
WebSphere MQ Everyplace

Configuration Guide

Version 2.0

SC34-6283-00

���

WebSphere MQ Everyplace

Configuration Guide

Version 2.0

SC34-6283-00

���

Take Note!

Before using this information and the product it supports, be sure to read the general information under “About
this book” on page xv.

Licence warning
WebSphere MQ Everyplace Version 2.0 (Program number: 5724-C77) is a toolkit that enables users
to write WebSphere MQ Everyplace applications and to create an environment in which to run them.

The licence conditions under which the toolkit is purchased determine the environment in which it can
be used:

If WebSphere MQ Everyplace is purchased for use as a device (client) it may not be used to create a
WebSphere MQ Everyplace channel manager, or a WebSphere MQ Everyplace listener., or a
WebSphere MQ Everyplace bridge

The presence of a WebSphere MQ Everyplace channel manager, or a WebSphere MQ Everyplace
listener, or a WebSphere MQ Everyplace bridge defines a gateway (server) environment, which
requires a gateway licence.

First Edition (November 2002)

This edition applies to WebSphere MQ Everyplace Version 2.0 and to all subsequent releases and modifications until
otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures . ix

Tables . xiii

About this book . xv
Who should read this book . xv
Prerequisite knowledge . xv

Chapter 1. Introduction . 1
Queue manager . 1

Queue . 1
Message . 2
Connection . 2
Channel . 2
Registry . 2

Queue manager configuration 2

Chapter 2. Administration using administration messages 5
The administration queue. 5

Java. 6
C. 6

The administration reply-to queue 6
Java. 6
C. 6

Create the appropriate administration message 7
Java. 7
C. 8

Set the required fields in a message 8
The basic administration request message 8

Put the administration message onto the target administration queue 13
Java . 13

Wait for an administration reply message 14
Analyze the data in the administration reply message 15
The basic administration reply message 16

Outcome of request fields 18
Administration of managed resources 20

Example administration console 20
C . 27
Administration from the command line 27

Example of use of command-line tools 28

Chapter 3. Administration using the administrator API 35
Creating an administrator handle 35
Using the administrator handle 35
Freeing the administrator handle 36

Chapter 4. Creating and starting queue managers 39

© Copyright IBM Corp. 2002 iii

Creating and starting simple queue managers 39
Creating a simple queue manager in Java. 40
Starting a simple queue manager in Java 41
Stopping a queue manager in Java 41
Creating a simple queue manager in C 42
Starting a simple queue manager in C 43
Stopping a queue manager in C 43

Configuring a queue manager using memory only 44

Chapter 5. Administering queue managers. 47
General notes . 47
Java . 47
C . 47
Queue Manager attributes . 48

Java . 49
C parameters . 50

Create a queue manager . 50
Java . 50
C API . 51

Delete a queue manager . 52
Java . 52
C API . 52

Inquire and Inquire all . 53
Java or Administration message 53
C API . 54

Update . 55
Java/Administration message 55
C API . 55

Add alias. 56
Java . 56
C API . 56

Remove alias . 56
Java . 56
C API . 56

List alias names . 56
Java . 56
C API . 57

IsAlias . 57
Java . 57
C API . 57

Chapter 6. Administering local queues 59
General notes . 59

Java . 59
C . 59

Local queue properties . 60
Java . 62
C parameters . 63

Create a local queue . 64
Administration message . 64

iv Configuration Guide

C API . 65
Delete. 66

Administration message . 66
C API . 66

Add alias. 67
Administration message . 67
C API . 67

List aliases . 68
Administration message . 68
C API . 68

Remove alias . 68
Administration message . 69
C API . 69

Update . 69
Administration message . 69
C API . 70

Inquiry . 70
Administration message . 70
C API . 71

Message store or storage adapter specification 72

Chapter 7. Administering remote queues 75
Terminology . 75
Administering remote queues 75
Synchronous and asynchronous 75

Setting the operation mode. 78
Creating a remote queue 78

Creating a C parameter structure 79
Create synchronous . 80

C . 80
Create asynchronous. 81

C . 81
Transporter . 81
Queue aliases . 81

Chapter 8. Administering home server queues 83
Administration messages . 85

Message transmission . 85
Creating . 86

Chapter 9. Administering store and forward queues 87
General notes . 87
Store-and-forward queue . 87
Create . 90

Administration message . 90
Delete. 90

Administration message . 91
Add queue manager . 91

Administration message . 92
Remove queue manager . 92

Contents v

Administration message . 92
Update . 92

Administration message . 93
Inquire . 93

Administration message . 93
Store and forward queue attributes 94

Java . 94

Chapter 10. Connection definition 95
Direct connection definition . 95
Indirect connection definition 95
General . 96
Connection definition administration in Java 96

Creating a connection definition 96
Altering and deleting connection definitions 98

Connection definition administration in C 99
Create a connection definition 100
Delete a connection definition 102
Update a connection definition 102
General comment . 102

Chapter 11. Listener . 103
Creating a listener . 103

Chapter 12. Administering bridge resources 107
The WebSphere MQ bridge 107
What makes a queue manager bridge-enabled 108
Finding out if a queue manager is bridge-enabled 108
Classes required to make a queue manager bridge-enabled 108
Configuring the WebSphere MQ bridge 109

The bridges resource . 113
The bridge resource. 113
The WebSphere MQ queue manager proxy 114
The client connection resource 115
The transmit queue listener resource 116
The bridge queue . 117
Naming recommendations for interoperability with a WebSphere MQ network 119
Configuring a basic installation 119
Configuring a bridge using WebSphere MQ Everyplace administration

messages and WebSphere MQ PCF messages 123
Configuration example . 123
Administration of the WebSphere MQ bridge 129
Handling undeliverable messages 133

National Language Support 134
Conclusion. 136

Chapter 13. Message resolution 137
Assumptions . 137
Topics not covered . 137
Terminology . 137

vi Configuration Guide

What you will know at the end 138
WebSphere MQ Everyplace Message Resolution 138
Notation . 139
Local Queue Resolution . 140

Local Queue Alias . 140
Queue Manager Alias . 142

Remote Queue Resolution 144
Aliases on Remote Queue 147
Parallel Routes . 149
Chaining Remote Queue References 152

Pushing Store And Forward Queues 152
Store and Forward Queues and Remote Queue References 155
Chaining Store and Forward Queues 156

Home Server Queues . 157
Via Connections . 161
Rerouting with Queue Manager Aliases 164
WebSphere MQ Everyplace WebSphere MQ Bridge Message Resolution 169

Pulling Messages From WebSphere MQ 170
Pushing messages to WebSphere MQ 173
Connecting a client to WebSphere MQ via a bridge 174

Security considerations . 179
Resolution Rules. 180

Rule 1: Resolve queue manager aliases. 180
Queue Resolution . 180
Push Across Network . 181
Home Server Pulling . 182

Chapter 14. Security . 183
Background . 183

Security properties . 183
Private registries . 184
Effects of queue attributes 184
Communication channel security considerations 185
Channel attribute rules . 186

How to configure. 188
Setting up the queue manager 188
Setting up a private registry 188
Setting up attribute properties 189

Chapter 15. Java Message Service (JMS) configuration 195
Configuring MQeQueueConnectionFactory 195
Configuring MQeJMSQueue 196
The JMS administration tool 197

Configuration . 197
Starting the JMS admin tool 198
Administration commands 198
Manipulating subcontexts 200
Administering JMS objects 200
Verbs used with JMS objects. 201
Creating objects . 202

Contents vii

||

LDAP naming considerations. 202
Properties . 203

Extending MQeQueueConnectionFactory. 204
LDAP schema definition for storing Java objects 205

Attribute definitions . 205
objectClass definitions . 207

Chapter 16. Packaging and deployment 209
Java code base . 209

Supplied jar files . 209
Optimizing footprint . 210
JMS requirements . 218
WebSphere MQ Classes for Java requirements 219
Using WebSphere studio device developer smart linker 219
J2ME Midp specifics . 220
4690 specifics . 220
Packaging . 221
Deployment to devices . 222

Open Services Gateway Initiative 223
Installing bundles onto an SMF bundle server 223
Using the SMF Runtime 224
Current limitations . 225

Chapter 17. Configuring WebSphere MQ Everyplace queuemanagers as
servlets . 227

Configuring examples.trace.MQeTraceServlet for use with WAS 4.0 227

Chapter 18. Configuring WebSphere MQ Everyplace for performance 239

Appendix. Notices . 241

Glossary . 243

viii Configuration Guide

Figures

1. WebSphere MQ Everyplace administration using administration messages 5
2. Administration request message . 9
3. Administration reply message . 17
4. Administration console window. 21
5. Reply-to queue window . 23
6. Action window . 25
7. Reply window . 26
8. WebSphere MQ Everyplace administration scenario. 29
9. Branch to central routing. 30

10. Central to branch routing. 31
11. Creating an Administrator Handle for a new Queue Manager 37
12. Creating an Administrator Handle for an existing Queue Manager 37
13. Start queue manager Java example . 41
14. Create queue manager C example . 43
15. Creating the QueueAdminMsg object . 51
16. Deleting a queue manager in Java . 52
17. Deleting a queue manager in C . 53
18. Create a local queue . 65
19. Create a local queue in C . 66
20. Deleting a queue in Java . 66
21. Deleting a queue in C . 67
22. Adding an alias to a queue in Java . 67
23. Adding an alias to a queue in C . 68
24. Obtaining a list of aliases in C . 68
25. Removing an alias in Java . 69
26. Removing an alias in C . 69
27. Updating the properties of a queue in Java 70
28. Updating the properties of a queue in C. 70
29. Inquiring on a queue in Java . 71
30. Inquiring on a queue in C . 72
31. Remote queue . 77
32. Home-server queue . 84
33. 86
34. Store-and-forward queue . 88
35. 90
36. 91
37. 92
38. 92
39. 93
40. 93
41. 110
42. Bridge object hierarchy . 112
43. Configuration example . 124
44. Message flow from WebSphere MQ Everyplace to WebSphere MQ 134
45. A host and the WebSphere MQ Everyplace resources on it. 139
46. A host and the WebSphere MQ Everyplace resources on it: ’dispersed’ form. 139
47. A simple local message put. 140

© Copyright IBM Corp. 2002 ix

48. LocalQueue@LocalQM with an alias of ’QueueAlias’. 141
49. A message being placed on a matching alias. 141
50. Defining a queue manager alias. 142
51. Addressing messages to a queue manager alias. 142
52. Resolving the queue manager alias and the queue alias. 143
53. Local and remote queue managers with a definition and listener pair. 144
54. A remote queue reference. 145
55. Message resolution for a put. 145
56. Message resolution for a put . 146
57. A message route entity.. 147
58. Using aliases on the remote queue. 148
59. Message resolution for a put to a remote queue, using a Queue alias defined on TargetQM 148
60. Message route entity of messages put to TargetQueueAlias on TargetQM 149
61. Creating parallel routes between source and destination. 150
62. Resolving the synchronous route. 151
63. Resolving the asynchronous route. 151
64. A pair of push message routes. 152
65. A typical pushing S&F queue system. 153
66. Routing of a message put to LocalQM and addressed to TargetQ@TargetQM. 154
67. A multi message route. 155
68. How routes using remote queue definitions take precedence over store-and-forward queue

routes . 155
69. Pushing S&F queues chained together. 156
70. Transporting messages via an intermediate S&F queue. 157
71. A chain of store and forward queues. 157
72. A home server queue configuration. 158
73. A home server queue pulling messages. 159
74. An abstract pull message route. 160
75. Administering queue managers that do not have listener capability. 161
76. Via connections . 162
77. Message flow using a via connection . 163
78. Via connections expressed using message route schema 164
79. Queue manager aliases and fail-over. 165
80. Routing traffic using a ″server″ alias . 166
81. Routing traffic to the backup server, using a ″server″ alias 167
82. Choosing between message routes. 168
83. Connecting WebSphere MQ Everyplace and WebSphere MQ queue managers. 169
84. Creating a remote queue on WebSphere MQ. 170
85. Bridge listener pulling from a WebSphere MQ Everyplace transmit queue 171
86. A single pull message route. 171
87. A multiple pull message route. 172
88. Multiple pull route, expressed using message route schema 173
89. Pushing messages to WebSphere MQ. 173
90. Messages travelling across a remote queue definition. 174
91. Simplified view of route pushing messages to WebSphere MQ. 174
92. A client communicating with WebSphere MQ. 175
93. Simplified pull routes from WebSphere MQ through a WebSphere MQ Everyplace gateway to a

WebSphere MQ Everyplace device style queue manager 176
94. Pushing messages using a via connection. 177
95. Pushing messages to WebSphere MQ. 178

x Configuration Guide

96. Simplified view showing routes which push messages from a device style WebSphere MQ
Everyplace queue manager to a WebSphere MQ queue manager 179

97. The WebSphere administrative console 227
98. Specifying Web module properties . 228
99. Adding files to the application. 229

100. Adding web comopnents . 230
101. Specifying component type and class name 231
102. Specifying a URL to map to your servlet 232
103. Saving the file . 233
104. Install enterprise application . 233
105. Installing your component as a standalone module 234
106. Specifying an applilcation name . 234
107. Information dialog . 235
108. Starting the web module . 236
109. Information dialog success message . 236

Figures xi

xii Configuration Guide

Tables

1. Queue manager configuration . 2
2. 3
3. Administration messages . 7
4. Administration actions . 9
5. Setting the administration action field . 10
6. Setting administration request fields . 10
7. Getting administration reply fields . 18
8. Enquiring on queue parameters . 19
9. Request and reply message to update a queue 19

10. Common reason and return codes . 37
11. Queue Manager attributes . 48
12. Java Parameters passed in using MQeFields 49
13. Parameter structures for C . 50
14. Queue properties available in each code base 60
15. 63
16. C parameters . 63
17. 94
18. Bridges properties . 113
19. Bridge properties . 113
20. WebSphere MQ queue manager proxy properties 114
21. Client connection service properties. 115
22. Listener properties . 116
23. WebSphere MQ bridge queue properties 117
24. Administration verbs . 199
25. Syntax and description of commands used to manipulate subcontexts 200
26. JMS administered objects . 200
27. Syntax and description of commands used to manipulate administered objects 201
28. Property names and valid values . 203
29. 203
30. Attribute settings for javaCodebase . 205
31. Attribute settings for javaClassName . 206
32. Attribute settings for javaClassNames . 206
33. Attribute settings for javaFactory . 206
34. Attribute settings for javaReferenceAddress 207
35. Attribute settings for javaSerializedData 207
36. objectClass definition for javaSerializedObject 207
37. objectClass definition for javaObject . 207
38. objectClass definition for javaContainer 208
39. objectClass definition for javaNamingReference. 208
40. 211

© Copyright IBM Corp. 2002 xiii

xiv Configuration Guide

About this book

This book is a configuration guide for the WebSphere MQ Everyplace product. It
contains information on how WebSphere MQ Everyplace can be set up to provide a
specific configuration matching a user’s business requirements. In many cases,
example code is supplied.

The book is broadly divided into three parts:

v An introductory section provides an overview of how to use this guide and describes
the basics of system administration using administration messages and the C
administration API

v The creation and administration of the fundamental components of a WebSphere MQ
Everyplace solution are described: queue managers, queues, connection adapters,
listeners and bridge resources

v Advanced options are discussed, such as how to configure your system for security
or how to enhance performance, as well as the intricacies of platform-specific
configuration issues

This book is intended to be used in conjunction with:

v WebSphere® MQ Everyplace™ Introduction, SC34-6277-02

v WebSphere MQ Everyplace Application Programming Guide, SC34-6278-02

v WebSphere MQ Everyplace System Programming Guide, SC34-6274-02

The relevant books are available in softcopy form from the Book section of the online
WebSphere MQ library. This can be reached from the WebSphere MQ Web site:

http://www.ibm.com/software/mqseries/library/manualsa

This document is continually being updated with new and improved information. For the
latest edition, please see the MQSeries® family library web page at the Web site
indicated above.

Who should read this book
This book is intended for anyone who wants to configure a solution using WebSphere
MQ Everyplace systems and other members of the WebSphere MQ family of
messaging and queueing products.

Prerequisite knowledge
This documentation assumes that the reader has an understanding of WebSphere MQ
Everyplace as described in WebSphere MQ Everyplace Introduction, SC34-6277-02.

An initial understanding of the concepts of secure messaging is also required. If you do
not have this understanding, you may find it useful to read the following WebSphere
MQ book: WebSphere MQ An Introduction to Messaging and Queuing, GC33-0805-01.

© Copyright IBM Corp. 2002 xv

This book is available in softcopy form from the online WebSphere MQ library:

http://www.ibm.com/software/mqseries/library/manualsa

xvi Configuration Guide

Chapter 1. Introduction

This book provides the basic information necessary in order to configure WebSphere
MQ Everyplace queue managers and networks. It is also designed to allow a user to
customize a configuration matching his or her specific business requirements. It
describes how individual WebSphere MQ Everyplace components can be created and
administered and how components may be used together in various topologies.

The contents include information on:

v Creating and starting queue managers

v Defining connectivity between queue managers

v Establishing the routes taken by messages through a WebSphere MQ Everyplace
network

v Exercising control over the protocols used

v Determining where messages are staged, if appropriate

v Configuring queue-level security

v Appreciating the advantages and disadvantages of the available WebSphere MQ
Everyplace configuration options

This introduction provides a map of various routes through the rest of the guide
depending on the type of configuration which the user hopes to achieve. Since these
routes are described in terms of queue manager configurations, a brief description of
the WebSphere MQ Everyplace queue manager and associated components follows.

Queue manager
A queue manager owns and controls WebSphere MQ Everyplace messages, queues,
and connections (see below). It allows applications to access messages and queues.
Each queue manager has a unique name that distinguishes it from any other
WebSphere MQ Everyplace queue manager. Depending upon the needs of an
application, queue managers can differ in their collection of queues, messages,
connections, and other objects, and also in the role they play in a configuration.

WebSphere MQ Everyplace identifies three distinct roles for queue managers in
addition to the basic queue manager functionality:

v Client A queue manager that supplies messages to, or gets messages from, a server

v Server A queue manager that provides services to many attached client queue
managers

v Gateway A server queue manager that also has the capability to exchange
messages with WebSphere MQ base messaging queue managers

Queue
A queue may be used to store, process, or move messages. Each queue belongs to a
queue manager and applications can access queues through the queue manager. Each

© Copyright IBM Corp. 2002 1

queue has a unique name that distinguishes it from any other queue on that same
queue manager. Local queues are not strictly mandatory, however you cannot do much
without them.

Message
A message is a collection of data which can be stored in a queue or moved across a
WebSphere MQ Everyplace network.

Connection
A connection provides its local queue manager with the information it needs to establish
communication links with a remote queue manager. The name of a connection is the
name of that remote queue manager. Only one connection definition can exist on a
local queue manager for each remote queue manager name.

Channel
A channel is an entity allowing a queue manager to move messages to a remote queue
manager.

Registry
The registry is the primary store for queue manager-related information. Each queue
manager has its own registry. Every queue manager uses the registry to hold details of
its properties and objects.

Queue manager configuration
No matter what role a queue manager performs, there is a basic amount of
configuration required. This basic configuration results in what is here termed a ’Basic
Queue Manager’. Depending upon the type of role intended for the queue manager, this
Basic Queue Manager is extended, resulting in a Client Queue Manager, a Server
Queue Manager or a Gateway Queue Manager. The following diagram attempts to
summarize these configurations:

Table 1. Queue manager configuration

Basic Queue
Manager

+
Connection definition and
remote queue definition

=
Client queue
manager

+
Listener

=
Server queue
manager

+
Bridge functionality

=
Gateway queue
manager

+
Security configuration,
and so on

In the following table, the necessary steps to configure each type of queue manager are
itemized, together with the corresponding chapters of this manual. The Basic Queue
Manager configuration is a prerequisite of all other configurations; that is to say, any
queue manager must first be configured as a Basic Queue Manager. Then, other types
of functionality may be added as required.

2 Configuration Guide

Thus, to configure a Client, perform steps 1, 2, 3, 4 and 5; to configure a Server,
perform steps 1, 2, 6 and 7; to configure a queue manager with both Server and Client
functionality, perform steps 1 through 7 inclusive.

Table 2.

Requisite steps Chapter or chapters

Basic queue manager

1. Create and start the queue manager 2: Administration using admin messages
3: Administration using admin API
4: Creating and starting queue managers

2. Create a local queue 5: Administering queue managers
6: Administering local queues

Client queue manager

3. Create a connection definition to a server 10: Connection definition

4. Create a remote queue definition 7: Administering remote queues

5. Create a home server queue for triggered
transmission (required for remote asynchronous
queues)

8: Administering home server queues

Server queue manager

6. Create a listener 11: Listener

7. Create a store-and-forward queue (optional) 9: Administering store-and-forward Queues

8. Add bridge functionality 12: Administering bridge resources

Chapters 13 through 18 provide additional configuration options: for advanced message
routing, security, performance and platform specifics.

This book is not an application programming guide. It describes what a user needs to
set up in order to configure a WebSphere MQ Everyplace system and the steps which
must be followed in doing this. The specifics of coding practices and APIs are covered
in the WebSphere MQ Everyplace Application Programming Guide, SC34-6278-02 and
WebSphere MQ Everyplace System Programming Guide SC34-6274-02.

Chapter 1. Introduction 3

4 Configuration Guide

Chapter 2. Administration using administration messages

You can administer WebSphere MQ Everyplace resources using specialized messages
called administration messages (admin messages). Using these messages allows you
to administer resources locally or remotely. The native codebase, if configured with an
administration queue (admin queue) responds to admin messages. However, it does not
provide helper functions to create admin messages. For more information on this, refer
to Chapter 3, “Administration using the administrator API”, on page 35. Java™ is
administered by admin messages. C can be, but has an administration interface for
local administration.

The sequence of steps required in administering a resource using administration
messages is as follows:

1. Create an admin queue on the resource performing the administration, or make
sure that one exists.

2. Create an appropriate admin message for the resource being managed.

3. Set the required fields in the message.

4. Put the admin message to the appropriate admin queue.

5. Wait for an admin reply message on the appropriate admin reply queue, if a reply
has been requested in the admin message.

6. Analyze the data in the admin reply message.

The administration queue
Before you can administer a queue manager or its resources using admin messages,
you must start the queue manager and configure an admin queue on it. The admin
queue’s role is to process admin messages in the sequence that they arrive on the
queue. Only one request is processed at a time.

Managed
resource

admin
methods

Admin
application

AdminMsg
(Request)

AdminMsg
(Reply)

Queue
manager

Queue
manager

AdminMsg
(Request)

AdminMsg
(Reply)

AdminQ

ReplyQ

Figure 1. WebSphere MQ Everyplace administration using administration messages

© Copyright IBM Corp. 2002 5

Java
In Java, the queue can be created using the defineDefaultAdminQueue() method of the
MQeQueueManagerConfigure class. The name of the queue is AdminQ and applications
can refer to it using the constant MQe.Admin_Queue_Name.

C
In the native codebase, an admin queue is created using the following API:

MQeAdminQParms params = ADMIN_Q_INIT_VAL;
rc = mqeAdministrator_AdminQueue_create(hAdmin, // handle to MQeAdministrator

pExceptBlock, // handle to an exception block
hQueueName, // the name of the queue to be created
hQueueQMgrName, // the name of the queue’s

//owning queue manager
¶ms); // pointer to structure

// for configuring the
// queue of type MQeAdminQParms,

In particular, the constant string handle MQE_ADMIN_QUEUE_NAME can be used as the
admin queue name. This is the equivalent of the constant MQe.Admin_Queue_Name in the
Java codebase.

The params structure can be initialized to contain default values for all admin queue
properties. The structure also contains an opFlags bit mask element that must be used
to indicate which properties have been set to a value other than the default value. The
above example accepts all of the default values, as specified using the
ADMIN_Q_INIT_VAL constant.

The administration reply-to queue
This section describes the use of administration reply-to queues in Java and C.

Java
In Java, a typical administration application instantiates a subclass of MQeAdminMsg,
configures it with the required administration request, and passes it to the AdminQ on the
target queue manager. If the application wishes to know the outcome of the action, a
reply can be requested. When the request has been processed the result of the request
is returned in a message to the reply-to queue and queue manager specified in the
request message.

The reply can be sent to any queue manager or queue but you can configure a default
reply-to queue that is used solely for administration reply messages. This default queue
is created using the defineDefaultAdminReplyQueue() method of the
MQeQueueManagerConfigure class. The name of the queue is AdminReplyQ and
applications can refer to it using the constant MQe.Admin_Reply_Queue_Name.

C
In the native codebase, as in the Java codebase, any queue can be specified as the
admin reply-to queue. However, it is recommended that the default admin reply-to

6 Configuration Guide

queue name, MQE_ADMIN_REPLY_QUEUE_NAME, is used to name a queue dedicated to the
role of admin reply-to queue. This name corresponds to MQe.Admin_Reply_Queue_Name in
the Java codebase.

In practice, the native client is more likely to be receiving than to be sending admin
messages. In this case, the client needs a remote asynchronous queue definition of the
admin reply-to queue on the server as well as a home server queue matching a
store-and-forward queue on the server to enable the admin and admin reply messages
to be transferred.

Create the appropriate administration message
The administration queue does not understand how to perform administration of
individual resources. This knowledge is encapsulated in each resource and its
corresponding message.

Java
In Java, there is a hierarchy of administration message types. For certain operations,
the exact type of administration message is required, for example, to create a Home
Server ’queue’ you need a Home Server Queue administration message. For other
operations, a more general administration message is appropriate, for example, to
enquire upon a home server queue, you can use a queue administration message, or a
remote queue administration message. If in doubt, use the exact type of administration
message.

The following messages are provided for administration of WebSphere MQ Everyplace
resources:

Table 3. Administration messages

Message name Purpose

MQeAdminMsg an abstract class that acts as the base
class for all administration messages

MQeAdminQueueAdminMsg provides support for administering the
administration queue

MQeConnectionAdminMsg provides support for administering
connections between queue managers

MQeHomeServerQueueAdminMsg provides support for administering
home-server queues

MQeQueueAdminMsg provides support for administering local
queues

MQeQueueMangerAdminMsg provides support for administering
queue managers

MQeRemoteQueueAdminMsg provides support for administering
remote queues

MQeStoreAndForwardQueueAdminMsg provides support for administering
store-and-forward queues

Chapter 2. Administration using administration messages 7

Table 3. Administration messages (continued)

Message name Purpose

MQeCommunicationsListenerAdminMsg provides support for administering
communications listeners

These base administration messages are provided in the com.ibm.mqe.administration
package. Other types or resource can be managed by subclassifying either
MQeAdminMsg or one of the existing administration messages. For instance, an
additional administration message for managing the WebSphere MQ bridge is provided
in the com.ibm.mqe.mqbridge package.

C
In the C codebase, all messages are MQeFields instances. This applies to admin
messages and the admin message types are distinguished by a special field inserted
into the fields object. The user has to create an admin message of the appropriate type
from scratch, inserting all of the required fields described later in this chapter.
Alternatively, for local administration, use the native administration API (see chapter 3).
The native codebase can respond correctly to all administration messages but the
native administration API is usually used for local administration. For these reasons,
most of the examples in this chapter relate to the Java codebase only.

Set the required fields in a message
Administration messages convey the administration action required by a combination of
data fields stored in the message. These fields have well defined names, types, and
values, and you can set up the administration message using low level fields API. In
Java, there are numerous helper methods to make this task less arduous.

The following sections describe the constituent fields of admin messages and admin
reply messages.

The basic administration request message
Every request to administer an WebSphere MQ Everyplace resource takes the same
basic form. Figure 2 on page 9 shows the basic structure for all administration request
messages:

A request is made up of:

1. Base administration fields, that are common to all administration requests.

2. Administration fields, that are specific to the resource being managed.

3. Optional fields to assist with the processing of administration messages.

8 Configuration Guide

Base administration fields
The base administration fields, that are common to all administration messages, are:

Admin_Target_QMgr
This field provides the name of the queue manager on which the requested
action is to take place (target queue manager). The target queue manager can
be either a local or a remote queue manager. As only one queue manager can
be active at a time in a Java Virtual Machine, the target queue manager, and
the one to which the message is put, are the same.

Admin_Action
This field contains the administration action that is to be performed. Each
managed resource provides a set of administrative actions that it can perform.
A single administration message can only request that one action be
performed. The following common actions are defined:

Table 4. Administration actions

Administration action Purpose

Action_Create Create a new instance of a managed
resource.

Action_Delete Delete an existing managed resource

Action_Inquire Inquire on one or more characteristics of a
managed resource

Base admin field items:

Admin_TargetQMgr
Admin_Action
Admin_MaxAttempts
Admin_Parms:

(Characteristics of managed

resource required for the action.)

Admin_Name
others ...
…

1

2

Optional fields: (commonly used)

MQe.Msg_Style
MQe.Msg_ReplyToQ
MQe.Msg_ReplyToQMgr
MQe.Msg_MsgID
MQe.Msg_CorrelID

3

Figure 2. Administration request message

administration request message

Chapter 2. Administration using administration messages 9

Table 4. Administration actions (continued)

Administration action Purpose

Action_InquireAll Inquire on all characteristics of a managed
resource

Action_Update Update one or more characteristics of a
managed resource

All resources do not necessarily implement these actions. For instance, it is
not possible to create a queue manager using an administration message.
Specific administration messages can extend the base set to provide additional
actions that are specific to a resource.

Each common action provides a method that sets the Admin_Action field:

Table 5. Setting the administration action field

Administration action Setting method

Action_Create create (MQeFields parms)

Action_Delete delete (MQeFields parms)

Action_Inquire inquire (MQeFields parms)

Action_InquireAll inquireAll (MQeFields parms)

Action_Update update(MQeFields parms)

Admin_MaxAttempts

This field determines how many times an action can be retried if the initial
action fails. The retry occurs either the next time that the queue manager
restarts or at the next interval set on the administration queue.

Other fields
For most failures further information is available in the reply message. It is the
responsibility of the requesting application to read and handle failure
information. See “The basic administration reply message” on page 16 for
more details on using the reply data.

A set of methods is available for setting some of the request fields:

Table 6. Setting administration request fields

Administration action Field type Set and get methods

Admin_Parms MQeFields MQeFields getInputFields()

Admin_Action int setAction (int action)

Admin_TargetQMgr ASCII setTargetQMgr(String qmgr)

Admin_MaxAttempts int setMaxAttempts(int attempts)

administration request message

10 Configuration Guide

Fields specific to the managed resource
Admin_Parms

This field contains the resource characteristics that are required for the action.

Every resource has a set of unique characteristics. Each characteristic has a
name, type and value, and the name of each is defined by a constant in the
administration message. The name of the resource is a characteristic that is
common to all managed resources. The name of the resource is held in the
Admin_Name, and it has a type of ASCII.

The full set of characteristics of a resource can be determined by using the
characteristics() method against an instance of an administration message.
This method returns an MQeFields object that contains one field for each
characteristic. MQeFields methods can be used for enumerating over the set
of characteristics to obtain the name, type and default value of each
characteristic.

The action requested determines the set of characteristics that can be passed
to the action. In all cases, at least the name of the resource, Admin_Name, must
be passed. In the case of Action_InquireAll this is the only parameter that is
required.

The following code could be used to set the name of the resource to be
managed in an administration message:

SetResourceName(MQeAdminMsg msg, String name)
{

MQeFields parms;
if (msg.contains(Admin_Parms))

parms = msg.getFields(Admin_Parms);
else

parms = new MQeFields();

parms.putAscii(Admin_Name, name);
msg.putFields(Admin_Parms, parms);

}

Alternatively, the code can be simplified by using the getInputFields() method
to return the Admin_Parms field from the message, or setName() to set the
Admin_Name field into the message. This is shown in the following code:

SetResourceName(MQeAdminMsg msg, String name)
{

msg.SetName(name);
}

Other useful fields
By default, no reply is generated when an administration request is processed. If a reply
is required, then the request message must be set up to ask for a reply message. The
following fields are defined in the MQe class and are used to request a reply.

Msg_Style
A field of type int that can take one of three values:

administration request message

Chapter 2. Administration using administration messages 11

Msg_Style_Datagram
A command not requiring a reply

Msg_Style_Request
A request that would like a reply

Msg_Style_Reply
A reply to a request

If Msg_Style is set to Msg_Style_Request (a reply is required), the location that the reply
is to be sent to must be set into the request message. The two fields used to set the
location are:

Msg_ReplyToQ
An ASCII field used to hold the name of the queue for the reply

Msg_ReplyToQMgr
An ASCII field used to hold the name of the queue manager for the reply

If the reply-to queue manager is not the queue manager that processes the request
then the queue manager that processes the request must have a connection defined to
the reply-to queue manager.

For an administration request message to be correlated to its reply message the
request message needs to contain fields that uniquely identify the request, and that can
then be copied into the reply message. WebSphere MQ Everyplace provides two fields
that can be used for this purpose:

Msg_MsgID
A byte array containing the message ID

Msg_CorrelID
A byte array containing the Correl ID of the message

Any other fields can be used but these two have the added benefit that they are used
by the queue manager to optimize searching of queues and message retrieval. The
following code fragment provides an example of how to prime a request message.

Java
As this is a frequently performed process, this code example combines each step in the
primeAdminMsg() method, that can be invoked in other chapters throughout this book
(assuming that the method has been defined for the class in question).

public class LocalQueueAdmin extends MQe
{

public String targetQMgr = "ExampleQM";
// target queue manager

public MQeFields primeAdminMsg(MQeAdminMsg msg) throws Exception
{

/*
* Set the target queue manager that will process this message
*/
msg.setTargetQMgr(targetQMgr);

administration request message

12 Configuration Guide

/*
* Ask for a reply message to be sent to the queue
* manager that processes the admin request
*/
msg.putInt (MQe.Msg_Style, MQe.Msg_Style_Request);
msg.putAscii(MQe.Msg_ReplyToQ, MQe.Admin_Reply_Queue_Name);
msg.putAscii(MQe.Msg_ReplyToQMgr, targetQMgr);

/*
* Setup the correl id so we can match the reply to the request.
* - Use a value that is unique to the this queue manager.
*/
byte[] correlID =
Long.toHexString((MQe.uniqueValue()).getBytes());
msg.putArrayOfByte(MQe.Msg_CorrelID, correlID);

/*
* Ensure matching response message is retrieved
* - set up a fields object that can be used as a match parameter
* when searching and retrieving messages.
*/
MQeFields msgTest = new MQeFields();
msgTest.putArrayOfByte(MQe.Msg_CorrelID, new Byte{1, 2, 3, 4});

/*
* Return the unique filter for this message
*/
return msgTest;

}

Depending on how the destination administration queue is defined, delivery of the
message can be either synchronous or asynchronous.

Put the administration message onto the target administration queue
The action defined in the admin message will only be performed when the message
reaches the admin queue on the target queue manager. The target queue manager will
need to have an admin queue. To get the message to a remote target queue manager,
you will need to have all the appropriate connectivity in place. If the administration is to
be done on the local queue manager, no connectivity is required. Message delivery is
achieved by a simple put message call. Simply use the MQeQueueManager API call
putMessage(), specifying the destination queue manager and the standard admin
queue name. We can ignore the attribute, and confirmed parameters in our example,
though they are available for more controlled access to the admin queue.

Java
//put the message to the right admin queue
LocalQueueManager.putMessage(targetQueueManagerName, MQe.Admin_Queue_Name,

msg,null,0L);

administration request message

Chapter 2. Administration using administration messages 13

Wait for an administration reply message
Since administration is performed asynchronously, you will have to wait for the reply to
the admin message in order to determine if the action was successful. Standard
WebSphere MQ Everyplace message processing is used to wait for a reply or
notification of a reply. In the Java codebase, for instance, the queue manager API call
waitForMessage() can be used for this purpose.

There is a time lag between sending the request and receiving the reply message. The
time lag may be small if the request is being processed locally or may be long if both
the request and reply messages are delivered asynchronously. The following Java code
fragment could be used to send a request message and wait for a reply:

public class LocalQueueAdmin extends MQe
{

public String targetQMgr = "ExampleQM";
// target queue manager
public int waitFor = 10000;
// millisecs to wait for reply

/*
* Send a completed admin message.
* Uses the simple putMessage method which is not assured if the
* the queue is defined for synchronous operation.
*/
public void sendRequest(MQeAdminMsg msg) throws Exception
{

myQM.putMessage(targetQMgr,
MQe.Admin_Queue_Name,
msg,
null,
0L);

}

/*
* Wait ten seconds for a reply message. This method will wait for
* a limited time on either a local or a remote reply to queue.
*
*
*/
public MQeAdminMsg waitForReply(MQeFields msgTest) throws Exception {
int secondsElapsed = 0;
MQeAdminMsg msg = null;
try {
msg = (MQeAdminMsg)myQM.getMessage(

targetQMgr,
MQe.Admin_Reply_Queue_Name,
msgTest, null, 0L);

} catch (MQeException e) {
if (e.code() != MQe.Except_Q_NoMatchingMsg) {
// if the exception is ’no matching
//message then ignore it. This
// will result in a null return value.
//Rethrow all other exceptions

administration request message

14 Configuration Guide

throw e;
}
}
while (null == msg && secondsElapsed < 10) {
Thread.sleep(1000);
secondsElapsed++;
try {
msg = (MQeAdminMsg)myQM.getMessage(

targetQMgr,
MQe.Admin_Reply_Queue_Name,
msgTest, null, 0L);

} catch (MQeException e) {
if (e.code() != MQe.Except_Q_NoMatchingMsg) {
// if the exception is ’no matching message’ then ignore it. This
// will result in a null return value. Rethrow all other exceptions
throw e;
}
}
}
return msg;
}

This method is a simple wrapper for the MQeQueueManager API call waitForMessage(),
that sets up a filter to select the required admin reply, and casts any message obtained
to an admin message.

/**
*Wait for message -waits for a message to arrive on the admin reply queue
*of the specified target queue manager.Will wait only for messages with the
*specified unique tag return message,or return null if timed out */

public static final MQeAdminMsg waitForRemoteAdminReply(
MQeQueueManager localQueueManager,
String remoteQueueManagerName,
String match)throws Exception {

//construct a filter to ensure we only get the matching reply
MQeFields filter =new MQeFields();
filter.putArrayOfByte(MQe.Msg_CorrelID,match.getBytes());
//now wait for the reply message
MQeMsgObject reply =localQueueManager.waitForMessage(

remoteQueueManagerName,
MQe.Admin_Reply_Queue_Name,
filter,
null,
0L,
10000);//wait for 10 seconds

return (MQeAdminMsg)reply;
}

Analyze the data in the administration reply message
Administration reply messages contain information about the success or failure of the
attempt to perform the administration request. There are three levels of success:

administration request message

Chapter 2. Administration using administration messages 15

v Total success - the action happened as requested. For enquire requests the
messages contains the data requested.

v Total failure - the action failed. The message contains a reason why the action failed.

v Partial failure - some portion of a composite request failed. For example an attempt
to update five fields might be successful for three, but unsuccessful for two. The
fields that failed, and the reason for their failure is contained in the message.

Successful reply
If the administration action is successful then the return message contains a
byte field called MQeAdminMsg.Admin_RC with a value of
MQeAdminMsg.RC_Success.

Total failure
If the administration action is a complete failure then the return message
contains a byte field called MQeAdminMsg.Admin_RC with a value of
MQeAdminMsg.RC_Fail. It also contains a String field called
MQeAdminMsg#Admin_Reason which contains a description of the failure.

Partial failure
If the administration action is a partial failure then the return message contains
a byte field called MQeAdminMsg.Admin_RC with a value of
MQeAdminMsg.RC_Mixed. The String field called MQeAdminMsg.Admin_Reason
which only contains a general explanation ’errors occurred’. For more detail,
access the field called MQeAdminMsg.Admin_Errors. The MQeFields object
contains any errors related to subproblems that occur when a request fails with
a return code of RC_Fail or RC_Mixed. For each attribute in error, there is a
corresponding field in this MQeFields object. If the field that was processed
was an array then the corresponding error field is of type ASCII array. If the
field that was processed was not an array then the corresponding error field is
of type ASCII.

For example if an update request was made to change 4 attributes of a
resource and 2 of the updates were successful and 2 failed, this field would
contain information detailing the reason for the 2 failures.

Each error is typically a toString() representation of the exception that
caused the failure. If the exception is of type com.ibm.mqe.MQeException the
string includes the MQeException code at the start of the string as ″Code=nnn″.

The basic administration reply message
Once an administration request has been processed, a reply, if requested, is sent to the
reply-to queue manager queue. The reply message has the same basic format as the
request message with some additional fields.

administration request message

16 Configuration Guide

A reply is made up of:

1. Base administration fields. These are copied from the request message.

2. Administration fields that are specific to the resource being managed.

3. Optional fields to assist with the processing of administration messages. These are
copied from the request message.

4. Administration fields detailing outcome of request.

5. Administration fields providing detailed results of the request that are specific to the
resource being managed.

6. Administration fields detailing errors that are specific to the resource being
managed.

The first three items are describe in “The basic administration request message” on
page 8. The reply specific fields are described in the following sections.

Base admin field items:

Admin_TargetQMgr
Admin_Action
Admin_MaxAttempts
Admin_Parms:

(Characteristics of managed

resource required for the action.)

Admin_Name
others ...
…

1

2, 5

(Error field items: 1 per
characteristic in error.)

Field in error
…

6

Admin_Errors:

Reply admin field items:

Admin_RC
Admin_Reason

4

Optional fields: (commonly used)

MQe.Msg_Style
MQe.Msg_ReplyToQ
MQe.Msg_ReplyToQMgr
MQe.Msg_MsgID
MQe.Msg_CorrelID

3

Figure 3. Administration reply message

administration reply message

Chapter 2. Administration using administration messages 17

Outcome of request fields
Admin_RC field

This byte field contains the overall outcome of the request. This is a field of
type int that is set to one of:

MQeAdminMsg.RC_Success
The action completed successfully.

MQeAdminMsg.RC_Failed
The request failed completely.

MQeAdminMsg.RC_Mixed
The request was partially successful. A mixed return code could result
if a request is made to update four attributes of a queue and three
succeed and one fails.

Admin_Reason
A Unicode field containing the overall reason for the failure in the case of
Mixed and Failed.

Admin_Parms
An MQeFields object containing a field for each characteristics of the managed
resource.

Admin_Errors
An MQeFields object containing one field for each update that failed. Each
entry contained in the Admin_Errors field is of type ASCII or asciiArray.

The following methods are available for getting some of the reply fields:

Table 7. Getting administration reply fields

Administration field Field type Get method

Admin_RC int int getAction()

Admin_Reason Unicode String getReason()

Admin_Parms MQeFields MQeFields getOutputFields()

Admin_Errors MQeFields MQeFields getErrorFields()

Depending on the action performed, the only fields of interest may be the return code
and reason. This is the case for delete. For other actions such as inquire, more details
may be required in the reply message. For instance, if an inquire request is made for
fields Queue_Description and Queue_FileDesc, the resultant MQeFields object would
contain the values for the actual queue in these two fields.

The following table shows the Admin_Parms fields of a request message and a reply
message for an inquire on several parameters of a queue:

administration reply message

18 Configuration Guide

Table 8. Enquiring on queue parameters

Admin_Parms field name Request message Reply message

Type Value Type Value

Admin_Name ASCII ″TestQ″ ASCII ″TestQ″

Queue_QMgrName ASCII ″ExampleQM″ ASCII ″ExampleQM″

Queue_Description Unicode null Unicode ″A test queue″

Queue_FileDesc ASCII null ASCII ″c:\queues\″

For actions where no additional data is expected on the reply, the Admin_Parms field in
the reply matches that of the request message. This is the case for the create and
update actions.

Some actions, such as create and update, may request that several characteristic of a
managed resource be set or updated. In this case, it is possible for a return code of
RC_Mixed to be received. Additional details indicating why each update failed are
available from the Admin_Errors field. The following table shows an example of the
Admin_Parms field for a request to update a queue and the resultant Admin_Errors field:

Table 9. Request and reply message to update a queue

Field name Request message Reply message

Type Value Type Value

Admin_Parms field

Admin_Name ASCII ″TestQ″ ASCII ″TestQ″

Queue_QMgrName ASCII ″ExampleQM″ ASCII ″ExampleQM″

Queue_Description Unicode null Unicode ″ExampleQM″ ″A new
description″

Queue_FileDesc ASCII null Unicode ″D:\queues″

Admin_Errors field

Queue_FileDesc n/a n/a ASCII ″Code=4;com.ibm.
mqe.MQeException:
wrong field type″

For fields where the update or set is successful there is no entry in the Admin_Errors
field.

A detailed description of each error is returned in an ASCII string. The value of the error
string is the exception that occurred when the set or update was attempted. If the
exception was an MQeException, the actual exception code is returned along with the
toString representation of the exception. So, for an MQeException, the format of the
value is:

"Code=nnnn;toString representation of the exception"

administration reply message

Chapter 2. Administration using administration messages 19

Java
This method shows how you might analyze a reply message, and return a boolean to
indicate whether the action was successful or not. We take the opportunity to print out
any error messages to the console.

/**
*Reply true if the given admin reply
*message represents a successful
*admin action.Return false otherwise.
*A message indicating success
*or failure will be printed to the console.
*If the admin action was not successful then the reason will be printed
*to the console
*/
public static final boolean isSuccess(MQeAdminMsg reply)

throws Exception {
boolean success =false;
final int returnCode =reply.getRC();
switch (returnCode){

case MQeAdminMsg.RC_Success:
System.out.println("Admin succeeded");
success =true;
break;

case MQeAdminMsg.RC_Fail:
/* all on one line */

System.out.println("Admin failed,reason:"+
reply.getReason());

break;
case MQeAdminMsg.RC_Mixed:

System.out.println("Admin partially succeeded:\n"
+reply.getErrorFields());

break;
}
return success;

}

Administration of managed resources
As described in previous sections, WebSphere MQ Everyplace has a set of resources
that can be administered with admin messages. These resources are known as
managed resources.

Example administration console
One of the examples provided with WebSphere MQ Everyplace is an administration
graphical user interface (GUI). This example uses many of the administration
techniques and features described in previous sections of this manual. All the classes
for this example are contained in package examples.administration.console.

This example demonstrates the following WebSphere MQ Everyplace administration
features:

v Management of both local and remote queue managers

v Administration of all WebSphere MQ Everyplace managed resources

administration reply message

20 Configuration Guide

v Access to all actions of each managed resource

v Use of most of the base MQeAdminMsg features

v A queue browser

v A customized version of the queue browser for the administration reply queue.

This is provided solely as a programming example, it is not expected to be used
outside a development and test environment. It should be noted that this example
works with other examples such as trace, and the client queue manager, and it is also
subclassified to provide an administration example for the WebSphere MQ bridge.

The main console window
To start the console use the command:

java examples.administration.console.Admin

This displays the following window:

This is the central window from which all other interactions are initiated. The window
has three sections:

1. Type of resource to manage
The set of buttons on the left side of the window control the selection of the
resource that is to be managed. There is one button for each type of
WebSphere MQ Everyplace managed resource and one button called Setup.
The Setup button provides access to a set of base administration functions
such as browsing the reply-to queue and turning trace on and off.

2. Base administration parameters
The central section of the window allows base administration parameters to be
altered.

1

Figure 4. Administration console window

example administration console

Chapter 2. Administration using administration messages 21

Mode Whether the queue manager to be managed is local or remote.

Local queue manager
The name of the local queue manager that is initiating the
administration actions. This is set automatically when a queue
manager is started with the Start QM button.

Managed queue manager
If the mode is set to remote, this is the name of the queue manager
to be managed. If the mode is set to local, this is always the same as
the local queue manager.

Reply-to queue manager
The name of the queue manager to which administration reply
messages are to be sent.

Reply-to queue
The name of the queue to which administration reply messages are to
be sent.

3. Managed resource specific action
Each managed resource has a set of actions that can be performed on it. The
buttons on the right of the main window show the actions for the resource that
is selected on the left of the window. Selecting one of an action button starts
the function for that action. Normally this causes the display of another window
related to the action.

The selected local queue manager must be running in the JVM that the console is
executing in. If it is not already running, it needs to be started using the Start QM
button. This displays a dialog that requests the name and path of the ini file that
contains the queue manager startup parameters. If the queue manager is already
running, the Connect QM button can be selected (this is the case if administration is
started from the example server ExampleAwtMQeServer).

Once the queue manager has been started, any of the resources in area 1 can be
selected and managed.

Queue browser
An example queue browser, AdminQueueBrowser is provided with WebSphere MQ
Everyplace. This example shows how to browse a queue and how to display the
contents of messages on the queue. The example can only browse queues that can be
accessed synchronously and that the user has the necessary authority to access. The
example code is not able to show the messages that are secured using message level
security.

AdminQueueBrowser has been subclassified to provide a queue browser with
enhanced function for browsing the administration reply-to queue. This is implemented
in class AdminLogBrowser. This subclass can be accessed by selecting the Setup
button followed by the Browse reply queue button.

The following figure shows the administration reply-to queue window.

example administration console

22 Configuration Guide

This window has several sections:

1. The name of the administration reply to queue manager and queue

2. Message filter
You can provide a filter to limit the set of messages displayed. This example
allows a filter on the MsgID and CorrelID fields of a message. The example
also makes the assumption that the fields contain strings that have been
encoded in a byte array.

When administration messages are sent from the example console, the MsgID
is set to the name of the queue manager to be managed. It is therefore
possible to display administration messages only for a specific queue manager.

3. Message view type
You can view messages in the message display panel in the following ways:

List: A one line summary of each message on the queue.

Full: The contents of all messages on the queue.

Both: Two panels, one panel displays a list with a summary line for each
message, the other panel displays the contents of a message that
has been selected in the message panel.

The number of messages currently being viewed is also displayed.

4. Message display panel
As described in 3, this panel displays messages in various forms. To display a
detailed view of a message in a new window, double click the message in the
list view.

5. Actions
Several buttons provide actions that are specific to the queue browser:

Refresh
Clears the display and then displays the current contents of the
queue. If the queue being browsed is a local queue, a monitor is
automatically started. This monitor refreshes the display when new
messages are added to the queue. If the queue being browsed is
remote then it is not possible to automatically refresh the window

1

2

3

4

5

Figure 5. Reply-to queue window

example administration console

Chapter 2. Administration using administration messages 23

when new messages are added. In this case, the Refresh button can
be used to get the latest contents of the queue.

Empty Queue
Deletes all messages from the queue.

Cancel Closes the queue browser window.

6. Message
Error and status messages are displayed here.

Action windows
Once you have selected a managed resource type, and you have clicked an action
button, a window opens that displays a list of possible parameters for the action. Some
parameters are mandatory, others are optional. The following figure shows an example
of selecting the add action on a connection:

example administration console

24 Configuration Guide

The action window is the same for most actions. It consists of the following parts:

1. Message area
Error and status messages are displayed here.

2. Names of parameter
Action parameter names.

3. Value of parameter
An input field where you can change the parameter values. The initial value
displayed is the default value for the parameter.

4. Send field
The check box for each field is automatically selected when a value is

1

2

3

4

1

2

3

4

5

Figure 6. Action window

example administration console

Chapter 2. Administration using administration messages 25

changed. When this field is selected, the field is included in the administration
message. By default the administration message only contains values that
have changed, it does not contain default values. Default values are
understood by the administration message and are not included in the
message to ensure that the message size is kept as small as possible. If you
change a value back to its default, you must select the send field check box
yourself.

5. Action buttons
For each administration action there are three buttons:

Action The name on this button depends on the administration action. In this
example it is Add connection. The action is always to create the
administration message and send it to the destination queue
manager. The action window is closed.

Apply Create the administration message and send it to the destination
queue manager. The action window remains open allowing the same
message to be sent multiple times or it can be modified and then
sent.

Cancel Close the action window without sending the administration message.

Reply windows
You can view the outcome of an administration request with the administration log
browser as described in “Queue browser” on page 22. To see the details of the result of
the request, double click on the reply message in the list view.

The window has the same basic structure as an administration request action window
but has the following differences:

1. Message
Displays the return code and result of the action.

1

2

Figure 7. Reply window

example administration console

26 Configuration Guide

2. Detailed errors
If the return code was RC_Mixed, any errors relating to a particular field are
displayed alongside the field.

3. Action buttons

OK Close the action reply window.

C
Refer to the example on how to analyze administration reply (use enquire all on queue
manager).

Administration from the command line
WebSphere MQ Everyplace includes some tools that enable the administration of
WebSphere MQ Everyplace objects from the command line, using simple scripts. The
following tools are provided:

QueueManagerUpdater
Creates a device queue manager from an ini file, and sends an administration
message to update the characteristics of a queue manager.

IniFileCreator
Creates an ini file with the necessary content for a client queue manager.

LocalQueueCreator
Opens a client queue manager, adds a local queue definition to it, and closes
the queue manager.

HomeServerCreator
Open a server queue manager, adds a home-server queue, and closes the
queue manager.

ConnectionCreator
Allow a connection to be added to an WebSphere MQ Everyplace queue
manager without programming anything in Java.

RemoteQueueCreator
Opens a device queue manager for use, sends it an administration message to
cause a remote queue definition to be created, then closes the queue
manager.

MQBridgeCreator
Creates an WebSphere MQ bridge on an WebSphere MQ Everyplace queue
manager.

MQQMgrProxyCreator
Creates a WebSphere MQ queue manager proxy for a bridge.

MQConnectionCreator
Creates a connection definition for a WebSphere MQ system on a proxy
object.

example administration console

Chapter 2. Administration using administration messages 27

MQListenerCreator
Creates a WebSphere MQ transmit queue listener to pull messages from
WebSphere MQ.

MQBridgeQueueCreator
Creates an WebSphere MQ Everyplace queue that can reference messages
on a WebSphere MQ queue.

StoreAndForwardQueueCreator
Creates a store-and-forward queue.

StoreAndForwardQueueQMgrAdder
Adds a queue manager name to the list of queue managers for which the
store-and-forward queue accepts messages.

The following files are also provided:

Example script files
Two example .bat files, and a runmqsc script to demonstrate setting up a
fictitious network configuration, involving a branch, a gateway, and a
WebSphere MQ system.

Rolled-up Java example
An example of how a batch file can be rolled-up into a Java file for
batch-language independence.

Example of use of command-line tools
The command-line tools can be used to create an initial queue manager configuration
using a script, and without needing to know how to program in the Java programming
language.

The following example demonstrate how to use these tools to configure the network
topology shown in the following figure.

example administration console

28 Configuration Guide

In this scenario:

v The branch offices need to send sales information to the central site for processing
by applications on the WebSphere MQ server

v Each branch has a single machine with DNS names BRANCH000, BRANCH001, and
BRANCH002 respectively. These machines all run WebSphere MQ Everyplace each
having a single queue manager names BRANCH000QM, BRANCH001QM, and BRANCH002QM
respectively.

v The central office machine GATEWAY00 runs a single gateway queue manager
GATEWAY00QM

v The central office machine CENTRAL00 runs WebSphere MQ with a single queue
manager CENTRAL00QM

v When a sale occurs, a message is sent to the WebSphere MQ queue manager
CENTRAL00QM, into a queue called BRANCH.SALES.QUEUE.

v The messages are encoded in a byte array at the branch, and sent inside an
MQeMQMsgObject.

v The WebSphere MQ system must be able to send messages back to each branch
queue manager.

v The topology must also be able to cope with the addition of a Firewall later between
the branches and the gateway.

v The WebSphere MQ-bound queue traffic should use the 56-bit DES cryptor.

Script files required
The following scripts are needed to configure this network topology.

Local area
network

GATEWAY00
central office

runs
WebSphere MQ

Everyplace

CENTRAL00
central office

runs
WebSphere MQ

Leased
lines

Branch000

Branch001

Branch002

Figure 8. WebSphere MQ Everyplace administration scenario

example administration console

Chapter 2. Administration using administration messages 29

Central.tst
Used with the runmqsc script to create relevant objects on CENTRAL00QM

CentralQMDetails.bat
Used to describe the CENTRAL00QM to other scripts

GatewayQMDetails.bat
Used to describe the GATEWAY00QM to other scripts

CreateGatewayQM.bat
Used to create the gateway queue manager

CreateBranchQM.bat
Used to create a branch queue manager

These .bat files can all be found in the installed product, in MQe\Java\Demo\Windows.

Note: Although the example scripts provided are in the Windows .bat file format, they
could be converted to work equally well in any scripting language available on
your system.

WebSphere MQ Everyplace and WebSphere MQ objects defined by
the scripts
The following objects are created by the scripts, to provide the branch-to-central routing:

BRANCH001QM (MQe)
BRANCH000QM (MQe)

Remote queue:
Name: BRANCH.SALES.QUEUE
Queue manager: CENTRAL00QM

Connection
Name:CENTRAL00QM
Routed vis: GATEWAY00QM

Connection
Name: GATEWAY00QM
Route: Network:<host>:<port>

Listener
<port>

WebSphere MQ classes
for Java

JVM
GATEWAY00QM (MQe)
BridgeQueue
Name: BRANCH.SALES.QUEUE
Qmgr: GATEWAY))QM
Connection
Name:CENTRAL00QM
Route:null

Bridge
Name: <bridgeName>

MQ Qmgr Proxy “CENTRAL00QM”

Connection Pool “FOR.GATEWAY01QM”

TCP/IP Sockets

CENTRAL00QM (WebSphere MQ)

Local queue: “BRANCH.SALES.QUEUE”

Local queue: “SYNC.Q.GATEWAY00QM”

Server connection channel: “FOR.GATEWAY00QM”

Figure 9. Branch to central routing

example administration console

30 Configuration Guide

The following objects are created by the scripts to provide the central-to-branch routing:

How to use the script files
Follow these procedures to create the required objects and operate the example
scenario, using the supplied script files.

Edit the JavaEnv.bat .
Make sure you have edited the JavaEnv.bat file to set your required working
environment.

Create a command-line session
Create a command-line session, and invoke the JavaEnv.bat to make the
settings available in the current environment.

Gather hardware required
Locate all the hardware on which you will be installing the network topology.

Gather the machine names of those machines available to you, and note them
down. If you have only one machine available, you can still use the scripts to
deploy the example network topology, as you can specify the same hostname
for each queue manager.

Create a WebSphere MQ queue manager
By default, the scripts assume this is called CENTRAL00QM listening on port 1414
for client channel connections.

WebSphere MQ classes
for Java

BRANCH001QM (MQe)
BRANCH000QM (MQe)

Home-server queue:
Name: ToBranchQueue
Queue manager: GATEWAY00QM

Local queue
Name:FromCentralQ
Queue manager: BRANCH00QM

Connection
Name: GATEWAY00QM
Route: Network:<host>:<port>

JVM

GATEWAY00QM (MQe)
Store-and-forward queue “ToBranchQ”
with target qmgrs “BRANCH00QM”,
“BRANCH001QM”, and “BRANCH002QM”

Bridge
Name: <bridgeName>

MQ Qmgr Proxy “CENTRAL00QM”

Connection Pool “FOR.GATEWAY01QM”

TCP/IP Sockets

CENTRAL00QM (WebSphere MQ)

Remote queue manager alias: “BRANCH000QM”
(transmit queue: TO.GATEWAY00QM)

Local transmit queue: “TO.GATEWAY00QM”
Server connection channel: “FOR>GATEWAY00QM”

WebSphere MQ application puts to
“FromCentralQ” on “BRANCH00QM”

Transmit queue listener “TO.GATEWAY00QM”

Figure 10. Central to branch routing

example administration console

Chapter 2. Administration using administration messages 31

Describe the WebSphere MQ queue manager
Edit and review the CentralQMDetails.bat file to make sure that its details
match those of the WebSphere MQ queue manager you have just created. All
values, except the name of the machine on which the WebSphere MQ queue
manager sits, are defaulted in the script file.

Describe the gateway queue manager
Edit and review the GatewayQMDetails.bat file to make sure that details of the
gateway queue manager are decided on, and available for the other .bat files
to use.

The default name of the gateway queue manager created by the scripts is
GATEWAY00QM. You will need to set the machine name, and port number it will
listen on. This port must be available for use.

Tip: On Windows machines, use the command netstat -a to get a list of ports
currently in use.

Review the central.tst file
Read the central.tst file, make sure it won’t create any WebSphere MQ objects
you are unhappy with on your WebSphere MQ queue manager.

Distribute all the scripts to all machines
Copy all of the scripts to all of the machines on which you will be running
WebSphere MQ Everyplace queue managers.

This step spreads knowledge to all the machines in your network, of the host
names, port numbers, and queue manager names that you have decided to
use. If any of these files are changed, delete all WebSphere MQ Everyplace
queue managers and restart from this point in the instructions.

Run the central.tst script on your new WebSphere MQ queue manger
The central.tst script is in a format used by the runmqsc sample program
supplied with WebSphere MQ.

Pipe the central.tst file into runmqsc to configure your WebSphere MQ queue
manger For example:

runmqsc CENTRAL00QM < Central.tst

Use the WebSphere MQ Explorer to view the resultant WebSphere MQ objects
that are created.

Milestone: You have now set up your WebSphere MQ system.

Run the CreateGatewayQM script
The CreateGatewayQM script uses the details in the CentralQMDetails and
GatewayQMDetails scripts to create a gateway queue manager.

The script needs no parameters.

Check for the test message
The script that creates the queue manager sends a test message to the
WebSphere MQ system.

example administration console

32 Configuration Guide

Use the WebSphere MQ Explorer tool to look at the target queue
(BRANCH.SALES.QUEUE by default) to make sure a test message arrived. The
body of the test message contains the string ABCD

Milestone: You have now set up your WebSphere MQ Everyplace gateway queue
manager.

Keep the gateway queue manager running
During the running of the CreateGatewayQM script, an example server
program is invoked to start the gateway queue manager, and keep it running.
An AWT application runs, displaying a window on the screen.Do not close
this window.

All the time this window is active, the WebSphere MQ Everyplace gateway
queue manager it represents is also active. Closing the window closes the
WebSphere MQ Everyplace gateway queue manager and breaks the path
from the branch queue managers to the WebSphere MQ queue manager.

Create a branch queue manager
If your branch queue manager needs to run on a different machine, you may
need to edit the JavaEnv.bat file to set up your local environment.

Create a command-line session, and call JavaEnv.bat as before to set up your
environment.

Use the CreateBranchQM script to create a branch queue manager. The
syntax of the command is :

CreateBranchQM.bat branchNumber portListeningOn

Where:

branchNumber
Is a 3-digit number, padded with leading zeros, indicating which
branch the queue manager is being created for. For example, 000,
001, 002...

portListeningOn
Is a port on which the device branch queue manager listens on for
administration requests. For example, 8082, 8083...

Note: The port must not already be in use
Hint: On Windows machines, use the netstat -a command to view
the list of ports in use.

During the script, a test message is sent to your WebSphere MQ
system. Use the WebSphere MQ Explorer to make sure the test
message arrived successfully. The body of the test message contains
the string ABCD.

At the end of the script, an example program is used to start the
WebSphere MQ Everyplace queue manager. An AWT application

example administration console

Chapter 2. Administration using administration messages 33

runs, displaying a window on the screen.As with the gateway queue
manager, do not close this window until you wish to close the
queue manager.

Explore the branch queue manager
The branch queue manager is set up with a channel manager and
listener, on the port you specified when you created it, and the
Primary Network connection is HttpTcpipAdapter. As a result, you can
use the MQe_Explorer to view the queue managers. Refer to “How to
use the MQe_Explorer to view the configurations”.

Milestone: You now have a branch queue manager set up.

Note: An WebSphere MQ Everyplace queue manager should be named uniquely.
Never create two queue managers with the same name.

Start the MQe_Explorer.exe program. Stop one of the branch queue
managers, say BRANCH002QM Open the BRANCH002QM.ini file, and
navigate from there.

How to use the MQe_Explorer to view the configurations
To use the MQe_Explorer to view your configuration:

1. Start the MQe_Explorer.exe program.

2. Stop one of the branch queue managers, say BRANCH002QM

3. Open the BRANCH002QM.ini file, and navigate from there.

example administration console

34 Configuration Guide

Chapter 3. Administration using the administrator API

To create and administer Queue Managers and their associated objects (queues etc.),
the Java API uses the MQeQueueManagerConfigure class and admin messages. In the
C API, admin activities are performed using an Administrator API. The native codebase
responds to admin messages correctly but no provision is provided for creating them
and hence the Administrator API is the recommended method for local administration.

This chapter explains the basics of the Administrator API, under the following headings:

v Creating an administrator handle

v Using the administrator handle

v Freeing the administrator handle

The Administrator API is used in later chapters of this book to perform simple tasks. For
complete documentation on the Administrator API and all the available options, refer to
the WebSphere MQ Everyplace C Programming Reference.

Creating an administrator handle
Before any administration can take place, an administrator handle must be created
using the mqeAdministrator_new API call. The prototype for the call is:

MQERETURN mqeAdministrator_new(MQeExceptBlock* pExceptBlock,
MQeAdministratorHndl* phAdmin,
MQeQueueManagerHndl hQueueMgr)

The first parameter is a pointer to a valid exception block. The second parameter is a
pointer to an administrator handle, which is filled in with a valid handle upon successful
return from the function. The third parameter is an optional queue manager handle. If
the queue manager to be administered already exists, it must be created using the
mqeQueueManager_new function, and the queue manager handle returned must be
passed to the mqeAdministrator_new call.

To create a queue manager, NULL must be passed as the third parameter to the
mqeAdministrator_new call. If NULL is used, pass the mqeAdministrator_free or
mqeAdministrator_QueueManager_create call. Once the
mqeAdministrator_QueueManager_create call has been executed, the administrator
handle can be used as normal.

Using the administrator handle
Once an Administrator Handle has been created any of the mqeAdministrator calls can
then be used, the calls are all of the form:

MQERETURN mqeAdministrator_Object_action(
MQeAdministratorHndl hAdministrator,
MQeExceptBlock* pExceptBlock,
...)

© Copyright IBM Corp. 2002 35

Where object is the type of object to be administered, for example, a queue manager,
local queue, synchronous remote queue, and so on, and action is the operation to be
performed, for example, create, delete, inquire, update, and so on.

Note: Some Actions are only available for some object types.
Example calls:

If NULL is used to create an MQeAdministratirHndl, the next administration API call can
only be one of MQeAdministrator_free or MQeAdministrator_create_QueueManager.
Once the queue manager has been created, all the administration APIs are available for
use.

mqeAdministrator_LocalQueue_create
/* create a local queue */

mqeAdministrator_AdminQueue_inquire
/* inquire on a local queue */

Many of the APIs, particularly the inquire and update calls, have arguments which are
structures containing multiple elements some of which may or may not be filled in. In
order to accommodate this functionality, such structures contain an element called
″opFlags″, a set of bits to indicate which elements of the structure are set. Also
supplied are macros which initialize these opFlag structures to appropriate values and
macros for each bit which can be set.

For instance, if you wanted to inquire on a local queue but you were only interested in
the description and the Maximum Message Size fields, then you would do the following:

MQeLocalQParms lqParms = LOCAL_Q_INIT_VAL;
lqParms.opFlags |= QUEUE_DESC_OP;
lqParms.opFlags |= QUEUE_MAX_MSG_SIZE_OP;
/* Note that the | function is being used */

/* call inquire function */

Similarly, if you wanted to test which elements are filled in when such a structure is
returned from a function, you would do the following:

if(lqParms.opFlags & QUEUE_DESC_OP)
{ /* description is set*/
}
if(lqParms.opFlags & QUEUE_MAX_MSG_SIZE_OP)
{ /* max msg size is set*/
}

Freeing the administrator handle
When the application has finished with the administrator handle it should be destroyed
using the mqeAdministrator_free call. This allows the system to free up any resources
which are in use by the administrator. Once an administrator handle has been freed, it
must not be used in any of the mqeAdministrator_* API calls - if the handle is used, the
behavior is indeterminate, but is likely cause an access violation. If further

36 Configuration Guide

administration actions are to be performed, the handle can be recreated with the
mqeAdministrator_new call.

We recommend that once a handle has been freed it is accidentally set to NULL. If this
handle is then accidentally reused, the API returns an error.

Table 10. Common reason and return codes

Return codes Reason codes Notes

MQERETURN_ADMINISTRATION_ERROR MQEREASON_INVALID_QMGR_NAME Name has invalid
character or is NULL

MQEREASON_INVALID_QUEUE_NAME Name has invalid
character or is NULL

MQERETURN_INVALID_ARGUMENT MQEREASON_API_NULL_POINTER Pointer is NULL

MQEREASON_WRONG_TYPE Wrong type handle
has been passed,
for example,
QueueManager hndl
instead of
MQeFields

MQERETURN_QUEUE_ERROR MQEREASON_QMGR_QUEUE_EXISTS Queue already
Exists

rc = mqeAdministrator_new(&exceptBlock,
&hAdministrator,
NULL);

if(MQERETURN_OK == rc)
{ /* mqeAdministrator_QueueManager_create */

/* further mqeAdministrator calls */
/* ... */
rc = mqeAdministrator_free(hAdministrator,

&exceptBlock);
} hAdministrator = NULL;

Figure 11. Creating an Administrator Handle for a new Queue Manager

/* mqeQueueManager_new(...,&hQueueManager,...) */
/* ... */
rc = mqeAdministrator_new(&exceptBlock,

&hAdministrator,
hQueueManager);

if(MQERETURN_OK == rc)
{

/* further mqeAdministrator calls */
/* ... */
rc = mqeAdministrator_free(hAdministrator,

&exceptBlock);
}

Figure 12. Creating an Administrator Handle for an existing Queue Manager

Chapter 3. Administration using the administrator API 37

Table 10. Common reason and return codes (continued)

Return codes Reason codes Notes

MQEREASON_QMGR_QUEUE_NOT_EMPTY Queue is not empty

MQERETURN_QUEUE_MANAGER_ERROR MQEREASON_UNKOWN_QUEUE Queue does not
exist

MQEREASON_UNKOWN_QUEUE_MANAGER Queue manager
does not exist

MQERETURN_NOTHING_TO_DO MQEREASON_DUPLICATE Name already in
use

MQEREASON_NO_SUCH_QUEUE_ALIAS The queue alias
specified does not
exist

38 Configuration Guide

Chapter 4. Creating and starting queue managers

WebSphere MQ Everyplace queue managers, irrespective of their role within the
WebSphere MQ Everyplace network, require some information to be held in permanent
storage. This is the responsibility of WebSphere MQ Everyplace. If there is additional
information that must persist between invocations of an application, this is the
responsibility of the application.

Information held within the registry contains Queue Manager configuration details, for
example:

v Information on where messages, queues, remote queue definitions, channel timeout,
aliases, adapters, and the message store are held and how to access them

v Connection definitions

v Security information

v Various bridge related objects

The following persistent information, useful to an application, is referred to in this
manual as environmental data:

v Registry information, class, path, storage adapter class, and registry type. This
information is used to locate an existing registry, allowing WebSphere MQ
Everyplace to start an existing queue manager, or to create a new queue manager
registry.

v Class manager information, for example class and name.

v Queue manager type.

Creating and starting simple queue managers
The simplest WebSphere MQ Everyplace queue manager is a queue manager that
uses a registry based upon the internal default values. The queue manager could be
created without any queues, but its functionality would be severely limited. The example
we create contains four standard queues:

v Admin queue - so that administration can be performed

v Admin reply queue - a standard place to store replies from administration actions

v System default queue - a useful general purpose local queue

v Dead letter queue - a place for undeliverable messages

The simplest queue manager has no security and has a registry stored in the local file
system. The steps to achieve are:

v Create a registry on disk

v Create and start a queue manager using the registry

v Stop the queue manager

These actions are described for both the Java codebase and the C codebase, with
example code for each. The example Java code is shipped as

© Copyright IBM Corp. 2002 39

examples.config.CreateQueueManager. For C example code, refer to the HelloWorld
compilation section and the transport-c file in the Broker example.

Creating a simple queue manager in Java
Registries are created in Java by using the class
com.ibm.mqe.MQeQueueManagerConfigure. An instance of this class is created, and
activated by passing it some initialization parameters. The parameters are supplied in
the form of an MQeFields object. Within this MQeFields are contained two sub fields,
one holding information about the registry, and one holding information about the queue
manager being created. As we are creating a very simple queue manager, we only
need to pass two parameters, the queue manager name, in the queue manager
parameters, and the registry location, in the registry parameters. We can then use the
MQeQueueManagerConfigure to create the standard queues.

First, create three fields objects, one for the queue manager parameters, one for the
Registry parameters. The third field object, parameters, is used to contain both the
queue manager and registry fields objects.

MQeFields parms = new MQeFields();
MQeFields queueManagerParameters = new MQeFields();
MQeFields registryParameters = new MQeFields();

The queue manager name needs to be set. Use the MQeQueueManager.Name as the
Field Label constant.

queueManagerParameters.putAscii(MQeQueueManager.Name, queueManagerName);

The location of the persistent registry needs to be specified. Do this in the registry
parameters field object. Use the MQeRegistry.DirName as the Field Label constant.

registryParameters.putAscii(MQeRegistry.DirName, registryLocation);

The queue manager and registry parameters can now be set embedded the main fields
object.

parms.putFields(MQeQueueManager.QueueManager, queueManagerParameters);
parms.putFields(MQeQueueManager.Registry, registryParameters);

An instance of MQeQueueManagerConfigure can be created now. This needs the
parameters fields object, plus a String identifying the details of the queue store to use.

MQeQueueManagerConfigure qmConfig =
new MQeQueueManagerConfigure(parms, queueStore);

The four common types of queues can now be created via four convenience methods
as follows:

qmConfig.defineQueueManager();
qmConfig.defineDefaultSystemQueue();
qmConfig.defineDefaultDeadLetterQueue();
qmConfig.defineDefaultAdminReplyQueue();
qmConfig.defineDefaultAdminQueue();

Finally the MQeQueueManagerConfigure object can be closed.

40 Configuration Guide

qmConfig.close();

Starting a simple queue manager in Java
Starting the simplest queue manager is facile, as we only need to provide the queue
manager name and registry location to the queue manager constructor. This starts and
activates the queue manager, and when the constructor returns the queue manager is
running.

MQeQueueManager qm = newMQeQueueManager(queueManagerName, registryName);

There are other ways to start a queue manager that allow us to pass more parameters,
in order to take advantage of some advanced features, which are explained in later
chapters.

Stopping a queue manager in Java
There are 2 ways to close down a queue manager.

v closeQuiese

v closeImmediate

closeQuiese
This closes Queue Manager, specifying a delay to allow existing internal processes to
finish normally. Note that this delay is only implemented as a series of 100ms pause
and retry cycles. Calling this method will prevent any new activity, such as transmitting
a message, from being started, but will allow activities already in progress to complete.
The delay is a suggestion only, and various JVM dependant thread scheduling factors
could result in the delay being greater. If the activities currently in progress finish
sooner, then the method will return before the expiry of the quiesce duration.

If at the expiry of this period the queue has not closed, it is forced to close.

This method closes down the queue manager. One of the close methods should be
called by WebSphere MQ Everyplace applications when they have finished using the
queue manager.

After this method has been called, no more event notifications will be dispatched to
message listeners. It is conceivable that messages may complete their arrival after this
method has been called (and before it finishes). Such messages will not be notified.
Application programmers should be aware of this, and not assume that every message
arrival will generate a message event.

MQeQueueManager qmgr = new MQeQueueManager();
MQeMsgObject msgObj = null;
try {
qmgr.putMessage(null, "MyQueue", msgObj, null, 0);
} catch (MQeException e) {// Handle the exception here
}
qmgr.closeQuiesce(3000); // close QMgr

Figure 13. Start queue manager Java example

Chapter 4. Creating and starting queue managers 41

closeImmediate
This closes Queue Manager immediately. One of the close methods should be called by
WebSphere MQ Everyplace applications when they have finished using the queue
manager.

After this method has been called, no more event notifications are dispatched to
message listeners. Messages might complete their arrival after this method has been
called, and before it finishes. Such messages are not notified. Application programmers
should be aware of this, and not assume that every message arrival will generate a
message event.

MQeQueueManager qmgr = new MQeQueueManager();
MQeMsgObject msgObj = null;
try {
qmgr.putMessage(null, "MyQueue", msgObj, null, 0);
} catch (MQeException e) {// Handle the exception here
}
qmgr.closeImmediate(); // close QMgr

Creating a simple queue manager in C
Stage 1: Create the admin components

All local administration actions can be accomplished using the
MQeAdministrator. This allows you to create new queue managers and new
queues, and perform many other actions. For all calls, a pointer to the
exception block is required, along with a pointer for the queue manager
handle.

Stage 2: Create a queue manager
To create a queue manager, two parameters structures are required. One
contains the parameters for the queue manager, the other for the registry. In
this simple case the default values are suitable, with the addition of the
location of the registry and queue store.

The call to the administrator creates the queue manager.

Note: The queue manager name is passed into the call. A queue manager
handle is returned.

if (MQERETURN_OK == rc) {

MQeQueueManagerParms qmParams = QMGR_INIT_VAL;
MQeRegistryParms regParams = REGISTRY_INIT_VAL;

qmParams.hQueueStore = hQueueStore;
qmParams.opFlags = QMGR_Q_STORE_OP;
regParams.hBaseLocationName = hRegistryDir;

display("Creating the Queue Manager\n");
rc = mqeAdministrator_QueueManager_create(hAdministrator,

&exceptBlk,
&hQueueManager,
hLocalQMName,
&qmParams,
®Params);

}

42 Configuration Guide

Starting a simple queue manager in C
This process involves two steps:

1. Create the queue manager item.

2. Start the queue manager.

Creating the queue manager requires two sets of parameters, one set for the queue
manager and one for the registry. Both sets of parameters are initialized. The queue
store and the registry require directories.

Note: All calls require a pointer to an exception block and a pointer to the queue
manager handle.

if (MQERETURN_OK == rc) {

MQeQueueManagerParms qmParams = QMGR_INIT_VAL;
MQeRegistryParms regParams = REGISTRY_INIT_VAL;
qmParams.hQueueStore = hQueueStore;
qmParams.opFlags = QMGR_Q_STORE_OP;

/* ... create the registry parameters -
minimum that are required */

regParams.hBaseLocationName = hRegistryDir;
display("Loading Queue Manager from registry \n");
rc = mqeQueueManager_new(&exceptBlock,

&hQueueManager,
hLocalQMName,
&qmParams,
®Params);

}

You can now start the queue manager and carry out messaging operations:

/* Start the queue manager */

if (MQERETURN_OK == rc) {
display("Starting the Queue Manager\n");
rc = mqeQueueManager_start(hQueueManager,

&exceptBlock);
}

Stopping a queue manager in C
Following the removal of the message from the queue, you can stop and free the queue
manager. You can also free the strings that were created. Finally, terminate the session:

(void)mqeQueueManager_stop(hQueueManager,&exceptBlock);
(void)mqeQueueManager_free(hQueueManager,&exceptBlock);

/* Lets do some clean up */
(void)mqeString_free(hFieldLabel,&exceptBlock);

Figure 14. Create queue manager C example

Chapter 4. Creating and starting queue managers 43

(void)mqeString_free(hLocalQMName,&exceptBlock);
(void)mqeString_free(hLocalQueueName,&exceptBlock);
(void)mqeString_free(hQueueStore,&exceptBlock);
(void)mqeString_free(hRegistryDir,&exceptBlock);

(void)mqeSession_terminate(&exceptBlock);

Configuring a queue manager using memory only
This section applies only to queue managers using the Java programming interface.

It is sometimes required that applications have a queue manager which exists in
memory only. WebSphere MQ Everyplace Version 2.0 provides the ability to configure
and use a queue manager using memory resources only, without the need to persist
any information at all to disk.

A WebSphere MQ Everyplace queue manager normally uses two mechanisms to store
data:

v Configuration information is stored via a registry to an adapter.

v Messages are stored via a message store, which in turn uses an adapter to store
data.

The default is the MQeDiskFieldsAdapter, which persists information to disk.

Using the MQeMemoryFieldsAdapter instead of the MQeDiskFieldsAdapter for both of
these tasks allows the queue manager to be defined, used to transmit and store
messages, and deleted all without accessing a disk.

In-memory WebSphere MQ Everyplace queue managers have the following
characteristics:

v Functionally they can do everything other WebSphere MQ Everyplace queue
managers can do.

v Nothing is stored to disk.

v Messages and configuration stored to registries or queues are nonpersistent. They
are lost if all instances of the MQeMemoryFieldsAdapter are garbage collected, or in
the event of the JVM being shut down.

v The same steps are required to configure the in-memory queue manager, except
they are required every time the JVM is started.

v Transient queue managers which are created, used, and destroyed can be easier to
implement, with no clean-up problems if the JVM terminates abnormally.

Solutions that find this particular configuration of an WebSphere MQ Everyplace queue
manager useful have the following properties:

v Disk space is not available or nonexistent, for example in Java applets.

v Message traffic is synchronous only to remote queue managers.

44 Configuration Guide

v The application requires no local message store which cannot be recovered from
elsewhere if the JVM is terminated.

v The highest performance is required. Memory operations are much faster than disk
operations, so configuring a queue manager using purely memory resources normally
increases performance of queue manager configurations which, otherwise store
information to disk. Using too much memory can result in thrashing, and synchronous
remote queues usually run at the same speed on a memory-hosted or disk-hosted
queue manager.

v Creation and sending of messages for which no replies are required, though
in-memory queue managers can obtain replies, you would normally leave replies on
persistent queue managers and browse or get them using a synchronous remote
queue.

An example of the configuration technique can be seen in the
examples.queuemanager.MQeMemoryQM class. Note that the
MQeMemoryFieldsAdapter is instantiated explicitly at the start, and a reference is held
until the point where the queue manager, and messages it contains are no longer
required.

Note also that it is still important that In-memory queue managers have names which
are unique within the messaging network.

Chapter 4. Creating and starting queue managers 45

46 Configuration Guide

Chapter 5. Administering queue managers

This chapter explains how to administer queue managers. Further chapters explain how
to administer Local Queues, Remote Queue Definitions, Store and Forward Queues,
and Home Server Queues.

General notes
The queue manager is the central component of WebSphere MQ Everyplace, it
provides the main programming interface for application programs as well as owning
queues, communication and WebSphere MQ bridge subsystems. Java and C differ
significantly in the area of creating and deleting queue managers. In Java, general
queue manager administration is performed using admin messages, but creating and
deletion is performed using the MQeQueueManagerConfigure class. In C, all
administration is performed using the administrator API.

Java
Queue managers are created and deleted using the MQeQueueManagerConfigure class.
General queue manager administration is performed using the
MQeQueueManagerAdminMsg class which inherits from MQeAdminMsg.

The following actions are applicable to queue managers:

v MQeAdminMsg.Action_Inquire

v MQeAdminMsg.Action_InquireAll

v MQeAdminMsg.Action_Update

The MQeAdminMsg.Admin_Name field in the administration message is used to identify the
queue manager. The method setName(String) can be used set this field in the
administration message.

Note: For all administration messages, information relating to the destination queue
manager, reply queue and so on, must be set. This is referred to in the
examples below as priming the administration message.

The examples show how to create the admin to achieve the required result. These
message need to then be sent, and the admin reply messages checked as required.

C
All administration is done via the administration API. These APIs are of the form:

MQERETURN MQEPUBLISHED mqeAdministrator_QueueManager_action();

Where action can be one of the following:

create Create a Queue Manager

© Copyright IBM Corp. 2002 47

delete Delete a Queue Manager

update Updates the properties of a queue manager

inquire Inquires the properties of a queue manager

addAlias
Adds a queue manager alias

removeAlias
Removes a queue manager alias

listAliasNames
Lists all the aliases present for this queue manager.

isAlias Determines if a queue manager name is an alias or a real queue manager.

For the create update and inquire calls a structure is passed in for various parameters.

Queue Manager attributes
Queue Managers have a number of attributes, which are listed below. Information about
these attributes is passed either via API parameters or configuration
structures/MQeFields objects.

The first list shows all the possible queue manager attributes and indicates which are
available in the code bases.

Table 11. Queue Manager attributes

Attribute Description Java Native Read/Write

Bridge Capable Determines if the
queue manager
has MQBridge
functionality

Yes Yes (but always
false)

Read

Channel Attribute
Rule

The attribute rule
to be used by this
queue manager’s
channels

Yes No Read/Write

Channel Timeout The timeout to be
used by this
queue manager’s
outgoing channels

Yes Yes Read/Write

Communications
Listeners

The list of
listeners defined
on this queue
manager

Yes No Read

Connections The list of
connections
known by this
queue manager

Yes Yes Read

48 Configuration Guide

Table 11. Queue Manager attributes (continued)

Attribute Description Java Native Read/Write

Description A free-format
textual description
of this queue
manager.

Yes Yes Read/Write

Maximum
Transmission
Threads

The maximum
number of
background
transmission
threads supported
by this queue
manager.

Yes No Read/Write

Queues The list of queues
owned by this
queue manager

Yes Yes Read

Queue Store The location
where this queue
manager will
store its queues

Yes Yes Read/Write

Qmgr Rules The rules class
which will be
used by this
queue manager

Yes Yes Read/Write

Java
The parameters in Java are passed in using MQeFields objects. The values are passed
using field elements of specific types.

The field names are as follows. All the symbolic names are pubic static final static
strings in the MQeQueueManagerAdminMsg class.

Table 12. Java Parameters passed in using MQeFields

Element type

Field name constants

Symbolic Value

boolean QMgr_BridgeCapable bridge_capable

ASCII QMgr_ChnlAttrRules chnlattrrules

long QMgr_ChnlTimeout chnltimeout

fields array QMgr_CommsListeners commsls

fields array QMgr_Connections conns

Unicode QMgr_Description desc

int QMgr_Maximum
TransmissionThreads

maximumTransmissionThreads

Chapter 5. Administering queue managers 49

Table 12. Java Parameters passed in using MQeFields (continued)

Element type

Field name constants

Symbolic Value

fields array
Each element contains a fields
object containing
{QMgr_QueueName,
QMgr_QueueQMgrName,
QMgr_QueueType}

QMgr_Queues queues

ASCII QMgr_QueueStore queueStore

ASCII QMgr_Rules rules

C parameters
All the C parameters are passed in using a parameter structure. This structure needs to
be initialized before it can be used - set it to QMGR_INIT_VAL.

Table 13. Parameter structures for C

Element Type Element Name Notes

MQEINT32 opFlags Flags to indicate what parts of
this structure have been
set/requested

MQeStringHndl hDescription

MQeStringHndl hQueueManagerRules

MQEINT64 channelTimeOut

MQeStringHndl hQueueStore

MQeVectorHndl hQueues

MQeVectorHndl hConnections

MQEBOOL bridgeCapable Valid values {MQE_TRUE,
MQE_FALSE}

Create a queue manager
When creating a queue manager, a number of parameters can be specified.

Java
First, create the QueueAdminMsg object. This needs to be primed using code to setup
the origin queueManagerAdmin reply etc.

50 Configuration Guide

C API
The information for the queue is passed in via a structure to the API. Two important
points are:

v The structure is initialized using QMGR_INIT_VAL

v The properties that are set, are indicated using the opFlags elements of the
structure. Each property has a corresponding bit mask.

MQeQueueManagerParms qmParams = QMGR_INIT_VAL;
MQeRegistryParms regParams = REGISTRY_INIT_VAL;

/* String parameters for the location of the msg store */
qmParams.hQueueStore = hQueueStore;

/* Indicate what parts of the structure have been set */
qmParams.opFlags = QMGR_Q_STORE_OP;

/* ... create the registry parameters - minium that are required */
regParams.hBaseLocationName = hRegistryDir;

rc = mqeAdministrator_QueueManager_create(hAdministrator,
&exceptBlk,
&hQueueManager,
hLocalQMName,
&qmParams,
®Params);

MQeFields parms = new MQeFields();
MQeFields queueManagerParameters = new MQeFields();
queueManagerParameters.putAscii(MQeQueueManager.Name, "MyQmgrName");
parms.putFields(MQeQueueManager.QueueManager, queueManagerParameters);

MQeFields registryParameters = new MQeFields();
registryParameters.putAscii(MQeRegistry.DirName, "c:\MyRegLocation");
parms.putFields(MQeQueueManager.Registry, registryParameters);

String queueStore = "MsgLog:" + java.io.File.separator + "queues";
MQeQueueManagerConfigure qmConfig = new MQeQueueManagerConfigure(parms, queueStore);

qmConfig.defineQueueManager();
qmConfig.defineDefaultSystemQueue();
qmConfig.defineDefaultDeadLetterQueue();
qmConfig.defineDefaultAdminReplyQueue();
qmConfig.defineDefaultAdminQueue();
qmConfig.close();

Figure 15. Creating the QueueAdminMsg object

Chapter 5. Administering queue managers 51

Delete a queue manager

Java

C API
In order to delete a queue manager:

v The queue manager must be stopped

v All queues must be deleted

v All connection definitions must be deleted

Note there is no parameter structure here – just a Queue Manager handle.

MQeFields parms = new MQeFields();
MQeFields queueManagerParameters = new MQeFields();
queueManagerParameters.putAscii(MQeQueueManager.Name, "MyQmgrName");
parms.putFields(MQeQueueManager.QueueManager, queueManagerParameters);

MQeFields registryParameters = new MQeFields();
registryParameters.putAscii(MQeRegistry.DirName, "c:\MyRegLocation");
parms.putFields(MQeQueueManager.Registry, registryParameters);

String queueStore = "MsgLog:" + java.io.File.separator + "queues";
MQeQueueManagerConfigure qmConfig =

new MQeQueueManagerConfigure(parms, queueStore);

qmConfig.deleteDefaultAdminReplyQueue();
qmConfig.deleteDefaultAdminQueue();
qmConfig.deleteDefaultDeadLetterQueue();
qmConfig.deleteDefaultSystemQueue();
qmConfig.deleteQueueManager();
qmConfig.close();

Figure 16. Deleting a queue manager in Java

52 Configuration Guide

Inquire and Inquire all
In general, when inquiring on objects in WebSphere MQ Everyplace, it is possible to
ask for particular parameters which are of interest using inquire, or just ask for all
information using inquireAll.

Java or Administration message
In the Java interface, the presence of a field in the request message means that see
the value the field that field failed in.

//inquire

//Request the value of description
try {

MQeAdminMsg msg = (MQeAdminMsg) new MQeQueueManagerAdminMsg();
//Prime admin message with targetQM name, reply to queue, and so on
//refer to chapter 2 for details

parms = new MQeFields();
parms.putUnicode(MQeQueueManagerAdminMsg.QMgr_Description, null);

//set the name of the queue to inquire on
msg.setName("ExampleQM");

//Set the action required and its parameters into the message
msg.inquire(parms);

//Put message to target admin queue (code not shown)

rc = mqeAdministrator_QueueManager_delete(hAdministrator,
pExceptBlock);

if (EC(&exceptBlk) == MQERETURN_QUEUE_MANAGER_ERROR)
{

if(ERC(&exceptBlk) == MQEREASON_QMGR_ACTIVATED)
{
/* qmgr not been stopped - take appropriate actions */
}
else if(ERC(&exceptBlk) == MQEREASON_QMGR_QUEUE_EXISTS)
{
/* queues exist - take appropriate actions */
}
else if(ERC(&exceptBlk) == MQEREASON_CONNECTION_DEFINITION_EXISTS)
{
/* connection defs exist - take appropriate actions */
}
else
{
/* unknown error */
}

}

Figure 17. Deleting a queue manager in C

Chapter 5. Administering queue managers 53

//refer to chapter two for details
} catch (Exception e) {

System.err.println("Failure ! " + e.toString());
}

//inquire all
try {

MQeAdminMsg msg = (MQeAdminMsg) new MQeQueueManagerAdminMsg();

//set the name of the queue to inquire on
msg.setName("ExampleQM");

//Set the action required and its parameters into the message
msg.inquireAll(new MQeFields());

} catch (Exception e) {
System.err.println("Failure ! " + e.toString());

}

C API
The example below shows how to inquire on the list of queues. This is the most
complex inquire that can be performed as a vector of structures is returned. All these
structures must be freed as shown below. This queue info structure contains three
strings and a MQeQueueType. The first two strings are the QueueQueueManager
Name and the QueueName. Both of these strings must be freed. Then there is the Java
Class Name - this is a constant string and therefore need not be freed. Finally there is
a primitive MQeQueueType.

The Queue Info structure must be freed using the mqeMemory_free function. Please
see the API Reference for more information on the mqeMemory function.

As well as information on queues, a vector of connection definitions can be returned.
This should also be freed when it has been processed.

MQeQueueManagerParms qmParms = QMGR_INIT_VAL;
qmParms.opFlags |= QMGR_QUEUES_OP;
rc = mqeAdministrator_QueueManager_inquire(hAdministrator,

&exceptBlk,
&qmParms);

if (MQERETURN_OK == rc) {
/* This has returned a Vector of information */
/* blocks about the queues */
MQeVectorHndl hListQueues = qmParms.hQueues;
MQEINT32 numberQueues;

rc = mqeVector_size(hListQueues,&exceptBlk,&numberQueues);
if (MQERETURN_OK == rc) {

MQEINT32 count;
/* Loop round the array to get the information */
/* about the queues */
for (count=0;count<numberQueues;count++) {

MQeQMgrQParms *pQueueInfo;
rc = mqeVector_removeAt(hListQueues,

&exceptBlk,
&pQueueInfo,

54 Configuration Guide

count);
if (MQERETURN_OK == rc) {

/* Queue QueueManager - FREE THIS STRING when done */
MQeStringHndl hQMgrName = pQueueInfo->hOwnerQMgrName;
/* QueueName - FREE THIS STRING*/
MQeStringHndl hQueueName = pQueueInfo->hQMgrQName;
/* A Constant String matching the Java Class Name */
/* for this queue one of
* MQE_QUEUE_LOCAL
* MQE_QUEUE_REMOTE
* MQE_QUEUE_ADMIN
* MQE_QUEUE_HOME_SERVER
*/
MQeStringHndl hQueueClassName = pQueueInfo->hQueueType;

/* Will be set from MQeQueueType */
MQeQueueType queueType = pQueueInfo->queueExactType;

(void)mqeMemory_free(&exceptBlk,pQueueInfo);

}
}

}

/* the vector needs to be freed as well */
mqeVector_free(hListQueues,&exceptBlk);

}

Update

Java/Administration message
//Set name of resource to be managed
try {

MQeAdminMsg msg = (MQeAdminMsg) new MQeQueueManagerAdminMsg();

msg.setName("ExampleQM");

//Change the value of description
parms = new MQeFields();
Parms.putUnicode(MQeQueueManagerAdminMsg.QMgr_Description,

"Change description ...");

//Set the action required and its parameters into the message
msg.update(parms);

} catch (Exception e) {
System.err.println("Failure ! " + e.toString());

}

C API
This shows how to update the description. Note that the queues and so on, can not be
updated, via this API - they must be done via the specific Queue update methods.

Chapter 5. Administering queue managers 55

Updates of the Description, ChannelTimeout and QueueStore are allowed. QueueStore
changes will only take effect for any news queues that are created.

MQeQueueManagerParms qmParms = QMGR_INIT_VAL;
qmParms.opFlags | = QMGR_DESC_OP;
qmParms.hDescription = hNewDescription;
rc = mqeAdministrator_QueueManager_update(hAdministrator,

&exceptBlk,
&qmParms);

Add alias
Note that it is not possible to chain aliases together. So QM1 can’t be an alias for QM2,
which itself is an alias for QM3.

Java
In Java, queue manager aliases are manipulated using the MQeConnectionAdminMsg.
Refer to the Connection section for more information.

C API
The real name of the queue manager is hRealTargetQMname, and the alias to this is
hAliasName. Note that these strings will be duplicated internally, so could be freed if not
required elsewhere.

rc = mqeAdministrator_QueueManager_addAlias(hAdministrator,
&exceptBlk,
hAliasName,
hRealTargetQMName);

Remove alias

Java
In Java, queue manager aliases are manipulated using the MQeConnectionAdminMsg.
Refer to the Connection section for more information.

C API
Removes the Alias hAliasName. An error is returned if this is not present.

rc = mqeAdministrator_QueueManager_removeAlias(hAdministrator,
&exceptBlk,
hAliasName);

List alias names

Java
In Java, queue manager aliases are manipulated using the MQeConnectionAdminMsg.
Refer to the Connection section for more information.

56 Configuration Guide

C API
Lists all aliases, into a new MQeVector. These are the Alias names. Note the vector
being freed, its contents will automatically be freed.

MQeVectorHndl hAliasList;

rc = mqeAdministrator_QueueManager_listAliasNames(hAdministrator,
&exceptBlk,
&hAliasList);

if (MQERETURN_OK == rc) {
/* do processing */
rc = mqeVector_free(hAliasList,&exceptBlk);

}

IsAlias

Java
In Java, queue manager aliases are manipulated using the MQeConnectionAdminMsg.
Refer to the Connection section for more information.

C API
MQEBOOL isAlias;
rc = mqeAdministrator_QueueManager_isAlias(hAdministrator,

&exceptBlk,
hName,

&isAlias);
if (isAlias==MQE_TRUE) {

/* name is alias */
}

Chapter 5. Administering queue managers 57

58 Configuration Guide

Chapter 6. Administering local queues

This chapter explains how to administer local queues, from creation to deletion. Further
chapters will explain how to administer Remote Queue Definitions, Store and Forward
Queues, and Home Server Queues. A lot of the concepts and methods of administering
queues are the same. These concepts will be explained in this chapter.

General notes
Local queues, as the name suggests, are local to the owning queue manager. The
name of a queue is formed from the target queue manager name, for a local queue this
is the name of the queue manager that owns the queue and a unique name for the
queue on that queue manager. These two components of a queue name have ASCII
values. The method setName(String, String) can be used to set the QueueName and
the owning QueueManagerName in the administration message.

Java
The simplest type of queue is a local queue, managed by class MQeQueueAdminMsg. For
other types of queue there is a corresponding administration message that inherits from
MQeQueueAdminMsg. The MQeQueueAdminMsg inherits from the MQeAdminMsg.

The following actions are applicable on queues:

v MQeAdminMsg.Action_Create

v MQeAdminMsg.Action_Delete

v MQeAdminMsg.Action_Inquire

v MQeAdminMsg.Action_InquireAll

v MQeAdminMsg.Action_Update

v MQeQueueAdminMsg.Action_AddAlias

v MQeQueueAdminMsg.Action_RemoveAlias

Note: For all administration messages, information relating to the destination queue
manager must be set. This is referred to in the examples below as priming the
administration message. The examples show how to create the administration
message to achieve the require result. These messages need to then be sent,
and the admin reply messages checked as required.

C
All administration is done via the administration API, which are of the form:

MQERETURN MQEPUBLISHED mqeAdministrator_queuetype_action();

Where action can be one of the following:

create Create a queue

delete Delete a queue

update Update the properties of a queue

© Copyright IBM Corp. 2002 59

inquire Inquire upon the properties of a queue

listAliasName List all of the queue aliases

addAlias Add a queue alias

removeAlias Remove a queue alias

Queues can be of the following types:

v Local queue

v Synchronous remote queue

v Asynchronous remote queue

v Administration queue

v Home server queue

For the create, update, and inquire calls, a structure is passed in as a parameter. There
is a general structure for elements that are applicable to all queues. For more
specialized forms of queues, such as home server queue, there are structures which
are composed of a reference to the general structure plus additional information. For
more information, refer to Chapter 3, “Administration using the administrator API”, on
page 35.

Local queue properties
Queues have a number of properties, which are listed below. Information about these
properties is passed either via discrete API parameters or configuration structures
(MQeFields objects).

The first list shows all the possible queue properties and indicates which are available
in the code bases. All other queues will have these properties also.

Table 14. Queue properties available in each code base

Property Description Java Native Read/Write

Queue name Identifies the
name of the local
queue

Yes Yes Read (write on
create)

Local qMgr The name of the
local queue
manager owning
the queue

Yes Yes Read (write on
create)

Adapter The class (or
alias) of a storage
adapter that
provides access
to the message
storage medium
(see Storage
adapters on page
116)

Yes No. There is only
one adapter in
the native
codebase

Read

60 Configuration Guide

Table 14. Queue properties available in each code base (continued)

Property Description Java Native Read/Write

Alias Alias names are
optional
alternative names
for the queue
(see below)

Yes Yes Read/Write

Attribute rule The attribute
class (or alias)
associated with
the security
attributes of the
queue (for more
details see later
in this chapter)

Yes No Read/Write

Authenticator The authenticator
class (or alias)
associated with
the queue (for
more details see
later in this
chapter)

Yes No Read/Write

Class The class (or
alias) used to
realize the local
queue

Yes No Read

Compressor The compressor
class (or alias)
associated with
the queue (for
more details see
later in this
chapter)

Yes No Read/Write

Cryptor The cryptor class
(or alias)
associated with
the queue (for
more details see
later in this
chapter)

Yes No Read/Write

Description An arbitrary string
describing the
queue

Yes Yes Read/Write

Expiry The time after
which messages
placed on the
queue expire

Yes Yes Read/Write

Chapter 6. Administering local queues 61

Table 14. Queue properties available in each code base (continued)

Property Description Java Native Read/Write

Maximum depth The maximum
number of
messages that
may be placed on
the queue

Yes Yes Read/Write

Maximum
message length

The maximum
length of a
message that
may be placed on
the queue

Yes Yes Read/Write

Message store The class (or
alias) that
determines how
messages on the
local queue are
stored

Yes No – only one
message store
available

Read (write on
create)

Path The location of
the queue store

Yes Yes Read

Priority The default
priority associated
with messages on
the queue

Yes Yes Read/Write

Rule The class (or
alias) of the rule
associated with
the queue;
determines
behavior when
there is a change
in state for the
queue

Yes No – rules
handled on global
level

Read/Write

Target registry The target
registry to be
used with the
authenticator
class (that is,
None, Queue, or
Queue manager)

Yes No Read/Write

Java
Pass Java parameters in using MQeFields objects. Pass the values using field
elements of specific types.

The field names are as follows. All the symbolic names are public static final
static Strings on the MQeQueueAdminMsg class.

62 Configuration Guide

Table 15.

Element type

Field name constants

NotesSymbolic Value

Unicode Queue_CreationDate qcd

Int Queue_CurrentSize qcs

Unicode Queue_Description qd

Long Queue_Expiry qe

ASCII Queue_FileDesc qfd

Int Queue_MaxMsgSize qms If no limit, use
Queue_NoLimit, which
is -1

Int Queue_MaxQSize qmqs If no limit, use
Queue_NoLimit, which
is -1

ASCII Queue_Mode qm Possible values are
given by constants
Queue_Asynchronous
and
Queue_Synchronous

Byte Queue_Priority qp Between 0 and 9
inclusive

ASCII array Queue_QAliasNameList qanl

ASCII Queue_QMgrName qqmn

ASCII Queue_AttrRule qar

ASCII Queue_Authenticator qau

ASCII Queue_Compressor qco

ASCII Queue_Cryptor qcr

Byte Queue_TargetRegistry qtr Possible values are
given by the constants:
Queue_RegistryNone
Queue_RegistryQMgr
Queue_RegistryQueue

ASCII Queue_Rule qr

C parameters
All the C parameters are passed in using a parameter structure. This structure needs to
be initialized before it can be used by setting it to LOCAL_Q_INIT_VAL.

Table 16. C parameters

Element type Element name Description

MQEINT32 opFlags Flags to indicate what parts of
this structure have been set or
requested

Chapter 6. Administering local queues 63

Table 16. C parameters (continued)

Element type Element name Description

MQeStringHndl hDescription Description of the queue

MQeStringHndl hFileDesc File description for the
message store
(read/create/write)

MQeVectorHndl hQAliasNameList List of aliases

MQEINT64 queueExpiry Queue expiry

MQEINT64 queueCreationDate Creation date of the queue

MQEINT32 queueMaxMsgSize Maximum size of the message
on a queue

MQEINT32 queueMaxQSize Maximum number of messages
on the queue

MQEINT32 queueCurrentSize Current size of the queue (all
message states)

MQEBOOL queueActive Indication of the state of the
queue

MQEBYTE queuePriority Priority of messages on the
queue

Create a local queue
When creating a queue, a number of parameters can be specified. In this example a
queue is created, with a maximum size of 200 messages, expiry time of 20000 ms, and
a description.

Administration message
First of all create the QueueAdminMsg object. This needs to be primed using the code
introduced in Chapter 3, “Administration using the administrator API”, on page 35, to set
up the origin queue manager administration reply.

64 Configuration Guide

Once the Admin message has been created, it needs to be sent to the local admin
queue, as described in Chapter 3, “Administration using the administrator API”, on
page 35.

Constructor

C API
The information for the queue is passed in via a structure to the API. Two important
points are:

v The structure is initialized using LOCAL_Q_INIT_VAL

v The properties that are set are indicated using the opFlags elements of the structure.
Each property has a corresponding bit mask, for which you must use OR statements.
Omitting the QUEUE_DESC_OP means that the queue does not have its description set,
even though a value was present in the structure.

/* Create an empty queue admin message and parameters field */
MQeQueueAdminMsg msg = new MQeQueueAdminMsg();

MQeFields parms = new MQeFields();

/** Prime message with who to reply to and a unique identifier */

/* Set name of queue to manage */
msg.setName(qMgrName, queueName);

/* Add any characteristics of queue here, otherwise */
/* characteristics will be left to default values. */
parms.putUnicode(MQeQueueAdminMsg.Queue_Description, description);

parms.putInt32(MQeQueueAdminMsg.Queue_MaxQSize,200);
parms.putInt32(MQeQueueAdminMsg. Queue_Expiry, 20000);_

/* Set the admin action to create a new queue */
msg.create(parms);

Figure 18. Create a local queue

Chapter 6. Administering local queues 65

Delete
Before a queue is deleted, it must be empty. Create a new administration message and
set the delete action.

Administration message

C API
Deletion of queue requires that the queue be empty of messages.

Note: There is no parameter structure here, only the queue name and the queue
manager name.

MQeLocalQParms localQParms = LOCAL_Q_INIT_VAL;

localQParms.queueMaxQSize = 200;
localQParms.queueExpiry = 20000;
localQParms.queueDescription = hDescription;
//this is an MQeStringHndl

localQParms.opFlags = QUEUE_MAX_Q_SIZE_OP | QUEUE_EXPIRY_OP | QUEUE_DESC_OP;

rc = mqeAdministrator_LocalQueue_create(hAdministrator,
&exceptBlk,
hLocalQueueName,
hLocalQMName,
&localQParms);

}

Figure 19. Create a local queue in C

/* Create an empty queue admin message and parameters field */
MQeQueueAdminMsg msg = new MQeQueueAdminMsg();

MQeFields parms = new MQeFields();

/** Prime message with who to reply to and a unique identifier */

/* Set name of queue to manage */
msg.setName(qMgrName, queueName);

/* Set the admin action to create a new queue */
msg.delete(parms);

Figure 20. Deleting a queue in Java

66 Configuration Guide

Add alias
Queues can be known by multiple names or aliases. If you try to add an alias that
already exists, you will get an error back.

Administration message
To add an alias name to a queue, use the addAlias method on the MQeQueueAdminMsg.
You can do multiple add and remove alias operations in one admin message.

C API
Use the addAlias() method to add an alias name. Note that aliases have to be added
one at a time. For other types of queues, such as Remote Queues, the format of the
API remains the same, just change LocalQueue to, for example, SyncRemoteQueue.

rc = mqeAdministrator_LocalQueue_delete(hAdministrator,
&exceptBlk,
hLocalQueueName,
hLocalQMName);

if (EC(&exceptBlk) == MQERETURN_QUEUE_ERROR
&& ERC(&exceptBlk) == MQEREASON_QMGR_QUEUE_NOT_EMPTY) {
/* queue not empty - take appropriate actions */

}
}

Figure 21. Deleting a queue in C

/* Create an empty queue admin message and parameters field */
MQeQueueAdminMsg msg = new MQeQueueAdminMsg();

/** Prime message with who to reply to and a unique identifier
* and set the name of the QueueManager and Queue
*/

/* Add a name that will be the alias of this queue */
msg.addAlias("Fred");

/* Set the admin action to update the queue */
msg.update(parms);

Figure 22. Adding an alias to a queue in Java

Chapter 6. Administering local queues 67

List aliases
Use the listAlias() method to list the aliases that you use.

Administration message
To get a list of Alias Names using Administration Messages, use the inquire action and
specify a field of Queue_QAliasNameList in the parameter’s fields object.

C API
You can obtain a list of aliases from the C API using the following API.

Note: Free the vector after use.

Remove alias
Note that removing an alias could potentially alter the routing of messages. Therefore,
this operation should be treated with care.

rc = mqeAdministrator_LocalQueue_addAlias(hAdministrator,
&exceptBlk,
hLocalQueueName,
hLocalQMName,
hAliasName);

if (EC(&exceptBlk) == MQERETURN_NOTHING_TO_DO
&& ERC(&exceptBlk) ==MQEREASON_DUPLICATE) {
/* already has alias */

}

Figure 23. Adding an alias to a queue in C

if (MQERETURN_OK == rc) {
MQeVectorHndl hVectorAliases;
rc = mqeAdministrator_LocalQueue_listAliasNames(hAdministrator,

&exceptBlk,
hLocalQueueName,
hLocalQMName,
&hVectorAliases);

/* process the aliases vector here */

rc = mqeVector_free(hVectorAliases,&exceptBlk);

}

Figure 24. Obtaining a list of aliases in C

68 Configuration Guide

Administration message

C API

Update
Some of the properties of a queue can be updated. Note that these are only those
properties which are marked as writable in the above table. A similar technique is used
to update and inquire upon other types of queues, such as remote and home server
queues.

Administration message
The parameter field object needs to be set with field elements that need to be updated.

/* Create an empty queue admin message and parameters field */
MQeQueueAdminMsg msg = new MQeQueueAdminMsg();

/* Prime message with who to reply to and a unique identifier
/* and set the name of the QueueManager and Queue */

/* Specify the alias of the queue to be removed */
msg.removeAlias("Fred");

/* Set the admin action to update the queue */
msg.update(parms);

Figure 25. Removing an alias in Java

rc = mqeAdministrator_LocalQueue_removeAlias(hAdministrator,
&exceptBlk,
hLocalQueueName,
hLocalQMName,
hAliasName);

if (EC(&exceptBlk) == MQERETURN_NOTHING_TO_DO
&& ERC(&exceptBlk) ==

MQEREASON_NO_SUCH_QUEUE_ALIAS) {
/* alias doesn’t exist */

}

Figure 26. Removing an alias in C

Chapter 6. Administering local queues 69

C API
In a similar manner to creating the Queue, the parameter structure needs to be set with
the details to update. For example, to update the description of the queue:

Inquiry
It is possible to inquire upon the properties of queue. This is achieved by using the
inquire action. The details that are required are set. If using an administration message,
the administration reply message contains a fields object with the required information.
When using the API, a structure will be filled out with the requested information.

Administration message
There are two ways of inquiring on a queue, inquire or inquireAll. InquireAll returns
a fields object in the admin reply message.

/* Create an empty queue admin message and parameters field*/
MQeQueueAdminMsg msg = new MQeQueueAdminMsg();

/* Create an empty queue admin message and parameters field */
MQeQueueAdminMsg msg = new MQeQueueAdminMsg();

/** Prime message with who to reply to and a unique identifier
* and set the name of the QueueManager and Queue
*/

MQeFields params = new MQeFields();

/* Add a new description for the queue */
msg.putAscii(MQeQueueAdminMsg.Queue_Descrpition,"New Description");
/* Set the admin action to update the queue */
msg.update(parms);

Figure 27. Updating the properties of a queue in Java

MQeLocalQParms localQParms = LOCAL_Q_INIT_VAL;

localQParms.queueDescription = hDescription; //MQeStringHndl

localQParms.opFlags |= QUEUE_DESC_OP;

rc = mqeAdministrator_LocalQueue_update(hAdministrator,
&exceptBlk,
hLocalQueueName,
hLocalQMName,
&localQParms);

}

Figure 28. Updating the properties of a queue in C

70 Configuration Guide

/*Prime the message with who to reply to and a unique identifier
* Set the admin action to get all characteristics of queue manager.
*/
msg.inquireAll(new MQeFields());

/* get message back from the admin reply queue to match */
/* and retrieve the results from the reply message */

The fields object that is returned in the administration reply message is populated with
all of the properties of the queue. To get access to a specific value, use the field labels
as shown in the property table above. For example, to get at the queue description,
assuming respMsg is the administration reply message:

// all on one line
String description = respMsg.getOutputFields().

getAscii(com.ibm.mqe.administration.Queue_Description)

You can request only certain properties of a queue. If, for example, only the description
is required, use the following example.

Output fields now contains the field Queue_Description only.

C API
The API takes the same parameter structure that other APIs, such as create, take. To
specify the required elements, set the opFlags accordingly. To get, for example, the
queue maximum depth, expiry, and description, set the opflags as follows:

MQeFields requestedProperties = new MQeFields();
requestedProperties.putAscii(Queue_Description);
msg.inquire(requestedProperties)

/* Retrieve the administration reply */
/* message from the relevant queue */
/* Then retrieve the returned MQeFields */
/* object from this message */
MQeFields outputFields = respMsg.getOutputFields();

Figure 29. Inquiring on a queue in Java

Chapter 6. Administering local queues 71

Message store or storage adapter specification
The queue uses a queue store adapter to handle its communications with the storage
device. Adapters are interfaces between WebSphere MQ Everyplace and hardware
devices, such as disks or networks, or software, such as databases. Adapters are
pluggable components, allowing the queue store to be easily changed.

All types of queue other than those that are remote and synchronous require a
message store to store their messages. Each queue can specify what type of store to
use, and where it is located. The queue characteristic Queue_FileDesc is used to specify
the type of message store and to provide parameters for it. The file descriptor takes the
form:

v adapterClass:adapterParameters or

v adapterAlias:adapterParameters

For example assuming MsgLog is defined as a WebSphere MQ Everyplace alias:

MsgLog:d:\QueueManager\ServerQM12\Queues

A number of storage adapters are provided and include:

v MQeDiskFieldsAdapter to store messages on a file system

v MQeMemoryFieldsAdapter to store messages in memory

v Other storage adapters can be found in package com.ibm.mqe.adapters

The choice of adapter determines the persistence and resilience of messages. For
example, if a memory adapter is used, the messages are only as resilient as the
memory. Memory may be a much faster medium than disk, but is highly volatile in
comparison.

MQeLocalQParms params = LOCAL_Q_INIT_VAL;

params.opflags = QUEUE_MAX_Q_SIZE_OP | QUEUE_EXPIRY_OP | QUEUE_DESC_OP;

rc = mqeAdministrator_LocalQueue_inquire(hAdministrator,
&exceptBlk,
hQueueName,
hQueueMgrName,
¶ms);

if (MQERETURN_OK == rc) {
MQEINT64 queueExpiry = params.queueExpiry;
MQEINT32 queueMaxSize = params.queueMaxQSize;
MQeStringHndl queueDescription = params. hDescription;

}

Figure 30. Inquiring on a queue in C

72 Configuration Guide

If a message store is not defined when creating a queue, the default is to use the
message store specified on creation of the queue manager.

Note: Under the C codebase, there is only one supplied message store, and one
adapter, therefore the format of the queue store is fixed the MsgLog is left as a
placeholder for future expansion.

Examples of where to use this option are:

v When you want to use the MemoryFieldsAdapter, to store data in memory and not on
disk

v Alternative Message Stores are provided, such as the ShortFilename message store
for 4690

Take the following into consideration when setting the Queue_FileDesc field:

v Ensure that the correct syntax is used for the system that the queue resides on. For
instance, on a windows system use "\" as a file separator on UNIX® systems use "/"
as a file separator. In some cases it may be possible to use either but this is
dependent on the support provided by the JVM (Java Virtual Machine) that the queue
manager runs in. As well as file separator differences, some systems use drive
letters like Windows NT whereas others like UNIX do not.

v On some systems it is possible to specify relative directories (".\") on others it is not.
Even on those where relative directories can be specified, they should be used with
great caution as the current directory can be changed during the lifetime of the JVM.
Such a change causes problems when interacting with queues using relative
directories.

Chapter 6. Administering local queues 73

74 Configuration Guide

Chapter 7. Administering remote queues

This chapter describes the administration of remote queue definitions.

Terminology
Consider two queue managers, QM_A and QM_B. There is a local queue on QM_B called
Queue_One. Initially, this is only accessible to QM_B. To get access to Queue_One, QM_A
needs a remote queue definition, usually abbreviated to remote queue. When referring
to the remote queue definition, use the term queue queue manager to refer to QM_B, that
is, the queue queue manager is the queue manager upon which the local queue
referenced by the remote queue definition resides.

In summary, remote queues are references to queues that reside on a queue manager
that itself is remote to where the remote queue is defined. The remote queue has the
same name as the target queue but the remote queue definition identifies the owning or
target queue manager of the real queue.

The remote definition of the queue should, in most cases, match that of the real queue.
If this is not the case, different results may be seen when interacting with the queue.
For example, for asynchronous queues, if the maximum message size on the remote
definition is greater than that on the real queue, the message is accepted for storage on
the remote queue, but may be rejected when moved to the real queue. The message is
not lost, it remains on the remote queue, but it cannot be delivered.

If the security characteristics for a synchronous queue do not match, WebSphere MQ
Everyplace negotiates with the real queue to decide what security characteristics should
be used. In some cases, the message put is successful, in others an attribute mismatch
exception is returned.

Administering remote queues
The constants provided for setting the Transport and Transporter XOR parameter are
provided for backward compatibility. Although they have a different name, the structure
for asynchronous remote queues is the same.

typedef struct MQeRemoteAsyncQParms
{

MQeQueueParms baseParms;
/**< Queue Parms Structure - for general parameters */

MQeStringHndl hQTransporterClass;
/**< Transport Class (Read/Write) */
} MQeRemoteAsyncQParms;

Synchronous and asynchronous
The difference between the two types of remote queue definitions is described in the
WebSphere MQ Everyplace Application Programming Guide. To summarize:

© Copyright IBM Corp. 2002 75

Synchronous
Synchronous remote queues are queues that can only be accessed when
connected to a network that has a communications path to the owning queue
manager. If the network is not established then the operations such as put,
get, and browse cause an exception to be raised. The owning queue controls
the access permissions and security requirements needed to access the
queue. It is the responsibility of the application to handle any errors or retries
when sending or receiving messages as, in this case, WebSphere MQ
Everyplace is no longer responsible for once-only assured delivery.

Asynchronous
Asynchronous remote queues are queues that move messages to remote
queues, but cannot remotely retrieve messages. When messages are put to
the remote queue, the messages are temporarily stored locally. When
connected to a network, this triggers transmission, allowing an attempt to move
the messages to the target queue. Message delivery is once-only assured
delivery. This allows applications to operate on the queue when the device is
offline. Consequently, asynchronous queues require a message store so that
messages are temporarily stored at the sending queue manager when awaiting
transmission.

Note: In the Java codebase, the mode of an instance of the MQeRemoteQueue class is
set to Queue_Synchronous or Queue_Asynchronous to indicate whether the queue
is synchronous or asynchronous. In the native codebase, two distinct sets of
APIs are used to create and administer synchronous and asynchronous remote
queues.

Figure 31 on page 77 shows an example of a remote queue set up for synchronous
operation and a remote queue setup for asynchronous operation.

76 Configuration Guide

In both the synchronous and asynchronous examples queue manager qm2 has a local
queue invQ.

In the synchronous example, queue manager qm1 has a remote queue definition of
queue invQ. invQ resides on queue manager qm2. The mode of operation is set to
synchronous.

An application using queue manager qm1 and putting messages to queue qm2.invQ
establishes a network connection to queue manager qm2, if it does not already exist,
and the message is immediately put on the real queue. If the network connection
cannot be established then the application receives an exception that it must handle.

qm1

qm2

RemoteQ
invQ on qm2

mode:asynchronous

qm1

Remote
synchronous

Remote
asynchronous

RemoteQ
invQ on qm2

mode:synchronous

getMessage(qm2, invQ, ..)

qm2

Queue
invQ

on qm2

Queue
invQ

on qm2

getMessage(qm2, invQ, ..)

putMessage(qm2, invQ, msg,...) putMessage(qm2, invQ, msg, ...)

Figure 31. Remote queue

Chapter 7. Administering remote queues 77

In the asynchronous example, queue manager qm1 has a remote queue definition of
queue invQ. invQ resides on queue manager qm2. The mode of operation is set to
asynchronous.

An application using queue manager qm1 and putting messages to queue qm2.invQ
stores messages temporarily on the remote queue on qm1. When the transmission rules
allow, the message is moved to the real queue on queue manager qm2. The message
remains on the remote queue until the transmission is successful.

Setting the operation mode
To set a queue for synchronous operation, set the Queue_Mode field to
Queue_Synchronous.

Asynchronous queues require a message store to temporarily store messages.
Definition of this message store is the same as for local queues.

To set a queue for asynchronous operation, set the Queue_Mode field to
Queue_Asynchronous.

Creating a remote queue
The following code fragment shows how to setup an administration message to create a
remote queue.

/**
* Create a remote queue
*/
protected void createQueue(MQeQueueManager localQM,

String targetQMgr,
String qMgrName,
String queueName,

String description,
String queueStore,

byte queueMode
) throws Exception

{
/*
* Create an empty queue admin
message and parameters field
*/
MQeRemoteQueueAdminMsg msg = new MQeRemoteQueueAdminMsg();
MQeFields parms = new MQeFields();

/*
* Prime message with who to reply
to and a unique identifier
*/
MQeFields msgTest = primeAdminMsg(msg);

/*
* Set name of queue to manage
*/
msg.setName(qMgrName, queueName);

78 Configuration Guide

/*
* Add any characteristics of queue here, otherwise
* charateristics will be left to default values.
/
if (description != null) // set the description ?

parms.putUnicode(MQeQueueAdminMsg.Queue_Description,
description);

// set the queue access mode if mode is valid
if (queueStore != MQeQueueAdminMsg.Queue_Asynchronous &&

queueStore != MQeQueueAdminMsg.Queue_Synchronous)
throw new Exception ("Invalid queue store");

parms.putByte(MQeQueueAdminMsg.Queue_Mode,
queueMode);

if (queueStore != null) // Set the queue store ?
// If queue store includes directory and file info then it
// must be set to the correct style for the system that the
// queue will reside on e.g \ or /
parms.putAscii(MQeQueueAdminMsg.Queue_FileDesc,

queueStore);
/*
* Other queue characteristics like queue depth, message expiry
* can be set here ...
*/

/*
* Set the admin action to create a new queue
*/
msg.create(parms);

/*
* Put the admin message to the admin
queue (not assured delivery)
* on the target queue manager
*/
localQM.putMessage(targetQMgr,

MQe.Admin_Queue_Name,
msg,
null,
0);

}

For synchronous operation, the queue characteristics for inclusion in the remote queue
definition can be obtained using queue discovery.

Creating a C parameter structure
The parameter structure of the Synchronous Remote Queue, contains two elements.
The first is a parameter structure of the same type as that used for local queues
MQeQueueParms. The second is the Transporter for use with this Queue. The remote
Queue shares the properties of the local queue, hence the reason for the local queue
structure.

Chapter 7. Administering remote queues 79

Note: The opFlags parameter is for specifying what elements of the structure have
been set is in the MQeQueueParms structure.

typedef struct MQeRemoteSyncQParms
{

MQeQueueParms baseParms;
/*< Queue Parms Structure –for general parameters */

MQeStringHndl hQTransporterClass;
/*< Transporter Class (Read/Write) */
} MQeRemoteSyncQParms;

Create synchronous
First create the remote queue administration message.

MQeRemoteQueueAdminMsg msg = new AdminMsg();
MQeFields params = new MQeFields();

Then prime the administration message, as explained in Chapter 2, “Administration
using administration messages”, on page 5. Then set the queue queue manager name.

msg.setName(queueQMgrName, queueName);

params.putUnicode(descriptiorn);

/* set this to be a synchronous queue */
params.putByte(MQeQueueAdminMsg.Queue_Mode,

MQeQueueAdminMsg.Queue_Synchronous);

Now, set the administration action to create the queue.

msg.create(params);

/* send the message */

C
This is the C API to create a synchronous queue. It is very similar to the local queue
creation. Options for description, maximum size, and so on, can be set just as for the
local queue.

MQeRemoteSyncQParms remoteSyncQParms = REMOTE_SYNC_Q_INIT_VAL;

rc = mqeAdministrator_SyncRemoteQueue_create(hAdministrator,
&exceptBlk,
hQueueName,
hServerName,
&remoteSyncQParms);

80 Configuration Guide

Create asynchronous
MQeRemoteQueueAdminMsg msg = new MQeRemoteQueueAdminMsg();
MQeFields params = new MQeFields();

/* Prime the admin message */

msg.setName(queueQMgrName, queueName);

params.putUnicode(description);

/* set this to be an asynchronous queue */
params.putByte(MQeQueueAdminMsg.Queue_Mode,

MQeQueueAdminMsg.Queue_Asynchronous);

/* Assuming that MsgLog is an established */
/* Alias set the QueueStore location */
params.putAscci(MQeQueueAdminMsg.Queue_FileDesc,
"MsgLog:c:\queuestore");

/* Set the administration action to create the queue */
msg.create(params);

/* send the message */

C
This is the C API to create a asynchronous queue. It is very similar to the Local Queue
creation. Options for description, maximum size, and so on, can be set just as for the
local queue.

MQeRemoteAsyncQParms remoteAsyncQParms = REMOTE_ASYNC_Q_INIT_VAL;

rc = mqeAdministrator_AsyncRemoteQueue_create(hAdministrator,
&exceptBlk,BROKERTRADE_Q_NAME,
SERVER_QM_NAME, &remoteAsyncQParms);

Transporter
One of the parameters of a remote queue definition is the transport that is in use. This
can be modified if required. Usually it is set to the DefaultTransporter,
com.ibm.mqe.MQeTransporter.

Note: The transporter cannot be modified once the queue has been created.
Note that

Queue aliases
The administration of aliases is the same as for local queues. MQeRemoteQueueAdminMsg
is a subclass of the MQeQueueAdminMsg.

Under C use the following APIs in the same way as for a local queue.

Chapter 7. Administering remote queues 81

mqeAdministrator_SyncRemoteQueue_addAlias
mqeAdministrator_SyncRemoteQueue_removeAlias

mqeAdministrator_AsyncRemoteQueue_addAlias
mqeAdministrator_AsyncRemoteQueue_removeAlias

82 Configuration Guide

Chapter 8. Administering home server queues

A home-server queue definition identifies a store-and-forward queue on a remote queue
manager. The home-server queue then pulls any messages that are destined for the
home-server queue’s local queue manager, off the store-and-forward queue. Multiple
home-server queue definitions may be defined on a single queue manager, where each
one is associated with a different remote queue manager.

Home-server queues normally reside on a device and are typically set to pull messages
from a server whenever the device connects to the network. When a message is pulled
from the server, the message is then put on the correct target local queue. If the target
queue does not exist, a rule is called which allows the message to be placed on a dead
letter queue.

The name of the home-server queue is set as follows:

v The queue name must match the name of the store-and-forward queue.

v The queue manager attribute of the queue name must be the name of the
home-server queue manager.

v The queue manager where the home-server queue resides must have a connection
configured to the home-server queue manager where the store-and-forward queue
resides.

© Copyright IBM Corp. 2002 83

The above diagram shows an example of a queue manager qm3 that has a home-server
queue store-and-forward queue (SFQ) configured to collect messages from its
home-server queue manager qm2. The configuration consists of:

v A home server queue manager qm2

v An SFQ on queue manager qm2 that holds messages for queue manager qm3

v A queue manager qm3 that normally runs disconnected and cannot accept
connections from queue manager qm2

v A connection from queue manager qm3 to qm2

Connection to
qm3 via qm2

Connection to
qm2

push pull

Homeserver queue
manager for qm3

msg = getMessage(qm3, invQ, ...)

qm3

MQeQueue
invQ on qm3

MQeHomeServerQueue
SFQ on qm2

qm1

MQeRemoteQueue
invQ on qm3

mode:asynchronous

putMessage(qm3, invQ, msg, ...)

qm2

MQeStoreAndForwardQueue
SFQ on qm2

hold messages for: qm3

Figure 32. Home-server queue

84 Configuration Guide

v A home server queue SFQ that uses queue manager qm2 as its home server

Any messages that are directed to queue manager qm3 through qm2 are stored on the
store-and-forward queue SFQ on qm2 until the home-server queue on qm3 collects them.

Administration messages
The Java class extends MQeRemoteQueueAdminMsg, which provides most of the
MQeHomeServerQueueAdminMsg administration capability for remote queues. This class
adds additional actions and constants for managing home server queues.

Home-server queues are implemented by the MQeHomeServerQueue class. They are
managed with the MQeHomeServerQueueAdminMsg class, which is a subclass of
MQeRemoteQueueAdminMsg. The only addition in the subclass is the Queue_QTimerInterval
characteristic. This field is of type int and is set to a millisecond timer interval. If you set
this field to a value greater than zero, the home-server queue checks the home server
every n milliseconds to check for messages awaiting collection. Any messages that are
waiting are delivered to the target queue. A value of 0 for this field means that the
home-server is polled only when the MQeQueueManager.triggertransmission method is
called.

Note: If a home-server queue fails to connect to its store-and-forward queue, for
example if the store-and-forward queue is unavailable when the home server
queue starts, it stops trying until a trigger transmit call is made.

Message transmission

Java
A home server queue can be requested to check for pending messages:

v By setting a poll interval in field Queue_QTimerInterval, that causes a regular check
for messages on the server whilst connectivity is available. When network
connectivity is not available or a network outage occurs, the polling stops and
restarts only when the queue is triggered using the
MQeQueueManager.triggerTransmission() method.

v When the MQeQueueManager.triggerTransmission() method is called.

Home-server queues have an important role in enabling devices to receive messages
over client-server channels particularly in environments where it is not possible for a
server to establish a connection to a device.

For information on basic administration concepts, refer to Chapter 2, “Administration
using administration messages”, on page 5. Also for information on managing queues,
that is MQeQueueAdminMsg and MQeRemoteQueueAdminMsg, refer to Chapter 6,
“Administering local queues”, on page 59 and Chapter 7, “Administering remote queues”
, on page 75.

C
The C codebase does not have background threads. Therefore, the home server queue
only pulls down messages from a store-and-forward queue when

Chapter 8. Administering home server queues 85

mqeQueueManager_triggerTransmission is called. The trigger transmission method only
returns when an attempt has been made to transmit all messages.

Creating

Administration message
The home server queue is created in a similar manner to other queues. It is generally
recommended not to use a time interval but to control the transmission using
triggerTransmission.

C API

Administration is performed using the following APIs.

mqeAdministration_HomeServerQueue_action()

The MQeHomeServerQParms structure is used to pass parameters. Note that the first
element is the MQeRemoteSyncQParms structure. This maps onto the
MQeHomeServerQueueAdminMsg inheriting function from the MQeRemoteQueueAdminMsg.

typedef struct MQeHomeServerQParms
{

MQeRemoteSyncQParms remoteQParms;
/*<Remote Queue Parameters to be filled in */

MQEINT64 qTimerInterval;
/*<Time Interval - for Java compatibility only*/
} MQeHomeServerQParms;

if (MQERETURN_OK == rc) {
MQeHomeServerQParms homeServerQParms = HOME_SERVER_Q_INIT_VAL;

rc = mqeAdministrator_HomeServerQueue_create(hAdministrator,
&exceptBlk,
hQueueName,
hServerName,
&homeServerQParms);

Figure 33.

86 Configuration Guide

Chapter 9. Administering store and forward queues

This chapter will explain how to administer store and forward queues, from creation to
deletion, proceeding through the different administration actions that can be performed
upon them.

General notes
Since there is no concept of a store and forward queue in C all of the following
information relates to the Java codebase. The store and forward queue is managed by
class MQeStoreAndForwardQueueAdminMsg which inherits from MQeQueueAdminMsg.

Store-and-forward queue
This type of queue is normally defined on a server and can be configured in the
following ways:

v Forward messages either to the target queue manager, or to another queue manager
between the sending and the target queue managers. In this case the
store-and-forward queue pushes messages either to the next hop or to the target
queue manager

v Hold messages until the target queue manager can collect the messages from the
store-and-forward queue. This can be accomplished using a home-server queue, as
described in Chapter 8, “Administering home server queues”, on page 83. Using this
approach messages are pulled from the store-and-forward queue.

Store-and-forward queues are implemented by the MQeStoreAndForwardQueue class.
They are managed with the MQeStoreAndForwardQueueAdminMsg class, which is a
subclass of MQeRemoteQueueAdminMsg. The main addition in the subclass is the ability to
add and remove the names of queue managers for which the store-and-forward queue
can hold messages.

Apart from the characteristics shared by all remote queues, a store-and-forward queue
object also has a property identifying its set of target queue managers. The string field
Queue_QMgrNameList, with the value ″qqmnl″, identifies the field in an administration

message representing the set of target queue managers. The value of this field is set or
retrieved using putAsciiArray() and getAsciiArray() methods.

© Copyright IBM Corp. 2002 87

Each store-and-forward queue has to be configured to handle messages for any queue
managers for which it can hold messages. Use the Action_AddQueueManager action,
described earlier in this section, to add the queue manager information to each queue.

If you want the store-and-forward queue to push messages to the next queue manager,
the queue manager name attribute of the store-and-forward queue must be the name of
the next queue manager. A connection with the same name as the next queue manager
must also be configured. The store-and-forward queue uses this connection as the
transport mechanism for pushing messages to the next hop.

If you want the store-and-forward queue to wait for messages to be collected or pulled,
the queue manager name attribute of the store-and-forward queue has no meaning ,
but it must still be configured. The only restriction on the queue manager attribute of the
queue name is that there must not be a connection with the same name. If there is
such a connection, the queue tries use the connection to forward messages.

Connection to
qmb via qm2

Connection to
qma via qm2

Connection
to qm3

qma qmb qmc

Gateway Gateway

:
MQeStoreAndForwardQueue

SFQ on qm3
holds messages for
qma, qmb and qmc

qm2

:
MQeStoreAndForwardQueue

SFQ on qm3
holds messages for
qma, qmb and qmc

qm3

qm1

MQeRemoteQueue
invQ on qma

mode:asynchronous

putMessage(qma, invQ, msg, …)

Figure 34. Store-and-forward queue

88 Configuration Guide

Figure 34 on page 88 shows an example of two store and forward queues on different
queue managers, one setup to push messages to the next queue manager, the other
setup to wait for messages to be collected:

v Queue manager qm2 has a connection configured to queue manager qm3

v Queue manager qm2 has a store-and-forward queue configuration that pushes
messages using connection qm3, to queue manager qm3. Note that the queue
manager name portion of the store-and-forward queue is qm3 which matches the
connection name. Store-and-forward queue qm3.SFQ on qm2 temporarily holds
messages on behalf of qma, qmb and qmc, (but not qm3).

v Queue manager qm3 has a store-and-forward queue qm3.SFQ. The queue manager
name portion of the queue name qm3 does not have a corresponding connection
called qm3, so all messages are stored on the queue until they are collected.

v Store-and-forward queue qm3.SFQ on qm3 holds messages on behalf of queue
managers qma, qmb and qmc. Messages are stored until they are collected or they
expire.

If a queue manager wants to send a message to another queue manager using a
store-and-forward queue on an intermediate queue manager, the initiating queue
manager must have:

v A connection configured to the intermediate queue manager

v A connection configured to the target queue manager routed through the
intermediate queue manager

v A remote queue definition for the target queue

When these conditions are fulfilled, an application can put a message to the target
queue on the target queue manager without having any knowledge of the layout of the
queue manager network. This means that changes to the underlying queue manager
network do not affect application programs.

In Figure 34 on page 88 queue manager qm1 has been configured to allow messages to
be put to queue invQ on queue manager qma. The configuration consists of:

v A connection to the intermediate queue manager qm2

v A connection to the target queue manager qma

v A remote asynchronous queue invQ on qma

If an application program uses queue manager qm1 to put a message to queue invQ on
queue manager qma the message flows as follows:

1. The application puts the message to asynchronous queue qma.invQ. The message
is stored locally on qm1 it is transmitted.

2. When transmission rules allow, the message is moved. Based on the connection
definition for qma, the message is routed to queue manager qm2

3. The only queue configured to handle messages for queue invQ on queue manager
qma is store-and-forward queue qm3.SFQ on qm2. The message is temporarily stored
in this queue

4. The stored and forward queue has a connection that allows it to push messages to
its next hop which is queue manager qm3

Chapter 9. Administering store and forward queues 89

5. Queue manager qm3 has a store-and-forward queue qm3.SFQ that can hold
messages destined for queue manager qma so the message is stored on that queue

6. Messages for qma remain on the store-and-forward queue until they are collected by
queue manager qma. See Chapter 8, “Administering home server queues”, on
page 83 for how to set this up.

Create
There are no extra parameters other than those used in creating a remote queue that
can be specified for creating a store and forward queue. In this example a queue with a
description is created.

Administration message
As with all queues the first action is to create the appropriate admin message object.
This then needs to be followed by priming the message using the code introduced in
Chapter 2, “Administration using administration messages”, on page 5.

Once the admin message has been created, it needs to be sent to the local admin
queue.

Delete
In this example the constructor is used to set the queue name and the queue manager
name. This is an alternative to using the setName() method on the admin message.

/* Create an empty store and forward queue dmin message and parameters field */
MQeStoreAndForwardQueueAdminMsg msg = new MQeStoreAndForwardQueueAdminMsg();

MQeFields parms = new MQeFields();

/* Prime message stating who to reply to and a unique identifier */
/* Refer to Chapter 2, Administration using administration messages, */
/* for a definition of the user helper method primeAdminMsg(); */
primeAdminMsg(msg);

/* Set name of queue to manage */
msg.setName(qMgrName, queueName);

/* Add any characteristics of the queue here, otherwise */
/* characteristics will be left to default values. */
parms.putUnicode(MQeQueueAdminMsg.Queue_Description, description);

/* Set the admin action to create a new queue */
msg.create(parms);

Figure 35.

90 Configuration Guide

Administration message
As with all queues deletion requires that the queue be empty of messages. Note that
there is no parameter structure here – just the queue name and queue manager name.

Add queue manager
You can add and delete queue manager names with the Action_AddQueueManager and
Action_RemoveQueueManager actions. You can add or remove multiple queue manager
names with one administration message. You can put names directly into the message
by setting the ASCII array field Queue_QMgrNameList. Alternatively, you can use the
addQueueManager() and removeQueueManager() methods. Each of these methods takes
one queue manager name, but you can call the method repeatedly to add multiple
queue managers to a message.

This action is specific to store and forward queues. In this example multiple queue
manager names are added to a String array, queueManagerNames, and set into the fields
object. The action and fields object are added to the message.

/* Create an empty store-and-forward */
/* queue admin message */
/* all on one line*/
MQeStoreAndForwardQueueAdminMsg msg =

new MQeStoreAndForwardQueueAdminMsg (qMgrName, queueName);

/* Prime message with who to reply */
/* to and a unique identifier */
primeAdminMsg(msg);

/* Set the admin action to delete a queue */
msg.delete(new MQeFields());

Figure 36.

Chapter 9. Administering store and forward queues 91

Administration message

Remove queue manager
This action is specific to store and forward queues. In this example the helper method
removeQueueManager() is used to remove a single queue manager.

Administration message

Update
In this example the description and of a store and forward queue and the maximum
number of messages allowed on the queue are updated.

/* Create an empty store and forward */
/* queue admin message and parameters field*/
/* all on one line*/
MQeStoreAndForwardQueueAdminMsg msg =

new MQeStoreAndForwardQueueAdminMsg (qMgrName, queueName);

MQeFields parms = new MQeFields();

/* Prime message with who to */
/* reply to and a unique identifier */
primeAdminMsg(msg);

/* Add any characteristics of queue here, otherwise */
/* characteristics will be left to default values.*/
parms.putAsciiArray(MQeStoreAndForwardQueueAdminMsg.Queue_QMgrNameList,queueManagerNames);

/* Set the admin action to add a queue manager to a queue */
msg.putInt(MQeAdminMsg.Admin_Action,

MQeStoreAndForwardQueueAdminMsg.Action_AddQueueManager);

/* Put the fields object into the message */
msg.putFields(MQeAdminMsg.Admin_Parms, parms);

Figure 37.

/* Create an empty store and forward queue admin message*/
MQeStoreAndForwardQueueAdminMsg msg =

new MQeStoreAndForwardQueueAdminMsg (qMgrName, queueName);

/** Prime message with who to reply to and a unique identifier */
primeAdminMsg(msg);

/* Set the admin action to remove a queue manager */
msg.removeQueueManager(queueManagerName);

Figure 38.

92 Configuration Guide

Administration message

Inquire
In this example the list of queue manager names of a store and forward queue are
inquired.

Administration message

/* Create an empty store and forward */
/* queue admin message and parameters field */
MQeStoreAndForwardQueueAdminMsg msg = new MQeStoreAndForwardQueueAdminMsg ();

MQeFields parms = new MQeFields();

/** Prime message with who to reply to and a unique identifier */
primeAdminMsg(msg);

/* Set name of queue to manage */
msg.setName(qMgrName, queueName);

/* Add any characteristics of queue here, otherwise */
/* characteristics will be left to default values.*/
parms.putUnicode(MQeQueueAdminMsg.Queue_Description, description);
parms.putInt(MQeQueueAdminMsg.Queue_MaxQSize,10);

/* Set the admin action to update */
msg.update(parms);

Figure 39.

/* Create an empty store and forward queue admin message and parameters field */
MQeStoreAndForwardQueueAdminMsg msg = new MQeStoreAndForwardQueueAdminMsg ();

MQeFields parms = new MQeFields();

/** Prime message with who to reply to and a unique identifier */
primeAdminMsg(msg);

/* Set name of queue to manage */
msg.setName(qMgrName, queueName);

/* Add any characteristics of queue here that you want to inquire.*/
parms.putAsciiArray(MQeStoreAndForwardQueueAdminMsg.Queue_QMgrNameList,new String[0]);

/* Set the admin action to inquire */
msg.inquire(parms);

Figure 40.

Chapter 9. Administering store and forward queues 93

Store and forward queue attributes
Store and Forward queues have a number of attributes extra to those of remote queues
– these are listed below. Information about these attributes is passed either via API
parameters or configuration structures or MQeFields objects.

In Java, the queue manager name list identifies the field in the message representing a
set of target queue managers. This does not occur in the native codebase.

Java
The parameters in Java are passed in using MQeFields objects. The values are passed
using field elements of specific types. The field names are as follows:

Table 17.

Element type Field label Textual value of field label

public static final
java.lang.String

Queue_QMgrNameList ″qqmnl″

94 Configuration Guide

Chapter 10. Connection definition

Connection definitions provide WebSphere MQ Everyplace with information on how to
locate and communicate with remote queue managers. The name of a connection
definition is that of the remote queue manager to which it describes a route. Therefore,
there may only be one direct connection definition for a remote queue manager. As
connection definitions define the WebSphere MQ Everyplace network, they are held in
permanent storage in the registry and, therefore, persist across instances of the queue
manager.

The route created using a connection definition uses an internal object called a channel
as the transport mechanism to send data between two queue managers. A user many
not access channels directly, but configuration decisions made for a queue manager
affects the behavior of a channel. Refer to Communication Channel Security
Considerations in Chapter 14, “Security”, on page 183 for more information.

The connection definition must define the same communications adapter class as the
adapter class being used by the listener on the listening queue manager. If the
communications adapters are not exactly the same, a successful connection is not
made.

Direct connection definition
A direct connection definition supplies information that allows a local queue manager to
create a channel to a remote queue manager in the WebSphere MQ Everyplace
network. The information is the actual network information for the remote queue
manager and does not involve any routing via other queue managers.

There are two variants of a direct connection, these are:

Alias connection definition
An alias connection definition provides the name of an actual connection
definition or another alias. You may think of these aliases as queue manager
aliases as they allow an administrator to set up a connection definition to a
particular queue manager, which may then be referred to by another name.

MQ connection definition
This is a specialized connection that identifies a remote queue manager as a
WebSphere MQ queue manager as opposed to a WebSphere MQ Everyplace
queue manager. For more information on bridge functionality with WebSphere
MQ Everyplace, refer to Chapter 12, “Administering bridge resources”, on
page 107.

Indirect connection definition
You can also have an indirect connection definition:

© Copyright IBM Corp. 2002 95

Via connection definition
A via connection definition supplies information that allows the local queue
manager to create a channel to a remote queue manager using a route via an
intermediate queue manager. Configure the intermediate queue manager(s) to
have connection definitions to either the next queue manager in the route or
the final destination queue manager. The administrator is responsible for
ensuring that all necessary connection definitions are configured on the route.

General
To create, alter, or delete a connection definition, use an administration message. For
an overview of administration messages, refer to Chapter 2, “Administration using
administration messages”, on page 5. For the connection definition to create a
successful connection to a remote queue manager, specify the correct communications
adapter, the correct network address of the listening queue manager, and the correct
listening location. If any of this information is incorrect, it is not possible to make a
connection to the remote queue manager.

Connection definition administration in Java
This section shows you how to create, alter, and delete connection definitions in Java.

Creating a connection definition
To create a connection definition, create an administration message and send it to the
administration queue. Before any attempt is made to use the connection, you must
receive a reply to indicate successful creation of a connection definition. Indeterminate
behavior may result if an attempt is made to use a connection before receiving such a
reply.

To create a connection definition, use the
examples.config.CreateConnectionDefinition example. A connection definition
administration message has a number of methods to help create the message correctly.
First of all, create an MQeConnectionAdminMsg:

MQeConnectionAdminMsg connectionMessage = new MQeConnectionAdminMsg();

On creating the connection administration message, set the name of the resource you
want to work on:

connectionMessage.setName("RemoteQM");

Now, set the information in the administration message that sets the action to create,
and provides the information for the route to our remote queue manager:

connectionMessage.create(
"com.ibm.mqe.adapters.MQeTcpipHistoryAdapter:127.0.0.1:8082",
null,
null,
"Default Channel",
"Example connection");

96 Configuration Guide

There are a number of things to note about the information passed to the create
method:

v The first parameter is a colon delimited string and has a profound affect on what type
of connection definition is created. The string used in the above example creates a
connection to a queue manager called RemoteQM, using the communications adapter,
MQeTcpipHistoryAdapter, running on the local machine listening at port 8082. If you
only specify a queue manager name, for instance ″ServerQM″, a via connection
definition is created and you have to either already have a connection definition for
ServerQM, or create one before attempting to use the via connection definition.

v The second parameter is really only useful for HTTP adapters that may run a servlet
on the server. This is where you define your servlet name which is then passed
within the HTTP header.

v The third parameter allows the persistent option to be set or unset, although in reality
this should be done with great care as the default values for persistence are set
within the communications adapters so they are consistent with the protocol being
used. For example, the MQeTcpipLengthAdapter and MQeTcpipHistoryAdapter both
use persistence, meaning that the socket is kept open. The MQeTcpipHttpAdapter, on
the other hand, uses a new socket for each conversation.

v The fourth parameter defines the channel. This should always be set to ″Default
Channel″.

v The fifth parameter provides descriptive text for the connection definition.

We now need to add information to the administration message that determines which
queue manager receives the administration message.

connectionMessage.setTargetQMgr("LocalQM");

Specify that you want to receive a reply, if using the Msg_Style_Datagram, indicate that
no reply was required. The reply indicates success or failure of the administrative
action.

connectionMessage.putInt(MQe.Msg_Style, MQe.Msg_Style_Request);

The queue and queue manager that receives the reply, this may not necessarily be the
queue manager that created and sent the administration message. Using the default
administration reply queue allows you to use the definition of the String provided in the
MQe class. Also, the reply must arrive on the local queue.

connectionMessage.putAscii(MQe.Msg_ReplyToQ, MQe.Admin_Reply_Queue_Name);
connectionMessage.putAscii(MQe.MSG_ReplyToQMgr, "LocalQM");

Add a unique identifier to the message before putting it onto the administration queue.
This allows you to identify the appropriate reply message. Use the system time to do
this.

String match = "Msg" + System.currentTimeMillis();
connectionMessage.putArrayOfByte(MQe.Msg_CorrelID, match.getByte());

Chapter 10. Connection definition 97

You can now put the administration message to the default administration queue. The
fourth parameter allows for an MQeAttribute to be specified with the fifth parameter
allowing for an identifier that allows you to undo the put. As neither is required, specify
null and zero respectively.

queueManager.putMessage("LocalQM", MQe.Admin_Queue_Name,
connectionMessage, null, 0);

Before we can safely use the connection definition we need to ensure it has been
correctly created and must, therefore, wait for a reply. The examples specifies that the
reply should be sent to the queue manager, LocalQM, on the default administration reply
queue. Create a filter using the correlation Id to get the correct reply:

MQeFields filter = new MQeFields();
filter.putArrayOfByte(MQe.Msg_CorrelID, match.getBytes());

Now, using the filter, wait for a reply message on the default administration reply queue.
The return from the waitForMessage method gives a MQeMsgObject. Cast that to an
MQeAdminMsg. The fourth parameter, which is set to null may be used for an
MQeAttribute. This is set to null as this example does not use security. The zero
passed in parameter five is for a confirm Id (also unused) that may be used in an undo
operation. The last parameter defines how long to wait in milliseconds. This example
waits for three seconds.

// all on one line
MQeAdminMsg response = (MQeAdminMsg)

queueManager.waitForMessage(queueManagerName,
MQe.Admin_Reply_Queue_Name,
filter,
null,
0,
3000);

Once you receive the reply, check to make sure we have a successful return code.
There is additional checking within the example, for the purposes of this manual we just
look at the successful return. As can be seen, there is a useful method on the
administration message which returns a return code to us for easy checking.

switch (response.getRC()) {
case MQeAdminMsg.RC_Success :

System.out.println("connection created");
break;...

Altering and deleting connection definitions
Connection definitions define the network for WebSphere MQ Everyplace and therefore
great care should be taken when altering or deleting them. It is strongly recommended
that when altering or deleting a connection definition one should ensure there is no
activity on the network that may be using that connection definition.

As with creating a connection definition, to alter or delete a connection definition, use
an administration message. The approach is the same as for creating a connection

98 Configuration Guide

definition, with a different action being used for the administration message. For
example, to update a connection definition, use the following method:

updateMessage.update(
"com.ibm.mqe.adapters.MQeTcpipHttpAdapter:127.0.0.1:8083",
null, null, "DefaultChannel", "Altered Example Connection");

In order to delete a connection definition, all that is required is the resource name and
the relevant action being set. Use the following method:

deleteMessage.setAction(MQeAdminMsg.Action_Delete);

Connection definition administration in C
There is an important difference between administration available in C to that in Java.
The Java product relies solely on the administration message, C provides an
administration API for the user to locally administer WebSphere MQ Everyplace. More
information may be found about the administration API in Chapter 3, “Administration
using the administrator API”, on page 35. This chapter assumes you have already read
the chapter on administration and know how to create an administrator handle and
exception block used in the calls to the administration API. This example is in the
transport.c, broker.dll for C.

Before we look at the individual functions providing the API to administer the connection
definition, it is worthwhile looking at the structure containing the information about the
connection definition that is passed into all the functions requiring information, that is all
except the function to delete the connection definition. The
MQeConnectionDefinitionParms structure is as follows:

MQEVERSION version;
MQEINT32 opFlags;
MQeStringHndl hDescription;
MQeStringHndl hAdapterClass;
MQeStringHndl * phAdapterParms;
MQEINT32 destParmLen;
MQeStringHndl hAdapterCommand;
MQeStringHndl hChannelClass;
MQeStringHndl hViaQMName;

Version
This is a field for internal use only and should not be set by the user.

opFlags
On input to a function this field provides bit flags indicating the areas of the
resource that are to be administered. On output from a function if the action
has been successful the flags will indicate the operations performed, if the
action has failed the flags will indicate the failed component.

hDescription
The description for this connection definition.

hAdapterClass
The communications adapter class that will be used by this connection

Chapter 10. Connection definition 99

definition, currently there is just one communications adapter for C. In the
MQe_Adapter_Constants.h header file there is a constant to define the class
– MQE_HTTP_ADAPTER.

phAdapterParams
An array containing the network information required to connect to the remote
queue manager. In an IP network this will contain the network address and IP
port. The first element in the array is assumed to be the IP address, the
second element is assumed to be the port number.

destParmLen
The length of the phAdapterParams array.

hAdapterCommand
This field may contain a servlet name to be included in an HTTP header.

hChannelClass
The class of channel to use, this should be set to MQE_CHANNEL_CLASS, defined
in MQe_Connection_Constants.h

hViaQMName
If this connection definition defines a via connection then all other parameters
should be null with this parameter containing the name of the via queue
manager name.

A constant in MQe_Connection_Constant.h - CONNDEF_INIT_VAL sets the values of this
structure to initial values which can then be altered as required.

Create a connection definition
In order to create a connection definition will need to call the function:

mqeAdministrator_Connection_create(MQeAdministratorHndl, hAdmin,
MQeExceptBlock* pExceptBlock,
MQeStringHndl hConnectionName,
MQeConnectionDefinitionParms* pParams);

The third parameter will define the name of the connection definition. As stated, this
must be the name of the remote queue manager to which this connection definition
holds the route.

The fourth parameter is a structure holding information that is required to setup the
connection definition information. Either the hViaQMName field should be set or the
hAdapterClass, phAdapterParams, destParmLen, hAdapterCommand and hChannelClass in
order to create a connection definition. For instance, to create a connection definition,
first create and set up an MQeConnectionDefinition parameter structure:

/* Create the structure and set it to the initial values */
MQeConnectionDefinitionParms parms = CONNDEF_INIT_VAL;

Create an MQeString to hold the name of the remote queue manager, this becomes the
name of the connection definition:

rc = OSAMQESTRING_NEW(&error, "ServerQM", SB_STR, &hQueueMgrName);

100 Configuration Guide

Set the adapter and channel class names, these must be set to these names as these
are the only classes currently supported:

parms.hAdapterClass = MQE_HTTP_ADAPTER;
parms.hChannelClass = MQE_CHANNEL_CLASS;

In order to set up an array we need to allocate some memory then setup the network
information. This example shows using the loopback address with the listener expected
to be on port 8080:

OSAMEMORY_ALLOC(&error, (MQEVOID**) &parms.phAdapterParms,
(sizeof(MQEHANDLE) * 2), "comms test");

rc = OSAMQESTRING_NEW(&error, "127.0.0.1", SB_STR,
&parms.phAdapterParms[0]);

rc = OSAMQESTRING_NEW(&error, "8080", SB_STR,
&parms.phAdapterParms[1]);

We now set the number of element in the array:

parms.destParmLen = 2;

And last of all set the flags to tell the receiving administration function what information
it should look for in the structure:

parms.opFlags = CONNDEF_ADAPTER_CLASS_OP | CONNDEF_ADAPTER_PARMS_OP |
CONNDEF_CHANNEL_CLASS_OP;

Now, having set everything up we can call the administration function in order to create
our connection definition. Note, it is wise to check the return code in order to determine
whether the call has been successful

rc = mqeAdministrator_Connection_create(hAdministrator, &error,
h hQueueMgrName, &parms);

if (MQERETURN_OK == rc) {
fprintf(pOutput,"connection definition to ServerQM
at 127.0.0.1:8081 successfully added\n");

}

The above example creates a direct connection definition. To modify this to create a via
connection definition, set the parameter structure to the default values and the name of
the remote queue manager as usual:

MQeConnectionDefinitionParms parms = CONNDEF_INIT_VAL;
rc = OSAMQESTRING_NEW(&error, "ServerQM", SB_STR, &hQueueMgrName);

Now set the name of the queue manager that routes
the messages on to the remote queue manager.

rc = OSAMQESTRING_NEW(&error,
"RoutingQM",

SB_STR,
&parms.hViaQMName);

Now all that remains to do is to set the flags that tell the administration function what to
look for in the structure:

parms.opFlags = CONNDEF_VIAQM_OP;

Chapter 10. Connection definition 101

Then call the function, as with the direct connection definition:

rc = mqeAdministrator_Connection_create(hAdministrator,
&error,

hQueueMgrName,
&parms);

Delete a connection definition
Delete a connection as follows. If the connection does not exist, the return code of
MQERETURN_COMMS_MANAGER_WARNING is given with the reason code of
MQEREASON_CONDEF_DOES_NOT_EXIST.

rc = mqeAdministrator_Connection_delete(hAdministrator,
&error, hQueueMgrName);

Update a connection definition
As previously stated, it is strongly recommended that you ensure a connection is not
being used when a connection definition is updated. The flags are used to determine
which parts of the information in the connection definition are to be updated. Therefore,
even if a value is provided in the structure, if the correct flag is not set, that value is not
used:

MQeConnectionDefinitionParms parms = CONNDEF_INIT_VAL;

Create a new description:

rc = OSAMQESTRING_NEW(&error, "replacement description", SB_STR,
&parms.hDescription);

Set the opFlags field as follows. The description is not updated. Instead the,
administration function attempts to update the value for the name of the via queue
manager:

parms.opFlags = CONNDEF_VIAQM_OP;

Set the opFlags field as follows to obtain the desired behavior:

Parms.opFlags = CONNDEF_DESC_OP;

Then, call the function to update the connection definition as follows:

rc = mqeAdministration_Connection_update(hAdministrator , &error,
hQueueMgrName, &parms);

General comment
As can be seen from the example, much repetitive code is involved in creating and then
checking the reply for an administration message. Therefore, put this code into a
common class that may be used by all classes creating and checking the replies of
administration messages.

The examples contain the full code for updating and deleting a connection definition.

102 Configuration Guide

Chapter 11. Listener

In order for a queue manager to receive requests from other queue managers it is
necessary for an MQeListener to be instantiated and running. At present this
functionality is only available in Java.

A listener uses a communications adapter to listen at a named location, in an IP
network this is a named port. For a client to make a successful connection, the network
address of the listening queue manager, the named location, and the communications
adapter class must be made known to the client. An error in any one of these in the
connection definition on the client will result in an error when they try to connect.

Creating a listener
In order to create a listener is it necessary to use an administration message. The
following is based upon the example example.config.ConfigListener, the
administration message is instantiated as follows:

MQeCommunicationsListenerAdminMsg createMessage =
new MQeCommunicationsListenerAdminMsg();

We now need to provide a name for the listener:

createMessage.setName("Listener1");

The name of the queue manager to which the administration message is intended is
also required:

createMessage.setTargetQMgr(queueManagerName);

The next thing we need to do is set the action for the administration message as well
as providing the information the listener requires in order to function.

createMessage.create(com.ibm.mqe.adapters.MQeTcpipHistoryAdapter,
8087, 36000000, 10);

The first parameter provides the name of the communications adapter we wish to use,
in this instance we have stipulated the MQeTcpipHistoryAdapter, an alias may be used
instead. The type of communications adapter being used by the listener needs to be
made known to clients wishing to connect to the queue manager using the listener.

The second parameter defines the named location the listener uses, in this instance an
IP port number of 8087, again the clients will need to be aware of this in order to
contact this listener.

The third parameter specifies the channel timeout value. This value is used to
determine when an incoming channel should be closed. WebSphere MQ Everyplace
polls the channels, if a channel has been idle for longer than the timeout value it will be
closed.

© Copyright IBM Corp. 2002 103

The last parameter determines the maximum number of channels the listener will have
running at any one time. If a client tries to connect once this value has been reached
the connection is refused.

Having set the correct action and provided the relevant information we can set the
message type, in this instance we are using a request message style which indicates
we would like a reply to indicate success or failure. However, it might make no
difference if a description is altered successfully or not. In this case, use a message
style of datagram which indicates no reply is required.

createMessage.putInt(MQe.Msg_Style, MQe.Msg_Style_Request);

When requesting a reply, provide the queue and owning queue manager name to which
the reply must be sent. This example uses the default administration reply queue.

createMessage.putAscii(MQe.Msg_ReplyToQ, MQe.Admin_Reply_Queue_Name);
createMessage.putAscii(MQe.Msg_ReplyToQMgr, queueManagerName);

To get the correct reply message that corresponds to our administration message, use
a correlation ID. This is copied from the administration message into the reply so we
can get the correct message. To generate an id that is relatively safe as being unique,
use the system time:

String match = "Msg" + System.currentTimeMillis();
createMessage.putArrayOfByte(MQe.Msg_CorrelID, match.getBytes());

We are now in a position to put the administration message to the administration queue
of the target queue manager. The last two parameters provide the ability to use an
attribute and an id to allow the undo method to be called, neither of which we shall
worry about at this juncture.

queueManager.putMessage(queueManagerName, MQe.Admin_Queue_Name,
createMessage, null, 0);

Having put the message to the queue we shall now wait for a reply. As can be seen we
use the correlation identifier we used to put the message in order to get the reply and
there is a useful method that provides us with the reason code to indicate success or
failure.

MQeFields filter = new MQeFields();
filter.putArrayOfByte(MQe.Msg_CorrelID, match.getBytes());

// now wait for a reply
MQeAdminMsg response =

(MQeAdminMsg) queueManager.waitForMessage(
queueManagerName,
MQe.Admin_Reply_Queue_Name,
filter,
null,
0,
3000);

// the administration message has a method that

104 Configuration Guide

//will get out the return code
switch (response.getRC()) {

case MQeAdminMsg.RC_Success :
break;

Having successfully created our listener we need to start it, the listener is only
automatically started on the next restart of the queue manager. Again an administration
message is required to start or stop a listener, we can use the approach taken above,
using the following methods in the MQeCommunicationsListenerAdminMsg class. To start
the listener:

MQeCommunicationsListenerAdminMsg startMessage =
new MQeCommunicationsListenerAdminMsg();

...

startMessage.start();

To stop the listener:

MQeCommunicationsListenerAdminMsg startMessage =
new MQeCommunicationsListenerAdminMsg();

...

startMessage.stop();

In order to delete a listener we need to set the action of the administration message to
delete as follows:

deleteMessage.setAction(MQeAdminMsg.Action_Delete);

If you try to delete a listener that is running you will receive an exception, so make sure
your listener has successfully stopped before trying to delete it.

Chapter 11. Listener 105

106 Configuration Guide

Chapter 12. Administering bridge resources

This chapter describes how WebSphere MQ Everyplace interacts with other messaging
software, under the following headings:

v The WebSphere MQ bridge

v What makes a queue manager bridge-enabled

v Finding out if a queue manager is bridge-enabled

v Classes required to make a queue manager bridge-enabled

v Configuring the WebSphere MQ bridge

The WebSphere MQ bridge
To exchange messages with a WebSphere MQ queue manager, a solution needs to
use a piece of the WebSphere MQ Everyplace toolkit called the bridge. The WebSphere
MQ bridge consists of a number of classes, which must be available on the CLASSPATH,
for the Java Virtual Machine to use. These are described in more detail later in this
chapter. The bridge is a server-side component, in that it is deployed at the server-end
of client-server network topologies. WebSphere MQ bridge queue managers with a
device or client role need not have a bridge themselves if they can connect to a
bridge-enabled queue manager. In such cases, message traffic passed from these leaf
node queue managers can be routed via the bridge-enabled WebSphere MQ bridge
queue manager, which in turn can use bridge functionality to convey the message to a
WebSphere MQ queue manager.

Normally, the bridge-enabled WebSphere MQ Everyplace queue manager is deployed
within a DMZ or behind the Firewall, where the network connections between it and the
WebSphere MQ queue managers it talks to are either on the same machine, or on a
machine which is you can contact with a reliable high-bandwidth LAN network. A
bridge-enabled WebSphere MQ Everyplace queue manager is often referred to as a
gateway queue manager, because it provides a gateway between the WebSphere MQ
Everyplace and WebSphere MQ messaging networks.

The bridge function is available only in the Java part of the WebSphere MQ Everyplace
toolkit, and is usable only by WebSphere MQ Everyplace queue managers running
within a Java Virtual Machine. The bridge resources can be manipulated from a native
platform with the aid of WebSphere MQ Everyplace administration messages. A
specialized set of administration messages is provided in the WebSphere MQ
Everyplace product for this purpose, and is described later in this chapter.

Messages from a WebSphere MQ application destined for WebSphere MQ Everyplace
are addressed to the WebSphere MQ Everyplace queue manager and queue as
normal. Standard WebSphere MQ routing, using remote queue and remote queue
manager definitions, is used to route messages to the WebSphere MQ Everyplace
queue managers. WebSphere MQ channels are not defined for transmission queues.
Instead, the WebSphere MQ Everyplace gateway pulls the messages off these queues
and ensures their delivery to the WebSphere MQ Everyplace destination. This is
explained in more detail below.

© Copyright IBM Corp. 2002 107

The WebSphere MQ bridge handles the transfer of messages between the two
systems, including translation between different message formats. Configuring the
WebSphere MQ bridge provides a detailed description of this interface.

What makes a queue manager bridge-enabled
Some WebSphere MQ Everyplace queue managers are capable of exchanging
messages with WebSphere MQ, and some are not. Those which can are said to be
bridge-enabled or bridge-capable. Put simply, a bridge-enabled queue manager is one
which runs in an environment capable of supporting theWebSphere MQ Java classes,
and when the WebSphere MQ bridge software is available for the JVM to load.

When a WebSphere MQ Everyplace queue manager is activated, it attempts to load the
WebSphere MQ bridge software component. If you can load all of the WebSphere MQ
Everyplace classes and dependent software, the queue manager can later report that it
is bridge-capable. If you cannot load the required Java classes, error information is
traced at that point, but the queue manager continues to activate, resulting in a queue
manager which reports that it is not bridge-capable.

Finding out if a queue manager is bridge-enabled
If you apply an inquireAll operation to a queue manager, a bridge-capable property is
returned. This field is boolean. A true value indicates that the classes required to
support the bridge function are present on the class path. A false value indicates that
required classes are missing from the class path.

If the queue manager is reporting that it is bridge-capable, bridge resources can be
configured and manipulated on that queue manager. If the queue manager reports that
it is not bridge-capable, any attempt to administer bridge resources will fail. Such
situations are often indicative that the required WebSphere MQ Java classes, or parts
of the WebSphere MQ bridge software are not available on the classpath.

Changing the classpath to reference the WebSphere MQ Java and WebSphere MQ
bridge classes, and restarting the JVM in which the WebSphere MQ Everyplace queue
manager is running should result in the queue manager reporting that it is
bridge-capable. The code in
examples.mbridge.administration.commandline.IsQueueManagerBridgeCapable
provides an example of how to code this query.

Classes required to make a queue manager bridge-enabled
To use the WebSphere MQ bridge you must have:

v WebSphere MQ Classes for Java version 5.1 or later, installed on your WebSphere
MQ Everyplace system, and available on the classpath for JVMs to use. WebSphere
MQ Classes for Java is available for free download from the Web as SupportPac™

MA88. This can be downloaded for free from:
http://www.ibm.com/software/mqseries/txppacs.
The WebSphere MQ classes for Java are also shipped with WebSphere MQ
software, though may not be installed depending on the options selected when

interoperability with other messaging systems

108 Configuration Guide

WebSphere MQ was installed. An example script below demonstrates what might be
needed to set the correct environment on a Windows system. This example was
taken from the Java\Demo\Windows folder. A similar UNIX example can be found in
Java\Demo\Unix directory.

@Rem Set up the name of the MQ Series directory.
@Rem This should be modified to suit your installation.
set MQDIR=C:\Program Files\IBM\MQSeries

@Rem If you wish to use the WebSphere MQ bridge then the CLASSPATH also
@Rem needs to know how to get to the MQSeries Java Client.
if Exist "%MQDIR%\java\lib"∧

set CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib;
if Exist "%MQDIR%\java\lib\com.ibm.mq.jar"∧

set CLASSPATH=%CLASSPATH%; %MQDIR%\java\lib\com.ibm.mq.jar
if Exist "%MQDIR%\java\lib\com.ibm.mqbind.jar"∧

set CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\com.ibm.mqbind.jar
if Exist "%MQDIR%\java\lib\com.ibm.mq.iiop.jar"∧

set CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\com.ibm.mq.iiop.jar
if Exist "%MQDIR%\java\lib\jta.jar"∧

set CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\jta.jar
if Exist "%MQDIR%\java\lib\jndi.jar"∧

set CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\jndi.jar
if Exist "%MQDIR%\java\lib\jms.jar"∧

set CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\jms.jar
if Exist "%MQDIR%\java\lib\com.ibm.mqjms.jar"∧

set CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\com.ibm.mqjms.jar
if Exist "%MQDIR%\java\lib\connector.jar"∧

set CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\connector.jar
if Exist "%MQDIR%\java\lib\fscontext.jar"∧

set CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\fscontext.jar
if Exist "%MQDIR%\java\lib\ldap.jar"∧

set CLASSPATH=%CLASSPATH%;%MQDIR%\java\lib\ldap.jar

@Rem The MQSeries Bridge also requires access to the MQSeries
@Rem Executables so that native DLLs can be found.
if Exist "%MQDIR%\java\lib" set PATH=%PATH%;%MQDIR%\java\lib
if Exist "%MQDIR%\bin" set PATH=%PATH%;%MQDIR%\bin;

v WebSphere MQ Everyplace classes, of which an example of superset classes can
be found in the Java/Jars/MQeGateway.jar file. Deploying this file and adding it to
your classpath will provide the queue manager with all the required classes
necessary to use bridge function. For example,

set CLASSPATH=%CLASSPATH%;%MQeDIR%\Java\Jars\MQeGateway.jar

Configuring the WebSphere MQ bridge
The configuration of the WebSphere MQ bridge requires you to perform some actions
on the WebSphere MQ queue manager, and some on the WebSphere MQ Everyplace
queue manager. The bridge can be divided into two pieces:

v Configuration of resources required to route a message from WebSphere MQ
Everyplace to WebSphere MQ

interoperability with other messaging systems

Chapter 12. Administering bridge resources 109

v Configuration of resources required to route a message from WebSphere MQ to
WebSphere MQ Everyplace

Configuration of both types of routes are discussed in the following sections.

The bridge objects are defined in a hierarchy as shown in Figure 42 on page 112

The following rules govern the relationship between the various objects:

v A WebSphere MQ Everyplace bridges object is associated with a single WebSphere
MQ Everyplace queue manager.

v A single WebSphere MQ Everyplace bridges object may have more than one bridge
object associated with it. You may wish to configure several WebSphere MQ bridge
instances with different routings.

v Each bridge can have a number of WebSphere MQ queue manager proxy
definitions.

v Each WebSphere MQ queue manager proxy definition can have a number of client
connections that allow communication with WebSphere MQ Everyplace.

v Each client connection connects to a single WebSphere MQ queue manager. Each
connection may use a different server connection on the WebSphere MQ queue
manager , or a different set of security, send, and receive exits, ports or other
parameters.

WebSphere MQ Everyplace gateway

WebSphere MQ
bridge queue

WebSphere MQ
bridge

transmission queue
listener

WebSphere MQ server

Xmit queue
WebSphere MQ

local queue
WebSphere MQ

Routed
messages

put,
browse,
get

Figure 41.

bridge configuration

110 Configuration Guide

v A WebSphere MQ bridge client connection may have a number of transmission
queue listeners that use that bridge service to connect to the WebSphere MQ queue
manager.

v A listener uses only one client connection to establish its connection.

v Each listener connects to a single transmission queue on the WebSphere MQ
system.

v Each listener moves messages from a single WebSphere MQ transmission queue to
anywhere on the WebSphere MQ Everyplace network, (through the WebSphere MQ
Everyplace queue manager its bridge is associated with). So a WebSphere MQ
bridge can funnel multiple WebSphere MQ message sources through one
WebSphere MQ Everyplace queue manager onto the WebSphere MQ Everyplace
network.

v When moving WebSphere MQ Everyplace messages to the WebSphere MQ
network, the WebSphere MQ Everyplace queue manager creates a number of
adapter objects. Each adapter object can connect to any WebSphere MQ queue
manager (providing it is configured) and can send its messages to any queue. So an
WebSphere MQ bridge can dispatch WebSphere MQ Everyplace messages routed
through a single WebSphere MQ Everyplace queue manager to any WebSphere MQ
queue manager.

bridge configuration

Chapter 12. Administering bridge resources 111

The bridge configuration option allows a WebSphere MQ Everyplace queue manager to
communicate with WebSphere MQ host and distributed queue managers through client
channels. The bridge component manages a pool of client channels that can be
attached to one or more host or distributed queue managers. You can configure multiple
bridge-enabled WebSphere MQ Everyplace queue managers in a single network.

A gateway may have a number of transmit queue listeners that use that gateway to
connect to the WebSphere MQ queue manager and retrieve a messages from
WebSphere MQ to WebSphere MQ Everyplace. A listener uses only one service to
establish its connection, with each listener connecting to a single transmission queue on
the WebSphere MQ queue manager. Each listener moves messages from a single
WebSphere MQ transmission queue to anywhere on the WebSphere MQ Everyplace
network, via its parent gateway queue manager. Thus, a single gateway queue
manager can funnel multiple WebSphere MQ message sources into the WebSphere
MQ Everyplace network.

When moving messages in the other direction, from WebSphere MQ Everyplace to
WebSphere MQ, the gateway queue manager configures one or more bridge queues.
Each bridge queue can connect to any queue manager directly and send its messages
to the target queue. In this way a gateway can dispatch WebSphere MQ Everyplace

WebSphere MQ
Everyplace

queue manager
Bridges

Bridge

WebSphere MQ
queue manager

proxy

Client
connection

Transmission
queue listenerAdapter

Only one queue manager
is allowed per JVM.
However, you may have
multiple JVMs.

Only one bridges object
is allowed per JVM

WebSphere MQ Everyplace server

Figure 42. Bridge object hierarchy

bridge configuration

112 Configuration Guide

messages routed through a single WebSphere MQ Everyplace queue manager to any
WebSphere MQ queue manager, either directly or indirectly.

The bridges resource
The bridges resource is responsible for maintaining a list of bridge resources. The
bridges resource is responsible for maintaining a list of bridge resources. It provides a
single-resource which can be started and stopped, where starting and stopping a
bridges resource can start and stop all the resources beneath it in the resource
hierarchy. It is ″owned″ by the WebSphere MQ Everyplace queue manager. If the
WebSphere MQ Everyplace queue manager is bridge-enabled, then a bridges resource
is automatically created, and present. This resource has no persistent information
associated with it. It has the following properties:

Table 18. Bridges properties

Property Explanation

Bridgename List of bridge names

Run state Status: running or stopped

The bridges, and the other bridge resources can be started and stopped independently
of the WebSphere MQ Everyplace queue manager. If such a bridge resource is started
(or stopped) the action also applies to all of its children, that is all bridges, queue
manager proxies, client connections, and transmission queue listeners.

More detail of these properties can be found in the WebSphere MQ Everyplace Java
Programming Reference in the administration class
com.ibm.mqe.mqbridge.MQeMQBridgesAdminMsg. The bridges resource supports the
Inquire and InquireAll, start, and stop operations. Create, delete, and update are not
appropriate actions to use with this resource. Examples of how to inquire, start, and
stop a bridges resource can be found in the Java class
examples.mqbridge.administration.programming.AdminHelperBridges

The bridge resource
The bridge resource is responsible for holding a number of persistent property values,
and a list of WebSphere MQ queue manager proxy resources. If started or stopped, it
can act as a single point of control to start and stop all the resources beneath it in the
bridge hierarchy. Each bridge object supports the full range of create, inquire,
inquire-all, update, start, stop, and delete operations. Examples of these operations can
be found in the Java class
examples.mqbridge.administration.programming.AdminHelperBridge. The bridge
resource has the following properties:

Table 19. Bridge properties

Property Explanation

Class Bridge class

Default transformer The default class, rule class, to be used to transform a message
from WebSphere MQ Everyplace to WebSphere MQ, or vice versa,
if no other transformer class has been associated with the
destination queue

bridge configuration

Chapter 12. Administering bridge resources 113

Table 19. Bridge properties (continued)

Property Explanation

Heartbeat interval The basic timing unit to be used for performing actions against
bridges

Name Name of the bridge

Run state Status: running or stopped

Startup rule class Rule class used when the bridge is started

WebSphere MQ Queue
Manager Proxy Children

List of all Queue Manager Proxies that are owned by this bridge

More detail of each property can be found in the WebSphere MQ Everyplace Java
Programming Reference, in the administration class
com.ibm.mqe.mqbridge.MQeMQBridgeAdminMsg.

In simple cases a default transformer (rule) can be used to handle all message
conversions. Additionally a transformer can be set on a per listener basis (for messages
from WebSphere MQ to WebSphere MQ Everyplace) that overrides this default. For
more specific control the transformation rules can be set on a target queue basis using
bridge queue definitions on the WebSphere MQ Everyplace Java Programming
Reference. This applies both to WebSphere MQ Everyplace and WebSphere MQ target
queues.

The WebSphere MQ queue manager proxy
The WebSphere MQ queue manager proxy holds the properties specific to a single
WebSphere MQ queue manager. The proxy properties are shown in the following table:

Table 20. WebSphere MQ queue manager proxy properties

Property Explanation

Class WebSphere MQ queue manager proxy class

WebSphere MQ host name IP host name used to create connections to the WebSphere MQ
queue manager via the Java client classes. If not specified then the
WebSphere MQ queue manager is assumed to be on the same
machine as the bridge and the Java bindings are used

WebSphere MQ queue
manager proxy name

The name of the WebSphere MQ queue manager

Name of owning bridge Name of the bridge that owns this WebSphere MQ queue manager
proxy

Run state Status: running or stopped

Startup rule class Rule class used when the WebSphere MQ queue manager is
started

Client Connection Children List of all the client connections that are owned by this proxy

More detail of each property can be found in the WebSphere MQ Everyplace Java
Programming Reference, in the administration class
com.ibm.mqe.mqbridge.MQeMQQMgrProxyAdminMsg.

bridge configuration

114 Configuration Guide

Each proxy object supports the full range of create, inquire, inquire-all, update,
start, stop, and delete operations. Examples of these operations can be found in the
Java class examples.mqbridge.administration.programming.AdminHelperMQQMgrProxy.

The client connection resource
The client connection definition holds the detailed information required to make a
connection to a WebSphere MQ queue manager. The connection properties are shown
in the following table:

Table 21. Client connection service properties

Property Explanation

Adapter class Class to be used as the gateway adapter

CCSID* The integer WebSphere MQ CCSID value to be used

Class Bridge client connection service class

Max connection idle time The maximum time a connection is allowed to be idle before being
terminated

WebSphere MQ password* Password for use by the Java client

WebSphere MQ port* IP port number used to create connections to the WebSphere MQ
queue manager via the Java client classes. If not specified then the
WebSphere MQ queue manager is assumed to be on the same
machine as the bridge and the Java bindings are used

WebSphere MQ receive
exit class*

Used to match the receive exit used at the other end of the client
channel; the exit has an associated string to allow data to be
passed to the exit code

WebSphere MQ security
exit class*

Used to match the security exit used at the other end of the client
channel; the exit has an associated string to allow data to be
passed to the exit code

WebSphere MQ send exit
class*

Used to match the send exit used at the other end of the client
channel; the exit has an associated string to allow data to be
passed to the exit code

WebSphere MQ user ID* user ID for use by the Java client

Client connection service
name

Name of the server connection channel on the WebSphere MQ
machine

Name of owning queue
manager proxy

The name of the owning queue manager proxy

Startup rule class Rule class used when the bridge client connection service is started

Sync queue name The name of the WebSphere MQ queue that is used by the bridge
for synchronization purposes

Sync queue purger rules
class

The rules class to be used when a message is found on the
synchronous queue

Run state Status: running or stopped

Name of owning Bridge The name of the bridge that owns this client connection

MQ XmitQ Listener
Children

List of all the listeners that use this client connection

bridge configuration

Chapter 12. Administering bridge resources 115

The adapter class is used to send messages from WebSphere MQ Everyplace to
WebSphere MQ and the sync queue is used to keep track of the status of this process.
Its contents are used in recovery situations to guarantee assured messaging; after a
normal shutdown the queue is empty. It can be shared across multiple client
connections and across multiple bridge definitions provided that the receive, send and
security exits are the same. This queue can also be used to store state about
messages moving from WebSphere MQ to WebSphere MQ Everyplace , depending
upon the listener properties in use. The sync queue purger rules class is used when a
message is found on the sync queue, indicating a failure of WebSphere MQ Everyplace
to confirm a message.

The maximum connection idle time is used to control the pool of Java client
connections maintained by the bridge client connection service to its WebSphere MQ
system. When a WebSphere MQ connection becomes idle, through lack of use, a timer
is started and the idle connection is discarded if the timer expires before the connection
is reused. Creation of WebSphere MQ connections is an expensive operation and this
process ensures that they are efficiently reused without consuming excessive
resources. A value of zero indicates that a connection pool should not be used.

More detail of each property can be found in the WebSphere MQ Everyplace Java
Programming Reference, in the administration class
com.ibm.mqe.mqbridge.MQeClientConnectionAdminMsg.

Each client connection object supports the full range of create, inquire,
inquire-all, update, start, stop,and delete operations. Examples of these
operations can be found in the Java class
examples.mqbridge.administration.programming.AdminHelperMQClientConnection.

The transmit queue listener resource
The listener moves messages from WebSphere MQ to WebSphere MQ Everyplace.

Table 22. Listener properties

Property Explanation

Class Listener class

Dead letter queue name Queue used to hold messages from WebSphere MQ to WebSphere
MQ Everyplace that cannot be delivered

Listener state store adapter Class name of the adapter used to store state information

Listener name Name of the WebSphere MQ XMIT queue supplying messages

Owning client connection
service name

Client connection service name

Run state Status: running or stopped

Startup rule class Rule class used when the listener is started

Transformer class Rule class used to determine the conversion of a WebSphere MQ
message to WebSphere MQ Everyplace

Undelivered message rule
class

Rule class used to determine action when messages from
WebSphere MQ to WebSphere MQ Everyplace cannot be delivered

bridge configuration

116 Configuration Guide

Table 22. Listener properties (continued)

Property Explanation

Seconds wait for message An advanced option that can be used to control listener
performance in exceptional circumstances

More detail of each property can be found in the WebSphere MQ Everyplace Java
Programming Reference, in the administration class
com.ibm.mqe.mqbridge.MQeListenerAdminMsg.

Each transmit queue listener object supports the full range of create, inquire,
inquire-all, update, start, stop, and delete operations. Examples of these
operations can be found in the Java class

// type all on one line, no spacing
examples.mqbridge.administration.programming.

AdminHelperMQTransmitQueueListener

The undelivered message rule class determines what action is taken when a message
from WebSphere MQ to WebSphere MQ Everyplace cannot be delivered. Typically it is
placed in the dead letter queue of the WebSphere MQ system.

In order to provide assured delivery of messages, the listener class uses the listener
state store adapter to store state information, either on the WebSphere MQ Everyplace
system or in the sync queue of the WebSphere MQ system.

The transmission queue listener allows WebSphere MQ remote queues to refer to
WebSphere MQ Everyplace local queues. You can also create WebSphere MQ
Everyplace remote queues that refer to WebSphere MQ local queues. These
WebSphere MQ Everyplace remote queue definitions are called WebSphere MQ bridge
queues and they can be used to get, put and browse messages on a WebSphere MQ
queue.

The bridge queue
A WebSphere MQ bridge queue definition can contain the following attributes.

Table 23. WebSphere MQ bridge queue properties

Property Explanation

Alias names Alternative names for the queue

Authenticator Must be null

Class Object class

Client connection Name of the client connection service to be used

Compressor Must be null

Cryptor Must be null

Expiry Passed to transformer

Maximum message size Passed to the rules class

Mode Must be synchronous

bridge configuration

Chapter 12. Administering bridge resources 117

Table 23. WebSphere MQ bridge queue properties (continued)

Property Explanation

MQ queue manager proxy Name of the WebSphere MQ queue manager to which the
message should first be sent

WebSphere MQ bridge Name of the bridge to convey the message to WebSphere MQ

Name Name by which the remote WebSphere MQ queue is known to
WebSphere MQ Everyplace

Owning queue manager Queue manager owning the definition

Priority Priority to be used for messages, unless overridden by a message
value

Remote WebSphere MQ
queue name

Name of the remote WebSphere MQ queue

Rule Rule class used for queue operations

Queue manager target WebSphere MQ queue manager owning the queue

Transformer Name of the transformer class that converts the message from
WebSphere MQ Everyplace format to WebSphere MQ format

Type WebSphere MQ bridge queue

More detail of each property can be found in the WebSphere MQ Everyplace Java
Programming Reference, in the administration class
com.ibm.mqe.mqbridge.MQeMQBridgeQueueAdminMsg.

Example code which manipulates a bridge queue can be found in the Java class
examples.mqbridge.administration.programmingAdminHelperBridgeQueue.

Note: The cryptor, authenticator, and compressor classes define a set of queue
attributes that dictate the level of security for any message passed to this queue.
From the time on WebSphere MQ Everyplace that the message is sent initially,
to the time when the message is passed to the WebSphere MQ bridge queue,
the message is protected with at least the queue level of security. These security
levels are not applicable when the WebSphere MQ bridge queue passes the
message to the WebSphere MQ system, the security send and receive exits on
the client connection are used during this transfer. No checks are made to make
sure that the queue level of security is maintained.

WebSphere MQ bridge queues are synchronous only. Asynchronous applications must
therefore use either a combination of WebSphere MQ Everyplace store-and-forward
and home-server queues, or asynchronous remote queue definitions as an intermediate
step when sending messages to WebSphere MQ bridge queues.

Applications make use of WebSphere MQ bridge queues like any other WebSphere MQ
Everyplace remote queue, using the putMessage, browseMessages, and getMessage
methods of the MQeQueueManager class. The queue name parameter in these calls is the
name of the WebSphere MQ bridge queue, and the queue manager name parameter is
the name of the WebSphere MQ queue manager. However, in order for this queue
manager name to be accepted by the local WebSphere MQ Everyplace server, a

bridge configuration

118 Configuration Guide

connection definition with this WebSphere MQ queue manager name must exist with
null for all the parameters, including the channel name.

Note: there are some restrictions on the use of getMessage and browseMessages with
WebSphere MQ bridge queues. It is not possible to get or browse messages
from WebSphere MQ bridge queues that point to WebSphere MQ remote queue
definitions. Nor is it possible to use nonzero Confirm Ids on WebSphere MQ
bridge queue gets. This means that the getMessage operation on WebSphere
MQ bridge queues does not provide assured delivery. If you need a get
operation to be assured, you should use transmission-queue listeners to transfer
messages from WebSphere MQ.

Administration of the WebSphere MQ bridge is handled in the same way as the
administration of a normal WebSphere MQ Everyplace queue manager, through the use
of administration messages. New classes of messages are defined as appropriate to
the queue.

Naming recommendations for interoperability with a WebSphere MQ network
To create an WebSphere MQ Everyplace network that can interoperates with a
WebSphere MQ network, it is necessary to adopt the same limitations in naming
convention for both systems. It is therefore important to understand the differences
between valid queue names in both systems:

v In WebSphere MQ, the forward slash ’/’ character is allowed in queue and queue
manager names. This character is not valid in WebSphere MQ Everyplace object
names.

We strongly recommend that you do not use this character in the name of any
WebSphere MQ queue or queue manager.

v WebSphere MQ queue and queue manager names have a limit of 48 characters but
WebSphere MQ Everyplace names have no length restrictions.

We strongly recommend that you do not define WebSphere MQ Everyplace queues
or queue managers with names that contain more than 48 characters.

v WebSphere MQ queue names can have leading or trailing ’.’ characters. This is not
allowed in WebSphere MQ Everyplace

We strongly recommend that you do not defined any WebSphere MQ queue or
queue manager with a name that starts or ends with a ’.’ character.

v Queue managers should be named uniquely, such that a queue manager with the
same name does not exist on either the WebSphere MQ Everyplace network, or the
WebSphere MQ network.

If you choose not to follow these guidelines, then you may experience problems when
trying to address an WebSphere MQ Everyplace queue from a WebSphere MQ
application.

Configuring a basic installation
To configure a very basic installation of the WebSphere MQ bridge you need to
complete the following steps:

bridge configuration

Chapter 12. Administering bridge resources 119

1. Make sure you have a WebSphere MQ system installed and that you understand
local routing conventions, and how to configure the system.

2. Install WebSphere MQ Everyplace on a system (It can be the same system as your
WebSphere MQ system is located on if you wish)

3. If WebSphere MQ Classes for Java is not already installed, download it from the
Web and install it.

4. Set up your WebSphere MQ Everyplace system and verify that it is working properly
before you try to connect it to WebSphere MQ.

5. Update the MQe_java\Classes\JavaEnv.bat file so that it points to the Java classes
that are part of the WebSphere MQ Classes for Java, and to the classpath for your
JRE (Java Runtime Environment). Ensure that the SupportPac MA88 .jar files are in
the classpath, and that the java\lib and \bin directories are in your path. This is
set by the MQE_VM_OPTIONS_LOCN which should be set to point to the vm_options.txt
file during installation.

6. Plan the routing you intend to implement. You need to decide which WebSphere
MQ queue managers are going to talk to which WebSphere MQ Everyplace queue
managers.

7. Decide on a naming convention for WebSphere MQ Everyplace objects and
WebSphere MQ objects and document it for future use.

8. Modify your WebSphere MQ Everyplace system to define a WebSphere MQ bridge
on your chosen WebSphere MQ Everyplace server. See the WebSphere MQ
Everyplace Java Programming Reference for information on using
examples.mqbridge.awt.AwtMQBridgeServer to define a bridge.

9. Connect the chosen WebSphere MQ queue manager to the bridge on the
WebSphere MQ Everyplace server as follows:

v On the WebSphere MQ queue manager:

Define one or more Java server connections so that WebSphere MQ
Everyplace can use the WebSphere MQ Classes for Java to talk to this queue
manager. This involves the following steps:

a. Define the server connections

b. Define a sync queue for WebSphere MQ Everyplace to use to provide
assured delivery to the WebSphere MQ system. You need one of these
for each server connection that the WebSphere MQ Everyplace system
can use.

v On the WebSphere MQ Everyplace server:

a. Define a WebSphere MQ queue manager proxy object which holds
information about the WebSphere MQ queue manager. This involves the
following steps:

1) Collect the Hostname of the WebSphere MQ queue manager.

2) Put the name in the WebSphere MQ queue manager proxy object.

b. Define a Client Connection object that holds information about how to use the
WebSphere MQ Classes for Java to connect to the server connection on the
WebSphere MQ system. This involves the following steps:

1) Collect the Port number, and all other server connection parameters.

bridge configuration

120 Configuration Guide

2) Use these values to define the client connection object so that they match
the definition on the WebSphere MQ queue manager.

10. Modify your configuration on both WebSphere MQ Everyplace and WebSphere
MQ to allow messages to pass from WebSphere MQ to WebSphere MQ
Everyplace.

a. Decide on the number of routes from WebSphere MQ to your WebSphere MQ
Everyplace network. The number of routes you need depends on the amount
of message traffic (load) you use across each route. If your message load is
high you may wish to split your traffic into multiple routes.

b. Define your routes as follows:

1) For each route define a transmission queue on your WebSphere MQ
system. DO NOT define a connection for these transmission queues.

2) For each route create a matching transmission queue listener on your
WebSphere MQ Everyplace system.

3) Define a number of remote queue definitions, (such as remote queue
manager aliases and queue aliases) to allow WebSphere MQ messages to
be routed onto the various WebSphere MQ Everyplace transmission
queues that you defined in step b. 1.

11. Modify your configuration on WebSphere MQ Everyplace to allow messages to
pass from WebSphere MQ Everyplace to WebSphere MQ:

a. Publish details about all the queue managers on your WebSphere MQ network
you want to send messages to from the WebSphere MQ Everyplace network.
Each WebSphere MQ queue manager requires a connections definition on
your WebSphere MQ Everyplace server. All fields except the Queue manager
name should be null, to indicate that the normal WebSphere MQ Everyplace
communications connections should not be used to talk to this queue manager.

b. Publish details about all the queues on your WebSphere MQ network you want
to send messages to from the WebSphere MQ Everyplace network. Each
WebSphere MQ queue requires a WebSphere MQ bridge queue definition on
your WebSphere MQ Everyplace server. This is the WebSphere MQ
Everyplace equivalent of a DEFINE QREMOTE in WebSphere MQ.

v The queue name is the name of the WebSphere MQ queue to which the
bridge should send any messages arriving on this WebSphere MQ bridge
queue.

v The queue manager name is the name of the WebSphere MQ queue
manager on which the queue is located.

v The bridge name indicates which bridge should be used to send messages
to the WebSphere MQ network.

v The WebSphere MQ queue manager proxy name is the name of the
WebSphere MQ queue manager proxy object, in the WebSphere MQ
Everyplace configuration, that can connect to a WebSphere MQ queue
manager.

v The WebSphere MQ queue manager should have a route defined to allow
messages to be posted to the Queue Name on Queue Manager Name to deliver
the message to its final destination.

bridge configuration

Chapter 12. Administering bridge resources 121

12. Start your WebSphere MQ and WebSphere MQ Everyplace systems to allow
messages to flow. The WebSphere MQ system client channel listener must be
started. All the objects you have defined on the WebSphere MQ Everyplace must
be started. These objects can be started in any of the following ways:

v Explicitly using the Administration GUI described in WebSphere MQ Everyplace
Configuration Guide.

v Configuring the rules class, as described in WebSphere MQ Everyplace System
Programming Guide, to indicate the startup state (running or stopped), and
restarting the WebSphere MQ Everyplace server

v A mixture of the two previous methods

The simplest way to start objects manually, is to send a start command to the
relevant bridge object. This command should indicate that all the children of the
bridge, and children’s children should be started as well.

v To allow messages to pass from WebSphere MQ Everyplace to WebSphere
MQ, start the client connection objects in WebSphere MQ Everyplace.

v To allow messages to pass from WebSphere MQ to WebSphere MQ
Everyplace, start both the client connection objects, and the relevant
transmission queue listeners.

13. Create transformer classes, and modify your WebSphere MQ Everyplace
configuration to use them. A transformer class converts messages from
WebSphere MQ message formats into an WebSphere MQ Everyplace message
format, and vice versa. These format-converters must be written in Java and
configured in several places in the WebSphere MQ bridge configuration.

a. Create transformer classes

v Determine the message formats of the WebSphere MQ messages that need
to pass over the bridge.

v Write a transformer class, or a set of transformer classes to convert each
WebSphere MQ message format into an WebSphere MQ Everyplace
message. Transformers are not directly supported by the C bindings.
SeeWebSphere MQ Everyplace Application Programming Guide for
information about writing transformers in Java.

b. You can replace the default transformer class. Use the administration GUI to
update the default transformer class parameter in the bridge object’s
configuration.

c. You can specify a non-default transformer for each WebSphere MQ bridge
queue definition. Use the administration GUI to update the transformer field of
each WebSphere MQ bridge queue in the configuration.

d. You can specify a non-default transformer for each WebSphere MQ
transmission queue listener. Use the administration GUI to update the
transformer field of each listener in the configuration.

e. Restart the bridge, and listeners.

bridge configuration

122 Configuration Guide

Configuring a bridge using WebSphere MQ Everyplace administration messages
and WebSphere MQ PCF messages

PCF messages are administration messages used by WebSphere MQ queue
managers. Supportpac ″MS0B: MQSeries Java classes for PCF″ contains Java code,
which supplies PCF message support. This code is available as a free download from
the WebSphere MQ download site at http://www.ibm.com/software/ts/mqseries/txppacs.

If you download and install it, and put the com.ibm.mq.pcf.jar file on your classpath
environment variable, you have access to Java classes, which can dynamically
manipulate WebSphere MQ resources. When PCF messages are combined with
WebSphere MQ Everyplace administration messages, complete programmatic
configuration of bridge resources, and corresponding resources on a WebSphere MQ
Everyplace queue manager are possible. Example code contained in the
examples.mqbridge.administration.programming.AdminHelperMQ class, used in
conjunction with the examples.mqbridge.administration.programming.MQAgent
demonstrate how to do this. This example code has been added to the
examples.awt.AwtMQeServer program, such that using the view -> ″Connect local MQ
default queue manager″ menu item will:

v Ensure that a bridge object exists, creating one as required.

v Query properties from the default WebSphere MQ queue manager.

v Attempt to connect that queue manager to the currently running WebSphere MQ
Everyplace queue manager.

v Ensure a proxy object representing the default WebSphere MQ queue manager
exists, creating one if necessary.

v Ensure a WebSphere MQ Everyplace client connection exists, and that a
corresponding WebSphere MQ server connection channel exists also, creating these
resources if necessary.

v Ensure a ’sync queue’ exists on the WebSphere MQ queue manager.

v Ensure a transmit queue on WebSphere MQ exists, and create if necessary.

v Ensure a matching WebSphere MQ transmit queue listener exists in the configuration
of the current WebSphere MQ Everyplace queue manager, creating one if necessary.

v Ensure all the bridge resources are started.

v Ensure a test queue on the WebSphere MQ queue manager exists, creating one if
necessary.

v Ensure a matching WebSphere MQ Everyplace bridge queue exists, which refers to
that test queue.

v Send a test MQeMQMsgObject to the test queue to make sure the configuration is
working.

v Get the test MQeMQMsgObject from the test queue to make sure the configuration is
working.

Configuration example
This section describes an example configuration of 4 systems.

configuring a bridge using WebSphere MQ Everyplace administration messages

Chapter 12. Administering bridge resources 123

The four systems are:

MQeMoonQM
This is an WebSphere MQ Everyplace client queue manager, sited on a
handheld PC. The user periodically attaches the handheld PC to the network,
to communicate with the MQeEarthQM WebSphere MQ Everyplace gateway.

MQeEarthQM
This is on a Windows 2000 machine, with an I/P address of 20.8.9.50 This is
an WebSphere MQ Everyplace gateway (server) queue manager.

MQSaturnQM
This is a WebSphere MQ queue manager, installed on a Windows/NT platform.
The I/P address is 20.8.9.51

MQJupiterQM
This is a WebSphere MQ queue manager, installed on a System/390®

platform.

Requirement
The requirement for this example is that all machines are able to post a message to a
queue on any of the other machines.

MQJupiterQM

MQeMoonQM

Hand held PC

MQSaturnQM

WebSphere MQ server
I/P address 20.8.9.51

System 390

WebSphere MQ Everyplace server
I/P address 20.8.9.50

MQeEarthQM

WebSphere MQ
bridge queue

Figure 43. Configuration example

configuration example

124 Configuration Guide

It is assumed that all machines are permanently connected to the network, except the
MQeMoonQM machine, which is only occasionally connected.

Initial setup
For this example, it is assumed that there are local queues, to which messages can be
put, on all the queue managers. These queues are called:

v MQeMoonQ on the MQeMoonQM

v MQeEarthQ on the MQeEarthQM

v MQSaturnQ on the MQSaturnQM

v MQJupiterQ on the MQJupiterQM

Enabling MQeMoonQM to put and get messages to and from the
MQeEarthQM queue manager
On MQeMoonQM:

1. Define a connection with the following parameters:

Target queue manager name: MQeEarthQM
Adapter: FastNetwork:20.8.9.50

Note: Check that the adapter you specify when you define the connection
matches the adapter used by the Listener on the MQeEarthQM queue
manager.

Applications can now connect directly to any queue defined on the
MQeEarthQM queue manager directly, when the MQeMoonQM is connected to
the network. The requirement states that applications on MQeMoonQM must
be able to send messages to MQeEarthQ in an asynchronous manner. This
requires a remote queue definition to set up the asynchronous linkage to
the MQeEarthQ queue.

2. Define a remote queue with the following parameters:

Queue name: MQeEarthQ
Queue manager name: MQeEarthQM
Access mode: Asynchronous

Applications on MQeMoonQM now have access to the MQeMoonQ (a local
queue) in a synchronous manner, and the MQeEarthQ in an asynchronous
manner.

Enabling the MQeEarthQM to send messages to the MQeMoonQM
queue manager
Since the MQeMoonQM is not attached to the network for most of the time, use a
store-and-forward queue on the MQeEarthQM to collect messages destined for the
MQeMoonQM queue manager.

On MQeEarthQM:

1. Define a store-and-forward-queue with the following parameters:

configuration example

Chapter 12. Administering bridge resources 125

Queue name: TO.HANDHELDS
Queue Manager Name: MQeEarthQM

2. Add a queue manager to the store-and-forward queue using the
following parameters:

Queue Name: TO.HANDHELDS
Queue manager: MQeMoonQM

A (similarly named) home-server queue is needed on the MQeMoonQM queue manager.
This queue pulls messages out of the store-and-forward queue and puts them to a
queue on the MQeMoonQM queue manager.

On MQeMoonQM:

1. Define a home-server queue with the following parameters:

Queue Name: TO.HANDHELDS
Queue manager name: MQeEarthQM

Any messages arriving at MQeEarthQM that are destined for MQeMoonQM are stored
temporarily in the store-and-forward queue TO.HANDHELDS. When MQeMoonQM next
connects to the network, it’s home-server queue TO.HANDHELDS gets any messages
currently on the store-and-forward queue, and delivers them to the MQeMoonQM queue
manager, for storage on local queues.

Applications on MQeEarthQM can now send messages to MQeMoonQ in an asynchronous
manner.

Enabling MQeEarthQM to send a message to MQSaturnQ
On MQeEarthQM:

1. Define a bridge with the following parameters:

BridgeName: MQeEarthQMBridge

2. Define an WebSphere MQ queue manager proxy with the following
parameters:

BridgeName: MQeEarthQMBridge
MQQMgrProxyName: MQSaturnQM
Hostname: 20.8.9.51

3. Define a client connection with the following parameters:

BridgeName: MQeEarthQMBridge
MQQMgrProxyName: MQSaturnQM
ClientConnectionName: MQeEarth.CHANNEL
SyncQName: MQeEarth.SYNC.QUEUE

4. Define a connection with the following parameters:

configuration example

126 Configuration Guide

ConnectionName: MQSaturnQM
Channel: null
Adapter: null

5. Define an WebSphere MQ bridge queue with the following parameters:

QueueName: MQSaturnQ
MQQueueManagerName: MQSaturnQM
BridgeName: MQeEarthQMBridge
MQQMgrProxyName: MQSaturnQM
ClientConnectionName: MQeEarth.CHANNEL

On MQSaturnQM:

1. Define a server connection channel with the following parameters:

Name: MQeEarth.CHANNEL

2. Define a local synchronous queue with the following parameters:

Name: MQeEarth.SYNC.QUEUE

The synchronous queue is needed for assured delivery.

Applications on MQeEarthQM can now send messages to the MQSaturnQ on MQSaturnQM.

Enabling MQeEarthQM to send a message to MQJupiterQ
On MQeEarthQM:

1. Define a connection with the following parameters:

ConnectionName: MQeJupiterQM
Channel: null
Adapter: null

2. Define an WebSphere MQ bridge queue with the following parameters:

QueueName: MQJupiterQ
MQQueueManagerName: MQJupiterQM
BridgeName: MQeEarthQMBridge
MQQMgrProxyName: MQSaturnQM
ClientConnectionName: MQeEarth.CHANNEL

On MQSaturnQM:

1. Define a remote queue definition with the following parameters:

Queue Name: MQJupiterQ
Transmission Queue: MQJupiterQM.XMITQ

On both MQSaturnQM and MQJupiterQM:

1. Define a channel to move the message from the MQJupiterQM.XMITQ on
MQSaturnQM to MQJupiterQM.

configuration example

Chapter 12. Administering bridge resources 127

Now applications on MQeEarthQM can send a message to MQJupiterQ on MQJupiterQM,
through MQSaturnQM.

Enabling MQeMoonQM to send a message to MQJupiterQ and
MQSaturnQ
On MQeMoonQM:

1. Define a connection with the following parameters:

Target Queue manager name: MQSaturnQM
Adapter: MQeEarthQM

The connection indicates that any message bound for the MQSaturnQM queue
manager should go through the MQeEarthQM queue manager.

2. Define a remote queue definition with the following parameters:

Queue name: MQSaturnQ
Queue manager name: MQSaturnQM
Access mode: Asynchronous

3. Define a connection with the following parameters:

Target Queue manager name: MQJupiterQM
Adapter: MQeEarthQM

4. Define a remote queue definition with the following parameters:

Queue name: MQJupiterQ
Queue manager name: MQJupiterQM
Access mode: Asynchronous

Applications connected to MQeMoonQM can now issue messages to MQeMoonQ, MQeEarthQ,
MQSaturnQ, and MQJupiterQ, even when the handheld PC is disconnected from the
network.

Enabling MQSaturnQM to send messages to the MQeEarthQ
On MQSaturnQM:

1. Define a local queue with the following parameters:

Queue name: MQeEarth.XMITQ
Queue type: transmission queue

2. Define a queue manager alias (remote queue definition) with the following
parameters:

Queue name: MQeEarthQM
Remote queue manager name: MQeEarthQM
Transmission queue: MQeEarth.XMITQ

On MQeEarthQM:

1. Define a Transmission queue listener with the following parameters:

configuration example

128 Configuration Guide

BridgeName: MQeEarthQMBridge
MQQMgrProxyName: MQSaturnQM
ClientConnectionName: MQeEarth.CHANNEL
ListenerName: MQeEarth.XMITQ

Applications on MQSaturnQM can now send messages to MQeEarthQ using the MQeEarthQM
queue manager alias . This routes each message onto the MQeEarth.XMITQ, where the
WebSphere MQ Everyplace transmission queue listener MQeEarth.XMITQ gets them, and
moves them onto the WebSphere MQ Everyplace network.

Enabling MQSaturnQM to send messages to the MQeMoonQ
On MQSaturnQM:

1. Define a queue manager alias (remote queue definition) with the following
parameters:

Queue name: MQeMoonQM
Remote queue manager name: MQeMoonQM
Transmission queue: MQeEarth.XMITQ

Applications on MQSaturnQM can now send messages to MQeMoonQ using the MQeMoonQM
queue manager alias . This routes each message to the MQeEarth.XMITQ, where the
WebSphere MQ Everyplace transmission queue listener MQeEarth.XMITQ gets them, and
posts them onto the WebSphere MQ Everyplace network.

The store-and-forward queue TO.HANDHELDS collects the message, and when the
MQeMoonQM next connects to the network, the home-server queue retrieves the message
from the store-and-forward queue, and delivers the message to the MQeMoonQ.

Enabling the MQJupiterQM to send messages to the MQeMoonQ
On MQJupiterQM:

Set up remote queue manager aliases for the MQeEarthQM and MQeMoonQM to
route messages to MQSaturnQM using normal WebSphere MQ routing
techniques.

Now any application connected to any of the queue managers can post a message to
any of the queues MQeMoonQ, MQeEarthQ, MQSaturnQ or MQJupiterQ.

Administration of the WebSphere MQ bridge
This section contains information on the tasks associated with the administration of the
WebSphere MQ bridge

The example administration GUI application
An example administration GUI is provided with the WebSphere MQ bridge. It is a
subclass of the examples.administration.console.Admin example described in
“Example administration console” on page 20.

The subclass is called examples.mqbridge.administration.console.AdminGateway.

configuration example

Chapter 12. Administering bridge resources 129

WebSphere MQ bridge function cannot execute on a client queue manager, so using
this class in conjunction with a client queue manager does not allow the administration
of bridge objects on that client queue manager, but it does enable administration of a
remote WebSphere MQ bridge-enabled server queue manager.

You can administer all the resources required to configure a bridge so that it can
communicate with WebSphere MQ, without programming in Java, or using the Java
examples supplied with WebSphere MQ Everyplace. For example, using the
examples.awt.AwtMQeServer, open a queue manager and select View – > Admin menu
item to bring up the administration GUI.

You can also use the examples.mqbridge.administration.commandline tools in
conjunction with the the examples.administration.commandline package, to configure
the WebSphere MQ bridge. The WebSphere MQ Everyplace Java Programming
Reference describes how to use these tools. Use batch files to combine a sequence of
these example configuration tools, as described in “Example of use of command-line
tools” on page 28.

WebSphere MQ bridge administration actions

Run state: Each administered object has a run state. This can be ’running’ or
’stopped’ indicating whether the administered object is active or not.

When an administered object is ’stopped’, it cannot be used, but its configuration
parameters can be queried or updated.

If the WebSphere MQ bridge queue references a bridge administered object that is
’stopped’, it is unable to convey a WebSphere MQ Everyplace message onto the
WebSphere MQ network until the bridge, WebSphere MQ queue manager proxy, and
client connection objects are all ’started’.

The run state of administered objects can be changed using the start and stop actions
from the MQeMQBridgeAdminMsg, MQeMQQMgrProxyAdminMsg, MQeClientConnectionAdminMsg,
or MQeListenerAdminMsg administration message classes.

The actions supported by the WebSphere MQ bridge administration objects are
described in the following sections.

Start action: An administrator can send a start action to any of the administered
objects.

The affect children boolean flag affects the results of this action. The start action
starts the administered object and all its children (and children’s children) if the affect
children boolean field is in the message and is set to true. If the flag is not in the
message or is set to false, only the administered object receiving the start action
changes its run-state. For example, sending start to a bridge object with affect
children as true causes all proxy, client connection, and listeners that are ancestors,
to start. If affect children is not specified, only the bridge is started. An object cannot

configuration example

130 Configuration Guide

be started unless its parent object has already been started. Sending a start event to an
administered object attempts to start all the objects higher in the hierarchy that are not
already running.

Stop action: An administered object can be stopped by sending it a stop action. The
receiving administered object always makes sure all the objects below it in the
hierarchy are stopped before it is stopped itself.

Inquire action: The inquire action queries values from an administered object.

If the administered object is running, the values returned on the inquire are those that
are currently in use. The values returned from a stopped object reflect any recent
changes to values made by an update action. Thus, a sequence of start, update,
inquire, returns the values configured before the update, while start, update, stop,
inquire, returns the values configured after the update.

You may find it less confusing if you stop any administered object before updating
variable values.

Update action: The update action changes one or more values for characteristics for
an administered object. The values set by an update action do not become current until
the administered object is next stopped. (See “Inquire action”.)

Delete action: The delete action permanently removes all current and persistent
information about the administered object. The affect children boolean flag affects the
outcome of this action. If the affect children flag is present and set to true the
administered object receiving this action issues a stop action, and then a delete action
to all the objects below it in the hierarchy, removing a whole piece of the hierarchy with
one action. If the flag is not present, or it is set to false, the administered object
deletes only itself, but this action cannot take place unless all the objects in the
hierarchy below the current one have already been deleted.

Create action: The create action creates an administered object. The run state of the
administered object created is initially set to stopped.

WebSphere MQ bridge considerations when shutting down a
WebSphere MQ queue manager
We recommend that before you stop a WebSphere MQ queue manager, you issue a
stop administration message to all the WebSphere MQ queue-manager-proxy bridge
objects. This stops the WebSphere MQ Everyplace network from trying to use the
WebSphere MQ queue manager and possibly interfering with the shutdown of the
WebSphere MQ queue manager. This can also be achieved by issuing a single stop
administration message to the MQeBridges object.

If you choose not to stop the WebSphere MQ queue-manager-proxy bridge object
before you shut the WebSphere MQ queue manager, the behavior of the WebSphere
MQ shutdown and the WebSphere MQ bridge depends on the type of WebSphere MQ
queue manager shutdown you choose, immediate shutdown or controlled shutdown.

configuration example

Chapter 12. Administering bridge resources 131

Immediate shutdown: Stopping a WebSphere MQ queue manager using immediate
shutdown severs any connections that the WebSphere MQ bridge has to the
WebSphere MQ queue manager (this applies to connections formed using the
MQSeries Classes for Java in either the bindings or client mode). The WebSphere MQ
system shuts down as normal.

This causes all the WebSphere MQ bridge transmission queue listeners to stop
immediately, each one warning that it has shut down due to the WebSphere MQ queue
manager stop.

Any WebSphere MQ bridge queues that are active retain a broken connection to the
WebSphere MQ queue manager until:

v The connection times-out, after being idle for an idle time-out period, as specified on
the client-connection bridge object, at which point the broken connection is closed.

v The WebSphere MQ bridge queue is told to perform some action, such as put a
message to WebSphere MQ, that attempts to use the broken connection. The
putMessage operation fails and the broken connection is closed.

When a WebSphere MQ bridge queue has no connection, the next operation on that
queue causes a new connection to be obtained. If the WebSphere MQ queue manager
is not available, the operation on the queue fails synchronously. If the WebSphere MQ
queue manager has been restarted after the shutdown, and a queue operation, such as
putMessage, acts on the bridge queue, then a new connection to the active WebSphere
MQ queue manager is established, and the operation executes as expected.

Controlled shutdown: Stopping a WebSphere MQ queue manager using the
controlled shutdown does not sever any connections immediately, but waits until all
connections are closed (this applies to connections formed using the MQSeries Classes
for Java in either the bindings or client mode). Any active WebSphere MQ bridge
transmission queue listeners notice that the WebSphere MQ system is quiesce, and
stop with a relevant warning.

Any WebSphere MQ bridge queues that are active retain a connection to the
WebSphere MQ queue manager until:

v The connection times-out, after being idle for an idle time-out period, as specified on
the client connection bridge object, at which point the broken connection is closed,
and the controlled shutdown of the WebSphere MQ queue manager completes.

v The WebSphere MQ bridge queue is told to perform some action, such as put a
message to WebSphere MQ, that attempts to use the broken connection. The
putMessage operation fails, the broken connection is closed, and the controlled
shutdown of the WebSphere MQ queue manager completes.

The bridge client-connection object maintains a pool of connections, that are awaiting
use. If there is no bridge activity, the pool retains WebSphere MQ client channel
connections until the connection idle time exceeds the idle time-out period (as specified
on the client connection object configuration), at which point the channels in the pool
are closed.

WebSphere MQ queue manager shutdown

132 Configuration Guide

When the last client channel connection to the WebSphere MQ queue manager is
closed, the WebSphere MQ controlled shutdown completes.

Administered objects and their characteristics
This section describes the characteristics of the different types of administered objects
associated with the WebSphere MQ Everyplace WebSphere MQ bridge. Characteristics
are object attributes that can be queried using an inquireAll() administration
message. The results can be read and used by the application, or they can be sent in
an update or create administration message to set the values of the characteristics.
Some characteristics can also be set using the create and update administration
messages. Each characteristic has a unique label associated with it and this label is
used to set and get the characteristic value.

The following lists show the attributes that apply to each administered object. The label
constants are defined in the header file published/MQe_MQBridge_Constants.h. If you
include published/MQe_API.h in you installation, this file is included automaticallyclass
com.ibm.mqe.mqbridge.MQeCharacteristicLabels.

Characteristics of bridges objects
Refer to the WebSphere MQ Everyplace Java Programming Reference for
information on the com.ibm.mqe.mqbridge.MQeMQBridgesAdminMsg.

Characteristics of bridge objects
Refer to the WebSphere MQ Everyplace Java Programming Reference for
information on the com.ibm.mqe.mqbridge.MQeMQBridgeAdminMsg.

Characteristics of WebSphere MQ queue manager proxy objects
Refer to the WebSphere MQ Everyplace Java Programming Reference for
information on the com.ibm.mqe.mqbridge.MQeMQQMgrProxyAdminMsg.

Characteristics of client connection objects
Refer to the WebSphere MQ Everyplace Java Programming Reference for
information on the com.ibm.mqe.mqbridge.MQeClientConnectionAdminMsg.

Characteristics of WebSphere MQ transmission queue listener objects
Refer to the WebSphere MQ Everyplace Java Programming Reference for
information on the com.ibm.mqe.mqbridge.MQeListenerAdminMsg.

Handling undeliverable messages
The WebSphere MQ bridge transmission queue listener acts in a similar way to a
WebSphere MQ channel, pulling messages from a WebSphere MQ transmission queue,
and delivering them to the WebSphere MQ Everyplace network. It follows the
WebSphere MQ Everyplace convention in that if a message cannot be delivered, an
undelivered message rule is consulted to determine how the transmission queue
listener should react. If the rule indicates the report options in the message header, and
these indicate that the message should be put onto a dead-letter queue, the message
is placed on the WebSphere MQ queue, on the sending queue manager.

WebSphere MQ queue manager shutdown

Chapter 12. Administering bridge resources 133

National Language Support
This section describes how the WebSphere MQ bridge handles messages flowing
between MQSeries systems that use different national languages. The diagram in
Figure 44 is used to describe the flow of a message from an WebSphere MQ
Everyplace client application to a WebSphere MQ application.

1. Client application

a. The client application builds an WebSphere MQ Everyplace message object
containing the following data:

A Unicode field
This string is generated using appropriate libraries available on the
client machine (if C/C++ is being used).

A byte field
This field should never be translated

An ASCII field
This string has a very limited range of valid characters, conforming to
the ASCII standard. The only valid characters are those that are
invariant over all ASCII codepages.

b. The message is put to the Palm queue manager. No translation is done during
this put.

2. Client queue manager puts to the server queue manager

The message is not translated at all through this step.

3. WebSphere MQ Everyplace server puts the message onto the WebSphere MQ
bridge queue

Palm
queue

manager

WebSphere
MQ

bridge

Transformer

WebSphere
MQ

queue
manager

W
eb

S
ph

er
e

M
Q

Ja
va

 C
lie

nt
 /

B
in

di
ng

s

WebSphere
MQ

Everyplace
server
queue

manager

WebSphere MQ
Everyplace server

Palm
application

Palm Pilot WebSphere MQ
server

1

2 3 5

WebSphere
MQ

application

64

Figure 44. Message flow from WebSphere MQ Everyplace to WebSphere MQ

bridge administered objects

134 Configuration Guide

The message is not translated at all through this step.

4. WebSphere MQ bridge passes the WebSphere MQ Everyplace message to the
user-written transformer

Note: The examples in this section are in Java because transformers can only be
written in Java. Refer to the WebSphere MQ Everyplace Application
Programming Guide for more information.

The transformer creates a WebSphere MQ message as follows:

v The Unicode field in the WebSphere MQ Everyplace message is retrieved using:

String value = MQemsg.GetUnicode(fieldname)

v The retrieved value is copied to the WebSphere MQ message using
MQmsg.writeChars(value)

v The byte field in the WebSphere MQ Everyplace message is retrieved using:

Byte value = MQemsg.getByte(fieldName)

v The retrieved value is copied to the WebSphere MQ message using
MQmsg.writeByte(value)

v The ASCII field in the WebSphere MQ Everyplace message is retrieved using
either MQmsg.writeChars(value) to create a unicode value, or
MQmsg.writeString(value) to create a code-set-dependent value, in the
WebSphere MQ message.

If using writeString(), the character set of the string may also be set. The
transformer returns the resultant WebSphere MQ message to the calling
WebSphere MQ bridge code.

5. The WebSphere MQ bridge passes the message to WebSphere MQ using the
WebSphere MQ Classes for Java

Unicode values in the WebSphere MQ message are translated from big-endian to
little-endian, and vice versa, as required. Byte values in the WebSphere MQ
message are translated from big-endian to little-endian, and vice versa, as required.
The field that was created using writeString() is translated as the message is put
to WebSphere MQ, using conversion routines inside the WebSphere MQ Classes
for Java. ASCII data should remain ASCII data regardless of the character set
conversions performed. The translations done during this step depend on the code
page of the message, the CCSID of the sending WebSphere MQ Classes for Java
client connection, and the CCSID of the receiving WebSphere MQ server connection.

6. The message is got by a WebSphere MQ application

If the message contains a Unicode string, the application must deal with that string
as a Unicode string, or else convert it into some other format, for example, UTF8. If
the message contains a byte string, the application may use the bytes as it is (raw
data). If the message contains a string, it is read from the message, and may be
converted to a different data format as required by the application. This conversion
is dependent on the codeset value in the characterSet header field. Java classes
provide this automatically.

bridge administered objects

Chapter 12. Administering bridge resources 135

Conclusion
If you have an WebSphere MQ Everyplace application, and wish to convey
character-related data from WebSphere MQ Everyplace to WebSphere MQ, your choice
of method is determined largely by the data you wish to convey:

v If your data contains characters in the variant ranges of the ASCII character
codepages, the character for a codepoint changes as you change between the
various ASCII codepages, then use either putUnicode, which is never subject to
translation between codepages, or putArrayOfByte, in which case you have to
handle the translation between the sender’s codepage and the receiver’s codepage.

Note: DO NOT USE putAscii() as the characters in the variant parts of the ASCII
codepages are subject to translation.

v If your data contains only characters in the invariant ranges of the ASCII
character codepages, then you can use putUnicode, which is never subject to
translation between codepages or putAscii, which is never subject to translation
between codepages, as all your data lies within the invariant range of the ASCII
codepages.

bridge administered objects

136 Configuration Guide

Chapter 13. Message resolution

This chapter explains, in detail, the concept of messages routes and how to use them
with WebSphere MQ Everyplace.

Assumptions
It is assumed the following is understood:

v Basic Understanding of what messaging is

v Basic understanding of connection definitions and listeners

v Basic understanding of the queue types

v Basic understanding of the WebSphere MQ bridge

If you are not familiar with these concepts, refer to the WebSphere MQ Everyplace
Introduction and WebSphere MQ Everyplace Application Programming Guide for more
information.

Topics not covered
The following topics are covered in later chapters or other manuals:

v Configuration of connection definitions, listeners, queues, and the WebSphere MQ
bridge. In this book, refer to Chapter 10, “Connection definition”, on page 95,
Chapter 11, “Listener”, on page 103, Chapter 6, “Administering local queues”, on
page 59, and Chapter 12, “Administering bridge resources”, on page 107.

v Synchronous versus Asynchronous Delivery. Refer to Chapter 5, Message Delivery,
of the WebSphere MQ Everyplace Application Programming Guide.

v Assured Delivery. Refer to Chapter 5, Message Delivery, of the WebSphere MQ
Everyplace Application Programming Guide.

v Security. Refer to Chapter 1, Security, of the WebSphere MQ Everyplace System
Programming Guide.

v Rules. Refer to Chapter 3, Rules, of the WebSphere MQ Everyplace System
Programming Guide.

Terminology
Queue Resolution: The process by which a queue manager chooses which queue to
place a message on.

v Queue Resolution: performed by a queue manager when a message is put to it.

v Connection resolution: performed by a remote queue reference when routing a
message (or request) to the real destination queue.

© Copyright IBM Corp. 2002 137

What you will know at the end
At the end of this chapter you will understand the following.

v How WebSphere MQ Everyplace resolves message routing

– The steps and the rules implemented by WebSphere MQ Everyplace

– Concepts and use of message routes

v Simple and more complex WebSphere MQ Everyplace network topologies

– How listeners and connection definitions interact

– Role of local queues in messaging topologies

– Role of remote queues in messaging topologies

– Role of store and forward queues in messaging topologies

– Role of home server queues in messaging topologies

– Role of queue aliases in messaging topologies

– Role of queue manager aliases in messaging topologies

– Role of WebSphere MQ bridge components in messaging topologies involving
WebSphere MQ

Warning
Several features of WebSphere MQ Everyplace allow the routing of messages to
be altered dynamically. Changing the WebSphere MQ Everyplace network
topology in this fashion is not always a wise thing to do. Care must be taken to
ensure that there are no ’in doubt’ messages that would be affected by the
change. If a message is put with a non-zero ConfirmId, and then the WebSphere
MQ Everyplace network topology is changed to alter the routing of the
subsequent confirmGetMessage call, then the unconfirmed message will not be
found. WebSphere MQ Everyplace protocol treats a failure to confirm a put as an
indication that the put message has been confirmed already, and therefore
assumes success. This could leave an unconfirmed message on a queue, which
represents a loss of a message, and therefore breaks the assured delivery
promise.

Since WebSphere MQ Everyplace uses the same two step process to assure
delivery of asynchronously sent messages, regardless of whether a zero or
non-zero ConfirmId is used, changing the network topology can break the assured
delivery of asynchronous message sends.

WebSphere MQ Everyplace Message Resolution
The route that a message takes through a WebSphere MQ Everyplace network can
depend upon many resources (queues, connection definitions, listeners and so on).
These need to be correctly set up, often in pairs whose settings need to be
complementary. Failure to set up the correct resources, or setting certain of their values
incorrectly can result in failure to deliver messages. Since the task of setting up a
network that correctly routes messages can initially appear complex, the current chapter
describes the theory underlying message resolution.

138 Configuration Guide

The document begins by introducing the notation used in diagramming the WebSphere
MQ Everyplace network topology, and then shows message resolutions of increasingly
complex nature. Along the way certain terms are surreptitiously defined to describe the
process of message resolution. At the end of the document the terms are consolidated
into a complete description of message resolution that encapsulates all the complexity.

A common source of confusion when discussing WebSphere MQ Everyplace is the
differentiation between a local queue that exists on a remote machine (or queue
manager), and a local definition of that queue on the remote machine. Both of these
entities are commonly referred to as ’remote queue’s. In order to disambiguate these,
the term ’remote queue reference’ will always be used to describe a local definition of a
queue that resides on another (remote) machine (or queue manager).

Notation
This document uses a consistent notation for diagramming the resources. The
diagramming technique allows the areas of specific interest to be shown prominently,
while the less relevant parts of a system can be hidden. This is easier to show with a
diagram. Figure 45 shows a host and the WebSphere MQ Everyplace resources on it in
the familiar tree notation.

Figure 46 shows the same resources in the ’dispersed’ form.

Host
localhost

LocalQM
Queues

LocalQueue

Figure 45. A host and the WebSphere MQ Everyplace resources on it.

Host
localhost

Queue Manager
LocalQM

Local Queue
LocalQueue

Figure 46. A host and the WebSphere MQ Everyplace resources on it: ’dispersed’ form.

Chapter 13. Message resolution 139

The line with a diamond shape shows that the queue manager is the child of the host.
This preserves the parent/child relationship from the tree, that would otherwise be lost
by separating the elements.

Local Queue Resolution
Local message putting is the bedrock upon which WebSphere MQ Everyplace stands.
Messages, if they are to be useful, must always end up on a local queue. Message
route resolution is the mechanism by which a message travels through a WebSphere
MQ Everyplace network to its ultimate destination.

Figure 47 shows a simple local message put.

The message route is shown for a message put to (QueueManager)LocalQM destined for
the (Queue)LocalQueue@LocalQM. This is clearly a put to a local queue, as the queue
’queue manager name’ is the same as the name of the queue manager to which the
message is put.

The message route is shown with an arrow labelled with the message route name. The
arrow indicates the direction in which the message flows. The text on the label indicates
the currently used target name (this can change during message resolution). LocalQM
looks for a queue to accept a message for LocalQueue@LocalQM. The process of
determining which queue to place a message on is called Queue Resolution. LocalQM
finds an exact match for the destination, the local queue. It then puts the message onto
the local queue. The message will then reside on the local queue until it is retrieved via
the getMessage() API call.

Local Queue Alias
Local queues can have aliases. If we add a queue alias to the local queue we provide it
with another name by which it will be known. So the local queue LocalQueue@LocalQM
could be given an alias of ’LocalQueueAlias’, see Figure 48 on page 141.

Host
localhost

Queue Manager
LocalQM

Local Queue
LocalQueue

LocalQueue@LocalQM

Figure 47. A simple local message put.

140 Configuration Guide

Messages addressed to LocalQueueAlias@LocalQM would be directed by the queue
manager to LocalQueue@LocalQM. We could envisage this as the message being placed
on the matching alias, almost as if the alias were a queue, and then the alias moves
the message to the correct destination, see Figure 49.

The redirection of the message by the alias is accompanied by a change in the
’destination queue name’ from LocalQueueAlias@LocalQM to LocalQueue@LocalQM. The
fact that the message was originally put to the alias is completely lost. This can be seen
by the labelling of the message route from the alias to the queue. In this particular case

Host
localhost

Queue Manager
LocalQM

Local Queue
LocalQueue

Queue Alias
LocalQueueAlias

Figure 48. LocalQueue@LocalQM with an alias of ’QueueAlias’.

Host
localhost

Queue Manager
LocalQM

Local Queue
LocalQueue

Queue Alias
LocalQueueAlias

LocalQueueAlias@LocalQM

LocalQueue@LocalQM

Figure 49. A message being placed on a matching alias.

Chapter 13. Message resolution 141

the change of ’put name’ is of little or no importance, but when we come to discuss
some more complex message resolutions it plays a larger role.

It is important to note that the resolution of the queue alias is performed just before the
message is routed to the queue. The resolution is as late as it could possibly be, and is
sometimes termed ’late resolution’.

Queue Manager Alias
Queue aliases allowed us to refer to queues by more than one name. Queue Manager
Aliases allow us to refer to queue managers by more than one name. We can define a
Queue Manager Alias ’AliasQM’ referring to the local queue manager as in Figure 50.

Messages addressed to ’AliasQM’ is routed to ’LocalQM’, see Figure 51.

The redirection of the message by the alias is accompanied by a change in the
’destination queue name’ from LocalQueue@AliasQM to LocalQueue@LocalQM. The fact
that the message was originally put to the alias is completely lost. This can be seen by

Host
localhost

Queue Manager
LocalQM

Local Queue
LocalQueue

Queue Manager Alias
AliasQM = LocalQM

Figure 50. Defining a queue manager alias.

Host
localhost

Queue Manager
LocalQM

Local Queue
LocalQueue

Queue Manager Alias
AliasQM = LocalQM

LocalQueue@AliasQM

LocalQueue@LocalQM

Figure 51. Addressing messages to a queue manager alias.

142 Configuration Guide

the labelling of the message route from the alias to the queue. Queue Manager Aliases
are resolved very early during message resolution; in fact this is the first step that is
performed.

Queue Manager Aliases are not much use in this scenario, but become very effective
as part of more complex topologies. To complete the picture we can resolve both the
Queue Manager Alias and the Queue Alias, see Figure 52.

Here we put a message to LocalQueueAlias@AliasQM, and it is resolved first via the
Queue Manager Alias, and then through the Queue Alias.

Resolution of queue manager aliases happens as soon as the request reaches a queue
manager. The effect is to substitute the aliased string for the aliasing string. So for the
first example above, as soon as the putMessage("AliasQM",....) call crosses the API,
it is converted to a putMessage("LocalQM",....) call. This resolution is also performed
when a message is put to a remote queue manager. On a remote queue manager the
queue aliases on that queue manager are used, not those on the originating queue
manager.

An alias can point to another alias. However, circular definitions have indeterminate
results. An alias can also be made of the local queue manager name. This may not
seem immediately useful, but it has a well defined purpose - it allows a queue manager
to behave as if it were another queue manager. This pretence means that we can
remove a queue manager entirely from the network, and by creating suitable queue
manager aliases elsewhere we can allocate its workload to another queue manager.
This feature is useful when modifying WebSphere MQ Everyplace network topologies,

Host
localhost

Queue Manager
LocalQM

Local Queue
LocalQueue

Queue Alias
LocalQueueAlias

Queue Manager Alias
AliasQM = LocalQM

LocalQueue@LocalQM

LocalQueueAlias@AliasQM

LocalQueueAlias@LocalQM

Figure 52. Resolving the queue manager alias and the queue alias.

Chapter 13. Message resolution 143

as servers, under the control of system administrators, can be moved, removed or
renamed without breaking the connectivity of clients, which may not be so readily
accessible.

Remote Queue Resolution
Remote queue resolution involves connection definitions and network resolution. We
require a setup where there are two queue managers, one of which is the local queue
manager that we use to put the message, and the other is the queue manager to which
we want the message to go. Furthermore, we require that the remote queue manager
has a listener, and that the local queue manager has a connection definition describing
the listener, see Figure 53.

The connection definition/listener pair allows WebSphere MQ Everyplace to establish
the network communications necessary to flow the message. The connection definition
contains information about communicating with a single queue manager. The
connection definition is named for the queue manager to which it defines a route. So in
this example the connection definition is called TargetQM, and contains the information
necessary to establish connection with (QueueManager)TargetQM. This information
includes the address of the machine upon which the queue manager resides (remote
host in this example), the port upon which the queue manager is listening (8081 in this
example), and the protocol to use when conversing with the queue manager
(FastNetwork in this example).

We need a remote queue reference on LocalQM representing the destination queue
TargetQueue which resides on TargetQM. There are therefore two entities called
TargetQueue@TargetQM. One is the ’real’ queue, that is a local queue, and one is a
reference to the real queue, a remote queue reference. Refer to Figure 54 on page 145.

Host
localhost

Queue Manager
LocalQM

Connection
Host

Queue Manager
TargetQM

Listener
DefaultListener

connects to

remotehost
TargetQM(FastNetwork:remotehost:8082)

Figure 53. Local and remote queue managers with a definition and listener pair.

144 Configuration Guide

The message resolution for a put on LocalQM to TargetQueue@TargetQM works as
follows, see Figure 55.

The message route is as follows:

Host
localhost

Queue Manager
LocalQM

Remote Queue

Connection

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

Listener
DefaultListener

connects using

resolves to

connects to

remotehost

TargetQM(FastNetwork:remotehost:8082

TargetQueue@TargetQM

Figure 54. A remote queue reference.

Host
localhost

Queue Manager
LocalQM

Remote Queue
TargetQueue@TargetQM

Connection

Host
remotehost

Queue Manager
TargetQM

Local Queue
TargetQueue

Listener
DefaultListener

resolves to

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQMTargetQueue@TargetQM

TargetQueue@TargetQM

TargetQM(FastNetwork:remotehost:8082)

Figure 55. Message resolution for a put.

Chapter 13. Message resolution 145

v The message is put on LocalQM addressed to TargetQueue@TargetQM.

v LocalQM performs queue resolution and finds the remote queue reference as an exact
match. LocalQM places the message onto the remote queue reference.

v The remote queue reference then performs connection resolution. It looks for a
connection that will allow it to pass the message to the queue manager owning the
final queue. The remote queue reference finds the connection definition called
TargetQM and passes the message to it.

v The connection definition now moves the message to its partner listener, which puts
the message to the remote queue manager.

v The remote queue manager performs queue resolution just as if the message had
been put locally, finds TargetQueue@TargetQM, and puts the message on it.

Although the connection definition and listener are vital to the message resolution they
do not affect the routing in this example, and so we can omit them for the sake of
clarity. See Figure 56.

In later examples the connection definitions play a more important role and we will need
to show them explicitly. For now we will assume the presence of the logical link formed
by the listener and not show them in the diagrams. It is often much more convenient to
use a simplified view of the message route. We can do this by thinking of the four
elements that contribute to this message resolution as a single, composite, entity. This
entity is a Message Route, see Figure 57 on page 147.

Host
localhost

Queue Manager
LocalQM

Remote Queue
TargetQueue@TargetQM

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

TargetQueue@TargetQM

TargetQueue@TargetQM

remotehost

Figure 56. Message resolution for a put

146 Configuration Guide

Here we see the message route that indicates that all messages put to LocalQM and
addressed to TargetQueue@TargetQM will be moved directly to the destination. A
Message Route is valid only if all the necessary components (Connection Definition,
Listener, Remote Queue Definition, and destination queue) are present and correctly
configured.

The Message Route is defined as a Push Message Route because messages are
pushed from the source queue to the destination queue, by LocalQM.

Aliases on Remote Queue
We can use aliases on the remote queue, as the last step is simply queue resolution
performed on TargetQM. The Queue Alias on the target queue appears to the local
system as if it were a queue. The remote queue definition on the local system is
therefore named for the Queue Alias, rather than the target queue. The diagram makes
this clear (note that we have hidden the connection definition and the listener), see
Figure 58 on page 148.

Host
localhost

Queue Manager
LocalQM

Push Message Route
TargetQueue

Host

Queue Manager
TargetQM

remotehost

@TargetQM

Figure 57. A message route entity.

Chapter 13. Message resolution 147

Here we have defined a remote queue reference which actually refers to an alias for a
queue on TargetQM. When we perform a put on LocalQM addressed to
QueueAlias@TargetQM the resolution works as follows, see Figure 59.

v queue resolution on LocalQM finds the remote queue reference. The fact that this is a
reference to a queue alias is completely immaterial to queue resolution.

v connection resolution works entirely as described above

Host
localhost

Queue Manager
LocalQM

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

Queue Alias
TargetQueueAliasTargetQueueAlias@TargetQM

remotehost

Remote Queue

Figure 58. Using aliases on the remote queue.

Host
localhost

Queue Manager
LocalQM

Remote Queue

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

Queue Alias
TargetQueueAlias

TargetQueueAlias@TargetQM

TargetQueueAlias@TargetQM

TargetQueue@TargetQM

TargetQueueAlias@TargetQM

remotehost

TargetQueueAlias@TargetQM

Figure 59. Message resolution for a put to a remote queue, using a Queue alias defined on TargetQM

148 Configuration Guide

v queue resolution on TargetQM now behaves exactly as local queue resolution of a
queue alias described earlier.

Note that the destination name for the message remains QueueAlias@TargetQM until
queue resolution on TargetQM. The Remote queue definition completes the
requirements for another message route, see Figure 60.

Parallel Routes
The use of aliases described in the previous section allows the creation of parallel
routes between a source and a destination. This is sometimes desirable where we wish
to send messages synchronously if possible, but asynchronously if the remote end is
not currently connected. We can do this with the following setup, see Figure 61 on
page 150.

Host
localhost

Queue Manager
LocalQM

Push Message Route
TargetQueueAlias

Host

Queue Manager
TargetQM

remotehost

@TargetQM

Figure 60. Message route entity of messages put to TargetQueueAlias on TargetQM

Chapter 13. Message resolution 149

Here we have defined two aliases on the target queue. One alias will be used to route
synchronous traffic to the target queue, one will be used to route asynchronous traffic.

On LocalQM we have defined two remote queue definitions, one pointing at each alias.
We can create an asynchronous Remote Queue Definition called Async@TargetQM, and
a synchronous Remote Queue Definition called Sync@TargetQM. By choosing the name
of the queue that we put to (Sync@TargetQM or Async@TargetQM) we can choose the
route that the message follows, even though the destination is the same. First, the
resolution of the synchronous route by putting a message to Sync@TargetQM, see
Figure 62 on page 151.

Host
localhost

Queue Manager
LocalQM

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

Queue Alias
Async

Queue Alias
Sync

resolves to

resolves to

Async@TargetQM

Sync@TargetQM

RemoteQueue

remotehost

RemoteQueue

Figure 61. Creating parallel routes between source and destination.

150 Configuration Guide

And secondly the asynchronous resolution using AsyncAlias@TargetQM, see Figure 63.

Host
localhost

Queue Manager
LocalQM

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

Queue Alias
Async

Queue Alias
Sync

Sync@TargetQM

Sync@TargetQM

TargetQueue@TargetQM

Sync@TargetQM

RemoteQueue
Async@TargetQM

RemoteQueue

remotehost

Figure 62. Resolving the synchronous route.

Host
localhost

Queue Manager
LocalQM

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

Queue Alias
Async

Queue Alias
Sync

Target Queue@TargetQM

Async@TargetQM

Sync@TargetQM

Async@TargetQM

Async@TargetQM

remotehost

Remote Queue

Remote Queue

Figure 63. Resolving the asynchronous route.

Chapter 13. Message resolution 151

We could choose to view this as a pair of Push Message Routes, see Figure 64.

Chaining Remote Queue References
Remote queue references can be chained together to form a longer route. This requires
the use of ’Via’ connections, and so the technique is described later in this document.

Pushing Store And Forward Queues
WebSphere MQ Everyplace has a queue type that accepts messages on a queue
manager basis rather than on a queue basis. These are called store-and-forward
queues, S&F queues for brevity). S&F queues maintain a list of queue manager names,
called ’Queue anager Entries’, or QME for brevity. The S&F queue will accept messages
for any queue manager represented by a QME. This acceptance is independent of the
destination queue name, and so allows one queue (the S&F queue) to route all
messages for a given, or several given queue managers.

S&F queues can operate in two modes, pushing mode and pulling mode. In pushing
mode the messages are moved to the next queue manager just as with remote queue
references. In pulling mode the messages are removed from the S&F queue by the
action of a home server queue. This section deals only with the pushing of messages,
pulling messages with a home server queue is described in another section. A typical
pushing S&F queue system might look like Figure 65 on page 153.

Host
localhost

Queue Manager
LocalQM

Host

Queue Manager
TargetQM

Push Message Route
Async
@TargetQM

remotehost

Push Message Route
Sync
@TargetQM

Figure 64. A pair of push message routes.

152 Configuration Guide

A S&F queue called SafQueue has a queue manager entry (QME) for TargetQM. This allows
it to accept messages for any queue on TargetQM. In common with ordinary Remote
Queues, a Store and Forward queue requires a connection definition/listener pair set up
in order to push messages. Unlike a normal Remote Queue Definition, a Store and
Forward Queue effectively pushes to a Queue Manager rather than to a queue. The
message arrives at the Queue Manager, where queue resolution is performed. When a
message is put to LocalQM addressed to TargetQ@TargetQM the resolution is as follows,
see Figure 66 on page 154.

Host
localhost

Queue Manager
LocalQM

Store And Forward Queue

Queue Manager Entry
TargetQM

Connection
TargetQM

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

connects to

connects using

resolves to

(FastNetwork:remotehost:8082)
remotehost

SafQueue@TargetQM

Figure 65. A typical pushing S&F queue system.

Chapter 13. Message resolution 153

v LocalQM performs queue resolution which finds the queue manager entry TargetQM on
SafQueue. LocalQM puts the message to the QME.

v Putting a message to the QME is equivalent to putting the message on the S&F queue
owning the QME.

v The S&F queue performs connection resolution and finds the connection definition,
and so uses it to push messages to RemoteQM just as the remote queue reference did
in an earlier section.

v The queue manager then performs queue resolution and places the message on the
target queue.

The Store and Forward queue forms part of a Multi Message Route. This abstract entity
represents the potential for messages addressed to any queue on TargetQM, and so is
called *@TargetQM, see Figure 67 on page 155.

Host
localhost

Queue Manager
LocalQM

Store And Forward Queue

Queue Manager Entry
TargetQM

Connection
TargetQM

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

SafQueue@TargetQM

remotehost
(FastNetwork:remotehost:8082)

Figure 66. Routing of a message put to LocalQM and addressed to TargetQ@TargetQM

154 Configuration Guide

If there is no queue to which the message can be put, then it is not delivered. This
prevents any further messages from being pushed from that Store and Forward queue
to that Queue Manager.

Store and Forward Queues and Remote Queue References
Because S&F queues can accept messages for any queue on a given queue manager,
they can appear to be in conflict with a remote queue reference. In such cases the
remote queue reference takes precedence, because it is more specific. So if we look
again at our S&F queue resolution, but add a remote queue reference we can see that
the message route resolution changes immediately, the S&F queue becomes irrelevant.
We can see this in Figure 68

that queue resolution finds the best (most exact) match for the message address.

Host
localhost

Queue Manager
LocalQM

Multi Message Route
*@TargetQM

Host

Queue Manager
TargetQM

remotehost

Figure 67. A multi message route.

Host
localhost

Queue Manager
LocalQM

Store And Forward Queue

Targets
TargetQM

Host

Queue Manager
TargetQM

Local Queue
TargetQueue

TargetQueue@TargetQM

TargetQueue@TargetQMTargetQueue@TargetQM

SafQueue@TargetQM

remotehost

Remote Queue
TargetQueue@TargetQM

Figure 68. How routes using remote queue definitions take precedence over store-and-forward queue
routes

Chapter 13. Message resolution 155

So a message put to QueueAlias@TargetQM goes via the S&F queue (asynchronous
transmission), but a put to TargetQueue@TargetQM goes synchronously via the remote
queue reference.

Chaining Store and Forward Queues
Pushing store and forward queues can be chained together into a more complex route,
see Figure 69.

Note that the Store and Forward queue on LocalQM (SaFQueue@RemoteQM) has a Queue
Manager Entry for TargetQM, but actually pushes to RemoteQM. LocalQM requires a
connection definition to RemoteQM, but not to TargetQM. A message can then be
transported via the intermediate S&F queue, see Figure 70 on page 157.

Host
targethost

Queue Manager
TargetQM

Local Queue
TargetQueue

Host
localhost

Queue Manager
LocalQM

Store And Forward Queue

Targets
TargetQM

Host

Queue Manager

Store And Forward Queue

Targets
TargetQM

resolves toresolves to

SafQueue@RemoteQM

remotehost

RemoteQM

SafQueue@RemoteQM

Figure 69. Pushing S&F queues chained together.

156 Configuration Guide

This works because the combination of queue resolution and connection resolution on
LocalQM results in the message being put to the S&F queue on RemoteQM, which can then
move it to its destination. The chain of Store and Forward Queues could be arbitrarily
long, with each queue manager in the chain needing to know only about the next queue
manager in the chain. The Message Routes express this very succinctly, see Figure 71.

Home Server Queues
Home server queues pull messages from store and forward queues. The S&F queue
may be a ’pushing’ S&F queue (that is, has a valid connection definition). Home server
queues only pull messages across a single ’hop’, and will only pull messages whose
intended destination is the local queue manager - the queue manager upon which the
home server queue resides. A typical Home Server Queue configuration is illustrated
below, see Figure 72 on page 158.

Host
targethost

Queue Manager
TargetQM

Local Queue
TargetQueue

Host
localhost

Queue Manager
LocalQM

Store And Forward Queue

Targets
TargetQM

Host

Queue Manager
RemoteQM

Store And Forward Queue

Targets
TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM
TargetQueue@TargetQM

TargetQueue@TargetQM

SafQueue@RemoteQM SafQueue@RemoteQM

remotehost

Figure 70. Transporting messages via an intermediate S&F queue.

Host
targethost

Queue Manager
TargetQM

Host
localhost

Queue Manager
LocalQM

Multi Message Route

Host

Queue Manager

Multi Message Route

remotehost

*@TargetQM

RemoteQM

*@TargetQM

Figure 71. A chain of store and forward queues.

Chapter 13. Message resolution 157

The diagram shows a simple HomeServerQueue setup. In this configuration the server
queue manager has no connection definition to the client; instead it has a store queue
(that is, a store and forward queue with no target queue manager) that collects all
messages bound for the client. This message collection embraces all queue
destinations on the client.

The client pulls the messages from the store queue using a home server queue
pointing at the store queue on the client. The home server queue never stores
messages itself, it collects them from the store queue and delivers them to their
destinations on the client. The client makes the connection request to the server using
its connection definition.

The home server queue ’homeServerQueue@RemoteQM’ will attempt to pull messages from
the queue manager ’RemoteQM’. It requires a connection definition to be able to do this.
The home server queue will only be able to pull messages if there is a store and
forward queue that is storing messages for LocalQM.

Messages that are pulled from RemoteQM are then ’pushed’ to local queues on LocalQM.
This is shown in the following diagram, where a Home Server Queue on LocalQM is
pulling messages (for LocalQM) from RemoteQM. In this case a message for
TargetQueue@LocalQM is shown being pulled, and the resolution at the queue manager

Host
localhost

Queue Manager
LocalQM

Connection

Host

Queue Manager

Store And Forward Queue

Targets
LocalQM

Listener
DefaultListenerconnects using

pulls from

connects to

remotehost

RemoteQM

RemoteQM

SafQueue@RemoteQM

homeServerQueue@RemoteQM

(FastNetwork:remotehost:8082)

Home Server ‘Queue’

Figure 72. A home server queue configuration.

158 Configuration Guide

|
|
|
|
|

|
|
|
|
|

has been hidden for clarity. In reality, the Home Server Queue presents each pulled
message to the local queue manager for resolution, see Figure 73.

The pull message route can be viewed at a more abstract level, see Figure 74 on
page 160.

Host
localhost

Queue Manager
LocalQM

Local Queue
TargetQueue

Host

Queue Manager

Store And Forward Queue

Queue Manager Entry
LocalQM

TargetQueue@LocalQM TargetQueue@LocalQM

TargetQueue@LocalQM

TargetQueue@LocalQM

RemoteQM

homeServerQueue@RemoteQM

remotehost

SafQueue@RemoteQM

Home Server ‘Queue’

Figure 73. A home server queue pulling messages.

Chapter 13. Message resolution 159

How are pulled message routes useful, and where would we use them? The most
important feature of a pulled message route is that the flow of messages is under the
control of the local queue manager. This makes it very useful to a client that spends
much of its time disconnected. If we had to rely on the server pushing message, the
server would need to continuously poll the client to check if it was available. This would
not be a good solution for large numbers of clients, as much of the servers time would
be spent polling for disconnected clients. Instead, with a Home Server queue, each
client pulls messages when it is connected, and the server only has to deal with real
requests from connected clients. One concrete example of this is the administration of
queue managers that do not have listener capability. Administration messages for the
client are placed upon a Store and Forward queue. The client can then use a Home
Server queue to pull these when it is connected. Administration reply messages could
then be pushed using normal push remote queue, see Figure 75 on page 161.

Host
localhost

Queue Manager
LocalQM

Pull Message Route

Host

Queue Manager

remotehost

*@LocalQM

RemoteQM

Figure 74. An abstract pull message route.

160 Configuration Guide

Via Connections
Via connection allow messages to be routed via an intermediate queue manager. For
example, we might wish messages from LocalQM to travel to TargetQM via RemoteQM. We
can already do this with ’pushing’ store and forward queues, but via connections
provide an alternate mechanism, see Figure 76 on page 162.

Host
localhost

Queue Manager
LocalQM

Pull Message Route

Push Message Route

Host

Queue Manager

admin messages

RemoteQM

remotehost

Admin Replies

Figure 75. Administering queue managers that do not have listener capability.

Chapter 13. Message resolution 161

The diagram illustrates the components being used. The connection definition called
’TargetQM’ on LocalQM does not contain the address of TargetQM, but simply refers to the
connection definition called ’RemoteQM’. This means that any messages destined for
TargetQM will be sent to RemoteQM, and we assume that RemoteQM will be able to move
the messages onward. In the diagram above, RemoteQM has the necessary connection to
move the message to TargetQM.

The message flows as expected, see Figure 77 on page 163.

Queue Manager
TargetQM

Local Queue
TargetQueue

Queue Manager
LocalQM

Remote Queue

Connection

ViaConnection

Queue Manager

Remote Queue

Connection
TargetQM
(FastNetwork:targethost:8082)

connects to

connects using

resolves to

connects to

connects using

resolves toconnects via

(FastNetwork:targethost:8082)

TargetQueue@TargetQM

TargetQueue@TargetQM

RemoteQM

RemoteQM

TargetQM(RemoteQM)

Figure 76. Via connections

162 Configuration Guide

The Remote Queue on LocalQM uses Connection Resolution to find the Via Connection.
This then passes the message on to the real connection which moves the message to
RemoteQM. On RemoteQM queue resolution proceeds as for the simple case. We can show
the topology most clearly using Message Routes, see Figure 78 on page 164.

Queue Manager
TargetQM

Local Queue
TargetQueue

Queue Manager
LocalQM

Connection

ViaConnection

Queue Manager

Connection
TargetQM
(FastNetwork:targethost:8082)

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

TargetQueue@TargetQM

(FastNetwork:targethost:8082)

RemoteQM

RemoteQM

RemoteQueue

RemoteQueue

TargetQM(RemoteQM)

Figure 77. Message flow using a via connection

Chapter 13. Message resolution 163

This is known as ’chaining remote queues’. The central remote queue can be
synchronous, asynchronous, or even a store and forward queue.

Rerouting with Queue Manager Aliases
Earlier in this document we described Queue Manager Aliases and said that they had a
more important part to play in routing. To illustrate, we consider an example of a
common situation often known as fail-over. In this we have a client communicating with
a server, and we have a backup server that can be used if the main server fails, or is
taken down for maintenance, see Figure 79 on page 165.

Queue Manager
TargetQM

Queue Manager
LocalQM

Push Message Route
TargetQueue

Queue Manager

Push Message Route
TargetQueue

RemoteQM

@TargetQM @TargetQM

Figure 78. Via connections expressed using message route schema

164 Configuration Guide

Here we see the local client queue manager, with a connection to ServerQM and a
remote queue definition for TargetQueue@ServerQM. The server (bottom left) has a local
queue as the target for our example message, and this is mimicked by the backup
server (bottom right). Additionally, on the client queue manager, there is a Queue
Manager Alias mapping the name Server to ServerQM. This mapping is then used for
messages put to the server. The message resolution is shown below for the normal
operating configuration, where a message put to TargetQueue@Server is directed to
TargetQueue@ServerQM, see Figure 80 on page 166.

Host
localhost

Queue Manager
LocalQM

Queue Manager Alias
Server = ServerQM

Connection
ServerQM
(FastNetwork:serverhost:8082)

Connection
BackupQM
(FastNetwork:backuphost:8082)

Host
serverhost

Queue Manager
ServerQM

Local Queue
TargetQueue

Host
backuphost

Queue Manager
BackupQM

Local Queue
TargetQueue

Remote QueueRemote Queue
TargetQueue@BackupQMTargetQueue@ServerQM

Figure 79. Queue manager aliases and fail-over.

Chapter 13. Message resolution 165

The alias maps messages for Server to ServerQM, and this selects the remote queue
definition TargetQueue@ServerQM. If the network administrator needs to route traffic to
the backup server, only the Queue Manager Alias needs to be changed (it is in fact
deleted, and recreated with a different target name, in this case BackupQM, see
Figure 81 on page 167).

Host
localhost

Queue Manager
LocalQM

Queue Manager Alias
Server = ServerQM

Connection
ServerQM
(FastNetwork:serverhost:8082)

Connection
BackupQM
(FastNetwork:backuphost:8082)

Host
serverhost

Queue Manager
ServerQM

Local Queue
TargetQueue

Host
backuphost

Queue Manager
BackupQM

Local Queue
TargetQueue

TargetQueue@ServerQM

TargetQueue@ServerQM

TargetQueue@ServerQM

TargetQueue@Server

TargetQueue@BackupQM
Remote Queue

TargetQueue@ServerQM

TargetQueue@ServerQM
Remote Queue

Figure 80. Routing traffic using a ″server″ alias

166 Configuration Guide

The change of alias reroutes the message to a different remote queue, and hence on to
the backup queue manager and to TargetQueue@BackupQM. In essence what we have is
a pair of message routes, one to each server, and we are using a Queue Manager Alias
to choose between the message routes, see Figure 82 on page 168.

Host
localhost

Queue Manager
LocalQM

Queue Manager Alias
Server = BackupQM

Connection
ServerQM
(FastNetwork:serverhost:8082)

Connection
BackupQM
(FastNetwork:backuphost:8082)

Host
serverhost

Queue Manager
ServerQM

Local Queue
TargetQueue

Host
backuphost

Queue Manager
BackupQM

Local Queue
TargetQueue

TargetQueue@BackupQM

TargetQueue@BackupQM

TargetQueue@BackupQM

TargetQueue@BackupQM

TargetQueue@BackupQM

TargetQueue@ServerQM
Remote Queue Remote Queue

TargetQueue@BackupQM

Figure 81. Routing traffic to the backup server, using a ″server″ alias

Chapter 13. Message resolution 167

The example above required a change to every client on a system that requires
rerouting to a backup server. If there are a large number of clients this may be
impractical. In addition, each client requires two complete message route definitions (a
remote queue and a connection definition for each). It would be far more elegant to
avoid the need to change the client. We can do this by having a second server ready to
listen on the same address and port as the first. When the administrator wishes to
change over the first can be brought down, and the second can change over. In this
circumstance it may be convenient to keep the names of the servers different. The
backup server can be given a Queue Manager Alias mapping BackupQM to ServerQM.
This will allow BackupQM to impersonate ServerQM.

Warning
Changing the WebSphere MQ Everyplace network topology in this fashion is not
always a wise thing to do. Care must be taken to ensure that there are no ’in
doubt’ messages that would be affected by the change. If a message is put with a
non-zero confirm id, and then the WebSphere MQ Everyplace network topology is
changed to alter the routing of the subsequent confirmGetMessage call, then the
unconfirmed message will not be found. WebSphere MQ Everyplace protocol
treats a failure to confirm a put as an indication that the put message has been
confirmed already, and therefore assumes success. This could leave an
unconfirmed message on a queue, which represents a loss of a message, and
therefore breaks the assured delivery promise.

Since WebSphere MQ Everyplace uses the same two step process to assure
delivery of asynchronously sent messages, changing the network topology can
break the assured delivery of asynchronous message sends.

Queue Manager
LocalQM

Queue Manager Alias
Server = BackupQM

Push Message Route
TargetQueue

Push Message Route
TargetQueue

Queue Manager
ServerQM

Queue Manager
BackupQM

TargetQueue@BackupQM

TargetQueue@Server

@ServerQM @BackupQM

Figure 82. Choosing between message routes.

168 Configuration Guide

WebSphere MQ Everyplace WebSphere MQ Bridge Message Resolution
A connection between WebSphere MQ Everyplace and WebSphere MQ queue
managers involves a collection of objects. The following diagram shows only the entities
that form the communications link between the two queue managers, see Figure 83.

The important entities are:

v (Bridge)MQeEarthQMBridge - a bridge resource owned and controlled by the
MQeEarthQM queue manager.

v (MQQueueManagerProxy)MQSaturnQM - describes MQSaturnQM and how to connect to it.

v (BridgeConnection)MQeEarth.CHANNEL - a communications path between MQeEarthQM
and MQSaturnQM.

v (MQServerConnectionChannel)MQeEarth.CHANNEL - a standard WebSphere MQ server
channel providing an entry point to MQSaturnQM for MQeEarthQM.

These entities are used in the following examples of bridge connectivity, but not shown
in the diagrams.

Host
earth

Queue Manager
MQeEarthQM

Bridge
MQeEarthQMBridge

MQ Queue Manager Proxy
MQSaturnQM

Bridge Connection
MQeEarth.CHANNEL

Host
saturn

MQ Queue Manager
MQSaturnQM

MQ Server Connection Channel
MQeEarth.CHANNEL

refers to

connects using

Figure 83. Connecting WebSphere MQ Everyplace and WebSphere MQ queue managers.

Chapter 13. Message resolution 169

Pulling Messages From WebSphere MQ
By setting up a Transmit queue on WebSphere MQ, and a bridge listener on a
WebSphere MQ Everyplace queue manager we can enable the latter to pull messages
from the former. Although in theory this is sufficient to pull messages from the
transmission queue, we cannot place messages onto the transmission queue without
creating extra queues on a WebSphere MQ queue manager.

Single pull route
To allow the messages to be correctly routed we create extra queues on a WebSphere
MQ queue manager. The simplest form is to create a remote queue on WebSphere MQ
to allow messages addressed to TargetQueue@MQeEarthQM to be accepted by the
WebSphere MQ queue manager, see Figure 84.

Messages addressed to TargetQueue@MQeEarthQM are placed upon the WebSphere MQ
Transmit queue. The bridge listener then pulls them from the transmit queue and

Host
earth

Queue Manager
MQeEarthQM

Bridge Queue

Bridge
MQeEarthQMBridge

MQ Queue Manager Proxy
MQSaturnQM

Bridge Connection
MQeEarth.CHANNEL

Bridge Listener
MQeEarth.XMITQ

Host
saturn

MQ Queue Manager
MQSaturnQM

MQ Local Queue
MQSaturnQ

MQeEarthQM

MQ Transmit Queue
MQeEarth.XMITQ

MQ Server Connection Channel
MQeEarth.CHANNEL

refers to

connects using

resolves to

pulls from

uses

MQ Remote Queue

MQSaturnQ@MQSaturnQM

Figure 84. Creating a remote queue on WebSphere MQ.

170 Configuration Guide

presents them to the WebSphere MQ Everyplace queue manager. Message resolution
then takes place, see Figure 85.

This is effectively a single pull message route, see Figure 86.

Host
earth

Queue Manager
MQeEarthQM

Local Queue
TargetQueue

Bridge Listener
MQeEarth.XMITQ

Host
saturn

MQ Queue Manager
MQSaturnQM

MQeEarth.XMITQ

TargetQueue

TargetQueue@MQeEarthQM

TargetQueue@MQeEarthQM

TargetQueue@MQeEarthQM

TargetQueue@MQeEarthQM

TargetQueue@MQeEarthQM

MQ Remote Queue

MQ Transmit Queue

Figure 85. Bridge listener pulling from a WebSphere MQ Everyplace transmit queue

Host
earth

Queue Manager
MQeEarthQM

Pull Message Route

Host
saturn

MQ Queue Manager
MQSaturnQM

TargetQueue@MQeEarthQM

Figure 86. A single pull message route.

Chapter 13. Message resolution 171

Multiple Pull Route
It is generally more efficient to use a multiple pull message route as this requires the
same number of resource definitions, but will handle all the traffic for WebSphere MQ
Everyplace queue manager. This is done using a Remote queue manager alias on
WebSphere MQ (effectively a remote queue where the target queue name is the same
as the target queue manager name, see Figure 87).

Message resolution works as previous, but now messages for any queue on MQeEarthQM
will be move, making this a multiple pull message route, see Figure 88 on page 173.

Host
earth

Queue Manager
MQeEarthQM

Local Queue
TargetQueue

Bridge Listener
MQeEarth.XMITQ

Host
saturn

MQ Queue Manager
MQSaturnQM

MQeEarth.XMITQ

MQeEarthQM

pulls from

uses

MQ Transmit Queue

MQ Remote Queue

Figure 87. A multiple pull message route.

172 Configuration Guide

Pushing messages to WebSphere MQ
Pushing messages to WebSphere MQ is more straightforward. Again we need to
presume the presence of the common components described above, but now we need
to create a Bridge Queue which is an WebSphere MQ Everyplace Remote queue that
refers to a queue on a WebSphere MQ queue manager, see Figure 89.

Messages travel as expected across this remote queue definition, see Figure 90 on
page 174.

Host
earth

Queue Manager
MQeEarthQM

Pull Message Route

Host
saturn

MQ Queue Manager
MQSaturnQM

*@MQeEarthQM

Figure 88. Multiple pull route, expressed using message route schema

Host
earth

Queue Manager
MQeEarthQM

Bridge Queue

Host
saturn

MQ Queue Manager
MQSaturnQM

MQ Local Queue
MQSaturnQ

resolves to

MQSaturnQ@MQSaturnQM

Figure 89. Pushing messages to WebSphere MQ.

Chapter 13. Message resolution 173

This is exactly the same as a simple push message route between two queue
managers, see Figure 91.

Connecting a client to WebSphere MQ via a bridge
A common topology is to allow messages to flow between WebSphere MQ and a client
WebSphere MQ Everyplace queue manager. This cannot happen directly, but requires
an intermediate bridge-enabled MQeQueue manager. The client can then be a small
footprint device with no knowledge of WebSphere MQ. If we start from the configuration
we have above, we can show the additions we will need to make to allow a client
(MQeMoonQM, on a device called moon) to communicate with WebSphere MQ, see
Figure 92 on page 175.

Host
earth

Queue Manager
MQeEarthQM

Bridge Queue
MQSaturnQ@MQSaturnQM

Host
saturn

MQ Queue Manager
MQSaturnQM

MQ Local Queue
MQSaturnQ

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

Figure 90. Messages travelling across a remote queue definition.

Host
earth

Queue Manager
MQeEarthQM

Push Message Route
MQSaturnQ

Host
saturn

MQ Queue Manager
MQSaturnQM

@MQSaturnQM

Figure 91. Simplified view of route pushing messages to WebSphere MQ

174 Configuration Guide

We have added the following:

v (Host)moon

v (QueueManager) MQeMoonQM on (Host)moon

v A connection definition from MQeMoonQM to a matching listener on MQeEarthQM to
provide the connectivity between the two WebSphere MQ Everyplace queue
managers.

v A store and forward queue on MQeEarthQM that will accept and hold messages for
MQeMoonQM, and a home server queue on MQeMoonQM that will pull messages from the
store and forward queue.

v A remote queue definition on the WebSphere MQ queue manager that will route
messages for MQeMoonQM to the transmission queue MQeEarth.XMITQ. This allows
messages for MqeMoonQM to be placed on the transmission queue, from where they
will be pulled to MQeEarthQM.

The topology is more readily seen as message routes, see Figure 93 on page 176.

Host
moon

Queue Manager
MQeMoonQM

Connection
MQeEarthQM
(FastNetwork:earth:8082)

Host
earth

Queue Manager
MQeEarthQM

Store And Forward Queue

Targets
MQeMoonQM

Listener
DefaultListener

Host
saturn

MQ Queue Manager
MQSaturnQM

MQeMoonQM

connects using

pulls from

connects to

Home Server ‘Queue’
SafQueue@MQeEarthQM

SafQueue@MQeEarthQM

@MQeEarthQM

MQ Remote Queue

Figure 92. A client communicating with WebSphere MQ.

Chapter 13. Message resolution 175

Messages can be pushed to WebSphere MQ by using a via connection to chain remote
queues, see Figure 94 on page 177.

Host
moon

Queue Manager
MQeMoonQM

Pull Message Route

Host
earth

Queue Manager
MQeEarthQM

Pull Message Route

Host
saturn

MQ Queue Manager
MQSaturnQM

*@MQeMoonQM
*@MQeMoonQM *@MQeEarthQM

Figure 93. Simplified pull routes from WebSphere MQ through a WebSphere MQ Everyplace gateway to
a WebSphere MQ Everyplace device style queue manager

176 Configuration Guide

Here we have added a via connection, to route messages destined for MQSaturnQM via
MQeEarthQM, and we have added a remote queue definition for MQSaturnQ@MQSaturnQM.
The messages can now flow from the client to WebSphere MQ, see Figure 95 on
page 178.

Host

Queue Manager
MQeMoonQM

Connection
MQeEarthQM(FastNetwork:earth:8082)

ViaConnection
MQSaturnQM(MQeEarthQM)

Host
earth

Queue Manager
MQeEarthQM

Bridge Queue

Host
saturn

MQ Queue Manager
MQSaturnQM

MQ Local Queue
MQSaturnQ

connects to

resolves to

connects via

connects using resolves to

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM
Remote Queue

moon

Figure 94. Pushing messages using a via connection.

Chapter 13. Message resolution 177

This topology is more easily understood as a collection of message routes, see
Figure 96 on page 179.

Host

Queue Manager
MQeMoonQM

Connection
MQeEarthQM(FastNetwork:earth:8082)

ViaConnection
MQSaturnQM(MQeEarthQM)

Host
earth

Queue Manager
MQeEarthQM

Bridge Queue

Host
saturn

MQ Queue Manager
MQSaturnQM

MQ Local Queue
MQSaturnQ

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM

MQSaturnQ@MQSaturnQM
Remote Queue

moon

Figure 95. Pushing messages to WebSphere MQ

178 Configuration Guide

Security considerations
Remote queue definitions define the security requirements that must be satisfied by
channels moving messages to target queues. The queue manager attribute rule defines
the rules for upgrading channels; consequently with a sufficiently flexible rule, multiple
security requirements can be met by a single channel.

When a message must be stored on a queue, either en route or at the destination, then
the queue attribute rule determines if the channel security meets the requirements of
the queue. Note however that there are message transfers that do not involve a
channel, for example, when a home server places a message it has received from a
store queue on to its destination queue. In these cases there are no security
requirements to be satisfied in the transfer, but the message will be stored in its
destination queue in a manner controlled by that queue’s security characteristics. Thus
to continue this example in more depth, when the home server queue gets the
message from the store queue a channel is involved (with characteristics determined by
the home server queue and which must be acceptable to the store queue).However,
when the home server queue passes the message to the destination queue, there are
no channel characteristics to be compared with the destination queue’s security
characteristics.

Host

Queue Manager
MQeMoonQM

Pull Message Route

Push Message Route
MQSaturnQ

Host
earth

Queue Manager
MQeEarthQM

Push Message Route
MQSaturnQ

Pull Message Route

Host
saturn

MQ Queue Manager
MQSaturnQM

moon

@MQSaturnQM @MQSaturnQM

*@MQeMoonQM
*@MQeMoonQM
*@MQeEarthQM

Figure 96. Simplified view showing routes which push messages from a device style WebSphere MQ
Everyplace queue manager to a WebSphere MQ queue manager

Chapter 13. Message resolution 179

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

In a single hop, message transfer, the security checking is between the source and
target queue managers. In multiple hop, asynchronous message transfers, security
checking occurs step-by-step over each hop.

Resolution Rules
Resolution rules always start with a message being presented to a queue manager,
with a specified destination queue manager name and a specified destination queue
name. This is equivalent to the API call putMessage(queueManagerName, queueName,
msg,....). The destinationQueueManagerName and destinationQueueName should
identify a local queue onto which the message should eventually be placed.

Rule 1: Resolve queue manager aliases.
If the queue manager has an alias mapping destinationQueueManagerName to another
name, for example, realQueueManagerName then this substitution is made first, and the
call:
putMessage(destinationQueueManagerName, destinationQueueName

is effectively transformed to
putMessage(realQueueManagerName, destinationQueueName.

From this point on destinationQueueManagerName is completely forgotten, and
realQueueManagerName is used.

Queue Resolution
The queue manager now looks for a queue to place the message on. The queue
manager looks for a queue with the best match, following the these rules:

’Exact’ match
Local queue or remote queue definition where the queue name matches the
destinationQueueName and the queues queue manager name matches the
destinationQueueManagerName.

The term ’queues queue manager name needs some explaining. For a local queue this
is the same as the name of the queue manager where the queue resides. For a local
queue localQ@localQM, localQM is the queues queue manager name.

For a remote queue definition remoteQ@remoteQM residing on localQM, the queues queue
manager name is remoteQM.

Queue Alias Match
If a queue (remote definition or local) has a matching queue manager name and an
alias and this alias matches destinationQueueName then this queue will considered a
match. Effectively the put message call :
putMessage(destinationQueueManagerName, queueAliasName

is transformed to
putMessage(destinationQueueManagerName, realQueueName.

180 Configuration Guide

|
|
|

at this point. The original name of the queue used in the put call is entirely forgotten
from this point on in the resolution.

S&F queue
If there is no exact match the queue manager searches for an inexact match. An
inexact math is a Store and Forward queue that will accept messages for the given
queue manager name. The search for a store and forward queue ignores the
destinationQueueName. If an appropriate Store And Forward queue is found, then the
message is put to it, using the destinationQueueManagerName and
destinationQueueName, and the StoreAndForward queue stores the destination with the
message.

Queue Discovery
If no queue has been found that will accept the message the and the message is not
for a local queue, then the queue manager tries to find the remote destination queue
and queue and create a remote queue definition for it automatically. This is called
queue discovery. The queue manager can only perform discovery if:

v there is a connection definition to the destination queue manager

v there is an active communications path to the destination queue manager

v the destination queue exists

v (actually can also work under other circumstances - a via connection to a queue
manager where a remote connection definition exists)

If discovery is successful the newly created remote queue definition is used. This then
behaves as if an exact match on a remote queue definition had been found in the first
place.

The remote queue definition created by discovery is always synchronous, even if the
queue to which it resolves is asynchronous, or even a Store and forward queue.

Failure
If no queue has been found by the above steps then the message put is deemed to
have failed.

Push Across Network
A message placed upon a remote queue is pushed across the network. The queue first
locates a connection definition with the correct name, and then puts the message to the
remote queue manager using the connection definition as the entry to the
communications link.

The queue seeks a connection definition whose name is the same as the queues
queue manager name. The connection may be a normal connection, or a via
connection.

Normal
A normal connection points to a listener upon the destination queue manager. The put
message command is routed directly to the destination queue manager. The putMessage
call is then resolved just as if it had been placed on the queue manager via the API.

Chapter 13. Message resolution 181

Via
A via connection points at another connection called the ’real’ connection. All
commands performed on the via connection will be delegated to the real connection.
Via connections can be chained, and so the command may travel ’via’ several
indirections before reach a real connection. The names of the put message destination
are not changed by the use of a via connection.

Eventually the command will be routed to a ’normal’ connection definition, then across
the network to a queue manager, where the message put will be resolved.

Home Server Pulling
Home server queues pull messages from Store and forward queues. The route of the
pull only spans a single network hop. Only messages for the queue manager hosting
the home server queue will be pulled down. Messages pulled from the store and
forward queue are presented to the queue manager using a normal put method call,
and are then resolved as normal. The messages pulled down this way should all be
destined for local queues.

182 Configuration Guide

Chapter 14. Security

In addition to a basic WebSphere MQ Everyplace network, certain features can be
further configured to enhance data security. Generally speaking, WebSphere MQ
Everyplace provides two security mechanisms directly concerned with the transport of
messages:

Message-based security
Messages are encrypted by the application, using WebSphere MQ Everyplace
services, and passed to WebSphere MQ Everyplace for transport in a fully
protected state. WebSphere MQ Everyplace delivers the messages to a target
queue, from which they are removed by an application and subsequently
decrypted, again using WebSphere MQ Everyplace services. Since the
messages are fully protected when being directly handled by WebSphere MQ
Everyplace, they can be flowed over clear channels and held on unprotected
intermediate queues.

This security feature involves application programming and is beyond the
scope of this book. Readers are referred to the WebSphere MQ Everyplace
Application Programming Guide for further details.

Queue-based security
Messages are assumed to have been encrypted by the application when they
are passed to WebSphere MQ Everyplace. WebSphere MQ Everyplace
delivers the messages to a target queue, from which they are removed by an
application. WebSphere MQ Everyplace protects the messages on receipt and
flows them over secure channels; they are also held protected on any
intermediate queues and on the destination queue.

This security feature does not involve application programming. As long as
configurations have been set up properly, messages are automatically
protected during transmission. This Chapter discusses the various
configurations appropriate for queue-based security.

Queue-based security is currently only supported by the Java code base.

Background

Security properties
The level of queue-based security to be used is determined through the setting of
attributes on queues. As a consequence of these attributes, WebSphere MQ Everyplace
uses, if required, appropriate secure channels, and cryptors, compressors and controls
access through authenticators.

The relevant queue properties are:

v Compressor: A compressor is optional. It determines whether the data should be
compressed.

v Cryptor: A cryptor is optional. It determines whether the data should be encrypted to
hide the significance of the contents.

© Copyright IBM Corp. 2002 183

v Authenticator: An authenticator is optional. It determines whether the data access
should be controlled.

v Attribute rule: An attribute rule is optional in the sense that you can specify a null for
this property. If a null is specified, a system default attribute rule is then used
internally. An attribute rule determines whether an existing channel can be reused or
upgraded to access a particular queue.

Private registries
Certain security property, such as com.ibm.mqe.attributes.MQeWTLSCertAuthenticator,
prerequisite an appropriate private registry, where the entity’s private/public keys can be
found, and, in some cases the queue manager’s public registry, where foreign entities’
public keys can be found. This happens when a security attribute uses a public/private
key based algorithm to perform encryption/authentication.

There are two types of private registries, queue manager owed and queue owed and
each private registry only stores its owner’s security credentials. The queue manager’s
credential, however, can be shared by the queues it owes. For this reason, if the
com.ibm.mqe.attributes.MQeWTLSCertAuthenticator class authenticator is used, an
additional parameter ″target registry″ on the queue attribute the authenticator is
attached to must also be set. This parameter determines which registry is to supply the
credentials for authentication, and can have the value of either ″Queue manager″ or
″Queue″.

If ″Queue manager″ is specified, the credentials used are those of the queue manager
owning the queue, and come from the private registry of the queue manager. The
queue manager originally obtains these credentials through auto-registration with the
mini-certificate server (see the relevant ″Private Registry Service″ section the
WebSphere MQ Everyplace Application Programming Guide for further details). This
option is the recommended default.

If ″Queue″ is specified, the credentials used are those of the queue itself, and come
from the private registry of the queue. The queue originally obtains these credentials
through auto-registration with the mini-certificate server as well.

Please refer to the ″Mini-certificate issuance service″ in the WebSphere MQ Everyplace
Application Programming Guide for issues related to mini-certificate management
issues.

Effects of queue attributes
Queue attribute can be set on all queue definitions. They not only affect the way
messages are stored one the queues in question but also affect the way messages are
transmitted over communication channels. WebSphere MQ Everyplace creates security
attributes internally based on target queue attributes. The actual effect they have
depends upon the kind of queue definition the queue attributes are involved:

Local queue
Determines how the data is stored and whether the incoming channel
characteristics are acceptable. If an authenticator is specified, an

184 Configuration Guide

authentication process using this authenticator occurs when the queue is
accessed for the first time by any particular instance of a local queue manager.

Remote queue
Determines how the data is stored pending transmission, if applicable, and
how the outgoing channel is established. If an authenticator is specified, an
authentication process using this authenticator occurs whenever a new
channel for transmitting messages on the queue is created.

Store-and-forward queue
Determines how the data is stored pending transmission, whether the incoming
channel characteristics are acceptable, and how the outgoing channel is
established, if applicable. An authenticator on a store-and-forward queue has
the same effect that it has on a remote queue.

Home server queue
Determines how the outgoing channel is established. An authenticator on a
home-server queue has the same effect that it has on a remote queue.

Communication channel security considerations
When data is sent between a queue manager and a remote queue, the queue manager
opens a channel to the remote queue manager that owns the queue. By default, if the
remote queue is protected, for example with a cryptor, the channel is given exactly the
same level of protection as the queue. For efficiency in queue-based security, a
WebSphere MQ Everyplace channel uses symmetric cryptors (for example, DES, 3DES,
MARS, RC4, RC6); a consequence of which is that the two queue managers at either end
must use the same encryption key. When such a channel is established, a protocol,
called the Diffie Hellman key exchange, is used to establish a secret key that only the
two queue managers know. This protocol is susceptible to a ″man in the middle″ attack,
but for that to be successful, the ″man in the middle″ must know some of the data that
is fed into the Diffie Hellman protocol. This data is held in the
com.ibm.mqe.attributes.MQeDHk class. It is possible for an attacker to get hold of this
data, by examining the shipped WebSphere MQ Everyplace classes. However, this data
can be changed by running the com.ibm.mqe.attributes.MQeGenDH utility; it generates a
new Java source file com.ibm.mqe.attributes.MQeDHk.java. This file can then be
compiled into a replacement com.ibm.mqe.attributes.MQeDHk.class file. When the
com.ibm.mqe.attributes.MQeWTLSCertAuthenticator is used, the two queue managers
(or queues) swap certificates in order to authenticate each other. If this is used in
conjunction with a cryptor on the queue, the exchanges which establish the secret key
for the cryptor are protected with the public keys from the certificates, making a ″man in
the middle″ attack even more difficult.

With synchronous remote queues, queue-based security is relatively simple. In this
case a message is put to a synchronous remote queue definition that has the same
security attributes as the destination queue. The message is transmitted over a channel
with appropriate security attributes and is stored on the secure queue.

With asynchronous remote queues, especially Store-and-forward queues and
Home-server queues, the transmitting and receiving queues are more likely to have
different security attributes. These differences have to be managed during message
transfer. Once a message has been put to an asynchronous queue it is transmitted

Chapter 14. Security 185

from one queue to another until it reaches its destination. A queue manager is
responsible for requesting the transfer of the message between a pair of queues and
another queue manager is responsible for responding to the request. If queue based
security is used, the requesting queue manager establishes a channel with security
attributes that match the queue that it owns. The queue manager receiving the request
checks that the channel attributes are sufficient for its queue.

For example, suppose a client queue manager has a queue with a DES cryptor on it
and messages are routed from this to a server’s Store-and-forward queue that has a
MARS cryptor. When the client is triggered to send a message it establishes a DES
encrypted channel to the server; the server asks the Store-and-forward queue whether
it will accept messages over a DES encrypted channel. If the Store-and-forward queue
considers DES is not as strong as its own MARS cryptor (determined by the queue
attribute rule), it would throw an ″attribute mismatch″ exception.

A Home-server queue trying to pull messages from a Store-and-forward queue needs a
cryptor that is at least as strong as that on the Store-and-forward queue, because the
Home-server queue is at the initiating end of the request. Once the Home-server queue
has received the message it can store it on a local queue that has any level of
protection. This behavior can be changed by using different attribute rules on the
queues. For example, if the attribute rule always allows reuse, the queue will accept
channels with any cryptor.

Trying to send a message from a queue with a weaker cryptor to a queue with a
stronger cryptor usually results in an ″attribute mismatch″ exception. However if a
channel with a strong cryptor already exists between the queue managers, this can be
reused (depending on the attribute rules on the channel) and result in the message
being delivered.

One slight exception to the above behavior is when a Store-and-forward queue is used
to forward (push) messages to other queues. The Store-and-forward queue establishes
a channel with security attributes that match its own. However, in this case the
destination queue accepts the channel without checking its attributes against the
queue’s. For example, a Store-and-forward queue without a cryptor would establish a
channel without a cryptor and this would be used to forward messages to a destination
queue even if the queue had a cryptor on it. Normally, with other queue types, this
would result in an ″attribute mismatch″ exception. When using a Store-and-forward
queue in this way, you should ensure that it has a cryptor that is comparable to any
cryptor on a destination queue. This does not apply when a Home-server queue polls
for messages from a Store-and-forward queue (in this case the Home-server queue
establishes the channel, not the Store-and-forward queue).

Channel attribute rules
To reduce the number of channels open concurrently, the queue manager can reuse an
existing channel if its level of protection is adequate. If none of the channels has a
suitable level of protection, the queue manager can also change (upgrade) the level of
protection on an existing channel to match that required for the queue. This kind of
behavior is governed by the MQeattributeRule on both the queue and the channel.

186 Configuration Guide

These rules apply to the attribute on the queue (and channel), they are not the same as
queue rules. Attribute rules are set on a queue when it is created or modified using
administration messages.

The isAcceptable() method on the MQeAttributeRule class determines if a channel
can be reused. This provides protection against inconsistency in the queue attribute
rules on the local and target queue managers. If the isAcceptable() method returns
true, the channel is used. Otherwise, the channel will not be reused.

If none of the existing channels can be reused, the queue manager checks if any of the
channels can be upgraded to the required level. The permit() method on the
MQeAttributeRule class determines this. If the permit() method returns true, the
channel is upgraded. Otherwise, the channel is be upgraded.

WebSphere MQ Everyplace provides a default rule, com.ibm.mqe.MQeAttributeRule
(identical to examples.rules.AttributeRule. This is specified as the attribute rule for a
queue by WebSphere MQ Everyplace by default.

Note: This is different from setting attribute rule to null.
This rule allows a channel to be used for a queue if the following conditions are met:

1. If the queue has an authenticator, the channel must have the same type of
authenticator. If the queue does not have an authenticator, it does not matter
whether the channel has one or not.

2. If the queue has a cryptor, the channel must have a cryptor that is the same type as
or better than that on the queue. If the queue does not have a cryptor it does not
matter whether the channel has one or not. Here ″better″ is defined as:

v Any cryptor is the same as or better than XOR.

v Any cryptor, except XOR, is the same as or better then DES.

v The remaining cryptors (Triple DES, RC4, RC6, and MARS) are considered equal to
each other and all better than XOR and DES.

3. It does not matter what compressors are defined for the queue or channel.

This rule has the following upgrade behavior:

1. If the channel has been authenticated it cannot be upgraded, but if it does not have
one, an authenticator can be added to a channel.

2. A cryptor can be added to a channel or strengthened (using the criteria for ″better″
described above). A cryptor cannot be removed from the channel or replaced with a
weaker cryptor.

3. A compressor can be changed, added to, or removed from the channel.

If the attribute rule is explicitly set to null, WebSphere MQ Everyplace adopts an
internal rule, com.ibm.mqe.MQeAttributeDefaultRule. This rule only accepts a channel
that has exactly the same authenticator (and authenticated to the same entity), cryptor,
and compressor as itself for reuse and always allow channel upgrade.

Because of the way channel security works, when a specific attribute rule is specified
for a target queue, it forces the local queue manager to create an instance of the same

Chapter 14. Security 187

attribute rule (examples.rules.AttributeRule and com.ibm.mqe.MQeAttributeRule are
treated as the same rule for backward compatibility). A null rule can be specified for
the target queue, to avoid the need to have the same attribute rule available remotely.

While the com.ibm.mqe.MQeAttributeRule provides practical defaults, there may be a
solution specific reason why different behavior is required. You can modify the way
channels are reused by extending or replacing the default
com.ibm.mqe.MQeAttributeRule with rules that define the desired behavior.

How to configure
This section shows how to configure a queue manager and a private registry with
security features .

Setting up the queue manager
In order to configure a queue manager’s private registry, which can be shared by its’
queues, do the following:

1. When starting the queue manager, present the private registry logon PIN. If
auto-registration with a mini-certificate server is required, the CertReqPIN,
KeyRingPassword, and CAIPAddrPort parameters must also be presented, on
opening the registry.

2. The mini-certificate server is running if auto-registration is required.

Setting up a private registry
A private registry is only relevant if one of the queue-attribute properties prerequisites it.
In order to establish a queue manager private registry, which can be shared by its’
queues, the following conditions must be met:

1. The owning queue manager must itself have a registry of type private registry.

2. The owning queue manager must have previously auto-registered with the
mini-certificate server. This must have been primed to allow queue registry before
the queue private registry can be established. if auto registration with a
mini-certificate server is required.

3. In starting the queue manager, the queue manager private registry logon PIN,
CertReqPIN, KeyRingPassword, and CAIPAddrPort were passed whilst opening the
registry. If a CertReqPIN different from the queue manager’s is used for the queue, it
is currently necessary to first shutdown the owning queue manager, replace the
original CertReqPIN with the new one, and then start the queue manager again.
Auto-registration will then be triggered using the new CertReqPIN when the queue
private registry is activated first time.

4. The mini-certificate server is running, if auto-registration with the mini-certificate
server is required.

Refer to the WebSphere MQ Everyplace Application Programming Guide for operational
details.

188 Configuration Guide

If queue private registry, instead of the queue manager’s, is required, for example, the
target registry property of the queue has been set to ″Queue″ for
com.ibm.mqe.attributes.MQeWTLSCertAuthenticator.

Due to the intensity of numerical computation involved, auto-registration may take 10-20
minutes on a handheld device.

Setting up attribute properties
Security attribute properties can be added to a queue using the
com.ibm.mqe.administration.MQeQueueAdminMsg class and its subclasses. The security
attribute properties are defined as parameters of the administration message. The
following example (examples.security.createSecureQueue) creates a new queue on an
existing client queue manager. It creates the queue with a cryptor, compressor,
authenticator, and attribute rule. It is not necessary to add all of these attributes and
any of them could be omitted. A cryptor on a local queue uses a key seed based on the
queue manager private registry logon PIN. Therefore, it is important to present the right
PIN when starting the queue manager.

The example starts with a class header:

package examples.security;

import java.io.File;
import com.ibm.mqe.*;
import com.ibm.mqe.administration.*;
import examples.queuemanager.MQePrivateClient;

/** createSecureQueue.java
* <p>This creates a secure queue on an existing queue manager. The queue is
* created with an authenticator, cryptor, compressor and attribute rule.
* The queue manager must have a private registry, so that the queue can be
* given a cryptor.
*
* <p>The program requires two command line parameters.
*
* <p>The first parameter is a configuration file for the queue manager. This
* is used to start the queue manager as a client.
*
* <p>The second parameter is the PIN for the queue manager’s private
* registry.
*
**/

public class createSecureQueue
{

First we define the name of the queue we want to add:

// the name of the queue
String qName = "protQueue";

The attributes are defined by their class names:

Chapter 14. Security 189

// define the attributes we want the queue to have. These are defined by
// their class names.
String cryptorType = "com.ibm.mqe.attributes.MQeDESCryptor";
String compressorType = "com.ibm.mqe.attributes.MQeGZIPCompressor";
String authenticatorType = "examples.attributes.NTAuthenticator";
String attributeRule = "com.ibm.mqe.MQeAttributeRule";

They are followed by some definitions of local variables:

//local variables
MQePrivateClient client;
MQeQueueManager clientQM;
String clientQMName;
MQeQueueAdminMsg msg;

The example adds the queue directly to the local queue manager, so the queue
manager must be activated:

/**
* open the queue manager as a client
*
* @param configFile the configuration (.ini) file for the queue manager
* @param qmPIN the PIN for the queue manager’s registry
* @exception java.lang.Exception propagated from invoked methods
**/
void openQM(String configFile, String qmPIN) throws Exception
{

// start the queue manager as a client
client = new MQePrivateClient(configFile, qmPIN, null, null);

//save the queue manager and its name
clientQM = client.queueManager;
clientQMName = clientQM.getName();

}

The MQeQueueAdminMsg is created and values added to it as normal. A correlation id is
added to the message to make it easy to find the reply message. All the security
attributes are added as parameters to the message, that is, they are added to a
separate MQeFields object which is passed to the msg.create(parms) method:

/**
* create the admin message to add the queue attributes
*
* @exception java.lang.Exception propagated from invoked methods
**/
void createAdminMsg() throws Exception
{

// the file descriptor
String FileDesc = "MsgLog:.";

// create an Admin msg to add the queue
msg = new MQeQueueAdminMsg();
msg.setTargetQMgr(clientQMName);
msg.setName(clientQMName, qName);
msg.putInt(MQe.Msg_Style, MQe.Msg_Style_Request);
msg.putAscii(MQe.Msg_ReplyToQ, MQe.Admin_Reply_Queue_Name);

190 Configuration Guide

msg.putAscii(MQe.Msg_ReplyToQMgr, clientQMName);
msg.putArrayOfByte(MQe.Msg_CorrelID,
Long.toHexString(clientQM. uniqueValue()).getBytes());

// define parameter values for the queue
MQeFields parms = new MQeFields();
parms.putUnicode(msg.Queue_Description, "DES protected queue");
parms.putAscii(msg.Queue_FileDesc, FileDesc);

// this is where we specify the queue attributes
parms.putAscii(msg.Queue_Cryptor, cryptorType);
parms.putAscii(msg.Queue_Compressor, compressorType);
parms.putAscii(msg.Queue_Authenticator, authenticatorType);
parms.putAscii(msg.Queue_AttrRule, attributeRule);

//add the parameters to the message
msg.create(parms);

}

The message is sent to the Admin Queue on the local queue manager:

/**
* send the admin message to the client queue manager
*
* @exception java.lang.Exception propagated from invoked methods
**/
void sendAdminMsg() throws Exception

{
// send the Admin msg
System.out.println("putting Admin Msg to QM/queue:" +
clientQMName + "/" + MQe.Admin_Queue_Name);
clientQM.putMessage(clientQMName, MQe.Admin_Queue_Name, msg, null, 0);

}

The correlation id is used in a filter to find the correct reply. The example waits up to 3
seconds for the reply:

/**
* wait for a reply message and process it to determine success or failure
*
* @exception java.lang.Exception propagated from invoked methods
**/
void processReply() throws Exception

{
// use the CorrelID to create a filter for the reply message
MQeFields replyFilter = new MQeFields();
replyFilter.putArrayOfByte(MQe.Msg_CorrelID,
msg.getArrayOfByte(MQe.Msg_CorrelID));

// get the Admin Reply msg
MQeMsgObject reply = clientQM.waitForMessage(clientQMName,

MQe.Admin_Reply_Queue_Name,
replyFilter,
null,
0,

3000);

Chapter 14. Security 191

if (reply instanceof MQeAdminMsg)
{

MQeAdminMsg adminReply = (MQeAdminMsg)reply;
System.out.println("Admin Reply Msg received");
if (adminReply.getRC() == MQeAdminMsg.RC_Success)

System.out.println("Queue added OK");
else

System.out.println("create Queue failed:" +
adminReply.getReason());
}
else

System.out.println("reply message is not an admin message");
}

The queue manager needs to be closed:

/**
* close the queue manager
*
* @exception java.lang.Exception propagated from invoked method
**/
void close() throws Exception
{

clientQM.close();
}

The main() method for the example is:

/**
* main method.
*
* @param args The command line arguments. The first is a configuration
* (.ini) file for the queue manager, the second is the PIN
* for the queue manager’s private registry.
*
**/
public static void main(String [] args)
{

createSecureQueue secQueue = new createSecureQueue();
// check the command line arguments
if (args.length < 2)

System.err.println("usage: createSecureQueue configFile qmPIN");
else
{

try
{

secQueue.openQM(args[0], args[1]);
secQueue.createAdminMsg();
secQueue.sendAdminMsg();
secQueue.processReply();
secQueue.close();

}
catch (Exception e)
{

System.out.println("Exception caught:" + e);

192 Configuration Guide

}
}

}
}

Attribute rules can also be set on channels using the ChannelAttrRules keyword in the
configuration file used at queue manager creation time. WebSphere MQ Everyplace
defaults the keyword to com.ibm.mqe.MQeAttrubuteRule.

Chapter 14. Security 193

194 Configuration Guide

Chapter 15. Java Message Service (JMS) configuration

For JMS applications to be portable, they must be isolated from the administration of
the underlying messaging provider. This is achieved by defining JMS ’administered
objects’ which encapsulate provider-specific information. Administered objects are
created and configured using provider-specific facilities, but are used by clients through
portable JMS interfaces.

There are two types of JMS administered object:

v A ConnectionFactory, used by a client to create a connection with a provider.

v A Destination, used by a client to specify the destination of messages it is sending
and the source of messages that it receives.

In WebSphere MQ Everyplace JMS these correspond to two classes:

v MQeQueueConnectionFactory must be configured so that it can obtain a reference to
a WebSphere MQ Everyplace queue manager.

v MQeJMSQueue can be configured with details of a WebSphere MQ Everyplace
queue.

These classes are typically placed in a JNDI namespace by an administrator. However,
on small devices access to a JNDI namespace may be impractical or may represent an
unnecessary overhead, so these classes do not include the necessary methods to allow
them to be bound by JNDI. Two subclasses, MQeJNDIQueueConnectionFactory and
MQeJMSJNDIQueue extend these classes to allow them to be stored using JNDI.

Configuring MQeQueueConnectionFactory
MQeQueueConnectionFactory is the WebSphere MQ Everyplace implementation of the
javax.jms.QueueConnectionFactory interface. It is used to generate instances of
QueueConnection classes, which for WebSphere MQ Everyplace must have a
reference to an active queue manager. The QueueConnectionFactory must be able to
create a reference to an active queue manager in order to pass it on to the
QueueConnection classes that it generates. The MQeQueueConnectionFactory class
can be configured to obtain a reference to a queue manager in the following ways:

v It can start a client queue manager itself.

v It can look for a queue manager already running in the JVM.

However, if neither of these options are suitable then the MQeQueueConnectionFactory
class can be extended to provide the required behavior. This is discussed later in this
chapter.

To configure a connection factory to start a queue manager itself, it must be given a
reference to an initialization (.ini) file that contains all the information it needs to start
the queue manager. The connection factory is configured using its setIniFileName()
method:

(MQeQueueConnectionFactory(factory)).setIniFileName(filename);

© Copyright IBM Corp. 2002 195

where ’filename’ is the name of the initialization file. When the connection factory has
been configured with the name of the initialization file, it can either be stored in a JNDI
directory, so that it can be looked up by application programs, or it can be used directly
in an application program. When the connection factory generates its first
QueueConnection it starts the client queue manager using the initialization file and
passes a reference to the active queue manager to the QueueConnection. If it
generates more QueueConnection classes, it passes them a reference to the same
active queue manager. When the last QueueConnection is closed, the connection
factory closes the queue manager.

Note: Do not use the MQeQueueManager.close() methods to shut down a queue
manager started by a connection factory.

To configure a connection factory to look for an existing queue manager, the
initialization file name should be set to null. This is the default value when the
MQeQueueConnectionFactory class is created, and it can also be set explicitly using
the setIniFileName() method:

(MQeQueueConnectionFactory(factory)).setIniFileName(null);

In this case, when the connection factory generates a QueueConnection, it looks for a
queue manager already running in the JVM and passes the QueueConnection a
reference to it. An exception is thrown if no queue manager is running. If it generates
more QueueConnection classes, it passes them a reference to the same queue
manager. The connection factory does not close the queue manager when the last
QueueConnection is closed.

Note: A JVM can run only one WebSphere MQ Everyplace queue manager at a time.
Therefore, if you use a connection factory to start a queue manager, it should
not be used to start the same queue manager in a different JVM, running on the
same machine, while the first one is still active.

Configuring MQeJMSQueue
MQeJMSQueue is the WebSphere MQ Everyplace implementation of the Queue class.
It is used to represent WebSphere MQ Everyplace queues within JMS applications. It is
configured by its constructor:

public MQeJMSQueue(String mqeQMgrName, String mqeQueueName) throws JMSException

where:

v mqeQMgrName is the name of the WebSphere MQ Everyplace queue manager
which owns the queue

v mqeQueueName is the name of the WebSphere MQ Everyplace queue

If the queue manager name is null, the local queue manager is used (that is, the queue
manager that JMS is connected to). If the queue name is null, a JMSException is
thrown.

196 Configuration Guide

When the queue has been configured, it can either be stored in a JNDI directory, so
that it can be looked up by application programs, or it can be used directly in an
application program. There is an alternative way to configure a queue within an
application, by using the QueueSession.createQueue() method. This takes one
parameter, which is the name of the queue. For WebSphere MQ Everyplace JMS this
can either be the queue manager name followed by a plus sign followed by the queue
name:

ioQueue =session.createQueue("myQM+myQueue");

or just the queue name:

ioQueue =session.createQueue("myQueue");

If the queue name is used on its own, the local queue manager is assumed.

Note: WebSphere MQ Everyplace JMS can only put messages to a local queue or an
asynchronous remote queue and it can only receive messages from a local
queue. It cannot put to or receive messages from a synchronous remote queue.

The JMS administration tool
The administration tool provides a simple way for administrators to define and edit the
properties of WebSphere MQ Everyplace JMS administered objects. This tool is based
on the administration tool shipped with JMS for WebSphere MQ, differing only in the
properties that can be applied to JMS administered objects.

Configuration
You must configure the administration tool with values for the following three
parameters:

INITIAL_CONTEXT_FACTORY
This indicates the service provider that the tool uses. There are currently two
supported values for this property:

v com.sun.jndi.ldap.LdapCtxFactory (for LDAP)

v com.sun.jndi.fscontext.RefFSContextFactory (for file system context)

PROVIDER_URL
This indicates the URL of the session’s initial context, the root of all JNDI
operations carried out by the tool. Two forms of this property are currently
supported:

v ldap://hostname/contextname (for LDAP)

v file:[drive:]/pathname (for file system context)

SECURITY_AUTHENTICATION
This indicates whether JNDI passes over security credentials to your service
provider. This parameter is used only when an LDAP service provider is used.
This property can currently take one of three values:

v none (anonymous authentication)

v simple (simple authentication)

Chapter 15. Java Message Service (JMS) configuration 197

v CRAM-MD5 (CRAM-MD5 authentication mechanism)

If a valid value is not supplied, the property defaults to none. If the parameter is set to
either simple or CRAM-MD5, security credentials are passed through JNDI to the
underlying service provider. These security credentials are in the form of a user
distinguished name (User DN) and password. If security credentials are required, then
the user will be prompted for these when the tool initializes.

Note: The text typed is echoed to the screen, and this includes the password.
Therefore, take care that passwords are not disclosed to unauthorized users.

These parameters are set in a plaintext configuration file consisting of a set of
key-value pairs, separated by an ″=″. This is shown in the following example:

#Set the service provider
INITIAL_CONTEXT_FACTORY=com.sun.jndi.ldap.LdapCtxFactory
#Set the initial context
PROVIDER_URL=ldap://polaris/o=ibm_us,c=us
#Set the authentication type
SECURITY_AUTHENTICATION=none

(A ″#″ in the first column of the line indicates a comment, or a line that is not used.)

Starting the JMS admin tool
To start the tool in interactive mode, enter the command:

java com.ibm.mqe.jms.admin.MQeJMSAdmin [-cfg config_filename]

where the -cfg option specifies the name of an alternative configuration file. If no
configuration file is specified, then the tool looks for a file named MQeJMSAdmin.config
in the current directory.

After authentication, if necessary, the tool displays a command prompt:

InitCtx>

indicating that the tool is using the initial context defined in the PROVIDER_URL
configuration parameter.

To start the tool in batch mode, enter the command:

java com.ibm.mqe.jms.admin.MQeJMSAdmin < script.scp

where script.scp is a script file that contains administration commands. The last
command in this file must be an END command.

Administration commands
When the command prompt is displayed, the tool is ready to accept commands.
Administration commands are generally of the following form:

verb [param]*

198 Configuration Guide

where verb is one of the administration verbs listed in Table xxx. All valid commands
consist of at least one (and only one) verb, which appears at the beginning of the
command in either its standard or short form.

The parameters a verb may take depend on the verb. For example, the END verb
cannot take any parameters, but the DEFINE verb may take anything between 1 and 20
parameters. Details of the verbs that take at least one parameter are discussed later in
this section.

Table 24. Administration verbs

Verb Short form Description

ALTER ALT Change at least one of the
properties of a given
administered object

DEFINE DEF Create and store an
administered object, or create
a new subcontext

DISPLAY DIS Display the properties of one
or more stored administered
objects, or the contents of the
current context

DELETE DEL Remove one or more
administered objects from the
namespace, or remove an
empty subcontext

CHANGE CHG Alter the current context,
allowing the user to traverse
the directory namespace
anywhere below the initial
context (pending security
clearance)

COPY CP Make a copy of a stored
administered object, storing it
under an alternative name

MOVE MV Alter the name under which an
administered object is stored

END Close the administration tool

Verb names are not case-sensitive.

Usually, to terminate commands, you press the carriage return key. However, you can
override this by typing the ″+″ symbol directly before the carriage return. This enables
you to enter multi-line commands, as shown in the following example:

DEFINE Q(BookingsInputQueue)+
QMGR(ExampleQM)+
QUEUE(QUEUE.BOOKINGS)

Lines beginning with one of the characters *, #, or / are treated as comments.

Chapter 15. Java Message Service (JMS) configuration 199

Manipulating subcontexts
You can use the verbs CHANGE , DEFINE , DISPLAY and DELETE to manipulate
directory namespace subcontexts. Their use is described in Table xxx.

Table 25. Syntax and description of commands used to manipulate subcontexts

Command syntax Description

DEFINE CTX(ctxName) Attempts to create a new child subcontext of
the current context, having the name ctxName.
Fails if there is a security violation, if the
subcontext already exists, or if the name
supplied is invalid.

DISPLAY CTX Displays the contents of the current context.
Administered objects are annotated with a ’a’,
subcontexts with ’[D]’. The Java type of each
object is also displayed.

DELETE CTX(ctxName) Attempts to delete the current context’s child
context having the name ctxName. Fails if the
context is not found, is non-empty, or if there is
a security violation.

CHANGE CTX(ctxName) Alters the current context, so that it now refers
to the child context having the name ctxName.
One of two special values of ctxName may be
supplied:

=UP which moves to the current context’s
parent

=INIT which moves directly to the initial
context

Fails if the specified context does not exist, or if
there is a security violation.

Administering JMS objects
Two object types can currently be manipulated by the administration tool. These are
listed in table xxx.

Table 26. JMS administered objects

Object type Keyword Description

MQeJNDIQueueConnectionFactoryQCF The WebSphere MQ
Everyplace implementation of
the JMS
QueueConnectionFactory
interface. This represents a
factory object for creating
connections in the JMS
Point-to-Point messaging
domain.

200 Configuration Guide

Table 26. JMS administered objects (continued)

Object type Keyword Description

MQeJMSJNDIQueue Q The WebSphere MQ
Everyplace implementation of
the JMS Queue interface. This
represents a message
Destination in the JMS
Point-to-Point messaging
domain.

Verbs used with JMS objects
You can use the verbs ALTER, DEFINE, DISPLAY, DELETE, COPY and MOVE to
manipulate administered objects in the directory namespace. Table xxx summarizes
their use. Substitute TYPE with the keyword that represents the required administered
object, as listed in Table ***the previous table***.

Table 27. Syntax and description of commands used to manipulate administered
objects

Command syntax Description

ALTER TYPE(name) [property]* Attempts to update the given administered
object’s properties with the ones supplied. Fails
if there is a security violation, if the specified
object cannot be found, or if the new properties
supplied are invalid.

DEFINE TYPE(name) [property]* Attempts to create an administered object of
type TYPE with the supplied properties, and
tries to store it under the name name in the
current context. Fails if there is a security
violation, if the supplied name is invalid or
already exists, or if the properties supplied are
invalid.

DISPLAY TYPE(name) Displays the properties of the administered
object of type TYPE , bound under the name
name in the current context. Fails if the object
does not exist, or if there is a security violation.

DELETE TYPE(name) Attempts to remove the administered object of
type TYPE, having the name name, from the
current context. Fails if the object does not
exist, or if there is a security violation.

COPY TYPE(nameA) TYPE(nameB) Makes a copy of the administered object of
type TYPE, having the name nameA, naming
the copy nameB. This all occurs within the
scope of the current context. Fails if the object
to be copied does not exist, if an object of
name nameB already exists, or if there is a
security violation.

Chapter 15. Java Message Service (JMS) configuration 201

Table 27. Syntax and description of commands used to manipulate administered
objects (continued)

Command syntax Description

MOVE TYPE(nameA) TYPE(nameB) Moves (renames) the administered object of
type TYPE, having the name nameA , to
nameB . This all occurs within the scope of the
current context. Fails if the object to be moved
does not exist, if an object of name nameB
already exists, or if there is a security violation.

Creating objects
Objects are created and stored in a JNDI namespace using the following command
syntax:

DEFINE TYPE (name)[property]*

That is, the DEFINE verb, followed by a TYPE (name) administered object reference,
followed by zero or more properties.

LDAP naming considerations
To store your objects in an LDAP environment, their names must comply with certain
conventions. One of these is that object and subcontext names must include a prefix,
such as cn=(common name), or ou=(organizational unit). The administration tool
simplifies the use of LDAP service providers by allowing you to refer to object and
context names without a prefix. If you do not supply a prefix, the tool automatically adds
a default prefix (currently cn=) to the name you supply.

This is shown in the following example.

InitCtx>DEFINE Q(testQueue)
InitCtx>DISPLAY CTX
Contents of InitCtx

a cn=testQueue com.ibm.mqe.jms.MQeJMSJNDIQueue

1 Object(s)
0 Context(s)
1 Binding(s),1 Administered

Note that although the object name supplied does not have a prefix, the tool
automatically adds one to ensure compliance with the LDAP naming convention.
Likewise, submitting the command DISPLAY Q(testQueue) also causes this prefix to be
added.

You may need to configure your LDAP server to store Java objects. Information to
assist with this configuration is provided later in this Chapter.

202 Configuration Guide

Properties
A property consists of a name-value pair in the format:

PROPERTY_NAME(property_value)

Names are not case sensitive, but are restricted to a set of recognized names shown in
table xxx.

Table 28. Property names and valid values

Property Short form Valid values

CLIENTIDCID Any String

DESCRIPTION DESC Any String

DUPSOKCOUNT DOC Any positive integer

INIFILE INI Any String

QUEUE QU Any String

QMANAGER QMGR Any String

LOGGERURL URL Any String

Most of these properties only apply to specific object types. These are listed below,
along with a short description.

Table 29.

Property QCF Q Description

CLIENTID Y A string identifier for
the client

DESCRIPTION Y Y A description of the
stored object

DUPSOKCOUNT Y The number of
messages to receive
before
acknowledgment in a
DUPS_OK_ACKNOWLEDGE
Session.

INIFILE Y An initialization (.ini)
file for a WebSphere
MQ Everyplace Queue
Manager

QUEUE Y The name of an
WebSphere MQ
Everyplace queue

QMANAGER Y The name of an
WebSphere MQ
Everyplace queue
manager

Chapter 15. Java Message Service (JMS) configuration 203

Table 29. (continued)

Property QCF Q Description

LOGGERURL Y A URL to be passed to
the JMS transaction
logger, of the format
file://<path>, defining
where the transaction
log should be located.

Extending MQeQueueConnectionFactory
By default MQeQueueConnectionFactory will either look for a queue manager already
running in the JVM, or will start its own using an initialization (.ini) file. A third option is
to extend MQeQueueConnectionFactory to provide the desired behavior. The preferred
way to do this is to override two internal methods, startQueueManager() and
stopQueueManager(). The first method is called to start and configure a WebSphere
MQ Everyplace queue manager when a QueueConnection is first created, while the
second shuts it down cleanly when the final QueueConnection is closed. These
methods are both public to make them easy to override, but they should not normally
be called by an application.

The following class shows a simple way of extending MQeQueueConnectionFactory to
start its own queue manager without the need for an initialization file:

import javax.jms.*;
import examples.config.*;
import com.ibm.mqe.jms.MQeQueueConnectionFactory;
import com.ibm.mqe.MQeQueueManager;
import java.io.File;

// type on one line
public class MQeExtendedQueueConnectionFactory

extends MQeQueueConnectionFactory {

private static final String queueManagerName = "ExampleQM";
// Queue Manager Name

private static final String registryLocation = ".\\ExampleQM";
// Location of the registry

private static final String queueStore = "MsgLog:" +
registryLocation + File.separator + "Queues";
// Queue store
private static MQeQueueManager queueManager = null;
// the WebSphere MQ Everyplace Queue Manager

public MQeQueueManager startQueueManager() throws JMSException {
try {

CreateQueueManager.createQueueManagerDefinition(
queueManagerName, registryLocation, queueStore);
queueManager=CreateQueueManager.startQueueManager(
queueManagerName, registryLocation);
}
catch (Exception e) {

204 Configuration Guide

JMSException je = new JMSException("QMgr start failed");
je.setLinkedException(e);
throw je;

}
return queueManager;
}

public void stopQueueManager() throws Exception {
CreateQueueManager.stopQueueManager(queueManager);

}
}
}

In this example the actual queue manager startup and shutdown has been delegated to
the CreateQueueManager examples described in an earlier chapter.

LDAP schema definition for storing Java objects
This section gives details of the schema definitions (attribute and objectClass
definitions) needed in an LDAP directory in order for it to store Java objects. These are
required if you wish to use an LDAP server as your JNDI service provider for storing
WebSphere MQ Everyplace JMS administered objects.

Some servers may already contain these definitions in their schema. The exact
procedure to check whether your server contains them, and to add them if they are not
there, will vary from server to server. Please read the documentation that comes with
your LDAP server and your LDAP JNDI service provider.

Much of the data contained in this section has been taken from RFC 2713 Schema for
Representing Java Objects in an LDAP Directory, which can be found at
http://www.faqs.org/rfcs/rfc2713.html. Please note that some LDAP servers may
require you to turn off schema checking, even after these definitions have been added.

Attribute definitions

Table 30. Attribute settings for javaCodebase

Attribute Value

OID (Object Identifier) 1.3.6.1.4.1.42.2.27.4.1.7

Syntax IA5 String (1.3.6.1.4.1.1466.115.121.1.26)

Maximum length 2,048

Single/multi-valued Multi-valued

User modifiable? Yes

Matching rules caseExactIA5match

Access class Normal

Usage userApplications

Description URL(s) specifying the location of class definition

Chapter 15. Java Message Service (JMS) configuration 205

Table 31. Attribute settings for javaClassName

Attribute Value

OID (Object Identifier) 1.3.6.1.4.1.42.2.27.4.1.6

Syntax Directory String (1.3.6.1.4.1.1466.115.121.1.15)

Maximum length 2,048

Single/multi-valued Single-valued

User modifiable? Yes

Matching rules caseExactMatch

Access class Normal

Usage userApplications

Description Fully qualified name of distinguished Java class
or interface

Table 32. Attribute settings for javaClassNames

Attribute Value

OID (Object Identifier) 1.3.6.1.4.1.42.2.27.4.1.13

Syntax Directory String (1.3.6.1.4.1.1466.115.121.1.15)

Maximum length 2,048

Single/multi-valued Multi-valued

User modifiable? Yes

Matching rules caseExactMatch

Access class Normal

Usage userApplications

Description Fully qualified Java class or interface name

Table 33. Attribute settings for javaFactory

Attribute Value

OID (Object Identifier) 1.3.6.1.4.1.42.2.27.4.1.10

Syntax Directory String (1.3.6.1.4.1.1466.115.121.1.15)

Maximum length 2,048

Single/multi-valued Single-valued

User modifiable? Yes

Matching rules caseExactMatch

Access class Normal

Usage userApplications

Description Fully qualified Java class name of a JNDI
object Factory

206 Configuration Guide

Table 34. Attribute settings for javaReferenceAddress

Attribute Value

OID (Object Identifier) 1.3.6.1.4.1.42.2.27.4.1.11

Syntax Directory String (1.3.6.1.4.1.1466.115.121.1.15)

Maximum length 2,048

Single/multi-valued Multi-valued

User modifiable? Yes

Matching rules caseExactMatch

Access class Normal

Usage userApplications

Description Addresses associated with a JNDI Reference

Table 35. Attribute settings for javaSerializedData

Attribute Value

OID (Object Identifier) 1.3.6.1.4.1.42.2.27.4.1.8

Syntax Octet String (1.3.6.1.4.1.1466.115.121.1.40)

Single/multi-valued Single-valued

User modifiable? Yes

Access class Normal

Usage userApplications

Description Serialized form of a Java object

objectClass definitions

Table 36. objectClass definition for javaSerializedObject

Definition Value

OID (Object Identifier) 1.3.6.1.4.1.42.2.27.4.2.5

Extends/superior javaObject

Type AUXILIARY

Required attributes javaSerializedData

Table 37. objectClass definition for javaObject

Definition Value

OID (Object Identifier) 1.3.6.1.4.1.42.2.27.4.2.4

Extends/superior Top

Type ABSTRACT

Required attributes javaClassName

Optional attributes javaClassNames, javaCodebase, javaDoc
description

Chapter 15. Java Message Service (JMS) configuration 207

Table 38. objectClass definition for javaContainer

Definition Value

OID (Object Identifier) 1.3.6.1.4.1.42.2.27.4.2.1

Extends/superior Top

Type STRUCTURAL

Required attributes cn

Table 39. objectClass definition for javaNamingReference

Definition Value

OID (Object Identifier) 1.3.6.1.4.1.42.2.27.4.2.7

Extends/superior javaObject

Type AUXILIARY

Optional attributes attrs javaReferenceAddress javaFactory

208 Configuration Guide

Chapter 16. Packaging and deployment

WebSphere MQ Everyplace is a flexible messaging system that can be deployed to a
wide variety of operating systems and devices. This chapter provides information to
assist in the build, packaging and deployment of WebSphere MQ Everyplace. It is split
into two sections covering the Java code base and the native code base. As
WebSphere MQ Everyplace can be deployed on a variety of devices, operating
systems, and runtimes, it is not possible to detail each application. Therefore, regarding
some topics, only a brief outline and introduction is provided. For further information on
any particular topic refer to the corresponding documentation.

Java code base
The WebSphere MQ Everyplace Java code base can be deployed onto a large variety
of Java runtimes. These include:

v J2ME CLDC/MIDP

v J2ME CDC/Foundation

v PersonalJava V1.1

v Java 1.1

v J2SE 1.2 (or later)

v IBM® WebSphere Studio Custom Environment (WSCE) jclGateway (or better)

The way that WebSphere MQ Everyplace, the application and other classes are
packaged and deployed is dependant on the type of Java runtime, the operating system
and processor type of the device that is being deployed to. This section provides
information to assist in packaging and deploying Java based WebSphere MQ
Everyplace applications to different environments.

Supplied jar files
WebSphere MQ Everyplace is supplied with a set of class libraries in the form of jar
files that can be used when deploying applications that utilize WebSphere MQ
Everyplace. There are two types of jar file; base jar files and extension jar files. The
base jar files allow a usable queue manager to be created, administered and run. The
extension jar files can be used in addition to the base jar files to provide additional
capability.

Base jar files
MQeBase.jar

Contains classes that provide for a basic queue manager running in client and
server mode on a J2ME CDC/Foundation or J2SE or better Java runtime.

MQeMidp.jar
Similar to MQeBase.jar but for use on a J2ME CLDC/MIDP Java runtime.
Allows a queue manager to run in client mode. All MIDP compliant classes are
included in this jar. No extension jars can be used with this one, as they are
not MIDP compliant.

© Copyright IBM Corp. 2002 209

|
|
|
|
|

MQeGateway.jar
Contains classes that provide for a basic queue manager running in client,
server and bridge mode on a J2SE or better Java runtime.

Extension jar files
MQeJMS.jar

Contains the classes that extend an WebSphere MQ Everyplace queue
manager to provide a JMS programming interface.

MQeRetail.jar
Contains extra classes for use in retail environments. In particular, these
classes are useful on a 4690 retail system.

MQeSecurity.jar
A set of classes that are used to provide both queue and message based
security. It contains a set of cryptors, compressors and authenticators.

MQeBindings.jar
This file contains all C bindings specific information. It is required if access to a
Java queue manager from a C application is needed (only on Win32
platforms).

MQeMigration.jar
Contains classes that assist in migrating from an earlier version of WebSphere
MQ Everyplace.

MQeDeprecated.jar
This contains all of the deprecated class files that are no longer needed by a
WebSphere MQ Everyplace application. These deprecated class files help you
run applications written using a previous version of WebSphere MQ
Everyplace, without making any changes.

MQeDiagnostics.jar
This file helps to diagnose problems with WebSphere MQ Everyplace classes.
It contains tooling to search the class path to find out the level of each class
found.

Other jar files
MQeExamples.jar

A packaging of all the WebSphere MQ Everyplace examples into one jar file.
This includes all of the examples supplied with WebSphere MQ Everyplace,
but excludes the deprecated classes.

MQeCore.jar
This contains a minimal set of classes. On its own it is not usable but it can be
used as a base for building a small footprint WebSphere MQ Everyplace
system. More details on reducing footprint can be found in the ″Optimizing
footprint″ section.

Optimizing footprint
In many cases the supplied jar files can be used without change, however there are
instances where this is not the case. In particular, on some environments where

210 Configuration Guide

footprint is limited, the set of classes that are deployed must be reduced to the smallest
possible size. The supplied jar files are general purpose and contain more than is
necessary for an optimized environment. This section covers how to optimize the set of
classes down to only those that are required for a particular application.

The table below separates the classes into groups associated with a particular function
or configuration and will help determine which classes will be required to optimize an
applications footprint. Using this table the minimum required set of classes can be
deduced by taking the mandatory classes for the required categories and then adding in
required optional classes for that category.

Due to the wide ranging set of Java runtimes that are now available, not all classes can
run on all runtimes. The table lists all classes, unless otherwise stated, each class will
run on a J2SE runtime. Due to the differences between a J2SE and a J2ME runtime,
some of the classes are not appropriate for a J2ME runtime. There are two columns
that show which classes can be used on J2ME MIDP and J2ME CDC/Foundation
runtimes.

Table 40.

Category Detail Classes required (com.ibm.mqe.)
Midp
compliant

CDC /
Foundation
compliant

Mandatory
classes

For all
queue
managers

MQe MQeAdapter
MQeAttribute
MQeAttributeDefaultRule
MQeAttributeRule
MQeAuthenticator MQeCompressor
MQeCryptor MQeEnumeration
MQeException MQeExceptionCodes
MQeField MQeFields MQeKey
MQeLoaderMQeProperties
MQePropertyProvider
MQeQueueControlBlock
MQeQueueProxy MQeQueueManager
MQeQueueManagerRule
MQeResourceControlBlock
MQeRule MQeRunnable
MQeRunnableInstance MQeThread
MQeThreadPool$1
MQeThreadPool$PooledThread
MQeThreadPool$Target
MQeThreadPool MQeTrace
MQeTraceHandler
MQeTraceInterface
registry.MQeRegistry

X X

Registry type One option
in this
category
must be
selected

Chapter 16. Packaging and deployment 211

Table 40. (continued)

Category Detail Classes required (com.ibm.mqe.)
Midp
compliant

CDC /
Foundation
compliant

File registry Add
required:
Storage
adapter

registry.MQeFileSession
registry.MQeRegistrySession

X X

Private registry
w/o credentials

Add: File
registry

registry.MQePrivateRegistry
registry.MQePrivateSession

X

Private registry
with credentials

Add:
Private
registry w/o
credentials

attributes.MQeMiniCertRequest
attributes.MQeSharedKey
attributes.MQeWTLSCertificate

X

Mini-
certificate
management
functions

attributes.MQeListCertificates
registry.MQePrivateRegistryConfigure

X

Public registry Applicable
to types of
message-
level
security
Add:
Private
registry
with
credentials

registry.MQePublicRegistry X

Queue manager
type

For all
types add
required:
Administration
Storage
adapters
Message
store
Authenticators
Cryptors
Compressors
Rules
Security

Standalone
qMgr.

No additional classes

212 Configuration Guide

Table 40. (continued)

Category Detail Classes required (com.ibm.mqe.)
Midp
compliant

CDC /
Foundation
compliant

Client qMgr. Add
required:
Communications

MQeTransporter
adapters.MQeCommunicationsAdapter
communications.MQeChannel
communications.MQeChannelCommandInterface
communications.MQeChannelControlBlock
communications.MQeCommunicationsException
communications.MQeCommunicationsManager
communications.MQeConnectionDefinition
communications.MQeListener
communications.MQeListenerSlave

X X

Server qMgr. Add: Client
qMgr. Add
required:
Communications

Note: whilst MQeListener is not used in
the Client, they need to be included when
preverifying a J2ME application

X

Gateway qMgr. Add:
Server
qMgr. Add
required
Communications
Transformers

MQeBridgeLoadable MQeBridgeManager
mqbridge.*

Communications

TCP/IP w/o
history &
persistence

adapters.MQeTcpipAdapter
adapters.MQeTcpipLengthAdapter

X

TCP/IP with
history &
persistence

Add:
TCP/IP w/o
history and
persistence

adapters.MQeTcpipHistoryAdapter
adapters.MQeTcpipHistoryAdapterElement

X

HTTP 1.0 Not to
WES Proxy
Authentication
server

adapters.MQeTcpipAdapter
adapters.MQeTcpipHttpAdapter

X

HTTP To WES
Proxy
Authentication
server

adapters.MQeTcpipAdapter
adapters.MQeWESAuthenticationAdapter

X

HTTP 1.1/1.0
J2ME

MIDP only adapters.MQeMidpHttpAdapter X

UDP adapters.MQeUdpipBasicAdapter$Initiator
adapters.MQeUdpipBasicAdapter$InternalAdapter
adapters.MQeUdpipBasicAdapter$Responder
adapters.MQeUdpipBasicAdapter$Writer
adapters.MQeUdpipBasicAdapter

X

Chapter 16. Packaging and deployment 213

Table 40. (continued)

Category Detail Classes required (com.ibm.mqe.)
Midp
compliant

CDC /
Foundation
compliant

Queue types For all
queue
types add
required:
Authenticators
Cryptors
Compressors
Rules

Local Add:
Storage
adapter
Message
storage

MQeAbstractQueueImplementation
MQeEventTrigger MQeMessageEvent
MQeMessageListenerInterface
MQeQueue MQeQueueRule (or
replacement)

X X

Remote Add: Local
queue
(storage
adapter &
msg.
storage
only if
needed)

MQeRemoteQueue X X

Home server Add:
Remote
queue (no
storage
adapter or
msg.
storage)

MQeHomeServerQueue X X

Store and
forward

Add:
Remote
queue

MQeStoreAndForwardQueue X X

Bridge queue Add:
Remote
queue

mqbridge.MQeMQBridgeAdminMsg
mqbridge.MQeBridgeServices
mqbridge.MQeMQBridgeQueue
mqbridge.MQeMQQMgrName
mqbridge.MQeMQQName

Message
storage

Base MQeMessageStoreException
MQeAbstractMessageStore
messagestore.MqeIndexEntry

X X

Standard Add: Base messagestore.MQeMessageStore X X

Short filename.
Always use 8.3
file name for
messages.

Add:
Standard

messagestore.MQeShortFilenameMessageStore X

214 Configuration Guide

Table 40. (continued)

Category Detail Classes required (com.ibm.mqe.)
Midp
compliant

CDC /
Foundation
compliant

4690 specific Add: Short
filename

messagestore.MQe4690ShortFilenameMessageStore

Message type

Basic Support for MQeMsgObject is in
Mandatory classes

X X

MQSeries mqemqmessage.*

Storage
adapters

Assured disk Independence
from OS
lazy writes

adapters.MQeDiskFieldsAdapter X

Non-assured
disk

Dependence
on OS lazy
writes Add:
Assured
disk

adapters.MQeReducedDiskFieldsAdapter X

Case-Insensitive Add:
Assured
disk

adapters.MQeCaseInsensitiveAdapter X

Long to Short
Filename
Mapping

adapters.MQeMappingAdapter X

Midp RMS
Storage

MIDP Only adapters.MQeMidpFieldsAdapter
com.ibm.mqe.adapters.MQeMidpFieldsAdapter$RMSFile

X

Memory Volatile
storage

adapters.MQeMemoryFieldsAdapter X X

Administration

Basic
administration
capability

Add: Local
queue

MQeAdministrator MQeAdminMsg
MQeAdminQueue MQeAdminQueue$1
MQeAdminQueue$Timer

X X

Manage queue
manager

Add: Basic
administration
capability

administration.MQeQueueManagerAdminMsgX X

Manage
connection
definitions

Add: Basic
administration
capability

administration.MQeConnectionAdminMsg X X

Manage
communications
listeners

Add: Basic
administration
capability

administration.MQeCommunicationsListenerAdminMsgX X

Manage local
queue

Add: Basic
administration
capability

administration.MQeQueueAdminMsg X X

Chapter 16. Packaging and deployment 215

Table 40. (continued)

Category Detail Classes required (com.ibm.mqe.)
Midp
compliant

CDC /
Foundation
compliant

Manage
administration
queue

Add:
Manage
local queue

administration.MQeAdminQueueAdminMsg X X

Manage remote
queue

Add:
Manage
local queue

administration.MQeRemoteQueueAdminMsgX X

Manage home
server queue

Add:
Manage
remote
queue

administration.MQeHomeServerQueueAdminMsgX X

Manage store
and forward
queue

Add:
Manage
remote
queue

administration.MQeStoreAndForwardQueueAdminMsgX X

Manage bridge
queue

Add:
Manage
remote
queue

mqbridge.MQeMQBridgeQueueAdminMsg
mqbridge.MQeCharacteristicLabels

X

Manage a bridge
to MQSeries

Add:
Remote
queues

mqbridge.*AdminMsg
mqbridge.MqeCharacteristicLabels
mqbridge.MqeRunState
mqbridge.MqeBridgeServices
mqbridge.MQeBridgeExceptionCodes

Queue manager
creation and
deletion

MQeQueueManagerConfigure X X

Authenticators

mini-certificate attributes.DHk (source may be
generated) attributes.MQeSharedKey
attributes.MQeRandom
attributes.MQeWTLSCertificate
attributes.MQeWTLSCertAuthenticator

X

Compressors

GZIP attributes.MQeGZIPCompressor X

LZW attributes.MQeLZWCompressor
attributes.MQeLZWDictionaryItem

X X

RLE attributes.MQeRleCompressor X X

Cryptors

triple DES attributes.MQe3DESCryptor X

DES attributes.MQeDESCryptor X

MARS attributes.MQeMARSCryptor X

RC4 attributes.MQeRC4Cryptor X

216 Configuration Guide

Table 40. (continued)

Category Detail Classes required (com.ibm.mqe.)
Midp
compliant

CDC /
Foundation
compliant

RC6 attributes.MQeRC6Cryptor X

XOR attributes.MQeXorCryptor X X

Application
security
services

Local security Add
required:
Cryptors

attributes.MQeLocalSecure X X

Message-level
security

Add
required:
Cryptors

attributes.MQeMAttribute X

Message-level
security with
digital signature
& validation

Add: Public
registry.
Add
required:
Cryptors

attributes.MQeMTrustAttribute X

Trace

Collect binary
trace in
J2SE/CDC

trace.MQeTraceToBinary
trace.MQeTraceToBinaryFile

X

Collect binary
trace to Midp
RMS Store And
or send to MIDP
Trace servlet

trace.MQeTraceToBinary
trace.MQeTraceToBinaryMidp

X

Base trace
renderer

trace.MQeTracePoint
trace.MQeTracePointGroup
trace.MQeTraceRenderer

X

Decode a binary
file to readable
form

Add: Base
trace
renderer

trace.MQeTraceToReadable
trace.MQeTraceFromBinaryFile

X

Trace to a
readable output
stream

Add: Base
trace
renderer

trace.MqeTraceToReadable X

Servlet collection
of Midp binary
trace

Add Base
trace
renderer

trace.MQeTraceToReadable
examples.trace.MQeServlet

Miscellaneous

Cryptographic
support

Application
or
installation
use only

attributes.MQeCL (footnote?)
attributes.MQeGenDH (generates a
version of attributes.MQeDHk.java)

X

Chapter 16. Packaging and deployment 217

Table 40. (continued)

Category Detail Classes required (com.ibm.mqe.)
Midp
compliant

CDC /
Foundation
compliant

Mini-certificate
server
SupportPac
ES03

MQe_MiniCertServer
(or
command
line tool)
See ES03
installation
instructions

MQe_Explorer
SupportPac
ES02

MQe_Explorer
See ES02
installation
instructions

Bindings Access to
Java
classes
from other
languages

C language bindings.*

JMS Support for
the Java
Message
Service API

jms.*
transaction.*

X X

User-defined
MQe extensions

Authenticators Communications adapters
Compressors Cryptors Logging classes
Message classes Rule classes Security
control Storage adapters Trace handler

JMS requirements
In order to use the WebSphere MQ Everyplace JMS programming interface, the JMS
interface classes are required. These are contained typically in JMS.jar. WebSphere
MQ Everyplace does not ship with jms.jar, and this must be downloaded before JMS
can be used. At the time of writing, this can be freely downloaded from
http://java.sun.com/products/jms/docs.html. The JMS Version 1.0.2b jar file is required.

In addition, if JMS administered objects are to be stored and retrieved using the Java
Naming and Directory Interface (JNDI), the javax.naming.* classes must be available. If
Java 1 is being used, for example, a 1.1.8 JRE, jndi.jar must be obtained and added to
the classpath. If Java 2 is being used, a 1.2 or later JRE, the JRE might contain these
classes. You can use WebSphere MQ Everyplace without JNDI, but at the cost of a
small degree of provider dependence. WebSphere MQ Everyplace-specific classes
must be used for the ConnectionFactory and Destination objects. You can download
JNDI jar files from http://java.sun.com/products/jndi

218 Configuration Guide

WebSphere MQ Classes for Java requirements
To use the WebSphere MQ bridge the WebSphere MQ Classes for Java are required,
version 5.1 or later. These are packaged with WebSphere MQ 5.3 and above. If using
an earlier version of WebSphere MQ then they are available for free download from the
Web as supportpac MA88. The Web address for the download is:
http://www.ibm.com/software/mqseries/txppacs/ma88.html.

For an example of how to setup the classpath to include WebSphere MQ jar files, see
batch files:

v <MqeInstallDir>\Java\Demo\Windows\javaenv.bat

v <MqeInstallDir>\Java\Demo\UNIX\javaenv

Occasionally, the jar files change between versions of the WebSphere MQ, if problems
are encountered as a result of this, consult the documentation for WebSphere MQ
classes in order to determine the correct jar files to use.

Using WebSphere studio device developer smart linker
The smart linker tool that ships with WebSphere Studio Device Developer is used in the
process of building and packaging an application into a jar or jxe file. The smart linker
can remove classes (and methods) that are deemed not to be required; this will happen
to classes that are dynamically loaded. WebSphere MQ Everyplace makes use of
dynamic loading so care should be taken to either avoid this feature or to explicitly
name classes that must be present, even though not explicitly referenced in the code.

To prevent unused classes being removed use the - noRemoveUnused option. If the
-removeUnused option is set then any class that is dynamically loaded must be
specifically included. One option that can be use to achieve this is -includeWholeClass.
For example -includeWholeClass ″com.ibm.mqe.adapters.*″ will include all classes in
the adapters package and -includeWholeClass
″com.ibm.mqe.adapters.MQeTcpipHttpAdapter″ will only include the http adapter.
Multiple include (or exclude) options can be specified in the smart linker options file.

The following guidelines can be used to determine which classes are dynamically
loaded. The basic guideline is any class that is referenced though an WebSphere MQ
Everyplace class alias or any class that is set as a parameter when administering
WebSphere MQ Everyplace resources will be dynamically loaded. This includes:

v Communications adapters

v Storage adapters

v Message stores

v Rules

v Aliases

v Cryptors

v Compressors

v Authenticators

v Queues

v Transporter

Chapter 16. Packaging and deployment 219

v Connection (refer to the following example)

An example of a set of includes needed for a simple MIDP application is:

-includeWholeClass "com.ibm.mqe.MQeQueue"
-includeWholeClass "com.ibm.mqe.MQeRemoteQueue"
-includeWholeClass "com.ibm.mqe.MQeHomeServerQueue"
-includeWholeClass "com.ibm.mqe.MQeTransporter"
-includeWholeClass "com.ibm.mqe.communications.MQeConnectionDefinition"
-includeWholeClass "com.ibm.mqe.adapters.MQeMidpFieldsAdapter"
-includeWholeClass "com.ibm.mqe.adapters.MQeMidpHttpAdapter"
-includeWholeClass "com.ibm.mqe.messagestore.MQeMessageStore"
-includeWholeClass "com.ibm.mqe.registry.MQeFileSession"

J2ME Midp specifics
When deploying the Java Application for the Midp environment a few additional
comments are worth mentioning.

v The developer must use the Midp specific Storage and Communication adapters (see
above Table) and exclude any classes that are not Midp compliant.

v The user can either use the prepackaged MQeMidp.jar file or their own reduced
version, however a JAD file (Java application descriptor) must also be included
detailing the Midlets available within the application. When deploying to the device all
classes should be packaged and preverified in one jar before deploying. However,
whilst testing using an emulator several jars can be used by including them in the
classpath

v Sun and IBM also provide tools that will generate the required .prc file for Palm
Devices. See documentation within either Sun’s Wireless Toolkit or IBM’s WebSphere
Studio Device Developer

v Care must be taken to ensure that all the required classes are included in either the
jar/prc file or other executable. Some classes are dynamically loaded and may be
missed when using any Smart-Linker. See section 15.1.2 Using WebSphere Studio
Device Developer Smart Linker for more details.

4690 specifics
Take the following requirements into account when configuring WebSphere MQ
Everyplace for use with 4690.

v Terminal Applications are restricted to 24 char maximun path length, but Store
Controller Applications can have 127 chars. Java Apps may are also restricted to the
24 length.

v The virtual file system (VFS) cannot hold greater than 64000 files. With GB disk
sizes being used, the C: drive may not have a limit on the number of files, depending
on your operating system.

v When you want to access a file, you must specify the path that leads to it. The path
consists of directory names that are separated by a backslash character ″\″ or a
forward slash ″/″.

Note: Although your system accepts both the ″\″ and the ″/″ character, it is probably
less confusing to use one or the other.

220 Configuration Guide

v Examples elsewhere in this manual demonstrate how to configure your queue
manager such that the data describing its’ resources, certificates, and other
configuration data is stored in files with long filenames. These filenames are for a
single top-level directory, which can also be located on the VFS drive namespace.

v YUsing the 8.3 format, the total character length of the fully-qualified filename
exceeds the allowable limits imposed by the 4960 native file system. Therefore, in
VFS :

– The maximum length of a filename is 256 characters.

– The maximum path length, including directories and files, is 260 characters.

– The maximum directory depth is 60 levels including the root directory.

v WebSphere MQ Everyplace classes can be stored in long format names in VFS.
However, for performance and convenience, as there are lots of class files, we would
reccomend that the application and WebSphere MQ Everyplace classes are
packaged into a .jar files and deployed.

v According to the VFS manual ″The operating system provides support for file names
greater than eight characters in length through the use of a 4690 Virtual File System
(VFS)″.

v The VFS manual states: ″The VFS drive setting must be enabled through system
configuration. On enabling VFS drive settings, the operating system creates two
logical drives. C: and D:. The drive determines where the VFS directory is located.
However, the information is actually stored on drives C: and D:. Drive M: information
is stored on drive C:, and drive N: information is stored on drive D:. Once you have
enabled VFS, you can use drives M: and N: to provide long file name support
locally.″

It is recommended that you use the MQeCaseInsensitiveDiskAdapter on the 4690 OS.
This class implements a disk adapter that is insensitive to the ’case’ of the filename
used during matching. Some JVM or OS combinations list files with different case to
that in which they were created. This means that the simple filtering in the superclass
ignores them. This class converts both the compator and the comperand to lowercase
before performing the comparison. This ensures the best chance of finding a valid
match. Note that the conversion to lower case may be innapropriate on platforms where
the case is honoured, and where there are non-mqe files stored that could be confused
by case. In summary, as this adapter is more suited for use with the 4690 due its
filesystem.

Packaging
Following is a list of some of the techniques and tools that can be used to package
applications ready for deployment to a device. The list is not a full list and does not go
into any detail but is intended to provide an introduction to some of the ways a Java
application can be packaged.

Single Jar file
Build a self-contained application with WebSphere MQ Everyplace embedded
in it. This option minimizes the footprint and ensures that the classpath is kept
to a minimum.

Multiple Jar files
Put application into one jar file and use either the supplied WebSphere MQ

Chapter 16. Packaging and deployment 221

Everyplace jar files or construct a separate WebSphere MQ Everyplace jar file.
Keeping WebSphere MQ Everyplace in one or more separate jars makes it
easy to use WebSphere MQ Everyplace from multiple independent
applications.

JNLP JNLP or Java Network Launching Protocol and API, is an emerging standard,
for use in packaging and deploying Java applications. It is designed to
automate the deployment, via the web, for applications written to the J2SE
platform.

Midlet An WebSphere MQ Everyplace J2ME MIDP application must be packaged as
a midlet or midlet suite (.jad and .jar).

Palm specific
In order to run on a Palm device a Java application must to be packaged in a
prc file, which is a Palm specific format. The IBM WebSphere Studio Device
Developer product ships with a tool that will package a Java application as a
prc file.

JXE IBM WebSphere Studio Device Developer has a SmartLinker tool that can
produce an optimized packaging of an application that contains the minimum
set of required classes and methods for the deployment platform. The output
from the smartlinker is stored in a .JXE file which is understood by the IBM j9
Java runtime.

Installer
There are a number of tools that will package an application ready for
installation on one or more platforms. A couple of examples of these are
InstallShield and self extracting zip files.

Roll you own distribution mechanism
For instance using a Java class loader that can load classes over a network.

Deployment to devices
Following is a list of some of the techniques and tools that can be used to deploy
applications to devices. The list is by no means complete and does not go into any
detail but is intended to provide an introduction to some of the ways a Java application
can be deployed.

Device specific tools
Most devices ship with tools that allow applications to be copied across and
installed. For instance:

v ActiveSync for PocketPC

v Hotsync for Palm

Development tools
Many development environments (IDEs) like WSDD (IBM WebSphere Studio
Device Developer) provide tools that allow deployment of applications onto a
device and debugging of the application from the development environment.

JNLP JNLP or Java Network Launching Protocol and API, is an emerging standard,

222 Configuration Guide

for use in packaging and deploying Java applications. It is designed to
automate the deployment, via the web, for applications written to the J2SE
platform.

Device management products
There are a number of products on the market that can be used for large-scale
deployment of software. One example is Tivoli® Configuration Manager from
IBM.

Open Services Gateway Initiative
Open Services Gateway Initiative (OSGi) is a framework for the packaging and dynamic
deployment of Java software services to networked devices. The OSGi specification
defines a component-based architecture splitting packages and services into
components known as bundles. Each bundle is effectively a modified jar file. A bundle
has a ″Manifest″, which describes the services or packages that the bundle either
requires or exports. A service is simply an interface that the bundle implements.
Therefore, Interacting bundles are only loosely coupled to each other via theseservice
definitions or by Java package declaration.

OSGi can effectively be split between the client runtime and the bundle server or
repository that provides the required bundle. The runtime provides the following
functionality:

v Installing bundles from a bundle server.

v Managing the life cycle of a bundle.

v Providing an opportunity for each bundle to initialize itself on start up, and clean up
its resource on shutdown.

v On request, matching bundles that provide a service with those that consume the
service. The OSGi framework manages the dependencies between services.

v Managing the global namespace of Java packages.

v Informing listeners of events such as service availability changes, bundle life cycle
changes, and OSGi framework status changes.

v Providing an execution context for each bundle. A BundleContext is a private handle
back to the OSGi framework. The BundleContext is used for such things as
registering and unregistering exported services, acquiring and releasing imported
services, and adding and removing event listeners.

WebSphere MQ Everyplace supplies an example bundle, the MQeBundle.jar, that OSGi
developers can use to provide messaging functionality within a gateway or client
runtime. The MQeBundle.jar is an OSGi bundle containing the core functionality for a
queue manager running as client or server. The following sections describe how to
install and run the bundle within IBMs Service Management Framework (SMF) OSGi
implementation.

Installing bundles onto an SMF bundle server
You can Install bundles onto the server can either through the web interface or using
the IDE incorporated into Websphere Studio Device Developer (WSDD). In both cases,
the bundle server needs to be started. This is simply done by invoking the ″script

Chapter 16. Packaging and deployment 223

iveserver″ found in WSDDHOME/wsdd5.0/technologies/smf/server. The default is port
8080, this may conflict with applications currently residing on your server, for example,
Apache. To change the port, alter the org.osgi.service.http.Port=8080 property in the
smf.properties file, which resides in the runtime directory.

Using the Web Interface
Once the bundle server is running, administer bundles by opening a web browser with
the following URL http://hostname:port/smf, where typically, the hostname is
″localhost″and the port is 8080.

Bundle installation is carried out in two stages:

1. Submission by a developer (Bundle Submission link)

2. Release by an administrator (Bundle Management->Release Management link)

Only released bundles are available to client runtimes and users configured on the
server need to have the correct privileges in order to carry out either or both stages.
For more information on the options available for bundle submission, see the smf
documentation in WSDDHOME/wsdd5.0/technologies/smf/client/docs.

Using WSDD IDE
There are two ways to update the bundle server depending on whether you are
developing your own bundle or installing an existing one

1. When developing a new bundle, turn your java project into a bundle by selecting
File—>New—>Other from the Main menu and then selecting the Bundle Folder
option. This creates all the necessary files required for the bundle, notably the
Manifest.mf file. When the bundle is ready, right click on the project and on the
popup menu select SMF—>Submit Bundle. The dialog provides options to submit
either a jar or jxe and the bundle server or directory that you want to submit the
bundle to.

2. To submit an existing bundle, select the SMF Bundle Servers view. Right click on
the desired server and select ″Import Bundles″ from the popup menu. Options
enable you to either specify a directory where the bundle resides or retrieve bundles
from another bundle server.

Using the SMF Runtime
Once all the required bundles have been installed onto the server you can then use a
runtime. You can control runtimes using either the WSDD IDE or the command prompt.
If using the IDE, each runtime you use needs to be configured to use a separate port.
Configure the runtime by editing the smf.bat file that starts the IDE. There is a limit of
one runtime per IDE, even if you are connecting to a remote runtime.

Using the command prompt
Running the smf.bat script starts the appropriate runtime. For more information on how
to tailor the runtime and the additional console commands available, see the relevant
smf documentation. However, to install the required bundle simply type

smf > install <URL>

224 Configuration Guide

The url can be the specific file location on the machine, for example ″file:/fully qualified
file path″, or a remote location, ″http://remote location of file″. There is also an smf
specific protocol ″smfdb:/bundle name″ which uses the ″Safe Bundle Install″ method to
install this bundle and all the bundles prerequisites. To get a summarized list of the all
installed bundles, their locations, and state, simply type

smf ss

Next, to start and stop the bundle, type

smf > start <bundle_id>
smf > stop <bundle id>

Via WSDD
To run the runtime within WSDD, the user needs to define a new runtime using the
dialog found when selecting run—>run from the main menu.

Once the runtime is configured and then started, the runtimes properties and bundle
information is shown within the SMF Runtime view. To install the required bundle, select
the bundle on the bundle servers list, right click the bundle, and on the popup menu
select install. Once installed, the bundle should be visible within the SMF Runtime view.
Right clicking one of the list of bundles enables the user to uninstall, start, or stop the
relevant bundle.

Current limitations
When using the WebSphere MQ Everyplace bundle:

1. Only one WebSphere MQ Everyplace queue manager can run in a JVM, which
means that only one queue manager can run within an OSGI Runtime.

2. For OSGI Version 2.0 or below User-defined WebSphere MQ Everyplace rules and
adapters must use their own MQeLoader.

Note: SMF Version 3.1 or above does not require this

For more details on running the example application bundles provided see the
Application Programming Guide.

Chapter 16. Packaging and deployment 225

226 Configuration Guide

Chapter 17. Configuring WebSphere MQ Everyplace queuemanagers
as servlets

WebSphere MQ Everyplace queuemanagers can run within a servlet. For more
information on writing servlets that use WebSphere MQ Everyplace queuemanagers,
see the servlet section in the WebSphere MQ Everyplace System Programming Guide.

Note: In WebSphere MQ Everyplace version 2.0, the deprecated jar must be in the
classpath for servlets to work.

An example servlet that receives trace from the
com.ibm.mqe.trace.MQeTraceToBinaryMidp trace handler is included with the example
classes. It is examples.trace.MQeTraceServlet. Using this as an example, the following
information explains how to configure it to work with WAS 4.0. Other application servers
will require different steps.

Configuring examples.trace.MQeTraceServlet for use with WAS 4.0
First of all, the servlet code must be packaged into a form that suits the application
server. This example will create a web module for use with WAS 4.0.

From the WebSphere Administrative Console, choose the menu item Application
Assembly tool from the Tools menu. The Application assembly tool should appear.

Figure 97. The WebSphere administrative console

© Copyright IBM Corp. 2002 227

Select ″Create Web Module Wizard″, and click OK. In specifying the properties, enter
the file name, and more information, if you wish.

Figure 98. Specifying Web module properties

228 Configuration Guide

The next step is to add files to the application. The examples.trace.MQeTraceServlet is
in the MQeExamples.jar and relies on classes from MQeGateway.jar, MQeExamples.jar
and MQeTraceDecode.jar.

Since you’ve included all the classes you need, the next panel that asks you if you want
to make distributable, or set a classpath, can be left blank, just click next. The next
panel is to set any icons for this web application. If you don’t have any, just click next.

Next you have to specify the component properties.

Figure 99. Adding files to the application

Chapter 17. Configuring WebSphere MQ Everyplace queuemanagers as servlets 229

Only the component name is compulsory, but you may want to add a display name and
a description.

The next panel allows you to specify which class is the servlet to run.

Figure 100. Adding web comopnents

230 Configuration Guide

The next four panels can safely be left blank, they are for specifying icons, security
roles and initialization parameters.

After this, you must specify what URL will map to your servlet. The final URL will be of
the form http://hostname:port/specified_dir/specified_url_pattern

Figure 101. Specifying component type and class name

Chapter 17. Configuring WebSphere MQ Everyplace queuemanagers as servlets 231

All of the subsequent panels can be left blank. They are for adding resources, context
parameters, error pages, MIME mappings, tag libraries, welcome files and EJB
references.

Click Finish, and then save the file. If you save the file to \AppServer\InstallableApps\
where you installed WebSphere application server, then it will automatically appear in
the list of servlets in the administration panel.

Figure 102. Specifying a URL to map to your servlet

232 Configuration Guide

Next, this component needs to be imported and started. From the wizards button, select
″Install Enterprise Application″.

Figure 103. Saving the file

Figure 104. Install enterprise application

Chapter 17. Configuring WebSphere MQ Everyplace queuemanagers as servlets 233

Install your component as a standalone module.

Specify an application name, and a root for the web module. This is the part of the URL
immediately after the http://hostname:portnumber/ and shouldn’t be left as /

Figure 105. Installing your component as a standalone module

Figure 106. Specifying an applilcation name

234 Configuration Guide

All of the subsequent panels can be left blank, they are about controlling users, EJB
roles, JNDI bindings, EJB mappings, resource references, datasources for EJB, data
sources for CMP, and virtual hosts.

Next, the web module has to be started. Select the application server that it has been
configured for. It should appear under Installed Web Modules.

Figure 107. Information dialog

Chapter 17. Configuring WebSphere MQ Everyplace queuemanagers as servlets 235

If everything went well, it should now be available for use from the
com.ibm.mqe.trace.MQeTraceToBinaryMidp. Since this servlet doesn’t support get, then
viewing the URL with a web browser will result in a 405 error. This is normal.

Figure 108. Starting the web module

Figure 109. Information dialog success message

236 Configuration Guide

If your application server is set up with the defaults, the URL for the servlet is
http://localhost:9080/mqetrace/trace.

Chapter 17. Configuring WebSphere MQ Everyplace queuemanagers as servlets 237

238 Configuration Guide

Chapter 18. Configuring WebSphere MQ Everyplace for performance

WebSphere MQ Everyplace can be used in a number of different configurations, and
the performance you can expect will vary a great deal depending on your adapters and
manner of use.

The main thing to be aware of when configuring WebSphere MQ Everyplace is that disk
accesses are the single biggest cause of slowdown in a WebSphere MQ Everyplace
system. All unnecessary disk accesses should be designed out from the beginning.

Try to split the messages that you’ll be dealing with into messages that it’s important
are persistent and messages that do not need to be persistent. The persistent
messages need to use a disk fields adapter for storage, but the non-persistent ones
should use a memory fields adapter. Non-persistent messages stored in memory can
go around 100 times faster than messages stored to disk.

When possible, distribute queues across different physical hard discs, so that reads and
writes to different queues can take place using different hardware and happen
simultaneously.

When multiple clients are accessing a single server, use multiple queues, as only one
client can use a queue at a time. Avoid very large numbers of queues, as this increases
the time to do any WebSphere MQ Everyplace access.

Keep polling systems such as trigger transmit rules or home serve queue polls to a
minimum. Unless you need a specific performance characteristic, the intervals between
these can often be configured to be quite large. If you are using them together, then the
trigger transmit rule, which is only used to automatically recover a home server queue
from network stoppage can often be set to have a much larger interval. If you are
designing an application that makes use of home server queues and you are using a
trigger transmission rule, then consider replacing it with a user interaction to cause the
trigger transmission.

Most JVMs can have their initial memory settings tweaked. These settings are often on
-msX and -mxX. Executing Java -X will give you more information. Try increasing the
initial and maximum heap size to as much as you can without causing the machine to
start paging.

If you are running some application with a queue manager that is under a lot of external
load, be aware that your own application may suffer from reduced performance as
many threads to deal with incoming messages are started. Making sure your own
application is multithreaded can reduce this problem.

© Copyright IBM Corp. 2002 239

240 Configuration Guide

Appendix. Notices

This information was developed for products and services offered in the United States.
IBM may not offer the products, services, or features discussed in this information in
other countries. Consult your local IBM representative for information on the products
and services currently available in your area. Any reference to an IBM product,
program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead.
However, it is the user’s responsibility to evaluate and verify the operation of any
non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described
in this information. The furnishing of this information does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. Some states do
not allow disclaimer of express or implied warranties in certain transactions, therefore
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of the information. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this information at any time without
notice.

Any references in this information to non-IBM Web sites are provided for convenience
only and do not in any manner serve as an endorsement of those Web sites. The
materials at those Web sites are not part of the materials for this IBM product and use
of those Web sites is at your own risk.

© Copyright IBM Corp. 2002 241

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs and
other programs (including this one) and (ii) the mutual use of the information which has
been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,
Winchester,
Hampshire,
England
SO21 2JN.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Programming License Agreement, or any equivalent agreement between
us.

Information concerning non-IBM products was obtained from the suppliers of those
products, their published announcements or other publicly available sources. IBM has
not tested those products and cannot confirm the accuracy of performance,
compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those
products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM, for
the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for which
the sample programs are written. These examples have not been thoroughly tested
under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs. You may copy, modify, and distribute these sample
programs in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM’s application
programming interfaces.

Notices

242 Configuration Guide

Glossary

This glossary describes terms used in this book
and words used with other than their everyday
meaning. In some cases, a definition might not be
the only one applicable to a term, but it gives the
particular sense in which the word is used in this
book.

If you do not find the term you are looking for, see
the index or the IBM Dictionary of Computing,
New York:. McGraw-Hill, 1994.

Connection resolution. Performed by a remote
queue reference when routing a message (or
request) to the real destination queue.

late resolution. The resolution of a queue alias
is performed just before the message is routed to
the queue. This resolution is as late as possible.

queue alias. You can set an alternative name for
a queue. This allows you to refer to a queue by
more than one name.

queue manager alias. You can set an
alternative name for a queue manager. This allows
you to refer to a queue manager by more than
one name.

queue resolution. The process by which a
queue manager chooses which queue to place a
message on.

© Copyright IBM Corp. 2002 243

244 Configuration Guide

����

Printed in U.S.A.

SC34-6283-00

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	Prerequisite knowledge

	Chapter 1. Introduction
	Queue manager
	Queue
	Message
	Connection
	Channel
	Registry

	Queue manager configuration

	Chapter 2. Administration using administration messages
	The administration queue
	Java
	C

	The administration reply-to queue
	Java
	C

	Create the appropriate administration message
	Java
	C

	Set the required fields in a message
	The basic administration request message
	Base administration fields
	Fields specific to the managed resource
	Other useful fields
	Java

	Put the administration message onto the target administration queue
	Java

	Wait for an administration reply message
	Analyze the data in the administration reply message
	The basic administration reply message
	Outcome of request fields
	Java

	Administration of managed resources
	Example administration console
	The main console window
	Queue browser
	Action windows
	Reply windows

	C
	Administration from the command line
	Example of use of command-line tools
	Script files required
	WebSphere MQ Everyplace and WebSphere MQ objects defined by the scripts
	How to use the script files
	How to use the MQe_Explorer to view the configurations

	Chapter 3. Administration using the administrator API
	Creating an administrator handle
	Using the administrator handle
	Freeing the administrator handle

	Chapter 4. Creating and starting queue managers
	Creating and starting simple queue managers
	Creating a simple queue manager in Java
	Starting a simple queue manager in Java
	Stopping a queue manager in Java
	closeQuiese
	closeImmediate

	Creating a simple queue manager in C
	Starting a simple queue manager in C
	Stopping a queue manager in C

	Configuring a queue manager using memory only

	Chapter 5. Administering queue managers
	General notes
	Java
	C
	Queue Manager attributes
	Java
	C parameters

	Create a queue manager
	Java
	C API

	Delete a queue manager
	Java
	C API

	Inquire and Inquire all
	Java or Administration message
	C API

	Update
	Java/Administration message
	C API

	Add alias
	Java
	C API

	Remove alias
	Java
	C API

	List alias names
	Java
	C API

	IsAlias
	Java
	C API

	Chapter 6. Administering local queues
	General notes
	Java
	C

	Local queue properties
	Java
	C parameters

	Create a local queue
	Administration message
	C API

	Delete
	Administration message
	C API

	Add alias
	Administration message
	C API

	List aliases
	Administration message
	C API

	Remove alias
	Administration message
	C API

	Update
	Administration message
	C API

	Inquiry
	Administration message
	C API

	Message store or storage adapter specification

	Chapter 7. Administering remote queues
	Terminology
	Administering remote queues
	Synchronous and asynchronous
	Setting the operation mode
	Creating a remote queue

	Creating a C parameter structure
	Create synchronous
	C

	Create asynchronous
	C

	Transporter
	Queue aliases

	Chapter 8. Administering home server queues
	Administration messages
	Message transmission
	Java
	C

	Creating
	Administration message
	C API

	Chapter 9. Administering store and forward queues
	General notes
	Store-and-forward queue
	Create
	Administration message

	Delete
	Administration message

	Add queue manager
	Administration message

	Remove queue manager
	Administration message

	Update
	Administration message

	Inquire
	Administration message

	Store and forward queue attributes
	Java

	Chapter 10. Connection definition
	Direct connection definition
	Indirect connection definition
	General
	Connection definition administration in Java
	Creating a connection definition
	Altering and deleting connection definitions

	Connection definition administration in C
	Create a connection definition
	Delete a connection definition
	Update a connection definition
	General comment

	Chapter 11. Listener
	Creating a listener

	Chapter 12. Administering bridge resources
	The WebSphere MQ bridge
	What makes a queue manager bridge-enabled
	Finding out if a queue manager is bridge-enabled
	Classes required to make a queue manager bridge-enabled
	Configuring the WebSphere MQ bridge
	The bridges resource
	The bridge resource
	The WebSphere MQ queue manager proxy
	The client connection resource
	The transmit queue listener resource
	The bridge queue
	Naming recommendations for interoperability with a WebSphere MQ network
	Configuring a basic installation
	Configuring a bridge using WebSphere MQ Everyplace administration messages and WebSphere MQ PCF messages
	Configuration example
	Requirement
	Initial setup
	Enabling MQeMoonQM to put and get messages to and from the MQeEarthQM queue manager
	Enabling the MQeEarthQM to send messages to the MQeMoonQM queue manager
	Enabling MQeEarthQM to send a message to MQSaturnQ
	Enabling MQeEarthQM to send a message to MQJupiterQ
	Enabling MQeMoonQM to send a message to MQJupiterQ and MQSaturnQ
	Enabling MQSaturnQM to send messages to the MQeEarthQ
	Enabling MQSaturnQM to send messages to the MQeMoonQ
	Enabling the MQJupiterQM to send messages to the MQeMoonQ

	Administration of the WebSphere MQ bridge
	The example administration GUI application
	WebSphere MQ bridge administration actions
	WebSphere MQ bridge considerations when shutting down a WebSphere MQ queue manager
	Administered objects and their characteristics

	Handling undeliverable messages

	National Language Support
	Conclusion

	Chapter 13. Message resolution
	Assumptions
	Topics not covered
	Terminology
	What you will know at the end
	WebSphere MQ Everyplace Message Resolution
	Notation
	Local Queue Resolution
	Local Queue Alias
	Queue Manager Alias

	Remote Queue Resolution
	Aliases on Remote Queue
	Parallel Routes
	Chaining Remote Queue References

	Pushing Store And Forward Queues
	Store and Forward Queues and Remote Queue References
	Chaining Store and Forward Queues

	Home Server Queues
	Via Connections
	Rerouting with Queue Manager Aliases
	WebSphere MQ Everyplace WebSphere MQ Bridge Message Resolution
	Pulling Messages From WebSphere MQ
	Single pull route
	Multiple Pull Route

	Pushing messages to WebSphere MQ
	Connecting a client to WebSphere MQ via a bridge

	Security considerations
	Resolution Rules
	Rule 1: Resolve queue manager aliases.
	Queue Resolution
	'Exact' match
	Queue Alias Match
	S&F queue
	Queue Discovery
	Failure

	Push Across Network
	Normal
	Via

	Home Server Pulling

	Chapter 14. Security
	Background
	Security properties
	Private registries
	Effects of queue attributes
	Communication channel security considerations
	Channel attribute rules

	How to configure
	Setting up the queue manager
	Setting up a private registry
	Setting up attribute properties

	Chapter 15. Java Message Service (JMS) configuration
	Configuring MQeQueueConnectionFactory
	Configuring MQeJMSQueue
	The JMS administration tool
	Configuration
	Starting the JMS admin tool
	Administration commands
	Manipulating subcontexts
	Administering JMS objects
	Verbs used with JMS objects
	Creating objects
	LDAP naming considerations
	Properties

	Extending MQeQueueConnectionFactory
	LDAP schema definition for storing Java objects
	Attribute definitions
	objectClass definitions

	Chapter 16. Packaging and deployment
	Java code base
	Supplied jar files
	Base jar files
	Extension jar files
	Other jar files

	Optimizing footprint
	JMS requirements
	WebSphere MQ Classes for Java requirements
	Using WebSphere studio device developer smart linker
	J2ME Midp specifics
	4690 specifics
	Packaging
	Deployment to devices

	Open Services Gateway Initiative
	Installing bundles onto an SMF bundle server
	Using the Web Interface
	Using WSDD IDE

	Using the SMF Runtime
	Using the command prompt
	Via WSDD

	Current limitations

	Chapter 17. Configuring WebSphere MQ Everyplace queuemanagers as servlets
	Configuring examples.trace.MQeTraceServlet for use with WAS 4.0

	Chapter 18. Configuring WebSphere MQ Everyplace for performance
	Appendix. Notices
	Glossary

