDN> -w<adminPW> -i<filename>

where <filename> contains the following, for example.

v For the directory database:

dn: cn=Directory, cn=RDBM Backends, cn=IBM Directory,

 cn=Schemas, cn=Configuration

changetype: modify

add: ibm-slapdCachedAttribute

ibm-slapdCachedAttribute: sn

-

add: ibm-slapdCachedAttribute

ibm-slapdCachedAttribute: cn

-

replace: ibm-SlapdCachedAttributeSize

ibm-SlapdCachedAttributeSize: 262144

v For the changelog database:

dn: cn=change log, cn=RDBM Backends, cn=IBM Directory,

 cn=Schemas, cn=Configuration

changetype: modify

add: ibm-slapdCachedAttribute

ibm-slapdCachedAttribute: changetype

-

replace: ibm-SlapdCachedAttributeSize

ibm-SlapdCachedAttributeSize: 32768

See the IBM Tivoli Directory Server Version 6.0 Administration Guide for more

information.

14 Performance Tuning Guide

Setting other LDAP cache configuration variables

You can set LDAP configuration variables using the Web Administration Tool or

the command line.

Using the Web Administration Tool

To set LDAP configuration variables using the Web Administration Tool:

1. Expand the Manage server properties category in the navigation area of the

Web Administration tool.

2. Click Performance.

3. You can modify any of the following configuration variables:

v Cache ACL information — This option must be selected for the Maximum

number of elements in ACL cache settings to take effect.

v Maximum number of elements in ACL cache (ACL cache size) — The

default is 25,000.

v Maximum number of elements in entry cache (entry cache size) — Specify

the maximum number of elements in the entry cache. The default is 25,000.

See “Entry cache” on page 11 for more information about the entry cache.

v Maximum number of elements in search filter cache (filter cache size) —

The search filter cache consists of the requested search filters and resulting

entry identifiers that matched. On an update operation, all filter cache entries

are invalidated. The default is 25,000. See “LDAP filter cache” on page 9 for

more information about the filter cache.

v Maximum number of elements from a single search added to search filter

cache (filter cache bypass limit) — If you select Elements, you must enter a

number. The default is 100. Otherwise select Unlimited. Search filters that

match more entries than the number specified here are not added to the

search filter cache. See “Filter cache bypass limits” on page 10 for more

information about bypass limits.
4. When you are finished, click OK to apply your changes, or click Cancel to exit

the panel without making any changes.

Using the command line

To set LDAP configuration variables using the command line, issue the following

command:

ldapmodify -DAdminDN -wAdminpassword -ifilename

where the file filename contains:

dn: cn=Directory,cn=RDBM Backends,cn=IBM Directory,

 cn=Schemas,cn=Configuration

changetype: modify

replace: ibm-slapdDbConnections

ibm-slapdDbConnections: 15

dn: cn=Front End, cn=Configuration

changetype: modify

replace: ibm-slapdACLCache

ibm-slapdACLCache: TRUE

-

replace: ibm-slapdACLCacheSize

ibm-slapdACLCacheSize: 25000

-

replace: ibm-slapdEntryCacheSize

Chapter 2. IBM Tivoli Directory Server tuning 15

ibm-slapdEntryCacheSize: 25000

-

replace: ibm-slapdFilterCacheSize

ibm-slapdFilterCacheSize: 25000

-

replace: ibm-slapdFilterCacheBypassLimit

ibm-slapdFilterCacheBypassLimit: 100

Additional settings

There are several additional settings that affect performance by putting limits on

client activity, minimizing the impact to server throughput and resource usage,

such as:

v ibm-slapdSizeLimit: 500

v ibm-slapdTimeLimit: 900

v ibm-slapdIdleTimeOut: 300

v ibm-slapdMaxEventsPerConnection: 100

v ibm-slapdMaxEventsTotal: 0

v ibm-slapdMaxNumOfTransactions: 20

v ibm-slapdMaxOpPerTransaction: 5

v ibm-slapdMaxTimeLimitOfTransactions: 300

v ibm-slapdPagedResAllowNonAdmin: TRUE

v ibm-slapdPagedResLmt: 3

v ibm-slapdSortKeyLimit: 3

v ibm-slapdSortSrchAllowNonAdmin: TRUE

For more information about these settings, see ″Appendix R. IBM Tivoli Directory

Server configuration schema″ in IBM Tivoli Directory Server Version 6.0 Installation

and Configuration Guide.

Note: Default values are shown.

The IBM Tivoli Directory Server response time for searches with alias dereferencing

option set to always or searching is significantly greater than that of searches with

the dereferencing option set to never. A server-side configuration option

ibm-slapdDerefAliases under dn: cn=Configuration can be used to override the

dereference option specified in the client search requests. The allowed values are:

v never

v find

v search

v always

By setting the value to never, the server does not attempt to dereference possible

aliases, and the response time for searches improves.

Directory size

It is important when you run your workload that you consider several

measurements. For example, measuring the number of operations per second as

shown in Figure 6 on page 17, it appears that performance degrades significantly

as the database size grows.

16 Performance Tuning Guide

However, the benchmark tool test includes a large fraction of wildcard searches

and exact-match searches, such as ″(sn=Smith)″ that return all entries where the sn

value is ″Smith″. Both of these types of searches typically return multiple entries in

response to a single search request. As Figure 7 on page 18 shows, as the size of

the directory grows, so does the number of entries returned in response to

wildcard and exact-match search requests.

Figure 6. Operations per second

Chapter 2. IBM Tivoli Directory Server tuning 17

In this situation, the number of entries returned per second is a truer measure of

throughput than operations per second, because each operation requires more

work to be performed as the size of the database grows.

Note: As your directory grows, it might become necessary to readjust the sizes of

the LDAP caches and DB2 buffer pools. You can determine the optimal sizes

for your caches and buffer pools using the guidelines in “LDAP caches” on

page 5 and “DB2 buffer pool tuning” on page 22.

objectclass table indexes on Linux

When migrating from an earlier release, dropping the index for the objectclass

table and creating a new index with a unique flag can improve performance.

When the IBM Tivoli Directory Server 6.0 server is started for the first time, the

index for the objectclass table is dropped (if the index exists) and a new index with

a unique flag is created. If the index does not already exist, then the index for the

objectclass table is created with the unique flag.

Note: This happens automatically on all platforms except Linux.

It is not possible to create the unique index for the objectclass table on Linux

systems with data from previous versions of IBM Tivoli Directory Server. This is

due to the fact that there are duplicate entries in the objectclass table for previous

versions of IBM Tivoli Directory Server on Linux. The following is an example

entry from an IBM Tivoli Directory Server 5.2 database on a Linux system:

 EID OBJECTCLASS ROBJECTCLASS

5 CONTAINER RENIATNOC

5 PWDPOLICY YCILOPDWP

Figure 7. Entries returned per second

18 Performance Tuning Guide

5 IBM-PWDPOLICYEXT TXEYCILOPDWP-MBI

5 TOP POT

5 TOP POT

5 TOP POT

Notice that there are three entries for the entry ID 5 and objectclass TOP.

To create the unique index, all duplicate rows must be eliminated. Do the

following to manually delete duplicate rows in the objectclass table:

1. Export the distinct rows from the objectclass table to a file:

db2 export to /tmp/db2.out of del select distinct "*" from objectclass

2. Remove all the data from the objectclass table:

db2 delete from objectclass

3. Insert the distinct rows back into the objectclass table:

db2 import from /tmp/db2.out of del insert into objectclass

You can also reload the data in the IBM Tivoli Directory Server 6.0 database, which

eliminates the duplicate entries.

When duplicate rows in the objectclass table are completely removed, the

objectclass index can be dropped and the unique index added.

Use the following to create the unique index:

create unique index LDAPDB2.OBJECTCLASS ON LDAPDB2.OBJECTCLASS

 ("EID" ASC,

 "OBJECTCLASS" ASC);

Note: The order of the key pairs is significant, for example, "EID" first, followed

by "OBJECTCLASS".

Chapter 2. IBM Tivoli Directory Server tuning 19

20 Performance Tuning Guide

Chapter 3. DB2 tuning and commands

IBM Tivoli Directory Server uses DB2 as the data store and Structured Query

Language (SQL) as the query retrieval mechanism. While the LDAP server caches

LDAP queries, answers, and authentication information, DB2 caches tables,

indexes, and statements.

Many DB2 configuration parameters affect either the memory (buffer pools) or disk

resources. Since disk access is usually much slower than memory access, the key

database performance tuning objective is to decrease the amount of disk activity.

This chapter covers the following types of DB2 tuning:

v DB2 buffer pool tuning

v Optimization and organization (reorgchk and reorg)

v Other DB2 configuration parameters

v Backing up and restoring the database (backup and restore)

For detailed information about DB2 commands, see the DB2 documentation at the

following Web site: http://www.ibm.com/software/data/db2/library/

 Attention: Only users listed as database administrators can run the DB2

commands. Be sure the user ID running the DB2 commands is a user in the

dbsysadm group (UNIX operating systems) or a member of the Administrator

group (Windows operating systems.) This includes the DB2 instance owner and

root.

If you have any trouble running the DB2 commands, check to ensure that the DB2

environment variables have been established by running db2profile (if not, the

db2 get and db2 update commands will not work). The script file db2profile is

located in the sqllib subdirectory under the instance owner’s home directory. If you

need to tailor this file, follow the comments inside the file to set your instance

name, user paths, and default database name (the default path is

/home/ldapdb2/sqllib/db2profile.) It is assumed that the user is logged in as

ibm-slapdDbUserId. If logged in as the root user on a UNIX operating system, it

is possible to switch to the instance owner as follows:

su - instance_owner

where instance_owner is the defined owner of the LDAP database.

To log on as the database administrator on a Windows 2000 operating system, run

the following command:

runas /user:instance_owner db2cmd

where instance_owner is the defined owner of the LDAP database.

Note: If you have problems connecting to the database on Windows systems,

check the DB2INSTANCE environment variable. By default this variable is

set to DB2. However, to connect to the database, the environment variable

must be set to the database instance name.

© Copyright IBM Corp. 2005 21

http://www.ibm.com/software/data/db2/library

For additional stability and performance enhancements, upgrade to the latest

version of DB2.

DB2 buffer pool tuning

DB2 buffer pool tuning is one of the most significant types of DB2 performance

tuning. A buffer pool is a data cache between LDAP and the physical DB2

database files for both tables and indexes. DB2 buffer pools are searched when

entries and their attributes are not found in the entry cache. Buffer pool tuning

typically needs to be done when the database is initially loaded and when the

database size changes significantly.

There are several considerations to keep in mind when tuning the DB2 buffer

pools; for example:

v If there are no buffer pools, all database activity results in disk access.

v If the size of each buffer pool is too small, LDAP must wait for DB2 disk activity

to satisfy DB2 SQL requests.

v If one or more buffer pools is too large, memory on the LDAP server might be

wasted.

v If the total amount of space used by the LDAP caches and both buffer pools is

larger than physical memory available on the server, operating system paging

(disk activity) will occur.

To get the current DB2 buffer pool sizes, run the following commands:

db2 connect to database_name

db2 "select bpname,npages,pagesize from sysibm.sysbufferpools"

where database_name is the name of the database.

The following example output shows the default settings for the example above:

BPNAME NPAGES PAGESIZE

------------------ ----------- -----------

IBMDEFAULTBP 29500 4096

LDAPBP 1230 32768

 2 record(s) selected.

Buffer pool sizes

In IBM Tivoli Directory Server 6.0, the LDAP directory database (DB2) has two

buffer pools: LDAPBP and IBMDEFAULTBP. The size of each buffer pool needs to

be set separately, but the method for determining how big each should be is the

same: Run your workload with the buffer pool sizes set to different values and

measure the differences in operations per second.

Note: DB2 does not allow buffer pools to be set to zero.

LDAPBP buffer pool size

This buffer pool contains cached entry data (ldap_entry) and all of the associated

indexes. LDAPBP is similar to the entry cache, except that LDAPBP uses different

algorithms in determining which entries to cache. It is possible that an entry that is

not cached in the entry cache is located in LDAPBP.

To determine the best size for your LDAPBP buffer pool, run your workload with

the LDAPBP buffer pool size set to different values and measure the differences in

22 Performance Tuning Guide

operations per second. For example, Figure 8 shows varying operations per second

based on different LDAPBP buffer pool sizes:

For the workload in the above example, the best performance results from a

LDAPBP size of approximately 15,000 32K pages. However, the performance gain

of 15,000 over a size of 9,800 is slight. In a memory-constrained environment,

setting the LDAPBP size to 9,800 saves approximately 166 MB of memory.

IBMDEFAULTBP buffer pool size

DB2 system information, including system tables and other information that is

useful in resolving filters, is cached in the IBMDEFAULTBP buffer pool. You might

need to adjust the IBMDEFAULTBP cache settings for better performance in the

LDAPBP.

To determine the best size for your IBMDEFAULTBP buffer pool, run your

workload with the buffer pool sizes set to different values and measure the

differences in operations per second. For example, Figure 9 on page 24 shows

varying operations per second based on different IBMDEFAULTBP buffer pool

sizes:

Figure 8. Varying the size of LDAPBP

Chapter 3. DB2 tuning and commands 23

For the workload in the above example, setting the IBMDEFAULTBP large enough

to hold the working set improves throughput approximately 20 percent over a

small buffer pool size. There is little additional benefit to setting IBMDEFAULTBP

larger than 20,000 4K pages.

Setting buffer pool sizes

Use the alter bufferpool command to set the IBMDEFAULTBP and LDAPBP

buffer pool sizes. The following example shows the IBMDEFAULTBP and LDAPBP

buffer pools being set:

db2 alter bufferpool ibmdefaultbp size 20000

db2 alter bufferpool ldapbp size 9800

db2 force applications all

db2stop

db2start

Note: The LDAP server (idsslapd) must be stopped while setting buffer pool sizes.

Optimization and organization (reorgchk and reorg)

DB2 uses a sophisticated set of algorithms to optimize the access to data stored in

a database. These algorithms depend upon many factors, including the

organization of the data in the database, and the distribution of that data in each

table. Distribution of data is represented by a set of statistics maintained by the

database manager.

In addition, IBM Tivoli Directory Server creates a number of indexes for tables in

the database. These indexes are used to minimize the data accessed in order to

locate a particular row in a table.

In a read-only environment, the distribution of the data changes very little.

However, with updates and additions to the database, it is not uncommon for the

Figure 9. Varying the size of IBMDEFAULTBP

24 Performance Tuning Guide

distribution of the data to change significantly. Similarly, it is quite possible for

data in tables to become ordered in an inefficient manner.

To remedy these situations, DB2 provides tools to help optimize the access to data

by updating the statistics and to reorganize the data within the tables of the

database.

Optimization

Optimizing the database updates statistics related to the data tables, which

improves performance and query speed. Optimize the database periodically or

after heavy database updates (for example, after importing database entries). The

Optimize database task in the IBM Tivoli Directory Server Configuration Tool uses

the DB2 runstats command to update statistical information used by the query

optimizer for all the LDAP tables.

Note: The reorgchk command also updates statistics. If you are planning to do a

reorgchk, optimizing the database is unnecessary. See “Database

organization (reorgchk and reorg)” for more information about the reorgchk

command.

To optimize the database using the Configuration Tool:

1. Start the Configuration Tool by typing idsxcfg on the command line.

2. Click Optimize database on the left side of the window.

3. On the Optimize database window, click Optimize.

After a message displays indicating the database was successfully optimized, you

must restart the server for the changes to take effect.

To optimize the database using the command line, run the following command:

runstats -I <instancename>

See ″idsrunstats, runstats″ in the IBM Tivoli Directory Server Version 6.0

Administration Guide for more information.

Run the following commands to update more db2 stats that might improve

performance:

DB2 RUNSTATS ON TABLE table_name WITH DISTRIBUTION AND DETAILED INDEXES ALL SHRLEVEL

 REFERENCE

DB2 RUNSTATS ON TABLE ldapdb2.objectclass WITH DISTRIBUTION AND DETAILED INDEXES

 ALL SHRLEVEL REFERENCE

where table_name is the name of the table. You can use ALL for all tables.

Note: Use the runstats utility to update the database statistics. This utility

preserves some LDAP-specific tuning done on statistics. If you use the DB2

RUNSTATS command, do the following to restore the LDAP-specific settings:

db2 "connect to database <ldap_db_name>"

db2 "update sysstat.tables set card=9E18 where tabname=’LDAP_DESC’

 and card<>9E18"

db2 "terminate"

Database organization (reorgchk and reorg)

Tuning the organization of the data in DB2 using the reorgchk and reorg

commands is important for optimal performance.

Chapter 3. DB2 tuning and commands 25

The reorgchk command updates statistical information to the DB2 optimizer to

improve performance, and reports statistics on the organization of the database

tables.

The reorg command, using the data generated by reorgchk, reorganizes table

spaces to improve access performance and reorganizes indexes so that they are

more efficiently clustered. The reorgchk and reorg commands can improve both

search and update operation performance.

Note: Tuning organizes the data on disk in a sorted order. Sorting the data on disk

is beneficial only when accesses occur in a sorted order, which is not

typically the case. For this reason, organizing the table data on disk typically

yields little change in performance.

Performing a reorgchk

After a number of updates have been performed against DB2, table indexes can

become sub-optimal and performance can degrade. Correct this situation by

performing a DB2 reorgchk as follows:

db2 connect to ldapdb2

db2 reorgchk update statistics on table all

Where ldapdb2 is the name of your database.

To generate a reorgchk output file (recommended if you plan to run the reorg

command) add the name of the file to the end of the command, for example:

db2 reorgchk update statistics on table all > reorgchk.out

The following is a sample reorgchk report:

db2 => reorgchk current statistics on table all

Table statistics:

F1: 100 * OVERFLOW / CARD < 5

F2: 100 * TSIZE / ((FPAGES-1) * (TABLEPAGESIZE-76)) > 70

F3: 100 * NPAGES / FPAGES > 80

CREATOR NAME CARD OV NP FP TSIZE F1 F2 F3 REORG

--

LDAPDB2 ACLPERM 2 0 1 1 138 0 - 100 ---

LDAPDB2 ACLPROP 2 0 1 1 40 0 - 100 ---

LDAPDB2 ALIASEDOBJECT - - - - - - - - ---

LDAPDB2 AUDIT 1 0 1 1 18 0 - 100 ---

LDAPDB2 AUDITADD 1 0 1 1 18 0 - 100 ---

LDAPDB2 AUDITBIND 1 0 1 1 18 0 - 100 ---

LDAPDB2 AUDITDELETE 1 0 1 1 18 0 - 100 ---

LDAPDB2 AUDITEXTOPEVENT 1 0 1 1 18 0 - 100 ---

LDAPDB2 AUDITFAILEDOPONLY 1 0 1 1 18 0 - 100 ---

LDAPDB2 AUDITLOG 1 0 1 1 77 0 - 100 ---

...

26 Performance Tuning Guide

SYSIBM SYSINDEXCOLUSE 480 0 6 6 22560 0 100 100 ---

SYSIBM SYSINDEXES 216 114 14 28 162216 52 100 50 *-*

...

SYSIBM SYSPLAN 79 0 6 6 41554 0 100 100 ---

SYSIBM SYSPLANAUTH 157 0 3 3 9106 0 100 100 ---

SYSIBM SYSPLANDEP 35 0 1 2 5985 0 100 50 --*

--

Index statistics:

F4: CLUSTERRATIO or normalized CLUSTERFACTOR > 80

F5: 100 * (KEYS * (ISIZE+8) + (CARD-KEYS) * 4) / (NLEAF * INDEXPAGESIZE) > 50

F6: (100-PCTFREE) * (INDEXPAGESIZE-96) / (ISIZE+12) ** (NLEVELS-2) * (INDEXPAGES

IZE-96) / (KEYS * (ISIZE+8) + (CARD-KEYS) * 4) < 100

CREATOR NAME CARD LEAF LVLS ISIZE KEYS F4 F5 F6 REORG

--

Table: LDAPDB2.ACLPERM

LDAPDB2 ACLPERM_INDEX 2 1 1 6 2 100 - - ---

Table: LDAPDB2.ACLPROP

LDAPDB2 ACLPROP_INDEX 2 1 1 6 2 100 - - ---

Table: LDAPDB2.ALIASEDOBJECT

LDAPDB2 ALIASEDOBJECT - - - - - - - - ---

LDAPDB2 ALIASEDOBJECTI - - - - - - - - ---

LDAPDB2 RALIASEDOBJECT - - - - - - - - ---

Table: LDAPDB2.AUDIT

LDAPDB2 AUDITI 1 1 1 4 1 100 - - ---

Table: LDAPDB2.AUDITADD

LDAPDB2 AUDITADDI 1 1 1 4 1 100 - - ---

Table: LDAPDB2.AUDITBIND

LDAPDB2 AUDITBINDI 1 1 1 4 1 100 - - ---

Table: LDAPDB2.AUDITDELETE

LDAPDB2 AUDITDELETEI 1 1 1 4 1 100 - - ---

Table: LDAPDB2.AUDITEXTOPEVENT

...

Table: LDAPDB2.SN

LDAPDB2 RSN 25012 148 2 14 25012 99 90 0 ---

LDAPDB2 SN 25012 200 3 12 25012 99 61 119 --*

LDAPDB2 SNI 25012 84 2 4 25012 99 87 1 ---

...

Table: LDAPDB2.TITLE

LDAPDB2 TITLEI - - - - - - - - ---

Table: LDAPDB2.UID

LDAPDB2 RUID 25013 243 3 17 25013 0 62 79 *--

LDAPDB2 UID 25013 273 3 17 25013 100 55 79 ---

LDAPDB2 UIDI 25013 84 2 4 25012 100 87 1 ---

Table: LDAPDB2.UNIQUEMEMBER

LDAPDB2 RUNIQUEMEMBER 10015 224 3 47 10015 1 60 44 *--

LDAPDB2 UNIQUEMEMBER 10015 284 3 47 10015 100 47 44 -*-

LDAPDB2 UNIQUEMEMBERI 10015 14 2 4 7 100 69 8 ---

...

Table: SYSIBM.SYSFUNCTIONS

SYSIBM IBM127 141 1 1 13 141 65 - - *--

SYSIBM IBM25 141 2 2 34 141 100 72 60 ---

SYSIBM IBM26 141 2 2 32 141 78 68 63 *--

SYSIBM IBM27 141 1 1 23 68 80 - - *--

Chapter 3. DB2 tuning and commands 27

SYSIBM IBM28 141 1 1 12 2 99 - - ---

SYSIBM IBM29 141 1 1 4 141 100 - - ---

SYSIBM IBM30 141 3 2 59 141 78 76 38 *--

SYSIBM IBM55 141 2 2 34 141 99 72 60 ---

...

--

CLUSTERRATIO or normalized CLUSTERFACTOR (F4) will indicate REORG is necessary

for indexes that are not in the same sequence as the base table. When multiple

indexes are defined on a table, one or more indexes may be flagged as needing

REORG. Specify the most important index for REORG sequencing.

Note: After performing a reorgchk, do the following to restore the LDAP-specific

settings:

db2 "connect to database <ldap_db_name>"

db2 "update sysstat.tables set card=9E18 where tabname=’LDAP_DESC’

 and card<>9E18"

db2 "terminate"

See ″idsrunstats, runstats″ in the IBM Tivoli Directory Server Version 6.0

Administration Guide for more information.

Using the statistics generated by reorgchk, run reorg to update database table

organization. See “Performing a reorg.”

Keep in mind that reorgchk needs to be run periodically. For example, reorgchk

might need to be run after a large number of updates have been performed. Note

that LDAP tools such as ldapadd, ldif2db, and bulkload can potentially do large

numbers of updates that require a reorgchk. The performance of the database

should be monitored and a reorgchk performed when performance starts to

degrade. See “Monitoring performance” on page 44 for more information.

reorgchk must be performed on all LDAP replicas because each replica uses a

separate database. The LDAP replication process does not include the propagation

of database optimizations.

Because LDAP caches prepared DB2 statements, you must stop and restart

ibmslapd for DB2 changes to take effect.

Performing a reorg

After you have generated organizational information about the database using

reorgchk, the next step in reorganization is finding the tables and indexes that

need reorganizing and attempting to reorganize them. This can take a long time.

The time it takes to perform the reorganization process increases as the DB2

database size increases.

In general, reorganizing a table takes more time than updating statistics. Therefore,

performance might be improved significantly by updating statistics first.

To reorganize database table information:

1. If you have not done so already, run reorgchk:

db2 reorgchk update statistics on table all > reorgchk.out

28 Performance Tuning Guide

The reorgchk update statistics report has two sections; the first section is the

table information and the second section is the indexes. An asterisk in the last

column indicates a need for reorganization.

2. To reorganize the tables with an asterisk in the last column:

db2 reorg table table_name

where table_name is the name of the table to be reorganized; for example,

LDAPDB2.LDAP_ENTRY.

Generally speaking, because most data in LDAP is accessed by index,

reorganizing tables is usually not as beneficial as reorganizing indexes.

3. To reorganize the indexes with an asterisk in the last column:

db2 reorg table table_name index index_name

where

v table_name is the name of the table; for example, LDAPDB2.LDAP_ENTRY.

v index_name is the name of the index; for example,

SYSIBM.SQL000414155358130.
4. Run reorgchk again. The output from reorgchk can then be used to determine

whether the reorganization worked and whether it introduced other tables and

indexes that need reorganizing.

Some guidelines for performing a reorganization are:

v If the number on the column that has an asterisk is close to the recommended

value described in the header of each section and one reorganization attempt has

already been done, you can probably skip a reorganization on that table or

index.

v In the table LDAPDB2.LDAP_ENTRY there exists a LDAP_ENTRY_TRUNC

index and a SYSIBM.SQL index. Preference should be given to the SYSIBM.SQL

index if attempts to reorganize them seem to alternate between one or the other

needing reorganization.

v When an attribute length is defined to be less than or equal to 240 bytes, the

attribute table contains three columns: EID, attribute and reversed attribute

columns. In this case, the forward index is created using the EID and attribute

columns as index keys. For example, the attribute SN is defined to have the

maximum length which is less than or equal to 240 bytes, so the attribute table

contains the EID, SN and RSN columns and the following indexes are created

for this attribute table:

LDAPDB2.RSN <------ A reverse index whose defined index keys are the EID

 and RSN columns.

LDAPDB2.SN <------ A forward index whose defined index keys are the EID

 and SN columns.

LDAPDB2.SNI <------ An update index whose defined index key is the EID column.

v Reorganize all the attributes that you want to use in searches. In most cases you

will want to reorganize to the forward index, but in cases with searches

beginning with ‘*’, reorganize to the reverse index.

v When an attribute length is defined to be greater than 240 bytes, the attribute

table contains four columns: EID, attribute, truncated attribute and reversed

truncated attribute columns. In this case, the forward index is created using the

EID and truncated attribute columns as index keys. For example, the attribute

CN is defined to have the maximum length which is greater than 240 bytes, so

the attribute table contains the EID, CN, CN_T and RCN_T columns and the

following indexes are created for this attribute table:

Chapter 3. DB2 tuning and commands 29

LDAPDB2.RCN <------ A reverse index whose defined index keys are the EID

 and RCN_T columns.

LDAPDB2.CN <------ A forward index whose defined index keys are the EID

 and CN_T columns.

LDAPDB2.CNI <------ An update index whose defined index key is the EID column.

The following is another example showing reverse, forward, and update indexes

example:

 Table: LDAPDB2.SECUUID

LDAPDB2 RSECUUID <— This is a reverse index

LDAPDB2 SECUUID <— This is a forward index

LDAPDB2 SECUUIDI <— This is an update index

Indexes

Indexing results in a considerable reduction in the amount of time it takes to locate

requested data. For this reason, it can be very beneficial from a performance

standpoint to index all attributes used in searches.

Use the following DB2 commands to verify that a particular index is defined. In

the following example, the index being checked is for the attribute seeAlso:

db2 connect to database_name

db2 list tables for all | grep -i seeAlso

db2 describe indexes for table database_name.seeAlso

Where database_name is the name of your database.

If the second command fails or the last command does not return three entries, the

index is not properly defined. The last command should return the following

results:

IndexSchema Index Name Unique Rule Number of Columns

 ------------- ------------------- ---------- -------------

LDAPDB2 SEEALSOI D 1

LDAPDB2 SEEALSO D 2

LDAPDB2 RSEEALSO D 2

 3 record (s) selected.

To have IBM Tivoli Directory Server create an index for an attribute, do one of the

following:

v To create an index using the Web Administration Tool:

1. Expand Schema management in the navigation area, and click Manage

attributes.

2. Click Edit attribute.

3. On the IBM extensions tab, select the Equality check box under Indexing

rules.
v To create an index from the command line, issue the following command:

ldapmodify -D cn=root -w root -i addindex.ldif

The addindex.ldif file should look like the following:

dn: cn=schema

changetype: modify

replace: attributetypes

attributetypes: (2.5.4.34

 NAME ’seeAlso’

30 Performance Tuning Guide

DESC ’Identifies another directory server entry that may

 contain information related to this entry.’

 SUP 2.5.4.49

 EQUALITY 2.5.13.1

 USAGE userApplications)

-

replace: ibmattributetypes

ibmattributetypes: (2.5.4.34

 DBNAME(’seeAlso’ ’seeAlso’)

 ACCESS-CLASS normal

 LENGTH 1000

 EQUALITY)

Note: After adding an index, you should run reorgchk to update statistical

information for the DB2 optimizer regarding Index statistics for the new

index.

Other DB2 configuration parameters

Performance benefits can come from setting other DB2 configuration parameters,

such as APPLHEAPZ and LOGFILSIZ. The current setting of parameters can be

obtained by issuing the following command:

db2 get database configuration for database name

where database name is the name of your database.

This command returns the settings of other DB2 configuration parameters as well.

The following command also shows the DB2 configuration parameters for the

entire database instance:

db2 get database manager configuration

To set the DB2 configuration parameters use the following syntax:

db2 update database configuration for database name using \

parm name parm value

db2 force applications all

db2stop

db2start

where database name is the name of your database and where parm name is the

parameter to change and parm value is the value it is to be assigned.

Changes to DB2 configuration parameters do not take effect until the database is

restarted with db2stop and db2start.

Note: If applications are currently connected to the database, you must also do a

db2 force applications all command prior to the db2stop.

For a list of DB2 parameters that affect performance, visit the DB2 Web site:

http://www.ibm.com/software/data/db2

Note: If DB2 recognizes that a parameter is configured insufficiently, the problem

is posted to the diagnostic log (db2diag.log). For example, if the DB2 buffer

pools are too large, DB2 overrides the buffer pool settings and uses a

minimal configuration. No notice of the change in buffer pool sizes is given

except in the diagnostic log, so it is important to view the log if you are

experiencing poor performance. The db2diag.log file is located in the

sqllib/db2dump directory under the instance owner’s home directory. For

Chapter 3. DB2 tuning and commands 31

http://www.ibm.com/software/data/db2

example, the ldapdb2 instance can find the db2diag.log file in the

/home/ldapdb2/sqllib/db2dump directory.

Database backup and restore considerations

When using the database backup and restore commands it is important to keep in

mind that when you restore over an existing database, any tuning that has been

done on that existing database is lost.

32 Performance Tuning Guide

Chapter 4. AIX operating system tuning

This chapter discusses the following performance tuning tasks for the AIX

operating system:

v Enabling large files

v Setting MALLOCTYPE

v Setting other environment variables

v Viewing ibmslapd environment variables

Enabling large files

The underlying AIX operating system files that hold the contents of a large

directory can grow beyond the default size limits imposed by the AIX operating

system. If the size limits are reached, the directory ceases to function correctly. The

following steps make it possible for files to grow beyond default limits on an AIX

operating system:

1. When you create the file systems that are expected to hold the directory’s

underlying files, you should create them as Enhanced Journaled File Systems or

as Journaled File Systems with Large File Enabled. The file system containing

the DB2 instance’s home directory, and, if bulkload is used, the file system

containing the bulkload temporary directory, are file systems that can be

created this way.

Note: The default path is:

<instance_home>/tmp

2. Set the soft file size limit for the root, ldap, and the DB2 instance owner users

to -1. A soft file size limit of -1 for a user specifies the maximum file size for

that user as unlimited. The soft file size limit can be changed using the smitty

chuser command. Each user must log off and log back in for the new soft file

size limit to take effect. You must also restart DB2.

Setting MALLOCTYPE

Set the MALLOCTYPE environment variable as follows:

On all AIX 5.x versions

Set MALLOCTYPE as follows:

export MALLOCTYPE=buckets

Note: If you want to use MALLOCTYPE buckets, you must use ML03 (contains

the fix for APAR IY50668) or higher. You can get this from IBM Support

(www.ibm.com/support). If you are using MALLOCTYPE buckets, you

must set ulimits for the LDAP instance to the following:

ulimit -m unlimited

ulimit -d unlimited

You can find more information about MALLOCTYPE in the AIX documentation.

© Copyright IBM Corp. 2005 33

Setting other environment variables

You might experience better performance by setting the AIXTHREAD_SCOPE and

NODISCLAIM environment as shown in the following commands. Check the AIX

documentation to see if these settings might be right for your installation.

AIXTHREAD_SCOPE

To set AIXTHREAD_SCOPE, use the following command:

export AIXTHREAD_SCOPE=S

NODISCLAIM

To set NODISCLAIM, use the following command:

export NODISCLAIM=TRUE

Viewing ibmslapd environment variables (AIX operating system only)

To view the environment settings and variables for your ibmslapd process, run the

following command:

ps ewww PID | tr ’ ’ ’\012’ | grep = | sort

where PID is the ibmslapd process ID.

Example output:

ACLCACHE=YES

ACLCACHESIZE=25000

AIXTHREAD_SCOPE=S

AUTHSTATE=compat

A__z=!

CLASSPATH=/home/ldapdb2/sqllib/java/db2java.zip:/home/ldapdb2/sqllib/java/

 db2jcc.jar:/home/ldapdb2/sqllib/function:/home/ldapdb2/sqllib/java/

 db2jcc_license_cisuz.jar:/home/ldapdb2/sqllib/java/db2jcc_license_cu.jar:.

DB2CODEPAGE=1208

DB2INSTANCE=ldapdb2

HOME=/

IDS_LDAP_HOME=/opt/IBM/ldap/V6.0

LANG=en_US

LC__FASTMSG=true

LD_LIBRARY_PATH=/home/ldapdb2/sqllib/lib

LIBPATH=/opt/IBM/ldap/V6.0/lib64:/usr/lib:/home/ldapdb2/idsslapd-ldapdb2/

 db2instance/lib:/opt/IBM/ldap/V6.0/db2/lib64:/usr/lib:/lib:/home/ldapdb2/

 sqllib/lib:.

LOCPATH=/usr/lib/nls/loc

LOGIN=root

LOGNAME=root

MAIL=/usr/spool/mail/root

MAILMSG=[YOU

MALLOCTYPE=buckets

NLSPATH=/opt/IBM/ldap/V6.0/nls/msg/%L/%N:/opt/IBM/ldap/V6.0/nls/msg/%L/%N.cat:/

 usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat

NODISCLAIM=TRUE

ODBCCONN=15

ODMDIR=/etc/objrepos

PATH=/opt/IBM/ldap/V6.0/sbin:/opt/IBM/ldap/V6.0:/usr/bin:/etc:/usr/sbin:/usr/

 ucb:/usr/bin/X11:/sbin:/usr/java14/jre/bin:/usr/java14/bin:/usr/java131/jre/

 bin:/usr/java131/bin:/home/ldapdb2/sqllib/bin:/home/ldapdb2/sqllib/adm:/

 home/ldapdb2/sqllib/misc

PWD=/home/ldapdb2/idsslapd-ldapdb2/workdir

RDBM_CACHE_BYPASS_LIMIT=100

RDBM_CACHE_SIZE=25000

RDBM_FCACHE_SIZE=25000

SHELL=/usr/bin/ksh

SSH_CLIENT=9.48.85.122

SSH_CONNECTION=9.48.85.122

34 Performance Tuning Guide

SSH_TTY=/dev/pts/1

TERM=xterm

TISDIR=/opt/IBM/ldap/V6.0

TZ=CST6CDT

USER=root

VWSPATH=/home/ldapdb2/sqllib

_=/opt/IBM/ldap/V6.0/sbin/64/ibmslapd

instname=ldapdb2

location=/home/ldapdb2

Chapter 4. AIX operating system tuning 35

36 Performance Tuning Guide

Chapter 5. Hardware tuning

This chapter contains some suggestions for improving disk drive performance.

Disk speed improvements

With millions of entries in LDAP server, it can become impossible to cache all of

them in memory. Even if a smaller directory size is cacheable, update operations

must go to disk. The speed of disk operations is important. Here are some

considerations for helping to improve disk drive performance:

v Use fast disk drives

v Use a hardware write cache

v Spread data across multiple disk drives

v Spread the disk drives across multiple I/O controllers

v Put log files and data on separate physical disk drives

© Copyright IBM Corp. 2005 37

38 Performance Tuning Guide

Chapter 6. IBM Tivoli Directory Server features

The sections in this chapter briefly describe the following additional

performance-related IBM Tivoli Directory Server features.

v Bulk loading (bulkload)

v Replication

v Monitoring Performance

v When to configure the LDAP change log

Bulkload

The bulkload utility accepts many command line options introduced in previous

releases for performance tuning. Many of these tuning options are deprecated. The

default for the following options are optimal and should not be specified.

-A <yes|no>

Specifies whether to process the ACL information contained in the LDIF

file. The default is yes. The no parameter loads the default acls.

-c | -C <yes|no>

Allows you to skip index recreation. For example, if you are running

successive idsbulkloads and you want to skip recreation between loads,

you can postpone index creation until the last idsbulkload. Issue the final

idsbulkload with -c yes.

-e <yes|no>

Drop indexes before load.

Effects of using the -k option

The -k option enables users to bulkload their data in smaller chunks. It is

especially useful for systems where memory is limited. What happens when

utilizing this option is that the parsing and corresponding loading is done in

smaller increments.

Note: Saving on memory by specifying small chunksize can result in the user

experiencing longer bulkload times.

© Copyright IBM Corp. 2005 39

This graph illustrates the effects on memory usage. As the chunk size increases, the

amount of memory utilized increases.

 This graph illustrates that as the chunk size increases, the load time decreases. The

recommendation is to use chunk sizes of one million entries at least.

Figure 10. Effects of using the -k option

Figure 11. Effects of using the -k option

40 Performance Tuning Guide

Replication tuning

Replication is a technique used by directory servers to improve performance,

availability, and reliability. The replication process synchronizes data stored in

multiple directory servers.

Using multi-threaded (asynchronous) replication, administrators can replicate using

multiple threads. These features were added to improve overall throughput of

replication. For more information about asynchronous replication, see

″Multi-threaded (asynchronous) replication″ in the IBM Tivoli Directory Server

Version 6.0 Administration Guide.

Anyone with a replication backlog might consider switching to multi-threaded

(asynchronous) replication. Candidate environments can include the following:

v A high update rate

v No downlevel servers

v Common AES salt and synchronization if encryption is AES and passwords are

updated often

v Small fanout (for example, 8 connections per agreement with 24 replicas might

be too complicated depending on system configuration)

v Available servers and reliable network

v Real-time data consistency is not critical

v All replication schedules are immediate

v Multiprocessor machines

Multi-threaded (asynchronous) replication is difficult to administer if servers or

networks are not reliable.

When errors occur, the errors are logged and can be replayed by the administrator,

but the error logs must be monitored closely. The following is a search to show the

replication backlog for all agreements supplied by one server:

ldapsearch -h supplier-host -D cn=admin -w ? -s sub

 objectclass=ibm-replicationagreement

 ibm-replicationpendingchangecount ibm-replicationstate

If the replication state is active, and the pending count is growing, there is a

backlog that won’t decrease unless the update rate decreases or the replication

mode is changed from synchronous to asynchronous (multi-threaded).

Replication also adds to the workload on the master server where the updates are

first applied. In addition to updating its copy of the directory data, the master

server must send the changes to all replica servers. If your application or users do

not depend on immediate replication, then careful scheduling of replication to

avoid peak activity times will help minimize the impact to throughput on the

master server. See ″Creating replication schedules″ in the IBM Tivoli Directory Server

Version 6.0 Administration Guide.

The following are areas where tuning adjustment can be made to improve

performance:

v Number of replication threads per supplier and consumer

v Replication context cache size

v Replication ready size limit

Chapter 6. IBM Tivoli Directory Server features 41

Number of replication threads

The number of replication threads (ibm-replicaconsumerconnections) attribute

represents the number of connections used for each replication agreement. In

testing, as the number of threads on both the supplier and consumer are increased,

the transaction rate also increased. In the following graph, a transaction is defined

as a queued replication record that is sent over, in this case an ldap_modify, to the

supplier. The queued replication records (ldap_modify) are executed with

replication in a pending state. The replication state is then changed to resume,

which starts the replication process.

Note: As the number of threads increases, so does the CPU usage on both supplier

and consumer systems. Adjust this attribute as needed based on acceptable

CPU usage and desired throughput.

 As the throughput increased, the CPU consumption on both the supplier and

consumer increased. The CPU cost per transaction on the consumer increased

slightly when adding threads, as there were more threads to manage.

Replication context cache size

The replication context cache size (ibm-slapdReplContextCacheSize) is an attribute

that specifies, in bytes, the size in memory that is allocated to cache updates to be

replicated. The default setting is 100,000 bytes. This attribute cannot be updated

dynamically.

Figure 12. Number of replication threads

42 Performance Tuning Guide

Replication ready size limit

The replication ready size limit (environment variable

IBMSLAPD_REPL_READY_SIZE_LIMIT) controls the size of the queues of

replication operations from the list of updates still to be replicated. The default size

is 10. There is one queue per connection to a given replica. Related updates (for

example, modifications or children of new entries) will be placed in the same

queue. If the size of this queue exceeds the specified size limit, the main replication

thread waits for the queue size to get below the limit again. This prevents the main

replication thread from using too much CPU determining dependencies between

the updates. In testing, the size of this queue was varied from 1 entry up to 200

entries. Although an increase in raw throughput was not evident, CPU savings

were realized at certain settings of this parameter. The following chart displays

throughput normalized to 100% CPU. Absolute throughput did not change in this

test. A larger number in this graph means less CPU cost per transaction. In this

graph a transaction is defined as a queued replication record (ldap_modify) that is

sent to the supplier.

Figure 13. Replication context cache size

Chapter 6. IBM Tivoli Directory Server features 43

Proxy server tuning

The proxy server is recommended for use in environments where the size of the

data store exceeds the processing power and physical capacity of a single machine.

Directory sizes greater than 40 M entries are candidates for a distributed directory

environment. The proxy server gives customers the ability to distribute data across

multiple backend servers.

Throughput performance of the proxy server can be affected by the size of the

connection pool. This is a parameter configured on the Proxy server. It is

recommended that you configure more than one connection to the backend server.

For better performance, all backend servers and the proxy server should share the

same stash files.

Monitoring performance

The ldapsearch command can be used to monitor performance, as shown in the

following sections.

ldapsearch with ″cn=monitor″

The following ldapsearch command uses ″cn=monitor″.

ldapsearch -h ldap_host -s base -b cn=monitor objectclass=*

where ldap_host is the name of the LDAP host.

The monitor search returns some of the following attributes of the server:

Figure 14. Replication ready size limit

44 Performance Tuning Guide

cn=monitor

version=IBM Tivoli Directory, Version 6.0

total connections

The total number of connections since the server was started.

current connections

The number of active connections.

maxconnections

The maximum number of active connections allowed.

writewaiters

The number of threads sending data back to the client.

readwaiters

The number of threads reading data from the client.

livethreads

The number of worker threads being used by the server.

filter_cache_size

The maximum number of filters allowed in the cache.

filter_cache_current

The number of filters currently in the cache.

filter_cache_hit

The number of filters retrieved from the cache rather than being resolved

in DB2.

filter_cache_miss

The number of filters that were not found in the cache that then needed to

be resolved by DB2.

filter_cache_bypass_limit

Search filters that return more entries than this limit are not cached.

entry_cache_size

The maximum number of entries allowed in the cache.

entry_cache_current

The number of entries currently in the cache.

entry_cache_hit

The number of entries that were retrieved from the cache.

entry_cache_miss

The number of entries that were not found in the cache that then needed

to be retrieved from DB2.

acl_cache

A Boolean value indicating that the ACL cache is active (TRUE) or inactive

(FALSE).

acl_cache_size

The maximum number of entries in the ACL cache.

currenttime

The current time on the server. The current time is in the format:

year month day hour:minutes:seconds GMT

Note: If expressed in local time the format is

day month date hour:minutes:seconds timezone year

Chapter 6. IBM Tivoli Directory Server features 45

starttime

The time the server was started. The start time is in the format:

year month day hour:minutes:seconds GMT

Note: If expressed in local time the format is

day month date hour:minutes:seconds timezone year

en_currentregs

The current number of client registrations for event notification.

en_notificationssent

The total number of event notifications sent to clients since the server was

started.

The following attributes are for operation counts:

bindsrequested

The number of bind operations requested since the server was started.

bindscompleted

The number of bind operations completed since the server was started.

unbindsrequested

The number of unbind operations requested since the server was started.

unbindscompleted

The number of unbind operations completed since the server was started.

addsrequested

The number of add operations requested since the server was started.

addscompleted

The number of add operations completed since the server was started.

deletesrequested

The number of delete operations requested since the server was started.

deletescompleted

The number of delete operations completed since the server was started.

modrdnsrequested

The number of modify RDN operations requested since the server was

started.

modrdnscompleted

The number of modify RDN operations completed since the server was

started.

modifiesrequested

The number of modify operations requested since the server was started.

modifiescompleted

The number of modify operations completed since the server was started.

comparesrequested

The number of compare operations requested since the server was started.

comparescompleted

The number of compare operations completed since the server was started.

abandonsrequested

The number of abandon operations requested since the server was started.

abandonscompleted

The number of abandon operations completed since the server was started.

46 Performance Tuning Guide

extopsrequested

The number of extended operations requested since the server was started.

extopscompleted

The number of extended operations completed since the server was

started.

unknownopsrequested

The number of unknown operations requested since the server was started.

unknownopscompleted

The number of unknown operations completed since the server was

started. Unrecognized operations are rejected with a result message to the

client including the LDAP_UNWILLING_TO_PERFORM result code.

opsinitiated

The number of initiated requests since the server was started.

opscompleted

The number of completed requests since the server was started.

entriessent

The number of entries sent by the server since the server was started.

searchesrequested

The number of initiated searches since the server was started.

searchescompleted

The number of completed searches since the server was started.

The following attributes are for server logging counts:

slapderrorlog_messages

The number of server messages recorded since the server was started or

since a reset was performed.

slapdclierrors_messages

The number of DB2 error messages recorded since the server was started

or since a reset was performed.

auditlog_messages

The number of audit messages recorded since the server was started or

since a reset was performed.

auditlog_failedop_messages

The number of failed operation messages recorded since the server was

started or since a reset was performed.

The following attributes are for connection type counts:

total_ssl_connections

The total number of SSL connections since the server was started.

total_tls_connections

The total number of TLS connections since the server was started.

The following attributes are for tracing:

trace_enabled

The current trace value for the server. TRUE, if collecting trace data,

FALSE, if not collecting trace data.

Chapter 6. IBM Tivoli Directory Server features 47

trace_message_level

The current ldap_debug value for the server. The value is in hexadecimal

form, for example:

0x0=0

0xffff=65535

trace_message_log

The current LDAP_DEBUG_FILE environment variable setting for the

server.

The following attributes are for denial of service prevention:

available_workers

The number of worker threads available for work.

current_workqueue_size

The current depth of the work queue.

largest_workqueue_size

The largest size that the work queue has ever reached.

idle_connections_closed

The number of idle connections closed by the Automatic Connection

Cleaner.

auto_connection_cleaner_run

The number of times that the Automatic Connection Cleaner has run.

emergency_thread_running

The indicator of whether the emergency thread is running.

totaltimes_emergency_thread_run

The number of times the emergency thread has been activated.

lasttime_emergency_thread_run

The last time the emergency thread was activated.

The following attribute is for alias dereference processing:

bypass_deref_aliases

The server runtime value that indicates if alias processing can be bypassed.

It displays TRUE if no alias object exists in the directory, and FALSE if at

least one alias object exists in the directory.

The following attributes are for the attribute cache:

cached_attribute_total_size

The amount of memory used by the directory attribute cache, in kilobytes.

This number includes additional memory used to manage the cache that is

not charged to the individual attribute caches. Consequently, this total is

larger than the sum of the memory used by all the individual attribute

caches.

cached_attribute_configured_size

The maximum amount of memory, in kilobytes, that is enabled to be used

by the directory attribute cache.

cached_attribute_hit

The number of times the attribute has been used in a filter that could be

processed by the attribute cache. The value is reported as follows:

cached_attribute_hit=attrname:#####

48 Performance Tuning Guide

cached_attribute_size

The amount of memory used for this attribute in the attribute cache. This

value is reported in kilobytes as follows:

cached_attribute_size=attrname:######

cached_attribute_candidate_hit

A list of up to ten most frequently used noncached attributes that have

been used in a filter that could have been processed by the directory

attribute cache if all of the attributes used in the filter had been cached.

The value is reported as follows:

cached_attribute_candidate_hit=attrname:#####

You can use this list to help you decide which attributes you want to

cache. Typically, you want to put a limited number of attributes into the

attribute cache because of memory constraints.

Examples

The following sections show examples of using values returned by the ldapsearch

command with ″cn=monitor″ to calculate the throughput of the server and the

number of add operations completed on the server in a certain timeframe.

Throughput example: The following example shows how to calculate the

throughput of the server by monitoring the server statistic called opscompleted,

which is the number of operations completed since the LDAP server started.

Suppose the values for the opscompleted attribute obtained by issuing two

ldapsearch commands to monitor the performance statistics, one at time t1 and the

other at a later time t2, were opscompleted (t1) and opscompleted (t2). The average

throughput at the server during the interval between t1 and t2 can be calculated

as:

(opscompleted(t2) - opscompleted(t1) - 3)/(t2 -t1)

(3 is subtracted to account for the number of operations performed by the

ldapsearch command itself.)

Workload example: The monitor attributes can be used to characterize the

workload, similar to the throughput example but split out by type of operation.

For example, you can calculate the number of add operations that were completed

in a certain amount of time.

Suppose the values for the addscompleted attribute obtained by issuing two

ldapsearch commands to monitor the performance statistics, one at time t1 and the

other at a later time t2, were addscompleted (t1) and addscompleted (t2). The

number of add operations completed on the server during the interval between t1

and t2 can be calculated as:

(addscompleted(t2) - addscompleted(t1) /(t2 -t1)

Similar calculations can be done for other operations, such as searchescompleted,

bindscompleted, deletescompleted, and modifiescompleted.

ldapsearch with ″cn=workers,cn=monitor″

An administrator can run a search using ″cn=workers,cn=monitor″ to get

information about what worker threads are doing and when they started doing it.

ldapsearch -D <adminDN> -w <adminpw> -b cn=workers,cn=monitor -s base objectclass=*

Chapter 6. IBM Tivoli Directory Server features 49

This information is most useful when a server is performing poorly or not

functioning as expected. It should be used only when needed to give insight into

what the server is currently doing or not doing.

The ″cn=workers, cn=monitor″ search returns detailed activity information only if

auditing is turned on. If auditing is not on, ″cn=workers, cn=monitor″ returns only

thread information for each of the workers.

 Attention: The ″cn=workers,cn=monitor″ search suspends all server activity until

it is completed. For this reason, a warning should be issued from any application

before issuing this feature. The response time for this command will increase as the

number of server connections and active workers increase.

For more information, see the IBM Tivoli Directory Server Version 6.0 Administration

Guide.

ldapsearch with ″cn=connections,cn=monitor″

An administrator can run a search using ″cn=connections,cn=monitor″ to get

information about server connections:

ldapsearch -D<adminDN> -w <adminPW> -h <servername> -p <portnumber>

 -b cn=connections,cn=monitor -s base objectclass=*

This command returns information in the following format:

cn=connections,cn=monitor

connection=1632 : 9.41.21.31 : 2002-10-05 19:18:21 GMT : 1 : 1 : CN=ADMIN : :

connection=1487 : 127.0.0.1 : 2002-10-05 19:17:01 GMT : 1 : 1 : CN=ADMIN : :

Note: If appropriate, an SSL or a TLS indicator is added on each connection.

For more information, see the IBM Tivoli Directory Server Version 6.0 Administration

Guide.

ldapsearch with ″cn=changelog,cn=monitor″

You can run a search using ″cn=changelog,cn=monitor″ to obtain information

about the changelog attribute cache. (See “When to configure the LDAP change

log” on page 51 for information about the change log.) The command returns the

following information:

cached_attribute_total_size

The amount of memory used by the changelog attribute cache, in kilobytes.

This number includes additional memory used to manage the cache that is

not charged to the individual attribute caches. Consequently, this total is

larger than the sum of the memory used by all the individual attribute

caches.

cached_attribute_configured_size

The maximum amount of memory, in kilobytes, that is enabled to be used

by the changelog attribute cache

cached_attribute_hit

The number of times the attribute has been used in a filter that could be

processed by the changelog attribute cache. The value is reported as

follows:

cached_attribute_hit=attrname:#####

50 Performance Tuning Guide

cached_attribute_size

The amount of memory used for this attribute in the changelog attribute

cache. This value is reported in kilobytes as follows:

cached_attribute_size=attrname:######

cached_attribute_candidate_hit

A list of up to ten most frequently used noncached attributes that have

been used in a filter that could have been processed by the changelog

attribute cache if all of the attributes used in the filter had been cached.

The value is reported as follows:

cached_attribute_candidate_hit=attrname:#####

You can use this list to help you decide which attributes you want to

cache. Typically, you want to put a limited number of attributes into the

attribute cache because of memory constraints.

When to configure the LDAP change log

IBM Tivoli Directory Server 6.0 has a function called change log that results in a

significantly slower LDAP update performance. The change log function should be

configured only if needed.

The change log function causes all updates to LDAP to be recorded in a separate

change log DB2 database (that is, a different database from the one used to hold

the LDAP server Directory Information Tree). The change log database can be used

by other applications to query and track LDAP updates. The change log function is

disabled by default.

One way to check for existence of the change log function is to look for the suffix

CN=CHANGELOG. If it exists, the change log function is enabled.

Chapter 6. IBM Tivoli Directory Server features 51

52 Performance Tuning Guide

Appendix A. Workload description

The tests used in this document contain a mixture of searches and binds, including

wildcard searches, which return multiple entries.

Each scenario consists of two phases, a warmup phase and a run phase. During

the warmup phase, the searches primarily request entries that are not in the LDAP

caches; most of these requests require interaction with the DB2 backing store. For

all the measurements reported in this document, warmup consisted of running all

queries at least once; consequently, during the run phase all entries requested are

potentially already in LDAP caches in memory if the caches are large enough to

hold all of them. Thus the warmup phase and the run phase comprise two

distinctly different workloads.

During the run phase of the mixed search and bind test, a number of client threads

issue search requests to the IBM Tivoli Directory Server from predetermined

scripts. The scripts include a number of different kinds of searches, including

wildcard and other searches that return multiple entries per request. The client

threads run through their scripts continuously for three minutes. Throughput is

measured on the server for each three-minute interval, and then each client starts

over at the beginning of its script. Each three-minute interval is referred to as a

run. The server is not restarted between runs.

© Copyright IBM Corp. 2005 53

54 Performance Tuning Guide

Appendix B. Modifying TCP/IP settings

Closed TCP/IP connections between the client and the LDAP server are cleaned at

system-specified intervals. In environments where the connections are opened or

closed at a high frequency, this can degrade LDAP server performance. To shorten

the cleaning intervals, modify the registry keys.

Do the following to modify the registry keys on a Windows platform:

1. Type the following at a command prompt to open Registry Editor:

regedit

2. Go to

HKey_Local_Machine\System\CurrentControlSet\Services\Tcpip\Parameters.

3. Add TcpTimedWaitDelay entry (if not already in the registry).

4. Set the DWORD value to 1e for 30 seconds.

5. Add StrictTimeWaitSeqCheck entry (if not already in the registry).

6. Set DWORD Value to 1

7. Reboot the machine.

Do the following to modify the TCP/IP settings on an AIX platform:

1. Use the following command

no -o <attributename>=<value>

to set the following attributes and values for performance tuning:

tcp_keepidle

Specifies the length of time to keep the connection active. This value is

defined in 1/2 second units, and defaults to 14,400 (7200 seconds or 2

hours). tcp_keepidle is a runtime attribute.

tcp_keepinit

Sets the initial timeout value for a tcp connection. This value is defined

in 1/2 second units, and defaults to 150 (75 seconds). It can be changed

to any value with the -o option. tcp_keepinit is a runtime attribute.

tcp_keepintvl

Specifies the interval between packets sent to validate the connection.

This value is defined in 1/2 second units, and defaults to 150 (75

seconds). tcp_keepintvl is a runtime attribute.

Note: This applies to both client and server machines.

© Copyright IBM Corp. 2005 55

56 Performance Tuning Guide

Appendix C. Platform configurations

The examples in this guide use the following platform configurations:

v Clients

– Four 1.8GHz, 512MB RAM, Intel PRO/100 VE

– Windows 2000 Professional with SP2
v Server

– 4-Way 450MHz, pSeries(TM) eServer(TM) Model 7026-B80 with 1 or 4

processors active, 4 GB RAM.

– IBM 10/100 Ethernet Adapter.

– AIX 5.2

– IBM Tivoli Directory Server Version 6.0

– AIXTHREAD_SCOPE=S

– MALLOCTYPE=buckets

– NODISCLAIM=true (1way).

– RDBM_CACHE_SIZE=460000 except where noted.

– RDBM_FCACHE_SIZE=75000 except where noted.

– RDBM_CACHE_BYPASS_LIMIT=100 except where noted.

– Necessary Indexes created (for attribute seeAlso).

– No ACLs were set. By default, anyone can search and compare. The directory

administrator can update.
v DB2 v 8.1.1.16

– maxlocks 100 sortheap 2500 dbheap 5000 ibmdefaultbp 20000 (4K pages)

ldapbp 9800 (32K pages)

– logfilsiz 2048, logprimary 6
v Miscellaneous

– Caches were warmed up by running all scripts once.

– Measurements were taken using 50 client threads except where noted.

– DB2 log files are not on the same disk as the containers.

© Copyright IBM Corp. 2005 57

58 Performance Tuning Guide

Appendix D. Support information

This section describes the following options for obtaining support for IBM

products:

v “Searching knowledge bases”

v “Obtaining fixes”

v “Contacting IBM Software Support” on page 60

Searching knowledge bases

If you have a problem with your IBM software, you want it resolved quickly. Begin

by searching the available knowledge bases to determine whether the resolution to

your problem is already documented.

Search the information center on your local system or

network

IBM provides extensive documentation that can be installed on your local

computer or on an intranet server. You can use the search function of this

information center to query conceptual information, instructions for completing

tasks, reference information, and support documents.

Search the Internet

If you cannot find an answer to your question in the information center, search the

Internet for the latest, most complete information that might help you resolve your

problem. To search multiple Internet resources for your product, expand the

product folder in the navigation frame to the left and select Web search. From this

topic, you can search a variety of resources including:

v IBM technotes

v IBM downloads

v IBM Redbooks™

v IBM developerWorks®

v Forums and newsgroups

v Google

Obtaining fixes

A product fix might be available to resolve your problem. You can determine what

fixes are available for your IBM software product by checking the product support

Web site:

1. Go to the IBM Software Support Web site

(http://www.ibm.com/software/support).

2. Under Products A - Z, select your product name. This opens a product-specific

support site.

3. Under Self help, follow the link to All Updates, where you will find a list of

fixes, fix packs, and other service updates for your product. For tips on refining

your search, click Search tips.

4. Click the name of a fix to read the description and optionally download the fix.

© Copyright IBM Corp. 2005 59

http://www.ibm.com/software/support

To receive weekly e-mail notifications about fixes and other news about IBM

products, follow these steps:

1. From the support page for any IBM product, click My support in the

upper-right corner of the page.

2. If you have already registered, skip to the next step. If you have not registered,

click register in the upper-right corner of the support page to establish your

user ID and password.

3. Sign in to My support.

4. On the My support page, click Edit profiles in the left navigation pane, and

scroll to Select Mail Preferences. Select a product family and check the

appropriate boxes for the type of information you want.

5. Click Submit.

6. For e-mail notification for other products, repeat Steps 4 and 5.

For more information about types of fixes, see the Software Support Handbook

(http://techsupport.services.ibm.com/guides/handbook.html).

Contacting IBM Software Support

IBM Software Support provides assistance with product defects.

Before contacting IBM Software Support, your company must have an active IBM

software maintenance contract, and you must be authorized to submit problems to

IBM. The type of software maintenance contract that you need depends on the

type of product you have:

v For IBM distributed software products (including, but not limited to, Tivoli,

Lotus®, and Rational® products, as well as DB2 and WebSphere® products that

run on Windows or UNIX operating systems), enroll in Passport Advantage® in

one of the following ways:

– Online: Go to the Passport Advantage Web page

(http://www.lotus.com/services/passport.nsf/WebDocs/

Passport_Advantage_Home) and click How to Enroll

– By phone: For the phone number to call in your country, go to the IBM

Software Support Web site

(http://techsupport.services.ibm.com/guides/contacts.html) and click the

name of your geographic region.
v For IBM eServer™ software products (including, but not limited to, DB2 and

WebSphere products that run in zSeries®, pSeries™, and iSeries™ environments),

you can purchase a software maintenance agreement by working directly with

an IBM sales representative or an IBM Business Partner. For more information

about support for eServer software products, go to the IBM Technical Support

Advantage Web page (http://www.ibm.com/servers/eserver/techsupport.html).

If you are not sure what type of software maintenance contract you need, call

1-800-IBMSERV (1-800-426-7378) in the United States or, from other countries, go to

the contacts page of the IBM Software Support Handbook on the Web

(http://techsupport.services.ibm.com/guides/contacts.html) and click the name of

your geographic region for phone numbers of people who provide support for

your location.

Follow the steps in this topic to contact IBM Software Support:

1. Determine the business impact of your problem.

2. Describe your problem and gather background information.

60 Performance Tuning Guide

http://techsupport.services.ibm.com/guides/handbook.html
http://www.lotus.com/services/passport.nsf/WebDocs/ Passport_Advantage_Home
http://www.lotus.com/services/passport.nsf/WebDocs/ Passport_Advantage_Home
http://techsupport.services.ibm.com/guides/contacts.html
http://www.ibm.com/servers/eserver/techsupport.html
http://techsupport.services.ibm.com/guides/contacts.html

3. Submit your problem to IBM Software Support.

Determine the business impact of your problem

When you report a problem to IBM, you are asked to supply a severity level.

Therefore, you need to understand and assess the business impact of the problem

you are reporting. Use the following criteria:

 Severity 1 Critical business impact: You are unable to use the program,

resulting in a critical impact on operations. This condition

requires an immediate solution.

Severity 2 Significant business impact: The program is usable but is

severely limited.

Severity 3 Some business impact: The program is usable with less

significant features (not critical to operations) unavailable.

Severity 4 Minimal business impact: The problem causes little impact on

operations, or a reasonable circumvention to the problem has

been implemented.

Describe your problem and gather background information

When explaining a problem to IBM, be as specific as possible. Include all relevant

background information so that IBM Software Support specialists can help you

solve the problem efficiently. To save time, know the answers to these questions:

v What software versions were you running when the problem occurred?

v Do you have logs, traces, and messages that are related to the problem

symptoms? IBM Software Support is likely to ask for this information.

v Can the problem be re-created? If so, what steps led to the failure?

v Have any changes been made to the system? (For example, hardware, operating

system, networking software, and so on.)

v Are you currently using a workaround for this problem? If so, please be

prepared to explain it when you report the problem.

Submit your problem to IBM Software Support

You can submit your problem in one of two ways:

v Online: Go to the ″Submit and track problems″ page on the IBM Software

Support site (http://www.ibm.com/software/support/probsub.html). Enter

your information into the appropriate problem submission tool.

v By phone: For the phone number to call in your country, go to the contacts page

of the IBM Software Support Handbook on the Web

(techsupport.services.ibm.com/guides/contacts.html) and click the name of your

geographic region.

If the problem you submit is for a software defect or for missing or inaccurate

documentation, IBM Software Support creates an Authorized Program Analysis

Report (APAR). The APAR describes the problem in detail. Whenever possible,

IBM Software Support provides a workaround for you to implement until the

APAR is resolved and a fix is delivered. IBM publishes resolved APARs on the

IBM product support Web pages daily, so that other users who experience the

same problem can benefit from the same resolutions.

For more information about problem resolution, see Searching knowledge bases

and Obtaining fixes.

Appendix D. Support information 61

http://www.ibm.com/software/support/probsub.html

62 Performance Tuning Guide

Appendix E. Notices

This information was developed for products and services offered in the U.S.A.

IBM might not offer the products, services, or features discussed in this document

in other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in

this document. The furnishing of this document does not give you any license to

these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the information. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

information at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2005 63

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Department MU5A46

11301 Burnet Road

Austin, TX 78758

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

64 Performance Tuning Guide

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, or other countries, or both:

 AIX

Database 2

DB2

developerWorks

eServer

IBM

Lotus

Notes

Passport Advantage

pSeries

Rational

Redbooks

SecureWay

Tivoli

WebSphere

zSeries

Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States and other countries.

Windows is a registered trademarks of Microsoft Corporation

UNIX is a registered trademark in the United States and/or other countries

licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks

of others.

Appendix E. Notices 65

66 Performance Tuning Guide

Index

A
ACL cache

description 12

AIX environment variables
AIXTHREAD_SCOPE 34

MALLOCTYPE 33

NODISCLAIM 34

viewing 34

AIX, enabling large files 33

AIXTHREAD_SCOPE, setting 34

alter bufferpool command 24

APPLHEAPZ 31

attribute cache
adding attributes to

using command line 14

using Web Administration

Tool 14

complex filters resolved by 5

configuring 13

using command line 14

using Web Administration

Tool 13

determining attributes for 6

language tags 6

processing queries 5

simple filters resolved by 5

B
buffer pools

Memory 3

bulkload 39

-k option 39

C
cache configuration variables, setting

using command line 15

using Web Administration Tool 15

cache entry sizes, determining 12

caches, LDAP
configuration variables 13

description 3

directory size 18

listed 2

tuning to improve performance 5

change log
checking for existence of 51

use of 51

components
IBM Tivoli Directory Server 1

configurations used
client 57

DB2 57

miscellaneous 57

server 57

customer support
see Software Support 60

D
DB2 buffer pools 2

and directory size 18

determining best size for 22

IBMDEFAULTBP 2

LDAPBP 2

setting sizes 24

tuning considerations 22

tuning overview 21

DB2 configuration parameters
determining current settings 31

setting 31

DB2 tuning
backup command 32

buffer pools 22

database organization 25

optimization and organization

overview 24

optimizing
overview 25

using command line 25

using Configuration Tool 25

restore command 32

directory size
measuring effect on performance 16

size of DB2 buffer pools 18

size of LDAP caches 18

disk speed, improving 37

E
entry cache

description 11

determining best size for 11

determining entry size 12

F
filter cache

determining best size for 9

determining entry size 12

processing queries 9

size with updates 9

filter cache bypass limit, determining

best 10

fixes, obtaining 59

I
IBM Tivoli Directory Server

components 1

IBM Tivoli Directory Server features
bulkload 39

change log 51

monitoring performance 44

Proxy server 44

replication 41

IBMDEFAULTBP
description 2

IBMDEFAULTBP (continued)
determining best size for 23

improving disk speed 37

indexes, DB2 30

information centers, searching to find

software problem resolution 59

Internet, searching to find software

problem resolution 59

K
knowledge bases, searching to find

software problem resolution 59

L
large files, enabling on AIX 33

LDAP attribute cache 5

LDAP caches 2

Memory 3

LDAP filter cache 9

LDAPBP
description 2

determining best size for 22

ldapsearch
″cn=changelog,cn=monitor″ 50

″cn=connections,cn=monitor″ 50

″cn=monitor″ 44

″cn=workers,cn=monitor″ 49

LOGFILSIZ 31

M
MALLOCTYPE, setting 33

monitoring performance 44

N
NODISCLAIM, setting 34

O
objectclass table indexes

Linux 18

P
performance, monitoring 44

Preface v

Accessibility vii

Accessing publications online vi

Conventions used in this book vii

Ordering publications vi

Publications v

Related publications vi

Support information vii

Tivoli software training vii

Typeface conventions vii

© Copyright IBM Corp. 2005 67

Preface (continued)
Who should read this book v

problem determination
describing problem for IBM Software

Support 61

determining business impact for IBM

Software Support 61

submitting problem to IBM Software

Support 61

Proxy server 44

R
reorg command 28

reorgchk command 26

replication 41

context cache size 42

number of replication threads 42

ready size limit 43

RUNSTATS command 25

S
settings

ibm-slapdIdleTimeOut 16

ibm-
slapdMaxEventsPerConnection 16

ibm-slapdMaxEventsTotal 16

ibm-slapdMaxNumOfTransactions 16

ibm-slapdMaxOpPerTransaction 16

ibm-
slapdMaxTimeLimitOfTransactions 16

ibm-
slapdPagedResAllowNonAdmin 16

ibm-slapdPagedResLmt 16

ibm-slapdSizeLimit 16

ibm-slapdSortKeyLimit 16

ibm-
slapdSortSrchAllowNonAdmin 16

ibm-slapdTimeLimit 16

Software Support
contacting 60

describing problem for IBM Software

Support 61

determining business impact for IBM

Software Support 61

submitting problem to IBM Software

Support 61

Support information
Preface vii

T
TCP/IP settings

modifying 55

tips for improving performance
disk speed 37

generic 3

tuning
LDAP 1

overview 1

tuning, DB2 3

tuning, LDAP
overview 3

tips 3

W
Workload description 53

68 Performance Tuning Guide

����

Printed in USA

SC32-1677-00

	Contents
	Preface
	Who should read this book
	Publications
	IBM Tivoli Directory Server library
	Related publications
	Accessing publications online
	Ordering publications

	Accessibility
	Tivoli software training
	Support information
	Conventions used in this book
	Typeface conventions
	Operating system differences

	Chapter 1. IBM Tivoli Directory Server tuning general overview
	IBM Tivoli Directory Server 6.0 application components
	LDAP caches and DB2 buffer pools
	LDAP caches
	DB2 buffer pools

	Memory allocation between LDAP caches and buffer pools

	IBM Tivoli Directory Server tuning overview
	DB2 tuning overview
	Generic LDAP application tips

	Chapter 2. IBM Tivoli Directory Server tuning
	LDAP caches
	LDAP attribute cache
	Determining which attributes to cache

	LDAP filter cache
	Filter cache size
	Filter cache size with updates
	Filter cache bypass limits

	Entry cache
	Entry cache size

	ACL cache

	Measuring cache entry sizes
	LDAP cache configuration variables
	Configuring attribute caching
	Using the Web Administration Tool
	Using the command line

	Setting other LDAP cache configuration variables
	Using the Web Administration Tool
	Using the command line
	Additional settings

	Directory size
	objectclass table indexes on Linux

	Chapter 3. DB2 tuning and commands
	DB2 buffer pool tuning
	Buffer pool sizes
	LDAPBP buffer pool size
	IBMDEFAULTBP buffer pool size
	Setting buffer pool sizes

	Optimization and organization (reorgchk and reorg)
	Optimization
	Database organization (reorgchk and reorg)
	Performing a reorgchk
	Performing a reorg

	Indexes
	Other DB2 configuration parameters
	Database backup and restore considerations

	Chapter 4. AIX operating system tuning
	Enabling large files
	Setting MALLOCTYPE
	Setting other environment variables
	Viewing ibmslapd environment variables (AIX operating system only)

	Chapter 5. Hardware tuning
	Disk speed improvements

	Chapter 6. IBM Tivoli Directory Server features
	Bulkload
	Effects of using the -k option

	Replication tuning
	Number of replication threads
	Replication context cache size
	Replication ready size limit

	Proxy server tuning
	Monitoring performance
	ldapsearch with "cn=monitor"
	Examples

	ldapsearch with "cn=workers,cn=monitor"
	ldapsearch with "cn=connections,cn=monitor"
	ldapsearch with "cn=changelog,cn=monitor"

	When to configure the LDAP change log

	Appendix A. Workload description
	Appendix B. Modifying TCP/IP settings
	Appendix C. Platform configurations
	Appendix D. Support information
	Searching knowledge bases
	Search the information center on your local system or network
	Search the Internet

	Obtaining fixes
	Contacting IBM Software Support
	Determine the business impact of your problem
	Describe your problem and gather background information
	Submit your problem to IBM Software Support

	Appendix E. Notices
	Trademarks

	Index

