
IBM Tivoli Directory Server

Server Plug-ins Reference

Version 6.0

SC32-1676-00

���

IBM Tivoli Directory Server

Server Plug-ins Reference

Version 6.0

SC32-1676-00

���

Note

Before using this information and the product it supports, read the general information under Appendix G, “Notices,” on

page 71.

First Edition (April 2005)

This edition applies to version 6, release 0, of the IBM Tivoli Directory Server and to all subsequent releases and

modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Preface v

Who should read this book v

Publications v

IBM Tivoli Directory Server library v

Related publications v

Accessing publications online vi

Ordering publications vi

Accessibility vi

Tivoli technical training vii

Support information vii

Conventions used in this book vii

Typeface conventions vii

Operating system differences vii

Chapter 1. Introduction to server

plug-ins 1

Chapter 2. Writing a plug-in 3

Chapter 3. Database plug-ins 7

LDAP protocol-related functions 7

Back-end-related functions 7

Chapter 4. Operation plug-ins 9

Pre-operation plug-ins 9

Post-operation plug-ins 9

Extended operation plug-ins 10

Input parameters 10

Output parameters 10

Audit plug-ins 11

Configuration options 12

Examples 13

Appendix A. Supported database

functions 15

Output parameters 16

Appendix B. Parameter Reference . . . 17

Parameters for Registering Plug-in Functions . . . 17

Database Plug-ins 18

Pre-Operation/Data Validation Plug-ins 19

Post-Operation/Data Notification Plug-ins . . . 20

Extended Operation Plug-ins 20

Matching Rule Plug-ins 21

Parameters Accessible to All Plug-ins 21

Information About the Database 22

Information About the Connection 22

Information About the Operation 23

Notes in the Access Log 24

Information About the Plug-in 25

Parameters for the Configuration Function 26

Parameters for the Bind Function 26

Parameters for the Search Function 27

Parameters for the Add Function 28

Parameters for the Compare Function 28

Parameters for the Delete Function 29

Parameters for the Modify Function 29

Parameters for the Modify RDN Function 29

Parameters for the Abandon Function 30

Parameters for Database Import 30

Parameters for Database Export 31

Parameters for Database Archive 31

Parameters for Database Restore 31

Parameters for Database Indexing 32

Parameters for Extended Operations 32

Parameters for Internal LDAP Operations 32

Parameters for Matching Rule Plug-ins 33

Appendix C. Supported iPlanet APIs . . 35

slapi_pblock_get() 36

slapi_pblock_set() 36

slapi_pblock_new() 37

slapi_pblock_destroy() 37

slapi_ch_malloc() 37

slapi_ch_calloc() 37

slapi_ch_realloc() 38

slapi_ch_strdup() 38

slapi_compare_internal() 38

slapi_ch_free() 39

slapi_send_ldap_result() 39

slapi_dn_normalize() 39

slapi_dn_normalize_case() 40

slapi_dn_ignore_case() 40

slapi_dn_normalize_v3() 41

slapi_dn_normalize_case_v3() 41

slapi_dn_ignore_case_v3() 42

slapi_dn_compare_v3() 42

slapi_dn_issuffix() 43

slapi_entry2str() 43

slapi_str2entry() 44

slapi_entry_attr_find() 45

slapi_entry_attr_delete() 45

slapi_entry_get_dn() 45

slapi_entry_set_dn() 45

slapi_entry_alloc() 46

slapi_entry_dup() 46

slapi_send_ldap_search_entry() 46

slapi_entry_free() 47

slapi_attr_get_values() 47

slapi_str2filter() 47

slapi_filter_get_choice() 48

slapi_filter_get_ava() 48

slapi_filter_free() 49

slapi_filter_list_first() 49

slapi_filter_list_next() 50

slapi_is_connection_ssl() 50

slapi_get_client_port() 50

slapi_search_internal() 51

slapi_modify_internal() 51

© Copyright IBM Corp. 2005 iii

slapi_add_internal() 52

slapi_add_entry_internal() 53

slapi_delete_internal() 53

slapi_modrdn_internal() 54

slapi_free_search_results_internal() 54

slapi_get_supported_saslmechanisms() 55

slapi_get_supported_extended_ops() 55

slapi_register_supported_saslmechanism() 55

slapi_get_supported_controls() 55

slapi_register_supported_control() 56

slapi_control_present() 57

slapi_log_error() 57

Appendix D. Plug-in examples 59

Appendix E. Deprecated plug-in APIs 65

Appendix F. Support information . . . 67

Searching knowledge bases 67

Search the information center on your local

system or network 67

Search the Internet 67

Obtaining fixes 67

Contacting IBM Software Support 68

Determine the business impact of your problem 69

Describe your problem and gather background

information 69

Submit your problem to IBM Software Support 69

Appendix G. Notices 71

Trademarks 73

Index 75

iv Server Plug-ins Reference

Preface

This book contains information about using and writing plug-ins that extend the

capabilities of your IBM® Tivoli® Directory Server.

Who should read this book

This book is intended for system administrators.

Publications

Read the descriptions of the IBM Tivoli Directory Server library, the prerequisite

publications, and the related publications to determine which publications you

might find helpful. After you determine the publications you need, see “Accessing

publications online” on page vi for information about accessing publications

online.

IBM Tivoli Directory Server library

The publications in the IBM Tivoli Directory Server library are:

IBM Tivoli Directory Server Version 6.0 Release Notes

Contains information about the new features in the IBM Tivoli Directory

Server Version 6.0 release.

IBM Tivoli Directory Server Version 6.0 Installation and Configuration Guide

Contains complete information for installing the IBM Tivoli Directory

Server client, server, and Web Administration Tool. Includes information

about migrating from a previous version of IBM Tivoli Directory Server or

SecureWay® Directory.

IBM Tivoli Directory Server Version 6.0 Performance Tuning Guide

Contains information about tuning your server for better performance.

IBM Tivoli Directory Server Version 6.0 Administration Guide

Contains instructions for performing administrator tasks through the Web

Administration Tool and the command line.

IBM Tivoli Directory Server Version 6.0 Plug-ins Reference

Contains information about writing server plug-ins.

IBM Tivoli Directory Server Version 6.0 C-Client SDK Programming Reference

Contains information about writing Lightweight Directory Access Protocol

(LDAP) client applications.

IBM Tivoli Directory Server Version 6.0 Problem Determination Guide

Contains information about possible problems and corrective actions that

can be tried before contacting Software Support.

IBM Tivoli Directory Server Version 6.0 Messages

Contains information about error messages that you might see.

Related publications

Information related to IBM Tivoli Directory Server is available in the following

publications:

© Copyright IBM Corp. 2005 v

v IBM Tivoli Directory Server Version 6.0 uses the JNDI client from Sun

Microsystems. For information about the JNDI client, refer to the Java™ Naming

and Directory Interface™ 1.2.1 Specification on the Sun Microsystems Web site at

http://java.sun.com/products/jndi/1.2/javadoc/index.html.

v The Tivoli Software Library provides a variety of Tivoli publications such as

white papers, datasheets, demonstrations, redbooks, and announcement letters.

The Tivoli Software Library is available on the Web at:

http://www.ibm.com/software/tivoli/library/

v The Tivoli Software Glossary includes definitions for many of the technical terms

related to Tivoli software. The Tivoli Software Glossary is available from the

Glossary link on the left side of the Tivoli Software Library Web page

http://www.ibm.com/software/tivoli/library/

Accessing publications online

The publications for this product are available online in Portable Document Format

(PDF) or Hypertext Markup Language (HTML) format, or both in the Tivoli

software library: http://www.ibm.com/software/tivoli/library

To locate product publications in the library, click the Product manuals link on the

left side of the library page. Then, locate and click the name of the product on the

Tivoli software information center page.

Product publications include release notes, installation guides, user’s guides,

administrator’s guides, and developer’s references.

Note: To ensure proper printing of PDF publications, select the Fit to page check

box in the Adobe Acrobat Print window (which is available when you click

File → Print).

Ordering publications

You can order many Tivoli publications online at the following Web site:

http://www.elink.ibmlink.ibm.com/public/applications/

publications/cgibin/pbi.cgi

You can also order by telephone by calling one of these numbers:

v In the United States: 800-879-2755

v In Canada: 800-426-4968

In other countries, see the following Web site for a list of telephone numbers:

http://www.ibm.com/software/tivoli/order-lit/

Accessibility

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use software products successfully. With this product,

you can use assistive technologies to hear and navigate the interface. You also can

use the keyboard instead of the mouse to operate all features of the graphical user

interface.

vi Server Plug-ins Reference

http://java.sun.com/products/jndi/1.2/javadoc/index.html
http://www.ibm.com/software/tivoli/library/
http://www.ibm.com/software/tivoli/library/
http://www.ibm.com/software/tivoli/library/
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi
http://www.ibm.com/software/tivoli/order-lit/

Tivoli technical training

For Tivoli technical training information, refer to the IBM Tivoli Education Web

site: http://www.ibm.com/software/tivoli/education.

Support information

If you have a problem with your IBM software, you want to resolve it quickly. IBM

provides the following ways for you to obtain the support you need:

v Searching knowledge bases: You can search across a large collection of known

problems and workarounds, Technotes, and other information.

v Obtaining fixes: You can locate the latest fixes that are already available for your

product.

v Contacting IBM Software Support: If you still cannot solve your problem, and

you need to work with someone from IBM, you can use a variety of ways to

contact IBM Software Support.

For more information about these three ways of resolving problems, see

Appendix F, “Support information,” on page 67.

Conventions used in this book

This reference uses several conventions for special terms and actions and for

operating system-dependent commands and paths.

Typeface conventions

The following typeface conventions are used in this reference:

Bold Lowercase commands or mixed case commands that are difficult to

distinguish from surrounding text, keywords, parameters, options, names

of Java classes, and objects are in bold.

Italic Variables, titles of publications, and special words or phrases that are

emphasized are in italic.

<Italic>

Variables are set off with < > and are in <italic>.

Monospace

Code examples, command lines, screen output, file and directory names

that are difficult to distinguish from surrounding text, system messages,

text that the user must type, and values for arguments or command

options are in monospace.

Operating system differences

This book uses the UNIX® convention for specifying environment variables and for

directory notation. When you are using the Windows® command line, replace

$variable with %variable% for environment variables and replace each forward

slash (/) with a backslash (\) in directory paths. If you are using the bash shell on

a Windows system, you can use the UNIX conventions.

Preface vii

http://www.ibm.com/software/tivoli/education

viii Server Plug-ins Reference

Chapter 1. Introduction to server plug-ins

Use the IBM Tivoli Directory Server Plug-ins Reference to help you create plug-ins

that extend the capabilities of your IBM Tivoli Directory Server.

Server plug-ins extend the capabilities of your Directory Server. They are

dynamically loaded into the LDAP server’s address space when it is started. Once

the plug-ins are loaded, the server calls the functions in a shared library by using

function pointers.

A server front-end listens to the wire, receives and parses requests from clients,

and then processes the requests by calling an appropriate database back-end

function.

A server back-end reads and writes data to the database containing the directory

entries. In addition to the default database operations, the LDAP server Database

2™ (DB2®) back-end also provides functions for supporting replication and

dynamic schema updates.

If the front-end fails to process a request it returns an error message to the client;

otherwise, the back-end is called. After the back-end is called, it must return a

message to the client. Either the front-end or the back-end, but not both can return

a message to the client.

Note: This differs from the iPlanet server plug-in in that only the front-end of the

iPlanet plug-in can send a message back to the client.

In this release of the IBM Tivoli Directory Server the following types of server

plug-ins are supported:

Database plug-ins

Can be used to integrate your own database as a back-end to the server. A

database plug-in can consist of all or only a portion of the functions

discussed in this document. For example, the rdbm database back-end is a

database plug-in. It provides functions that enable the server to interact

with the DB2 database.

Pre-operation plug-ins

Functions that are executed before an LDAP operation is performed. For

example, you can write a plug-in that checks new entries before they are

added to the directory.

Post-operation plug-ins

Functions that are executed after an LDAP operation is performed.

Extended operation plug-ins

Are used to handle extended operations protocol that are defined in the

LDAP V3 protocol.

Audit plug-ins

Are used to improve the security of the directory server. A default audit

plug-in is provided with the server. Depending on the audit configuration

parameters, this plug-in might log an audit entry in the default or specified

audit log for each LDAP operation the server processed. The IBM Tivoli

Directory Server administrator can use the activities stored in the audit log

© Copyright IBM Corp. 2005 1

to check for suspicious patterns of activity in an attempt to detect security

violations. If security is violated, the audit log can be used to determine

how and when the problem occurred and perhaps the amount of damage

done. This information is very useful, both for recovery from the violation

and, possibly, in the development of better security measures to prevent

future problems. You can also write your own audit plug-ins to either

replace, or add more processing to, the default audit plug-in.

A server plug-in can return a message to the client as well. However, make sure

that the server returns only one message.

2 Server Plug-ins Reference

Chapter 2. Writing a plug-in

A pblock is an opaque structure in which many parameters are stored. It is used to

communicate between the server and your plug-ins. Application program

interfaces (APIs) are provided for your plug-ins to get (or set) parameters in this

structure.

Notes:

1. Plug-ins must be written using reentrant system calls.

2. There is no global mutex issue that the plug-in writer has to be concerned

about in terms of interacting with the server. As long as the plug-ins call

server-provided slapi APIs, a server’s shared resource is protected by the APIs.

However, because each request is serviced by a thread, and each thread might

exercise the plug-in code, if there is any shared resource that the plug-in code

creates, then mutex might be needed to protect the resources.

The following are examples of supported compilers:

v For Windows platforms—MS Visual C++ 6.0 and IBM VisualAge® C++ 3.5

v For AIX® platforms—IBM VisualAge C++ 6.0

v For Linux/x86 platforms—GCC 3.2.3

v Linux/s390 platforms—GCC 3.2

v Linux/ppc platforms—GCC 3.2

v For Solaris platforms—Forte 6.1

v For HP-PARISC platforms—aCC A.03.30

v For HP IA64 platforms—aCC A.03.30

To write your own plug-in:

1. Start by writing your functions. Include slapi-plugin.h (where you can find all

the parameters that can be defined in the pblock). You also can find a set of

function prototypes for the available functions in the slapi-plugin.h file.

2. Decide the input parameters for your functions. Depending on the type of

plug-in you are writing, you might need to work with a different set of

parameters. See Appendix A, “Supported database functions,” on page 15 for

more information.

3. The following output is received from your functions:

return code

You can have the return code set to 0, which means that the server

continues the operation. A return code of non-zero means that the

server stops processing the operation. For example, if you have a

pre-operation bind function that authenticates a user, it returns a

non-zero after the authentication has been completed successfully.

Otherwise, you can return a 0 and let the default bind operation

continue the authentication process.

return a message to the client

You might want your plug-in (a pre-operation, a database operation, or

a post-operation) to send an LDAP result to the client. For each

operation, make sure there is only one LDAP result sent.

© Copyright IBM Corp. 2005 3

Note: The IBM Tivoli Directory Server default database plug-in always

sends back a message. If you use the default database, do not

have the post-operation return a message to the client.

output parameter

You might want to update parameters in the pblock that were passed

to your function. For example, after your pre-operation bind function

authenticates a user, you might want your plug-in to return the bound

user’s DN to the server. The server can then use it to continue to

process the operations requested by the user. See Appendix A,

“Supported database functions,” on page 15 for possible output

parameters.
4. Call slapi APIs in the libslapi library file. See Appendix C, “Supported iPlanet

APIs,” on page 35 for information about the APIs supported in this release.

5. Write an initialization function for your plug-in to register your plug-in

functions.

6. Export your initialization function from your plug-in shared library. Use an

.exp file for AIX or a .def (or dllexport) file for Windows NT® to export your

initialization. For other UNIX platforms, the exportation of the function is

automatic when you create the shared library.

7. Compile and link your server plug-in object files with whatever libraries you

need, and libslapi library file.

8. Add a plug-in directive in the server configuration file. The syntax of the

plug-in directive is:

attributeName: plugin-type plugin-path init-func args ...

9. On a Windows NT operating system, in the ibmslapd.conf file, the plug-in

directive is as follows:

dn: cn=Directory, cn=RDBM Backends, cn=IBM Directory,

 cn=Schemas, cn=Configuration

ibm-slapdPlugin: database /lib/libback-rdbm.dll rdbm_backend_init

Note: For the AIX, Linux, Solaris and HP operating platforms, the .dll

extension is replaced with the appropriate extension:

v For AIX and Linux operating systems - .a

v For Solaris operating systems - .so

v For HP-UX operating systems - .sl

The following rules apply when you place a plug-in directive in the configuration

file:

v Multiple pre- or post-operations are called in the order they appear in the

configuration file.

v The server can pass parameters to your plug-in initialization function by way of

the argument list that is specified in the plug-in directive.

ibm-slapdPlugin is the attribute used to specify a plug-in which can be loaded by

the server. This attribute is one of the attributes contained in objectclasses, such as

ibm-slapdRdbmBackend and ibm-slapdLdcfBackend. For instance, in

ibmslapd.conf, there is an entry which identifies the rdbm backend. In this entry, a

database plug-in is specified by using the ibm-slapdPlugin attribute so that the

server knows where and how to load this plug-in. If there is another plug-in to be

loaded, such as a changelog plug-in, then specify it using another ibm-slapdPlugin

attribute.

4 Server Plug-ins Reference

dn: cn=Directory, cn=RDBM Backends, cn=IBM Directory, cn=Schemas, cn=Configuration

...

objectclass: ibm-slapdRdbmBackend

ibm-slapdPlugin: database libback-rdbm.dll rdbm_backend_init

ibm-slapdPlugin: preoperation libcl.dll CLInit "cn=changelog"

Chapter 2. Writing a plug-in 5

6 Server Plug-ins Reference

Chapter 3. Database plug-ins

Database plug-ins can be used to integrate your own database as a back-end to the

server. A database plug-in can consist of all or a portion of the functions discussed

in this section.

LDAP protocol-related functions

Are the default database functions. When you write a database plug-in you

might not want to provide every function to handle the default database

operations. You might need to provide some stub functions, however,

which are used to send back an unwilling to perform message to the

client when a particular function is not active.

Back-end-related functions

Are used to initialize or shut down the back-end and to handle

back-end-specific configuration.

LDAP protocol-related functions

The following LDAP protocol-related functions are also the default database

functions:

SLAPI_PLUGIN_DB_BIND_FN

Allows authentication information to be exchanged between the client and

server.

SLAPI_PLUGIN_DB_UNBIND_FN

Terminates a protocol session.

SLAPI_PLUGIN_DB_ADD_FN

Adds an entry to the directory.

SLAPI_PLUGIN_DB_DELETE_FN

Deletes an entry.

SLAPI_PLUGIN_DB_SEARCH_FN

An LDAP back-end search routine.

SLAPI_PLUGIN_DB_COMPARE_FN

Gets the entry DN information and compares it with the attributes and

values used in the compare function.

SLAPI_PLUGIN_DB_MODIFY_FN

Modifies an entry.

SLAPI_PLUGIN_DB_MODRDN_FN

Changes the last component of the name of an entry.

Back-end-related functions

These database back-end-related functions are used to initialize or shut down the

back-end and to handle back-end-specific configuration:

SLAPI_PLUGIN_DB_INIT_FN

An LDAP back-end initialization routine.

SLAPI_PLUGIN_CLOSE_FN

An LDAP back-end close routine.

© Copyright IBM Corp. 2005 7

Note: Stand-alone, user-supplied server back-end plug-ins are not supported.

However, they are supported when used in parallel with IBM-supplied

server back-end plug-ins.

8 Server Plug-ins Reference

Chapter 4. Operation plug-ins

The following plug-in functions can be performed before or after an LDAP

operation.

Pre-operation plug-ins

The following pre-operation functions can be executed before an LDAP operation

is performed:

SLAPI_PLUGIN_PRE_BIND_FN

A function to call before the Directory Server executes an LDAP bind

operation.

SLAPI_PLUGIN_PRE_UNBIND_FN

A function to call before the Directory Server executes an LDAP unbind

operation.

SLAPI_PLUGIN_PRE_ADD_FN

A function to call before the Directory Server executes an LDAP add

operation.

SLAPI_PLUGIN_PRE_DELETE_FN

A function to call before the Directory Server executes an LDAP delete

operation.

SLAPI_PLUGIN_PRE_SEARCH_FN

A function to call before the Directory Server executes an LDAP search

operation.

SLAPI_PLUGIN_PRE_COMPARE_FN

A function to call before the Directory Server executes an LDAP compare

operation.

SLAPI_PLUGIN_PRE_MODIFY_FN

A function to call before the Directory Server executes an LDAP modify

operation.

SLAPI_PLUGIN_PRE_MODRDN_FN

A function to call before the Directory Server executes a modify RDN

database operation.

Post-operation plug-ins

The following post-operation plug-in functions can be executed after an LDAP

operation is performed:

SLAPI_PLUGIN_POST_BIND_FN

A function to call after the Directory Server executes an LDAP bind

operation.

SLAPI_PLUGIN_POST_UNBIND_FN

A function to call after the Directory Server executes an LDAP unbind

operation.

SLAPI_PLUGIN_POST_ADD_FN

A function to call after the Directory Server executes an LDAP add

operation.

© Copyright IBM Corp. 2005 9

SLAPI_PLUGIN_POST_DELETE_FN

A function to call after the Directory Server executes an LDAP delete

operation.

SLAPI_PLUGIN_POST_SEARCH_FN

A function to call after the Directory Server executes an LDAP search

operation.

SLAPI_PLUGIN_POST_COMPARE_FN

A function to call after the Directory Server executes an LDAP compare

operation.

SLAPI_PLUGIN_POST_MODIFY_FN

A function to call after the Directory Server executes an LDAP modify

operation.

SLAPI_PLUGIN_POST_MODRDN_FN

A function to call after the Directory Server executes an LDAP modify

RDN database operation.

Extended operation plug-ins

LDAP operations can be extended with your own extended operation functions

provided by a plug-in. An extended operation function might have an interface

such as:

int myExtendedOp(Slapi_PBlock *pb);

In this function, you can obtain the following two input parameters from the

pblock passed in and communicate back to the server front-end with the following

two output parameters:

Input parameters

These parameters can be obtained by calling the slapi_pblock_get API.

SLAPI_EXT_OP_RET_OID (char *)

The object identifier specified in a client’s request.

SLAPI_EXT_OP_REQ_VALUE (struct berval *)

The information in a form defined by that request.

Output parameters

These parameters can be put to the parameter block passed in by the server by

calling the slapi_pblock_set API.

SLAPI_EXT_OP_RET_OID (char *)

The object identifier that the plug-in function wants to send back to the

client.

SLAPI_EXT_OP_RET_VALUE (struct berval *)

The value that the plug-in function wants to send back to the client.

 After receiving and processing an extended operation request, an extended

operation plug-in function might itself send an extended operation response back

to a client or let the server send such a response. If the plug-in decides to send a

response, it might call the slapi_send_ldap_result() function and return a result

code SLAPI_PLUGIN_EXTENDED_SEND_RESULT to the server indicating that the

plug-in has already sent an LDAP result message to the client. If the plug-in has

not sent an LDAP result message to the client, the plug-in returns an LDAP result

code and the server sends this result code back to the client.

10 Server Plug-ins Reference

To register an extended operation function, the initialization function of the

extended operation plug-in might call slapi_pblock_set() to set the

SLAPI_PLUGIN_EXT_OP_FN to the extended operation function and the

SLAPI_PLUGIN_EXT_OP_OIDLIST parameter to the list of extended operation

OIDs supported by the function. The list of OIDs which is listed in the

ibm-slapdPlugin directive in ibmslapd.conf can be obtained by getting the

SLAPI_PLUGIN_ARGV parameter from the pblock passed in.

The server keeps a list of all the OIDs that are set by plug-ins using the parameter

SLAPI_PLUGIN_EXT_OP_OIDLIST. This list of extended operations can be queried

by performing a search of the root DSE.

For example, in the Windows NT environment to specify an extended operation

plug-in in the ibmslapd.conf file for the database rdbm add the following:

dn: cn=Directory, cn=RDBM Backends, cn=IBM SecureWay, cn=Schemas, cn=Configuration

 ibm-slapdPlugin database /bin/libback-rdbm.dll rdbm_backend_init

 ibm-slapdPlugin extendedop /tmp/myextop.dll myExtendedOpInit 123.456.789

File paths starting with a forward slash (/) are relative to the LDAP install

directory; /tmp is changed to <ldap>\tmp, but C:\tmp is unchanged. This

indicates that the function myExtendedOpInit that can be found in the

/path/myextop.dll shared library is executed when the server starts. The

myExtendedOp function that is registered in the initialization is used to handle the

extended-operations. This function handles extended operations with the Object

Identifier (OID) 123.456.789.

Note: For the AIX, Linux, Solaris and HP operating platforms, the .dll extension is

replaced with the appropriate extension:

v For AIX and Linux operating systems - .a

v For Solaris operating systems - .so

v For HP-UX operating systems - .sl

Remember that plug-in directives are per-database.

Audit plug-ins

The Administrators of some platforms might want to use the system audit facilities

to log the LDAP audit record with the system-defined record format. To allow

flexibility in logging and record formats, a plug-in interface is provided. The server

uses this interface to provide three types of auditing-related data to the external

audit plug-ins if the auditing configuration is set to on. The data is passed to the

external audit plug-ins through the standard plug-in’s pblock interfaces,

slapi_pblock_set() and slapi_pblock_get().

The three types of audit data available to the external audit plug-ins are:

Audit Configuration Information

This information is used to inform the external audit plug-in that at least

one of the audit configuration options has been changed. The server

expects the plug-in to determine whether to log the audit data associated

with a particular LDAP operation, so it is important for the plug-in to have

the current audit configuration information maintained by the server.

Audit Event Information

This information is used to inform the audit plug-in that certain events

have happened. Event IDs, such as Auditing Started, Auditing Ended, or

Chapter 4. Operation plug-ins 11

Audit Configuration Options Changed, along with a message text

describing the event, are sent by the server to the audit plug-in when such

events occur.

Audit Record Information

This information is the audit data associated with each LDAP request

received by the server. For each LDAP request, if the ibm-audit

configuration option is set, the server provides the header data, control

structure (if available), and operation-specific data to the audit plug-in. It is

up to the audit plug-in to check its own copy of the LDAP audit

configuration options or its platform-specific audit policy to determine

whether to log and how to log the audit data.

The header file, audit-plugin.h, that defines the audit plug-in interface and data

structures is shipped with the IBM Tivoli Directory Server C-Client SDK.

A default audit plug-in is provided and configured with the server. This plug-in

performs the logging and formatting of the LDAP audit record. This default

plug-in can be replaced with the platform-specific audit plug-in, if available, by

changing the plug-in configuration lines in the ibmslapd.conf configuration file or

through the IBM Tivoli Directory Server Administration.

Configuration options

The Audit Service has the following configuration options:

ibm-auditLog

Specifies the path name of the audit log. The default is /var/ldap/audit

for Unix platforms and <LDAP install directory>\var\audit for the NT

platform.

ibm-audit: TRUE|FALSE

Enables or disables the audit service. Default is FALSE.

ibm-auditFailedOPonly: TRUE|FALSE

Indicates whether to log only failed operations. Default is TRUE.

ibm-auditBind: TRUE|FALSE

Indicates whether to log the Bind operation. Default is TRUE.

ibm-auditUnbind: TRUE|FALSE

Indicates whether to log the Unbind operation. Default is TRUE.

ibm-auditSearch: TRUE|FALSE

Indicates whether to log the Search operation. Default is FALSE.

ibm-auditAdd: TRUE|FALSE

Indicates whether to log the Add operation. Default is FALSE.

ibm-auditModify: TRUE|FALSE

Indicates whether to log the Modify operation. Default is FALSE.

ibm-auditDelete: TRUE|FALSE

Indicates whether to log the Delete operation. Default is FALSE.

ibm-auditModifyDN: TRUE|FALSE

Indicates whether to log the ModifyRDN operation. Default is FALSE.

ibm-auditExtOPEvent: TRUE|FALSE

Indicates whether to log LDAP V3 Event Notification extended operations.

Default is FALSE.

12 Server Plug-ins Reference

These options are stored in the LDAP directory to allow dynamic configuration. A

directory entry, cn=audit, cn=localhost, is created to contain these options. The

access to the values of these options are controlled through the access control list

(ACL) model. By default, the LDAP administrator is the owner of this cn=audit

entry. However, with the current ACL functionality, an auditor role can be created

so that only the auditor can change the option values and location of the audit log.

Note: For each modification of these option values, a message is logged in the

slapd error log as well as the audit log to indicate the change.

The values of the audit configuration options are returned when a search of

cn=monitor is requested by the LDAP administrator. These include:

v The value of the audit configuration options.

v The number of audit entries sent to the Audit plug-in for the current auditing

session and for the current server session.

Examples

The following are examples of the various operations:

2001-07-24-15:01:01.345-06:00--V3 Bind--

 bindDN:cn=test--client:9.1.2.3:12345--ConnectionID:12--

 received:2001-07-24-15:01:01.330-06:00--adminAuthority:Y--success

 name: cn=test

 authenticationChoice: simple

2001-07-24-15:01:02.367-06:00--V3 Search--

 bindDN:cn=test--client:9.1.2.3:12345--ConnectionID:12--

 received:2001-07-24-15:01:02.360-06:00--adminAuthority:Y--success

 base: o=ibm_us,c=us

 scope: wholeSubtree

 derefAliases: neverDerefAliases

 typesOnly: false

 filter: (&(cn=c*)(sn=a*))

Note: See the following examples for the format differences between authenticated

and unauthenticated requests:
2001-07-24-15:22:33.541-06:00--V3 unauthenticated Search--

 bindDN: <*CN=NULLDN*>--client:9.1.2.2:32412--ConnectionID:18--

 received:2001-07-24-15:22:33.539-06:00--adminAuthority:Y--success

2001-07-24-15:22:34.555-06:00--V3 SSL unauthenticated Search--

 bindDN: <*CN=NULLDN*>--client:9.1.2.2:32412--ConnectionID:19--

 received:2001-07-24-15:22:34.550-06:00--adminAuthority:Y--success

2001-07-24-15:01:03.123-06:00--V3 Add--

 bindDN:cn=test--client:9.1.2.3:12345--ConnectionID:12--

 received:2001-07-24-15:01:03.100-06:00--adminAuthority:Y--entryAlreadyExists

 entry: cn=Jim Brown, ou=sales,o=ibm_us,c=us

 attributes: objectclass, cn, sn, telphonenumber

2001-07-24-15:01:04.378-06:00--V3 Delete--

 bindDN:cn=test--client:9.1.2.3:12345--ConnectionID:12--

 received:2001-07-24-15:01:04.370-06:00--adminAuthority:Y--success

 entry: cn=Jim Brown, ou=sales,o=ibm_us,c=us

2001-07-24-15:01:05.712-06:00--V3 Modify--

 bindDN:cn=test--client:9.1.2.3:12345--ConnectionID:12--

Chapter 4. Operation plug-ins 13

received:2001-07-24-15:01:05.708-06:00--adminAuthority:Y--noSuchObject

 object: cn=Jim Brown, ou=sales,o=ibm_us,c=us

 add: mail

 delete: telephonenumber

2001-07-24-15:01:06.534-06:00--V3 ModifyDN--

 bindDN:cn=test--client:9.1.2.3:12345--ConnectionID:12--

 received:2001-07-24-15:01:06.530-06:00--adminAuthority:Y--noSuchObject

 entry: cn=Jim Brown, ou=sales,o=ibm_us,c=us

 newrdn: ou=r&d

 deleteoldrdn: true

2001-07-24-15:01:07.913-06:00--V3 Unbind--

 bindDN:cn=test--client:9.1.2.3:12345--ConnectionID:12--

 received:2001-07-24-15:01:07.910-06:00--adminAuthority:Y--success

14 Server Plug-ins Reference

Appendix A. Supported database functions

The three parameters in the first stanza are passed to the nine default database

functions as input:

/* backend, connection, operation */

SLAPI_BACKEND

SLAPI_CONNECTION

SLAPI_OPERATION

/* arguments that are common to all operations */

SLAPI_CONN_DN

SLAPI_CONN_AUTHTYPE

SLAPI_REQCONTROLS

/* add arguments */

SLAPI_ADD_TARGET

SLAPI_ADD_ENTRY

/* bind arguments */

SLAPI_BIND_TARGET

SLAPI_BIND_METHOD

SLAPI_BIND_CREDENTIALS

SLAPI_BIND_SASLMECHANISM

/* bind return values */

SLAPI_BIND_RET_SASLCREDS

/* compare arguments */

SLAPI_COMPARE_TARGET

SLAPI_COMPARE_TYPE

SLAPI_COMPARE_VALUE

/* delete arguments */

 SLAPI_DELETE_TARGET

/* modify arguments

Note: The input and output value for setting and getting SLAPI_MODIFY_MODS

in the slapi_pblock_set() and slapi_pblock_get() functions is a pointer to a

list of LDAPMod structures. This differs from the iPlanet implementation

which is a pointer to an array of LDAPMod pointers. Go to the LDAPMod

structure in the ldap.h file to see how to traverse the linked list using the

pointer to the next LDAPMod structure.
 */

SLAPI_MODIFY_TARGET

SLAPI_MODIFY_MODS

/* modrdn arguments */

SLAPI_MODRDN_TARGET

SLAPI_MODRDN_NEWRDN

SLAPI_MODRDN_DELOLDRDN

SLAPI_MODRDN_NEWSUPERIOR

/* search arguments */

SLAPI_SEARCH_TARGET

SLAPI_SEARCH_SCOPE

SLAPI_SEARCH_DEREF

SLAPI_SEARCH_SIZELIMIT

SLAPI_SEARCH_TIMELIMIT

SLAPI_SEARCH_FILTER

SLAPI_SEARCH_STRFILTER

© Copyright IBM Corp. 2005 15

SLAPI_SEARCH_ATTRS

SLAPI_SEARCH_ATTRSONLY

/* abandon arguments */

SLAPI_ABANDON_MSGID

/* plugin types supported */

#define SLAPI_PLUGIN_DATABASE

#define SLAPI_PLUGIN_EXTENDEDOP

#define SLAPI_PLUGIN_PREOPERATION

#define SLAPI_PLUGIN_POSTOPERATION

#define SLAPI_PLUGIN_AUDIT

/* plugin configuration params */

#define SLAPI_PLUGIN

#define SLAPI_PLUGIN_PRIVATE

#define SLAPI_PLUGIN_TYPE

#define SLAPI_PLUGIN_ARGV

#define SLAPI_PLUGIN_ARGC

/* audit plugin defines */

#define SLAPI_PLUGIN_AUDIT_DATA

#define SLAPI_PLUGIN_AUDIT_FN

/* managedsait control */

#define SLAPI_MANAGEDSAIT

/* config stuff */

#define SLAPI_CONFIG_FILENAME

#define SLAPI_CONFIG_LINENO

#define SLAPI_CONFIG_ARGC

#define SLAPI_CONFIG_ARGV

/* operational params */

#define SLAPI_TARGET_DN

#define SLAPI_REQCONTROLS

/* modrdn params */

#define SLAPI_MODRDN_TARGET_UP

#define SLAPI_MODRDN_TARGET

#define SLAPI_MODRDN_NEWRDN

#define SLAPI_MODRDN_DELOLDRDN

#define SLAPI_MODRDN_NEWSUPERIOR

/* extended operation params */

#define SLAPI_EXT_OP_REQ_OID

#define SLAPI_EXT_OP_REQ_VALUE

/* Search result params */

#define SLAPI_NENTRIES

Output parameters

The following are the output parameters of the default database functions:

/* common for internal plugin_ops */

SLAPI_PLUGIN_INTOP_RESULT

SLAPI_PLUGIN_INTOP_SEARCH_ENTRIES

SLAPI_CONN_DN

SLAPI_CONN_AUTHTYPE

/# Types of authentication (for SLAPI_CONN_AUTHTYPE) */

#define SLAPD_AUTH_NONE "none"

#define SLAPD_AUTH_SIMPLE "simple"

#define SLAPD_AUTH_SSL "SSL"

#define SLAPD_AUTH_SASL "SASL " /* followed by the mechanism name */

16 Server Plug-ins Reference

Appendix B. Parameter Reference

This chapter describes the parameters available in the Slapi_PBlock parameter

block, the type of data associated with each parameter, and the plug-in functions in

which these parameters are accessible.

To get the values of these parameters, call the slapi_pblock_get() function. To set

the values of these parameters, call the slapi_pblock_set() function. Using these

parameters, you can get and set the following information:

v “Parameters for Registering Plug-in Functions”

v “Parameters Accessible to All Plug-ins” on page 21

v “Parameters for the Configuration Function” on page 26

v “Parameters for the Bind Function” on page 26

v “Parameters for the Search Function” on page 27

v “Parameters for the Add Function” on page 28

v “Parameters for the Compare Function” on page 28

v “Parameters for the Delete Function” on page 29

v “Parameters for the Modify Function” on page 29

v “Parameters for the Modify RDN Function” on page 29

v “Parameters for the Abandon Function” on page 30

v “Parameters for Database Import” on page 30

v “Parameters for Database Export” on page 31

v “Parameters for Database Archive” on page 31

v “Parameters for Database Restore” on page 31

v “Parameters for Database Indexing” on page 32

v “Parameters for Extended Operations” on page 32

v “Parameters for Internal LDAP Operations” on page 32

v “Parameters for Matching Rule Plug-ins” on page 33

Parameters for Registering Plug-in Functions

The parameters listed in this section identify plug-in functions recognized by the

server. To register your plug-in function, set the value of the appropriate parameter

to the name of your function.

Note: Except for parameters for matching rule plug-in functions, you do not need

to get the value of any of these parameters.

The parameters for registering plug-in functions are organized in the following

sections:

v Database Plug-ins “Database Plug-ins” on page 18

v Pre-Operation/Data Validation Plug-ins“Pre-Operation/Data Validation

Plug-ins” on page 19

v Post-Operation/Data Notification Plug-ins“Post-Operation/Data Notification

Plug-ins” on page 20

v Extended Operation Plug-ins“Extended Operation Plug-ins” on page 20

v Matching Rule Plug-ins“Matching Rule Plug-ins” on page 21

© Copyright IBM Corp. 2005 17

Database Plug-ins

The following parameters are used to register database plug-in functions.

Each parameter corresponds to an operation performed by the back-end database.

When integrating your own database with the IBM Tivoli Directory Server, you

need to write and register your own plug-in functions that handle these

operations.

To register your plug-in function, write an initialization function that sets the

values of the following parameters to your functions:

 Parameter ID Description

SLAPI_PLUGIN_DB_BIND_FN Called in response to an LDAP bind request.

SLAPI_PLUGIN_DB_UNBIND_FN Called in response to an LDAP unbind

request.

SLAPI_PLUGIN_DB_SEARCH_FN Called in response to an LDAP search

request. The function collects a set of

candidates for the search results.

SLAPI_PLUGIN_DB_COMPARE_FN Called in response to an LDAP compare

request.

SLAPI_PLUGIN_DB_MODIFY_FN Called in response to an LDAP modify

request.

SLAPI_PLUGIN_DB_MODRDN_FN Called in response to an LDAP modify RDN

request.

SLAPI_PLUGIN_DB_ADD_FN Called in response to an LDAP add request.

SLAPI_PLUGIN_DB_DELETE_FN Called in response to an LDAP delete

request.

SLAPI_PLUGIN_DB_ABANDON_FN Called in response to an LDAP abandon

operation request.

SLAPI_PLUGIN_DB_CONFIG_FN Called when the server is parsing the

slapd.conf configuration file. If the IBM

Tivoli Directory Server encounters a

directive that it does not recognize, then

IBM Tivoli Directory Server passes the

directive to the back-end using this routine.

SLAPI_PLUGIN_CLOSE_FN Called when the server is shutting down.

You can use this function to prepare your

back-end database for shutdown.

SLAPI_PLUGIN_DB_FLUSH_FN The front-end periodically calls this function.

The function is intended to flush any open

caches and to save information to disk.

SLAPI_PLUGIN_START_FN Called on startup and is intended to

initialize the database and prepare it for use.

SLAPI_PLUGIN_DB_ENTRY_FN Called when the server is sending an entry

back to the client.

SLAPI_PLUGIN_DB_REFERRAL_FN Called when the server is sending a set of

referrals to the client.

SLAPI_PLUGIN_DB_RESULT_FN Called when the server is sending a set of

search results to the client.

SLAPI_PLUGIN_DB_LDIFDB_FN Called when the server reads an LDIF file

into the database.

18 Server Plug-ins Reference

SLAPI_PLUGIN_DB_DBLDIF_FN Called when the server exports the database

to an LDIF file.

SLAPI_PLUGIN_DB_ARCHIVEDB_FN Called when the server restores an archive

to the database.

SLAPI_PLUGIN_DB_DBARCHIVE_FN Called when the server backs up the

database to an archive.

SLAPI_PLUGIN_DB_NEXT_

SEARCH_ENTRY_FN

Called for each candidate in the search

result set. The function tests each candidate

against the search filter and sends matching

entries back to the client.

SLAPI_PLUGIN_DB_SIZE_FN Specifies the function called to get the size

of the database and set as SLAPI_DBSIZE in

the parameter block.

SLAPI_PLUGIN_DB_TEST_FN Specifies the function called to test the

back-end and the database.

SLAPI_PLUGIN_DB_DB2INDEX_FN Specifies the function called to generate

indexes for the existing database.

Note: This is for Netscape Directory Server

4.0 only.

Pre-Operation/Data Validation Plug-ins

The following parameters are used to register pre-operation/data validation

plug-in functions.

To register your plug-in function, write an initialization function that sets the

values of the following parameters to your functions:

 Parameter ID Description

SLAPI_PLUGIN_PRE_BIND_FN Called before an LDAP bind operation is

completed.

SLAPI_PLUGIN_PRE_UNBIND_FN Called before an LDAP unbind operation is

completed.

SLAPI_PLUGIN_PRE_SEARCH_FN Called before an LDAP search operation is

completed.

SLAPI_PLUGIN_PRE_COMPARE_FN Called before an LDAP compare operation is

completed.

SLAPI_PLUGIN_PRE_MODIFY_FN Called before an LDAP modify operation is

completed.

SLAPI_PLUGIN_PRE_MODRDN_FN Called before an LDAP modify RDN

operation is completed.

SLAPI_PLUGIN_PRE_ADD_FN Called before an LDAP add operation is

completed.

SLAPI_PLUGIN_PRE_DELETE_FN Called before an LDAP delete operation is

completed.

SLAPI_PLUGIN_PRE_ABANDON_FN Called before an LDAP abandon operation is

completed.

SLAPI_PLUGIN_PRE_ENTRY_FN Called before an entry is sent back to the

client.

SLAPI_PLUGIN_PRE_REFERRAL_FN Called before a set of referrals is sent back to

the client.

Appendix B. Parameter Reference 19

SLAPI_PLUGIN_PRE_RESULT_FN Called before a set of search results is sent

back to the client.

SLAPI_PLUGIN_START_FN Called after the server starts up. You can

specify a start function for each

pre-operation plug-in.

SLAPI_PLUGIN_CLOSE_FN Called before the server shuts down. You

can specify a close function for each

pre-operation plug-in.

Post-Operation/Data Notification Plug-ins

The following parameters are used to register post-operation/data notification

plug-in functions:

 Parameter ID Description

SLAPI_PLUGIN_POST_BIND_FN Called after an LDAP bind operation is

completed.

SLAPI_PLUGIN_POST_UNBIND_FN Called after an LDAP unbind operation is

completed.

SLAPI_PLUGIN_POST_SEARCH_FN Called after an LDAP search operation is

completed.

SLAPI_PLUGIN_POST_COMPARE_FN Called after an LDAP compare operation is

completed.

SLAPI_PLUGIN_POST_MODIFY_FN Called after an LDAP modify operation is

completed.

SLAPI_PLUGIN_POST_MODRDN_FN Called after an LDAP modify RDN

operation is completed.

SLAPI_PLUGIN_POST_ADD_FN Called after an LDAP add operation is

completed.

SLAPI_PLUGIN_POST_DELETE_FN Called after an LDAP delete operation is

completed.

SLAPI_PLUGIN_POST_ABANDON_FN Called after an LDAP abandon operation is

completed.

SLAPI_PLUGIN_POST_ENTRY_FN Called after an entry is sent back to the

client.

SLAPI_PLUGIN_POST_REFERRAL_FN Called after a set of referrals is sent back to

the client.

SLAPI_PLUGIN_POST_RESULT_FN Called after a set of search results is sent

back to the client.

SLAPI_PLUGIN_START_FN Called after the server starts up. You can

specify a start function for each

post-operation plug-in.

SLAPI_PLUGIN_CLOSE_FN Called before the server shuts down. You

can specify a close function for each

post-operation plug-in.

Extended Operation Plug-ins

The following parameters are used to register extended operation plug-in

functions:

20 Server Plug-ins Reference

Parameter ID Data Type Description

SLAPI_PLUGIN_EXT_

OP_FN

void * Your plug-in function for

handling an extended

operation.

SLAPI_PLUGIN_EXT_OP_

OIDLIST

char ** NULL-terminated array of

OIDs identifying the

extended operations handled

by the plug-in function.

SLAPI_PLUGIN_START_FN void * Called after the server starts

up. You can specify a start

function for each extended

operation plug-in.

SLAPI_PLUGIN_CLOSE_FN void * Called before the server

shuts down. You can specify

a close function for each

extended operation plug-in.

Matching Rule Plug-ins

The following parameters are used to register matching rule plug-in functions:

 Parameter ID Description

SLAPI_PLUGIN_MR_FILTER_CREATE_FN Factory function for creating filter functions.

This function must be thread-safe, as the

server can call this function concurrently

with other functions.

SLAPI_PLUGIN_MR_INDEXER_

CREATE_FN

Factory function for creating indexer

functions. This function must be thread-safe,

as the server can call this function

concurrently with other functions.

SLAPI_PLUGIN_MR_FILTER_MATCH_FN Filter function.

SLAPI_PLUGIN_MR_FILTER_INDEX_FN Filter function that uses an index to

accelerate the processing of a search request.

SLAPI_PLUGIN_MR_FILTER_RESET_FN Function for resetting the filter function.

SLAPI_PLUGIN_MR_INDEX_FN Indexer function.

SLAPI_PLUGIN_DESTROY_FN Function for freeing a filter function or

indexer function.

SLAPI_PLUGIN_CLOSE_FN Function called before server shutdown (use

this function to clean up before shutdown).

Parameters Accessible to All Plug-ins

The parameters listed in this section are accessible to all types of plug-ins. The

parameters in this section are organized in the following sections:

v “Information About the Database” on page 22

v “Information About the Connection” on page 22

v “Information About the Operation” on page 23

v “Notes in the Access Log” on page 24

v “Information About the Plug-in” on page 25

Appendix B. Parameter Reference 21

Information About the Database

The following parameters specify information about the back-end database. These

parameters are available for all types of plug-ins.

Note: These specific parameters cannot be set by calling slapi_pblock_set(). You

can get these parameters by calling slapi_pblock_get().

 Parameter ID Data Type Description

SLAPI_BE_MONITORDN char * Note: Netscape Directory

Server 3.x releases only.DN

used to monitor the back-end

database.

Note: This is no longer

supported in the Netscape

Directory Server 4.0 release.

SLAPI_BE_TYPE char * Type of back-end database.

This is the type of back-end

database specified by the

database directive in the

slapd.conf file.

SLAPI_BE_READONLY int Specifies whether or not the

back-end database is

read-only. This is determined

by the read-only directive in

the slapd.conf file:

v 1 means that the database

back-end is read-only.

v 0 means that the database

back-end is writable.

SLAPI_DBSIZE int Specifies the size of the

back-end database. If you are

using your own database

instead of the default

database, your

SLAPI_DB_SIZE_FN function

must set the value of this

parameter.

Information About the Connection

The following parameters specify information about the connection. These

parameters are available for all types of plug-ins:

 Parameter ID Data Type Description

SLAPI_CONN_ID int ID identifying the current

connection.

SLAPI_CONN_DN char * DN of the user authenticated

on the current connection. If

you call slapi_pblock_get() to

get this DN, you must call

slapi_ch_free() to free the

resulting DN when done.

22 Server Plug-ins Reference

SLAPI_CONN_AUTHTYPE char * Method used to authenticate

the current user. This

parameter can have one of

the following values:

SLAPD_AUTH_NONE

Specifies that no

authentication

mechanism was

used (for example,

in cases of

anonymous

authentication).

SLAPD_AUTH_SIMPLE

Specifies that simple

authentication (user

name and

password) was used

to authenticate the

current user.

SLAPD_AUTH_SSL

Specifies that SSL

(certificate-based

authentication) was

used to authenticate

the current user.

SLAPD_AUTH_SASL

Specifies that a

SASL (simple

authentication and

security layer)

mechanism was

used to authenticate

the current user.

Information About the Operation

The following parameters specify information about the current operation. These

parameters are available for all types of plug-ins:

 Parameter ID Data Type Description

SLAPI_OPINITIATED_TIME time_t Time when the server began

processing the operation.

Appendix B. Parameter Reference 23

SLAPI_REQUESTOR_

ISROOT

int Specifies whether the user

requesting the operation is

the root DN:

v 1 means that the root DN

is requesting the

operation.

v 0 means that the user

requesting the operation is

not the root DN.

The root DN is the superuser

of the directory. This DN is

specified by the rootdn

directive in the slapd.conf

configuration file.

SLAPI_REQUESTOR_

ISUPDATEDN

int Specifies whether the user

requesting the operation is

the update DN:

v 1 means that the update

DN is requesting the

operation.

v 0 means that the user

requesting the operation is

not the update DN.

The update DN is the master

entity responsible for

updating the directory

during replication. This DN

is specified by the updatedn

directive in the slapd.conf

configuration file.

SLAPI_REQUESTOR_DN char * Specifies the DN of the user

requesting the operation.

SLAPI_TARGET_DN char * Specifies the DN to which

the operation applies, for

example, the DN of the entry

being added or removed.

SLAPI_REQCONTROLS LDAPControl ** Array of the controls

specified in the request.

Notes in the Access Log

Note: This feature is available in the Netscape Directory Server 4.0 release and is

not available in earlier releases.

The following parameters specify notes that can be appended to access log entries.

These parameters are available for all types of plug-ins.

 Parameter ID Data Type Description

24 Server Plug-ins Reference

SLAPI_OPERATION_NOTES unsigned int Flags specifying the notes

that you want appended to

access log entries. You can

set this parameter to the

following value:

 SLAPI_OP_NOTE_

UNINDEXED

This specifies that you want

the string

Notes=U

appended to access log

entries. You can use this to

indicate that a search

operation cannot use indexes

to generate a smaller list of

candidates. If no flags are

set, no notes are appended to

access log entries.

Information About the Plug-in

The following parameters specify information about the plug-in that is available to

all plug-in functions defined in the current library. These parameters are available

for all types of plug-ins.

 Parameter ID Data Type Description

SLAPI_PLUGIN_PRIVATE void * Private data that you want

passed to your plug-in

functions.

SLAPI_PLUGIN_TYPE int Specifies the type of plug-in

function.

SLAPI_PLUGIN_ARGV char ** NULL-terminated array of

command-line arguments

specified for the plug-in

directive in the slapd.conf

file.

SLAPI_PLUGIN_ARGC int Number of command-line

arguments specified for the

plug-in directive in the

slapd.conf file.

SLAPI_PLUGIN_VERSION char * Specifies the version of the

plug-in function.

SLAPI_PLUGIN_OPRETURN int Specifies the return value of

the LDAP operation that has

just been processed.

Types of Plug-ins

The SLAPI_PLUGIN_TYPE parameter can have one of the following values, which

identifies the type of the current plug-in:

 Defined Constant Description

SLAPI_PLUGIN_DATABASE Database plug-in

Appendix B. Parameter Reference 25

SLAPI_PLUGIN_EXTENDEDOP Extended operation plug-in

SLAPI_PLUGIN_PREOPERATION Pre-operation/data validation plug-in

SLAPI_PLUGIN_POSTOPERATION Post-operation/data notification plug-in

SLAPI_PLUGIN_MATCHINGRULE Matching rule plug-in

SLAPI_PLUGIN_SYNTAX Syntax plug-in

Version Information

To set the value of the SLAPI_PLUGIN_VERSION parameter, you can specify one

of the following values:

 Defined Constant Description

SLAPI_PLUGIN_CURRENT_VERSION The current version of the Netscape

Directory Server plug-in.

SLAPI_PLUGIN_VERSION_01 Version 1 of the plug-in interface, which is

supported by the Netscape Directory Server

3.x and 4.x releases

SLAPI_PLUGIN_VERSION_02 Version 2 of the plug-in interface, which is

supported by the Netscape Directory Server

4.x release

Parameters for the Configuration Function

The following table lists the parameters in the parameter block passed to the

database configuration function. If you are writing a pre-operation, database, or

post-operation configuration function, you can get these values by calling the

slapi_pblock_get() function.

 Parameter ID Data Type Description

SLAPI_CONFIG_FILENAME char * Name of the configuration

file that is being read, for

example, slapd.conf.

SLAPI_CONFIG_LINENO int Line number of the current

directive in the configuration

file.

SLAPI_CONFIG_ARGC int Number of arguments in the

current directive.

SLAPI_CONFIG_ARGV char ** Array of the arguments from

the current directive.

Parameters for the Bind Function

The following table lists the parameters in the parameter block passed to the

database bind function. If you are writing a pre-operation, database, or

post-operation bind function, you can get these values by calling the

slapi_pblock_get() function.

 Parameter ID Data Type Description

SLAPI_BIND_TARGET char * DN of the entry to bind as.

26 Server Plug-ins Reference

SLAPI_BIND_METHOD int Authentication method used,

for example,

LDAP_AUTH_SIMPLE or

LDAP_AUTH_SASL.

SLAPI_BIND_

CREDENTIALS

struct berval * Credentials from the bind

request.

SLAPI_BIND_RET_

SASLCREDS

struct berval * Credentials that you want

sent back to the client.

Note: Set this before calling

slapi_send_ldap_result().

SLAPI_BIND_

SASLMECHANISM

char * SASL mechanism used, for

example,

LDAP_SASL_EXTERNAL.

Parameters for the Search Function

The following table lists the parameters in the parameter block passed to the

database search function. If you are writing a pre-operation, database, or

post-operation search function, you can get these values by calling the

slapi_pblock_get() function.

 Parameter ID Data Type Description

SLAPI_SEARCH_TARGET char * DN of the base entry in the

search operation (the starting

point of the search).

SLAPI_SEARCH_SCOPE int The scope of the search. The

scope can be one of the

following values:

v LDAP_SCOPE_BASE

v LDAP_SCOPE_

ONELEVEL

v LDAP_SCOPE_SUBTREE

SLAPI_SEARCH_DEREF int Method for handling aliases

in a search. This method can

be one of the following

values:

v LDAP_DEREF_NEVER

v LDAP_DEREF_

SEARCHING

v LDAP_DEREF_FINDING

v LDAP_DEREF_ALWAYS

SLAPI_SEARCH_SIZELIMIT int Maximum number of entries

to return in the search

results.

SLAPI_SEARCH_

TIMELIMIT

int Maximum amount of time

(in seconds) allowed for the

search operation.

SLAPI_SEARCH_FILTER Slapi_Filter * Slapi_Filter struct (an opaque

data structure) representing

the filter to be used in the

search.

Appendix B. Parameter Reference 27

SLAPI_SEARCH_STRFILTER char * String representation of the

filter to be used in the

search.

SLAPI_SEARCH_ATTRS char ** Array of attribute types to be

returned in the search

results.

SLAPI_SEARCH_

ATTRSONLY

int Specifies whether the search

results return attribute types

only or attribute types and

values:

v 0 means return both

attributes and values.

v 1 means return attribute

types only.

The following parameters are set by the front-end and back-end as part of the

process of executing the search:

 Parameter ID Data Type Description

SLAPI_SEARCH_RESULT_

SET

void * Set of search results.

SLAPI_SEARCH_RESULT_

ENTRY

void * Entry returned from iterating

through the results set.

SLAPI_NENTRIES int Number of search results

found.

SLAPI_SEARCH_

REFERRALS

struct berval ** Array of the URLs to other

LDAP servers that the

current server is referring the

client to.

Parameters for the Add Function

The following table lists the parameters in the parameter block passed to the

database add function. If you are writing a pre-operation, database, or

post-operation add function, you can get these values by calling the

slapi_pblock_get() function.

 Parameter ID Data Type Description

SLAPI_ADD_TARGET char * DN of the entry to be added.

SLAPI_ADD_ENTRY Slapi_Entry * The entry to be added

(specified as the opaque

Slapi_Entry datatype).

Parameters for the Compare Function

The following table lists the parameters in the parameter block passed to the

database compare function. If you are writing a pre-operation, database, or

post-operation compare function, you can get these values by calling the

slapi_pblock_get() function.

 Parameter ID Data Type Description

28 Server Plug-ins Reference

SLAPI_COMPARE_TARGET char * DN of the entry to be

compared.

SLAPI_COMPARE_TYPE char * Attribute type to use in the

comparison.

SLAPI_COMPARE_VALUE struct berval * Attribute value to use in the

comparison.

Parameters for the Delete Function

The following table lists the parameters in the parameter block passed to the

database delete function. If you are writing a pre-operation, database, or

post-operation delete function, you can get these values by calling the

slapi_pblock_get() function.

 Parameter ID Data Type Description

SLAPI_DELETE_TARGET char * DN of the entry to delete.

Parameters for the Modify Function

The following table lists the parameters in the parameter block passed to the

database modify function. If you are writing a pre-operation, database, or

post-operation modify function, you can get these values by calling the

slapi_pblock_get() function.

 Parameter ID Data Type Description

SLAPI_MODIFY_TARGET char * DN of the entry to be

modified.

SLAPI_MODIFY_MODS LDAPMod ** A NULL-terminated array of

LDAPMod structures, which

represent the modifications

to be performed on the entry.

Parameters for the Modify RDN Function

The following table lists the parameters in the parameter block passed to the

database modify RDN function. If you are writing a pre-operation, database, or

post-operation modify RDN function, you can get these values by calling the

slapi_pblock_get() function.

 Parameter ID Data Type Description

SLAPI_MODRDN_TARGET char * DN of the entry that you

want to rename.

SLAPI_MODRDN_NEWRDN char * New RDN to assign to the

entry.

SLAPI_MODRDN_

DELOLDRDN

int Specifies whether you want

to delete the old RDN:

v 0 means don’t delete the

old RDN.

v 1 means delete the old

RDN.

Appendix B. Parameter Reference 29

SLAPI_MODRDN_

NEWSUPERIOR

char * DN of the new parent of the

entry, if the entry is being

moved to a new location in

the directory tree.

Parameters for the Abandon Function

The following table lists the parameters in the parameter block passed to the

database abandon function. If you are writing a pre-operation, database, or

post-operation abandon function, you can get these values by calling the

slapi_pblock_get() function.

 Parameter ID Data Type Description

SLAPI_ABANDON_MSGID unsigned long Message ID of the operation

to abandon.

Parameters for Database Import

The following table lists the parameters in the parameter block passed to the

database import function, which is responsible for importing LDIF files into the

database. If you are writing your own plug-in function for performing this work,

you can get these values by calling the slapi_pblock_get() function.

 Parameter ID Data Type Description

SLAPI_LDIF2DB_FILE char * LDIF file that needs to be

imported into the database.

SLAPI_LDIF2DB_

REMOVEDUPVALS

int Specifies whether or not the

duplicate values of attributes

must be removed:

v If 1, remove any duplicate

attribute values when

creating an entry.

v If 0, do not remove any

duplicate attribute values

when creating an entry.

SLAPI_LDIF2DB_

NOATTRINDEXES

int Note: Netscape Directory

Server 4.0 release only.

v If 1, the database must not

be indexed when the

database is created.

v If 0, the import function

must automatically

generate database indexes.

SLAPI_LDIF2DB_INCLUDE char ** Note: Netscape Directory

Server 4.0 release only.An

array of the suffixes or DNs

identifying the entries in the

LDIF file to be included in

the database.

30 Server Plug-ins Reference

SLAPI_LDIF2DB_EXCLUDE char ** Note: Netscape Directory

Server 4.0 release only.An

array of the suffixes or DNs

identifying the entries in the

LDIF file to be excluded

from the database.

Parameters for Database Export

The following table lists the parameters in the parameter block passed to the

database import function, which is responsible for importing LDIF files into the

database. If you are writing your own plug-in function for performing this work,

you can get these values by calling the slapi_pblock_get() function.

 Parameter ID Data Type Description

SLAPI_DB2LDIF_PRINTKEY int Specifies whether or not the

database keys must be

printed out as well:

v If 1, include the database

key for each entry.

v If 0, do not include the

database key for each

entry.

SLAPI_DB2LDIF_PRINT_

DSE_TREE_FN

void * Function for printing the

front-end DSEs in LDIF

format.

Parameters for Database Archive

The following table lists the parameters in the parameter block passed to the

database archive function, which is responsible for archiving the database. If you

are writing your own plug-in function for performing this work, you can get these

values by calling the slapi_pblock_get() function.

 Parameter ID Data Type Description

SLAPI_SEQ_VAL char * Specifies the directory in

which you want to store the

archive.

Parameters for Database Restore

The following table lists the parameters in the parameter block passed to the

database restore function, which is responsible for restoring the database from an

archive. If you are writing your own plug-in function for performing this work,

you can get these values by calling the slapi_pblock_get() function.

 Parameter ID Data Type Description

SLAPI_SEQ_VAL char * Specifies the directory

containing the archive.

Appendix B. Parameter Reference 31

Parameters for Database Indexing

This feature is available in the Netscape Directory Server 4.0 release but is not

available in earlier releases. The following table lists the parameters in the

parameter block passed to the database indexing function, which is responsible for

generating indexes for the database. If you are writing your own plug-in function

for performing this work, you can get these values by calling the

slapi_pblock_get() function.

 Parameter ID Data Type Description

SLAPI_DB2INDEX_ATTRS char ** Specifies a NULL-terminated

array of the attribute types

that you want indexed.

Parameters for Extended Operations

The following table lists the parameters in the parameter block passed to extended

operation functions. If you are writing your own plug-in function for performing

this work, you can get these values by calling the slapi_pblock_get() function.

 Parameter ID Data Type Description

SLAPI_EXT_OP_REQ_OID char * Object ID (OID) of the

extended operation specified

in the request.

SLAPI_EXT_OP_REQ_

VALUE

struct berval* Value specified in the

request.

SLAPI_EXT_OP_RET_OID char * OID that you want sent back

to the client.

SLAPI_EXT_OP_RET_

VALUE

struct berval* Value that you want sent

back to the client.

Parameters for Internal LDAP Operations

The following parameters are used in conjunction with functions that you can call

to perform LDAP operations from a plug-in (these internal operations do not

return any data to a client).

 Parameter ID Data Type Description

SLAPI_PLUGIN_INTOP_

RESULT

int Result code of the internal

LDAP operation.

SLAPI_PLUGIN_INTOP_

SEARCH_ENTRIES

Slapi_Entry ** Array of entries found by an

internal LDAP search

operation.

SLAPI_PLUGIN_INTOP_

SEARCH_REFERRALS

char ** Array of referrals (in the

form of LDAP URLs) found

by an internal LDAP search

operation.

The following functions set all three parameters:

v slapi_search_internal()

v slapi_search_internal_callback()

32 Server Plug-ins Reference

The following functions set only the SLAPI_PLUGIN_INTOP_RESULT parameter:

v slapi_add_internal()

v slapi_add_entry_internal()

v slapi_delete_internal()

v slapi_modify_internal()

v slapi_modrdn_internal()

Parameters for Matching Rule Plug-ins

The parameters listed below are used in conjunction with matching rule plug-ins.

v SLAPI_PLUGIN_MR_OID

v SLAPI_PLUGIN_MR_TYPE

v SLAPI_PLUGIN_MR_VALUE

v SLAPI_PLUGIN_MR_VALUES

v SLAPI_PLUGIN_MR_KEYS

v SLAPI_PLUGIN_MR_FILTER_REUSABLE

v SLAPI_PLUGIN_MR_QUERY_OPERATOR

The following parameters are listed in the slapi-plugin.h header file but are not

currently used:

v SLAPI_MR_FILTER_ENTRY

v SLAPI_MR_FILTER_TYPE

v SLAPI_MR_FILTER_VALUE

v SLAPI_MR_FILTER_OID

v SLAPI_MR_FILTER_DNATTRS

Appendix B. Parameter Reference 33

34 Server Plug-ins Reference

Appendix C. Supported iPlanet APIs

The following iPlanet APIs are supported in this release.

For pblock:

int slapi_pblock_get(Slapi_PBlock *pb, int arg, void *value);

int slapi_pblock_set(Slapi_PBlock *pb, int arg, void *value);

Slapi_PBlock *slapi_pblock_new();

void slapi_pblock_destroy(Slapi_PBlock*);

For memory management:

char *slapi_ch_malloc(unsigned long size);

void slapi_ch_free(void *ptr);

char *slapi_ch_calloc(unsigned long nelem, unsigned long size);

char *slapi_ch_realloc(char *block, unsigned long size);

char *slapi_ch_strdup(char *s);

For sending results:

void slapi_send_ldap_result(Slapi_PBlock *pb, int err, char

*matched, char *text,

 int nentries, struct berval **urls);

For LDAP specific objects:

char *slapi_dn_normalize(char *dn);

char *slapi_dn_normalize_case(char *dn);

char *slapi_dn_ignore_case(char *dn);

char *slapi_dn_normalize_v3(char *dn);

char *slapi_dn_normalize_case_v3(char *dn);

char *slapi_dn_ignore_case_v3(char *dn);

char *slapi_dn_compare_v3(char *dn1,

 char* dn2);

int slapi_dn_issuffix(char *dn, char *suffix);

char *slapi_entry2str(Slapi_Entry *e, int

 *len);

Slapi_Entry *slapi_str2entry(char *s, int flags);

int slapi_entry_attr_find(Slapi_Entry *e, char *type,

 Slapi_Attr **attr);

int slapi_entry_attr_delete(Slapi_Entry *e, char *type);

 char *slapi_entry_get_dn(Slapi_Entry *e);

void slapi_entry_set_dn(Slapi_Entry *e, char *dn);

Slapi_Entry *slapi_entry_alloc();

Slapi_Entry *slapi_entry_dup(Slapi_Entry *e);

init slapi_send_ldap_search_entry(Slapi_PBlock *pb,

 Slapi_Entry *e, LDAPControl **ectrls,

char **attrs, int attrsonly);

void slapi_entry_free(Slapi_Entry *e);

int slapi_attr_get_values(Slapi_Attr *attr, struct berval

 ***vals);

Slapi_Filter *slapi_str2filter(char *str);

init slapi_filter_get_choice(Slapi_Filter*f);

init slapi_filter_get_ava(Slapi_Filter*f, char

 *type, struct berval **bvals);

void slapi_filter_free(Slapi_Filter*f, int recurse);

Slapi_Filter *slapi_filter_list_first(Slapi_Filter*f);

Slapi_Filter *slapi_filter_list_next(Slapi_Filter*f,

 Slapi_Filter*fprev);

int slapi_is_connection_ssl(Slapi_PBlock *pPB, int *isSSL);

init slapi_get_client_port(Slapi_PBlock *pPB, int *fromPort);

© Copyright IBM Corp. 2005 35

For internal database operations:

Slapi_PBlock *slapi_search_internal(char *base, int scope, char *filter,

 LDAPControl **controls, char **attrs, int attrsonly);

Slapi_PBlock *slapi_modify_internal(char *dn, LDAPMod **mods,

 LDAPControl **controls);

Slapi_PBlock *slapi_add_internal(char * dn, LDAPMod **attrs,

 LDAPControl **controls);

Slapi_PBlock *slapi_add_entry_internal(Slapi_Entry * e,

 LDAPControl **controls,

 int log_change);

Slapi_PBlock *slapi_delete_internal(char * dn,

 LDAPControl **controls);

Slapi_PBlock *slapi_modrdn_internal(char * olddn,

 char * newrdn, char *newParent,

 int deloldrdn, LDAPControl **controls);

void slapi_free_search_results_internal(Slapi_PBlock *pb);

/* logging routines */

void slapi_printmessage(int catid, int level, int num, ...);

int slapi_log_error(int severity, char *subsystem, char *fmt, ...);

For querying server information:

char **slapi_get_supported_saslmechanisms();

char **slapi_get_supported_extended_ops();

void slapi_register_supported_saslmechanism(char *mechanism);

int slapi_get_supported_controls(char ***ctrloidsp,

 unsigned long **ctrlopsp);

void slapi_register_supported_control(char *controloid,

 unsigned long controlops);

int slapi_control_present(LDAPControl **controls,

 char *oid, struct berval **val,

 int * iscritical);

For logging routines:

 int slapi_log_error(int severity, char *subsystem, char *fmt, ...);

slapi_pblock_get()

slapi_pblock_get() receives the value of a name-value pair from a parameter block.

Syntax

#include "slapi-plugin.h"

int slapi_pblock_get(Slapi_PBlock *pb, int arg, void *value);

Parameters

pb A parameter block.

arg A pblock parameter that represents the data you want to receive.

value A pointer to the value retrieved from the parameter block.

Returns

0 if successful, or -1 if there is an error.

slapi_pblock_set()

slapi_pblock_set() sets the value of a name-value pair in a parameter block.

Syntax

#include "slapi-plugin.h"

int slapi_pblock_set(Slapi_PBlock *pb, int arg, void *value);

Parameters

36 Server Plug-ins Reference

pb A pointer to a parameter block.

arg The ID of the name-value pair that you want to set.

value A pointer to the value that you want to set in the parameter block.

Returns

0 if successful, or -1 if an error occurs.

slapi_pblock_new()

slapi_pblock_new() creates a new parameter block.

Syntax

#include "slapi-plugin.h"

Slapi_PBlock *slapi_pblock_new();

Returns

A pointer to the new parameter block is returned.

slapi_pblock_destroy()

slapi_pblock_destroy() frees the specified parameter block from memory.

Syntax

#include "slapi-plugin.h"

void slapi_pblock_destroy(Slapi_PBlock *pb);

Parameters

pb A pointer to the parameter block that you want to free.

slapi_ch_malloc()

slapi_ch_malloc() allocates space in memory, and calls the standard malloc() C

function. The slapd server is terminated with an accompanying out of memory

error message if memory cannot be allocated.

Syntax

#include "slapi-plugin.h"

char * slapi_ch_malloc(unsigned long size);

Parameters

size The amount of space that you want memory allocated for.

slapi_ch_calloc()

slapi_ch_calloc() allocates space for an array of elements of a specified size. It calls

the calloc() C function. The slapd server is terminated with an accompanying out

of memory error message if memory cannot be allocated.

Syntax

#include "slapi-plugin.h"

char * slapi_ch_calloc(unsigned long nelem,

 unsigned long size);

Parameters

nelem The number of elements that you want to allocate memory for.

size The amount of memory of each element that you want to allocate

memory for.

Appendix C. Supported iPlanet APIs 37

slapi_ch_realloc()

slapi_ch_realloc() changes the size of a block of allocated memory. It calls the

standard realloc() C function. The slapd server is terminated with an

accompanying out of memory error message if memory cannot be allocated.

Syntax

#include "slapi-plugin.h"

char * slapi_ch_realloc(char *block, unsigned long size);

Parameters

block A pointer to an existing block of allocated memory.

size The new amount of the block of memory you want allocated.

Returns

A pointer to a newly-allocated memory block with the requested size is

returned.

slapi_ch_strdup()

slapi_ch_strdup() makes a copy of an existing string. It calls the standard strdup()

C function. The slapd server is terminated with an accompanying out of memory

error message if memory cannot be allocated.

Syntax

#include "slapi-plugin.h"

char * slapi_ch_strdup(char *s);

Parameters

s Refers to the string you want to copy.

Returns

A pointer to a copy of the string is returned. If space cannot be allocated

(for example, if no more virtual memory exists), a NULL pointer is

returned.

slapi_compare_internal()

Plug-in functions call slapi_compare_internal() to compare an entry in the backend

directly.

Syntax

*slapi_compare_internal(const char *dn, const char *type,

 struct berval *value, LDAPControl **controls) {

Parameters

dn The dn of the entry on which to perform the compare. This

parameter cannot have a value of NULL.

type The attribute type on which to perform the compare. This

parameter cannot have a value of NULL.

value The berval value of the attribute being compared. This parameter

cannot have a value of NULL.

controls

Any controls requested on the operation.

Returns

The slapi_pblock containing the return code.

38 Server Plug-ins Reference

slapi_ch_free()

slapi_ch_free() frees space allocated by the slapi_ch_malloc(), slapi_ch_calloc(),

slapi_ch_realloc(),and slapi_ch_strdup() functions. It does not set the pointer to

NULL.

Syntax

#include "slapi-plugin.h"

void slapi_ch_free(void *ptr);

Parameters

ptr A pointer to the block of memory that you want to free. If it is

NULL, no action occurs.

slapi_send_ldap_result()

slapi_send_ldap_result() sends an LDAP result code back to the client.

Syntax

#include "slapi-plugin.h"

void slai_send_ldap_result(Slapi_PBlock *pb, int err,

 char *matched, char *text, int nentries,

 struct berval **urls);

Parameters

pb A pointer to a parameter block.

err The LDAP result code that you want sent back to the client.

matched

Used to specify the portion of the target DN that can be matched

when you send back an LDAP_NO_SUCH_OBJECT result.

Otherwise you must pass NULL.

text The error message that you want sent back to the client. If you do

not want an error message sent back, pass a NULL.

nentries

Used to specify the number of matching entries found when you

send back the result code for an LDAP search operation.

urls Used to specify the array of the berval structure or to specify

referral URLs when you send back either an

LDAP_PARTIAL_RESULTS result code to an LDAP V2 client or an

LDAP_REFERRAL result code to an LDAP V3 client.

slapi_dn_normalize()

Note: A variable passed in as the DN argument is also converted in-place,

therefore this API is deprecated. See “slapi_dn_normalize_v3()” on page 41.

slapi_dn_normalize() converts a distinguished name (DN) to canonical format (that

is, no leading or trailing spaces, no spaces between components, and no spaces

around the equals sign). As an example, for the following DN: cn = John Doe, ou

= Engineering , o = Darius the function returns:

cn=John Doe,ou=Engineering,o=Darius

Syntax

#include "slapi-plugin.h"

char *slapi_dn_normalize(char *dn);

Appendix C. Supported iPlanet APIs 39

Parameters

dn The DN that you want to normalize.

Returns

The normalized DN.

slapi_dn_normalize_case()

Note: A variable passed in as the DN argument is also converted in-place,

therefore this API is deprecated. See “slapi_dn_normalize_case_v3()” on

page 41.

slapi_dn_normalize_case() converts a distinguished name (DN) to canonical format

(that is, no leading or trailing spaces, no spaces between components, and no

spaces around the equals sign) and converts all characters to lower case. As an

example, for the following DN: cn = John Doe, ou = Engineering, o = Darius the

function returns:

cn=john doe,ou=engineering,o=darius

Note: This function has the same effect as calling the slapi_dn_normalize()

function followed by the slapi_dn_ignore_case() function.

Syntax

#include "slapi-plugin.h"

char *slapi_dn_normalize_case (char *dn);

Parameters

dn The DN that you want to normalize and convert to lower case.

Returns

The normalized DN with all characters in lower case.

slapi_dn_ignore_case()

Note: A variable passed in as the DN argument is also converted in-place,

therefore this API is deprecated. See “slapi_dn_ignore_case_v3()” on page

42.

slapi_dn_ignore_case() converts all of the characters in a distinguished name (DN)

to lower case. As an example, for the following DN: cn = John Doe, ou =

Engineering , o = Darius the function returns:

cn = john doe , ou = engineering , o = darius

Syntax

#include "slapi-plugin.h"

char *slapi_dn_ignore_case (char *dn);

Parameters

dn The DN that you want to convert to lower case.

Returns

The DN with all characters in lower case.

40 Server Plug-ins Reference

slapi_dn_normalize_v3()

slapi_dn_normalize_v3() converts a distinguished name(DN) to canonical format

(that is, no leading or trailing spaces, no spaces between components and no

spaces around the equals sign). The API normalizes the attribute type name to the

first textual type name in the schema definition. Any semicolons used to separate

relative distinguished names (RDN) are converted to commas. A compound RDN

is sorted alphabetically by attribute name. The following is an example DN:

userName=johnDOE + commonName = John Doe ;

ou = Engineering , o = Darius the function returns:

cn=John Doe+userName=johnDOE,ou=Engineering,o=Darius

Special characters in a DN, if escaped using double-quotes, are converted to use

backslash (\) as the escape mechanism. For example, the following DN:

cn="a + b", o=ibm, c=us the function returns

cn=a \+ b,o=ibm,c=us

An attribute value containing a backslash followed by a two-digit hex

representation of a UTF-8 character is converted to the character representation.

For example, the following DN:

cn=\4A\6F\68\6E Doe,ou=Engineering,o=Darius

the function returns cn=John Doe,ou=Engineering,o=Darius

A ber-encoded attribute value is converted to a UTF-8 value. For example, the

following DN:

cn=#04044A6F686E20446F65,ou=Engineering,o=Darius

the function returns cn=John Doe,ou=Engineering,o=Darius

An invalid DN returns NULL.

Syntax

#include "slapi-plugin.h"

char *slapi_dn_normalize_v3(char *dn);

Parameters

dn The DN that you want to normalize. It is not modified by the

function.

Returns

The normalized DN in newly allocated space.

Note: It is the responsibility of the caller to free the normalized DN.

slapi_dn_normalize_case_v3()

slapi_dn_normalize_v3() converts a distinguished name (DN) to canonical format

(that is, no leading or trailing spaces, no spaces between components and no

spaces around the equals sign). The API normalizes the attribute type name to the

first textual type name in the schema definition. Any semicolons used to separate

relative distinguished names (RDN) are converted to commas. A compound RDN

is sorted alphabetically by attribute name. The case of attribute types is changed to

upper case in all cases. The case of the attribute values is converted to upper case

only when the matching rules are case insensitive. If the matching rules for the

attribute are case sensitive, the case of the attribute value is preserved. In the

following example, userName is a case sensitive attribute and cn, ou and o are

case insensitive. For example, the following DN:

Appendix C. Supported iPlanet APIs 41

userName=johnDOE + commonName = John Doe ;

ou = Engineering , o = Darius the function returns:

CN=JOHN DOE+USERNAME=johnDOE,OU=ENGINEERING,O=DARIUS

Special characters in a DN, if escaped using double-quotes, are converted to use

backslash (\) as the escape mechanism. For example, the following DN:

cn="a + b", o=ibm, c=us the function returns

 CN=A \+ B,O=IBM,C=US

An attribute value containing a backslash followed by a two-digit hex

representation of a UTF-8 character is converted to the character representation.

For example, the following DN:

cn=\4A\6F\68\6E Doe,ou=Engineering,o=Darius

the function returns CN=JOHN DOE,OU=ENGINEERING,O=DARIUS

A ber-encoded attribute value is converted to a UTF-8 value. For example, the

following DN:

cn=#04044A6F686E20446F65,ou=Engineering,o=Darius

the function returns CN=JOHN DOE,OU=ENGINEERING,O=DARIUS

An invalid DN returns NULL.

Syntax

#include "slapi-plugin.h"

char *slapi_dn_normalize_case_v3(char *dn);

Parameters

dn The DN that you want to normalize and convert to lower case. It is

not modified by the function.

Returns

The normalized DN in newly allocated space.

Note: It is the caller’s responsibility to free the normalized DN.

slapi_dn_ignore_case_v3()

slapi_dn_ignore_case_v3() normalizes a distinguished name (DN) and converts all

of the characters to lower case. For example, the following DN:

userName=johnDOE + commonName = John Doe ;

ou = Engineering , o = Darius

the function returns:

cn=john doe+username=johndoe,ou=engineering,o=darius

Syntax

#include "slapi-plugin.h"

char *slapi_dn_ignore_case _v3(char *dn);

Parameters

dn The DN that you want to normalize and convert to lower case.

Returns

The DN normalized with all characters in lower case.

Note: It is the caller’s responsibility to free the normalized DN.

slapi_dn_compare_v3()

slapi_dn_compare_v3() compares two distinguished names (DN).

42 Server Plug-ins Reference

Syntax

#include "slapi-plugin.h"

char *slapi_dn_compare_v3(char *dn1, char* dn2);

Parameters

dn1 A DN that you want to compare.

dn2 A DN that you want to compare.

Returns

v Less than 0 if the value of dn1 is lexicographically less than dn2.

v 0 if the value of dn1 is lexicographically equal to dn2.

v Greater than 0 if the value of dn1 is lexicographically greater than dn2.

slapi_dn_issuffix()

slapi_dn_issuffix() determines whether a DN is equal to the specified suffix.

Syntax

#include "slapi-plugin.h"

int slapi_dn_issuffix(char *dn, char *suffix);

Parameters

dn The DN that you want to check.

suffix The suffix you want compared against the DN.

Returns

A 1 is returned if the specified DN is the same as the specified suffix, or a

0 is returned if the DN is not the same as the suffix.

slapi_entry2str()

slapi_entry2str() generates a description of an entry as a string. The LDIF string

has the following format:

dn: <dn>\n

*[<attr>: <value>\n]

*[<attr>:: <base_64_encoded_value>]

where:

* The operator ″*″ when it precedes an element indicates repetition. The full

form is: <a>* where <a> and are optional decimal values,

indicating at least <a> and at most occurrences of element.

 Default values are 0 and infinity so that *<element> allows any number,

including zero; 1*<element> requires at least one; 3*3<element> allows

exactly 3 and 1*2<element> allows one or two.

dn Distinguished name

attr Attribute name

\n New line

value Attribute value

For example:

dn: uid=rbrown2, ou=People, o=airius.com

cn: Robert Brown

Appendix C. Supported iPlanet APIs 43

sn: Brown

...

When you no longer need to use the string, you can free it from memory by

calling the slapi_ch_free() function.

Call the slapi_str2entry() function to convert a string description in this format to

an entry of the Slapi_Entry data type.

Syntax

#include "slapi-plugin.h"

char *slapi_entry2str(Slapi_Entry *e, int *len);

Parameters

e Address of the entry that you want to generate a description for.

len Address of the length of the returned string.

Returns

The description of the entry as a string is returned or NULL if an error

occurs.

slapi_str2entry()

slapi_str2entry() converts an LDIF description of a directory entry (a string value)

into an entry of the Slapi_Entry data type that can be passed to other API

functions.

Note: This function modifies the s string argument, and you must make a copy of

this string before it is called.

If there are errors during the conversion process, the function returns a NULL

instead of the entry.

When you are through working with the entry, call the slapi_entry_free() function.

To convert an entry to a string description, call slapi_entry2str().

Syntax

#include "slapi-plugin.h"

Slapi_Entry *slapi_str2entry(char *s, int flags);

Parameters

s The description of an entry that you want to convert.

flags Specifies how the entry must be generated.

The flags argument can be one of the following values:

SLAPI_STR2ENTRY_REMOVEDUPVALS

Removes any duplicate values in the attributes of the entry.

SLAPI_STR2ENTRY_ADDRDNVALS

Adds the relative distinguished name (RDN) components.

Returns

A pointer to the Slapi_Entry structure representing the entry is returned, or

a NULL is returned if the string cannot be converted, for example, if no

DN is specified in the string.

44 Server Plug-ins Reference

slapi_entry_attr_find()

slapi_entry_attr_find() determines if an entry has a specified attribute. If it does,

this function returns that attribute.

Syntax

#include "slapi-plugin.h"

int slapi_entry_attr_find(Slapi_Entry *e, char *type,

 Slapi_Attr **attr);

Parameters

e An entry that you want to check.

type Indicates the name of the attribute that you want to check.

attr A pointer to the attribute (assuming that the attribute is in the

entry).

Returns

A 0 is returned if the entry contains the specified attribute, or -1 is

returned if it does not.

slapi_entry_attr_delete()

slapi_entry_attr_delete() deletes an attribute from an entry.

Syntax

#include "slapi-plugin.h"

int slapi_entry_attr_delete (Slapi_Entry *e, char *type);

Parameters

e The entry from which you want to delete the attribute.

type Indicates the name of the attribute that you want to delete.

Returns

A 0 is returned if the attribute is successfully deleted, a 1 is returned if the

specified attribute is not part of the entry, or -1 is returned if an error has

occurred.

slapi_entry_get_dn()

slapi_entry_get_dn() receives the DN of the specified entry.

Syntax

#include "slapi-plugin.h"

char *slapi_entry_get_dn(Slapi_Entry *e);

Parameters

e Indicates an entry that contains the DN you want.

Returns

The DN of the entry is returned. A pointer to the actual DN in the entry is

returned, not a copy of the DN.

slapi_entry_set_dn()

slapi_entry_set_dn() sets the DN of an entry. It sets the pointer to the DN that you

specify.

Appendix C. Supported iPlanet APIs 45

Note: Because the old DN is not overwritten and is still in memory, you need to

first call slapi_entry_get_dn() to get the pointer to the current DN, free the

DN, and then call slapi_entry_set_dn() to set the pointer to your new DN.

Syntax

#include "slapi-plugin.h"

void *slapi_entry_set_dn(Slapi_Entry *e char *dn);

Parameters

e Indicates the entry to which you want to assign the DN.

dn The DN that you want to assign to the entry.

slapi_entry_alloc()

slapi_entry_alloc() allocates memory for a new entry of the Slapi_Entry data type.

It returns an empty Slapi_Entry structure. You can call other front-end functions to

set the DN and attributes of this entry. When you are through working with the

entry, free it by calling the slapi_entry_free() function.

Syntax

#include "slapi-plugin.h"

Slapi_Entry *slapi_entry_alloc();

Returns

A pointer to the newly allocated entry of the Slapi_Entry data type is

returned. If space cannot be allocated (for example, if no more virtual

memory exists), the server program ends.

slapi_entry_dup()

slapi_entry_dup() makes a copy of an entry, its DN, and its attributes. You can call

other front-end functions to change the DN and attributes of this copy of an

existing Slapi_Entry structure. When you are through working with the entry, free

it by calling the slapi_entry_free() function.

Syntax

#include "slapi-plugin.h"

Slapi_Entry *slapi_entry_dup(Slapi_Entry *e);

Parameters

e The entry that you want to copy.

Returns

The new copy of the entry. If the structure cannot be duplicated (for

example, if no more virtual memory exists), the server program ends.

slapi_send_ldap_search_entry()

slapi_send_ldap_search_entry() sends an entry found by a search back to the client.

Syntax

#include "slapi-plugin.h"

int slapi_send_ldap_search_entry(Slapi_PBlock *pb,

 Slapi_Entry *e, LDAPControl **ectrls,

 char **attrs, int attrsonly);

Parameters

pb The parameter block.

46 Server Plug-ins Reference

e The pointer to the Slapi_Entry structure representing the entry that

you want to send back to the client.

ectrls The pointer to the array of LDAPControl structures that represent

the controls associated with the search request.

attrs Attribute types specified in the LDAP search request.

attrsonly

Specifies whether the attribute values must be sent back with the

result.

v If set to 0, the values are included.

v If set to 1, the values are not included.

Returns

A 0 is returned if successful, a 1 is returned if the entry is not sent (for

example, if access control did not allow it to be sent), or a -1 is returned if

an error occurs.

slapi_entry_free()

slapi_entry_free() frees an entry, its DN, and its attributes from memory.

Syntax

#include "slapi-plugin.h"

void slapi_entry_free(Slapi_Entry *e);

Parameters

e An entry that you want to free. If it is NULL, no action occurs.

slapi_attr_get_values()

slapi_attr_get_values() receives the value of the specified attribute.

Syntax

#include "slapi-plugin.h"

 int slapi_attr_get_values(Slapi_Attr *attr, struct berval

 ***vals);

Parameters

attr An attribute that you want to get the flags for.

vals When slapi_attr_get_values() is called, vals is set to a pointer that

indicates a NULL-terminated array of berval structures

(representing the values of the attribute). Do not free the array; the

array is part of the actual data in the attribute, not a copy of the

data.

Returns

A 0 is returned if it is successful.

slapi_str2filter()

slapi_str2filter() converts a string description of a search filter into a filter of the

Slapi_Filter type. When you are done working with this filter, free the Slapi_Filter

structure by calling slapi_filter_free().

Syntax

#include "slapi-plugin.h"

Slapi_Filter *slapi_str2filter(char *str);

Appendix C. Supported iPlanet APIs 47

Parameters

str A string description of a search filter.

Returns

The address of the Slapi_Filter structure representing the search filter is

returned, or a NULL is returned if the string cannot be converted (for

example, if an empty string is specified or if the filter syntax is incorrect).

slapi_filter_get_choice()

slapi_filter_get_choice() gets the type of the specified filter (for example,

LDAP_FILTER_EQUALITY).

Syntax

#include "slapi-plugin.h"

int slapi_filter_get_choice(Slapi_Filter *f);

Parameters

f The filter type that you want to get.

Returns

One of the following values is returned:

LDAP_FILTER_AND (AND filter)

For example: (&(ou=Accounting)(l=Sunnyvale))

LDAP_FILTER_OR (OR filter)

For example: (|(ou=Accounting)(l=Sunnyvale))

LDAP_FILTER_NOT (NOT filter)

For example: (!(l=Sunnyvale))

LDAP_FILTER_EQUALITY (equals filter)

For example: (ou=Accounting)

LDAP_FILTER_SUBSTRINGS (substring filter)

For example: (ou=Account*Department)

LDAP_FILTER_GE (″greater than or equal to″ filter)

For example: (supportedLDAPVersion>=3)

LDAP_FILTER_LE (″less than or equal to″ filter)

For example: (supportedLDAPVersion<=2)

LDAP_FILTER_PRESENT (presence filter)

For example: (mail=*)

LDAP_FILTER_APPROX (approximation filter)

For example: (ou~=Sales)

slapi_filter_get_ava()

slapi_filter_get_ava() gets the attribute type and the value from the filter. This

applies only to filters of the types LDAP_FILTER_EQUALITY, LDAP_FILTER_GE,

LDAP_FILTER_LE, LDAP_FILTER_APPROX. These filter types generally compare

a value against an attribute. For example: (cn=John Doe) This filter finds entries in

which the value of the cn attribute is equal to John Doe.

Calling the slapi_filter_get_ava() function gets the attribute type and value from

this filter. In the case of the example, calling the slapi_filter_get_ava() function gets

the attribute type cn and the value John Doe.

48 Server Plug-ins Reference

Syntax

#include "slapi-plugin.h"

int slapi_filter_get_ava(Slapi_Filter *f,

char **type, struct berval **bval);

Parameters

f The address of the filter from which you want to get the attribute

and value.

type The pointer to the attribute type of the filter.

bval The pointer to the address of the berval structure that contains the

value of the filter.

Returns

A 0 is returned if successful, or a -1 is returned if the filter is not one of the

types listed.

slapi_filter_free()

slapi_filter_free() frees the specified filter and (optionally) the set of filters that

comprise it. For example, the set of filters in an LDAP_FILTER_AND type filter.

Syntax

#include "slapi-plugin.h"

void slapi_filter_free(Slapi_Filter *f, int recurse);

Parameters

f The filter that you want to free.

recurse

If set to 1, it recursively frees all filters that comprise this filter. If

set to 0, it only frees the filter specified by the f parameter.

slapi_filter_list_first()

slapi_filter_list_first() gets the first filter that makes up the specified filter. This

applies only to filters of the types LDAP_FILTER_EQUALITY, LDAP_FILTER_GE,

LDAP_FILTER_LE, and LDAP_FILTER_APPROX. These filter types generally

consist of one or more other filters. For example, if the filter is:

(&(ou=Accounting)(l=Sunnyvale)) the first filter in this list is: (ou=Accounting).

Use the slapi_filter_list_first() function to get the first filter in the list.

Syntax

#include "slapi-plugin.h"

Slapi_Filter *slapi_filter_list_first

(Slapi_Filter *f);

Parameters

f The filter from which you want to get the first component.

Returns

The first filter that makes up the filter specified by the f parameter is

returned.

Appendix C. Supported iPlanet APIs 49

slapi_filter_list_next()

slapi_filter_list_next() gets the next filter (following fprev) that makes up the

specified filter f. This applies only to filters of the types

LDAP_FILTER_EQUALITY, LDAP_FILTER_GE, LDAP_FILTER_LE, and

LDAP_FILTER_APPROX. These filter types generally consist of one or more other

filters. For example, if the filter is: (&(ou=Accounting)(l=Sunnyvale)) the next filter

after (ou=Accounting) in this list is: (l=Sunnyvale). Use the slapi_filter_list_first()

function to get the first filter in the list.

To iterate through all filters that make up a specified filter, call the

slapi_filter_list_first() function and then call slapi_filter_list_next().

Syntax

#include "slapi-plugin.h"

Slapi_Filter *slapi_filter_list_next(Slapi_Filter

*f, Slapi_Filter *fprev);

Parameters

f The filter from which you want to get the next component (after

fprev).

fprev A filter within the filter specified by the f parameter.

Returns

The next filter (after fprev) that makes up the filter specified by the f

parameter is returned.

slapi_is_connection_ssl()

slapi_is_connection_ssl() is used by the server to determine whether the connection

between it and a client is through a Secure Socket Layer (SSL).

Syntax

#include "slapi-plugin.h"

int slapi_is_connection_ssl(Slapi_PBlock *pPB,

int *isSSL);

Parameters

pPB Address of a Parameter Block.

isSSL Address of the output parameter. A 1 is returned if the connection

is through SSL or a 0 is returned if it is not through SSL.

Returns

A 0 is returned if successful.

slapi_get_client_port()

slapi_get_client_port() is used by the server to determine the port number used by

a client to communicate to the server.

Syntax

#include "slapi-plugin.h"

int slapi_get_client_port(Slapi_PBlock *pPB,

int *fromPort);

Parameters

pPB Address of a Parameter Block.

50 Server Plug-ins Reference

fromPort

Address of the output parameter. It is the port number used by the

client.

Returns

A 0 is returned if successful.

slapi_search_internal()

slapi_search_internal() performs an LDAP search operation to search the directory

from your plug-in.

Syntax

#include "slapi-plugin.h"

Slapi_PBlock *slapi_search_internal(char *base, int scope,

 char *filter, LDAPControl **controls,

 char **attrs, int attrsonly);

Parameters

base The DN of the entry that serves as the starting point for the search.

For example, setting base o=Acme Industry, c=US restricts the

search to entries at Acme Industry located in the United States.

scope Defines the scope of the search. It can be one of the following

values:

v LDAP_SCOPE_BASE searches the entry that is specified by base.

v LDAP_SCOPE_ONELEVEL searches all entries one level beneath

the entry specified by base.

v LDAP_SCOPE_SUBTREE searches the entry specified by base. It

also searches all entries at all levels beneath the entry specified

by base .

filter The string representation of the filter to apply in the search.

controls

The NULL-terminated array of LDAP controls that you want

applied to the search operation.

attrs The NULL-terminated array of attribute types to return from

entries that match the filter. If you specify a NULL, all attributes

are returned.

attrsonly

Specifies whether or not attribute values are returned along with

the attribute types. It can have the following values:

v A 0 specifies that both attribute types and attribute values are

returned.

v A 1 specifies that only attribute types are returned.

Returns

slapi_free_search_results_internal() and slapi_pblock_destroy() need to be

called to free the search results and the pblock that is returned by

slapi_search_internal.

slapi_modify_internal()

slapi_modify_internal() performs an LDAP modify operation to modify an entry in

the directory from a plug-in.

Appendix C. Supported iPlanet APIs 51

Unlike the standard LDAP modify operation, no LDAP result code is returned to a

client; the result code is placed instead in a parameter block that is returned by the

function.

Syntax

#include "slapi-plugin.h"

Slapi_PBlock *slapi_modify_internal(char *dn,

 LDAPMod **mods,

 LDAPControl **controls, int l);

Parameters

dn A distinguished name (DN) of the entry that you want to modify.

mods A pointer to a NULL-terminated array of pointers to LDAPMod

structures representing the attributes that you want to modify.

controls

A NULL-terminated array of LDAP controls.

l Included for compatibility only. It is not used.

Returns

A new parameter block with the following parameter set is returned:

v SLAPI_PLUGIN_INTOP_RESULT specifies the LDAP result code for the

internal LDAP operation.

slapi_add_internal()

slapi_add_internal() performs an LDAP add operation in order to add a new

directory entry (specified by a DN and a set of attributes) from your plug-in.

Unlike the standard LDAP add operation, no LDAP result code is returned to a

client. The result code is instead placed in a parameter block that is returned by

the function.

Syntax

#include "slapi-plugin.h"

Slapi_PBlock *slapi_add_internal(char * dn,

 LDAPMod **mods,

 LDAPControl **controls, int l);

Parameters

dn The Distinguished name (DN) of the entry that you want to add.

mods A pointer to a NULL-terminated array of pointers to LDAPMod

structures representing the attributes of the new entry that you

want to add.

controls

A NULL-terminated array of LDAP controls that you want applied

to the add operation.

l Included for compatibility only. It is not used.

Returns

A new parameter block with the following parameter set is returned:

v SLAPI_PLUGIN_INTOP_RESULT specifies the LDAP result code for the

internal LDAP operation.

52 Server Plug-ins Reference

slapi_add_entry_internal()

slapi_add_entry_internal() performs an LDAP add operation to add a new

directory entry (specified by an Slapi_Entry structure) from a plug-in function.

Unlike the standard LDAP add operation, no LDAP result code is returned to a

client. Instead, the result code is placed in a parameter block that is returned by

the function.

Note: To add an entry specified by a string DN and an array of LDAPMod

structures, call slapi_add_internal() instead.

Syntax

#include "slapi-plugin.h"

Slapi_PBlock *slapi_add_entry_internal(Slapi_Entry * e,

 LDAPControl **controls, int l);

Parameters

mods A pointer to an Slapi_Entry structure representing the new entry

that you want to add.

controls

A NULL-terminated array of LDAP controls that you want applied

to the add operation.

l Included for compatibility only. It is not used.

Returns

A new parameter block with the following the following parameter set is

returned:

v SLAPI_PLUGIN_INTOP_RESULT specifies the LDAP result code for the

internal LDAP operation (for example, LDAP_SUCCESS if the operation

is successful or LDAP_PARAM_ERROR if an invalid parameter is used).

If the DN of the new entry has a suffix that is not served by the

Directory Server, SLAPI_PLUGIN_INTOP_RESULT is set to

LDAP_REFERRAL.

slapi_delete_internal()

slapi_delete_internal() performs an LDAP delete operation in order to remove a

directory entry when it is called from your plug-in.

Unlike the standard LDAP delete operation, no LDAP result code is returned to a

client. The result code is instead placed in a parameter block that is returned by

the function.

Syntax

#include "slapi-plugin.h"

Slapi_PBlock *slapi_delete_internal(char * dn,

 LDAPControl **controls, int l);

Parameters

dn The distinguished name (DN) of the entry that you want to delete.

controls

A NULL-terminated array of LDAP controls that you want applied

to the delete operation.

l Included for compatibility only. It is not used.

Appendix C. Supported iPlanet APIs 53

Returns

A new parameter block with the following parameter set is returned:

v SLAPI_PLUGIN_INTOP_RESULT specifies the LDAP result code for the

internal LDAP operation.

slapi_modrdn_internal()

slapi_modrdn_internal() performs an LDAP modify RDN operation in order to

rename a directory entry from your plug-in.

Unlike the standard LDAP modify RDN operation, no LDAP result code is

returned to a client. The result code is instead placed in a parameter block that is

returned by the function.

Syntax

#include "slapi-plugin.h"

Slapi_PBlock *slapi_modrdn_internal(char * olddn,

 char * newrdn, int deloldrdn, LDAPControl **controls,

 int l);

Parameters

olddn The distinguished name (DN) of the entry that you want to

rename.

newdn The new relative distinguished name (RDN) of the entry.

deloldrdn

Specifies whether or not you want to remove the old RDN from

the entry.

v If a 1, remove the old RDN.

v If a 0, leave the old RDN as an attribute of the entry.

controls

A NULL-terminated array of LDAP controls that you want applied

to the modify RDN operation.

l Included for compatibility only. It is not used.

Returns

A new parameter block with the following parameter set is returned:

v SLAPI_PLUGIN_INTOP_RESULT specifies the LDAP result code for the

internal LDAP operation.

slapi_free_search_results_internal()

slapi_free_search_results_internal() frees the memory associated with LDAP entries

returned by the search.

Syntax

#include "slapi-plugin.h"

void slapi_free_search_results_internal(Slapi_PBlock *pb);

Parameters

pb Is a pointer to a Parameter Block that is returned by a

slapi_free_search_internal function.

54 Server Plug-ins Reference

slapi_get_supported_saslmechanisms()

slapi_get_supported_saslmechanisms() obtains an array of the supported Simple

Authentication and Security Layer (SASL) mechanisms names. Register new SASL

mechanisms by calling the slapi_register_supported_saslmechanism() function.

Syntax

#include "slapi-plugin.h"

char ** slapi_get_supported_saslmechanisms(void);

Returns

A pointer to an array of SASL mechanisms names supported by the server

is returned.

slapi_get_supported_extended_ops()

slapi_get_supported_extended_ops() gets an array of the object IDs (OIDs) of the

extended operations supported by the server. Register new extended operations by

putting the OID in the SLAPI_PLUGIN_EXT_OP_OIDLIST parameter and calling

the slapi_pblock_set() function.

Syntax

#include "slapi-plugin.h"

char **slapi_get_supported_extended_ops(void);

Returns

A pointer to an array of the OIDs of the extended operations supported by

the server is returned.

slapi_register_supported_saslmechanism()

slapi_register_supported_saslmechanism() registers the specified Simple

Authentication and Security Layer (SASL) mechanism with the server.

Syntax

#include "slapi-plugin.h"

void slapi_register_supported_saslmechanism(char *mechanism);

Parameters

mechanism

Indicates the name of the SASL mechanism.

slapi_get_supported_controls()

slapi_get_supported_controls() obtains an array of OIDs, which represent the

controls supported by the directory server. Register new controls by calling the

slapi_register_supported_control() function.

Syntax

#include "slapi-plugin.h"

int slapi_get_supported_controls(char ***ctrloidsp,

 unsigned long **ctrlopsp);

Parameters

ctrloidsp

A pointer to an array of OIDs, which represent the controls

supported by the server.

Appendix C. Supported iPlanet APIs 55

ctrlopsp

A pointer to an array of IDs which specify LDAP operations that

support each control.

Returns

A 0 is returned if successful.

slapi_register_supported_control()

slapi_register_supported_control() registers the specified control with the server. It

also associates the control with an OID. When the server receives a request that

specifies this OID, the server makes use of this information in order to determine if

the control is supported.

Syntax

#include "slapi-plugin.h"

void slapi_register_supported_control(char *controloid,

unsigned long controlops);

Parameters

controloid

The OID of the control you want to register.

controlops

The operation that the control is applicable to. It can have one or

more of the following values:

SLAPI_OPERATION_BIND

The specified control that applies to the LDAP bind

operation.

SLAPI_OPERATION_UNBIND

The specified control that applies to the LDAP unbind

operation.

SLAPI_OPERATION_SEARCH

The specified control that applies to the LDAP search

operation.

SLAPI_OPERATION_MODIFY

The specified control that applies to the LDAP modify

operation.

SLAPI_OPERATION_ADD

The specified control that applies to the LDAP add

operation.

SLAPI_OPERATION_DELETE

The specified control that applies to the LDAP delete

operation.

SLAPI_OPERATION_MODDN

The specified control that applies to the LDAP modify DN

operation.

SLAPI_OPERATION_MODRDN

The specified control that applies to the LDAP V3 modify

RDN operation.

SLAPI_OPERATION_COMPARE

The specified control that applies to the LDAP compare

operation.

56 Server Plug-ins Reference

SLAPI_OPERATION_ABANDON

The specified control that applies to the LDAP abandon

operation.

SLAPI_OPERATION_EXTENDED

The specified control that applies to the LDAP V3 extended

operation.

SLAPI_OPERATION_ANY

The specified control that applies to any LDAP operation.

SLAPI_OPERATION_NONE

The specified control that applies to none of the LDAP

operations.

slapi_control_present()

slapi_control_present() determines whether or not the specified OID identifies a

control that might be present in a list of controls.

Syntax

#include "slapi-plugin.h"

int slapi_control_present(LDAPControl **controls, char *oid,

 struct berval **val, int *iscritical);

Parameters

controls

The list of controls that you want to check.

oid Refers to the OID of the control that you want to find.

val Specifies the pointer to the berval structure containing the value of

the control (if the control is present in the list of controls).

iscritical

Specifies whether or not the control is critical to the operation of

the server (if the control is present in the list of controls).

v A 0 means that the control is not critical to the operation.

v A 1 means that the control is critical to the operation.

Returns

A 1 is returned if the specified control is present in the list of controls, or a

0 if the control is not present.

slapi_log_error()

Writes a message to the error log for the directory server.

Syntax

#include "slapi-plugin.h"

int slapi_log_error(int severity, char *subsystem, char *fmt, ...);

Parameters

severity

Level of severity of the message. In combination with the severity

level specified by ibm-slapdSysLogLevel in the ibmslapd.conf file,

determines whether or not the message is written to the log. The

severity must be one of the following:

v LDAP_MSG_LOW

v LDAP_MSG_MED

Appendix C. Supported iPlanet APIs 57

v LDAP_MSG_HIGH

The following entry in the ibmslapd.conf file results in a medium

logging level:

#ibm-slapdSysLogLevel must be one of l/m/h (l=terse, h=verbose)

ibm-slapdSysLogLevel: m

With this example in your ibmslapd.conf file, log messages with

severity LDAP_MSG_HIGH or LDAP_MSG_MED are logged. The

messages with severity LDAP_MSG_LOW are not logged. If the

slapdSysLogLevel is set to h, all messages are logged.

subsystem

Name of the subsystem in which this function is called. The string

that you specify here appears in the error log in the following

format:

<subsystem>: <message>

fmt, ... Message that you want written. This message can be in

printf()-style format. For example:

..., "%s\n", myString);

Returns

A 0 is returned if successful, -1 if an unknown severity level is specified.

58 Server Plug-ins Reference

Appendix D. Plug-in examples

The following sample C code creates a simple SASL bind plug-in that uses the

mechanism SAMPLE_BIND. It compares the password that is sent across the wire

to the password stored in the directory for the given bind DN.

#include <stdio.h>

#include <string.h>

#include <strings.h>

#include <slapi-plugin.h>

#define FALSE 0

/* Let the next plugin try the operation */

#define NEXTPLUGIN 0

/* We handled the operation, so don’t run any other plugins */

#define STOP_PLUGIN_SEARCH 1

/* SASL mechanism type */

#define SAMPLE_MECH "SAMPLE_BIND"

/* Subsystem to use for slapi_log_error calls */

#define SAMPLE_SUBSYSTEM "SAMPLE"

/* Filter used when searching for the entry DN */

#define FILTER "objectclass=*"

/* Password attribute name */

#define PWATTR "userpassword"

/* Forward declaration of our bind plugin function */

int sampleBind(Slapi_PBlock *pb);

/* Initialization function */

int sampleInit(Slapi_PBlock *pb)

{

 int argc = 0;

 char ** argv = NULL;

 /* to register the Sample_Bind function as the pre-operation

 * bind funtion

 */

 if (slapi_pblock_set(pb, SLAPI_PLUGIN_PRE_BIND_FN, (void*) sampleBind) != 0)

 {

 slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,

 "sampleInit couldn’t set plugin function\n");

 return (-1);

 }

 /* Get the plugin argument count. These arguments are defined

 * in the plug-in directive in the configuration file.

 */

 if (slapi_pblock_get(pb, SLAPI_PLUGIN_ARGC, &argc) != 0)

 {

 slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,

 "sampleInit couldn’t get argc\n");

 return (-1);

 }

 /* Get the plugin argument array */

 if(slapi_pblock_get(pb, SLAPI_PLUGIN_ARGV, &argv) != 0)

 {

 slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,

© Copyright IBM Corp. 2005 59

"sampleInit couldn’t get argv\n");

 return (-1);

 }

 /* Low "severity" means high importance. */

 slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,

 "Hello from sample\n");

 /*

 * Register SAMPLE_BIND as one of the supported SASL mechanisms

 * so that it shows up when the RootDSE is queried.

 */

 slapi_register_supported_saslmechanism(SAMPLE_MECH);

 return LDAP_SUCCESS;

}

/*

 * Function to get the password for the specified dn.

 */

int getEntryPassword(char *dn, char ** passwd)

{

 Slapi_PBlock *pb = NULL;

 int rc = LDAP_SUCCESS;

 int numEntries = 0;

 Slapi_Entry **entries = NULL;

 Slapi_Attr *a = NULL;

 struct berval **attr_vals = NULL;

 /*

 * Do an internal search to get the entry for the given dn

 */

 pb = slapi_search_internal(dn, /* Entry to retrieve */

 LDAP_SCOPE_BASE,

 /* Only get the entry asked for */

 FILTER, /* Search filter */

 NULL, /* No controls */

 NULL, /* Get all attributes */

 FALSE);

 /* Get attribute values (names only is false) */

 if (pb == NULL)

 {

 slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,

 "Search failed for dn = %s\n", dn);

 return (LDAP_OPERATIONS_ERROR);

 }

 /* Get the return code from the search */

 slapi_pblock_get(pb, SLAPI_PLUGIN_INTOP_RESULT, &rc);

 if (rc != LDAP_SUCCESS)

 {

 /* Search failed */

 slapi_pblock_destroy(pb);

 return (rc);

 }

 /* Get the number of entries returned from the search */

 slapi_pblock_get(pb, SLAPI_NENTRIES, &numEntries);

 if (numEntries == 0)

 {

 /* Couldn’t find entry */

 slapi_free_search_results_internal(pb);

 slapi_pblock_destroy(pb);

 return (LDAP_NO_SUCH_OBJECT);

 }

60 Server Plug-ins Reference

/* Get the entries */

 slapi_pblock_get(pb, SLAPI_PLUGIN_INTOP_SEARCH_ENTRIES, &entries);

 /*

 * Since we did a base level search, there can only be one entry returned.

 * Get the value of the "userpassword" attribute from the entry.

 */

 if (slapi_entry_attr_find(entries[0], PWATTR, &a) == 0)

 {

 /* Copy the password into the out parameter */

 slapi_attr_get_values(a, &attr_vals);

 (*passwd) = slapi_ch_strdup(attr_vals[0]->bv_val);

 }

 else

 {

 /* No userpassword attribute */

 slapi_free_search_results_internal(pb);

 slapi_pblock_destroy(pb);

 return (LDAP_INAPPROPRIATE_AUTH);

 }

 slapi_free_search_results_internal(pb);

 slapi_pblock_destroy(pb);

 return (LDAP_SUCCESS);

}

/* Function to handle a bind request */

int sampleBind(Slapi_PBlock *pb)

{

 char * mechanism = NULL;

 char * dn = NULL;

 char * passwd = NULL;

 char * connDn = NULL;

 char * aString = NULL;

 struct berval * credentials = NULL;

 int rc = LDAP_SUCCESS;

 /* Get the target DN */

 if (slapi_pblock_get(pb, SLAPI_BIND_TARGET, &dn) != 0)

 {

 slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,

 "sampleBind couldn’t get bind target\n");

 return (NEXTPLUGIN);

 }

 /* Get the password */

 if (slapi_pblock_get(pb, SLAPI_BIND_CREDENTIALS, &credentials) != 0)

 {

 slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,

 "sampleBind couldn’t get bind target\n");

 return (NEXTPLUGIN);

 }

 /* Get the bind mechanism */

 if (slapi_pblock_get(pb, SLAPI_BIND_SASLMECHANISM, &mechanism) != 0)

 {

 slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,

 "sampleBind couldn’t get bind target\n");

 return (NEXTPLUGIN);

 }

 /*

 * If the requested mechanism isn’t SAMPLE, then we’re not going to

 * handle it.

 */

 if ((mechanism == NULL) || (strcmp(mechanism, SAMPLE_MECH) != 0))

 {

Appendix D. Plug-in examples 61

return (NEXTPLUGIN);

 }

 rc = getEntryPassword(dn, &passwd);

 if (rc != LDAP_SUCCESS)

 {

 slapi_send_ldap_result(pb, rc, NULL, NULL, 0, NULL);

 return (STOP_PLUGIN_SEARCH);

 }

 /* Check if they gave the correct password */

 if ((credentials->bv_val == NULL) || (passwd == NULL) ||

 (strcmp(credentials->bv_val, passwd) != 0))

 {

 slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,

 "Bind as %s failed\n", dn);

 rc = LDAP_INVALID_CREDENTIALS;

 }

 else

 {

 /*

 * Make a copy of the DN and authentication method and set them

 * in the pblock. The server will use them for the connection.

 */

 connDn = slapi_ch_strdup(dn);

 if (connDn == NULL)

 {

 slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,

 "Could not duplicate connection DN\n");

 slapi_send_ldap_result(pb, LDAP_NO_MEMORY, NULL, NULL, 0, NULL);

 slapi_ch_free(passwd);

 return (STOP_PLUGIN_SEARCH);

 }

 /*

 * The authentication method string will look something like

 * "SASL SAMPLE_BIND"

 */

 aString = slapi_ch_malloc(strlen(SLAPD_AUTH_SASL) +

 strlen(SAMPLE_MECH) + 2);

 if (aString == NULL)

 {

 slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,

 "Could not duplicate authString\n");

 slapi_ch_free(passwd);

 slapi_ch_free(connDn);

 slapi_send_ldap_result(pb, LDAP_NO_MEMORY, NULL, NULL, 0, NULL);

 return (STOP_PLUGIN_SEARCH);

 }

 sprintf(aString, "%s%s", SLAPD_AUTH_SASL, SAMPLE_MECH);

 /* Set the connection DN */

 if (slapi_pblock_set(pb, SLAPI_CONN_DN, (void *) connDn) != 0)

 {

 slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,

 "Could not set SLAPI_CONN_DN\n");

 slapi_ch_free(passwd);

 slapi_ch_free(connDn);

 slapi_ch_free(aString);

 slapi_send_ldap_result(pb, LDAP_OPERATIONS_ERROR,

 NULL, NULL, 0, NULL);

 return (STOP_PLUGIN_SEARCH);

 }

 /* Set the authentication type */

 if (slapi_pblock_set(pb, SLAPI_CONN_AUTHTYPE, (void *) aString) != 0)

 {

62 Server Plug-ins Reference

slapi_log_error(LDAP_MSG_LOW, SAMPLE_SUBSYSTEM,

 "Could not set SLAPI_CONN_AUTHTYPE\n");

 slapi_ch_free(passwd);

 slapi_ch_free(connDn);

 slapi_ch_free(aString);

 slapi_send_ldap_result(pb, LDAP_OPERATIONS_ERROR,

 NULL, NULL, 0, NULL);

 return (STOP_PLUGIN_SEARCH);

 }

 rc = LDAP_SUCCESS;

 }

 /* Send the result back to the client */

 slapi_send_ldap_result(pb, rc, NULL, NULL, 0, NULL);

/*Free the memory allocated by the plug-in */

 slapi_ch_free(passwd);

 slapi_ch_free(connDn);

 slapi_ch_free(aString);

 return (STOP_PLUGIN_SEARCH);

}

To use the plug-in you must:

1. Compile it. Use the following makefile to compile the plug-in:

CC = gcc

LINK = gcc -shared

WARNINGS = -Wall -Werror

LDAP_HOME = /usr/ldap

INCDIRS = -I${LDAP_HOME}/include

LIBDIRS = -L${LDAP_HOME}/lib

CFLAGS = -g ${WARNINGS} ${INCDIRS}

LINK_FLAGS = ${LIBDIRS} ${LIBS}

PLUGIN = libsample.so

OBJECTS = sample.o

.PHONY: clean

all: ${PLUGIN}

.c.o:

 $(CC) ${CFLAGS} -c -o $@ $<

${PLUGIN}: ${OBJECTS}

 ${LINK} -o $@ $< ${LINK_FLAGS}

clean:

 ${RM} ${PLUGIN}

 ${RM} ${OBJECTS}

2. Add the following information to the ibmslapd.conf file using the ldapmodify

command:

ldapmodify -D <adminDN> -w<adminPW> -i<filename>

where <filename> contains:

DN: cn=SchemaDB, cn=LDCF Backends, cn=IBM Directory, cn=Schemas,

 cn=Configuration

changetype: modify

add: ibm-slapdPlugin

ibm-slapdPlugin: preoperation <path to plugin>/libsample.so sampleInit

Appendix D. Plug-in examples 63

3. Restart the server. If the plug-in was loaded, its initialization function writes a

message to the ibmslapd.log file similar to the following:

08/25/2003 01:28:50 PM SAMPLE: Hello from sample

4. Perform an LDAP operation like the following:

ldapsearch -m SAMPLE_BIND -D cn=bob,o=ibm,c=us -w hello -p 1234

 -b o=ibm,c=us objectclass=*

The search succeeds if the entry cn=bob,o=ibm,c=us exists and has a user

password attribute with the value hello. If the entry does not exist, an

authentication denied error is returned.

64 Server Plug-ins Reference

Appendix E. Deprecated plug-in APIs

Although the following APIs are still supported, their use is deprecated. Use of the

newer replacement APIs is strongly encouraged.

v slapi_dn_normalize. See “slapi_dn_normalize_v3()” on page 41.

v slapi_dn_normalize_case. See “slapi_dn_normalize_case_v3()” on page 41.

v slapi_dn_ignore_case. See “slapi_dn_ignore_case_v3()” on page 42.

© Copyright IBM Corp. 2005 65

66 Server Plug-ins Reference

Appendix F. Support information

This section describes the following options for obtaining support for IBM

products:

v “Searching knowledge bases”

v “Obtaining fixes”

v “Contacting IBM Software Support” on page 68

Searching knowledge bases

If you have a problem with your IBM software, you want it resolved quickly. Begin

by searching the available knowledge bases to determine whether the resolution to

your problem is already documented.

Search the information center on your local system or

network

IBM provides extensive documentation that can be installed on your local

computer or on an intranet server. You can use the search function of this

information center to query conceptual information, instructions for completing

tasks, reference information, and support documents.

Search the Internet

If you cannot find an answer to your question in the information center, search the

Internet for the latest, most complete information that might help you resolve your

problem. To search multiple Internet resources for your product, expand the

product folder in the navigation frame to the left and select Web search. From this

topic, you can search a variety of resources including:

v IBM technotes

v IBM downloads

v IBM Redbooks™

v IBM developerWorks®

v Forums and newsgroups

v Google

Obtaining fixes

A product fix might be available to resolve your problem. You can determine what

fixes are available for your IBM software product by checking the product support

Web site:

1. Go to the IBM Software Support Web site

(http://www.ibm.com/software/support).

2. Under Products A - Z, select your product name. This opens a product-specific

support site.

3. Under Self help, follow the link to All Updates, where you will find a list of

fixes, fix packs, and other service updates for your product. For tips on refining

your search, click Search tips.

4. Click the name of a fix to read the description and optionally download the fix.

© Copyright IBM Corp. 2005 67

http://www.ibm.com/software/support

To receive weekly e-mail notifications about fixes and other news about IBM

products, follow these steps:

1. From the support page for any IBM product, click My support in the

upper-right corner of the page.

2. If you have already registered, skip to the next step. If you have not registered,

click register in the upper-right corner of the support page to establish your

user ID and password.

3. Sign in to My support.

4. On the My support page, click Edit profiles in the left navigation pane, and

scroll to Select Mail Preferences. Select a product family and check the

appropriate boxes for the type of information you want.

5. Click Submit.

6. For e-mail notification for other products, repeat Steps 4 and 5.

For more information about types of fixes, see the Software Support Handbook

(http://techsupport.services.ibm.com/guides/handbook.html).

Contacting IBM Software Support

IBM Software Support provides assistance with product defects.

Before contacting IBM Software Support, your company must have an active IBM

software maintenance contract, and you must be authorized to submit problems to

IBM. The type of software maintenance contract that you need depends on the

type of product you have:

v For IBM distributed software products (including, but not limited to, Tivoli,

Lotus®, and Rational® products, as well as DB2 and WebSphere® products that

run on Windows or UNIX operating systems), enroll in Passport Advantage® in

one of the following ways:

– Online: Go to the Passport Advantage Web page

(http://www.lotus.com/services/passport.nsf/WebDocs/

Passport_Advantage_Home) and click How to Enroll

– By phone: For the phone number to call in your country, go to the IBM

Software Support Web site

(http://techsupport.services.ibm.com/guides/contacts.html) and click the

name of your geographic region.
v For IBM eServer™ software products (including, but not limited to, DB2 and

WebSphere products that run in zSeries®, pSeries™, and iSeries™ environments),

you can purchase a software maintenance agreement by working directly with

an IBM sales representative or an IBM Business Partner. For more information

about support for eServer software products, go to the IBM Technical Support

Advantage Web page (http://www.ibm.com/servers/eserver/techsupport.html).

If you are not sure what type of software maintenance contract you need, call

1-800-IBMSERV (1-800-426-7378) in the United States or, from other countries, go to

the contacts page of the IBM Software Support Handbook on the Web

(http://techsupport.services.ibm.com/guides/contacts.html) and click the name of

your geographic region for phone numbers of people who provide support for

your location.

Follow the steps in this topic to contact IBM Software Support:

1. Determine the business impact of your problem.

2. Describe your problem and gather background information.

68 Server Plug-ins Reference

http://techsupport.services.ibm.com/guides/handbook.html
http://www.lotus.com/services/passport.nsf/WebDocs/ Passport_Advantage_Home
http://www.lotus.com/services/passport.nsf/WebDocs/ Passport_Advantage_Home
http://techsupport.services.ibm.com/guides/contacts.html
http://www.ibm.com/servers/eserver/techsupport.html
http://techsupport.services.ibm.com/guides/contacts.html

3. Submit your problem to IBM Software Support.

Determine the business impact of your problem

When you report a problem to IBM, you are asked to supply a severity level.

Therefore, you need to understand and assess the business impact of the problem

you are reporting. Use the following criteria:

 Severity 1 Critical business impact: You are unable to use the program,

resulting in a critical impact on operations. This condition

requires an immediate solution.

Severity 2 Significant business impact: The program is usable but is

severely limited.

Severity 3 Some business impact: The program is usable with less

significant features (not critical to operations) unavailable.

Severity 4 Minimal business impact: The problem causes little impact on

operations, or a reasonable circumvention to the problem has

been implemented.

Describe your problem and gather background information

When explaining a problem to IBM, be as specific as possible. Include all relevant

background information so that IBM Software Support specialists can help you

solve the problem efficiently. To save time, know the answers to these questions:

v What software versions were you running when the problem occurred?

v Do you have logs, traces, and messages that are related to the problem

symptoms? IBM Software Support is likely to ask for this information.

v Can the problem be re-created? If so, what steps led to the failure?

v Have any changes been made to the system? (For example, hardware, operating

system, networking software, and so on.)

v Are you currently using a workaround for this problem? If so, please be

prepared to explain it when you report the problem.

Submit your problem to IBM Software Support

You can submit your problem in one of two ways:

v Online: Go to the ″Submit and track problems″ page on the IBM Software

Support site (http://www.ibm.com/software/support/probsub.html). Enter

your information into the appropriate problem submission tool.

v By phone: For the phone number to call in your country, go to the contacts page

of the IBM Software Support Handbook on the Web

(techsupport.services.ibm.com/guides/contacts.html) and click the name of your

geographic region.

If the problem you submit is for a software defect or for missing or inaccurate

documentation, IBM Software Support creates an Authorized Program Analysis

Report (APAR). The APAR describes the problem in detail. Whenever possible,

IBM Software Support provides a workaround for you to implement until the

APAR is resolved and a fix is delivered. IBM publishes resolved APARs on the

IBM product support Web pages daily, so that other users who experience the

same problem can benefit from the same resolutions.

For more information about problem resolution, see Searching knowledge bases

and Obtaining fixes.

Appendix F. Support information 69

http://www.ibm.com/software/support/probsub.html

70 Server Plug-ins Reference

Appendix G. Notices

This information was developed for products and services offered in the U.S.A.

IBM might not offer the products, services, or features discussed in this document

in other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in

this document. The furnishing of this document does not give you any license to

these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the information. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

information at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2005 71

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Department MU5A46

11301 Burnet Road

Austin, TX 78758

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

72 Server Plug-ins Reference

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, or other countries, or both:

 AIX

Database 2

DB2

developerWorks

eServer

IBM

iSeries

Lotus

Passport Advantage

pSeries

Rational

Redbooks

SecureWay

Tivoli

VisualAge

WebSphere

zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Windows and Windows NT are registered trademarks of Microsoft® Corporation.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

Appendix G. Notices 73

74 Server Plug-ins Reference

Index

A
APIs 35

audit
configuration 11

event 11

record 12

audit configuration options 12

ibm-audit 12

ibm-auditAdd 12

ibm-auditBind 12

ibm-auditDelete 12

ibm-auditExtOPEvent 12

ibm-auditFailedOPonly 12

ibm-auditLog: 12

ibm-auditModify 12

ibm-auditModifyDN 12

ibm-auditSearch 12

ibm-auditUnbind 12

audit plug-ins 11

B
back-end-related functions 7

SLAPI_PLUGIN_CLOSE_FN 7

SLAPI_PLUGIN_DB_INIT_FN 7

C
configuration

audit 11

configuration options
audit services 12

customer support
see Software Support 68

D
database functions 15

output parameters 16

database plug-ins
functions of 7

E
event

audit 11

examples
plug-ins 59

extended operation plug-ins 10

input parameters 10

SLAPI_EXT_OP_REQ_VALUE

(struct berval *) 10

SLAPI_EXT_OP_RET_OID (char

*) 10

output parameters 10

SLAPI_EXT_OP_RET_OID (char

*) 10

SLAPI_EXT_OP_RET_VALUE

(struct berval *) 10

F
fixes, obtaining 67

functions
back-end related 7

ldap protocol-related 7

H
header file

audit 12

I
information centers, searching to find

software problem resolution 67

input parameters
extended operation plug-ins 10

Internet, searching to find software

problem resolution 67

introduction
plug-ins 1

server plug-ins 1

iPlanet APIs 35

compare 38

internal database operations 36, 51

LDAP specific objects 35, 39, 40, 41,

42, 43

logging routines 36

memory management 35, 37

pblock 35, 36

querying server information 36, 55

sending results 35, 39

K
knowledge bases, searching to find

software problem resolution 67

L
ldap protocol-related functions 7

SLAPI_PLUGIN_DB_ADD_FN 7

SLAPI_PLUGIN_DB_BIND_FN 7

SLAPI_PLUGIN_DB_COMPARE_FN 7

SLAPI_PLUGIN_DB_DELETE_FN 7

SLAPI_PLUGIN_DB_MODIFY_FN 7

SLAPI_PLUGIN_DB_MODRDN_FN 7

SLAPI_PLUGIN_DB_SEARCH_FN 7

SLAPI_PLUGIN_DB_UNBIND_FN 7

O
operation plug-ins 9

output parameters
extended operation plug-ins 10

P
parameter reference 17

access log notes
information 24

all plug-ins 21

back-end
information 22

connection
information 22

database
information 22

database plug-ins 18

extended operation plug-ins 20

matching rule plug-ins 21

operation
information 23

plug-ins
information 25

version information 26

post-operation/data notification

plug-ins 20

pre-operation/data validation

plug-ins 19

registering plug-in functions 17

types of plug-ins 25

parameters
abandon function 30

add function 28

bind function 26

compare function 28

configuration function 26

database archive 31

database export 31

database import 30

database indexing 32

database restore 31

delete function 29

extended operations 32

input
extended operations 10

internal LDAP operations 32

matching rule plug-ins 33

modify function 29

modify rdn function 29

output
database functions 16

extended operations 10

search function 27

plug-in APIs
deprecated 65

plug-ins
audit 11

extended operation 10

introduction 1

operation 9

post-operation 9

pre-operation 9

types of 1

writing 3

post-operation plug-ins 9

SLAPI_PLUGIN_POST_ADD_FN 9

© Copyright IBM Corp. 2005 75

post-operation plug-ins (continued)
SLAPI_PLUGIN_POST_BIND_FN 9

SLAPI_PLUGIN_POST_COMPARE_FN 10

SLAPI_PLUGIN_POST_DELETE_FN 9

SLAPI_PLUGIN_POST_MODIFY_FN 10

SLAPI_PLUGIN_POST_MODRDN_FN 10

SLAPI_PLUGIN_POST_SEARCH_FN 10

SLAPI_PLUGIN_POST_UNBIND_FN 9

pre-operation plug-ins 9

SLAPI_PLUGIN_PRE_ADD_FN 9

SLAPI_PLUGIN_PRE_BIND_FN 9

SLAPI_PLUGIN_PRE_COMPARE_FN 9

SLAPI_PLUGIN_PRE_DELETE_FN 9

SLAPI_PLUGIN_PRE_MODIFY_FN 9

SLAPI_PLUGIN_PRE_MODRDN_FN 9

SLAPI_PLUGIN_PRE_SEARCH_FN 9

SLAPI_PLUGIN_PRE_UNBIND_FN 9

problem determination
describing problem for IBM Software

Support 69

determining business impact for IBM

Software Support 69

submitting problem to IBM Software

Support 69

R
record

audit 12

S
server plug-ins

introduction 1

Software Support
contacting 68

describing problem for IBM Software

Support 69

determining business impact for IBM

Software Support 69

submitting problem to IBM Software

Support 69

76 Server Plug-ins Reference

����

Printed in USA

SC32-1676-00

	Contents
	Preface
	Who should read this book
	Publications
	IBM Tivoli Directory Server library
	Related publications
	Accessing publications online
	Ordering publications

	Accessibility
	Tivoli technical training
	Support information
	Conventions used in this book
	Typeface conventions
	Operating system differences

	Chapter 1. Introduction to server plug-ins
	Chapter 2. Writing a plug-in
	Chapter 3. Database plug-ins
	LDAP protocol-related functions
	Back-end-related functions

	Chapter 4. Operation plug-ins
	Pre-operation plug-ins
	Post-operation plug-ins
	Extended operation plug-ins
	Input parameters
	Output parameters

	Audit plug-ins
	Configuration options
	Examples

	Appendix A. Supported database functions
	Output parameters

	Appendix B. Parameter Reference
	Parameters for Registering Plug-in Functions
	Database Plug-ins
	Pre-Operation/Data Validation Plug-ins
	Post-Operation/Data Notification Plug-ins
	Extended Operation Plug-ins
	Matching Rule Plug-ins

	Parameters Accessible to All Plug-ins
	Information About the Database
	Information About the Connection
	Information About the Operation
	Notes in the Access Log
	Information About the Plug-in
	Types of Plug-ins
	Version Information

	Parameters for the Configuration Function
	Parameters for the Bind Function
	Parameters for the Search Function
	Parameters for the Add Function
	Parameters for the Compare Function
	Parameters for the Delete Function
	Parameters for the Modify Function
	Parameters for the Modify RDN Function
	Parameters for the Abandon Function
	Parameters for Database Import
	Parameters for Database Export
	Parameters for Database Archive
	Parameters for Database Restore
	Parameters for Database Indexing
	Parameters for Extended Operations
	Parameters for Internal LDAP Operations
	Parameters for Matching Rule Plug-ins

	Appendix C. Supported iPlanet APIs
	slapi_pblock_get()
	slapi_pblock_set()
	slapi_pblock_new()
	slapi_pblock_destroy()
	slapi_ch_malloc()
	slapi_ch_calloc()
	slapi_ch_realloc()
	slapi_ch_strdup()
	slapi_compare_internal()
	slapi_ch_free()
	slapi_send_ldap_result()
	slapi_dn_normalize()
	slapi_dn_normalize_case()
	slapi_dn_ignore_case()
	slapi_dn_normalize_v3()
	slapi_dn_normalize_case_v3()
	slapi_dn_ignore_case_v3()
	slapi_dn_compare_v3()
	slapi_dn_issuffix()
	slapi_entry2str()
	slapi_str2entry()
	slapi_entry_attr_find()
	slapi_entry_attr_delete()
	slapi_entry_get_dn()
	slapi_entry_set_dn()
	slapi_entry_alloc()
	slapi_entry_dup()
	slapi_send_ldap_search_entry()
	slapi_entry_free()
	slapi_attr_get_values()
	slapi_str2filter()
	slapi_filter_get_choice()
	slapi_filter_get_ava()
	slapi_filter_free()
	slapi_filter_list_first()
	slapi_filter_list_next()
	slapi_is_connection_ssl()
	slapi_get_client_port()
	slapi_search_internal()
	slapi_modify_internal()
	slapi_add_internal()
	slapi_add_entry_internal()
	slapi_delete_internal()
	slapi_modrdn_internal()
	slapi_free_search_results_internal()
	slapi_get_supported_saslmechanisms()
	slapi_get_supported_extended_ops()
	slapi_register_supported_saslmechanism()
	slapi_get_supported_controls()
	slapi_register_supported_control()
	slapi_control_present()
	slapi_log_error()

	Appendix D. Plug-in examples
	Appendix E. Deprecated plug-in APIs
	Appendix F. Support information
	Searching knowledge bases
	Search the information center on your local system or network
	Search the Internet

	Obtaining fixes
	Contacting IBM Software Support
	Determine the business impact of your problem
	Describe your problem and gather background information
	Submit your problem to IBM Software Support

	Appendix G. Notices
	Trademarks

	Index

