<|lI!

Point of Sale Subsystem

Programming Reference and User’s Guide

T

created on October 2, 2001 SC30-3560-11

<|lI!

Point of Sale Subsystem

Programming Reference and Users Guide

created on October 2, 2001 SC30-3560-11

created on October 2, 2001

Note
Before using this information and the product it supports, be sure to read the

general information under [Appendix K_Notices” on page K-1.

Twelfth Edition (September 2001)

This edition applies to Version 1.6 of the IBM Point of Sale Subsystem for OS/2, Version 2.3.0 of the IBM Point of
Sale Subsystem for Windows, Version 1.0 of the IBM Point of Sale Subsystem for Linux and to all subsequent
releases and modifications until otherwise indicated in new editions. This publication is available on the IBM Retalil
Solutions Electronic Support Web site.

1. Go to www.ibm.com/solutions/retail/store.
2. Select Support and then Publications.

IBM welcomes your comments. A form for readers’ comments is provided at the back of this publication. If the form
has been removed, address your comments to:

Department CJMA

P.O. Box 12195

Research Triangle Park, NC 27709
U.S.A.

Order publications through your IBM representative or the IBM branch office that serves your locality. Publications
are not stocked at the address given below. When you send information to IBM, you grant IBM a nonexclusive right
to use or distribute the information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2001. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

created on October 2, 2001

Contents
Tables. . XiX
Preface . . XXi
Who Should Read th|s Manual . XX
How to Use this Manual . XX
Related Publications - XXiii
IBM Point of Sale Subsystem Related Publlcatlons . . Xxiii
OS/2 Publications . . . XXxiii
C/C++ for OS/2 Library . Xxiii
C related Publications . . Xxiii
WorkFrame/2 Publications . . XXiii
VisualAge® Publications . . XXiv
Non-IBM related Publications . . XXV
Store System Related Publlcatlons—Hardware . XXiv
Scanners . XXiv
Cabling . . . XXiv
4610 SureMark® Pomt of Sale Prlnter . XXiv
4683/4684 Point of Sale Terminals XXiv
4693/4694/4695 Point of Sale Terminals . . XXV
SurePOS 700 Series . XXV
4820 SurePoint® Solution.) . XXV
7497 Point of Sale Attachment Adapter. . XXV
Related Software. G e . XXV
Summary of Changes . XXVii
September 2001 . XXVii
June 2001 . . XXV
September 2000 . XXVii
May 2000 . . XXVii
March 2000 . XXVii
January 2000. . XXVii
Part 1. User’s Guide
Chapter 1. Introduction . . 1-1
Windows and OS/2 Sample Source Code. 1-1
Linux Sample Source Code . 1-2
System Requirements . 1-2
Hardware Environment. 1-2
Software Environment . 1-7
Memory and Disk Space Reqwrements 1-8
Memory and Disk Space Requirements for OS/2 . 1-8
Memory and Disk Space Requirements for Microsoft Wlndows . 1-8
Memory and Disk Space Requirements for Linux . 1-9
Chapter 2. Universal Serial Bus Architecture and IBM Point of Sale
Subsystem for Windows. . 2-1
USB Device Considerations . . 2-1
USB Tree Traversal Order . 2-1
Device Role Assignment . .22
USB Hot Plug Maintenance . . 2-2
USB Alphanumeric Point of Sale Keyboards . 2-2

© Copyright IBM Corp. 1993, 2001

created on October 2, 2001

Point of Sale Subsystem Programming Reference and User’s Guide

Chapter 3. Customizing the IBM Point of Sale Subsystem . 31
Configuring Your Applications e . . 3-1
The Resource File . 3-1
Using the Resource File . . 33
Configuring the Alphanumeric Point of Sale Keyboard . 34
Chapter 4. Performing Problem Determination . . 41
Problem Determination on OS/2 . 4-1
Viewing Point of Sale Error Messages on OS/2 . 4-1
Viewing Point of Sale Trace Events on OS/2. . . 4-1
Problem Determination on the Microsoft Windows Operating System. . 4-2
Viewing Events on Microsoft Windows . e . 4-2
Using Built-in Tracing on Microsoft Windows . . 4-2
Problem Determination on the Linux Operating System . . 42
Viewing Events on Linux . Coe e . 4-3
Using Tracing on Linux . 4-3
Part 2. Programming Guide
Chapter 5. General Point of Sale Device Programming. . 5-1
Your Application and the IBM Point of Sale Subsystem . . 5-1
Initializing Your Application G . 51
Getting Input Messages . . 52
Determining which Devices are Ava|IabIe . . 5-3
Opening Your Device . 54
Controlling Your Device . 5-5
Acquiring and Releasing Your Dewces . 5-6
Defining User-Defined Characters. . 5-8
Reading from Your Device . .59
Writing to Your Device . 5-10
Closing Your Device Connectlons . 5-10
Terminating Your Application . 5-1
Using Resources in Your Application . . 5-12
Argument Lists . . . 5-12
Retrieving and Modifying Resources . . 5-13
Building your Application . 5-14
C Language Header Files . . . 5-14
IBM Point of Sale Subsystem lerarles . 5-15
Optimizing Application Performance . 5-16
Application Priority (OS/2 Only) . . 5-16
Presentation Manager Considerations (OS/2 Only) . b-16
Microsoft Windows Considerations . . 5-17
Polling Considerations . 5-17
Multi-threaded Application DeS|gn . 5-18
Improving the Maintainability of Your Appllcat|on . 5-19
Chapter 6. Alarm Programming . . 6-1
Characteristics of the Alarm . . . 6-1
Functions Your Application Performs. . 6-1
Sounding an Alarm . . 6-1
Silencing an Alarm . . 6-1
Getting Alarm Status . 6-2
Related Information . . 6-2
Subroutines Used with Alarm . . 6-2
Alarm PoslOCtl() Control Requests . . 6-2
Alarm Resources . .o . 6-2

created on October 2, 2001

Alarm Error Codes .

Chapter 7. Cash Drawer Programming .
Characteristics of the Cash Drawer .
Functions Your Application Performs.

Opening a Cash Drawer Till .
Getting Cash Drawer Status.
Setting Cash Drawer Pulse Width.

Related Information .

Subroutines Used with Cash Drawer
Cash Drawer PoslOCtl() Control Requests
Cash Drawer Event Messages . .
Cash Drawer Resources .

Cash Drawer Error Codes

Chapter 8. Display Programming .
Characteristics of the Displays .

Alphanumeric Display .

Operator Display .

Shopper Display . . .
Character and Graphics Drsplay .
40-Character Liquid Crystal Display .

40-Character Vacuum Fluorescent Display Il and 2x20 Character VFD

Customer Display .
Two-Sided Vacuum FIuorescent Drsplay II

Functions Your Application Performs.

Code Page Support .

Writing Characters to the Drsplay
Writing Bitmaps to the Display .
Setting the Guidance Lights .
Clearing the Display Screen.
User-Defined Characters .

Related Information .

Subroutines Used with Drsplays
Display PoslOCtl() Control Requests
Display Resources . .
Display Error Codes.

Chapter 9. Keyboard Programming
Characteristics of the Keyboards .

Keyboard Microcode Updates .

50-Key Modifiable Layout Keyboard and 50 Key Modlflable Layout Keyboard

and Operator Display
Retail Point of Sale Keyboards.
Modifiable Layout Keyboard with Card Reader
ANPOS Keyboard
Retail Alphanumeric Point of Sale Keyboard wrth Card Reader
PC Point of Sale Keyboard (ANKPOS Keyboard)
Point of Sale Keyboard V. . .
PLU Keyboard and Display-Ill
4685 Point of Sale Keyboard Model KO01.
IBM 4820 SurePoint Solution Keypad .
Defining Keys.
Restriction of the Keyboard Devrce Handler

Functions Your Application Performs .

Reading Keyboard Data .

. 6-2

.71
.71
.71
.71
.72
. 7-2
. 7-2
. 7-2
. 7-2
. 7-3
. 7-3
. 7-3

. 8-1
. 8-1
. 8-1
. 8-2
. 8-2
. 8-2
. 8-3

. 8-3
. 8-3
. 8-3
. 84
. 84
. 85
. 8-6
. 8-6
. 8-6
. 87
. 8-8
. 8-8
. 8-8
. 8-8

. 941
. 941
. 9-2

. 9-3
. 9-3
. 94
. 9-5
. 9-6
. 97
. 9-8
. .99
. 9-10
. 9-10
. 9-11
. 9-12
. 9-12
. 9-12

Contents V

Vi

created on October 2, 2001

Using the Manager Keyboard Lock.

Using the Keyboard Tone .

Using the Keyboard Point of Sale nghts

Controlling the Keyboard Click

Controlling the Num Lock Key

Controlling the Scroll Lock key .

Controlling the Point of Sale-Unique Keys .

Controlling the System Hot Keys .

Controlling the Keyboard Typematic Funct|on .

Specifying the Numeric Keypad Style .

Specifying the Numeric Keypad Location
Related Information Co

Subroutines Used with Keyboard Co

Keyboard PoslOCtl() Control Requests .

Keyboard Event Messages. .

Keyboard Resources .

Keyboard Error Codes

Chapter 10. Magnetic Stripe Reader Programming .
Characteristics of the MSR. G
One-Track Magnetic Stripe Reader.
Dual-Track Magnetic Stripe Reader
Three-Track Magnetic Stripe Reader .
Two-Head/Two-Sided Magnetic Stripe Reader
Restriction of the MSR Device Handler .
Functions Your Application Performs .
Unlocking the MSR
Reading MSR Data
Locking the MSR
Related Information .
Subroutines Used with MSR Co
MSR PoslOCtl() Control Requests .
MSR Event Messages
MSR Error Codes .

Chapter 11. Non-Volatile Random Access Memory Programming
Characteristics of the NVRAM Device . e e
Functions Your Application Performs

Available NVRAM Application Address Space

The Cursor Position .

Opening NVRAM in Direct Mode or Sequentlal Mode .

Reading Data in Direct Mode or Sequential Mode

Writing Data in Direct Mode or Sequential Mode .
Related Information . . . Ce e

Subroutines Used with NVRAM .o

NVRAM PoslOCtl() Control Requests

NVRAM Resources .

NVRAM Error Codes .

Chapter 12. Printer Programming
Characteristics of the Printers.
IBM Model 2 Printer
IBM Model 3 and IBM Model 4 Prlnters .
IBM Model 3R and Model 4R Printers.
IBM Model 3F Fiscal Printer .
IBM Model 4A Printer.

Point of Sale Subsystem Programming Reference and User’s Guide

. 9-13
. 9-13
. 9-13
. 9-14
. 9-14
. 9-14
. 9-14
. 9-15
. 9-15
. 9-15
. 9-15
. 9-15
. 9-15
. 9-15
. 9-16
. 9-16
. 9-16

. 10-1
. 10-1
. 10-1
. 10-2
. 10-2
. 10-3
. 10-3
. 10-3
. 10-3
. 10-4
. 10-5
. 10-5
. 10-6
. 10-6
. 10-6
. 10-6

. 11-1
. 11-1
112
112
.12
. 11-3
.13
.13
. 11-4
. 11-4
. 11-4
. 11-4
. 11-4

. 1241
. 1241
. 12-1
. 12-2
. 12-4
. 12-4
. 12-5

created on October 2, 2001

IBM 4689-001 and IBM 4689-002 Printer 12-6
IBM 4689 Point of Sale Printer Model 301, 3G1, 3M1 and TD5 e o127
IBM 4610 SureMark Point of Sale Printer 12-8
Functions Your Application Perfforms..12-11
Code Page Support 12-11
Reading Data from the Printer1212
Writing Data to the Printer1214
Writing Data in Normal Mode 1214
Writing Data in Logo Mode 12-18
Writing Data in Download Message Mode (4610 SureMark Prlnters Only) 12-19
Writing Data in Download Logo Mode . . . Coe o 1220
Writing Data in Fiscal Mode (Flscal Printer OnIy) Coe 1220
Control Characters e e e e s 1221
Escape Character Sequences S e e e e s 1222
Printer Input/Output Control Requests (IOCtI)1238
Printer Resources .1235
Printer Event Messages12-35
Determining the Printer Status12-35
Printer Queuves. .1235
Document Insert Station12-36
Receipt Paper Cutter .1242
Printing Checks .1243
MICRReader .12438
Fiscal Printing . . . e e e s s 12444
User-Defined Characters S P o)
IBM 4689-00x in 25 CPL Mode e e
IBM 4689-00x in 30 CPLMode.1245
IBM 4689-301, 3G1,3M1,andTD512-46
Performance Considerations.12:47
Related Information . . . s e o ..o 1248
Subroutines Used with the Prrnter s e oo oo 12-48
Printer PoslOCtl Control Requests 1248
Printer Event Messages12-48
Printer Resources .1248
Printer ErrorCodes .1249
Chapter 13. Programmable Power Programming. 13-1
Characteristics of the Programmable Power Device. 13-1
Functions Your Application Performs . . . Lo 1841
Turning Power Off to a 4693-3x1, 4693- 4x1 4693 5x1 or 4693 7x1 ... 132
Turning Power On and Off to the 4693-2x2. 182
Querying the Time that Power Is to Be TurnedOn 133
Related Information 133
Subroutines Used with Programmable Power Subsystem183
Programmable Power Subsystem PoslOCtl() Control Requests 13-3
Programmable Power Resources 134
Programmable Power Device Error Codes 134
Chapter 14. RS-232C Programming. 1441
Characteristics of the RS-232CPort14-2
Functions Your Application Performs 142
Controlling the RS-232C Port.142
Reading RS-232CData.143
Writing RS-232CData .144
Getting RS-232C Port Status144
Related Information .144

Contents Vi

viii

Subroutines Used with RS-232C. . .
RS-232C PoslOCtl() Control Requests
RS-232C Resources . .
RS-232C Event Messages .

RS-232C Error Codes

Chapter 15. Scale Programming .
Characteristics of the Scale Devices .
IBM 4687 Point of Sale Sale Scanner Model 2

IBM 4696 Point of Sale Scanner Scale Model 1 .

IBM 4698 Point of Sale Scanner Model 2
IBM USB Scale Interface .
Functions Your Application Performs .
Reading Scale Data .
Configuring the Scale.
Zeroing the Scale . .
Clearing the Scale Display .
Scale Default Values . . .
IBM 4687 Point of Sale Scanner Model 2

created on October 2, 2001

. 14-4
. 14-5
. 14-5
. 14-5
. 14-5

. 15-1
. 15-1
. 15-1
. 15-1
. 15-2
. 15-2
. 15-2
. 15-2
. 15-4
. 15-4
. 154
. 15-4
. 15-5

IBM 4696 Point of Sale Scanner Scale Model 1 and IBM 4698 Pomt of

Sale Scanner Model 2
IBM USB Scale Interface
Related Information
Subroutines Used with Scale
Scale PoslOCtl() Control Requests
Scale Resources .
Scale Error Codes .

Chapter 16. Scanner Programming .
Characteristics of the Scanners .
Hand-Held Bar Code Readers
IBM 1520 Hand-Held Scanner Model A02 .
IBM 4686 Retail Point of Sale Scanner .
IBM 4687 Point of Sale Scanner.
IBM 4696 Point of Sale Scanner Scale
IBM 4697 Point of Sale Scanner.
IBM 4698 Point of Sale Scanner.
IBM USB Scanner Interface
Functions Your Application Performs .
Unlocking and Locking the Scanner
Reading Scanner Data .
Discarding Scanner Data
Configuring the Scanner.
Writing Data to the Scanner
Processing Unexpected Scanner Data
Scanner Default Values
Hand-Held Bar Code Reader (AII Models).
IBM 1520 Hand-Held Scanner Model A02.

IBM 4686 Retail Point of Sale Scanner (All Models) .

IBM 4687 Point of Sale Scanner (All Models)

IBM 4696 Point of Sale Scanner Scale Model 1.

IBM 4697 Point of Sale Scanner Model 1 . .

IBM 4698 Point of Sale Scanner (All Models)

IBM USB Scanner Interface . ..
Related Information .

Subroutines Used with Scanner

Point of Sale Subsystem Programming Reference and User’s Guide

. 15-5
. 15-5
. 15-5
. 15-5
. 15-6
. 15-6
. 15-6

. 16-1
. 16-1
. 16-1
. 16-2
. 16-2
. 16-2
. 16-2
. 16-3
. 16-3
. 16-3
. 16-4
. 16-4
. 16-4
. 16-8
. 16-8
. 16-8
. 16-9
. . 16-9
. 16-10
. 16-10
. 16-10
. 16-11
. 16-11
. 16-11
. 16-12
. 16-12
. 16-13
. 16-13

created on October 2, 2001

Scanner PoslOCtl() Control Requests 16-13
Scanner Event Messages.16-13
ScannerResources16-14
Scanner ErrorCodes .16-14
Chapter 17. Touch Screen Programming. 171
Characteristics of the Touch Screen1741
Video Display. 1741
Touch lnput 0000174
Tone Output . . . e V%
Touch Mouse Emulatlon S e %
Restriction of the Touch Screen Dewce Handler e VX
Functions Your Application Perfforms 178
Reading Touch Event Data.173
Using the Tone . . . e £
Controlling Audible Feedback Co e e
Determining which Touch Screen is Avallable B)
Controlling the LCD Brightness174
Controlling the LCD Contrast174
Controlling the Screen Saver Time T V55
Controlling the Backlight On Event Messages T V55
Related Information . . . T VS
Subroutines Used with the Touch Screen e V)
Touch PoslOCtl Control Requests175
Touch EventMessages .175
Touch Resources .175
Touch ErrorCodes. .176
Chapter 18. Application Programming Interface 18-1
PosClose().183
Poslnitialize(). .185
PoslOCtI().188
PosOpen() L oL 18 10
PosRead() .18-16
PosWrite() .. .1819

Part 3. Programming Reference

Chapter 19. PoslOCtl() Requests. 191
POS_ALARM_SILENCE_ALARM1938
POS_ALARM_SOUND_ALARM.194
POS_DSP_CLEAR_SCREEN.195
POS_DSP_DEFINE_CHARACTERS196
POS_KBD_DISABLE_HOT_KEYS.197
POS_KBD_DISABLE_NUM_LOCK.198
POS_KBD_DISABLE_SCROLL_LOCK 199
POS_KBD_ENABLE_HOT KEYS.1910
POS_KBD_ENABLE_NUM_LOCK19-11
POS_KBD_ENABLE_SCROLL_LOCK1912
POS_KBD_SET_NUM_LOCK_OFF19-183
POS_KBD_SET_NUM_LOCK.ON19-14
POS_KBD_SET_SCROLL_LOCK OFF19-15
POS_KBD_SET_SCROLL_LOCK ON19-16
POS_KBD_SET_TYPEMATIC_OFF1917
POS_KBD_SET_TYPEMATIC_.ON19-18
POS_KBD_SILENCE_TONE1919

Contents iX

created on October 2, 2001

POS_KBD_SOUND_TONE1920
POS_POWER_OFF.1921
POS_ POWER.ON .. .1922
POS_POWER_SET_ALARM1928
POS_PRN_DEFINE_CHARACTERS19-24
POS_PRN_DISABLE_DI_PRINTING1925
POS_PRN_DISABLE_FISCAL_PRINTING19-26
POS_PRN_DISCARD_DATA1927
POS_PRN_ENABLE_DI_PRINTING.19-28
POS_PRN_ENABLE_FISCAL_PRINTING.19-29
POS_PRN_RESET_PRINTER.1930
POS_PRN_HOLD_PRINTING1931
POS_PRN_RELEASE_PRINTING1932
POS_PRN_RESUME_PRINTING.19833
POS_PRN_RETRY_PRINTING19-34
POS_PRN_SILENCE_TONE1935
POS_PRN_SOUND_TONE1936
POS_RS232_SEND_BREAK1937
POS_SCALE_CLEAR_SCREEN1938
POS_SCALE_ZERO_SCALE1939
POS_SCAN_DISCARD_DATA1940
POS_SYS_ACQUIRE_DEVICE194
POS_SYS GET_VALUES1942
POS_SYS LOCK DEVICE1943
POS_SYS RELEASE_DEVICE1944
POS_SYS_SET_VALUES.1945
POS_SYS_UNLOCK _DEVICE.1947
POS_TILL OPEN_TILL .1948
POS_TOUCH_SILENCE_TONE1949
POS_TOUCH_SOUND_TONE.1950
Chapter 20. Event Messages201
POSM_KBD_STATUS_CHANGE203
POSM_KBD WM_CHAR .204
POSM_MSR_DATA_AVAIL.206
POSM_PRN_CHASE_COMPLETE.207
POSM_PRN_DATA_AVAIL.208
POSM_PRN_FISCAL_ERROR209
POSM_PRN_FISCAL_STATUSZ2010
POSM_PRN_PRINTER_ERROR20-11
POSM_PRN_STATUS CHANGE20-13
POSM_RS232_BREAK_DETECTED2015
POSM_RS232_DATA_AVAIL2016
POSM_RS232_XMIT_ABORT2017
POSM_RS232_XMIT_COMPLETEZ20-18
POSM_SCAN_DATA_AVAIL.2019
POSM_SYS_DEVICE_OFFLINE2020
POSM_SYS_DEVICE_ONLINE2022
POSM_SYS_DEVICE_RELEASED20-24
POSM_TILL_CLOSED. .20%25
POSM_TILL_OPENED. .2026
POSM_TOUCH_DATA. .2027
WM. CHAR20%28
Chapter 21. Resource Sets21
Resource AccessCodes .215

X Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

PosSystem Resource Set .215
PosNqueueHandle. .216
PosNreadTimeout .21-6
PosNvitalProductData .217

PosDevice Resource Set217
PosNdeviceNumber .218
PosNportNumber. .21-14
PosNqueueHandle .2114
PosNslotNumber .2115

PosAlarm Resource Set .21-16
PosNalarmStatus. .21-16

PosDisplay Resource Set.21-16
PosNcharSize .. 02117
PosNdisplayCodePage.2117
PosNdisplayCursor .2119
PosNdisplayMode .2119
PosNdisplayLightsOn .2120
PosNpixelX 02121
PosNpixelY 21-21

PosDrawer Resource Set.2121
PosNpulseWidth .. .21-21
PosNtillStatus . . . e e e e e s s 2122

PosKeyboard Resource Set .o e e e e s 2122
PosNdoubleKey01 - PosNdoubIeKeyBO 2 2
PosNfatFingerTimeOQut.21-24
PosNkeyboardClick .2125
PosNkeyLock . . . 2 2L
PosteyboardUghtsOn C e e e . 2126
PosNnumpadLocation .21-26
PosNnumpadStyle2127
PosNnumpadZero .21-27
PosNtoneDuration .21-28
PosNtoneFreq .21-28
PosNtoneVolume .21-28
PosNtypematicDelay .21-29
PosNtypematicFreq .21-29

PosMsr Resource Set .2130

PosNvram Resource Set .2130
PosNnvramCursor .2130
PosNnvramMode .21-31
PosNnvramSize 0213

PosPower Resource Set .2131
PosNpowerAlarm. .21-3

PosPrinter Resource Set .2132
PosNcodePage .2133
PosNCRWidth .2135
PosNdiOrientaton .2135
PosNDIWidth .. .2135
PosNfeedDirection .21-36
PosNfiscalCountry .2187
PosNfiscalNotify .. .21837
PosNfiscalPLDStatus .21-87
PosNfiscalVersion .21-38
PosNheadParkedPosition.21-38
PosNinterleaved .2139
PosNleftMarginCR .2139

Contents Xi

Xii

PosNlineFeedCR .
PosNlineFeedDI .
PosNlineFeedSJ .
PosNprintAlignment .
PosNprintColorMode .
PosNprintCRCharSetx .
PosNprintDICharSetx
PosNprintFeatures
PosNprintMode
PosNprintQualityMode .
PosNprintStation .
PosNprintStatus .
PosNprintStatus?2 .
PosNprintTabStops .
PosNprintToneDuration.
PosNprintToneFrequency .
PosNprintToneNote .
PosNprintToneOctave .
PosNprintToneVolume .
PosNprintUpsideDown .
PosNrawPrintStatus .
PosNresumeString
PosNretryString

PosRs232c Resource Set.

PosNbaudRate.
PosNdataBits .
PosNlineMode .
PosNparity . . .
PosNrs232Status .
PosNstopBits
PosNtimeoutChar.

PosScale Resource Set

PosNdisplayRequired
PosNnumWeightDigits .
PosNoperMode
PosNvibrationFilter .
PosNweightMode .
PosNzerolndState
PosNzeroRetState

PosScanner Resource Set

Scanner Model Identifiers.
PosNbarCodes1 .
PosNbarCodes2 .
PosNbarCodes3 .
PosNbarCodes4 .

PosNbarCodeProgramming .

PosNbeepFreq.
PosNbeepLength .
PosNbeepState
PosNbeepVolume.
PosNblinkLength . . .
PosNblockReadMode .
PosNblock1Type .
PosNblock2Type .
PosNblock3Type . .
PosNbVolSwitchState .

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

. 21-40
. 21-40
. 21-41
. 21-42
. 21-42
. 21-42
. 21-43
. 21-43
. 21-44
. 21-44
. 21-45
. 21-46
. 21-47
. 21-47
. 21-48
. 21-48
. 21-48
. 21-49
. 21-49
. 21-50
. 21-50
. 21-50
. 21-52
. 21-53
. 21-53
. 21-54
. 21-54
. 21-55
. 21-55
. 21-55
. 21-56
. 21-56
. 21-57
. 21-57
. 21-58
. 21-58
. 21-59
. 21-59
. 21-60
. 21-60
. 21-62
. 21-62
. 21-64
. 21-65
. 21-66
. 21-67
. 21-67
. 21-67
. 21-68
. 21-68
. 21-69
. 21-69
. 21-70
. 21-71
. 21-71
. 21-72

created on October 2, 2001

PosNcheckModulo . 21-72
Pochode12880ansPerRead . 21-73
PosNcode39ScansPerRead . . 21-73
PosNdecodeAlgorithm . . 21-78
PosNdReadTimeout . . 21-74
PosNdTouchMode 21-74
PosNeAN13ScansPerRead . 21-75
PosNeAN8ScansPerRead . 21-75
PosNiTFLength1 . . 21-76
PosNiTFLength2 . . . 21-77
PosNiTFLengthType. . 21-77
PosNiTFScansPerRead . 21-78
PosNjANTwoLabelDecode . 21-78
PosNlabelsQueued . . 21-78
PosNlaserSwitchState . . 21-79
PosNlaserTimeout . 21-79
PosNmotorTimeout . . 21-80
PosNqueueAllLabels . 21-80
PosNscansPerRead . . 21-81
PosNstoreScansPerRead . . 21-81
PosNsupplementals . . 21-82
PosNtransmitCheckDigit . . 21-82
PosNtwolLabelFlagPair1 . 21-83
PosNtwoLabelFlagPair2 . 21-84
PosNtwoLabelFlagPair3 . 21-85
PosNtwoLabelFlagPair4 . 21-86
PosNuPCAScansPerRead . 21-87
PosNuPCDScansPerRead . 21-87
PosNuPCEScansPerRead . 21-88
PosNuPCExpansion. . 21-88
PosNuverifyPriceChk . . 21-89
PosTouch Resource Set 21-89
PosNtouchBackLightOnEvent . 21-90
PosNtouchBrightness . . 21-90
PosNtouchClickVolume. . 21-91
PosNtouchContrast . . 21-91
PosNtouchEntryClick . 21-91
PosNtouchExitClick . . 21-92
PosNtouchMaxX . . 21-92
PosNtouchMaxY . . 21-92
PosNtouchMode . . 21-92
PosNtouchScreenSaverT|me . 21-93
PosNtouchToneDuration . 21-93
PosNtouchToneFreq. . 21-98
PosNtouchToneVolume. . 21-94
Part 4. Appendixes
Appendix A. Data Types and Macros . A-1
Data Types . Coe e . A-1
Macros . A1
Appendix B. Trace Codes . . B-1
Appendix C. Error Messages. . C-1

Contents

xiii

created on October 2, 2001

AppendixD.ErrorCodes .D-1
Error Messages, NumericOrderD4
301 POSERR_SYS_OS ERROR.D4
302 POSERR_SYS_NOT_INITIALIZEDD4
303 POSERR_SYS_INVALID_DESCRIPTORD4
304 POSERR_SYS_ALREADY_INITIALIZED D4
305 POSERR_SYS_MEMORY_ALLOCATION.D4
306 POSERR_SYS_ HW_ERRORD-5
307 POSERR_SYS_INVALID DEVICED-5
308 POSERR_SYS_INVALID QUEUE.D-5
309 POSERR_SYS_TOO_MANY_DEVICESD-5
311 POSERR_SYS_FUNCTION_NOT_SUPPORTEDD-5
312 POSERR_SYS_BUFFER_TOO_SMALLD-5
313 POSERR_SYS_ACQUIRED_BY_OTHER. D-5
314 POSERR_SYS_ALREADY_ACQUIREDD-5
315 POSERR_SYS_NOT_ACQUIRED.D-6
316 POSERR_SYS_INVALID_ REQUEST.D-6
317 POSERR_SYS_DEVICE_OFFLINED-6
318 POSERR_SYS_INVALID_LENGTHDbs6
319 POSERR_SYS_INVALID_CLASS_DEVICE COMBO.D-s
320 POSERR_SYS_DATA_DISCARDED.D-6
321 POSERR_SYS_INTERNAL_ERROR.D7
325 POSERR_SYS_INVALID_NARGS.D7
326 POSERR_SYS_INVALID_SLOTD7
327 POSERR_SYS_UNSUPPORTED ADAPTERD7
328 POSERR_SYS_INVALID. PORTD7
329 POSERR_SYS_TIMEOUTD7
330 POSERR_SYS_INVALID NAMED7
331 POSERR_SYS_INVALID CLASS.D7
332 POSERR_SYS_INTERRUPTEDD7
334 POSERR_SYS_INVALID_ADDRESS.D-8
335 POSERR_SYS_LOCKED_NO_DATA_READ.D-8
336 POSERR_SYS_INVALID_FILED-s8
337 POSERR_SYS_SERVICE_NOT_. AVAILABLED-s8
4101 POSERR_NVRAM_NOT_ENOUGH_ROOMD-8
4102 POSERR_NVRAM_INVALID_CURSORD-8
4103 POSERR_NVRAM_EOF.D&8
4104 POSERR_NVRAM_INVALID_ MODE GDb9
4105 POSERR_NVRAM_INVALID_LENGTH_ RECORDDb9
4106 POSERR_NVRAM_INVALID_DATA_.CRCD-9
4401 POSERR_DSP_INVALID_ CURSORD9
4402 POSERR_DSP_INVALID_MODE.D9
4403 POSERR_DSP_INVALID_SIZEDb9
4404 POSERR_DSP_UNSUPPORTED_ BITMAPDb9
4405 POSERR_DSP_BAD_BITMAPD9
4406 POSERR_DSP_INVALID_CODE_PAGED-10
4701 POSERR_KBD_INVALID_FREQUENCY D-10
4702 POSERR_KBD_INVALID_DURATIOND-10
4703 POSERR_KBD_INVALID_VOLUMED-10
4705 POSERR_KBD_INVALID_DOUBLE KEY D-10
4706 POSERR_KBD_INVALID_FAT_FINGER_TIMEOUT D-10
4708 POSERR_KBD_INVALID_KEYBOARD_CLICK D-10
4709 POSERR_KBD_INVALID_NUMPAD_STYLE D-10
4710 POSERR_KBD_INVALID_NUMPAD_ZERO D-10
4711 POSERR_KBD_INVALID_TYPEMATIC_DELAY D-M1
4712 POSERR_KBD_INVALID_TYPEMATIC_FREQ D-M11

Xiv Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

4713 POSERR_KBD_INVALID_NUMPAD_LOCATION
4901 POSERR_PRN_INVALID_DI_WIDTH. . . .
4902 POSERR_PRN_INVALID_INTERLEAVED VALUE

4903 POSERR_PRN_INVALID_HEAD_PARKED_POSITION

4904 POSERR_PRN_INVALID_STATION .

4905 POSERR_PRN_INVALID_MODE

4906 POSERR_PRN_INVALID_CR_LF_ DISTANCE
4907 POSERR_PRN_INVALID_SJ_LF_DISTANCE.
4908 POSERR_PRN_INVALID_DI_LF_DISTANCE.
4909 POSERR_PRN_INVALID_FEED_DIRECTION
4910 POSERR_PRN_INVALID_FISCAL_NOTIFY .
4911 POSERR_PRN_INVALID_DI_ORIENTATION . .
4912 POSERR_PRN_INVALID_LEFT_MARGIN_CR .
4913 POSERR_PRN_INVALID_PRINT_ALIGNMENT .
4914 POSERR_PRN_INCORRECT_DATA_FORMAT .
4915 POSERR_PRN_LOGO_EXISTS

4916 POSERR_PRN_UDC_CHARACTER_ EXISTS
4918 POSERR_PRN_INVALID_QUALITY_MODE . . .
4919 POSERR_PRN_INVALID_UPSIDE_DOWN_MODE
4920 POSERR_PRN_INVALID_TABSTOPS_FORMAT
4921 POSERR_PRN_INVALID_COLOR_MODE.

4922 POSERR_PRN_INVALID_TONE_VOLUME .
4923 POSERR_PRN_INVALID_TONE_DURATION
4924 POSERR_PRN_INVALID_TONE_NOTE .

4925 POSERR_PRN_INVALID_TONE_OCTAVE . .
4926 POSERR_PRN_INVALID_TONE_FREQUENCY.
4927 POSERR_PRN_INVALID_CODE_PAGE .

5401 POSERR_CDR_INVALID_PULSE_WIDTH. .
5702 POSERR_SCAN_INVALID_BAR_CODES_1 .
5703 POSERR_SCAN_INVALID_BAR_CODES_2 .
5704 POSERR_SCAN_INVALID_BEEP_FREQ . .
5705 POSERR_SCAN_INVALID_BEEP_LENGTH .
5706 POSERR_SCAN_INVALID_BEEP_STATE . .
5707 POSERR_SCAN_INVALID_BEEP_VOLUME .
5708 POSERR_SCAN_INVALID_BLINK_LENGTH .
5709 POSERR_SCAN_INVALID_BLOCK_READ_ MODE
5710 POSERR_SCAN_INVALID_BLOCK_1_TYPE.
5711 POSERR_SCAN_INVALID_BLOCK_2_TYPE.
5712 POSERR_SCAN_INVALID_BLOCK_3_TYPE. .
5713 POSERR_SCAN_INVALID_CHECK_MODULO .
5714 POSERR_SCAN_INVALID_D_READ_TIMEOUT
5715 POSERR_SCAN_INVALID_D_TOUCH_MODE .
5716 POSERR_SCAN_INVALID_ITF_LENGTH_1 .
5717 POSERR_SCAN_INVALID_ITF_LENGTH_2 . .
5718 POSERR_SCAN_INVALID_LASER_TIMEOUT .
5719 POSERR_SCAN_INVALID_MOTOR_TIMEQOUT . . .
5720 POSERR_SCAN_INVALID_LASER_SWITCH_STATE
5721 POSERR_SCAN_INVALID_SCANS_PER_READ .
5722 POSERR_SCAN_LABEL_TOO_SHORT . . .
5725 POSERR_SCAN_INVALID_BVOL_SWITCH STATE
5726 POSERR_SCAN_INVALID_DECODE_ALGORITHM .

5727 POSERR_SCAN_INVALID_EAN13_SCANS_PER_ READ

5728 POSERR_SCAN_INVALID_EAN8_SCANS_PER_READ.

5729 POSERR_SCAN_INVALID_STORE_SCANS_PER_READ

5730 POSERR_SCAN_INVALID_UPCA_SCANS_PER_READ
5731 POSERR_SCAN_INVALID_UPCD_SCANS_PER_READ

. D-11
. D-11
. D-11
. D-11
. D-11
. D-12
. D-12
. b-12
. D-12
. D-12
. D-12
. D-12
. D12
. D-12
. D-12
. D-13
. D-13
. D-13
. D-13
. D-13
. D-13
. D-13
. D-14
. D-14
. D-14
. D-14
. D-14
. D-14
. D-14
. D-14
. D-14
. D-15
. D-15
. D-15
. D-15
. D-15
. D-15
. D-15
. D-15
. D-15
. D-15
. D-16
. D-16
. D-16
. D-16
. D-16
. D-16
. D-16
. D-16
. D-16
. D-17
. D-17
. D17
. D17
. D-17
. D-17

XV

created on October 2, 2001

5732 POSERR_SCAN_INVALID_UPCE_SCANS_PER_READ D-17
5733 POSERR_SCAN_INVALID_UPC_EXPANSION D-17
5734 POSERR_SCAN_INVALID_VERIFY_PRICE_CHK. D-17
5735 POSERR_SCAN_INVALID_QUEUE_ALL_INDICATOR D-17
5736 POSERR_SCAN_CONFIGURATION_ERROR D-18
5737 POSERR_SCAN_2_LABEL_FLAG_CONFIG_ERROR D-18
5738 POSERR_SCAN_INVALID_2_LABEL_DECODE_STATE D-18
5739 POSERR_SCAN_INVALID_FLAG_PAIR_COMBINATION D-18
5740 POSERR_SCAN_INVALID_2_LABEL_FLAG_PAIR_1. D-18
5741 POSERR_SCAN_INVALID_2_LABEL_FLAG_PAIR_ 2. D-18
5742 POSERR_SCAN_INVALID_2_LABEL_FLAG_PAIR_3. D-18
5743 POSERR_SCAN_INVALID_2_LABEL_FLAG_PAIR_ 4. D-18
5744 POSERR_SCAN_INVALID_CODE39_SCANS_PER_READ D-19
5745 POSERR_SCAN_INVALID_INT20F5_SCANS_PER_READ D-19
5746 POSERR_SCAN_INVALID_CODE128_SCANS_PER_READ D-19
5747 POSERR_SCAN_INVALID_ BAR_ CODES 3.D-19
5748 POSERR_SCAN_INVALID_BAR_ CODES 4.D-19
5750 POSERR_SCAN_INVALID_ITF_LENGTH_TYPE D-19
5751 POSERR_SCAN_INVALID_SUPPLEMENTALS D-19
5752 POSERR_SCAN_INVALID_BARCODE_PROG_STATE D-19
5753 POSERR_SCAN_INVALID_XMIT_CHECK_DIGIT D-19
5901 POSERR_RS232_INVALID_BAUD_RATE. D-19
5902 POSERR_RS232_INVALID_STOP_BITSD-20
5903 POSERR_RS232_INVALID_PARITYD-20
5904 POSERR_RS232_INVALID_DATA BITSD-20
5905 POSERR_RS232_INVALID_TIMEOUT_CHAR D-20
5907 POSERR_RS232_PREV_NOT_COMPLETE. D-20
6201 POSERR_SCALE_INVALID_OPERATIONS_MODE D-20
6202 POSERR_SCALE_INVALID_REMOTE_DISPLAY_STATE D-20
6203 POSERR_SCALE_INVALID_VIBRATION_FILTER D-20
6204 POSERR_SCALE_INVALID_WEIGHT_MODED-20
6205 POSERR_SCALE_INVALID_ZERO_INDICATOR_ STATEDb-20
6206 POSERR_SCALE_INVALID_ZERO_RETURN_STATE D-21
6207 POSERR_SCALE_ZERO_SCALE_FAILED D21
6208 POSERR_SCALE_INVALID_CLEAR_SCREEN REQUESTD-21
6209 POSERR_SCALE_CONFIGURATION_ERROR. D-21
6211 POSERR_SCALE_INVALID_NUM_WEIGHT_DIGITS. D-21
6401 POSERR_POWER_INVALID DAYD21
6402 POSERR_POWER_INVALID_ HOUR. D21
6403 POSERR_POWER_INVALID_MINUTES D-21
6701 POSERR_TOUCH_INVALID_BACKLIGHT_ON D-21
6702 POSERR_TOUCH_INVALID_CLICK_VOLUME D-22
6703 POSERR_TOUCH_INVALID_CONTRAST. D-22
6704 POSERR_TOUCH_INVALID_ENTRY_CLICK. D-22
6705 POSERR_TOUCH_INVALID_EXIT_CLICK. D-22
6706 POSERR_TOUCH_INVALID_MODED-22
6707 POSERR_TOUCH_INVALID_SCREEN_SAVER TIMED22
6708 POSERR_TOUCH_INVALID_TONE_DURATION D-22
6709 POSERR_TOUCH_INVALID_TONE_FREQUENCY D-22
6710 POSERR_TOUCH_INVALID_TONE_VOLUME D-22
6711 POSERR_TOUCH_INVALID_BRIGHTNESS D-283
Appendix E. IBM Model 4A Font Download E-1
Manually Downloading CharactersE-1
Font File Format. .E2
KeywordsE2

XVi Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Character Definition Record.

Appendix F. Downloading fonts.

USB Character/Graphics Display .
Downloading Fonts to the Display

IBM 4689 SurePOS Receipt Journal Printer .
Converting Printer Font Files
Downloading Fonts to the Printer .

4610 SureMark Point of Sale Printer Model TI5 TM7 and TF7.

Converting Printer Font Files

Downloading Fonts to the Printer . .
Other 4610 SureMark Point of Sale Printer Models .

Converting Printer Font Files

Downloading Fonts to the Printer .

Appendix G. IBM 4610 Printer Firmware Update .
Manually Updating Firmware e

Appendix H. Firmware Update Utility for USB Devices.

Appendix I. Using the IBM SureBase UPS Utility

Appendix J. 4820 SurePoint Solution Touch Screen Calibration .

USB Calibration . . .

RS-485 Touch Screen CaI|brat|on Ut|||ty
Properties and methods of the tool

Using the Touch Screen Calibration Utility .

Appendix K. Notices .
Trademarks.

Glossary

Index .

Contents

Xvii

created on October 2, 2001

XViii Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Tables
1-1 Memory Requirements for OS/2 . 1-8
1-2 Disk Space Requirements for OS/2 1-8
1-3. Memory Requirements for Microsoft Windows. 1-8
1-4. Disk Space Requirements for Microsoft Windows 1-8
1-5 Memory Requirements for Microsoft Windows. 1-9
1-6. Disk Space Requirements . T RS
8-1. Bitmap Data Format86
11-1. Maximum Block Size for NVRAM Read and NVRAM erte Operatlons T b R
12-1. Maximum Number of Characters for the IBM Model 2 Printer. 122
12-2. Maximum Number of Characters for IBM Model 3/3F/4/4A Printers 128
12-3. Maximum Number of Addressable Print Positions Per Line for the IBM Model 4A Prlnter 12-5
12-4. Maximum Number of Addressable Print Positions per Character for the IBM Model 4A Printer 12-5
12-5. Maximum Number of Characters for IBM 4689-001/002 Printers 12-6
12-6. Maximum Number of Characters for IBM 4689-3x1 and TD5 Printers.o 127
12-7. Maximum Number of Characters for IBM 4610 SureMark Point of Sale Printer Pnnters 12-9
12-8. Text Print Attributes for the IBM 4610 SureMark Printer models. 12-10
12-9. Maximum Number of Characters for PosWrite()12-14
12-10. Printer Control Characters and Escape Character Sequences 12-16
12-11. Text Attribute enable and disable codes for 4610 models and 4689 Model 3x1 and TD5

printers . . . C e e e e 1232
16-1. Label Types Returned by the Scanner Devrce Handler Coe . e165
17-1. DoubleClickHeight and DoubleClickWidth Adjustment for Wrndows N S
17-2. Determining which Touch Screen is available 174
21-1. PosSystem Resources.215
21-2. PosDevice Resources21-8
21-3. PosAlarm Resources .. .2116
21-4. PosDisplay Resourceso 217
21-5. PosDrawer Resourceso 00002121
21-6. PosKeyboard Resources .2122
21-7. PosNvram Resources. .. .2130
21-8. PosPower Resources. 000213
21-9. PosPrinter Resources.o 02132
21-10. PosRs232c Resources . . . - R
21-11. Maximum PosNtimeoutChar VaIue - BTS)
21-12. PosScale Resources 21-57
21-13. PosScanner Resources . . . e e e e e e s s 2146t
21-14. Valid Values for PosNbarCodes1 Resource (SIO and USB Scanners)21-62
21-15. Valid Values for PosNbarCodes1 Resource (USB ScannersOnly) 21-63
21-16. Valid Values for PosNbarCodes2 Resource (SIO and USB Scanners) 21-64
21-17. Valid Values for PosNbarCodes2 Resource (USB Scanners Only) . . . 21-64

21-18. Valid Values for PosNbarCodes3 and PosNbarCodes4 Resources (SIO and USB Scanners) 21-65
21-19. Valid Values for PosNbarCodes3 and PosNbarCodes4 Resources (USB Scanners Only) 21-66

21-20. Valid Values for PosNblock1Type Resource.21-70
21-21. Valid Values for PosNblock2Type Resource.21-71
21-22. Valid Values for PosNblock3Type Resource.21-7
21-23. Valid Values for PosNsupplementals Resource21-82
21-24. Valid Values for PosNtransmitCheckDigit Resource21-82
21-25. PosTouch Resources.21-9
D-1. Error Code ReferenceDb4

© Copyright IBM Corp. 1993, 2001 Xix

created on October 2, 2001

XX Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Preface

This manual provides reference information for programming devices used by the
IBM Point of Sale Subsystem.

Who Should Read this Manual

This manual is intended for use by point-of-sale programmers who choose to use
the IBM point-of-sale hardware, and either the IBM OS/2® operating system, the
Microsoft® Windows® operating system, or the Linux operating system.

Depending on the operating system that is being used, this manual assumes that
the reader is familiar with the following terms:
» For IBM Point of Sale Subsystem for OS/2:
— Information Presentation Facility (IPF)
- 08/2
— Point of Sale environment
— Presentation Manager® programming
* For IBM Point of Sale Subsystem for Windows:
— Microsoft Windows Help
— Microsoft Windows
— Point of Sale environment
— Microsoft Windows programming
* For IBM Point of Sale Subsystem for Linux:
— Point of Sale environment
— Linux programming

This manual also assumes that the user is proficient with the C programming
language.

How to Use this Manual

This manual is divided into four parts:

+ Part 1, User’s Guide, provides general information about configuring and
troubleshooting the IBM Point of Sale Subsystem.

* Part 2, Programming Guide, explains what devices are supported by the device
handlers, and how to program these devices.

« Part 3, Programming Reference contains reference information about PoslOCtl
requests, event messages, and resource sets.

» Part 4, Appendixes contains information about error codes, and POSS utilities.
Unless specifically stated, the information in this manual applies the Point of Sale
Subsystems as follows: the IBM Point of Sale Subsystem for OS/2, the IBM Point of
Sale Subsystem for Windows, and the IBM Point of Sale Subsystem for Linux.

When information applies specifically to only some of the Point of Sale Subsystem
operating environments, the text indicates which operating systems are supported.

© Copyright IBM Corp. 1993, 2001 XXi

created on October 2, 2001

XXii Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Related Publications

The section lists related publications. For information about ordering these
publications, contact your IBM authorized dealer or marketing representative.

Between major revisions of this manual we may make minor technical updates. The
latest softcopy version of the IBM Point of Sale Subsystem Installation, Keyboards,

and Code Pages manual is available on the IBM Retail Store Solutions Web site. To
access this publication:

1. Go to www.ibm.com/solutions/retail/store
2. Select Support
3. Click the appropriate hardware or peripheral driver

IBM Point of Sale Subsystem Related Publications

* IBM Point of Sale Subsystem Programming Reference and User’s Guide,

SC30-3560 (this publication)

* IBM Point of Sale Subsystem Installation, Keyboards, and Code Pages,

GC30-3623

» FFST/2 Administration Guide, S96F-8593

0OS/2 Publications

0S/2 2.1 Documentation Only, S61G-0905
0OS/2 Tool Kit Technical Library, SBOF-1206
Object Oriented Interface Design Common User Access Guideline, SC34-4399
Control Program Programming Reference, S10G-6263

Presentation Manager Programming Reference Volume 1, S10G-6264
Presentation Manager Programming Reference Volume 2, S10G-6265
Presentation Manager Driver Reference, S10G-6267

0S/2 WARP, V3 Technical Library, SBOF-8511

C/C++ for OS/2 Library

C/C++ Tools:
C/C++ Tools:
C/C++ Tools:
C/C++ Tools:
C/C++ Tools:
C/C++ Tools:
C/C++ Tools:

Programming Guide, S61G-1181

Debugger Introduction, S61G-1184

Execution Trace Analyzer Introduction, S61G-1398
Browser Introduction, S61G-1397

Class Libraries Reference Summary, S61G-1186
C Library Reference, S61G-1183

C Language Reference, S61G-1399

C/C++ Tools:C++ Language Reference, S61G-1185

C/C++ Tools:
C/C++ Tools:
C/C++ Tools:
C/C++ Tools:

Standard Class Library Reference, S61G-1180
User Interface Class Library Reference, S61G-1179
Collection Class Library Reference, S61G-1178
Reference Summary, S61G-1441

C related Publications

Portability Guide for IBM C, SC09-1405

WorkFrame/2 Publications

C++: WorkFrame/2: Introduction, S61G-1428

© Copyright IBM Corp. 1993, 2001

xxiii

created on October 2, 2001

VisualAge® Publications

VisualAge C++ for OS/2, V3 Standard Manuals, S30H-1679
VisualAge C++ for OS/2, V3 Extended Reference, S30H-1680
VisualAge C++ for Windows V3.5 Standard Manuals, S33H-4981
VisualAge C++ for Windows V3.5 Reference Manuals, S33H-4982

Non-IBM related Publications
The ANSI Specifications for Magnetic-Stripe Encoding for Credit Cards, ANSI
X4.16-1983
The ANSI Specifications for Credit Cards, ANSI X4.13
The Korean Industry Code for Information Exchange, KSC-5601
KANJI Code Table, N:GC18-2040-3

For publications relating to non-IBM software, contact the software vendor.

Store System Related Publications—Hardware

Scanners

1520 Hand-Held Scanner User’s Guide, GA27-3685

4686 Retail Point of Sale Scanner: Physical Planning, Installation, and Operation
Guide, SA27-3854

4686 Retail Point of Sale Scanner: Maintenance Manual, SY27-0319

4687 Point of Sale Scanner Model 1: Physical Planning, Installation, and
Operation Guide, SA27-3855

4687 Point of Sale Scanner Model 1: Maintenance Manual, SY27-0317
4687 Point of Sale Scanner Model 2: Physical Planning Guide, SA27-3882
4687 Point of Sale Scanner Model 2: Operator’s Guide, SA27-3884

4687 Point of Sale Scanner Model 2: Maintenance Manual, SY27-0324
4696 Point of Sale Scanner: Maintenance Manual, SY27-0333

4696 Point of Sale Scanner: Physical Planning, Installation, and Operation
Guide, GA27-3965

4697 Point of Sale Scanner Model 001: Maintenance Manual, SY27-0338
4697 Point of Sale Scanner Model 001: Physical Planning, Installation, and
Operation Guide, GA27-3990

4698 Point of Sale Scanner Scale Model 001 & 002: Physical Planning,
Installation, and Operation Guide, GA27-4055

4698 Point of Sale Scanner Scale Model 001 & 002: Maintenance Manual,
SY27-0344

Cabling

A Building Planning Guide for Communication Wiring, G320-8059

Cabling System Planning and Installation Guide, GA27-3361

Cabling System Catalog, G570-2040

Using the IBM Cabling System with Communication Products, GA27-3620

4610 SureMark® Point of Sale Printer
4610 SureMark Point of Sale Printer: User’s Guide, GA27-4151

4683/4684 Point of Sale Terminals
4683 Point of Sale Terminal: Installation Guide, SA27-3783
4684 Point of Sale Terminal: Installation Guide, SA27-3837
4684 Point of Sale Terminal: Introduction and Planning Guide, SA27-3835
4683/4684 Point of Sale Terminal: Operations Guide, SA27-3704

XXiV Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

4680 Store System and IBM 4683/4684 Point of Sale Terminal: Problem
Determination Guide, SY27-0330

4684 Point of Sale Terminal: Maintenance Summary Card, SX27-3885

4680 Store System: Terminal Test Procedures Reference Summary, GX27-3779
IBM 4683/4684 Point of Sale Terminal: Maintenance Manual, SY27-0295

4693/4694/4695 Point of Sale Terminals
4683/4684/4693/4694 Point of Sale Terminal: Parts Catalog, S131-0097
4693 Point of Sale Terminal: Setup Instructions
4693 Point of Sale Terminal: Quick Reference Card
4693 Point of Sale Terminal: Configuration and Operation Guide, SA27-3978
4693/4694/4695 Point of Sale Terminal: Maintenance and Test Summary,
SX27-3919
Store Systems: Technical Reference, SY27-0336
4693/4694/4695 Point of Sale Terminal: Hardware Service Manual, SY27-0337
Store Systems: Hardware Service Manual for Point of Sale Input/Output
Devices, SY27-0339
4694 Point of Sale Terminal: User’s Guide, SA27-4005
4694 Point of Sale Terminal: Hardware Service Manual, SY27-0364
4695 Point of Sale Terminal: Installation and Operation Guide, GA27-4031
4695 Point of Sale Terminal: Hardware Service Manual, SY27-0361
Store Systems: Installation and Operation Guide for Point of Sale Input/Output
Devices, GA27-4028
Store Systems: Point of Sale Terminals—Supplement for Installation, Operation,
and Service, GA27-4035

SurePOS 700 Series

SurePOS 700 Series: Installation and Operation Guide, GA27-4223
SurePOS 700 Series: Hardware Service Manual, GY27-0363

SurePOS 700 Series: System Reference, SA27-4224

SurePOS 700 Series Options and I/O Devices Service Guide, SY27-0392

4820 SurePoint® Solution

4820 SurePoint Solution: Installation and Service Guide, GY27-4231
4820 SurePoint Solution: System Reference, SA27-4249

7497 Point of Sale Attachment Adapter

Point of Sale Terminal Attachment Kit: Physical Planning, Installation, and
Service Manual, GA27-4034

Related Software

Utility software, LAN drivers, video drivers, and diagnostic software are available.
See the latest list on the IBM Retail Store Solutions Web site at:

http://www.ibm.com/solutions/retail/store/

Select Support, and then click the appropriate hardware or peripheral driver.

Related Publications XXV

created on October 2, 2001

XXVi Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Summary of Changes

September 2001
Updates for Linux Support.

June 2001

Updates to include the following information:

» Fiscal printer support

» Additional user-defined character resources
» Updates to AIPFNT46.exe

» Trace utilities information

« Calibration tool. See FAppendix J 4820 SurePaint Solution Touch Screen
Calibration” on page J-1 for additional information.

September 2000
» Added updates for Single Station SureMark printers (4610 —TM6/TF6/TM7/TF7)

May 2000

» Addition of Double-byte information for printers
» Additional information for configuring printers

March 2000

» Additional information added for PosNcodePage and PDF417 Barcode.
 Clarifications to existing text for USB scanner interface

January 2000

» Support for Universal Serial Bus (USB) architecture
+ Support for the IBM 4610 SureMark™ Point of Sale Printer Model TI5

© Copyright IBM Corp. 1993, 2001 XXvii

created on October 2, 2001

XXViii Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Part 1. User’s Guide

Chapter 1. Introduction .

Windows and OS/2 Sample Source Code

Linux Sample Source Code .

System Requirements .

Hardware Environment. .

Point of Sale Terminals (for Wmdows and OS/2)
Point of Sale Terminals (Linux): . .
Point of Sale Adapter Cards (Windows and OS/2)
RS-485 Point of Sale Devices (Windows and OS/2):.
RS-485 Point of Sale Devices (Linux): .

USB Point of Sale Devices (Windows 98 and Wlndows 2000 only):

Software Environment .

Memory and Disk Space Requwements
Memory and Disk Space Requirements for OS/2 .
Memory and Disk Space Requirements for Microsoft Windows .
Memory and Disk Space Requirements for Linux .

Chapter 2. Universal Serial Bus Architecture and IBM Point of Sale
Subsystem for Windows.
USB Device Considerations .
USB Tree Traversal Order
Device Role Assignment .
USB Hot Plug Maintenance .
USB Alphanumeric Point of Sale Keyboards

Chapter 3. Customizing the IBM Point of Sale Subsystem
Configuring Your Applications Ce e e e
The Resource File
Using the Resource File . . .
Configuring the Alphanumeric Point of Sale Keyboard .

Chapter 4. Performing Problem Determination .
Problem Determination on OS/2
Viewing Point of Sale Error Messages on OS/2
Viewing Point of Sale Trace Events on OS/2. .
Problem Determination on the Microsoft Windows Operating System.
Viewing Events on Microsoft Windows .
Using Built-in Tracing on Microsoft Windows .
Problem Determination on the Linux Operating System.
Viewing Events on Linux . .o
Using Tracing on Linux

© Copyright IBM Corp. 1993, 2001

[G\ U U (U NS U (S U U G WS G G G
OCHOOONUDDOPOPORORRN = =

created on October 2, 2001

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Chapter 1. Introduction

The purpose of the IBM Point of Sale Subsystem product is to manage input/output
(I/0) devices that are unique to point-of-sale (POS) usage. The IBM Point of Sale
Subsystem operates by actively controlling the 1/0 devices and providing an
application programming interface (API) to applications registered with the
subsystem. The IBM Point of Sale Subsystem provides the following:

» Dynamic determination of the devices attached to the system. The IBM Point of
Sale Subsystem notifies all registered applications which devices are attached
via their event message queue. This means that there is no configuration file that
has to be set up during installation time.

* An automated installation facility. See the IBM Point of Sale Subsystem:
Installation, Keyboards and Code Pages book for details about the installation
process.

» Dynamic loading of device handlers. Only the point-of-sale device drivers are
loaded at initial program load (IPL) time. The rest of the IBM Point of Sale
Subsystem is loaded into the system as needed.

* A “C” application programming interface for opening, closing, reading, writing,
and controlling point-of-sale I/O devices. The application programming mterface
is de3|gned to give the appl|cat|on flexibility. See

, Chapter 18 Application Programming Interfacd, and
Ear:LS._Emg.ta.mmmg_Beietencd for detailed information about the IBM Point of

Sale Subsystem application programming interface.

+ Problem determination using error logs and tracing. See Chapter 4 Performing

Problem Determination for details about the problem determination process.
» Sample code that shows how to use the IBM Point of Sale Subsystem API.

Windows and 0S/2 Sample Source Code

On Windows and OS/2 systems, this source code resides in the SAMPLE
subdirectory of the directory in which the product was installed; the default location
is C:\POS\SAMPLE. The Windows and OS/2 sample source code includes the
following:

AIPTSTR
Calls the IBM Point of Sale Subsystem API by way of prompted input. The
results of the application programming interface calls are displayed on the
screen. Also includes a sample resource file.

ANPOSKEY
Traces keys received from the ANPOS keyboard.

CHECKOUT
Shows how to program using the IBM Point of Sale Subsystem API.

DEMO lllustrates the use of the IBM Point of Sale Subsystem API. It does this
without prompting the user for parameters and only prompts for various
actions (such as to sound a tone).

VBSAMPLE
lllustrates the use of the IBM Point of Sale Subsystem for WindowsAPI from
Visual Basic®. Sample code is included for customer display and NVRAM
devices. These sample programs are only installed if Visual Basic support is
installed.

© Copyright IBM Corp. 1993, 2001 1-1

created on October 2, 2001

Linux Sample Source Code

On Linux systems, the default location for the sample source code is
/usr/doc/pos/sample. The Linux sample source code includes the following:

CHECKOUT
Shows how to use the IBM Point of Sale Subsystem API.

System Requirements

This section describes the hardware, software, disk space, and memory that are
required for the IBM Point of Sale Subsystem.

Hardware Environment
The IBM Point of Sale Subsystem supports the following hardware:

Point of Sale Terminals (for Windows and 0S/2):
* 4674 Point of Sale Terminal Models (Japan only):
— 4674-001, 4674-010, 4674-011
* 4674 Point of Sale Terminal Models (Japan only):
— 4674-DSH1
* 4683 Point of Sale Terminal Models (OS/2 only):
— 4683-002, 4683-A02, 4683-421
* 4684 Point of Sale Terminal Models (0S/2 only):
— 4684-300
* 4693 Point of Sale Terminal Models:

— 4693-321, 4693-331, 4693-3S1, 4693-3W1, 4693-421, 4693-431, 4693-451,
4693-541, 4693-551, 4693-5S1, 4693-741, 4693-7S1, 4693-202. 4693-212,
4693-252

* 4694 Point of Sale Terminal Models:

— 4694-001, 4694-004, 4694-024, 4694-041, 4694-044, 4694-S01, 4694-S04,
4694-S41, 4694-S44, 4694-104, 4694-SS4, 4694-114, 4694-124, 4694-144,
4694-154, 4694-154, 4694-205, 4694-206, 4694-207, 4694-244, 4694-245,
4694-254, 4694-254

* 4694 Point of Sale Terminal Models (Windows only):
— 4694-206, 4694-207, 4694-246, 4694-247, 4694-2S6, 4694-2L.6, 4694-307,
4694-347
+ 4694 Point of Sale Terminal Models (Preloaded Microsoft Windows NT®
Models):
— 4694-LNT, 4694-SNT
* 4695 Point of Sale Integrated Touch Terminal Models:

— 4695-201, 4695-211, 4695-321, 4695-322, 4695-324, 4695-331, 4695-342,

4695-344, 4695-N43
+ SurePOS™ 700 Series Models (Windows only):

— SureBase™ Model 001, SurePOS 730 Model 102, SurePOS 730 Model 142,
SurePOS 750 Model 202, SurePOS 750 Model 20E, SurePOS 750 Model
242, SurePOS 750 Model 24E

Point of Sale Terminals (Linux):
* 4694 Point of Sale Terminal Models:

1-2 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

— 4694-104, 4694-106, 4694-146, 4694-205, 4694-206, 4694-207, 4694-245,
4694-246, 4694-247, 4694-307, 4694-347

Point of Sale Adapter Cards (Windows and 0S/2):
* 4695 Point of Sale Adapter (Feature Code 3941)
* 4695 Point of Sale Adapter/A (Feature Code 3941)
* 4695 Point of Sale Adapter Il (Feature Code 3930)
» 7497 Point of Sale Attachment Adapter Model 001:
— ISA Bus Adapter (P/N 73G2529, Feature Code 3529)
— Micro Channel Adapter (P/N 83G0986, Feature Code 0986)

RS-485 Point of Sale Devices (Windows and 0S/2):
Cash Drawers:
— Cash Drawer, No Till (Feature Code 3360)
— Adjustable Till (Feature Code 1092)
— Fixed Till (Feature Code 3879)
— Cash Drawer, Removable Till (Feature Code 3361)
— Flip-Top Cash Drawer (Feature Code 3362)
— Cash Drawer | (P/N 6238669)
— Cash Drawer IV (P/N 09F3519)
— Cash Drawer V (Feature Code 3370)
— Compact Cash Drawer with Vertical Till (Feature Code 3368)
— Compact Cash Drawer with Horizontal Till (Feature Code 3378)
Displays:
— Shopper Display (Feature Code 3339)
— Operator Display (Feature Code 3340)
— 40 Character Alphanumeric Display (Feature Code 3343)
— 40 Character Vacuum Flourescent Display (Feature Code 3343)
— Character/Graphics Display (Feature Code 3400)
Japan - Tall (Feature Code 3402)
Japan - Short (Feature Code 3403)
Korean - Tall (Feature Code 3405)
Korean - Short (Feature Code 3406)
— 40-Character Vacuum Flourescent Display Il (Feature Code 3501)
— 40-Character Vacuum Flourescent Display Il - Japan (Feature Code 3506)
— Two-Sided Vacuum Flourescent Display Il (Feature Code 3502)
— Two-Sided Vacuum Flourescent Display Il - Japan (Feature Code 3507)
— 40-Character Liquid Crystal Display (Feature Code 3503)
— 2x20 Character Vacuum Flourescent Display Customer Display (Feature
Code 2826)

Keyboards:
— 50-Key Modifiable Keyboard (Feature Code 3320)
— 50-Key Modifiable Layout Keyboard/Operator Display (Feature Code 6300)
— Alphanumeric Point of Sale Keyboard (Feature Code 3324)
— Retail Point of Sale Keyboard with Card Reader:
Brazil/Portuguese (Feature Code 3200)
Danish (Feature Code 3211)
Canada/Franch (Feature Code 3201)
French (Feature Code 3203)
German (Feature Code 3204)
Italian (Feature Code 3205)
Norwegian (Feature Code 3212)
Spanish (Feature Code 3206)
Swedish/Finnish (Feature Code 3213)
U.K. English (Feature Code 3202)
U.S. English (Feature Code 3324)

Chapter 1. Introduction 1-3

14

created on October 2, 2001

— Retail Point of Sale Keyboard (Feature Code 3315)
— Retail Point of Sale Keyboard with Card Reader (Feature Code 3320)
— Modifiable Layout Keyboard with Card Reader (Feature Code 3323)
— 4820 SurePoint™ Solution 32-Key Keypad (Feature Code 5140)
— PC Point of Sale Keyboard
Japan (Feature Code 3207)
Korea (Feature Code 3208)
— Point of Sale Keyboard V
Japan (Feature Code 3220)
Korea (Feature Code 3221)
— Point of Sale Keyboard VI - Korea (Feature Code 3209)
— PLU Keyboard/Display |l
Japan (Feature Code 3230)
Korea (Feature Code 3232)
— Retail Point of Sale Keyboard with Card Reader and Display (Feature Code
6300)
— 4685 Point of Sale Keyboard Model KO1 (4685-K01)

Magnetic Stripe Readers:

— One-Track Magnetic Stripe Reader - ISO Track 2 (Feature Code 4010)

— Dual-Track Magnetic Stripe Reader - ISO Tracks 1 and 2 (Feature Code
4192)

— Dual-Track Magnetic Stripe Reader - ISO Tracks 2 and 3 (Feature Code
4193)

— Low-Profile Dual-Track Magnetic Stripe Reader - ISO Tracks 1 and 2
(Feature Code 6310)

— Low-Profile Dual-Track Magnetic Stripe Reader - ISO Tracks 2 and 3
(Feature Code 6320)

— Three-Track Magnetic Stripe Reader (Feature Code 2905)

— Two-Sided Magnetic Stripe Reader (Feature Code 2906)

— SurePoint™ Magnetic Stripe Reader (Feature Code 3951)

— SurePoint JUCC Magnetic Stripe Reader (Feature Code 3953)

— 4820 SurePoint Solution Magnetic Stripe Reader (Windows Only)

Non-volatile Random Access Memory:

— 4693 Point of Sale Terminal Models (except Microsoft Windows 3.1):
4693-202, 4693-212, 4693-2S52

— 4693 Point of Sale Terminal Models:
4693-321, 4693-331, 4693-3S1, 4693-3W1, 4693-421, 4693-431,
4693-451, 4693-541, 4693-551, 4693-5S1, 4693-741, 4693-7S1

— 4694 Point of Sale Terminal Models:
4694-001, 4694-004, 4694-024, 4694-041, 4694-044, 4694-S01,
4694-S04, 4694-S41, 4694-S44, 4694-104, 4694-SS4, 4694-114,
4694-124, 4694-144, 4694-1S4, 4694-154, 4694-205, 4694-244,
4694-245, 4694-254, 4694-254

— 4694 Point of Sale Terminal Models (Windows Only):
4694-206, 4694-207, 4694-246, 4694-247, 4694-256, 4694-2L6,
4694-307, 4694-347, 4694-LNT, 4694-SNT

— 4695 Point of Sale Integrated Touch Terminal Models:
4695-201, 4695-211, 4695-321, 4695-322, 4695-324, 4695-331,
4695-342, 4695-344, 4695-N43

— Point of Sale Adapter Cards:
4695 Point of Sale Adapter (Feature Code 3941)
4695 Point of Sale Adapter/A (Feature Code 3941)
4695 Point of Sale Adapter Il (Feature Code 3930)
7497 Point of Sale Attachment Adapter Model 001

Printers:

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

— Model 2 Printer (Feature Code 6400)

— Model 3 Printer (Feature Code 4700)

— Model 3F Fiscal Printer

— IBM Model 3R Printer (Feature Code 4701)

— IBM Model 4 Printer (Feature Code 4800)

— IBM Model 4A Printer (Feature Code 4805)

— IBM Model 4R Printer (Feature Code 4801)

— 4610 SureMark Point of Sale Printer Models:
4610-TI1, 4610-TI2, 4610-TI3, 4610-Tl4

— 4689 Point of Sale Printer Models:
4689-001 Japan (Feature Code 4802)
4689-002 Korea (Feature Code 4803)
4689-301

— Windows only:

- 4610 SureMark Point of Sale Printer Models:
4610-TI5, 4610-TF6, 4610-TF7, 4610-TM6, 4610-TM7, 4610-TN3,
4610-TN4

- 4610 SureMark Point of Sale Fiscal Printers

- 4689 Point of Sale Printer Models:
4689-3G1, 4689-3M1, 4689-TD5

Programmable Power:
— 4693 Point of Sale Terminals:
4693-202, 4693-212, 4693-2S2

— 4683 Point of Sale Terminals (0OS/2 Only):
4683-002, 4683-421, 4684-300

— 4693 Point of Sale Terminals (OS/2 Only):
4693-321, 4693-331, 4693-3S1, 4693-3W1, 4693-421, 4693-431,
4693-4S1, 4693-541, 4693-551, 4693-5S1, 4693-741, 4693-751

Scales (except Microsoft Windows 3.1):
— 4687 Point of Sale Scanner Model 002
— 4696 Point of Sale Scanner Scale Model 001
— 4698 Point of Sale Scanner Model 002

Scanners:
— Hand-Held Bar Code Reader Model 2 (Feature Code 4501)
IBM 1520 Hand-Held Scanner Model A02
4685 Hand-Held Bar Code Reader Models:
4685-001 (Feature Code 4502)
4685-L01 (Handy Scanner Il1)
4685-L0A
— 4685 Point of Sale Scanner Model LOF
— 4685 SurePOS Scanner Models:
4685-S01, 4685-L0C, 4685-L0H, 4685-101
— 4687 Point of Sale Scanner Models:
4687-001, 4687-002
— 4696 Point of Sale Scanner Scale Model 001
— 4697 Point of Sale Scanner Model 001
— 4698 Point of Sale Scanner Models:
4698-001, 4698-002
— 08S/2 Only:
- 4686 Point of Sale Scanner Models:
4686-001, 4686-002, 4686-003, 4686-004

Touch:
— 4695 Point Of Sale Distributed Touch Terminal Models:
4695-002, 4695-012, 4695-022, 4695-032, 4695-042

Chapter 1. Introduction

1-5

1-6

created on October 2, 2001

4695 Point Of Sale Integrated Touch Terminal Models:
4695-201, 4695-211, 4695-321, 4695-322, 4695-324, 4695-331,
4695-342, 4695-344, 4695-N43
SurePoint Monochrome Touch Screen (Feature Code 3950)
SurePoint Color Touch Screen (Feature Code 3960)
Windows only:
- 4820 SurePoint Solution Color Touch Screen Models:
4820-46T, 4820-46R

Miscellandeous:
— Alarm (second cash drawer)
— Feature E Card Devices (RS-232)

RS-485 Point of Sale Devices (Linux):

Cash Drawers:
— Cash Drawer, No Till (Feature Code 3360)
Adjustable Till (Feature Code 1092)
Fixed Till (Feature Code 3879)
— Cash Drawer, Removable Till (Feature Code 3361)
— Flip-Top Cash Drawer (Feature Code 3362)
— Cash Drawer | (P/N 6238669)
— Cash Drawer IV (P/N 09F3519)
— Cash Drawer V (Feature Code 3370)
— Compact Cash Drawer with Vertical Till (Feature Code 3368)
— Compact Cash Drawer with Horizontal Till (Feature Code 3378)
Displays:
— 40-Character Vacuum Flourescent Display Il (Feature Code 3501)
— 40-Character Vacuum Flourescent Display Il - Japan (Feature Code 3506)
— Two-Sided Vacuum Flourescent Display Il (Feature Code 3502)
— Two-Sided Vacuum Flourescent Display Il - Japan (Feature Code 3507)
— 40-Character Liquid Crystal Display (Feature Code 3503)

Keyboards:
— Retail Alphanumeric Point of Sale Keyboard with Card Reader
— Retail Point of Sale Keyboard (Feature Code 3315)

— Retail Point of Sale Keyboard with Card Reader and Display (Feature Code
3320)

Non-volatile Random Access Memory:
— 4694 Point of Sale Terminal Models:

- 4694-104, 4694-106, 4694-146, 4694-205, 4694-206, 4694-207, 4694-245,

4694-246, 4694-247, 4694-307, 4694-347

Magnetic Stripe Readers:

— Three-Track Magnetic Stripe Reader (Feature Code 2905)

Printers:

— Model 3F Fiscal Printer

— 4610 SureMark Point of Sale Printer Models:
4610-TI1, 4610-TI2, 4610-TI13, 4610-Tl4, 4610-TF6, 4610-TM6, 4610-TF7,
4610-TM7

— 4610 SureMark Point of Sale Fiscal Printers

Scales
— 4698 Point of Sale Scanner Models:
- 4698-002

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Scanners:
— Hand-Held Bar Code Reader Model 2 (Feature Code 4501)
— IBM 1520 Hand-Held Scanner Model A02
— 4698 Point of Sale Scanner Models:
4698-001, 4698-002

USB Point of Sale Devices (Windows 98 and Windows 2000
only):

Cash Drawers:

— Full-size Cash Drawer (Fixed Till)

— Full-size Cash Drawer (Adjustable Till)

— Compact Cash Drawer (Vertical Till)

— Compact Cash Drawer (Horizontal Till)

Displays:

— USB 40 Character Vacuum Flourescent Display

— USB Two-Sided Vacuum Flourescent Display

— USB 40 Character Liquid Crystal Display

— USB Character/Graphics Display

Keyboards:

— USB 50-Key Keyboard

— USB 50-Key Keyboard with Magnetic Stripe Reader

— USB 50-Key Keyboard with Magnetic Stripe Reader and Liquid Crystal

Display

— USB Alphanumeric Point of Sale Keyboard

— USB 133-Key Keyboard with Magnetic Stripe Reader

— USB 4820 SurePoint Solution 32-Key Keypad

Magnetic Stripe Readers:

— USB 4820 SurePoint Solution Magnetic Stripe Reader

Non-volatile Random Access Memory:

— 4800 Point of Sale Terminals

Printers:

— USB 4610 SureMark Point of Sale Printer Models:
4610-TI3, 4610-Tl4, 4610-TI5, 4610-TM6, 4610-TM7

— USB 4610 SureMark Point of Sale Fiscal Printers

Software Environment

The IBM Point of Sale Subsystem requires the following:

* OS/2 Version 2.1 or later

* Microsoft Windows Version 3.1 with Win32s Version 1.25A
e Microsoft Windows 95

* Microsoft Windows 98

* Microsoft Windows NT Version 3.51 or later

* Microsoft Windows 2000

* Red Hat Linux Version 7.1 (2.4 Kernel)

Depending on the operating system that you use, you will need the following
software to develop applications for the IBM Point of Sale Subsystem:

0S/2
IBM VisualAge® C/C++ for OS/2
Borland C/C++ for OS/2

Windows
Microsoft Visual C++® Version 1.5 (16-bit applications)

Chapter 1. Introduction

created on October 2, 2001

Microsoft Visual C++ Version 2.0 or later (32-bit applications)
Borland C/C++ for Windows Version 4.5 or later
IBM VisualAge C/C++ for Windows Version 3.5 or later

Linux
GNU’s Compiler Collection (GCC)

Memory and Disk Space Requirements

This section describes the memory and disk space required to run the IBM Point of
Sale Subsystem. The memory requirements are approximate. The disk space
requirements are listed for each selectable component of the IBM Point of Sale
Subsystem.

Memory and Disk Space Requirements for 0S/2

Table 1-1. Memory Requirements for OS/2

Function Recommended Memory (MB)
Device Handlers 1.2
Alphanumeric Point of Sale Keyboard 0.3
First Failure Support Technology/2® 0.3

Table 1-2. Disk Space Requirements for OS/2

Component Disk Space (MB)
Device Handlers 1.4
Online Documentation 0.7
Programming Libraries 0.1
Sample Programs 0.8
Fonts 0.3

Note: First Failure Support Technology/2 (FFST/2)® is installed automatically if the
IBM Point of Sale Subsystem Device Handlers are selected. FFST/2 requires
approximately 0.5 MB of disk space.

Memory and Disk Space Requirements for Microsoft Windows

Table 1-3. Memory Requirements for Microsoft Windows

Function Recommended Memory (MB)
Device Handlers 1.0
Alphanumeric Point of Sale Keyboard 0.3
Microsoft Win32s 1.5

Table 1-4. Disk Space Requirements for Microsoft Windows

Component Disk Space (MB)

Device Handlers 5.0

1-8 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Table 1-4. Disk Space Requirements for Microsoft Windows (continued)

Component Disk Space (MB)
Microsoft Win32s 1.7
Online Documentation 0.8
Programming Libraries 0.3
Sample Programs 0.7
Fonts 0.4

| Memory and Disk Space Requirements for Linux

| Table 1-5. Memory Requirements for Microsoft Windows

| Function Recommended Memory (MB)
| Device Handlers 15
I Alphanumeric Point of Sale Keyboard 0.5

| Table 1-6. Disk Space Requirements

I Component Disk Space (MB)
I Device Handlers 5.0

I Online Documentation 2.7

I Programming Libraries 0.13

I Sample Programs 0.1

I Fonts 0.3

Chapter 1. Introduction 1-9

created on October 2, 2001

1-10 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Chapter 2. Universal Serial Bus Architecture and IBM Point of
Sale Subsystem for Windows

The IBM Point of Sale Subsystem for Windows V2.0.0 and later provides support
for USB point-of-sale devices that conform to IBM Universal Serial Bus (USB)
interface specifications. USB devices are currently supported under the Microsoft
Windows 98 SE and Windows 2000 operating systems. Properly written
applications that use the IBM Point of Sale Subsystem for Windows API with SIO
hardware should run (unmodified) with USB hardware in place of the SIO hardware.

USB Device Considerations

USB devices are identified to IBM Point of Sale Subsystem applications exactly as
their SIO counterparts are identified: slot number, port number, and device number.
All USB devices have the same slot number and port number; device number is
dynamically assigned by the IBM Point of Sale Subsystem. See

i i ind and l"hnlnh:\r 21_Resource Setd for more
information about determining which devices are available.

USB Tree Traversal Order

The USB tree traversal order is important in understanding the assignment of
device role (device number). USB ports are traversed from low port number to high
port number. The traversal order for the IBM Hub is from port A to port F. If a USB
device is itself a hub, that hub is traversed before the traversal of the original hub
continues. In the figure below, the numbers indicate the USB tree traversal order.

USB Hub
00 | 0O
1 2 10 11

USB Hub

I

USB Hub
00O
5 6 7

Figure 2-1. USB tree traversal order

© Copyright IBM Corp. 1993, 2001 2-1

USB Architecture and IBM Point of Sale Subsystem for Windows created on October 2, 2001

Device Role Assignment

In some point-of-sale situations, there is a requirement for two identical devices on
the same USB lane. The assignment of a device role allows IBM Point of Sale
Subsystem for Windows to uniquely identify each device.

The term device role, refers to the identification of a particular USB device as either
primary or secondary. The notion of primary and secondary devices is taken from
legacy IBM point-of-sale hardware in which a single device reports a different bus
address (device number) based on which SIO channel port it is currently using. For
USB devices, when two identical devices are found on the same system, the role of
primary device goes to the first device found during USB tree traversal and the role
of secondary device goes to the second device found.

Note: Currently, the IBM Point of Sale Subsystem for Windows supports the
following combination of devices in the same system:
» Up to two single-sided 40-character displays
* Up to two character graphics VFDs
* Up to four all-points-addressable (APA) VFDs
* Up to two line displays:
— One double-sided VFD or,
— Two single-sided VFD/LCDs
* one double-sided VFD, or two single-sided VFD/LCDs
* Up to two SBCS keyboards (not including normal PC keyboards):
— One POS system keyboard: ANPOS/ANKPOS keyboard
— One POS keyboard: ANPOS/ANKPOS keyboard or other POS
keyboard
* Up to three DBCS POS keyboards (not including normal PC keyboards):
— One POS system keyboard: ANPOS/ANKPOS keyboard
— One POS system keyboard on the system unit
— One POS system keyboard (normally PLU keyboard) on the PLU
extension box
* Up to two cash drawers
* Up to two MSRs
» Up to four (DBCS) APA VFDs:
— Two on the system unit
— Two on the PLU extension box

USB Hot Plug Maintenance

The term hot plug refers to connecting a USB input/output (I/0O) device to the USB
without powering the host system down;

The term hot unplug refers to disconnecting a USB 1/O device from the USB without
powering the host system down.

Failing USB devices can be easily replaced by taking advantage of hot plugging
and unplugging. In order to maintain device role, devices must be serviced (hot
unplugged then hot plugged) one at a time.

USB Alphanumeric Point of Sale Keyboards

A USB-attached Alphanumeric Point of Sale Keyboard can be configured in two
ways:

* As a point-of-sale system keyboard or,

* As a point-of-sale keyboard.

2-2 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 USB Architecture and IBM Point of Sale Subsystem for Windows

Only one point-of-sale system keyboard is allowed on the host computer.

When a USB-attached Alphanumeric Point of Sale Keyboard is used as the system
keyboard, the keyboard status and indicator lights are consistent with a standard
Windows keyboard. The keystroke data is sent through the Microsoft Windows
keyboard buffer as a standard Microsoft Windows WM_CHAR message and is
available to the application that is currently in focus. The unique point-of-sale
features of the keyboard are non-functional until an IBM Point of Sale Subsystem
application that uses them is started.

When a USB-attached Alphanumeric Point of Sale Keyboard is used as a
point-of-sale keyboard, keystroke data is only available to IBM Point of Sale
Subsystem applications. Keystroke data can be read directly from the IBM Point of
Sale Subsystem or sent to the Microsoft Windows message queue as
POSM_KBD_WM_CHAR messages. The point-of-sale keyboard behavior is
consistent with the behavior of an SIO-attached Alphanumeric Point of Sale
Keyboard.

Chapter 2. Universal Serial Bus Architecture and IBM Point of Sale Subsystem for Windows ~ 2-3

created on October 2, 2001

2-4 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Chapter 3. Customizing the IBM Point of Sale Subsystem

The IBM Point of Sale Subsystem dynamically determines which point-of-sale
devices you have attached to your system. It also provides defaults for all resources
associated with devices that the IBM Point of Sale Subsystem supports. This
chapter discusses how the application can use a value different from the assigned
default, or can even allow the user to specify some resource values.

Configuring Your Applications

A resource in the IBM Point of Sale Subsystem, is a characteristic of appearance or
behavior that is associated with an instance of a device. A resource value can be
set in an application or a resource file.

A device connection is the connection between an application, and a hardware
device created by the IBM Point of Sale Subsystem when the application opens a
device. Applications can customize device connections each time a device is
opened.

You have the following options when specifying the resources for the devices your
application opens:

1. Specify all the resources in your application at the time the application opens, or
after the application opens by using the PosSetValues macro. You can choose
one of the following methods:

» Specify values in your application.
* Read values from your own configuration file, and convert them into the
appropriate resource names and values.

2. Allow the users of your application to specify the resource values for the
devices your application opens.

3. A combination of the above two options. Some resource values are specified by
your application, and some are specified by the users of your application.

If you choose to have the users of your application specify the resource values, you
should either provide a method for your users to specify the resource values to your
application, or you should have them list the resource values in a resource file. If
you have your users specify the resource values in a resource file, your application
then specifies that file name to the IBM Point of Sale Subsystem on the
M%Eed subroutine. Your program can then open devices with few or no
resources on the m subroutine call, and the IBM Point of Sale Subsystem
looks for the resource values in the file you specified. The IBM Point of Sale
Subsystem will use the default value for any resource not listed in the resource file,
and not specified as a resource on the @m subroutine call.

The Resource File

The resource file is an ASCII text file. The following are allowed in the resource file:
* Blank lines

« Comment records

* Resource records

Notes:

1. Leading blank characters on any line in the resource file are ignored.

2. The resource file is case-sensitive. Be sure to use the correct case for each of
the resource names and values.

© Copyright IBM Corp. 1993, 2001 3-1

Customizing the IBM Point of Sale Subsystem created on October 2, 2001

3-2

3. Blank lines are ignored by the IBM Point of Sale Subsystem.

The comment record is any line that has an exclamation point (!) as the first
non-blank character. The resource record consists of a qualified resource name, a
colon (:), and the value for the resource. The colon separates the qualified resource
name from the value being specified. A qualified resource name consists of the
following parts separated by a period:

* Application name

* Device instance name

* Resource name

The application name and the device instance name parts are optional. An asterisk
(*) character can be substituted for the separating period to indicate a wild card
match for either the application name, or the device instance name.

For example, the first line in the following example is the comment record, and the
second line is the resource record.

Device resource values must be specified in the resource file if the default value is
not acceptable, and if your application does not specify a value for the resource.
The possible resource values and the default values for each device are listed in
[Chapter 21 Resaurce Sets” on page 21-1|. This chapter uses the #define
constants provided for the resource name and the resource values. You should use
these constant names in the resource record without the Pos or PosN prefix. For
example, PosHIGH is a value for the resource PosNtoneVolume. To specify this in a
resource file, enter

*toneVolume: HIGH

The asterisk (*) indicates that this is not a fully-qualified resource value. It is used if
a more qualified resource value is not found.

In some instances, the resource value does not have a #define constant. In this
case, you should use the values listed for the resource directly. For example:

*pulseWidth: 100

The resource file in the following example shows a checkout keyboard with a tone
volume of HIGH, a tone frequency of HIGH and a tone duration of one second. The
ANPOS keyboard has a tone volume of LOW, a tone frequency of LOW and a tone

duration of 0.5 second. See tUsing Resources in Your Application” on page 5-14 for

information about how resources are defined and used.

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Customizing the IBM Point of Sale Subsystem

!**
|

I Example Resource File
!
!**

I common keyboard resources
!**************************

*toneVolume: LOW

*tonefFreq: LOW

+=toneDuration: 10

*till.pulseWidth: 100
*scanner.blockReadMode: 2

*scanner.beepState: ENABLE
*checkout.toneVolume: HIGH

*checkout.toneFreq: HIGH

*anpos.toneDuration: 5

*prnt.resumeString: ifgddddsdddasddgaaddaaddiai

Using the Resource File

When your application issues the [Pasinitialize() subroutine, the IBM Point of Sale
Subsystem builds an internal resource table comprised of the entries in the
resource file specified by the file parameter. There is one table built for each
Posinitialize() subroutine. The IBM Point of Sale Subsystem takes the file parameter
of the Poslinitialize() subroutine and looks for a file with that name in the directory
specified in the environment variable POSAPPLRESDIR. If this environment
variable is not set, the current directory is used.

Note: If the resource file is not found or cannot be read, no error is returned to the
application. The default values and the values specified by your application
will be used.

When a device is opened, the IBM Point of Sale Subsystem queries the internal
resource table to get any application characteristics for the device being opened
that were not specified using the args and nargs parameters on the ﬁb@‘
subroutine call.

The application name specified by the name parameter on the W
subroutine call and the device name specified by name on the

subroutine are prefixed to the name of each resource required for the device being
opened. This fully-qualified resource name is used to query the internal resource
table. The most qualified resource specification satisfies the query. For example, if
myapp] is specified for the application name parameter on the m and
mydisplay is specified for the device name on the w one of the resources
that is queried is the resource myappl.mydisplay.cursor. If

myappl.mydisplay.cursor: 20

is specified in the resource file, then there is an exact match. If, however, only
*mydisplay.cursor: 0

is specified, then this entry satisfies the query, because a more qualified resource
was not also specified in the resource file. For example, if the resource file contains

myappl.mydisplay.cursor: 20
*mydisplay.cursor: 0

Chapter 3. Customizing the IBM Point of Sale Subsystem 3-3

Customizing the IBM Point of Sale Subsystem created on October 2, 2001

then the cursor for the display is 20 because the most fully qualified resource name
myappl.mydisplay.cursor is selected.

Note: If equally qualified duplicate definitions for a resource are found in the
resource file, the value of the last, most-qualified definition is used.

Configuring the Alphanumeric Point of Sale Keyboard

3-4

If your system has one of the alphanumeric point-of-sale keyboards attached as the

Point of Sale system keyboard, you should use the ANPOS utility program to:

» Define double keys on the Point of Sale system keyboard. These key switches
77,78, 82, 87, 88, 90, 94, 95, 99, 100, 105-109, 112-123, and 125-128, can be
doubled.

» Override the keyboard default values for the following:

— Numeric Keypad zero (Key 94, 99)
— Key click
— POS LEDs initial setting

The ANPQOS utility is run automatically at boot time. The utility uses the resource
file, aipsys.res, which is included with the IBM Point of Sale Subsystem:

* On OS/2 and Windows systems, aipsys.res is located in the IBM Point of Sale
Subsystem root directory (default C:\PO0S).

* On Linux systems, aipsys.res is located in the /etc directory.

On 0S/2, the ANPOS utility program can be run from the STARTUP.CMD file or
from an OS/2 command prompt. On Microsoft Windows 3.1, the ANPOS utility
program can be run from the WIN.INI file or from the Run prompt under Program
Manager. The ANPOS utility program requires as a parameter the fully qualified
path, and file name of a resource file containing the resources to be overridden. For
example, to use the resource file C:\POS\AIPSYS.RES as a parameter to the ANPOS
utility program the following command would be used:

C:\POS\BIN\AIPANPOS C:\POS\AIPSYS.RES

A sample resource file named AIPSYS.RES is included in the default C:\POS directory.
If you installed the IBM Point of Sale Subsystem in a different location, substitute
the correct directory name where C:\P0S appears above.

Notes:

1. Use the ANPOS utility program to set the double keys and the numeric keypad
zero on an alphanumeric point-of-sale keyboard that is attached as the Point of
Sale system keyboard. Requests from an application using the IBM Point of
Sale Subsystem subroutines are ignored.

2. The definitions of the keyboard characteristics must use the application name
aipanpos and the device name system. This allows them to be specified in the
resource file used by your application. For example:

aipanpos.system.keyboardClick: SOFT
aipanpos.system.doubleKey01: 77,82
aipanpos.system.doubleKey02: 90,95

3. The ANPOS utility records any errors in the file, aipanpos.log. On OS/2 and
Windows systems, aipanpos.log is created in the LOG directory of the IBM
Point of Sale Subsystem root directory (default C:\POS\LO0G). On Linux systems,
aipanpos.log will be created in the /var/log directory.

4. The AIPANPOS utility has been modified to support the USB system keyboard
(there is no SIO system keyboard). The main functions of this utility are:
* Double key table download

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Customizing the IBM Point of Sale Subsystem

* POS LEDs initial setting
» Key click setting

The POS LEDs and the key click setting are not supported for the USB system
keyboard.

Note: There is no change in the function of the Point of Sale system keyboard
that is attached as the system keyboard port.

See the IBM Point of Sale Subsystem: Installation, Keyboards and Code Pages
book for the key switch number maps.

Chapter 3. Customizing the IBM Point of Sale Subsystem 3-5

created on October 2, 2001

3-6 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Chapter 4. Performing Problem Determination

This chapter provides information about problem determination for the IBM Point of
Sale Subsystem.

Problem Determination on 0S/2

The IBM Point of Sale Subsystem for OS/2 device handlers make use of the First
Failure Support Technology/2 (FFST/2) software for providing problem determination
services. The FFST/2 is a collection of software reliability, availability, and
serviceability (RAS) functions.

The features of FFST/2 that are used by the IBM Point of Sale Subsystem for OS/2
are:

» Console services
» Customized dump
» Error logging

For more information about using FFST/2, see the FFST/2 Administration Guide.

Viewing Point of Sale Error Messages on 0S/2

The IBM Point of Sale Subsystem for OS/2 device handlers use internal subroutines
to perform the error logging functions, and provide the appropriate parameters and
data to FFST/2. FFST/2 provides the logging and maintenance of the diagnostic
data along with an OS/2 Presentation Manager user interface for viewing:

» Console messages

» Customized dumps

* Logged messages

See the FFST/2 Administration Guide for more information about FFST/2.

IBM Point of Sale Subsystem for OS/2 customer support requires the FFST/2 error
log and dump files to perform problem determination. The error log file is
C:\0S2\SYSTEM\EPW\0S2MLOG.DAT. The dump files are in the C:\0S2\SYSTEM\EPW
directory. Each dump file is named OS2SYS??.DMP where the ?? is an integer.
FFST/2 defaults to a maximum of 32 dump files.

Viewing Point of Sale Trace Events on 0S/2

The IBM Point of Sale Subsystem for OS/2 device handlers use the OS/2 system
trace facility for keeping track of major IBM Point of Sale Subsystem events. The
IBM Point of Sale Subsystem for OS/2 device handlers use a major trace code of
93 (0x5D). Within this major trace code, the IBM Point of Sale Subsystem for OS/2
uses various minor trace codes for different events. The OS/2 trace facility provides
user access to the system trace data. System traces can have an impact on
performance, so you should only be switch traces ON during problem
determination. In the normal operating environment, system traces should be off.

For more information about the OS/2 system trace facility, see the IBM 0S/2
Command Reference. For a list of the IBM Point of Sale Subsystem minor trace

codes see LAppendix B. Trace Codes” on page B-1l

© Copyright IBM Corp. 1993, 2001 4-1

Performing Problem Determination created on October 2, 2001

Problem Determination on the Microsoft Windows Operating System

The IBM Point of Sale Subsystem for Windows device handlers use event logging
and tracing to assist with problem determination. However, event logging and
tracing are intended for problem determination only, and should not be used in the
normal operating environment.

Viewing Events on Microsoft Windows

The IBM Point of Sale Subsystem for Windows provides an event logging facility. To
see logged events, create a file called DISPLAY.ON in the C:\POS directory. Reboot
your system to start viewing events.

When event viewing is enabled, the program, AIPCTRL.EXE, will be visible either on
the desktop (Microsoft Windows 3.1 and Microsoft Windows NT 3.51), or in the
Task Bar (Microsoft Windows 95, Microsoft Windows 98, Microsoft Windows NT 4.0,
and Windows 2000). Click AIPCTRL to view events. Event information should be
communicated to your IBM Point of Sale Subsystem for Windows customer support
representative. Be sure to include the error ID, major return code, and minor return
code.

To switch event viewing OFF, delete or rename the DISPLAY.ON file in the C:\P0S
directory. With event viewing switched ON, it is possible to close the AIPCTRL
Window and inadvertently shut down the IBM Point of Sale Subsystem for
Windows. Therefore, it is not recommended that event viewing be switched ON in a
production system environment.

Using Built-in Tracing on Microsoft Windows

The IBM Point of Sale Subsystem for Windows provides a tracing facility. To switch
tracing ON, create a file called TRACE.ON in the C:\P0S directory. Reboot your
system to start tracing.

When tracing is enabled, a file called AIPTRACE.LOG is created in the C:\POS\LOG
directory the first time IBM Point of Sale Subsystem for Windows is started after
tracing has been enabled; thereafter, AIPTRACE.LOG will be appended. The
AIPTRACE.LOG file should be sent to your IBM Point of Sale Subsystem for Windows
customer support representative; this file is not in a human-readable format.

To switch tracing OFF, delete or rename the TRACE.ON file in the C:\POS directory.
If tracing is switched ON, the AIPTRACE.LOG file can become very large and impact

system performance. Therefore, it is not recommended that tracing be switched ON
in a production system environment.

| Problem Determination on the Linux Operating System

I The IBM Point of Sale Subsystem for Linux device handlers use event logging and
I tracing to assist with problem determination. Event logging always occurs for Linux,
| but tracing is intended only for problem determination and should not be enabled in
I the normal operating environment.

4-2 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Performing Problem Determination

Viewing Events on Linux

To see any logged events on a Linux system, look at the aipctrl.log file in
/var/log. Event information should be communicated to your IBM Point of Sale
Subsystem customer support representative. Be sure to include the error ID, major
return code, and minor return code.

Using Tracing on Linux

The IBM Point of Sale Subsystem for Linux provides a tracing facility. To turn
tracing ON, modify the file called aipsys.conf that is in the /etc directory. Assure
that there is a line in the file as follows:

trace=on
Reboot your system to start tracing.

When tracing is enabled, a file called aiptrace.log is created in the /var/log
directory the first time that IBM Point of Sale Subsystem is started; thereafter,
aiptrace.log will be appended. The aiptrace.log file should be sent to your IBM
Point of Sale Subsystem customer support representative; this file is not in a
human-readable format.

If tracing is ON, the aiptrace.log file can become very large and can impact

system performance. It is not recommended that tracing be left on in a store
environment.

Chapter 4. Performing Problem Determination ~ 4-3

created on October 2, 2001

4-4 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Part 2. Programming Guide

Chapter 5. General Point of Sale Device Programming. 5-1
Your Application and the IBM Point of Sale Subsystem. 5-1
Initializing Your Applicaton51
Getting Input Messages . . . o 4
Determining which Devices are Avallable . e53
Opening Your Device .b4
Controlling Your Device e e55
Acquiring and Releasing Your Dewces - . 5-6

Acquiring and Releasing Devices from a Presenta’uon FaC|I|ty Appllcatlon 5-7
Acquiring and Releasing Devices from a Non-Presentation Facility

Application . . . e R
Defining User-Defined Characters C e e e5b8
Reading from Your Device59
Writing to Your Device . . . C e e e5b10
Closing Your Device Connec‘uons e L
Terminating Your Applicaton5M

OS/2 Exit List Processing51
Using Resources in Your Application512
Argument Lists e« S 4
Setting Argument List Values e« L4
Retrieving and Modifying Resources5-13
Building your Applicaton .b514
C Language Header Files O - L 4
IBM Point of Sale Subsystem L|brar|es e R)
Optimizing Application Performance5-16
Application Priority (OS/2 Only) -b16
Presentation Manager Considerations (OS/2 Only)b16
Microsoft Windows Considerations517
Polling Considerations . . . - R 4
Multi-threaded Application De5|gn o .«b-18
Improving the Maintainability of Your Appl|cat|on - L)
Chapter 6. Alarm Programming61
Characteristics of the Alarm .61
Functions Your Application Performs.6-1
SoundinganAlarm .61
Silencingan Alarm .6-1
Getting Alarm Status .62
Related Information . . . T
Subroutines Used with Alarm P © 4
Alarm PoslOCtl() Control Requests62
Alarm Resources.62
Alarm ErrorCodes .62
Chapter 7. Cash Drawer Programming71
Characteristics of the Cash Drawer71
Functions Your Application Performs.7-1
Opening a Cash Drawer Till71
Getting Cash Drawer Status.72
Setting Cash Drawer Pulse Width.72
Related Information . . . Y 2
Subroutines Used with Cash Drawer Y 2
Cash Drawer PoslOCtl() Control Requests72

© Copyright IBM Corp. 1993, 2001

created on October 2, 2001

Cash Drawer Event Messages.73
Cash Drawer Resources .73
Cash Drawer ErrorCodes73
Chapter 8. Display Programming81
Characteristics of the Displays81
Alphanumeric Display .81
Operator Display82
Shopper Display e < 2
Character and Graphics Drsplay e - 2
40-Character Liquid Crystal Display83
40-Character Vacuum Fluorescent Display Il and 2x20 Character VFD
Customer Display. . . . Y < 1
Two-Sided Vacuum FIuorescent Drsplay II C e e83
Functions Your Application Performs.83
Code Page Support. . . . T
Writing Characters to the Drsplay T <
Writing Bitmaps to the Display85b
Setting the Guidance Lights.86
Clearing the Display Screen.86
User-Defined Characters .86
Related Information e < 1Y
Subroutines Used with Drsplays e e e e88
Display PoslOCtl() Control Requests88
Display Resources .88
Display Error Codes. .88
Chapter 9. Keyboard Programming91
Characteristics of the Keyboards91
Keyboard Microcode Updates 92
50-Key Modifiable Layout Keyboard and 50 Key Modlflable Layout Keyboard
and Operator Display e98
Retail Point of Sale Keyboards. . . e < P
Modifiable Layout Keyboard with Card Reader e« R
ANPOS Keyboard95
Retail Alphanumeric Point of Sale Keyboard wrth Card Reader96
PC Point of Sale Keyboard (ANKPOS Keyboard) Y4
Point of Sale Keyboard V. I * &
PLU Keyboard and Display-Ill)
4685 Point of Sale Keyboard Model KO1.9-10
IBM 4820 SurePoint Solution Keypad.910
Defining Keys. < DA B
Restriction of the Keyboard Devrce Handler e R
Functions Your Application Perfforms912
Reading Keyboard Data. . . . C e e e e s o912
Using the Manager Keyboard Lock T * R K
Using the Keyboard Tone . . . e R e
Using the Keyboard Point of Sale Lrghts e D K
Controlling the Keyboard Click914
Controlling the Num Lock Key914
Controlling the Scroll Lockkey914
Controlling the Point of Sale-UniqueKeys9-14
Controlling the System Hot Keys * N)
Controlling the Keyboard Typematic Functron T * R 5
Specifying the Numeric Keypad Style.915
Specifying the Numeric Keypad Location9-15

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Related Information
Subroutines Used with Keyboard Co
Keyboard PoslOCtl() Control Requests .
Keyboard Event Messages. .
Keyboard Resources .
Keyboard Error Codes

Chapter 10. Magnetic Stripe Reader Programming .
Characteristics of the MSR. Ce e

One-Track Magnetic Stripe Reader.

Dual-Track Magnetic Stripe Reader

Three-Track Magnetic Stripe Reader .

Two-Head/Two-Sided Magnetic Stripe Reader

Restriction of the MSR Device Handler .
Functions Your Application Performs .

Unlocking the MSR

Reading MSR Data

MSR Read Buffer Format .

Locking the MSR
Related Information . .

Subroutines Used with MSR .o

MSR PoslOCtl() Control Requests .

MSR Event Messages

MSR Error Codes .

Chapter 11. Non-Volatile Random Access Memory Programming
Characteristics of the NVRAM Device .
Functions Your Application Performs . . .
Available NVRAM Application Address Space
The Cursor Position .
Opening NVRAM in Direct Mode or Sequentlal Mode .
Reading Data in Direct Mode or Sequential Mode
Writing Data in Direct Mode or Sequential Mode .
Related Information . . . G e
Subroutines Used with NVRAM .
NVRAM PoslOCtl() Control Requests
NVRAM Resources . .
NVRAM Error Codes .

Chapter 12. Printer Programming
Characteristics of the Printers.
IBM Model 2 Printer .
Print Mechanism
Fonts.
Line Length
Line Spacing .
Emphasized Prlntlng
Performance
IBM Model 3 and IBM Model 4 Prmters .
Print Mechanism
Fonts.
Line Length
Line Spacing .
Emphasized Prlntlng
Font Specification .
Performance .

. 9-15
. 9-15
. 9-15
. 9-16
. 9-16
. 9-16

. 10-1
. 10-1
. 10-1
. 10-2
. 10-2
. 10-3
. 10-3
. 10-3
. 10-3
. 10-4
. 10-4
. 10-5
. 10-5
. 10-6
. 10-6
. 10-6
. 10-6

. 11-1
- 11-1
. 11-2
. 11-2
. 11-2
. 11-3
. 11-3
. 11-3
. 11-4
. 11-4
. 11-4
. 11-4
. 11-4

. 12-1
. 12-1
. 12-1
. 12-1
. 12-2
. 12-2
. 12-2
. 12-2
. 12-2
. 12-2
. 12-3
. 12-3
. 12-3
. 12-3
. 12-4
. 12-4
. 12-4

Part 2. Programming Guide

created on October 2, 2001

IBM Model 3R and Model 4R Printers.
IBM Model 3F Fiscal Printer . . .
IBM Model 3F Fiscal Printer Restrlctlons
IBM Model 4A Printer. .
Addressable Print Positions Per L|ne .
Addressable Print Positions Per Character .
IBM 4689-001 and IBM 4689-002 Printer
Print Mechanism
Fonts.
Line Length
Line Spacing .
Font Specification .
Performance .
Restrictions

IBM 4689 Point of Sale Prlnter Model 301 3G1 3M1 and TD5 .

Print Mechanism
Fonts.
Line Length
Line Spacing .
Print Direction
Contrast (Amikake)
Line Characters (Keisen)
Performance .
Restrictions
IBM 4610 SureMark Pomt of Sale Pnnter
Print Mechanism
Fonts.
Line Length
Line Spacing .
Text Print Attributes .
Barcode Printing .
Pre-defined Messages and Logos
Font Specification.
Performance
MICR Recognition and Check FI|pp|ng
IBM 4610 SureMark Point of Sale Fiscal Prlnter

Functions Your Application Performs .

Code Page Support . .o

Reading Data from the Printer .
Reading MICR Data.
MICR Information.
Reading Fiscal Data.

Writing Data to the Printer

Writing Data in Normal Mode .
Printing a Line of Text at the Printer .
Printer Errors
Changing the Print Charactenstlcs
Line Buffering .
Determining When Prlntlng is Complete
Font Interactions .

Writing Data in Logo Mode
IBM Model 2, Model 3, Model 4, and Model 4A Pnnters
IBM 4610 SureMark Printer
4689 Models 3x1 and TD5 Printers .
Printer Errors

Writing Data in Download Message Mode (4610 SureMark Prlnters Only)

Point of Sale Subsystem Programming Reference and User’s Guide

. 12-4
. 12-4
. 12-4
. 12-5
. 12-5
. 12-5
. 12-6
. 12-6
. 12-6
. 12-6
. 12-6
. 12-6
. 12-6
. 12-6
. 127
. 12-7
. 12-7
. 12-7
. 12-8
. 12-8
. 12-8
. 12-8
. 12-8
. 12-8
. 12-8
. 12-9
. 12-9
.. 129
. 12-10
. 12-10
. 12-10
. 12-10
. 12-10
. 12-1
. 12-11
. 12-11
. 12-11
. 12-11
. 12-12
. 12-12
. 12-13
. 12-13
. 12-14
. 1214
. 12-15
. 12-15
. 12-15
. 12-17
. 12-17
. 12-17
. 12-18
. 12-18
. 12-18
. 12-19

12-19
12-19

created on October 2, 2001

Writing Data in Download Logo Mode

IBM 4610 SureMark Point of Sale Printers
IBM 4689 Models 3x1 and TD5 Printers
Printer Errors

Writing Data in Fiscal Mode (Flscal Prmter Only) .

Printing a Line of Text at the Printer .
Printer Errors

Control Characters . .

Escape Character Sequences .

Printer Input/Output Control Requests (IOCtI)
Printer Resources Ce e
Printer Event Messages

Determining the Printer Status .

Printer Queues.

Document Insert Station

IBM Model 2 Printer .

IBM Model 3, Model 3F, Model 3R Model 4 Model 4A and Model 4R
Printers . . .

IBM 4689-001 and IBM 4689 002

IBM 4610 SureMark Point of Sale Printers

Receipt Paper Cutter
Printing Checks
MICR Reader .

Fiscal Printing . .
User-Defined Characters .

IBM 4689-00x in 25 CPL Mode
IBM 4689-00x in 30 CPL Mode.
IBM 4689-301, 3G1, 3M1, and TD5 .

Performance Considerations.
Related Information .

Subroutines Used with the Pnnter
Printer PoslOCtl Control Requests
Printer Event Messages

Printer Resources

Printer Error Codes .

Chapter 13. Programmable Power Programming.
Characteristics of the Programmable Power Device.
Functions Your Application Performs .

Turning Power Off to a 4693-3x1, 4693- 4x1 4693 5x1 or 4693 7x1
Turning Power On and Off to the 4693-2x2. .
Querying the Time that Power Is to Be Turned On .

Related Information

Subroutines Used with Programmable Power Subsystem
Programmable Power Subsystem PoslOCtl() Control Requests
Programmable Power Resources .

Programmable Power Device Error Codes .

Chapter 14. RS-232C Programming .
Characteristics of the RS-232C Port
Functions Your Application Performs .

Controlling the RS-232C Port .
Reading RS-232C Data .

Error Definitions.

Writing RS-232C Data . . .
Getting RS-232C Port Status .

. 12-20
. 12-20
. 12-20
. 12-20
. 12-20
. 12-21
. 12-21
. 12-21
. 12-22
. 12-33
. 12-35
. 12-35
. 12-35
. 12-35
. 12-36

12-36

. 12-37
. 12-39
. 12-41
. 12-42
. 12-43
. 12-43
. 12-44
. 12-44
. 12-44
. 12-45
. 12-46
. 12-47
. 12-48
. 12-48
. 12-48
. 12-48
. 12-48
. 12-49

. 13-1
. 13-1
. 13-1
. 13-2
. 13-2
. 13-3
. 13-3
. 13-3
. 13-3
. 13-4
. 13-4

. 14-1
. 14-2
. 14-2
. 14-2
. 14-3
. 14-3
. 14-4
. 14-4

Part 2. Programming Guide

created on October 2, 2001

Related Information . . . e 2|
Subroutines Used with RS- 2320 e |
RS-232C PoslOCtl() Control Requests T Y
RS-232C Resources A, - 15
RS-232C Event Messages.145
RS-232C ErrorCodes .145

Chapter 15. Scale Programming 151

Characteristics of the Scale Devices S
IBM 4687 Point of Sale Sale Scanner Model 2 . S
IBM 4696 Point of Sale Scanner Scale Model 1 15-1
IBM 4698 Point of Sale Scanner Model2 152
IBM USB Scale Interface152

Functions Your Application Perfforms 152
Reading ScaleData152
Configuring the Scale. .154
Zeroingthe Scale .154
Clearing the Scale Display154

Scale Default Values e e154
IBM 4687 Point of Sale Scanner Model 2 155
IBM 4696 Point of Sale Scanner Scale Model 1 and IBM 4698 Pomt of

Sale ScannerModel2155
IBM USB Scale Interface155

Related Information . . . e e155
Subroutines Used with Scale . e e e155
Scale PosIOCil() Control Requests. 156
ScaleResources1586
ScaleErrorCodes. .1586

Chapter 16. Scanner Programming 16-1

Characteristics of the Scanners16-1
Hand-Held Bar Code Readers . . . e
IBM 1520 Hand-Held Scanner Model A02 A [52
IBM 4686 Retail Point of Sale Scanner16-2
IBM 4687 Point of Sale Scanner.16-2
IBM 4696 Point of Sale Scanner Scale16-2
IBM 4697 Point of Sale Scanner.16-3
IBM 4698 Point of Sale Scanner.16-3
IBM USB Scanner Interface16-3

Functions Your Application Performs 164
Unlocking and Locking the Scanner 164
Reading ScannerData .16-4
Discarding ScannerData16-8
Configuring the Scanner.16-8
Writing Data to the Scanner16-8

Processing Unexpected ScannerData 169

Scanner Default Values . . . e [)
Hand-Held Bar Code Reader (AII Models). e 1610
IBM 1520 Hand-Held Scanner Model AO2. 16-10
IBM 4686 Retail Point of Sale Scanner (All Models) 16-10
IBM 4687 Point of Sale Scanner (All Models) 16-11
IBM 4696 Point of Sale Scanner Scale Model 1. 16-11
IBM 4697 Point of Sale Scanner Model 1 16-11
IBM 4698 Point of Sale Scanner (All Models)16-12
IBM USB Scanner Interface16-12

Related Information .16-13

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Subroutines Used with Scanner .
Scanner PoslOCtl() Control Requests .
Scanner Event Messages. .
Scanner Resources .

Scanner Error Codes

Chapter 17. Touch Screen Programming.
Characteristics of the Touch Screen

Video Display.

Touch Input .
Touch Screen Mlcrocode Updates .

Tone Output . .

Touch Mouse Emulat|on .
Touch Mouse Emulation on OS/2

Touch Mouse Emulation on the Microsoft Wlndows Operatmg System

Restriction of the Touch Screen Device Handler .

Functions Your Application Performs .

Reading Touch Event Data.

Using the Tone .

Controlling Audible Feedback

Determining which Touch Screen is Avallable
Controlling the LCD Brightness .

Controlling the LCD Contrast .

Controlling the Screen Saver Time . .
Controlling the Backlight On Event Messages

Related Information

Subroutines Used with the Touch Screen
Touch PoslOCtl Control Requests .
Touch Event Messages .

Touch Resources

Touch Error Codes.

Chapter 18. Application Programming Interface .
PosClose(). Ce e
Poslnitialize() .

PoslOCtl() .

PosOpen()

PosRead()

PosWrite()

. 16-13
. 16-13
. 16-13
. 16-14
. 16-14

171
. 171
. 1741
. 171
172
172
. 17-2
. 17-2

17-2

. 17-3
. 17-3
. 17-3
. 17-3
. 17-4
. 17-4
. 17-4
. 17-4
. 17-5
. 17-5
. 17-5
. 17-5
. 17-5
. 17-5
. 17-5
. 17-6

. 18-1
. 18-3
. 185

18-8

. 18 10
. 18-16
. 18-19

Part 2. Programming Guide

created on October 2, 2001

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Chapter 5. General Point of Sale Device Programming

This chapter explains the necessary steps for using the IBM Point of Sale
Subsystem with your application program.

Your Application and the IBM Point of Sale Subsystem

Your application can be one of many applications that uses the IBM Point of Sale
Subsystem concurrently. In addition, your application can share access to a
point-of-sale device with other applications. The following sections describe the
general interaction between your application and the IBM Point of Sale Subsystem.

Initializing Your Application
The first thing your application must do before using the IBM Point of Sale

Subsystem to access any of the supported point-of-sale devices is to register with
the subsystem by calling the m&rm subroutine.

When you call the W subroutine, the following resources can be used to
control how the IBM Point of Sale Subsystem operates:

+ PosNgueueHandld

+ PosNreadTimeoud

Use the PasNqueueHandld resource to specify the input queue that will receive

system event messages. See [Paslnitialize()” an page 18-5 for details.

Use the PasNreadTimeoud resource to specify how long your application waits for
an event message on the IBM Point of Sale Subsystem input queue. The default
value for this resource is zero (0). This causes the m subroutine call to
return immediately if there are no event messages in the queue. If your application
changes the default value for this resource to -1, the read will wait indefinitely until
an event message is available for your application. Any other non-zero value
indicates the number of milliseconds the m subroutine should wait for an
event message to become available for your application.

If no event message becomes available within the number of milliseconds
requested, the 329 POSFRR_SYS_TIMEOUT error code is returned to your
application.

Notes:

1. The PasNreadTimeoul resource is used only when your application reads from
the IBM Point of Sale Subsystem input queue. It is not used when calling

for individual devices, or for the presentation facility queue.

2. The PasNreadTimeouf resource is ignored for applications compiled with a
16-bit compiler for the Microsoft Windows operating system, or for 32-bit
applications using Microsoft Win32s.

3. The PasNqueueHandle resource is ignored on systems that use the IBM Point
of Sale Subsystem for Linux. Linux systems must use the IBM Point of Sale
Subsystem input queue.

The following example shows how to register your application with the IBM Point of
Sale Subsystem:

#include <pos/pos.h>

© Copyright IBM Corp. 1993, 2001 5-1

General Point of Sale Device Programming created on October 2, 2001
int rc;

[*%% Register the application *xx/

rc = PosInitialize("myappl", /* application name */
"checkout", /* resource file name */
0, /* argc from command line =*/
0, /* argv from command Tine =/
0, /* no resources overridden x/
0); /* number of resources */

Getting Input Messages

Non-presentation facility applications obtain event messages, such as user input
and device errors, by calling the m subroutine with a device descriptor of
zero. The device descriptor of zero indicates that the read is directed to the IBM
Point of Sale Subsystem input queue. The IBM Point of Sale Subsystem input
queue is treated as a special input device. If you specify that you want your
application program to receive event messages on the IBM Point of Sale
Subsystem input queue, it must read the event messages from the queue. If the
application program does not read the event messages, the queue will eventually
become full and event messages will be lost. If this occurs, the IBM Point of Sale
Subsystem logs an error.

The following example shows how to read data from the IBM Point of Sale
Subsystem input queue:

#include <pos/pos.h>

int rc;
POSQMSG gmsg; /* defined in pos/pos.h */

[**% Register the application xxx/

rc = PosInitialize("myappl", /* application name */
"checkout", /* resource file name */
0, /* argc from command Tine =/
0, /% argv from command line =x/
0, /* no resources overridden */
0); /* number of resources */

/**% Read the input queue **x/

rc = PosRead(0, /* indicate input queue */
&qmsg, /* buffer address */
sizeof(qmsg)); /* buffer length */

The [BasRead(] subroutine for a device and ani subsequent [BasIOCH(] requests

use the device descriptor obtained from the subroutine call for that
device.

On 0S/2, Presentation Manager applications can use the Presentation Manager

input queue instead of the IBM Point of Sale Subsystem input queue by specifying
the appropriate value for the PasNqueueHandld resource on the m

subroutine, and the PosNqueueHandle resource on each w subroutine.

On Microsoft Windows, applications written for Microsoft Windows can use the
windows message queue instead of the IBM Point of Sale Subsystem input queue
by specifying the appropriate window handle for the PosNqueueHandld resource
on the m%psubroutine, and the PosNqueueHandld resource on each

subroutine.

5-2 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 General Point of Sale Device Programming

On Linux systems, the IBM Point of Sale Subsystem input queue must be used.
The PasNqueueHandld resource is ignored on systems that use the IBM Point of
Sale Subsystem for Linux.

The PosNqueueHandld resource for the Paslaitialize(] subroutine applies only to
system event messages, and the PosNqueueHandld resource for the |Eas_Qpﬁ

subroutine applies to device specific event messages. If your application is a
Presentation Manager application, or a Microsoft Windows application, it should
always override these resources on both the W and the m
subroutine calls.

See Chapter 20_Event Messaged for a complete list of the event messages.

Determining which Devices are Available
The IBM Point of Sale Subsystem tells your application which devices are attached

to the system by putting a PQSM_SYS DEVICE_QNLINH event message on the
queue specified by thew resource on the mﬂ

subroutine call.

Each event message consists of an event message identifier and two message
parameters, mp1 and mp2. For the Microsoft Windows operating system, mp1
corresponds to wParam and mp2 corresponds to /Param. Your application uses the
fields in the mp1 and mp2 parameters to determine if a particular online event
message is for a device that you want it to work with. Use the device type field to
validate the type of device. Use the slot number field, the port number field, and the
device number field to verify that the device is plugged into a location that your
application supports. Use the sub-type field in mp2 to distinguish between multiple

devices that have the same device number. See Chapter 20 Fvent Messaged for

more information about the mp7 and mp2 message parameters. See

[POSM_SYS _DEVICE_ONI INEF” on page 20-29 for more information about the
POSM_SYS_DFEVICE_OQONI INH event message.

Once your application detects an online event message for a device that you want it
to use, it must issue the [PasOpen(] subroutine call to open a connection to the
device.

The following example shows how to read data from the IBM Point of Sale
Subsystem input queue to determine which devices are online:

#include <pos/pos.h>
#include <pos/scanner.h>

int rc; /* Function return code */

int DevType = 0; /* Device type from ONLINE msg */

int SubType = 0; /* SubType from ONLINE msg */

POSQMSG qmsg; /* defined in pos/pos.h */

/*%% Register the application #%x*/

rc = PosInitialize("myappl", /* application name */
"checkout", /* resource file name */
0, /* argc from command Tine */
0, /* argv from command Tine */
0, /* no resources overridden */
0); /* number of resources */

/*%% Read the input queue **x/

rc = PosRead(0, /* indicate input queue */
&qgmsg, /* buffer address */
sizeof(qmsg)); /* buffer length */

Chapter 5. General Point of Sale Device Programming 5-3

General Point of Sale Device Programming created on October 2, 2001

/**% Look for online messages **x/
if (POSM_SYS DEVICE ONLINE == gmsg.msg)
{

DevType = &lparint) pMsg->mpl & OxO00FF;
switch(DevType)
{

case PosTYPE_SCANNER:

{
SubType = (int) gmsg.mp2 & OxOQ0FF;
switch(SubType)
{

case PosSCAN_SUBTYPE_4696:

{

/*
Code to open the IBM 4696 scanner goes here

*
/
break;

} /* end case (PosSCAN_SUBTYPE 4696) */

} /* end switch (SubType) */
break;
}/* end case (PosTYPE_SCANNER) */

default:
{

break;

}

} /% end switch (DevType) */
} /* end if (POSM_SYS DEVICE ONLINE == gmsg.msg) */

Opening Your Device

Any application that intends to use a device must first issue a [PasOpen(] subroutine
call for that device. The [PasOpeny) subroutine opens a device connection between
the application and the device. A [PasOpen(] subroutine call must be issued for each
device that you want your application to use. A successful W subroutine
call returns the device descriptor.

It is possible for an application to have multiple device connections for the same
device. For example: One application opens two connections to the keyboard. A
second application opens one connection to the keyboard. The IBM Point of Sale
Subsystem will then have three device connections that share the same keyboard.
The applications must coordinate their use of this one keyboard.

In order to open a device using the w subroutine, you must identify the
resource set that represents the type of device that you want to use. A resource set
is the set of resources associated with a particular device class. A resource set is
identified to the m subroutine by the class parameter. Using the
appropriate resource set, issue a lPasOpen() subroutine call for each device that

%ou want to open. See FPasQpen()” on page 18-10 for more information about the

subroutine.

Use the PasNqueueHandld resource on the m subroutine to specify the

application’s input queue that will receive device specific event messages. See

[PosNqueueHandle” on page 21-14| for more information.

5-4 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 General Point of Sale Device Programming

Note: The PasNqueueHandld resource is ignored on systems that use the IBM

Point of Sale Subsystem for Linux. Linux systems must use the IBM Point of

Sale Subsystem input queue.

The following example shows how to open a device:
#include <pos/pos.h>
int msrdes;
char * mymsr = "msr";
PosArg resources[3];

[**% Register the application **x/

rc = PosInitialize("myappl", /* application name */
"checkout", /* resource file name */
0, /% argc from command line =x/
0, /* argv from command line =*/
0, /* no resources overridden x/
0); /* number of resources */

/*%% Setup the resources for opening the device %%/

resources[0].name = PosNslotNumber;

resources[0].value = PosSLOT 1;

resources[1].name = PosNportNumber;

resources[1].value = PosPORT 1;

resources[2].name = PosNdeviceNumber;

resources[2].value = PosDEVICE_MSR_3 TRACK A;

[*x% Open the MSR *xx/

msrdes = PosOpen(mymsr, /* name in resource file */
PosMsr, /* resource set */
&resources, /* resources overridden */
3); /* number of resources */

Controlling Your Device

Your application can control how the point-of-sale devices work by using the
m%% subroutine call. The |ELQLCtLd subroutine takes as parameters a device

descriptor, the input/output control command request, an argument list, and the
number of arguments in the argument list. The device descriptor must be a valid

device descriptor opened by the W subroutine, the input/output request is
specific to each device, and the argument list is used to specify undefined resource

values or to override resource values previously defined.

Upon successful completion, the [PasIOCtI(] subroutine returns a 0 (zero). If an error

occurs, a -1 will be returned and errno is set to indicate the error. See

bn page 18-8 and Chapter 19. PoslOCtl() Requestd for more information.

The following example shows how to control a device:
#include <pos/pos.h>

int kbddes;
int rc;
char * mykbd = "kbd";

[**% Register the application **x/

rc = PosInitialize("myappl", /* application name */
"checkout", /* resource file name */
0, /% argc from command line =x/
0, /* argv from command line =/
0, /* no resources overridden x/
0); /* number of resources */

Chapter 5. General Point of Sale Device Programming

5-5

General Point of Sale Device Programming created on October 2, 2001

[*xx Open the keyboard %/

kbddes = PosOpen(mykbd, /* name in resource file x/
PosKeyboard, /* resource set */
0, /* no resources overridden x/
0); /* number of resources */

/**% Acquire exclusive use of the keyboard #¥x/

= PosIOCt1(kbddes, /* descriptor from PosOpen */
POS_SYS_ACQUIRE_DEVICE, /* request */
0, /* no resources overridden x/
0); /* number of resources */

/*xx Sound the keyboard tone **x/

= PosIOCt1(kbddes, /* descriptor from PosOpen x/
POS_KBD_SOUND_TONE, /* request */
0, /* no resources overridden =/
0); /* number of resources */

Acquiring and Releasing Your Devices

5-6

IBM Point of Sale Subsystem devices can be shared between applications if the
applications coordinate the acquiring and releasing of the devices. Your application
can acquire exclusive use of a device and not release the device if you do not want
any other application to use the device.

Once your application has created a device connection by using the m
subroutine call, it must use the PQS_SYS_ACQUIRE_DEVICH [PaslOCt(] request
to acquire the device. As long as no other application has the device acquired, the
application requesting the device is granted exclusive use of it. If some of the
devices required by your application are acquired by another application, do not
send repetitive [PaslOCHI(] requests to try to acquire them. Instead, wait until the
POSM_SYS_DEVICE_RFI FASED event message is posted to the message
queues that were specified on the W call for those devices.

All device connections require that you acquire exclusive use of the device before
operations using the device connection affect the device. Usually, setup operations
using the POS_SYS_SFT_VAI UES IPosIOCH(] request can be done using the
device connection without acquiring the device. However, the setup operation will
not take affect until you have acquired exclusive use of the device. Issue the
POS_SYS_ACQUIRE_DEVICH request on the [PasIOCHI[] subroutine to acquire the
device. Issue the PQS_SYS_RFI FASE_DFEVICH request on the [PasIOCHi(]

subroutine to release the device.

After your application has acquired exclusive use of a device, it will receive all event
messages for that device. These event messages are put on the queue that was

specified on the w subroutine. See Chapter 20_Event Messaged for a

complete list of event messages.

If an application has opened the same device more than once, the application has
multiple connections for the device. However, the application can only have one
device connection to that device acquired at a given time. When an application
releases a device, the device is available for any application to acquire it.

Notes:

1. If the target device is not acquired, all m requests fail, except for
PQS_SYS ACQUIRE_DEVICH PQS_SYS GET VALUES, and
BOS_SYS _SET_VALUES, with error code B13
POQFRR_QYQ_NOT_A(‘()I IIRED

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 General Point of Sale Device Programming

2. If the target device is not acquired, all other IBM Point of Sale Subsystem

subroutine calls fail, except for PosClose(), [PasOpen(), and Poslnitialize(), with
B15 POSFRR_SYS NOT ACQUIRED.

error code

The following example shows how to acquire and release a device:
#include <pos/pos.h>
int msrdes;
int rc;
char * mymsr = "msr";

[**% Register the application **x/

rc = PosInitialize("myappl", /* application name */
"checkout", /* resource file name */
0, /% argc from command line =x/
0, /* argv from command line =*/
0, /* no resources overridden x/
0); /* number of resources */

[*x% Open the MSR #xx/

msrdes = PosOpen(mymsr, /* name in resource file x/
PosMsr, /* resource set */
0, /* no resources overridden */
0); /* number of resources */

[**% Acquire exclusive use of the MSR #¥x/
rc = PosIOCt1(msrdes, POS_SYS _ACQUIRE DEVICE, 0, 0);

/**% Release exclusive use of the MSR %%/
rc = PosIOCt1(msrdes, POS_SYS RELEASE_DEVICE, 0, 0);

Acquiring and Releasing Devices from a Presentation Facility
Application

The guidelines for presentation facility applications (for example, Presentation
Manager) that need to cooperatively share a single device are:

* When your application is told that none of its windows has the focus any longer,
it should release all acquired devices.

* When your application is told that one of its windows now has the focus, it should
try to acquire only the devices it requires.

Because the presentation facility informs the application losing the focus of the
focus change event before informing the application gaining the focus, the release
of the device occurs before a subsequent acquire is issued.

These are only guidelines. However, there can be times when you choose not to
have your application relinquish control of a particular device. For example,
suppose there are times when your checkout application cannot share the scanner.
When your application has the focus, it acquires exclusive use of the scanner.
When the user decides to open a window to run a calculator program, your
checkout program is told that it has lost the focus. You can choose not to release
the scanner because you know that the application is in the middle of a transaction.

In the previous example, the calculator program receives an error if it attempts to
acquire the scanner. The calculator program can display an information box
informing the user that it was unable to acquire the scanner, and as such is unable
to fulfill any application function that requires use of the scanner.

Chapter 5. General Point of Sale Device Programming ~ 5-7

General Point of Sale Device Programming created on October 2, 2001

Acquiring and Releasing Devices from a Non-Presentation
Facility Application

Applications that do not use a presentation facility application (like Presentation
Manager) are assumed to be text-based applications running in a text window or a
full screen.

Note: DOS applications running on the Microsoft Windows operating system are
not supported by the IBM Point of Sale Subsystem for Windows on Microsoft
Windows 3.1.

Applications running in this environment do not have a presentation facility that tells
the application when it is losing or gaining focus. Because of this, applications in
this environment are responsible for designing their own guidelines for coordinating
multiple application use of a single device. Some methods that can be used
singularly or in conjunction with one another are:

» Applications developed that can detect other similar applications

» Applications developed to provide an interface for the user to indicate when to
use which devices

» Applications developed with flexibility to handle situations when devices cannot
be immediately acquired

Defining User-Defined Characters

In order to define characters to a point-of-sale device, your application must call the

subroutine. The mﬁl subroutine takes as parameters a device
descriptor, the input/output control command request, an argument list, and the
number of arguments in the argument list. The device descriptor must be a valid
device descriptor opened by the W subroutine, the input/output request is
specific to each device, and the argument list is used to specify the new user
defined characters. For the Character/Graphics Display, the input/output request is
POS_DSP_DFFINF_CHARACTERS and for the IBM 4689-00x printers, the
input/output request is POS_PRN_DFFINF_CHARACTERS.

Upon successful completion, the [PasiOCHI(] subroutine returns a zero (0). If an error
occurs, -1 will be returned and errno is set to indicate the error. See
for more information.

The following example shows how to define a user defined character:

#include <pos/pos.h>
#include <pos/display.h>

int dspdes;

int rc;

char * mydsp = "dsp";
PosArg udc[1];

char udcl_char[2];

char udcl_definition[32];

/**% Register the application **x/

rc = PosInitialize("myappl", /* application name */
"checkout", /* resource file name */
0, /* argc from command Tine =/
0, /* argv from command line */
0, /* no resources overridden x/
0); /* number of resources %/

/*%% QOpen the display **x/
dspdes = PosOpen(mydsp, /* name in resource file x/
PosDisplay, /* resource set */

5-8 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 General Point of Sale Device Programming

0, /* no resources overridden x/
0); /* number of resources */

/*** Acquire exclusive use of the display »*/
rc = PosIOCt1(dspdes, POS_SYS ACQUIRE_DEVICE, 0, 0);

/**% Define the new character #*x/
sprintf(udcl _char, "%c%c", 0x81, 0x41);
memset(udcl definition, 0, sizeof(udcl definition));

/*** Create a pointer to the new character xx/
udc[0] .name = udcl_char;
udc[0] .value = (Tong) udcl definition;

/*+% Defining a new character to the display #*xx/
rc = PosIOCt1(dspdes,
POS_DSP_DEFINE_CHARACTERS,
udc,
sizeof(udc)/sizeof (PosArg)); /* number of characters =/

Reading from Your Device

In order to read data from a point-of-sale device, your application must call the

subroutine. The m subroutine takes as parameters a device
descriptor, a pointer to a buffer into which the device data will be read, and the
number of bytes to read. The device descriptor must be a valid device descriptor
returned by the m subroutine, and the number of bytes to read should be
less than or equal to the size of the buffer into which data will be read.

Upon successful completion, the m subroutine returns the number of bytes
placed into the read buffer. If there is no data to be read, a 0 (zero) is returned to
your application as the number of bytes read. If an error occurs, -1 is returned and

ermo is set to indicate the error. See [PasRead()” on page 18-16 for more

information.

The following example shows how to read data from a device:

#include <pos/pos.h>

int msrdes;

int rc;

char buffer[200];
char * mymsr = "msr";

/*%% Register the application #%x*/

rc = PosInitialize("myappl", /* application name */
"checkout", /* resource file name */
0, /* argc from command line =*/
0, /* argv from command Tine =/
0, /* no resources overridden x/
0); /* number of resources */

[*x% Open the MSR *xx/

msrdes = PosOpen(mymsr, /* name in resource file */
PosMsr, /* resource set */
0, /* no resources overridden x/
0); /* number of resources */

/*%% Acquire exclusive use of the MSR %%/
rc = PosIOCt1(msrdes, POS_SYS ACQUIRE DEVICE, 0, 0);

[*x% Unlock the MSR to allow input s*x/
rc = PosIOCt1(msrdes, POS_SYS UNLOCK DEVICE, 0, 0);

Chapter 5. General Point of Sale Device Programming 5-9

General Point of Sale Device Programming created on October 2, 2001

/*
code to prompt operator to pass a card through, then
wait on MSR data available event message goes here

*/

/**% Read data from the MSR *xx/

rc = PosRead(msrdes, /* indicate MSR device */
&buffer[0], /* buffer address */
sizeof (buffer)); /* buffer length */

Writing to Your Device

In order to write data to a point-of-sale device, your application must call the

subroutine. The m subroutine takes as parameters a device
descriptor, a pointer to a buffer containing the data to write, and the number of
bytes to write. The device descriptor must be a valid device descriptor opened by
the w subroutine and the number of bytes to write should be less than or
equal to the size of the buffer containing the data to be written.

Upon successful completion, the [PasWrited) subroutine returns the number of bytes
processed from the buffer. If an error occurs, -1 is returned and errno is set to

indicate the error. See EPasWrite()” on page 18-19 for more information.

The following example shows how to write data to a device:

#include <pos/pos.h>

int prndes;

int rc;

char * test = "test line";
char * myprn = "prn";

[*xx Register the application xxx/

rc = PosInitialize("myappl", /* application name */
"checkout", /* resource file name */
0, /* argc from command line */
0, /* argv from command Tine =/
0, /* no resources overridden x/
0); /* number of resources */

[*x% Open the printer xxx/

prndes = PosOpen(myprn, /* name in resource file */
PosPrinter, /* resource set */
0, /* no resources overridden x/
0); /* number of resources */

[*xx Acquire exclusive use of the printer xxx/
rc = PosIOCt1(prndes, POS_SYS ACQUIRE DEVICE, 0, 0);

/*x% Write data to the printer =%/

rc = PosWrite(prndes, /* indicate printer device */
test, /* buffer address */
sizeof(test)); /* buffer length */

Closing Your Device Connections

When your application no longer requires a device, it should issue a m
subroutine call to close the device connection. The m subroutine releases

5-10 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 General Point of Sale Device Programming

the device connection if your application has the device acquired. Your application
should call the PasClose(] subroutine for each device connection that has been
successfully opened.

The following example shows how to close a device:
#include <pos/pos.h>
int msrdes;
int rc;
char * mymsr = "msr";

[**% Register the application **x/

rc = PosInitialize("myappl", /* application name */
"checkout", /* resource file name */
0, /% argc from command line =x/
0, /* argv from command line =*/
0, /* no resources overridden x/
0); /* number of resources */

[*x% Open the MSR #xx/

msrdes = PosOpen(mymsr, /* name in resource file x/
PosMsr, /* resource set */
0, /* no resources overridden */
0); /* number of resources */

/*%* Close the MSR #%*/
rc = PosClose(msrdes);

Terminating Your Application

When your application program exits to the operating system, the IBM Point of Sale
Subsystem closes any device connections not explicitly closed, and frees an
resources your application owns that were created as a result of the m
and the W subroutine calls. For OS/2, if your application terminates
abnormally, the same clean-up work takes place. On the Microsoft Windows 3.1
operating system, no such clean-up work can take place. As a result, if your
application has any devices acquired at the time of the abnormal termination, the
device will remain acquired and your application, when started again, will not be
able to use the device. In this situation, it will be necessary to restart the Microsoft
Windows operating system.

OS/2 Exit List Processing

Whenever an application program calls the Paslnitialize] subroutine, the IBM Point
of Sale Subsystem registers an exit list routine for that process. This exit list routine
gains control when the process ends, and ensures that all system resources are
released. This is especially important when the application program terminates
abnormally.

If the application program also registers an exit list routine and the routine calls the
IBM Point of Sale Subsystem, then the application exit list routine must run before
the IBM Point of Sale Subsystem exit list routines.

The order in which routines run is specified by the high order byte of the low order

word of the ulFunctionOrder parameter on the DosEXxitList() function call. The IBM
Point of Sale Subsystem reserves the values 0x70 to 0x73 for use in calling

Chapter 5. General Point of Sale Device Programming 5-11

General Point of Sale Device Programming created on October 2, 2001

DosExitList(). The application program should use a value less than 0x70 to ensure
that its exit list routine is called before the IBM Point of Sale Subsystem exit list
routines.

Using Resources in Your Application

Most devices allow you to affect the way the device behaves by specifying values
for resources used by the device. To help in specifying these resource values, the
IBM Point of Sale Subsystem provides some macros for you to use in your

application program. See LMacms_an_page_AJJ for more information about the

macros that are used with the IBM Point of Sale Subsystem.

Argument Lists

5-12

Argument lists are used to specify device resources. Each entry in a list contains
pairs of values of the form (name, value), as seen in the following example. For the
name field, a predefined resource name is used. For example, the name field for
the PasNslatNumber resource is "slotNumber". The value field should be cast to
long. If the size of the resource stored in the value member is less than or equal to
the size of Tong, the value is stored directly in the structure. Otherwise, the value
member represents a pointer to the resource value. The following example shows
the argument list structure.

typedef struct
{

char * name;
long value;

1
PosArg, *PosArgPtr;

Setting Argument List Values
There are different ways of setting argument values to pass to a device connection.
You should use the one that best fits your application needs.

The device connection receives the arguments when it is created by the PasOpen(]
subroutine, or afterwards by means of the PosSetValues macro. See [Retrieving
and Modifying Resources” on page 5-13 for more information about the
PosSetValues macro. Arguments can be set by:

 Statically initializing the argument list

» Using the macro PosSetArg

» Assigning the value directly

Statically Initialize Argument List: The following example shows how to set
argument values by statically initializing an argument list.

static PosArg args[] =

{ PosNslotNumber, PosSLOT 5 },

{ PosNportNumber, PosPORT 1 },

{ PosNdeviceNumber, PosDEVICE_SHOPPER_DISPLAY A }
}

The string in the first member of the entries should be specified by using the
corresponding macro definition that is the resource name prefixed with PosN.
Predefined names are listed in either the device’s header file, or in the
pos/device.h header file.

When the device connection is created, a pointer to the list and to the number of
items in the list can be passed to the device connection on the
subroutine call. To pass the number of items, use the macro PosNumber. The

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 General Point of Sale Device Programming

macro PosNumber determines the length of a fixed-size array. Using PosNumber
allows you to change the size of the argument list easily, and eliminates some
errors that are possible when using hard-coded numbers. The following example
shows how to use PosNumber.

PosArg args [5];
PosOpen("dsp860", PosDisplay, args, PosNumber(args));

Use the PosSetArg Macro: The following example shows how to set argument
values using the PosSetArg macro:
PosArg args[10]; // allocate enough space for future arguments
PosSetArg(args[0], PosNsTotNumber, PosSLOT 5);
PosSetArg(args[1], PosNportNumber, PosPORT_1);
PosSetArg(args[2], PosNdeviceNumber, PosDEVICE ALPHANUMERIC DISPLAY A);
PosOpen("dsp850", PosDisplay, args, 3);

In the above example, PosNumber returns 10 instead of 3, so it cannot be used to
specify the number of arguments passed to m Use an index that is
incremented for each use of PosSetArg, but do not increment or decrement it within
the first argument of PosSetArg because of the way this macro is implemented.

The following example shows how to set argument values in an argument list using

an index:
PosArg args[10]; // allocate enough space for future arguments
int n = 0;

PosSetArg(args[n], PosNslotNumber, PosSLOT 5); n++;

PosSetArg(args[n], PosNportNumber, PosPORT_ 1); n++;

PosSetArg(args[n], PosNdeviceNumber, PosDEVICE_OPERATOR DISPLAY A); n++;
PosOpen("dsp863", PosDisplay, args, n);

Assign Value Directly: The following example shows how to fill in or modify
argument values by assigning values directly.
PosArg args[10]; // allocate enough space for future arguments

args[0] .name = PosNslotNumber;
args[0].value = (long) 7;

Retrieving and Modifying Resources

Resources can be retrieved and modified by means of the macros PosGetValues
and PosSetValues. The application is responsible for allocating space into which the
resource value is copied when the value field of the argument contains a pointer.

The following example does not provide an argument list when the device is
opened. In this case, PasOpen(] opens the device using the device default values
of and the resources for the device specified in the resource file from the
subroutine. After the device has been opened, use the PosSetValues
macro to alter only those device’s resources with an “S” (settable) access code.
PosArg args[10];
int n = 0;

int device = PosOpen("myscanner", PosScanner, 0, 0);

PosSetArg(args[n], PosNbeepState, PoSENABLE); n++;
PosSetValues(device, args, n);

You can retrieve the current value of device resources with a “G” (gettable) access
code by using the macro PosGetValues. PosGetValues retrieves the named
resources from the specified device and copies the data into the given address.
See Chapter 21_Resource Setd for more information about access codes.

Chapter 5. General Point of Sale Device Programming 5-13

General Point of Sale Device Programming created on October 2, 2001

The following example illustrates how to retrieve the slot number, the port number,
and the device number of a device connection:

PosArg args[10];

int slot, port, device;

int n = 0;

PosSetArg(args[n], PosNslotNumber, -1); n++;
PosSetArg(args[n], PosNportNumber, -1); n++;
PosSetArg(args[n], PosNdeviceNumber, -1); n++;
PosGetValues(device, args, n);

When PosGetValues returns, args[0].value contains a copy of the device’s
PosNslotNumber resource value, args/1].value contains a copy of the device’s
resource value, and args[2].value contains a copy of the device’s
PosNdeviceNumber resource value. Declaring variables as the wrong data type
when retrieving resources can result in errors, because the IBM Point of Sale
Subsystem copies the data bitwise into the provided address.

Building your Application

The IBM Point of Sale Subsystem for OS/2 supports the following compiliers:
* IBM VisualAge C++ for OS/2
+ Borland™ C/C++ for 0S/2

The IBM Point of Sale Subsystem for Windows supports the following compilers:
* Microsoft Visual C++ Version 1.5 or later (16-bit applications)

* Microsoft Visual C++ Version 2.0 or later (32-bit applications)

» Borland C++ Version 4.5 or later (16-bit applications)

* Borland C++ Version 4.5 or later (32-bit applications)

* IBM VisualAge C++ Version 3.5 or later (32-bit applications)

The IBM Point of Sale Subsystem for Linux supports the GNU Compiler Collection
(GCCQ).

For information on compiling and linking your application, refer to your compiler's
documentation. All supported compilers have an Integrated Development
Environment (IDE) in addition to the traditional command line interface.

On your application development system, you will need to have the IBM Point of
Sale Subsystem header files and libraries.

C Language Header Files

The IBM Point of Sale Subsystem provides the C language header files required to
compile your program using the application programming interface (API). See

icati i for more information about
application programming interfaces. The default location of the header files is in the
directory C:\POS\INCLUDE\POS. The header files in this directory are:

alarm.h nvram.h
device.h pos.h
display.h power.h
drawer.h printer.h
errno.h rs232c.h
helper.h scale.h
keyboard.h scanner.h

5-14 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 General Point of Sale Device Programming

msr.h touch.h

IBM Point of Sale Subsystem Libraries

The IBM Point of Sale Subsystem provides compiler-specific libraries necessary to
link your application for your target operating system. For 16-bit applications, be
sure to specify the same memory model for compilation and linking.

The following libraries are to be used for linking a IBM Point of Sale Subsystem

application for OS/2;

Library Name Description
AIPAPI.LIB IBM VisualAge C++ for OS/2
AIPAPLLIB Borland C++ for OS/2

Use the following libraries to link a 16-bit IBM Point of Sale Subsystem application

for Microsoft Windows:

Library Name

Description

AIPW16MC.LIB Microsoft Visual C++ (16-bit), compact memory
model
AIPW16MS.LIB Microsoft Visual C++ (16-bit), small memory model

AIPW16MM.LIB

Microsoft Visual C++ (16-bit), medium memory
model

AIPW16ML.LIB Microsoft Visual C++ (16-bit), large memory model
AIPW16MH.LIB Microsoft Visual C++ (16-bit), huge memory model
AIPW16BC.LIB Borland C++ (16-bit), compact memory model
AIPW16BS.LIB Borland C++ (16-bit), small memory model
AIPW16BM.LIB Borland C++ (16-bit), medium memory model
AIPW16BL.LIB Borland C++ (16-bit), large memory model

Use the following libraries to link a 32-bit IBM Point of Sale Subsystem application

for Microsoft Windows:

Library Name Description
AIPW32MD.LIB Microsoft Visual C++ (32-bit), dynamic run-time
model
AIPW32MS.LIB Microsoft Visual C++ (32-bit), single-threaded library
AIPW32MM.LIB Microsoft Visual C++ (32-bit), multi-threaded library
AIPW32BS.LIB Borland C++ (32-bit), compact memory model
AIPW16BM.LIB Borland C++ (32-bit), small memory model
AIPWIMED.LIB Multi-threaded, dynamically-linked library
AIPWIMES.LIB Multi-threaded, statically-linked library
AIPWISED.LIB Single-threaded, dynamically-linked library
AIPWISES.LIB Single-threaded, statically-linked library

Use the following libraries to link a 32-bit IBM Point of Sale Subsystem dynamic link
library (DLL) for Microsoft Windows:

Library Name Description

AIPWIMDD.LIB IBM VisualAge C++ for Windows, multi-threaded,
dynamically linked library

AIPWIMDS.LIB IBM VisualAge C++ for Windows, multi-threaded,
statically linked library

AIPWISDD.LIB IBM VisualAge C++ for Windows, single-threaded,
dynamically linked library

AIPWISDS.LIB IBM VisualAge C++ for Windows, single-threaded,

statically linked library

Chapter 5. General Point of Sale Device Programming 5-15

General Point of Sale Device Programming created on October 2, 2001

Use the following library when linking an IBM Point of Sale Subsystem for Linux
application:

Library Name Description

libaiplib.so GNU Complier Collection

Optimizing Application Performance

Before you write applications, read this section to learn how to optimize the rate at
which the applications function in conjunction with the IBM Point of Sale
Subsystem. Some performance tuning can be done with little modification to the
application, but some must be designed into the program. The following sections
discuss several ways to optimize the performance of an application that is using the
IBM Point of Sale Subsystem.

Application Priority (OS/2 Only)

When dynamic OS/2 system priority variation is enabled, the process that currently
has the focus receives a higher priority. (Dynamic priority variation is the default.)
The priority it receives is between regular, level 31, and fixed-high, level 0. Any
thread running at fixed-high priority has an advantage over threads running at
regular priority or below.

Dynamic priority variation allows the operating system to adjust the base priority of
a thread, based on factors such as system load and process activity. Allowing the
operating system to raise the priority of the process that currently has the focus,
prevents process starvation. Dynamic priority variation is the default, but can be
explicitly specified by indicating PRIORITY=DYNAMIC in the CONFIG.SYS file.

You can set the operating system to run with absolute priority (PRIORITY=ABSOLUTE).
However, under absolute priority, starving processes and processes that have the
focus never receive higher priorities. Dynamic priority variation produces the best
operating system performance under most conditions.

If you want your application to have processor access at a higher priority than other
applications that might currently have the focus, and if those applications have a
regular priority class, use a priority class of fixed-high, level 0. Threads that have a
priority class of fixed-high have a lower priority than time-critical threads, but a
higher priority than threads that have the default priority class (regular, level 0). In
addition, when an application thread issues an IBM Point of Sale Subsystem
subroutine call, it receives a temporary higher priority of fixed-high, level 31.

Advantages: An application that is running at a fixed-high priority has a processor
priority well above the default priority of most applications. You should not set the
application to time-critical priority because time-critical priority lowers the efficiency
of the system.

Disadvantages: If there is more than one application set to fixed-high priority, the
applications will contend against each other for processor time.

Presentation Manager Considerations (0S/2 Only)

5-16

If your application is a Presentation Manager application, use a Presentation
Manager message queue instead of the default IBM Point of Sale Subsystem input
queue (device descriptor zero) for receiving IBM Point of Sale Subsystem event
messages. Specify the Presentation Manager queue handle using the

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 General Point of Sale Device Programming

PasNqueueHandld resource on the [Pasinitialize(] subroutine call, and the
PosNqueueHandid resource on the PasOpeny] subroutine call.

For Presentation Manager programs, the Presentation Manager call to read the
queue waits until a message appears on the queue before returning to the
application, so the application never needs to poll the input queue.

Microsoft Windows Considerations

If your application is a Microsoft Windows application, use the Microsoft Windows
message queue instead of the default IBM Point of Sale Subsystem input queue
(device descriptor zero) for receiving IBM Point of Sale Subsystem event
messages. Specify the appropriate Microsoft Windows window handle using the
resource on the m subroutine call and the

resource on the Im subroutine call.

For Microsoft Windows programs, the Microsoft Windows call to read the queue
waits until a message appears on the queue before returning to the application, so
the application never needs to poll the input queue.

Polling Considerations

By default, the IBM Point of Sale Subsystem application programming interface
does not wait for an event message to appear on the default IBM Point of Sale
Subsystem input queue. Applications must continually read (or poll) the IBM Point of
Sale Subsystem input queue to receive notification of an event message. Polling
uses a great deal of processor time.

For non-Presentation Manager OS/2 applications, if you want your application to
wait for event messages, you should set the PasNreadTimeoud resource to the
number of milliseconds your application should wait for an event message. A value
of -1 indicates the application wants to wait indefinitely for an event message and a
value of 0 (zero) indicates the application does not want to wait for an event
message.

If you must poll: If your application is not an OS/2 Presentation Manager
application or a Microsoft Windows application and your application uses the
PosNreadTimeout resource value of 0 (zero), your application must poll the IBM
Point of Sale Subsystem input queue to receive input on a timely basis. While
polling does use a great deal of processor time, there are ways to make polling
more efficient.

Note: The PasNreadTimeout resource is ignored for 16-bit applications for the
Microsoft Windows operating system and for 32-bit applications using
Microsoft Win32s on Microsoft Windows 3.1.

The following example shows one way to poll the IBM Point of Sale Subsystem
input queue. Keep the following notes in mind for the example:

Notes:

1. The example sleeps for a short amount of time rather than continually calling
the @ subroutine. This allows other processes to have access to the
processor while this process is waiting.

2. The example only sleeps if there is no event message in the IBM Point of Sale
Subsystem input queue at the time of the m subroutine call. If there is
more than one event message in the input queue, there will not be an
intervening DosSleep() call between the two reads.

Chapter 5. General Point of Sale Device Programming 5-17

General Point of Sale Device Programming created on October 2, 2001

3. This example is similar to Presentation Manager programs. After initialization,
the main purpose of the example is to wait for event messages and then act
upon those event messages.

4. If your application also responds to input from the system keyboard, user input
must be looked for as well. (The AIPTSTR sample code has an example of how
to do this.)

5. Error checking was omitted in the example code for brevity.

6. Polling is not recommended, and should be avoided if possible.

int Done = 0;
int BytesRead;
POSQMSG gmsg;
while (! Done)
while (0 == (BytesRead = PosRead(0, &gmsg, sizeof(qmsg))))

DosSleep(50); /* Sleep for 50 milliseconds x/
1

switch(gmsg.msg)
{

/* Process the event message here */

Multi-threaded Application Design

5-18

Multi-threaded applications have many useful aspects in programming, including
improving the apparent performance and simplifying logic design. However, using
multiple threads when they are not needed can cause inefficiencies.

No more than one IBM Point of Sale Subsystem application programming interface
subroutine can be active at the same time. When an IBM Point of Sale Subsystem
application programming interface subroutine is called by one thread in a process,
IBM Point of Sale Subsystem application programming interface calls by any other
thread in the same process are blocked (prevented from processing) until the first
call is complete. When the first call completes, one of the waiting calls is processed.

The only exception to this is when the m subroutine is called for the IBM
Point of Sale Subsystem input queue (device descriptor zero). The

i resource allows a read operation on the IBM Point of Sale
Subsystem input queue to be suspended until data is available to be read. When
one thread is waiting for data on the input queue, other threads can successfully
call IBM Point of Sale Subsystem application programming interface subroutines for
other device descriptors and not be blocked. Even with this exception, only one of
the other IBM Point of Sale Subsystem application programming interface calls can
be active simultaneously.

A good example of a multi-threaded application design is one thread controlling one
set of input/output devices, such as a base point-of-sale terminal and the devices

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

General Point of Sale Device Programming

attached to it, and a second thread controlling another set of input/output devices,
such as a satellite point-of-sale terminal and the devices attached to it.

An example of an unnecessary multi-threaded design is one thread to control each
device. Having one thread control each device does not improve performance, and
can be an unnecessary complication to program logic flow.

Improving the Maintainability of Your Application

This section contains some suggestions for improving the maintainability of your
application.

1.

2.

Use the #define constants provided in the IBM Point of Sale Subsystem header
files instead of hard-coding values.

Use the sizeof() and the PosNumber() macros when passing array information
to the IBM Point of Sale Subsystem. This ensures that the values are correct if
array or buffer sizes change.

The resource names and values in the resource file must be spelled correcily,
and must have the correct case (upper or lower) to be recognized.

For OS/2, all applications must be compiled as multi-threaded applications.

For OS/2, if possible, use the version of the runtime library that is statically
linked. This increases the size of the application, but reduces load time in most
cases.

Allow the compiler to perform the program linking. The compiler sets many
switches that are necessary for trouble-free linking. If you want to call the linker
explicitly, be sure that you use the same switches that the compiler does.

Set the compiler to a high warning level. This ensures that potential errors, like
calling non-prototyped functions are caught early.

Chapter 5. General Point of Sale Device Programming 5-19

General Point of Sale Device Programming created on October 2, 2001

5-20 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Chapter 6. Alarm Programming

The alarm device handler is software that manages communication between your
application and the alarm. An application can access the device only through the
device handler.

Characteristics of the Alarm

» Each point-of-sale terminal supports one alarm. An alarm can only be connected
to socket 3B of the point-of-sale terminal.

» Socket 3B output can be set high or low to activate an attached alarm.

Notes:
1. The alarm device is not supported on any model of the IBM 4695.

2. The alarm device is not supported on the IBM Point of Sale Subsystem for
Linux.

A cash drawer, instead of an alarm, can be connected to socket 3B. The IBM Point
of Sale Subsystem cannot distinguish whether the attached device is an alarm or a
cash drawer. The alarm device handler, upon detecting a device in socket 3B,
notifies your application that both a cash drawer and an alarm are available. If the
application can support both a cash drawer and an alarm, the application must
allow the user to specify which is attached.

Functions Your Application Performs

An application program can perform the following functions with the alarm:
* Sound an alarm
» Silence an alarm
* Get alarm status

Before your application program can access the alarm, it must open the alarm (see

[Qpening Your Device” on page 5-4) and lacquird exclusive use of the alarm.

Sounding an Alarm

To sound an alarm, issue a m subroutine call and specify
POS_AlI ARM_SOUND_AI ARM for the requesé%arameter. If the alarm is not
acquired, the request fails with the error code

POSERR_SYS_NOT_ACQUIRFED. If the alarm is not online, the request fails with
B17Z POSFRR_SYS DEVICE QFELINE.

the error code

The alarm continues to sound until you silence it. If you sound an alarm that is
already sounding, no error is returned.

Silencing an Alarm

To silence an alarm, issue a PasIOCHI(} subroutine call and specify

POS_AI ARM_SII ENCE_AI ARM for the request parameter. This request is only
accepted by the acquired alarm connection, and it does not matter if the alarm is
online at the time. If the alarm is not acquired, the request fails with the error code

B15 PQSERR_SYS NOT ACQUIRED.

If you silence an alarm that is not sounding, no error is returned.

© Copyright IBM Corp. 1993, 2001 6-1

created on October 2, 2001

The alarm can also be silenced implicitly by issuing one of the following:

« [PasIOCH(] subroutine call, specifying PQS_SYS_RFI FASE_DFEVICH for the
request parameter. Re-acquiring the device does not automatically sound it
again. You must explicitly sound the alarm if you want it back on.

. m subroutine call, if your application has the alarm acquired at the time
of this call.

Getting Alarm Status

The status of the alarm can be determined by calling the m subroutine with
the PQS_SYS GET VALUES request for the PasNalarmStatus resource. You can
get the alarm status whether the device is acquired or not. This request returns the
current state of the alarm, whether it is sounding or silent, and whether it is

presently online or offline. See tPasNalarmStatus” on page 21-18 for more

information.

If the device is reported as being offline, it is also reported as being silent.

Related Information

Additional information about alarm programming is in these chapters:

. hhaptpr91 Resource Setd

+ lAppendix D _Frror Caded

Subroutines Used with Alarm
See Chapter 18 Appli

Alarm PoslOCtl() Control Requests
See Chapter 19 PoslOCHl() Requestd:
PQS_ALARM SITENCE _ALARM

Alarm Resources
See Chapter 21_Resource Setd:
PosNalarmStatud

Alarm Error Codes
There are no error codes that are specific to the alarm.

6-2 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Chapter 7. Cash Drawer Programming

The cash drawer device handler is software that manages communication between
your application and the cash drawer. An application can access the device only
through the device handler.

Characteristics of the Cash Drawer

The cash drawer has the following characteristics:

» Each point-of-sale terminal supports a maximum of two cash drawers. Cash
drawers can be connected to socket 3A or 3B of the point-of-sale terminal.

» To open a cash drawer till, your application must send a pulse of a minimum
duration to the cash drawer. If you use an IBM cash drawer, the pulse time is 80
milliseconds. If you use a non-IBM cash drawer, other pulse times might be
requwed The pulse width is speC|f|ed by the PasNpulseWidth resource. See

for more information.

An alarm, instead of a cash drawer, can be connected to socket 3B. The IBM Point
of Sale Subsystem cannot distinguish whether the attached device is a cash drawer
or an alarm. The cash drawer device handler, upon detecting a device in socket 3B,
notifies your application that both a cash drawer and an alarm are available. If the
application can support both an alarm and a cash drawer, the application must
allow the user to specify which is attached.

Functions Your Application Performs

An application program can perform the following functions with the cash drawer:
* Open a cash drawer till

* Get cash drawer status

» Set cash drawer pulse width

Note: Before your application program can access the cash drawer, it must open
the cash drawer device and acquire exclusive use of it.

Opening a Cash Drawer Till

To open a cash drawer till, issue a [PasIOCH(] subroutine call and specify
PQS_TIlI _OPEN_TIl | for the request parameter. If the cash drawer is not
acquired, the request fails with the error code

POSERR_SYS_NOT_ACQUIRED. If the cash drawer is not on-line, the request
fails with the error code B17Z POSFRR_SYS_DFVICE_QFFI INH. Opening a cash
drawer till that is already open returns no error. Opening a cash drawer till that is
locked with a manager key returns no error.

When a till is detected as being physically opened, the application with the acquired
device connection receives the BQSM_TII1 _OPENFED event message. Usually, this
event message is the response to your application requesting the cash drawer till to
be opened. If not, it probably means that the manager’s key was used to open the
cash drawer till manually. This event message is sent to your application through
the input queue associated with the acquired device connection. This allows your

application to notify the operator that it detected the action and how to proceed.

See [lPQSM_TILL_QPENED” on page 20-24 for more information.

© Copyright IBM Corp. 1993, 2001 7-1

Cash Drawer Programming created on October 2, 2001

Getting Cash Drawer Status

The status of the cash drawer can be determined by calling the PaslOCt()
subroutine with the POS_SYS_GET_VALUES request for the

resource. You can get the cash drawer status whether the cash drawer is acquired
or not. This request returns the current state of the cash drawer till, whether it is
open or closed. In addition, the state of whether the device is presently on-line or

off-line is returned. See PosNtillStatus” on page 21-23 for more information.

When you issue an open cash drawer till request, give the cash drawer till time to
physically open before requesting status, or wait for the PQSM_TIL L _QPENED
event message.

When the cash drawer till is detected as being closed, the application with the
acquired cash drawer connection receives the PQSM_TILL_ClL QSED event
message, indicating that the cash drawer till is closed. This condition is also
reflected in the m resource.

Setting Cash Drawer Pulse Width

The cash drawer pulse width can be set or queried by calling the m
subroutlne with the PQS_SYS_SET VAI LIES request or the

POS_SYS_GFET_VAIUES request for the [PasNpulseWidth resource. See
LEosz.u.IselALLd.Lh_on_pa.ge_Z_ﬂl for more information.

Note: The default value for PasNpulseWidth is normally long enough that your
application should rarely, if ever, find it necessary to set the cash drawer’s
pulse width. If you do need to use a value other than the default, specify the
value in a resource file to enable all applications to use the same value. This
prevents the possible situation of each application having a different value
for the pulse width, causing a possibly incorrect value to be used to open the
cash drawer.

Related Information

Additional information about cash drawer programming is in these chapters:

. e Anpliaton P Intetacd
+ [Chapter 19. PoslOCtl() Requestd

e

Subroutines Used with Cash Drawer

Cash Drawer PoslOCtl() Control Requests
See Chapter 19_PaslQCt() Requestd:
POS_SYS ACQUIRE DEVICH

PQS Tl QPEN TI I

7-2 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Cash Drawer Programming
Cash Drawer Event Messages
See Chapter 20. Event Messaged:
POSM TILL _CLOSFD
POSM_TILL_QOPENED

Cash Drawer Resources
See Chapter 21_Resource Setd:

Botisand

Cash Drawer Error Codes
There are no error codes that are specific to the cash drawer.

Chapter 7. Cash Drawer Programming 7-3

created on October 2, 2001

7-4 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Chapter 8. Display Programming

The display device handler is software that manages communication between your
application and the display. An application can access the device only through the
device handler.

Characteristics of the Displays

The IBM Point of Sale Subsystem supports the following RS-485 point-of-sale
displays:

* Alphanumeric Display

» Operator Display

» Shopper Display

* Character and Graphics Display

» 50-Key Modifiable Layout Keyboard/Operator Display

* Retail Point of Sale Keyboard with Card Reader and Display

* PLU Keyboard/Display-lll

* 40-Character Liquid Crystal Display (LCD)

* 40-Character Vacuum Fluorescent Display Il (VFD II)

» Two-Sided Vacuum Fluorescent Display Il (Two-Sided VFD II)
* 2x20 Character Vacuum Fluorescent (Customer) Display (VFD)

Some of these displays can be connected directly to the point-of-sale terminal,
some of these displays are integrated into keyboards. Displays integrated into a
keyboard are attached when the keyboard is connected to socket 5A or 5B of the
point-of-sale terminal. The IBM Point of Sale Subsystem supports the following USB
point-of-sale displays:

* 40-Character Vacuum Fluorescent Display

* 40-Character Liquid Crystal Display

Notes:

1. Connecting an Operator Display into socket 4A while a 50-Key Modifiable
Layout Keyboard/Operator Display or Retail Point of Sale Keyboard with Card
Reader and Display is connected to socket 5A will produce unpredictable
results.

2. Connecting an Operator Display into socket 4B while a 50-Key Modifiable
Layout Keyboard/Operator Display or Retail Point of Sale Keyboard with Card
Reader and Display is connected to socket 5B will produce unpredictable
results.

Alphanumeric Display

* The display consists of two rows of 20 alphanumeric character positions
numbered 0-39, where 0-19 are the twenty characters on the top row, and 20-39
are the twenty characters on the bottom row.

» Each character position contains a 5-dots-wide by 12-dots-high matrix (5x12),
that is used to form the character.

» Code pages are supplied for the display that define the matrix definition for each
character in the code page.

» The display has a blank space between character positions and between the two
rows. This should be considered if you attempt to use multiple character
positions to produce a graphic display.

© Copyright IBM Corp. 1993, 2001 8-1

Display Programming created on October 2, 2001

Note: The Alphanumeric Display is not supported on the IBM Point of Sale

Subsystem for Linux.

Operator Display

» The Operator Display consists of two rows of 20 alphanumeric character

Shopper Display

positions numbered 0-39, where 0-19 are the twenty characters on the top row,
and 20-39 are the twenty characters on the bottom row.

Each character position contains a 5-dots-wide by 8-dots-high matrix (5x8), that
is used to form the character.

The dot matrix pattern for each character is defined within the Operator Display
electronics and cannot be modified.

Code pages are supplied for the Operator Display that translate an application’s
character code point to the appropriate character in the Operator Display
character set.

Note: The Operator Display can be housed in the 50-Key Modifiable Layout

Keyboard and Operator Display or the Retail Point of Sale Keyboard with
Card Reader and Display.

» The Shopper Display consists of 12 positions, numbered 0-11, composed of 8

alphanumeric positions and 4 comma/decimal positions, plus 6 discrete guidance
lights.

Each alphanumeric position contains 7 bar-segments used to form the character.
The bar-segment pattern for each character is defined within the Shopper Display
electronics and cannot be modified.

Positions 0, 1, 3, 5, 6, 8, 10 and 11 can display the alphanumeric characters
supported by the device. Positions 4, 7 and 9 can display commas and periods.
Position 2 can only display a comma.

Notes:

1. Attempting to display a character that is not valid for a given position results
in that position being blank. The supported character set consists of the
numerals plus a limited number of alphabetic and special characters. See the
IBM Point of Sale Subsystem: Installation, Keyboards and Code Pages book
for more information.

2. The Shopper Display is not supported on IBM Point of Sale Subsystem for
Linux.

Character and Graphics Display

8-2

The Character and Graphics Display consists of a 160x36 pixel grid that can be
subdivided into two rows of 20 characters or three rows of 32 characters plus two
rows of 12 indicator lights, one above the pixel grid and one below.

This display supports 8x16 and 5x12 pixel characters.

Code pages are supplied for the Character and Graphics Display that define the
matrix definition for each character in the code page.

Using 8x16 characters, the top 32 rows of pixels are used to display the ASCII
box characters correctly. In double-byte mode, the four rows of pixels in the
middle of the display are blank so that the single-byte characters line up properly
with the double-byte characters.

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Display Programming

Notes:

1.

2.

The Character and Graphics Display can be housed in the PLU Keyboard and
Display-IIl.

The Character and Graphics Display is not supported on the IBM Point of Sale
Subsystem for Linux.

40-Character qumd Crystal Display

The display consists of two rows of 20 alphanumeric character positions
numbered 0-39, where 0-19 are the twenty characters on the top row, and 20-39
are the twenty characters on the bottom row.

Each character position contains a 5-dots-wide by 8-dots-high matrix (5x8), that
is used to form the character.

The dot matrix pattern for each character is defined within the LCD electronics
and cannot be modified.

Code pages are supplied for the LCD which translate an application’s character
code point to the appropriate character in the LCD character set.

The display has a blank space between character positions and between the two
rows. This should be considered if you attempt to use multiple character
positions to produce a graphic display.

40-Character Vacuum Fluorescent Display Il and 2x20 Character VFD
Customer Display

The display consists of two rows of 20 alphanumeric character positions
numbered 0-39, where 0-19 are the twenty characters on the top row, and 20-39
are the twenty characters on the bottom row.

Each character position contains a 5-dots-wide by 8-dots-high matrix (5x8), that
is used to form the character.

The dot matrix pattern for each character is defined within the VFD and VFD Il
electronics and cannot be modified.

Older VFD Il models have two character sets stored in ROM while newer models
store eleven character sets in ROM.

Code pages are supplied for the VFD that translate an application’s character
code point to the appropriate character in the VFD character set.

The display has a blank space between character positions and between the two
rows. This should be considered if you attempt to use multiple character
positions to produce a graphic display.

Two-Sided Vacuum Fluorescent Display II

The display consists of two VFD Il displays under the same display cover.
The characteristics of each display is the same as the KQ-Character Vacuund

Functions Your Application Performs

Your application can perform the following functions on the display:

Use different code pages

Write characters to the display

Write bitmaps to any position on the display
Set guidance lights on the display

Clear the display

Define user-defined characters

Chapter 8. Display Programming ~ 8-3

Display Programming created on October 2, 2001

Before your application program can access the display, it must open the display
(see I'Opening Your Device” on page 5-4) and acquird exclusive use of the display.
When the display is opened, a buffer is created to contain the data that the
application writes to the display. Whenever your application acquires the display, the
contents of this buffer are written to the display.

Code Page Support

The code page of the process at the time the w subroutine call is issued is
queried and saved by the IBM Point of Sale Subsystem.

Notes:

1. Code pages are defined for the Operator Display, the LCD, the VFD, the VFD I,
and the Two-Sided VFD Il but due to the fixed internal character set, not all
characters are available in each code page. Code pages are not defined at all
for the Shopper Display, due to its specialized type of function. See the IBM
Point of Sale Subsystem: Installation, Keyboards and Code Pages book for a
list of the character code points that are supported.

2. For the VFD, the VFD II, and the Two-Sided VFD II, which have only two
resident code pages, the defined code pages are used to translate the
application character code points to the appropriate display character when the
application is using a single-byte code page. When the application is using a
double-byte code page, the application character code points are not translated.

3. The Character and Graphics Display uses the code page support described
above for single-byte characters. The double-byte characters are located in
ROM in the device. For the USB Character/Graphics Displays, which have
eleven resident code pages, the application character code page points are not
translated.

4. The IBM Point of Sale Subsystem uses code page 850 for any OS/2 code page
not listed in the IBM Point of Sale Subsystem: Installation, Keyboards and Code
Pages book.

Writing Characters to the Display

8-4

Before writing characters to the display, you must set the current character position
to the location where you want to start writing, assuming that the character position
is not already where you want it. Set the starting row and column of where you
want to start writing characters by setting the PasNdisplayCurson resource. See
[PasNdisplayCursor” on page 21-19 for more information.

After setting the current row and column position, use the [PasWrite(} subroutine to
display the characters. If the number of characters written exceeds the number of
positions on the current row, the display device handler writes the remaining
characters on the next row. If the last row of the display is exceeded, the display
device handler stops writing characters and returns the number of characters
actually written. The current character position, EnsNdJspla.y.Cul:sod, is set to the
position following the last character written, or to the last position of the display if
the end of the display was reached.

You can set the PosNdisplayCursod resource without first having to acquire the
display. However, you cannot write to the display unless it has been successfully
acquired and then only if the display is online (connected). If the device is not
acquired, the write fails with the error code POSERR_SYS_NOT_ACQUIRED. If the
display is offline, the write fails with the error code
POSERR_SYS_DEVICE_OFFLINE.

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Display Programming

Even if you receive the error code POSERR_SYS_DEVICE_OFFLINE, your
information has been successfully written to the display buffer. When the display
comes back online, the display is refreshed with the latest information written to the
display.

In most cases, the characters displayed are from the code page associated with the
display device connection. A code page is associated with a display device
connection at the time the device is opened. For newer VFD Il devices and USB
Character/Graphics devices, the device character set can be changed by setting the
i resource. (See PasNdisplayCodePage” on page 21-17 for
more information.) This applies to those VFD Il devices that support the

PosNdisplayCodePage resource.
Writing Bitmaps to the Display

This function is specific to the Character and Graphics Display only. Before writing
bitmaps to the display, you must set PasNdisplayMadd to PosDSP_MODE_LOGO.
You must also set the values of PasNpixelX and PasNpixel¥l to the location of the

upper-left-hand corner of the bitmap.

After setting the bitmap location, use the m subroutine to display the
bitmap. If the bitmap is too large to fit on the display at the location specified, the
visible portion of the bitmap will be displayed and the number of bytes passed to
the subroutine will be returned.

You cannot write to the display unless it is successfully acquired and then only if the
display is online (connected). If the display is not acquired, the write fails with the

error code B15 POSFRR_SYS NQT_ACQUIRED. If the display is offline, the write

fails with the error B1Z POSERR_SYS_DEVICE_OFELINE.

Chapter 8. Display Programming ~ 8-5

Display Programming created on October 2, 2001
Even if you receive the error code 317 POSERR_SYS_DEVICE_OFFLINH, your

information has been successfully written to the display buffer. When the display
comes back online, the display is refreshed with the latest information written to the
display.

The format of the bitmap data is illustrated in the following table.
Table 8-1. Bitmap Data Format. Defines a DBCS character (32 bytes); only SBCS requires 8

bytes

Field Size Values
type unsigned long 1

width unsigned long 1-160
height unsigned long 1-36
bits ((width + 7) / 8) = height bytes

Note: Currently, the only valid value for the type field is 1.

Setting the Guidance Lights

This function is specific to the following displays:
» Shopper Display

* Character and Graphics Display

* 40-Character Vacuum Fluorescent Display Il

* 40-Character VFD Customer Display

» Two-Sided Vacuum Fluorescent Display Il

You can set the guidance lights by specifying the value for the resource
PasNdisplayl ightsOn in the resource file or by sending it on the
POS_SYS_SFT VAl UFS PoslOCH() request.

Clearing the Display Screen

Use the POS_DSP_CI FAR_SCRFFEN |PosIOCHI(] request to clear all the characters
from a display.

Note: Clearing the display screen does not clear the indicator lights.

See [PQS_DSP_CI FAR_SCREEN” on page 19-5 for more information about this

request.

User-Defined Characters

The Character and Graphics Display supports the definition of new characters by
your application program. The following diagram shows the layout for defining a
new user-defined character.

In the table, the first column indicates which display dot position will be turned on
when the corresponding bit is set. Each numbered column defines the 16 vertical
dot positions for one column of the character. Two bytes are needed to define the

16 display dot positions for each column. See EDefining User-Defined Characters’]
@b for more information about defining user-defined characters.
Note: The first byte of the two-byte column definition corresponds to the lower 8

display dot positions. The second byte defines the upper 8 display dot
positions.

8-6 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Display Programming

01 02 |03 |04 (05 (06 |07 |08 (09 (10 |11 12 (13 |14 (15 |16
Position 1 X X X X X X X X X X X X X X X X
(Bit 0)
Position 2 X X X X X X X X X X X X X X X X
(Bit 1)
Position 3 X X X X X X X X X X X X X X X X
(Bit 2)
Position 4 X X X X X X X X X X X X X X X X
(Bit 3)
Position 5 X X X X X X X X X X X X X X X X
(Bit 4)
Position 6 X X X X X X X X X X X X X X X X
(Bit 5)
Position 7 X X X X X X X X X X X X X X X X
(Bit 6)
Position 8 X X X X X X X X X X X X X X X X
(Bit 7)
Byte 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
01 02 (03 (04 |05 |06 |07 |08 |09 |10 |11 12 13 |14 |15 |16
Position 9 X X X X X X X X X X X X X X X X
(Bit 0)
Position 10 X X X X X X X X X X X X X X X X
(Bit 1)
Position 11 X X X X X X X X X X X X X X X X
(Bit 2)
Position 12 X X X X X X X X X X X X X X X X
(Bit 3)
Position 13 X X X X X X X X X X X X X X X X
(Bit 4)
Position 14 X X X X X X X X X X X X X X X X
(Bit 5)
Position 15 X X X X X X X X X X X X X X X X
(Bit 6)
Position 16 X X X X X X X X X X X X X X X X
(Bit 7)
Byte 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Related Information

Additional information about display programming is in these chapters:

Chapter 8. Display Programming ~ 8-7

Display Programming created on October 2, 2001

Subroutines Used with Displays
See icati

%
Display PoslOCtl() Control Requests

See Chapter 19_PoslQCtl() Requestd:
PQS_DSP_CLEAR_SCREEN

BOS_Svys_SET vALUES

Display Resources

See%lasmm&:

Display Error Codes
See lAppendix D_Frrar Caded:

8-8 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Chapter 9. Keyboard Programming

The keyboard device handler is software that manages communication between
your application and the keyboard. An application can only access the device
through the device handler.

Note: Use this chapter in conjunction with the IBM Point of Sale Subsystem:
Installation, Keyboards and Code Pages book.

Characteristics of the Keyboards

The IBM Point of Sale Subsystem supports the following point-of-sale keyboards:

+ 50-Key Modifiable Layout Keyboard"
+ 50-Key Modifiable Layout Keyboard and Operator Display’
+ Alphanumeric Point of Sale (ANPOS) Keyboard'
+ Modifiable Layout Keyboard with Card Reader (133-key)’
* Retail Alphanumeric Point of Sale Keyboard with Card Reader
* Retail Point of Sale Keyboards
— Retail Point of Sale Keyboard (50-key)
— Retail Point of Sale Keyboard with Card Reader (50-key)
— Retail Point of Sale Keyboard with Card Reader and Display (50-key)
— Point of Sale Keyboard VI
+ USB Keyboards™:

— USB Retail Point of Sale Keyboard

— USB Retail Point of Sale Keyboard with Card Reader

— USB Retail Point of Sale Keyboard with Card Reader and Display
— USB Retail Alphanumeric Point of Sale with Card Reader

USB Modifiable Layout Keyboard with Card Reader
. PC Point of Sale Keyboard (ANKPOS) Keyboards'
* Point of Sale Keyboard V'
+ PLU Keyboard/Display-III
* 4685 Point of Sale Keyboard Model K01’
+ IBM 4820 SurePoint Solution Keypad?

The following keyboards are referred to as the checkout keyboards:
+ 50-Key Modifiable Layout Keyboard"
*+ 50-Key Modifiable Layout Keyboard and Operator Display’
* Retail Point of Sale Keyboards
— Retail Point of Sale Keyboard (50-key)
— Retail Point of Sale Keyboard with Card Reader (50-key)
— Retail Point of Sale Keyboard with Card Reader and Display (50-key)
— Point of Sale Keyboard VI
+ IBM 4820 SurePoint Solution Keypad 2

© Copyright IBM Corp. 1993, 2001

Keyboard Programming created on October 2, 2001

The following keyboards are referred to in this book as the alphanumeric
point-of-sale keyboards:

* Alphanumeric Point of Sale (ANPOS) Keyboard

* Retail Alphanumeric Point of Sale Keyboard with Card Reader (USB supported)
* PC Point of Sale Keyboard

All IBM (SIO) point-of-sale keyboards, except the PLU Keyboard and Display-Iil,
can be attached to socket 5A or 5B of the point-of-sale terminal. In addition, the
SIO alphanumeric point-of-sale keyboards can be plugged into the system keyboard
port.

The keyboard attached to serial input/output (SIO) socket 5A or 5B is referred to as
the Point of Sale keyboard. The keyboard attached as the system keyboard port is
referred to as the system keyboard.

A USB-attached keyboard can also function as the Point of Sale system keyboard.

When the alphanumeric point-of-sale keyboard is plugged into the system keyboard
port (using the system keyboard port or the USB port), it simulates either the PS/2
101-key or 102-key enhanced keyboard with additional keys, or the PS/55 5576-002
or 5576-A01 keyboard with additional keys. The point-of-sale keyboards require that
you install the IBM Point of Sale Subsystem in order to function correctly as the
Point of Sale system keyboard.

The PLU Keyboard and Display-Ill attaches to the PLU Il Extension Box.

Additional characteristics of individual keyboards are listed in the following sections.

Keyboard Microcode Updates

The internal microprocessor code can be updated by IBM for the following non-USB
keyboards:

* Modifiable Layout Keyboard with Card Reader (133-key)

* PC Point of Sale Keyboard

* Point of Sale Keyboard VI

* Retail Alphanumeric Point of Sale Keyboard with Card Reader

* Retail Point of Sale Keyboard (50 key)

* Retail Point of Sale Keyboard with Card Reader (50-key)

* Retail Point of Sale Keyboard with Card Reader and Display (50-key)

IBM delivers the microprocessor code update in a file named AIPxxx.KBD, where
xxx is the microprocessor engineering change (EC) level. For OS/2, this file must
be in a directory specified in the DPATH statement in the CONFIG.SYS file in order
to be found and applied by the IBM Point of Sale Subsystem for OS/2. For the

1. These keyboards are not supported on IBM Point of Sale Subsystem for Linux.

2. +*The 4820 SurePoint Solution Keypad will come online even when there is no keypad physically attached to the 4820 Display.
* When the keypad is attached to the 4820 display, the reported subtype will be PoskBD_SUBTYPE_4820_KEYPAD; when the

keypad is not physically attached to the 4820 display, the reported subtype will be PoskBD_SUBTYPE_4820_NO_KEYS.

This behavior can affect the enumeration of attached POS keyboards. For example, attaching a POS keyboard downstream
from the 4820 display enumerates the keyboard as a secondary POS keyboard; attaching a POS keyboard upstream from the
4820 display enumerates the keyboard as a primary POS keyboard.

*The 4820 SurePoint Solution Keypad is not supported on Linux.

9-2

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Keyboard Programming

Microsoft Windows operating system, this file must be in the IBM Point of Sale
Subsystem for Windows BIN directory in order to be found and applied by the IBM
Point of Sale Subsystem for Windows.

Note: The preceding Keyboard Microcode Updates section applies to non-USB

keyboards only. For USB keyboards, see FAppendix H. Firmware Updatd

50-Key Modifiable Layout Keyboard and 50-Key Modifiable Layout
Keyboard and Operator Display

These keyboards can only function as point-of-sale keyboards.

Note: These keyboards are not supported on the IBM Point of Sale Subsystem for
Linux.

The 50-Key Modifiable Layout Keyboard and the 50-Key Modifiable Layout
Keyboard and Operator Display have the following characteristics:
» Four point-of-sale indicator lights
 Internal speaker for audible feedback
» Pairs of keys can be treated as a single key by applications
» Optional manager keylock
+ Total of 50 keys made up of:
— One 11-key numeric keypad
— Two system keys
— 37 function keys

Key switch numbers are used to define double keys for these keyboards. The
assigned key switch numbers for these keyboards, and the scan codes generated
by the key switches, are in the IBM Point of Sale Subsystem: Installation,
Keyboards and Code Pages book.

The IBM Point of Sale Subsystem assigns ASCII characters to the numeric keypad
keys. All other keys on the 50-Key Modifiable Layout Keyboard are unassigned.
Your application should use the generated scan codes to assign functions to key
switches.

Retail Point of Sale Keyboards

The retail point-of-sale keyboards are the following keyboards:

* Retail Point of Sale Keyboard (50-key)

* Retail Point of Sale Keyboard with Card Reader (50-key)

* Retail Point of Sale Keyboard with Card Reader and Display (50-key)
* Point of Sale Keyboard VI

Note: The Point of Sale Keyboard VI is not supported on the IBM Point of Sale
Subsystem for Linux.

These keyboards can only function as point-of-sale keyboards. The keyboards have
the following characteristics:
* Four point-of-sale indicator lights
* Internal speaker for audible feedback
» Pairs of keys can be treated as a single key by applications
» Optional manager keylock
» Total of 50 keys made up of:
— One 12-key numeric keypad
— One Ctrl key

Chapter 9. Keyboard Programming 9-3

Keyboard Programming created on October 2, 2001

— 37 function keys with primary and secondary capability

If the keyboard has a built-in card reader, it is a low-profile 3-track Magnetic Stripe
Reader (MSR).

Note: The Point of Sale Keyboard VI has an integrated “two-head” Magnetic Stripe
Reader. One side will read ABA/ISO track 2/J1S-I track 2 and the other side
will read JUCC/JIS-II.

Key switch numbers are used to define double keys for these keyboards. The
assigned key switch numbers for these keyboards, and the scan codes generated
by the key switches, are in the IBM Point of Sale Subsystem: Installation,
Keyboards and Code Pages book.

The default configuration provides 49 keys because the numeric keypad zero key is
a double key. This key can be defined as two single keys using the

PosNnumpadZerd resource. Key switch 28 is inactive by default.

Key switch 50 is the Cirl key. It can be used in combination with other keys to
access a second layer of functions.

The S1 and S2 keys are secondary functions of key switch 31 and key switch 32.
They are activated by pressing the Ctrl key in combination with key 31 or 32.
These keys cannot be part of a double key pair.

Modifiable Layout Keyboard with Card Reader

The Modifiable Layout Keyboard with Card Reader functions as a point-of-sale
keyboard.

Note: This keyboard is not supported on the IBM Point of Sale Subsystem for
Linux.

This keyboard has the following characteristics:
* Four point-of-sale indicator lights
* Internal speaker for audible feedback
» Pairs of keys can be treated as a single key by applications
» Optional manager keylock
 Built-in low-profile 3-track Magnetic Stripe Reader
» Total of 133 keys made up of the following keys:
— One 12-key numeric keypad
— One Ctrl key
— 120 function keys with primary and secondary capability

Key switch numbers are used to define double keys for this keyboard. The assigned
key switch numbers for this keyboard, and the scan codes generated by the key
switches, are in the IBM Point of Sale Subsystem: Installation, Keyboards and Code
Pages book.

The default configuration provides 132 keys because the numeric keypad zero key
is a double key. This key can be defined as two single keys using the

PosNnumpadZerd resource. Key switch 105 is inactive by default.

Key switch 111 is the Ctrl key. It can be used in combination with other keys to
access a second layer of functions.

9-4 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Keyboard Programming

The S1 and S2 keys are secondary functions of key switch 135 and key switch 124.
They are activated by pressing the Ctrl key in combination with key 135 or 124.
These keys cannot be part of a double key pair.

There are three possible locations for the numeric keypad. All the locations are
shaded in the illustration of this keyboard in the IBM Point of Sale Subsystem:
Installation, Keyboards and Code Pages book. The default location for the numeric
keypad is the right-most shaded area. The location of the numeric keypad is

specified by the PosNnumpadl ocatiod resource.
ANPOS Keyboard

The ANPOS keyboard can function either as a Serial Input Output (SIO) keyboard
or as a system keyboard.

Note: This keyboard is not supported on the IBM Point of Sale Subsystem for
Linux.

This keyboard has the following characteristics:

* Four point-of-sale indicator lights

» Three standard indicator lights

* Internal speaker for audible feedback

» Pairs of keys can be treated as a single key by applications

» Optional manager keylock

» Alphanumeric key section similar to the PS/2 101-key Enhanced Keyboard and
the PS/2 102-key Enhanced Keyboard

» Point of Sale section containing programmable point-of-sale keys, similar to those
on the 50-Key Modifiable Layout Keyboard

* Numeric keypad, shared by the alphanumeric and point-of-sale sections

» Optional low-profile dual-track Magnetic Stripe Reader

» Total of 116 keys

» Typematic rate and delay are settable (typematic feature can be set on or off)

» Double keys can be configured for this keyboard by using the ANPOS utility for

system-attached keyboards; the point-of-sale application can configure double
keys for the point-of-sale keyboards.

Key switch numbers are used to define double keys for the ANPOS keyboard. Key
switch numbers are also used in this document when it is necessary to refer to a
specific key. The assigned key switch numbers for this keyboard, and the scan
codes generated by the key switches, are in the IBM Point of Sale Subsystem:
Installation, Keyboards and Code Pages book.

The default configuration provides 114 (U.S.) or 115 (world trade) keys because the
numeric keypad zero key is a double key. This key can be defined as two single

keys using the PasNnumpadZerad resource. Key switch 94 is inactive by default.

The S1 and S2 keys are secondary functions of key switch 110 and key switch 111.
They are activated by pressing the Ctrl key (key switch 58 or 64) in combination
with key 110 or 111. These keys cannot be part of a double key pair.

Default State: The keyboard hardware initializes itself to the following default state:
« All typematic functions are off
* Typematic rate is set to 10.9 characters per second +20%

Chapter 9. Keyboard Programming 9-5

Keyboard Programming created on October 2, 2001

» Typematic delay is set to 500 milliseconds

» “Fat-finger” timeout is set to 30 milliseconds
» Key “click” is off

» Wait and OffLine indicator lights are on

* MSR is disabled if attached

When the ANPOS keyboard device handler is initialized and has established

communications with the keyboard, commands are sent to the keyboard to set the

following default state:

* NumLock is OFF

« All indicator lights are OFF

» Typematic function is ON

» Typematic rate is set to 30 characters per second +20%

* Typematic delay is set to 250 milliseconds

* The keyboard is enabled and is scanning for key entry to be sent in to the
point-of-sale terminal.

If the default values are not acceptable, most of them can be overridden. For SIO

keyboards, this can be done when your application opens the keyboard. For the
system keyboard, this can be done via the ANPOS utility. See m

Blphanumeric Paint of Sale Keyhoard” on page 3-4 for more information on the

ANPOS utility.

Retail Alphanumeric Point of Sale Keyboard with Card Reader

9-6

The Retail Alphanumeric Point of Sale Keyboard with Card Reader functions as
either a point-of-sale keyboard or a system keyboard.

This keyboard has the following characteristics:

* Four point-of-sale indicator lights

» Three standard indicator lights

* Internal speaker for audible feedback

» Pairs of keys can be treated as a single key by applications

» Optional manager keylock

» Alphanumeric key section similar to the PS/2 101-key enhanced keyboard

* Point of Sale section that contains programmable point-of-sale keys, similar to
those on the 50-Key Modifiable Layout Keyboard

* Numeric keypad that is shared by the alphanumeric section and the point-of-sale
section

* Built-in low-profile 3-track MSR

» Total of 117 keys

» Typematic rate and delay are settable (the typematic feature can be set on or off)

* The configuration of double keys can only be changed by using the ANPOS utility
for system-attached keyboards

Key switch numbers are used to define double keys for the Retail Alphanumeric
Point of Sale Keyboard with Card Reader. The assigned key switch numbers for
this keyboard, and the scan codes generated by the key switches, are in the /BM
Point of Sale Subsystem: Installation, Keyboards and Code Pages book.

The default configuration provides 115 (U.S.) or 116 (world trade) keys because the
numeric keypad zero key is a double key. This key can be defined as two single

keys using the PosNnumpadZerd resource. Key switch 99 is inactive by default.

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Keyboard Programming

The S1 and S2 keys are secondary functions of key switch 135 and key switch 124.
They are activated by pressing the Ctrl key (key switch 58 or 64) in combination
with key 135 or 124. These keys cannot be part of a double key pair.

There are two possible locations for the numeric keypad. Both locations are shaded
in the illustration of this keypad in the IBM Point of Sale Subsystem: Installation,
Keyboards and Code Pages book. The default location for the numeric keypad is
the right-most shaded area.

When the keyboard is a point-of-sale keyboard, the numeric keypad can be moved
to the left-most shaded area. The location of the numeric keypad is specified by the

PosNnumpadl ocatiod resource. This feature is not available when the keyboard is

attached as the system keyboard port.

Default State: The keyboard hardware initializes itself to the following default state:
» All typematic functions are off

» Typematic rate is set to 10.9 characters per second +20%

» Typematic delay is set to 500 milliseconds

* “Fat-finger” timeout is set to 30 milliseconds

» Key “click” is off

» Wait and OffLine indicator lights are on

* MSR is disabled if attached

When the Retail Alphanumeric Point of Sale Keyboard with Card Reader device

handler is initialized and has established communications with the keyboard,

commands are sent to the keyboard to set the following default state:

* NumLock is OFF

» All indicator lights are OFF

* Typematic function is ON

» Typematic rate is set to 30 characters per second +20%

» Typematic delay is set to 250 milliseconds

* The keyboard is enabled and is scanning for key entry to be sent in to the
point-of-sale terminal.

If the default values are not acceptable, most of them can be overridden. For
point-of-sale keyboards, this can be done when your application opens the
keyboard. For the system keyboard, this can be done via the ANPOS utility. See

[Configuring the Alphanumeric Point of Sale Keyboard” on page 3-4 for more
information on the ANPOS utility.

PC Point of Sale Keyboard (ANKPOS Keyboard)

The PC Point of Sale Keyboard, also known as ANKPOS keyboard, can function as
either a point-of-sale keyboard or as a system keyboard.

Note: This keyboard is not supported on the IBM Point of Sale Subsystem for
Linux.

This keyboard has the following characteristics:

» Four point-of-sale indicator lights. Viewed from the keyboard left to right, these
lights are Ready, Wait, Offline, and Message Pending.

* Internal speaker for audible feedback

* Four-position key lock that controls the keyboard mode. Viewed from the
keyboard clockwise, these positions are System, Inactive, Operator, Manager

* Alphanumeric key section similar to the PS/55 5576-002 or 5576-A01 keyboards

Chapter 9. Keyboard Programming 9-7

Keyboard Programming created on October 2, 2001

» Point of Sale section that contains programmable point-of-sale keys, similar to
those on the 50-Key Modifiable Layout Keyboard

* Numeric keypad, shared by the alphanumeric section and the point-of-sale
section

« 12 function keys

* Three standard indicator lights

* Built-in two-head JIS-II, JIS-I track 2 Magnetic Stripe Reader (MSR)

» Total of 121 keys

* Typematic rate and delay are settable (the typematic feature can be set on or off)

* Double keys can only be defined when the keyboard is functioning as the system
keyboard. The ANPOS utility allows you to configure the double keys.

The assigned key switch numbers for this keyboard, and the scan codes generated
by the key switches, are in the IBM Point of Sale Subsystem: Installation,
Keyboards and Code Pages book.

The numeric keypad zero key is key switch 94. Key switch 99 is not part of the
numeric keypad zero key and therefore can be assigned another function by the
application. The numeric keypad location is shaded in the illustration of this keypad
in the IBM Point of Sale Subsystem: Installation, Keyboards and Code Pages book.

The S1 and S2 keys are secondary functions of key switch 135 and key switch 124.
They are activated by pressing the Ctrl key in combination with key 135 or 124.

Default State: The keyboard hardware initializes itself to the following default state:
» All typematic functions off

» Typematic rate is set to 30 characters per second +20%

» Typematic delay is set to 250 milliseconds

* “Fat-finger” timeout is set to 30 milliseconds

* Key “click” off

* Wait and OffLine indicator lights are on

* Magnetic Stripe Reader is disabled (if attached)

When the PC Point of Sale Keyboard device handler is initialized and has

established communications with the keyboard, commands are sent to the keyboard

to set the following default state:

* NumLock is OFF

+ All indicator lights are OFF

» Typematic function is ON

* Typematic rate is set to 30 characters per second +20%

* Typematic delay is set to 250 milliseconds

* The keyboard is enabled and is scanning for key entry to be sent in to the
point-of-sale terminal

If the default values are not acceptable, most of them can be overridden. For
point-of-sale keyboards, this can be done when your application opens the
keyboard. For the system keyboard, this can be done via the ANPOS utility. See

[Configuring the Alphanumeric Paint of Sale Keyhoard” on page 3-4 for more

information on the ANPOS utility.

Point of Sale Keyboard V

The Point of Sale Keyboard V functions only as a point-of-sale keyboard.

9-8 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Keyboard Programming

PLU Keyboard

Note: This keyboard is not supported on the IBM Point of Sale Subsystem for
Linux.

This keyboard has the following characteristics:

» Four point-of-sale indicator lights

* Internal speaker for audible feedback

* Four-position key lock that controls the keyboard mode

* Built-in two-head JIS-II, JIS-I track 2 Magnetic Stripe Reader

» Total of 67 keys in the default configuration

* 11-key numeric keypad

» The configuration of double keys cannot be changed

» A tone sounds whenever any key is pressed as long as the keyboard is online
and the keylock is not in the “inactive” position.

The IBM Point of Sale Subsystem: Installation, Keyboards and Code Pages book
illustrates the layout of the key switches for the Point of Sale Keyboard V and the
scan codes generated by the key switches. There are no assigned key switch
numbers for the Point of Sale Keyboard V. Key switch numbers are not used for this
keyboard in this document.

There are two possible locations for the numeric keypad. Both locations are shaded
in the illustration of this keypad in the IBM Point of Sale Subsystem: Installation,
Keyboards and Code Pages book. The default location for the numeric keypad is
the right-most shaded area. The location of the numeric keypad is specified by the

PasNnumpadl acation resource.

The S1 and S2 keys are only active when the keylock is in the “system” position.

and Display-lii
The PLU Keyboard and Display-Ill functions as a point-of-sale keyboard.

Note: This keyboard is not supported on the IBM Point of Sale Subsystem for
Linux.

The PLU keyboard has the following characteristics:

» Four point-of-sale indicator lights

* Internal speaker for audible feedback

» Total of 120 keys in the default configuration

* 11-key numeric keypad

» The configuration of double keys cannot be changed

» A tone sounds whenever any key is pressed as long as the keyboard is online
and the keylock is not in the “inactive” position.

The IBM Point of Sale Subsystem: Installation, Keyboards and Code Pages book
illustrates the layout of the key switches and the scan codes for the PLU Keyboard
and Display-Ill. There are no assigned key switch numbers for the PLU Keyboard
and Display-Ill. Key switch numbers are not used for this keyboard in this
document.

There are two possible locations for the numeric keypad. Both locations are shaded
in the illustration of this keypad in the IBM Point of Sale Subsystem: Installation,
Keyboards and Code Pages book. The default location for the numeric keypad is
the right-most shaded area. The location of the numeric keypad is specified by the

PosNnumpadl acation resource.

Chapter 9. Keyboard Programming 9-9

Keyboard Programming created on October 2, 2001

The S1 and S2 keys are only active when the keylock is in the “system” position.

4685 Point of Sale Keyboard Model K01

The 4685 Point of Sale Keyboard Model KO1 functions as an SIO keyboard.

Note: This keyboard is not supported on the IBM Point of Sale Subsystem for
Linux.

This keyboard has the following characteristics:

» Four point-of-sale indicator lights

* Internal speaker for audible feedback

* Four-position key lock that controls the keyboard mode

* Built-in two-head JIS-Il, JIS-I track 2 magnetic stripe reader (MSR)

» Total of 67 keys in the default configuration

* 11-key numeric keypad

* The configuration of double keys cannot be changed

» A tone sounds whenever any key is pressed as long as the keyboard is online
and the keylock is not in the “inactive” position.

The IBM Point of Sale Subsystem: Installation, Keyboards and Code Pages book
illustrates the layout of the key switches for the 4685 Point of Sale Keyboard Model
K01 and the scan codes generated by the key switches. There are no assigned key
switch numbers for the 4685 Point of Sale Keyboard Model KO1. Key switch
numbers are not used for this keyboard in this document.

The location for the numeric keypad is shaded in the illustration of the 4685 Point of
Sale Keyboard Model KO1 shown in the IBM Point of Sale Subsystem: Installation,
Keyboards and Code Pages book. The default location for the numeric keypad is
the shaded area on the right. The location of the numeric keypad is specified by the

PasNnumpadl acationl resource.

The S1 and S2 keys are only active when the keylock is in the “system” position.

IBM 4820 SurePoint Solution Keypad

9-10

This keyboard can only function as an SIO keyboard.

The IBM 4820 SurePoint Solution Keypad has the following characteristics:
 Internal speaker for audible feedback
» Pairs of keys can be treated as a single key by applications
» Optional manager keylock
» Total of 32 keys made up of:
— 11-key numeric keypad
— 2 system keys
— 19 function keys

Key switch numbers are used to define double keys for these keyboards. The
assigned key switch numbers for these keyboards, and the scan codes generated
by the key switches, are in the IBM Point of Sale Subsystem: Installation,
Keyboards and Code Pages book.

The IBM Point of Sale Subsystem assigns ASCII characters to the numeric keypad
keys. All other keys on the IBM 4820 SurePoint Solution Keypad are unassigned.
Your application should use the generated scan codes to assign functions to key
switches.

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Defining Keys

Keyboard Programming

Notes:

1.

2.

3.

The 4820 SurePoint Solution Keypad will come online even if there is no
keypad physically attached to the 4820 Display. When the 4820 SurePoint
Solution Keypad is attached to the display, the reported subtype will be
PosKBD_SUBTYPE_4820_KEYPAD; when the 4820 SurePoint Solution Keypad
is not physically attached to the display, the reported subtype will be
PosKBD_SUBTYPE_4820_NO_KEYS.

The 4820 SurePoint Solution keypad comes online even if a physical keypad is
not attached. This behavior affects the enumeration of attached POS keyboards
depending on their USB port location. For example, attaching a POS Keyboard
downstream from the 4820 display enumerates the keyboard as a secondary
POS keyboard. Attaching a POS Keyboard upstream from the 4820 display
enumerates the keyboard as a primary POS keyboard.

This keyboard is not supported on the IBM Point of Sale Subsystem for Linux.

The IBM Point of Sale Subsystem: Installation, Keyboards and Code Pages
contains the complete list of keyboard scan codes for both system and point-of-sale
keyboards. For point-of-sale keyboards, your IBM Point of Sale Subsystem
application will receive scan codes from the point-of-sale scan code set. For system
keyboards, your IBM Point of Sale Subsystem application will receive scan codes
from the the PS/2 scan code set 1. Some keyboards can function as either a
point-of-sale keyboard or system keyboard.

Key meanings are assigned by the operating system or by the application:

Assigned by the Operating System:

For the system keyboard, the operating system is involved in processing
the keystrokes. It performs the scan code-to-ASCII character code
translations, keeps track of shift states, provides hot keys, and provides
special function keys like Pause.

The following keyboards have additional point-of-sale-unique keys that are
not known to the operating system:

* ANPOS Keyboard

» PC Point of Sale Keyboard

* Retail Alphanumeric Point of Sale Keyboard with Card Reader

The ASCII character code for these point-of-sale-unique keys will be
hexadecimal zero (0x00) in the keyboard event message. Your application
must check the scan code field in the keyboard event message in order to
detect that these keys have been pressed.

Assigned by the Application:

For a point-of-sale keyboard, the keyboard device handler calls the
operating system to perform the scan code-to- ASCII character code
translations and to keep track of shift states. Hot key sequences and
special function keys must be handled by your application.

The keystroke event message received by your application provides the
scan code corresponding to the key switch. If the scan code can be
translated to an ASCII character code, the PosKC_CHAR flag is set, and
the ASCII character code is also put in the event message.

Chapter 9. Keyboard Programming 9-11

Keyboard Programming created on October 2, 2001

Notes:

1. All standard PS/2 101-key or 102-key enhanced keyboard or PS/55 5576-002 or
5576-A01 keyboard key definitions for a process are taken from the operating
system for the code page, country and subcountry at the time the
subroutine is called by that process.

2. See IGetting Input Messages” on page 5-2 for more information about the input

queue and receiving event messages.

Restriction of the Keyboard Device Handler

The keyboard device handler does not support the subroutine. In
addition, it does not support the subroutine for the device descriptor that
you receive from the E%.Pm subroutine. The reason is that all keyboard input is

received from the presentation facility input queue (for example, from the
Presentation Manager event queue) or by issuing a @% subroutine for the
IBM Point of Sale Subsystem input queue (device descriptor zero).

Functions Your Application Performs

Your application can perform the following functions with the keyboard:
* Read keyboard data

* Use the manager key lock

* Use the keyboard tone

» Use the keyboard point-of-sale-unique keys
« Control the keyboard click

» Control the Num Lock and Scroll Lock keys
» Use the point-of-sale-unique keys

» Control the system hot keys

» Control the keyboard typematic function

» Specify the numeric keypad style

» Specify the numeric keypad location

Before your application program can access the point-of-sale keyboard or the
point-of-sale portion of the system keyboard, you must open the keyboard fsee

%@Mﬂgﬂ) and acquire exclusive use of it (see
).

Reading Keyboard Data

9-12

The keyboard can be in a locked state or an unlocked state. Data cannot be read
when the keyboard is in the locked state. The keyboard is initially in the unlocked
state. Your application reads all keyboard input from the presentation facility input
queue or by issuing [BasBead(] for the IBM Point of Sale Subsystem input queue
(device descriptor zero). All of the information about a keystroke is contained in the
event message. No other |Pn<Pmrf(1 call is required to get additional information.

See lGetting Input Messages” on page 5-2 for more information.

The keyboard device descriptor obtained from the w subroutine should not
be used on the Encnmd(‘ subroutine. If it is, the

error is set in errno.

Note: All kely:board m requests use the device descriptor obtained from the

subroutine.

System Keyboard Considerations
Applications have access to the system keyboard through the keyboard
interface provided by the operating system. The keystrokes from the system

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Keyboard Programming

keyboard are delivered by way of the presentation facility input event queue
or the operating system’s keyboard DosDevIOCtl() calls. The system
keyboard keystrokes are never delivered by way of the IBM Point of Sale
Subsystem input queue.

The PQS_SYS ACQUIRE DEVICH PoaslQCH() request and the
PQS_SYS RELEASE DEVICH PaslQCtY) request have no effect on the
receipt of keystrokes. Keystrokes are still handled by the operating system.
These requests only control which application is allowed to issue m
requests that affect the point-of-sale functions of the system keyboard.

Point of Sale Keyboard Considerations
The point-of-sale keyboard event messages are sent to the application that
has the device connection acquired. If the connection is not acquired, the
event messages are discarded.

Using the Manager Keyboard Lock

The application that has acquired the keyboard device receives the

event message on its message queue whenever
the posmon of the manager keyboard lock changes. The message contains the key
lock position.

To determine the current state of the keyboard lock at other times, use the
POS_SYS_GFET VAIUFES request of the [PaslOCH(] subroutine to retrieve the value

of the PasNkeyl acl resource. See LEoste;cLack_an_pagP_M for more

information.

Using the Keyboard Tone
The internal keyboard speaker is sounded by issuing the

POS_KBD_SOUND_TONH PosIOCH() request. The freiuenCﬁ duration, and

volume of the tone are determined by the values of the

PosNtoneDuration, and PasNtoneVolume resources. Use any of the foIIowmg
methods to specify values for these resources:

» Specify the value in the resource file.

« Set the value using the PQS_SYS_SFT_VAI UFS IPaslOCHI(] request.

» Specify the value using the args and nargs parameters of the

request.

If your application sounds the tone with the PasNtoneDuration resource set to

PosON, it must issue the PQS_KBD_SII ENCE_TONH PoslIOCtl(} request to
silence the tone.

See LPOS_KBD_SQUND_TONE” on page 19-20 and EPQS_KBD_SILENCE_TONE!
bnpage 19-1d

for more information.

Using the Keyboard Point of Sale Lights

The four point-of-sale lights are arranged in one row. You can control these lights
with the PQS_SYS_SET VAL UES [PasiQCH() request. The four lights are controlled
by the bit settings of the low-order four bit positions of the

resource byte. Bit 3 controls the left-most light, bit 2 controls the middle-left light, bit
1 controls the middle-right light and bit O controls the right-most light.

Set the point-of-sale sale lights for the keyboard by specifying the value for the

PosNkeyhoardl ightsOn resource. Use any of the following methods to change the

settings:

Chapter 9. Keyboard Programming 9-13

Keyboard Programming created on October 2, 2001

» Specify the value in the resource file.

* Use the args and nargs parameters of the POS_SYS_SET_VAL UES [PosIOCHi()
request.

« Use the args and nargs parameters of the [PasOpen() subroutine call.

The keyboard lights are turned on or off when the PosNkeyhoardLightsOn

resource of the acquired keyboard connection is changed.

e [PasNkeyhoardlightsOn” on page 21-28 for more information.

Controlling the Keyboard Click

The keyboard click is off by default. You can change this setting by changing the

value of the PosNkeyhoardClick resource. Use any of the following methods to

change the setting:

» Specify the value in the resource file.

+ Use the args and nargs parameters of the PQS_SYS SET VAL UES [PoslQCH()
request.

» Use the args and nargs parameters of the m subroutine call.

The keyboard click is turned on or off when the PasNkeyhaardClick resource of
the acquired keyboard connection is changed.

See [PaosNkeyhoardClick” on page 21-25 for more information.

Controlling the Num Lock Key

The PQS_KBD ENARBIE_NUM | OCK and PQS_KBD _DISABI E_NUM_| OCK

requests enable and disable the use of the Num Lock key on the
alphanumeric point-of-sale keyboards. The state of the Num Lock key can be set
by the PQS_KBD_SET_NUM_| QCK_ON request and the
POS_KBD_SET_NUM_1 OCK_OFH request using the [PasiOCH(] subroutine. If you
want to keep the operator from using the Num Lock key, your application should
disable the key and set the key state.

Controlling the Scroll Lock key

The PQS_KBD ENABIF_SCRQII | OCK and

POS_KBD_DISABI F_SCROI1_1 OCK [PasiOCH() requests enable and disable the
use of the Scroll Lock key on the alphanumeric point-of-sale keyboards. The state
of the Scroll Lock key can be set by the PQS_KBD_SET_SCROI 1 _1 OCK_ON

request and the PBOS_KBD_SET_SCROIT_TOCK_OFH request using the
subroutine. If you want to keep the operator from using the Scroll Lock

key, your application should disable the key and set the key state.

Controlling the Point of Sale-Unique Keys

9-14

Presentation Manager and Microsoft Windows Programming Considerations:
Because all Presentation Manager applications and all applications for the Microsoft
Windows run in the same session, your application must use these requests. Your
application must acquire the keyboard to enable scanning of the point-of-sale keys
when it gains focus and it must release the keyboard to disable scanning of the
point-of-sale keys before it loses focus. This must be done to ensure that
non-point-of-sale applications do not receive unexpected input from the point-of-sale
keys.

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Keyboard Programming

Controlling the System Hot Keys

The POS_KBD_ENABIF_HOT_KFYS and POS_KBD_DISABILE_HOT_KEFYS
m requests enable and disable the use of the system hot keys for the
point-of-sale keyboard when it is attached as the system keyboard port.

Controlling the Keyboard Typematic Function

The PQS_KBD SET TYPEMATIC QFH and PQS_KBD SET TYPEMATIC_QN
keyboard m requests control the keyboard typematic function. The
typematic rate and delay are controlled by the PasNtypematicDelay resource and

the i resource. See [PasKeyhoard Resource Set” od
for more information about these resources.

Specifying the Numeric Keypad Style

The default numeric keypad style for point-of-sale keyboards is a calculator layout
with the bottom right key defined as the slash (/). This style can be changed for
Point of Sale keyboards by specifying a value for the PosNnumpadStyle resource
in the resource file or on the w@ subroutine call. The numeric keypad style
cannot be changed for point-of-sale system keyboards.

Specifying the Numeric Keypad Location

The default location for the numeric keypad is on the right. The Modifiable Layout
Keyboard with Card Reader and the Retail Alphanumeric Point of Sale Keyboard
with Card Reader allow the numeric keypad location to be changed when the
keyboard is a point-of-sale keyboard. This can be done by specifying a value for the
PasNnumpadl acatian resource in the resource file or on the ﬁpe_ad
subroutine call. The numeric keypad location cannot be changed for Point of Sale
system keyboards.

Related Information

Additional information about keyboard programming is in these chapters:

o — orlafion B Intaacd
Chapter 19 PaoslOCtl() Requests

Clopior o1 Aesorce ety

Appendix D. Frror Coded

Subroutines Used with Keyboard

Keyboard PoslOCtl() Control Requests
See Chapter 19_PoslQCH() Requestd:

Chapter 9. Keyboard Programming 9-15

Keyboard Programming created on October 2, 2001

BOS_SYS_UNLOCK_DEVICH

Keyboard Event Messages
See Chapter 20_Event Messaged:

Note: The WM_CHAR event message is generated by OS/2 Presentation Manager
or the Microsoft Windows operating system for the point-of-sale-unique scan
codes as well as for the standard PS/2 101-key and 102-key enhanced
keyboard keys, or the PS/55 5576-002 and 5576-A01 keyboard keys.

Keyboard Resources

See Chapter 21 Resaource Sets:
PasNdoubhleKey01 - PaosNdauhleKey&ad

Keyboard Error Codes
See lAppendix D_Error Coded:

9-16 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Keyboard Programming
“703 POSERR_KBD_INVALID_VOI UMH

Chapter 9. Keyboard Programming 9-17

Keyboard Programming created on October 2, 2001

9-18 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Chapter 10. Magnetic Stripe Reader Programming

The magnetic stripe reader (MSR) device handler is software that manages
communication between your application and the MSR. An application can only
access the device through the device handler.

Characteristics of the MSR

The magnetic stripe reader (MSR) appears to the system to be an independent
input/output (1/O) device, regardless of whether it is attached to the system unit or
the keyboard.

The MSR is unlocked and locked under control of the IBM Point of Sale Subsystem.
The MSR should only be unlocked immediately prior to the time it is used.

All IBM Point of Sale Subsystem MSRs have the following common characteristics:
» The MSR power-on state is locked.

* The MSR, when it is unlocked for long periods of time, can be affected by
electromagnetic fields emitted by other equipment. This can trigger an input
event message with data that is not valid, so it is best to unlock the MSR only
when input is expected. If an input request is fulfilled by means other than the
MSR (for example, keyboard input), the application is responsible for locking the
MSR to prevent unintentional input.

* The MSR performs parity and longitudinal redundancy checks (LRC) before
sending the data to the system. However, modulo checking is not performed by
the MSR or the MSR device handler. The application code must perform modulo
checking.

One-Track Magnetic Stripe Reader

The one-track magnetic stripe reader (MSR) attaches to the top of the 50-Key
Modifiable Keyboard. It connects by a cable to socket 6 on the back of the
keyboard.

The one-track MSR has the following characteristics:

» Data encoded on a card (such as a credit card) can be read as the card is
passed through the slot in the reader. The one-track MSR reads track 2 data as
specified in the following standards:

— The ANSI Specifications for Magnetic-Stripe Encoding for Credit Cards, ANSI
X4.16-1983

— The ANSI Specifications for Credit Cards, ANSI X4.13

» The ANSI standards specify that the data available to your application consists of
the account number field, a separator character (X'0d") and a discretionary data
field. The account number can be a maximum of 19 characters. The discretionary
data field can be a maximum of 36 characters. The total number of characters
occupied by the account number field, the separator character, and the
discretionary data field cannot exceed 37 characters. The total number of
characters, including the begin and end of field indicators and LRC characters, is
40.

* Track 2 data is numeric only, and is in BCD format.

Notes:
1. The hardware only detects the MSR presence when the keyboard is reset.

© Copyright IBM Corp. 1993, 2001 10-1

Magnetic Stripe Reader Programming created on October 2, 2001

2. The one-track MSR is not supported on the IBM Point of Sale Subsystem for
Linux.

Dual-Track Magnetic Stripe Reader

The dual-track magnetic stripe reader comes in two styles that are functionally
equivalent:

« Standard Profile

* Low Profile

Note: The Dual-Track MSR is not supported on the IBM Point of Sale Subsystem
for Linux.

The standard profile dual-track MSR attaches to the top of the 50-Key Modifiable
Keyboard and connects to socket 5A or 5B on the back of the point-of-sale terminal.
The low profile dual-track MSR is optionally integrated into the ANPOS keyboards.
It is connected to a socket internal to the keyboard.

The dual-track MSR has the following characteristics:

* There are two models available, one reads tracks 1 and 2, and the other reads
tracks 2 and 3

» Track 1 data is formatted as alphanumeric, using only the lower 6 bits of each
byte

* The maximum amount of data on track 1 is 79 characters

* Track 2 data has the same format and size as on the one-track MSR

» Track 3 data is numeric only, and has the same format as track 2 data (BCD)

* The maximum amount of data on track 3 is 107 characters

» If MSR data is read while the MSR is waiting for a response from the system, the
error flag for that track is set

Three-Track Magnetic Stripe Reader

10-2

The three-track magnetic stripe reader comes integrated in the following keyboards:
* Retail Point of Sale Keyboard with Card Reader

* Retail Point of Sale Keyboard with Card Reader and Display

* Modifiable Layout Keyboard with Card Reader

* Retail Alphanumeric Point of Sale Keyboard with Card Reader

The three-track magnetic stripe reader is an optional feature for the following:
* All IBM 4695 Point of Sale Distributed Touch Terminal Models

All IBM 4695 Point of Sale Integrated Touch Terminal Models

» SurePoint Monochrome Touch Screen

» SurePoint Color Touch Screen

IBM 4820 SurePoint Solution

The three-track MSR has the following characteristics:

» Track 1 data is formatted as alphanumeric, using only the lower 6 bits of each
byte

* The maximum amount of data on track 1 is 79 characters

» Track 2 data has the same format and size as on the one-track MSR

» Track 3 data is numeric only, and has the same format as track 2 data (BCD)

* The maximum amount of data on track 3 is 107 characters

« If MSR data is read while the MSR is waiting for a response from the system, the
error flag for that track is set

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Magnetic Stripe Reader Programming

Two-Head/Two-Sided Magnetic Stripe Reader

The two-head/two-sided magnetic stripe reader comes integrated in the following
keyboards:

* PC Point of Sale Keyboard

* Point of Sale Keyboard V

* Point of Sale Keyboard VI

» 4685 Point of Sale Keyboard Model K01

Note: The two-head/two-sided MSR is not supported on the IBM Point of Sale
Subsystem for Linux.

The two-head/two-sided MSR is an optional feature for the following:
» All IBM 4695 Point of Sale Distributed Touch Terminal Models

» All IBM 4695 Point of Sale Integrated Touch Terminal Models

* |IBM 4820 SurePoint Solution

The two-head/two-sided MSR has the following characteristics:

* One side reads ABA/ISO/JIS-I track 2 data. The head in the other side of the slot
reads the JUCC/JIS-II track.

* Track 2 data has the same format and size as the one-track MSR.

* The maximum amount of data on the JUCC/JIS-II track is 88 characters.

Restriction of the MSR Device Handler
The MSR device handler does not support the m subroutine.

Functions Your Application Performs

Your application can perform the following functions with the MSR:
* Unlock the MSR

* Read MSR data

* Lock the MSR

Before your appllcatlon program can access the MSR, it must open the MSR (see
) and lcquird exclusive use of the MSR.

Unlocking the MSR

The MSR has two states: locked and unlocked. In the locked state, data cannot be
received. Initially, the MSR is in the locked state. Your application must issue a
POS_SYS_UNI OCK_DEVICH [PoslOCtI() request to put the MSR in the unlocked

state before it is able to read card data.

The MSR changes from unlocked to locked state when one of the following occurs:

» Data is read from a card.

+ The application issues the PQS_SYS_LQCK_DEVICH [PaslQCtl) request.

+ The application issues the PQS_SYS_RELEASE_DEVICH PaslQCtl) request.
Although the MSR is locked when your application releases it, the state is

remembered. So, the next time your application acquires the MSR, it is unlocked
automatically for you.

» The application issues the m request if your application has the MSR
acquired at the time of this call.

Because a successful card read results in the MSR being locked, your application

must issue the PQS_SYS_UNI QCK_DEVICH [PoslQCH() request each time it

Chapter 10. Magnetic Stripe Reader Programming 10-3

Magnetic Stripe Reader Programming created on October 2, 2001

prepares to read data from the MSR. The MSR should be left in the locked state
any time that MSR data is not expected to prevent input that is not valid.

Reading MSR Data

10-4

After your application has unlocked the MSR, it receives a

_ - — event message on its input queue when MSR data is
available. See M@%{ﬁgﬂd for more information. Your
application should then call the subroutine using the MSR device
descriptor to read the data. This subroutine reads data from all tracks of the MSR.

The data is placed in the application’s buffer that was specified on this subroutine
call.

Your application specifies the read buffer on the m subroutine using the buf
and nbyte parameters. The number of nbytes is returned in the
PQSM_MSR_DATA_AVAILl event message. The buffer length value set in nbyte
must be big enough to hold the maximum amount of data from all tracks plus each
of the 8 byte headers (one per track).

A value of 0 (zerog for the buffer length indicates that no data is to be read. If the
value of nbyte of PasRead() specifies a value too small for the record being read,

the B12 POSFRR SYS RUFFER TQQ SMAIL U error is returned and data is not

put into the application’s buffer.

m returns to your application immediately with either MSR data or an error
code. If no data is available and no error occurs, the read completes successfully
with a length of O (zero) returned.

If your application issues a PQS_SYS_UNI QCK_DFVICH [PasIOCH() request when
data is available for it, the data is discarded to ensure that previous unprocessed
MSR card data is not used in error.

The B35 POSFRR_SYS | OCKFD_NQ_DATA_RFAQ error code is returned when
the MSR is in the locked state and no data is available. Any data available prior to
the MSR being locked will be returned by a read request before this error code is
returned.

See [PasRead()” on page 18-16 for the syntax of this subroutine call.

MSR Read Buffer Format
Once your application successfully reads the MSR card data into its buffer, it is
ready to interrogate the data. The format of the MSR data is described in

There is a header/data pair for each unlocked track that contains data. The header
portion of the returned data is defined in the structure PosMsrDataHdr (see the
header file C:\POS\INCLUDE\POS\MSR.H). If there is no data and no error condition on
a particular track, no header or data is returned to the application.

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Magnetic Stripe Reader Programming

/...
Header Data Header Data
/. /
e — |
Track Flags Length

Figure 10-1. MSR Read Buffer Format

The format of each track is described by the following fields. The header is made
up of the first three fields.

Track (unsigned long)
Identifies the MSR track.

Value Meaning
PosTRACK_1 Track 1 data
PosTRACK_2 Track 2 data
PosTRACK_3 Track 3 data
PosTRACK_J Track JUCC/JIS-II data

Flags (unsigned short)
Indicates the status of the data. These indicators should be checked on a
track-by-track basis.

Value Meaning
POS_MSR_TRK_ERROR Error reading track

Length (unsigned short)
The length (0-65535) of the data read. This field is 0 (zero) if there was no data
read for this track or if the flag POS_MSR_TRK_ERROR is set.

Data (unsigned char[)
The data that is read from the track on the card.

Locking the MSR
The application can issue the POS_SYS_| OCK_DEVICH PasIOCtl(} request to

prevent the MSR from receiving card data. If your application issues a
POS_SYS_| OCK_DEVICH [PoslOCHI() request when data is available, the data is
not discarded. This data is available to be read by the application until the
application issues another PQS_SYS UNLQCK_DEVICH [PaslQCt() request.

Related Information

Additional information about MSR programming is in these chapters:

Chapter 10. Magnetic Stripe Reader Programming 10-5

Magnetic Stripe Reader Programming

+ lAppendix D. Frror Caded

MSR PoslOCtl() Control Requests

See Chapter 19_PaslQCt() Requestd:
PQS_SYS ACQUIRE DEVICH

BOS_SYS_UNLOCK_DEVICH

MSR Event Messages
See Chapter 20_Event Messaged:
BOSM_MSR_DATA_AVAII|

MSR Error Codes

There are no error codes that are specific to the MSR.

10-6 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

created on October 2, 2001

Chapter 11. Non-Volatile Random Access Memory

Programming

The non-volatile random access memory (NVRAM) device handler is software that
manages communication between your application and the NVRAM. An application

can only access the device through the device handler.

Note: For Windows 3.1 users, the IBM Point of Sale Subsystem for Windows does

not support the NVRAM device on a satellite point-of-sale terminal.

Characteristics of the NVRAM Device

The following is a list of characteristics of the NVRAM device:
* NVRAM provides battery-protected static storage. This area is available for your

application to store data that needs to be saved if power is lost. For example, an
application could use NVRAM to retain information about totals.

An application can use the storage area in much the same way as it uses a
direct file or a sequential file.

For direct or sequential mode access, four overhead bytes of information are
added to each record written:

— 2 bytes for the length

— 2 bytes for the cyclic redundancy check (CRC)

You must include this overhead when calculating record addresses or space
requirements.

In sequential mode, there is an additional overhead of four bytes for an
end-of-file (EOF) marker. When your application writes a record in sequential
mode, an EOF marker is appended to the file after each record is written. The
previous EOF marker is overlaid by each sequential write operation.

The NVRAM device handler automatically adds the required overhead bytes
when you write a record. The overhead bytes are not passed to your application
when you read a record.

The maximum amount of data that can be read or written in a single operation is
dependent on the type of point-of-sale terminal and on the mode of access. The
following table shows the maximum amount of data that can be written or read at
a time for each supported point-of-sale terminal, for direct and sequential mode.

Table 11-1. Maximum Block Size for NVRAM Read and NVRAM Write Operations

Point of Sale Terminal Direct Mode Sequential Mode
IBM 4683-x02 60 56

IBM 4683-421 1020 1016

IBM 4684-300 1020 1016

IBM 4693 (all models) 1020 1016

IBM 4694 (all models) 1020 1016

IBM 4695 (all integrated models) 1020 1016

IBM 4800-xxx 1020 1016

IBM 4695 Point of Sale Adapter 1020 1016

IBM 4695 Point of Sale Adapter/A 1020 1016

© Copyright IBM Corp. 1993, 2001

11-1

Non-Volatile Random Access Memory Programming created on October 2, 2001

Table 11-1. Maximum Block Size for NVRAM Read and NVRAM Write
Operations (continued)

Point of Sale Terminal Direct Mode Sequential Mode

IBM 7497-001 Attachment Adapter 1020 1016

“x” in [able 11-1 on page 11-1 indicates that a number or alphabetic character

can be substituted.

» The application address space is dependent on the type of point-of-sale terminal.
The list below contains the NVRAM application address space for each
supported IBM point-of-sale terminal.

4683-x02 0-1023
4683-421 0-28671
4684-300 0-4095
4693-all models 0-28671
4694-all models 0-28671
4695-all integrated models 0-126975
4800-xxx 0-111270

4695 Point of Sale Adapter 0-126975
4695 Point of Sale Adapter/A 0-126975
7497-001 0-28671

Functions Your Application Performs

Your application can perform the following functions with the NVRAM device:
* Get the NVRAM application address space size

» Change the cursor position

* Open NVRAM in direct mode or sequential mode

* Read data in direct mode or sequential mode

* Write data in direct mode or sequential mode

Before your application program can access the NVRAM, it must open the NVRAM
(see Dpening Your Devicd) and hequird exclusive use of the NVRAM.

Note: The NVRAM device handler ensures that each read or write operation
completes in its entirety before another read or write operation begins. This
ensures that data is not interleaved if two write operations occur at the same
time to the same area, but it does not protect one thread’s data from another
thread, or one process’s data from another process.

Available NVRAM Application Address Space

The available NVRAM application address space size can be queried by getting the
value of the PosNnvramSizd resource with a PQS_SYS GET VALUES [PoslOCtl()
request.

The Cursor Position

11-2

The cursor position specifies the NVRAM address of the start of the next record to
be read or written. The cursor position is set by changing the PosNnvramCursot
resource with a PQS_SYS_SET VAL UES [PasIQCH() request. The cursor position
can be queried by getting the value of the PasNnvramCursot resource with a
PQS_SYS_GET VAL UES PosIQCH() request.

Following each successful read or write operation, the cursor position is advanced
to the first byte of the next record. If an error occurs on either the m or the
subroutine call, the cursor position is not advanced.

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Non-Volatile Random Access Memory Programming

Note that the placement of the cursor position at or near the end of the NVRAM
application address space does not cause an error. An error is returned on the next

PasRead() or IPasWrite(] subroutine call.

Opening NVRAM in Direct Mode or Sequential Mode
To open NVRAM, set the PosNnvramModd resource to PosMODE_DIRECT or
PosMODE_SEQUENTIAL by specifying it as an argument on the
subroutine call. The NVRAM connection stays in the mode you specified until the
application issues a m subroutine call.

The default is PosMODE_DIRECT.

Reading Data in Direct Mode or Sequential Mode

Set the cursor position to the address that you want to read. If you do not know the
current position of the cursor, issue a PQS_SYS_GET_VALUES |PaslQCH() request
for the PosNnvramCursad resource. If the current cursor position is not set to
where you want it, issue a PQS_SYS_SET VAL UES [PaslQCH() for the
PosNnvramCursor resource.

To read a record in direct mode or sequential mode, issue a m subroutine
call. If the data is read successfully, the data (without the overhead bytes) is placed
in the buffer specified on your read request. The cursor position is advanced to
point to the first byte of the next record. Ensure that the buffer you use is large
enough to hold the record being read. The read request returns the number of
bytes actually read (copied) to your buffer. If your buffer is not large enough, the
read operation completes with an error code of Rid

POSERR_SYS BRUFFER_TOQ_SMAI Ll and data is not put in the application’s
buffer. If any error occurs, the cursor position is not advanced. This allows your
application an opportunity to get a larger buffer and reissue the Im call
without setting the cursor position again.

Sequential Mode Only: If the cursor is positioned at the EOF marker, the error
code B103 POSFRR_NVRAM EOH is returned on the next [PasBead(] call, and
zero bytes are returned, indicating end-of-file. The cursor position is not advanced
in this case, so all subsequent ém calls continue to return zero bytes read
until the cursor position is changed by setting the PasNnvramCursoi resource to a
valid address in the NVRAM application address space.

Writing Data in Direct Mode or Sequential Mode

Set the cursor position to the address to which you want to write. If you do not
know the current position of the cursor, issue a PQS_SYS_GET VALUES
request for the PosNnvramCursor resource. If the current cursor

osition is not set to where you want it, issue a BQS_SYS_SET VALUESY
m for the PasNnvramCursad resource. To write a record in sequential
mode, issue a m subroutine call. If the data is written successfully, the
cursor position is advanced to point to the first byte of the next record (the EOF
marker that marks the end of the current sequential stream). Writing another record
overwrites the previous EOF and replaces it with the new record and the new EOF
marker.

If the current cursor position plus the length of the data to be written extends
beyond the end of the NVRAM application address space, no data is written and an

error code of #1101 POSFRR NVRAM NOT ENQUGH RQOM is returned on the
subroutine call.

Chapter 11. Non-Volatile Random Access Memory Programming 11-3

Non-Volatile Random Access Memory Programming created on October 2, 2001

Sequential Mode Only: You can stop writing sequentially after any record, knowing
that there is an EOF marker in place to mark the end of the sequential stream. The

subroutine returns the number of bytes actually written from your buffer.
If an error occurs, the cursor position is not advanced. If you position the cursor to
a new address and then start writing sequentially again, it is possible to create
multiple EOF markers in a single NVRAM application address space.

Direct Mode Only: To write a record in direct mode, issue a m subroutine
call. If the data is written successfully, the cursor position is advanced to point to
the first byte of the next record. The write returns the number of bytes actually
written (copied) from your buffer. If an error occurs, the cursor position is not
advanced.

Related Information

Additional information about NVRAM programming is in these chapters:

. TN Interood
Chapter 19_PaoslQCtl() Requestd

D hhaph:r% Resource Setd

« [Bppendix D Frror Coded
Subroutines Used with NVRAM

NVRAM PoslOCtl() Control Requests
See Chapter 19 _PoslOCHl() Requestd:
PQS_SYS_ACQUIRF_DFVICH

NVRAM Resources
See Chapter 21, Resource Sets:
PasNnvramCursot
PosNnvramModd
PosNnvramSizd

NVRAM Error Codes
See lAppendix D_Error Coded:

11-4 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Chapter 12. Printer Programming

The printer device handler is software that manages communication between your
application and the printer. An application can only access the device through the
device handler and only after it has successfully opened a connection to the device.

Characteristics of the Printers

The IBM Point of Sale Subsystem supports the following point-of-sale printers:
e IBM Model 2 Printer
e |IBM Model 3 Printer
* |IBM Model 3F Fiscal Printer
e |IBM Model 3R Printer
e |IBM Model 4 Printer
* |IBM Model 4A Printer
e |IBM Model 4R Printer
* IBM 4689 Point of Sale Printer Models:
001, 002, 301, 3G1, 3M1, TD5
* IBM 4610 SureMark Point of Sale Printer Models:
T, TI2, TI3, Tl4, TI5, TF6, TF7, TM6, TM7, TN3, TN4
* IBM 4610 SureMark Point of Sale Fiscal Printers

Several of the IBM point-of-sale printers are two-station printers that provide up to
three functions:

» Customer receipt (CR) function in one station

* Summary journal (SJ) function in a second station

* Document insert (DI) function in the same CR and SJ stations

The CR function is used to provide a hard copy of the transaction. It can also
function as a general output device to provide data to the user. The SJ function is
used to record data on every transaction for an audit trail, or to perform any other
printing function the application program dictates. The DI function is provided to
allow the insertion of a form, document, or check directly into the printer from the
front or from the top. This is used for a variety of print functions, such as:

» Printing store charge account forms

* Printing checks

* Endorsing checks

For the remainder of this book, the customer receipt function is referred to as the
CR station, the summary journal is referred to as the SJ station, and the document
insert referred to as the DI station.

IBM Model 2 Printer

The IBM Model 2 printer has the following characteristics:
 Eight-wire bidirectional print mechanism

» Variable line spacing

* Emphasized print capability

Note: The IBM Model 2 Printer is not supported on the IBM Point of Sale
Subsystem for Linux.

Print Mechanism
The printer mechanism is an 8-wire dot matrix, bidirectional, all-points-addressable
device.

© Copyright IBM Corp. 1993, 2001 12-1

Printer Programming created on October 2, 2001

Fonts

The CR, SJ and DI stations each print up to 38 characters per line (CPL) at 15
characters per inch (CPI). Double-strike printing is available on all stations for
emphasis.

Logo (all-points-addressable) (APA) printing is supported at the CR and DI stations.

Line Length
The maximum number of printable characters per line (CPL) for each font type and
station type is shown in the following table:

Table 12-1. Maximum Number of Characters for the IBM Model 2 Printer

Station 15 CPI LOGO
Customer Receipt 38 CPL 300 bytes
Summary Journal 38 CPL n/a
Document Insert 38 CPL 300 bytes

Note: Each font control character pair inserted in the m data field
increases the size of the field by 2 bytes.

Line Spacing

The default line spacing for the CR and DI stations is 6 lines per inch. The default
line spacing for the SJ station is 8 lines per inch. The line spacing for the CR and
DI stations can be changed by the IPaslOCtI{} subroutine call with the request of

PQOS_SYS_SFT_VAIUES and a resource of PasNlineFeedCR or PasNlineFeedDI.

Similarly, the current line spacing is returned by the PQS_SYS GFT VAI UES
request of the [PasIQCH(] subroutine call. Refer to FPQS_SYS_GET_VAI UES” od

page 19-44 and fPOQ_QYQ_QFT_VAI UES” on page 19-49 for additional
information.

Emphasized Printing

Emphasized printing is primarily intended to be used for printing on thick multi-part
forms. A second strike of the print head wires on most forms results in the copies
having darker, more easily read print. An application program puts the printer in
emphasized mode by imbedding a double-density escape character sequence in
the print data sent when calling the [PasWrite() subroutine. Emphasized printing is
available with all printer fonts at all the print stations.

Performance
The speed for printing on the CR station at 6 lines per inch with the normal font (15
CPI) can be up to 150 lines per minute, depending upon the application.

Logo printing is supported in the printer at approximately half the non-logo speed
because of unidirectional printing.

Emphasized, or double-strike printing, is available in all printer stations at a speed
that is one-third the normal printing speed. In emphasized print mode, the line is
printed once, the print head is returned to the starting position, and the line is
printed a second time. Every line of print requires three passes of the print head.

IBM Model 3 and IBM Model 4 Printers

The IBM Model 3 and Model 4 printers have the following characteristics in
common:
* Nine-wire bidirectional print mechanism

12-2 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Printer Programming

Multiple fonts

Variable line lengths
Variable line spacing
Emphasized print capability

Note: These printers are not supported on the IBM Point of Sale Subsystem for
Linux.

Print Mechanism

The printer mechanism is a 9-wire dot matrix, bidirectional, all-points-addressable
high-speed device. The number 9 print wire can be used for an underscore or for
descenders.

Fonts
The CR and SJ stations each print up to 38 characters per line at 15 characters per

inch (CPI). The DI station prints up to 86 characters at 15 CPI. Other fonts are
stored in the printer including 12 CPI, 17 CPI, and 7.5 CPIl. The 7.5 CPI characters
can also be printed double-high. Lower-case characters can be printed in addition
to upper-case characters. Double-strike (emphasized) printing is available in all
stations.

Logo (all-points-addressable) printing is supported at the CR and DI stations.

Line Length
The maximum number of printable characters per line (CPL) for each font type and

station type is shown in the following table:

Table 12-2. Maximum Number of Characters for IBM Model 3/3F/4/4A Printers

Double-Wide
Station 15 CPI 12 CPI 17 CPI* 7.5 CPI LOGO
Customer 38 CPL 30 CPL 42 CPL 19 CPL 380 bytes
Receipt
Summary 38 CPL 30 CPL 42 CPL 19 CPL n/a
Journal
Document 86 CPL 68 CPL 94 CPL 43 CPL 880 bytes
Insert Wide
Document 38 CPL 30 CPL 42 CPL 19 CPL 380 bytes

Insert Narrow
* Only supported on Model 4 (EC level 0X23) and Model 4R (EC level 0X3B and 0X3C)

Note: Each font control character pair inserted in the [Boslite(] data field
increases the size of the field by 2 bytes.

Line Spacing

The default line spacing for the CR and DI stations is 6 lines per inch. The default
line spacing for the SJ station is 8 lines per inch. The line spacing for each station
can be changed by the m subroutine call with the request of

and a resource of PasNlineFeedCR, PasNlineEeedDl,

or

Similarly, the current line spacing is returned by the PQS_SYS GET VALUES

request of the [PaslQCH(] subroutine call. Refer to FPQS_SYS GET VAILUES” od

bage 1049 and FPOS_SYS SET VAIUES on page 19-48 for additional

information.

Chapter 12. Printer Programming 12-3

Printer Programming created on October 2, 2001

Emphasized Printing

Emphasized printing is primarily intended to be used for printing on thick multi-part
forms. A second strike of the print head wires on most forms results in the copies
having darker, more easily read print. An application program puts the printer in
emphasized mode by imbedding a double-density escape character sequence in
the print data sent when calling the m subroutine. Emphasized printing is
available with all printer fonts at all the print stations.

Font Specification

The pitch of the default font is 15 CPI. A font change can be specified by imbedding
an escape control character, followed by a character designating the font type
desired, in the data stream sent to the printer by the @%E{Jgsubroutine.

After receiving the escape character sequence denoting a font change, the printer
continues to print in that font until another font change escape character sequence
is received.

Performance
The speed for printing on the CR station at 6 lines per inch with the normal font (15
CPI) can be up to 240 lines per minute, depending upon the application.

Logo printing is supported in the printer at approximately half the non-logo speed
because of unidirectional printing. Double-high fonts are also printed at a lower
speed.

Emphasized, or double-strike printing, is available in all printer stations at a speed
that is one-third the normal printing speed. In emphasized print mode, the line is
printed once, the print head is returned to the starting position, and the line is
printed a second time. Every line of print requires three passes of the print head.

IBM Model 3R and Model 4R Printers

The IBM Model 3R and the IBM Model 4R printers have the same characteristics as
the IBM Model 3 and IBM Model 4 printers. However, the IBM Model 3R and the
IBM Model 4R printers also have a magnetic ink character recognition (MICR)
reader installed. The MICR reader allows application programs to read the account
information on customer checks in the DI station.

Note: These printers are not supported on the IBM Point of Sale Subsystem for
Linux.

IBM Model 3F Fiscal Printer

12-4

The IBM Point of Sale Subsystem printer device handler supports several countries
on the IBM Model 3F Fiscal Printer.

The IBM Model 3F Fiscal Printer has many of the characteristics of the IBM Model
3 Printer and the IBM Model 4 Printer. Where there are differences, it is because
the fiscal printer is following the applicable point-of-sale fiscal laws of the supported
countries. Some of the differences are:

» The fiscal printer supports only 2 lines per inch (LPI) values: 6 LPI and 8 LPI.

* The fiscal printer does not support logo printing.

IBM Model 3F Fiscal Printer Restrictions
Refer to the country-specific printer documentation for printer restrictions

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Printer Programming

IBM Model 4A Printer

The IBM Model 4A printer has the same characteristics as the IBM Model 3 and
IBM Model 4 printers. However, the Model 4A printer allows fonts to be downloaded
to the printer instead of having a fixed font in the ROM on the printer.

Note: The IBM Model 4A printer is not supported on the IBM Point of Sale
Subsystem for Linux.

With the capability of defining new characters, the maximum number of characters
per line can vary depending upon the font downloaded to the printer, the current
font, and the height of the font. The line length can be calculated by dividing the
number of lAddressable Print Positions Per Ling by the number of lAddressable Print
Pasitions Per Charactet for the current station, character set, font, and height.

Addressable Print Positions Per Line
The maximum number of addressable print positions (dot columns) per line for each
font type and station type is shown in the following table

Table 12-3. Maximum Number of Addressable Print Positions Per Line for the IBM Model 4A

Printer

Station 15 CPI 12 CPI
Customer Receipt 380 Points 300 Points
Summary Journal 380 Points 300 Points
Document Insert Wide 860 Points 680 Points
Document Insert 380 Points 300 Points
Narrow

Addressable Print Positions Per Character
The maximum number of addressable print positions (dot columns) per character
for each font type and station type is shown in the following table:

Table 12-4. Maximum Number of Addressable Print Positions per Character for the IBM
Model 4A Printer

Addressable Print
Positions per

Character Set Font Height Character
Single-Byte Normal 9 10 Points
Single-Byte Double-Wide and 9 20 Points
Double-High
Double-Byte Normal 9 WIDTH + SPACE
Double-Byte Double-Wide 9 2« (WIDTH +
SPACE)
Double-Byte Double-High 9 2« (WIDTH +
SPACE)
Double-Byte Normal 16 2+ (WIDTH +
SPACE)
Double-Byte Narrow 16 WIDTH + SPACE

Chapter 12. Printer Programming 12-5

Printer Programming created on October 2, 2001

The values for WIDTH and SPACE in the previous table are the defined
double-byte character sets font width and height. For more information about the

WIDTH and SPACE keywords, see Appendix E. IBM Madel 4A Font Download.

IBM 4689-001 and IBM 4689-002 Printer

12-6

The IBM 4689-001 and IBM 4689-002 printers have the following characteristics:
* Nine-wire bidirectional print mechanism

* Multiple fonts

» Variable line lengths

» Variable line spacing

Note: These printers are not supported on the IBM Point of Sale Subsystem for
Linux.

Print Mechanism
The printer mechanism is an 18-wire (9 dot X 2 parallel) dot matrix.

Fonts

The CR and SJ stations each print up to 30 characters per line. The DI station
prints up to 70 characters per line. Another font is stored in the printer that can print
up to 25 characters per line for the CR and SJ stations and up to 58 characters per
line on the DI station. Lower-case characters can be printed in addition to
upper-case characters.

Line Length
The maximum number of printable characters per line (CPL) for each font type and
station type is shown in the following table:

Table 12-5. Maximum Number of Characters for IBM 4689-001/002 Printers

Station SBCS 25 CPL SBCS 30 CPL DBCS 25 CPL DBCS 30 CPL
Customer 25 CPL 30 CPL 12 CPL 15 CPL
Receipt

Summary 25 CPL 30 CPL 12 CPL 15 CPL
Journal

Document Insert 58 CPL 70 CPL 29 CPL 35 CPL

Line Spacing

The line spacing for the CR and DI stations is 6 lines per inch. The line spacing for

the SJ station is either 6 lines per inch or 7.2 lines per inch. The line spacing for the
SJ station is controlled by a hardware switch called the Journal Spacing switch. The
line spacing for the CR and DI stations cannot be changed.

Font Specification

There are two fonts available on the IBM 4689-001. One is 25 characters per line
(CPL) and the other is 30 characters per line. The font specification(25 CPL or 30
CPL) is controlled by a hardware switch called the Character Spacing switch.

There is only one font (25 CPL) available on the IBM 4689-002 printer.

Performance
The speed for printing on the CR station at 6 lines per inch can be up to 200 lines
per minute, depending upon the application.

Restrictions
If a document is inserted in the printer when the cover is opened, the document
should be removed before the cover is closed.

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Printer Programming

IBM 4689 Point of Sale Printer Model 301, 3G1, 3M1, and TD5

The IBM 4689-3x1 and TD5 printers consist of two stations (CR and SJ print
stations only) and have the following characteristics:

* Thermal print mechanism

* Multiple fonts

* Multiple print directions

» Variable line lengths

» Variable line spacing

* Ruled lines (Keisen)

* Multiple contrast (Amikake) levels

Note: These printers are not supported on the IBM Point of Sale Subsystem for
Linux.

Print Mechanism
The printer mechanism is a thermal print head.

Fonts

There are two font sizes in the 4689-3x1 and TD5 printers:
* 24x24 dot matrix (normal font)

* 16x16 dot matrix (small font)

Both the normal font and the small font support the full Kanji (JIS-1 and JIS-II)
character sets, the single-byte character set (Hankaku), and Kana characters. The
size of the characters are dependent on both the font and the type of character:
* Normal font

— 12x24 dot matrix for single-byte characters (Hankaku).

— 24x24 dot matrix for double-byte characters (Zankaku).
e Small font

— 8x16 dot matrix for single-byte characters (Hankaku).

— 16x16 dot matrix for double-byte characters (Zankaku).

In addition to the two installed fonts, there is also the capability for 64 user-defined
characters (UDC) using the 24x24 dot matrix font.

Lower-case characters can be printed in addition to upper-case characters.

The size of the characters can also be changed to:
* Yokobai (double-wide)

» Tatebai (double-high)

* Yonbai (double-wide and double-wide)

Line Length
Both the CR station and the SJ station are able to print on the 58 mm wide thermal

paper. Using the 24x24 dot matrix font (normal font), up to 32 single-byte characters
per line can be printed. Using the 16x16 dot matrix font (small font), up to 42
single-byte characters per line can be printed. The maximum number of printable
characters per line (CPL) for each font type and station type is shown in the
following table:

Table 12-6. Maximum Number of Characters for IBM 4689-3x1 and TD5 Printers

Station SBCS 32 CPL SBCS 42 CPL DBCS 32 CPL DBCS 42 CPL
Customer 32 CPL 42 CPL 16 CPL 21 CPL
Receipt

Chapter 12. Printer Programming ~ 12-7

Printer Programming created on October 2, 2001

Table 12-6. Maximum Number of Characters for IBM 4689-3x1 and TD5 Printers (continued)

Station SBCS 32 CPL SBCS 42 CPL DBCS 32 CPL DBCS 42 CPL
Customer 14 CPL 19 CPL 14 CPL 19 CPL
Receipt Rotated

Summary 32 CPL 42 CPL 16 CPL 21 CPL
Journal

Line Spacing

The line spacing for the CR station defaults to 6.78 lines per inch. The line spacing
for the SJ station defaults to 9.24 lines per inch.

Print Direction

There are two directions characters can be printed:
* Yokogaki (English direction)

» Tategaki (90 degrees clockwise rotated)

Note: The Tategaki direction can only be printed on the CR station using the
normal (24x24) font.

Contrast (Amikake)

Three levels of contrast (Amikake) can be specified for the characters:
* None (the default)

 Light

* Dark

Line Characters (Keisen)
Line characters can be printed on the 4689 Model 3x1 and TD5 printers. These
characters can be either solid lines (jissen) or dashed lines (tensen).

Performance

The speed for printing on the CR and SJ station using the 24x24 dot matrix font
can be up to 20 lines per second. Using the 16x16 dot matrix font, the speed can
be up to 27 lines per second.

Restrictions

During normal print operations, if the printer cover is opened while the printer is
idle, no status change messages indicating the cover is open will be sent to the
application.

IBM 4610 SureMark Point of Sale Printer

12-8

The IBM 4610 SureMark Printer models TI1, TI2, TI3, TI4, and TI5 have the
following characteristics in common:

» Separate CR and DI print mechanisms (no SJ station)

* Multiple fonts

» Variable line lengths

» Variable line spacing

* Multiple text print attributes

* Pre-defined messages and logos

» Barcode printing

The IBM 4610 SureMark Printer model TN3 has a separate thermal SJ station. The
TN3 printer is supported in the IBM Point of Sale printer device handler as a Model
4 printer.

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Printer Programming

Notes:

1. Only 4610 Models TI1, TI2, TI3, and TI4 are supported on IBM Point of Sale
Subsystem for OS/2.

2. Only 4610 Models TI1, TI2, TI3, Tl4, TM6, TF6, TF7, and TM7 are supported on
the IBM Point of Sale Subsystem for Linux.

Print Mechanism
The CR station uses a thermal print head and the DI station uses a 9-wire impact
print head. There is no SJ station.

Fonts

The CR station can print up to 44 characters per line (CPL) at 15 characters per
inch (CPI). The DI station can print up to 47 CPL at 15 CPI. Other fonts that are
stored in the printer include 12 CPI, 17 CPI and 20 CPI. Lower-case characters can
be printed in addition to upper-case characters.

Logo (all-points-addressable) printing is supported at the CR and at the DI station
when the DI station is oriented for portrait printing (see EPasNdiQrientation” on
resource for more information).

Note: The format of the logo data is dependent on the station. See W
for more information.
Scaling Text, Text Attributes and Double High/Wide font:

1. Scaling remains on until either it is turned off (with \x1b\x23\x00) or it is
temporarily turned off by enabling double high/wide with the text attributes
escape sequence.

2. If you are in double high/wide text attribute mode and you turn on scaling, text
attributes are disabled until scaling is turned off.

3. Changing the font removes double high/wide text attributes and scaling.

Line Length
The maximum number of printable characters per line (CPL) for each font type and
station type is shown in the following table:

Table 12-7. Maximum Number of Characters for IBM 4610 SureMark Point of Sale Printer
Printers

Station 15 CPI 12 CPI 17 CPI 20 CPI LOGO
Customer 44 CPL 34 CPL 48 CPL 57 CPL 576 dots
Receipt

80mm paper

Customer 30 CPL 24 CPL 33 CPL 39 CPL 400 dots
Receipt

58mm paper

Document 47 CPL 37 CPL 52 CPL N/A 474 dots
Insert Wide

Document 38 CPL 30 CPL 42 CPL N/A 384 dots

Insert Narrow

Notes:

1. For DI station printing, the wide and narrow widths listed (see M) apply
only when the DI station is oriented for portrait printing. When the printing at the
DI station is oriented for landscape printing, the length of the print line is
dependent on the length of the inserted document.

Chapter 12. Printer Programming 12-9

Printer Programming created on October 2, 2001

12-10

2. When the double-high font, the double-wide font, or the double-wide attribute is
selected, (see [Text Print Attributed) the characters per line will be half of what is
listed (see Mable 12-7 on page 12-9) .

3. For the CR station, the setting of the PasNleftMarginCR resource affects the
number of characters which can be printed on a line (depending on whether you
have 58 or 80-mm paper).

Note: Each font control character pair inserted in the m data field
increases the size of the field by 2 bytes.

Line Spacing
The default line spacing for the CR and DI stations is 6 lines per inch. The line
spacing for each station can be changed by the |Pnclﬂf‘ﬂ(| subroutine call with the

reguest of BOS_SYS SET VALUES and a resource of PasNlineEeedCR or

Similarly, the current line spacing is returned by the PQS_SYS GET VALUES

request of the [PaslQCH(] subroutine call. Refer to FPQS_SYS GET VAILUES” od

hage 19-43 and FPQS_SYS_SET_VAIUES” on page 19-45 for additional

information.

Text Print Attributes
The following table shows the print attributes applied to each font in a given station:

Table 12-8. Text Print Attributes for the IBM 4610 SureMark Printer models.

Attribute CR Station DI Station
Double-high yes portrait only
Double-wide yes yes
Underlined yes no
Overlined yes no

Inverted yes no

Rotated yes no

Barcode Printing
The IBM 4610 SureMark Point of Sale Printer models have the capability of printing
barcodes on the CR station.

Pre-defined Messages and Logos

Commonly used messages and logos can be downloaded to the printer for later
printing with an escape character sequence. Up to 25 messages (a maximum of 8K
bytes total) and up to 40 logos (a maximum of 64K bytes total) can be pre-defined.
These pre-defined messages and logos are stored in Flash EPROM on the printer
and only need to be downloaded once.

Font Specification

The pitch of the default font is 15 CPI. A font change can be specified by imbedding
an escape control character, followed by a character designating the font type
desired, in the data stream sent to the printer by the @E\@gsubroutine.

After receiving the escape character sequence denoting a font change, the printer
continues to print in that font until another font change escape character sequence
is received.

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Printer Programming

Performance
For the 4610 SureMark Point of Sale Printer models TI1 and TI2, the speed for

printing on the CR station can be up to 26 lines per second, and up to 4.35 lines
per second on the DI station, depending on the application.

For the 4610 SureMark Point of Sale Printer models TI3, Tl4, and TI5, the speed for
printing on the CR station can be up to 52 lines per second, and up to 4.35 lines
per second on the DI station, depending on the application.

If the CR station is not kept busy with multiple print lines outstanding, the maximum
speed of the printer is not obtained.

Logo printing at the CR station is the same speed as text printing.

MICR Recognition and Check Flipping
The IBM 4610 SureMark Models TI2 and Tl4 printers have a built-in magnetic ink

character recognition (MICR) reader and a built-in check flipping mechanism. The
MICR reader allows application programs to read the account information on
customer checks in the DI station. The check flipping mechanism allows an
application program to automatically flip a check that is inserted in the DI station.
This allows the reading of MICR information on the front of the check, and franking
on the back of the check without any operator handling.

IBM 4610 SureMark Point of Sale Fiscal Printer

The IBM Point of Sale Subsystem printer device handler supports the 4610
SureMark Point of Sale Fiscal Printers. The fiscal printers conform to fiscal laws of
the supported countries. Refer to country-specific documentation for the
country-specific information and for printer restrictions.

Functions Your Application Performs

Your application can perform the following printer functions:

» Use different code pages

* Read data from the printer

» Write data to the printer

» Control the printed text with control characters

* Modify the printed text with escape character sequences

» Control, query, and set the printer with input/output control requests
» Change the printer configuration through resources

* Receive printer event messages

Before your application program can access the printer, it must open the printer

device (see EQpening Your Device” on page 5-4) and kegquird exclusive use of the

printer.

Code Page Support

The code page of the process at the time the w subroutine call is issued is
queried and saved by the IBM Point of Sale Subsystem.

Notes:

1. Code pages are defined for the printer, but due to the printer’s fixed internal
character set, not all characters are available in each code page. See the IBM
Point of Sale Subsystem: Installation, Keyboards and Code Pages book for the
available characters for each code page. Code page 858 will be used for any
code page not listed in the IBM Point of Sale Subsystem: Installation,
Keyboards and Code Pages book.

Chapter 12. Printer Programming ~ 12-11

Printer Programming created on October 2, 2001

2. There are three sets of characters for downloading to the Model 4A printer. One
is for the single-byte characters, one is for Japanese characters, and the last
one is for Korean characters. The first time the IBM Point of Sale Subsystem
uses the Model 4A printer, it will download to the printer, the code page
corresponding to the current country code defined for the system. If a different
code page is needed, you may download the new code page W|th the Model 4A
printer font download program. For more information, see

3. The IBM 4689-001 and the IBM 4689-002 printers use the code pages located
in the ROM on the printer. The code page resource is not supported on the
4689 family of printers.

4. See 1IBM 4689 SurePQS Receipt Journal Printer” an page F-2 for information

about loading fonts for this printer.
5. Code pages are not supported on USB fiscal printers. Fiscal printers that are

set to fiscal mode (with [PaslOCH POS_PRN_ENABLE_FISCAL_PRINTING)
do not use code pages to translate characters that are sent to the printer. The
use of resource E%sgm will not have any affect when using the 4689
printer.

Reading Data from the Printer

12-12

The IBM Point of Sale Subsystem device handler supports reading:
* MICR data
» Fiscal data

Reading MICR Data

The IBM Model 3R printer, the IBM Model 4R printer, and the IBM 4610 SureMark
models TI2 and TI4 printers have a MICR reader installed. When the IBM Point of
Sale Subsystem printer device handler detects that the MICR reader is present, it
enables applications to read data from the printer. If no MICR reader is detected by
the printer device handler, a 311 POSFRR_SYS FUNCTION _NOT_SUPPORTED
error is returned to the application program on the W subroutine call.

The application receives a PQOSM_PRN_DATA_AVAIll event message on the IBM
Point of Sale Subsystem point-of-sale input queue when data is available from the

MICR reader. See ['Getting Input Messages” on page 5-9 for more information about

the IBM Point of Sale Subsystem point-of-sale input queue.

After your application receives a BOSM_PBN_DATA_AVAIll event message on its

input queue, your application should call the [PasRead(] subroutine using the printer

device descriptor to read the data. This subroutine reads the MICR data from the

printer. The data is placed in the application’s buffer that was specified on the
subroutine call.

Your application specifies the read buffer on the m subroutine using the buf
and nbyte parameters. The number of nbytes is returned in the
PQSM_PRN_DATA_AVAlLl event message. The buffer length value set in nbyte
must be big enough to hold the maximum amount of data from the MICR reader. A
value of 0 (zero) for the buffer length indicates that no data is to be read. If the
value of nbyte of Enel?md(l specifies a value too small for the record being read,
the B12 POSERR_SYS BUFEER_TOQ _SMALLl error is returned and data is not

put into the application’s buffer.

m returns to your application immediately with either MICR data or an error
code. If no data is available, the read completes successfully with a length of 0
(zero) returned.

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Printer Programming
If your application issues a POS_SYS_RFI FASE_DFEVICH [PoslOCtl() request

when MICR data is available for it, the data is discarded. This is done to ensure
that previous unread MICR data is not used in error.

See [PosRead()” on page 18-14 for the syntax of the read subroutine calls.

MICR Information
The MICR information is represented as ASCII characters:

MICR Information ASCII Characters
0-9 ASCII '0" through '9' (0x30 thorough 0x39)
Transit character ASCII 'T' (0x54)
On Us character ASCII 'A" (0x41)
Dash ASCII ' (0x2D)
Unreadable character ASCII '?' (Ox3F)
Amount character ASCII '$' (0x24)
Blank ASCIl ' ' (0x20)
Special Character 1 ASCII 'a' (0x61)
Special Character 2 ASCII 'b' (0x62)
Special Character 1 ASCII 'c' (0x63)
Special Character 4 ASCII 'd' (Ox64)
Special Character 5 ASCII 'e' (0x65)

Reading Fiscal Data
Refer to the country specific “IBM Model 3F Fiscal Technical Specification” for the

definition of the fiscal commands that return information to the application.

The application receives a PQSM_PRN_DATA_AVAIll event message on the IBM
Point of Sale Subsystem point-of-sale input queue when data is available from the

fiscal printer. See [Getting Input Messages” on page 5-3 for more information about

the IBM Point of Sale Subsystem point-of-sale input queue.

After your application receives a POSM_PRBN_DATA_AVAIll event message on its

input queue, your application should call the [PasRead(] subroutine using the printer

device descriptor to read the data. This subroutine reads the fiscal data from the

printer. The data is placed in the application’s buffer that was specified on the
subroutine call.

Your application specifies the read buffer on the [PasRead(] subroutine using the buf
and nbyte parameters. The number of nbytes is returned in the
POSM_PRBN_DATA_AVAILl event message. The buffer length value set in nbyte
must be big enough to hold the maximum amount of data from the fiscal printer. A
value of 0 (zero) for the buffer length indicates that no data is to be read. If the
value of nbyte of II3r*v=li?ﬂs:rf(| specifies a value too small for the record being read,

the B12 POSERR_SYS BUFEER_TQOQ_SMALL error is returned and data is not

put into the application’s buffer.

m returns to your application immediately with either fiscal data or an error
code. If no data is available, the read completes successfully with a length of 0
(zero) returned.

If your application issues a PQS_SYS_REI EASE_DEVICH [PaslQCH() request
when fiscal data is available for it, the data is discarded. This is done to ensure that
previous unprocessed fiscal data is not used in error.

e lPasRead()” an page 18-14 for the syntax of the read subroutine calls.

Chapter 12. Printer Programming 12-13

Printer Programming created on October 2, 2001

Writing Data to the Printer

There are five modes for writing data to the printer device handler:

* Normal mode

* Logo mode

» Fiscal mode (fiscal printer only)

* Load pre-defined messages mode (4610 SureMark printers only)

* Load pre-defined logos mode (4610 SureMark printers and 4689 Model 3x1 and
TD5 printers only)

The mode of printing is set by the PosNprintMode resource on a
PQS_SYS_SET VAL UES PasiQCH() request. The only values this resource can

have are:

* PosMODE_NORMAL

* PosMODE_LOGO

* PosMODE_FISCAL (fiscal printer only)

* PosMODE_LOAD_MESSAGE (4610 SureMark printers only)

* PosMODE_LOAD_LOGO (4610 SureMark printers and 4689 model 3x1 and TD5
only)

Any other value results in a 4905 POSERR_PRN_INVAI ID_MQDH error code from
the PQS_SYS_SFT VAIUES request of the [PasiOCH(] subroutine call.

Note: For fiscal printers and IBM 4689 printers, PosMODE_LOGO can be
specified. However, logo data will not be printed and no error will be returned
to the application program.

The m subroutine is used to print text strings, logo data, and fiscal
commands. Text strings, which include ASCII characters, control characters, and
escape character sequences, are printed when the PasNprintMade resource is set
to PosMODE_NORMAL.

See [PasWrite()” on page 18-19 for the syntax of the [PasWritef) subroutine call.

Writing Data in Normal Mode

12-14

Normal mode is the default mode for the non-fiscal printers. In normal mode, print
data consists of ASCII characters, double-byte characters, control characters, and
escape character sequences. To switch back to normal mode from logo mode or
fiscal mode, set the PosNprintModed resource to PosMODE_NORMAL with a
POS_SYS_SFT_VAIUFS request on the [PasIOCH() subroutine call.

The table below shows the maximum number of bytes of data allowed on one
BosWrite]] call. If the number of bytes to be written exceeds this value, the
subroutine returns the 318 POSERR_SYS INVALID LENGTH error code and the

data is not printed.

Table 12-9. Maximum Number of Characters for PosWrite()

Printer Maximum Number of Characters
Model 2 Printer 1024
Model 3 Printer 1024
Model 4 Printer 1024
4689 Point of Sale Printer (3x1 Models) 8192
4689 Point of Sale Printer (except 3x1 Models) 1024

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Printer Programming

Table 12-9. Maximum Number of Characters for PosWrite() (continued)

Printer Maximum Number of Characters

4610 SureMark Printer Models TI1, TI2, TI3, Tl4, TI5, 16384
TF6, TF7, TM6, TM7

Printing a Line of Text at the Printer

There are three print queues, one for each print station. If a print line cannot be
printed immediately, it is queued in the appropriate station’s queue. The application
controls the sequence of printing by:

* Enabling and disabling DI station printing

» Setting the CR and SJ interleave value

» On the fiscal printer, enabling and disabling fiscal printing

Enabling and disabling the DI station: When the DI station is enabled, it is the
only active station. Messages to the CR or SJ stations are queued, but are not
printed. When the DI station is disabled, only the CR and SJ stations are active.
Messages to the DI station are queued but are not printed.

Note: Enabling and disabling the DI station is not supported on the IBM 4689
Model 3x1 and TD5 printers.

Interleaved printing: The printer resource PosNinterleaved, when set to
PosINTERLEAVED_TRUE, causes data for the CR or SJ stations to be printed in
the order received from the application. When it is set to
PosINTERLEAVED_FALSE, the printer device handler prints the lines in whatever
order gives the best throughput.

Note: Interleaved printing is not available on the fiscal printer, the 4689 printers,
and the IBM 4610 SureMark printers.

Enabling and disabling fiscal printing: When fiscal printing is enabled, all
non-fiscal data is queued and fiscal commands are sent to the printer. When fiscal
printing is disabled, all fiscal commands are queued and non-fiscal data is sent to
the printer.

While fiscal printing is enabled, the application controls the fiscal printer. All
commands for printing to the different stations are under the control of the
application program. This includes registering and de-registering documents in the
DI station.

Notes:

1. Enabling and disabling fiscal printing is available only on the fiscal printer.

2. Fiscal printing is always enabled for the IBM 4610 SureMark Point of Sale
Fiscal USB printers. These printers do not support non-fiscal printing.

Printer Errors
An error in amf of the print stations causes printing to stop. After the problem is

corrected, the [PaslOCH() request PQS_PRN_RESUME PRINTING or
EQS_EBN_BELBLEB.LNILNGJ should be issued to restart printing. See

for more information.

Changing the Print Characteristics

The control characters and escape character sequences are not printed, but are
used to change the print style or to control the operation of the printer. A list of the
control characters and escape character sequences recognized by the printer

Chapter 12. Printer Programming 12-15

Printer Programming

device handler follows.

created on October 2, 2001

Table 12-10. Printer Control Characters and Escape Character Sequences

Special characters

Meaning

Values

20 CPI Font

20 characters per inch

27 (0x1B), 59 (0X3E)

Advance paper to tear bar

Advance paper to tear bar

27 (0x1B), 79 (0x4F)

Carriage return

Move print position to the left margin

13 (0x0D

)
)
)
27 (0x1B), 71 (0x47)
)
)

Chase Notify application of event completion
Cut paper Cut paper at the CR station 27 (0x1B), 80 (0x50)
Cut paper and stamp Cut paper and stamp paper at the CR 27 (0x1B), 81 (0x51)

station

Double-density Start double density printing 27 (0x1B), 69 (0x45)
Double-high font Set font to double-high 27 (0x1B), 23 (0x17)
Double-wide font Set font to double-wide 27 (0x1B), 14 (OxOE)
Escape Enter command mode 27 (0x1B)

Fix Font Width Line up numbers when using 27 (0x1B), 63 (0x3F)

proportional fonts

Flip check Flip the check in the DI station 27 (0x1B), 53 (0x35)

Inline logo Insert a logo into the print line 27 (0x1B), 115 (0x73)
Line feed Feed one line 10 (0x0A)

Move to Tab Print at the next tab stop 09 (0x09)

Normal density Stop double density printing 27 (0x1B), 70 (0x46)

Normal font Set font to 15 CPI (24x24 dot matrix on |27 (0x1B), 59 (0x3B)

4689-301)

Print Barcode

Print a barcode

27 (0x1B), 107 (0x6B)

Print PDF417 Barcode

PDF417 Barcode

27 (0x1B), 108 (0x6C),
32 (0x50)

Print Pre-defined

Print a pre-defined message

27 (0x1B), 112 (0x71)

Message

Print Pre-defined Logo Print a pre-defined logo 27 (0x1B), 113 (0x70)

Read MICR data Read MICR data 27 (0x1B), 82 (0x52)

Register document Feed in document at the DI station 27 (0x1B), 76 (0x4C)

Release document Eject document from the DI station 27 (0x1B), 77 (0x4D)

Right column align Align printing to the right column 27 (0x1B), 116 (0x74)

Scalable font Print text larger than the default 27 (0x1B), 35 (0x23)

Select color printing Full color printing 27 (0x1B), 34 (0x22)

Select PDF417 aspect Vary the ratios of width to height of the 27 (0x1B), 108 (0x6C),

ratio barcode 35 (0x53)

Select PDF417 ECC level | Specify security or error correction 27 (0x1B), 108 (0x6C),
codewords 34 (0x52)

Select PDF417 truncation | Enable or Disable barcode truncation 27 (0x1B), 108 (0x6C),

36 (0x54)
Small font Change to the small font (16x16 dot 27 (0x1B), 60 (0x3C)

matrix on 4689-301). Set font to 17CPI

Spread font

Set font to 12 CPI

Point of Sale Subsystem Programming Reference and User’s Guide

27 (0x1B), 58 (0x3A)

created on October 2, 2001 Printer Programming

Table 12-10. Printer Control Characters and Escape Character Sequences (continued)

Special characters Meaning Values
Text attributes Change the text print attributes 27 (0x1B), 33 (0x21)
User-defined fonts Enable customized user fonts 27 (0x1B), 36 (0x24)

Line Buffering

Except for the IBM 4610 SureMark printers and the IBM 4689 Model 3x1 and TD5
printers, the printer device handler internally buffers print data until one of the
following occurs:

* Aline feed control character is processed
* A carriage return control character is processed

* An escape character sequence is processed, which results in a change to the
current print characteristics of the printer

* One of the Im subroutine calls is issued, which causes one of the print
characteristics of the printer to change

» The internal buffer of 128 bytes in the printer device handler is full

For the IBM 4610 SureMark Point of Sale printers and the IBM 4689 Model 3x1 and
TD5 printers, the printer device handler sends the data to the printer when either
the internal buffer is full or all the data on the write request is processed.

The printer device handler allows the application program to print up to 1024 bytes
for the IBM Models 2, Model 3, and Model 4 printers; 16,384 bytes for the IBM
4610 SureMark Point of Sale printers; and 8,192 for the IBM 4689 Models 3x1 and
TD5 printers with one m%d subroutine call. It is not always necessary for the
application to explicitly insert a carriage return and line feed into the data stream. If
the data stream exceeds the maximum allowed for the station at the current font,
the printer device handler (or the printer) wraps the data to the next line.

Determining When Printing is Complete

If you have print lines queued and want them printed before your application
continues, use the chase escape character sequence in the data stream. This
character sequence is put in the print queue along with other ASCII characters,
control characters, and escape character sequences. When the chase escape
character sequence is encountered as the print lines are sent to the printer, the
POSM_PBN_CHASE_COMPI ETH event message is put in the application input
queue. Once the application receives the chase event message, it is assured that
the printing of all data up to the chase escape character sequence has been
completed.

Font Interactions
Because the IBM Point of Sale Subsystem printer device handler allows the

application program to combine all the different types of fonts on a single print line,
there are some interactions between the different fonts you need to be aware of:

* Fonts with different widths on the same line can cause characters to be
overwritten or can cause more than the expected number of blank spaces
between characters to appear.

« Switching from double-high font to any other font size, or vice versa, on the same
print line can cause the characters in the new font to be offset downward as
compared to the double-high font characters.

» A chase escape character sequence within a print line at the double-high font
size causes the characters to be offset downward as compared to the chase
escape character sequence.

Chapter 12. Printer Programming 12-17

Printer Programming created on October 2, 2001

Note: Mixing different size fonts on the same print line is not recommended.

The IBM Model 2 and the IBM 4689-00x printers do not support changing fonts.

Writing Data in Logo Mode

12-18

Logo printing can be done only at the CR and DI stations. If an application program
attempts to write logo data to the SJ station, the

_ - _ error code is returned from the m
subroutine call. The logo data to be printed is specified in the buffer parameter of
the m subroutine call.

IBM Model 2, Model 3, Model 4, and Model 4A Printers

On the IBM Model 2, the IBM Model 3, the IBM Model 4, and the IBM Model 4A
printer, each byte of logo data controls the printing of one 8-dot column. The first
byte in the buffer corresponds to the left-most print position. Bit zero (the least
significant bit) of each byte corresponds to the top-most dot of each dot column. If a
bit is set (equal to 1), the corresponding dot is printed.

On the IBM Model 3, the IBM Model 4, and the IBM Model 4A printer, the maximum
amount of data per write statement printing is 380 bytes for the CR station or the
narrow DI station and 880 bytes for the wide DI station. The maximum amount of
data for logo printing on the IBM Model 2 printer is 300 bytes. This prints one line of
data and does an automatic line feed and carriage return. If the data is less than
the maximum, it is padded with blanks. If the data is more than the maximum, it is
truncated.

IBM 4610 SureMark Printer
On the IBM 4610 SureMark printers the first three bytes of data in the buffer
indicate the following:

Byte 0: Dot Density. (0 - normal print, 1 - double-wide print, 2 - double-wide
and double-high print)

Byte 1: Width. One-eighth the number of dots in the horizontal direction.
For the CR station, this field has a valid range from 1 to 72. For the
DI station, this field has a valid range from 1 to 59.

Byte 2: Height. One-eighth the number of dots in the vertical direction. For
the CR station, this field has a valid range from 1 to 255. For the DI
station, this field has a valid range from 1 to 5.

The actual logo data follows these three bytes. For the CR station, the logo data is
interpreted as one-dot-high rows (horizontal slices), with bit zero of each byte
corresponding to the right-most dot within that byte. For the DI station, the logo data
is interpreted as eight-dot-high rows (vertical slices), with bit zero of each byte
corresponding to the top-most dot within that byte.

The size of the logo data is limited to 3400 bytes for the 4610 TI1 and 4610 TI2
printers. For other printers in the 4610 printer family, the logo data is limited to 4000
bytes.. If the print position is not at the first character position of the print line, logo
printing forces a new line before printing the logo.

Notes:
1. Logo printing is not valid when the DI station is oriented for landscape printing.

2. An invalid value for the dot density (byte 0) will result in a ka4
POSERR_PRN _INCORRECT DATA_FQRMAT error.

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Printer Programming

3. Exceeding the allowed logo data size will result in a k914
error.

4689 Models 3x1 and TD5 Printers

On the IBM 4689 Models 3x1 and TD5 Printers, there are two types of logo data
that can be printed:

* Image character

» Sliced image

The image character logo format is used for printed characters that are not defined
in the printer. The sliced image character logo format is used to print a barcode on
the printer.

Image character logo format: The format for defining an image character logo is:
» Byte 0: Escape character (0x1B)

* Byte 1: Image character indicator (Ox5E)

* Byte 2: High byte of image length

« Byte 3: Low byte of image length

Following byte 3 is the data for the character. The number of bytes specified in
bytes 2 and 3 must be supplied. The format of the logo data is the same as the
format used for defining a user-defined character. Multiple image character logo
format commands can be printed at once.

Sliced image logo format: The format for defining a sliced image logo is:
» Byte 0: Escape character (0x1B)

« Byte 1: Sliced image indicator (Ox6E)

* Byte 2: Length of the data

Following byte 2 is the data for the sliced image. The number of bytes specified in
byte 2 must be supplied. Only one line is defined. The printer will duplicate this line
on each row of the current print line. Depending on the data supplied, a barcode
can be created.

Printer Errors
An error in any of the print stations causes printing to stop. After the problem is

corrected, the [PasiOCH[) request POS_PRN_RFSUMF_PRINTING or
POS_PRN_RFTRY_ PRINTING should be issued to restart printing.

Writing Data in Download Message Mode (4610 SureMark Printers

Only)

On the IBM 4610 SureMark Printers, predefined messages can be downloaded to
the printer using PosMODE_LOAD_MESSAGE mode. Up to 25 messages (a
maximum of 8K bytes) can be predefined. Once a message is downloaded, that
message cannot be re-defined without erasing all the predefined messages already
stored. All messages are erased by requesting to download message number zero.

Note: Predefined messages must use characters from the IBM 4610 Printer
generic code page. See the IBM 4610 SureMark Point of Sale Printer: User
Guide, GA27-4151 for details.

The data format for downloading messages (one per write request) is:

Byte 0: Message number. (Writing message number zero erases all currently
defined messages in the printer.).

The message data follows the message number byte.

Chapter 12. Printer Programming 12-19

Printer Programming created on October 2, 2001

Writing Data in Download Logo Mode

The data format for downloading a logo is dependent on the printer. The printers

that support downloading logos are:

* IBM 4610 SureMark Point of Sale Printer models TI1, TI2, TI3, Tl4, TI5, TF6,
TF7, TM6, and TM7

* IBM 4689 Models 3x1 and TD5 Printers

IBM 4610 SureMark Point of Sale Printers

On the IBM 4610 SureMark Point of Sale printers, predefined logos can be
downloaded to the printer using PosMODE_LOAD_LOGO mode. Up to 40 logos (a
maximum of 64K bytes) can be predefined. Once a logo is downloaded, that logo
cannot be redefined without erasing all the predefined logos already stored. All
logos are erased by requesting to download logo number zero.

The data format for downloading logos (one per write request) is:

Byte 0: Logo number. (Writing logo number zero erases all the currently
defined logos in the printer).

Byte 1: Width. One-eighth the number of dots in the horizontal direction.
For the CR station, this field has a valid range from 1 to 72. For the
DI station, this field has a valid range from 1 to 59.

Byte 2: Height. One-eighth the number of dots in the vertical direction. For
the CR station, this field has a valid range from 1 to 255. For the DI
station, this field has a valid range from 1 to 5.

The actual logo data follows these bytes. For the CR station, the logo data is
interpreted as one-dot-high rows (horizontal slices) with bit zero of each byte
corresponding to the right-most dot within that byte. For the DI station, the logo data
is interpreted as eight-dot-high rows (vertical slices) with bit zero of each byte
corresponding to the top-most dot within that byte.

IBM 4689 Models 3x1 and TD5 Printers

On the IBM 4689 Models 3x1 and TD5 Printers, only one predefined logo can be
downloaded to the printer using PosMODE_LOAD_LOGO mode. This logo is used
when the cut paper and stamp escape character sequence is sent to the printer. If a
logo already exists in the printer, the ¥915 POSFRR_PRBN_| OGO_EXISTS error
code is returned on the [PasWrite() subroutine call. To define a new logo, the
keypad on the printer must be used to erase the existing logo. Restart the IBM
Point of Sale Subsystem, and then retry the command.

The format of the logo data is a fixed size of 7,632 bytes. There are 53 bytes that
define a horizontal dot row and a total of 144 dot rows in a logo. Each 53 bytes in
the write buffer defines one horizontal dot row. This will print a logo that is 52 mm
horizontally and 18 mm vertically.

Printer Errors

An error in any of the print stations causes printing to stop. After the problem is
corrected, the ipnclnr‘ﬂ(l request PQS_PRN_RESUME_PRINTING or
PQS_PRN_RETRY PRINTING should be issued to restart printing. See
|‘POQI\/I_PRN_PRINTFR_FRROR” Qon page 20-11| for more information.

Writing Data in Fiscal Mode (Fiscal Printer Only)

In fiscal mode, each m subroutine call must contain an entire fiscal
command. Fiscal commands cannot be split across multiple m subroutine

12-20 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Printer Programming

calls. The fiscal printer device handler does not modify the fiscal commands. All
fiscal commands provided by your application are sent to the fiscal printer “as-is”.

Full details of the fiscal commands are provided in the “IBM Fiscal Printer Hardware
and Software Supplement” manual for each supported country.

Note: The fiscal escape character sequence (0x1B, 0x66 or ESC f) should not be
inserted by the application into commands sent to the IBM Point of Sale
Subsystem fiscal printer device handler. This character string is inserted by
the device handler.

Printing a Line of Text at the Printer

The application controls the sequence of printing fiscal commands by enabling and
disabling fiscal printing. When fiscal printing is enabled, data for the CR, SJ, and DI
stations is queued, but is not printed. When fiscal printing is disabled, the CR, SJ,
and DI stations are active. Fiscal commands are queued but are not printed.

The IBM 4610 SureMark Point of Sale Fiscal USB printers are always set to
fiscal-printing-enabled. They do not support non-fiscal printing.

Printer Errors
A fiscal error or an error in any of the print stations causes printing to stop. After the
problem is corrected, issue a PQS_PRN_RETRY_PRINTING [Pas/QCH(] request to

start Erinting again. For more information, see EPQSM_PRN_PRINTER_ERROR’ od

If the PQS_PRN_RFTRY_PRINTING [PaslOCtl(] request is not successful, the
application must issue a POS_PBN_DISCARD DATA PasIOCH(] request to discard
all the queued fiscal commands. The application must then issue a

PQS_PRN_RESUMFE_PRINTING [PaslOCH(] request to start printing again.

Note: Fiscal commands reprinted by the fiscal printer are identified by the pound or
number sign(#) in the first three character positions of the reprinted line.

Power-on Errors: After the fiscal printer comes online and your application
successfully opens and acquires the fiscal printer, issue a

_ _ _ PaslOCHI() request to get the value of the
PasNfiscalPlL DStatud resource. If this is set to PosFISCAL_PLD_TRUE, a fiscal
command was being processed by the fiscal printer when the power to it was
interrupted.

Control Characters

The control characters determine how a line of text should be processed and are
interpreted only when the PosNprintMode resource value is set to
PosMODE_NORMAL. The following control characters are recognized by the printer
device handler:

Line Feed (0x0A)
The line feed control character causes the printer device handler to flush
out any buffered data to the printer, advances the paper one line, and
leaves the current print position the same. A subsequent write in normal
mode to the printer continues at the current position one line below the
previously printed line. On the IBM 4610 SureMark Point of Sale printers, a
line feed control character resets the print position to the beginning of the
next line.

Chapter 12. Printer Programming ~ 12-21

Printer Programming created on October 2, 2001

Carriage Return (0x0D)
The carriage return control character causes the printer device handler to
flush out any buffered data to the printer, and to move the current print
position to the first position of the line. On the IBM 4610 SureMark Point of
Sale printers the carriage return control character is ignored.

Escape (0x1B)
The escape control character indicates to the printer device handler that the
next character is to be interpreted as a command for the printer. See

lEscape Character Sequences’ for more information.

Note: For print data alignment, it is recommended that the application terminate
each print line with a carriage return and line feed.

Escape Character Sequences

12-22

The escape character sequences are the commands recognized by the printer
device handler to:

* Advance and cut CR station paper
* Change font size

* Change print density

» Control document registration

* Obtain print confirmation

* Read MICR data

* Change text attributes

* Print a barcode

* Flip a check

* Print a pre-defined message

* Print a pre-defined logo

Unrecognized commands following an escape control character result in both
characters being discarded by the printer device handler. The escape character
sequences are interpreted only when the PasNprintMadel resource value is set to
PosMODE_NORMAL.

For each escape character sequence that applies to a specific station, the escape
command is recognized only if that station is selected at the time of the
subroutine call. Otherwise, the escape character sequence is discarded. See

[PasNprintStation” on page 21-45 for more information about selecting stations.

The escape character sequences for specific printer stations are:

CR Station

— Advance Paper to Tear Bar
Cut Paper

Cut Paper and Stamp

Print Barcode

DI Station

Register Document
Release Document
Read MICR Data
Flip Check

Under normal conditions on all printers except the IBM 4610 SureMark Point of
Sale printers, all text is buffered by the printer device handler until a carriage return
or line feed control character is encountered, or until the printer device handler’s
internal buffer is full. However, when an escape character sequence results in a

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Printer Programming

change to the current print characteristics of the printer, any buffered data is sent to
the printer before the command is processed by the printer device handler. On the
IBM 4610 SureMark Point of Sale printers, text is only sent to the printer when the
device handlers internal buffer is full or when the processing of the current write
request is complete.

20 CPI Font (0x1B, 0x3E)
Switches printing to 20 characters per inch (CPI) mode.

Note: Not supported in SurePoint Model TI1/TI2 printers.

Advance Paper to Tear Bar (0x1B, 0x4F)
The advance paper to tear bar escape character sequence advances the
CR station paper forward until the last printed line is above the tear bar.

This command is recognized only if the CR station has been selected at the
time of the m subroutine call. Otherwise, the advance paper to tear
bar escape character sequence is discarded.

Chase (0x1B, 0x47)
The chase escape character sequence indicates to the printer device
handler to send a confirmation event message to the application program
once the data has been successfully printed on the selected stations. A
confirmation event message is generated for each selected station. If no
stations are selected at the time of the m subroutine call, the chase
escape character sequence is discarded.

Note: Extensive use of the chase escape character sequence on the IBM
4610 SureMark Point of Sale printers can negatively impact the
performance of printing.

Cut Paper (0x1B, 0x50)
The cut paper escape character sequence causes the paper at the CR

station to be cut. See [Beceipt Paper Cutter” on page 12-44 for more

information.

This command is recognized only if the CR station has been selected at the
time of the PasWrite(] subroutine call. Otherwise, the cut paper escape
character sequence is discarded.

Notes:

1. On the 4689-301, 3G1, 3M1, and TD5 printers, the paper cut will be a
partial paper cut.

2. This escape character sequence will be ignored on the IBM Model 2
printer and the IBM 4689-00x printers.

Cut Paper and Stamp (0x1B, 0x51)
The cut paper and stamp escape character sequence causes the paper at
the CR station to be cut, the paper to be fed several lines, and a stamp to
be placed on the paper. See LBECELPLE&.FELCUH&I’_QQ_M for more
information.

Notes:

1. This command is recognized only on the IBM 4689 printers and only if
the CR station has been selected at the time of the m
subroutine call. Otherwise, the cut paper and stamp escape character
sequence is discarded.

2. On the 4689-301, 3G1, 3M1, and TD5 printers, the paper cut will be a
full paper cut.

Chapter 12. Printer Programming ~ 12-23

Printer Programming created on October 2, 2001

Double Density (0x1B, 0x45)
The double density escape character sequence results in the printer device
handler printing the text twice on the printer for all subsequent writes to
each station. If the current density is double density, the printer device
handler discards this request.

Note: The double density escape character sequence is ignored on the
IBM 4610 SureMark Point of Sale printers at the DI station when the
orientation is landscape. However, when this escape character
sequence is processed, all future data is printed in double density
until the normal density escape sequence is processed.

Double-High Font (0x1B, 0x17)
The double-high font escape character sequence sets the printer to 7.5 CPI
and the character height equal to 18 dot-rows for all subsequent writes to
each station. If the current font is double-high font, the printer device
handler discards this request.

Notes:

1. When scalable fonts are used with this escape character sequence
enabled, the print is defaulted to scaling a normal size font.

2. The double-high font escape character sequence is not recognized on
the IBM Model 2 printer and the IBM 4689 printers.

3. The double-high font escape character sequence is ignored on the IBM
4610 SureMark Point of Sale printers when the print station is set to the
DI station and the DI station is in landscape orientation.

Double-Wide Font (0x1B, 0x0E)
The double-wide font escape character sequence sets the printer to 7.5 CPI
for all subsequent writes to each station. If the current font is double-wide
font, the printer device handler discards this request.

Notes:

1. When scalable fonts are used with this escape character sequence
enabled, the print is defaulted to scaling a normal size font.

2. The double-wide font escape character sequence is not recognized on
the IBM Model 2 printer and the IBM 4689 printers.

Fix Font Width (0x1B, 0x3F, n)
Fix the width of proportional fonts. Use this command to line up numbers.
Notes:

1. If the defined character is larger than the width that is defined, the right
side of the character will be truncated when the width of the character is
scaled using the scalable fonts; otherwise, the character will overlap the
next character.

2. If the character is smaller than the defined width, the character will be
centered in the space. (+ or - one dot).

3. If the width is set to zero, the fix width function is disabled and the
characters are printed at their defined widths.

4. Only valid on proportional user-defined fonts (ignored on
non-proportional fonts).

5. Not supported in TI1/TI2 printers.

Flip Check (0x1B, 0x35)
The flip check escape character sequence will flip the check inserted in the

12-24 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Printer Programming

DI station. This command is typically used before printing on the front of the
check, after reading the MICR data, and franking the back of the check.

Note: The flip check escape character sequence is recognized only on the
IBM 4610 SureMark Point of Sale printers, and only when the DI
station has been selected at the time of the Im)@ subroutine
call.

Inline Logo (0x1B, 0x73, d, w1, w2, data)
This inline command inserts a logo in the print line, which embeds the logo
into the print line.

d Logo height:
00 single height printing = (24 dots high)
o1 double height printing = (48 dots high; however, it is
scaled to this dot height by the hardware)

wi, w2 Two-bytes that specify the width of the logo.
data Content of the logo (up to 65535 bytes)
For Example:
d wlw2 data

1B 73 00 0008 8181 8181 4242 4242 2424 2418 1824 2424
4242 4242 8181 8181
d 00, which produces single height printing (24 dot height).
wiw2 0008, which indicates that the logo will be 8 dots wide.

data 81 81 81 ... which are hexadecimal numbers (24 of them) that
each represent lines of logo data. Each byte identifies the 8 dots
that are on or off as shown in the sample output that follows:

81 [] []
81 [] []
81 [] []
81 [] []
42 ° []

42 () []

42 ° []

42 [[]

24 [] []

24 [] []

24 [] []

18 o o

18 o o

24 [] []

24 [] []

24 [] []

42 [] []

42 [] []

42 (] []

42 [] []

81 [] °
81 [] [
81 [°
81 [] °

Chapter 12. Printer Programming ~ 12-25

Printer Programming

created on October 2, 2001

Notes:

1.

Logo data is represented from left to right. For a 16 dot (2-byte), logo
the logo data is transmitted:

byte
1

[oclN e I = NS

3
5
7

47 48

2. The number of data bytes to form the image is calculated as follows:

4.
5

6.

dots-of- width/8 * dots-of-height

dots-of-Width

24 dots-of-Height
(24 rows)

Note: Dots-of-width / 8 must be a whole number (for example, 1.1
would be rounded up to 2).

Like user-defined characters, if the image is only 14 dots wide, the last

two dots should be zero to complete the byte. When printed, the image

will only be 14 dots wide.

See tlUser defined fonts” an page 12-31| and [Print pre-defined loga” on
commands for image generation.

Use only in Thermal Stations.

If the data sent in m for the inline logo command is too short,

the logo and the following data will be truncated.

Not supported in TI1/TI2 printers.

Move to Tab (0x09)
The move to tab control sequence moves printing to the next Tab stop.

Setting Tabs (see PasNprintTabStops” on page 21-47) and Move to Tab are

used with proportional space fonts to improve the format of the printed text.

Notes:

1.

The tab control character is embedded in a print string.

2. Tabs are only valid when print alignment is set to the left.

Normal Density (0x1B, 0x46)
The default density for printer device handler is normal density. The normal
density escape character sequence can be issued to return the printer to
normal density after it has been modified by a Double Density escape
character sequence. If the current density is normal density, the printer
device handler discards this request.

Note: The normal density escape character sequence is not recognized on

the IBM 4689 printers.

Normal Font (0x1B, 0x3B)
The default font for the printer device handler is normal font (15 CPI). Issue
the normal font escape character sequence to return the font size to 15 CPI
after it has been changed by any of these escape character sequences:

12-26 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Printer Programming

» Spread font
* Double-wide font
* Double-high font

If the current font is normal font, the printer device handler discards this
request.

All subsequent writes to any station are in this font size until the font size is
changed.

Notes:

1. On the 4610 TI5 printer in DBCS mode, this command turns OFF the
Double-High and Double-Wide fonts.

2. On the IBM 4689 Models 3x1 and TD5 Printers, the normal font is the
24x24 dot matrix font.

3. The normal font escape character sequence is not recognized on the
IBM Model 2 printer and the IBM 4689-00x printers.

Print Barcode (0x1B, 0x6B, type, width, height, HRI, HRI font, barcode digits)
The print barcode escape character sequence prints the barcode digits,
which is an ASCII null terminated character string, as a bar code. The
format of the data following the barcode escape character sequence is:

Type The type of the barcode to be printed:
00 UPC-A
o1 UPC-E

02 JAN13 (EAN)
03 JANS (EAN)

04 CODE39

05 ITF

06 CODABAR

07 CODE128 (c)

08 CODE93

09 CODE128 (a&b&c).

Note: Refer to the 4610 SureMark printer user’s
guide for additional information.

Width Horizontal magnification of the line width (valid values are
2,3, and 4)
Height Dot height (valid values are between 1 and 255)
HRI Print human readable information location:
0 None
1 Above the barcode
2 Below the barcode
3 Above and below the barcode
HRI Font Human readable font size:
0 Normal font
1 Spread font
Notes:

1. If the current print position is not at the beginning of the print line, the
print barcode escape character sequence will insert a new line
character before printing the barcode.

2. If aninvalid type, width, height, HRI, or HRI font is specified, the printer
will default to using the last valid values used in a previous print
barcode escape character sequence.

Chapter 12. Printer Programming ~ 12-27

Printer Programming created on October 2, 2001

3. The print barcode escape character sequence is recognized only on the
CR station of the IBM 4610 SureMark Point of Sale printers.

The barcode escape sequence string can be terminated two ways:

a. If the barcode string is terminated with a ASCII null (00x0), the
length returned from the m will be equal to the length sent.

b. If the barcode string is not terminated with a ASCII null, one will be
added and the length returned from the m will be equal to
the length sent plus 1.

Print PDF417 Barcode: (0x1B, 0x6C, 0x50, data, 0x00)
Data The information that is to be printed. The 0x00 at the end is the
termination string of the barcode data.

The maximum number of bytes of barcode data that can be printed
on the 4610:

« TI1/TI2: 250.

» TI3/4/5: 1,000.

» SST/TF6, SST/TF7, SST/TM6, SST/TM7 printers: 1,000.

The data between the 0x50 marker and the 0x00 termination character is
copied "as-is” from the application. No data transformations are applied to
mapped code pages.

Notes:

1. This command is only supported on the CR station. If another station is
selected, this command will not be loaded.

2. The POSS for Windows drivers will not check the valid size of the data.
3. This command should be sent as a separate m

Print Pre-defined Message (0x1B, 0x71, message number)
The print pre-defined message escape character sequence prints the
message number identified in the escape character sequence. If the
message associated with message number was not previously stored in the
printer, an error message will be sent to the application asynchronously.

Note: The print pre-defined message escape character sequence is
recognized only on the IBM 4610 SureMark printers.

Print Pre-defined logo (0x1B, 0x70, font, logo number)
The print pre-defined logo escape character sequence prints the logo
associated with logo number identified in the escape character sequence. If
the logo number was not previously stored in the printer, an error message
will be sent to the application asynchronously. In addition to the logo
number, the desired font size must be specified. The font value to use is
the same as the first byte in the regular logo printing command. For more
information, see Miriting Data in Logo Madd. If the current print position is
not at the beginning of the print line, the print pre-defined logo escape
character sequence will insert a new line character before printing the logo.

Note: The print pre-defined message escape character sequence is
recognized only on the IBM 4610 SureMark Point of Sale printers on
the CR station and on the DI station in portrait orientation.

Read MICR Data (0x1B, 0x52)
The read MICR data escape character sequence causes the printer device

handler to read the account information on the check inserted in the DI
station.

12-28 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Printer Programming

This command is recognized only on the IBM Model 3R, IBM Model 4R
printers, and the IBM 4610 SureMark Point of Sale printers, only when the
DI station has been selected at the time of the PasWrite(] subroutine call.
Otherwise, the read MICR data escape character sequence is discarded.

Register Document (0x1B, 0x4C)

The register document escape character sequence automatically registers a
document in the DI station if it is positioned either at the front or at the top
of the DI station. If the document has already been registered when this
command is sent to the printer, this command is discarded.

This command is recognized only if the DI station has been selected at the
time of the m subroutine call. Otherwise, the register document
escape character sequence is discarded.

Note: The register document escape character sequence is not recognized
on the IBM 4689 Model 3x1 and TD5 printers.

Release Document (0x1B, 0x4D)

The release document escape character sequence automatically releases a
document in the DI station if it registered in the DI station.

This command is recognized only if the DI station has been selected at the
time of the m subroutine call. Otherwise, the release document
escape character sequence is discarded.

Note: The release document escape character sequence is not recognized
on the IBM 4689-301, 3G1, 3M1, and TD5 printers.

Right Column Align (0x1B, 0x74)

Sets the printer to align printing to the right column.

Notes:

1. The Right Column Align command is only valid in the (CR) customer
receipt station.

2. If the right column align is received and there is too little space on the
line for all of the text, the characters will wrap to the next line.

3. The Right Column Align command is ignored if the print line is not
already left aligned when the align-column-right is received.

4. Not supported in TI1/TI2 printers.

Scalable Fonts (0x1B, 0x23, nn)

The Scalable Fonts escape character sequence enables the printed text to

be larger than the default.

nn Valid values for each nibble are 0-7 values 8-15 are reserved). A
single hexadecimal byte defines the width and height of the
character as follows:

[== m e m e BYTE mmm e mm e |
| | | | |
upper nibble Tower nibble
WIDTH HEIGHT
0 Normal Width character 0 Normal Height character
1 Width = 2X 1 Height = 2X
2 Width = 3X 2 Height = 3X
3 Width = 4X 3 Height = 4X
4 Width = 5X 4 Height = 5X

Chapter 12. Printer Programming ~ 12-29

Printer Programming created on October 2, 2001

5 Width = 6X 5 Height = 6X

6 Width = 7X 6 Height = 7X

7 Width = 8X 7 Height = 8X
For example:

0x47 would produce a character width that is 5 times normal
size and a character height that is 8 times normal size.

You can also use the text attribute escape sequences to select the
character size (double high and wide). The command that is received last is
the command that is used.

Characters are formed by expanding the character width proportionally in
the printer.

The largest user-defined font is 32 dots high. Therefore, the largest
character that can be printed is 32x8 dots high, or 256 dots high - 1.25
inches.

Notes:

1. This command is only valid on the Thermal Print Station.

2. Not supported on 4610 TI1/TI2 printers

Select Color Printing (0x1B, 0x22, nn)
Enabling and disabling of full character color is available within a print line.
nn The choices are:
00 Cancel Color Printing
01 Enable Full Character Color Printing
02 Enable Half Character Color Printing
> 02 Reserved, do not use

Notes:

1. There is a limit of 8 enables and disables per line when full character
color printing is used. (More than 8 will result in unpredictable behavior.)

2. Half character color will only be supported at the beginning of a print
line.

3. This command is only valid if the enable color printing command has
been issued prior to issuing this command enabling color printing .

4. Not supported on 4610 TI1/TI2 printers.
Select PDF417 Aspect Ratio: (0x1B, 0x6C, 0x53, h, w)
The select PDF417 aspect ratio enables you to vary the ratio of the width to
the height. This enables the bar code to fit in wider or higher spaces.
* his the height dimension for the ratio (default : 1 (0x31))
* wis the width dimension for the ratio (default : 2 (0x32))

The Range of both h and w is between 1 (0x31) and 9 (0x39) inclusively.

Note: If an invalid value is sent (for h or w), it will be ignored and the
current value is retained.

Select PDF417 ECC Level: (0x1B, 0x6C, 0x52, n1, n2)
Select PDF417 ECC Level allows you to specify security or error correction
codewords for error recovery. This error correction enables for the
correction of missing or codewords that cannot be decoded, and incorrectly
decoded codewords.

12-30 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Printer Programming

n1 is the high order byte ECC level (default: 0x00 (0))
n2 is the low order byte ECC level (default: OxOF (15))

Range: 0 <= n1,n2 <= 400 (0x190)

Note: If an invalid value is sent (for n1 or n2), it will be ignored and the
current value is retained.

Select PDF417 Truncation: (0x1B, 0x6C, 0x54, {)

tis ’1’ (0x31) to enable truncation and all other values to disable truncation.
The default is ’0’ (0x30)

Small Font (0x1B, 0x3C)

The small font escape character sequence sets the printer to smaller font
defined in the printer and remains in affect for all subsequent writes to each
station until changed. For the IBM 4610 SureMark Point of Sale printers,
the font will be set to 17 CPI. For the IBM 4689-301, 3G1, 3M1, and TD5
printers, the font will be set to the 16x16 dot matrix font. If the current font
is the small font, the printer device handler discards this request.

The small font is supported only when the Model 4 printer is at EC level
0x23 and the Model 4R printer is at EC level 0x3B or 0x3C. If the printer is
at an unsupported EC level, the request will be ignored, the return code will
be set to -1 and the error will be set to POSERR_SYS_FUNCTION_NOT_SUPPORTED

Note: The small font escape character sequence is recognized only on the
IBM 4610 SureMark Point of Sale printers, the IBM 4689-301, 3G1,
3M1, and TD5 printers and model 4 and 4R printers at a supported
EC level. Small font is not supported on the 4610 TI5 printer in
DBCS mode, the Model 4A , or Model 3F Fiscal printer.

Spread Font (0x1B, 0x3A)

The spread font escape character sequence sets the printer to 12 CPI for
all subsequent writes to each station. If the current font is spread font, the
printer device handler discards this request.

Note: The spread font escape character sequence is not recognized on the
IBM Model 2 printer and the 4610 TI5 printer in DBCS mode.

User-defined Fonts (0x1B, 0x24 nn)

The User-defined fonts escape character sequence enables (previously
installed) customized/user-defined fonts to be used for printing.
nn The choices are:

00 Disable User-defined fonts

01 Select Character Set 1

02 Select Character Set 2

03 Select Character Set 3 (ignored on the DI station)

04 Select Character Set 4 (ignored on the DI station)

Notes:

1. The User-defined font must be downloaded to the printer before the
device is Opened.

2. User-defined fonts also include Proportional Fonts. Proportional Fonts

take up 2 character sets; therefore, they are valid only at memory
location 1 or 3 of the CR stations.

3. User-defined and "standard” fonts may be used on the same line. Most

likely the descriptions will be in User-defined fonts and amounts will be
IBM resident font sets.

Chapter 12. Printer Programming ~ 12-31

Printer Programming

created on October 2, 2001

4. Spread fonts, normal fonts, small fonts and 20 CPI fonts are not
supported with User-defined fonts on the CR station (or DI station).
When the above fonts are enabled and you print from the User-defined
character sets, the font size does not change, but the character spacing
may change.

Text Attributes (0x1B, 0x21, attribute code)

The text attributes escape character sequence enables and disables
various attributes of text character printing. The IBM 4610 SureMark Point
of Sale printers do not have an SJ station, and the IBM 4689-301, 3G1,
3M1, and TD5 printers do not have a DI station. Therefore, in the table that
follows, these stations should be ignored on these printers. The following
table defines each supported attribute that can be changed, and the
attribute code used to enable or disable it:

Table 12-11. Text Attribute enable and disable codes for 4610 models and 4689 Model 3x1
and TD5 printers

Supported Supported

Attribute Enable Disable in CR in SJ Supported Notes
Code Code Station Station in DI Station
Double-high 0x01 0x81 yes yes portrait only
Double-wide 0x02 0x82 yes yes yes
Underlined 0x03 0x83 yes n/a no
Overlined 0x04 0x84 yes yes no Note 1
Inverted 0x05 0x85 yes n/a no Note 1
Rotated 0x06 0x86 yes no no Note 2
Dashed Lines 0x07 0x87 yes yes n/a Note
3,4
Dark Contrast 0x08 0x88 yes yes n/a Note
3,5
Line Characters 0x09 0x89 yes yes n/a Note 3
Contrast On 0x0A 0x8A yes yes n/a Note 3
Notes:

1. Not supported on the IBM 4689-301, 3G1, 3M1, and TD5 printers.

2. On the IBM 4689-301, 3G1, 3M1, and TD5 printers, the rotated text
attribute results in characters being printed in Tategaki mode.

3. Not supported on the IBM 4610 SureMark Point of Sale printers.

4. The default line type is solid lines.

5. The default contrast is light contrast.

These attributes apply to the current font selected. The double-high and
double-wide attributes should not be confused with the double-high font and
double-wide font escape character sequences, which set the font to be
either double-high or double-wide of the normal (15 CPI) font.

The line characters text attribute turns on the printing of line characters on
the IBM 4689-301, 3G1, 3M1, and TD5 printers. Use the following character
mappings to print a line character:

Code (Hex) Printed Line Character
0x01 (1) Upper-left corner

12-32 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Printer Programming

0x02 (1) Upper-right corner
0x03 (Y Lower-left corner
0x04 () Lower-right corner
0x05 (|) Vertical line

0x06 (+) Horizontal line
0x10 () Center cross
0x15 () Bottom junction
0x16 (1) Top junction

0x17 () Right junction
0x19 (P Left junction

Printer Input/Output Control Requests (IOCtl)

The printer input/output control (IOCtl) requests enable an application to:

Disable DI Station Printing

After your application is finished printing on a document in the DI station, it

should disable printing to the DI station. This allows any data that is queued
for either the CR station or the SJ station to be printed. While the DI station
printing is disabled, all data for the DI station is queued.

To disable printing at the DI station, issue a

PQS_PRN_DISARI E_DI|_PRINTINGI IPasIOQCH) request.

Notes:

1. For the IBM 4610 SureMark Point of Sale printers, it is recommended
that before disabling DI station printing, the print lines to the DI station
are completed by using the chase escape character sequence.
Otherwise, print lines (including lines that set print characteristics, such
as setting the font size), may be printed out-of-order.

2. Not recognized on the IBM 4689-301, 3G1, 3M1, and TD5 printers.
3. Not recognized on the IBM 4610 SureMark Point of Sale Fiscal printers.

Disable Fiscal Printing

Fiscal printing must be disabled for data to be printed on the CR, DI, and
SJ stations. This allows any data that is queued for the CR, DI, and SJ
stations to be printed. While fiscal printing is disabled, all fiscal commands
are queued.

To disable fiscal printing, issue a POS_PBN_DISABI F_FISCAI _PRINTING
request.

Note: This request is recognized only by the fiscal printers. Fiscal printing
is always enabled and cannot be disabled for the USB versions of
the IBM 4610 SureMark Point of Sale Fiscal printers.

Discard Printer Data

Use the PQS_PRN_DISCARD_DATAl|PasIQCt) request to discard all
queued printer data and fiscal commands after an error occurs.

Enable DI Station Printing

For data to be printed on a document, printing must be enabled at the DI
station by using a PQS_PRN_ENABLE_DI| PRINTING PoslQCt() request.
Once this request is processed, any data for either the CR station or the SJ
station is queued. Any data previously queued for the DI station is now
printed.

Chapter 12. Printer Programming ~ 12-33

Printer Programming created on October 2, 2001

Notes:

1. For the IBM 4610 SureMark Point of Sale printers, it is recommended
that before enabling DI station printing, the print lines to the CR station
are completed by using the chase escape character sequence.
Otherwise, print lines (including lines that set print characteristics, such
as setting the font size) may be printed out-of-order.

2. Not recognized on the IBM 4689-301, 3G1, 3M1, and TD5 printers.

Enable Fiscal Printing
For fiscal commands to be processed, fiscal printing must be enabled by
using a PQS_PRN_ENABLE FISCAL_PRINTING |PaslQCtl] request. Once
this request is processed, any data for the CR, DI, and SJ stations is
queued. Any fiscal commands previously queued are now processed.

Note: This request is recognized only by the fiscal printers. Fiscal printing
is always enabled and cannot be disabled for the USB versions of
the IBM 4610 SureMark Point of Sale Fiscal printers.

Hold Printing
Use the BQS_PRN_HQI D PRINTING [PaslQCt(] request to halt printing

temporarily.

Release Printin
Use the EQS_EBN_BEI_EAS.ILEBMNG_ _ _ PaslOCtl() request to resume

printing.

Reset Printer
Use the PQS_PBN_RESFT_PRINTER [PaslOCH() request to issue a

power-on reset command to the printer.

Resume Printing After an Error
Use the %OS_EB.N_BESLLMILEB.LNILNG [PaslOCHI() request to restart

printing after an error has occurred. This request starts printing without
trying to reprint the error line. Some lines could be discarded as a result of
this request. If the printer device handler detects that the error occurred
before any print lines were printed, those lines will not be discarded.

The application program can provide an overlay string that will be printed

before any printing is restarted. See [PasNresumeStiring” on page 21-50 for

more information.

Retry Printing After an Error
Use the BOS_PBN_RFTRY_PRINTING [PasIOCt(] request to restart
printing after an error has occurred. This request starts printing at the line
the error occurred on.

The application program can provide an overlay string that will be printed

before any printing is restarted. See [PosNretryString” on page 21-5d for

more information.

For the 4610 printer, only the first character from the overlay string will be
used. This character is only printed if the retry is for a print line that had a
home error. In all other instances, the print line will print without a retry
overly character in the first position.

Setting Printer Resource Values
When your application issues a PQS_SYS SET VAL UES request, the
specified resources affect all m subroutines issued after the
request. The new values do not affect queued print operations resulting

12-34 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Printer Programming

from [PasWrite(] subroutines that were issued before the
POS_SYS_SET_VALUES PoslOCtl() request.

Getting Printer Resource Values
Your application can issue a POS_SYS_GET VALUES request to get the
current value of any of the printer’s resources. See LPrinter Resources’ for
more information about the printer resources.

Printer Resources
The printer resources control the operation of the printer device handler. These

resources can be set with the PQS_SYS_SET VALUES [PasiQCH(] request or can
be queried W|th the PQS_SYS_GET VAL UES [PasiQCH(] requests. See
for a list of resources.

Printer Event Messages

Event messages are sent by the printer to the application. For a description of the
POSS event messages, see Chapter 20_Event Messages” on page 20-1.
Printer-specific events are named POSM-PRN-xxx.

Determining the Printer Status
Use the BQS_SYS_GET_VAIL LES [PoslOCt(] request for the PasNprintStatus

resource to determine printer status information. This function returns the current
settings of the DI station control bits set by the PQS_SYS_SFT VAl UES
ﬁm request and other printer status information. The printer status includes
the following information:

» Paper status for the SJ station (out of paper or paper jam)

* Document insertion status (present or not present, top or front insert)

» Document station registered direction (from front or from top)

* Document insert station status (document ready or not ready)

» Printer head status (parked or not parked)

» Printer cover status (open or closed)

* MICR reader installed

* Whether the printer is online

Use the POS_SYS_GFT_VAI UFS PoslOCtl() request for the PasNprintStatus2

resource to determine status information for the IBM 4610 SureMark Point of Sale
Printers and the 4689-301, 3G1, 3M1, and TD5 printers.

Note: If the cover is opened while printing is in progress, the line in progress is
completed. However, no additional printing can occur until the cover is

closed. If an error occurred because of an open cover, the application
program must issue either a PQS_PBN_RBESUME _PRINTING subroutine
call or a BQS_PRN_RETRY PRINTING [PaslQCtl) subroutine call.

Printer Queues

The SJ station and the CR station are considered blocked when a document is
being printed. Simultaneous printing on the document and either the CR station or
the SJ station is not permitted.

The PQS_PRN_ENABLE DI PRINTING PasIQCtl() and the
PQS_PRN_DISABIE_DI_PRINTING [PasiQCH(] requests are used to control the

interactions between the DI station and the CR and SJ stations. To minimize the

Chapter 12. Printer Programming ~ 12-35

Printer Programming created on October 2, 2001

impact to the application program, the printer device handler queues all data written
to the CR and SJ station when the DI station is enabled, and queues all DI station
data when the DI station is disabled.

The application program can control when the buffered data is printed by using the

PQOS PRN _ENABLE_ DI PRINTING [PasiOCH(] and the
PQS_PRN_DISABLE DI PRINTING [PasiQCtY] requests. The printer driver begins
printing the buffered CR and SJ data as soon as the DI station becomes disabled.
Therefore, the application should ensure that the user has completely removed the
document from the printer before it disables the DI station.

Note: For the IBM 4610 SureMark printers, it is recommended that before enabling
or disabling DI station printing, the application should ensure that the print
lines to the current print station are completed by using the chase escape
character sequence. Otherwise, print lines (including lines that set print
characteristics, such as setting the font size), may be printed out-of-order.

Document Insert Station

12-36

The DI station allows the insertion of forms, documents, or checks into the printer.

When a document is inserted into the DI station, a sensor is activated as the user
inserts the document. Any change in sensor values causes an event message to be
sent to the application.

The BQS_SYS_GET_VAI UFS [PoslOCH(] request can be used by an application
program to determine the presence of a document. The PasNprintStatud resource
indicates the following conditions:

PosSTATUS_DOCUMENT_AT_TOP
Indicates when a document has been inserted in the top of the DI station or
when a form has been inserted from the front far enough to reach the top
sensor.

PosSTATUS_DOCUMENT_AT_FRONT
Indicates when a document has been inserted in the front of the DI station
or when a form has been inserted from the top far enough to reach the
front sensor.

PosSTATUS_DOCUMENT_READY
Indicates that a document has been registered, either manually or
automatically (under program control). The document must be registered
before printing can begin at the DI station. Both
PosSTATUS_DOCUMENT_AT_TOP and
PosSTATUS_DOCUMENT_AT_FRONT can be true even though
PosSTATUS_DOCUMENT_READY is false. This occurs when the
document has been fed in by several line feed commands rather than with
the register document control character.

PosINSERTED_FORWARD
Indicates from which direction a document was registered (front or top).
Based on this determination, the application can order the print lines
accordingly. For example, either printing the lines in reverse order for top
inserted forms or standard order for forms inserted from the front.

IBM Model 2 Printer

The DI station allows the insertion of forms, documents, or checks into the printer
either from the front or from the side. The following functions are provided to allow
application programs to work with the DI station:

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Printer Programming

» Front or side loading of documents

* Manual or automatic insertion of documents
* Document reinsertion

* Releasing the document

Front or Side Loaded Documents: Documents can be inserted from the front or
side. A sensor is activated as the user inserts the document to the positive stop
feed rollers.

Note: The Model 2 printer will always indicate that a document was inserted from
the front (PosSTATUS_DOCUMENT_AT_FRONT) and that it was inserted
forward (PosSTATUS_INSERTED_FORWARD).

Manual or Automatic Document Insertion: Manual insertion is when the
document is inserted to the feed rollers, and the station is activated using the DI
station ready button on the top of the printer. Pressing the DI station ready button
causes the document to be registered. If the document is inserted from the front,
the document must be advanced forward approximately one inch before the first
printable position is in the print field. The printer line feed buttons can be used to
position the document, or the document can be advanced forward by the
application.

Automatic insertion is when the document is inserted to the feed rollers, the DI
station is enabled, the application writes a register document escape character
sequence, and the document is positioned to the first print position by the
application program.

The document can be advanced additional spaces by the application prior to
printing the first line by issuing a [PasWrita(} subroutine with the desired number of
line feed characters.

If a document is inserted from the side, it blocks the CR station when the form is
stopped against the feed rollers. The user must not insert a form from the side until
printing at the CR station is completed. Documents inserted from the front do not
block the CR station until registered at the DI station using the DI ready button or a
register document escape character sequence.

Reinserting Documents for Printing: Some transactions require that a document
be inserted into the printer many times for printing at a different location each time,
for example, documenting exception conditions or voiding transactions. These
documents can be positioned for printing using the automatic method described in

[Manual or Automatic Document Insertion’}, or they can be positioned using a

manual method.

Releasing the Document: For removal of documents after printing, use the
release document escape character sequence. When the printer receives this
escape character sequence, the document is released from the printer and can be
removed. The PQS_PRN_DISABLE_DI PRINTING [PasiQCt(] request should be
sent after all document sensors are clear to prevent further DI station printing and
to allow CR or SJ printing.

IBM Model 3, Model 3F, Model 3R, Model 4, Model 4A, and Model

4R Printers
The DI station allows the insertion of forms, documents, or checks into the printer

either from the top or from the front. The following functions are provided to allow
application programs to work with the DI station:
» Top or front loading of documents

Chapter 12. Printer Programming ~ 12-37

Printer Programming created on October 2, 2001

* Manual or automatic insertion of documents
* Document reinsertion

* Releasing the document

» Positioning the print head

* Reversible DI station motor

» Various DI station line lengths

Top or Front Loaded Documents: Documents can be inserted from the top or
the front. A sensor is activated as the user inserts the document to the positive stop
feed rollers and an LED on the front of the printer lights when the sensor is
activated.

Manual or Automatic Document Insertion: Manual insertion is when the
document is inserted to the feed rollers, and the station is activated using the DI
station ready button on the front of the printer. Pressing the DI station ready button
causes the document to be registered (fed into the printer until the first printable
position is in the print field). If the document is inserted from the top, the first
printable position is the bottom-most line of the document. If the document is
inserted from the front, the first printable position is the top-most line of the
document. If the user wants to start printing in a position other than the top or
bottom of the form, the printer line feed buttons can be used to further position the
document, or the document can be advanced (forward or backward) by the
application.

Automatic insertion is when the document is inserted to the feed rollers, the DI
station is enabled, and the document is positioned to the first print position when
the application writes a register document control character.

For automatic registration, the first print position (top-most line or bottom-most line)
is not determined by the top or front insertion, but by the value of the resource
PosNfeedDirection. That is, if the direction is forward, (from front to top) the
document is registered with the top line as the first print position, even though the
document was inserted from the top.

Because users can insert documents from either the top or the front, mistakes can
be made even if a message is displayed prompting the user on the method of
insertion. The printer is designed to automatically interpret the intended insertion
direction and allow the application program to correct for user errors.

The document is automatically positioned at the top of the document if an
application program is designed for automatic front insertion of documents. That is,
PosNfeedDirection is PosFEED_FORWARD. If, however, the user inserts the
document from the top, the printer automatically advances the document through
the printer until the document is positioned at the top of the document. Because the
application was designed for front insertion, the result of inserting the document
from the top is exactly the same as inserting from the front.

The opposite insertion method is also automatic. If an application is designed for
automatic top document insertion and the document is placed in the front opening,
the printer automatically advances the form through the printer, positioned the
document at the bottom of the form.

The document can be advanced additional spaces by the application prior to

printing the first line by issuing a [BasWriteg) subroutine with the desired number of
line feed characters.

12-38 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Printer Programming

If a document is inserted from the top, it blocks the CR and SJ stations when the
form is stopped against the feed rollers. The user must not insert a form from the
top until printing at both of these stations is completed. Documents inserted from

the front do not block the CR or SJ stations until registered at the DI station using
the DI ready button or a register document escape character sequence.

Reinserting Documents for Printing: Some transactions require that a document
be inserted into the printer many times for printing at a different location each time,
for example, documenting exception conditions or voiding transactions. These
documents can be positioned for printing using the automatic method described in
[Manual or Automatic Document Insertion” on page 12-38, or they can be positioned
using a manual method. The steps required for reinserting a document using the
manual method are shown in the following section:

1. Insert the document to the feed rollers and press the printer line advance button
until the desired print location is positioned just above the printer cover.

2. Press the DI station ready button to reverse feed the document into the printer.
The document is now correctly positioned for printing and the application can
issue m subroutines to the DI station.

Releasing the Document: The DI station of the printer holds documents tightly in
place, preventing manual repositioning. This allows for more accurate positioning
when advancing a document under program control, but it prevents a user from
pulling a document out of the printer after printing has completed.

For fast removal of documents after printing, use the release document escape
character sequence. When the printer receives this escape character sequence, the
document is fed rapidly out of the printer until it is free from the document feed
rollers. The direction the document is advanced out of the printer is controlled by
the PasNfeedDirection resource. The BQS_PRN_DISARI F_DI_PRINTING
m request should be sent after all document sensors are clear to prevent
further DI station printing and to allow CR or SJ printing.

Positioning the Print Head: Some forms are inserted easier with the print head
positioned at the left home position. Other forms can be inserted easier with the
head at center home position. When there is no more data to print, the head parks
at one of these two positions depending on the PasNheadParkedPasition
resource. Testing your application with the different print head locations is highly
recommended.

Reversible Document Station Motor: The default document feed direction is the
same as the one used to feed the receipt paper during printing (front to top). The
document feed direction is determined by the PasNfeedDirection resource.

DI Station Character Line Lengths: The printer device handler can print either
on the full width of the document or only on the right half. If w is set to
PosDI_WIDE, the first character position is near the left margin and there are 86
characters per line at 15 CPI. If only the left half is desired, use the new line and
carriage return control characters imbedded in the data. If m is set to
PosDI_NARROW, the first character is near center home position and there are 38
characters per line at 15 CPI.

IBM 4689-001 and IBM 4689-002

The DI station allows the insertion of forms, documents, or checks into the printer
either from the top or from the front.

Chapter 12. Printer Programming ~ 12-39

Printer Programming created on October 2, 2001

12-40

There are a maximum of 30 print lines for narrow paper printing and the first print
position is 32.5 mm from the top of the form. For wide paper, the maximum number
of print lines is 16. If the length of the wide paper is shorter than 117 mm, the first
print position is set to 32.5 mm from the top of the form. Otherwise, the first print
position is set to 84.5 mm from the bottom of the form.

The following functions are provided to allow application programs to work with the
DI station:

» Top or front loading of documents

* Narrow document insertion

* Wide document insertion

* Releasing the document

Top or Front Loaded Documents: Narrow paper (slips) must be inserted from
the front and wide paper (validation forms) must be inserted from the top. A sensor
is activated as the user inserts the document to the positive stop feed rollers and an
LED on the front of the printer lights when the sensor is activated. Any change in
sensor values causes an event message to be sent to the application.

Narrow Document Insertion: Narrow paper must be inserted in the front of the DI
station with the top edge of the form inserted first. After printing is complete, the
document is ejected out the top side slot of the DI station. If the narrow paper is
inserted in the top of the DI station, the printer will print in the wrong position on the
narrow paper without any errors.

The recommended sequence for printing on narrow (slip) paper is:
1. The application enables DI station printing.

2. The application issues the register document escape character sequence to
position the first print position 32.5 mm from the top of the form.

3. The document is inserted in the front of the DI station.

4. The application receives the event message indicating that a document has
been inserted in the front.

5. The application writes up to 30 print lines.

6. The application issues the release document escape character sequence to
eject the document out of the top side slot of the DI station.

7. The application disables DI station printing.

Wide Document Insertion: Wide paper must be inserted in the top of the DI
station with the bottom edge of the form inserted first. After printing is complete, the
document is ejected out the top side slot of the DI station.

The recommended sequence for printing on wide (slip) paper is:
1. The application enables DI station printing.

2. The application issues the register document escape character sequence to
position the first print position 32.5 mm from the top of the form or 84.5 mm
from the bottom of form.

3. The document is inserted in the top of the DI station.

4. The application receives the event message indicating that a document has
been inserted.

5. The application writes up to 16 print lines.

6. The application issues the release document escape character sequence to
eject the document out of the top side slot of the DI station.

7. The application disables DI station printing.

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Printer Programming

Releasing the Document: The DI station of the IBM 4689-00x printers holds
documents tightly in place, preventing manual repositioning. This allows for more
accurate positioning when advancing a document under program control, but it
prevents a user from pulling a document out of the printer after printing has
completed.

For fast removal of documents after printing, use the release document escape
character sequence. When the printer receives this escape character sequence, the
document is fed rapidly out of the printer until it is free from the document feed
rollers.

IBM 4610 SureMark Point of Sale Printers
The DI station allows the insertion of forms, documents, or checks into the printer

either from the front or from the side. The following functions are provided to allow
application programs to work with the DI station:

» Front or side loading of documents

* Manual or automatic insertion of documents

* Document reinsertion

* Releasing the document

» Various line lengths

» Portrait or landscape print orientation

* Flipping a check

Front or Side Loaded Documents: Documents can be inserted from the front or
side. A sensor is activated as the user inserts the document to the positive stop
feed rollers.

Note: The IBM 4610 SureMark Point of Sale printers always indicate that a
document was inserted forward (PosSTATUS_INSERTED_FORWARD).

Manual or Automatic Document Insertion: Manual insertion is when the
document is inserted to the feed rollers, and the station is activated using the DI
station ready button on the top of the printer. Pressing the DI station ready button
causes the document to be registered. If the document is inserted from the front,
the document must be advanced forward approximately 1.5 inches before the first
printable position is in the print field. The printer line feed buttons can be used to
position the document, or the document can be advanced forward by the
application.

Automatic insertion is when the document is inserted to the feed rollers, the DI
station is enabled, the application writes a register document escape character
sequence, and the document is positioned to the first print position by the
application program.

The document can be advanced additional spaces by the application prior to
printing the first line by issuing a m subroutine with the desired number of
line feed characters.

Note: For the IBM 4610 SureMark Point of Sale printers, documents can be
inserted while printing on the CR station.

Reinserting Documents for Printing: Some transactions require that a document

be inserted into the printer many times for printing at a different location each time,
for example, documenting exception conditions or voiding transactions. These

Chapter 12. Printer Programming ~ 12-41

Printer Programming created on October 2, 2001

documents can be positioned for printing using the automatic method described in

[Manual or Automatic Document Insertion” on page 12-41, or they can be positioned

using a manual method.

Releasing the Document: For removal of documents after printing, use the
release document escape character sequence. When the printer receives this
escape character sequence, the document is released from the printer and can be
removed. The PQS_PRN_DISABLE DI PRINTING [PasiQCH(] request should be
sent after all document sensors are clear to prevent further DI station printing and
to allow CR printing.

DI Station Character Line Lengths: For printing in the portrait orientation, the
printer device handler can print either on the full width of the DI station or only on a
portion of the right side. If m is set to PosDI_WIDE, there are 47
character positions per line at 15 CPI. If PosNDIWidtH is set to PosDI_NARROW,
there are 38 character positions per line at 15 CPI.

Portrait or Landscape Oriented Printing: Normal horizontal printing in the DI
station is accomplished by setting the resource to

PosPRINT_PORTRAIT. When printing more than 47 characters per line, (as on the
front of a check), set the PosNdiQrientatian resource to PosPRINT_LANDSCAPE.
When in landscape oriented printing, the document will be printed at 90 degrees
counter-clockwise and print lines will be printed from the bottom of the document to
the top of the document.

Flipping a Check: Both sides of a check can be printed without the operator
manually removing the check from the printer. To accomplish this, send the Check
Flip escape character sequence when it is time to flip the check from one side to
the other. For example, the check could be franked on the back, the check flip
escape character sequence is sent to the printer, and then the front of the check
can be printed.

Receipt Paper Cutter

12-42

The following printers contain a receipt paper cutter:

* |IBM Model 3

* IBM Model 3F

* IBM Model 3R

* IBM Model 4

* IBM Model 4A

* IBM Model 4R

* IBM 4689-00x

* IBM 4689-301, 3G1, 3M1, and TD5

* IBM 4610 SureMark Point of Sale Printer Model TI1

* IBM 4610 SureMark Point of Sale Printer Model TI2
* IBM 4610 SureMark Point of Sale Printer Model TI3
* IBM 4610 SureMark Point of Sale Printer Model Tl4
* IBM 4610 SureMark Point of Sale Printer Model TI5
* IBM 4610 SureMark Point of Sale Printer Model TF6
* IBM 4610 SureMark Point of Sale Printer Model TF7
* IBM 4610 SureMark Point of Sale Printer Model TM6
* IBM 4610 SureMark Point of Sale Printer Model TM7

The IBM Point of Sale Subsystem application program interface provides an escape
character sequence for a partial cut of the paper, and for the IBM 4689 printers, an
escape character sequence for stamping and cutting the paper. Because the tear

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Printer Programming

bar, on the printers with the receipt paper cutter, is only intended for occasional use
(for example, when tearing off the excess paper after paper loading), applications
should use the cutter at all times.

The application must advance the paper at the end of the transaction so that the
last line clears the cutter. You can advance the paper in the following ways:

1. Write the advance paper to tear bar escape character sequence.

2. Write multiple line feeds.

Ten line feeds are needed to clear the tear bar when the CR station line spacing is
set to 6 lines per inch. Twelve line feeds are required when the line spacing is set
to 8 lines per inch.

For the IBM 4689-301, 3G1, 3M1, and TD5 printers, the logo that is stamped on a
cut paper, and stamp escape character sequence, is logo that has been
downloaded to the printer. For more information on downloading the logo, see

WMWMM‘ z = .

Printing Checks

MICR Reader

Checks can be printed in normal mode in the DI station of the IBM Model 2 printer,
the IBM Model 3 printer, the IBM Model 4 printer, the IBM Model 3F Fiscal printer,
and the IBM 4610 SureMark Point of Sale printers. Checks can be inserted
horizontally for printing on all printers except the IBM 4610 SureMark Point of Sale
printers. For the IBM 4610 SureMark Point of Sale printers, the front of a check can
be printed with the print orientation set for landscape printing.

The IBM Model 3R printer, the IBM Model 4R printer, and the IBM 4610 SureMark
Point of Sale Printer models TI2 and Tl4 have a MICR reader installed. When the
IBM Point of Sale Subsystem printer device handler detects that the MICR reader is
present, it enables application programs to read the MICR data from the printer.

Before a read MICR data escape character sequence is sent to the printer, a check
should be inserted into the front of the DI station and aligned against the right wall
of the DI station. If a document is not inserted in the DI station, a
POSM_PBN_PRINTER_FRROH is sent to the application’s input queue. If the
check is inserted in the DI station but is not registered, it is automatically registered
at the top of the document. The printer then advances the check forward until the
front sensor is uncovered. The check is then fed in the opposite direction and the
MICR information is read. After the MICR information is read, the check is fed to the
first print position.

If the printer is unable to read any character on the first attempt, the check will be
tried a second time automatically. Any character that could not be read on either
attempt will be identified by a '?' (0x3F) character.

Note: Checks with magnetic ink printing within the first 1.2 inches of the inserted
end of the check will not be read correctly.

Use the following steps to read the account information from customer checks:
1. Enable the DI station.
2. Set the PasNprintStation resource to PosPRINT_STATION_DI.

3. Insert the check into the front of the DI station and align it against the right wall
of the DI station.

Chapter 12. Printer Programming ~ 12-43

Printer Programming created on October 2, 2001

4. Send the register document escape character sequence with a PasWerite(]
subroutine call.

5. Send the read MICR escape character sequence with a [PasWrite() subroutine
call.

6. Wait for a POSM_PRN_DATA_AVAIL event message on the point-of-sale input

queue.
7. lIssue a m subroutine call to read the MICR data.

8. Send the release document escape character sequence with a m
subroutine call.

Note: Because the check must be aligned against the right wall of the DI Station,
only the last 20 characters are available for printing on the check.

Fiscal Printing

The IBM Point of Sale Subsystem fiscal printer device handler allows an application
to print all the fiscal commands of the supported IBM Fiscal printers. In addition, the
fiscal device handler allows applications written for the IBM Model 2, IBM Model 3,
IBM Model 4, and the IBM Model 4A printers to run on the IBM Model 3F Fiscal
printer.

The IBM 4610 Fiscal printers are not supported in non-fiscal mode.

The default mode for the IBM Fiscal printer is PosMODE_FISCAL with fiscal printing
enabled.

User-Defined Characters

The IBM 4689-001 and the IBM 4689-002 support the definition of new characters
by your application program. The diagrams that follow show the layout for defining a
new user-defined character (UDC).

In the diagrams, the first column indicates which print head wire will be turned on
when the corresponding bit is set. Each numbered column defines the one printed
dot column. Two bytes are needed to define the nine print head wires for each
column.

Note: The first byte of the two byte column definition corresponds to the print head
wire number 9 and the second byte corresponds to the upper eight print
head wires.

The amount of data needed to define a character is dependent upon the number of
characters per line (CPL). There are two characters-per-line lengths available on
the 4689-00x printers:

« 25 CPL

« 30 CPL

IBM 4689-00x in 25 CPL Mode

The following diagram shows the layout for defining a user-defined character on the
IBM 4689-00x printers in 25 CPL mode.

The first column indicates which print head wire will be turned on when the
corresponding bit is set. Each numbered column defines one printed dot column.
Two bytes are needed to define the nine print head wires for each column.

12-44 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Printer Programming

Note: The first byte of the two byte column definition corresponds to the print head
wire number 9 and the second byte defines the upper eight print head wires.

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21
Wire 1 X
(Bit 0)
Wire 2 X
(Bit 1)
Wire 3 X
(Bit 2)
Wire 4 X
(Bit 3)
Wire 5 X
(Bit 4)
Wire 6 X
(Bit 5)
Wire 7 X
(Bit 6)
Wire 8 X
(Bit 7)
Byte 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21
Wire 9 X
(Bit 0)
Byte 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Note: A period (.) in the previous table indicates that the position is not used.

IBM 4689-00x in 30 CPL Mode

The following diagram shows the layout for defining a user-defined character on the

IBM 4689-00x printers in 30 CPL mode.

The first column indicates which print head wire will be turned on when the

corresponding bit is set. Each numbered column defines one printed dot column.

Two bytes are needed to define the nine print head wires for each column.

Note: The first byte of the two byte column definition corresponds to the print head
wire number 9 and the second byte defines the upper eight print head wires.

Chapter 12. Printer Programming

12-45

Printer Programming

IBM 4689-301, 3G1, 3M1, and TD5

12-46

created on October 2, 2001

01 |02 (03 |04 (05 |06 (07 |08 (09 |10 (11 |12 (13 |14 (15 |16 |17
Wire 1 X X X X X X X X X X X X X X X X X
(Bit 0)
Wire 2 X X X X X X X X X X X X X X X X X
(Bit 1)
Wire 3 X |X X X X X X X X X X X X X X |X X
(Bit 2)
Wire 4 X X X X X X X X X X X X X X X X X
(Bit 3)
Wire 5 X X X X X X X X X X X X X X X X X
(Bit 4)
Wire 6 X X X X X X X X X X X X X X X X X
(Bit 5)
Wire 7 X X X X X X X X X X X X X X X X X
(Bit 6)
Wire 8 X X X X X X X X X X X X X X X | X
(Bit 7)
Byte 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
01 |02 (03 |04 (05 |06 (07 |08 (09 |10 |11 |12 (13 |14 (15 |16 |17
Wire 9 X X X X X X X X X X X X X X X X X
(Bit 0)
Byte 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Note: A period (.) in the previous table indicates that the position is not used.

There is a maximum of 64 characters which can be defined. The character is

mapped into the Kanji Code area. However, the two-byte character code cannot

duplicate an existing Kanji character code.

* For the 4689-3x1 printers, the two byte character code can be in the range of

0x8000 through Ox9FFF and OxEO00 through OXFFFF.
* For the 4689—-TD5, the range is 0x8100 through OxFFFF.

The following diagram shows the layout for defining a user-defined character on the
IBM 4689-301, 3G1, 3M1, and TD5 printers. This example shows the definition of
the Kanji character "KAN". The first column indicates the byte offset within the

character buffer, the second column is the bit pattern, and the third column is the

dot row number.

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

MSB LSB

Byte Offset 76543210

76543210

Printer Programming

76543210

Byte 0x00, Byte 0x01, Byte 0x02 00000000
Byte 0x03, Byte 0x04, Byte 0x05 00000000
Byte 0x06, Byte 0x07, Byte 0x08 00111000
Byte 0x09, Byte OxO0A, Byte Ox0B 00011100
Byte 0x0C, Byte 0x0D, Byte OxOE 00001101
Byte 0xOF, Byte 0x10, Byte 0x11 00000000
Byte 0x12, Byte 0x13, Byte 0x14 00000000
Byte 0x15, Byte 0x16, Byte 0x17 00000000
Byte 0x18, Byte 0x19, Byte Ox1A 01110000
Byte 0x1B, Byte 0x1C, Byte 0x1D 00111010
Byte Ox1E, Byte Ox1F, Byte 0x20 00010010
Byte 0x21, Byte 0x22, Byte 0x23 00000110
Byte 0x24, Byte 0x25, Byte 0x26 00000100
Byte 0x27, Byte 0x28, Byte 0x29 00001100
Byte 0x2A, Byte 0x2B, Byte 0x2C 00001000
Byte 0x2D, Byte Ox2E, Byte Ox2F 00011000
Byte 0x30, Byte 0x31, Byte 0x32 01111000
Byte 0x33, Byte 0x34, Byte 0x35 00011000
Byte 0x36, Byte 0x37, Byte 0x38 00011000
Byte 0x39, Byte Ox3A, Byte 0x3B 00011000
Byte 0x3C, Byte 0x3D, Byte Ox3E 00011000
Byte O0x3F, Byte 0x40, Byte 0x41 00011000
Byte 0x42, Byte 0x43, Byte 0x44 00011111
Byte Ox45, Byte 0x46, Byte 0x47 00000000

00000000
00111001
00110001
00110001
11111111
00110001
10000000
11111111
11000110
11000110
11111111
11000110
00000110
11111111
00000110
00000110
11111111
00001101
00011101
00011000
00110000
11100000
10000000
00000000

00000000
11000000
10001000
10011100
11111100
10000000
00110000
11111000
00110000
00110000
11110000
00000000
00110000
11111000
00001000
00011100
11111100
00000000
10000000
11000000
01110000
00111110
00001100
00000000

spacing is automatically inserted by the printer.

Dot
Row

: The image pattern is the actual printed data. Character spacing and Line

Performance Considerations

This section applies to printers with both a CR station and a SJ station.

There is a margin to the left of the CR station and a margin to the right of the SJ
station. When printing is complete at a station, the print head moves from center
home to the station margin or from the margin to center home, depending on where
the head was at the end of the previous print. If the print head is in the margin of
one station and the next print request is for the other station, the print head must
move back to the center home position before it reaches the station at which the
print is requested. In this case, the print head travels across one station without
printing.

Your application can print so that print head travel time is minimized. Your

application has two options.

1.

Set the PosNinterleaved resource to PosINTERLEAVED_TRUE and print an

even number of times at one station before printing at the other station. In some
cases your application prints the same data at both the CR station and the SJ
station. In such cases, you should alternate which station is printed at first (CR,
SJ, SJ, CR, CR, SJ, and so on.). This results in an even number of prints at

one station before moving to the other.

Set the PasNinterleaved resource to PosINTERLEAVED FALSE and allow the

device handler to optimize print throughput. The data for each station is printed
in the order sent by the application, but lines printed on different stations can be

printed out of sequence with each other.

For logo printing, the print head must travel across the print line either one or
three times. Only one pass is required if you compose the logo by using every
other column of dots. To maximize performance, you should either use all odd

dot columns or all even dot columns.

Chapter 12. Printer Programming

12-47

Printer Programming created on October 2, 2001

Related Information

Additional information about printer programming is in these chapters:

c S Aorlicaion D o ieiacd
Chapter 19_PoslOCtl() Requestd
Chapter 20_Event Messaged (POSM_PRN . . .)

k‘hnpmr 21_Resource Setd

Bppendix D_Errar Coded (POSERR_PRN. . .)

Printer PoslOCtl Control Requests

See Chapter 19 PoslOCHl() Requestd:

12-48 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Printer Programming

Printer Error Codes
See Appendix D_Frror Coded:

E

E

E

E

E

E

E

E

E

E

E

E

%

E

i

E

E

E

Chapter 12. Printer Programming ~ 12-49

Printer Programming created on October 2, 2001

12-50 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Chapter 13. Programmable Power Programming

The programmable power device handler is software that manages communication
between your application and the programmable power device. An application can
access the device only through the device handler.

Notes:

1.

The programmable power device is not supported by the IBM Point of Sale
Subsystem for Windows on the Microsoft Windows 3.1 operating system for
local PosDEVICE_POWER_LOCAL devices.

2. The Programmable Power device is not supported on the IBM Point of Sale

Subsystem for Linux.

Characteristics of the Programmable Power Device

The programmable power device allows an application to control the power supply
in any of the following point-of-sale terminals:

IBM 4693-2x2

IBM 4693-3x1 (OS/2 only)
IBM 4693-4x1 (OS/2 only)
IBM 4693-5x1 (OS/2 only)
IBM 4693-7x1 (OS/2 only)

Note: The “x” in the above list indicates that a number or alphabetic character can

be substituted.

The characteristics of the programmable power device are:

A 4693-3x1, 4693-4x1, 4693-5x1, or 4693-7x1 terminal can issue programmable
power commands to turn itself off.

A 4693-3x1, 4693-4x1,4693-5x1, or 4693-7x1 terminal can issue programmable
power commands to control the power supply of an attached 4693-2x2.

The programmable power device does not prevent the use of the power switch,
nor does the power switch prevent the programmable power device from
functioning. Only disconnecting the power cord plug can completely remove
power from a terminal.

The programmable power device in the 4693-3x1, 4693-4x1, 4693-5x1, or
4693-7x1 provides a way for an application to specify the day of month and time
that power should be turned back on. The PasNpawerAlarm resource is used to
set the day of month and time of day.

Functions Your Application Performs

Your application can perform the following functions with the programmable power
device:

© Copyright IBM Corp. 1993,

Turn on and off power to a 4693-2x2

Turn off power to a 4693-3x1, 4693-4x1, 4693-5x1, or 4693-7x1

Set the day of month and time at which power is to be restored to a 4693-3x1,
4693-4x1, 4693-5x1, or 4693-7x1

Query the resource that indicates when power is to be turned back on for a
4693-3x1, 4693-4x1, 4693-5x1, or 4693-7x1

2001 13-1

Programmable Power Programming created on October 2, 2001

Before your application program can access the programmable power device, it

must open the programmable power device (see Opening Your Devied) and Bequird

exclusive use of it.

Turning Power Off to a 4693-3x1, 4693-4x1, 4693-5x1, or 4693-7x1

An application running on a 4693-3x1, 4693-4x1, 4693-5x1, or 4693-7x1 can use
the programmable power device to turn off its own power supply.

To turn power off to a terminal and have it turned back on at a certain day of month
and time of day, an application can modify the EnsN.pnmeLA.lar.ni resource using
the PQS_PQWER_SET AL ARM |PaslQCH() request. If the value of the
PosNpowerAlarm resource is 0 (zero) when the application issues the
PQS_PQWER_QFH PaslQCt) request is issued, power is turned off and will not
turn back on unless the power switch is pressed. To clear the alarm setting, an
application can specify 00 (two zeros) for the day of month.

A 4693-3x1, 4693-4x1, 4693-5x1, or 4693-7x1 that is already turned off with a time
specified for turning power back on cannot respond to any commands. If the

%ﬂhﬂd resource is set using the PQS_POWER_SET Al ARM
request, and the PQS_POWER_QOFH [PasiOCH(] request is issued, the

alarm setting cannot be changed. When the set day of month and time arrive,
power at the terminal is turned on. The maximum duration that a terminal can be
set to wait before power is turned on is one month. You can, however, use the
power switch to turn power on at the terminal before the specified time arrives.

On 0S/2, when the PQS_POWER_QFEH PasIOCtl(} request is issued, the
programmable power device handler calls DosShutdown() to prepare for turning
power off to the terminal. DosShutdown() locks out changes to all file systems, and
writes system buffers to the hard disk in preparation for turning off power. When
power to the terminal is turned back on, OS/2 will not need to run CHKDSK.EXE to
detect files that the system could not save completely, which is especially useful if
you are using the High Performance File System. If other applications are running
when the BQS_POWFR_QFH [PosIOCH() request is issued, the DosShutdown()
command ends them. When power to the terminal is turned back on, these
applications must be restarted if you wish to use them.

If an application turns off power to a 4693-3x1, 4693-4x1, 4693-5x1, or a 4693-7x1,
the attached 4693-2x2 is also turned off. Once the 4693-3x1, 4693-4x1, 4693-5x1,
or 4693-7x1 is turned on, power to the attached 4693-2x2 will also be restored if
the alternating current is present.

Turning Power On and Off to the 4693-2x2

13-2

An application running on a 4693-3x1, 4693-4x1, 4693-5x1, or 4693-7x1
point-of-sale terminal can use the programmable power device to turn off the power
supply to an attached 4693-2x2. If the 4693-2x2 is turned off using the
programmable power device, its non-volatile random access memory (NVRAM)
device can still run using +5LM (logic memory) power. NVRAM commands,

including [PasWrite() and PasRead(), can be processed when the main power is off
but the alternating current is present.

To turn power off at the 4693-2x2, an application can issue the BQS_PQWER_QFH
m request. To issue a PQS_PQWER_QFH [PaslQCtl(] request, an
application must have an acquired device connection to the programmable power
device.

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Programmable Power Programming

To turn power back on at the 4693-2x2, an application can issue the
POS_POWER_ON [PoslOCH() request. To issue a POS_POWER_ON [PaslOCt()
request, an application must have an acquired device connection to the
programmable power device.

The following sequence of events illustrate a possible use of the programmable
power device:

Application A opens the programmable power device

Application A acquires the programmable power device

Application B opens the programmable power device

Application A turns off power to the 4693-2x2

Application A releases the programmable power device

Application B acquires the programmable power device

Application B restores power to the 4693-2x2

NooohM~ON

Note that if application A turned off power to the 4693-2x2 before application B
opened the programmable power device, application B could not have opened and
acquired the programmable power device and restored power to the 4693-2x2.

Another way to turn power on is to press the power switch on the front panel of the
4693-2x2.

If an application turns off power to a 4693-3x1, 4693-4x1, 4693-5x1, or 4693-7x1,
power to the attached 4693-2x2 is also turned off.

The 4693-2x2 point-of-sale terminal does not have an alarm. The
PasNpowerAlarml resource cannot be used for the 4693-2x2.

Querying the Time that Power Is to Be Turned On

An application can query the PasNpowerAlarm resource using the
PQOS_SYS _GFT_VAI UFES PaslOCH() request.

Related Information

Additional information about programmable power device programming is in these
chapters:

Subroutines Used with Programmable Power Subsystem

Programmable Power Subsystem PoslOCtl() Control Requests
See Chapter 19_PoslQCtl() Requestd:
POS_SYS ACQUIRE DEVICH

Chapter 13. Programmable Power Programming 13-3

Programmable Power Programming
PQS_POWER_ON

BPOS_POWER SFT Al ARM

Programmable Power Resources
See Chapter 21_Resource Setd:
PosNpowerAlarm

Programmable Power Device Error Codes
See lAppendix D_Error Coded:

13-4 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

created on October 2, 2001

Chapter 14. RS-232C Programming

The RS-232C device handler is software that manages communication between
your application and SlO-attached RS-232C devices. These RS-232C devices can
be attached to a Feature E expansion card (in an IBM 4683-x02), attached to an
IBM 4693 Point of Sale Terminal Models 2x2, or attached directly to the SIO
channel on an IBM Point of Sale Terminal model. There are also some USB devices
that are managed by this device handler. An application can only access such
devices through this device handler.

Notes:

1. The “X” in the paragraph above and the lists below indicates that a number or
alphabetic character can be substituted.

2. The RS-232C device handler supports:

devices attached to the RS-232C serial ports labeled 23 and 25 on the back
of an E expansion card for the IBM 4683-x02

devices attached to the RS-232C serial ports on the IBM 4693-2x2

RS-232C devices that have been modified by their manufacturers to attach
directly to an SIO channel

USB devices that conform to the IBM USB Pseudo-RS232 Interface

3. The RS-232C device handler does not support devices attached to the
RS-232C ports on any Personal Computer or on any of the following IBM Point

of

Sale Terminal models:

IBM 4683

IBM 4684-300

IBM 4693 (all models except 2x2)
IBM 4694 (all models)

IBM 4695 (all Integrated models)

4. The RS-232C device handler is not supported on the IBM Point of Sale
Subsystem for Linux.

© Copyright IBM Corp. 1993, 2001

1441

RS-232C Programming created on October 2, 2001

Characteristics of the RS-232C Port

The following is a list of characteristics for the RS-232C port:
» Two independent full-duplex asynchronous channels
* Two independent baud rate generators
* For each channel:
— Five through eight data bits per character
— Break detection and generation
— One, one and a half, or two stop bits
— False start bit detection
— Parity bit detection and generation: odd, even or none
— Overrun and framing detection
— Double buffering of data
— Transmission rates of 110, 300, 1200, 2400, 4800, and 9600 bits per second

(bps)

Functions Your Application Performs

Your application can perform the following functions with the RS-232C port:
» Control the RS-232C port

* Read data received from the RS-232C port

* Write data to the RS-232C port

* Get RS-232C port status

Before your application program can access the RS-232C port, it must open the
RS-232C port and acquire exclusive use of it.

Note: When your application closes the RS-232C port and data that has not been
read is queued, the close will complete with an error code of
POSERR_SYS_DATA_DISCARDED, and any unread data will be discarded.

Controlling the RS-232C Port

14-2

Your application can control the RS-232C port by issuing the m subroutine.
The following functions can be performed:

* Send a break

* Enable and disable the receiver

* Assert and negate DSR and DTR

» Assert and negate CTS and RTS

All 4 control lines (DSR, DTR, CTS, and RTS) can be asserted or negated as a
result of the different configuration of the supported hardware. The ports on a
Feature E expansion card act like data communication equipment (DCE) to any
device that connects to it, while the ports on the IBM 4693 Point of Sale Terminal
Models 2x2 act like data terminal equipment (DTE). For example, a serial printer
attaches directly to IBM 4693 Point of Sale Terminal Models 2x2, but requires a null
modem cable to attach to a Feature E card.

Note: When you use a null modem cable or connector to attach equipment, be
sure that all serial communications lines are passed through correctly. Some
null modem connectors tie the DSR and DTR lines and CTS and RTS lines
together. In this situation, the equipment can go off-line without the
application detecting it.

As a result of the different device configuration, the acronyms DSR, DTR,
CTS, and RTS will not be used. See the resource and the

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 RS-232C Programming

PosNrs232Status resource for the names and meanings of the constants
that will be used.
When the RS-232C port is disabled, it cannot receive data. By default, when the
device is acquired, the port is enabled and the appropriate control lines are
asserted to indicate that the port is ready to communicate. The value of the
resource is used to control the lines. Your application can change
the value of the PasNlineMadé resource on the w subroutine call.

You can also obtain the values of the RS-232C port parameters by issuing the
PQS_SYS GET VALUES PoslQCty) request. For detailed information about these

resources, see lPosRs232¢c Resource Set” on page 21-53,

Reading RS-232C Data

The w subroutine calls are used by an application to read data that has
been received from the RS-232C port. Your application receives a

PQSM_RS232 DATA_AVAIll event message on the application input queue when
data is available from the RS-232C port. See [Getting Input Messages” an page 5-9
for more information about the input queue.

After your application receives a PQSM_RS232 DATA_AVAIll event message on its
input queue, your application should then call the m subroutine using the
RS-232C device descriptor to read the data. This subroutine reads the data from
the RS-232C port. The data is placed in the application buffer that was specified on
the read subroutine call.

Specify the read buffer on the [PasRead(] subroutine by using the buf and nbyte
parameters. The buffer length value set in nbyte must be big enough to hold the
maximum amount of data from the RS-232C port. A value of 0 (zero) for the buffer
length indicates that no data is to be read. If the value of nbyte of Em
specifies a value too small for the record being read, the
POSERR_SYS_BUFFER_TOO_SMALL error is returned and data is not put into
the application buffer.

PasRead(] returns to your application immediately with either RS-232C data or an
error code. If no data is available, the read completes successfully with a length of
0 (zero) returned.

When the [PasRead(] subroutine returns successfully, the first 2 bytes of the
application buffer are used to indicate whether errors have occurred on receiving
data. The bit assignments for the errors are defined in the file
C:\POS\INCLUDE\POS\RS232C.H.

Error Definitions

Error Definition

Parity error POS_RS232_PARITY_ERROR (0x01)
Overrun error POS_RS232_OVERRUN_ERROR (0x02)
Framing error POS_RS232_FRAMING_ERROR (0x04)

If any of these errors occur, you must decide how you want your application to
regard any data in the buffer. If no error occurred on receiving data, the first 2 bytes
of the application buffer are set to 0 (zero). The second 2 bytes of the application
buffer are set to the number of bytes of data following this length field. The
maximum length of data to be read is 251 bytes, including the first 4 bytes of
overhead (4 bytes overhead plus 247 bytes maximum of user data).

Chapter 14. RS-232C Programming 14-3

RS-232C Programming created on October 2, 2001

See [PasRead()” on page 18-14 for the syntax of the [PasRead(] subroutine.

Writing RS-232C Data

The [BasWrite() subroutine call is used by an application to write data to be sent to
the RS-232C port.

Specify the write buffer on the |EasIA—aiteél subroutine by using the buf and nbyte
parameters. The buffer length value set in nbyte must not exceed the size of
sending buffer (247 bytes). If the value of nbyte of m specifies a value
greater than 247 bytes, the POSERR_SYS_INVALID_LENGTH error is returned. A
value of 0 (zero) for the buffer length indicates that no data is to be sent.

The RS-232C device handler allows data for onlé one m subroutine to be

outstanding at a time. Any subsequent subroutine call will fail with error
code POSERR_RS232_PREV_NOT_COMPLETE until the previous

subroutine call has completed. Your application is notified that the previous
BasWrite(] subroutine call has completed by a BOSM_RS232_XMIT_COMPI ETH
event message on the application input queue. If some condition prevents or
interrupts the data transmission, including closing the device, your application is
notified that the previous m subroutine call has failed by a

BQSM_RS232 XMIT_ARQRT event message on the point-of-sale input queue.
See [PosWrite()” on page 18-1d for the syntax of the [Paslrite) subroutine call.

Notes:

1. By default, the “ready to receive data” line from the RS-232C device must be
asserted for the IBM Point of Sale Subsystem to transmit data. Use the
resource to change this behavior.

2. If either of the control lines sent from the attached device are dropped while the
port is actively transmitting data, data might be lost or repeated.

Getting RS-232C Port Status

The current status of the RS-232C port can be determined by issuing the
PQOS_SYS_GFET_VAI UES PoslOCHl() request for the PasNrs232Statud resource.
You can get the RS-232C status regardless of whether your application has the
device acquired. The following status information can be obtained:

» Status of the two control lines output to the remote device

» Status of the two control lines input from the remote device

» Transmit buffer is empty

* Receiver is enabled

Related Information

Additional information about RS-232C programming is in these chapters:

Subroutines Used with RS-232C
Seewm:

14-4 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 RS-232C Programming

PaslOCH()
PasOpen(]
PasRead()
PosWrite()

RS-232C PoslIOCtl() Control Requests
See Chapter 19_PoslQCtl() Requestd:
PQS_RS232 _SEND _BREAK

PQS_SYS ACQUIRE DEVICH

PQS_SYS GET VALUES

PQS_SYSs

SET_VALUES

RS-232C Resources

RS-232C Event Messages
See Chapter 20_Fvent Messages:

RS-232C Error Codes
See Appendix D_Frror Caded:

Chapter 14. RS-232C Programming 14-5

RS-232C Programming created on October 2, 2001

14-6 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Chapter 15. Scale Programming

The scale device handler manages communication between your application and
the scale. An application can only access a scale device through the scale device
handler.

Note: The scale devices are not supported by the IBM Point of Sale Subsystem for
Windows on the Microsoft Windows 3.1 operating system.

Characteristics of the Scale Devices

The scale device handler supports the following devices:
* IBM 4687 Point of Sale Scanner Model 2

* IBM 4696 Point of Sale Scanner Scale Model 1

* IBM 4698 Point of Sale Scanner Model 2

* IBM USB Scale Interface

The supported scales share some common characteristics:

» Each supported scale allows the application to request that the weight be
returned in either English (Avoirdupois) or Metric units. (A hardware adjustment
to the IBM 4687 Model 2 is necessary to switch from one unit of weight to the
other.)

* The supported scales have similar weighing specifications. For example, each
scale has a weight capacity of 30 pounds (15 kilograms).

IBM 4687 Point of Sale Sale Scanner Model 2

The IBM 4687 Point of Sale Scanner Scale Model 2 is a flat-top scanner combined
with a rapid settling scale that attaches to IBM point-of-sale terminals. The IBM
4687 Model 2 scale allows the user to weigh items on a flat surface without lifting
the items from the counter top.

Note: The IBM 4687 Point of Sale Scanner Model 2 is not supported on the IBM
Point of Sale Subsystem for Linux

Operator controls include a zero light button which illuminates when the scale has
no items on its top surface and the IBM 4687 is stable. This button can also be
used to zero the scale. A remote display unit is included with the IBM 4687 Point of
Sale Scanner Model 2.

See Chapter 16 Scanner Programming for information about communications

between an application and the IBM 4687 scanner.

IBM 4696 Point of Sale Scanner Scale Model 1

The IBM 4696 Scanner Scale Model 1 is a high-performance horizontal scanner
with an integrated retail scale. Operator scale controls are top-mounted and include
a scale zero switch and a scale zero indicator. Many of the scale features can be
configured by the user. The IBM 4696 also supports an optional remote display unit
for the scale.

Note: The IBM 4696 Point of Sale Scanner Model 1 is not supported on the IBM
Point of Sale Subsystem for Linux

© Copyright IBM Corp. 1993, 2001 15-1

Scale Programming created on October 2, 2001

See Chapter 16. Scanner Programming for information about communications

between an application and the IBM 4696 scanner.

IBM 4698 Point of Sale Scanner Model 2

The IBM 4698 Scanner Model 2 combines the IBM 4698 Scanner Model 1 with a
fast-settling, high-reliability scale. Operator scale controls include a scale zero
switch and a scale zero indicator. Many of the scale features can be configured by
the user. The IBM 4698 also supports an optional remote display unit for the scale.

See Chapter 16_Scanner Programming for information about communications

between an application and the IBM 4698 scanner.

IBM USB Scale Interface

Scale devices that conform to the IBM USB Scale Interface specification are similar
in feature to the scale in the IBM 4698 Scanner Model 2. Properly written IBM Point
of Sale Subsystem applications which were developed for any of the SIO-attached
scales supported by this device handler, should run correctly (unmodified) with USB
scales that conform to the IBM USB Scale Interface specification.

Note: The IBM USB Scale Interface is not supported on the IBM Point of Sale
Subsystem for Linux

Functions Your Application Performs

Reading Scale

Your application can perform the following functions with a scale:
* Read scale data

» Configure the scale

» Zero the scale

» Clear the scale display

Before your application program can access the scale, it must open the scale and
acquire exclusive use of the scale.

Data

The [PasBRead(] subroutine call is used by an application to request data from the
scale. The PosRead() request returns to your application immediately with scale

data or with an error code. See ['PasRead()” on page 18-16 for the syntax of the

read subroutine call.

Scale data is placed in the application’s buffer that is specified on the PasRead(]
subroutine call. The format of the buffer returned by the scale device handler is
specified in the structure PosScaleData (see the header file
C:\POS\INCLUDE\POS\SCALE.H), and is shown in

WiType Flags WitVal

Figure 15-1. Scale Data Buffer Format

The following sections contain descriptions of these fields:

15-2 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Scale Programming

WiType (unsigned short)
A value indicating which unit of weight the data represents, English or
metric. Possible values are PoOSENGLISH (0x00) or PosMETRIC (0x01).

Flags (unsigned short)
Flags are used to indicate the status of the scale data. The flag values
below are bitwise ORed together to form the Flags value. A weight value
(WtVal) is not returned if any of these flags are set. The following flag
values can be returned by all supported scales:

POS_SCALE_IN_MOTION (0x0001)
This flag is set when there is no weight data being returned to the
scale data buffer. It will be set whenever any of the other flags are
set. When this flag is the only flag set, it can mean that the scale
has detected scale motion. Scale motion is a normal occurrence in
scale operation. However, if scale motion is continually detected, it
could mean that the scale requires calibration.

POS_SCALE_HW_ERROR (0x0040)
This flag is set when the scale detects a hardware error.

The following flag values can be returned by the IBM 4696 Point of Sale
Scanner Scale Model 1, the IBM 4698 Point of Sale Scanner Model 2, and
the IBM USB Scale Interface.

POS_SCALE_UNDER_ZERO (0x0002)
This flag is set when the scale registers a weight less than zero.

POS_SCALE_OVER_CAPACITY (0x0004)
This flag is set when an item weighing more than 30 pounds (15
kilograms) is placed on the scale.

POS_SCALE_REQUIRES_ZEROING (0x0008)
This flag is set when the PosNzeroRetState is set to PosENABLE
and one of the following occurs:

¢ An item has been left on the scale for more than four minutes.
The item must be removed to allow the scale to return to zero,
before weight requests will be answered.

* A negative weight value is registered by the scale prior to the
item being placed on the scale. The scale must be zero-adjusted
(reset to zero) before weight requests will be answered.

In either case, the scale display shows -0- after [PasRead(] is
attempted.

POS_SCALE_NOT_READY (0x0010)

This flag is set when the scale device is not yet ready to receive

weight requests. An example of when this flag might be set is when

a m request is attempted while the scale display shows a
moving dash () character. When your scale display shows the
moving dash character, the scale has attempted to reset while an
item was on the scale. The scale will not return a weight value
while the moving dash character is displayed. Removing the item
from the scale allows the scale to complete its reset.

POS_SCALE_DUPLICATE_WEIGHT (0x0020)
This flag is set when the scale is operating in PosUK mode and has
received a weight request when the non-zero weight on the scale

Chapter 15. Scale Programming ~ 15-3

Scale Programming created on October 2, 2001

has not changed more than 40 scale increments or the scale has
not returned to a weight of zero prior to the weight request.

The following flag value can only be returned by the IBM USB Scale
Interface:

POS_SCALE_FIVE_DIGIT_WEIGHT (0x0080)
This flag is set when the returned weight contains five digits. Four
weight digits are returned when this flag is not set.
WtVal (Tong)
The weight read by the scale. Weights can be given in hundredths of a
pound, thousandths of a pound, or in thousandths of a kilogram (grams).
For example, a weight of 0.5 pounds can be returned as 50 hundredths of a

pound or 500 thousandths of a pound. A weight of 0.5 kilograms is returned
as 500 thousandths of a kilogram.

Configuring the Scale
A scale can be configured using two methods:

1. Change the resource file entries for the scale. See [The Resource File” or
@h for information about changing the resource file.

2. Pass overriding arguments on the m function call. See W

for the syntax of this subroutine call.

[PasDevice Resource Set” on page 21-7 and [PasScale Resaurce Set” onl
m list the resources that are configurable for scale devices. EScale Defaull
Malues” on page 15-4 lists the default configuration for each supported scale.

Zeroing the Scale

An application can zero the scale by issuing the PQS_SCAILEF_ZFRQO_SCAI H
@&E‘L‘ﬂd request. This request is not valid for the IBM 4687 Point of Sale Scanner

Model 2.

See [POS_SCAILF_ZFRQO_SCAI F” on page 19-39 for more information about
zeroing the scale.

Clearing the Scale Display

An application can clear the remote scale display by issuing the

PQOS_SCAIF_CI FAR_SCREEN IPoslOCHI(] request. This request is not valid for the
IBM 4687 Point of Sale Scanner Model 2.

See lPOS_SCALE_CLEAR_SCREEN” on page 19-38 for more information about
clearing the remote scale display.

Scale Default Values

This section lists the default values for all resources used by each of the supported
scales. The default value for a particular resource is used when a value for that
resource is not specified in one of the following ways:

« By the application in the argument list on the scale Im call

* In the resource file for the application

If a value for the resource is specified in the argument list and in the resource file,
the value in the argument list is used.

15-4 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Scale Programming

This section can be used as a cross-reference to determine which of the resources
are configurable for each scale. Any resources not listed for a particular scale are
not used by that scale.

See [PosScale Resource Set” on page 21-58 for information about the resources

supported by the scales and the valid values for each resource.

IBM 4687 Point of Sale Scanner Model 2

The default scale resource values for the IBM 4687 Point of Sale Scanner Model 2
are:

Resource Default Value
i PosENGLISH

IBM 4696 Point of Sale Scanner Scale Model 1 and IBM 4698 Point of
Sale Scanner Model 2

The default scale resource values for the IBM 4696 Point of Sale Scanner Scale
Model 1 and the IBM 4698 Point of Sale Scanner Model 2 are:

Resource Default Value
PosUSCANADA
PosNdisplayRequired PosENABLE
PasNvibrationFilted PosLOW
PosNweightMaodd PosENGLISH
PasNzerolndStatd PosENABLE
PasNzeroRetStatd PosDISABLE

IBM USB Scale Interface

The default scale resource values for the IBM USB Scale Interface are:

Resource Default Value
PosUSCANADA
PasNdisplayRequired PosENABLE
PasNnumWeightDigitd PosFOUR_WEIGHT_DIGITS
PasNvibrationFilted PosLOW
PasNweightModd PosENGLISH
PasNzerolndStatel PosENABLE
PasNzeroRetStatd PosDISABLE

Related Information

Additional information about scale programming is in these chapters:

Subroutines Used with Scale
See Chapte 8 Appli

Chapter 15. Scale Programming ~ 15-5

Scale Programming created on October 2, 2001

Scale PoslIOCtl() Control Requests
See Chapter 19. PoslOCtl() Requestd:
PQS_SCALE_CLEAR_SCRFEN

PQS_SYS ACQUIRE DEVICH

POS _Svys GET VALUES
PQS_SYS RELEASE _DEVICH

Scale Resources

Scale Error Codes
See lAppendix D_FError Coded:

15-6 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Chapter 16. Scanner Programming

The scanner device handler manages communication between your application and
a scanner. An application can only access a scanner device through the scanner
device handler.

Characteristics of the Scanners

The scanner device handler supports the following devices:

* IBM Hand-Held Bar Code Reader Model 1 (HHBCR-1)

* |BM Hand-Held Bar Code Reader Model 2 (HHBCR-2)

* |IBM 1520 Hand-Held Scanner Model A02

* |IBM 4685 Hand-Held Bar Code Reader Model 001 (4685-1)

* IBM 4685 Hand-Held Bar Code Reader Model KO1 (4685-K01)

* IBM 4686 Retail Point of Sale Scanner Models 1 and 2 (4686-1 and 4686-2)
» IBM 4686 Retail Point of Sale Scanner Models 3 and 4 (4686-3 and 4686-4)
* IBM 4687 Point of Sale Scanner Model 1 (4687-1)

* IBM 4687 Point of Sale Scanner Model 2 (4687-2)

* IBM 4696 Point of Sale Scanner Scale Model 1 (4696-1)

* |IBM 4697 Point of Sale Scanner Model 1 (4697-1)

* |IBM 4698 Point of Sale Scanner Model 1 (4698-1)

* IBM 4698 Point of Sale Scanner Model 2 (4698-2)

* IBM USB Scanner Interface

The supported scanners share some common characteristics:
* The state of all scanners when power is turned on is locked (disabled).

» Any devices attached to the scanner have unique device names and are
controlled by a device driver specific to that device. Requests sent to those
devices’ drivers do not affect the scanner. For example, the IBM 4687 Point of
Sale Scanner Model 2 and the IBM 4696 Point of Sale Scanner Scale Model 1
both include a scale. A scale device driver is provided to handle communications
between the scale and an application.

* The only data validation (such as CRC checking) that is done is performed by
the scanner hardware. Bar codes such as UPC and EAN have check characters
built in. Scanners read and check this code before returning the data.

» All of the supported scanners allow the application to unlock and lock (enable
and disable) the device and to enable and disable the beeper.

Hand-Held Bar Code Readers

The Feature Code 4500 Hand-Held Bar Code Reader (HHBCR-1) reads bar codes
and can be attached to IBM point-of-sale terminals. Feature Code 4501 is an
improved version of the HHBCR-1, and is referred to as the Hand-Held Bar Code
Reader Model 2 (HHBCR-2).

Note: The Hand—Held Bar Code Reader Model 1 is not supported on the IBM Point
of Sale Subsystem for Linux.

The IBM 4685 Hand-Held Bar Code Reader Model 001 and Model KO1 are similar
to the HHBCR-2. The HHBCR-2 is backward compatible with the HHBCR-1. The
major difference between the two models is that the HHBCR-2 reads a greater
variety of bar code types. The IBM 4685 Hand-Held Bar Code Readers are
supported as a HHBCR-2.

© Copyright IBM Corp. 1993, 2001 16-1

Scanner Programming created on October 2, 2001

See [PasNbarCodes1” on page 21-64 for a list of the bar code types read by
HHBCR-1 and HHBCR-2.

IBM 1520 Hand-Held Scanner Model A02

The IBM 1520 Hand-Held Scanner Model A02 is a hand-held laser scanner. The
IBM 1520-A02 Scanner can be configured to read any combination of the four bar
code types it supports. The bar codes to be recognized by the IBM 1520-A02 are
specified by the scanner resources PosNbarCodes1, PosNbarCodesd,

PasNbarCodes3, and PosNbarCodesd.
See PasNbarCades1” on page 21-63 for a list of the bar code types that can be

read by the IBM 1520-A02 Scanner.

IBM 4686 Retail Point of Sale Scanner

The IBM 4686 Retail Point of Sale Scanner is a compact bar code scanner that
attaches to most IBM point-of-sale terminals. The scanner provides fast, accurate
reading performance for retail applications. Many aspects of this scanner can be
configured. There are four different models of the IBM 4686 Retail Point of Sale
Scanner.

Note: The IBM 4686 Retail Point of Sale Scanner is not supported on the IBM
Point of Sale Subsystem for Linux.

See [PosNharCades1” on page 21-69 and EPasNbarCodes2” an page 21-64 for a

list of the bar code types read by the IBM 4686 Retail Point of Sale Scanners.

IBM 4687 Point of Sale Scanner

The IBM 4687 Point of Sale Scanner Model 1 is a flat-top scanner that attaches to
IBM point-of-sale terminals. This scanner can be installed horizontally or vertically
with equal performance.

The IBM 4687 Point of Sale Scanner Model 2 is the IBM 4687 Point of Sale
Scanner Model 1 combined with a rapid settling scale. For information about
communications between an application and the IBM 4687 scale, see

Beale Programming” on page 15-1. This scanner must be installed in a horizontal

position in a counter top.

Note: The IBM 4687 Point of Sale Scanner is not supported on the IBM Point of
Sale Subsystem for Linux.

The IBM 4687 Point of Sale Scanner Models 1 and 2 are capable of reading the
following bar code types:

* UPC-A

+ UPC-E

+ UPC-D

+ EAN-8

+ EAN-13

+ JAN-8

* JAN-13

IBM 4696 Point of Sale Scanner Scale

The IBM 4696 Point of Sale Scanner Scale Model 1 is a high-performance
horizontal scanner with an integrated retail scale. It is a compact device with a
centered window that allows installation options such as seated scanning or

16-2 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Scanner Programming

installation of a cash drawer under the scanner. Operator scanner controls include a
speaker volume switch and a scan/mode indicator. See ['PasNbarCodesi” on

for a list of the bar code types read by the IBM 4696 Point of Sale
Scanner Scale Model 1.

Note: The IBM 4696 Point of Sale Scanner Scale is not supported on the IBM
Point of Sale Subsystem for Linux.

e Chapter 15_Scale Programming for information about communications between

an application and the IBM 4696 scale.

IBM 4697 Point of Sale Scanner

The IBM 4697 Point of Sale Scanner Model 1 is a high-performance bar code
scanner. It is a compact device with a centered window that allows installation
options such as seated scanning or installation of a cash drawer under the scanner.
The IBM 4697 Point of Sale Scanner is installed in a horizontal position. Operator
controls include a speaker volume switch and a scan/mode indicator.

See [PasNbarCades1” on page 21-63 and EPasNbarCodes2” on page 21-64 for a

list of the bar code types read by the IBM 4697 Point of Sale Scanner Model 1.

Note: The IBM 4697 Point of Sale Scanner is not supported on the IBM Point of
Sale Subsystem for Linux.

IBM 4698 Point of Sale Scanner

Both models of the IBM 4698 Point of Sale Scanner include a 360-degree,
high-performance scanner that is designed as an ergonomic solution for scanning.
This 360-degree scanner can read the bottom and all four sides of a product
simultaneously so minimal product orientation by the operator is required.

See LEosNha.LC.od&sJ_on_pa.ge_Z_ﬁZ [PasNbarCades?” on page 21-64,
, and [PasNbarCodes4” an page 21-64 for a list of

the bar code types read by the IBM 4698 Point of Sale Scanner models.

The IBM 4698 Point of Sale Scanner Model 1 is a scanner only. The IBM 4698
Point of Sale Scanner Model 2 is the Model 1 scanner combined with a scale. For
information about communications between an application and the IBM 4698 scale,

”

see L. i .

IBM USB Scanner Interface

Scanner devices that conform to the IBM USB Scanner Interface specification are
most similar in feature to the IBM 4698 Scanner models although the interface
specification actually combines features from all of the scanners described here and
adds support for some of the newer bar code types. Properly written IBM Point of
Sale Subsystem applications that were developed for any of the SIO-attached
scanners supported by this device handler, should run correctly (unmodified) with
USB scanners that conform to the IBM USB Scanner Interface specification.

Note: The IBM USB Scanner Interface is not supported on the IBM Point of Sale
Subsystem for Linux.

See [PasNbarCodes1” on page 21-64, lPosNbarCodes?2” on page 21-64),
[PasNbarCades3” on page 21-65, and tPasNharCadesd” an page 21-66 for a list of

the bar code types supported in the IBM USB Scanner Interface.

Chapter 16. Scanner Programming 16-3

Scanner Programming created on October 2, 2001

Functions Your Application Performs

Your application can perform the following functions with a scanner:
* Unlock and lock the scanner

* Read scanner data

» Discard scanner data

» Configure the scanner

» Write data to the scanner (USB Scanners only)

Before your application program can access the scanner, it must open the scanner
and acquuire exclusive use of the scanner.

Unlocking and Locking the Scanner

The scanner can be in either the locked state or the unlocked state. In the locked
state, bar codes should not be returned by the scanner. When an application
acquires a scannet, it is in the locked state.

The scanner changes from the unlocked state to the locked state when one of the
following occurs:
+ The application issues the PQS_SYS_| OCK_DEVICH |PaslOCHl() request

+ The application issues the PQS_SYS_RFI FASE_DFEVICH |EasLQC.tl0 request

» The application calls the m subroutine while it has the scanner acquired

See [PaslQCHI()” on page 18-8 and EPasClose()” on page 18-3 for the syntax of

these subroutine calls.

An aEEIication must issue the POS_SYS_UNI OCK_DFEVICH IChapter 19 PoslOCH()

request to allow the scanner to recognize and return bar code data. The
scanner should be left in the locked state any time that scanner data is not
expected to prevent scanner input from getting too far ahead of the application.

Reading Scanner Data

16-4

Data is available after it is read by the scanner, but it is not passed to an
application until the [PasRead(] subroutine is called. The application receives a
POSM_SCAN_DATA_AVAILl event message on the application’s input queue when

data is available from the scanner. See I'Getting Input Messages” on page 5-3 for

more information about the input queue.

The [PasRead(] subroutine call is used by an application to get data that has been
read by the scanner. The [PasRead(] subroutine returns to your application
immediately with either scanner data or an error code. If no data is available and no
error occurs, the read completes successfully with a length of zero returned. See

z for the syntax of the read subroutine call.

Data is read on a first-in-first-out (FIFO) basis. The first data to be read by a
scanner is the first data returned to an application. It is necessary for your
appllcatlon to acquire the scanner dewce before calllng the @rsubroutine.
See L “ for more information
about acquiring the scanner device.

Scanner data is placed in the application’s buffer as specified on the m
subroutine call. The format of the buffer returned to the scanner device handler is

shown in Eigure 16-1 on page 16-3. The header portion of the returned data is

defined in the structure PosScannerDataHdr (see the header file
C:\POS\INCLUDE\POS\SCANNER.H).

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Scanner Programming

The POSERR_SYS_LOCKED_NO_DATA_READ error code is returned when the
scanner is in the locked state and no data is available. Any data available prior to
the scanner being locked is returned by a read request before this error code is
returned.

The scanner data buffer consists of the following four fields, which are repeated for

/A

Header Data Header Data

LblType Flags LblLen

Figure 16-1. Scanner Data Buffer Format

each bar code in the buffer:
* LbIType (unsigned Tong)
* Flags (unsigned short)

e LblLen (unsigned short)
* Data (unsigned char[])

The following sections contain descriptions of these fields.

LbIType (unsigned long)
Indicates which type of bar code the following data represents. See the
following table for possible values of this field.

Table 16-1. Label Types Returned by the Scanner Device Handler

Constant Value Bar Code Type

PosLABEL_CODABAR (0x00080000) Codabar

PosLABEL_CODE_39 (0x00040000) Code 39

PosLABEL_CODE_93 (0x00020000) Code 93

PosLABEL_CODE_128 (0x00010000) Code 128

PosLABEL_EAN_8 (0x00002000) EAN-8

PosLABEL_EAN_8 PLUS_2 (0x00002002) EAN-8 plus 2-digit supplemental

PosLABEL_EAN_8_ PLUS_5 (0x00002001) EAN-8 plus 5-digit supplemental

PosLABEL_EAN_8_PLUS_CODE128 (0x00002010) EAN-8 plus Code 128
supplemental

PosLABEL_EAN_13 (0x00001000) EAN-13

PosLABEL_EAN_13_PLUS_2 (0x00001002) EAN-13 plus 2-digit supplemental

PosLABEL_EAN_13_PLUS_5 (0x00001001) EAN-13 plus 5-digit supplemental

PosLABEL_EAN_13_PLUS_CODE128 (0x00001010) EAN-13 plus Code 128
supplemental

PosLABEL_INT_2_OF_5 (0x00000008) Interleaved 2 of 5

Chapter 16. Scanner Programming 16-5

Scanner Programming

16-6

created on October 2, 2001

Table 16-1. Label Types Returned by the Scanner Device Handler (continued)

Constant Value

Bar Code Type

PosLABEL_STD_2_OF_5 (0x00000004)

Standard 2 of 5

PosLABEL_UNKNOWN (0x00000000)

Unknown. All data received from
the scanner is returned to the
application.

PosLABEL_UCC_EAN_128 (0x00100000)

UCC/EAN-128

PosLABEL_UPC_A (0x00008000)

UPC Version A

PosLABEL_UPC_A_PLUS_2 (0x00008002)

UPC Version A plus 2-digit
supplemental

PosLABEL_UPC_A_PLUS_5 (0x00008001)

UPC Version A plus 5-digit
supplemental

PosLABEL_UPC_A_PLUS_CODE128 (0x00008010)

UPC Version A plus Code 128
supplemental

PosLABEL_UPC_D1 (0x00000800

UPC Version D-1

PosLABEL_UPC_D2 (0x00000400

UPC Version D-2

UPC Version D-3

PosLABEL_UPC_D4 (0x00000100

UPC Version D-4

)
)
PosLABEL_UPC_D3 (0x00000200)
)
)

PosLABEL_UPC_D5 (0x00000080

UPC Version D-5

PosLABEL_UPC_E (0x00004000)

UPC Version E

PosLABEL_UPC_E_PLUS_2 (0x00004002)

UPC Version E plus 2-digit
supplemental

PosLABEL_UPC_E_PLUS_5 (0x00004001)

UPC Version E plus 5-digit
supplemental

PosLABEL_UPC_E_PLUS_CODE128 (0x00004010)

UPC Version E plus Code 128
supplemental

Note: The JAN-8 and JAN-13 bar codes are subsets of the EAN-8 and EAN-13 bar

codes.

Flags (unsigned short)

Indicates the status of the data. The flag values below are bitwise ORed

together to form the Flags value.
POS_SCAN_LAST_BLOCK (0x0001)

This flag is set when this is the last block of data for this bar code. It is
always set when multiple block read mode is disabled.

POS_SCAN_UNEXPECTED_DATA (0x0002)

This flag is set when this data was received from the scanner while the
scanner was locked or was not acquired by this application. The data
could be out of synchronization with what the application is expecting.

This flag is also set for any data buffered for this application before the
current POS_SYS_ACQUIRE_DEVICE request was processed. For this
flag to be clear (0), the scanner must be both acquired and unlocked by
the application when the data is received.

POS_SCAN_PARTIAL_LABEL (0x0004)

This flag is set when a hardware or other error with the scanner caused
the scanner to be reset before the entire label was received by the IBM
Point of Sale Subsystem. Whatever label data was received from the

scanner is returned to the application. This flag is also set when there is

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Scanner Programming

insufficient memory available to store the entire label. In this case, as
much of the label that was stored is returned. This flag is set in each
block of a multi-block label.

POS_SCAN_LABEL_READ_ERROR (0x0008)
This flag is set when the HHBCR-1 or HHBCR-2 encounters a problem
with the label it is attempting to read. The label type might be one that
the scanner is not currently configured to recognize or, if modulo
checking is enabled, the label might contain an incorrect check digit or
no check digit. No label data is returned when this flag is set.

POS_SCAN_DIRECT_IO_RESPONSE (0x0010)
This flag is set when the scanner data is a response to a previous
m command. When this flag is set, the LbIType will be zero
and the LblLen field will indicate whether there is additional data.

POS_SCAN_DIRECT_IO_ERROR (0x0020)
This flag is set when the scanner data is an error response to a
previous m command. When this flag is set, the LbIiType will
be zero and the LblLen field will indicate whether there is additional
data.

POS_SCAN_UNEXPECTED_LENGTH (0x0040)
This flag is set when the length of the received scanner data is longer
or shorter than the expected length for the label type. This flag will be
set for UPC-A and UPC-E labels that do not contain check digits. Label
data will be returned to the application when this flag is set.

LbilLen (unsigned short)

Indicates the length of the Data field in bytes.

Data (unsigned char[])

Contains data returned by the scanner. This data can be barcode data or the
scanner’s response to a previous m command.

When barcode data is received from the scanner, it has header and trailer
information that indicates the type of barcode that was read. If the scanner
device handler recognizes the barcode type, it removes the type information
before sending the barcode data to the application; it also converts any binary
digits to ASCII before sending the data to the application - - for example, binary
on (0x01) is converted to ASCII one (0x31). If the barcode type is unknown, all
data received from the scanner is returned to the application unchanged.

When the data received from the scanner is in response to a m
command, the data is sent to the application unchanged. The format of the
returned data is dependent on the scanner command that was sent. The
scanner device manufacturer is responsible for documenting these commands.

If multiple labels have been buffered for this application, only the first label is
returned by w If multiple block read mode is enabled, there is a
header/data pair for each bar code in the label.

The size of the buffer passed on the @ call must be large enough to hold
the maximum amount of data for the bar code plus the 8-byte header. If multiple
block read mode is enabled, the buffer must be big enough to hold the maximum
amount of data for each bar code in the label plus the 8-byte header for each bar
code. If the buffer is too small for the data being returned, the
POSERR_SYS_BUFFER_TOO_SMALL error code is returned and data is not put
into the application’s buffer.

Chapter 16. Scanner Programming 16-7

Scanner Programming created on October 2, 2001

An application should be able to process bar code types that it is not expecting.
This situation can occur if the application requires the scanner to read a specific set
of bar code types, but the scanner can only be configured such that more than just
those specific bar code types are recognized.

Label data received from the scanner device is associated with a particular scanner
device connection. Label data is stored until the application reads it or closes the
scanner device connection through which the label data was received. An
application only has access to the label data received from the scanner through its
scanner device connections and only while it has the scanner device acquired. An
application does not have access to the label data received by any other
application.

An application should process all of the label data that has been queued for a
scanner device connection before closing that device connection. If m is
issued for the scanner device connection while labels are still queued, the device
connection is successfully closed, the labels are discarded, and the error code
POSERR_SYS_DATA_DISCARDED is returned to the application. The application
can issue the PQS_SYS_GET VAL UES PosIOCH() request for the

resource to determine how many buffered labels have not yet
been processed for the scanner device connection.

Discarding Scanner Data

An application can discard any buffered labels that it has not read by issuing the
PQOS_SCAN_DISCARD_DATA [PaslOCHl() request. See

LEQS_SQAN_D.ISQABD_D.AIA_on_paguﬂAd for more information about

discarding scanner data.

Configuring the Scanner

A scanner can be configured using three methods:

1. Change the resource file entries for the scanner. See 'The Resource File” od
E’fﬂ for information about changing the resource file.

2. Pass overriding arguments on the [PasOpen(} function call. See fPasOpen()” od

for the syntax of this subroutine call.

3. Issue the POS_SYS_SFT_VAI UES PasiOCH() request. See [PasIOCH()” od

for the syntax of this subroutine call.

[PasDevice Resource Set” on page 21-7 and [PasScanner Resource Set” on
hage 21-6d list the resources that are configurable for scanner devices. EScanned

Default Values” on page 16-9 lists the default configuration for each supported

scanner.

Writing Data to the Scanner

16-8

e m function is only supported for USB-attached scanners. The use of

is intended to allow applications to configure new scanners for features
not considered in the IBM USB Scanner Interface specification. When new scanning
features or bar code types are introduced, they can be integrated into existing
applications without a change in this device handler. No checking or interpretation
of the data is done by the device handler. It is the responsibility of the scanner
device manufacturer to document the data that can be sent using the
function.

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Scanner Programming

Processing Unexpected Scanner Data

When the scanner device has been locked by an application, it should not be able
to read labels. However, some scanners will read labels even when they have been
locked. For example, the IBM 4686 Retail Point of Sale Scanners (all models) have
a button which controls the scanner laser and motor. When this button is pushed,
the motor and laser will be reactivated and the scanner will immediately be able to
read labels regardless of the previous state (locked or unlocked) of the scanner
device. An application should be prepared to process this unexpected label data
received from the scanner.

You can choose to have the application ignore any label data received while the
scanner is acquired and locked by setting the PosNqueueAlll abeld resource to
PosDISABLE. When the resource is set to PosDISABLE, the scanner device driver
discards any label data received while the scanner device connection is locked. You
can choose to have the application store the label data received while the scanner
device connection is acquired and locked by setting the

resource to PosENABLE. When the resource is set to PosENABLE, the scanner
device driver stores all label data received from the scanner, setting the
POS_SCAN_UNEXPECTED_DATA flag for each label that is received while the
scanner device is acquired and locked.

See [PasNqueueAlll abels” an page 21-80 for more information about configuring

the device handler to ignore label data while the scanner device connection is
acquired and locked. When the scanner device is locked but is not currently
acquired by any application, the PosNqueueAlll abeld resource has no effect. In
this case, all label data is stored with the POS_SCAN_UNEXPECTED_DATA flag
set.

If the PasNlabelsQueued resource has a value greater than 0 (zero) after your
application has acquired the scanner device but before it has unlocked the device,
all of the queued labels have the POS_SCAN_UNEXPECTED_DATA flag set. By
checking the [PasNlabelsQueued resource just after acquiring the scanner device
but before unlocking it, your application can determine whether it has received

unexpected label data, and how many unexpected labels are in the queue. You can
use the POS_SYS_GFT_VAI UES [PosIOCHI(] request to get the value of
PasNlabelsQueued

Unexpected label data might require processing by the application. Discarding these
labels might mean that items are being given away. For example, suppose the
scanner device is acquired but locked, the PasNqueueAllL abels resource is set to
PosDISABLE, and this particular scanner device is capable of reading label data
when it has been locked. The operator scans an item, the locked scanner emits a
beep indicating that a good read has occurred, and the operator, believing that the
label has been processed, scans the next item. Because the scanner is locked and
labels are not being stored, the label data never reaches the application.

Scanner Default Values

This section lists the default values for all resources used by each of the supported
scanners. The default value for a particular resource is used when a value for that
resource is not specified in one of the following ways:

» By the application in the argument list on the scale w call

* In the resource file for the application

Chapter 16. Scanner Programming 16-9

Scanner Programming created on October 2, 2001

If a value for the resource is specified in the argument list and in the resource file,
the value in the argument list is used. This section can be used as a
cross-reference to determine which of the resources are configurable for each
scanner. Any resources not listed for a particular scanner are not used by that
scanner.

See PosScanner Resource Set” on page 21-60 for discussion of the resources

supported by scanners and the valid values for each resource.

Hand-Held Bar Code Reader (All Models)

The default resource values for the HHBCR models 1 and 2 and the 4685 Hand
Held Bar Code Readers are:

Resource Default Value
PosNbarCodesdl PosLGROUP_UPC_EAN_D3
PosNbeepStatd PosENABLE
BPosNblockReadModd 1

PosNblock1Typd PosLABEL_NO_CHECK
PosNblock2Typd PosLABEL_NO_CHECK
PasNblock3Typd PosLABEL_NO_CHECK
PasNcheckModuld PosDISABLE
PosNdTouchMaodd PosDISABLE

BPosNqueueAlll abeld PosENABLE

IBM 1520 Hand-Held Scanner Model A02

The default resource values for the IBM 1520-A02 Scanner are:

Resource Default Value
PasNbarCadesi| PosLGROUP_UPC_EAN
PasNbharCodes2 PosLGROUP_UPC_D1_TO_D5
PasNbarCades3 PosLGROUP_NONE
PasNbarCadesd PosLGROUP_NONE
PasNbeepStatd PosENABLE

PosNITEl engthi 0

PasNqueueAlll abeld PosENABLE

IBM 4686 Retail Point of Sale Scanner (All Models)

The default resource values for all IBM 4686 Retail Point of Sale Scanner models

are:

Resource Default Value

PosNbarCodes1 PosLGROUP_UPC_EAN_D1_TO_D5

PosNbarCodes2 PosLGROUP_NONE
PosHIGH

%ﬁﬂ PosSHORT
PosENABLE

BosNbeepVolumd PosHIGH

BosNblinkl ength PosLONG

BosNdReadTimeoud PosSHORT

BosNITEL ength 0

PosNIiTEL engthd 0 (Models 3 & 4 only)

BPosNlaserSwitchStatd PosDISABLE

PasNlaserTimeout 15

PosNmatarTimeaud 15

PosNqueueAlll abeld PosENABLE

PasNscansPerRead 2

16-10 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Scanner Programming

IBM 4687 Point of Sale Scanner (All Models)

The default resource values for the IBM 4687 Point of Sale Scanner Models 1 and

2 are:

Resource Default Value
PosENABLE

BosNgueueAlll abeld PosENABLE

IBM 4696 Point of Sale Scanner Scale Model 1

The default scanner resource values for the IBM 4696 Point of Sale Scanner Scale

Model 1 are:
Resource Default Value
PosNbarCodesdl PosLGROUP_UPC_EAN_D1_TO_D5
% PosHIGH
PosENABLE
PosNbeepVolumd PosHIGH
PosNblinkl ength PosLONG
PosNb\VolSwitchStatd PosENABLE
PosNdecodeAlgorithm PosENABLE
PasNdReadTimeoud PosSHORT

PosNeAN13ScansPerRead 2
PasNeAN8ScansPerRead 2
PosNstoreScansPerRead 2

PasNlaserTimeaud 15
PasNmotarTimeaud 15
PasNqueueAlll abeld PosENABLE

PasNuPCAScansPerRead 2
PasNuPCDScansPerBead 2

PasNuPCF ScansPerRead 2
PasNuPCFxpansion NO_EXPANSION
BasNverifyPriceChi NO_VERIFY

IBM 4697 Point of Sale Scanner Model 1

The default resource values for the IBM 4697 Point of Sale Scanner Model 1 are:

Resource Default Value

PasNbarCaodesil PosLGROUP_UPC_EAN_D1_TO_D5
PasNbarCadesa PosLGROUP_NONE

PasNbeepFred PosHIGH

PasNbeepStatd PosENABLE

PasNbeepVolumd PosHIGH

BosNblinklLength PosLONG

BosNbVolSwitchStatd PosENABLE

BosNdecodeAlgorithm PosENABLE

BosNdReadTimeoul PosSHORT

BosNeAN13ScansPerRead 2
BosNeAN8ScansPerRead 2

BosNiTEL ength 0

BosNITEl engthd 0
PosNjANTwol abelDecodd PosDISABLE
PaosNlaserTimeoud 15
PosNmatarTimeaud 15
BPosNqueueAlll abeld PosENABLE
PosNscansPerRead 2

PosNstoreScansPerRead 2

Chapter 16. Scanner Programming 16-11

Scanner Programming created on October 2, 2001

PasNtwal abelFlagPairil 0x2122

PasNtwal abelFlagPaird 0x2128
PasNtwol abelFlagPair3d 0x2129

PasNtwol abelFlagPair4 0x2122
PosNuPCAScansPerRead 2

BosNuPCDScansPerRead 2
BosNuPCEScansPerRead 2
BosNuPCExpansiod NO_EXPANSION
PosNverifyPriceChi NO_VERIFY

IBM 4698 Point of Sale Scanner (All Models)

The default resource values for the IBM 4698 Point of Sale Scanner are:

Resource Default Value

PosNbarCodesdl PosLGROUP_UPC_EAN_D1_TO_D5
BPosNbarCodes? PosLGROUP_NONE
BPosNbarCodes3 PosLGROUP_NONE
PosNbarCodes4 PosLGROUP_NONE
PosNbeepStatd PosENABLE

PasNbeepVolumd PosHIGH

PasNblinkl ength PosLONG

PosNb\VolSwitchStatd PosENABLE

PosNcode128ScansPerRead 2
PasNcode39ScansPerRead 2
EQSN.d.eco.d.E.Alg.Q.l:i.thni PosENABLE
PasNdReadTimeaud PosSHORT
PasNeAN13ScansPerRead 2
PasNeAN8ScansPerRead 2

BosNITEL engthi 0

BosNITEL engthd 0
PasNiTEScansPerRead 2
PasNjANTwal abelDecadd PosDISABLE
PasNlaserTimeoud 15
PasNmotorTimeoud 15
PasNqueueAlll abeld PosENABLE

PasNstoreScansPerRead 2

PasNiwol abelFlagPairil 0x2122

PasNtwol abelFlagPaird 0x2128
PasNtwal abelFlagPaird 0x2129

PasNtwal abelFlagPair4 0x2122
PasNuPCAScansPerRead 2
PasNuPCDScansPerBead 2
PosNuUPCEScansPerRead 2
BosNuPCExpansiod NO_EXPANSION
PosNverifyPriceChi NO_VERIFY

IBM USB Scanner Interface

The default resource values for the IBM USB Scanner Interface are:

Resource Default Value
PosLGROUP_UPC_EAN_D1_TO_D5

BPosNbarCodes? PosLGROUP_NONE

PosNbarCodes3 PosLGROUP_NONE

PosNbarCodes4 PosLGROUP_NONE

PosNbarCadeProgramming ~ PosENABLE

PasNbeepStatd PosENABLE

16-12 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

PosNbeepVolumd PosHIGH
PasNblinkl ength PosLONG
PosNbVolSwitchStatd PosENABLE
PosNdReadTimeoud PosSHORT
PosNiTELengthl 0
BosNiTELength? 0
BosNiTELengthTypel PosDISCRETE
BosNiANTwol abelDecodd PosDISABLE
PosNlaserTimeoud 15
BosNmotorTimeoud 15
BosNgueueAlll abels PosENABLE

BosNstoreScansPerRead 2

BosNsupplementald NO_SUPPLEMENTALS

Scanner Programming

PosNiransmitCheckDigif UPCE_UPCA_CHECK_DIGIT

PosNtwal abelElagPairil 0x2122
BPosNtwol abelFlagPaird 0x2128
PosNtwol abelFlagPaird 0x2129
PosNtwol abelFlagPaird 0x2122
PosNuPCExpansiod NO_EXPANSION
PasNverifyPriceChid NO_VERIFY

Related Information

Additional information about scanner programming is in these chapters:

Subroutines Used with Scanner

Seewm:

PasOpen(]
PasRead()
PosWrite()

Scanner PoslOCtl() Control Requests

BPOS_SYS LOCK_DEVICH
PQS_SYS GET VALUES
PQS_SYS _RELEASE DEVICH

Scanner Event Messages
See Chapter 20_Event Messaged:
PQSM_SCAN_DATA_AVAILl

Chapter 16. Scanner Programming 16-13

Scanner Programming created on October 2, 2001

Scanner Resources
See Chapter 21, Resource Sets:
PaosNbarCodesT

16-14 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Scanner Programming

Chapter 16. Scanner Programming 16-15

Scanner Programming created on October 2, 2001

16-16 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Chapter 17. Touch Screen Programming

The touch screen device handler is software that manages communication between
your application and the touch screen. Your application can access the touch and
tone components of the device only through the device handler.

Note: The Touch device is not supported on the IBM Point of Sale Subsystem for
Linux.

Characteristics of the Touch Screen

The IBM Point of Sale Subsystem supports the following point-of-sale touch screen
terminals:

* IBM 4695 Point of Sale Distributed Touch Terminal Model 002

* IBM 4695 Point of Sale Distributed Touch Terminal Model 012

* IBM 4695 Point of Sale Distributed Touch Terminal Model 022

* IBM 4695 Point of Sale Distributed Touch Terminal Model 032

* IBM 4695 Point of Sale Integrated Touch Terminal Model 201

* IBM 4695 Point of Sale Integrated Touch Terminal Model 211

* IBM 4695 Point of Sale Integrated Touch Terminal Model 321

* IBM 4695 Point of Sale Integrated Touch Terminal Model 322

* IBM 4695 Point of Sale Integrated Touch Terminal Model 331

* IBM 4695 Point of Sale Integrated Touch Terminal Model 342

* IBM 4695 Point of Sale Integrated Touch Terminal Model N43

* |IBM SurePoint Monochrome Touch Screen

* IBM SurePoint Color Touch Screen

* IBM 4820 SurePoint Solution Color Touch Screen Model 46T, 46R

Note: The 4820 SurePoint Solution keypad comes online even if a physical
keypad is not attached. This behavior affects the enumeration of attached
POS keyboards depending on their USB port location. For example,
attaching a POS Keyboard downstream from the 4820 display enumerates
the keyboard as a secondary POS keyboard. Attaching a POS Keyboard
upstream from the 4820 display enumerates the keyboard as a primary
POS keyboard.

The touch screen device is made up of three components:
» Video Display

» Touch Input

+ Tone Output

Video Display
The video display component of the touch screen is supported by the operating
system video device driver. The IBM Point of Sale Subsystem touch screen device
handler provides application programs with the ability to control contrast, backlight,
and brightness by using the PasNtouchCantrasi, PosNtouchScreenSaverTime,
and PasNtouchBrightness resources.

Touch Input

The touch-sensitive input component is presented to your application as a grid of
horizontal and vertical units. Position information is reported as x,y coordinates
numbered 0 (zero) through PosNtouchMaxX for the horizontal units and 0 (zero)
through PasNtouchMaxV for the vertical units. The coordinates 0,0 represent the
upper-left corner of the touch screen.

© Copyright IBM Corp. 1993, 2001 171

Touch Screen Programming created on October 2, 2001

Tone Output

All information about a touch event is contained in the event message. The touch
device handler provides event messages for the following conditions:

» A touch becomes active (touch down)

» The active touch coordinates have changed

» A touch becomes inactive (lift off)

Touch Screen Microcode Updates

The internal microprocessor code for the touch screen device might be updated by
IBM. IBM delivers the microprocessor code update in a file named AIPxxx.TCH,
where xxx is the microprocessor engineering change (EC) level. For OS/2, this file
must be in a directory specified in the DPATH statement in the CONFIG.SYS file in
order to be found and applied by the IBM Point of Sale Subsystem for OS/2. For
the Microsoft Windows operating system, this file must be in the IBM Point of Sale
Subsystem for Windows BIN directory in order to be found and applied by the IBM
Point of Sale Subsystem for Windows.

The tone component of the touch screen device is similar in function and
application to the keyboard tone. The tone’s volume, frequency, and duration can be
controlled by the application program.

Touch Mouse Emulation

The IBM Point of Sale Subsystem provides a feature which allows the touch screen
to emulate a mouse. This feature sends mouse events to the operating system
whenever the touch screen is touched, moved, or released. The operating system
will then send to your application mouse events that correspond to the touch
events.

Note: The IBM Point of Sale Subsystem touch mouse emulation is designed to
work with the default value of the PasNtouchModd resource provided by the
IBM Point of Sale Subsystem. If you change the value of the
PasNtouchMadd resource from it’s default, it will have no effect unless
Mouse Emulation is turned off.

The IBM Point of Sale Subsystem has two different implementations of the touch
mouse emulation feature. One is for OS/2 and the other is for the Microsoft
Windows operating system.

Touch Mouse Emulation on 0S/2

For the IBM Point of Sale Subsystem for OS/2, touch mouse emulation is
accomplished through the AIPPOINT.EXE program and AIPPOINT.SYS driver.
Touch mouse emulation is an optional installation feature.

Touch Mouse Emulation on the Microsoft Windows Operating
System

For the IBM Point of Sale Subsystem for Windows, the touch mouse emulation is
integrated into the IBM Point of Sale Subsystem for Windows. When the IBM Point
of Sale Subsystem for Windows starts up, the touch mouse emulation will also start.
If you do not want Touch Mouse Emulation, you can turn it off by creating a file
called, TOUCH.OFF in the C:\POS directory.

Double-click Sensitivity Adjustment: In IBM Point of Sale Subsystem for
Windows Version 1.4.2, and later, IBM Point of Sale Subsystem no longer manages
double-click sensitivity. The adjustable double-click parameters are height, width,
and speed which can all be modified through the Windows operating systems. The
double-click speed is adjusted through the Control Panel Mouse applet; double-click

17-2 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Touch Screen Programming

height and width are adjusted through either the WIN.INI file or the registry. The
height and width parameters are string values called DoubTeClickHeight and
DoubleCTickWidth which specify the number of pixels within which a second touch
must occur to be considered a double-click. The default value for both
DoubleClickHeight and DoubleClickWidth is 4; values between 20 and 40 are
suggested for the IBM Touch devices. The following table describes where the
double-click parameters are located for the various Windows platforms.

Table 17-1. DoubleClickHeight and DoubleClickWidth Adjustment for Windows
Windows Version DoubleClickHeight and DoubleClickWidth Location

Windows 3.1x WINL.INI in [Windows]
Windows 95/98 Registry in \Control Panel\Desktop
Windows NT Registry in \My Computer\HKEY_CURRENT_USER\Control Panel\Mouse

Restriction of the Touch Screen Device Handler

The touch screen device handler does not support the m subroutine. In
addition, it does not support the m subroutine for the device descriptor that
you receive from the E%bead subroutine. The reason is that all touch input is
received from the presentation facility input queue (for example, from the
Presentation Manager event queue) or by issuing a @% subroutine for the
IBM Point of Sale Subsystem input queue.

Functions Your Application Performs

Your application can perform the following functions with the touch screen:
* Read touch event data

* Use the tone

» Control audible feedback

» Control the LCD backlight

» Control the LCD brightness

» Control the LCD contrast

» Determine which Touch Screen is Available

Reading Touch Event Data

Your application reads all touch screen input from the presentation facility input
queue or by issuing [PasRead(] for the IBM Point of Sale Subsystem input queue.
All of the information about a touch event is contained in the queue message. No
other PasRead(] call is required to get additional information. See

Messages” on page 5-2 for more information.

The touch screen device descriptor obtained from the Im subroutine should
not be used on the w subroutine. If it is, the
bﬂQFRR_QVQ_FI INCTION_NQT_Sl JIPPORTED error is set in errno.

Using the Tone

The internal touch screen speaker is sounded by issuing the

PQS_TQUCH_SQUND_TQNH [PaslQCH(] request. The frequency, duration, and

volume of the tone are determined by the values of the PosNtouchTaneDuratiod,
, and PasNtouchToneVolumd resources. Use any of the

following methods to specify values for these resources:

» Specify the value in the resource file.

+ Set the value using the PQS_SYS_SET VAl UES [PaslQCt(] request.

* Use the args and nargs parameters of the m subroutine call.

Chapter 17. Touch Screen Programming 17-3

Touch Screen Programming created on October 2, 2001

If your application sounds the tone with the PasNtouchToneDurationl resource set
to PosON, it must issue the POS_TOUCH_SII ENCE_TONH |PoslOCHI(] request to

silence the tone.

Controlling Audible Feedback

Audible touch feedback can be produced through the internal speaker of the touch

screen using:

+ PosNtouchEntryClicl resource (Click when a touch becomes active, also
referred to as touch-down).

+ PosNtouchExitClick resource (Click when a touch becomes inactive, also
referred to as lift-off).

In addition, the volume of the click can be set with the PosNtouchClickVolume
resource. Use any of the following methods to specify values for these resources:
» Specify the value in the resource file.

+ Set the value using the PQS_SYS_SET VAL UES [PaslQCH(] request.

» Use the args and nargs parameters of the m subroutine call.

Determining which Touch Screen is Available
Your application determines which touch display is attached to the point-of-sale

terminal by looking at the subtype field in the PQSM_SYS DEVICE_ONI INH event

message.

Table 17-2. Determining which Touch Screen is available

subtype Touch Display
PosTOUCH_SUBTYPE_4695_104_M 10.4-inch 4695 monochrome display
PosTOUCH_SUBTYPE_4695_95_C 9.5-inch 4695 color display
PosTOUCH_SUBTYPE_4695_104_C 10.4-inch 4695 color display
PosTOUCH_SUBTYPE_4695_121_C 12.1-inch 4695 color display
PosTOUCH_SUBTYPE_SUREPOINT_95_M 9.5-inch SurePoint monochrome display
PosTOUCH_SUBTYPE_SUREPOINT_95_C 9.5-inch SurePoint color display
PosTOUCH_SUBTYPE_SUREPOINT_104_C 10.4-inch SurePoint color display
PosTOUCH_SUBTYPE_4820 4820 Touch Display

Controlling the LCD Brightness

On models that support programatic control of brightness, your application can set

the brightness to 8 different levels (0-7) by using the PasNtouchBrightness

resource. Other models will ignore the setting of this resource.

e [PasNtouchBrightness” on page 21-90 for more information
Controlling the LCD Contrast

On models that support programatic control of contrast, your application can set the
contrast to 64 different levels (0-63) by using the PasNtouchContrasi resource.
Other models will ignore the setting of this resource.

e PosNtouchContrast” on page 21-91 for more information

17-4 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Touch Screen Programming

Controlling the Screen Saver Time

To protect the touch display screen, the IBM 4695 Point of Sale Terminals. will
automatically dim themselves after a predefined amount of time has elapsed without
any activity. Your application can control the amount of time of inactivity before the
screen is dimmed by setting the PosNtouchScreenSaverTimd resource. The
minimum value is 1 (one) second and the maximum is 65,535 seconds. However, it
is not recommended that the value be set below 60 seconds.

See PasNtouchScreenSaverTime” on page 21-93 for more information

Controlling the Backlight On Event Messages
If you set the PasNtouchBackl ightOnEvent resource to PosENABLE, your

application will receive a PQSM_TQUCH_DATA event message when the screen is
touched to refresh the display. If you set it to PosDISABLE, no event message is
sent to your application when the screen is being refreshed.

See [PasNtauchBackl ightOnEvent” on page 21-90 for more information

Related Information

Additional information about touch programming is in these chapters:

. [e Anloation D oo
Chapter 19 PoslOCHl() Requestd

O?

Subroutines Used with the Touch Screen

See Chapte 8 Application Programming

Touch PoslOCtl Control Requests
See Chapter 19. PoslOCtl() Requests:
POS_TOUCH_SII FNCE_TONH

POS_SYS_ACQUIRE_DEVICH
Pos sys GET valUES

PQS_SYS RELEASE DEVICH
BPQS_SYS SET VALUES

Touch Event Messages

See Chapter 20_Event Messaged:
PQSM_TQUCH_DATA

Touch Resources

See Chapter 21_Resource Setd:
PosNtouchBackl ightOnEvent
PaosNtouchBrightnesd
BasNtouchClickValume

Chapter 17. Touch Screen Programming 17-5

Touch Screen Programming created on October 2, 2001

Touch Error Codes
See lAppendix D_Error Coded:

17-6 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Chapter 18. Application Programming Interface

This chapter describes the subroutines provided by the IBM Point of Sale
Subsystem that are used to provide program control of point-of-sale devices. The

foIIowin% subroutines are available to the application:

- Baslnitialize()
- BaslOCH()
- PasOpen(
- PoasBead()
- PosWiite()

Your application’s use of the IBM Point of Sale Subsystem application programming
interface (API) will vary from device to device. The following describes a general
API call sequence that varies depending on the device being controlled:

1. Your application calls the W subroutine to register with the IBM Point
of Sale Subsystem.

2. Your application creates a device connection by opening the device with the
|@I€L—Q subroutine. Each device connection established by the application is
assigned a unique identifier called the device descriptor. This device descriptor
is used on all subsequent calls to the IBM Point of Sale Subsystem for that
device.

3. Your application acquires exclusive use of a device by using a
PQS_SYS_ACQUIRE_DEVICH IPaslQCH() request. Notice that all devices
uire that an application process acquire the device before using
, and most requests.

4. Your application uses the different Im requests to set up the device
resource values and to control the device. Your application is not required to set
the device resources explicitly when one of the following conditions is true:

« If the default value for the resource is acceptable and if a different value is
not set in the resource file.

 If the value specified in the resource file is acceptable.
5. Your application uses the point-of-sale device.

6. When your application no longer requires exclusive use of a device, the
application should issue a PQS_SYS_RFI FASF_DFVICH PaslOCtl() request.
This allows other applications to use the device.

re
or

A typical closing sequence for an application is as follows:

1. Use the PQS_SYS_RFI FASF_DFEVICH PoslOCH() request to release each

device that was acquired.
2. Use the [PasClose(] subroutine to close any devices that the application opened.

Part 2. Programming Guide describes how your application program can use the

IBM Point of Sale Subsystem devices.

Important: No more than one IBM Point of Sale Subsystem API subroutine can be
active at the same time. When an IBM Point of Sale Subsystem
application programming interface subroutine is called by one thread in
a process, IBM Point of Sale Subsystem API calls by any other thread
in the same process are blocked (prevented from processing) until the
first call is complete. When the first call completes, one of the waiting
calls is processed.

© Copyright IBM Corp. 1993, 2001 18-1

Application Programming Interface (API) created on October 2, 2001

The only exception to this is when the [PasRead(] subroutine is called for the IBM
Point of Sale Subsystem input queue (device descriptor zero). The
PosNreadTimeoul resource allows a read operation on the IBM Point of Sale
Subsystem input queue to be suspended until data is available to be read. When
one thread is waiting for data on the input queue, other threads can successfully
call IBM Point of Sale Subsystem API subroutines for other device descriptors and
not be blocked. Even with this exception, only one of the other IBM Point of Sale
Subsystem API calls can be active simultaneously.

18-2 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 PosClose()

PosClose()

Purpose

Syntax

Parameters

Description

Return Values

Error Codes

Closes the device connection associated with a device descriptor.

#include <pos/pos.h>

int PosClose(int devdes) ;

devdes
Specifies a valid device descriptor. This descriptor identifies a connection to
a device. This descriptor must have been previously created using the
subroutine.

The m subroutine closes the connection associated with the devdes
parameter. An application should call this subroutine for each device connection it
opened before it terminates.

If the m is issued for a device descriptor that has acquired exclusive use
of the device, the device is released before the device connection is closed.

All open device connections are closed when a process exits.

This subroutine can be used only after the process has been initialized and a target
device has been opened.

Note: If an error occurs while closing a connection, the error is returned to the
application. However, the connection is considered closed and the devdes
parameter cannot be used in any subsequent calls.

Upon successful completion, a value of 0 (zero) is returned. Otherwise, a value of
-1 is returned and errno is set to indicate the error.

If the PosClose() subroutine fails, errno is set to one of the following:
302

303 BQ3 PQSERR _SYS INVALID DESCRIPTQH

311 B11 POSERR _SYS EUNCTION NQT SUPPQRTED

320 B20POSERR SYS DATA_DISCARDED

321 B21 POSERR_SYS INTERNAL _ERROR

337 B37ZPQSERR_SYS SERVICE NQT AVAILABLH

Related Information

3 ”

Chapter 18. Application Programming Interface 18-3

PosClose() created on October 2, 2001

Examples

The following example opens and then closes the printer.
#include <pos/pos.h>

int prndes;

/* printer device descriptor */
int rc = 0;

rc = PosInitialize("myappl", "checkout", 0, 0, 0, 0);

prndes = PosOpen("myprinter", PosPrinter, 0,0);

rc = PosClose(prndes);

18-4 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Poslnitialize()

Poslnitialize()
Purpose
Initializes the IBM Point of Sale Subsystem for use by the application.
Syntax
#include <pos/pos.h>
int Poslnitialize(char *name, char *file,
int *arge, char *argv/],
PosArgPtr args, int nargs) ;
Parameters
name Specifies a name for this application. This name is used to identify
resources in the resource file. Typically, argv[0] is given. This parameter
points to a null terminated string of not more than 32 characters.
file Specifies the resource file for this application. This parameter can be used
to group multiple applications together for sharing the same resource file.
See [Configuring Your Applications” on page 3-1l for an explanation of how
the file parameter is used in determining the resource file. This parameter
points to a null terminated string. The IBM Point of Sale Subsystem looks
for a file with this name in the directory specified in the environment
variable POSAPPLRESDIR. If this environment variable is not set, the current
directory is used.
argc Specifies a pointer to the number of command line parameters. This
parameter is reserved for future use. Set this value to 0 (zero).
argv Specifies the command line parameters. This parameter is reserved for
future use. Set this value to 0 (zero).
args Specifies a parameter list of system resources.
nargs Specifies the number of parameters in the parameter list. If this value is 0
(zero), args is ignored.
Description

The [Paslnitialize(] subroutine initializes the IBM Point of Sale Subsystem for use by
the application. Once any thread within a process issues this call, all threads for
that process are initialized. Therefore, [Pasinitialize(] must be called only once for
each process.

W must be successfully called before other IBM Point of Sale
Subsystem subroutines are used.

Null strings or a null pointer for the name or file parameters generates an error.

The following resources can be specified on the argument list of the W
subroutine:

+ PosNgueueHandle

+ PosNreadTimeout

The PasNqueueHandld resource specifies the queue which receives all
system-wide event messages, such as BQSM_SYS DEVICE_QNI INH and

Chapter 18. Application Programming Interface 18-5

Poslnitialize()

Return Values

Error Codes

created on October 2, 2001

POSM_SYS_DEVICE_OFFLINH. These are event messages that are not
necessarily associated with a particular opened device. All applications that have
initialized the IBM Point of Sale Subsystem receive these event messages. See

[PasNqueueHandle” on page 21-6 for more information on this resource.

Note: The PosNqueueHandld resource is ignored on systems that use the IBM
Point of Sale Subsystem for Linux. Linux systems must use the IBM Point of
Sale Subsystem input queue.

The PasNreadTimeout resource specifies how long a m subroutine for the

IBM Point of Sale Subsystem input queue should wait for an event message. See

lPasNreadTimeout” on page 21-8 for more information on this resource.

Upon successful completion, the W subroutine returns a value of 0
(zero). Otherwise, it returns a value of -1 and errno is set to indicate the error.

Note: If the resource file is not found or cannot be read, no error is returned to the
application. The default values and the values specified by your application
will be used.

If the Bnclniﬁnlim(] subroutine fails, errno is set to one of the following:
301 B01 POSFRR SYS QS FRROR

304 Bo4 POSFRR_SYS Al RFADY INITIAIIZED

305 Bo5 POSFRR_SYS MEMORY_All QCATION

330 B30 POSFRR_SYS INVAILID NAMH

334 B34 POSFRR_SYS INVAIID ADDRESS

336 B36 POSFRR_SYS INVALID FILH

337 B37 POSFRR_SYS SFRVICE _NOT_AVAII ARI H

Related Information

Examples

The following example registers an application with the IBM Point of Sale
Subsystem. The application receives the system event messages (such as on-line
or off-line) in the IBM Point of Sale Subsystem input queue (device descriptor zero).

#include <pos/pos.h>
int rc = 0;

= PosInitialize("myappl", "checkout", 0, 0, 0, 0);

The following example registers an application with the IBM Point of Sale
Subsystem. The application receives the system event messages (such as on-line
or off-line) on the Presentation Manager event queue.

#define INCL_WIN

#include <o0s2.h>
#include <pos/pos.h>

HAB hab; /* Anchor block handle */
HMQ hmg; /* Message queue handle */

18-6 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Poslnitialize()

PosArg resource; /* resource name and value */
int i, rc;

hab = WinInitialize(0);
hmg = WinCreateMsgQueue(hab, 0);

resource.name = PosNqueueHandle; /* resource name is queueHandle =*/
resource.value = hmq; /* resource value is in hmq */

rc = PosInitialize("myappl", "checkout", 0, 0, &resource, 1);

Chapter 18. Application Programming Interface ~ 18-7

PoslOCtl()

created on October 2, 2001

PoslOCtl()

Purpose

Syntax

Parameters

Description

Return Values

Error Codes

Performs input/output control functions associated with device descriptors.

#include <pos/pos.h>

int PoslOCtl(int devdes, int request, PosArgPtr args, int nargs) ;

devdes Specifies the device descriptor the control operation is to be
performed for. This descriptor identifies a connection to a device.
This descriptor must have been previously created using the

subroutine.
request Specifies the control function to be performed. The value of this
parameter depends on which device is specified by the devdes
parameter.
args Specifies the argument list required by the control operation

specified by the request parameter, or an argument list, to override
the resource default values.

nargs Specifies the number of parameters in the parameter list. If this
value is 0 (zero), args is ignored.

The m subroutine performs a variety of control operations on the device
associated with the specified device descriptor.

The control operation provided by this subroutine is specific to the device being
addressed, as are the contents of the parameters passed. See the individual device

chapters in Part 2_Programming Guidd for more information.

The args and nargs parameters are used to specify undefined resource values or to
override resource values defined in the resource table. Requests that use these
parameters list the resources that they use in the “Resources Used” section of their
description. Only the resources associated with the [PaslOCH(] request for the
device are validated.

This subroutine can be used only after the process has been initialized and a target
device has been opened.

Upon successful completion, a value of 0 (zero) is returned. If the m
subroutine fails, a value of -1 is returned, and errno is set to indicate the error.

If the Bnelf)f‘ﬂ(l subroutine fails, errno is set to one of the following:
302 B02 POSERR_SYS NOT_INITIALIZED

303 B03 POSERR_SYS INVALID DESCRIPTOR

315 B15 POSERR_SYS NOT ACQUIRED

18-8 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 PoslOCtl()

316 B16 POSFRR_SYS INVALID RFQUEST

325 B25 POSFRR_SYS INVALID NARGS

332 B32 POSFRR_SYS INTFRRUPTED

334 B34 POSFRR_SYS INVALID ADDRESS

337 B3ZPQSERR_SYS SERVICE NOT AVAILABLH

Additional error codes are listed with each individual control function.

Related Information

3 ”»

Chapter 19_PoslQCHl() Requestd.

Examples

This example opens the keyboard, acquires the keyboard, and sounds the keyboard
tone for 1 second. The device is released at the end of the example.

#include <pos/pos.h>

int kbddes;
int rc = 0;
PosArg resource; /* tone duration resource */

rc = PosInitialize("myappl", "checkout", 0, 0, 0, 0);
kbddes = PosOpen("mykbd", PosKeyboard, 0, 0);

if (-1 != kbddes)
{
rc = PosIOCt1(kbddes, POS_SYS ACQUIRE DEVICE, 0, 0);
}

if (0 == rc)
{

PosSetArg(resource, PosNtoneDuration, 10);
rc = PosIOCt1(kbddes, POS_KBD_SOUND_TONE, &resource, 1);
}

/*
perform some other processing

%/

rc = PosIOCt1(kbddes, POS_SYS RELEASE DEVICE, 0, 0);

Chapter 18. Application Programming Interface 18-9

PosOpen()

created on October 2, 2001

PosOpen()

Purpose

Syntax

Parameters

Description

Establishes a device connection.

#include <pos/pos.h>

int PosOpen(char *name, char * class, PosArgPtr args, int nargs) ;

name Specifies the instance name for the created device connection. This name
is chosen by the application and is used for retrieving resources. This
parameter points to a null terminated string of not more than 32 characters.

class Specifies a device class name. The specified device class determines the
type of device connection being opened and also determines what
resources are associated with the device. This parameter must be one of
the names defined by the IBM Point of Sale Subsystem. See the device
resource set of the device being opened for the device class name.

args Specifies an argument list to override the resource defaults.

nargs Specifies the number of arguments in the argument list.If this value is 0
(zero), args is ignored.

The [PasOpen(} subroutine establishes a connection between the named device and
your application. A device descriptor is returned to identify this connection. The
device descriptor is used by subsequent IBM Point of Sale Subsystem subroutines,
such as [PasBead() and [BasWrite(), to access the device. Therefore, no application
programming interface subroutines except for the [Pasinitialize(] subroutine can be
issued before the device has been opened. Your application should open the
devices you wish it to work with after receiving the BOSM_SYS_DFVICF_ONI INH
event message. Any open requests issued prior to the device being reported on-line

will fail with error code 817 POSFRR_SYS_DFVICF_OFFI INH.

To open a device, the following resources with the appropriate values must be
specified to the IBM Point of Sale Subsystem:

Your application can specify the values for these resources as arguments on the
PosOpen() subroutine call or in a resource file used by your application.

After you open a device, you can use the BQS_SYS_SET VAL UES [PoslQCtl(]
subroutine request to perform setup operations on the device. However, the results
of these setup operations will not take affect until the device has been acquired with
the _ subroutine request.

Once any thread within a process opens a device, all threads for that process are
allowed to use the device descriptor on other IBM Point of Sale Subsystem

18-10 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 PosOpen()

Return Values

Error Codes

application programming interface subroutine calls. There can be up to 31 open
devices per process at a time. The device descriptor cannot be shared between
processes.

The args and nargs parameters are used to override resource values defined in the
resource file or the device’s default resource values. Only the resources associated
with this subroutine for the device are validated. The PosNqueueHandld resource
can be specified on the argument list of the m function. The queue
specified by this resource receives any event messages that apply specifically to
the device being opened.

Note: The PosNqueueHandld resource is ignored on systems that use the IBM
Point of Sale Subsystem for Linux. Linux systems must use the IBM Point of
Sale Subsystem input queue.

This subroutine can be used only after the process has been initialized.

Upon successful completion, the device descriptor (a non-negative integer) is
returned. Otherwise, a value of -1 is returned and errno is set to indicate the error.

If the w subroutine fails, the named device connection is not established,
and errno is set to one of the following:

301 B01 POSFRR_SYS_QS_FRROR

302 B2 POSFRR_SYS NOT_INITIALIZED

307 B0Z POSFRR_SYS INVAIID DFVICH

305 B05 POSFRR_SYS MEMORY_Al| QCATION

309 B09 POSFRR_SYS TOO MANY DFVICES

317 B1Z POSFRR SYS DFVICF_QFFIINH

319 R19 POSFRR_SYS_INVAIID CI ASS DEVICE_COMRQ
320 B20POSFRR_SYS DATA DISCARDFD

321 R21 POSFRR_SYS_INTERNAI FRROR

325 R25 POSFRR_SYS_INVAIID NARGS

326 R26 POSFRR_SYS_INVAIID_SI OT

327 BR27 POSFRR_SYS_UNSUPPORTED_ADAPTER
328 R23 POSFRR_SYS_INVAI ID_PORT

330 B30 POSFRR_SYS_INVAIID_NAMH

331 R31 POSFRR_SYS_INVAIID_CI ASS

334 B34 POSFRR_SYS_INVAIID_ADDRESS

337 B37 POSFRR_SYS_SFRVICF_NOT_AVAII ABIH
4102 K102 PQSERR NVRAM INVALID CURSOH

4401 4401 PQSERR DSP INVALID CURSQOR

4402 4402 PQSERR DSP INVALID MOQODH

4403 4403 POQSERR DSP_INVALID SIZH

4406 4406 POSERR DSP_INVALID CQDE_PAGH

4701 4701 POSERR KBD INVALID EREQUENCY

4702 4702 POSERR KBD INVALID DURATION

4703 4703 POSERR KBD INVALID VOl UMH

4705 4705 POSERR KBD INVALID DOQUBLE KEY

4706 4706 POSERR KBD INVALID FAT FINGER _TIMEQUT
4708 4708 POSERR KBD INVALID KEYBQARD CLICK
4709 4709 POSERR KBD INVALID NUMPAD STYIH
4710 4710 POSERR KBD INVALID NUMPAD ZERQ
4711 4711 POSFRR KBD INVALID TYPEMATIC DFI AY]

Chapter 18. Application Programming Interface 18-11

PosOpen() created on October 2, 2001

4712 k712 POSERR_KBD_INVAIID_TYPEMATIC FREd

4713 [£713 POSERR_KBD_INVAIID_NUMPAD_L OCATION

4901 K901 POSFRR_PRN_INVALID DI WIDTH

4902 {902 POSFRR_PRN_INVAIID_INTERI FAVED_VAI UH

4903 K903 POSERR_PRN_INVALID HEAD PARKED PQSITION
4904 4904 PQSERR PRN _INVALID STATION

4905 4905 POSERR PRN_INVALID MQDH

4906 4906 PQSERR PRN _INVALID CR _LE DISTANCE

4907 4907 PQSERR PRN INVALID SJ LE _DISTANCH

4908 4908 PQSERR PRN INVALID DI LE DISTANCH

4909 1909 POSERR PBN_INVALID FEED DIRECTION

4910 4910 POSERR PRN INVALID FISCAL NOTIEY

4911 4911 POSERR PRN_INVALID DI QORIENTATION

4912 4912 POSFRR PBN_INVALID LEET MARGIN CH

4913 4913 POSERR PRN_INVALID PRINT ALIGNMENT

5401 bB401 POSERR_CDR_INVALID PULSE_WIDTH

5702 Ez02 POSERR_SCAN_INVAIID BAR CODES 1

5703 Ez03 POSERR SCAN_INVALID BAR CODES 3

5704 bEz04 POSFRR _SCAN_INVAIID BEEP_FREQ

5705 bEz05 POSEFRR SCAN_INVAIID BFEP | ENGTH

5706 Ez06 POSFRR SCAN_INVAIID BEEP STATH

5707 bEz07Z POSFRR SCAN_INVAIID BFEP VOl UMH

5708 Ez08 POSFRR SCAN_INVAIID BIINK | ENGTH

5709 Ez09 POSFRR SCAN_INVAIID BI OCK RFAD_MODH
5710 BE7Z10 POSFRR SCAN INVAIID BIQCK 1 TYPH

5711 711 POSFRR SCAN INVAIID BIOCK 2 TYPH

5712 Ez12 POSFRR SCAN_INVAIID BIOCK 3 TYPH

5713 Ez13 POSFRR SCAN_INVAIID CHECK MoDuUId

5714 bEz714 POSFRR SCAN_INVAIID D RFAD TIMEQUT

5715 Bz15 POSFRR_SCAN_INVAIID D TOUCH MODH

5716 bEz16 POSFRR_SCAN_INVAIID_ITF | ENGTH 1l

5717 BE717 POSFRR SCAN_INVAIID_ITE | ENGTH 9

5718 E718 POSFRR SCAN_INVAIID_| ASFR_TIMFQUT

5719 E719 POSFRR_SCAN_INVAIID MOTOR_TIMEQUT

5720 bEz20 POSFRR_SCAN_INVAIID_| ASFR_SWITCH_STATH
5721 BE721 POSFRR_SCAN_INVAIID_SCANS_PER_RFAQ

5725 bE725 POSFRR_SCAN_INVAIID_BVOI _SWITCH_STATH
5726 bE726 POSFRR_SCAN_INVAIID_DFCODF_AI GORITHM
5727 Bz27 POSFRR_SCAN_INVAI ID_EAN13_SCANS_PFR_RFAQ
5728 (728 POSFRR_SCAN_INVAI ID_FAN8_SCANS_PFR_RFAN
5729 E729 POSFRR_SCAN_INVAIID_STORF_SCANS_PFR_RFAN
5730 £z30 POSFRR_SCAN_INVAIID_UPCA_SCANS_PFR_RFAD
5731 Bz31 POQSERR_SCAN_INVALID UPCD _SCANS PER _REAO
5732 b5z32 PQSERR _SCAN_INVALID UPCE _SCANS PER _READ
5733 5733 PQSERR _SCAN_INVALID UPC EXPANSION

5734 5734 PQSERR _SCAN_INVALID VERIEY PRICE CHK

5735 b£735 POSERR _SCAN_INVALID QUEUE_ALL INDICATOR
5736 5736 POSERR_SCAN_CONFIGURATION ERROR

5737 b©7z3Z POSERR SCAN 2 | ABEl FLAG _CONEIG_ERRQR
5738 Ez38 POSERR_SCAN_INVALID 2 | ABFL_DECODE_STATH
5739 E739 POSERR_SCAN_INVALID FLAG PAIR_COMBINATION
5740 E740 POSERR_SCAN_INVALID 2 | ABFL FLAG PAIR 1|
5741 bB741 POSERR SCAN _INVALID 2 [ABEl FLAG PAIR J
5742 B742 POSERR _SCAN _INVALID 2 [ABEl FLAG PAIR 3
5743 BZ43 POSFRR SCAN INVALID 2 [ABFl FLAG PAIR 4
5744 [E744 POSFRR SCAN_INVAIID CODF39 SCANS PEFR RFAD

18-12 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

5745 k745 POSERR_SCAN_INVAIID_INT20F5_SCANS_PER_RFAD
5746 746 POSERR_SCAN_INVAIID_CODFE128_SCANS_PFR_RFAQ
5747 b747 POSERR_SCAN_INVAIID_BAR_CODES_]

5748 k748 POSERR_SCAN_INVAIID_BAR_CODES_4

5750 BZ50 PQSERR _SCAN _INVALID ITE LENGTH TYPH

5751 5751 PQSERR SCAN _INVALID SUPPIEMENTALS

5752 bz52 PQSERR _SCAN_INVALID BARCQDE PRQG _STATH
5753 b5z53 PQSERR _SCAN_INVALID XMIT CHECK_DIGIT

5901 5901 PQSERR _RS232 INVALID BAUD RATH

5902 5902 PQSERR RS232 INVALID STQP BITS

5903 5903 POSERR_RS232 INVALID PARITY

5904 5904 POSERR_RS232 INVALID DATA BITS

5905 656905 PQSERR RS232 [NVALID TIMEQUT CHAR

6201 6201 POSERR _SCALE_INVALID QOPERATIONS MODH
6202 B202 POSERR _SCALE_INVALID REMQTE_DISPl AY _STATH
6203 65203 POSERR_SCAILE_INVALID VIBRATION EILTER

6204 6204 POSERR SCALE_INVALID WEIGHT MODH

6205 B205 POSERR _SCALE_INVALID ZERQ _INDICATOR STATH
6206 bB206 POSERR SCALE_INVALID ZERQ RETUURN STATH
6211 bB211 POSFRR_SCALF_INVALID NUM WFEIGHT DIGITS
6701 BZ01 POSFRR TOUCH INVAIID BACKIIGHT ON

6702 B702 POSFRR TOUCH INVAIID CIICK VOI UMH

6703 Bz03 POSFRR TOUCH INVAIID CONTRAST

6704 bBz04 POSFRR TOUCH INVAIID ENTRY CLICK

6705 B705 POSFRR TOUCH_INVALID EXIT CIICK

6706 Bz06 POSFRR TOUCH_INVAIID_MODH

6707 bBz0zZ POSFRR TOUCH INVAIID SCRFEN SAVFR TIMH
6708 B708 POSFRR TOUCH INVAIID TONF DURATION

6709 bz09 POSFRR TOUCH INVAIID _TONF_FREQUENCM
6710 bz10 POSFRR TOQUCH INVAIID TONF_VOI UMH

6711 Bz11 POSFRR TOUCH INVAIID BRIGHTNESS

Related Information

Examples

PosOpen()

In this example, the OpenDevice function opens devices after the on-line event

message has been received.

#include <pos/pos.h>

/***/

/* Global data */
/***/
int kbddes; /* keyboard device descriptor =/
int msrdes; /* msr device descriptor */
int dspdes; /* display device descriptor */
int prndes; /* printer device descriptor */
int scandes; /* scanner device descriptor x/
int tilldes; /* ti11 device descriptor */
int alarmdes; /* alarm device descriptor */
/********************************** """"""""""""""""""" **/
/* Function Name: OpenDevice */
/* */
/* Description: This subroutine opens the device for which an on-Tine =*/
/* message has been received. */
/* */
/* Input: pMsg points to a POSM_SYS DEVICE ONLINE message */

Chapter 18. Application Programming Interface

18-13

PosOpen() created on October 2, 2001

/******‘k******‘k******‘k*"k*****k*"k*****k*"k****‘k*****~k***********************/

void OpenDevice(POSQMSG *pMsg)

{
PosArg openargs[3]; /* PosArg array for PosOpen */
int DevType = 0; /* Device type from ONLINE msg*/
int rc = 0; /* Return codes */

PosSetArg(openargs[0], PosNslotNumber, ((int)(pMsg->mpl >> 24) & 0x00FF));
PosSetArg(openargs[1], PosNportNumber, ((int)(pMsg->mpl >> 16) & OxO00FF));
PosSetArg(openargs[2], PosNdeviceNumber, ((int) (pMsg->mpl >> 8) & Ox00FF));
DevType = (int) pMsg->mpl & Ox00FF;

if (POSM_SYS_DEVICE_ONLINE == pMsg->msg)
{
switch(DevType)
{

case PosTYPE DISPLAY:
{
dspdes = PosOpen("mydisplay", PosDisplay, openargs,
PosNumber (openargs));
break;
} /* end case (PosTYPE_DISPLAY) */

case PosTYPE _PRINTER:
{
prndes = PosOpen("myprinter", PosPrinter, openargs,
PosNumber (openargs));
break;
} /* end case (PosTYPE_PRINTER) */

case PosTYPE_SCANNER:
{
scandes = PosOpen("myscanner", PosScanner, openargs,
PosNumber (openargs));
break;
} /* end case (PosTYPE_SCANNER) =*/

case PosTYPE_MSR:
{
msrdes = PosOpen("mymsr", PosMsr, openargs,
PosNumber (openargs));
break;
} /* end case (PosTYPE_MSR) */

case PosTYPE_KEYBOARD:
{
kbddes = PosOpen("mykeyboard", PosKeyboard, openargs,
PosNumber (openargs));
break;
} /* end case (PosTYPE_KEYBOARD) =*/

case PosTYPE_CASH_DRAWER:
{
tilldes = PosOpen("mytill", PosDrawer, openargs,
PosNumber (openargs));
break;
} /* end case (PosTYPE_CASH_DRAWER) =*/

case PosTYPE_ALARM:
{
alarmdes = PosOpen("myalarm", PosAlarm, openargs,
PosNumber (openargs));
break;
}/* end case (PosTYPE_ALARM) =*/

default:
{

18-14 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 PosOpen()

break;

}

} /% end switch (DevType) */
} /* end if (POSM_SYS_DEVICE_ONLINE == pMsg->msg) */

}/* end OpenDevice */

Chapter 18. Application Programming Interface 18-15

PosRead()

created on October 2, 2001

PosRead()

Purpose

Syntax

Parameters

Description

Return Values

Reads from a device.

#include <pos/pos.h>

ssize_t PosRead(int devdes, void *buf, size_t nbyte) ;

devdes
Specifies a valid device descriptor. This descriptor identifies a connection to
a device. This descriptor must have been previously created using the
subroutine.

buf A pointer to a buffer where the data read from the device is placed.

nbyte The maximum number of bytes available to receive data at buf.

The m subroutine attempts to read nbyte bytes from the device associated
with the device descriptor (devdes) into the buffer pointed to by buf. In most cases,
if the device being read does not have any data to return, O (zero) is returned to
indicate that no data was read. The exception is device descriptor zero, the IBM
Point of Sale Subsystem input queue. The PasNreadTimeaoui resource allows the
subroutine call to be suspended until there is data on the input queue.

If nbyte is 0 (zero), the [PasRead(] subroutine returns 0 (zero) and has no other
results.

Upon successful completion, the [PasBead(] subroutine returns the number of bytes
placed in the buffer. This number is never greater than nbyte. The

subroutine can read the IBM Point of Sale Subsystem input queue by specifying a
device descriptor of 0 (zero). The IBM Point of Sale Subsystem input queue is
automatically opened and acquired for a process that does not specify a queue
handle on the .

This subroutine can only be used:
1. After initialization.

2. After a target device is opened and acquired, with the exception of reading the
IBM Point of Sale Subsystem input queue.

Upon successful completion, w returns an integer indicating the number of
bytes placed into the buffer. This number is never greater than nbytes. Otherwise,
m returns a value of -1 and errno is set to indicate the error, and the
contents of the buffer pointed to by buf are indeterminate.

For some types of devices, the number of bytes placed into the buffer is not the
same as the number of bytes read from a device. There can be control information
returned in the buffer in addition to the actual data read from a device. See the
individual device chapters for the format of the buffer returned for a read operation.

18-16 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 PosRead()

Error Codes

If the PasRead(] subroutine fails, errno is set to one of the following:
302 B02 POSFRR_SYS_NOT_INITIALIZED

303 BO3 PQSERR _SYS INVALID DESCRIPTQH

305 BO5 PQSERR SYS MEMORY ALLQCATION

311 B11 POQSERR_SYS FUNCTION NOT SUPPQRTED
312 B12 PQSERR SYS BUFFER TQQ SMALLU

315 B15 PQSERR SYS NOT ACQUIRED

317 B17Z POSERR_SYS DEVICE_QFFLINH

329 B29 PQSERR_SYS_TIMEQUT

332 32 POSERR SYS INTERRUPTED

334 B34 POSERR SYS INVALID ADDRESS

335 B35 PQSERR SYS | QCKED NQ DATA READ

337 B3ZPQSERR SYS SERVICE NQOT AVAILARLH

4102 4102 POSERR NVRAM INVALID CURSOR

4103 4103 POSERR NVRAM EQH

4105 4105 POSERR NVRAM INVALID | ENGTH RECQRDO
4106 K106 POSFRR NVRAM INVALID DATA CRd

Related Information

Examples

g ”

This example reads from the IBM Point of Sale Subsystem input queue (device
descriptor zero), looking for specific event messages. If scanner or MSR data is
available, it reads from the scanner or from the MSR.

#include <pos/pos.h>

int msrdes; /* msr device descriptor */
int scandes; /* scanner device descriptor */
char Buffer[256]; /* data */
char QMsg[EVENT_MESSAGE_SIZE]; /* message */
POSQMSG *pMsg; /* message pointer */
/*
code to initialize, open, acquire and set up the devices

*/

rc = PosRead(0, QMsg, sizeof(QMsg)); /* get next event */
if (rc>0)

pMsg = (POSQMSG *) QMsg;
switch (pMsg->msg)
{

case POSM_MSR_DATA_AVAIL:
{
rc = PosRead(msrdes, Buffer, sizeof(Buffer));
break;
}/* end case(POSM_MSR DATA AVAIL) =/

case POSM_SCAN_DATA AVAIL:
{

rc = PosRead(scandes, Buffer, sizeof(Buffer));
break;
} /* end case(POSM_SCAN_DATA_AVAIL) */

case POSM_KBD_WM_CHAR:
{
/*

process SIO keyboard scan code

Chapter 18. Application Programming Interface 18-17

PosRead() created on October 2, 2001
*/

break;

}

case POSM_SYS DEVICE ONLINE:
{

/*
determine if this is my device
*/
OpenDevice(pMsg); /* see PosOpen example =/
break;

}/* end case(POSM_SYS DEVICE ONLINE) =/
default:
{
break;

}

} /* end switch(pMsg->msg) */

} /* end (PosRead(0...) rc > 0) =/

18-18 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 PosWrite()

PosWrite()

Purpose

Syntax

Parameters

Description

Return Values

Error Codes

Writes to a device.

#include <pos/pos.h>

ssize_t PosWrite(int devdes, const void *buf, size_t nbyte) ;

devdes
Specifies a valid device descriptor. This descriptor identifies a connection to
a device. This descriptor must have been previously created using the
subroutine.

buf A pointer to the data to be written.

nbyte The number of bytes to be written.

The m subroutine attempts to process nbyte bytes from the buffer pointed
to by buf for the device associated with the device descriptor (devdes). This
subroutine queues a write operation to the device to be completed later. If an error
occurs when the write is actually performed, your application is notified by way of
an event message.

If nbyte is 0 (zero), the PasWrite(] subroutine returns 0 (zero) and has no other
results.

This subroutine can be used only after the process has been initialized and a target
device has been opened and acquired.

Upon successful completion, PasWrite(] returns an integer indicating the number of
bytes processed from the buffer. Otherwise, it returns a value of -1 and errno is set
to indicate the error.

If the |I3ncl/l/rifn(1 subroutine fails, errno is set to one of the following:
302 B2 PQSERR _SYS NOT INITIALIZED

303 BQ3 PQSERR _SYS INVALID DESCRIPTQH

311 B11 PQSERR_SYS FUNCTION NQT SUPPQRTED
315 B15PQSERR _SYS NOT ACQUIRED

317 B1Z PQSERR _SYS DEVICE QFELINH

318 B18 POSERR _SYS INVALID | ENGTH

334 B34 POSERR_SYS INVALID ADDRESS

337 B37 POSERR_SYS SERVICE NQT AVAILABLH
4914 4914 POSERR PRN INCORRECT DATA_FQRMAT
4904 4904 POSERR PRN_INVALID _STATION

4915 4915 POSERR PRN | OGQ_EXISTS

5907 5907 POSERR RS232 PREV_NOT COMPIETH

Chapter 18. Application Programming Interface 18-19

PosWrite() created on October 2, 2001

Related Information

3 ”»

Examples

This example writes “Hello World” at position 0 on the display.

#include <pos/pos.h>
#include <pos/display.h>

int dspdes; /* display device descriptor x/
PosArg myarg; /* resource name & value */

rc = PosInitialize("myappl", "checkout", 0, 0, 0, 0);
dspdes = PosOpen("mydisplay", PosDisplay, 0,0);

if (-1 != dspdes)
{
rc = PosIOCt1(dspdes, POS_SYS_ACQUIRE_DEVICE, 0, 0);
}

if (0 == rc)
{
PosSetArg(myarg[0], PosNdisplayCursor, 0);
rc = PosIOCt1(dspdes, POS_SYS SET VALUES, myarg, 1);
rc = PosWrite(dspdes, "Hello World", 11);
}

18-20 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Part 3. Programming Reference

© Copyright IBM Corp. 1993, 2001

created on October 2, 2001

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Chapter 19. PoslOCtl() Requests

POS_ALARM_SILENCE_ALARM193
POS_ALARM_SOUND_ALARM.194
POS_DSP_CLEAR_SCREEN.195
POS_DSP_DEFINE_CHARACTERS 196
POS_KBD_DISABLE_HOT_KEYS.197
POS_KBD_DISABLE_NUM_LOCK.198
POS_KBD_DISABLE_SCROLL_LOCK 199
POS_KBD_ENABLE_HOT _KEYS.1910
POS_KBD_ENABLE_NUM_LOCK19-11
POS_KBD_ENABLE_SCROLL_LOCK1912
POS_KBD_SET_NUM_LOCK_OFF19-13
POS_KBD_SET_NUM_LOCK_ON19-14
POS_KBD_SET_SCROLL_LOCK_OFF19-15
POS_KBD_SET_SCROLL_LOCK ON19-16
POS_KBD_SET_TYPEMATIC_OFF1917
POS_KBD_SET_TYPEMATIC.ON19-18
POS_KBD_SILENCE_TONE1919
POS_KBD_SOUND_TONE1920
POS_POWER_OFF.1921
POS_POWER_ON1922
POS_POWER_SET_ALARM1923
POS_PRN_DEFINE_CHARACTERS19-24
POS_PRN_DISABLE_DI_PRINTING1925
POS_PRN_DISABLE_FISCAL_PRINTING19-26
POS_PRN_DISCARD_DATA1927
POS_PRN_ENABLE DI_PRINTING.19-28
POS_PRN_ENABLE_FISCAL_PRINTING.1929
POS_PRN_RESET_PRINTER1930
POS_PRN_HOLD_PRINTING193
POS_PRN_RELEASE_PRINTING1932
POS_PRN_RESUME_PRINTING.1933
POS_PRN_RETRY_PRINTING19-34
POS_PRN_SILENCE_TONE1935
POS_PRN_SOUND_TONE19-36
POS_RS232_SEND_BREAK1937
POS_SCALE_CLEAR_SCREEN19-38
POS_SCALE_ZERO_SCALE1939
POS_SCAN_DISCARD_DATA1940
POS_SYS_ACQUIRE_DEVICE194
POS_SYS_GET_VALUES1942
POS_SYS_LOCK_DEVICE1948
POS_SYS_RELEASE_DEVICE1944
POS_SYS_SET_VALUES.1945
POS_SYS_UNLOCK_ DEVICE.1947
POS_TILL_ OPEN_TILL .19-48
POS_TOUCH_SILENCE_TONE1949
POS_TOUCH_SOUND_TONE.1950

This chapter contains the valid requests for the m subroutine. Most of the
requests require exclusive control of the device, so your application process must
acquire the device before issuing these m requests. The exceptions to this
rule are:

© Copyright IBM Corp. 1993, 2001 19-1

PoslOCtl() Requests created on October 2, 2001

POS_SYS ACQUIRE DEVICH
Can only be used before the device is acquired.

POS_SYS GET VALUES
Can be used either before or after the device is acquired.

POS_SYS SET VALUES

~ Can be used either before or after the device is acquired.

The PQS_SYS_SET VAL UES request does have some device-dependent
restrictions. See the individual device chapters in Ea.:t.z_Em.q.:ammmg_GJ.udd and

the individual device resources in Chapter 21 _Resource Setd for these restrictions.

Note: The PQS_SYS SET VALUES request allows you to change resource values
via the args and nargs parameters and the BQS_KBD_SQUND_TQNH and
thePQS_PRN_SQUND_TQNH request allows you to temporarily override

resource values via the args and nargs parameters.

19-2 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 PoslOCtl() Requests

POS_ALARM_SILENCE_ALARM

Description
This request turns the alarm off.

This request can be issued after opening and acquiring the device.
Notes:

1. This request is not supported on any model of the IBM 4695.
2. This request is not supported on IBM Point of Sale Subsystem for Linux.

Error Codes

If the Bnelﬂf?ﬂ(l subroutine fails, errno is set to one of the following:
301 B01 POSFRR SYS QS FRROR

303 B03 POSERR_SYS INVALID DESCRIPTOH

315 BRB15 POSERR SYS NOT ACQUIRED

316 BR16 POSERR SYS INVALID REQUEST

317 B17 POSERR SYS DEVICE QFFLINH

337 BR37 POSFRR SYS SFERVICE NQT AVAII ABLH

Chapter 19. PoslOCtl() Requests 19-3

PoslOCtl() Requests created on October 2, 2001

POS_ALARM_SOUND_ALARM

Description
This request turns the alarm on.

This request can be issued after opening and acquiring the device.
Notes:

1. This request is not supported on any model of the IBM 4695.
2. This request is not supported on IBM Point of Sale Subsystem for Linux.

Error Codes

If the Enelf)f?ﬂ(l subroutine fails, errno is set to one of the following:
301 Bo1 POSEFRR SYS QS FRROR

303 B03 POSERR_SYS INVALID DESCRIPTOR

315 BRB15 POSERR SYS NOT ACQUIRED

316 BR16 POSERR SYS INVALID REQUEST

317 B17 POSEFRR SYS DEVICE QFFELINH

337 BR37 POSFRR SYS SERVICE NQT AVAII ABLH

19-4 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

PoslOCtl() Requests

POS_DSP_CLEAR_SCREEN

Description

This request clears the display. The indicator lights are not changed.

Error Codes

If the m subroutine fails, errno is set to one of the following:

301
303
316
317
337

B01 POSERR_SYS QS ERROR

B03 POSERR_SYS INVALID DESCRIPTOH
B16 POSERR_SYS INVALID REQUEST

B17 POSERR_SYS DEVICE_QFELINH

B37 POSERR_SYS SFRVICE NOT AVAILABLH

Chapter 19. PoslOCtl() Requests 19-5

PoslOCtl() Requests created on October 2, 2001

POS_DSP_DEFINE_CHARACTERS

Description

Error Codes

This request defines characters with the values that are listed in the PosArg and
that are passed as the args parameter on the lm subroutine.

Important: When this request is issued, all previous user-defined characters (UDC)
will be discarded. Only the characters defined with this request will be
available for your application to use after this request successfully
completes.

Character/Graphics Display: To define a character for the Character/Graphics
Display, the application using the display must be using a DBCS code page, the
two-byte character code must be pointed to by the name member of the PosArg
structure and the character definition data must be pointed to by the value member.
The allowed double-byte character code range is 0x8140 through 0xFC4B for Japan
and 0xA1A1 through OxFDFE for Korea. The character definition data must be 32
bytes in length, and a maximum of 96 characters can be defined.

For the USB Character/Graphics Display, the allowed double-byte character code
range is 0x8100 through OxFFFF. The character definition data must be 32 bytes in
length, and a maximum of 64 characters can be defined. Single-byte character code
can be defined when the application is using a SBCS code page. The allowed
single-byte character code range is 0x00 through OxFF. The character definition
data must be 16 bytes in length, and a maximum of 16 characters can be defined.

Vacuum Fluorescent and Operator Displays: To define a character for a VFD I
or Operator Display, the single-byte character code must be pointed to by the name
member of the PosArg structure and the character definition data must be pointed
to by the value member. The maximum number of characters you can define is 8.

Note: You must provide 74 bytes of character definition data.

This request can be issued after opening and acquiring the device.This request is
supported only on the following displays:

* Character/Graphics Display.

* 40-Character Vacuum Fluorescent Display Il

* Two-sided Vacuum Fluorescent Display Il

» Operator Display

If the Enclf)f‘ﬂ(l subroutine fails, errno is set to one of the following:
301 B01 POSERR_SYS QS ERROR

303 B03 POSERR_SYS INVALID DESCRIPTOR
315 B15 POSERR_SYS NOT ACQUIRED

316 B16 POSERR_SYS INVALID REQUEST

317 B17 POSERR_SYS DEVICE_QFEELINH

334 B34 POSERR_SYS INVALID ADDRESS

337 B37Z POSERR_SYS SFERVICE_NQOT_AVAILABLH

19-6 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 PoslOCtl() Requests

POS_KBD_DISABLE_HOT_KEYS

Description

Error Codes

This request disables the use of the operating system hot key sequences. The user
is prevented from using the system hot keys to switch to other applications.

This request causes the last key of the following key sequences to be discarded by
the IBM Point of Sale Subsystem. The hot keys sequences are:

» Citrl-Esc

* Alt-Esc

« Alt-Tab

» Alt-Shift-Tab

* Alt-Home

This request can be issued after opening and acquiring the device.

Notes:

1. This request is supported only for keyboards attached to the system keyboard
port.

2. This request is ignored by all keyboards attached to an SIO keyboard port.

If the EDQIOCH(I subroutine fails, errno is set to one of the following:
301 Bo1 POSFRR_SYS QS FRROR

303 BO3 POSFRR_SYS INVAIID DESCRIPTOR

315 B15POSFRR SYS NOT ACQUIRFN

316 B16 POSFRR_SYS INVAIID REQUEST

317 B1Z POSFRR SYS DFVICF _OFFIINH

337 B37Z POSFRR_SYS_SFRVICE_NQOT_AVAIl ARI H

Chapter 19. PoslOCtl() Requests 19-7

PoslOCtl() Requests

created on October 2, 2001

POS_KBD_DISABLE_NUM_LOCK

Description

This request disables the use of the Num Lock key.

This request can be used to keep the user from changing the Num Lock state when
the keyboard is acting as a point-of-sale keyboard. After using this request, your
application should issue the POS KBD _SET NUM _LOCK_ON or

POS_KBD_SET NUM_LQCK_QFH PaslQCtl{) request to set the Num Lock state.

This request can be issued after opening and acquiring the device.

This request is supported by the alphanumeric point-of-sale keyboards. All other
keyboards ignore this request.

Error Codes

19-8

If the Enclf)f?fl(l subroutine fails, errno is set to one of the following:

301
303
315
316
317
337

Bo1 POSERR_SYS QS EFRROR

B03 POSERR_SYS INVALID DESCRIPTOR
B15 POSFRR SYS NOT ACQUIREN

B1s POSFRR SYS INVAIID REQUEST

B17 POSFRR SYS DFVICE QFFI INH

R37 POSFRR_SYS SFRVICE_NQOT_AVAIl ARI H

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

PoslOCtl() Requests

POS_KBD_DISABLE_SCROLL_LOCK

Description

Error Codes

This request disables the use of the Scroll Lock key.

This request can be used to keep the user from changing the Scroll Lock state
when the keyboard is acting as a point-of-sale keyboard. After using this request,
your application should issue the PQS_KBD SET SCROQLL_| QCK_QN request or
the PQS_KBD _SET SCROLL_| QCK_QFH [PasliQCtl) request to set the Scroll
Lock state.

This request can be issued after opening and acquiring the device.

This request is supported by the alphanumeric point-of-sale keyboards. All other
keyboards ignore this request.

If the EnclOCﬂ(l subroutine fails, errno is set to one of the following:

301
303
315
316
317
337

B01 POSERR SYS QS FRROR

B03 POSFRR SYS INVAIID DESCRIPTOH
B15 POSFRR SYS NOT ACQUIREN

B16 POSFRR SYS INVAIID REQUEST

B17 POSFRR_SYS_DFEVICE _QFFI INH

B37 POSFRR_SYS SFRVICE_NQOT_AVAIl ARI H

Chapter 19. PoslOCtl() Requests 19-9

PoslOCtl() Requests created on October 2, 2001

POS_KBD_ENABLE_HOT_KEYS

Description

This request enables the use of the operating system hot key sequences. The user
is able to use the system hot keys to switch to other applications.

This request can be issued after opening and acquiring the device.

Notes:
1. This request is only supported for keyboards attached to the system keyboard
port.

2. This request is ignored by all keyboards attached to an SIO keyboard port.

Error Codes

19-10

If the Enclf)(?ﬂ(l subroutine fails, errno is set to one of the following:
301 B01 POSFRR SYS QS FRROR

303 B03 POSERR_SYS INVALID DESCRIPTOR

315 BRB15 POSERR SYS NOT ACQUIREND

316 BRB16 POSFRR SYS INVALID REQUEST

317 BRB17 POSFRR SYS DFEVICE QFFI INF

337 B37 POSFRR SYS SFRVICE NOT AVAII ABRI H

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 PoslOCtl() Requests

POS_KBD_ENABLE_NUM_LOCK

Description
This request enables the use of the Num Lock key.

This request can be issued after opening and acquiring the device.

This request is supported by the alphanumeric point-of-sale keyboards. All other
keyboards ignore this request.

Error Codes
If the Enelﬂf?ﬂ(l subroutine fails, errno is set to one of the following:

301 B01 POSERR_SYS QS FRROR

303 B03 POSERR_SYS INVALID DESCRIPTOH
315 B15 POSERR SYS NOT ACQUIRED

316 BR16 POSERR SYS INVALID REQUEST

317 B17 POSERR SYS DEVICE QFFLINH

337 B37 POSFRR SYS SFRVICE NOT AVAII ABIH

Chapter 19. PoslOCtl() Requests 19-11

PoslOCtl() Requests created on October 2, 2001

POS_KBD_ENABLE_SCROLL_LOCK

Description
This request enables the use of the Scroll Lock key.

This request can be issued after opening and acquiring the device.

This request is supported by the alphanumeric point-of-sale keyboards. All other
keyboards ignore this request.

Error Codes
If the Enelf)f?ﬂ(l subroutine fails, errno is set to one of the following:

301 B01 POSERR_SYS QS FRROR

303 B03 POSERR_SYS INVALID DESCRIPTQOR
315 B15 POSERR SYS NOT ACQUIRED

316 BR16 POSERR SYS INVALID REQUEST

317 B17 POSERR SYS DEVICE QFFLINH

337 B37 POSFRR SYS SFRVICE NOT AVAII ABI H

19-12 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

PoslOCtl() Requests

POS_KBD_SET_NUM_LOCK_OFF

Description

Error Codes

This request sets the state of the Num Lock to off.

This request can be issued after opening and acquiring the device.

Notes:

1.

If th
301
303
315
316
317
337

This request is supported by the alphanumeric point-of-sale keyboards. All other
keyboards ignore this request.

On OS/2, for the alphanumeric point-of-sale keyboards attached to the system
keyboard port, this request results in a Category 4 Function 53H DosDevIOCtl()
call. For Presentation Manager applications, the 53H DosDevIOCtl() changes
only the state and not the keyboard indicator light. Presentation Manager
programs should consider using the WinSetKeyboardStateTable() subroutine call
to set the keyboard state.

e BaslOCHY) subroutine fails, ermo is set to one of the following:
Bo1 POSFRR SYS QS FRROR
B03 POSFRR SYS INVAIID DESCRIPTOH
B15 POSFRR SYS NOT ACQUIREN
B16 POSFRR SYS INVALID RFQUFEST
B17 POSFRR_SYS_DFEVICE_QFFI INH
B37 POSFRR_SYS SFRVICE_NQOT_AVAIl ARI H

Chapter 19. PoslOCtl() Requests 19-13

PoslOCtl() Requests

created on October 2, 2001

POS_KBD_SET_NUM_LOCK_ON

Description

This request sets the state of the Num Lock to on.

This request can be issued after opening and acquiring the device.

Notes:

1.

Error Codes

19-14

If th
301
303
315
316
317
337

This request is supported by the alphanumeric point-of-sale keyboards. All other
keyboards ignore this request.

On OS/2, for the alphanumeric point-of-sale keyboards attached to the system
keyboard port, this request results in a Category 4 Function 53H DosDevIOCtl()
call. For Presentation Manager applications, the 53H DosDevIOCtl() changes
only the state and not the keyboard indicator light. Presentation Manager
programs should consider using the WinSetKeyboardStateTable() subroutine call
to set the keyboard state.

e PasIOCH() subroutine fails, errno is set to one of the following:

Bo1 POSFRR SYS QS FRROR
B03 POSFRR SYS INVAIID DESCRIPTOR
B15 POSFRR SYS NOT ACQUIRFEN

B17 POSERR_SYS DEVICE_QFFELINH
RB37 POSFRR_SYS SFRVICE_NQOT_AVAIl ARI H

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

PoslOCtl() Requests

POS_KBD_SET_SCROLL_LOCK_OFF

Description

Error Codes

This request sets the state of the Scroll Lock to off.

This request can be issued after opening and acquiring the device.

Notes:

1.

If th
301
303
315
316
317
337

This request is supported by the alphanumeric point-of-sale keyboards. All other
keyboards ignore this request.

On OS/2, for the alphanumeric point-of-sale keyboards attached to the system
keyboard port, this request results in a Category 4 Function 53H DosDevIOCtl()
call. For Presentation Manager applications, the 53H DosDevIOCtl() changes
only the state and not the keyboard indicator light. Presentation Manager
programs should consider using the WinSetKeyboardStateTable() subroutine call
to set the keyboard state.

e BaslOCHY) subroutine fails, ermo is set to one of the following:
Bo1 POSFRR SYS QS FRROR
B03 POSFRR SYS INVAIID DESCRIPTOH
B15 POSFRR SYS NOT ACQUIREN
B16 POSFRR SYS INVALID RFQUFEST
B17 POSFRR_SYS_DFEVICE_QFFI INH
B37 POSFRR_SYS SFRVICE_NQOT_AVAIl ARI H

Chapter 19. PoslOCtl() Requests 19-15

PoslOCtl() Requests

created on October 2, 2001

POS_KBD_SET_SCROLL_LOCK_ON

Description

This request sets the state of the Scroll Lock to on.

This request can be issued after opening and acquiring the device.

Notes:

1.

Error Codes

19-16

If th
301
303
315
316
317
337

This request is supported by the alphanumeric point-of-sale keyboards. All other
keyboards ignore this request.

On OS/2, for the alphanumeric point-of-sale keyboards attached to the system
keyboard port, this request results in a Category 4 Function 53H DosDevIOCtl()
call. For Presentation Manager applications, the 53H DosDevIOCtl() changes
only the state and not the keyboard indicator light. Presentation Manager
programs should consider using the WinSetKeyboardStateTable() subroutine call
to set the keyboard state.

e PasIOCH() subroutine fails, errno is set to one of the following:

Bo1 POSFRR SYS QS FRROR
B03 POSFRR SYS INVAIID DESCRIPTOR
B15 POSFRR SYS NOT ACQUIRFEN

B17 POSERR_SYS DEVICE_QFFELINH
RB37 POSFRR_SYS SFRVICE_NQOT_AVAIl ARI H

Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 PoslOCtl() Requests

POS_KBD_SET_TYPEMATIC_OFF

Description
This request turns off the typematic function of the keyboard.

This request is ignored by the 50-Key Modifiable Layout Keyboard and the 50-Key
Modifiable Layout Keyboard/Operator Display. All other keyboards support this
request.

Error Codes

If the Enel(')f?ﬂ(l subroutine fails, errno is set to one of the following:
301 B01 POSERR_SYS

303 B03 POSERR_SYS INVALID DESCRIPTOH
315 B15 POSERR SYS NOT ACQUIRED

316 B16 POSERR SYS INVALID REQUEST

317 B17 POSERR SYS DEVICE QFFLINH

337 B37 POSFRR SYS SFRVICE NOT AVAII ABIH

Chapter 19. PoslOCtl() Requests 19-17

PoslOCtl() Requests created on October 2, 2001

POS_KBD_SET_TYPEMATIC_ON

Description
This request turns on the typematic function of the keyboard.

This request is ignored by the 50-Key Modifiable Layout Keyboard and the 50-Key
Modifiable Layout Keyboard/Operator Display. All other keyboards support this
request.

Error Codes

If the Enel(')f?fl(l subroutine fails, errno is set to one of the following:
301 B01 POSERR SYS QS

303 B03 POSERR_SYS INVALID DESCRIPTOR

315 B15 POSERR SYS NOT ACQUIRED

316 B16 POSERR SYS INVALID REQUEST

317 B17 POSERR _SYS DEVICE_QFFELINH

337 B37 POSFRR SYS SFRVICE NOT AVAII ABIH

19-18 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

PoslOCtl() Requests

POS_KBD_SILENCE_TONE

Description

This request turns off the internal speaker of the keyboard.

For the PLU Keyboard/Display-lll and Keyboard-V, the POS_KBD_SILENCE_TONE
request can be used to turn off the tone only if the PosNtoneDuration resource is
set to PosON, which means “on until turned off.”

This request can be issued after opening and acquiring the device.

Error Codes

If the Bnelﬂf?ﬂ(l subroutine fails, errno is set to one of the following:

301
303
315
316
317
337

B01 POSERR_SYS QS ERRQOR
B03 POSERR_SYS INVALID DESCRIPTOH

B15 PQSERR_SYS NOT ACQUIRED

B16 POSERR_SYS INVALID REQUEST

B17 POSERR_SYS DEVICE QFFLINH

B37 POSERR SYS SFRVICE NOT AVAII ARIH

Chapter 19. PoslOCtl() Requests 19-19

PoslOCtl() Requests created on October 2, 2001

POS_KBD_SOUND_TONE

Description

This request turns on the internal speaker of the keyboard.

This request can be issued after opening and acquiring the device.

Resources Used

Error Codes

The frequency, duration, and volume of the tone are determined by the value of the
resources listed in the following list.

+ PosNtaneDuration
+ PosNtoneVolume

These resource values can be specified by your application by using the args and
nargs parameters on this request, on the PQS_SYS_SET VAL UES
request, or on the subroutine. If your application does not

specify a resource value, the value set in the resource file is used. See
m for details of the individual resources.

If the Encl()ml(l subroutine fails, errno is set to one of the following:
301 BO1 POSFRR _SYS QS FRROR

303
315 B15POSFRR _SYS NOT ACQUIRFN

316 B16 POSFRR_SYS INVAIID RFQUFST

317 B17 POSERR_SYS DEVICE_QFFLINH

337 B37 POSFRR_SYS SFRVICE_NOT AVAII ABLH

19-20 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 PoslOCtl() Requests

POS_POWER_OFF

Description

Error Codes

This request can be used to turn off the power supply to any of the following
point-of-sale terminals:

* |IBM 4693-2x2

* |IBM 4693-3x1

* |IBM 4693-4x1

* |IBM 4693-5x1

* IBM 4693-7x1

In the preceding list, “x” can be a number or alphabetic character.

This request can be issued after opening and acquiring the device.

Notes:

1. The programmable power device is supported by the IBM Point of Sale
Subsystem for Windows on the Microsoft Windows on 4693 2x2 machines only.

2. This request is not supported on IBM Point of Sale Subsystem for Linux.

If the Bnelnﬂfl(l subroutine fails, errno is set to one of the following:
301 B01 POSERR_SYS QS ERROR

303 B03 POSERR_SYS_INVALID DESCRIPTOH

315 B15 POSEFRR_SYS_NOT ACQUIRED

316 R16 POSFRR_SYS_INVAIID_RFQUEST

317 B1Z PQSFRR _SYS DFVICF _QFFLINH

337 B37 POSFRR_SYS SFRVICE_NOT_AVAIl ARI H

Chapter 19. PoslOCtl() Requests 19-21

PoslOCtl() Requests created on October 2, 2001

POS_POWER_ON

Description

This request can be used to turn on the power supply to the IBM 4693-2x2
point-of-sale terminal, where “x” can be a number or alphabetic character.

This request can be issued after opening and acquiring the device.

Note: This request is not supported on IBM Point of Sale Subsystem for Linux.

Error Codes
If the Enelf)f?ﬂ(l subroutine fails, errno is set to one of the following:

301 B01 POSERR_SYS QS FRROR

303 B03 POSERR_SYS INVALID DESCRIPTQOR
315 B15 POSERR SYS NOT ACQUIRED

316 BR16 POSERR SYS INVALID REQUEST

317 B17 POSERR SYS DEVICE QFFLINH

337 B37 POSFRR SYS SFRVICE NOT AVAII ABI H

19-22 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 PoslOCtl() Requests

POS_POWER_SET_ALARM

Description

This request can be used to set the day of month and time of day that power is to
be restored to the following point-of-sale terminals:

* IBM 4693-3x1

* IBM 4693-4x1

* IBM 4693-5x1

* IBM 4693-7x1

In the preceding list, “x” can be a number or alphabetic character.
This request can be issued only after opening and acquiring the device.

Note: This request is only supported on OS/2.

Resources Used

PosNpowerAlarm is the only resource used by the PQS_POQWER_SET_Al ARM
request.

See Chapter 21 Resource Setd for details of the individual resources.

Error Codes

If the EnclOCﬂ(l subroutine fails, errno is set to one of the following:
301 BR01 POSFRR_SYS_QOS_FRROR

303 B03 POSEFRR_SYS_INVALID DESCRIPTOH

315 B15 POSFRR _SYS NOT ACQUIREN

316 B16 POSFRR_SYS_INVAIID REQUEST

317 B17 POSFRR_SYS DEVICE_QFFI INH

337 B37 POSFRR_SYS_SFRVICE_NQT_AVAII ABI H

6401 B401 POSFRR_POWFR_INVALID_DAM

6402 B402 POSFRR_POWER_INVALID_HOUR

6403 B403 POSFRR POWFR_INVAIID_MINUTES

Chapter 19. PoslOCtI() Requests 19-23

PoslOCtl() Requests created on October 2, 2001

POS_PRN_DEFINE_CHARACTERS

Description

Error Codes

This request defines characters with the values that are listed in the PosArg and
that are passed as the args parameter on the lm subroutine.

Important: For the IBM 4689-00x printers, when this request is issued, all previous
user-defined characters (UDC) will be discarded. Only the characters
defined with this request will be available for your application to use
after this request successfully completes.

To define a character, the application using the printer must be using a DBCS code
page, the two-byte character code must be pointed to by the name member of the
PosArg structure and the character data must be pointed to by the value member.

For the 4689-001, the allowed double-byte character code range is 0x8140 through
0xFC4B and a maximum of 128 characters can be defined. In 25 CPL mode, the
character definition data must be 42 bytes in length. In 30 CPL mode, the character
definition data must be 34 bytes in length.

For the 4689-002, the allowed double-byte character code range is 0xA1A1 through
OxFDFE, the character definition data must be 42 bytes in length, and a maximum
of 128 characters can be defined.

For the 4689-3x1, the allowed double-byte character code range is 0x8000 through
0x9FFF and OxEQ00 through OxFFFF, the character definition data must be 72
bytes in length and preceded by the two-byte character code, and a maximum of 64
characters can be defined. Only normal font character (32 CPL mode) can be
defined.

For the new 4689-TD5, the allowed double-byte character code range is 0x8100
through OxFFFE.

This request can be issued after opening and acquiring the device.

Note: This request is supported only on the IBM 4689-001, the IBM 4689-002, and
the IBM 4689-3x1 and 4689-TD5 printers.

If the PasIOCH() subroutine fails, ermo is set to one of the following:
301 BO1POSERR SYS QS ERROA

303 B03 PQOSERR_SYS INVALID DESCRIPTQOR

315 B15 POSERR_SYS NOT ACQUIRED

316 B16 POSERR_SYS INVALID REQUEST

317 B1Z PQSERR_SYS DEVICE QFFLINH

334 B34 POSERR_SYS INVALID ADDRESS

337 B37 POSERR SYS SERVICE _NOT AVAILABLH
4916 k916 POSERR PRN UUDC_CHARACTER_EXISTS

19-24 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 PoslOCtl() Requests

POS_PRN_DISABLE_DI_PRINTING

Description
This request is required in order to print data at the CR or SJ station.

If the DI station is disabled, the printer device handler prints only at the CR or SJ
stations. Any data sent to the DI station is queued. When the DI station is disabled,
any queued CR or SJ data is printed.

This request can be issued after opening and acquiring the device.

Notes:
1. This request is not supported on the IBM 4689 Model 3x1 and TD5 printers.

2. On the USB version of the IBM 4610 SureMark Point of Sale Fiscal printers, this
request is ignored. Fiscal printing is always enabled.

Error Codes

If the EnclOCﬂ(l subroutine fails, errno is set to one of the following:
301 B01 POSERR SYS QS FRROR

303 BO3 POSFRR SYS INVAILID DESCRIPTOR

315 BRB15 POSFRR SYS NOT ACQUIRFN

316 B16 POSFRR SYS INVAIID RFQUEST

317 B17 POSFRR SYS DFEVICE QFFI INH

337 B37 POSFRR SYS SFRVICE NOT AVAII ARI H

Chapter 19. PoslOCtl() Requests 19-25

PoslOCtl() Requests created on October 2, 2001

POS_PRN_DISABLE_FISCAL_PRINTING

Description

This request is required in order to print non-fiscal data. If fiscal printing is disabled,
all fiscal commands sent to the printer device handler are queued and any queued
non-fiscal data is printed.

This request can be issued after opening and acquiring the device.

Notes:
1. This request is available only on the fiscal printer.

2. On the USB versions of the IBM 4610 SureMark Point of Sale Fiscal printers,
this request is ignored. Fiscal printing is always enabled.

Error Codes

If the Enclf)f?ﬂ(l subroutine fails, errno is set to one of the following:
301 B01 POSFRR SYS QS FRROR

303 B03 POSERR_SYS INVALID DESCRIPTOR

315 BRB15 POSFRR SYS NOT ACQUIREN

316 B16 POSFRR SYS INVAIID REQUEST

317 B17 POSFRR SYS DFEVICE QFFI INH

337 B37 POSFRR SYS SFRVICE NQT AVAII ARIH

19-26 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

PoslOCtl() Requests

POS_PRN_DISCARD_DATA

Description

This request is required in order to discard any queued data after an unrecoverable
printer error or after a fiscal command error. The queued data can also be
discarded at any time.

This request can be issued after opening and acquiring the device.

Error Codes

If the Enel(')f?ﬂ(l subroutine fails, errno is set to one of the following:

301
303
315
316
317
337

B01 POSERR_SYS QS

B03 POSERR_SYS INVALID DESCRIPTOH
B15 POQSERR_SYS NOT ACQUIRED

B16 POSERR_SYS INVALID REQUEST

B17 POSERR_SYS DEVICE QFFLINH

B37 POSERR_SYS SERVICE NOT AVAILARLH

Chapter 19. PoslOCtl() Requests 19-27

PoslOCtl() Requests created on October 2, 2001

POS_PRN_ENABLE_DI_PRINTING

Description

Error Codes

This request is required in order to print data on the inserted document.

If the DI station is enabled, the printer device handler prints only at the DI station.
Any data sent to the CR or SJ stations is queued. When the DI station is enabled,
any queued DI data is printed.

This request can be issued after opening and acquiring the device.

Notes:
1. This request is not supported on the IBM 4689 Model 3x1 and TD5 printers.

2. On the USB versions of the IBM 4610 SureMark Point of Sale Fiscal printers,
this request is ignored. Fiscal printing is always enabled.

If the PaslOCtlf) subroutine fails, errno is set to one of the following:
301 Bo1 POSERR _SYS QS FRROR

303 BO3 POSFRR SYS INVALID DESCRIPTOR

315 B15 POSFRR SYS NOT ACQUIRFN

316 B16 POSFRR SYS INVAIID RFQUFEST

317 B1Z POSFRR_SYS DEVICE_QFFL INH

337 B37 POSFRR SYS SFRVICE NOT AVAII ARIH

19-28 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 PoslOCtl() Requests

POS_PRN_ENABLE_FISCAL_PRINTING

Description

Error Codes

This request is required in order to print fiscal commands.

If fiscal printing is enabled, the printer device handler prints only fiscal commands.
Any non-fiscal data is queued. When fiscal printing is enabled, any queued fiscal
commands are printed.

This request can be issued after opening and acquiring the device.

Notes:
1. This request is available only on the fiscal printer.

2. For the USB versions of the IBM 4610 SureMark Point of Sale Fiscal printers,
fiscal printing is always enabled.

If the PaslOCtlf) subroutine fails, errno is set to one of the following:
301 B01 POSERR SYS QS FRROR

303 BO3 POSFRR SYS INVAILID DESCRIPTOR

315 BRB15 POSFRR SYS NOT ACQUIRFN

316 B16 POSFRR SYS INVAIID RFQUEST

317 B17 POSFRR SYS DFEVICE QFFI INH

337 B37 POSFRR SYS SFRVICE NOT AVAII ARI H

Chapter 19. PoslOCtl() Requests 19-29

PoslOCtl() Requests created on October 2, 2001

POS_PRN_RESET_PRINTER

Description
This request issues a power-on reset command to the printer.

This request can be issued after opening and acquiring the device.

Error Codes

If the m subroutine fails, errno is set to one of the following:
301 B01 POSERR_SYS QS _ERROR

303 B03 POSERR_SYS INVALID DESCRIPTOR
315 B15 POSERR_SYS NOT ACQUIRED

316 B16 POSERR_SYS INVALID REQUEST

317 B17 POSERR _SYS DEVICE QFELINH

337 B37 POSERR_SYS SFRVICE NOT AVAILABLH

19-30 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 PoslOCtl() Requests

POS_PRN_HOLD_PRINTING

Description

This request tells the printer to hold the print buffer, so that all commands can be
sent to printer as one command string.

This request can be issued after opening and acquiring the device.

Note: This request is not supported on the USB versions of the IBM 4610
SureMark Point of Sale Fiscal printers.

Error Codes
If the Bnelﬂf?ﬂ(l subroutine fails, errno is set to one of the following:

301 B01 POSFRR SYS QS FRROR

303 B03 POSERR_SYS INVALID DESCRIPTOH
315 BRB15 POSERR SYS NOT ACQUIRED

316 BR16 POSERR SYS INVALID REQUEST

317 B17 POSERR SYS DEVICE QFFLINH

337 BR37 POSFRR SYS SFERVICE NQT AVAII ABLH

Chapter 19. PoslOCtl() Requests 19-31

PoslOCtl() Requests created on October 2, 2001

POS_PRN_RELEASE_PRINTING

Description

This request tells the printer to execute the commands that were previously
buffered with PQS_PRN_HQLD PRINTING

This request can be issued after opening and acquiring the device.

Note: This request is not supported on the USB versions of the IBM 4610
SureMark Point of Sale Fiscal printers.

Error Codes

If the Enelf)f?ﬂ(l subroutine fails, errno is set to one of the following:
301 Bo1 POSEFRR SYS QS FRROR

303 B03 POSERR_SYS INVALID DESCRIPTOR

315 BRB15 POSERR SYS NOT ACQUIRED

316 BR16 POSERR SYS INVALID REQUEST

317 B17 POSEFRR SYS DEVICE QFFELINH

337 BR37 POSFRR SYS SERVICE NQT AVAII ABLH

19-32 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 PoslOCtl() Requests

POS_PRN_RESUME_PRINTING

Description

This request is required in order to resume printing, after a printer error occurs,
without retrying the error lines.

The printer device handler stops printing if an error occurs, and sends the event
message POQSM_PRN_PRINTER_ERRQH. See page

lPQSM_PRN_PRINTER_ERRQR” on page 20-11l for a definition of this message.

Typically, the application instructs the user to correct the error. The user signals the
application with a key stroke when the printer is ready again. The application must
issue a resume printing request to start printing again. The resume printing request
causes the printer device handler to skip the line or lines that failed. Data might be
lost as a result.

This request can be issued after opening and acquiring the device.

Resources Used

Error Codes

ing is the only resource used by the
POS_PRN_RESUME_PRINTING request.

See Chapter 21 Resource Setd for details of the individual resources.

If the EncIOCﬂ(I subroutine fails, errno is set to one of the following:
301 B01 POSEBR_SYS QS ERROR

303 B03 POSFRR_SYS_INVAIID DESCRIPTOR

315 B15 POSFRR_SYS NOT ACQUIRED

316 B16 POSFRR_SYS_INVAIID REQUEST

317 B17 POSFRR_SYS_DEVICE_QFFI INH

337 B37 POSFRR_SYS_SFRVICE_NOT_AVAII ABI H

Chapter 19. PoslOCtI() Requests 19-33

PoslOCtl() Requests created on October 2, 2001

POS_PRN_RETRY_PRINTING

Description

This request is required in order to retry printing after a printer error.

The printer device handler stops printing if an error occurs, and sends the event
message PQSM_PRN_PRINTER_ERRQH. See page
lPQSM_PRN_PRINTER_ERRQR” on page 20-11 for a definition of this event

message.

Typically, the application instructs the user to correct the error. The user signals the
application with a key stroke when the printer is ready again. The application must
issue a retry printing request to start printing again.

The PQS_PRN_RETRY_PRINTING request causes the printer device handler to
reprint the line or lines that failed. The overlay string will only be printed if an error
occurred during a command that prints data, and the printer device handler has
sent the command to the printer. No data is lost. There is a chance of duplicate
lines in the SJ station, but they are overlayed with the overlay string supplied by the
application. In the customer receipt station, the error line is followed immediately by
the correct line. The reprinted line is overlayed with the overlay string.

Note: On the IBM 4610 printers, only the first character from the overlay string is
used on a retry. This character will be printed only if the retry is for a line that
has a home error. In all other instances the line will be printed without the
overlay character in the first position.

This request can be issued after opening and acquiring the device.

Resources Used

Error Codes

PasNretryString is the only resource used by the POS_PRN_RFTRY_PRINTING
request.

See Chapter 21, Resource Setd for details of the individual resources.

If the PasIOCH() subroutine fails, ermo is set to one of the following:
301 B01 POSFRR_SYS_QOS_FRROR
303 B03 POSERR_SYS_INVALID_DESCRIPTOR

315 B15 POSERR SYS _NOT ACQUIRED
316 B16 POSERR_SYS INVALID REQUEST

317 B1ZPQSERR_SYS DEVICE QFFLINH
337 B37 POSERR_SYS SERVICE _NOT _AVAILABLH

19-34 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 PoslOCtl() Requests

POS_PRN_SILENCE_TONE

Description
This request turns off the internal speaker of the printer.

This request can be issued after opening and acquiring the device.

Note: This request is available only on the Single Station SureMark printers (TF6,
TM6, TF7, TM7).

Error Codes
If the Enelﬂf?ﬂ(l subroutine fails, errno is set to one of the following:

301 B01 POSERR_SYS QS FRROR

303 B03 POSERR_SYS INVALID DESCRIPTOH
315 B15 POSERR SYS NOT ACQUIRED

316 BR16 POSERR SYS INVALID REQUEST

317 B17 POSERR SYS DEVICE QFFLINH

337 B37 POSFRR SYS SFRVICE NOT AVAII ABIH

Chapter 19. PoslOCtI() Requests 19-35

PoslOCtl() Requests created on October 2, 2001

POS_PRN_SOUND_TONE

Description

This request turns on the internal speaker of the printer.
This request can be issued after opening and acquiring the device.

Note: This request is available only on the Single Station SureMark printers (TF86,
TM6, TF7, TM7).

Resources Used

Error Codes

The frequency, duration, and volume of the tone are determined by the value of the
following resources:

+ PasNpriniToneFrequency

* PosNprintToneVolumd

+ PosNprintToneOctavd

+ PosNprintToneNote

These resource values can be sEecified by your application by using the args and

nargs parameters on this request, on the PQS_SYS_SFT VAI UES

request, on the IPasQpen(] call, or in the resource file for the
applications. . See Chapter 21 Resource Setd for details of the individual
resources.

If the EOQIOCH(I subroutine fails, errno is set to one of the following:
301 Bo1 POSFRR_SYS QS FRROR

303
315 B15 POSFRR_SYS NOT ACQUIRED

316 B16 POSFRR_SYS_INVAIID REQUEST]

317 B17 POSFRR_SYS_DFVICE_QFFI INH

337 B37 POSFRR_SYS_SFRVICE_NQT_AVAII ABI H
4922 %922 POSFRR_PRN_INVAIID_TONF_VOI UMH
4923 %923 POSFRR_PRN_INVAIID_TONF_DURATION
4924 #4924 POSFRR_PRN_INVAI ID_TONF_NOTH

4925 #4925 POSFRR_PRBN_INVAIID_TONF_QCTAVH
4926 #4926 POSFRR_PRN_INVAIID_TONF_FRFQUEFNCY

19-36 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 PoslOCtl() Requests

POS_RS232 SEND_BREAK

Description

Error Codes

This request sends a break signal to the receiving RS-232C port.

The RS-232C hardware on IBM point-of-sale hardware only returns an incoming
break signal to the application if it is followed by at least 1 byte of data. Two
messages are then received on the input queue. One indicates that data is
available, and the other indicates that a break has been detected. The break signal
sent by this w request is sent immediately, regardless of whether it is
followed by any data.

This request can be issued after opening and acquiring the device.

Note: This request is not supported on IBM Point of Sale Subsystem for Linux.

If the EnclOCﬂ(l subroutine fails, errno is set to one of the following:
301 B01 POSERR SYS QS FRROR

303 BO3 POSFRR SYS INVAILID DESCRIPTOR

315 BRB15 POSFRR SYS NOT ACQUIRFN

316 B16 POSFRR SYS INVAIID RFQUEST

317 B17 POSFRR SYS DFEVICE QFFI INH

337 B37 POSFRR SYS SFRVICE NOT AVAII ARI H

Chapter 19. PoslOCtl() Requests 19-37

PoslOCtl() Requests created on October 2, 2001

POS_SCALE_CLEAR_SCREEN

Description

Error Codes

This request causes the scale display to be cleared of any displayed numbers.
When the displayed weight is zero, this request has no effect. When the displayed
weight is not zero, each displayed number is replaced by a blank character but the
decimal point (.) and the units designator (Ib or kg) remain. This request is only
valid when the scale resource is set to PosUK.

This request can be issued after opening and acquiring the device.

This request is supported only by the following scales:
* IBM 4696 Point of Sale Scanner Scale Model 1

* IBM 4698 Point of Sale Scanner Model 2

* IBM USB Scale Interface

Note: The scale device is not supported by the IBM Point of Sale Subsystem for
Windows on the Microsoft Windows 3.1 operating system.

If the BaslOCH() subroutine fails, errno is set to one of the following:

301 Bo1 POSFRR SYS QS FRROR

303 B03 POSFRR_SYS_INVAIID_DESCRIPTOR

315 R15 POSFRR_SYS NOT_ACQUIREN

316 R16 POSFRR_SYS_INVAIID_RFQUFEST

317 B17 POSFRR_SYS_DFVICF_OFFI INF

329 B29 POSFRR_SYS TIMFQUT

337 B37 POSFRR_SYS SFRVICF NOT_AVAII ABIH

6208 £208 POSFRR_SCAIF_INVAIID_ClI FAR_SCRFEN RFQUEST

19-38 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 PoslOCtl() Requests

POS_SCALE_ZERO_SCALE

Description

Error Codes

This request causes the scale to zero itself. The scale will attempt to correlate the
current weight reading with a “no-load” scale condition. If an item weighing less
than approximately 0.6 pounds (or less than approximately 0.295 kilograms) is on
the weighing surface when this request is issued, the request will complete
successfully, causing the scale to register a negative weight when the weighing
surface is empty.

This request can be issued after opening and acquiring the device.

This request is supported only by the following scales:
* IBM 4696 Point of Sale Scanner Scale Model 1

* IBM 4698 Point of Sale Scanner Model 2

* IBM USB Scale Interface

Note: The scale device is not supported by the IBM Point of Sale Subsystem for
Windows on the Microsoft Windows 3.1 operating system.

If the Bnelnﬂfl(l subroutine fails, errno is set to one of the following:
301 B01 POSERR_SYS QS ERROR

303 B03 POSFRR_SYS_INVAIID DESCRIPTOH

315 B15 POSEFRR_SYS_NOT ACQUIRED

316 R16 POSFRR_SYS_INVAIID_RFQUEST

317 B17 POSFRR_SYS_DFVICF_QFFI INH

337 B37 POSFRR SYS SFRVICF_NQOT AVAII ABIH

6207 6207 POSFRR_SCAIF_ZFRQ _SCAIF_FAIFD

Chapter 19. PoslOCtl() Requests 19-39

PoslOCtl() Requests created on October 2, 2001

POS_SCAN_DISCARD_DATA

Description

Error Codes

This request discards any queued bar codes that have not been read by the
application. Only those bar codes that belong to the application that issues this
request are discarded. This request should be used with caution, because the
scanner operator might assume that the scanned items (represented by the bar
codes in the queue) have been processed by the application.

Bar codes that are received from the scanner device belong to the application that
has the scanner device acquired. Some scanners successfully read bar codes even
when the scanner device is not acquired by any application. Any bar codes received
from the scanner while the device is not acquired are identified as unexpected data.
The POS_SCAN_UNEXPECTED_DATA flag in the Flags field of the scanner data
buffer is set. These bar codes belong to the next application to acquire the scanner
device.

As a result, bar codes might already be queued for an application at the time the
scanner device is acquired. Prior to unlocking the scanner device, the application
can either read each queued bar code, checking for
POS_SCAN_UNEXPECTED_DATA in the Flags field, or it can issue this request to
discard all of its queued bar codes.

Note: POS_SCAN_UNEXPECTED_DATA is also used to identify bar codes
received while the scanner device is acquired but locked. Any bar codes
queued after the application acquires the scanner device but before the
application unlocks the scanner device will also be marked as unexpected
data.

See [Beading Scanner Data” on page 16-4 and [Pracessing Unexpected Scannet
Data” on page 16-9 for more information.

This request can be issued after opening and acquiring the device.

If this request is issued when there are no bar codes queued, the request has no
effect and no error is returned.

If the PasIOCH() subroutine fails, ermo is set to one of the following:

301 B01 POSERR_SYS_OS_FRROR
303 B0O3POSERR SYS INVALID DESCRIPTOR

316 B16 PQSERR_SYS INVALID REQUEST
337 B37 POSERR_SYS SERVICE _NOT _AVAILABLH

19-40 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 PoslOCtl() Requests

POS_SYS_ACQUIRE_DEVICE

Description

Error Codes

This request gives the specified device descriptor exclusive use of the device
associated with the device descriptor. The devdes parameter of the
subroutine specifies the device descriptor.

The device descriptor can be used by any thread in the process that opened the
device to issue any IBM Point of Sale Subsystem subroutine call. The success of
the subroutine call depends on how well the separate threads sequence the IBM
Point of Sale Subsystem subroutine calls.

For example, assume a process has two threads, {71 and t2:

1. Thread t1 issues the BQS_SYS_ACQUIRE_DEVICH [PaslQCt(] for a cash

drawer, using the appropriate device descriptor.

2. Thread t2 successfully issues PQS_TIL 1 _QPEN_TII Ul [PosIQCH(], using the
same device descriptor.

3. Thread t1 issues the PQS_SYS REI EASE_DEVICH [PaslQCtl) for the same
device descriptor.

4. Thread t2 attempts to issue PQS_TIL | _OPEN_TII I||PaslOCH(} with the same
device descriptor. This request fails because t71 has released the device
descriptor for the cash drawer.

If any thread in the process has already acquired a device by a specific device
descriptor, any subsequent POS_SYS_ACQUIRE_DEVICE request using the same
device descriptor fails with an error code of
POSERR_SYS_ALREADY_ACQUIRED.

If the device is already acquired by a different device descriptor than the requested
device descriptor, the request fails with an error code of
POSERR_SYS_ACQUIRED_BY_OTHER.

When the device is released by the application that currently has it acquired, the
_ _ _ event message is sent to the message queue
that was specified on the PasOpen(] subroutine call for that device.

The only PaslOCHI[} requests that are valid prior to a device being acquired are
POS_SYS_SFT_VAI UFS and POS_SYS_GFT_VAI UEFS.

This request can be issued after opening the device.

If the m subroutine fails, errno is set to one of the following:
301 B01 POSERR_SYS QS ERROR

303 B03 POSERR_SYS INVALID DESCRIPTOH
313 B13 POSERR _SYS ACQUIRED BY QTHER
314 B14 POSFRR SYS ALRFADY ACQUIRED

316 B16 POSERR_SYS INVALID REQUEST

337 B37 POSERR_SYS SFRVICE NOT AVAILABLH

Chapter 19. PoslOCtl() Requests 19-41

POS _SYS GET _VALUES created on October 2, 2001
POS_SYS_ GET_VALUES

Description

This request retrieves the values for the resources that are listed in the PosArgPtr
structure and that are passed as the args parameter on the m subroutine.

This request can be issued after opening the device.

Resources Used

This request accepts all resources that have an access code of “G” (gettable),
described in hhnpmr 21_Resource Setd

See Chapter 21 _Resaurce Setd for details of the individual resources.

Error Codes

If the Enclf)f?ﬂ(l subroutine fails, errno is set to one of the following:
301 Bo1 POSFRR SYS QS FRROR

303 BO3 POSERR SYS INVALID DESCRIPTOR

316 BRB16 POSFRR SYS INVALID REQUEST

337 B37 POSFRR SYS SFRVICE NOT AVAII ABLH

19-42 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

POS_SYS_GET_VALUES

POS_SYS_LOCK_DEVICE

Description

This request inhibits input from the device specified by the device descriptor.

This request can be issued after opening and acquiring the device. If this request is
issued when the device is already locked, the request has no effect and no error is
returned.

Error Codes

If the Enel(')f?ﬂ(l subroutine fails, errno is set to one of the following:

301
303
315
316
317
337

B01 POSERR_SYS QS

B03 POSERR_SYS INVALID DESCRIPTOH
B15 POQSERR_SYS NOT ACQUIRED

B16 POSERR_SYS INVALID REQUEST

B17 POSERR_SYS DEVICE QFFLINH

B37 POSERR_SYS SERVICE NOT AVAILARLH

Chapter 19. PoslOCtl() Requests 19-43

POS _SYS GET _VALUES created on October 2, 2001
POS_SYS RELEASE_DEVICE

Description

This request causes the specified device descriptor to relinquish exclusive control of
the device.

Control of the device is released after the current unit of work for the device is
complete. The devdes parameter of the m subroutine specifies the device
descriptor.

This request can be issued after opening and acquiring the device.

If the device descriptor has not acquired its associated device, the m
subroutine fails with an error code of POSERR_SYS_NOT_ACQUIRED.

Error Codes
If the Enclf)f?fl(l subroutine fails, errno is set to one of the following:

301 Bo1 POSFRR SYS QS FRROR

303 BO3 POSERR SYS INVALID DESCRIPTOR
315 BRB15 POSFRR SYS NOT ACQUIRFN

316 B16 POSFRR SYS INVAIID RFQUEST

337 B37 POSFRR SYS SFRVICF NOT AVAII ABRI H

19-44 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 POS _SYS SET VALUES

POS_SYS_SET VALUES

Description

This request sets the resources with the values that are listed in the PosArgPtr
structure and that are passed as the args parameter on the m subroutine.

Important: Resource names that are not recognized by the device handler are
ignored. This allows a single argument list for different types of devices,
because each device handler ignores what it does not recognize. If any
of the recognized resource name values are not valid, no resource is
changed.

This request can be issued after opening the device.

Resources Used

Error Codes

This request accepts all resources that have an access code of “S” (setable),
described in IChapter 21 _Resaurce Setd

See Chapter 21 Resource Setd for details of the individual resources.

If the Enel(?f?ﬂ(l subroutine fails, errno is set to one of the following:
301 BR01 POSFRR_SYS_QOS_FRROR

303 BR03 POSFRR_SYS_INVAIID DESCRIPTOH

316 B16 POSFRR SYS INVAIID RFQUFEST

317 B17 POSFRR _SYS DFVICE_QFFI INH

337 RB37 POSFRR_SYS SFRVICF NOT_ AVAII ABIH
4401 K401 POSFRR DSP INVAIID CURSOR

4402 1402 POSFRR DSP_INVAIID MODH

4403 K403 POSFRR_DSP_INVAIID SI7ZH

4404 U404 POSFRR_DSP_UNSUPPORTED BITMAH
4405 K405 POSFRR_DSP_BAD_BITMAH

4102 K102 POSFRR_NVRAM_INVAIID_CURSOR

4701 #4701 POSFRR KBD_INVAIID FREQUENCY

4702 K702 POSFRR_KBD_INVAIID DURATION

4703 K703 POSFRR_KBD_INVAIID_VOI UMH

4708 K708 POSFRR_KBD_INVAIID_KEYBOARD_CIICK
4901 K901 POSFRR_PRN_INVAIID_DI_WIDTH

4902 K902 POSFRR_PRN_INVAI ID_INTERI FAVED_VAI UH
4903 14903 POSFRR PRN_INVALID HEAD_PARKED_POSITION
4904 [9o04 POSERR PRN_INVALID STATION

4905 4905 PQSERR PRN_INVALID MQDH

4906 4906 POSERR PRN_INVALID CR_LF DISTANCH
4907 4907 POSERR PRN_INVALID SJ LF_DISTANCH
4908 4908 POSERR PRN_INVALID DI LF _DISTANCH
4909 4909 POSERR PRN_INVALID FEED DIRECTION
4910 4910 POSERR PRN_INVALID FISCAL _NQTIFY
4911 4911 POSERR PRN _INVALID DI ORIENTATION
4912 4912 POSERR PRN INVALID | EFT MARGIN CH
4913 4913 POSERR PRN INVALID PRINT ALIGNMENT
4927 1927 POSERR PRN INVAIID CODE_PAGH

5401 b401 POSFRR CDR_INVAIID PUI SE_WIDTH
5706 5706 POSERR _SCAN_INVALID BEEP_STATH

5735 E735 POSERR_SCAN_INVALID QUEUE_ALL_INDICATOHR

Chapter 19. PoslOCt() Requests 19-45

POS SYS SET VALUES created on October 2, 2001

6701 bBz01 POSEFRR_TOQUCH_INVAIID_BACKIIGHT ON
6702 B702 POSERR_TOUCH_INVALID_CLICK_VOLUMH
6703 B703 POSFRR_TOQUCH_INVAIID_CONTRAST

6704 B704 POSERR_TQUCH_INVAIID_ENTRY_CILICK

6705 bBZ05 POQSERR TQUCH INVALID EXIT CLICK

6706 6706 PQSERR TQUCH INVALID MQDH

6707 6707 PQSERR TQUCH INVALID SCREEN SAVER TIMH
6708 6708 PQSERR _TQUCH INVALID TONE_DURATION
6709 6709 PQSERR TQUCH INVALID TONE _EREQUENCY
6710 6710 PQSERR_TQUCH INVALID TONE_VQLUMH
6711 BZz11 POSERR TQUCH INVALID BRIGHTNESS

19-46 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

POS_SYS_SET_VALUES

POS_SYS_UNLOCK_DEVICE

Description

This request allows input from the device specified by the device descriptor.

This request can be issued after opening and acquiring the device. If this request is
issued when the device is already unlocked, the request has no effect and no error
is returned.

Error Codes

If the Enel(')f?ﬂ(l subroutine fails, errno is set to one of the following:

301
303
315
316
317
337

B01 POSERR_SYS QS

B03 POSERR_SYS INVALID DESCRIPTOH
B15 POQSERR_SYS NOT ACQUIRED

B16 POSERR_SYS INVALID REQUEST

B17 POSERR_SYS DEVICE QFFLINH

B37 POSERR_SYS SERVICE NOT AVAILARLH

Chapter 19. PoslOCtl() Requests 19-47

POS SYS SET VALUES created on October 2, 2001
POS_TILL_OPEN_TILL

Description
This request opens the cash drawer.

This request can be issued after opening and acquiring the device. The cash
drawer must also be online (connected).

Error Codes

If the Enelnf‘ﬂ(l subroutine fails, errno is set to one of the following:
301 B01 POSERR_SYS QS ERROR

303 B03 POSERR_SYS INVALID DESCRIPTOR
315 B15 POSERR _SYS NOT ACQUIRED

316 B16 POSERR SYS INVALID REQUEST

317 B17 POSERR _SYS DEVICE _QFELINH

337 B37 POSFRR_SYS SFRVICE NOT AVAILABIH

19-48 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 POS _SYS SET VALUES

POS_TOUCH_SILENCE_TONE

Description

Error Codes

This request turns off the internal speaker of the touch screen.

The POS_TOUCH_SILENCE_TONE request can be used to turn off the tone only if
the PosNtouchToneDuration resource is set to PosON, which means “on until
turned off.” If the PosNtouchToneDuration is set to anything else, this request is
ignored.

This request can be issued after opening and acquiring the device.

Note: This request is not supported on IBM Point of Sale Subsystem for Linux.

If the Enclf)f?ﬂ(l subroutine fails, errno is set to one of the following:
301 B01 POSFRR SYS QS FRROR

303 B03 POSERR_SYS INVALID DESCRIPTOH

315 BR15 POSERR SYS NOT ACQUIREN

316 BRB16 POSFRR SYS INVAIID REQUEST

317 B17 POSFRR SYS DFVICE QFFI INH

337 B37 POSFRR SYS SFRVICE NQT AVAII ARIH

Chapter 19. PoslOCtl() Requests 19-49

POS SYS SET VALUES created on October 2, 2001
POS_TOUCH_SOUND_TONE

Description
This request turns on the internal speaker of the touch screen.

This request can be issued after opening and acquiring the device.

Note: This request is not supported on IBM Point of Sale Subsystem for Linux.

Resources Used

The frequency, duration, and volume of the tone are determined by the values of
the following resources:

See Chapter 21 _Resaurce Setd for details of the individual resources.

Error Codes

If the PaslQCtlf) subroutine fails, errno is set to one of the following:
301 Bo1 POSFRR SYS QS FRROR

303 RO3 POSFRR_SYS_INVALID DESCRIPTOR

315 B15 POSFRR SYS NOT ACQUIRFD

316 B16 POSFRR SYS INVAIID RFQUFST

317 B1Z PQSFRR _SYS DFVICF _QFFLINH

337 B37 POSFRR_SYS SFRVICE_NOT AVAII ABIH

6708 b5708 POSFRR_TQUCH_INVALID_TONE_DURATION
6709 bB709 POSEFRB_TQUCH_INVALID_TONE_FREQUENCY
6710 b710 POSERB_TQUCH_INVALID_TONE_VOI UMH
6711 B711 POSEFRR_TOUCH_INVAIID_BRIGHTNESS

19-50 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Chapter 20. Event Messages

POSM_KBD_STATUS_CHANGE203
POSM_KBD_WM_CHAR .204
POSM_MSR_DATA_AVAIL.206
POSM_PRN_CHASE_COMPLETE.207
POSM_PRN_DATA_AVAIL.208
POSM_PRN_FISCAL_ ERROR209
POSM_PRN_FISCAL_STATUS20-10
POSM_PRN_PRINTER_ERROR2011
POSM_PRN_STATUS_ CHANGE20-13
POSM_RS232_BREAK_DETECTED20-15
POSM_RS232_DATA_AVAIL20-16
POSM_RS232_XMIT_ABORT2017
POSM_RS232_XMIT_COMPLETE20-18
POSM_SCAN_DATA_AVAIL.2019
POSM_SYS_DEVICE_OFFLINE20-20
POSM_SYS_DEVICE_ONLINE2022
POSM_SYS_DEVICE_RELEASED2024
POSM_TILL_.CLOSED. .2025
POSM_TILL_OPENED. .20-26
POSM_TOUCH_DATA. .2027
WM_CHAR2028

This section lists the event messages received by an application whenever certain
types of asynchronous events occur. These event messages are sent to the
application either by a specific device handler or by the system. The only time an
application receives an event message from a device is when it has that device
acquired. The format of the event message is defined by the structure POSQMSG
in the header file pos.h.

These event messages arrive on the input queue (for example, the Presentation
Manager input queue for OS/2, the window queue for the Microsoft Windows
operating systems, or the IBM Point of Sale Subsystem input queue) of the

application that has the device acquired. See Getting Input Messages” on page 5-3

for more information on the IBM Point of Sale Subsystem input queue.

For each event message, the format of the fields in the mp1 and the mp2
parameters vary based on the operating system you are using and the type of
compiler you compiled your applications with. The IBM Point of Sale Subsystem
supports two versions of the POSQMSG field:

32-bit version All applications use this version when reading from
the IBM Point of Sale Subsystem input queue and
all applications for the IBM Point of Sale Subsystem
for OS/2 use this version.

16-bit version All 16-bit applications for the Microsoft Windows 3.1
operating system and all 32-bit applications for the
Microsoft Windows 3.1 operating system using
Microsoft Win32s.

When reading the format of the mp1 and mp2 fields keep the following in mind:

* The fields within mp1 and mp2 are listed from top to bottom within a /ong (or
short) variable.

© Copyright IBM Corp. 1993, 2001 20-1

Event Messages

created on October 2, 2001

» To extract individual bytes from either mp1 or mp2 use the following:

Top byte (mp1 >> 24) & 0x000000FF
Middle-top byte (mp1 >> 16) & 0x000000FF
Middle-bottom byte (mp1 >> 8) & 0xO00000FF
Bottom byte mp1 & 0xO00000FF

The storage layout in memory will vary amongst different operating systems.
Therefore, you cannot cast the long variable pointer to a char pointer and expect
to get the same results.

Below the format of the POSQMSG fields, you will find a description of the fields
listed in the mp1 and mp2 parameters.

20-2 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

POSM_KBD_STATUS_CHANGE

POSM_KBD_STATUS_CHANGE

Description

This event message is generated when the keyboard status changes.

POSQMSG Fields

Remarks

32-bit version:

mp1
status (unsigned short)
reserved (unsigned char)
devdes (unsigned char)
mp2
extra info (Tong)
16-bit version:
mp1
status (unsigned char)
devdes (unsigned char)
mp2

extra info (Tong)

The details of the fields in mp1 and mp2 are:

status This field indicates the status change that caused this event. The

valid value and its meaning are:
PosKEY_LOCK (0x01)

The manager key lock has changed positions.

devdes This field is set to the device descriptor of the device that generated

the event message.

extra info This field contains additional information concerning the status

change. The value of this field depends on the value of the status

field in mp1.

If the PosKEY_LOCK status flag is set in mp1, this field contains
the current value of the m resource.

The application should take whatever action is appropriate for the new status after it

receives a BOSM_KBD_STATUS_CHANGH event message.

Chapter 20. Event Messages

20-3

POSM_KBD_WM_CHAR

created on October 2, 2001

POSM_KBD_WM_CHAR

Description

This event message is generated when the non-system keyboard device handler
receives a character.

POSQMSG Fields

32-bit version:

16-bit version:

mp1
charcode (unsigned short)
reserved (unsigned char)
devdes (unsigned char)
mp2
flags (unsigned short)
reserved (unsigned char)
scancode (unsigned char)
mp1
charcode (unsigned char)
devdes (unsigned char)
mp2

flags (unsigned short)
reserved (unsigned char)
scancode (unsigned char)

The details of the fields in mp1 and mp2 are:

charcode

devdes

flags

This field contains the ASCII character code.

This field is set to the device descriptor of the device that generated
the event message.

This field contains keyboard control codes. The keyboard control
codes and their meanings are:

PoskKC_CHAR (0x0001)
The character is valid.

PosKC_SCANCODE (0x0004)
The scan code is valid.

PosKC_SHIFT (0x0008)
The SHIFT state is active when the key was pressed.

PosKC_CTRL (0x0010)
The CTRL state is active when the key was pressed.

PosKC_ALT (0x0020)
The ALT state is active when the key was pressed.

PosKC_KEYUP (0x0040)
The event is a key-up transition. This bit is set when the
device driver receives a break scan code from the
keyboard. If this bit is not set, the event is a key-down
transition.

20-4 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 POSM_KBD WM_CHAR

Remarks

PosKC_FATFINGER (0x8000)
The FATFINGER state is active when the key was pressed.

scancode This unsigned char field contains the hardware scan code for the
key pressed. This is the value that identifies the keyboard event.

After the application receives a PQSM_KBD WM _CHAH event message, it should
examine the mp1 and mp2 parameters to determine what the key is.

Notes:

1. The format of the EDSM_KBD_\ALM_C.I:IAH event message is similar to the
format of the MIM_CHAH event messages in Windows and OS/2 Presentation
Manager.

2. Some point-of-sale keyboards only report make scan codes.

3. The PosKC_FATFINGER bit is an indication that one key has been pressed too
quickly after another key, or that two keys have been pressed at the same time.
It can be used by the application to protect against the user accidentally
pressing two keys at the same time. Note that on the 50-Key Modifiable Layout
Keyboard and the 50-Key Modifiable Layout Keyboard/Operator Display, the bit
is set on the second of the two PQSM_KBD WM _CHAR event messages. On
all other keyboards, the bit is set on the first BQSM_KBD WM_CHAH event

message. This is determined by the hardware microcode in the keyboard.

Chapter 20. Event Messages 20-5

POSM_MSR_DATA_AVAIL created on October 2, 2001
POSM_MSR_DATA_AVAIL

Description
This event message is generated when MSR data is available to be read.

POSQMSG Fields

32-bit version:

mp1
reserved (unsigned short)
reserved (unsigned char)
devdes (unsigned char)
mp2
reserved (unsigned short)
length (unsigned short)
16-bit version:
mp1
reserved (unsigned char)
devdes (unsigned char)
mp2

reserved (unsigned short)
length (unsigned short)

The details of the fields in mp1 and mp2 are:

devdes This field is set to the device descriptor of the device that generated
the event message.

length This field contains the size, in bytes, of the buffer required to read
the data associated with this event.

Remarks

The application should use the [PasBead() subroutine to retrieve the MSR data after
it receives a POSM_MSR_DATA_AVAIl| event message.

20-6 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

POSM_PRN_CHASE_COMPLETE

POSM_PRN_CHASE_COMPLETE

Description

This event message is generated when any of the three print stations detects a
chase escape character sequence in the data that is sent to the printer.

POSQMSG Fields

32-bit version:

16-bit version:

mp1
station (unsigned short)
reserved (unsigned char)
devdes (unsigned char)
mp2
status (1ong)
mp1
station (unsigned char)
devdes (unsigned char)
mp2

status (1ong)

The details of the fields in mp1 and mp2 are:

station

reserved
devdes

status

Remarks
The application

This field indicates the print station where the chase sequence was
found. The values and their meanings are:
PosCHASE_FROM_CR (0x01)

The chase was from the CR station.
PosCHASE_FROM_SJ (0x02)

The chase was from the SJ station.
PosCHASE_FROM_DI (0x04)

The chase was from the DI station.

This unsigned char field is reserved for non-device specific data
and has a value of 0 (zero).

This unsigned char field is set to the device descriptor of the device
that generated the event message.

Indicates the current status of the printer. See PasNprintStatus” o

for more information.

is notified that all previous operations for this print station have

been completed when it receives a PQSM_PRN_CHASE_CQOMPLETH event

message, for example, when data has been printed on the paper.

Chapter 20. Event Messages 20-7

POSM_PRN_DATA_AVAIL created on October 2, 2001
POSM_PRN_DATA_AVAIL

Description
This event message is generated when printer data is available to be read.

POSQMSG Fields

32-bit version:

mp1
from (unsigned short)
reserved (unsigned char)
devdes (unsigned char)
mp2
reserved (unsigned short)
length (unsigned char)
16-bit version:
mp1
from (unsigned char)
devdes (unsigned char)
mp2

reserved (unsigned short)
length (unsigned short)

The details of the fields in mp1 and mp2 are:

from This field indicates where the printer information is from. The valid value

and its meaning are:

PosPRINT_DATA_AVAIL_FISCAL (0x01)
Fiscal data is available from the fiscal printer. (Only available on the
fiscal printer)

PosPRINT_DATA_AVAIL_MICR (0x02)
Check information is available from the MICR reader. (Only
available on the IBM Model 3R, IBM Model 4R, and the IBM 4610
Model TI2 and TI4 printers)

devdes

This field is set to the device descriptor of the device that generated the
event message.

length This field contains the size in bytes of the buffer required to read the data
associated with this event.

Remarks

After the application receives a PQSM_PRN_DATA_AVAIL| event message, it should
use the Ea.smm subroutine to retrieve the printer data.

20-8 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 POSM_PRN_FISCAL_ERROR
POSM_PRN_FISCAL_ERROR

Description

This event message is generated when a fiscal error occurs. The reason for the
problem is indicated by mp1 and the printer status is in mp2.

Note: This event message is available only on the fiscal printer.

POSQMSG Fields

32-bit version:

mp1
cause (unsigned short)
reserved (unsigned char)
devdes (unsigned char)
mp2
status (1ong)
16-bit version:
mp1
cause (unsigned char)
devdes (unsigned char)
mp2

status (1ong)

The details of the fields in mp1 and mp2 are:

cause This field indicates the cause of the printer error.
Value Meaning
Fiscal error code This field indicates the fiscal error
code.
devdes This field is set to the device descriptor of the device that generated
the event message.

status Indicates the current status of the printer. See 'PasNprintStatus” o

Remarks

After the application receives a BOSM_PRN_FISCAL_ERROR event message, it
should use the display and keyboard to interact with the operator to correct the
problem, then issue a PQS_PRN_RETRY PRINTING [PasiQCtl] request to retry
the fiscal command. If this is not successful at correcting the error, issue a

lPaslQCH] request to discard all outstanding printer
data and then a BOS_PRN_RESUME_PRINTING [PasIQCH] request to resume
printing.

Chapter 20. Event Messages 20-9

POSM_PRN_FISCAL_STATUS created on October 2, 2001

POSM_PRN_FISCAL_STATUS

Description

This event message is generated when a fiscal command completes successfully
and the application has requested to be notified of the completion. This event
message is only sent to the application if the PosNfiscalNotify resource is set to
PosFISCAL_NOTIFY_ON.

Note: This event message is available only on the fiscal printer.

POSQMSG Fields

Remarks

32-bit version:

mp1
reserved (unsigned short)
reserved (unsigned char)
devdes (unsigned char)
mp2
status (1ong)
16-bit version:
mp1
reserved (unsigned char)
devdes (unsigned char)
mp2

status (1ong)

The details of the fields in mp1 and mp2 are:

devdes This field is set to the device descriptor of the device that generated
the event message.

status Indicates the fiscal command that completed successfully.

The application is notified that an outstanding fiscal command is complete when it
receives a BQSM_PBN_FISCA|l STATUS event message.

20-10 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

POSM_PRN_PRINTER_ERROR

POSM_PRN_PRINTER_ERROR

Description

This event message is generated when any of the three print stations detects a
problem. The reason for the problem is indicated by mp1 and the printer status is
indicated by mp2.

POSQMSG Fields

32-bit version:

16-bit version:

mp1
cause (unsigned short)
reserved (unsigned char)
devdes (unsigned char)
mp2
status (1ong)
mp1
reserved (unsigned char)
devdes (unsigned char)
mp2

reserved (unsigned short)
cause (unsigned short)

The details of the fields in mp1 and mp2 are:

cause

This field indicates the cause of the printer error. The values and
their meanings are:
PosERROR_COVER_OPEN (0x0001)

The cover is open.
PosERROR_TRANSPORT_ERROR (0x0002)

The print head transport is binding.
PosERROR_CR_PRINT_HEAD_OPEN (0x0003)

The CR station print head is failing.
PosERROR_SJ_PAPER_ERROR (0x0004)

The SJ station is out of paper or has a paper jam.
PosERROR_SJ_PRINT_HEAD_OPEN (0x0005)

The SJ station print head is failing.
PosERROR_DOCUMENT_INSERTED (0x0008)

An attempt was made to print on the SJ or CR station while

a document was inserted in the DI station.
PosERROR_DOCUMENT_NOT_INSERTED (0x0010)

An attempt was made to print on the DI station while a

document was not inserted in the DI station.
PosERROR_DOCUMENT_NOT_READY (0x0020)

An attempt was made to register a document but there is

no document inserted in the DI station.
PosERROR_DOCUMENT_NOT_EJECTED (0x0040)

An attempt was made to eject a document but there is no

document inserted in the DI station.
PosERROR_MICR_ERROR (0x0080)

An error occurred reading the MICR information.

Chapter 20. Event Messages 20-11

POSM_PRN_PRINTER_ERROR created on October 2, 2001

Remarks

PosERROR_EEPROM_LOAD_ERROR (0x0200)
An attempt was made to download a message or logo to
the printer but failed to load. The message number or logo
number might be defined already. (IBM 4610 printers only)
PosERROR_EEPROM_FULL (0x0400)
An attempt was made to download a message or logo to
the printer when there was insufficient printer memory to
store the message or or logo. (IBM 4610 printers only)
PosERROR_COMMUNICATION_ERROR (0x1000)
A communication error occurred between the printer device
handler and the printer.
PosERROR_DI_FEED_ERROR (0x2000)
An error occurred during a check flip operation or while
reading MICR information. (IBM 4610 printers only)
PosERROR_STARTUP_ERROR (0x4000)
An error occured bringing the printer online. On the 4610
printers, new firmware will be needed to fix this error. (IBM
4610 printers and IBM 4689 Model 3x1 and TD5 printers
only)
PosERROR_UNRECOVERABLE_ERROR (0x4001)
An unrecoverable error occured during printer opertion.
(IBM 4689 Model 3x1 and TD5 printers only)
PosERROR_COMMAND_REJECTED (0x8000)
The printer rejected a command. This could occur when
printing a barcode with invalid parameters or when printing
either a pre-defined message or a pre-defined logo that
does not exist. (IBM 4610 printers only)

devdes This field is set to the device descriptor of the device that generated
the event message.
status Indicates the current status of the printer. See PasNprintStatus” on

for more information.

After the application receives a PQSM_PRBN_PRINTFR_FRROH event message, it

should use the display and keyboard to interact with the operator to correct the

problem. It should then issue either a PQS_PBN_RFSUMF_PRINTING [PoslOCH(]
PQS_PRN_RFTRY_PRINTING

request or a _ — m request.

For the IBM 4610 Printers, if the error condition is
PosERROR_EEPROM_LOAD_ERROR the application must issue a
POS_PRN_DISCARD_DATA PoslOCtl() request before issuing either a
POS_PRN_RETRY_PRINTING or a POS_PRN_RESUME_PRINTING Pos/OCtl()
request.

20-12 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 POSM_PRN_STATUS CHANGE
POSM_PRN_STATUS_ CHANGE

Description

This event message is generated when the status of any paper sensors change or
when the position of the printer cover changes.

POSQMSG Fields

32-bit version:

mp1
status1 (unsigned short)
reserved (unsigned char)
devdes (unsigned char)
mp2
status2 (1ong)
16-bit version:
mp1
reserved (unsigned char)
devdes (unsigned char)
mp2

reserved (unsigned short)
status1 (unsigned short)

The details of the fields in mp1 and mp2 are:

status1 This field indicates the status change that caused this event
message. The values and their meanings are:
PosCHANGE_DOCUMENT_AT_TOP (0x0001)
Document present at top sensor has changed. (This
message is not returned on the IBM Model 2 printer.)
PosCHANGE_DOCUMENT_AT_FRONT (0x0002)
Document present at front sensor has changed. (For the
Model 2 printer, this message will be returned when a
document is inserted.)
PosCHANGE_DOCUMENT_REGISTER (0x0004)
Document registered has changed.
PosCHANGE_COVER (0x0008)
The printer cover position has changed. On printers with
more than one cover, this status applies to any of the
covers.
PosCHANGE_CR_PAPER_LOW (0x0010)
The paper in the CR station is low. (This message is
available only on the IBM 4689-00x printers.)
PosCHANGE_CR_PAPER_OUT (0x0011)
The paper in the CR station is out. (This message is
available only on the IBM 4689 Model 3x1 and TD5
printers.)
PosCHANGE_CR_OVERHEAT (0x0012)
The print head on the CR station is overheating. (This
message is available only on the IBM 4689 Model 3x1 and
TD5 printers.)

Chapter 20. Event Messages 20-13

POSM_PRN_STATUS_CHANGE

Remarks

devdes

status2

created on October 2, 2001

PosCHANGE_SJ_PAPER_LOW (0x0020)
The paper in the SJ station is low. (This message is
available only on the IBM 4689-00x printers.)

PosCHANGE_SJ_PAPER_OUT (0x0021)
The paper in the SJ station is out. (This message is
available only on the IBM 4689 Model 3x1 and TD5
printers.)

PosCHANGE_SJ_OVERHEAT (0x0022)
The print head on the SJ station is overheating. (This
message is available only on the IBM 4689 Model 3x1 and
TDS5 printers.)

PosCHANGE_SJ_PAPER (0x0080)
The SJ paper in the printer has run out of paper or paper
has been added. (This message is available only on the
IBM Model 3, 3R, 4, 4R and 4A printers.)

This field is set to the device descriptor of the device that generated
the event message.

Indicates the current status of the printer. See [PasNprintStatus” ad

for more information.

After the application receives a PQSM_PRN_STATIIS CHANGH event message, it

should check the present status of the printer and initiate the appropriate action.

20-14 Ppoint of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 POSM_RS232 BREAK DETECTED
POSM_RS232 BREAK_DETECTED

Description

This event message is generated when the RS-232C device handler has received a
break signal from the RS-232C port.

Note: The RS-232C hardware on a Feature E card will only return an incoming
break signal to the application if it is followed by at least one byte of data.
Therefore, the device sending a break signal to the point-of-sale RS-232C
port must follow it by at least one byte of data. Two event messages would
then be received on the input queue. One indicates that data is available,
and the other indicates that a break signal has been detected.

POSQMSG Fields

32-bit version:

mp1
reserved (unsigned short)
reserved (unsigned char)
devdes (unsigned char)
mp2
reserved (1ong)
16-bit version:
mp1
reserved (unsigned char)
devdes (unsigned char)
mp2

reserved (Tong)

The details of the fields in mp1 and mp2 are:

devdes This field is set to the device descriptor of the device that generated
the event message.

Chapter 20. Event Messages 20-15

POSM 232 DATA_AVAIL created on October 2, 2001
POSM_RS232_ DATA_AVAIL

Description

This event message is generated when the RS-232C device handler has received
data from the RS-232C port.

POSQMSG Fields

32-bit version:

mp1
reserved (unsigned short)
reserved (unsigned char)
devdes (unsigned char)
mp2
reserved (unsigned short)
length (unsigned short)
16-bit version:
mp1
reserved (unsigned char)
devdes (unsigned char)
mp2

reserved (unsigned short)
length (unsigned short)
The details of the fields in mp1 and mp2 are:

devdes This field is set to the device descriptor of the device that generated
the event message.

length This field contains the size, in bytes, of the buffer required to read
the data associated with this event.

Remarks

After the application receives a POSM_RS232 DATA_AVAIl| event message, it

should use the [PasBead(] subroutine to retrieve the data.

20-16 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 POSM_RS232 XMIT_ABORT

POSM_RS232_XMIT_ABORT

Description

This event message is generated when the previous [PasWrite] request has ended
abnormally.

This can happen when a device is closed with an outstanding m request
that has not completed. It can also occur if the device does not respond within 10
seconds. Data might or might not have been partially transmitted. Your application
should take appropriate steps depending on the nature of the attached device.

POSQMSG Fields

Remarks

32-bit version:

mp1
reserved (unsigned short)
reserved (unsigned char)
devdes (unsigned char)
mp2
reserved (Tong)
16-bit version:
mp1
reserved (unsigned char)
devdes (unsigned char)
mp2

reserved (Tong)

The details of the fields in mp1 and mp2 are:

devdes This field is set to the device descriptor of the device that generated
the event message.

After the application receives a PQOSM_RS232 XMIT_ABORT event message, it
can re-issue the [PasWrite(] request once the cause for cancelling the write has
been corrected.

Chapter 20. Event Messages 20-17

POSM_RS232 XMIT_COMPLETE created on October 2, 2001
POSM_RS232_ XMIT_COMPLETE

Description

This event message is generated when the previous [PasWrite(] request has
completed.

POSQMSG Fields

32-bit version:

mp1
reserved (unsigned short)
reserved (unsigned char)
devdes (unsigned char)
mp2
reserved (Tong)
16-bit version:
mp1
reserved (unsigned char)
devdes (unsigned char)
mp2

reserved (1ong)

The details of the fields in mp1 and mp2 are:

devdes This field is set to the device descriptor of the device that generated
the event message.

Remarks

After the application receives a PQSM_RS232 XMIT_CQOMPI FTH event message,

it can issue the next [PasWrite() request.

20-18 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 POSM_SCAN_DATA_AVAIL

POSM_SCAN_DATA_AVAIL

Description

This event message is generated when the scanner device handler has received
bar code data from the scanner.

POSQMSG Fields

Remarks

32-bit version:

mp1
reserved (unsigned short)
reserved (unsigned char)
devdes (unsigned char)
mp2
reserved (unsigned short)
length (unsigned short)
16-bit version:
mp1
reserved (unsigned char)
devdes (unsigned char)
mp2

reserved (unsigned short)
length (unsigned short)
The details of the fields in mp1 and mp2 are:

devdes This field is set to the device descriptor of the device that generated
the event message.

length This field contains the size, in bytes, of the buffer required to read
the data associated with this event.

After the application receives a POSM_SCAN_DATA_AVAIL| event message, it

should use the PasRead(] subroutine to retrieve the bar code data.

If bar code data is received from the scanner while the scanner is not acquired by
an application, the data belongs to the next application that acquires the scanner.
That application also receives a POSM_SCAN_DATA_AVAIll event message for

each set of bar code data that is queued by the scanner device handler.

Chapter 20. Event Messages 20-19

POSM_SYS_DEVICE_OFFLINE

created on October 2, 2001

POSM_SYS_DEVICE_OFFLINE

Description

This event message is generated when a device that was previously online goes

offline.

POSQMSG Fields

32-bit version:

16-bit version:

slot (unsigned char)
port (unsigned char)
device (unsigned char)
type (unsigned char)

mp2
reserved (unsigned short)
reserved (unsigned char)
subtype (unsigned char)

device (unsigned char)
type (unsigned char)

mp2
slot (unsigned char)
port (unsigned char)
reserved (unsigned char)
subtype (unsigned char)

The details of the fields in mp1 and mp2 are:

slot

port

device

type

subtype

This field is equivalent to the value of the PasNslotNumber
resource that would be passed to open the device using the
subroutine call.

This field is equivalent to the value of the PasNpartNumbet

resource that would be passed to open the device using the
subroutine call.

This field is equivalent to the value of the PasNdeviceNumber
resource that would be passed to open the device using the

[BasQpen(] subroutine call.

This field indicates the type of device that generated the event
message. The valid values for this field are defined by the set of
PosTYPE_xxxx constants in the header file device.h.

This field is used by certain device numbers when the device
number itself is not sufficient to differentiate between a set of
devices. For example, several different point-of-sale keyboards all
have the same device number (0x1C). In this case, the subtype
field is used to distinguish between them.

This field is significant only when it is paired with a specific device
number, because different device numbers use the same range of
subtype values to distinguish their devices. When it is not

20-20 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 POSM_SYS DEVICE_OFFLINE

necessary to specify a subtype, this field is set to zero
(PosSUBTYPE_NONE). The subtype values, where appropriate,
are listed along with the device description on the

[PosNdeviceNumbed resource.

Remarks
Devices can go offline for a variety of reasons, for example:
* The device encountered an error and is resetting itself.
* The device failed or encountered a severe error.

The POSM_SYS DEVICE_QFELINH event message is never delivered for the
devices attached by way of the system keyboard port because the IBM Point of
Sale Subsystem cannot detect that these devices have gone offline.

Chapter 20. Event Messages 20-21

POSM_SYS DEVICE_ONLINE created on October 2, 2001
POSM_SYS_DEVICE_ONLINE

Description

This event message is generated when a device comes online and is ready to be
used. An application can use this event message to determine which devices are
attached to the system and which devices to open.

POSQMSG Fields

32-bit version:

mp1
slot (unsigned char)
port (unsigned char)
device (unsigned char)
type (unsigned char)

reserved (unsigned short)
reserved (unsigned char)
subtype (unsigned char)

16-bit version:

mp1
device (unsigned char)
type (unsigned char)

slot (unsigned char)
port (unsigned char)
reserved (unsigned char)
subtype (unsigned char)

The details of the fields in mp1 and mp2 are:
slot This field is equivalent to the value of the PasNslotNumber
resource that would be passed to open the device using the
[PasOpen(] subroutine call. (See the example in m
for sample coding.)

port This field is equivalent to the value of the PasNpartNumbet
resource that would be passed to open the device using the

subroutine call. (See the example in
for sample coding.)

device This field is equivalent to the value of the PasNdeviceNumbed
resource that would be passed to open the device using the
subroutine call. (See the example in ﬁm

for sample coding.)

type This field indicates the type of device that generated the event
message. The valid values for this field are defined by the set of
PosTYPE_xxxx constants in the header file device.h.

subtype This field is used by certain device numbers when the device
number itself is not sufficient to differentiate between a set of
devices. For example, several different point-of-sale keyboards all
have the same device number (0x1C). In this case, the subtype
field is used to distinguish between them.

20-22 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 POSM_SYS DEVICE_ONLINE

Remarks

This field is significant only when it is paired with a specific device
number, because different device numbers use the same range of
subtype values to distinguish devices. When it is not necessary to
specify a subtype, this field is set to zero (PosSUBTYPE_NONE).
The subtype values, where appropriate, are listed along with the

device description on the PosNdeviceNumbed resource.

On 08S/2, the first application to successfully call the m subroutine also
causes one or more programs that service the devices to be started. These
programs determine what devices are attached, and bring the attached devices
online. This can take several minutes, so the first application receives a

PQSM_SYS DEVICE_QNLINH event messages as each individual device is found

and comes online.

The second and subsequent applications to call the W subroutine
successfully receive a PQSM_SYS_DEVICE_QNLINH event message immediately
for all devices that are currently online.

On Microsoft Windows, most devices will have been detected before any application
issues ml However, some devices (e.g. Touch) take longer to initialize
and may not be immediately online.

Your application should not attempt to use any device for which it has not received
as PQSM_SYS_DEVICE_QNI INH message. Your application should also be
prepared to handle a DEVICE_ONLINE message at any time.

Chapter 20. Event Messages 20-23

POSM_SYS DEVICE_RELEASED created on October 2, 2001
POSM_SYS_DEVICE_RELEASED

Description

This event message is generated when a device previously requested by the
application has been released. This event message is only sent to applications that
have attempted to acquire the device and have received the
PQSERR_SYS_ACQUIRED BY QTHER event message. The event message is
placed on the message queue that was specified on the m subroutine call
for the device that the application attempted to acquire. If the application attempted
to acquire more than one device connection that references the same device, the
event message is sent to the message queue that was specified for each device
connection.

Upon receipt of this message, an application must still acquire the device before
using it. Because other applications might be waiting to use the device, the device
might already be acquired by the time the current application attempts to acquire it.
In this case, the 313 POSERR SYS ACQUIRED BY QTHER error code is

returned to the application, and the application is notified when the current owner
releases it.

POSQMSG Fields

32-bit version:

mp1
reserved (unsigned short)
reserved (unsigned char)
devdes (unsigned char)
mp2
reserved (Tong)
16-bit version:
mp1
reserved (unsigned char)
devdes (unsigned char)
mp2

reserved (Tong)

The details of the fields in mp1 and mp2 are:

devdes This field is set to the device descriptor of the device that the
application attempted to acquire.

20-24 Ppoint of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 POSM TILL CLOSED
POSM_TILL_CLOSED

Description
This event message is generated when the cash drawer till physically closes.

POSQMSG Fields

32-bit version:

mp1
reserved (unsigned short)
reserved (unsigned char)
devdes (unsigned char)
mp2
reserved (1ong)
16-bit version:
mp1
reserved (unsigned char)
devdes (unsigned char)
mp2

reserved (1ong)

The details of the fields in mp1 and mp2 are described below:

devdes This field is set to the device descriptor of the device that generated
the event message.

Remarks

This event is given to the application that has the cash drawer acquired at the time
the event is generated.

Chapter 20. Event Messages 20-25

POSM TILL OPENED created on October 2, 2001
POSM_TILL_OPENED

Description
This event message is generated when the cash drawer till physically opens.

POSQMSG Fields

32-bit version:

mp1
reserved (unsigned short)
reserved (unsigned char)
devdes (unsigned char)
mp2
reserved (Tong)
16-bit version:
mp1
reserved (unsigned char)
devdes (unsigned char)
mp2

reserved (1ong)

The details of the fields in mp1 and mp2 are:

devdes This field is set to the device descriptor of the device that generated
the event message.

Remarks

This event is given to the application that has the cash drawer acquired at the time
the event is generated.

20-26 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

POSM_TOUCH_DATA

POSM_TOUCH_DATA

Description

This event message is generated when a touch event occurs.

POSQMSG Fields

32-bit version:

16-bit version:

mp1

status (unsigned short)

reserved (unsigned char)

devdes (unsigned char)
mp2

X (unsigned short)

y (unsigned short)
mp1

status (unsigned char)

devdes (unsigned char)
mp2

X (unsigned short)
y (unsigned short)

The details of the fields in mp1 and mp2 are:

status

devdes

This field indicates the status of the touch device. The values and
their meanings are:
PosTOUCH_BUTTON1_DOWN (0x01)

The touch screen has been pressed.
PosTOUCH_ERROR (0x0010)

An error occurred reading touch information

This field is set to the device descriptor of the device that generated
the event message.

This field indicates the x coordinate where the screen was touched.

This field indicates the y coordinate where the screen was touched.

Chapter 20. Event Messages 20-27

WM_CHAR

created on October 2, 2001

WM_CHAR

Description

This message is generated by OS/2 Presentation Manager for Presentation
Manager applications or Microsoft Windows for Microsoft Windows applications. For
0S/2, see the OS/2 2.0 Technical Library: Presentation Manager Programming
Reference for more information about the WM_CHAR message.

POSQMSG Fields

0Ss/2:
mp1
mp2
Microsoft Windows:
mp1
mp2

Remarks

The same as defined for OS/2 Presentation
Manager.

The same as defined for OS/2 Presentation
Manager.

The same as defined for the wParam for
the Microsoft Windows operating system.

The same as defined for the IParam for the
Microsoft Windows operating system.

After the application receives a lvM_CHAH event message, it should examine the
mp1 and mp2 message parameters to determine what the key is. This event is
generated for both the standard keys and the point-of-sale-unique keys for the
alphanumeric point-of-sale keyboards when they are system keyboards.

Note: OS/2 Presentation Manager will set the KC_VIRTUALKEY flag on in the
WM_CHAR message for some point-of-sale-unique keys. On the ANPOS
keyboard, these keys are 107 and 111. On the Retail Alphanumeric Point of
Sale Keyboard with Card Reader, these keys are 107 and 124. See the
sample code in C:\POS\SAMPLE\ANPOSKEY\ANPOSKEY.C for an example of how
to distinguish between the point-of-sale-unique keys and a virtual key.

20-28 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

Chapter 21. Resource Sets

Resource Access Codes
PosSystem Resource Set .
PosNqueueHandle .
PosNreadTimeout .
PosNvitalProductData
PosDevice Resource Set
PosNdeviceNumber
PosNportNumber .
PosNqueueHandle
PosNslotNumber .
PosAlarm Resource Set
PosNalarmStatus .
PosDisplay Resource Set.
PosNcharSize . .
PosNdisplayCodePage.
PosNdisplayCursor .
PosNdisplayMode
PosNdisplayLightsOn
PosNpixelX .
PosNpixelY . .
PosDrawer Resource Set.
PosNpulseWidth .
PosNtillStatus .
PosKeyboard Resource Set

PosNdoubleKey01 - PosNdoubIeKey60.

PosNfatFingerTimeOut .
PosNkeyboardClick .
PosNkeyLock . . .
PosteyboardnghtsOn
PosNnumpadLocation .
PosNnumpadStyle
PosNnumpadZero
PosNtoneDuration
PosNtoneFreq .
PosNtoneVolume .
PosNtypematicDelay
PosNtypematicFreq .
PosMsr Resource Set .
PosNvram Resource Set .
PosNnvramCursor
PosNnvramMode .
PosNnvramSize
PosPower Resource Set .
PosNpowerAlarm .
PosPrinter Resource Set .
PosNcodePage
PosNCRWidth .
PosNdiOrientation
PosNDIWidth
PosNfeedDirection
PosNfiscalCountry
PosNfiscalNotify .
PosNfiscalPLDStatus

© Copyright IBM Corp. 1993, 2001

Resource Sets

21-2 Point of Sale Subsystem Programming Reference and User’s Guide

PosNfiscalVersion

PosNheadParkedPosition .

PosNinterleaved .
PosNleftMarginCR
PosNlineFeedCR .
PosNlineFeedDI .
PosNlineFeedSJ .
PosNprintAlignment .
PosNprintColorMode .
PosNprintCRCharSetx .
PosNprintDICharSetx
PosNprintFeatures
PosNprintMode
PosNprintQualityMode .
PosNprintStation .
PosNprintStatus .
PosNprintStatus2 .
PosNprintTabStops .
PosNprintToneDuration.

PosNprintToneFrequency .

PosNprintToneNote .
PosNprintToneOctave .
PosNprintToneVolume .
PosNprintUpsideDown .
PosNrawPrintStatus .
PosNresumeString
PosNretryString

created on October 2, 2001

. 21-38
. 21-38
. 21-39
. 21-39
. 21-40
. 21-40
. 21-41
. 21-42
. 21-42
. 21-42
. 21-43
. 21-43
. 21-44
. 21-44
. 21-45
. 21-46
. 21-47
. 21-47
. 21-48
. 21-48
. 21-48
. 21-49
. 21-49
. 21-50
. 21-50
. 21-50

. 21-52

Model 2, Model 3, Model 3F Model 3R Model 4 Model 4A and Model

4R Printers .

4689-001 and 4689- 002 Prlnters .
4689 Model 3x1 and TD5 printers. .
4610 SureMark Point of Sale Printers (all models)

PosRs232¢ Resource Set.
PosNbaudRate.
PosNdataBits .
PosNIlineMode .
PosNparity .
PosNrs232Status .
PosNstopBits
PosNtimeoutChar.

PosScale Resource Set
PosNdisplayRequired
PosNnumWeightDigits .
PosNoperMode
PosNvibrationFilter .
PosNweightMode .
PosNzerolndState
PosNzeroRetState

PosScanner Resource Set

Scanner Model ldentifiers.

PosNbarCodes1

PosNbarCodes?2 .
PosNbarCodes3 .
PosNbarCodes4 .

PosNbarCodeProgramming .

PosNbeepFreq.

. 21-52
. 21-52
. 21-52
. 21-53
. 21-53
. 21-53
. 21-54
. 21-54
. 21-55
. 21-55
. 21-55
. 21-56
. 21-56
. 21-57
. 21-57
. 21-58
. 21-58
. 21-59
. 21-59
. 21-60
. 21-60
. 21-62
. 21-62
. 21-64
. 21-65
. 21-66
. 21-67
. 21-67

created on October 2, 2001

PosNbeepLength .
PosNbeepState
PosNbeepVolume.
PosNblinkLength . . .
PosNblockReadMode .
PosNblock1Type .
PosNblock2Type .
PosNblock3Type .
PosNbVolSwitchState .
PosNcheckModulo .
PosNcode128ScansPerRead
PosNcode39ScansPerRead .
PosNdecodeAlgorithm .
PosNdReadTimeout .
PosNdTouchMode ..
PosNeAN13ScansPerRead .
PosNeAN8ScansPerRead
PosNiTFLength1 .
PosNiTFLength2 . .
PosNiTFLengthType.
PosNiTFScansPerRead .
PosNjANTwoLabelDecode
PosNlabelsQueued .
PosNlaserSwitchState .
PosNlaserTimeout
PosNmotorTimeout .
PosNqueueAllLabels
PosNscansPerRead .
PosNstoreScansPerRead .
PosNsupplementals .
PosNtransmitCheckDigit .
PosNtwolLabelFlagPair1
PosNtwoLabelFlagPair2
PosNtwolLabelFlagPair3
PosNtwoLabelFlagPair4
PosNuPCAScansPerRead
PosNuPCDScansPerRead
PosNuPCEScansPerRead
PosNuPCExpansion.
PosNverifyPriceChk .

PosTouch Resource Set .

PosNtouchBackLightOnEvent
PosNtouchBrightness .
PosNtouchClickVolume.
PosNtouchContrast .
PosNtouchEntryClick
PosNtouchExitClick .
PosNtouchMaxX .
PosNtouchMaxyY .
PosNtouchMode . .
PosNtouchScreenSaverTime
PosNtouchToneDuration
PosNtouchToneFreq.

Resource Sets

Chapter 21. Resource Sets

. 21-67
. 21-68
. 21-68
. 21-69
. 21-69
. 21-70
. 21-71
. 21-71
. 21-72
. 21-72
. 21-73
. 21-73
. 21-73
. 21-74
. 21-74
. 21-75
. 21-75
. 21-76
. 21-77
. 21-77
. 21-78
. 21-78
. 21-78
. 21-79
. 21-79
. 21-80
. 21-80
. 21-81
. 21-81
. 21-82
. 21-82
. 21-83
. 21-84
. 21-85
. 21-86
. 21-87
. 21-87
. 21-88
. 21-88
. 21-89
. 21-89
. 21-90
. 21-90
. 21-91
. 21-91
. 21-91
. 21-92
. 21-92
. 21-92
. 21-92
. 21-93
. 21-93
. 21-93

21-3

Resource Sets created on October 2, 2001
PosNtouchToneVolume.21-94

This chapter contains reference information for the resource sets used with the IBM

Point of Sale Subsystem. See Chapter 5_General Point of Sale Deviced

for information about using these resources sets.

21-4 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 Resource Sets

Resource Access Codes

The tables that contain lists of each resource set use access codes to describe the
ways in which the resources can be set. The codes are:

C The resource can be set when the device is opened. The resource value
can come from a resource file or through the args parameter on the
subroutine. For resources in the
resource set, the value can come from the resource file or through the args
parameter on the W subroutine.

S The resource can be set using the m subroutine with the
PQS_SYS_SET VALUES control function or overridden through the args
and nargs parameters on some other m request.

G The resource can be retrieved using the m subroutine with the
PQS_SYS GET _VALUES control function.

PosSystem Resource Set

Class Name PosSystem

Include <pos/device.h>

The PosSystem resource set controls all system-wide aspects of the IBM Point of
Sale Subsystem. The resources in this set determine the non-device specific
behavior of the system. Because resources in this resource set are not associated
with a device, use a device descriptor of 0 (zero) when making
PQOS_SYS_GET_VAIUES or POS_SYS_SFT_VAI UES PaslIOCH() requests.

Unless otherwise noted, PosSystem resources can be specified in the resource file
just like device specific resources. Names in the resource file can be prefixed by
the application name and the device instance name in order to tailor resources to a
specific device instance. To allow this for PosSystem resources, use a device
instance name of AIPSYS in the resource file. For example:

|

I Default value unless overridden (return immediately)
I

*readTimeout: 0

I Value for a specific application (1 second)
I

CheckoutApp1.AIPSYS.readTimeout: 1000

The following table gives an overview of the resources in this set.

Table 21-1. PosSystem Resources

Name Type Default Access
PasNqueueHandld long 0 CG
PosNreadTimeoud long 0 CGS
PasNvitalProductDatd unsigned char* 0 G

See [Resource Access Codes!| for descriptions of the access codes.

Chapter 21. Resource Sets 21-5

PosSystem Resource Set created on October 2, 2001

PosNqueueHandle
Type long
Default 0
Access CG

The PosNqueueHandld resource specifies the input queue that is to receive event
messages generated by the IBM Point of Sale Subsystem. This resource is
specified on the mi/@ subroutine call.In

Note: The PosNqueueHandld resource is ignored on systems that use the IBM
Point of Sale Subsystem for Linux. Linux systems must use the IBM Point of
Sale Subsystem input queue.

The value for the PasNqueueHandle resource indicates the queue on which to
place non-device specific event messages (such as system event messages). This
resource is a system-wide resource. Querying the value of this resource is done
differently than for device specific resources, because there is no device descriptor
to use when calling IChapter 19_PoslQCH() Requestd. Use a device descriptor of 0

(zero) when making a PQS_SYS_GET_VAIL UES (Chapter 19_PoslQCH() Requests

request to query the value of this resource used to post system event messages.

A PasNqueueHandld value of 0 (zero) is used to indicate the IBM Point of Sale
Subsystem input queue is to be used instead of a presentation facility queue. A
value other than 0 (zero) indicates that a presentation facility queue is to be used
for posting event messages. For Presentation Manager, set this resource to the
value returned by the WinCreateMsgQueue() subroutine call. For the Microsoft
Windows operating system, set this resource to the value returned by the
CreateWindow() subroutine call.

If the application closes the presentation facility queue after passing it to the
subroutine call, asynchronous event messages cannot be queued and
errors are logged.

This resource cannot be specified in the resource file because any values other
than the default value must be determined by the application at run time.

— Attention
On 0S/2, the IBM Point of Sale Subsystem for OS/2 attempts to verify that the
queue handle is valid, and returns a B08 POSFRR_SYS_INVALID_QUEUH
return code if it is not valid. In OS/2, an incorrect value for this resource can
sometimes cause Presentation Manager to end abnormally when performing
the validation. Applications must make every effort to ensure that the queue
handle that is passed in is valid.

PosNreadTimeout
Type long
Default 0
Access CGS

21-6 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001 PosSystem Resource Set

By default, when an application reads the IBM Point of Sale Subsystem input queue
with PasRead(}, the subroutine returns immediately if there is no data to be read.
Using this method of getting input is inefficient because an application must
continually poll the input queue to determine if data is available.

The PosNreadTimeaul resource allows an application to call lPasReadd and wait
for data to become available rather than continually polling for data. The value of
this resource is equivalent to the number of milliseconds that the IBM Point of Sale
Subsystem will wait for data before returning to the application. If data is available
when the w subroutine is called or if data becomes available before the
time-out has expired, then that data will be returned to the application. If the
time-out expires and no data is available, then the 329 PQSERR_SYS_TIMEQUT

error will be returned to the application.

Two values have special meaning when used with the PosNreadTimeould resource:

0 If the resource value is 0 (zero) and there is no data available, the
subroutine returns immediately and no error is returned.
-1 A resource value of -1 will cause the m subroutine to wait

indefinitely for data to come available. If no data ever becomes available,
the subroutine will not return.

This resource can be specified in the resource file.

Notes:

1. This resource is only used when the application reads the IBM Point of Sale
Subsystem input queue. It is not used when calling W for other device
descriptors or for the presentation facility queue.

2. This resource is ignored for 16-bit applications for the Microsoft Windows
operating system and for 32-bit applications using Microsoft Win32s on
Microsoft Windows 3.1.

PosNvitalProductData

Type unsigned char *
Default n/a
Access G

The PasNvitalProductData resource allows an application to request the product
data (machine type, serial number, BIOS level) for the system. This resource is only
valid for 4694 models with model type 244 or later and BIOS level 9.12 or later.
Twenty-four bytes of data are returned for this resource. The structure, PosVPD,
describes the format of the returned data (see the header file, pos.h).

Notes:

1. Use a device descriptor of 0 (zero) when making a POS_SYS_GET_VALUES
request to query the value of this resource.

2. This resource cannot be set and has no effect if specified in the resource file.

PosDevice Resource Set

Class Name PosDevice

Include <pos/device.h>

Chapter 21. Resource Sets 21-7

PosDevice Resource Set created on October 2, 2001

The PosDevice resource set controls all aspects of the devices that are supported
by the IBM Point of Sale Subsystem and that are connected to the system. The
resources in this set determine the physical connection between the device and the
point-of-sale terminal. As a result, these values can only be set when the device is
opened. Applications can query the values, but are not allowed to modify them.

Because all other resource sets inherit members from this resource set, all other
sets contain the resources in this set as well as their own additions.

The following table gives an overview of the resources in this set.

Table 21-2. PosDevice Resources

Name Type Default Access
BosNdeviceNumbet char none CG
BosNportNumbed char PosPORT_1 CG
PosNgueueHandld long 0 CG
PosNslotNumbet char PosSLOT_5 CG

See [Resaurce Access Cades” on page 21-5 for descriptions of the access codes.

PosNdeviceNumber
Type char
Default none
Access CG

The PasNslatNumher, PasNpartNumbet, and the PasNdeviceNumber resources

together uniquely identify each point-of-sale device found by the IBM Point of Sale
Subsystem. The PasNdeviceNumbed resource can have the following values:

PosDEVICE_ALARM (0x84)
An alarm. This device can only be attached to socket 3B.

PosDEVICE_ALPHANUMERIC_DISPLAY_A (0x20)
Vacuum Fluorescent Display with two rows of 20 alphanumeric characters

PosDEVICE_ALPHANUMERIC_DISPLAY_B (0x21)
Vacuum Fluorescent Display with two rows of 20 alphanumeric characters

PosDEVICE_ANOP_DISPLAY_A (0x24)

One of the following displays:

* 40-Character Liquid Crystal Display Il (PosDSP_SUBTYPE_2X20_LCD)

» 40-Character Liquid Crystal Display Il
(PosDSP_SUBTYPE_2X20_LCD_l)

* 40-Character Vacuum Fluorescent Display |l
(PosDSP_SUBTYPE_2X20_VFD)

» 2x20 Character VFD Customer Display (PosDSP_SUBTYPE_2X20_VFD)

* Two-Sided Vacuum Fluorescent Display Il
(PosDSP_SUBTYPE_2_SIDE_VFD)

PosDEVICE_ANOP_DISPLAY_B (0x25)
One of the following displays:
* 40-Character Liquid Crystal Display Il (PosDSP_SUBTYPE_2X20_LCD)
* 40-Character Liquid Crystal Display I
(PosDSP_SUBTYPE_2X20_LCD_l)

21-8 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

PosDevice Resource Set

* 40-Character Vacuum Fluorescent Display I
(PosDSP_SUBTYPE_2X20_VFD)

* 2x20 Character VFD Customer Display (PosDSP_SUBTYPE_2X20_VFD)

* Two-Sided Vacuum Fluorescent Display Il
(PosDSP_SUBTYPE_2_SIDE_VFD)

PosDEVICE_APA_DISPLAY_A (0x2A)

Character and Graphics Display:

» Single-byte (PosSUBTYPE_NONE)

+ Japan (PosDSP_SUBTYPE_APA_JAPAN)

* Korea (PosDSP_SUBTYPE_APA_KOREA)

 Traditional Chinese (PosDSP_SUBTYPE_APA_TRAD_CHINESE)
» Simplified Chinese (PosDSP_SUBTYPE_APA_SIMP_CHINESE)

PosDEVICE_APA_DISPLAY_B (0x2B)

Character and Graphics Display:

+ Single-byte (PosSUBTYPE_NONE)

» Japan (PosDSP_SUBTYPE_APA_JAPAN)

» Korea (PosDSP_SUBTYPE_APA_KOREA)

* Traditional Chinese (PosDSP_SUBTYPE_APA_TRAD_CHINESE)
 Simplified Chinese (PosDSP_SUBTYPE_APA_SIMP_CHINESE)

PosDEVICE_APA_DISPLAY_C (0x2C)

Character/Graphics Display attached to the PLU Extension Box:

» Single-byte (PosSUBTYPE_NONE)

+ Japan (PosDSP_SUBTYPE_APA_JAPAN)

+ Korea (PosDSP_SUBTYPE_APA_KOREA)

* Traditional Chinese (PosDSP_SUBTYPE_APA_TRAD_CHINESE)
 Simplified Chinese (PosDSP_SUBTYPE_APA_SIMP_CHINESE)

PosDEVICE_APA_DISPLAY_D (0x2D)

Character/Graphics Display attached to the PLU Extension Box:

» Single-byte (PosSUBTYPE_NONE)

» Japan (PosDSP_SUBTYPE_APA_JAPAN)

» Korea (PosDSP_SUBTYPE_APA_KOREA)

» Traditional Chinese (PosDSP_SUBTYPE_APA_TRAD_CHINESE)
» Simplified Chinese (PosDSP_SUBTYPE_APA_SIMP_CHINESE)

PosDEVICE_ANPOS_KEYBOARD_A (0x1A)

Alphanumeric Point of Sale Keyboard

PosDEVICE_ANPOS_KEYBOARD_B (0x1B)

Alphanumeric Point of Sale Keyboard

PosDEVICE_CASH_DRAWER_A (0x54)

A cash drawer attached to socket 3A.

PosDEVICE_CASH_DRAWER_B (0x83)

A cash drawer attached to socket 3B.

PosDEVICE_CHECKOUT_KEYBOARD_A (0x10)

One of the following checkout keyboards:
* 50-Key Modifiable Layout Keyboard
» 50-Key Modifiable Layout Keyboard/Operator Display

PosDEVICE_CHECKOUT_KEYBOARD_B (0x11)

One of the following checkout keyboards:
» 50-Key Modifiable Layout Keyboard
» 50-Key Modifiable Layout Keyboard/Operator Display

Chapter 21. Resource Sets 21-9

PosDevice Resource Set created on October 2, 2001

PosDEVICE_MSR_1_TRACK_A (0x40)
One-track MSR

PosDEVICE_MSR_1_TRACK_B (0x41)
One-track MSR

PosDEVICE_MSR_2_TRACK_A (0x46)
Two-track MSR

PosDEVICE_MSR_2_TRACK_B (0x47)
Two-track MSR

PosDEVICE_MSR_3_TRACK_A (0x48)
Three-track MSR

PosDEVICE_MSR_3_TRACK_B (0x49)
Three-track MSR

PosDEVICE_MSR_J_TRACK_A (0x48)
Japanese Two-Head MSR

PosDEVICE_MSR_J_TRACK_B (0x49)
Japanese Two-Head MSR

PosDEVICE_NVRAM_A (0x50)
NVRAM in an attached 4683-x02

PosDEVICE_NVRAM_B (0x51)
NVRAM in an attached 4693-2x2

PosDEVICE_NVRAM_LOCAL (0x85)
NVRAM in:
» 4684-300
* 4693 (all models except 2x2)
* 4694 (all models)
* 4695 (all Integrated models)
» 4695 Point of Sale Adapter
+ 4695 Point of Sale Adapter/A
» 7497-001 Point of Sale Attachment Adapter

PosDEVICE_OPERATOR_DISPLAY_A (0x22)
LCD display with two rows of 20 alphanumeric characters

PosDEVICE_OPERATOR_DISPLAY_B (0x23)
LCD display with two rows of 20 alphanumeric characters

PosDEVICE_PLU_KEYBOARD (0x19)
PLU Keyboard/Display-lll on the PLU Extension Box

PosDEVICE_POS_KEYBOARD_A (0x1C)

One of the following point-of-sale keyboards:

* Retail Alphanumeric Point of Sale Keyboard with Card Reader
(PoskKBD_SUBTYPE_ANPOS_2)

* Retail Point of Sale Keyboard (PosKkBD_SUBTYPE_CHECKOUT_2)

* Retail Point of Sale Keyboard with Card Reader
(PoskBD_SUBTYPE_CHECKOUT_2)

* Retail Point of Sale Keyboard with Card Reader and Display
(PoskBD_SUBTYPE_CHECKOUT_2)

* Modifiable Layout Keyboard with Card Reader
(PoskBD_SUBTYPE_MODIFIABLE_LAYOUT)

» PC Point of Sale Keyboard (PoskBD_SUBTYPE_PC_POQOS)

» Point of Sale Keyboard V (PosKkBD_SUBTYPE_KEYBOARD_V)

» Point of Sale Keyboard VI (PoskBD_SUBTYPE_KEYBOARD_VI)

21-10 Point of Sale Subsystem Programming Reference and User’s Guide

created on October 2, 2001

PosDevice Resource Set

4685 Point of Sale Keyboard Model KO1
(PosKBD_SUBTYPE_4685_K01)

IBM 4820 SurePoint Keypad (PosKBD_SUBTYPE_4820_NO_KEYS)
IBM 4820 SurePoint Keypad (PosKBD_SUBTYPE_4820_KEYPAD)

PosDEVICE_POS_KEYBOARD_B (0x1D)
One of the following point-of-sale keyboards:

Retail Alphanumeric Point of Sale Keyboard with Card Reader
(PosKBD_SUBTYPE_ANPOS_2)

Retail Point of Sale Keyboard (PosKBD_SUBTYPE_CHECKOUT_2)
Retail Point of Sale Keyboard with Card Reader
(PoskBD_SUBTYPE_CHECKOUT_2)

Retail Point of Sale Keyboard with Card Reader and Display
(PoskBD_SUBTYPE_CHECKOUT_2)

Modifiable Layout Keyboard with Card Reader
(PoskBD_SUBTYPE_MODIFIABLE_LAYOUT)

PC Point of Sale Keyboard (PosKkBD_SUBTYPE_PC_POS)

Point of Sale Keyboard V (PosKBD_SUBTYPE_KEYBOARD_V)
Point of Sale Keyboard VI (PosKkBD_SUBTYPE_KEYBOARD_VI)
4685 Point of Sale Keyboard Model KO1
(PoskKBD_SUBTYPE_4685_KO01)

IBM 4820 SurePoint Keypad (PosKBD_SUBTYPE_4820_NO_KEYS)
IBM 4820 SurePoint Keypad (PosKBD_SUBTYPE_4820_KEYPAD)

PosDEVICE_POWER_B (0x86)
Programmable power device that controls the power supply to an attached
4693-2x2

PosDEVICE_POWER_LOCAL (0x87)
Programmable power device that controls the power supply to a 4693 (all
models except 2x2)

PosDEVICE_PRINTER_2 (0x30)
Model 2 printer

PosDEVICE_PRINTER_4689_THERMAL (0x32)
One of the following point-of-sale printers:

The IBM 4689 Point of Sale Printer Models 3x1 and TD5
(PosPRN_SUBTYPE_4689_301)

PosDEVICE_PRINTER_3 (0x34)
One of the following point-of-sale printers:

Model 3 printer
Model 3R printer

PosDEVICE_PRINTER_4 (0x34)
One of the following point-of-sale printers:

Model 4 printer (PosSUBTYPE_NONE)
Model 4A printer (PosPRN_SUBTYPE_MODEL_4A)
Model 4R printer (PosSUBTYPE_NONE)

PosDEVICE_PRINTER_4610 (0x35)
One of the IBM 4610 Su