
WebSphere MQ Everyplace

C Bindings Programming Guide
Version 2.0

SC34-6280-00

���

Take Note!

Before using this information and the product it supports, be sure to read the general information under Appendix B,
“Notices” on page 139

First Edition (November 2002)

This edition applies to WebSphere® MQ Everyplace™ Version 2.0 (Program number: 5724-C77) and to all subsequent
releases and modifications until otherwise indicated in new editions.

This document is continually being updated with new and improved information. For the latest edition, please see
the WebSphere MQ family library Web page at http://www.ibm.com/software/ts/mqseries/library/.

© Copyright International Business Machines Corporation 2000, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book v
Licence warning v
Who should read this book vi
Prerequisite knowledge vi
Terms used in this book vi

Summary of changes. ix
Changes for this edition (SC34-6280-00) ix

Migration notes xi
Migrating from version 1.2.5 or lower to version
1.2.6 or higher xi

Chapter 1. Overview 1
WebSphere MQ Everyplace queue manager 2
WebSphere MQ Everyplace queues 3

Local queue 3
Remote queue 3
Store-and-forward queue 3
Home-server queue 4
WebSphere MQ-bridge queue. 4
Dead-letter queue. 4
Administration queue 4

WebSphere MQ Everyplace connections 5
WebSphere MQ Everyplace bridge to WebSphere MQ 7
Security 8

Chapter 2. Getting started 9
Installation 9
Setting the environment 10

JVM options 10
Trace options 10

JVM environment 11
Compiling and Linking 11
Threading build time considerations 12
Relationship with the Native C Client 12
Examples 12

Chapter 3. Using the C Bindings. . . . 15
Using handles 15

API conventions 15
Managing handles 16
Object hierarchy 16
Static type checking 17

Exception handling 17
Obtaining an Exception Block 18

Unsupported Java APIs 18
Use of Java class names 19

Type mapping 19
Threading application design considerations . . . 19

Run time 20
Session 20

API calls 20
Administration messages 20

WebSphere MQ-bridge 21

Chapter 4. Fundamental objects 23
MQeString. 23
MQeFields. 25

Chapter 5. Queue managers,
messages, and queues. 27
Creating and deleting queue managers 27

Queue manager names 27
Creating a queue manager 27
Deleting a queue manager 29
Using queue manager aliases 30

Starting queue managers 33
Client queue managers 33
Server queue managers 36

Messages 37
Storing messages 38
Filters 41
Message Expiry 41

Queues 41
Queue names. 42
Queue types 42
Queue ordering 42
Reading all the messages on a queue 42
Browse and Lock 42
Message listeners 43
Message polling 43
Messaging operations 44
Using queue aliases 44

Synchronous and asynchronous messaging 45
Synchronous messaging 45
Asynchronous messaging. 45

Assured message delivery 47
Synchronous assured message delivery 47

Security 53

Chapter 6. Administering messaging
resources 55
The basic administration request message 56

Base administration fields 57
Fields specific to the managed resource 59
Other useful fields 59

The basic administration reply message 61
Outcome of request fields 62

Administration of managed resources 64
Queue managers 65
Connections 65
Queues 68

Security and administration 79

Chapter 7. WebSphere MQ-bridge . . . 81
Installation 81

WebSphere MQ Classes for Java 81

© Copyright IBM Corp. 2000, 2002 iii

Configuring the WebSphere MQ-bridge 81
Naming recommendations for inter-operability
with a WebSphere MQ network 82
Configuring a basic installation 83
Configuration example 85

Administration of the WebSphere MQ-bridge . . . 91
WebSphere MQ-bridge administration actions . . 91
WebSphere MQ-bridge considerations when
shutting down a WebSphere MQ queue manager . 92
Administered objects and their characteristics . . 93

How to send a message from WebSphere MQ to
WebSphere MQ Everyplace 106

Handling undeliverable messages 107
Putting messages to the WebSphere MQ-bridge
queue 107
Getting and browsing messages from the
WebSphere MQ-bridge queue 108

Usage restrictions 109
National language support implications 109

Conclusion 111

Chapter 8. Security 113
Security features 113
Local security 114

Usage scenario 114
Usage guide 115

Queue-based security 117
Queue-based security and asynchronous queues 118
Usage scenario 119
Usage guide 121

Queue-based security - connection reuse . . . 124
Message-level security 125

Usage scenario 126
Usage guide 127

Private registry service 131
Private registry and the concept of
authenticatable entity. 131
Usage scenario 132
Usage guide 133

Public registry service 134
Usage scenario 134
Usage guide 135

mini-certificate issuance service 136

Appendix A. Applying maintenance to
WebSphere MQ Everyplace 137

Appendix B. Notices 139
Trademarks 140

Glossary 141

Bibliography. 143

Index 145

Sending your comments to IBM . . . 149

iv WebSphere MQ Everyplace: C Bindings Programming Guide

About this book

This book is a programming guide for the WebSphere MQ Everyplace product. It
contains information on how to use the WebSphere MQ Everyplace and C class
libraries that are described in the WebSphere MQ Everyplace C Bindings API
Reference. .

It provides guidance to help you to decide which classes to use for common
messaging tasks, and in many cases example code is supplied.

For information on writing Java and C-based programs for WebSphere MQ
Everyplace, refer to the WebSphere MQ Everyplace Application Programming Guide,
the WebSphere MQ Everyplace Java Programming Reference., and the WebSphere MQ
Everyplace C Programming Reference.

The Chapter 1, “Overview” on page 1 provides a brief introduction for those who
are unfamiliar with the concepts and components of WebSphere MQ Everyplace.
Chapter 2, “Getting started” on page 9 provides help for setting up your
environment, and shows you how to use examples to create applications.
Chapter 3, “Using the C Bindings” on page 15 contains information specific to the
use of the C Bindings. The rest of the book contains more detailed information
about various aspects of programming with WebSphere MQ Everyplace.

You should use this book in conjunction with the WebSphere MQ Everyplace Java
Programming Reference and the WebSphere MQ Everyplace C Programming Reference,
and existing books or manuals on Java and C programming.

This document is continually being updated with new and improved information.
For the latest edition, please see the WebSphere MQ family library Web page at
http://www.ibm.com/software/mqseries/library/.

Licence warning
WebSphere MQ Everyplace is a toolkit that enables users to write WebSphere MQ
Everyplace applications and to create an environment in which to run them. Before
deploying this product, or applications that use it, please make sure that you have
the necessary licenses.
1. The pricing of licenses for use of the Program on servers is based on ’Processor

License Units’. Use of each copy of the Program on a server requires one
Processor License Unit to be acquired for each processor or symmetric
multiprocessor contained in the server on which the copy of the Program is to
run. Different types of Processor License Units and ’Device Use Authorisations’
are required, depending on whether the Program is running on point-of-sale,
that is retail, equipment or on another type of computer. Use of the Program on
retail equipment requires a ’Retail’ server license, whereas use on other
(non-retail) equipment requires a ’Network’ server license.

2. Additional ’Device Use Authorisation’ is required for any use of the Program
on a separate client device, except those included in the Network Server
license, as described at 3) below.

© Copyright IBM Corp. 2000, 2002 v

3. Each ’Network’ server license includes authorisation for the restricted use of
the Program with no more than one hundred (100) client devices, on condition
that all such copies are used in the same economic enterprise or organisation as
the server copy.

Please refer to http://www.ibm.com/software/mqseries for details of these restrictions.

Who should read this book
This book is intended for anyone who wants to write C based WebSphere MQ
Everyplace programs to exchange secure messages within WebSphere MQ
Everyplace systems, and between WebSphere MQ Everyplace systems and other
members of the WebSphere MQ family of messaging and queueing products.

For information on the availability of development kits for environments other
than C, see the WebSphere MQ Web site at http://www.ibm.com/software/mqseries/

Prerequisite knowledge
This book assumes that the reader has a working knowledge of C and object
oriented programming techniques.

You need an initial understanding of the concepts of secure messaging. If you do
not have this understanding, you may find it useful to read the following
WebSphere MQ books:
v WebSphere MQ An Introduction to Messaging and Queuing, GC33-0805
v WebSphere MQ for Windows NT® V5R1 Quick Beginnings,GC34-5389, or the

WebSphere MQ Quick Beginnings book that is relevant to the operating system
that you are using.

These books are available in softcopy form from the Book section of the online
WebSphere MQ library. The library can be reached from the WebSphere MQ Web
site, URL address http://www.ibm.com/software/WebSphere MQ/library/

Terms used in this book
The following terms are used throughout this book:

WebSphere MQ family
refers to the following WebSphere MQ products:
v WebSphere MQ Workflow simplifies integration across the whole

enterprise by automating business processes involving people and
applications

v WebSphere MQ Integrator is powerful message-brokering software that
provides real-time, intelligent rules-based message routing, and content
transformation and formatting

v WebSphere MQ Messaging provides any-to-any connectivity from
desktop to mainframe, through business quality messaging, with over 35
platforms supported

WebSphere MQ Messaging
refers to the following messaging product groups:
v Distributed messaging: WebSphere MQ for Windows NT, AIX®,

AS/400®, HP-UX, Sun Solaris, and other platforms
v Host messaging: WebSphere MQ for OS/390®

vi WebSphere MQ Everyplace: C Bindings Programming Guide

v Workstation messaging: WebSphere MQ for Windows
v Pervasive messaging: WebSphere MQ Everyplace

WebSphere MQ
refers to the following three WebSphere MQ Messaging product groups:
v Distributed messaging
v Host messaging
v Workstation messaging

WebSphere MQ Everyplace
Refers to the fourth WebSphere MQ Messaging product group, pervasive
messaging.

Device platform
A small computer that is capable of running WebSphere MQ Everyplace
only as a client.

Server platform
A computer of any size that is capable of running WebSphere MQ
Everyplace as a server or client.

Gateway
A computer of any size running WebSphere MQ Everyplace programs that
include the WebSphere MQ-bridge function.

About this book vii

viii WebSphere MQ Everyplace: C Bindings Programming Guide

Summary of changes

This section describes changes to this edition of the WebSphere MQ Everyplace C
Bindings Programming Guide. Within the book, changes since the previous edition
are marked by vertical lines to the left of the changes.

Changes for this edition (SC34-6280-00)
In addition to editorial corrections and improvements to the text, the following
information has been modified or added:
v The book title. This book was previously titled ″WebSphere MQ Everyplace for

Multiplatforms C Programming Guide″.
v Product version number

© Copyright IBM Corp. 2000, 2002 ix

changes

x WebSphere MQ Everyplace: C Bindings Programming Guide

Migration notes

This section contains information that you may need to consider when migrating
from one version or release of WebSphere MQ Everyplace to a higher version or
release.

Migrating from version 1.2.5 or lower to version 1.2.6 or higher
If you are migrating from version 1.2.5 or lower to a higher version or release of
WebSphere MQ Everyplace, delete the following files:
v com.ibm.mqe.MQeFilter
v com.ibm.mqe.MQeVector
v com.ibm.mqe.MQeVectorElement

Deleting these files from your upgraded system avoids unnecessary footprint being
consumed.

© Copyright IBM Corp. 2000, 2002 xi

xii WebSphere MQ Everyplace: C Bindings Programming Guide

Chapter 1. Overview

WebSphere MQ Everyplace code can run on a large range of platforms including
pervasive and mobile devices. Unlike base WebSphere MQ, WebSphere MQ
Everyplace has a single queue manager type. However, WebSphere MQ Everyplace
queue managers can be programmed to act as traditional clients or servers.

The fundamental elements of the WebSphere MQ Everyplace programming model
are messages, queues and queue managers. WebSphere MQ Everyplace messages are
objects that contain application-defined content. When stored, they are held in a
queue and such messages may be moved across an WebSphere MQ Everyplace
network. Queues can either be local or remote and are managed by queue
managers.

WebSphere MQ Everyplace queue managers communicate through WebSphere MQ
Everyplace connections. These connections are created on demand and are referred
to as dynamic, differentiating them from WebSphere MQ connections which have to
be explicitly created. They can also be configured in two different ways, in
peer-to-peer mode, and in client/server mode (see “WebSphere MQ Everyplace
connections” on page 5).

The WebSphere MQ-bridge component also supports WebSphere MQ client
channels to enable WebSphere MQ Everyplace networks to communicate with
WebSphere MQ networks.

Figure 1 shows an example of an WebSphere MQ Everyplace network linked to a
WebSphere MQ server and the following sections of this chapter give brief
descriptions of WebSphere MQ Everyplace objects and their uses.

MQSeries
Everyplace

gateway
queue manager

MQSeries
server

MQSeries
Everyplace

queue manager

MQSeries
Everyplace

queue manager

MQSeries
Everyplace

queue manager

Client-server
channel

Client-server
channel

Client-server
channel

Client-server
channel

Peer
channel

Peer
channel

MQSeries-bridge

Network

Figure 1. WebSphere MQ Everyplace client

© Copyright IBM Corp. 2000, 2002 1

WebSphere MQ Everyplace queue manager
The WebSphere MQ Everyplace queue manager is the focal point of the WebSphere
MQ Everyplace system. It provides:
v A central point of access to a messaging and queueing network for WebSphere

MQ Everyplace applications
v Optional client-side queuing
v Optional administration functions
v Once and once-only assured delivery of messages
v Full recovery from failure conditions
v Extendable rules-based behavior

The WebSphere MQ Everyplace queue manager is code imbedded within user
written programs and these programs can run on any WebSphere MQ Everyplace
supported device or platform.

Queue managers can be configured in a number of different ’styles’, the main ones
being client (also known as peer, or device), server, and gateway. See “Starting
queue managers” on page 33 for descriptions of these styles.

An WebSphere MQ Everyplace queue manager can control the various types of
queue that are described in “WebSphere MQ Everyplace queues” on page 3.
Communication with other queue managers on the WebSphere MQ messaging
network can be synchronous or asynchronous. If you want to use synchronous
communications, the originator, and the target WebSphere MQ Everyplace queue
managers must both be available on the network. Asynchronous communication
allows an WebSphere MQ Everyplace application to send messages even when the
remote queue manager is offline.

For more detailed information about WebSphere MQ Everyplace queue managers
see Chapter 5, “Queue managers, messages, and queues” on page 27

overview - queue manager

2 WebSphere MQ Everyplace: C Bindings Programming Guide

WebSphere MQ Everyplace queues
There are several different types of queue class that you can use in an WebSphere
MQ Everyplace environment. The types that are available in the WebSphere MQ
Everyplace development package are:
v Local
v Remote
v Store-and-forward
v Home-server
v WebSphere MQ-bridge

Queues may have characteristics, such as authentication, compression, and
encryption. These characteristics are set using attributes, and are used when a
message object is stored on a queue.

Local queue
The simplest type of queue is a local queue. These are real queues that are the final
destination for all messages. This type of queue is local to, and owned by, a
specific queue manager. Applications on the owning queue manager can interact
directly with the queue to store messages in safe and secure way (excluding
hardware failures or loss of the device). These queues can be used on a standalone
queue manager, or on a queue manager that is connected to a network.

The queue owns access and security and may allow a remote queue manager to
use these characteristics (when connected to a network). This allows others to send
or receive messages to the queue.

For more detailed information about local queues, see “Local queue” on page 68.

Remote queue
A remote queue is a local queue belonging to a queue manager on another
machine. A remote queue definition is a proxy for a local queue belonging to a
queue manager on another machine. This remote queue definition exchanges
messages with the remote local queue.

You can access remote queues either synchronously or asynchronously. If there is a
local definition of the remote queue, the mode of access is based on the definition.
In this case, the mode of access may be either synchronous or asynchronous.
However, if there is no local definition, queue discovery occurs. WebSphere MQ
Everyplace retrieves the characteristics (authentication, cryptography, and
compression) from the real queue, and forces the mode of access to synchronous.

For more information on remote queues, see “Remote queue” on page 71.

Store-and-forward queue
A store-and-forward queue stores messages on behalf of other queue managers
until they are ready to receive them. This type of queue is normally defined on a
server and can be configured to perform either of the following:
v Push messages either to the target queue manager or to another queue manager

between the sending and the target queue managers.
v Wait for the target queue manager to pull messages destined for it.

overview - queues

Chapter 1. Overview 3

Store-and-forward queues can hold messages for many target queue managers, or
there may be one store-and-forward queue for each target queue manager. For
more detailed information about store-and-forward queues, see “Store-and-forward
queue” on page 73.

Home-server queue
This type of queue usually resides on a client and points to a store-and-forward
queue on a server known as the home-server. The home-server queue pulls
messages from the home-server store-and-forward queue when the client connects
on the network.

Home-server queues normally have a polling interval that causes them to check for
any pending messages on the server while the network is connected.

When this queue pulls a message from the server, it uses assured message delivery
to put the message to the local queue manager. The message is then stored on the
target queue.

For more detailed information about home-server queues, see “Home-server
queue” on page 75.

WebSphere MQ-bridge queue
This type of queue is always defined on an WebSphere MQ Everyplace gateway
queue manager and provides a path from the WebSphere MQ Everyplace
environment to the WebSphere MQ environment. The WebSphere MQ-bridge
queue is a remote queue definition that refers to a queue residing on a WebSphere
MQ queue manager.

Applications can use put, get, and browse operations on this type of queue, as if it
were a local WebSphere MQ Everyplace queue.

For more detailed information about the WebSphere MQ-bridge queue, see
“WebSphere MQ-bridge queue” on page 77.

Dead-letter queue
WebSphere MQ Everyplace has a similar dead-letter queue concept to WebSphere
MQ. Dead-letter queues store message that cannot be delivered. However, there are
important differences in the manner they are used.
v In WebSphere MQ, if a message is being moved from queue manager A to queue

manager B, then if connection A to B cannot deliver the message, the message can
be placed on the receiving queue manager’s (B’s) dead-letter queue.

v In WebSphere MQ Everyplace, if home-server queue on a client pulls a message
from a server and is not able to deliver the message to a local queue and the
client has a dead-letter queue, the message will be placed on the client’s
dead-letter queue.
The use of dead-letter queues with an WebSphere MQ-bridge needs special
consideration, see “Handling undeliverable messages” on page 107 for more
details.

Administration queue
The administration queue is a specialized queue that processes administration
messages.

overview - queues

4 WebSphere MQ Everyplace: C Bindings Programming Guide

Messages put to the administration queue are processed internally. Because of this
applications cannot get messages directly from the administration queue. Only one
message is processed at a time, other messages that arrive while a message is
being processed are queued up and processed in the sequence in which they
arrive.

WebSphere MQ Everyplace connections
WebSphere MQ Everyplace supports a method of establishing logical connections
between queue managers, in order to send or receive data.

WebSphere MQ Everyplace clients and servers can communicate over two types of
connections, peer channels and client/server channels.

Client/server channels have the following attributes:
v They are dynamic, that is created on demand. This differentiates them from

WebSphere MQ connections which have to be explicitly created.
v You can only establish the connection from the client-side.
v A client can connect to many servers, using a separate connection for each

server.
v The server-side queue manager can accept many connections simultaneously,

from a multitude of different clients, using channel managers and channel
listeners.

v They work through a firewall, if the server-side of the connection is behind the
firewall. (This depends on the configuration of the firewall.)

v They are unidirectional and support the full range of functions provided by
WebSphere MQ Everyplace, including both synchronous and asynchronous
messaging.

Note: Unidirectional means that the client can send data to, or request data from
the server, but the server-side cannot initiate requests of the client.

Peer channels have the following attributes:
v They are dymanic (like client/server channels).
v You can establish the connection from either the client-side or the server-side.
v A queue manager can connect to peer channel listeners on many other queue

managers, using a separate connection for each peer channel listener.
v Only one other external client or server can establish a peer channel to the

queue manager at any one time. This restriction means that normally, you only
use this type of connection between clients, as server queue managers usually
want to handle multiple incoming requests concurrently.

v They are not generally used over a firewall, as it is difficult to configure peer
channels in this environment.

v They are bidirectional and support the full range of functions provided by
WebSphere MQ Everyplace, including both synchronous and asynchronous
messaging.

Note: Bidirectional means that the queue managers on each end of the
connection can request and pass data over the connection.

Connections can have various attributes or characteristics, such as authentication,
cryptography, compression, or the transmission protocol to use. Different

overview - queues

Chapter 1. Overview 5

connections can use different characteristics. Each connection can have its own
value set for each of the following attributes:

Authenticator
This attribute causes authentication to be performed. This is a security function
that challenges the putting application environment or user to prove their
identity.

Cryptor
This attribute causes encryption and decryption to be performed on messages
passing through the connection. This is a security function that encodes the
messages during transit so that you cannot read them without the decoding
information.

Compressor
This attribute causes compression and decompression to be performed on
messages passing through the connection. This attempts to reduce the size of
messages while they are being transmitted and stored.

Destination
The server and port number for the connection.

Typically, authentication only occurs when setting up the connection. All flows
normally use compressors and cryptors.

For more detailed information about connections see “Connections” on page 65.
Also, for more information about authenticators, compressors, and cryptors, see
Chapter 8, “Security” on page 113.

You can establish WebSphere MQ Everyplace connections using a variety of
protocols allowing them to connect in a number of different ways, for example:
v Permanent connection, for example a LAN, or leased line
v Dial out connection, for example using a standard modem to connect to an

Internet service provider (ISP)
v Dial out and answer connection, using a CellPhone, or ScreenPhone for example

WebSphere MQ Everyplace implements the communications protocols as a set of
adapters, with one adapter for each of the supported protocols. This enables you to
add new protocols.

Authenticator

Compressor

Cryptor

Authenticator

Compressor

Cryptor

Communications
protocol

Figure 2. WebSphere MQ Everyplace connection

overview - connections

6 WebSphere MQ Everyplace: C Bindings Programming Guide

WebSphere MQ Everyplace bridge to WebSphere MQ
An WebSphere MQ Everyplace queue manager can be an interface to a WebSphere
MQ server. This type of queue manager is referred to as a gateway queue manager.
The WebSphere MQ-bridge handles the transfer of messages between the two
systems, including the translation between the different message formats.
“Configuring the WebSphere MQ-bridge” on page 81 provides a detailed
description of this interface.

MQSeries Everyplace gateway

MQSeries-bridge
queue

MQSeries-bridge
transmission queue

listener

MQSeries server

MQSeries
Xmit queue

MQSeries
local queue

Routed
messages

put,
browse,
get

Figure 3. WebSphere MQ Everyplace interface to WebSphere MQ

overview - bridge to WebSphere MQ

Chapter 1. Overview 7

Security
WebSphere MQ Everyplace includes an integrated set of security features that
provide protection for message data, both when it is held locally, and when it is
being transferred. There are three different categories of security:

Local security
Local security provides protection for WebSphere MQ Everyplace messages
while they are held by a local queue manager.

Queue-based security
Queue-based security automatically protects WebSphere MQ Everyplace
message data between an initiating queue manager and a target queue, if
the target queue is defined with an attribute. This protection is
independent of whether the target queue is owned by a local or a remote
queue manager.

Message-level security
Message-level security provides protection for message data between an
initiating and receiving WebSphere MQ Everyplace application.

WebSphere MQ Everyplace security uses the authenticator, cryptor, and compressor
attributes referred to in “WebSphere MQ Everyplace connections” on page 5.
Queue based security is handled internally by WebSphere MQ Everyplace and
does not require any specific action by the initiator or recipient of the message.
Local and Message-level security must be initiated by an application.

WebSphere MQ Everyplace also provides a mini-certificate server for enhanced
security.

See Chapter 8, “Security” on page 113 for detailed information about WebSphere
MQ Everyplace security features.

Note: Throughout the world there are varying government regulations concerning
levels and types of cryptography. You must always use a level and type of
cryptography that complies with the appropriate local legislation. This is
particularly relevant when using a mobile device that is moved from
country to country. WebSphere MQ Everyplace provides facilities for this,
but it is the responsibility of the application programmer to implement it.

overview - security

8 WebSphere MQ Everyplace: C Bindings Programming Guide

Chapter 2. Getting started

The WebSphere MQ Everyplace C Bindings are a development environment for
writing messaging and queuing applications in the C programming language. This
section provides information to help you complete a successful installation of
Version 2.0 of the C Bindings.

To successfully use the C Bindings you need to complete the following:
v Ensure that your system path is set to find the C Bindings DLLs, and is also set

to the ’bin’ directories of your JDK installation.
v Ensure that the C Bindings header files and library files are accessible to your

compiler.
v Ensure that your application is compiled with the Microsoft Multithreaded DLL

C Runtime.
v Ensure that the Windows Registry entries are created correctly.

These tasks are covered in more detail in the following sections.

Installation
To use the C Bindings you must have chosen to install the optional bindings code
during your WebSphere MQ Everyplace installation.

The installed bindings consist of the following:

Binary files
These are DLLs and libraries that your applications need to link to. Your
system needs to be set up so that your compiler can access these files. At
runtime the DLL files need to be on the system path.

The DLL files are:
v HMQ_Bindings.dll
v HMQ_bindingsAPI.dll
v HMQ_bindingsOSA.dll
v HMQ_HAL.dll

There is also a static library:
v HMQ_bindingsCnst.lib

Header Files
These describe the C API and are installed in a directory called ’published’.
The published directory must be in a path that is accessible to your C
compiler.

Java Classes
Some classes that are required by the C Bindings are included with the
main WebSphere MQ Everyplace classes for Java installation.

All the C Bindings files are under the CBindings directory in the main installation
directory. The binary DLLs are in the CBindings\bin directory, the lib files are in
CBindings\lib directory, and the header files are in the include directory under the
main installation directory.

© Copyright IBM Corp. 2000, 2002 9

Setting the environment
Two options need to be specified to provide configuration information for the C
Bindings. One specifies the location of options that are passed to the underlying
Java VM, the other controls trace.

JVM options
You need to create a text file that contains options for the underlying JVM. The
location of this can be specified either by a registry entry, or as an environment
variable. The registry key takes precedence over the environment variable.

The registry key is
HKEY_LOCAL_MACHONE\SOFTWARE\IBM\MQe\CurrentVersion\Bindings with a String
value of OptionsFile.

The environment variable is MQE_VM_OPTIONS_LOCN. This variable points to the
location of a text file that contains the options for the underlying JVM and it must
be set.

In general, the JVM options can be specified on the Java command line, for
example to set the classpath:
java -Djava.class.path=e:\myclasspath myClassToRun

The configuration file uses the same style to pass configuration options. Multiple
options can be given to the JVM, and the configuration file should contain such
options, one on each line. The following is an example configuration file:
#Example configuration file
-Djava.class.path=e:\MQe;e:\MyApplicationClasses
-Djava.compiler=NONE

v The first line is a comment, all comments should have # in the first column.
v The second line specifies the classpath. The classpath can contain spaces. double

quotes do not need to be used.
v The third line indicates that the JIT should not be used. Do not set this compiler

variable for normal operating conditions as it imposes an overhead on system
performance.

Note: If you do not specify the above configuration options the JVM will not
create, returning:
v MQERETURN_JVM_SUPPORT, Return code = 3000
v MQEREASON_JNI_CREATE_VM_FAIL, Reason code = 30003

Trace options
Trace in enabled with a registry key,
HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQe\CurrentVersion\Trace.

All values are of type REG_SZ. The is the following two values are the minimum
required for trace to be produced:
Enable=Yes
Location=c:\my\directory\structure\mqetrace

Where enable turns trace on and the location is the directory in which trace files
are produced. This directory is created if it does not exist already.

getting started

10 WebSphere MQ Everyplace: C Bindings Programming Guide

In addition to these required values, there are a number of optional entries that
affect the output trace.

Note: Enabling trace can produce very large files and, in general, you should only
enable trace if instructed to by an IBM Support Representative.

JVM environment
The C Bindings APIs require a certified IBM or Sun Microsystems JVM v1.2.2, 1.3
or 1.4 and cannot be used with Personal Java or Java Micro Edition.

The WebSphere MQ Everyplace Version 2.0 C Bindings only support Windows
platforms, that is NT, 2000, 98, 95, ME and XP.

Install the JVM as instructed in the chosen JDK, but make sure that the binaries for
the installed JVM are available on the Windows system path. The jre/bin and
jre/bin/classic directories in the JDK installation must also be included in the
system path. However, if you are running JDK 1.4, include the jre/bin and
jre/bin/client paths instead.

Compiling and Linking
A suitable C Compiler is required to build your application. Testing has been
performed using the Microsoft Visual C++ v6 Environment.

Note: If C++ is used, ensure that the calling conventions are correctly maintained.
All APIs use the __cdecl calling convention.

Your application needs to link against HMQ_bindingsAPI.lib and
HMQ_bindingsCnst.lib. Linking against HMQ_bindingsCnst.lib is only required if
you wish to use MQeString Constants. Also, in the Project Settings dialog:
v Select the Link tab
v Add HMQ_bindingsAPI.lib and HMQ_bindingsCnst.lib

The main header file that is required needs to be included as follows:
#include <published\MQe_API.h>

You also need to set a prepreocessor definition:
#define BINDINGS

You can either set the preprocessor definition in the compiler project settings or
define it before including the MQe_API.h file. If this is not defined when the code
is compiled, an error is returned.

Ensure that your compiler is set to enable this header file to be picked up. Note
that the published directory prefix is required. This header file includes all the
other headers that might be required. For example, if you are running Microsoft
Visual C++, include the paths to the C Bindings header and library files as follows:
v Click Tools —> Options

v Select the Directory Tab
v Type the paths to the C Bindings header and library files

You need to set up the Windows System Path to point to the C Bindings DLLs
from the Windows Control Panel or the Command Prompt.

getting started

Chapter 2. Getting started 11

Threading build time considerations
Consideration of the threading needs to be made both when setting up the
environment to build your application and when designing the application. The
build environment setup requires is described here, information on the application
design considerations is provided in “Threading application design considerations”
on page 19.

The underlying JVM has an implementation of threading. The C runtime used is
selected to match the type of threading employed by the JVM. Under JDKs for the
Windows platform, the Microsoft C Runtime is used, in particular the
MultiThreaded DLL version. The debug version should be used for debug builds.

Failure to use the same Runtime as the JVM may result in application failures,
typically with memory management due to different heaps being employed.

Relationship with the Native C Client
This version also includes the Native C Client, a full C implementation of
WebSphere MQ Everyplace. While the C Bindings and the Native C Client share
the API header files, there are some differences. These are documented in
WebSphere MQ Everyplace C Programming Guide for Palm OS.

One difference is that, in the C Bindings, you must set the #define BINDINGS
preprocessor definition before including the MQe_API.h header file. Also, the
libraries that are linked have slightly different names.

The Native C Client and the C Bindings complement eachother, in that the Native
C Client is for devices like Pocket PCs, while the C Bindings is supported on
Windows platforms. The Native C Client does not include server functionality.
Therefore, in a complete solution, it will need to use a server written using either
using the Java code base or the C Bindings.

Examples
The following examples are provided to assist with the coding of WebSphere MQ
Everyplace applications using the C Bindings.

Application examples

Ex1 Put and get a message

Ex2 Put an get multiple messages

Ex3 Message Listener

Ex4 Wait For a message

Ex5 Lock messages

Ex6 Assured put and get

Administration examples

Ex1 Create and delete a queue

Ex2 Add a connection definition

Ex3 Inquire about queue characteristics

Install Examples

getting started

12 WebSphere MQ Everyplace: C Bindings Programming Guide

Ex1 Create a queue manager

Ex2 Delete a queue manager

Ex3 Create a queue

Queue Manager Examples

Ex1 Client queue manager - this code is included in the Install
Examples

Ex2 Server queue manager

Security Examples

Ex1 Client queue manager security example

Ex2 Server queue manager security example

getting started

Chapter 2. Getting started 13

getting started

14 WebSphere MQ Everyplace: C Bindings Programming Guide

Chapter 3. Using the C Bindings

This chapter introduces the philosophy behind the WebSphere MQ Everyplace C
Bindings API, and outlines how to write an application using the Bindings.

Using handles
The WebSphere MQ Everyplace C API is object based, using handles to the objects
as parameters. When an API function is called, you should always pass or receive
a handle to an object. (There are a few exceptions but these are carefully noted in
the WebSphere MQ Everyplace C Programming Reference.) The function called
then acts on the object that is represented by the handle. The life cycle of the
handles (and consequently the objects they represent) needs to be carefully
managed. Functions are provided to create and free handles. Failure to free
handles is equivalent to failure to free resources.

Handles are references to objects, and it is possible for handles to reference NULL
objects. These handles should still be freed, as the handle itself uses resources
(although these are minimal). A macro IS_NULL(pObjectHandle) is provided to
determine if a handle points to a null object, as passing a handle to a null object
into a API function can put the system into an unstable state.

API conventions
Most functions take a handle and an exception block. The handle indicate the
object that the function is operating on. The exception block is specific to a thread
and provides the ability to communicate errors back to the caller. Some functions
do not take a handle. These are Static functions that do not operate on an object.
Examples are the Session and terminate and initialization functions (discussed in
“Session” on page 20). Functions that create new object handles do not take a
handle as an input parameter, instead they return a new handle

All functions return MQERETURN values to indicate success or failure. Data is
returned using output parameters, typically indicated by pointers to object handles
or by pointers to primitive types.

Function prototypes
Prototypes follow two basic forms:

For the construction of new objects
MQERETURN mqeObjectName_new(MQeExceptBlock *pErrStruct,

MQeObjectHndl *phNewObjectHndl,
.... <parameter>);

All other functions
MQERETURN mqeObjectName_functionName(MQeObjectHndl hObjectHndl,

MQeExceptBlock *pErrStruct,
... <parameters>);

The handle of the object on which the function operates always comes first. With
new functions, the exception block comes first as at that point there is no object to
operate on.

For each new call there is a matching free call.

© Copyright IBM Corp. 2000, 2002 15

MQERETURN mqeObjectName_free
(MQeObjectHndl hObjectHndl, MQeExceptBlock * pErrStruct);

Managing handles
To create a new object, and get the handle to that object, call the
mqeObjectName_new(...) function. To release the resource associated with a
handle, call the mqeObjectName_free(...) function.

When creating and freeing handles, the following rules should be observed:
v If a new() call fails, the handle does not need to be freed.
v Handles should not be freed more than once - doing so results in unpredictable

behavior.
v You can free a NULL value and this does not cause an error.
v To check if a handle is NULL or represents a NULL object then use the

IS_NULL(pObjectHndl). This takes a pointer to an object handle and returns
MQE_TRUE if it is NULL or represents NULL. Otherwise it return MQE_FALSE.

Note that for Administration messages, each message has its own unique new()
function, but there is only one free function, mqeAdminMsg_free.

Object hierarchy
The underlying design of the C API is object based, and a hierarchy of objects can
be established. The hierarchy reflects specialization of object types, an example is
the Message object which is a specialization of the Fields object (seeChapter 4,
“Fundamental objects” on page 23).

As an example, assume that we have an MQeVehicle object and an MQeCar object.
MQeCar is a specialization of MQeVehicle. Both of these objects could have the
function move() defined on them, but MQeCar also has a fillPetrol() function. Both
objects must also have new() and free() functions to create new objects and to
return the handles.

Assume the following (using standard WebSphere MQ Everyplace API
conventions):
mqeVehicle_new(MQeExceptBlock *pErrStruct, MQeVehicleHndl *phNewVehicleHndl);
mqeVehicle_free(MQeVehicleHndl hVehicleHndl, MQeExceptBlock *pErrStruct);
mqeVehicle_move(MQeVehichleHndl hVehicleHndl, MQeExceptBlock *pErrStruct);

mqeCar_new(MQeExceptBlock *pErrStruct, MQeCarHndl *phNewCarHndl);
mqeCar_free(MQeCarHndl hCarHndl, MQeExceptBlock *pErrStruct);
mqeCar_fillPetrol(MQeCarHndl hCarHndl, MQeExceptBlock *pErrStruct);

New objects can be created like this:
MQeVehicleHndl hMyVehicle;
MQeCarHndl hMyCar;

rc = mqeVehicle_new(&exceptBlock, &hMyVehicle);
rc = mqeCar_new(&exceptBlock, &MyCar);

Using the handle to the MQeCar object you can fill the car with petrol:
rc = mqeCar_fillPetrol(hMyCar, &exceptBlock);

Note that the following call would fail, with a Return Code 10400 -
MQERETURN_INVLAID_ARGUMENT, because MQeVehicle is not specialization of MQeCar.
rc = mqeCar_fillPetrol(hMyVehicle, &Block)

using C Bindings

16 WebSphere MQ Everyplace: C Bindings Programming Guide

Both of the following calls are valid, because MQeCar is a specialization of
MQeVehicle:
rc = mqeVehicle_move(hMyCar, &exceptBlock);
rc = mqeVehicle_move(hMyVehicle, &exceptBlock);

Such functions are known as polymorphic. Potentially different implements are
called depending on the nature of handle you pass in.

To free the storage you should call the following functions
rc = mqeCar_free(hMyCar, &exceptBlock);
rc = mqeVehcile_free(hMyVehicle, &exceptBlock);

Static type checking
As discussed in the previous section, if object A is a specialization of object B,
object A’s handle can be used in functions defined on object B. When the
application is built, the checks are made to see if the use of the handles is valid.
Three levels of static type checking can be used:
v At the lowest level, no warnings are generated about mismatched handles.
v The middle level splits the objects up into sections. A number of predetermined

root objects are defined. The handles for all specializations of a root object can be
interchanged without warning, but use of a handle derived from another root
object generates a compiler error.

v At the highest warning level, a compiler warning is generated for every handle
use outside its own functions, even when the match is valid.

The middle warning level is the default, but this can be changed as follows:

Definition Type checking level

#define MQEHANDLE_WARNING_LEVEL 1 No warnings at all

#define MQEHANDLE_WARNING_LEVEL 2 Default level

#define MQEHANDLE_WARNING_LEVEL 3 Maximum warnings

Using the example above, on the maximum warning level, the call
rc = mqeVehicle_move(hMyCar, &exceptBlock);

generates a compiler warning.

To remove this warning, convert the call to:
rc = mqeVehicle_move((MQeVehicleHndl)hMyCar, &exceptBlock);

On the lower two warning levels, this would not generate a warning.

The only overhead of changing the warning level is in the number of warnings
produced during compilation.

Exception handling
Each function takes a pointer to an MQeExceptBlock object. All functions return an
MQERETURN value. This value is used to indicate the general success or failure of a
function. In addition each exception event generates a Reason Code which
provides further information.

When using C code there are no exception handling mechanisms as in C++.

using C Bindings

Chapter 3. Using the C Bindings 17

Note: The C Bindings do not interact with or use the operating system exception
handling functionality

The structure of the exception block is:
struct MQeExceptBlockExtern_st {

MQERETURN ec;
MQEREASON erc;
MQEINT32 dataArrayEntriedUsed;
union {

MQEINT32 index;
MQEINT32 indexArr[MQE_EXCEPT_DATA_ARRAY_SIZE]

} data;
}

The dataArrayEnties indicates the number of entries used in the data union. This
is used in one of the following ways.
v The API functions perform a limited check on the parameters that are passed

into them. If a parameters is wrong in some regard, the index indicates which
parameters is in error.

v For other exceptions, the indexArr contains a ″stack trace″ of exceptions. These
indicate the original exception that occurred and other specializations of the
exception. This exception stack should not be used under normal circumstances;
it should be used only in Service situations when a problem has been reported.

Full details of the return codes and reason codes are provided in the WebSphere
MQ Everyplace Application Programming Guide under the MQe_ReturnCodes.h
header file. Please see the example code for examples of how the Exception Block
is used.

Obtaining an Exception Block
You are recommended to allocate the exception block on the stack, rather than the
heap. This is to simplify possible memory allocations, although there is no
programmatic restriction on allocating space on the heap.

In its simplest form your code would look like this:
MQERETURN rc
MQeExceptBlock exceptBlock;
/* initialisation */
rc = mqeFunction_anyFunction(&exceptBlock, /* parameters go here */);
if (MQERETURN_OK != rc) {
printf("An error has occured , return code = %d, reason code = %d \n",

exceptBlock.ec exceptBlock.erc);
} else {
}

If you are not interested in the status of a call, NULL can be passed as the
Exception Block.

Note: If an error does occur and corrective action is not taken subsequent API calls
could put the system in an unpredictable state.

Unsupported Java APIs
The following classes that are included in the Java codebase are not supported by
the C bindings:
v MQeMiniCertIssuanceInterface
v MQeTransformerInterface

using C Bindings

18 WebSphere MQ Everyplace: C Bindings Programming Guide

v MQeMQBridgeQueue
v All Rules classes
v All Adapter classes
v MQeRunListInterface
v MQeEventLogInterface
v MQeTraceInterface
v MQeSecurityInterface

Subclassing of existing Java classes is not be supported by the C Bindings.

WebSphere MQ Everyplace rules, adapters, and transformers cannot be coded in C,
If you wish to use any of these functions they must be coded in Java.

Information about rules, adapters, and transformers, and how to use them can be
found in WebSphere MQ Everyplace Application Programming Guide and WebSphere
MQ Everyplace Java Programming Reference.

Use of Java class names
When configuring a number of the features of WebSphere MQ Everyplace, you
need to pass a string that represents the name of the class to load. This is simpler
if you use an alias. If you wish to customize behavior in a given circumstance, you
can pass the name of your own class. The location of your classes need to be
added to the classpath in the configuration file.

Type mapping
When exchanging messages between a Java queue manager and a C queue
manager, the following type mappings are used:

C Bindings type Java type

MQEBOOL boolean

MQEBYTE byte

MQECHAR16 char

MQEINT16 short

MQEINT32 int

MQEINT64 long

MQEFLOAT float

MQEDOUBLE double

The range of types available in C is greater than in Java, but the use of types that
have no mapping is not supported.

Threading application design considerations
Threading needs to be considered both at build time and at run time. The
application design considerations are described here, the build time requirements
are described in “Threading build time considerations” on page 12.

using C Bindings

Chapter 3. Using the C Bindings 19

Run time
The session initialize should be performed before any other threads have started.
All threads should finish before the session terminate is called; this includes all
threads that might be involved in callback style operations.

Due to the underlying Java VM, the same threading model needs to be used in the
application. In the case of the Sun and IBM JDKs this means that native Win32
threads should be used. In addition these JDKs used the MSVCRT C Runtime
library, and this should be used in the application.

When a new thread wishes to access any WebSphere MQ Everyplace API function
it must call the threadAttach function (found in the session API). When the thread
has finished using the WebSphere MQ Everyplace API (this could be well before
the thread terminates) it should call the threadDetach function.

Failure to call the threadDetach function prior to the thread terminated (either
naturally or forced) results in the system being put into an unstable state. This
could result in premature failure.

Notes:

1. If the number of calls to threadAttach and threadDetach do not match,
sessionTerminate does not complete successfully.

2. Do not call threadAttach multiple times on the same thread without calling
theadDetach first. There is no restriction on calling multiple
threadAttach/threadDetach pairs. Depending on the nature of your application
it may be profitable to call theadDetach if your thread is going to do significant
non-WebSphere MQ Everyplace work. Profiling of the particular application is
recommend to determine whether this is worthwhile.

Session
A session is defined as the time between the unitization of the MQSeries Everyplace
system, and its termination, within a single memory space. In terms of windows
there is one session for each processes. With the underlying implementation being
in Java , this implies that a session has only one queue manager.

The session should be initialized and then terminated before the process exits.
While session initialization and termination are being performed, no other thread
should access the MQSeries Everyplace API. Failure to follow these procedures
results in unpredictable errors. After termination any thread accessing the API
receives an error.

Session unitize and terminate should be called on the same thread.

API calls
Full details of the session initialize and terminate calls are provided in the
MQSeries Everyplace C Programming Guide. Both calls take an exception block.

Administration messages
In the Java code, administration messages form a class hierarchy. The base class
MQeMsgObject is extended by MQeAdminMsg, from which many other
administration messages are derived. The derived administration messages often
use the functions that they inherit from previous levels in the object hierarchy.

using C Bindings

20 WebSphere MQ Everyplace: C Bindings Programming Guide

In the C API a similar mechanism can be used. For example, an MQeAdminMsg
can be created, and a handle returned to it. This handle can then be used to call
the functions of MQeMsgObject of which it is a specialization. Similarly an
MQeClientConnectionAdminMsg (a specialization of MQeMsgObject) handle can
be used on an MQeAdminMsg function.

WebSphere MQ-bridge
Under Java, the WebSphere MQ-bridge is constructed from a number of different
objects. Some of these are created from published classes and others are created
using administration messages. The objects that have a published Java class have a
corresponding interface in C.

When constructing administration messages to create WebSphere MQ-bridge
objects, the full Java class name must be specified (see “Administration of the
WebSphere MQ-bridge” on page 91).

using C Bindings

Chapter 3. Using the C Bindings 21

22 WebSphere MQ Everyplace: C Bindings Programming Guide

Chapter 4. Fundamental objects

There are a number of objects within WebSphere MQ Everyplace that are
fundamental to the system. These will be explained in this section. The main
objects are:

MQeString
A representation of character strings used by the API, providing full
support for Unicode

MQeFields
An object used to hold data and information for processing messages

MQeString, and MQeFields are both described in this section

MQeString
The MQeString class contains user defined and System Strings and is an
abstraction of character strings. It allows a string to be created or retrieved in a
number of formats such as arrays containing Unicode code points (each code point
stored in a 1, 2, or 4 bytes memory space) and UTF-8. The current implementation
only supports these external formats.

MQeString is used throughout the C-API where a string is required.

Note: Although they are passed using an MQeString some API calls require the
actual string to lie within the valid ASCII range.

Constant Strings

A number of constant strings are provided. These are defined in the
following header files:
v MQe_Admin_Constants.h
v MQe_Connection_Constants.h
v MQe_MQBridge_Constants.h
v MQe_MQe_Constants.h
v MQe_Queue_Constants.h
v MQe_Registry_Constants.h

Constructor
There are different string constructors that are represented as CHAR8,
CHAR16, CHAR32, and UTF8:
v MQERETURN mqeString_newChar8(MQeExceptBlock *pErrStruct,

MQeStringHndl *phNewString,
MQECONST MQECHAR *pInput)

v MQERETURN mqeString_newChar16(MQeExceptBlock *pErrStruct,
MQeStringHndl *phNewString,
MQECONST MQECHAR16 *pInput)

v MQERETURN mqeString_newChar32(MQeExceptBlock *pErrStruct,
MQeStringHndl*phNewString,
MQECONST MQECHAR32 *pInput)

v MQERETURN mqeString_newUtf8(MQeExceptBlock *pErrStruct,
MQeStringHndl *phNewString,
MQECONST MQECHAR *pInput)

© Copyright IBM Corp. 2000, 2002 23

This function creates a new MQeString object from a buffer containing
character data. The data can be in a number of supported formats
including, null terminated single byte character arrays (i.e. normal C char*
strings), null terminated double-byte Unicode character arrays, null
terminated quad-byte Unicode character arrays, and null terminated UTF-8
arrays.

Destructor
MQERETURN mqeString_free(MQeStringHndl hString,

MQeExceptBlock *pErrStruct)

This function destroys an MQeString object that was created using
mqeString_new, or returned by any other function.

Getter These functions populate a character buffer with the contents of an
MQeString performing conversion wherever necessary. Only simple
conversions are carried out. No codepage conversion is attempted. For
example, if an SBCS string has been put into the string, then trying to get
the data out as DBCS (Unicode) data works correctly. However, if the data
was put in as DBCS, and you try to get the data out as SBCS, this only
works if the data does not have any values that cannot be represented with
a single byte. When get() is used for SBCS, DBCS, or QBCS, each character
is represented by its Unicode code point value. The caller of these
functions are expected to allocate the memory. If the pOutputString pointer
is null, or the size (pointed to by pSize) is less than zero, the required size
of the buffer in the number of characters will be returned.
v MQERETURN mqeString_newChar8(MQeExceptBlock *pErrStruct,

MQeStringHndl *phNewString,
MQECONST MQECHAR *pInput)

v MQERETURN mqeString_newChar16(MQeExceptBlock *pErrStruct,
MQeStringHndl *phNewString,
MQECONST MQECHAR16 *pInput)

v MQERETURN mqeString_newChar32(MQeExceptBlock *pErrStruct,
MQeStringHndl *phNewString,
MQECONST MQECHAR32 *pInput)

v MQERETURN mqeString_newUtf8(MQeExceptBlock *pErrStruct,
MQeStringHndl*phNewString,
MQECONST MQECHAR *pInput)

Tester
v MQERETURN mqeString_isAsciiOnly(MQeStringHnld hString,MQeExceptBlock

*pErrStruct,MQEBOOL *pisAsciiOnly)

This function determines whether the string contains any non-invariant
ASCII characters.

v MQERETURN mqeString_equalTo(MQeStringHndl hString,MQeExceptBlock
*pErrStruct,MQEBOOL *pIsEqual,
MQECONST MQeStringHndl hEqualToString)

This function determines whether two strings are equivalent.
v MQERETURN mqeString_isNull(MQeStringHndl hString, MQeExceptBlock

*pErrStruct,MQEBOOL *pIsNull)

This function determines if a string is a null string (a NULL handle is
also considered as a null string).

v

MQERETURN mqeString_codePOintSize(MQeStringHndl hString, MQeExceptBlock
*pErrStruct,MQEINT32 *pSize)

MQeString

24 WebSphere MQ Everyplace: C Bindings Programming Guide

This function finds the number of bytes required to store the largest code
point in the string.

MQeFields
MQeFields is the fundamental class used to hold data items for sending, receiving,
or manipulating WebSphere MQ Everyplace messages. An MQeFields object is
constructed as follows:
MQeFieldsHndl hNewFields;
MQERETURN rc;
rc = mqeFields_new(&errStruct, &hNewFields);

There are various put and get functions within the MQeFields object for storing
and retrieving items. Items are held in a name, type and value form.

The name must conform to the following rules:
v It must be at least 1 character long.
v It must conform to the ASCII character set (characters with values 20 < value <

128).
v It must not include any of the characters { } [] # () : ; , ’ ″ =
v It must be unique within the MQeFields object

Note: Java 1.4 and earlier versions, are not capable of handling Unicode
codepoints larger than six charaters. As a result, bindings cannot put
unicode strings containing chars larger than two bytes successfully, although
Java will not complain.

The MQeFields object name is used to retrieve and update values. It is good
practice to keep names short, because the names are included with the data when
the MQeFields object is dumped.

The following examples shows how to store values in an MQeFields object:
MQeStringHndl hFieldName;
rc = mqeString_newChar8(&errStruct, &hFieldName, "A Field Name");
rc = mqeFields_putInt32(hNewFields,&errStruct,hFieldName,1234);

The following example shows how to retrieve values from an MQeFields object:
MQEINT32 value;
rc = mqeFields_getInt32(hNewFields, &errStruct, &value, hFieldName);

Arrays of values may be held within a fields object. There are two forms for
holding arrays, fixed length, and variable length. A function of the form shown in the
following example is used to store the arrays. The boolean option is set to
MQE_TRUE for variable length.
MQERETURN mqeFields_putDoubles(MQeFieldsHndl hFields,

MQeExceptBlock * pErrStruct,
MQECONST MQeStringHndl hFieldName,
MQECONST MQEDOUBLE * pDoubles,
MQEINT32 arrLength,
MQEBOOL multiFieldsRep);

Bytes are a special case, as they can handle multi-dimensional arrays.

For one byte

MQeString

Chapter 4. Fundamental objects 25

MQERETURN mqeFields_putByte(MQeFieldsHndl hFields,
MQeExceptBlock * pErrStruct,
MQECONST MQeStringHndl hFieldName,
MQEBYTE input);

For a 1-dimensional array of bytes
In effect this is a fixed length array.
MQERETURN mqeFields_putBytes(MQeFieldsHndl hFields,

MQeExceptBlock * pErrStruct,
MQECONST MQeStringHndl hFieldName,
MQECONST MQEBYTE * pBytes,
MQEINT32 arrLength);

For a 2-dimensional array of bytes
This is in effect a variable length array.
MQERETURN mqeFields_putByteArray(MQeFieldsHndl hFields,

MQeExceptBlock * pErrStruct,
MQECONST MQeStringHndl hFieldName,
MQECONST MQEBYTE ** ppBytes,
MQECONST MQEINT32 * pLenOfByteSeqs,
MQEINT32 arrLength);

To retrieve arrays, get functions can be used as required. There is only one form:
mqeFields_getXXXs()

MQeFields

26 WebSphere MQ Everyplace: C Bindings Programming Guide

Chapter 5. Queue managers, messages, and queues

Chapter 1, “Overview” on page 1 provides a high level description of the services
provided by WebSphere MQ Everyplace queue manager, and queues. This section
provides detailed descriptions of the functions and use of queue managers and
their associated resources, messages and queues.

Creating and deleting queue managers
A queue manager requires at least the following:
v A registry (see “MQeRegistry parameters for the queue manager” on page 34)
v A queue manager definition
v Local default queue definitions (see “Queues” on page 41)

Once these definitions are in place you can run the queue manager and use the
administration interface to perform further configuration, such as adding more
queues.

Functions to create these initial objects are supplied in the
MQeQueueManagerConfigure class.

This section provides more information to help you to use the
MQeQueueManagerConfigure class.

Queue manager names
WebSphere MQ Everyplace queue manager names can contain the following
characters:
v Numerics 0 to 9
v Lower case a to z
v Upper case A to Z
v Underscore _
v Period .
v Percent %

Queue manager names cannot have a leading or trailing ’.’ character.

There are no inherent name length limitations in WebSphere MQ Everyplace.

For additional naming recommendations when interacting with WebSphere MQ
networks, see “Naming recommendations for inter-operability with a WebSphere
MQ network” on page 82.

Creating a queue manager
The basic steps required to create a queue manager are:
1. Create and activate an instance of MQeQueueManagerConfigure
2. Set queue manager properties and create the queue manager definition
3. Create definitions for the default queues
4. Close the MQeQueueManagerConfigure instance

© Copyright IBM Corp. 2000, 2002 27

1. Create and activate an instance of
MQeQueueManagerConfigure
You create the MQeQueueManagerConfigure object by calling the
mqeQueueManagerConfigure_new function. Apart from the ExceptionBlock and
the new MQeQueueManagerConfigure Handle, this function takes two additional
parameters.

The method of operation depends on these parameters. "NULL" can be passed for
these parameters, in which case mqeQueueManagerConfigure_activate is called
immediately after mqeQueueManagerConfigure_new. Alternatively startup
parameters can be passed.

The first parameter is an MQeFields object that contains initialization parameters
for the queue manager. These must contain at least the following:
v An embedded MQeFields object (Name) that contains the name of the queue

manager.
v An embedded MQeFields object, that contains the location of the local queue

store as the registry type (LocalRegType) and the registry directory name
(DirName). If a base file registry is used these are the only parameters that are
required. If a private registry is used, a PIN and KeyRingPassword are also
required.

The directory name is stored as part of the queue manager definition and is used
as a default value for the queue store in any future queue definitions. The
directory does not have to exist and will be created when needed.

The example code includes creating an instance of MQeQueueManagerConfigure.

2. Set queue manager properties and create the queue manager
definition
When you have activated MQeQueueManagerConfigure, but before you create the
queue manager definition, you can set some or all of the following queue manager
properties:
v You can add a description to the queue manager with

mqeQueueManagerConfigure_setDescription()

v You can set a connection time-out value with
mqeQueueManagerConfigure_setChannelTimeout()

v You can set the name of the connection attribute rule with
mqeQueueManagerConfigure_setChnlAttributeRuleName()

Call mqeQueueManagerConfigure_defineQueueManager() to create the queue
manager definition. This creates a registry definition for the queue manager that
includes any of the properties that you set previously.

At this point you can close() and free() MQeQueueManagerConfigure and run the
queue manager, however, it cannot do much because it has no queues. You cannot
add queues using the administration interface, because the queue manager does
not have an administration queue to service the administration messages.

The following sections show how to create queues and make the queue manager
useful.

3. Create definitions for the default queues
MQeQueueManagerConfigure allows you to define the following four standard
queues for the queue manager:

creating a queue manager

28 WebSphere MQ Everyplace: C Bindings Programming Guide

v An administration queue:
mqeQueueManagerConfigure_defineDefaultAdminQueue()

v An administration reply queue:
mqeQueueManagerConfigure_defineDefaultAdminReplyQueue()

v A dead letter queue:
mqeQueueManagerConfigure_defineDefaultDeadLetterQueue()

v A default local queue:
mqeQueueManagerConfigure_defineDefaultSystemQueue()

All these functions return an error if the queue already exists.

The administration queue and administration reply queue are needed to allow the
queue manager to respond to administration messages, for example to create new
connection definitions and queues.

The dead letter queue can be used to store messages that cannot be delivered to
their correct destination.

The default local queue, SYSTEM.DEFAULT.LOCAL.QUEUE, has no special
significance within WebSphere MQ Everyplace itself, but it is useful when
WebSphere MQ Everyplace is used with WebSphere MQ messaging because it
exists on every WebSphere MQ messaging queue manager.

4. Close the MQeQueueManagerConfigure instance
When you have defined the queue manager and the required queues, you can
close() MQeQueueManagerConfigure and run the queue manager. Once the close()
function has been completed, the handle to the MQeQueueManagerCondigure
must to be freed by calling the free() function

The registry definitions for the queue manager and the required queues are created
immediately. The queues are not created until they are activated.

Deleting a queue manager
The basic steps required to delete a queue manager are:
1. Use the administration interface to delete any definitions
2. Create and activate an instance of MQeQueueManagerConfigure
3. Delete the standard queue and queue manager definitions
4. Close the MQeQueueManagerConfigure instance

When these steps are complete, the queue manager is deleted and can no longer be
run. The queue definitions are deleted, but the queues themselves are not deleted.
Any messages remaining on the queues are inaccessible.

Note: If there are messages on the queues they are not automatically deleted. Your
application programs should include code to check for, and handle,
remaining messages before deleting the queue manager.

1. Delete any definitions
You can use MQeQueueManagerConfigure to delete the standard queues that you
created with it. You should use the administration interface to delete any other
queues before you call MQeQueueManagerConfigure.

creating a queue manager

Chapter 5. Queue managers, messages, and queues 29

2. Create and activate an instance of
MQeQueueManagerConfigure
This process is the same as when creating a queue manager. See “1. Create and
activate an instance of MQeQueueManagerConfigure” on page 28.

3. Delete the standard queue and queue manager definitions
Delete the default queues by calling:
v mqeQueueManagerConfigure_deleteAdminQueueDefinition() to delete the

administration queue
v mqeQueueManagerConfigure_deleteAdminReplyQueueDefinition() to delete

the administration reply queue
v mqeQueueManagerConfigure_deleteDeadLetterQueueDefinition() to delete the

dead letter queue
v mqeQueueManagerConfigure_deleteSystemQueueDefinition() to delete the

default local queue

These functions work successfully even if the queues do not exist.

Delete the queue manager definition by calling
mqeQueueManagerConfigure_deleteQueueManagerDefinition()

You can delete the default queue and queue manager definitions together by
calling mqeQueueManagerConfigure_deleteStandardQMDefinitions(). This
function is provided for convenience and is equivalent to:

4. Close the MQeQueueManagerConfigure instance
When you have deleted the queue and queue manager definitions, you can close
the MQeQueueManagerConfigure instance.

Using queue manager aliases
Aliases can be used for WebSphere MQ Everyplace queue managers, and can be
used by application programs, to provide a level of indirection between the
application and the real object. Hence the attributes of a queue manager that an
alias relates to can be changed without the application needing to change.

The following examples illustrate some of the ways that aliasing can be used with
queue managers.

Examples of queue manager aliasing
Addressing a queue manager with several different names

Suppose you have a queue manager SERVER23QM on the server SAMPLEHOST,
listening on port 8082. You have an application SERVICEX that accesses this
queue manager, and wants to refer to the queue manager as SERVICEXQM.
This can be achieved using an alias for the queue manager as follows:
v Configure a connection on the SERVER23QM :

Connection Name/Target queue manager:
SERVICEXQM

Description: Alias definition to enable SERVER23QM to
receive messages sent to SERVICEXQM

Channel: "null"

Network Adapter: "null"

deleting a queue manager

30 WebSphere MQ Everyplace: C Bindings Programming Guide

Network adapter options: "null"
v Create a local queue on the SERVER23QM queue manager:

Queue Name: SERVICEXQ

Queue Manager: SERVER23QM

The server-side application takes messages from this queue, and process
them, sending messages back to the client.

An WebSphere MQ Everyplace application running within the server’s
JVM can now put messages to the SERVICEXQ on either the SERVER23QM
queue manager, or the SERVICEXQM queue manager. In either case, the
message will arrive on the SERVICEXQ.

If the SERVICEXQ queue is moved to another queue manager, the connection
alias can be set up on the new queue manager, and the applications do not
need to be changed.

Different routings from one queue manager to another
Using the scenario just described, an WebSphere MQ Everyplace queue
manager on a mobile device (MOBILE0058QM) can now access the SERVICEXQ
queue in a number of different ways. Two examples are described here:
v Aliasing on the sending side

Using this method of routing, the receiving queue manager does not
know that the sending queue manager has given him an alias name. The
aliasing is confined to the sending queue manager only.
On the mobile device:
– Create a connection from MOBILE0058QM to the SERVER23QM queue

manager:

Connection name
SERVER23QM

Network Adapter parameter
Network:SAMPLEHOST:8082

– Create an alias called SERVICEXQM for queue manager SERVER23QM

When a message is sent from the mobile device application to the
SERVICEXQM queue manager, WebSphere MQ Everyplace maps the
SERVICEXQM name to SERVER23QM in the connection , and sends the
message to the SERVER23QM queue manager.

SERVER23QM queue manager

Connection
name=SERVICEQM

channel=null
adapter=null

adapter parameters=null

SERVICEX queue

PutMessage (”SERVICEQM”...)

PutMessage (”SERVICEX”...)

Both messages arrive at SERVICEX queue

Figure 4. Addressing a queue manager with two different names

deleting a queue manager

Chapter 5. Queue managers, messages, and queues 31

If the Mobile58QM then wished to send its messages to a different server
queue manager, Server24QM, it would remove the alias SERVICEXQM from
the Server23QM connection, and add it to a Server24QM connection. This
has no impact on the receiving queue managers, or the sending
applications.

v Virtual queue manager on the receiving side

Using this method, the sending queue managers think that its messages
are routed through an intermediate queue manager before reaching the
target queue manager. The target queue manager doesn’t actually exist.
The ’intermediate’ queue manager captures all the message traffic for
this virtual target queue manager.
On the mobile device:
– Create a connection from MOBILE0058QM to the SERVER23QM queue

manager:

Connection name SERVER23QM

Network Adapter parameter Network:SAMPLEHOST:8082

– Create a second connection to the SERVICEXQM that routes messages
through the first connection:

Connection name
SERVICEXQM

Network Adapter parameter
SERVER23QM

Note: This is not an alias. It is a via routing, indicating that messages
headed for SERVICEXQM are to be routed via the SERVER23QM
queue manager on the receiving side.

The via routing on the mobile device causes any messages that are put
to SERVICEXQM to be directed to Server23QM. Server23QM gets the

Mobile58QM queue manager

Connection
name=”Server24QM”

channel=DefaultChannel
adapter=Network:server24:8081

Alias=”SERVICEXQM”

Server23QM queue manager

Queue

Server24QM queue manager

Queue

PutMessage(”SERVICEXQM)

Connection
name=”Server23QM”

channel=DefaultChannel
adapter=Network:server23:8081

Alias=”SERVICEXQM”

The message goes to either Server23QM or Server24QM
depending on which connection the alias is attached to

Figure 5. Addressing a queue manager with two different names

deleting a queue manager

32 WebSphere MQ Everyplace: C Bindings Programming Guide

messages and notes that they are destined for the SERVICEXQM queue
manager. It resolves the SERVICEXQM name and finds that it is an alias
which represents the Server23QM queue manager (itself). The Server23QM
queue manager then accepts the messages and puts them onto the
queue.

As an alternative to the above, you can keep the SERVICEXQM in existence,
but move it from its original machine to the same machine (but a
different JVM) as the Server23QM queue manager. SERVICEXQM needs to
listen on a different port, so the connection from Server23QM to
SERVICEXQM needs to be changed as well.

Starting queue managers
A queue manager can run:
v as a client
v in a server

The following sections refer extensively to the example code to illustrate how to
start queue managers. All queue managers are constructed from the same base
WebSphere MQ Everyplace components, with some additions that give each its
unique properties. WebSphere MQ Everyplace provides a class
MQeQueueManagerUtils that encapsulates many of the common functions.

All the examples require parameters at startup.

Client queue managers
A client typically runs on a device platform, and provides a queue manager that
can be used by applications on the device. It can open many connections to other
queue managers and, if configured with a peer connection can accept incoming
requests from other queue managers.

Class Aliases
The aliases are not processed by the queue manager itself. The queue manager
requires these aliases to have been processed prior to its activation as several of
these aliases are required to allow the queue manager to activate properly. For

Mobile58QM queue manager

Connection
name=”SERVICEXQM”

channel=DefaultChannel
adapter=Server23QM

Server23QM queue manager

Target
queue

Connection
name=”Server23QM”

channel=DefaultChannel
adapter=Network:server23:8081

Connection
name=”Server23QM”

channel=null
adapter=null

Alias=”SERVICEXQM”

PutMessage(SERVICEXQM)
Queue manager SERVICEXQM
does not really exist

Figure 6. Addressing a queue manager with two different names

deleting a queue manager

Chapter 5. Queue managers, messages, and queues 33

example, queues must have a queue store adapter defined so that they have a
storage area in which to hold their messages. MsgLog is the default queue store
adapter, if this is not present then a MsgLog not found exception is thrown.

MQeRegistry parameters for the queue manager
The registry is the primary store for queue manager-related information; one exists
for each queue manager. Every queue manager uses the registry to hold its:
v Queue manager configuration data
v Queue definitions
v Remote queue definitions
v Remote queue manager definitions
v User data (including configuration-dependent security information)

Registry type:

MQE_REGISTRY_LOCAL_REG_TYPE
The type of registry being opened. file registry and private registry are
currently supported. A private registry is required for some of the security
features. See Chapter 8, “Security” on page 113.

For a file registry this parameter should be set to:
com.ibm.mqe.registry.MQeFileSession

For a private registry it should be set to:
com.ibm.mqe.registry.MQePrivateSession

Aliases can be used to represent these values.

File registry parameters: The following parameter is needed for a file registry:

MQE_REGISTRY_DIR_NAME
The name of the directory holding the registry files.

Private registry parameters: The following parameters can be used for a private
registry.

MQE_REGISTRY_DIR_NAME
The name of the directory holding the registry files

MQE_REGISTRY_PIN
The PIN for the private registry

MQE_REGISTRY_KEY_RING_PASSWORD
The password or phrase used to protect the registry’s private key

MQE_REGISTRY_CA_IP_ADDR_PORT
The address and port number of a mini-certificate server

MQE_REGISTRY_CERT_REQ_PIN
The certificate request number preallocated by the mini-certificate
administrator to allow the registry to obtain its credentials

The first three parameters are always needed. The last two parameters are needed
for auto-registration of the registry if it wishes to obtain its credentials from the
mini-certificate server.

client queue managers

34 WebSphere MQ Everyplace: C Bindings Programming Guide

Note: For security reasons, the PIN and KeyRingPassword, if supplied, are deleted
from the startup parameters as soon as the queue manager has been
activated.

For either type of registry MQE_REGISTRY_SEPARATOR is also needed if you want to
use a non-default separator. The separator is the character that is used between the
components of an entry name, for example:
<QueueManager><Separator><Queue>

This parameter is specified as a string but it should contain a single character. If it
contains more than one only the first character is used.

You should use the same separator character every time a registry is opened. It
should not be changed once a registry is in use.

If this parameter is not specified the separator defaults to "+".

RegistryAdapter:

MQeRegistry.RegistryAdapter (ascii)
The class, (or an alias that resolves to a class), of the adapter that the
registry uses to store its data. This value should be included if you want
the registry to use an adapter other than the default
MQeDiskFieldsAdapter. Any valid adapter class can be used.

Starting a client queue manager
Starting a client queue manager involves:
1. Adding any aliases to the system
2. Enabling trace if required
3. Starting the queue manager

The following code fragment starts a client queue manager:
MQERETURN createQueueManager(MQeExceptBlock *pErrorBlock, MQeQueueManagerHndl

*phQMgr, MQeFieldsHndl hInitFields,
MQeStringHndl hQStore)

{

MQERETURN rc;
MQeQueueManagerConfigureHndl hQMgrConfigure;

/* Create instance of QueueManagerConfigure Class */
rc = mqeQueueManagerConfigure_new(pErrorBlock,&hQMgrConfigure,

hInitFields,hQStore);

if (MQERETURN_OK == rc) {
/* define queue manager */
rc = mqeQueueManagerConfigure_defineQueueManager(hQMgrConfigure,

pErrorBlock);
if (MQERETURN_OK == rc) {

/* define system default queues */
rc = mqeQueueManagerConfigure_defineDefaultSystemQueue

(hQMgrConfigure, pErrorBlock, NULL);
}

/* close mqeQueueManagerConfigure */
(void)mqeQueueManagerConfigure_close(hQMgrConfigure, NULL);
if (MQERETURN_OK == rc) {

/* create queue manager */
rc = mqeQueueManager_new(pErrorBlock, phQMgr);
if (MQERETURN_OK == rc) {

registry parameters

Chapter 5. Queue managers, messages, and queues 35

rc = mqeQueueManager_activate(*phQMgr, pErrorBlock, hInitFields);
}

}
/* free mqeQueueManagerConfigure */
(void)mqeQueueManagerConfigure_free(hQMgrConfigure, NULL);

}

return rc;
}

Once you have started the client, you can obtain a reference to the queue manager
object by using API call mqeQueueManager_getReference(queueManagerName).

Server queue managers
A server usually runs on a server platform. A server can run server-side
applications but can also run client-side applications. As with clients, a server can
open connections to many other queue managers on both servers and clients. One
of the main characteristics that differentiate a server from a client is that it can
handle many concurrent incoming requests. A server often acts as an entry point
for many clients into an WebSphere MQ Everyplace network .

Example MQeServer
MQeServer is the simplest server implementation.

This server can be started with the following command:
qm_server server_QMgr_name [-p private_reg_PIN]

You must supply the -p parameter if the queue manager uses a private registry.
Otherwise, the queue manager’s registry is treated as a file registry. The program
activates the queue manager (including a channel listener listening on port 8081)
and goes into an indefinite sleep.

Use ctrl-C to shut down the server.

To delete the constructed queue manager, use the example qm_delete.

When two queue managers communicate with each other, WebSphere MQ
Everyplace opens a connection between the two queue managers. The connection
is a logical entity that is used as a queue manager to queue manager pipe.
Multiple connections may be open at any time.

The new parameters control the use of the connection. The MaxChannels parameter
controls the maximum number of connections that can be open at any time. A
special value of 0 means that the queue manager can handle an unlimited number
of connections.

The following parameters control how incoming network requests are handled:

Listen The network adapter that handles incoming network requests. For example
this could be an http adapter or a pure tcp/ip adapter. As well as the
adapter name, you can pass parameters that dictate how the adapter
should listen. For instance Listen=Network::8082 means use the Network
adapter where Network is an alias to listen on port 8082. (This assumes that
the Network alias is set to either an http or a tcp/ip adapter.)

Network
This parameter is used to specify the adapter to use for network read and

registry parameters

36 WebSphere MQ Everyplace: C Bindings Programming Guide

write requests, once the initial network request has been accepted. Usually
this is the same as the adapter used on the Listen parameter.

TimeInterval
The time in seconds before idle connections are timed out. As connections
are persistent logical entities that last longer than a single queue manager
request, and can survive network breakages, it may be necessary to time
out connections that have been inactive for a period of time.

Once the server has been initialized it must be activated.

When you activate a server the following occurs:
1. A channel manager is started
2. The queue manager is started
3. The channel listener is started

Code to demonstrate server activation is provided in queue manager example Ex2.

Example MQePrivateServer
MQePrivateServer is an extension of MQeServer with the addition that it
configures the queue manager and registry to allow for secure queues. See
Chapter 8, “Security” on page 113.

Messages
WebSphere MQ Everyplace messages are descendant objects of MQeFields, as
described in Chapter 4, “Fundamental objects” on page 23. Applications can put
data into the message as a <name, data> pairing.

MQeMessages are specializations of MQeFields objects, therefore the functions that
are applicable to MQeFields can be used with MQeMessage. An example of
creating a message plus adding a fields is shown below. This is a function from
one of the examples:
MQERETURN creatAMessage(MQeExceptBlock *pErrorBlock, MQeMsgHndl * phOutMsg) {

MQERETURN rc;

/* create a message obj */
rc = mqeMsg_new(pErrorBlock, phOutMsg);

if (MQERETURN_OK == rc) {
MQeStringHndl hDataFieldName;

rc = mqeString_newChar8(pErrorBlock, &DataFieldName, "myData");
if (MQERETURN_OK == rc) {

/* put some data in */
rc = mqeFields_putInt32((MQeFieldsHndl)*phOutMsg, pErrorBlock,

hDataFieldName, 1);
} else {

displayError("new MQeString error (for data field name)", pErrorBlock);
}

} else {
displayError("new MQeMsg error", pErrorBlock);

}
return rc;

}

server queue managers

Chapter 5. Queue managers, messages, and queues 37

This shows a message being created, a new field name being created, and an
integer being placed into the field. The field can be retrieved using the
mqeField_getXXX functions.

WebSphere MQ Everyplace defines some constant field names that are useful to
messaging applications. These are:

Unique ID
MQE_MSG_ORIGIN_QMGR + MQE_MSG_TIME

Message ID
MQE_MSG_MSGID

Correlation ID
MQE_MSG_CORRELID

Priority
MQE_MSG_PRIORITY

The Unique ID is a combination of a unique (per process) timestamp generated by
the message object when it is created, and the name of the queue manager to
which the message was first given. The Unique ID is used by applications to
retrieve messages. It cannot be changed by an application.

The Unique ID uniquely identifies a message within an WebSphere MQ Everyplace
network so long as all queue managers within the WebSphere MQ Everyplace
network are named uniquely.

Note: WebSphere MQ Everyplace does not check or enforce the uniqueness of
queue manager names. It is the responsibility of an individual solution to
ensure that its queue manager names are unique.

The mqeMsg_getMsgUIDFields() function accesses the Unique ID of a message:

The mqeMsg_getMsgUIDFields() function returns an MQeFields object that
contains two fields,
v MQe.Msg_OriginQMgr

v MQe.Msg_Time

These fields can be individually retrieved as follows:

The WebSphere MQ Message ID and Correlation ID fields allow the application to
provide an identity for a message. These two fields are also used in interactions
with the rest of the WebSphere MQ family.

The Priority field contains message priority values. Message priority is defined in
the same way as in other members of the WebSphere MQ family. It ranges from 9
(highest) to 0 (lowest). Applications use this field to deal with a message according
to its priority.

Storing messages
Most queue types hold messages in a persistent store. While in the store, the state
of the message varies as it is transferred into and out of the store. As shown in
Figure 7 on page 39:

messages

38 WebSphere MQ Everyplace: C Bindings Programming Guide

Message states
The possible message states are:

Start The initial state of a message before it is added to the message store.

Put Unconfirmed
A message has been placed in the message store under a confirmID but its
addition has not been confirmed. The message is effectively hidden from
all actions except confirmPutMessage, confirm, or undo.

Unlocked
A message has been added to the message store. There is no lock on it, and
it is visible to all queries.

Locked for Browse
A browse with lock has retrieved the message. The message is now hidden
from all queries except getMessage, unlockMessage, and undo.

Get Unconfirmed
A get message has been made with a confirmID but the get has not been
confirmed. The message is invisible to all queries except
confirmGetMessage, confirm, or undo. Each of these actions requires the
matching confirmID to be included to confirm the get.

Browse Get Unconfirmed
A message has been got while it is locked for browse. This can only be
done by passing the correct lockID to the getMessage function.

start

putUnconfirmed

Deleted

browseGetUnconfirmed

lockedForBrowse

unlocked

putMessage
(with confirmId>0)

confirmPutMessage

getUnconfirmed

PutMessage
(with confirmId=0)

undo

unlockMessage

undo

browseWithLock

undo

getMessage
(with confirmId>0)

getMessage

deleteMessage

deleteMessage

getMessage
(with confirmId=0)

getMessage
(with confirmId>0)

confirmGetMessage

confirmGetMessage

undo

Figure 7. Stored message state flow

Storing messages

Chapter 5. Queue managers, messages, and queues 39

Deleted
The final state, after a message has been removed from the database.

Message events
Messages pass from one state to another as a result of an event. The possible
message events (as shown in Figure 7 on page 39) are:

putMessage
Message placed on message store, no confirm required.

getMessage
Message retrieved from message store, no confirm required.

putMessage with confirmId>0
Message placed on message store, confirm required.

confirmPutMessage
A confirm for an earlier putMessage with confirmId>0.

getMessage with confirmId>0
Message retrieved from message store, confirm required.

confirmGetMessage
A confirm for an earlier getMessage with confirmId>0.

browseWithLock
Browse messages and lock those that match. Prevents messages changing
while browse is in operation.

unlockMessage
Unlock a message locked with a browsewithLock command.

undo Unlock a message locked with a browse, or undo a getMessage with
confirmId>0 or putMessage with confirmId>0.

deleteMessage
Remove a message from the message store.

More detailed descriptions of message events and states are included in “Assured
message delivery” on page 47, and “Browse and Lock” on page 42 and

Message index fields
Due to memory size constraints, complete messages are not held in memory, but,
to enable faster message searching, WebSphere MQ Everyplace holds specific fields
from each message in a message index. The fields that are held in the index are:

Unique ID
MQE_MSG_ORIGIN_QMGR + MQE_MSG_TIME

Message ID
MQE_MSG_MSGID

Correlation ID
MQE_MSG_CORRELID

Priority
MQE_MSG_PRIORITY

Providing these fields in a filter makes searching more efficient, since WebSphere
MQ Everyplace may not have to load all the available messages into memory.

Storing messages

40 WebSphere MQ Everyplace: C Bindings Programming Guide

Filters
The concept of filters allows WebSphere MQ Everyplace to perform powerful
message searches. Most of the major queue manager operations support the use of
filters. The mqeQueueManager_getMessage function has an MQeFields parameter.
This Fields object is the filter. If you pass "null" in then no filter is used.

The use of a filter causes an application to return the first available message that
contains the same fields and values as the filter. An example of using a filter on a
getMessage() function is in Application example Ex2.

When a filter is applied to a search, the fields in the filter are compared with each
index entry in turn. If a field is common to both the index entry and the filter, and
the values in the field are different, then the message cannot possibly match the
filter and it is excluded from consideration. If a field is not common to both filter
and index entry, or if the field is common and the values are the same, then the
message is included in the search.

Message Expiry
Queues can be defined with an expiry interval. If a message has remained on a
queue for a period of time longer than this interval then the message is marked as
expired.

Messages can also have an expiry interval that overrides the value of any queue
expiry interval. You can define this by adding an MQE_MSG_EXPIRETIME field to the
message. The expiry time is either relative (expire 2 days after the message was
created), or absolute (expire on November 25th 2000, at 08:00 hours).

To set a relative expiry time use the following on a message handle:
mqeFields_putInt32(pErrorBlock, hMsg, relativeTime);

To set an absolute expiry time use:
mqeFields_putInt64(pErrorBlock,hMsg, absoluteTime);

All Times are in milliseconds

Queues
Queue managers manage queues and provide programming interface access to the
queues. The queues are not directly visible to an application and all interactions
with the queues take place through queue managers. Each queue manager can
have queues that it manages and owns. These queues are known as local queues.
WebSphere MQ Everyplace also allows applications to access messages on queues
that belong to another queue manager. These queues are known as remote queues.
The same sets of operations are available on both local and remote queues, with
the exception of defining message listeners (see “Message listeners” on page 43).

The messages on the queues are held in the queue’s persistent store (see “Storing
messages” on page 38). The backing store used by a queue can be changed using
an WebSphere MQ Everyplace administration message. Changing the backing store
is not allowed while the queue is active or contains messages. If the backing store
used by the queue allows the messages to be recovered in the event of a system
failure, then this allows WebSphere MQ Everyplace to assure the delivery of
messages.

Storing messages

Chapter 5. Queue managers, messages, and queues 41

Queue names
WebSphere MQ Everyplace queue names can contain the following characters:
v Numerics 0 to 9
v Lower case a to z
v Upper case A to Z
v Underscore _
v Period .
v Percent %

Queue names cannot have a leading or trailing ’.’ character.

There are no inherent name length limitations in WebSphere MQ Everyplace.

For additional naming recommendations when interacting with WebSphere MQ
networks, see “Naming recommendations for inter-operability with a WebSphere
MQ network” on page 82.

Queue types
The WebSphere MQ Everyplace queue types are described briefly in “WebSphere
MQ Everyplace queues” on page 3, and information on setting up and
administering the various types is provided in “Queues” on page 68.

Queue ordering
The order of messages on a queue is primarily determined by their priority.
Message priority ranges from 9 (highest) to 0 (lowest). Messages with the same
priority value are ordered by the time at which they arrive on the queue, with
messages that have been on the queue for the longest, being at the head of the
priority group.

Reading all the messages on a queue
When a queue is empty, the queue returns Return Code 121 -
MQERETURN_J_Q_NO_MATCHING_MSG if a get message command is issued. This allows
you to create an application that reads all the available messages on a queue.

Browse and Lock
Browsing a group of messages and locking them allows an application to assure
that no other application is able to process the messages while they are locked. The
messages remain locked until they are unlocked by the application. No other
application can unlock the messages.The example program Example 5 contains an
example of browsing messages with lock.

This command locks all the messages on the local queue
SYSTEM.DEFAULT.QUEUE.NAME. These messages can now only be accessed by the
application that locked them. (Any messages arriving on the queue after the
Browse and Lock operation will not be locked).

The MQeMessageEnumeration object contains all the messages that match the filter
supplied to the browse. .

An application can perform either a get or a delete operation on the messages to
remove them from the queue. To do this, the application must supply the lock ID

queues

42 WebSphere MQ Everyplace: C Bindings Programming Guide

that is returned with the enumeration of messages. Specifying the lock ID allows
applications to work with locked messages without having to unlock them first.

Instead of removing the messages from the queue, it is also possible just to unlock
them, this makes them visible once again to all WebSphere MQ Everyplace
applications. You can achieve this by using the unlockMessage() function.

Note: See “Getting and browsing messages from the WebSphere MQ-bridge
queue” on page 108 for special considerations with WebSphere MQ-bridge
queues.

Message listeners
WebSphere MQ Everyplace allows an application to listen for events occurring on
queues. The application is able to specify message filters to identify the messages
in which it is interested. A message arriving on queue triggers an event.

The Application example Ex 4 contains an example of using message listeners.

To enable this, an MQeMessageListener object must be created. The new() function
for this takes an extra parameter, which is a function pointer. This function pointer
indicates the function that should be called when a message arrives on the queue.
This function should have the prototype:
- MQEVOID messageArrived(MQeMessageEventHndl hE);

Where MQeMessageEventHndl is a handle to an object that contains information
about the message that has arrived. The queue needs to be aware of this handle ,
so the mqeQueueManager_addMessageListener function must be called with the
MQeMessageListener object handle.

The MQeMessageEvent contains information about the message including:
v The name of the queue on which the message arrived
v The UID of the message
v The Correlation ID of the message
v The Message Priority

Message filters only work on local queues. A separate technique known as message
polling allows messages to be obtained as soon as they arrive on remote queues.
(This is discussed in the next section.)

Message polling
Message polling uses the mqeQueueManager_waitForMessage() function. This
command issues a mqeQueueManager_getMessage() command to the remote
queue at regular intervals. As soon as a message that matches the supplied filter
becomes available, it is returned to the calling application.

A wait for message call typically looks like this:
rc = mqeQueueManager_waitForMessage(hQueueManger, pExceptBlock, &hMQeMessage,

hQMgrName, hQueueName, hFilter,
hAttribute, confirmID, 6000);

The mqeQueueManager_waitForMessage() function polls the remote queue for the
length of time specified in its final parameter. The time is specified in milliseconds,

queues

Chapter 5. Queue managers, messages, and queues 43

so in the example above, the polling lasts for 6 seconds. The thread on which the
command is executing is blocked for this length of time, unless a message is
returned earlier.

Message polling works on both local and remote queues.

Note: Use of this technique results in multiple requests being sent over the
network.

Messaging operations
Table 1 shows the operations that can be performed on messages on the various
queue types.

Table 1. Messaging operations

Operation Local queues Remote queues

Synchronous Asynchronous

browse(&lock) yes yes

delete yes yes

get yes yes

listen yes

put yes yes yes

wait yes yes

Using queue aliases
Aliases can be assigned for WebSphere MQ Everyplace queues to provide a level
of indirection between the application and the real queues. Hence the attributes of
a queue that an alias relates to can be changed without the application needing to
change. For instance, a queue can be given a number of aliases and messages sent
to any of these names will be accepted by the queue.

The following examples illustrate some of the ways that aliasing can be used with
queues.

Examples of queue aliasing
Merging applications

Suppose you have the following configuration:
v A client application that puts data to queue Q1

v A server application that takes data from Q1 for processing
v A client application that puts data to queue Q2

v A server application which takes data from Q2 for processing

Some time later the two server applications are merged into one
application supporting requests from both the client applications. It may
now be appropriate for the two queues to be changed to one queue. For
example, you may delete Q2, and add an alias of the Q1 queue, calling it Q2.
Messages from the client application that previously used Q2 are
automatically sent to Q1.

Upgrading applications
Suppose you have the following configuration:
v A queue Q1

queues

44 WebSphere MQ Everyplace: C Bindings Programming Guide

v An application that gets messages from Q1

v An application that puts messages to Q1

You then develop a new version of the application that gets the messages.
You can make the new application work with a queue called Q2. You can
define a queue called Q2 and use it to exercise the new application. When
you want it to go live, you let the old version clear all traffic off the Q1
queue, and then create an alias of Q2 called Q1. The application that puts to
Q1 will still work, but the messages will end up on Q2.

Using different transfer modes to a single queue

Suppose you have a queue MY_Q_ASYNC on queue manager MQE1. Messages
are passed to MY_Q_ASYNC by a different queue manager MQE2, using a
remote queue definition that is defined as an asynchronous queue. Now
suppose your application periodically wants to get messages in a
synchronous manner from the MY_Q_ASYNC queue.

The recommended way to achieve this is to add an alias to the MY_Q_ASYNC
queue, perhaps called MY_Q_SYNC. Then define a remote queue definition on
your MQE2 queue manager, that references the MY_Q_SYNC queue. This
provides you with two remote queue definitions. If you use the MY_Q_ASYNC
definition, the messages are transported asynchronously. If you use the
MY_Q_SYNC definition, synchronous message transfer is used.

Synchronous and asynchronous messaging
WebSphere MQ Everyplace allows flexibility in the way that applications process
their messages. Messages can be transmitted synchronously or asynchronously.

Synchronous messaging
An application does not need to know how or when its messages are transmitted,
however it can take control of this process if it wishes, using synchronous
messaging. Synchronous messaging means that the message is transmitted as soon
as the put message command is issued. This type of messaging can only take place
when both local and target queue managers are online simultaneously, and does
not work if the queue manager is not connected to the network. Synchronous
messaging offers the performance advantages of instant connection and the
knowledge that a message has reached its destination.

Asynchronous messaging
Asynchronous messaging allows an application to continue processing messages,
whether or not the device is connected to a network. The application puts a

MQE2 queue manager
MQE1 queue managerRemote queue MY_Q_ASYNC

(mode=asynchronous) Queue MY_Q_ASYNC
(alias:MY_Q_SYNC)

Remote queue MY_Q_SYNC
(mode=synchronous)

Both remote queues reference the same queue,
using different attributes and different names

Figure 8. Two modes of transfer to a single queue

queues

Chapter 5. Queue managers, messages, and queues 45

message to a remote queue definition, and the message is stored by the queue
manager. The message is transmitted later when a connection is established to the
remote queue manager. The application does not need to be aware of when the
transmission takes place.

The typical example of asynchronous messaging is an application for a field
engineer or salesman. The field personnel can send orders or inventories when it is
convenient. The messages are stored locally until the device is physically connected
to a network. When a connection is made, the messages can be transmitted.

For asynchronous transmission to occur, the queue manager must be triggered. The
triggering is done either by an application calling the queue manager’s
mqeQueueManager_triggerTransmission() function. The method of message
transmission depends on how the remote queue is defined. A queue manager that
is sending a message to a remote queue holds a definition of that queue. This
definition is known as a remote queue definition. When a message is put to a remote
queue, the local queue manager determines how to transmit the message using the
remote queue definition.

Messages are transmitted from the local queue manager to the remote queue
manager using the authenticator, cryptor, and compressor that are defined on the
remote queue. Before it can create a message channel between the two queue
managers, the local queue manager needs to know the remote queue attributes.
The local queue manager keeps this information as part of its remote queue
definition.

The two transmission styles handle this differently.

If an application puts a message to a remote queue and a definition of the remote
queue is held locally then the remote queue definition is used to determine
characteristics of the queue. If a definition is not held locally, queue discovery occurs.
This local queue manager synchronously contacts the remote queue manager in an
attempt to ascertain characteristics of the queue. The following characteristics are
discovered:
v Queue_Description
v Queue_Expiry
v Queue_MaxQSize
v Queue_MaxMsgSize
v Queue_Priority

Network

(definitions of
remote queues)

(‘real’ queues)

Target
queue manager

Queue a

Queue b

Local
queue manager

Queue a

Queue b

Figure 9. WebSphere MQ Everyplace message flow

sync and async messaging

46 WebSphere MQ Everyplace: C Bindings Programming Guide

v Queue_Cryptor
v Queue_Authenticator
v Queue_Compressor
v Queue_TargetRegistry
v Queue_AttrRule

After successful discovery of a queue, the definition of the queue is stored as a
remote queue definition on the queue manager that initiated the discovery. This
discovered queue definition is treated like a normal remote queue definition. The
Queue_Mode is not discovered as all discovered queues are set for synchronous
operation.

Asynchronous transmission is not able to request information from the target
queue manager. Therefore, a remote queue definition must exist before
asynchronous transmission can occur. Remote queue definitions can be created
using WebSphere MQ Everyplace administration messages (see Chapter 6,
“Administering messaging resources” on page 55).

The combination of synchronous and asynchronous messaging allows WebSphere
MQ Everyplace to cope with unreliable communications links. If a putMessage
fails on a synchronous queue, then you have the opportunity to put the message to
an asynchronous queue. An example of this is shown below. By defining two
queues the application can handle a situation where synchronous transmission is
not possible.

Assured message delivery
Asynchronous transmission introduces the concept of assured message delivery.
When delivering messages asynchronously, WebSphere MQ Everyplace guarantees
to deliver that message once, and once-only, to its destination queue. However, this
assurance is only valid if the definition of the remote queue and remote queue
manager match the current characteristics of the remote queue and remote queue
manager. If a remote queue definition and the remote queue do not match, then it
is possible that a message may become undeliverable. In this case the message is
not lost, but remains stored on the local queue manager.

Synchronous assured message delivery

Put message
You can perform assured message delivery using synchronous message
transmission, but the application must take responsibility for error handling.

Non-assured delivery of a message takes place in a single network flow. The queue
manager sending the message creates or reuses a connection to the destination
queue manager.

The message to be sent is dumped to create a byte-stream, and this byte stream is
given to the connection for transmission. Once program control has returned from
the connection, the sender queue manager knows that the message has been
successfully given to the target queue manager, that the target has logged the
message on a queue, and that the message has been made visible to WebSphere
MQ Everyplace applications.

However, a problem can occur if the sender receives an exception over the
connection from the target. The sender has no way of knowing if the exception

sync and async messaging

Chapter 5. Queue managers, messages, and queues 47

occurred before or after the message was logged and made visible. If the exception
occurred before the message was made visible it is safe for the sender to send the
message again. However, if the exception occurred after the message was made
visible, there is a danger of introducing duplicate messages into the system since
an WebSphere MQ Everyplace application could have processed the message
before it was sent the second time.

The solution to this problem involves transmitting an additional confirmation flow.
If the sender application receives a successful response to this flow, then it knows
that the message has been delivered once and once-only.

The confirmId parameter of the mqeQueueManager_putMessage function dictates
whether the confirm flow is sent or not. A value of zero means that message
transmission occurs in one flow, while a value of greater than zero means that a
confirm flow is expected. The target queue manager logs the message to the
destination queue as usual, but the message is locked and invisible to WebSphere
MQ Everyplace applications, until the confirm flow is received.

An WebSphere MQ Everyplace application can issue a put message confirmation
using the mqeQueueManager_confirmPutMessage function. Once the target
queue manager receives the flow generated by this command, it unlocks the
message, and makes it visible to WebSphere MQ Everyplace applications. You can
confirm only one message at a time, it is not possible to confirm a batch of
messages.

The mqeQueueManager_confirmPutMessage() function requires you to specify the
UID of the message, not the Confirm ID used in the prior put message command.
The Confirm ID is used to restore messages that remain locked after a transmission
failure. This is explained in detail on page 51.

A skeleton version of the code required for an assured put is shown below:
MQEINT64 confirmID;
rc = mqe_uniqueValue(pExceptBlock,&confirmID);
if (MQERETURN_OK == rc)
{
rc = mqeQueueManager_putMessage(hQmgrHandle, pExceptBlock,

hQueueManagerName,
hQueueName,hOutMsg,NULL,

confirmID;
if (MQERETURN_OK == rc)

01. Application issues a Put Message (specifying a confirm Id)

T2.Message state on persistent store
changed to ‘Unlocked’.
Message is now visible to other
MQSeries Everyplace applications.

T1.Logs msg to persistent store
Message in state ‘Put_Unconfirmed’

01. Application now knows that the message has been successfully delivered

02. Application issues a Confirm Put Message (specifying message UID)

Originator Target

Figure 10. Assured put of synchronous messages

assured message delivery

48 WebSphere MQ Everyplace: C Bindings Programming Guide

{
MQeFieldsHndl hFilter;
rc = mqeMsg_getMsgUIDFields(hOutMsg, pExceptBlock,

&hFilter);
/* ... ideally check error here */
rc = mqeQueueManaber_confirmPutMessage(hQMgrHandle, pExceptBlock,

hQueueManagerName,
hQueueName,

hFilter}
if (MQERETURN_OK == rc) {

} else { /* ... error checking here */}
} else {/* ... error checking here */ }
} else { /* ... error checking here */ }

If a failure occurs during step 1 in Figure 10 on page 48 the application should
retransmit the message. There is no danger of introducing duplicate messages into
the WebSphere MQ Everyplace network since the message at the target queue
manager is not made visible to applications until the confirm flow has been
successfully processed.

If the WebSphere MQ Everyplace application retransmits the message, it should
also inform the target queue manager that this is happening. The target queue
manager deletes any duplicate copy of the message that it already has. The
application sets the MQE_MSG_RESEND field to do this.

If a failure occurs during step 2 in Figure 10 on page 48 the application should
send the confirm flow again. There is no danger in doing this since the target
queue manager ignores any confirm flows it receives for messages that it has
already confirmed. This is shown in the following example.

MQEBOOL msgPut = MQE_FALSE;
/* put message successful? */

MQEBOOL putConfirmed = MQE_FALSE;
/* put confirm successful? */

MQEINT64 confirmId;
MQERETURN rc;

/* generate a confirm Id */
rc = mqe_uniqueValue(pErrorBlock, &confirmID);

if (MQERETURN_OK == rc) {
MQEINT32 retry;

/* try to put message - retry if there are problems
until maximum retry*/

/* count is exceeded */
for (retry=0; (MQE_FALSE == msgPut)

&& (retry < MAX_RETRY); retry++) {
rc = mqeQueueManager_putMessage(hQMgr, pErrorBlock,

hQueueManager, hQueue, hOutMsg,
NULL, confirmId);

if (MQERETURN_OK == rc) {
/* put successful */
msgPut = MQE_TRUE;

} else {
/* set the message resend flag */
/* (error block pointer set to NULL to avoid *pErrorBlock*/
/* being overwritten) */
rc = mqeFields_putBoolean((MQeFieldsHndl)hOutMsg,

NULL, MQE_MSG_RESEND, MQE_TRUE);
if (MQERETURN_OK != rc) {

printf("mqeFields_putBoolean error");
break;

}
}

assured message delivery

Chapter 5. Queue managers, messages, and queues 49

}

if (MQE_FALSE == msgPut) {
/* Number of retries has exceeded the maximum allowed,

so abort the put */
/* message attempt */
/* Attempt to delete any copy of the message held

on the target queue */
/* This operation may well fail */
/* if the message does exist on the target queue

then it will remain */
/* there until it expires (if an expiry value has

been set on either */
/* the message or queue. */
rc = mqeQueueManager_undo(hQMgr, NULL, hQueueManager,

hQueue, confirmId);
if (MQERETURN_OK != rc) {

printf("mqeQueueManager_undo error");
}
/* return with put error */
return pErrorBlock->ec;

} else {
MQeFieldsHndl hFilter;

/* put message unsuccessful */
/* get message Unique ID for use on confirm put operation */
rc = mqeMsg_getMsgUIDFields(hOutMsg, pErrorBlock,

&hFilter);
if (MQERETURN_OK == rc) {

/* try to confirm the previous put - retry if
there are problems until */

/* maximum retry count is exceeded */
for (retry=0; (MQE_FALSE == putConfirmed)

&& (retry < MAX_RETRY); retry++){
rc = mqeQueueManager_confirmPutMessage(hQMgr, pErrorBlock,

hQueueManager,
hQueue, hFilter);

if ((MQERETURN_OK == rc) || (MQERETURN_J_NOT_FOUND == rc)) {
/* confirm successful */
/* An MQERETURN_J_NOT_FOUND exception means

that the message */
/* has already been confirmed */
putConfirmed = MQE_TRUE;

}
/* another type of exception - need to reconfirm message */

}

if (MQE_FALSE == putConfirmed) {
/* Attempt to undo any copy of the message held on

the target queue */
/* This operation may well fail */
rc = mqeQueueManager_undo(hQMgr, NULL, hQueueManager,

hQueue, confirmId);
if (MQERETURN_OK != rc) {

printf("mqeQueueManager_undo error");
}
/* return with confirmPut error */
return pErrorBlock->ec;

}
(void)mqeFields_free(hFilter, NULL);

} else {
displayError("mqeMsg_getMsgUIDFields error", pErrorBlock);

}
}

} else {
displayError("mqe_uniqueValue error", pErrorBlock);

}

assured message delivery

50 WebSphere MQ Everyplace: C Bindings Programming Guide

Get message
Assured message get works in a similar way to put If a get message command is
issued with a confirmId parameter greater than zero, the message is left locked on
the queue on which it resides until a confirm flow is processed by the target queue
manager. When a confirm flow is received, the message is deleted from the queue.

The value passed as the confirmId parameter also has another use. The value is
used to identify the message while it is locked and awaiting confirmation. If an
error occurs during the get operation, it can potentially leave the message locked
on the queue. This happens if the message is locked in response to the get
command, but an error occurs before the application receives the message. If the
application reissues the get in response to the exception, then it will be unable to
obtain the same message because it is locked and invisible to WebSphere MQ
Everyplace applications.

However, the application that issued the get command can restore the messages
using the undo function. The application must supply the confirmId value that it
supplied to the get message command. The undo command restores messages to
the state they were in before the get command.

MQEBOOL msgGet = MQE_FALSE;
/* get message successful? */

MQEBOOL getConfirmed = MQE_FALSE;
/* get confirm successful? */

MQEINT64 confirmId;
MQERETURN rc;

*phInMsg = NULL;

/* generate a confirm Id */
rc = mqe_uniqueValue(pErrorBlock,&confirmID);

if (MQERETURN_OK == rc) {
MQEINT32 retry;

/* try to put message - retry if there are
problems until maximum retry */

/* count is exceeded */
for (retry=0; (MQE_FALSE == msgGet) &&
(retry < MAX_RETRY); retry++) {

rc = mqeQueueManager_getMessage(hQMgr, pErrorBlock, phInMsg,

Originator Target

O1. Application issues a Get Message (specifying a confirm Id)

T1.Message state in persistent store
changed to ‘Get_Uncomfirmed’.
Message returned to originator.

O2. Application issues a Confirm Get Message.

T2.Message removed from queue.

O3. Application now holds sole copy of message.

Figure 11. Assured get of synchronous messages

assured message delivery

Chapter 5. Queue managers, messages, and queues 51

hQueueManager,
hQueue, hFilter, NULL,
confirmId);

if (MQERETURN_OK == rc) {
/* put successful */
msgGet = MQE_TRUE;

} else if (MQERETURN_J_Q_NO_MATCHING_MSG == rc) {
/* the message is unavailable */
break;

} else {
/* As a precaution, undo the message

on the queue. This will remove */
/* any lock that may have been put on the message prior to the */
/* exception occurring */
rc = mqeQueueManager_undo(hQMgr, NULL, hQueueManager,

hQueue, confirmId);
if (MQERETURN_OK != rc) {

printf("mqeQueueManager_undo error");
}

}
}

if (MQE_FALSE == msgGet) {
/* Number of retry attempts has exceeded

the maximum allowed, so abort */
/* get message operation */
return pErrorBlock->ec;

} else {
/* try to confirm the previous get

message operation - retry if there are */
/* problems until maximum retry count is exceeded */
for (retry=0; (MQE_FALSE == getConfirmed) &&

(retry < MAX_RETRY); retry++) {
rc = mqeQueueManager_confirmGetMessage(hQMgr, pErrorBlock,

hQueueManager,
hQueue, hFilter);

if (MQERETURN_OK == rc) {
getConfirmed = MQE_TRUE;

}
}

if (MQE_FALSE == getConfirmed) {
/* need to free the message already got and return error */
(void)mqeMsg_free(*phInMsg, NULL);
return pErrorBlock->ec;

}
}

} else {
displayError("mqe_uniqueValue error", pErrorBlock);

}

The undo command also has relevance for the mqeQueueManager_putMessage
and mqeQueueManager_browseMessagesAndLock commands. As with get
message, the undo command restores any messages locked by the
mqeQueueManager_browseMessagesandLock command to their previous state.

If an application issues an undo command after a failed
mqeQueueManager_putMessage command, then any message locked on the
target queue awaiting confirmation is deleted.

The undo command works for operations on both local and remote queues.

assured message delivery

52 WebSphere MQ Everyplace: C Bindings Programming Guide

Security
The queue manager fully supports the security functions supplied with WebSphere
MQ Everyplace. Any messages stored in a queue defined with security
characteristics are encoded using those characteristics. Any communication
connections set up between a queue manager and a secure queue use the security
characteristics of the queue, or an existing connections with equal or higher
security.

Messages can be individually protected by attaching security characteristics to
them directly. The correct characteristics must be presented whenever dealing with
a message protected in this manner.

See Chapter 8, “Security” on page 113 for a detailed discussion of WebSphere MQ
Everyplace security.

queue manager security

Chapter 5. Queue managers, messages, and queues 53

54 WebSphere MQ Everyplace: C Bindings Programming Guide

Chapter 6. Administering messaging resources

The administration of WebSphere MQ Everyplace resources such as queue
managers and queues is performed using specialized WebSphere MQ Everyplace
messages. Using messages allows administration to be performed locally or
remotely.

Before you can administer a queue manager or its resources, you must start the
queue manager and configure an administration queue on it. The administration
queue’s role is to process administration messages in the sequence that they arrive
on the queue. Only one request is processed at a time. The queue can be created
using the mqeQueueManagerConfigure_defineDefaultAdminQueue() function of
the MQeQueueManagerConfigure class. The name of the queue is AdminQ and
applications can refer to it using the constant MQE_ADMIN_QUEUE_NAME.

A typical administration application instantiates a subclass of MQeAdminMsg,
configures it with the required administration request, and passes it to the AdminQ
on the target queue manager. If the application wishes to know the outcome of the
action, a reply can be requested. When the request has been processed the result of
the request is returned in a message to the reply-to queue and queue manager
specified in the request message.

The reply can be sent to any queue manager or queue but you can configure a
default reply-to that is used solely for administration reply messages. This default
queue is created using the
mqeQueueManagerConfigure_defineDefaultAdminReplyQueue() function of the
MQeQueueManagerConfigure class. The name of the queue is AdminReplyQ and
applications can refer to it using the constant MQE_ADMIN_REPLY_QUEUE_NAME

The administration queue does not understand how to perform administration of
individual resources. This knowledge is encapsulated in each resource and its
corresponding administration message. The following messages are provided for
administration of WebSphere MQ Everyplace resources:

Managed
resource

admin
methods

Admin
application

AdminMsg
(Request)

AdminMsg
(Reply)

Queue
manager

Queue
manager

AdminMsg
(Request)

AdminMsg
(Reply)

AdminQ

ReplyQ

Figure 12. WebSphere MQ Everyplace administration

© Copyright IBM Corp. 2000, 2002 55

Table 2. Administration messages

Message name purpose

MQe_AdminMsg an abstract class that acts as the base
class for all administration messages

MQe_AdminQueueAdminMsg provides support for administering
the administration queue

MQe_ConnectionAdminMsg provides support for administering
connections between queue managers

MQe_HomeServerQueueAdminMsg provides support for administering
home-server queues

MQe_QueueAdminMsg provides support for administering
local queues

MQe_QueueMangerAdminMsg provides support for administering
queue managers

MQe_RemoteQueueAdminMsg provides support for administering
remote queues

MQe_StoreAndForwardQueueAdminMsg provides support for administering
store-and-forward queues

The basic administration request message
Every request to administer an WebSphere MQ Everyplace resource takes the same
basic form. Figure 13 on page 57 shows the basic structure for all administration
request messages:

A request is made up of:
1. Base administration fields, that are common to all administration requests
2. Administration fields, that are specific to the resource being managed
3. Optional fields to assist with the processing of administration messages

administration

56 WebSphere MQ Everyplace: C Bindings Programming Guide

Base administration fields
The base administration fields, that are common to all administration messages,
are:

MQE_ADMIN_TARGET_QMGR
This field provides the name of the queue manager on which the requested
action is to take place (target queue manager). The target queue manager
can be either a local or a remote queue manager. As only one queue
manager can be active at a time in a Java Virtual Machine, the target queue
manager, and the one to which the message is put, are the same.

MQE_ADMIN_ACTION
This field contains the administration action that is to be performed. Each
managed resource provides a set of administrative actions that it can
perform. A single administration message can only request that one action
be performed. The following common actions are defined:

Table 3. Administration actions

Administration action Purpose

MQE_ADMIN_ACTION_CREATE Create a new instance of a managed
resource.

MQE_ADMIN_ACTION_DELETE Delete an existing managed resource

MQE_ADMIN_ACTION_INQUIRE Inquire on one or more characteristics of
a managed resource

MQE_ADMIN_ACTION_INQUIREALL Inquire on all characteristics of a
managed resource

MQE_ADMIN_ACTION_UPDATE Update one or more characteristics of a
managed resource

Base admin field items:

MQE_ADMIN_TARGET_QMGR

MQE_ADMIN_ACTION

MQE_ADMIN_MAXATTEMPTS

MQE_ADMIN_PARAMS:
(Characteristics of managed
resource required for the action.)

MQE_ADMIN_NAME

others ...
…

1

2

Optional fields: (commonly used)

MQE_MSG_STYLE

MQE_MSG_REPLYTO_Q

MQE_MSG_REPLYTO_QMGR

MQE_MSG_MSGID

MQE_MSG_CORRELID

3

Figure 13. Administration request message

administration request message

Chapter 6. Administering messaging resources 57

All resources do not necessarily implement these actions. For instance, it is
not possible to create a queue manager using an administration message.
Specific administration messages can extend the base set to provide
additional actions that are specific to a resource.

Each common action provides a function that sets the
MQE_ADMIN_ACTION field:

Table 4. Setting the administration action field

Administration action Setting function

MQE_ADMIN_ACTION_CREATE mqeAdminMsg_create(parameters)

MQE_ADMIN_ACTION_DELETE mqeAdminMsg_delete(parameters)

MQE_ADMIN_ACTION_INQUIRE mqeAdminMsg_inquire(parameters)

MQE_ADMIN_ACTION_INQUIREALL mqeAdminMsg_inquireAll(parameters)

MQE_ADMIN_ACTION_UPDATE mqeAdminMsg_update(parameters)

Where parameters is:
MQeAdminMsgHndl hMsgObj,
MQeExceptBlock *pErrStruct,
MQECONST MQeFieldsHndl hParms

MQE_ADMIN_MAXATTEMPTSAdmin_MaxAttempts

This field determines how many times an action can be retried if the initial
action fails. The retry occurs either the next time that the queue manager
restarts or at the next interval set on the administration queue.

Other fields
For most failures further information is available in the reply message. It is
the responsibility of the requesting application to read and handle failure
information. Refer to “The basic administration reply message” on page 61
for more details on using the reply data.

A set of functions are available for setting some of the request fields:

Table 5. Setting administration request fields

Administration action Field type Set and get functions

MQE_ADMIN_PARAMS MQeFields mqeAdminMsg_getInputFields(
MQeAdminMsgHndl hMsgObj ,
MQeExceptBlock * pErrStruct ,
MQeFieldsHndl * phFields)

MQE_ADMIN_ACTION int mqeAdminMsg_setAction(
MQeAdminMsgHndl hMsgObj,
MQeExceptBlock * pErrStruct,
MQEINT32 action)

MQE_ADMIN_TARGET_QMGR ascii mqeAdminMsg_setTargetQMgr(
MQeAdminMsgHndl hMsgObj,
MQeExceptBlock * pErrStruct,
MQECONST MQeStringHndl
hName)

MQE_ADMIN_MAXATTEMPTS int mqeAdminMsg_setMaxAttempts(
MQeAdminMsgHndl hMsgObj,
MQeExceptBlock * pErrStruct,
MQEINT32 maxAttempts)

administration request message

58 WebSphere MQ Everyplace: C Bindings Programming Guide

Fields specific to the managed resource
MQE_ADMIN_PARAMS

This field contains the resource characteristics that are required for the
action.

Every resource has a set of unique characteristics. Each characteristic has a
name, type and value, and the name of each is defined by a constant in the
administration message. The name of the resource is a characteristic that is
common to all managed resources. The name of the resource is held in the
MQE_ADMIN_NAME, and it has a type of ascii.

The full set of characteristics of a resource can be determined by using the
mqeAdminMsg_characteristics() function against an instance of an
administration message. This function returns an MQeFields object that
contains one field for each characteristic. MQeFields functions can be used
for enumerating over the set of characteristics to obtain the name, type and
default value of each characteristic.

The action requested determines the set of characteristics that can be
passed to the action. In all cases, at least the name of the resource,
MQE_ADMIN_NAME, must be passed. In the case of
MQE_ADMIN_ACTION_INQUIRE this is the only parameter that is
required.

Other useful fields
By default, no reply is generated, when an administration request is processed. If a
reply is required, then the request message must be setup to ask for a reply
message. The following fields are defined in the MQe class and are used to request
a reply.

MQE_MSG_STYLE
A field of type int that can take one of three values:

MQE_MSG_STYLE_DATAGRAM
A command not requiring a reply

MQE_MSG_STYLE_REQUEST
A request that would like a reply

MQE_MSG_STYLE_REPLY
A reply to a request

If MQE_MSG_STYLE is set to MQE_MSG_STYLE_REQUEST (a reply is required) then the
location that the reply is to be sent to must be set into the request message. The
two fields used to set the location are:

MQE_MSG_REPLYTO_Q
An ascii field used to hold the name of the queue for the reply

MQE_MSG_REPLYTO_QMGR
An ascii field used to hold the name of the queue manager for the reply

If the reply-to queue manager is not the queue manager that processes the request
then the queue manager that processes the request must have a connection defined
to the reply-to queue manager.

For an administration request message to be correlated to its reply message the
request message needs to contain fields that uniquely identify the request, and that

administration request message

Chapter 6. Administering messaging resources 59

can then be copied into the reply message. WebSphere MQ Everyplace provides
two fields that can be used for this purpose:

MQE_MSG_MSGID
A byte array containing the message ID

MQE_MSG_CORRELID
A byte array containing the Correl ID of the message

Any other fields can be used but these two have the added benefit that they are
used by the queue manager to optimize searching of queues and message retrieval.
The following code fragment provides an example of how to prime a request
message:
MQERETURN primeAdminMsg(MQeQueueAdminMsgHndl hMsg, MQeExceptBlock

*pErrorBlock, MQeFieldsHndl * phMsgTest,
MQeStringHndl hQueueManagerName) {

MQERETURN rc;
/* Set the target queue manager that will process this message */
rc = mqeAdminMsg_setTargetQMgr((MQeAdminMsgHndl)hMsg,

pErrorBlock, hQueueManagerName);
if (MQERETURN_OK == rc) {

/* Ask for a reply message */
rc = mqeFields_putInt32((MQeFieldsHndl)hMsg, pErrorBlock,

MQE_MSG_STYLE, MQE_MSG_STYLE_REQUEST);
if (MQERETURN_OK == rc) {

rc = mqeFields_putAscii((MQeFieldsHndl)hMsg, pErrorBlock,
MQE_MSG_REPLYTO_Q, MQE_ADMIN_REPLY_QUEUE_NAME);

if (MQERETURN_OK == rc) {
rc = mqeFields_putAscii((MQeFieldsHndl)hMsg, pErrorBlock,

MQE_MSG_REPLYTO_QMGR, hQueueManagerName);
if (MQERETURN_OK == rc) {

rc = mqeFields_new(pErrorBlock, phMsgTest);
if (MQERETURN_OK == rc) {

MQEINT64 v;
MQeStringHndl hFieldName;

/* create some identical data fields in both hMsg and *phMsgTest
so that the replay message can be matched against when it is
returned to the replyToQ.

*/
rc = mqe_uniqueValue(pErrorBlock, &v);
if (MQERETURN_OK == rc) {

rc = mqeString_newChar8(pErrorBlock, &hFieldName,
"IDField");

if (MQERETURN_OK == rc) {
rc = mqeFields_putInt64(*phMsgTest, pErrorBlock,

hFieldName, v);
if (MQERETURN_OK == rc) {

rc = mqeFields_putInt64((MQeFieldsHndl)hMsg,
pErrorBlock, hFieldName, v);

if (MQERETURN_OK != rc) {
displayError("mqeFields_putInt64 error

(in primeAdminMsg, hMsg)", pErrorBlock);
}

} else {
displayError("mqeFields_putInt64 error (in primeAdminMsg,

phMsgTest)", pErrorBlock);
}
(void)mqeString_free(hFieldName, NULL);

} else {
displayError("mqeString_newChar8 error (in primeAdminMsg)",

pErrorBlock);
}

} else {

administration request message

60 WebSphere MQ Everyplace: C Bindings Programming Guide

displayError("mqe_uniqueValue error (in primeAdminMsg)",
pErrorBlock);

}
} else {

displayError("mqeFields_new error (in primeAdminMsg)",
pErrorBlock);

}
} else {

displayError("mqeFields_putAscii (2) error (in primeAdminMsg)",
pErrorBlock);

}
} else {

displayError("mqeFields_putAscii (1) error (in primeAdminMsg)",
pErrorBlock);

}
} else {

displayError("mqeAdminMsg_Int32 error (in primeAdminMsg)",
pErrorBlock);

}
} else {

displayError("mqeAdminMsg_setTargetQMgr error (in primeAdminMsg)",
pErrorBlock);

}

return rc;
}

When the administration request message has been created, it is sent to the target
queue manager using standard WebSphere MQ Everyplace message processing
APIs. Depending on how the destination administration queue is defined, delivery
of the message can be either synchronous or asynchronous.

Standard WebSphere MQ Everyplace message processing APIs are also used to
wait for a reply, or notification of a reply. There is a time lag between sending the
request and receiving the reply message. The time lag may be small if the request
is being processed locally or may be long if both the request and reply messages
are delivered asynchronously. Administration example Ex1 contains code that
demonstrates these functions.

The basic administration reply message
Once an administration request has been processed, a reply, if requested, is sent to
the reply-to queue manager queue. The reply message has the same basic format
as the request message with some additional fields.

administration request message

Chapter 6. Administering messaging resources 61

A reply is made up of:
1. Base administration fields. These are copied from the request message
2. Administration fields that are specific to the resource being managed
3. Optional fields to assist with the processing of administration messages. These

are copied from the request message
4. Administration fields detailing outcome of request
5. Administration fields providing detailed results of the request that are specific

to the resource being managed
6. Administration fields detailing errors that are specific to the resource being

managed

The first three items are describe in “The basic administration request message” on
page 56. The reply specific fields are described in the following sections.

Outcome of request fields
MQE_ADMIN_RC_FIRLD

This byte field contains the overall outcome of the request. This is a field
of type int that is set to one of:

MQE_ADMIN_RC_SUCCESS
The action completed successfully.

Base admin field items:

(Characteristics of managed

resource required for the action.)

…

1

2, 5

(Error field items: 1 per
characteristic in error.)

Field in error
…

6

M QE_ADM IN_ERROR :

Reply admin field items:

M QE_ADM IN_RC

M QE_ADM IN_REASON

4

Optional fields: (commonly used)

3

M QE_ADM IN_TARGET_QM GR

M QE_ADM IN_ACTION

M QE_ADM IN_M AXATTEM PTS

M QE_ADM IN_PARAM S:

M QE_ADM IN_NAM E

others ...
…

M QE_M SG_STYLE

M QE_M SG_REPLYTO_Q

M QE_M SG_REPLYTO_QM GR

M QE_M SG_M SGID

M QE_M SG_CORRELID

Figure 14. Administration reply message

administration reply message

62 WebSphere MQ Everyplace: C Bindings Programming Guide

MQE_ADMIN_RC_FAIL
The request failed completely.

MQE_ADMIN_RC_MIXED
The request was partially successful. A mixed return code could
result if a request is made to update four attributes of a queue and
three succeed and one fails.

MQE_ADMIN_REASON
A unicode field containing the overall reason for the failure in the case of
Mixed and Failed.

MQE_ADMIN_PARAMS
An MQeFields object containing a field for each characteristics of the
managed resource.

MQE_ADMIN_ERROR
An MQeFields object containing one field for each update that failed. Each
entry contained in the MQE_ADMIN_ERROR field is of type ascii or asciiArray.

The following functions are available for getting some of the reply fields:

Table 6. Getting administration reply fields

Administration field Field type get function

MQE_ADMIN_RC int mqeAdminMsg_getAction(
MQeAdminMsgHndl hMsgObj ,
MQeExceptBlock * pErrStruct ,
MQEINT32 * pAction)

MQE_ADMIN_REASON unicode mqeAdminMsg_getReason(
MQeAdminMsgHndl hMsgObj ,
MQeExceptBlock * pErrStruct ,
MQeStringHndl * phReason)

MQE_ADMIN_PARAMS MQeFields mqeAdminMsg_getOutputFields(
MQeAdminMsgHndl hMsgObj ,
MQeExceptBlock * pErrStruct,
MQeFieldsHndl * phFields)

MQE_ADMIN_ERROR MQeFields mqeAdminMsg_getErrorFields(
MQeAdminMsgHndl hMsgObj ,
MQeExceptBlock * pErrStruct ,
MQeFieldsHndl * phErrors)

Depending on the action performed, the only fields of interest may be the return
code and reason. This is the case for delete. For other actions such as inquire,
more details may be required in the reply message. For instance, if an inquire
request is made for fields MQE_QUEUE_DESCRIPTION and MQE_QUEUE_FILEDESC, the
resultant MQeFields object would contain the values for the actual queue in these
two fields.

The following table shows the MQE_ADMIN_PARAMS fields of a request message and a
reply message for an inquire on several parameters of a queue:

Table 7. Enquiring on queue parameters

Admin_Parms field name Request message Reply message

Type Value Type Value

MQE_ADMIN_NAME ascii ″TestQ″ ascii ″TestQ″

MQE_QUEUE_MANAGER_NAMEascii ″ExampleQM″ascii ″ExampleQM″

administration reply message

Chapter 6. Administering messaging resources 63

Table 7. Enquiring on queue parameters (continued)

Admin_Parms field name Request message Reply message

Type Value Type Value

MQE_QUEUE_DESCRIPTION Unicode null Unicode ″A test queue″

MQE_QUEUE_FILEDESC ascii null ascii ″c:\queues\″

For actions where no additional data is expected on the reply, the
MQE_ADMIN_PARAMS field in the reply matches that of the request message. This is the
case for the create and update actions.

Some actions, such as create and update, may request that several characteristic of
a managed resource be set or updated. In this case, it is possible for a return code
of RC_Mixed to be received. Additional details indicating why each update failed
are available from the Admin_Errors field. The following table shows an example of
the MQE_ADMIN_PARAMS field for a request to update a queue and the resultant
MQE_ADMIN_ERROR field:

Table 8. Request and reply message to update a queue

Field name Request message Reply message

Type Value Type Value

MQE_ADMIN_PARAMS field

MQE_ADMIN_NAME ascii ″TestQ″ ascii ″TestQ″

MQE_QUEUE_MANAGER_NAMEascii ″ExampleQM″ ascii ″ExampleQM″

MQE_QUEUE_DESCRIPTIONUnicode null Unicode ″ExampleQM″
″A new
description″

MQE_QUEUE_FILEDESC ascii null Unicode ″D:\queues″

MQE_ADMIN_ERROR field

MQE_QUEUE_FILEDESC n/a n/a ascii ″Code=4;com.ibm.
mqe.MQeException:
wrong field
type″

For fields where the update or set is successful there is no entry in the
Admin_Errors field.

A detailed description of each error is returned in an ascii string. The example
program Admin-Ex1 contains code showing how to look at the error string. (In the
showReasons() function.)

Administration of managed resources
As described in previous sections, WebSphere MQ Everyplace has a set of
resources that can be administered with administration messages. These resources
are known as managed resources. The following sections provide information on
how to manage some of these resources. For detailed description of the application
programming interface for each resource see the WebSphere MQ Everyplace Java
Programming Reference.

administration reply message

64 WebSphere MQ Everyplace: C Bindings Programming Guide

Queue managers
The complete management life-cycle for most managed resources can be controlled
with administration messages. This means that the managed resource can be
brought into existence, managed and then deleted with administration messages.
This is not the case for queue managers. Before a queue manager can be managed
it must be created and started. See “Creating and deleting queue managers” on
page 27 for information on creating and starting a queue manager.

The queue manager has very few characteristics itself, but it controls other
WebSphere MQ Everyplace resources. When you inquire on a queue manager, you
can obtain a list of connections to other queue managers and a list of queues that
the queue manager can work with. Each list item is the name of either a
connection or a queue. Once you know the name of a resource, you can use the
appropriate message to manage the resource. For instance you use an
MQeConnectionAdminMessage to manage connections.

Connections
Connections define how to connect one queue manager to another queue manager.
Once a connection has been defined, it is possible for a queue manager to put
messages to queues on the remote queue manager. The following diagram shows
the constituent parts that are required for a remote queue on one queue manager
to communicate with a queue on a different queue manager:

Communication happens at different levels:

Transporter:
Logical connection between two queues

Connection:
Logical connection between two systems

Adapter:
Protocol specific communication

The connection and adapter are specified as part of a connection definition. The
transporter is specified as part of a remote queue definition.

To create a suitable Connection Admin Msg, use the primeAdminMsg function
shown in the Example files Admin-Ex1. Set the Remote Queue Manager name,

Local queue manager Remote queue manager

Channel Channel

Transporter Transporter

Remote
queue Queue

Network
adapter

Network
adapter

Figure 15. Queue manager connections

administration of queue managers

Chapter 6. Administering messaging resources 65

using the mqeAdminMsg_setName function, and then call the
mqeConnectionAdminMsg_create function.

To add a connection :
1. Create a new MQeConnectionAdminMsg
2. Prime the admin message
3. Set the remote queuemanager name
4. Call mqeConnectionAdminMsg_create

WebSphere MQ Everyplace provides a choice of connection and adapter types.
Depending on the selection, queue managers can be connected in the following
ways:
v Client to server
v Peer to peer

Client to server
In a client to server configuration, one queue manager acts as a client and the
other runs in a server environment. A server allows multiple simultaneous
incoming connections. To accomplish this the server must have components that
can handle multiple incoming requests. See “Server queue managers” on page 36
for a description of how to run a queue manager in a server environment.

Figure 16 shows the typical connection components in a client to server
configuration.

MQeChannel

Transporter

Network
adapter

MQeChannel

Transporter

Remote
queue

Client
Local queue manager

Server
Remote queue manager

Network
adapter

Queue

Network adapter

MQeChannelListener

MQeChanneManager

Figure 16. Client to server connections

administration of connections

66 WebSphere MQ Everyplace: C Bindings Programming Guide

You use MQeConnectionAdminMsg to configure the client portion of a connection.
The connection type is com.ibm.mqe.MQeChannel. Normally an alias of
DefaultChannel is configured for MQeChannel.

Create a connection, as described previously and then use the standard
putMessage calls to send the message to the administration queue.

Peer to peer
In a peer to peer configuration, a queue manager running as a peer can talk to
many other peers simultaneously but can only have one other peer talk to it at any
time. One peer is configured as a master or initiator, the other as a slave or
receiver.

You configure the master in much the same way as a client connection definition,
the only difference being the type of connection to use. The connection type must
be set to com.ibm.mqe.adapters.MQePeerChannel (or an alias).

You configure the slave or receiver in a similar way but with the following
differences:
v The connection definition must have the same name as the queue manager it is

defined on
v The connection type must be com.ibm.mqe.adapters.MQePeerChannel

v The adapter must be configured as a listener

Create a connection, as described previously and then use the standard
putMessage calls to send the message to the administration queue.

The following table shows the connection definition parameters for a receiver on
PeerQM1 and for any other peer queue manager that would like to communicate
with it.

Table 9. Peer-to-peer connection definitions

Master (Initiator) Slave (Receiver)

Queue Manager Any ″PeerQM1″

Connection name ″PeerQM1″ ″PeerQM1″

Remote Queue

MQePeerChannel
MQePeerChannel

(Receiver)

Peer (master)
Local queue manager

Peer (slave)
Remote queue manager

Transporter Transporter

Network
adapter

Network
adapter

Figure 17. Peer to peer connections

administration of connections

Chapter 6. Administering messaging resources 67

Table 9. Peer-to-peer connection definitions (continued)

Master (Initiator) Slave (Receiver)

Channel com.ibm.mqe.MQePeerChannel com.ibm.mqe.MQePeerChannel

Adapter Network:192.168.0.10:8082 Network::8082

Routing connections
You can set up a connection so that a queue manager routes messages through an
intermediate queue manager. This requires two connections:
1. A connection to the intermediate queue manager
2. A connection to the target queue manager

The first connection is created by the functions described earlier in this section,
either as a client or as a peer connection. For the second connection, the name of
the intermediate queue manager is specified in place of the network adapter name.
With this configuration an application can put messages to the target queue
manager but route them through one or more intermediate queue managers.

Aliases
You can assign multiple names or aliases to a connection (see “Class Aliases” on
page 33). When an application calls functions on the MQeQueueManager class that
require a queue manager name be specified, it can also use an alias.

You can alias both local and remote queue managers. To alias a local queue
manager, you must first establish a connection definition with the same name as
the local queue manager. This is a logical connection that can have all parameters
set to null.

To add and remove aliases use the MQE_ADMIN_ACTION_ADDALIAS and
MQE_ADMIN_ACTION_REMOVEALIAS actions of the
MQeConnectionAdminMsg class. You can add or remove multiple aliases in one
message. Put the aliases that you want to manipulated directly into the message by
setting the ascii array field Con_Aliases. Alternatively you can use the two
functions addAlias() or removeAlias(). Each of these functions takes one alias
name but you can call the function repeatedly to add multiple aliases to a message.

Queues
The queue types provided by WebSphere MQ Everyplace are described briefly in
“WebSphere MQ Everyplace queues” on page 3. The simplest of these is a local
queue that is implemented in class MQeQueue and is managed by class
MQeQueueAdminMsg. All other types of queue inherit from MQeQueue. For each
type of queue there is a corresponding administration message that inherits from
MQeQueueAdminMsg. The following sections describe the administration of the
various types of queues.

Local queue
You can create, update, delete and inquire on local queues and their descendents
using administration actions provided in WebSphere MQ Everyplace. The basic
administration mechanism is inherited from MQeAdminMsg.

The name of a queue is formed from the target queue manager name (for a local
queue this is the name of the queue manager that owns the queue) and a unique
name for the queue on that queue manager. Two fields in the administration
message are used to uniquely identify the queue, these are the ascii fields

administration of connections

68 WebSphere MQ Everyplace: C Bindings Programming Guide

MQE_ADMIN_NAME and MQE_QUEUE_QMGRNAME. You can use the setName(
queueManagerName, queueName) function to set these two fields in the
administration message.

The diagram below shows an example of a queue manager configured with a local
queue. Queue manager qm1 has a local queue named invQ. The queue manager
name characteristic of the queue is qm1, which matches the queue manager name.

Message Store: Local queues require a message store to store their messages.
Each queue can specify what type of store to use, and where it is located. Use the
queue characteristic Queue_FileDesc to specify the type of message store and to
provide parameters for it. The field type is ascii and the value must be a file
descriptor of the form:

adapter class:adapter parameters
or
adapter alias:adapter parameters

For example:
MsgLog:d:\QueueManager\ServerQM12\Queues

WebSphere MQ Everyplace Version 2.0 provides two adapters, one for writing
messages to disk and one for storing them in memory. By creating an appropriate
adapter, messages can be stored in any suitable place or medium (such as DB2
database or writable CDs).

The choice of adapter determines the persistence and resilience of messages. For
instance if a memory adapter is used then the messages are only as resilient as the
memory. Memory may be a much faster medium than disk but is highly volatile
compared to disk. Hence the choice of adapter is an important one.

If you do not provide message store information when creating a queue, it defaults
to the message store that was specified when the queue manager was created. See
Chapter 5, “Queue managers, messages, and queues” on page 27 for more details.

Queue
invQ

msg = getMessage(null, invQ, ...)

putMessage(null, invQ, msg, …)

qm1

Figure 18. Local queue

administration of queues

Chapter 6. Administering messaging resources 69

The following should be taken into consideration when setting the Queue_FileDesc
field:
v Ensure that the correct syntax is used for the system that the queue resides on.

For instance, on a windows system use "\" as a file separator on UNIX® systems
use "/" as a file separator. In some cases it may be possible to use either but this
is dependent on the support provided by the JVM (Java Virtual Machine) that
the queue manager runs in. As well as file separator differences, some systems
use drive letters like Windows NT whereas others like UNIX do not.

v On some systems it is possible to specify relative directories (".\") on others it is
not.

Creating a local queue: To create a local queue:
1. Create a new MQeQueueAdminMsg
2. Prime the administration message
3. Call mqeQueueAdminMsg_setName() function to set the queue and queue

manager name
4. Create an MQeFields object containing entries for the characteristics. Typical

entries would be:
v MQE_QUEUE_DESCRIPTION for the descriptions
v MQE_QUEUE_FILEDESC for the queue store locations

5. Call the mqeAdminMsg_create function
6. Put the message to the administration queue

Queue security: Access and security are owned by the queue and may be granted
for use by a remote queue manager (when connected to a network), allowing these
other queue managers to send or receive messages to the queue. The following
characteristics are used in setting up queue security:
v MQE_QUEUE_CRYPTOR

v MQE_QUEUE_AUTHENTICATOR

v MQE_QUEUE_COMPRESSOR

v MQE_QUEUE_TARGETREGISTRY

v MQE_QUEUE_ATTRULE

For more detailed information on setting up queue based security see Chapter 8,
“Security” on page 113.

Other queue characteristics: You can configure queues with many other
characteristics such as the maximum number of messages that are permitted on the
queue. For a description of these, see the MQeQueueAdminMsg section of the
WebSphere MQ Everyplace Java Programming Reference.

Aliases: Queue names can have aliases similar to those described for connections
in “Aliases” on page 68. The code fragment in the connections section alias
example shows how to setup aliases on a connection, setting up aliases on a queue
is the same except that an MQeQueueAdminMsg is used instead of an
MQeConnectionAdminMsg.

Action restrictions: Certain administrative actions can only be performed when
the queue is in a predefined state, as follows:

Action_Update

v If the queue is in use, characteristics of the queue cannot be changed

administration of queues

70 WebSphere MQ Everyplace: C Bindings Programming Guide

v The security characteristics of the queue cannot be changed if there are
messages on the queue

v The queue message store cannot be changed once it has been set

Action_Delete
The queue cannot be deleted if the queue is in use or if there are messages
on the queue

If the request requires that the queue is not in use, or that it has zero messages, the
administration request can be retried, either when the queue manager restarts or at
regular time intervals. See “The basic administration request message” on page 56
for details on setting up an administration request retry.

Remote queue
Remote queues are implemented by the MQeRemoteQueue class and are managed
with the MQeRemoteQueueAdminMsg class which is a subclass of
MQeAdminMsg.

The name of a queue is formed from the target queue manager name (for a remote
queue this is the name of the queue manager where the queue is local) and the
real name of the queue on that queue manager. Two fields in the administration
message are used to uniquely identify the queue, these are the ascii fields
MQE_ADMIN_NAME and MQE_QUEUE_QMGRNAME. You can use the setName(
queueManagerName, queueName) function to set these two fields in the
administration message. For a remote queue definition, the queue manager name
of the queue never matches the name of the queue manager where the definition
resides.

The remote definition of the queue should, in most cases, match that of the real
queue. If this is not the case different results may be seen when interacting with
the queue. For instance:
v For asynchronous queues if max message size on the remote definition is greater

than that on the real queue, the message is accepted for storage on the remote
queue but may be rejected when moved to the real queue. The message is not
lost, it remains on the remote queue but cannot be delivered.

v If the security characteristics for a synchronous queue do not match, WebSphere
MQ Everyplace negotiates with the real queue to decide what security
characteristics should be used. In some cases the message put is successful, in
others an attribute mismatch exception is returned.

Setting the operation mode: To set a queue for synchronous operation, set the
MQE_QUEUE_MODE field to MQE_QUEUE_SYNCHRONOUS.

Asynchronous queues require a message store to temporarily store messages.
Definition of this message store is the same as for local queues (see “Message
Store” on page 69).

To set a queue for asynchronous operation, set the MQE_QUEUE_MODE field to
MQE_QUEUE_ASYNCHRONOUS.

Figure 19 on page 72 shows an example of a remote queue set up for synchronous
operation and a remote queue setup for asynchronous operation.

administration of queues

Chapter 6. Administering messaging resources 71

v In both the synchronous and asynchronous examples queue manager qm2 has a
local queue invQ

v In the synchronous example, queue manager qm1 has a remote queue definition
of queue invQ. invQ resides on queue manager qm2. The mode of operation is set
to synchronous.
An application using queue manager qm1 and putting messages to queue
qm2.invQ establishes a network connection to queue manager qm2 (if it does not
already exist) and the message is immediately put on the real queue. If the
network connection cannot be established then the application receives an
exception that it must handle.

v In the asynchronous example, queue manager qm1 has a remote queue definition
of queue invQ. invQ resides on queue manager qm2. The mode of operation is set
to asynchronous.
An application using queue manager qm1 and putting messages to queue
qm2.invQ stores messages temporarily on the remote queue on qm1. When the
transmission rules allow, the message is moved to the real queue on queue
manager qm2. The message remains on the remote queue until the transmission
is successful.

Creating a remote queue: To create a remote queue:
1. Create a new MQeRemoteQueueAdminMsg

qm1

qm2

RemoteQ
invQ on qm2

mode:asynchronous

qm1

Remote
synchronous

Remote
asynchronous

RemoteQ
invQ on qm2

mode:synchronous

getMessage(qm2, invQ, ..)

qm2

Queue
invQ

on qm2

Queue
invQ

on qm2

getMessage(qm2, invQ, ..)

putMessage(qm2, invQ, msg,...) putMessage(qm2, invQ, msg, ...)

Figure 19. Remote queue

administration of queues

72 WebSphere MQ Everyplace: C Bindings Programming Guide

2. Prime this administration message
3. Set the queue and queue manager names
4. Create an MQeFields object to hold the characteristics (Typically, description,

queue mode, and queue store)
5. Call the create function
6. Put the message to administration queue

For synchronous operation, the queue characteristics for inclusion in the remote
queue definition can be obtained using queue discovery which is explained on page
46.

Store-and-forward queue
This type of queue is normally defined on a server and can be configured in the
following ways:
v Forward messages either to the target queue manager, or to another queue

manager between the sending and the target queue managers. In this case the
store-and-forward queue pushes messages either to the next hop or to the target
queue manager

v Hold messages until the target queue manager can collect the messages from the
store-and-forward queue. This can be accomplished using a home-server queue
(see “Home-server queue” on page 75). Using this approach messages are pulled
from the store-and-forward queue.

Store-and-forward queues are implemented by the MQeStoreAndForwardQueue
class. They are managed with the MQeStoreAndForwardQueueAdminMsg class,
which is a subclass of MQeRemoteQueueAdminMsg. The main addition in the
subclass is the ability to add and remove the names of queue managers for which
the store-and-forward queue can hold messages. You can add and delete queue
manager names with the MQE_ACTION_ADD_QMGR and
MQE_ACTION_REMOVE_QMGR actions. You can add or remove multiple
queue manager names with one administration message. You can put the names
directly into the message by setting the ascii array field MQE_QUEUE_QMGRNAMELIST.
Alternatively you can use the addQueueManager() and removeQueueManager()
functions. Each of these functions takes one queue manager name but you can call
the function repeatedly to add multiple queue managers to a message.

To add a queue manager:
1. Create a new MQeStoreAndForwardQueueAdminMsg object
2. Prime the administration message
3. Set queue and queue manager names
4. Call the mqeStoreAndForwardQueueAdminMsg_addQueueManager function

administration of queues

Chapter 6. Administering messaging resources 73

Each store-and-forward queue has to be configured to handle messages for any
queue managers for which it can hold messages. Use the
MQE_ACTION_ADD_QMGR action, described earlier in this section, to add the
queue manager information to each queue.

If you want the store-and-forward queue to push messages to the next queue
manager, the queue manager name attribute of the store-and-forward queue must
be the name of the next queue manager. A connection with the same name as the
next queue manager must also be configured. The store-and-forward queue uses
this connection as the transport mechanism for pushing messages to the next hop.

If you want the store-and-forward queue to wait for messages to be collected
(pulled), the queue manager name attribute of the store-and-forward queue has no
meaning (but it must still be configured). The only restriction on the queue
manager attribute of the queue name is that there must not be a connection with
the same name. If there is such a connection, the queue tries use the connection to
forward messages.

Figure 20 shows an example of two store and forward queues on different queue
managers, one setup to push messages to the next queue manager, the other setup
to wait for messages to be collected:
v Queue manager qm2 has a connection configured to queue manager qm3

Connection to
qmb via qm2

Connection to
qma via qm2

Connection
to qm3

qma qmb qmc

Gateway Gateway

:
MQeStoreAndForwardQueue

SFQ on qm3
holds messages for
qma, qmb and qmc

qm2

:
MQeStoreAndForwardQueue

SFQ on qm3
holds messages for
qma, qmb and qmc

qm3

qm1

MQeRemoteQueue
invQ on qma

mode:asynchronous

putMessage(qma, invQ, msg, …)

Figure 20. Store-and-forward queue

administration of queues

74 WebSphere MQ Everyplace: C Bindings Programming Guide

v Queue manager qm2 has a store-and-forward queue configuration that pushes
messages using connection qm3, to queue manager qm3. Note that the queue
manager name portion of the store-and-forward queue is qm3 which matches the
connection name. Store-and-forward queue qm3.SFQ on qm2 temporarily holds
messages on behalf of qma, qmb and qmc, (but not qm3).

v Queue manager qm3 has a store-and-forward queue qm3.SFQ. The queue manager
name portion of the queue name qm3 does not have a corresponding connection
called qm3, so all messages are stored on the queue until they are collected.

v Store-and-forward queue qm3.SFQ on qm3 holds messages on behalf of queue
managers qma, qmb and qmc. Messages are stored until they are collected or they
expire.

If a queue manager wants to send a message to another queue manager using a
store-and-forward queue on an intermediate queue manager, the initiating queue
manager must have:
v A connection configured to the intermediate queue manager
v A connection configured to the target queue manager routed through the

intermediate queue manager
v A remote queue definition for the target queue

When these conditions are fulfilled, an application can put a message to the target
queue on the target queue manager without having any knowledge of the layout
of the queue manager network. This means that changes to the underlying queue
manager network do not affect application programs.

In Figure 20 on page 74 queue manager qm1 has been configured to allow messages
to be put to queue invQ on queue manager qma. The configuration consists of:
v A connection to the intermediate queue manager qm2

v A connection to the target queue manager qma

v A remote asynchronous queue invQ on qma

If an application program uses queue manager qm1 to put a message to queue invQ
on queue manager qma the message flows as follows:
1. The application puts the message to asynchronous queue qma.invQ. The

message is stored locally on qm1 until transmission rules allow the message to
be moved to the next hop

2. When transmission rules allow, the message is moved. Based on the connection
definition for qma, the message is routed to queue manager qm2

3. The only queue configured to handle messages for queue invQ on queue
manager qma is store-and-forward queue qm3.SFQ on qm2. The message is
temporarily stored in this queue

4. The stored and forward queue has a connection that allows it to push messages
to its next hop which is queue manager qm3

5. Queue manager qm3 has a store-and-forward queue qm3.SFQ that can hold
messages destined for queue manager qma so the message is stored on that
queue

6. Messages for qma remain on the store-and-forward queue until they are
collected by queue manager qma. See “Home-server queue” for how to set this
up.

Home-server queue
Home-server queues are implemented by the MQeHomeServerQueue class. They
are managed with the MQeHomeServerQueueAdminMsg class which is a subclass

administration of queues

Chapter 6. Administering messaging resources 75

of MQeRemoteQueueAdminMsg. The only addition in the subclass is the
MQE_QUEUE_QTIMERINTERVAL characteristic. This field is of type int and is set to a
millisecond timer interval. If you set this field to a value greater than zero, the
home-server queue checks the home server every n milliseconds to see if there are
any messages waiting for collection. Any messages that are waiting are delivered
to the target queue. A value of 0 for this field means that the home-server is only
polled when the mqeQueueManager_triggerTransmission function is called

Note: If a home-server queue fails to connect to its store-and-forward queue (for
instance if the store-and-forward queue is unavailable when the home server
queue starts) it will stop trying until a trigger transmit call is made.

The name of the home-server queue is set as follows:
v The queue name must match the name of the store-and-forward queue
v The queue manager attribute of the queue name must be the name of the

home-server queue manager

Connection to
qm3 via qm2

Connection to
qm2

push pull

Homeserver queue
manager for qm3

msg = getMessage(qm3, invQ, ...)

qm3

MQeQueue
invQ on qm3

MQeHomeServerQueue
SFQ on qm2

qm1

MQeRemoteQueue
invQ on qm3

mode:asynchronous

putMessage(qm3, invQ, msg, ...)

qm2

MQeStoreAndForwardQueue
SFQ on qm2

hold messages for: qm3

Figure 21. Home-server queue

administration of queues

76 WebSphere MQ Everyplace: C Bindings Programming Guide

The queue manager where the home-server queue resides must have a connection
configured to the home-server queue manager.

Figure 21 on page 76 shows an example of a queue manager qm3 that has a
home-server queue SFQ configured to collect messages from its home-server queue
manager qm2.

The configuration consists of:
v A home server queue manager qm2

v A store and forward queue SFQ on queue manager qm2 that holds messages for
queue manager qm3

v A queue manager qm3 that normally runs disconnected and cannot accept
connections from queue manager qm2

v Queue manager qm3 has a connection configured to qm2

v A home server queue SFQ that uses queue manager qm2 as its home server

Any messages that are directed to queue manager qm3 through qm2 are stored on
the store-and-forward queue SFQ on qm2 until the home-server queue on qm3
collects them.

WebSphere MQ-bridge queue
A WebSphere MQ-bridge queue is a remote queue definition that refers to a queue
residing on a WebSphere MQ queue manager. The queue holding the messages
resides on the WebSphere MQ queue manager, not on the local queue manager.

v The MQSaturnQM WebSphere MQ queue manager has a local queue MQSaturnQ
defined .

v The MQeEarthQM must have an WebSphere MQ-bridge queue defined called
MQSaturnQ on the MQSaturnQM queue manager.

v Applications attached to the MQeEarthQM queue manager put messages to the
MQSaturnQ WebSphere MQ-bridge queue, and the bridge queue delivers the
message to the MQSaturnQ on the MQSaturnQM queue manager.

The definition of the bridge queue requires that bridge, WebSphere MQ queue
manager proxy, and client connection names are specified to uniquely identify a
client connection object in the bridge object hierarchy (see Figure 23 on page 82).
This information identifies how the WebSphere MQ-bridge accesses the WebSphere
MQ queue manager, to manipulate a WebSphere MQ queue.

The WebSphere MQ-bridge queue provides the facility to put to a queue on a
queue manager that is not directly connected to the WebSphere MQ-bridge. This

MQeEarthQM

MQSeries
Everyplace
application

MQSeries-bridge
queue

MQSeries Everyplace
queue manager
Windows 2000

I/P address 20.8.9.50

MQSaturnQM

MQSeries
queue manager

Windows NT
I/P address 20.8.9.51

MQSeries
local queue

Figure 22. WebSphere MQ-bridge queue

administration of queues

Chapter 6. Administering messaging resources 77

allows a message to be sent to a WebSphere MQ queue manager (the target) routed
through another WebSphere MQ queue manager. The WebSphere MQ-bridge
queue takes the name of the target queue manager and the intermediate queue
manager is named by the WebSphere MQ queue manager proxy.

For a complete list of the characteristics used by the WebSphere MQ-bridge queue,
see the WebSphere MQ-bridge section of the WebSphere MQ Everyplace C
Programming Reference..

Table 10 details the list of operations supported by the WebSphere MQ-bridge
queue, once it has been configured:

Table 10. Message operations supported by WebSphere MQ—bridge queue

Type of operation Supported by WebSphere MQ-bridge queue

getMessage() yes*

putMessage() yes

browseMessage() Yes*

browseAndLockMessage no

Note: * These functions have restrictions on their use. See “Getting and browsing messages
from the WebSphere MQ-bridge queue” on page 108

If an application attempts to use one of the unsupported operations, an
MQeException of Except_NotSupported is returned.

When an application puts a message to the bridge queue, the bridge queue takes a
logical connection to the WebSphere MQ queue manager from the pool of
connections maintained by the bridge’s client connection object. The logical
connection to WebSphere MQ is supplied by either the WebSphere MQ Java
Bindings classes, or the WebSphere MQ Classes for Java. The choice of classes
depends on the value of the hostname field in the WebSphere MQ queue manager
proxy settings. Once the WebSphere MQ-bridge queue has a connection to the
WebSphere MQ queue manager, it attempts to put the message to the WebSphere
MQ queue.

An WebSphere MQ-bridge queue must always have an access mode of
synchronous and cannot be configured as an asynchronous queue. This means that,
if your put operation is directly manipulating an WebSphere MQ-bridge queue and
returns success, your message has passed to the WebSphere MQ system while your
process was waiting for the put operation to complete.

If you do not wish to use synchronous operations against the WebSphere
MQ-bridge queue, you may set up an asynchronous remote queue definition (see
“Asynchronous messaging” on page 45) that refers to the WebSphere MQ-bridge
queue. Alternatively you can set up a store-and-forward queue, and home-server
queue. These two alternative configurations provide the application with an
asynchronous queue to which it can put messages. With these configurations,
when your putMessage() function returns, the message may not necessarily have
passed to the WebSphere MQ queue manager.

An example of WebSphere MQ-bridge queue usage is described in “Configuration
example” on page 85.

administration of queues

78 WebSphere MQ Everyplace: C Bindings Programming Guide

Administration queue
The administration queue is implemented in class MQeAdminQueue and is a
subclass of MQeQueue so it has the same features as a local queue. It is managed
using administration class MQeAdminQueueAdminMsg.

If a message fails because the resource to be administered is in use, it is possible to
request that the message be retried. “The basic administration request message” on
page 56 provides details on setting up the maximum number attempts count. If the
message fails due to the managed resource not being available and the maximum
number of attempts has not been reached, the message is left on the queue for
processing at a later date. If the maximum number of attempts has been reached,
the request fails with an MQeException. By default the message is retried the next
time the queue manager is started. Alternatively a timer can be set on the queue
that processes messages on the queue at specified intervals. The timer interval is
specified by setting the long field MQE_QUEUE_QTIMERINTERVAL field in the
administration message. The interval value is specified in milliseconds.

Security and administration
By default, any WebSphere MQ Everyplace application can administer managed
resources. The application can be running as a local application to the queue
manager that is being managed, or it can be running on a different queue manager.
It is important that the administration actions are secure, otherwise there is
potential for the system to be misused. WebSphere MQ Everyplace provides the
basic facilities for securing administration using queue-based security which is
described in Chapter 8, “Security” on page 113.

If you use synchronous security, you can secure the administration queue by
setting security characteristics on the queue. For example you can set an
authenticator so that the user must be authenticated to the operating system
(Windows NT or UNIX) before they can perform administration actions. This can
be extended so that only a specific user can perform administration.

The administration queue does not allow applications direct access to messages on
the queue, the messages are processed internally. This means that messages put to
the queue that have been secured with message level security cannot be
unwrapped using the normal mechanism of providing an attribute on a get or
browse request.

administration of queues

Chapter 6. Administering messaging resources 79

80 WebSphere MQ Everyplace: C Bindings Programming Guide

Chapter 7. WebSphere MQ-bridge

The WebSphere MQ-bridge is a piece of software that allows an WebSphere MQ
Everyplace network to exchange messages intelligently with a WebSphere MQ
network. Because each system aims to satisfy different requirements, there are
differences in the way the two systems pass messages. The bridge resolves these
differences and enables messages to flow between the various systems.

Installation
Make sure that the following configuration is complete before trying to use an
WebSphere MQ-bridge.

WebSphere MQ Classes for Java
To use the WebSphere MQ-bridge you must have the WebSphere MQ Classes for
Java (version 5.1 or greater) installed on your WebSphere MQ Everyplace system.
WebSphere MQ Classes for Java is available for free download from the Web as
supportpac MA88. The Web address for the download is:
http://www.ibm.com/software/mqseries/txppacs/ma88.html. (The WebSphere MQ
classes for Java for NT is shipped with WebSphere MQ Version 5.1 for NT.)

These classes must be added to the classpath set in the options file - see “JVM
options” on page 10 for details on how to specify the classpath.

Configuring the WebSphere MQ-bridge
The configuration of the WebSphere MQ-bridge requires you to perform some
actions on the WebSphere MQ queue manager, and some on the WebSphere MQ
Everyplace queue manager. The bridge is logically broken into two pieces, one for
each direction of the message (WebSphere MQ Everyplace to WebSphere MQ and
WebSphere MQ to WebSphere MQ Everyplace)

The bridge objects are defined in a hierarchy as shown in Figure 23 on page 82

The following rules govern the relationship between the various objects:
v An WebSphere MQ Everyplace bridges object is associated with a single

WebSphere MQ Everyplace queue manager.
v A single WebSphere MQ Everyplace bridges object may have more than one

bridge object associated with it. You may wish to configure several WebSphere
MQ-bridge instances with different routings.

v Each bridge can have a number of WebSphere MQ queue manager proxy
definitions.

v Each WebSphere MQ queue manager proxy definition can have a number of
client connections that allow communication with WebSphere MQ Everyplace.

v Each client connection connects to a single WebSphere MQ queue manager. Each
connection may use a different server connection on the WebSphere MQ queue
manager , or a different set of security, send, and receive exits, ports or other
parameters.

v A WebSphere MQ-bridge client connection may have a number of transmission
queue listeners that use that bridge service to connect to the WebSphere MQ
queue manager.

© Copyright IBM Corp. 2000, 2002 81

v A listener uses only one client connection to establish its connection.
v Each listener connects to a single transmission queue on the WebSphere MQ

system.
v Each listener moves messages from a single WebSphere MQ transmission queue

to anywhere on the WebSphere MQ Everyplace network, (through the
WebSphere MQ Everyplace queue manager its bridge is associated with). So a
WebSphere MQ-bridge can funnel multiple WebSphere MQ message sources
through one WebSphere MQ Everyplace queue manager onto the WebSphere
MQ Everyplace network.

v When moving WebSphere MQ Everyplace messages to the WebSphere MQ
network, the WebSphere MQ Everyplace queue manager creates a number of
adapter objects. Each adapter object can connect to any WebSphere MQ queue
manager (providing it is configured) and can send its messages to any queue. So
an WebSphere MQ-bridge can dispatch WebSphere MQ Everyplace messages
routed through a single WebSphere MQ Everyplace queue manager to any
WebSphere MQ queue manager.

Naming recommendations for inter-operability with a
WebSphere MQ network

To create an WebSphere MQ Everyplace network that can interoperates with a
WebSphere MQ network, it is necessary to adopt the same limitations in naming
convention for both systems. It is therefore important to understand the differences
between valid queue names in both systems:

MQSeries
Everyplace

queue manager

MQSeries serverEveryplace

Bridges

Bridge

MQSeries
queue manager

proxy

Client
connection

Transmission
queue listenerAdapter

Only one queue manager
is allowed on each

server in version 1
MQSeries Everyplace

Only one bridges object
is allowed on each
MQSeries Everyplace server

Figure 23. Bridge object hierarchy

bridge configuration

82 WebSphere MQ Everyplace: C Bindings Programming Guide

v In WebSphere MQ, the forward-slash ’/’ character is allowed in queue and
queue manager names. This character is not valid in WebSphere MQ Everyplace
object names.
We strongly recommend that you do not use this character in the name of any
WebSphere MQ queue or queue manager.

v WebSphere MQ queue and queue manager names have a limit of 48 characters
but WebSphere MQ Everyplace names have no length restrictions.
We strongly recommend that you do not define WebSphere MQ Everyplace
queues or queue managers with names that contain more than 48 characters.

v WebSphere MQ queue names can have leading or trailing ’.’ characters. This is
not allowed in WebSphere MQ Everyplace
We strongly recommend that you do not defined any WebSphere MQ queue or
queue manager with a name that starts or ends with a ’.’ character.

v Queue managers should be named uniquely, such that a queue manager with
the same name does not exist on either the WebSphere MQ Everyplace network,
or the WebSphere MQ network.

If you choose not to follow these guidelines, then you may experience problems
when trying to address an WebSphere MQ Everyplace queue from a WebSphere
MQ application.

Configuring a basic installation
To configure a very basic installation of the WebSphere MQ-bridge you need to
complete the following steps:
1. Make sure you have a WebSphere MQ system installed and that you

understand local routing conventions, and how to configure the system.
2. Install WebSphere MQ Everyplace on a system (It can be the same system as

your WebSphere MQ system is located on if you wish)
3. If WebSphere MQ Classes for Java is not already installed, download it from

the Web and install it. (See “WebSphere MQ Classes for Java” on page 81.)
4. Set up your WebSphere MQ Everyplace system and verify that it is working

properly before you try to connect it to WebSphere MQ.
5. Make sure that the supportpac MA88 .jar files are in the classpath. This is set

by the MQE_VM_OPTIONS_LOCN which should be set to point to the vm_options.txt
file during installation. See “Installation” on page 9.

6. Plan the routing you intend to implement. You need to decide which
WebSphere MQ queue managers are going to talk to which WebSphere MQ
Everyplace queue managers.

7. Decide on a naming convention for WebSphere MQ Everyplace objects and
WebSphere MQ objects and document it for future use.

8. Modify your WebSphere MQ Everyplace system to define a WebSphere
MQ-bridge on your chosen WebSphere MQ Everyplace server.

9. Connect the chosen WebSphere MQ queue manager to the bridge on the
WebSphere MQ Everyplace server as follows:
v On the WebSphere MQ queue manager:

Define one or more Java server connections so that WebSphere MQ
Everyplace can use the WebSphere MQ Classes for Java to talk to this
queue manager. This involves the following steps:
a. Define the server connections

bridge configuration

Chapter 7. WebSphere MQ-bridge 83

b. Define a sync queue for WebSphere MQ Everyplace to use to provide
assured delivery to the WebSphere MQ system. You need one of these
for each server connection that the WebSphere MQ Everyplace system
can use.

v On the WebSphere MQ Everyplace server:
a. Define a WebSphere MQ queue manager proxy object which holds

information about the WebSphere MQ queue manager. This involves the
following steps:
1) Collect the Hostname of the WebSphere MQ queue manager.
2) Put the name in the WebSphere MQ queue manager proxy object.

b. Define a Client Connection object that holds information about how to
use the WebSphere MQ Classes for Java to connect to the server
connection on the WebSphere MQ system. This involves the following
steps:
1) Collect the Port number, and all other server connection parameters.
2) Use these values to define the client connection object so that they

match the definition on the WebSphere MQ queue manager.
10. Modify your configuration on both WebSphere MQ Everyplace and

WebSphere MQ to allow messages to pass from WebSphere MQ to WebSphere
MQ Everyplace.
a. Decide on the number of routes from WebSphere MQ to your WebSphere

MQ Everyplace network. The number of routes you need depends on the
amount of message traffic (load) you will be using across each route. If
your message load is high you may wish to split your traffic into multiple
routes.

b. Define your routes as follows:
1) For each route define a transmission queue on your WebSphere MQ

system. DO NOT define a connection for these transmission queues.
2) For each route create a matching transmission queue listener on your

WebSphere MQ Everyplace system.
3) Define a number of remote queue definitions, (such as remote queue

manager aliases and queue aliases) to allow WebSphere MQ messages
to be routed onto the various WebSphere MQ Everyplace-bound
transmission queues that you defined in step 10b1.

11. Modify your configuration on WebSphere MQ Everyplace to allow messages
to pass from WebSphere MQ Everyplace to WebSphere MQ:
a. Publish details about all the queue managers on your WebSphere MQ

network you want to send messages to from the WebSphere MQ
Everyplace network. Each WebSphere MQ queue manager requires a
connections definition on your WebSphere MQ Everyplace server. All fields
except the Queue manager name should be null, to indicate that the
normal WebSphere MQ Everyplace communications connections should
not be used to talk to this queue manager.

b. Publish details about all the queues on your WebSphere MQ network you
want to send messages to from the WebSphere MQ Everyplace network.
Each WebSphere MQ queue requires a WebSphere MQ-bridge queue
definition on your WebSphere MQ Everyplace server. (This is the
WebSphere MQ Everyplace equivalent of a DEFINE QREMOTE in WebSphere
MQ).
v The queue name is the name of the WebSphere MQ queue to which the

bridge should send any messages arriving on this WebSphere
MQ-bridge queue.

bridge configuration

84 WebSphere MQ Everyplace: C Bindings Programming Guide

v The queue manager name is the name of the WebSphere MQ queue
manager on which the queue is located.

v The bridge name indicates which bridge should be used to send
messages to the WebSphere MQ network.

v The WebSphere MQ queue manager proxy name is the name of the
WebSphere MQ queue manager proxy object, in the WebSphere MQ
Everyplace configuration, that can connect to a WebSphere MQ queue
manager.

v The WebSphere MQ queue manager should have a route defined to
allow messages to be posted to the Queue Name on Queue Manager Name
to deliver the message to its final destination.

12. Start your WebSphere MQ and WebSphere MQ Everyplace systems to allow
messages to flow. The WebSphere MQ system client channel listener must be
started. All the objects you have defined on the WebSphere MQ Everyplace
must be started. The simplest way to start objects manually, is to send a start
command to the relevant bridge object. This command should indicate that all
the children of the bridge, and children’s children should be started as well.
v To allow messages to pass from WebSphere MQ Everyplace to WebSphere

MQ, start the client connection objects in WebSphere MQ Everyplace.
v To allow messages to pass from WebSphere MQ to WebSphere MQ

Everyplace, start both the client connection objects, and the relevant
transmission queue listeners.

13. Create transformer classes, and modify your WebSphere MQ Everyplace
configuration to use them. A transformer class converts messages from
WebSphere MQ message formats into an WebSphere MQ Everyplace message
format, and vice-versa. These format-converters must be written in Java and
configured in several places in the WebSphere MQ-bridge configuration.
a. Create transformer classes

v Determine the message formats of the WebSphere MQ messages that
need to pass over the bridge.

v Write a transformer class, or a set of transformer classes to convert each
WebSphere MQ message format into an WebSphere MQ Everyplace
message. Transformers are not directly supported by the C Bindings.
SeeWebSphere MQ Everyplace Application Programming Guide for
information about writing transformers in Java.

b. You can replace the default transformer class. Use the administration GUI
to update the default transformer class parameter in the bridge object’s
configuration.

c. You can specify a non-default transformer for each WebSphere MQ-bridge
queue definition. Use the administration GUI to update the transformer
field of each WebSphere MQ-bridge queue in the configuration.

d. You can specify a non-default transformer for each WebSphere MQ
transmission queue listener. Use the administration GUI to update the
transformer field of each listener in the configuration.

e. Restart the bridge, and listeners.

Configuration example
This section describes an example configuration of 4 systems.

bridge configuration

Chapter 7. WebSphere MQ-bridge 85

The four systems are:

MQeMoonQM
This is an WebSphere MQ Everyplace client queue manager, sited on a
handheld PC. The user periodically attaches the handheld PC to the
network, to communicate with the MQeEarthQM WebSphere MQ
Everyplace gateway.

MQeEarthQM
This is on a Windows/2000 machine, with an I/P address of 20.8.9.50 This
is an WebSphere MQ Everyplace gateway (server) queue manager.

MQSaturnQM
This is a WebSphere MQ queue manager, installed on a Windows/NT
platform. The I/P address is 20.8.9.51

MQJupiterQM
This is a WebSphere MQ queue manager, installed on a System/390
platform.

Requirement
The requirement for this example is that all machines are able to post a message to
a queue on any of the other machines.

It is assumed that all machines are permanently connected to the network, except
the MQeMoonQM machine, which is only occasionally connected.

Initial setup
For this example, it is assumed that there are local queues, to which messages can
be put, on all the queue managers. These queues are called:
v MQeMoonQ on the MQeMoonQM

v MQeEarthQ on the MQeEarthQM

MQJupiterQM

MQeMoonQM

Hand held PC

MQSaturnQM

MQSeries server
I/P address 20.8.9.51

System 390

MQSeries Everyplace server
I/P address 20.8.9.50

MQeEarthQM

MQSeries-bridge
queue

Figure 24. Configuration example

bridge configuration

86 WebSphere MQ Everyplace: C Bindings Programming Guide

v MQSaturnQ on the MQSaturnQM

v MQJupiterQ on the MQJupiterQM

Enabling MQeMoonQM to put and get messages to and from the
MQeEarthQM queue manager
On MQeMoonQM:

1. Define a connection with the following parameters:

Target queue manager name: MQeEarthQM
Adapter: FastNetwork:20.8.9.50

Note: Check that the adapter you specify when you define the
connection matches the adapter used by the Listener on the
MQeEarthQM queue manager.

Applications can now connect directly to any queue defined on the
MQeEarthQM queue manager directly, when the MQeMoonQM is connected to
the network. The requirement states that applications on MQeMoonQM
must be able to send messages to MQeEarthQ in an asynchronous
manner. This requires a remote queue definition to set up the
asynchronous linkage to the MQeEarthQ queue.

2. Define a remote queue with the following parameters:

Queue name: MQeEarthQ
Queue manager name: MQeEarthQM
Access mode: Asynchronous

Applications on MQeMoonQM now have access to the MQeMoonQ (a local
queue) in a synchronous manner, and the MQeEarthQ in an
asynchronous manner.

Enabling the MQeEarthQM to send messages to the
MQeMoonQM queue manager
Since the MQeMoonQM is not attached to the network for most of the time, use a
store-and-forward queue on the MQeEarthQM to collect messages destined for the
MQeMoonQM queue manager.

On MQeEarthQM:

1. Define a store-and-forward-queue with the following parameters:

Queue name: TO.HANDHELDS
Queue Manager Name: MQeEarthQM

2. Add a queue manager to the store-and-forward queue using the
following parameters:

Queue Name: TO.HANDHELDS
Queue manager: MQeMoonQM

A (similarly named) home-server queue is needed on the MQeMoonQM queue
manager. This queue pulls messages out of the store-and-forward queue and puts
them to a queue on the MQeMoonQM queue manager.

On MQeMoonQM:

1. Define a home-server queue with the following parameters:

bridge configuration

Chapter 7. WebSphere MQ-bridge 87

Queue Name: TO.HANDHELDS
Queue manager name: MQeEarthQM

Any messages arriving at MQeEarthQM that are destined for MQeMoonQM are stored
temporarily in the store-and-forward queue TO.HANDHELDS. When MQeMoonQM next
connects to the network, it’s home-server queue TO.HANDHELDS gets any messages
currently on the store-and-forward queue, and delivers them to the MQeMoonQM
queue manager, for storage on local queues.

Applications on MQeEarthQM can now send messages to MQeMoonQ in an
asynchronous manner.

Enabling MQeEarthQM to send a message to MQSaturnQ
On MQeEarthQM:

1. Define a bridge with the following parameters:

Bridge name: MQeEarthQMBridge

2. Define an WebSphere MQ queue manager proxy with the following
parameters:

Bridge Name: MQeEarthQMBridge
MQ QMgr Proxy Name: MQSaturnQM
Hostname: 20.8.9.51

3. Define a client connection with the following parameters:

Bridge Name: MQeEarthQMBridge
MQ QMgr Proxy Name: MQSaturnQM
ClientConnectionName: MQeEarth.CHANNEL
SyncQName: MQeEarth.SYNC.QUEUE

4. Define a connection with the following parameters:

ConnectionName: MQSaturnQM
Channel: null
Adapter: null

5. Define an WebSphere MQ-bridge queue with the following
parameters:

Queue Name: MQSaturnQ
MQ Queue manager name: MQSaturnQM
Bridge name: MQeEarthQMBridge
MQ QMgr Proxy Name: MQSaturnQM
ClientConnectionName: MQeEarth.CHANNEL

On MQSaturnQM:

1. Define a server connection channel with the following parameters:

Name: MQeEarth.CHANNEL

2. Define a local sync queue with the following parameters:

Name: MQeEarth.SYNC.QUEUE

The sync queue is needed for assured delivery.

bridge configuration

88 WebSphere MQ Everyplace: C Bindings Programming Guide

Applications on MQeEarthQM can now send messages to the MQSaturnQ on
MQSaturnQM.

Enabling MQeEarthQM to send a message to MQJupiterQ
On MQeEarthQM:

1. Define a connection with the following parameters:

ConnectionName: MQeJupiterQM
Channel: null
Adapter: null

2. Define an WebSphere MQ-bridge queue with the following
parameters:

Queue Name: MQJupiterQ
MQ Queue manager name: MQJupiterQM
Bridge name: MQeEarthQMBridge
MQ QMgr Proxy Name: MQSaturnQM
ClientConnectionName: MQeEarth.CHANNEL

On MQSaturnQM:

1. Define a remote queue definition with the following parameters:

Queue Name: MQJupiterQ
Transmission Queue: MQJupiterQM.XMITQ

On both MQSaturnQM and MQJupiterQM:

1. Define a channel to move the message from the MQJupiterQM.XMITQ on
MQSaturnQM to MQJupiterQM.

Now applications on MQeEarthQM can send a message to MQJupiterQ on
MQJupiterQM, through MQSaturnQM.

Enabling MQeMoonQM to send a message to MQJupiterQ and
MQSaturnQ
On MQeMoonQM:

1. Define a connection with the following parameters:

Target Queue manager name: MQSaturnQM
Adapter: MQeEarthQM

The connection indicates that any message bound for the MQSaturnQM queue
manager should go through the MQeEarthQM queue manager.
2. Define a remote queue definition with the following parameters:

Queue name: MQSaturnQ
Queue manager name: MQSaturnQM
Access mode: Asynchronous

3. Define a connection with the following parameters:

Target Queue manager name: MQJupiterQM
Adapter: MQeEarthQM

4. Define a remote queue definition with the following parameters:

bridge configuration

Chapter 7. WebSphere MQ-bridge 89

Queue name: MQJupiterQ
Queue manager name: MQJupiterQM
Access mode: Asynchronous

Applications connected to MQeMoonQM can now issue messages to MQeMoonQ,
MQeEarthQ, MQSaturnQ, and MQJupiterQ, even when the handheld PC is
disconnected from the network.

Enabling MQSaturnQM to send messages to the MQeEarthQ
On MQSaturnQM:

1. Define a local queue with the following parameters:

Queue name: MQeEarth.XMITQ
Queue type: transmission queue

2. Define a queue manager alias (remote queue definition) with the
following parameters:

Queue name: MQeEarthQM
Remote queue manager name: MQeEarthQM
Transmission queue: MQeEarth.XMITQ

On MQeEarthQM:

1. Define a Transmission queue listener with the following parameters:

Bridge name: MQeEarthQMBridge
MQ QMgr Proxy Name: MQSaturnQM
ClientConnectionName: MQeEarth.CHANNEL
Listener Name: MQeEarth.XMITQ

Applications on MQSaturnQM can now send messages to MQeEarthQ using the
MQeEarthQM queue manager alias . This routes each message onto the
MQeEarth.XMITQ, where the WebSphere MQ Everyplace transmission queue listener
MQeEarth.XMITQ gets them, and moves them onto the WebSphere MQ Everyplace
network.

Enabling MQSaturnQM to send messages to the MQeMoonQ
On MQSaturnQM:

1. Define a queue manager alias (remote queue definition) with the
following parameters:

Queue name: MQeMoonQM
Remote queue manager name: MQeMoonQM
Transmission queue: MQeEarth.XMITQ

Applications on MQSaturnQM can now send messages to MQeMoonQ using the
MQeMoonQM queue manager alias . This routes each message to the MQeEarth.XMITQ,
where the WebSphere MQ Everyplace transmission queue listener MQeEarth.XMITQ
gets them, and posts them onto the WebSphere MQ Everyplace network.

The store-and-forward queue TO.HANDHELDS collects the message, and when the
MQeMoonQM next connects to the network, the home-server queue retrieves the
message from the store-and-forward queue, and delivers the message to the
MQeMoonQ.

bridge configuration

90 WebSphere MQ Everyplace: C Bindings Programming Guide

Enabling the MQJupiterQM to send messages to the MQeMoonQ
On MQJupiterQM:

Set up remote queue manager aliases for the MQeEarthQM and MQeMoonQM to
route messages to MQSaturnQM using normal WebSphere MQ routing
techniques.

Now any application connected to any of the queue managers can post a message
to any of the queues MQeMoonQ, MQeEarthQ, MQSaturnQ or MQJupiterQ.

Administration of the WebSphere MQ-bridge
This section contains information on the tasks associated with the administration of
the WebSphere MQ-bridge

WebSphere MQ-bridge administration actions

Run state
Each administered object has a run state. This can be ’running’ or ’stopped’
indicating whether the administered object is active or not.

When an administered object is ’stopped’, it cannot be used, but its configuration
parameters can be queried or updated.

If the WebSphere MQ-bridge queue references a bridge administered object that is
’stopped’, it is unable to convey an WebSphere MQ Everyplace message onto the
WebSphere MQ network until the bridge, WebSphere MQ queue manager proxy,
and client connection objects are all ’started’.

The run state of administered objects can be changed using the start and stop
actions from the MQeMQBridgeAdminMsg, MQeMQQMgrProxyAdminMsg,
MQeClientConnectionAdminMsg or MQeListenerAdminMsg administration
message classes.

The actions supported by the WebSphere MQ-bridge administration objects are
described in the following sections.

Start action
An administrator can send a start action to any of the administered objects.

The affect children boolean flag affects the results of this action. The start action
starts the administered object and all its children (and children’s children) if the
affect children boolean field is in the message and is set to true. If the flag is not
in the message or is set to false, only the administered object receiving the start
action changes its run-state. For example, sending start to a bridge object with
affect children as true causes all proxy, client connection, and listeners that are
ancestors, to start. If affect children is not specified, only the bridge is started.
An object cannot be started unless its parent object has already been started.
Sending a start event to an administered object attempts to start all the objects
higher in the hierarchy that are not already running.

Stop action
An administered object can be stopped by sending it a stop action. The receiving
administered object always makes sure all the objects below it in the hierarchy are
stopped before it is stopped itself.

bridge configuration

Chapter 7. WebSphere MQ-bridge 91

Inquire action
The inquire action queries values from an administered object.

If the administered object is running, the values returned on the inquire are those
that are currently in use. The values returned from a stopped object reflect any
recent changes to values made by an update action. Thus, a sequence of start,
update, inquire, returns the values configured before the update, while start,
update, stop, inquire, returns the values configured after the update.

You may find it less confusing if you stop any administered object before updating
variable values.

Update action
The update action changes one or more values for characteristics for an
administered object. The values set by an update action do not become current
until the administered object is next stopped. (See “Inquire action”.)

Delete action
The delete action permanently removes all current and persistent information
about the administered object. The affect children boolean flag affects the
outcome of this action. If the affect children flag is present and set to true the
administered object receiving this action issues a stop action, and then a delete
action to all the objects below it in the hierarchy, removing a whole piece of the
hierarchy with one action. If the flag is not present, or it is set to false, the
administered object deletes only itself, but this action cannot take place unless all
the objects in the hierarchy below the current one have already been deleted.

Create action
The create action creates an administered object. The run state of the administered
object created is initially set to stopped.

WebSphere MQ-bridge considerations when shutting down a
WebSphere MQ queue manager

We recommend that before you stop a WebSphere MQ queue manager, you issue a
stop administration message to all the WebSphere MQ queue-manager-proxy
bridge objects. This stops the WebSphere MQ Everyplace network from trying to
use the WebSphere MQ queue manager and possibly interfering with the
shutdown of the WebSphere MQ queue manager. (This can also be achieved by
issuing a single stop administration message to the MQebridges object.)

If you choose not to stop the WebSphere MQ queue-manager-proxy bridge object
before you shut the WebSphere MQ queue manager, the behavior of the
WebSphere MQ shutdown and the WebSphere MQ-bridge depends on the type of
WebSphere MQ queue manager shutdown you choose, immediate shutdown or
controlled shutdown.

Immediate shutdown
Stopping a WebSphere MQ queue manager using immediate shutdown severs any
connections that the WebSphere MQ-bridge has to the WebSphere MQ queue
manager (this applies to connections formed using the MQSeries Classes for Java
in either the bindings or client mode). The WebSphere MQ system shuts down as
normal.

This causes all the WebSphere MQ-bridge transmission queue listeners to stop
immediately, each one warning that it has shut down due to the WebSphere MQ
queue manager stop.

bridge administration

92 WebSphere MQ Everyplace: C Bindings Programming Guide

Any WebSphere MQ-bridge queues that are active retain a (broken) connection to
the WebSphere MQ queue manager until:
v The connection times-out, after being idle for an idle time-out period (as

specified on the client-connection bridge object), at which point the broken
connection is closed.

v The WebSphere MQ-bridge queue is told to perform some action, such as put a
message to WebSphere MQ, that attempts to use the broken connection. The
putMessage operation fails and the broken connection is closed.

When an WebSphere MQ-bridge queue has no connection, the next operation on
that queue causes a new connection to be obtained. If the WebSphere MQ queue
manager is not available, the operation on the queue fails synchronously. If the
WebSphere MQ queue manager has been restarted after the shutdown, and a
queue operation, such as putMessage, acts on the bridge queue, then a new
connection to the active WebSphere MQ queue manager is established, and the
operation executes as expected.

Controlled shutdown
Stopping a WebSphere MQ queue manager using the controlled shutdown does
not sever any connections immediately, but waits until all connections are closed
(this applies to connections formed using the MQSeries Classes for Java in either
the bindings or client mode). Any active WebSphere MQ-bridge transmission
queue listeners notice that the WebSphere MQ system is quiescing, and stop with a
relevant warning.

Any WebSphere MQ-bridge queues that are active retain a connection to the
WebSphere MQ queue manager until:
v The connection times-out, after being idle for an idle time-out period (as

specified on the client connection bridge object), at which point the broken
connection is closed, and the controlled shutdown of the WebSphere MQ queue
manager completes.

v The WebSphere MQ-bridge queue is told to perform some action, such as put a
message to WebSphere MQ, that attempts to use the (broken) connection. The
putMessage operation fails, the broken connection is closed, and the controlled
shutdown of the WebSphere MQ queue manager completes.

The bridge client-connection object maintains a pool of connections, that are
awaiting use. If there is no bridge activity, the pool retains WebSphere MQ client
connections until the connection idle time exceeds the idle time-out period (as
specified on the client connection object configuration), at which point the
connections in the pool are closed.

When the last client connection to the WebSphere MQ queue manager is closed,
the WebSphere MQ controlled shutdown completes.

Administered objects and their characteristics
This section describes the characteristics of the different types of administered
objects associated with the WebSphere MQ Everyplace WebSphere MQ-bridge.
Characteristics are object attributes that can be queried using an inquireAll()
administration message. The results can be read and used by the application, or
they can be sent in an update or create administration message to set the values of
the characteristics. Some characteristics can also be set using the create and update
administration messages. Each characteristic has a unique label associated with it
and this label is used to set and get the characteristic value.

WebSphere MQ queue manager shutdown

Chapter 7. WebSphere MQ-bridge 93

The following lists show the attributes that apply to each administered object. The
attributes are described in detail in alphabetical order in “Attribute details” on
page 95. The label constants are defined in the header file
published/MQe_MQBridge_Constants.h. If you include published/MQe_API.h in
you installation, this file is included automatically.

Characteristics of bridges objects

v Run-state
v Children
v Child

Characteristics of bridge objects

v Description
v Run-state
v Children
v Child
v AdministerObjectClass
v StartupRuleClass
v BridgeName
v HeartBeatInterval
v DefaultTransformer

Characteristics of WebSphere MQ queue manager proxy objects

v Description
v Run-state
v Children
v Child
v AdministerObjectClass
v StartupRuleClass
v BridgeName
v MQQMgrProxyName
v HostName

Characteristics of client connection objects

v Description
v Run-state
v Children
v Child
v AdministerObjectClass
v StartupRuleClass
v BridgeName
v MQQMgrProxyName
v ClientConnectionName
v Port
v AdapterClass
v MQUserID
v MQPassword
v SendExit
v ReceiveExit

bridge administered objects

94 WebSphere MQ Everyplace: C Bindings Programming Guide

v SecurityExit
v CCSID
v SyncQName
v SyncQPurgerRulesClass
v MaxConnectionIdleTime
v SyncQPurgeInterval

Characteristics of WebSphere MQ transmission queue listener objects

v Description
v Run-state
v Children
v Child
v AdministerObjectClass
v StartupRuleClass
v BridgeName
v MQQMgrProxyName
v ClientConnectionName
v ListenerName
v DeadLetterQName
v ListenerStateStoreAdapter
v UndeliveredMessageRuleClass
v TransformerClass

Attribute details
AdapterClass

Type: Unicode

Label:
MQE_FIELD_LABEL_ADAPTER

Valid actions
Inquire, create, update

Description
Either a Java class name, or an alias that can be resolved into a
Java class name. The client connection uses this attribute to
determine which class to use to manipulate the WebSphere MQ
system. Different versions of WebSphere MQ may recognize
different adapter classes.

If this attribute is not specified, a default value of
com.ibm.mqe.mqbridge.MQeMQAdapter is used.

This parameter is not validated

AdministeredObjectClass

Type: Unicode

Label:
MQE_FIELD_LABEL_ADMINISTERED_OBJECT

Valid actions
Inquire, create, update

bridge administered objects

Chapter 7. WebSphere MQ-bridge 95

Description
The name of a Java class, or an alias that resolves into a Java class
name using the WebSphere MQ Everyplaceclass aliasing technique.
The ’.class’ extension is not required.

This attribute describes the Java class that is used to provide the
function for the bridge administered object. The value set depends
on the type of administered object being configured.

This field should not be set, or changed without detailed
instructions from IBM staff.

If this parameter is not specified when the object is created, it
defaults to the following allowable values:

Object being configured Value

A bridge object com.ibm.mqe.mqbridge.MQeMQBridge

WebSphere MQ queue
manager proxy object

com.ibm.mqe.mqbridge.MQeMQQMgrProxy

WebSphere MQ client
connection object

com.ibm.mqe.mqbridge.MQeClientConnection

WebSphere MQ
transmission queue
listener object

com.ibm.mqe.mqbridge.MQeListener

Valid characters are: "0–9" "A-Z" "a-z" - . % /

BridgeName

Type: Unicode

Label:
MQE_FIELD_LABEL_BRIDGE_NAME

Valid actions
Inquire, create, update, delete, start, stop

Description
If you use a symbolic name, it may take longer to detect that this
machine is not switched on, or that the name server is not
working. If this causes a problem, you can use the actual I/P
address in this field instead.

Note: This characteristic can be set only once, with the create
administration message. Thereafter it is used to identify
which bridge administered object should be inquired on,
updated, deleted, started, or stopped.

CCSID

Type: Int

Label:
MQE_FIELD_LABEL_CCSID

Valid actions
Inquire, create, update

bridge administered objects

96 WebSphere MQ Everyplace: C Bindings Programming Guide

Description
See the WebSphere MQ Using Java documentation for a description
of this parameter.

Valid values are: 0 to MAXINT. The default is 0.

Child

Type: Unicode

Label:
MQE_FIELD_LABEL_CHILD

Valid actions
Inquire

Description
A field containing the name of an WebSphere MQ-bridge
administered object.

Children

Type: MQeFields array

Label:
MQE_FIELD_LABEL_CHILDREN

Valid actions
Inquire

Description
An array of Child fields, each element containing a Child attribute.

ClientConnectionName

Type: Unicode

Label:
MQE_FIELD_LABEL_CLIENT_CONNECTION_NAME

Valid actions
Inquire, create, update, delete, start, stop

Description

Note: This characteristic can be set only once, with the create
administration message. Thereafter it is used to identify
which bridge administered object should be inquired on,
updated, deleted, started, or stopped.

DeadLetterQName

Type: Unicode

Label:
MQE_FIELD_LABEL_DEAD_LETTER_Q_NAME

Valid actions
Inquire, create, update

Description
If the gateway finds it cannot deliver a message from WebSphere
MQ to WebSphere MQ Everyplace, the message cannot be
processed by the gateway, and it is placed on a dead letter queue
on the WebSphere MQ system. This parameter defines which
queue the erroneous message is delivered to.

bridge administered objects

Chapter 7. WebSphere MQ-bridge 97

The default value is SYSTEM.DEAD.LETTER.QUEUE.

DefaultTransformer

Type: Unicode

Label:
MQE_FIELD_LABEL_DEFAULT_TRANSFORMER

Valid actions
Inquire, create, update

Description
The classname specified here is used as the default transformer
class. When a message is sent from WebSphere MQ to WebSphere
MQ Everyplace, the target queue may have a transformer class
defined. If a transformer is not defined, this class is used to
transform the WebSphere MQ message into the WebSphere MQ
Everyplace format.

When a message is sent from WebSphere MQ Everyplace to
WebSphere MQ, the transmission queue listener moving the
message onto WebSphere MQ Everyplace may have a transformer
class defined. If a transformer is not defined, this class is used to
transform the WebSphere MQ Everyplace message into the
WebSphere MQ format.

No validation of the value in this field is performed.

The default value is com.ibm.mqebridge.MQeBaseTransformer

Description

Type: Unicode

Label:
MQE_FIELD_LABEL_DESCRIPTION

Valid actions
Inquire, create, update

Description
A free-format Unicode string, used by an administrator to describe
the configured object. WebSphere MQ Everyplace does not use the
contents of this field. The contents of this field are not validated by
WebSphere MQ Everyplace.

HeartBeatInterval

Type: Int

Label:
MQE_FIELD_LABEL_HEARTBEAT_INTERVAL

Valid actions
Inquire, create, update

Description
A time interval, expressed in units of 1 minute, with values
between 1 and 60. The bridge uses a heartbeat internally to provide
a regular stimulus to other administered objects. The administered
objects perform small tasks when the heartbeat event arrives, such
as ’The client connection will reap old or stale WebSphere MQ
connections’ or ’the sync queue will be purged’. The heartbeat

bridge administered objects

98 WebSphere MQ Everyplace: C Bindings Programming Guide

provides an interval for the timers that is indivisible. The lower
this value is set, the more accurate any timer related actions will
be. For instance, if you say ’reap all WebSphere MQ connections if
they have been idle for more than 10 minutes’, but set the
heartbeat interval tor 3 minutes, then an idle WebSphere MQ
connection is checked after 3,6,9 and 12 minutes, but is only reaped
on the 12th minute. Setting this value lower increases the accuracy
of the timer-related heartbeat events, but does so at the cost of
efficiency. The more heartbeat events created, the more work is
done.

The default value is 5 minutes.

Hostname

Type: Unicode

Label:
MQE_FIELD_LABEL_HOST_NAME

Valid actions
Inquire, create, update

Description
Used to create connections to this WebSphere MQ queue manager
using the WebSphere MQ Classes for Java. If this characteristic is
not specified, the WebSphere MQ queue manager is assumed to be
on the same machine as the JVM, so the Java bindings mode is
used to communicate with the WebSphere MQ system.

Note: A blank value is not the same as specifying localhost. If a
blank value is used, then the WebSphere MQ-bridge uses the
WebSphere MQ Classes for Java in bindings mode which
communicates directly with WebSphere MQ. If you specify
localhost, the WebSphere MQ-bridge uses the WebSphere
MQ Classes for Java in client mode. This means that all
communication with WebSphere MQ is through the network
(TCP/IP) stack.

The value specified here is not validated. If you use a symbolic
name, it may take longer to detect that this machine is not
switched on, or if the name server is not working. You can use the
I/P address notation in this field if a symbolic name causes
problems.

ListenerName

Type: Unicode

Label:
MQE_FIELD_LABEL_LISTENER_NAME

Valid actions
Inquire, create, update, delete, start, stop

Description
The name of this listener. The listener name is the name of the
transmission queue on WebSphere MQ that the listener takes
messages from. The combination of MQ_queue_manager_name and
MQ_transmission_queue_name pair must be unique across all the
gateways that exist.

bridge administered objects

Chapter 7. WebSphere MQ-bridge 99

Note: This characteristic can be set only once, with the create
administration message. Thereafter it is used to identify
which WebSphere MQ-bridge administered object should be
inquired on, updated, deleted, started, or stopped.

ListenerStateStoreAdapter

Type: Unicode

Label:
MQE_FIELD_LABEL_LISTENER_STATE_STORE_ADAPTER

Valid actions
Inquire, create, update

Description
In order to provide assured message delivery of persistent
messages, the listener class uses an adapter to store state
information. This is the class name (or alias of the classname) of
the adapter that is loaded to manage the storing and recovery of
the state information to and from disk. Two adapters are currently
supported-
v com.ibm.mqe.adapters.MQeDiskFieldsAdapter, which stores state

information on the local file system.
v com.ibm.mqe.mqbridge.MQeMQAdapter, which stores state

information on the WebSphere MQ server.

The disk adapter is generally quicker than using the WebSphere
MQ-based adapter. The classname can be followed by a colon
separated list of arguments, although only the
MQeDiskFieldsAdapter uses them. In this case the
MQeDiskFieldsAdapter can be followed by a colon and a fully
qualified path name to a file that contains the state information.
For example, in order to use the disk fields adapter to store the
listener’s state information in the file c:\folder\state.sta, the
listener-state-store-adapter field should contain the value
com.ibm.mqe.Adapters.MQeDiskFieldsAdapter:c:\folder\state.sta
A file specified by this parameter need not currently exist. If the
supplied path name ends in a folder separator, for example "\" in
DOS. It is assumed that the supplied parameter is a directory, and
a state file called
<ListenerName>-listener.sta is created inside it, where
<ListenerName> is the name of the listener, from the registry entry.
If no path name is supplied, the listener uses a file called
<ListenerName>-listener.sta inside the current Java working
directory If the MQeMQAdapter is being used, no additional
arguments are required.

The default value of the ListenerStateStoreAdapter field is
com.ibm.mqe.Adapters.MQeDiskFieldsAdapter.

MaxConnectionIdleTime

Type: Int

Label:
MQE_FIELD_LABEL_MAX_CONNECTION_IDLE_TIME

Valid actions
Inquire, create, update

bridge administered objects

100 WebSphere MQ Everyplace: C Bindings Programming Guide

Description
Each client connection object in the bridge maintains a pool of
WebSphere MQ Java client connections to its WebSphere MQ
system.

When a WebSphere MQ connection becomes idle through lack of
use, a timer is started. If the timer reaches the current value of this
parameter, then the idle connection is thrown away. This is known
as reaping the connection. This saves resources when the connection
is idle. The connection pool is an efficiency device that is used
within the WebSphere MQ-bridge. The creation of new WebSphere
MQ client connections is a resource intensive operation. If there are
idle connections in the pool, one of these is reused, thus avoiding a
creation operation. The higher the MaxConnectionIdleTime value,
the more likely it is that an idle connection will be waiting in the
pool, but idle client connections consume resources in the JVM.
Setting this value lower, decreases the likelihood of an idle
connection being available, but also decreases the number of idle
connections , so less resources are consumed.

The time is expressed in units of 1 minute.

The Valid range: Between 0 and 720 (12 hours). The default is 5
(minutes).

Setting this value to 0 is not recommended as it effectively means
’don’t use a connection pool’, and whenever a WebSphere MQ
client connection is idle, it is reaped or discarded.

This time-out is only checked at the interval set by the
heartbeatInterval parameter.

MaxConnectionIdleTime can have a direct effect on the length of
time it takes to shut down an WebSphere MQ Everyplace system.
Refer to
“WebSphere MQ-bridge considerations when shutting down a
WebSphere MQ queue manager” on page 92 for more details.

MQPassword

Type: Unicode

Label:
MQE_FIELD_LABEL_PASSWORD

Valid actions
Inquire, create, update

Description
Used by the MQSeries Classes for Java. If this attribute is not
specified, the password field on the WebSphere MQ calls is set to
″″ . The value you specify here overrides any defaults. This
parameter is not validated.

MQQMgrProxyName

Type: Unicode

Label:
MQE_FIELD_LABEL_MQ_Q_MGR_PROXY_NAME

Valid actions
Inquire, create, update, delete, start, stop

bridge administered objects

Chapter 7. WebSphere MQ-bridge 101

Description
The name of the queue manager proxy object. (In other words, the
name of the target WebSphere MQ queue manager.)

Note: This characteristic can be set only once, with the create
administration message. Thereafter it is used to identify
which bridge administered object should be inquired on,
updated, deleted, started, or stopped.

MQUserID

Type: Unicode

Label:
MQE_FIELD_LABEL_USER_ID

Valid actions
Inquire, create, update

Description
Used by the MQSeries Classes for Java. If this parameter is not
specified. the user-id field on the WebSphere MQ calls is set to ″″ .
The value you specify here overrides any defaults. This parameter
is not validated.

Port

Type: Int

Label:
MQE_FIELD_LABEL_PORT

Valid actions
Inquire, create, update

Description
Used to create connections to this WebSphere MQ queue manager
using the WebSphere MQ Classes for Java. If this parameter is not
specified, the WebSphere MQ queue manager is assumed to be on
the same machine as the JVM. In this case, the bindings mode of
the WebSphere MQ Classes for Java is used to communicate with
the WebSphere MQ system.

Valid range 0 to MAXINT.

ReceiveExit

Type: Unicode

Label:
MQE_FIELD_LABEL_RECEIVE_EXIT

Valid actions
Inquire, create, update

Description
Used to match the exit used at the other end of the Client
connection.

This parameter is not validated.

Run-state

Type: Int

bridge administered objects

102 WebSphere MQ Everyplace: C Bindings Programming Guide

Label:
MQE_FIELD_LABEL_RUN_STATE

Valid actions
Inquire

Description
Indicates whether the administered object is running (value=1), or
stopped (value=0). When an object is stopped it can have its
properties changed.

SecurityExit

Type: Unicode

Label:
MQE_FIELD_LABEL_SECURITY_EXIT

Valid actions
Inquire, create, update

Description
Used to match the exit used at the other end of the Client
connection.

This parameter is not validated.

SendExit

Type: Unicode

Label:
MQE_FIELD_LABEL_SEND_EXIT

Valid actions
Inquire, create, update

Description
Used to match the exit used at the other end of the Client
connection.

This parameter is not validated.

StartupRuleClass

Type: Unicode

Label:
MQE_FIELD_LABEL_STARTUP_RULE_CLASS

Valid actions
Inquire, create, update

Description
This is a rule class that is used when the administered object is
loaded at system startup, or when the object is created. The rule
class name is not validated.

The rule class dictates whether the administered object is started,
and whether or not its children are started. The default rule is
com.ibm.mqe.mqbridge .MQeStartupRule This default causes the
administered object and all its parents to start. If this field is set to
″″ (blank) , the administered object is not started.Rules are not

bridge administered objects

Chapter 7. WebSphere MQ-bridge 103

directly supported by the C Bindings. SeeWebSphere MQ Everyplace
Application Programming Guide for information about writing rules
in Java.

SyncQName

Type: Unicode

Label:
MQE_FIELD_LABEL_SYNC_Q_NAME

Valid actions
Inquire, create, update

Description
The name of the sync queue on the WebSphere MQ queue
manager that is used by the WebSphere MQ-bridge . Valid
characters forming the name are: "0-9" "A-Z" "a-z" _ . % / .The
sync queue is a WebSphere MQ queue that is used to keep track of
which messages are in the process of moving from WebSphere MQ
Everyplace to WebSphere MQ. If a message is part way through
the logic that assures the once-only delivery of a message, there is
another message on the sync queue, indicating how far through the
logic the message has progressed. If the WebSphere MQ Everyplace
system is shut down cleanly, the sync queue should be empty. If
the connection between the systems is broken, some persistent
state information is left in the sync queue. The WebSphere MQ
Everyplace system uses this information when it restarts and
continues from where the process failed. The name of the sync
queue can be the same for client connections on the same bridge,
or on different bridges, providing the send, receive and security
exits used when talking to that sync queue are the same. The sync
queues must exist on the WebSphere MQ queue manager for
WebSphere MQ Everyplace to WebSphere MQ message transfer to
work. If the listener state class is the MQeMQAdapter, this sync
queue is also used for storing persistent state information about
the listeners. The listener does not use this parameter if the state
information is being stored by an MQeDiskFieldsAdapter. We
recommended a naming scheme of:
MQE.SYNCQ.<ClientConnectionName> so that you know which client
connection is using which sync queue.

The default is MQE.SYNCQ.DEFAULT.

SyncQPurgeInterval

Type: int

Label:
MQE_FIELD_LABEL_SYNC_Q_PURGE_INTERVAL

Valid actions
Inquire, create, update

Description
The time interval between successive purges of the sync queue,
expressed in minutes.

When this interval elapses, the sync queue is scanned. If a message
that has not been confirmed is found on the Sync queue, then the
SyncQPurgerRules class is invoked to deal with this situation.

bridge administered objects

104 WebSphere MQ Everyplace: C Bindings Programming Guide

Zero indicates that the sync queue should never be purged.

The default is 60 minutes.

The actual granularity of the purging operation is dictated by the
heartbeat-interval of the owning bridge definition. For example: If
the hearbeat interval is set to 10 minutes, but the purge interval is
set to 9 minutes, then the purge operation occurs after 10 minutes.
If, however, the purge interval is changed to 11 minutes, the purge
operation still occurs after 10 minutes.

SyncQPurgerRulesClass

Type: Unicode

Label:
MQE_FIELD_LABEL_SYNC_Q_PURGER_RULES_CLASS

Valid actions
Inquire, create, update

Description
The name of the rules class used when a message on the sync
queue indicates a failure of WebSphere MQ Everyplace to confirm
a message.

The default is a classname that just reports the condition in the
WebSphere MQ Everyplace trace.

This parameter is not validated.

TransformerClass

Type: Unicode

Label:
MQE_FIELD_LABEL_TRANSFORMER

Valid actions
Inquire, create, update

Description
This is the name of the Java class that is used to convert the
WebSphere MQ message into an WebSphere MQ Everyplace
message. When a message is taken from WebSphere MQ by the
listener, it is transformed into an WebSphere MQ Everyplace
format message using the specified transformer. If the transformer
class is specified as null or a blank string, then the
DefaultTransformer parameter provided on the bridge
configuration parameters is used as the transformer. If the default
is also set to null or blank, messages cannot be transferred.

The default value is ″″

Transformers are not directly supported by the C Bindings.
SeeWebSphere MQ Everyplace Application Programming Guide for
information about writing transformers in Java.

UndelivedMessageRuleClass

Type: Unicode

Label:
MQE_FIELD_LABEL_UNDELIVERED_MESSAGE_RULE_CLASS

bridge administered objects

Chapter 7. WebSphere MQ-bridge 105

Valid actions
Inquire, create, update

Description
The name of the MQeUndeliveredMessageRule class. When a
message moving from WebSphere MQ to WebSphere MQ
Everyplace cannot be delivered, this rule class is consulted to
decide what action the listener should take. The rule tells the
listener to wait and retry, shut down, or deal with the message as
defined in the MQMessage report options.

The default value is:
com.ibm.mqe.mqbridge.MQeUndeliveredMessageRule. Rules are not
directly supported by the C Bindings. SeeWebSphere MQ Everyplace
Application Programming Guide for information about writing rules
in Java.

How to send a message from WebSphere MQ to WebSphere MQ
Everyplace

There are many ways of arranging your routing on the WebSphere MQ system to
test the transmission of a message. One method is to define queue manager aliases
for each WebSphere MQ Everyplace queue manager that the bridge knows about.
This document describes how to use the resultant configuration to send a message
to the WebSphere MQ Everyplace queue.
1. Select the WebSphere MQ First Steps program from the WebSphere MQ Client

v 5.1
2. Select the API exerciser from the ’First Steps’ screen
3. In the ’API Exerciser Queue Managers’ screen:

v Select the WebSphere MQ queue manager to which the bridge is connected.
(The example is called MQA)

v Check the Advanced mode checkbox
v Click the MQCONN button
v Select the Queues tab to display the ’Queues’ screen
v Select MQOPEN to display the ’MQOPEN Selectable Options’ screen

4. In the ’MQOPEN Selectable Options’ screen:
v Make sure that MQOO_INPUT_AS_Q_DEF is not selected
v Make sure that MQO_OUTPUT is selected
v Fill in the ObjectName field with the name of the queue that you wish the

message to go to on the WebSphere MQ Everyplace queue manager. (The
example is called Q1)

v Fill in the ObjectQMgrName field with the name of the WebSphere MQ
Everyplace queue manager that you wish the message to go to. (The example
is called ExampleQM)

v Click OK to open a route to the queue.
5. In the ’API Exerciser Queues’ screen:

v Click the MQPUT button to display the ’MQPUT -Argument Options’ screen
6. In the ’MQPUT - Argument Options’ screen:

v Type in your message
v Click OK to send the message to Q1 on ExampleQM on the WebSphere MQ

Everyplace system

bridge administered objects

106 WebSphere MQ Everyplace: C Bindings Programming Guide

Handling undeliverable messages
The WebSphere MQ-bridge’s transmission queue listener acts in a similar way to a
WebSphere MQ connection, pulling messages from a WebSphere MQ transmission
queue, and delivering them to the WebSphere MQ Everyplace network. It follows
the WebSphere MQ Everyplace convention in that if a message cannot be
delivered, an undelivered message rule is consulted to determine how the
transmission queue listener should react. If the rule indicates the report options in
the message header, and these indicate that the message should be put onto a
dead-letter queue, the message is placed on the WebSphere MQ queue (on the
sending queue manager).

Putting messages to the WebSphere MQ-bridge queue
If an application uses putMessage(), specifying that a confirmputMessage() should
not be used to confirm this message, the WebSphere MQ-bridge does not use
assured delivery logic to pass the message to WebSphere MQ. It does a simple
MQPut to the target WebSphere MQ queue. If there is a failure anywhere along
the message route, the application is unable to determine whether the message has
been sent or not. If the application decides to resend the message, it is possible for
two identical messages to arrive on the WebSphere MQ queue.

To avoid this problem, the application programmer should use a combination of
putMessage() and confirmputMessage() calls. Using putMessage() with the
confirm parameter set to true causes the WebSphere MQ-bridge to use assured
delivery logic to put the message to the WebSphere MQ system.

If any component of the path between the WebSphere MQ system and the sending
application fails, the application is unable to determine whether the message got to
its destination or not. In this case, the application should put the original message
again, with a boolean MQeField added. For example:
C example

This indicates that this message has been sent in the past. The WebSphere
MQ-bridge uses its assured delivery logic to assure that only one of the two
putMessage() calls actually put a message to WebSphere MQ.

If the putMessage() is used, with or without the confirm flag set, and a successful
return code is received, the application can be sure that the message has been
passed to the WebSphere MQ queue.

If the putMessage() is used, with the confirm flag set, the WebSphere MQ-bridge
retains some information about the message (on its sync queue) that enables it to
prevent duplicate messages being sent by the application. The WebSphere
MQ-bridge can only prevent duplicate messages being sent if the Qos_Retry
parameter is set. The confirmputMessage() removes the message history from the
WebSphere MQ-bridge sync queue.

The following procedure causes four messages to arrive on the target WebSphere
MQ queue.

create a new message

(1) putMessage(Confirm=Yes) - Causes the message to be delivered to
WebSphere MQ, but some note made on the
sync queue.

set the retry bit on the message

sending a message across the bridge

Chapter 7. WebSphere MQ-bridge 107

putMessage(Confirm=Yes) - Suppressed, as the message is already noted in
the sync queue.

putMessage(Confirm=Yes) - Suppressed, as the message is already noted in
the sync queue.

(2) putMessage(Confirm=No) - not suppressed. The message is delivered to the
WebSphere MQ queue.

remove the retry bit from the message

(3) putMessage(Confirm=Yes) - Causes the message to be sent to WebSphere
MQ. The retry bit was not set, so the WebSphere
MQ-bridge did not look at its sync queue.

ConfirmputMessage() - Causes the WebSphere MQ-bridge to clear its
memory of the message.

set the retry bit on the message

(4) putMessage() - Causes the message to be sent.

Getting and browsing messages from the WebSphere MQ-bridge
queue

As with other WebSphere MQ Everyplace queues, it is possible to get and browse
messages from WebSphere MQ-bridge queues. It is also possible to specify an
MQeFields filter on these operations. If a filter is used, the first message matching
the filter is returned by getMessage) and all messages matching the filter are
returned by browseMessages.

When browsing messages, if the filter field is blank or null, all messages are
collected from the WebSphere MQ queue and are placed in the returning
enumeration. If the filter is non-blank and non-null, all messages collected from the
WebSphere MQ queue are passed through the queue’s message transformer before
being matched against the filter. Matching messages are placed in the returning
enumeration.

If the filter field contains one or both of MQE_MSG_MSGID and
MQE_MSG_CORRELID, messages are collected from the WebSphere MQ queue
using one or both of the WebSphere MQ MQE_MSG_MSGID and
MQE_MSG_CORRELID as filter elements. The results are then transformed into
WebSphere MQ Everyplace messages which are filtered as follows:
1. The original filter is applied as the default match criteria and any matching

messages are placed in the returning enumeration.
2. If any transformed WebSphere MQ Everyplace messages do not contain the

MQE_MSG_MSGID field, the MQE_MSG_MSGID field is removed from the
filter.

3. If any transformed WebSphere MQ Everyplace message do not contain the
MQE_MSG_CORRELID field, the MQE_MSG_CORRELID field is removed from
the filter.

4. The unmatched MQSeries Everyplace messages are then filtered using the new
filter, and matching messages are placed into the returning enumeration.

Note that using a blank or null filter, or a filter that contains neither the
MQE_MSG_MSGID field nor the MQE_MSG_CORRELID field causes all messages
on the WebSphere MQ queue to be browsed. To optimize performance, try to
include in the filter one or both of the expected Message Id or CorrelId as it exists
in WebSphere MQ format.

bridge - putMessage considerations

108 WebSphere MQ Everyplace: C Bindings Programming Guide

Filters on getMessage work in a similar way to filters on browseMessages, except
that only the first match is removed from the WebSphere MQ queue and returned
to the application.

Usage restrictions
There are some restrictions on the use of getMessage and browseMessages with
WebSphere MQ-bridge queues:
v It is not possible to get or browse messages from WebSphere MQ-bridge queues

that point to WebSphere MQ remote queue definitions.
v You cannot use a nonzero Confirm ID on WebSphere MQ-bridge queue gets. This

means that the getMessage operation on WebSphere MQ-bridge queues does not
provide assured delivery. If you need a get operation to be assured, you should
use transmission-queue listeners to transfer messages from WebSphere MQ.

v Because messages originating from WebSphere MQ do not contain unique
identifiers, it is not possible to browse messages using the justUID flag set to
true (this would normally return a list of the unique message identifiers that
matched the browse).

v The browseMessagesAndLock() function is not supported.

National language support implications
This section describes how the WebSphere MQ-bridge handles messages flowing
between MQSeries systems that use different national languages. The diagram in
Figure 25is used to describe the flow of a message from an WebSphere MQ
Everyplace client application to a WebSphere MQ application.

1. Client application

a. The client application builds an WebSphere MQ Everyplace message object
containing the following data:

A Unicode field
This string is generated using appropriate libraries available on the
client machine (if C/C++ is being used).

Palm
queue

manager

MQSeries
bridge

Transformer

MQSeries
queue

manager

M
Q

S
er

ie
s

Ja
va

 C
lie

nt
 /

B
in

di
ng

sMQSeries
Everyplace

server
queue

manager

MQSeries
Everyplace server

Palm
application

Palm Pilot MQSeries
server

1

2 3 5

MQSeries
application

64

Figure 25. Message flow from WebSphere MQ Everyplace to WebSphere MQ

bridge - getMessage considerations

Chapter 7. WebSphere MQ-bridge 109

A byte field
This field should never be translated

An ascii field
This string has a very limited range of valid characters, conforming
to the ASCII standard. The only valid characters are those that are
invariant over all ASCII codepages.

b. The message is put to the Palm queue manager. No translation is done
during this put.

2. Client queue manager puts to the server queue manager

The message is not translated at all through this step.
3. WebSphere MQ Everyplace server puts the message onto the WebSphere

MQ-bridge queue

The message is not translated at all through this step.
4. WebSphere MQ-bridge passes the WebSphere MQ Everyplace message to the

user-written transformer

Note: The examples in this section are in Java because transformers can only
be written in Java. (See “Unsupported Java APIs” on page 18

The transformer creates a WebSphere MQ message as follows:
v The Unicode field in the WebSphere MQ Everyplace message is retrieved

using:
String value = MQemsg.GetUnicode(fieldname)

v The retrieved value is copied to the WebSphere MQ message using
MQmsg.writeChars(value)

v The byte field in the WebSphere MQ Everyplace message is retrieved using:
Byte value = MQemsg.getByte(fieldName)

v The retrieved value is copied to the WebSphere MQ message using
MQmsg.writeByte(value)

v The ascii field in the WebSphere MQ Everyplace message is retrieved using
either MQmsg.writeChars(value) to create a unicode value, or
MQmsg.writeString(value) to create a code-set-dependent value, in the
WebSphere MQ message.

If using writeString(), the character set of the string may also be set. The
transformer returns the resultant WebSphere MQ message to the calling
WebSphere MQ-bridge code.

5. The WebSphere MQ-bridge passes the message to WebSphere MQ using the
WebSphere MQ Classes for Java

Unicode values in the WebSphere MQ message are translated from big-endian
to little-endian, and vice-versa, as required. Byte values in the WebSphere MQ
message are translated from big-endian to little-endian, and vice-versa, as
required. The field that was created using writeString() is translated as the
message is put to WebSphere MQ, using conversion routines inside the
WebSphere MQ Classes for Java. ASCII data should remain ASCII data
regardless of the character set conversions performed. The translations done
during this step depend on the code page of the message, the CCSID of the
sending WebSphere MQ Classes for Java client connection, and the CCSID of
the receiving WebSphere MQ server connection.

6. The message is got by a WebSphere MQ application

If the message contains a unicode string, the application must deal with that
string as a unicode string, or else convert it into some other format (UTF8 for

bridge - national language considerations

110 WebSphere MQ Everyplace: C Bindings Programming Guide

example). If the message contains a byte string, the application may use the
bytes as-is. (raw data). If the message contains a string, it is read from the
message, and may be converted to a different data format as required by the
application. This conversion is dependent on the codeset value in the
characterSet header field.

Conclusion
If you have an WebSphere MQ Everyplace application, and wish to convey
character-related data from WebSphere MQ Everyplace to WebSphere MQ, your
choice of method is determined largely by the data you wish to convey:
v If your data contains characters in the variant ranges of the ASCII character

codepages, (the character for a codepoint changes as you change between the
various ASCII codepages) then you can use either putUnicode (which is never
subject to translation between codepages), or putArrayOfByte (in which case
you have to handle the translation between the sender’s codepage and the
receiver’s codepage).

Note: DO NOT USE putAscii() as the characters in the variant parts of the
ASCII codepages are subject to translation.

v If your data contains only characters in the invariant ranges of the ASCII
character codepages, then you can use putUnicode (which is never subject to
translation between codepages) or putAscii (which is never subject to translation
between codepages, as all your data lies within the invariant range of the ASCII
codepages).

bridge - national language considerations

Chapter 7. WebSphere MQ-bridge 111

bridge - national language considerations

112 WebSphere MQ Everyplace: C Bindings Programming Guide

Chapter 8. Security

This section contains information about the security function provided by
WebSphere MQ Everyplace. The different levels of security are described together
with typical usage scenarios and usage guidance.

Security features
WebSphere MQ Everyplace provides an integrated set of security features that
enable the protection of data when held locally and when it is being transferred.
There are three different categories of security:

Local security
Local security provides protection for any WebSphere MQ Everyplace data.

Queue-based security
Queue-based security automatically protects WebSphere MQ Everyplace
message data between the initiating queue manager and queue, on the
queue, and between the queue and the receiving queue manager. This
protection is independent of whether the target queue is owned by a local
or a remote queue manager.

Message-level security
Message-level security provides protection for message data between an
initiating and receiving WebSphere MQ Everyplace application.

Queue based security is handled internally by WebSphere MQ Everyplace and
does not require any specific action by the initiator or recipient of the message.
Local and Message-level security must be initiated by an application.

All three categories protect Message data by the application of an MQeAttribute.
Depending on the category, the attribute is either explicitly or implicitly applied.

Every attribute can contain any or all of the following objects:
v Authenticator
v Cryptor
v Compressor
v Key
v Target Entity Name

The way these objects are used depends on the category of WebSphere MQ
Everyplace security. Each category of security is described in detail later in this
chapter.

WebSphere MQ Everyplace also provides the following services to assist with
security:

Private registry services
WebSphere MQ Everyplace private registry provides a repository in which
public and private objects can be stored. It provides (login) PIN protected
access so that access to a private registry is restricted to the authorized
user. It also provides additional services so that functions can use the
entity’s private key, (for digital signature, and RSA decryption) without the
private credentials leaving the PrivateRegistry instance.

© Copyright IBM Corp. 2000, 2002 113

These services are used by queue-based security and message-level security
using MQeTrustAttribute.

Public registry services
WebSphere MQ Everyplace public registry provides a publicly accessible
repository for mini-certificates.

These services can be used by queue-based and message-level security.

These services are described in more detail later in the chapter.

Local security
Local security provides protection for WebSphere MQ Everyplace data or
MQeFields objects, including message, MQeMsg, objects. The protected data is
returned in a byte array. To apply local security to a data object you must:
1. Create an attribute with an appropriate authenticator, cryptor, and compressor
2. Set up an appropriate key (by providing a password or passphrase seed)
3. Explicitly attach the key to the attribute, the attribute to the data (MQeFields)

object, and invoke the dump() function on the data object

The authenticator determines how access to the data is controlled. The cryptor
determines the cryptographic strength protecting the data confidentiality. The
compressor determines the storage required by the message.

WebSphere MQ Everyplace provides the MQeLocalSecure class to assist with the
use of local security. However, it is the responsibility of the local security user to
setup an appropriate attribute and provide the password or passphrase key.
MQeLocalSecure provides the function to protect the data and to save and restore
it from backing storage. If an application chooses to attach an attribute to a
message without using MQeLocalSecure, it also needs to save the data after using
dump and must retrieve the data before using restore.

Usage scenario
Consider a scenario where mobile agents working on many different customer sites
want to ensure that the confidential data of one customer is not accidentally shared
with another. Local security features, using different keys, and possibly different
cryptographic strengths, provide a simple function for protecting different
customer data held on a single machine .

A simple extension of this scenario could be that the protected local data is
accessed using a key that is pulled from a secure queue on an WebSphere MQ
Everyplace server node. The agents client has to authenticate itself to access the
server queue and pull the local key data, but never knows the actual key.

One of the advantages of taking this approach is that an audit trail is easily
accumulated for all access to customer specific data.

Secure feature choices
When using MQeLocalSecure, the following attribute choices are available:

Authenticator
Example MQeWTLSCertAuthenticator

Cryptor
One of the symmetric cryptors MQeDESCryptor, MQe3DESCryptor,
MQeRC4Cryptor, MQeRC6Cryptor or MQeMARSCryptor

security features

114 WebSphere MQ Everyplace: C Bindings Programming Guide

Compressor
MQeLZWCompressor, MQeRleCompressor, or MQeGZIPCompressor

Selection criteria
You should use an authenticator if you need to provide additional controls to
prevent access to the local data by unauthorized users. In some ways using an
authenticator is unnecessary since providing the key password or passphrase
automatically limits access to those who know this secret.

The choice of cryptor is driven by the strength of protection required. The stronger
the encryption, the more difficulty an attacker would face when trying to get
illegal access to the data. Data protected with symmetric ciphers that use 128 bit
keys is acknowledged as more difficult to attack than data protected using ciphers
that use shorter keys. However, in addition to cryptographic strength, the selection
of a cryptor may also be driven by many other factors. An example is that some
financial solutions require the use of triple DES in order to get audit approval.

You should use a compressor if you need to optimize the size of the protected
data. However, the effectiveness of the compressor depends on the content of the
data. The MQeRleCompressor performs run length encoding . This means that the
compressor routines compress or expand repeated bytes. Hence it is effective in
compressing and decompressing data with many repeated bytes.
MQeLZWCompressor uses the LZW scheme. The simplest form of the LZW
algorithm uses a dictionary data structure in which various words (data patterns)
are stored against different codes. This compressor is likely to be most effective
where the data has a significant number of repeating words (data patterns). The
MQeGZIPCompressor uses the same compression algorithm as the gzip command
on UNIX. This searches for repeating patterns in the data and replaces subsequent
occurrences of a pattern with a reference back to the first occurrence of the pattern.

Usage guide
1. The following pseudo-code protects an MQeFields object using

MQeLocalSecure
/*SIMPLE PROTECT FRAGMENT */

#define BUF_LENGTH 1000 /* assuming this is big enough */

MQeDESCryptorHndl desC;
MQeAttributeHndl attr;
MQeKeyHndl localkey;
MQeFieldsHndl myData;
MQEBYTE protectedData[BUF_LENGTH];
MQEINT32 bufLength = BUF_LENGTH;
MQERETURN rc;
MQeExceptBlock exceptBlock;

/*instantiate a DES cryptor */
rc = mqeDESCryptor_new(&exceptBlock, &desC);

/*instantiate an Attribute using the DES cryptor */
rc = mqeAttribute_new(&exceptBlock, &attr, NULL,

NULL, desC, NULL);
/*instantiate a base Key object */
rc = mqeKey_new(&exceptBlock, &localKey);
/*set the base Key object local key */
rc = mqeKey_setLocalKey(localKey, &exceptBlock,

MQeString("my secret key"));
/*attach the key to the attribute */
rc = mqeAttribute_setKey(attr, &exceptBlock, localkey);
/*instantiate a MQeFields object */

rc = mqeFields_new(&exceptBlock, &myData);
/*attach the attribute to the data object */

local security

Chapter 8. Security 115

mqeFields_setAttribute(myData, &exceptBlock, attr);
/*add some test data */
rc = mqeFields_putAscii(myData, &exceptBlock, MQeString("testdata"),

MQeString("0123456789abcdef...."));
/*encode the data */
rc = mqeFields_dump(myData, &exceptBlock, protectedData,

&bufLength, MQE_FALSE);

/* SIMPLE UNPROTECT FRAGMENT */
#define BUF_LENGTH 1000 /* assuming this is big enough */

MQeDESCryptorHndl desC2;
MQeAttributeHndl attr2;
MQeLocalSecureHndl ls2;
MQEBYTE outBuf[BUF_LENGTH];
MQEINT32 bufLength = BUF_LENGTH;
MQERETURN rc;
MQeExceptBlock exceptBlock;

/* instantiate a DES cryptor */
rc = mqeDESCryptor_new(&exceptBlock, &desC2);
/* instantiate an attribute using the DES cryptor */

rc = mqeAttribute_new(&exceptBlock,
&attr2, NULL, NULL, des2C, NULL);

/* instantiate a (a helper) LocalSecure object */
rc = mqeLocalSecure_new(&exceptBlock, &ls2);

/* open LocalSecure obj identifying target file and directory */
rc = mqeString_newChar8(&exceptBlock, &fileDir, ".\\");
rc = mqeLocalSecure_open(ls2, &exceptBlock, MQeString(".\\"),

MQeString("TestSecureData.txt"));

/* use LocalSecure read to restore from target and decode data */
rc = mqeLocalSecure_read(ls2, &exceptBlock, outBuf, &bufLength,

attr2, MQeString("my secret key"));

2. The following pseudo-code protects an MQeFields locally without using
MQeLocalSecure.
/*SIMPLE PROTECT FRAGMENT */

#define BUF_LENGTH 1000 /* assuming this is big enough */

MQeDESCryptorHndl desC;
MQeAttributeHndl attr;
MQeKeyHndl localkey;
MQeFieldsHndl myData;
MQEBYTE protectedData[BUF_LENGTH];
MQEINT32 bufLength = BUF_LENGTH;
MQERETURN rc;
MQeExceptBlock exceptBlock;

/*create a DES cryptor */
rc = mqeDESCryptor_new(&exceptBlock, &desC);

/*create an Attribute using the DES cryptor */
rc = mqeAttribute_new(&exceptBlock,&attr, NULL, NULL, desC, NULL);
/*create a base Key object */
rc = mqeKey_new(&exceptBlock, &localKey);
/*set the base Key object local key */
rc = mqeKey_setLocalKey(localKey, &exceptBlock,

MQeString("my secret key"));
/*attach the key to the attribute */
rc = mqeAttribute_setKey(attr, &exceptBlock, localkey);
/*create a MQeFields object */

rc = mqeFields_new(&exceptBlock, &myData);
/*attach the attribute to the data object */
mqeFields_setAttribute(myData, &exceptBlock, attr);
/*add some test data */
rc = mqeFields_putAscii(myData, &exceptBlock,

MQeString("testdata"),

local security

116 WebSphere MQ Everyplace: C Bindings Programming Guide

MQeString("0123456789abcdef...."));
/*encode the data */
rc = mqeFields_dump(myData, &exceptBlock, protectedData,

&bufLength, MQE_FALSE);

/* SIMPLE UNPROTECT FRAGMENT */
#define BUF_LENGTH 1000 /* assuming this is big enough */

MQeDESCryptorHndl desC2;
MQeAttributeHndl attr2;
MQeKeyHndl localKey2;
MQeFieldsHndl myData2;
MQEBYTE protectedData[BUF_LENGTH];
MQEINT32 bufLength = BUF_LENGTH;
MQERETURN rc;
MQeExceptBlock exceptBlock;

/* read protected data into protectedData and set
bufLength to the data length */
...
/* create a DES cryptor */
rc = mqeDESCryptor_new(&exceptBlock, &desC2);
/*create an attribute using the DES cryptor */

rc = mqeAttribute_new(&exceptBlock, &attr2,
NULL, NULL, des2C, NULL);

/* create a (a helper) LocalSecure object */
rc = mqeKey_new(&exceptBlock, &localKey);

/*set the base Key object local key */
rc = mqeKey_setLocalKey(localKey2, &exceptBlock,

MQeString("my secret key"));
/*attach the key to the attribute */

mqeAttribute_setKey(attr2, &exceptBlock, localkey2);
/*create a new data object */
rc = mqeFields_new(&exceptBlock, &myData);
/*attach the attribute to the data object */
mqeFields_setAttribute(myData2, &exceptBlock, attr2);
/*decode the data */
mqeFields_restore(myData2, &exceptBlock, protectedData,

bufLength, MQE_FALSE);

Queue-based security
Queue-based security automatically protects WebSphere MQ Everyplace message
data between the initiating queue manager and the queue, on the queue itself, and
between the queue and the receiving queue manager. This form of protection
requires the target queue to be defined with an attribute. This protection is
independent of whether the queue is owned by a local or a remote queue manager.

A simple example of this is a target queue defined with an attribute that has an
authenticator, an MQe3DESCryptor and an MQeRleCompressor. When such a
target queue is accessed (either locally or remotely), using putMessage,
getMessage or browseMessages, the queue attribute is automatically applied. In
this example the application initiating the access has to satisfy the requirements of
the authenticator before the operation is permitted. If the operation is permitted,
the message data is automatically encoded and decoded using the attribute’s
MQe3DESCryptor and MQeRleCompressor. When the example target queue is
remotely accessed, for example using putMessage, queue-based security
automatically ensures that the message data is protected at the level defined by the
queue attribute. This protection applies during transfer between the initiating
queue manager and the queue, while the message is stored on the queue, and
during transfer between the queue and the receiving queue manager.

local security

Chapter 8. Security 117

Queue-based security and asynchronous queues
With synchronous queues, queue-based security is relatively simple. In this case a
message is put to a synchronous remote queue definition that has the same
security attributes as the destination queue. The message is transmitted over a
connection with appropriate security attributes and is stored on the secure queue.

With asynchronous queues, especially Store-and-forward queues and Home-server
queues, the transmitting and receiving queues are more likely to have different
security attributes. These differences have to be managed during message transfer.

Once a message has been put to an asynchronous queue it is transmitted from one
queue to another until it reaches its destination. A queue manager is responsible
for requesting the transfer of the message between a pair of queues and another
queue manager is responsible for responding to the request.

If queue based security is used, the requesting queue manager tries to establish a
connection with security attributes that match the queue that it owns. The queue
manager receiving the request checks that the existing attributes are sufficient for
its queue. For example, suppose a client queue manager has a queue with a DES
cryptor on it and messages are routed from this to a server’s Store-and-forward
queue that has a MARS cryptor. When the client is triggered to send a message it
tries to establish a DES encrytped connection to the server; the server asks the
Store-and-forward queue whether it will accept messages over a DES encrypted
connection.

If a queue doesn’t have any attribute rules, it only accepts a connection that has
exactly the same cryptor as itself. This behavior can be overridden by attribute
rules and by default queues use examples.rules.AttributeRules. These default
rules group cryptors into four strengths:
1. No cryptor
2. XOR cryptor
3. DES cryptor
4. All the other cryptors (triple DES, MARS, RC4, RC6)

Using these rules, a queue accepts messages from a connection if the cryptor on
the connection is at least as strong as its own cryptor:
v A queue with no cryptor accepts messages from any connection
v A queue with an XOR cryptor accepts messages from a connection with any

cryptor (but not a connection with no cryptor)
v A queue with a DES cryptor accepts messages from a connection with a DES,

triple DES, MARS, RC4 or RC6 cryptor
v A queue with a triple DES, MARS, RC4 or RC6 cryptor accepts messages from a

connection with any of triple DES, MARS, RC4 or RC6 cryptor

In the previous example, if the Store-and-forward queue used these rules it would
not accept a DES encrypted connection because DES is not as strong as its own
MARS cryptor, it would throw an ″attribute mismatch″ exception.

A Home-server queue trying to pull messages from a Store-and-forward queue
needs a cryptor that is at least as strong as that on the Store-and-forward queue,
because the Home-server queue is at the initiating end of the request. Once the
Home-server queue has received the message it can store it on a local queue that
has any level of protection.

queue-based security

118 WebSphere MQ Everyplace: C Bindings Programming Guide

This behavior can be changed by using different attribute rules on the queues. The
equals() method is used to compare the cryptors, so if the attribute rule has an
equals() method that always returns true, the queue accepts connections with any
cryptor.

Trying to send a message from a queue with a weaker cryptor to a queue with a
stronger cryptor usually results in an ″attribute mismatch″ exception. However if a
connection with a strong cryptor already exists between the queue managers, this
can be reused (depending on the attribute rules on the connection) and result in
the message being delivered.

Usage scenario
WebSphere MQ Everyplace queue-based security can be used whenever you need
to protect the confidentiality of message data being transferred between queue
managers.

A typical scenario could be a service that is delivered over an open network, like
the internet, where an initiating application makes requests, using a queue
manager on a client, to access a service provided by a server queue manager
application.

This can be implemented as follows:
1. The initiating client queue manager application encapsulates the request in an

WebSphere MQ Everyplace message
2. putMessage is used to transfer the message to a queue called

XXX_service_request on a remote server
3. A queue manager application on the server is setup to listen for messages on

the XXX_service_request queue
4. When a message event occurs, a getMessage is performed, to get the service

request message
5. The request is processed (for example by invocation of a CICS transaction on a

back-end system)
6. The response (transaction result) is encapsulated in a message
7. putMessage is used to return the response to a queue called XXX_service_reply

on the initiating client queue manager.
8. waitForMessage is used on the initiating queue manager to wait for a reply

message to arrive in the local queue called XXX_service_reply

One way to support this simple example would be to define the following queues:

Owned by the initiating client queue manager (ClientQMgr for example)
v TestClient_HomeServerQ
v XXX_service_reply

While a number of choices exist, setting the TestClient_HomeServerQ
TimerInterval option, to 5000 for example, sets a 5sec poll interval and
triggers the client queue manager to poll the server queue manager. This
poll ’pulls’ any messages on the server queue manager’s store-and-forward
queue that have been directed to the client queue manager. Also, before
running any client queue manager application, the
MQE_ADMIN_ACTION_ADD_QMGR option must be used to add a reference to the
server queue manager.

Owned by the server queue manager (ServerQMgr for example)

v TestServer_StoreAndForwardQ

queue-based security

Chapter 8. Security 119

v XXX_service_request

Defining the TestServer_StoreAndForwardQ for use in this scenario requires
two steps.
1. Create the queue
2. setAction MQE_ADMIN_ACTION_ADD_QMGR, with name ClientQMgr

Secure feature choices
When using queue-based security all the choices for attribute are available:

Authenticator
MQeWTLSCertAuthenticator

Cryptor
MQeXORCryptor or one of the symmetric cryptors MQeDESCryptor,
MQe3DESCryptor, MQeRC4Cryptor, MQeRC6Cryptor, or
MQeMARSCryptor

Compressor
MQeLZWCompressor, MQeRleCompressor, or MQeGZIPCompressor

Selection criteria
Queue-based security is appropriate for solutions designed to use synchronous
queues. In this case, the selection criteria is really concerned with the selection of
the (synchronous) queue attribute’s authenticator, cryptor and compressor.

The option to use an Authenticator is driven by the need to provide additional
controls to prevent access to the local data by unauthorized users. This is equally
relevant when the queue data is accessed locally or remotely.

Using a descendant of LogonAuthenticator, when the attribute is activated, for
example when an application is performing a putMessage(), getMessage() or
browseMessages() of data on the queue, the requirements of the authenticator
have to be satisfied before the operation is permitted. In the queue-based “Usage
scenario” on page 119, if the XXX_service_request queue is defined with an
attribute including the NTAuthenticator, then access to the server
XXX_service_request queue (for example when attempting to putMessage()
requests to this queue from a client queue manager), is restricted to the set of users
defined as valid NT users in the target server’s domain.

Using MQeWTLSCertAuthenticator ensures that all remote accesses to a queue
protected with an attribute using this authenticator have completed mutual
authentication before the operation can be executed. The mutual authentication of
the mini-certificates exchanged consists of each participant validating the
mini-certificate it receives. This validation checks the mini-certificate received is a
valid signed entity, signed by the same mini-certificate server as the requestor’s
own mini-certificate, and that it is valid with respect to date, that is the current
date is not prior to its from-date or after its to-date. An administration option
enables the solution creator to choose whether a target queue manager queue has
its own credentials (that it is an authenticatable entity in its own right, with its
own mini-certificate and associated private key) or shares the credentials of its
owning queue manager. In the queue-based “Usage scenario” on page 119, if the
XXX_service_request queue is defined with an attribute containing the
MQeWTLSCertAuthenticator, then access to the server XXX_service_request queue,
for example when the initiating client queue manager application performs a
remote putMessage(), depends on the credentials of the initiating client queue
manager and the target XXX_service_request queue being successfully mutually
authenticated.

queue-based security

120 WebSphere MQ Everyplace: C Bindings Programming Guide

The choice of cryptor is driven by the strength of protection required, that is, the
degree of difficulty that an attacker would face when cryptographically attacking
the protected data to get illegal access. Data protected with symmetric ciphers
which use 128 bit keys is acknowledged as being more difficult to attack than data
protected using ciphers that use shorter keys. But in addition to cryptographic
strength. The selection of a cipher may also be driven by many other factors. An
example of this is some financial solutions require the use of triple DES in order to
get audit approval.

The option to use a compressor is driven by the need to optimize the size of the
protected data. However, the effectiveness of the compressor depends on the
content of the data. The MQeRleCompressor performs run length encoding ; that
is, the compressor routines compress and/or expand repeated bytes. Hence it is
effective in compressing/decompressing data with many repeated bytes.
MQeLZWCompressor uses the LZW scheme. The simplest form of the LZW
algorithm uses a dictionary data structure in which various words (data patterns)
are stored against different codes. This compressor is likely to be most effective
where the data has a significant number of repeating words (data patterns).

Usage guide
To use queue base security, the queue manager that owns the queue must have a
private registry. If the MQeWTLSCertAuthenticator is used, the registry must also
have its own credentials, which it obtains by auto-registering with the
mini-certificate server. In the following example the credentials process is enabled
by adding information to the Registry Section of the queue manager’s
configuration (.ini) file. If the MQeWTLSCertAuthenticator is not used, a private
registry is still required but it does not have to register with the mini-certificate
server to obtain credentials.

The following code fragments provide an example of how to create queue manager
instances and define the queues identified for the queue-based scenario described
in “Usage scenario” on page 119.

Using qm_create to create ClientQMgr and ServerQMgr instances

Note: This example program takes the private registry PIN, the PIN, the
Certificate-request PIN, and the Key Ring Password from your command
line if required. This is convenient for an example but is not recommended
for a production system. Care should be taken to prevent the unauthorized
disclosure of PINs and passwords.

qm_create assists users to create queue manager instances that have private
registries. The class uses parameters found in the Registry Section of
MQePrivateClient1.ini and MQePrivateServer1.ini.

The particular instances can be created as follows:
1. If auto-registration with an MiniCertificateServer is required, an WebSphere

MQ Everyplace Java MiniCertificateServerGUI must be started, using
’administration’ mode, to define the queue manager instances (ClientQMgr and
ServerQMgr) as valid authenticatable entities with their certificate request PIN
set to the same value as that provided on your command line.

2. Use qm_create to create queue managers ClientQMgr and ServerQMgr. The PIN,
the Certificate-request PIN and the Key Ring Password parameters must also
be specified if MQeWTLSCertAuthenticator is to be used. For example:

queue-based security

Chapter 8. Security 121

qm_create ServerQMgr -p 12345678 -c 12345678 -k It_is_a_secret -s 127.0.0.1:8082

qm_create ClientQMgr -p 12345678 -c 22345678 -k It_is_a_secret -s 127.0.0.1:8082

3. Start a MiniCertificateServerGUI instance and select ’server’ mode.
4. Run the TestCreate program (shown in the following code fragment) to create

the queue manager instances.

Defining the queues identified for the queue-based scenario
described above
There are several ways to add queue definitions to a queue manager instance. The
method described here starts the queue manager instance locally, adds the new
queue definitions by creating the relevant administration messages and sending
them to the queue manager’s own administration queue, and then waits for
confirmation of success in an AdminReply queue.

ClientQMgr queues -adding TestClient_HomeServerQ:

Start the ClientQMgr locally then create and use administration messages to add
the queue and set the poll interval.
q_create ClientQMgr TestClient_HomeServerQ -h ServerQMgr Network:127.0.0.1:8081
TestServer_StoreAndForwardQ -p 12345678 -c 12345678 -k It_is_a_secret

-s FastNetwork:127.0.0.1:8082

ClientQMgr queues -adding XXX_service_reply queue: Start the ClientQMgr
locally then create and use an administration messages to add the queue.
q_create ClientQMgr XXX_service_reply -r -p 12345678 -c 12345678
-k It_is_a_secret -s FastNetwork:127.0.0.1:8082

ServerQMgr queues -adding TestServer_StoreAndForwardQ: Start the
ServerQMgr locally , create and use an administration messages to add the queue,
and then add a remote queue manager reference.
q_create ServerQMgr TestServer_StoreAndForwardQ -f ClientQMgr -p 12345678
-c 12345678 -k It_is_a_secret -s FastNetwork:127.0.0.1:8082

ServerQMgr queues -adding XXX_service_request queue: Start the ServerQMgr
locally using the MQePrivateClient class, (using a different version,
MQePrivateServer2.ini, that deliberately does not hold hard coded values for PIN,
KeyRingPassword and CertReqPIN) then create and use an administration messages
to add the queue.
q_create ServerQMgr XXX_service_request -q -p 12345678 -c 12345678
-k It_is_a_secret -s FastNetwork:127.0.0.1:8082

Example Server TestService application: An example Server TestService program,
securityTestService, is provided. It can be started by the command:
securityTestService ServerQMgr ClientQMgr -p 12345678 -c 12345678
-k It_is_a_secret -s FastNetwork:127.0.0.1:8082

Client queue manager application initiating XXX_service_request.:

The example queue-based security scenario in “Usage scenario” on page 119
describes a client queue manager application that initiates XXX_service_request
messages by encapsulating the request in a MQeMsgObject and using
putMessage() to reliably deliver the request to the server queue manager’s
XXX_sevice_request queue. It then waits for the reply to the service request by
using waitForReply() on its own XXX_service_reply queue.

queue-based security

122 WebSphere MQ Everyplace: C Bindings Programming Guide

In the scenario, the TestService application on the server processes the service
request by using getMessage() to get the service request from the
XXX_service_request queue, processes the request (for example by invocation of a
backend transaction), builds the reply MQeMsgObject, and uses the server queue
manager putMessage() to return the reply to the (remote) initiating client queue
manager.

The server queue manager internally puts the message onto its
TestServer_StoreAndForwardQ. The client queue manager pulls the message from
the TestServer_StoreAndForwardQ and receives it in its ClientTest_HomeServerQ
before putting it on the intended target XXX_service_reply queue.

An example Client TestService program, securityTestClient, is also provided. It
invokes a service request and processes the resulting reply. This example can be
started by the command:
securityTestClient ClientQMgr ServerQMgr Network:127.0.0.1:8081 -p 12345678
-c 22345678 -k It_is_a_secret -s FastNetwork:127.0.0.1:8082

Queue-based security and triggering auto-registration
When a queue manager accesses a remote queue or any local queue that is defined
with an attribute including the MQeWTLSCertAuthenticator, then the queue
manager and queues are authenticatable entities and require their own credentials.

A queue manager’s credentials are created by triggering auto-registration. The
simplest way of triggering auto-registration is to include the relevant keywords in
the registry section of the ini file used when the queue manager is created. The
keywords needed on the command line are:
-c 22345678 -k It_is_a_secret -s FastNetwork:127.0.0.1:8082

The credentials of queues (with an attribute including
MQeWTLSCertAuthenticator) are also created by triggering auto-registration. This
happens automatically when an administration message adding the queue is
processed providing that:
v The owning queue manager has already auto-registered, and been started with

parameters necessary to access its own credentials and the solutions’s
mini-certificate server

v The owning queue manager name and queue name have been predefined by the
mini-certificate server administrator, with the mini-certificate request PIN set to
the same value as the CertReqPIN value used to start the owning queue manager

v The mini-certificate server is available, started, and is in ’server’ mode

When adding a queue (with an attribute including MQeWTLSCertAuthenticator)
the queue can have its own credentials or it can share its owning queue manager’s
credentials. This choice is determined when the ’create queue’ administration
message is constructed.

The following describes how to create a queue with name ServerTestQWTLS on
ServerQMgr.

Assume that the mini-certificate server administrator has added
ServerQMgr+ServerTestQWTLS2 with Certificate Request PIN equal to 12345678,
and has started the mini-certificate server in ’server’ mode. Use the -o flag on a
q_create command to create queue ServerTestQWTLS2 as in the following example:
q_create ServerQMgr ServerTestQWTLS2 -o -p 12345678 -c 12345678 -k It_is_a_secret

-s FastNetwork:127.0.0.1:8082

queue-based security

Chapter 8. Security 123

Where the 12345678 following -c is ServerTestQWTLS2’s Certificate Request PIN
(not ServerQMgr’s). Effectively, the -o flag causes the MQE_QUEUE_TARGETREGISTRY
field in the queue creation administration message to be set to
MQE_QUEUE_REGISTRYQUEUE, which means that the queue to be created should have
its own credentials. (If the queue to be created is sharing its queue manager’s
credentials, MQE_QUEUE_TARGETREGISTRY must be set to MQE_QUEUE_REGISTRYQMGR. If
the queue to be created is not having credentials, MQE_QUEUE_TARGETREGISTRY must
be set to MQE_QUEUE_REGISTRYNONE.) The -o also causes the obtained credentials to
be published in the queue manager’s public registry.

Queue-based security, starting queue managers with private
registries
Whenever a queue manager and any of its queues are authenticatable entities, that
is, have their own credentials, then, in order to access these credentials, the
appropriate parameters are needed when the queue manager is started.

While hard coding these parameters in the registry section of the appropriate ini
file is a convenient mechanism during solution development, it is inappropriate for
a production system. Whenever possible, these parameters should be collected
interactively and used to start a queue manager instance without storing them in a
file.

Queue-based security - connection reuse
When data is sent between a queue manager and a remote queue, the queue
manager opens a connection to the remote queue manager that owns the queue. By
default, if the remote queue is protected, for example with a cryptor, the
connection is given exactly the same level of protection as the queue. To reduce the
number of connections open concurrently, the queue manager can reuse an existing
connection if its level of protection is adequate. If none of the connections has a
suitable level of protection, the queue manager can also change the level of
protection on an existing connection to match that required for the queue. The
default behavior can be changed by using attribute rules on both the queue and
the connection. These rules apply to the attribute on the queue (and connection),
they are not the same as queue rules.

The C Bindings code API does not support attribute rules written in C. However,
users can write their own rules in Java. An example Java rule,
examples.rules.AttributeRule, is provided.

While the examples.rules.AttributeRule provides practical defaults, there may be a
solution specific reason why different behavior is required. You can modify the
way connections are reused by extending or replacing the default
examples.rules.AttributeRule with rules that define the desired behavior.

If attribute rules are defined for the queue, the queue manager uses the rules to
decide whether an existing connection has sufficient protection for the queue. If the
equals() function in the rules returns true, the connection can be used. WebSphere
MQ Everyplace provides an example rule, examples.rules.AttributeRule, that can
be used on the queue. This rule allows a connection to be used for a queue if the
following conditions are met:
v If the queue has an authenticator, the connection must have the same

authenticator. If the queue does not have an authenticator, it does not matter
whether the connection has one or not.

queue-based security

124 WebSphere MQ Everyplace: C Bindings Programming Guide

v If the queue has a cryptor, the connection must have a cryptor that is the same
as or better than that on the queue. If the queue does not have a cryptor it does
not matter whether the connection has one or not.

v It does not matter what compressors are defined for the queue or connection

The example rules define ″better″ for a cryptor to mean:
v Any cryptor is the same as or better than XOR
v Any cryptor, except XOR, is the same as or better then DES
v The remaining cryptors (Triple DES, RC4, RC6, and MARS) are considered equal

to each other and all better than XOR and DES.

If none of the existing connections has sufficient protection for the queue, the
queue manager checks if any of the connections can be upgraded to the required
level. If attribute rules are defined for the connection, the permit() function is used
to determine this. The examples.rules.AttributeRule uses the following criteria:
v If the connection has been authenticated it cannot be upgraded, but if it does not

have one, an authenticator can be added to a connection.
v A cryptor can be added to a connection or strengthened (using the criteria for

″better″ described above). A cryptor cannot be removed from the connection or
replaced with a weaker cryptor.

v A compressor can be changed, added to, or removed from the connection.

Before allowing connection reuse, the target queue uses its current AttributeRule
equals() function to determine if the connection attribute can provide an
appropriate level of protection for the target queue. This provides protection
against inconsistency in the queue attribute rules on the local and target queue
managers.

Attribute rules are set on a queue when it is created or modified using
administration messages. Attribute rules are set on connections by defining an alias
on ChannelAttrRules. For example, the following pseudo-code shows how to make
a queue manager use examples.rules.AttributeRule.
mqe_alias(pErrorBlock, MQeString("ChannelAttrRules"),

MQeString("examples.rules.AttributeRule"));

It is possible to run without setting ChannelAttrRules, but this mode of operation
is not recommended.

Message-level security
Message-level security facilitates the protection of message data between an
initiating and receiving WebSphere MQ Everyplace application. Message-level
security is an application layer service. It requires the initiating WebSphere MQ
Everyplace application to create a message-level attribute and provide it when
using putMessage() to put a message to a target queue. The receiving application
must setup an appropriate, ’matching’, message-level attribute and pass it to the
receiving queue manager so that the attribute is available when getMessage is used
to get the message from the target queue.

Like local security, message-level security exploits the application of an attribute on
a message (MQeFields object descendent). The initiating application’s queue
manager handles the application’s putMessage() with the message dump function,
which invokes the (attached) attribute’s encodeData() function to protect the
message data. The receiving application’s queue manager handles the application’s

queue-based security

Chapter 8. Security 125

getMessage() with the message’s ’restore’ function which in turn uses the supplied
attribute’s decodeData() function to recover the original message data.

Usage scenario
Message-level security is typically most useful for:
v Solutions that are designed to use predominantly asynchronous queues
v Solutions for which application level security is important, that is solutions

whose normal message paths include flows over multiple nodes perhaps
connected with different protocols. Message-level security manages trust at the
application level, which means security in other layers becomes unnecessary.

A typical scenario is a solution service that is delivered over multiple open
networks. For example over a mobile network and the internet, where, from outset
asynchronous operation is anticipated. In this scenario, it is also likely that
message data is flowed over multiple links that may have different security
features, but whose security features are not necessarily controlled or trusted by
the solution owner. In this case it is very likely the solution owner does not wish
to delegate trust for the confidentiality of message data to any intermediate, but
would prefer to manage and control trust management directly.

WebSphere MQ Everyplace message-level security provides solution designers with
the features that enable the strong protection of message data in a way that is
under the direct control of the initiating and recipient applications, and that
ensures the confidentiality of the message data throughout its transfer, end to end,
application to application.

Secure feature choices
WebSphere MQ Everyplace supplies two alternative attributes for message-level
security.

MQeMAttribute
This suits business-to-business communications where mutual trust is
tightly managed in the application layer and requires no trusted third
party. It allows use of all available WebSphere MQ Everyplace symmetric
cryptor and compressor choices. Like local security it requires the
attribute’s key to be preset before it is supplied as a parameter on
putMessage() and getMessage(). This provides a simple and powerful
method for message-level protection that enables use of strong encryption
to protect message confidentiality, without the overhead of any public key
infrastructure (PKI).

MQeMTrustAttribute
This provides a more advanced solution using digital signatures and
exploiting the default public key infrastructure to provide a digital
envelope style of protection. It uses ISO9796 digital signature/validation so
the receiving application can establish proof that the message came from
the purported sender. The supplied attribute’s cryptor protects message
confidentiality. SHA1 digest guarantees message integrity and RSA
encryption/decryption ensures that the message can only be restored by
the intended recipient. As with MQeMAttribute, it allows use of all
available WebSphere MQ Everyplace symmetric cryptor and compressor
choices. Chosen for size optimization, the certificates used are
mini-certificates which conform to the WTLS Specification approved by the
WAP forum. WebSphere MQ Everyplace provides a default public key
infrastructure to distribute the certificates as required to encrypt and
authenticate the messages.

message-level security

126 WebSphere MQ Everyplace: C Bindings Programming Guide

A typical MQeMTrustAtribute protected message has the format:
RSA-enc{SymKey}, SymKey-enc{Data, DataDigest, DataSignature}

where:

RSA-enc:
RSA encrypted with the intended recipient’s public key, from his
mini-certificate

SymKey:
Generated pseudo-random symmetric key

SymKey-enc:
Symmetrically encrypted with the SymKey

Data: Message data

DataDigest:
Digest of message data

DigSignature:
Initiator’s digital signature of message data

Selection Criteria
MQeMAttribute relies totally on the solution owner to manage the content of the
key seed that is used to derive the symmetric key used to protect the
confidentiality of the data. This key seed must be provided to both the initiating
and recipient applications. While it provides a simple mechanism for the strong
protection of message data without the need of any PKI, it clearly depends of the
effective operational management of the key seed.

MQeMTrustAttribute exploits the advantages of the WebSphere MQ Everyplace
default PKI to provide a digital envelope style of message-level protection. This not
only protects the confidentiality of the message data flowed, but checks its
integrity and enables the initiator to ensure that only the intended recipient can
access the data. It also enables the recipient to validate the originator of the data,
and ensures that the signer cannot later deny initiating the transaction. This is
known as non-repudiation.

Solutions that wish to simply protect the end-to-end confidentiality of message
data will probably decide that MQeMAttrribute suits their needs, while solutions
for which one to one (authenticatable entity to authenticatable entity) transfer and
non-repudiation of the message originator are important may find
MQeMTrustAttribute is the correct choice.

Usage guide
The following pseudo-code fragments provide examples of how to protect and
unprotect a message using MQeMAttribute and MQeMTrustAttribute

WebSphere MQ Everyplace message-level security using
MAttribute
/*SIMPLE PROTECT FRAGMENT */

MQeMsgHndl msgObj;
MQeMAttributeHndl attr = null;
MQeInt64 confirmId;

MQERETURN rc;
MQeExceptBlock exceptBlock;
MQe3DESCryptorHndl tdes;
MQeMAttributeHndl attr;

message-level security

Chapter 8. Security 127

MQeKeyHndl localkey;
MQeMsgHndl msgObj;

/* create the cryptor */
rc = mqe_uniqueValue(&exceptBlock, &confirmId);

rc = mqe3DESCryptor_new(&exceptBlock, &tdes);
/* create an attribute using the cryptor */
rc = mqeMAttribute_new(&exceptBlock,&attr, NULL,tdes,NULL);
/* create a local key */
rc = mqeKey_new(&exceptBlock,&localkey);
/* give it the key seed */
rc = mqeKey_setLocalKey(localkey, new(&exceptBlock,

MQeString("my secret key"));
/* set the key in the attribute */
rc = mqeMAttribute_setKey(attr, &exceptBlock, localkey);
/* create the message */
rc = mqeMsg_new(&exceptBlock, &msObj);
rc = mqeFields_putAscii(msgObj, &exceptBlock, MQeString("MsgData"),

MQeString("0123456789abcdef..."));
/* put the message using the attribute */
rc = mqeQueueManager_putMessage(newQM, &exceptBlock, targetQMgrName,

targetQName, msgObj, attr, confirmId);

/*SIMPLE UNPROTECT FRAGMENT */

MQeMsgHndl msgObj2;
MQeMAttributeHndl attr2;
MQeInt64 confirmId2;

MQeKeyHndl localkey;
MQERETURN rc;
MQeExceptBlock exceptBlock;

rc = mqe_uniqueValue(&exceptBlock, &confirmId2);
/* create the attribute - we do not have to specify the cryptor, */

/* the attribute can get this from the message itself */
rc = mqeMAttribute_new(&exceptBlock, &attr2, NULL,

NULL, NULL);
/* create a local key */
rc = mqeKey_new(&exceptBlock, &localkey);
/* give it the key seed */
rc = mqeKey_setLocalKey(localkey,

&exceptBlock,MQeString("my secret key"));
/* set the key in the attribute */
rc = mqeMAttribute_setKey(attr2, &exceptBlock, localkey);
/* get the message using the attribute */
rc = mqeQueueManager_getMessage(newQM, &exceptBlock, &msgObj2,

targetQMgrName, targetQName, NULL,
attr2, confirmId2);

WebSphere MQ Everyplace message-level security using
MTustAttribute
/*SIMPLE PROTECT FRAGMENT */

MQeMsgHndl msgObj;
MQeMTrustAttributeHndl attr;

MQeMARSCryptorHndl mars;
MQePrivateRegistryHndl sendreg;
MQePublicRegistryHndl pr;
MQeMsgObjectHndl msgObj;

MQeInt64 confirmId;
MQERETURN rc;
MQeExceptBlock exceptBlock;

rc = mqe_uniqueValue(&exceptBlock, &confirmId);
/* create the cryptor */

message-level security

128 WebSphere MQ Everyplace: C Bindings Programming Guide

rc = mqeMARSCryptor_new(&exceptBLock, &mars);
/* create an attribute using the cryptor */
rc = mqeMTrustAttribute_new(&exceptBLock, &attr, NULL,

mars, NULL);
/* open the private registry belonging to the sender */
rc = mqePrivateRegistry_new(&exceptBLock, &sendreg);
rc = mqePrivateRegistry_activate(sendreg, &exceptBLock,

MQeStrinh("Bruce1"),
MQeString(".//MQeNode_PrivateRegistry"),
MQeString("12345678"),
MQeString("It_is_a_secret"), NULL, NULL);

/* set the private registry in the attribute */
rc = mqeMTrustAttribute_setPrivateRegistry(attr, &exceptBLock, sendreg);
/* set the target (recipient) name in the attribute */
rc = mqeMTrustAttribute_setTarget(attr, &exceptBLock,

MQeString("Bruce8"));
/* open a public registry to get the target’s certificate */
rc = mqePublicRegistry_new(&exceptBLock, &pr);

rc = mqePublicRegistry_activate(pr, &exceptBLock,
MQeString("MQeNode_PublicRegistry"),
MQeString(".//"));

/* set the public registry in the attribute */
rc = mqeMTrustAttribute_setPublicRegistry(attr, &exceptBLock, pr);
/* set a home server, which is used to find the certificate*/
/* if it is not already in the public registry */
rc = mqeMTrustAttribute_setHomeServer(attr, &exceptBLock,

MQeString(MyHomeServer ":8082"));
/* create the message */
rc = mqeMsgObject_new(&exceptBLock, &msObj);
rc = mqeFields_putAscii(msgObj, &exceptBLock, MQeString("MsgData"),

MQeString("0123456789abcdef..."));
/* put the message using the attribute */
rc = mqeQueueManager_putMessage(newQM, &exceptBLock, targetQMgrName,

targetQName, msgObj,
attr, confirmId);

/*SIMPLE UNPROTECT FRAGMENT */

MQeMsgHNDL msgObj2;
MQeMTrustAttributeHndl attr2;

MQeMARSCryptorHndl mars;
MQePrivateRegistryHndl getreg;
MQePublicRegistryHndl pr;

MQeInt64 confirmId2;
MQERETURN rc;
MQeExceptBlock exceptBlock;

rc = mqe_uniqueValue(&exceptBLock, &confirmId);
/* create the cryptor */
rc = mqeMARSCryptor_new(&exceptBLock, &mars);
/* create an attribute using the cryptor */
rc = mqeMTrustAttribute_new(&exceptBLock,&attr2, NULL,

mars, NULL);
/* open the private registry belonging to the target */
rc = mqePrivateRegistry_new(&exceptBLock, &getreg);
rc = mqePrivateRegistry_activate(getreg, &exceptBLock,

MQeStrinh("Bruce8"),
MQeString(".//MQeNode_PrivateRegistry"),
MQeString("12345678"),
MQeString("It_is_a_secret"), NULL, NULL);

/* set the private registry in the attribute */
rc = mqeMTrustAttribute_setPrivateRegistry(attr2, &exceptBLock, getreg);
/* open a public registry to get the sender’s certificate */
rc = mqePublicRegistry_new(&exceptBLock, &pr);
rc = mqePublicRegistry_activate(pr, &exceptBLock,

MQeString("MQeNode_PublicRegistry"),
MQeString(".//"));

message-level security

Chapter 8. Security 129

/* set the public registry in the attribute */
rc = mqeMTrustAttribute_setPublicRegistry(attr2, &exceptBLock, pr);
/* set a home server, which is used to find the certificate*/
/* if it is not already in the public registry */
rc = mqeMTrustAttribute_setHomeServer(attr2, &exceptBLock,

MQeString(MyHomeServer ":8082"));
/* get the message using the attribute */

rc = mqeQueueManager_getMessage(newQM, &exceptBLock, &msgObj2,
targetQMgrName, targetQName, NULL,
attr2, confirmId2);

Non-repudiation
The MQeMTrustAttribute digitally signs the message. This enables the recipient to
validate the creator of the message, and ensures that the creator cannot later deny
creating the message. This is known as non-repudiation. This process depends on
the fact that only one public key (certificate) can validate the signature successfully,
and this proves that the signature was created with the corresponding private key.
The only way the alleged creator can deny creating the message is to claim that
someone else had access to the private key.

When a message is created with the MQeMTrustAttribute, it uses the private key
from the sender’s private registry to create the digital signature and it stores the
sender’s name in the message. When the message is read (with the queue
manager’s getMessage() function), it uses the sender’s public certificate to validate
the digital signature. The message is read successfully only if the signature
validates successfully, proving that the message was created by the entity whose
name was stored in the message as the sender.

When the MQeMTrustAttribute is specified as a parameter to the queue manager’s
getMessage() function, the attribute validates the digital signature but by the time
the message is returned to the user’s application all the information relating to the
signature has been discarded. If non-repudiation is important to you, you must
keep a record of this information. The simplest way to do this is to keep a copy of
the encrypted message, because that includes the digital signature. You can do this
by using the getMessage() function without an attribute. This returns the
encrypted message which you can then save, for example in a local queue. You can
decrypt the message by applying the attribute to access the contents of the
message.

The following pseudo-code fragment provides an example of how to save an
encrypted message.

Saving a copy of an encrypted message
/*SIMPLE FRAGMENT TO SAVE ENCRYPTED MESSAGE*/

MQeMsgHndl msgObj2, tmpMsg1, tmpMsg2;
MQeMTrustAttributeHndl attr2;
MQeMARSCryptorHndl mars;
MQePrivateRegistryHndl getreg;
MQePublicRegistryHndl pr;
MQeInt64 confirmId2, confirmId3;
MQERETURN rc;
MQeExceptBlock exceptBlock;

rc = mqe_uniqueValue(&exceptBlock, &confirmId2);
rc = mqe_uniqueValue(&exceptBlock, &confirmId3);

/* read the encrypted message without an attribute */
rc = mqeQueueManager_getMessage(newQM, &exceptBlock,

&tmpMsg1,

message-level security

130 WebSphere MQ Everyplace: C Bindings Programming Guide

targetQMgrName,targetQName,
NULL, NULL, confirmId2);

/* save the encrypted message - we cannot put it directly */
/* to another queue because of the origin queue manager */
/* data. Embed it in another message */
rc = mqeMsg_new(&exceptBlock, &tmpMsg2);
rc = mqeFields_putFields(tmpMsg2, &exceptBlock,

MQeTring("encryptedMsg"), tmpMsg1);
rc = mqeQueueManager_putMessage(newQM, &exceptBlock, localQMgrName,

archiveQName, tmpMsg2, NULL, confirmId3);
/* now decrypt and read the message ... */
/* create the cryptor */
rc = mqeMARSCryptor_new(&exceptBlock, &mars);
/* create an attribute using the cryptor */
rc = mqeMTrustAttribute_new(&exceptBlock, &attr2,

NULL, mars, NULL);
/* open the private registry belonging to the target */
rc = mqePrivateRegistry_new(&exceptBlock, &getreg);
rc = mqePrivateRegistry_activate(getreg, &exceptBlock,

MQeStrinh("Bruce8"),
MQeString(".//MQeNode_PrivateRegistry"),

MQeString("12345678"), MQeString("It_is_a_secret"),
NULL, NULL);

/* set the private registry in the attribute */
rc = mqeMTrustAttribute_setPrivateRegistry(attr2, &exceptBlock,

getreg);
/* open a public registry to get the sender’s certificate */
rc = mqePublicRegistry_new(&exceptBlock, &pr);
rc = mqePublicRegistry_activate(pr, &exceptBlock,

MQeString("MQeNode_PublicRegistry"),
MQeString(".//"));

/* set the public registry in the attribute */
rc = mqeMTrustAttribute_setPublicRegistry(attr2, &exceptBlock, pr);
/* set a home server, which is used to find the certificate*/
/* if it is not already in the public registry */
rc = mqeMTrustAttribute_setHomeServer(attr2, &exceptBlock,

MQeString(MyHomeServer ":8082"));
/* decrypt the message by unwrapping it */
rc = mqeMsg_unwrapMsgObject(tmpMsg1, &exceptBlock,

msObj2, attr2);

Private registry service
This section describes the private registry service provided by WebSphere MQ
Everyplace.

Private registry and the concept of authenticatable entity
Queue-based security, that uses mini-certificate based mutual authentication and
message-level security, that uses digital signature, have triggered the concept of
authenticatable entity. In the case of mutual authentication it is normal to think
about the authentication between two users but, messaging generally has no
concept of users. The normal users of messaging services are applications and they
handle the user concept.

WebSphere MQ Everyplace abstracts the concept of target of authentication from
user (person) to authenticatable entity. This does not exclude the possibility of
authenticatable entities being people, but this would be application selected
mapping.

Internally, WebSphere MQ Everyplace defines all queue managers that can either
originate or be the target of mini-certificate dependent services as authenticatable
entities. WebSphere MQ Everyplace also defines queues defined to use

message-level security

Chapter 8. Security 131

mini-certificate based authenticators as authenticatable entities. So queue managers
that support these services can have one (the queue manager only), or a set (the
queue manager and every queue that uses certificate based authenticator) of
authenticatable entities.

WebSphere MQ Everyplace provides configurable options to enable queue
managers and queues to auto-register as an authenticatable entity. WebSphere MQ
Everyplace private registry service (MQePrivateRegistry) provides services that
enable an WebSphere MQ Everyplace application to auto-register authenticatable
entities and manage the resulting credentials.

All application registered authenticatable entities can be used as the initiator or
recipient of message-level services protected using MQeMTrustAttribute.

Private registry and authenticatable entity credentials
To be useful every authenticatable entity needs its own credentials. This provides
two challenges, firstly how to execute registration to get the credentials, and
secondly where to manage the credentials in a secure manner. WebSphere MQ
Everyplace private registry services help to solve these two problems. These
services can be used to trigger auto-registration of an authenticatable entity
creating its credentials in a secure manner and they can also be used to provide a
secure repository.

Private registry (a descendent of base registry) adds to base registry many of the
qualities of a secure or cryptographic token. For example, it can be a secure
repository for public objects (mini-certificates) and private objects (private keys). It
provides a mechanism to limit access to the private objects to the authorized user.
It provides support for services (for example digital signature, RSA decryption) in
such a way that the private objects never leave the private registry. Also, by
providing a common interface, it hides the underlying device support.

Auto-registration
WebSphere MQ Everyplace provides default services that support auto-registration.
These services are automatically triggered when an authenticatable entity is
configured; for example when a queue manager is started, or when a new queue is
defined, or when an WebSphere MQ Everyplace application uses
MQePrivateRegistry directly to create a new authenticatable entity. When
registration is triggered, new credentials are created and stored in the
authenticatable entity’s private registry. Auto-registration steps include generating
a new RSA key pair, protecting and saving the private key in the private registry;
and packaging the public key in a new-certificate request to the default
mini-certificate server. Assuming the mini-certificate server is configured and
available, and the authenticatable entity has been pre-registered by the
mini-certificate server (is authorized to have a certificate), the mini-certificate
server returns the authenticatable entity’s new mini-certificate, along with its own
mini-certificate and these, together with the protected private key, are stored in the
authenticatable entity’s private registry as the entity’s new credentials.

While auto-registration provides a simple mechanism to establish an
authenticatable entity’s credentials, in order to support message-level protection,
the entity requires access to its own credentials (facilitating digital signature) and
to the intended recipient’s public key (mini-certificate).

Usage scenario
The primary purpose of WebSphere MQ Everyplace’s private registry is to provide
a private repository for WebSphere MQ Everyplace authenticatable entity

private registry service

132 WebSphere MQ Everyplace: C Bindings Programming Guide

credentials. An authenticatable entity’s credentials consist of the entity’s
mini-certificate (encapsulating the entity’s public key), and the entity’s (keyring
protected) private key.

Typical usage scenarios need to be considered in relation to other WebSphere MQ
Everyplace security features:

Queue-based security with MQeWTLSCertAuthenticator
Whenever queue-based security is used, where a queue attribute is defined
with MQeWTLSCertAuthenticator, (mini-certificate based mutual
authentication) the authenticatable entities involved are WebSphere MQ
Everyplace owned. Any queue manager that is to be used to access
messages in such a queue, any queue manager that owns such a queue
and the queue itself are all authenticatable entities and need to have their
own credentials. By using the correct configuration options and setting up
and using an instance of WebSphere MQ Everyplace mini-certificate
issuance service, auto-registration can be triggered when the queue
managers and queues are created, creating new credentials and saving
them in the entities’ own private registries.

Message-level security with MQeMTrustAttribute
Whenever message-level security is used with MQeMTrustAttribute, the
initiator and recipient of the MQeMTrustAttribute protected message are
application owned authenticatable entities that must have their own
credentials. In this case, the application must use the services of
MQePrivateRegistry (and an instance of WebSphere MQ Everyplace
mini-certificate issuance service) to trigger auto-registration to create the
entities’ credentials and to save them in the entities’ own private registries.

Secure feature choices
WebSphere MQ Everyplace Version 1 provides no support for any alternative
secure repository for an authenticatable entity’s credentials. If queue-based security
with MQeWTLSCertAuthenticator or message-level security using
MQeMTrustAttribute are used, private registry services must be used.

Selection criteria
The selection criteria for private registry are the same as those for queue-based and
message-level security.

Usage guide
Prior to using queue-based security, WebSphere MQ Everyplace owned
authenticatable entities must have credentials. This is achieved by completing the
correct configuration so that auto-registration of queue managers is triggered. This
requires the following steps:
1. Setup and start an instance of WebSphere MQ Everyplace mini-certificate

issuance service.
2. In administration mode, add the name of the queue manager as a valid

authenticatable entity, and the entity’s one-time-use certificate request PIN.
3. Start the mini-certificate server in server mode.
4. Refer to the description in “Using qm_create to create ClientQMgr and

ServerQMgr instances” on page 121.

Prior to using message-level security to protect messages using
MQeMTrustAttribute, the application must use private registry services to ensure
that the initiating and recipient entities have credentials. This requires the
following steps:

private registry service

Chapter 8. Security 133

1. Setup and start an instance of WebSphere MQ Everyplace mini-certificate
issuance service.

2. In administration mode, add the name of the application entity, and allocate the
entity a one-time-use certificate request PIN.

3. Start the mini-certificate server in server Mode.
4. Use a program similar to the code fragment below to trigger auto-registration

of the application entity . This creates the entity’s credentials and saves them in
its private registry.

/* SIMPLE MQePrivateRegistry FRAGMENT */
MQePrivateRegistryHndl preg;
MQERETURN rc;
MQeExceptBlock exceptBlock;

/* setup PrivateRegistry parameters */
rc = mqePrivateRegistry_new(&Block, &preg);
rc = mqePrivateRegistry_activate(

preg,
&Block,
MQeString("Bruce"), /* entity name */

MQeString(".//MQeNode_PrivateRegistry"),
/* directory root */

MQeString("11111111"),
/* private reg access PIN */

MQeString("It_is_a_secret"),
/* private credential keyseed */

MQeString("12345678"),
/* on-time-use Cert Req PIN */

MQeString("9.20.X.YYY:8082"));
/* addr and port MiniCertSvr */

Public registry service
This section describes the public registry service provided by WebSphere MQ
Everyplace.

WebSphere MQ Everyplace provides default services facilitating the sharing of
authenticatable entity public credentials (mini-certificates) between WebSphere MQ
Everyplace nodes. Access to these mini-certificates is a prerequisite for
message-level security. WebSphere MQ Everyplace public registry (also a
descendent of base registry) provides a publicly accessible repository for
mini-certificates. This is analogous to the personal telephone directory service on a
mobile phone, the difference being that it is a set of mini-certificates of the
authenticatable entities instead of phone numbers. WebSphere MQ Everyplace
public registry is not a purely passive service. If accessed to provide a
mini-certificate that is does not hold, and if the public registry is configured with a
valid home server, the public registry automatically attempts to get the requested
mini-certificate from the public registry of the home server. It also provides a
mechanism to share a mini-certificate with the public registry of other WebSphere
MQ Everyplace nodes. Together these services provide the building blocks for an
intelligent automated mini-certificate replication service that can facilitates the
availability of the right mini-certificate at the right time.

Usage scenario
A typical scenario for the use of the public registry would be to use these services
so that the public registry of a particular WebSphere MQ Everyplace node builds
up a store of the most frequently needed mini-certificates as they are used.

private registry service

134 WebSphere MQ Everyplace: C Bindings Programming Guide

A simple example of this is to setup an WebSphere MQ Everyplace client to
automatically get the mini-certificates of other authenticatable entities that it needs,
from its WebSphere MQ Everyplace home server, and then save them in its public
registry.

Secure feature choices
It is the Solution creator’s choice whether to use the public registry active features
for sharing and getting mini-certificates between the public registries of different
WebSphere MQ Everyplace nodes.

The alternative to this intelligent replication may be to have an out-of-band utility
to initialize an WebSphere MQ Everyplace node’s public registry with all required
mini-certificates before enabling any secure services that uses them.

Selection criteria
Out-of-band initialization of the set of mini-certificates available in an WebSphere
MQ Everyplace node’s public registry may have advantages over using the public
registry active features in the case where the solution is predominantly
asynchronous and the synchronous connection to the WebSphere MQ Everyplace
node’s home server may be difficult. But in the case where this connection is more
likely to be available, the public registry’s active mini-certificate replication services
are useful tools to automatically maintain the most useful set of mini-certificates on
any WebSphere MQ Everyplace node public registry.

Usage guide
The following code segment demonstrates how to share certificates among a group
of queue managers:
/*SIMPLE MQePublicRegistry shareCertificate FRAGMENT */
MQePublicRegistryHndl pubreg;
MQePrivateRegistryHndl preg;
MQERETURN rc;
MQeExceptBlock exceptBlock;
MQeStringHndl hEntityName;
MQeFieldsHndl hCert;
MQEINT32 i;

/*instantiate and activate PublicReg */
rc = mqePublicRegistry_new(&exceptBlock, &pubreg);
rc = mqePublicRegistry_activate(pubreg, &exceptBlock,

MQeString("MQeNode_PublicRegistry"),
MQeString(".\\"));

/* auto-register Bruce1,Bruce2...Bruce8 */
/* ... note that the mini-certificate issuance service must */
/* have been configured to allow the auto-registration */
for (i = 1; i < 9; i++)
{
rc = MQeString_new(&exceptBlock,

&hEntityName, strcat("Bruce" + itoa(i)));
rc = mqePrivateRegistry_new(&exceptBlock, &preg);
/* activate() will initiate auto-registration */
rc = mqePrivateRegistry_activate(
preg,
&exceptBlock,
hEntityName,
MQeString(".\\MQeNode_PrivateRegistry"),
MQeString("12345678"),
MQeString("It_is_a_secret"),
MQeString("12345678"),
MQeString("9.20.X.YYY:8082")

);
/* save MiniCert from PrivReg in PubReg*/

public registry service

Chapter 8. Security 135

rc = mqePrivateRegistry_getCertificate(preg, &exceptBlock,
&hCert, hEntityName);

rc = mqePublicRegistry_putCertificate(pubreg, &exceptBlock,
hEntityName, hCert);

/* before share of MiniCert */
rc = mqePublicRegistry_shareCertificate(pubreg,&exceptBlock,

hEntityName, hCert,
MQeString("9.20.X.YYY:8082"));

rc = mqePrivateRegistry_close(preg, &exceptBlock);
(void)mqePrivateRegistry_free(preg, NULL);
(void)mqeString_free(hEntityName, NULL);
(void)mqeFields_free(hCert, NULL);
}
rc = mqePublicRegistry_close(pubreg, &exceptBlock);
(void)mqePublicRegistry_close(pubreg, NULL);

Notes:

1. It is not possible to activate a registry instance more than once, hence the
example above demonstrates the recommended practice of accessing a private
registry by creating a new instance of MQePrivateRegistry, activating the
instance, performing the required operations and closing the instance.

2. If you want to share certificates using a public registry on the home-server, the
public registry must be called MQeNode_PublicRegistry.

mini-certificate issuance service
Please refer to the corresponding section in WebSphere MQ Everyplace Application
Programming Guide

public registry service

136 WebSphere MQ Everyplace: C Bindings Programming Guide

Appendix A. Applying maintenance to WebSphere MQ
Everyplace

Maintenance updates for WebSphere MQ Everyplace are always shipped as a
complete new release. There are two options when upgrading from one release to
another:

Completely uninstall the current level, and install the new level in same
directory

When doing this it is recommended you keep the install package for the
current level to allow it to be restored later if necessary.

Keep the existing level and install the new level into a new directory
After installation, check your classpath to ensure that the latest level of
WebSphere MQ Everyplace is being invoked. If installing on Windows,
make sure that you give the shortcuts folder for the new install a different
name to the existing one.

For more general information on maintenance updates and their availability see
the WebSphere MQ family Web page at http://www.software.ibm.com/mqseries/.

© Copyright IBM Corp. 2000, 2002 137

138 WebSphere MQ Everyplace: C Bindings Programming Guide

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
IBM® may not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,

© Copyright IBM Corp. 2000, 2002 139

Winchester,
Hampshire
England
SO21 2JN

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Trademarks
The following terms are trademarks of International Business machines
Corporation in the United States, or other countries, or both.

AIX Everyplace IBM iSeries MQSeries WebSphere z/OS zSeries

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

UNIX is a registered trademark of X/Open in the United States and other
countries.

Windows and Windows NT are registered trademark of Microsoft Corporation in
the United States and other countries.

Other company, product, and service names may be trademarks or service marks
of others.

notices

140 WebSphere MQ Everyplace: C Bindings Programming Guide

Glossary

This glossary describes terms used in this book
and words used with other than their everyday
meaning. In some cases, a definition may not be
the only one applicable to a term, but it gives the
particular sense in which the word is used in this
book.

If you do not find the term you are looking for,
see the index or the IBM Dictionary of Computing,
New York:. McGraw-Hill, 1994.

Application Programming Interface (API). An
Application Programming Interface consists of the
functions and variables that programmers are allowed
to use in their applications.

asynchronous messaging. A method of
communicating between programs in which the
programs place messages on message queues. With
asynchronous messaging, the sending program
proceeds with its own processing without waiting for a
reply to its message. Contrast with synchronous
messaging.

authenticator. A program that checks that verifies the
senders and receivers of messages.

bridge. An WebSphere MQ Everyplace object that
allows messages to flow between WebSphere MQ
Everyplace and other messaging systems, including
WebSphere MQ.

channel. See dynamic channel, client/server channel,
peer channel, and MQI channel.

channel manager. An WebSphere MQ Everyplace
object that supports logical multiple concurrent
communication pipes between end points.

class. A class is an encapsulated collection of data and
methods to operate on the data. A class may be
instantiated to produce an object that is an instance of
the class.

client. (1)In WebSphere MQ Everyplace, a client is
WebSphere MQ Everyplace code running without a
channel manager or channel listener. Contrast with
server (1). (2)In WebSphere MQ, a client is a run-time
component that provides access to queuing services on
a server for local user applications.

client/server channel. An WebSphere MQ Everyplace
a unidirectional channel between a client and a server
that can only be established from the client side.
Contrast with peer channel.

compressor. A program that compacts a message to
reduce the volume of data to be transmitted.

cryptor. A program that encrypts a message to
provide security during transmission.

device. A small portable machine running WebSphere
MQ Everyplace as a client. Contrast with server(1).

dynamic channel. This is a name given to WebSphere
MQ Everyplace channels that connect clients and
servers to enable the transfer of messages. They are
called dynamic because they are created on demand. See
client/server and peer channels. Contrast withMQI
channel.

encapsulation. Encapsulation is an object-oriented
programming technique that makes an object’s data
private or protected and allows programmers to access
and manipulate the data only through function calls.

gateway. An WebSphere MQ Everyplace gateway is a
computer running the WebSphere MQ Everyplace
WebSphere MQ-bridge code.

Hypertext Markup Language (HTML). A language
used to define information that is to be displayed on
the World Wide Web.

instance. An instance is an object. When a class is
instantiated to produce an object, we say that the object
is an instance of the class.

interface. An interface is a class that contains only
abstract functions and no instance variables. An
interface provides a common set of functions that can
be implemented by subclasses of a number of different
classes.

Internet. The Internet is a cooperative public network
of shared information. Physically, the Internet uses a
subset of the total resources of all the currently existing
public telecommunication networks. Technically, what
distinguishes the Internet as a cooperative public
network is its use of a set of protocols called TCP/IP
(Transport Control Protocol/Internet Protocol).

Java Developers Kit (JDK). A package of software
distributed by Sun Microsystems for Java developers. It
includes the Java interpreter, Java classes and Java
development tools: compiler, debugger, disassembler,
appletviewer, stub file generator, and documentation
generator.

Java Naming and Directory Service (JNDI). An API
specified in the Java programming language. It
provides naming and directory functions to
applications written in the Java programming language.

© Copyright IBM Corp. 2000, 2002 141

Lightweight Directory Access Protocol (LDAP).
LDAP is a client-server protocol for accessing a
directory service.

Local area network (LAN). A computer network
located on a user’s premises within a limited
geographical area.

message. In message queuing applications, a message
is a communication sent between programs.

message queue. See queue

message queuing. A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

method. Method is the object-oriented programming
term for a function or procedure.

MQI channel. An MQI channel connects a WebSphere
MQ client to a queue manager on a server system and
transfers MQI calls and responses in a bidirectional
manner. MQI channels must be explicitly created.
Contrast with dynamic channels.

WebSphere MQ. WebSphere MQ is a family of IBM
licensed programs that provide message queuing
services.

object. (1) In Java, an object is an instance of a class. A
class models a group of things; an object models a
particular member of that group. (2) In WebSphere MQ,
an object is a queue manager, a queue, or a channel.

package. A package in Java is a way of giving a piece
of Java code access to a specific set of classes. Java code
that is part of a particular package has access to all the
classes in the package and to all non-private functions
and fields in the classes.

peer channel. A bidirectional WebSphere MQ
Everyplace channel, normally used between clients. The
connection can be established from either end.

personal digital addistant (PDA). A pocket sized
personal computer.

private. A private field is not visible outside its own
class.

protected. A protected field is visible only within its
own class, within a subclass, or within packages of
which the class is a part

public. A public class or interface is visible
everywhere. A public function or variable is visible
everywhere that its class is visible

queue. A queue is a WebSphere MQ object. Message
queueing applications can put messages on, and get
messages from, a queue

queue manager. A queue manager is a system
program the provides message queuing services to
applications.

server. (1) An WebSphere MQ Everyplace server is
WebSphere MQ Everyplace code with an WebSphere
MQ Everyplace channel manager, and WebSphere MQ
Everyplace channel listener, configured. This provides
the ability to receive from multiple devices and servers
concurrently. Contrast with client (1). (2)A computer
running WebSphere MQ Everyplace server code.
Contrast with device. (3) A WebSphere MQ server is a
queue manager that provides message queuing services
to client applications running on a remote workstation.
(4) More generally, a server is a program that responds
to requests for information in the particular
two-program information flow model of client/server,
or the computer on which a server program runs.

servlet. A Java program which is designed to run only
on a web server.

subclass. A subclass is a class that extends another.
The subclass inherits the public and protected functions
and variables of its superclass.

superclass. A superclass is a class that is extended by
some other class. The superclass’s public and protected
functions and variables are available to the subclass.

synchronous messaging. A method of communicating
between programs in which programs place messages
on message queues. With synchronous messaging, the
sending program waits for a reply to its message before
resuming its own processing . Contrast with
asynchronous messaging.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communication protocols that
support peer-to-peer connectivity functions for both
local and wide area networks.

Web. See World Wide Web.

Web browser. A program that formats and displays
information that is distributed on the World Wide Web.

World Wide Web (Web). The World Wide Web is an
Internet service, based on a common set of protocols,
which allows a particularly configured server computer
to distribute documents across the Internet in a
standard way.

142 WebSphere MQ Everyplace: C Bindings Programming Guide

Bibliography

Related publications:
v WebSphere MQ Everyplace Read Me First,

SC34-6276-00
v WebSphere MQ Everyplace Introduction,

SC34-6277-00
v WebSphere MQ Everyplace Java Programming

Reference, SC34-6279-00
v WebSphere MQ Everyplace Application

Programming Guide, SC34-6278-00
v WebSphere MQ Everyplace C Programming

Reference

v WebSphere MQ Everyplace C Programming Guide
for Palm OS, SC34-6281-00

v WebSphere MQ An Introduction to Messaging and
Queuing, GC33-0805-01

© Copyright IBM Corp. 2000, 2002 143

144 WebSphere MQ Everyplace: C Bindings Programming Guide

Index

A
action restrictions on queues 70
adapters

in C applications 19
administered objects characteristics,

WebSphere MQ-bridge 93
administering

actions for the WebSphere
MQ-bridge 91

connections 65
fields 57
home-server queues 75
local queues 68
managed resources 64
MQSeries bridge 91
MQSeries Everyplace resources 55
queue managers 65
queues 68
remote queues 71
store-and-forward queues 73
WebSphere MQ—bridge queue 77

administration
queue 4, 79
reply message 61
reply message fields 62
request message 56

administration messages
in C applications 20

aliases
connection 68
queue 70
queue manager 33

ascii characters 111
invariant 111
variant 111

assured delivery of synchronous
messages 47

asynchronous
messaging 46
queues 71

authenticatable entities and
auto-registration 132

authenticatable entity 131
authenticatable entity credentials 132
auto-registration of authenticatable

entities 132

B
bibliography 143
bridge

administration 91
administration actions 91
and browseMessages 108
and getMessage 108
and putMessage 107
codepage considerations 109
configuration example 85
configuring 81
installation 81

bridge (continued)
national language considerations 109
object hierarchy 82
objects characteristics 93
queue, administering 77
run state 91
test message 106
to WebSphere MQ 7

bridge queue
administering 77

Browse and Lock 42
browseMessages and WebSphere

MQ-bridge 108

C
C applications

administration messages 20
sessions 20
static type checking 17
threading 12, 19
using applications 19
using handles 15
using rules 19
using transformers 19

C Bindings
exception handling 17
installing 9
Java environment 11
using 15

C compiler 11
C object hierarchy 16
C-API conventions 15
characteristics

of resources 59
of WebSphere MQ-bridge objects 93

classes for Java, WebSphere MQ 81
client

MQSeries Everyplace 33
client connection object 82
client to server connections 66
codepages and WebSphere

MQ-bridge 109
common registry parameters 35
compiler

for C code 11
components, administering 55
configuring

the WebSphere MQ-bridge 81
connection aliases 68
connections

administration of 65
client to server 66
MQSeries Everyplace 5
peer-to-peer 67
reuse with queue-based security 124
routing 68

conventions
for C API 15

creating
default queue definitions 28

creating (continued)
local queues 70
queue manager definitions 28
queue managers 27

creating remote queues 72
credentials of authenticatable entity 132

D
dead-letter queues MQSeries

Everyplace 4
default queues, creating definitions 28
definition

default queues, creating 28
queue manager, creating 28
queue manager, deleting 30
queue, deleting 29

deleting
queue definitions 29
queue manager definitions 30
queue managers 29
standard queue definitions 30

discovery of remote queues 46
distributed messaging vi

E
environment

for C bindings 11
example

MQePrivateServer 37
MQeServer 36
MQSeries bridge configuration 85

exception handling
for C Bindings 17

expiry of messages 41

F
fields, administration of 57
file registry parameters 34
filters, message 41
flow of messages 46

G
get message 42
getMessage and WebSphere

MQ-bridge 108
getting started 9
glossary 141

H
handles

managing in C 16
using in C applications 15

hierarchy
of C objects 16

© Copyright IBM Corp. 2000, 2002 145

hierarchy of bridge objects 82
home-server

queues 4
queues, administering 75

host messaging vi

I
index fields, message 40
installation of WebSphere MQ-bridge 81
installing

C Bindings 9
interface to WebSphere MQ 7
intermediate queue managers, routing

through 68
invariant characters, ascii 111

J
Java APIs

unsupported in C 18
Java environment for C Bindings 11

K
knowledge, prerequisite vi

L
local queue 3

administering 68
creating 70
message store 69

local security
secure feature choices 114
selection criteria 115
usage guide 115
usage scenario 114

lock ID 43
locking messages 42

M
managing

handles in C 16
mapping types between Java and C 19
message

expiry 41
filters 41
flow 46
index fields 40
polling 43
store on local queue 69

message events 40
message operations supported by

WebSphere MQ—bridge queue 78
message states 38, 39
message-level security 125

secure feature choices 126
selection criteria 127
usage guide 127
usage scenario 126

message, WebSphere MQ to MQSeries
Everyplace 106

messages
browse and lock 42
locking 42
MQSeries Everyplace 38
operations on 44
reading all on queue 42

messaging
synchronous and asynchronous 45
synchronous assured delivery 47

mini-certificates 134
MQeFields 25
MQeMAttribute 126
MQeMsgObject 25
MQeMTrustAttribute 126
MQePrivateServer, example 37
MQeQueueManagerConfigure 28
MQeRegistry parameters for queue

manager 34
MQeRegistry.CAIPAddrPort 34
MQeRegistry.CertReqPIN 34
MQeRegistry.DirName 34
MQeRegistry.KeyRingPassword 34
MQeRegistry.LocalRegType 34
MQeRegistry.PIN 34
MQeRegistry.Separator 35
MQeServer, example 36
MQSeries

classes for Java 81
queue manager proxy object 82
queue manager, shutting down 92

MQSeries Everyplace
client 33
server 36

Msg_ReplyToQ 59
Msg_Style 59
MsgReplyToQMgr 59

N
naming

queue managers 27
queues 42

national language considerations for
WebSphere MQ-bridge 109

notices 139

O
object hierarchy

in C 16
objects

administering 55
storing and retrieving 25
WebSphere MQ-bridge,

characteristics 93
operations on messages 44
ordering queues 42

P
parameters

file registry 34
private registry 34

peer-to-peer connections 67
pervasive messaging vii
polling messages 43

prerequisite knowledge vi
private registry

parameters for queue manager 34
secure feature choices 133
selection criteria 133
service 131
usage guide 133
usage scenario 132

properties, queue manager, setting 28
public registry

secure feature choices 135
selection criteria 135
service 134
usage guide 135
usage scenario 134

putMessage and WebSphere
MQ-bridge 107

Q
queue

action restrictions 70
administration 4, 79
aliases 70
definitions deleting 29
local creating 70
message store 69
naming 42
ordering 42
security 70
WebSphere MQ-bridge,

administering 77
queue manager 2

administration of 65
aliases 33
creating and deleting 27
definition, creating 28
definitions, deleting 30
deleting 29
intermediate, routing through 68
naming 27
properties, setting 28
registry parameters 34
starting 33

queue-based security 117
channel reuse 124
secure feature choices 120
selection criteria 120
starting queue managers with private

registry 124
usage guide 121
usage scenario 119

queues 3, 41
administering 68
asynchronous 71
dead-letter, MQSeries Everyplace 4
default, creating definitions 28
home-server 4
home-server, administering 75
local 3
local, administering 68
remote 3, 46
remote, administering 71
remote, creating 72
remote, discovery 46
store-and-forward 3
store-and-forward, administering 73

146 WebSphere MQ Everyplace: C Bindings Programming Guide

queues (continued)
WebSphere MQ-bridge 4

queues, synchronous 71

R
reading

all messages on a queue 42
registry

private 131
public 134
queue manager parameters 34
types 34

related publications 143
remote queues 3, 46

administering 71
creating 72
discovery 46

resource characteristics 59
resources, administering 55, 64
restrictions on queue actions 70
retrieving objects 25
routing connections 68
rules

in C applications 19
run state of WebSphere MQ-bridge 91

S
secure feature choices

local security 114
message-level security 126
private registry 133
public registry 135
queue-based 120

security 8, 79, 113
features 113
local 114
message level 125
MQSeries Everyplace 53
of administration 79
of queues 70
private registry service 131
public registry service 134
queue-based 117

selection criteria
local security 115
message-level security 127
private registry 133
public registry 135
queue-based security 120

server
WebSphere MQ Everyplace 36

server to client connections 66
sessions

in C applications 20
setting queue manager properties 28
shutting down and WebSphere MQ

queue manager 92
standard queue definitions, deleting 30
starting queue managers 33
static type checking

in C applications 17
store-and-forward queues 3

administering 73
storing objects 25

synchronous
assured message delivery 47
queues 71
synchronous messaging 45

SYSTEM.DEFAULT.LOCAL.QUEUE 29

T
terms vi
testing WebSphere MQ-bridge 106
threading

in C applications 12, 19
trademarks 140
transformers

in C applications 19
transmission queue listener object 82
type mapping between Java and C 19

U
unsupported Java APIs

in C 18
usage guide

local security 115
message-level security 127
private registry 133
public registry 135
queue-based security 121

usage scenario
local security 114
message-level security 126
private registry 132
public registry 134
queue-based 119

using
handles in C applications 15
the C Bindings 15

V
variant characters, ascii 111

W
WebSphere MQ Everyplace bridge

administration 91
and browseMessages 108
and getMessage 108
and putMessage 107
codepage considerations 109
configuration example 85
configuring 81
installation 81
national language considerations 109
object 82
objects characteristics 93
run state 91
testing 106
to MQSeries 81

WebSphere MQ Integrator vi
WebSphere MQ to MQSeries Everyplace

message 106
WebSphere MQ Workflow vi
WebSphere MQ-bridge 7
WebSphere MQ-bridge queues 4

WebSphere MQ-bridges object 82
WebSphere MQ, interface to 7
workstation messaging vii

Index 147

148 WebSphere MQ Everyplace: C Bindings Programming Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–842327
– From within the U.K., use 01962–842327

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink™: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2000, 2002 149

150 WebSphere MQ Everyplace: C Bindings Programming Guide

����

Printed in U.S.A.

SC34-6280-00

	Contents
	About this book
	Licence warning
	Who should read this book
	Prerequisite knowledge
	Terms used in this book

	Summary of changes
	Changes for this edition (SC34-6280-00)

	Migration notes
	Migrating from version 1.2.5 or lower to version 1.2.6 or higher

	Chapter 1. Overview
	WebSphere MQ Everyplace queue manager
	WebSphere MQ Everyplace queues
	Local queue
	Remote queue
	Store-and-forward queue
	Home-server queue
	WebSphere MQ-bridge queue
	Dead-letter queue
	Administration queue

	WebSphere MQ Everyplace connections
	WebSphere MQ Everyplace bridge to WebSphere MQ
	Security

	Chapter 2. Getting started
	Installation
	Setting the environment
	JVM options
	Trace options

	JVM environment
	Compiling and Linking
	Threading build time considerations
	Relationship with the Native C Client
	Examples

	Chapter 3. Using the C Bindings
	Using handles
	API conventions
	Function prototypes

	Managing handles
	Object hierarchy
	Static type checking

	Exception handling
	Obtaining an Exception Block

	Unsupported Java APIs
	Use of Java class names

	Type mapping
	Threading application design considerations
	Run time

	Session
	API calls

	Administration messages
	WebSphere MQ-bridge

	Chapter 4. Fundamental objects
	MQeString
	MQeFields

	Chapter 5. Queue managers, messages, and queues
	Creating and deleting queue managers
	Queue manager names
	Creating a queue manager
	1. Create and activate an instance of MQeQueueManagerConfigure
	2. Set queue manager properties and create the queue manager definition
	3. Create definitions for the default queues
	4. Close the MQeQueueManagerConfigure instance

	Deleting a queue manager
	1. Delete any definitions
	2. Create and activate an instance of MQeQueueManagerConfigure
	3. Delete the standard queue and queue manager definitions
	4. Close the MQeQueueManagerConfigure instance

	Using queue manager aliases
	Examples of queue manager aliasing

	Starting queue managers
	Client queue managers
	Class Aliases
	MQeRegistry parameters for the queue manager
	Starting a client queue manager

	Server queue managers
	Example MQeServer
	Example MQePrivateServer

	Messages
	Storing messages
	Message states
	Message events
	Message index fields

	Filters
	Message Expiry

	Queues
	Queue names
	Queue types
	Queue ordering
	Reading all the messages on a queue
	Browse and Lock
	Message listeners
	Message polling
	Messaging operations
	Using queue aliases
	Examples of queue aliasing

	Synchronous and asynchronous messaging
	Synchronous messaging
	Asynchronous messaging

	Assured message delivery
	Synchronous assured message delivery
	Put message
	Get message

	Security

	Chapter 6. Administering messaging resources
	The basic administration request message
	Base administration fields
	Fields specific to the managed resource
	Other useful fields

	The basic administration reply message
	Outcome of request fields

	Administration of managed resources
	Queue managers
	Connections
	Client to server
	Peer to peer
	Routing connections
	Aliases

	Queues
	Local queue
	Remote queue
	Store-and-forward queue
	Home-server queue
	WebSphere MQ-bridge queue
	Administration queue

	Security and administration

	Chapter 7. WebSphere MQ-bridge
	Installation
	WebSphere MQ Classes for Java

	Configuring the WebSphere MQ-bridge
	Naming recommendations for inter-operability with a WebSphere MQ network
	Configuring a basic installation
	Configuration example
	Requirement
	Initial setup
	Enabling MQeMoonQM to put and get messages to and from the MQeEarthQM queue manager
	Enabling the MQeEarthQM to send messages to the MQeMoonQM queue manager
	Enabling MQeEarthQM to send a message to MQSaturnQ
	Enabling MQeEarthQM to send a message to MQJupiterQ
	Enabling MQeMoonQM to send a message to MQJupiterQ and MQSaturnQ
	Enabling MQSaturnQM to send messages to the MQeEarthQ
	Enabling MQSaturnQM to send messages to the MQeMoonQ
	Enabling the MQJupiterQM to send messages to the MQeMoonQ

	Administration of the WebSphere MQ-bridge
	WebSphere MQ-bridge administration actions
	Run state
	Start action
	Stop action
	Inquire action
	Update action
	Delete action
	Create action

	WebSphere MQ-bridge considerations when shutting down a WebSphere MQ queue manager
	Immediate shutdown
	Controlled shutdown

	Administered objects and their characteristics
	Attribute details

	How to send a message from WebSphere MQ to WebSphere MQ Everyplace
	Handling undeliverable messages

	Putting messages to the WebSphere MQ-bridge queue
	Getting and browsing messages from the WebSphere MQ-bridge queue
	Usage restrictions

	National language support implications
	Conclusion

	Chapter 8. Security
	Security features
	Local security
	Usage scenario
	Secure feature choices
	Selection criteria

	Usage guide

	Queue-based security
	Queue-based security and asynchronous queues
	Usage scenario
	Secure feature choices
	Selection criteria

	Usage guide
	Using qm_create to create ClientQMgr and ServerQMgr instances
	Defining the queues identified for the queue-based scenario described above
	Queue-based security and triggering auto-registration
	Queue-based security, starting queue managers with private registries

	Queue-based security - connection reuse

	Message-level security
	Usage scenario
	Secure feature choices
	Selection Criteria

	Usage guide
	WebSphere MQ Everyplace message-level security using MAttribute
	WebSphere MQ Everyplace message-level security using MTustAttribute
	Non-repudiation

	Private registry service
	Private registry and the concept of authenticatable entity
	Private registry and authenticatable entity credentials
	Auto-registration

	Usage scenario
	Secure feature choices
	Selection criteria

	Usage guide

	Public registry service
	Usage scenario
	Secure feature choices
	Selection criteria

	Usage guide

	mini-certificate issuance service

	Appendix A. Applying maintenance to WebSphere MQ Everyplace
	Appendix B. Notices
	Trademarks

	Glossary
	Bibliography
	Index
	Sending your comments to IBM

