<|lI!

WebSphere MQ Everyplace

Systems Programming Guide

Version 2.0

SC34-6274-00

Take Note!

Before using this information and the product it supports, read the general information under[“Notices” on page 75|

First edition (November 2002)

This edition applies to WebSphere® MQ Everyplace™ Version 2.0 (Program number: 5724-C77) and to all subsequent
releases and modifications until otherwise indicated in new editions.

This document is continually being updated with new and improved information. For the latest edition, please see
the WebSphere MQ family library Web page at http://www.ibm.com/software/mgseries/library/.

© Copyright International Business Machines Corporation 2000, 2002. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book
License warning . .

Who should read this book
Prerequisite knowledge.

Migration notes . e e
Migrating from version 1.2.6 or lower to version
1.2.7 or higher
Migrating to version 2.0 .

Trace

Chapter 1. Security .
Authenticators.

How to write an authentlcator

The example logon authenticator

C codebase . .

The example WmCEAuthentlcator .
Certificate management

Examining certificates .

Renewing certificates .

Chapter 2. Adapters .
Storage adapters. .
Communications adapters
How to write adapters.
An example of a simple Commumcatlons adapter
An example of a simple message store adapter
The WebSphere Everyplace Suite (WES)
communications adapter .
The WebSphere Everyplace adapter flles
Using the WebSphere Everyplace adapter

Chapter 3. Rules
Queue manager rules . Lo
Loading and activating queue manager rules .
Java codebase
C codebase .
Using queue manager rules .
Example put message rule
Example get message rule
Example remove queue rule.
Transmission rules .

© Copyright IBM Corp. 2000, 2002

< < < <

. Vil

. vii
. Vil
. il

. 17
.17
.17
.18
.20
.28

. 32
. 33
. 33

. 39
.39
. 40
. 40
. 40
.41
42
42
.44
.44

Trigger transmission rule .
Transmit rule . .

A more complex example
Activating asynchronous remote queue def1n1t1ons
Queue rules

Using queue rules .

Chapter 4. Aliases .

Using queue aliases .
Examples of queue ahasmg

Using queue manager aliases .
Examples of queue manager aliasing .

Chapter 5. Applying maintenance

Chapter 6. Trace and logging .
Trace information in the Java codebase .
Generating trace information
Capturing trace information .
Writing your own trace handler .
Trace points generated from WebSphere MQ
Everyplace . o
Trace information in the C Codebase .
Trace architecture

Chapter 7. WebSphere MQ Everyplace
Diagnostic tool . .
Invoking the MQeDiagnostics Tool

On Windows NT and Windows 2000 .

On UNIX systems .

Other systems

Appendix. Notices .

Trademarks
Bibliography
Index

Sending your comments to IBM .

. 44
. 45
. 46

52

. 53
. 53

. 59
. 59
.59
. 60
. 60

. 65

. 67
. 67
. 67
. 68
. 69

.70
. 70
. 70

. 73
.73
.73
.74
.74

. 75
.76

.77

. 79

. 81

iii

iV WebSphere MQ Everyplace: Systems Programming Guide

About this book

This book is a programming guide for the WebSphere MQ Everyplace product .
This book is intended to be used in conjunction with the WebSphere MQ
Everyplace Application Programming Guide and existing books or manuals on the
programming languages that are used to write WebSphere MQ Everyplace
programs, that is the WebSphere MQ Everyplace C Programming Reference, the
WebSphere MQ Everyplace Java Programming Reference, and the WebSphere MQ
Everyplace C Bindings Programming Guide.

This document is continually being updated with new and improved information.
For the latest edition, please see the WebSphere MQ family library Web page at
http:/fwww.ibm.com/software/mgseries/libraryy.

License warning

WebSphere MQ Everyplace is a toolkit that enables users to write WebSphere MQ
Everyplace applications and to create an environment in which to run them. Before
deploying this product, or applications that use it, please make sure that you have
the necessary licenses.

1. The pricing of licenses for use of the Program on servers is based on "Processor
License Units’. Use of each copy of the Program on a server requires one
Processor License Unit to be acquired for each processor or symmetric
multiprocessor contained in the server on which the copy of the Program is to
run. Different types of Processor License Units and 'Device Use Authorisations’
are required, depending on whether the Program is running on point-of-sale,
that is retail, equipment or on another type of computer. Use of the Program on
retail equipment requires a 'Retail” server license, whereas use on other
(non-retail) equipment requires a "‘Network” server license.

2. Additional 'Device Use Authorisation’ is required for any use of the Program
on a separate client device, except those included in the Network Server
license, as described at 3) below.

3. Each 'Network’ server license includes authorisation for the restricted use of
the Program with no more than one hundred (100) client devices, on condition
that all such copies are used in the same economic enterprise or organisation as
the server copy.

Please refer to http://www.ibm.com/software/mgseries for details of these restrictions.

Who should read this book

This book is intended for developers who want to write WebSphere MQ
Everyplace programs for use in a pervasive computing environment. It contains
information and examples for Java and C codebases.

Prerequisite knowledge

It is assumed that the reader has a working knowledge of the basic programming
techniques for the language in which the WebSphere MQ Everyplace programs are
to be written.

© Copyright IBM Corp. 2000, 2002 \%

An initial understanding of the concepts of secure messaging is an advantage. If
you do not have this understanding, you may find it useful to read the following
WebSphere MQ Everyplace books:

* WebSphere MQ Everyplace Read Me First, SC34-6277-00

* WebSphere MQ Everyplace Introduction

* WebSphere MQ Everyplace Application Programming Guide, SC34-6278-00
These books are available in softcopy form from Book section of the online

WebSphere MQ library. This can be reached from the WebSphere MQ Web site,
URL address http://www.ibm.com/software/WebSphere MQ/library/

Vi WebSphere MQ Everyplace: Systems Programming Guide

Migration notes

This section contains information that you may need to consider when migrating
from one version or release of WebSphere MQ Everyplace to a higher version or
release.

Migrating from version 1.2.6 or lower to version 1.2.7 or higher

This section provides important information if you are migrating from version 1.2.6
or lower to a higher version or release of WebSphere MQ Everyplace

The MQeMQMsgObject class has been updated to put Ascii values to the Msg_ReplyToQ
and Msg_ReplyToQMgr fields. This class still understands Unicode values already set
to messages in Version 1.2.6 or lower, but the data is treated as being Ascii data.
No difference occurs when sending an MQeMQMsgObject from a Version 1.2.6 or
lower queue manager to a version 1.2.7 queue manager.However, an
MQeMQMsgObject fails to send from a version 1.2.7 queue manager to a Version 1.2.6
or lower queue manager. To avoid this problem, do one of the following:

* Upgrade both sending and receiving installations to WebSphere MQ Everyplace
version 1.2.7

* Place the WebSphere MQ Everyplace version 1.2.7 MQeMQMsgObject class on the
classpath in front of the version 1.2.6 installation and upgrade the version 1.2.6
WebSphere MQ Everyplace classes at a later stage.

* Place the version 1.2.6 MQeMQMsgObject class on the classpath in front of the
WebSphere MQ Everyplace version 1.2.7 installation and upgrade both
installations at a later stage.

The following methods in the com.ibm.mge.MQe class were deprecated in version
1.2.7:

* MQe.utfToUnicode
* MQe.UnicodeToutf

The following publically accessible variable in the com.ibm.mqge.MQe class has
been deprecated in version 1.2.7:

* MQe.Loader

Migrating to version 2.0

This section contains information on updating your application to version 2.0.

Trace
To migrate from version 1 of the product to version 2.0 of the product:

1. Review the documentation presented in the Java programming reference
material, particularly the following classes

e com.ibm.mge.MQeTrace
e com.ibm.mge.MQeTraceHandler
¢ All classes in the com.ibm.mge.trace package

© Copyright IBM Corp. 2000, 2002 vii

viii

. Stop using the com.ibm.mge.MQeTraceInterface class. This class is deprecated in

version 2.0. Change your code to implement the com.ibm.mge.MQeTraceHandler
interface instead.

. Stop using the com.ibm.mge.MQe.setTraceHandler () method. Use the

com.ibm.mge.MQeTrace.setHandler() method instead.

. Stop using the com.ibm.mge.MQe.getTraceHandler() method. Use the

com.ibm.mge.MQeTrace.getHandler () method instead.

. Stop using the com.ibm.mge.MQe.trace(...) methods. Use the

com.ibm.mge.MQeTrace.trace(...) methods instead.

. Remove any dependencies your code has on examples.trace.MQeTraceResource

string resource bundle classes. This class has been removed from version 2.0 of
WebSphere MQ Everyplace. The version 2.0 trace mechanism does not provide
a simple resource bundle in the examples.trace package to use when decoding
trace information. Access to WebSphere MQ Everyplace product trace data is
provided through the com.ibm.mqe.trace.MQeTraceRenderer,
com.ibm.mge.trace.MQeTracePoint and com.ibm.mge.trace.MQeTracePointGroup
classes.

. Consider whether trace information can be left in binary format, using the

com.ibm.mge.trace.TraceToBinaryFile or similar classes provided by the
WebSphere MQ Everyplace product.

. Consider instantiating a trace collection handler, and setting it into the

MQeTrace class, but setting the filter in the MQeTrace class to discard or collect
information as desired.

. Consider that IBM service staff may ask for capture of trace information to

diagnose the cause of problems reported. Allowing the setting of the MQeTrace
filter may be easier than allowing the configuration of a collection trace
handler.

WebSphere MQ Everyplace: Systems Programming Guide

Chapter 1. Security

This chapter discusses the following aspects of security in WebSphere MQ
Everyplace:

. Authenticatorgl

* |Certificate management|

Authenticators

Authenticators are invoked by security attributes. Therefore, how and when they
are used is determined by the specific implementation of an attribute. One main
usage of authenticators is for controlling access to queues in queue-based security.
Authenticators can be used in queue-based security to control access to queues.
WebSphere MQ Everyplace provides a certificate authenticator as part of its base
code, com.ibm.mge.attributes.MQeWTLSCertAuthenticator. There are some Java
example authenticators, in the examples.attributes directory, which are based on
user names and passwords. There is also a C example, WinCEAuthenticator, in the
examples\src\WinCEAuthenticator directory. In addition to these, WebSphere MQ
Everyplace allows you to write your own authenticator.

How to write an authenticator

In queue-based security, authenticators are activated when a queue is first accessed
and they can grant or deny access to the queue. When a queue is accessed from its
local queue manager, the authenticator is activated when the first operation, for
example put, get , or browse is performed on the queue. When a queue is accessed
from a remote queue manager, WebSphere MQ Everyplace establishes a channel
between the two queue managers and the authenticator is activated as part of
establishing the channel.

Java codebase
All authenticators must extend the base authenticator class:

class MyAuthenticator extends com.ibm.mge.MQeAuthenticator

The following methods in the base class can be overridden:

activateMaster()
The signature for this method is:

public byte[] activateMaster(boolean local) throws Exception

It is invoked on the queue manager that initiates access to a queue. The
parameter local indicates whether this is a local access, that is the queue is
on the same queue manager, local == true, or a remote access, local ==
false. The method should collect data to authenticate the queue manager or
user and return the data in a byte array. The data is passed to the
activateSlave() method. The activateMaster() method in the base class,
MQeAuthenticator, simply returns null. It does not throw any exceptions.
Any exceptions thrown by this method, in a subclass, are not caught by
WebSphere MQ Everyplace itself, but are passed back to the user’s code
and terminate the attempt to access the queue.

activateSlave()
The signature for this method is:

© Copyright IBM Corp. 2000, 2002 1

security

public byte[] activateSlave(boolean local, byte data[]) throws Exception

This is invoked on the queue manager that owns the queue. The parameter
local indicates whether this is a local access, i.e. initiated on the same
queue manager, local == true, or a remote access, local == false. The
parameter datacontains the data returned by the activateMaster() method.
The activateSlave() method should validate this data. If it is satisfied
with the data it should call the setAuthenticatedID() method to set the
name of the authenticated entity, this indicates that the first stage of the
authentication was successful. It can then collect data to authenticate the
local queue manager and return it in a byte array. The data is passed to the
slaveResponse() method. If it is not satisfied with the data, it throws an
exception indicating the reason. The activateSlave() method in the base
class, MQeAuthenticator, checks whether the name of the authenticated
entity has been set and if it has, it logs the name; it then returns null. It
does not throw any exceptions. Any exceptions thrown by this method, in
a subclass, are not caught by WebSphere MQ Everyplace itself, but are
passed back to the initiating queue manager where they are re-thrown.
WebSphere MQ Everyplace does not catch these exceptions on the
initiating queue manager and they are passed back to the user’s code and
will terminate the attempt to access the queue.

slaveResponse()

The signature for this method is:
public void slaveResponse(boolean local, byte data[]) throws Exception

It is invoked on the queue manager that initiates access to a queue. The
local parameter indicates whether this is a local access, local == true, or a
remote access, local == false. The parameter data contains the data
returned by the activateSlave() method. If it is satisfied with the data it
should call the setAuthenticatedID() method to set the name of the
authenticated entity, this indicates that the second stage of the
authentication was successful. If the activateSlave() method did not
return any data, and the slaveResponse() method is satisfied with this, it
still calls setAuthenticatedID() to indicate success. If it is not satisfied
with the data, it throws an exception indicating the reason. The
slaveResponse() method in the base class, MQeAuthenticator, simply
returns null. It does not throw any exceptions. Any exceptions thrown by
this method, in a subclass, are not caught by WebSphere MQ Everyplace
itself, but are passed back to the user’s code and terminate the attempt to
access the queue.

2 WebSphere MQ Everyplace: Systems Programming Guide

security

Queue manager Queue manager
that initiates that owns
access the queue
activatemaster()

{

returnbyte []---___

B S
activateSlave(byte [])

{
return byte []

pn
slaveResponse(byte [])

{
}

Figure 1. The slaveResponse() method in MQeAuthenticator

When a queue is accessed locally, the three methods are invoked in sequence on
the local queue manager.

The example logon authenticator

The example logon authenticator shows how to implment these. It has a base class,
examples.attributes.LogonAuthenticator, and three subclasses, one for the
NTAuthenticator, one for the UnixAuthenticator, and one for the
Userid Authenticator. The base class provides common functionality and the
subclasses provide functionality that is specific to the type of authenticator, that is
NT, Unix, or Userid. The activateMaster() method in the LogonAuthenticator
class creates an empty MQeFields object and passes it into a method called
prompt (). This is overridden in each of the subclasses, and in each case it displays
a Java dialog box, collects data from it, masks the data with a simple exclusive OR
operation, and adds the data to the MQeFields object. The exclusive OR is used in
the example authenticators but in practice it does not provide much protection.
The MQeFields object is dumped to provide a byte array which is returned by
activateMaster(). The activateMaster() method is invoked on the queue
manager that initiates access to the queue, so the dialog box is displayed by this
queue manager.
public byte[] activateMaster(boolean local) throws Exception {

MQeFields fields = new MQeFields();
/* for request fields */

this.prompt(fields);
/* put up the dialog prompt =/

return (fields.dump());
/* return ID */

}

The activateSlave() method receives the data returned by activateMaster(),
restores it into a MQeFields object and passes the object into the validate()
method. This is overridden in each of the subclasses, and in each case it validates
the data in a way appropriate to the authenticator. For example, in the
NTAuthenticator subclass, the validate() method unmasks the data and passes it
to the TogonUser() method. This method uses Java Native Interface (JNI) to access

Chapter 1. Security 3

security

the Windows security mechanism and check whether the user name and password
are valid. If they are valid, the validate() method returns the user name,
otherwise it throws an exception.

public byte[] activateSlave(boolean local,
byte data[]) throws Exception {
MQeFields fields = new MQeFields(data); /* work object */
try {
authID = this.validate(fields);
/* get the auth ID value */
setAuthenticatedID(authID);

/* is it allowed ? */
super.activateSlave(local, data);
/* call ancestor */
trace("_:Logon " + authID);
/* trace */
MQeFields result = new MQeFields();
/* reply object */
result.putAscii(Authentic_ID, authID);/* send id */

return (result.dump());
/* send back as response */

catch (Exception e) {

/* error occured */
authID = null;

/* make sure authID is null */
setAuthenticatedID(null);

/* invalidate */
throw e;

/* re-throw the exception */

}

If the user name is valid, the activateSlave() method calls setAuthenticatedID()
to register the user name and the calls super.activateSlave() which puts out a
log message. It issues a trace message, adds the user name to a MQeFields object,
dumps this to a byte array and returns it. If the user name is not valid, validate()
throws an exception. The activateSlave() method catches the exception, ensures
the authenticated id is null and re-throws the exception. The slaveResponse
method() receives the byte array returned by activateSlave() and restores it into a
MQeFields object. The user name that was validated by activateSlave() is
extracted from this and passed to setAuthenticatedID().

public void slaveResponse(boolean local, byte data[])

throws Exception { super.slaveResponse(local, data); /* call ancestor*/
MQeFields fields = new MQeFields(data); /* work objectx/
setAuthenticatedID(fields.getAscii(Authentic_ID)); /* id to check */

}

These authenticators behave the same for both local and remote accesses, so they
ignore the local parameter to these methods.

C codebase

In the C codebase, you need to provide at least four functions to implement an
authenticator needs. These functions are:

1. new()

2. activateMaster()
3. ctivateSlave()
4. slaveResponse()

4 WebSphere MQ Everyplace: Systems Programming Guide

security

In terms of functionality, functions 2 to 4 behave exactly the same as their
counterpart implementation. If your new() function allocates any private memory,
you then have to provide a free() function, which frees the private memory you
have allocated.

new()

The new() function is executed when the authenticator is loaded by
WebSphere MQ Everyplace. It serves as an initialisation function for the
authenticator. Its main functionality includes:

* Alocating private memory, if required

* Notifying theWebSphere MQ Everyplace system of the implementations
for the activateMaster(), activateSlave(), slaveResponse(), and
free() functions

* Providing initial values for private variables

To notify the WebSphere MQ Everyplace of the existence of your
implementation, call the mgeClassAlias_add() function, which has the
following signature:
MQERETURN mgeClassAlias_add(MQERETURN * pExceptBlock,
MQeStringHndl hWinCEAuthName,

MQeStringHndl hModuleName,
MQeStringHndl hInitFuncName);

In the previous example, the hWinCEAuthName is a string name for the
authenticator. The hModuleName is the dynamically loadable library file
name in which your authenticator has been compiled into, and the
hInitFuncName is the name of your new function, which can be an arbitrary
name. The new() function has the following signature:

MQERETURN new(MQeAttrPTugin_SubclassInitInput * pInput,

MQeAuthenticator_SubclassInitOutput * pOutput
)s

The pOutput points to an MQeAuthenticator_SubclassInitOutput structure,
which needs to be filled in. The MQeAuthenticator SubclassInitOutput
contains the following fields:

MQEVERSION version;
Assign MQE_CURRENT_VERSION to this variable.

MQeStringHnd1 hClassName;
Assign the Java class name of the authenticator, MQeString, to this
variable.

MQEBOOL regRequired;
Assign MQE_FALSE to this variable.

MQEKEYTYPE keyType;
Assign MQE_KEY_NULL to this variable.

MQeAuthenticator_FreeFunc fFree;
Assign the address of the free() function to this variable.

MQeAuthenticator_ActivateMasterPrepFunc fActivateMasterPrep;
Assign the address of the activateMaster() function to this
variable.

MQeAuthenticator_ActivateSlavePrepFunc fActivateSlavePrep;
Assign the address of the activateSlave() function to this
variable.

Chapter 1. Security 5

security

MQeAuthenticator_ProcessSlaveResponseFunc fProcessSlaveResponse;
Assign the address of the activateSlave() function to this
variable.

MQeAuthenticator_CloseFunc fClose;
Assign NULL to this variable.

MQEVOID * pSubclassPrivateData;
Assign the address of authenticator’s private data memory to this
variable.

Any pointers or handles that are not used in the implementation must be
initialised to NULL.

free() The signature of free() is:
MQERETURN free(MQeAuthenticatorHndl hThis,
MQeAttrPlugin_Freelnput * plInput,
MQeAttrPlugin_FreeOutput * pOutput
)s

If the new() function allocates private memory, the pointer to the allocated
memory can be retrieved into a pointer p using:

mgeAuthenticator_getPrivateData(hThis, pExceptBlock, (MQEVOID **) &p);

The pointer can then be used to free the memory. The MQeString assigned
to the hClassName in the new() function, if any, are automatically freed by
the system when mqeAttrBase_free is called.

activateMaster()
The signature of activateMaster() is:
MQERETURN activateMaster(MQeAuthenticatorHndl hAuthenticator,
MQeAttrPlugin_ActivateMasterPrepInput *pInput,

MQeAttrPlugin_ActivateMasterPrepQutput * pOutput
)s

Refer to description in the corresponding section for the required
functionality for this function. The pOutput points to an
MQeAttrPlugin_ActivateMasterPrepOutput structure which needs to be
filled in. The MQeAttrPlugin_ ActivateMasterPrepOutput contains the
following fields:

MQEINT32 * pOutputDatalen;
Assign the length of the output data for activateSlave() to this
variable.

MQEBYTE * pOutputData;
Assign the address of the output data buffer for activateSlave()
to this variable.

activateSlave()
The signature of activateSlave() is:
MQERETURN activateSlave(MQeAuthenticatorHndl hAuthenticator,
MQeAttrPlugin_ActivateSTavePrepInput *pInput,

MQeAttrPlugin_ActivateSlavePrepOutput *pOutput
)s

Refer to description in the Corresponding section for the required
functionality for this function. The pInput points to an
MQeAttrPlugin_ActivateSlavePrepInput structure which contains the input
from the activateMaster() and the pOutput points to an

6 WebSphere MQ Everyplace: Systems Programming Guide

security

MQeAttrPlugin ActivateSlavePrepOutput structure which needs to be filled
in. The MQeAttrPlugin_ActivateSTavePrepInput contains the following
fields:

MQEINT32 * pInputDatalen;
Get the length of the input data from activateMaster() from this
variable.

MQEBYTE * pInputData;
Get the address of the input data buffer from activateMaster()
from this variable.

The MQeAttrPTugin_ActivateSlavePrepOutput contains the following fields:

MQEINT32 * pOutputDatalen;
Assign the length of the output data for slaveResponse() to this
variable.

MQEBYTE * pOutputData;
Assign the address of the output data buffer for slaveResponse() to
this variable.

slaveResponse()
The signature of slaveResponse() is:
MQERETURN slaveResponse(MQeAuthenticatorHndl hAuthenticator,
MQeAttrPlugin_ProcessSlaveResponselInput *pInput,

MQeAttrPlugin_ProcessSTaveResponseOutput *pOutput
)s

Refer to description in the corresponding section for the required
functionality for this function. The pInput points to an
MQeAttrPlugin_ProcessSlaveResponselnput structure which contains the
input from the activateSlave(). The
MQeAttrPlugin_ProcessSlaveResponselnput contains the following fields:

MQEINT32 * pInputDatalen;
Get the length of the input data from activateSlave() from this
variable.

MQEBYTE * pInputData;
Get the address of the input data buffer from activateSlave()
from this variable.

The example WinCEAuthenticator

The example WinCEAuthenticator shows how the methods listed in the previous
section can be implemented. It is functionally very similar to the example
NTAuthenticator in the Java code base.

Calling winCEAuthenticator_new() function implements the new() function. This
allocates a private memory block to register the type of the authenticator, private
to this implementation, filling-in private variables and the function pointers
mentioned above so they point to the right function implementations, and set
pOutput->hClassName to "WinCEAuthenticator”. Notice that no
"WinCEAuthenticator” is provided in the Java package. This is because the
WinCEAuthenticator is designed to be executed only on a C client. The
"WinCEAuthenticator” string is created for demonstration purposes only. The
pOutput->hClassName must point to an existing Java class if the authenticator is to
be used in a dialogue between a C client and a Java server.

Chapter 1. Security 7

security

MQERETURN winCEAuthenticator new(
MQeAttrPlugin_SubclassInitInput * pInput,
MQeAuthenticator SubclassInitOutput * pOutput

) |

MQeStringHndl hClassName;
MQeExceptBlock * pExceptBlock =
(MQeExceptBlock*) pOutput->pExceptBlock;

(void)mgeString _newChar8(pExceptBlock,
&hClassName,
"WinCEAuthenticator");
if (MQERETURN_OK == pExceptBlock->ec) {
pOutput->pSubclassPrivateData = malloc(sizeof(MQEINT32));
if (NULL != pOutput->pSubclassPrivateData) {
*((MQEINT32 =)pOutput->pSubclassPrivateData) = AUTHENTICATOR;
pOutput->hClassName = hClassName;
pOutput->regRequired = MQE_FALSE;
/* key type unknown */
pOutput->keyType = MQE_KEY_NULL;

/* pointers to subclass implementations of support methods */
pOutput->fFree = winCEAuthenticator_free;
pOutput->fActivateMasterPrep = winCEAuthenticator_activateMasterPrep;
pOutput->fActivateSTavePrep = winCEAuthenticator_activateSlavePrep;
pOutput->fProcessSlaveResponse = winCEAuthenticator_processSTaveResponse;
pOutput->fClose = NULL;

} else {
pExceptBlock->ec
pExceptBlock->erc

MQERETURN_ALLOCATION_ FAIL;
MQEREASON_NA;

}

return pExceptBlock->ec;

}

Calling winCEAuthenticator_free() implements the free() function. It retrieves
the private memory block allocated by winCEAuthenticator_new(), making sure the
authenticator has got the right private signature, and then frees the memory block.
MQERETURN winCEAuthenticator free(MQeAuthenticatorHndl hThis,
MQeAttrPlugin_Freelnput * pInput,
MQeAttrPlugin_FreeQutput * pOutput
) Ao

MQeExceptBlock * pExceptBlock = (MQeExceptBlockx)
pOutput->pExceptBlock;
MQEINT32 * pType;

pExceptBlock->ec = MQERETURN_INVALID_ARGUMENT;
pExceptBlock->erc = MQEREASON_INVALID_SIGNATURE;

if ((NULL !'= hThis) &&
(MQERETURN_OK == mqeAuthenticator_getPrivateData(hThis,
pExceptBlock,
(MQEVOID**) &pType))
) {
/* make sure it is an authenticator created here x/
if (AUTHENTICATOR == *pType)
pExceptBlock->ec = MQERETURN_OK;
pExceptBlock->erc = MQEREASON_NA;
free(pType);
1

}

return pExceptBlock->ec;

8 WebSphere MQ Everyplace: Systems Programming Guide

security

Calling winCEAuthenticator_activateMasterPrep() implements the
activateMaster() function. It creates an empty MQeFields structure and passes it
into a function called prompt (). The prompt() function:

* Displays a dialogue box

* Collects data from the dialogue box

* Masks the data with a simple exclusive OR operation
* Adds the data to the MQeFields object

The exclusive OR is used in the example authenticators, but in practice it does not
provide much protection. The MQeFields structure is then dumped to provide a
byte array, which is returned by winCEAuthenticator_activateMasterPrep().

MQERETURN winCEAuthenticator activateMasterPrep(

MQeAuthenticatorHndl hAuthenticator,
MQeAttrPlugin_ActivateMasterPrepInput * plnput,
MQeAttrPlugin_ActivateMasterPrepOutput * pOutput) {

static MQeFieldsHndl hActivateMasterFields = NULL;
MQEINT32 * pOutputDatalen = pOutput->pOutputDatalen;
MQEBYTE = pOutputData = pOutput->pOutputData;
MQeExceptBlock * pExceptBlock =

(MQeExceptBlock*) pOutput->pExceptBlock;

/* initialize exception block x/
pExceptBlock->ec = MQERETURN_OK;
pExceptBlock->erc = MQEREASON NA;

if (NULL == hActivateMasterFields) {
/* get data for authentication */
(void)mgeFields_new(pExceptBlock,
&hActivateMasterFields);
if (MQERETURN_OK == pExceptBlock->ec) {
[x%
* Write your code here which puts the input data,
for example., userid, password into hActivateMasterFields.
The format is not important as long as it can be
understood by your corresponding code in
winCEAuthenticator_activateSlavePrep, which digests
* these data.
*/
prompt (hActivateMasterFields, pExceptBlock);}

* ok X X

if (MQERETURN_OK == pExceptBlock->ec) {
/* dump the fields */
(void)mgeFields_dump(hActivateMasterFields,
pExceptBlock,
pOutputData,
pOutputDatalen);
1

if ((NULL !'= hActivateMasterFields) &&
((NULL != pOutputData) ||
(MQERETURN_OK != pExceptBlock->ec))) {
[**
* Caller has supplied a buffer or operation failed.
* No need to keep the Fields any more.
*/
(void)mgeFields free(hActivateMasterFields, NULL);
hActivateMasterFields = NULL;
!

return pExceptBlock->ec;

Chapter 1. Security 9

security

The winCEAuthenticator_activateSlavePrep() implements the activateSlave()
function. The winCEAuthenticator_activateSlavePrep() method receives the data
returned by winCEAuthenticator_activateMasterPrep(), restores it into an
MQeFields structure and passes it into a validate() function. The validate()
function unmasks the data and passes it to the system LogonUser() function. This
function checks if the user name and password are valid.

On a WiInCE system, the LogonUser() never returns if the user name and password
are not valid. The following winCEAuthenticator_activateSlavePrep() and
winCEAuthenticator_processSlaveResponse() implementations, however, assume
that LogonUser() will always return with a value indicating whether or not the
input is valid, in order to demonstrate what you need to do. If the user name and
password are valid, the winCEAuthenticator_activateSlavePrep() function calls
mgeAuthenticator_setAuthenticatedID() to register the user name as if the code is
running on a server. It may be that this code is running on a client just as the
winCEAuthenticator_activateMasterPrep. It then adds the user name to an
MQeFields, dumps this to a byte array, and returns it. If the user name is not valid,
the winCEAuthenticator_activateSlavePrep() function returns an error.

MQERETURN winCEAuthenticator_activateSlavePrep(

MQeAuthenticatorHndl hAuthenticator,

MQeAttrPlugin_ActivateSlavePrepInput * plInput,
MQeAttrPlugin_ActivateSlavePrepOutput * pOutput) {

static MQeFieldsHndl hActivateSlaveFields = NULL;
MQeFieldsHnd1l hTempFields = NULL;
MQEINT32 inputDatalen = pInput->inputDatalen;
MQEBYTE = pInputData = pInput->pInputData;
MQEINT32 * pOutputDatalen = pOutput->pOutputDatalen;
MQEBYTE = pOutputData = pOutput->pOutputData;
MQeExceptBlock * pExceptBlock =

(MQeExceptBlock*) pOutput->pExceptBlock;

/* initialize exception block */
pExceptBlock->ec MQERETURN_OK;
pExceptBlock->erc = MQEREASON_NA;

if (NULL == hActivateSlaveFields) {

/* restore input */
(void)mgeFields_new(pExceptBlock, &hTempFields);
if (MQERETURN_OK == pExceptBlock->ec) {

/* restore it into a MQeFields =*/
(void)mgeFields_restore(hTempFields,
pExceptBlock,
pInputData,
inputDatalen);
if (MQERETURN_OK == pExceptBlock->ec) {
MQeStringHndl hAuthenticID = NULL;

[**

* put your code, which digests(authenticates)

* the input data your gathered in the

* winCEAuthenticator_activateMasterPrep().

* If successful, create an AuthenicateID string

* in hAuthenticlID.

*/

(void)validate(hTempFields, pExceptBlock,
&hAuthenticID);

if (MQERETURN_OK == pExceptBlock->ec) {
[**
* If successfully authenticated,
% set local id variable (recored a success)

*/

10 WebSphere MQ Everyplace: Systems Programming Guide

security

(void)mgeAuthenticator_setAuthenticatedID(hAuthenticator,
pExceptBlock,
hAuthenticID);
/* preparation for sending the id to the master */
if (MQERETURN_OK == pExceptBlock->ec) {
[x*
* Send the hAuthenticID to the Master,
* indicating a a success.
*/
(void)mgeFields new(pExceptBlock,
&hActivateSlaceFields);
if (MQERETURN_OK == pExceptBlock->ec) {
MQeStringHnd1l hAuthenticIDField;
(void)mgeString_newChar8(pExceptBlock,
&hAuthenticIDField,
AUTHENTIC_ID);
if (MQERETURN_OK == pExceptBlock->ec) {
(void)mgeFields_putAscii(hActivateSlaveFields,
pExceptBlock,
hAuthenticIDField,
hAuthenticID);
(void)mgeString_free(hAuthenticIDField, NULL);
}
}
}
}
1
(void)mgeFields_free(hTempFields, NULL);

}

if (MQERETURN_OK == pExceptBlock->ec) {
/* dump the fields =/
(void)mgeFields_dump(hActivateSlaveFields,
pExceptBlock,
pOutputData,
pOutputDatalen);

}

if ((NULL !'= hActivateSlaveFields) &&
((NULL !'= pOutputData) || (MQERETURN_OK != pExceptBlock->ec))) {
[**
* Caller has supplied a buffer or operation failed.
* No need to keep the Fields any more.
*/
(void)mgeFields_free(hActivateSlaveFields, NULL);
hActivateSlaveFields = NULL;
}

return pExceptBlock->ec;

}

Calling winCEAuthenticator_processSlaveResponse() implements the
slaveResponse() function. The winCEAuthenticator_processSlaveRespons ()
function receives the byte array returned by
winCEAuthenticator _activateSlavePrep() and restores it into an MQeFields
structure. The user name, validated by activateSlave(), is extracted from this and
passed to mgeAuthenticator_setAuthenticatedID().

MQERETURN winCEAuthenticator processSlaveResponse(

MQeAuthenticatorHndl hAuthenticator,

MQeAttrPlugin_ProcessSTaveResponselnput * pInput,
MQeAttrPlugin_ProcessSlaveResponseQutput * pOutput

) Ao

MQEINT32 inputDatalLen = pInput->inputDatalen;

Chapter 1. Security 11

security

MQEBYTE * pInputData = pInput->pInputData;

MQeFieldsHndl hFields;

MQeExceptBlock * pExceptBlock =
(MQeExceptBlock *)pOutput->pExceptBlock;

/* initialize exception block */
pExceptBlock->ec MQERETURN_OK;
pExceptBlock->erc = MQEREASON_NA;

/* restore input */
(void)mgeFields_new(pExceptBlock, &hFields);
if (MQERETURN_OK == pExceptBlock->ec) {
(void)mgeFields_restore(hFields,
pExceptBlock,
pInputData,
inputDatalen);
/* get ID */
if (MQERETURN_OK == pExceptBlock->ec) {
MQeStringHndl hAuthenticIDField;

(void)mgeString_newChar8(pExceptBlock,
&hAuthenticIDField,
AUTHENTIC_ID);
if (MQERETURN_OK == pExceptBlock->ec) {
MQeStringHndl hAuthenticID;
(void)mgeFields_getAscii(hFields,
pExceptBlock,
&hAuthenticlID,
hAuthenticIDField);
/** If the above call failed,
* then the authentication by the sTave was not successful.
*
/
if (MQERETURN_OK == pExceptBlock->ec) {
/* set local ID */
(void)mgeAuthenticator_setAuthenticatedID(hAuthenticator,
pExceptBlock,
hAuthenticID);
}
(void)mgeString_free(hAuthenticIDField, NULL);
}

}
(void)mgeFields_free(hFields, NULL);
}

return pExceptBlock->ec;

Certificate management

WebSphere MQ Everyplace can use private or public key encryption for message
level security using the MQeMTrustAttribute, and for queue based security using
the MQeWTLSCertAuthenticator. Any entity, for example queue manager, queue,
application, person, which needs private and public keys must have a private
registry. When the registry is initialised it generates and store the keys, if the
associated information is supplied. The private key is encrypted and stored directly
in the registry. The public key is sent to the certificate server, this returns a public
certificate containing the public key and the registry stores the certificate. For
message level security, the certificates must also be copied to public registries so
that they are available to other entities that need them. This is not required for
queue based security.

The certificate server normally issues certificates, which are valid for 12 months.

The certificates cannot be used once they have expired, so it is important to keep
track of the expiry dates and to renew the certificates before they expire.

12 WebSphere MQ Everyplace: Systems Programming Guide

security
Examining certificates

Certificates can be examined using the
com.ibm.mge.attributes.MQeListCertificates class. This class opens a registry
and allows you to list all the certificates in it, or to examine specific certificates by
name. To use the class, you must supply the name of the registry and a MQeFields
object that contains the information required to open it:

MQeRegistry.LocalRegType (ascii)
For a public registry, set this parameter to
com.ibm.mge.registry.MQeFileSession. For a private registry, set it to
com.ibm.mge.registry.MQePrivateSession.

MQeRegistry.DirName (ascii)
The name of the directory holding the registry files.

MQeRegistry.PIN(ascii)
The PIN protecting the registry. This is only required for private registries.

No other parameters are required to open the registry for this class. If the registry
is a public registry with the name "MQeNode_PublicRegistry”and the class is
initialised in the directory that contains the registry, the MQeFields object can be
null. If the registry belongs to the mini-certificate server, its name is
"MiniCertificateServer”. If the registry belongs to a queue, its name is
"MiniCertificateServer”. If the registry belongs to a queue, its name is

MQeListCertificates list;
String fileRegistry = "com.ibm.mge.registry.MQeFileSession";
String privateRegistry = "com.ibm.mge.registry.MQePrivateSession";

void open(String regName, String regDirectory,
String regPIN) throws Exception

{

MQeFields regParams = new MQeFields();

// if regPIN == null, assume file registry

String regType = (regPIN == null) ?

fileRegistry : privateRegistry;

regParams.putAscii(MQeRegistry.RegType, regType);

regParams.putAscii(MQeRegistry.DirName, regDirectory);

if (regPIN != null)
regParams.putAscii(MQeRegistry.PIN, regPIN);

list = new MQeListCertificates(regName, regParams);

}

This constructor opens the registry. Once this has been done, the registry entries
for the certificates can be retrieved. They can either be retrieved individually by
name:

MQeFields entry = Tist.readEntry(certificateName);

or all the certificate entries in the registry can be retrieved together:
MQeFields entries = Tist.readAl1Entries();

The value returned from readAl1Entries() is a MQeFields object that contains a
field for each certificate in the registry, the name of the field is the name of the
certificate and the contents of the field is a MQeFields object containing the
registry entry. You can process each registry entry using an enumeration:

Enumeration enum = entries.fields();

if (!'enum.hasMoreElements())
System.out.printin("no certificates found");

Chapter 1. Security 13

security

else

{

while (enum.hasMoreElements())

{
// get the name of the certificate
String entity = (String) enum.nextElement();
// get the certificate's registry entry
MQeFields entry = entries.getFields(entity);

// do something with it

}

The certificate can be obtained from the registry entry using the
getWTLSCertificate() method:

Object certificate = Tist.getWTLSCertificate(entry);

Information can now be obtained from the certificate:

String subject = list.getSubject(certificate);
String issuer list.getIssuer(certificate);
Tong notBefore = Tist.getNotBefore(certificate);
long notAfter list.getNotAfter(certificate);

The notBefore and notAfter times are the number of seconds since the midnight
starting 1st January 1970, that is the standard UNIX format for dates and times.

Finally, the list object should be closed:
list.close();

The MQeListCertificates class is used in the example program,
examples.certificates.ListWTLSCertificates, which is a command-line program
that lists certificates.

The program has one compulsory and three optional parameters:
ListWTLSCertificates <regName>[<ini file>][<level>][<cert names>]

where:

regName
The name of the registry whose certificates are to be listed. It can be a
private registry belonging to a queue manager, a queue or another entity. It
can be a public registry, or, for the administrator, it can be the
mini-certificate server’s registry. If you want to list the certificates in a
queue’s registry, you must specify its name as <queue manager>+<queue>,
for example myQM+myQueue. If you want to list the certificates in a public
registry, it must have the name MQeNode_PubTicRegistry. It will not work
for a public registry with any other name. The name of the mini-certificate
server’s registry is MiniCertificateServer .

ini file
This is the name of a configuration file that contains a section for the
registry. This is typically the same configuration file that is used for the
queue manager or mini-certificate server. For a queue, this is typically the
configuration file for the queue manager that owns the queue. This
parameter should be specified for all registries except public registries, for
which it can be omitted.

level The level of detail for the listing. This can be:

14 WebSphere MQ Everyplace: Systems Programming Guide

security

¢ "-b" or "-brief”, which prints the names of the certificate, one name per
line.

e "-f" or "-full”, which prints the names of the certificates and some of the
contents.

This parameter is optional and if omitted the "brief” level of detail is used.

cert names
This is a list of names of the certificates to be listed. It starts with the flag
"-cn” followed by names of the certificates, for example -cn ExampTleQM
putQM .If this parameter is used, only the named certificates are listed. If
this parameter is omitted, all the certificates in the registry are listed.

The MQe_Explorer configuration tool can also be used to examine certificates
which belong to queue managers or queues.

Renewing certificates

To ensure continuity of service, we recommend that you renew certificates before
they expire. Certificates are renewed using the same mini-certificate issuance
service that originally issued them. Before requesting a renewal, the request must
be authorized with the issuance service and a one-time-use certificate request PIN
obtained, in just the same way as for the initial certificate issuance.

When a certificate is renewed, the new certificate contains the same public key as
the old certificate. For additional security, you may wish to change credentials
regularly. This involves generating a new private and public key, storing the new
private key in the registry, and requesting a new certificate for the public key. If
you use message level security with the MTrustAttribute, and change credentials,
you will not be able to use the new credentials to read messages sent with the old
credentials. The old credentials are not deleted, but are renamed within the registry
so that they are still available.

The class com.ibm.mge.registry.MQePrivateRegistryConfigure can be used both to
renew certificates and to generate new credentials. To use the class, you must
supply the name of the registry, an MQeFields object that contains the information
required to open it, and optionally the registry’s PIN.

Chapter 1. Security 15

16 WebSphere MQ Everyplace: Systems Programming Guide

Chapter 2. Adapters

This chapter describes how to implement adapters in a WebSphere MQ Everyplace
application. You can use WebSphere MQ Everyplace adapters to map WebSphere
MQ Everyplace to storage or communications device interfaces. You can also write
your own adapters.

This chapter contains the following sections:

+ [Storage adapters|

¢ |Communications adapters|

« [How to write adapters|

Storage adapters

WebSphere MQ Everyplace provides the following storage adapters. You cannot
alter the behavior of these adapters. For more information on the specific
behaviour of each storage adapter, refer to the WebSphere MQ Everyplace Java
Programming Reference and the WebSphere MQ Everyplace C Programming
Reference.

Storage adapters

MQeCaselnsensitiveDiskAdapter
Provides support for case insensitive matching when locating a specific file
in permanent storage.

MQeDiskFieldsAdapter

Provides support for reading and writing to persistent storage.
MQeMappingAdapter

Provides support for mapping long file names to short file names.

MQeMemoryFieldsAdapter
Provides support for reading and writing to non-persistent storage.

MQeMidpFieldsAdapter
Provides support for reading and writing to permanent storage within a
MIDP environment.

MQeReducedDiskFieldsAdapter
Provides support for high speed writing to permanent storage.

Communications adapters

WebSphere MQ Everyplace provides the following communications adapters. You
can modify the behavior of these adapters using Java properties. For more
information on how to use these properties and their effect on each
communications adapter, refer to the WebSphere MQ Everyplace Java
Programming Reference.

Communications adapters

MQeMidpHttpAdapter
Provides support for reading and writing to the network using the HTTP
1.0 protocol in a MIDP environment.

© Copyright IBM Corp. 2000, 2002 17

adapters

MQeTcpipHistoryAdapter
Provides support for reading and writing to the network using the TCP
protocol. This adapter provides the best TCP performance by chaching
recently used data. Therefore, we recommend that you use this adapter.

MQeTcpipLengthAdapter
Provides support for reading and writing to the network using the TCP
protocol.

MQeTcpipHttpAdapter
Provides support for reading and writing to the network using the HTTP
1.0 protocol. Also provides support for passing HTTP requests through
Proxy servers.

Note: If using the Microsoft JVM, the http:proxyHost and http:proxyPort
properties are automatically set by the JVM using the settings in the
Internet Explorer. If the use of proxies is not required for WebSphere
MQ Everyplace, set the http.proxySet Java property to false.

MQeUdpipBasicAdapter
Provides support for reading and writing to the network using the UDP
protocol. This adapter uses only one port on the server. The behaviour of
this adapter is particularly sensitive to the various Java property settings,
as detailed in the WebSphere MQ Everyplace Java Programming Reference.

MQeWESAuthenticationAdapter
Provides support for passing HTTP requests through WebSphere MQ
Everyplace authentication proxy servers and transparent proxy servers.

You can also write your own adapters to tailor WebSphere MQ Everyplace for your
own environment. The next section describes some adapter examples that are
supplied to help you with this task.

How to write adapters

This example is not intended as a replacement for the adatpers that are supplied
with WebSphere MQ Everyplace, but as a simple introduction on how to create a
communications adapter.

To use your communications adapter, you must specify the correct class name
when creating the listener on the server queue manager, and specify the connection
definition on the client queue manager.

All communications adapters must inherit from MQeCommunicationsAdapter and
must implement the required methods. In order to show how this might be done
we shall use the example adapter, examples.adapters.MQeTcpipLengthGUIAdapter.
This is a simple example that accepts data to be written. It also places the data
length and the amount of data to be written to standard out, at the front of the
data. When the adapter reads data, the data length is written to standard out.
Proper error checking and recovery is not carried out. This must be added to any
adapter written by a user.

WebSphere MQ Everyplace adapters use the default constructor. For this reason, an
activate() method is used in order to set up the adapter with an open() method
used to prepare the adapter for communication.

The activate() method is called only once in the life-cycle of an adapter and is,
therefore, used to set up the information from MQePropertyProvider. The

18 WebSphere MQ Everyplace: Systems Programming Guide

adapters

MQePropertyProvider looks internally to verify that the specified property is
available. If it is not available, it checks the Java properties. In this way, it is
possible for a user to specify a property that may be set by the application or JVM
command line. The MQeCommunicationsAdapter provides two variables that
allow the adapter to identify its role within the communications conversation:

* If the adapter is being used by the MQeListener, the variable 1isteningAdapter
is set to true.

 If the adapter has been created by the listening adapter in response to an
incoming request, the responderAdapter variable is set to true.

The following code, taken from the activate() method, shows how to obtain the
information from the MQePropertyProvider.
if (!listeningAdapter) {
// if we are not a listening adapter we need the
address of the server
address = info.getProperty
(MQeCommunicationsAdapter.COMMS_ADAPTER_ADDRESS) ;
1

The open() method is called before each conversation and must, therefore, be used
to set information that needs to be reset for each request or response. For example,
an adapter that is not persistent needs to create a socket each time it is opened.
The following code shows the use of the variables that identify the role of the
adatper role within the conversation:

if (listeningAdapter &% null == serverSocket) {

serverSocket = new ServerSocket (port);

} else if (!lresponderAdapter && null == mySocket) {
mySocket = new Socket(InetAddress.getByName(address), port);

}

Once the activate() and open() methods have been called, the listening adapter
waitForContact method is called. This method must wait at named location. In an
IP network, this will be a named port. When a request is received, a new adapter
is created.

Note: This method must set the listeningAdapter to false and the
responderAdapter to true.

Once the adapter has been set up correctly, you must must returned it to the caller.

The following code shows how to do this:

MQeTcpipLengthGUIAdapter clientAdapter =
(MQeTcpiplLengthGUIAdapter)
MQeCommunicationsAdapter.createNewAdapter(info);

// set the boolean variables so the adapter
// knows it is a responder. the listening
// variable will have been set to true as
// the MQePropertyProvider has the relevant
// information to create
// this listening adapter. We must therefore reset the
// listeningAdapter variable to false and the
//responderAdapter variable to true.
clientAdapter.responderAdapter = true;
clientAdapter.listeningAdapter = false;

// Assign the new socket to this new adapter
clientAdapter.setSocket(clientSocket);
return clientAdapter;

The initiator adapter and responder adapter are responsible for the main part of
the conversation. The initiator starts the conversation. The responder is created by

Chapter 2. Adapters 19

adapters

the listening adapter, reads the request that is passed back to WebSphere MQ
Everyplace, which then writes a response. The adapter determines how the read
and the write are undertaken. The example uses a BufferedInputStream and a
BufferedOutputStream.

Note: Use a a non-blocking mode of reading and writing. This enables the adapter
to respond to requests to shutdown.
The following code, taken from the waitForContact() method, shows how the
non-blocking read can be written. As WebSphere MQ Everyplace supports all Java
runtime environments we are unable to use Java version 1.4 specific classes for our
examples, although this version does contain new non-blocking classes
do {

try {
clientSocket = serverSocket.accept();

} catch (InterruptedIOException iioe) {
if (MQeThread.getDemandStop()) {
throw iioe;
}
1
} while (null == clientSocket);

An example of a simple communications adapter

This example uses the standard Java classes to manipulate TCPIP and adds a
protocol of its own on top. This protocol has a header consisting of a four byte
length of the data in the data packet followed by the actual data. This is so that the
receiving end knows how much data to expect.

This example is not meant as a replacement for the adapters that are supplied with
WebSphere MQ Everyplace but rather as a simple introduction into how to create
communications adapters. In reality, much more care should be taken with error
handling, recovery, and parameter checking. Depending on the WebSphere MQ
Everyplace configuration used, the supplied adapters may be sufficient.

A new class file is constructed, inheriting from MQeAdapter. Some variables are
defined to hold this adapter’s instance information, that is the name of the host,
port number and the output stream objects.

Note: With communications, ensure that the connection information is correct. For
example, the http connection in J2ME has no timeout implementation. In
J2SE, the client times out with an 1O Exception. In Midp the server times
out. If the default read-timeout has been increased for the J2SE client, the
same exception is thrown, that is com.ibm.mge.MQeException: Data:
(code=7). This is because the server writes back the exception to the client
and the client cannot restore this data.

The MQeAdapter constructor is used for the object, so no additional code needs to
be added for the constructor.

public class MyTcpipAdapter extends MQeAdapter
{

protected String host = "y

protected int port = 80;

protected Object readLock = new Object();
protected ServerSocket serversocket = null;
protected Socket socket = null;
protected BufferedInputStream stream_in = null;
protected BufferedOutputStream stream out = null;
protected Object writelLock = new Object();

20 WebSphere MQ Everyplace: Systems Programming Guide

adapters

Next the activate method is coded. This is the method that extracts from the file
descriptor the name of the target network address if a connector, or the listening
port if a listener. The fileDesc parameter contains the adapter class name or alias
name, and any network address data for the adapter for example
MyTcpipAdapter:127.0.0.1:80. The thisParam parameter contains any parameter
data that was set when the connection was defined by administration, the normal
value would be "?Channel”. The thisOpt parameter contains the adapter setup
options that were set by administration, for example MQe_Adapter_LISTEN if this
adapter is to listen for incoming connections.
public void activate(String fileDesc,
Object thisParam,
Object thisOpt,
int thisValuel,
int thisValue2) throws Exception
{
super.activate(fileDesc,
thisParam,
thisOpt,
thisValuel,
thisValue2);
/* isolate the TCP/IP address -

"MyTcpipAdapter:127.0.0.1:80" */
host = fileld.substring(fileld.indexOf(':') + 1);
i = host.indexOf(':');
/* find delimiter */
if (i>-1)
/* find it ? x/
{
port = (new Integer(host.substring(i + 1))).intValue();
host = host.substring(0, i);

}
}

The close method needs to be defined to close the output streams and flush any
remaining data from the stream buffers. Close is called many time during a session
between a client and a server, however, when the channel has completely finished
with the adapter it calls WebSphere MQ Everyplace with the option
MQe_Adapter FINAL. If the adapter is to have one socket connection for the life of
the channel then the call with MQe_Adapter_FINAL set, is the one to use to actually
close the socket, other calls should just flush the buffers. If however a new socket
is to be used on each request, then each call to WebSphere MQ Everyplace should
close the socket, subsequent open calls should allocate a new socket:

public void close(Object opt) throws Exception

{
if (stream_out != null)
/* output stream ? */
{
stream_out.flush();
/* empty the buffers =*/
stream_out.close();

/* close it */
stream out = null;
/* clear */
}
if (stream_in 1= null)
/* input stream ? */

{

stream_in.close();

/* close it */
stream_in = null;
/* clear */
}
if (socket I= null)

Chapter 2. Adapters 21

adapters
/* socket ? */

socket.close();

/* close it x/
socket = null;
/* clear */

}
if (serversocket != null)
/* serversocket ? */
{

serversocket.close();

/* close it */
serversocket = null;
/* clear */
}
host = "";
port = 80;

}

The control method needs to be coded to handle an MQe_Adapter ACCEPT request,
to accept an incoming connect request. This is only allowed if the socket is a
listener (a server socket). Any options that were specified for the listen socket
(excluding MQe_Adapter_LISTEN) are copied to the socket created as a result of the
accept. This is accomplished by the use of another control option

MQe_Adapter SETSOCKET this allows a socket object to be passed to the adapter that
was just instantiated.

public Object control(Object opt, Object ctrlObj) throws Exception

{
if (checkOption(opt, MQe.MQe Adapter LISTEN) &&
checkOption(opt, MQe.MQe_Adapter ACCEPT))
{
/* Ctr10bj - is a string representing the
file descriptor of the */
/* MQeAdapter object to be returned e.g. "MyTcpip:" */
Socket ClientSocket = serversocket.accept();
/* wait connect */
String Destination = (String) ctrlObj;
/* re-type objectx/
int i = Destination.indexOf(':');
if (i<0)
throw new MQeException(MQe.Except_ Syntax,
"Syntax:" + Destination);
/* remove the Listen option =*/
String NewOpt = (String) options;
/* re-type to string */
int j = NewOpt.indexOf(MQe.MQe_Adapter LISTEN);
NewOpt = NewOpt.substring(0, j) +
NewOpt.substring
(j + MQe.MQe_Adapter_ LISTEN.Tength());
MQeAdapter Adapter = MQe.newAdapter
(Destination.substring(0,i+1),
parameter,
NewOpt + MQe_Adapter_ ACCEPT,
-1,
-1);
/* assign the new socket to this new adapater */
Adapter.control(MQe.MQe_Adapter SETSOCKET, ClientSocket);
return(Adapter);

else
if (checkOption(opt, MQe.MQe_ Adapter SETSOCKET))
{

if (stream out != null) stream out.close();

if (stream_in != null) stream_in .close();
if (ctr10bj 1= null)

22 WebSphere MQ Everyplace: Systems Programming Guide

adapters

/* socket supplied 7%/
{

socket = (Socket) ctrl0bj;
/* save the socket */
stream_in

= new BufferedInputStream (socket.getInputStream ());
stream_out = new BufferedOutputStream(socket.getOutputStream());

!
else
return(super.control(opt, ctrlObj));
}

The open method needs to check for a listening socket or a connector socket and
create the appropriate socket object. Reinitialization of the input and output
streams is achieved by using the control method, passing it a new socket object.
The opt parameter may be set to MQe_Adapter_RESET, this means that any previous
operations are now complete any new reads or writes constitute a new request.

public void open(Object opt) throws Exception

if (checkOption(MQe.MQe_Adapter_ LISTEN))
serversocket = new ServerSocket(port, 32);
else
control(MQe.MQe_ Adapter SETSOCKET,
new Socket(host, port));
1

The read method can take a parameter specifying the maximum record size to be
read.

This examples calls internal routines to read the data bytes and do error recovery
(if appropriate) then return the correct length byte array for the number of bytes
read. Care needs to be taken to ensure that only one read at a time occurs on this
socket. The opt parameter may be set to:

MQe_Adapter CONTENT
read any message content

MQe_Adapter HEADER
read any header information

{ public byte[] read(Object opt, int recordSize) throws Exception

int Count = 0;
/* number bytes read */
synchronized (readLock)
/* only one at a time =*/

{
if (checkOption(opt, MQe.MQe Adapter HEADER))
{
byte 1recl1Bytes[] = new byte[4];
/* for the data Tength */
readBytes(1reciBytes, 0, 4);
/* read the length */
int recordSize = byteToInt(lrecliBytes, 0, 4);

1
if (checkOption(opt, MQe.MQe_Adapter CONTENT))
{
byte Temp[] = new byte[recordSize];
/* allocate work array =/
Count = readBytes(Temp, 0, recordSize);/* read data */
}
}
if (Count < Temp.length)
/* read all length ? =*/

Chapter 2. Adapters 23

adapters

Temp = MQe.sliceByteArray(Temp, 0, Count);
return (Temp);
/* Return the data */
1

The readByte method is an internal routine designed to read a single byte of data
from the socket and to attempt to retry any errors a specific number of times, or
throw an end of file exception if there is no more data to be read.

protected int readByte() throws Exception
{
int intChar = -1;
/* input characater */
int RetryValue = 3;
/* error retry count x/
int Retry = RetryValue + 1;
/* reset retry count x/

do{
/* possible retry */
try
/* catch io errors */

{

intChar = stream_in.read();
/* read a character */

Retry = 0;
/* dont retry */

1

catch (IOException e)

/* 10 error occured */

{

Retry = Retry - 1;

/* decrement */
if (Retry == 0) throw e;
/* more attempts ? */

1
} while (Retry !=0);

/* more attempts ? */
if (intChar == -1)
/* end of file ? x/
throw new EOFException();
/* ... yes, EOF */

return(intChar);
/* return the byte */
}

The readBytes method is an internal routine designed to read a number of bytes of
data from the socket and to attempt to retry any errors a specific number of times,
or throw an end of file exception if there is no more data to be read.

protected int readBytes(byte buffer[],
int offset, int recordSize)
throws Exception

int RetryValue = 3;
int i = 0;
/* start index */
while (i < recordSize)
/* got it all in yet ? =/
{
/* ... no */
int NumBytes = 0;
/* read count */
/* retry any errors based on the QoS Retry value */
int Retry = RetryValue + 1;
/* error retry count */
do{
/* possible retry */

24 WebSphere MQ Everyplace: Systems Programming Guide

adapters

try
/* catch io errors */
{
NumBytes = stream_in.read(buffer,
offset + i, recordSize - i);
Retry = 03
/* no retry */
1
catch (IOException e)
/* 10 error occured */
{
Retry = Retry - 1;
/* decrement */
if (Retry == 0) throw e;
/* more attempts ? */
1
} while (Retry !=0);
/* more attempts ? */
/* check for possible end of file =*/
if (NumBytes < 0)
/* errors ? */
throw new EOFException();
/* ... yes */
i =1 + NumBytes;
/* accumulate */
} return (i);
/* Return the count */
1

The readln method reads a string of bytes terminated by a 0x0A character it will
ignore 0x0D characters.

/*

/*

/*

/*

/*
/*

/% ...
/* ...

/*
/*
/*

/*

{

synchronized (readLock)

only one at a time =/
{
/* ignore the 4 byte length */
byte Trecl1Bytes[] = new byte[4]; /* for the data length x/
readBytes(TreclBytes, 0, 4);

read the length */

int intChar = -1;
input characater */
StringBuffer Result = new StringBuffer(256);

/* read Header from input stream */
while (true)
until "newline" */

{
intChar = readByte();

read a single byte =/
switch (intChar)
what character x/
{
case -1:
no character */
throw new EOFException();
yes, EOF x/
case 10:
eod of line x/
return(Result.toString());
all done */
case 13:
ignore */
break;
default:
real data */

Result.append((char) intChar);

Chapter 2. Adapters 25

adapters
/* append to string */
}

/* end of line ? */
1
}
1

The status method returns status information about the adapter. In this example it
returns for the option MQe_Adapter_NETWORK the network type (TCPIP), for the
option MQe_Adapter_LOCALHOST it returns the tcpip local host address.

public String status(Object opt) throws Exception

{

if (checkOption(opt, MQe.MQe_Adapter NETWORK))
return("TCPIP");

else

if (checkOption(opt, MQe.MQe Adapter LOCALHOST))
return(InetAddress.getlLocalHost().toString());

else

return(super.status(opt));

}

The write method writes a block of data to the socket. It needs to ensure that only
one write at a time can be issued to the socket. In this example it calls an internal
routine writeBytes to write the actual data and perform any appropriate error
recovery.

The opt parameter may be set to:

MQe_Adapter_ FLUSH
flush any data in the buffers

MQe_Adapter HEADER
write any header records

MQe_Adapter HEADERRSP
write any header response records

public void write(Object opt, int recordSize, byte data[])
throws Exception

synchronized (writeLock)
/* only one at a time =*/
{
if (checkOption(opt, MQe.MQe Adapter HEADER)
checkOption(opt, MQe.MQe Adapter HEADERRSP))
writeBytes(intToByte(recordSize), 0, 4);
/* write lengthx/
writeBytes(data, 0, recordSize);
/* write the data */
if (checkOption(opt, MQe.MQe_Adapter FLUSH))
stream out.flush();
/* make sure it is sent %/

}
}

The writeBytes is an internal method that writes an array (or partial array) of
bytes to a socket, and attempt a simple error recovery if errors occur.
protected void writeBytes(byte buffer[], int offset, int recordSize)

throws Exception

{
if (buffer != null)
/* any data ? */
{

26 WebSphere MQ Everyplace: Systems Programming Guide

/* break the data up into manageable chuncks =*/

int i = 0;
/* Data index */
int j = recordSize;
/* Data length */
int MaxSize = 4096;

/* small buffer */
int RetryValue = 3;
/* error retry count x/

do{
/* as long as data */
if (j < MaxSize)
/* smallbuffer ? */

MaxSize = j;
int Retry = RetryValue + 1;
/* error retry count */

do{
/* possible retry */
try
/* catch io errors */

{

stream_out.write(buffer, offset + i, MaxSize);

Retry = 0;
/* don't retry */

}
catch (IOException e)
/* 10 error occured */

{
Retry = Retry - 1;

/* decrement */
if (Retry == 0) throw e;
/* more attempts ? */

}
} while (Retry !=0);
/* more attempts ? */

i =1 + MaxSize;

/* update index */
Jj =J - MaxSize;
/* data left */

} while (>0);
/* till all data sent =*/
}
1

adapters

The writelLn method writes a string of characters to the socket, terminating with

0x0A and 0x0D characters.

The opt parameter may be set to:

MQe_Adapter FLUSH
flush any data in the buffers

MQe_Adapter HEADER
write any header records

MQe_Adapter HEADERRSP
write any header response records

public void writeln(Object opt, String data) throws Exception

{
if (data == null)
/* any data ? */
data = "";

write(opt, -1, MQe.asciiToByte(data + "\r\n"));

/* write data =*/

}

Chapter 2. Adapters 27

adapters

This is now a complete (though very simple) tcpip adapter that will communicate
to another copy of itself one of which was started as a listener and the other

started as a connector.

An example of a simple message store adapter

This example creates an adapter for use as an interface to a message store. It uses
the standard Java i/o classes to manipulate files in the store.

This example is not meant as a replacement for the adapters that are supplied with
WebSphere MQ Everyplace but rather as a simple introduction into how to create a

message store adapter.

A new class file is constructed, inheriting from MQeAdapter. Some variables are
defined to hold this adapter’s instance information, such as the name of the
file/message and the location of the message store.

The MQeAdapter constructor is used for the object, so no additional code needs to

be added for the constructor.

public class MyMsgStoreAdapter

protected String filter
/* file type filter */
protected String fileName
/* disk file name */
protected String filePath
/* drive and directory */
protected boolean reading
/* opened for reading =*/
protected boolean writing

extends MQeAdapter
implements FilenameFilter

false;

false;

Because this adapter implements FilenameFilter the following method must be
coded. This is the filtering mechanism that is used to select files of a certain type

within the message store.

public boolean accept(File dir, String name)

{

return(name.endsWith(filter));

}

Next the activate method is coded. This is the method that extracts, from the file
descriptor, the name of the directory to be used to hold all the messages.

The Object parameter on the method call may be an attribute object. If it is, this is
the attribute that is used to encode and/or decode the messages in the message

store.

The Object options for this adapter are:

* MQe_Adapter_READ
* MQe_Adapter_ WRITE
* MQe_Adapter_UPDATE

Any other options should be ignored.

public void
Object
Object
int
int

28 WebSphere MQ Everyplace: Systems Programming Guide

activate(String fileDesc,

param,
options,
valuel,
value2) throws Exception

adapters

{

super.activate(fileDesc, param, options, lrecl, noRec);
filePath = fileld.substring(fileld.indexOf(':') + 1);
String Temp = filePath;
/* copy the path data =*/
if (filePath.endsWith(File.separator))
/* ending separator ? */
Temp = Temp.substring(0, Temp.length() -
File.separator.length());

else
filePath = filePath + File.separator;
/* add separator */

File diskFile = new File(Temp);
if (! diskFile.isDirectory())
/* directory ? */
if (! diskFile.mkdirs())
/* does mkDirs work ? x/
throw new MQeException(MQe.Except_NotAllowed,
"mkdirs '" + filePath + "' failed");
filePath = diskFile.getAbsolutePath() + File.separator;
this.open(null);

The close method disallows reading or writing.
public void close(Object opt) throws Exception

{
reading = false;

/* not open for readingx/
writing = false;

/* not open for writingx/

}

The control method needs to be coded to handle an MQe_Adapter LIST that is, a
request to list all the files in the directory that satisfy the filter. Also to handle an

MQe_Adapter FILTER that is a request to set a filter to control how the files are
listed.

public Object control(Object opt, Object ctrlObj) throws Exception

{

if (checkOption(opt, MQe.MQe Adapter LIST))
return(new File(filePath).list(this));

else

if (checkOption(opt, MQe.MQe_Adapter FILTER))
{

filter = (String) ctrlObj;
/* set the filter */
return(null);
/* nothing to return */

}

else

return(super.control(opt, ctrlObj));
/* try ancestor */

}

The erase method is used to remove a message from the message store.
public void erase(Object opt) throws Exception

{
if (opt instanceof String)
/* select file ? */

{
String FN = (String) opt;
/* re-type the option x/
if (FN.indexOf(File.separator) > -1)
/* directory ? */
throw new MQeException(MQe.Except_Syntax,

Chapter 2. Adapters

29

adapters

"Not allowed");
if (! new File(filePath + FN).delete())
throw new MQeException(MQe.Except NotAllowed,
"Erase failed");
}

else
throw new MQeException(MQe.Except_NotSupported,
"Not supported");
}

The open method sets the Boolean values that permit either reading of messages or
writing of messages.

public void open(Object opt) throws Exception
{

this.close(null);
/* close any open file */
fileName = null;
/* clear the filename =*/
if (opt instanceof String)
/* select new file ? */
fileName = (String) opt;
/* retype the name */
reading = checkOption(opt, MQe.MQe Adapter READ) |]
checkOption(opt, MQe.MQe_Adapter_UPDATE);
writing = checkOption(opt, MQe.MQe Adapter WRITE) ||
checkOption(opt, MQe.MQe_Adapter_UPDATE);
1

The readObject method reads a message from the message store and recreates an
object of the correct type. It also decrypts and decompresses the data if an attribute
is supplied on the activate call. This is a special function in that a request to read
a file that satisfies the matching criteria specified in the parameter of the read,
returns the first message it encounters that satisfies the match.

public Object readObject(Object opt) throws Exception
if (reading)
{

if (opt instanceof MQeFields)
{
/* 1. list all files in the directory =/
/* 2. read each file in turn and restore as a Fields object */
/* 3. try an equality check - if equal then return that object */
String List[] = new File(filePath).list(this);
MQeFields Fields = null;
for (int i = 0; i < List.length; i =1 + 1)
try
{
fileName = List[i];
/* remember the name */
open(fileName);
/* try this file */
Fields = (MQeFields) readObject(null);
if (Fields.equals((MQeFields) opt))
/* match ? */
return(Fields);
}

catch (Exception e)

/* error occured */
{
}
/* ignore error */
throw new MQeException(Except_NotFound, "No match");
1

/* read the bytes from disk */
File diskFile = new File(filePath + fileName);

30 WebSphere MQ Everyplace: Systems Programming Guide

byte data[] = new byte[(int) diskFile.length()];
FileInputStream InputFile = new FileInputStream(diskFile);

InputFile.read(data); /* read the file data =*/
InputFile.close(); /* finish with file */
/* possible Attribute decode of the data */

if (parameter instanceof MQeAttribute)
/* Attribute encoding ?x/
data = ((MQeAttribute) parameter).decodeData(null,
data,
0

data.length);

MQeFields FieldsObject = MQeFields.reMake(data, null);
return(FieldsObject);
}
else
throw new MQeException(MQe.Except_NotSupported,
"Not supported");
1

adapters

The status method returns status information about the adapter. In this examples

it can return the filter type or the file name.
public String status(Object opt) throws Exception

if (checkOption(opt, MQe.MQe_Adapter FILTER))
return(filter);

if (checkOption(opt, MQe.MQe_Adapter FILENAME))
return(fileName);

return(super.status(opt));

The writeObject method writes a message to the message store. It compresses and
encrypts the message object if an attribute is supplied on the activate method call.

public void writeObject(Object opt,
Object data) throws Exception
{

if (writing && (data instanceof MQeFields))
{

byte dump[] = ((MQeFields) data).dump();
/* dump object */
/* possible Attribute encode of the data
if (parameter instanceof MQeAttribute)
dump = ((MQeAttribute) parameter).encodeData(null,
dump,
0

/* write out the object bytes
File diskFile = new File(filePath + fileName);

FileOutputStream OutputFile = new FileOutputStream(diskFile);

OutputFile.write(dump); /* write the data
OutputFile.getFD().sync(); /% synchronize disk
OutputFile.close(); /* finish with file
}

else

dump.Tlength);

*/

*/

*/
*/
*/

throw new MQeException(MQe.Except NotSupported, "Not supported");

}

This is now a complete (though very simple) message store adapter that reads and

writes message objects to a message store.

Variations of this adapter could be coded for example to store messages in a

database or in nonvolatile memory.

Chapter 2. Adapters 31

WebSphere adapter

The WebSphere Everyplace Suite (WES) communications adapter

WebSphere MQ Everyplace provides sophisticated security that allows applications
to run over HTTP, through the protection of an Internet firewall. The purpose of
the WebSphere Everyplace communications adapter is to allow WebSphere MQ
Everyplace applications to authenticate themselves with the WebSphere Everyplace
authentication proxy and thus allow messages to flow through it. .Fiéure 2| shows a
basic scenario with two applications communicating over the Internet through the
WebSphere Everyplace authentication proxy.

‘ WebSphere MQ

WebSphere MQ
Everyplace Auth [~ S o Everyplace
application | HTTP Websphere ATTP application

(sending) authentication (receiving)
‘ proxy ‘

Figure 2. Applications communicating through the WebSphere authentication proxy

The WebSphere MQ Everyplace adapter acts as the Auth HTTP adapter on the
sending application. The receiving application could use either the same adapter or
the standard HTTP adapter provided with WebSphere MQ Everyplace.

However, the real value of WebSphere MQ Everyplace is that it allows
asynchronous messaging to occur in a typically synchronous environment. It is
possible to gather enqueued requests from the receiving application and deal with
them time-independently. shows how incoming requests could be made to
reach WebSphere MQ servers asynchronously.

WebSphere MQ ‘ ‘ WebSphere MQ
Everyplace Auth ST g Everyplace
application | HTTP Websphere ATTP application
(sending) ‘ authgrgfyatlon ‘ (receiving)

WebSphere WebSohere
MQ Mg
WebSphere bridge Everyplace

MQ application v

(dequeuing)

Figure 3. Applications communicating asynchronously through the WebSphere Authentication
Proxy

In each of these environments the WebSphere authentication proxy is adding the
ability to control access to the receiving applications. The adapter code supports
this by adding (application-supplied) user ID and password information to each
outgoing HTTP request. The WebSphere authentication proxy accepts these
requests and verifies that the supplied credentials are valid for the current
environment. If the credentials are valid the proxy forwards the request to the
receiving application.

32 WebSphere MQ Everyplace: Systems Programming Guide

WebSphere adapter

The WebSphere Everyplace adapter files

In a standard WebSphere MQ Everyplace installation the WebSphere Everyplace
adapter consists of, and is supported by the following files:

..\Java\com\ibm\mgqe\adapters\MQeWESAuthenticationAdapter.class
- The WebSphere Everyplace adapter class.

...\Java\examples\application\Example7.class
- Compiled example application that uses the adapter

...\Java\examples\application\Example7.java
- Source for the example application

...\Java\examples\adapters\WESAuthenticationGUIAdapter.class
- Compiled example adapter that adds a user interface to the WebSphere
Everyplace adapter. As with other example classes, this class is not meant
as a replacement for the base WES adapter class, but rather as a
demonstration of how to tailor the WES adapter to suit your requirements.

...\Java\examples\adapters\WESAuthenticationGUIAdapter.java
- Source for the example adapter

If your environment CLASSPATH variable is set to find all classes within the
WebSphere MQ Everyplace Java folder, the WebSphere Everyplace adapter class
files should be accessible from within the Java environment. If the files are not
accessible, issue a command such as:

set CLASSPATH=%CLASSPATH%;c:\mge\java

This will make the new classes visible to Java. (The exact format of this command
may vary from system to system.) Once this is complete you should be able to use
the WebSphere Everyplace adapter classes in the same way as any other
WebSphere MQ Everyplace classes.

Using the WebSphere Everyplace adapter

This section provides information on how to use the WebSphere Everyplace
adapter. The information is divided into three parts:

General operation
This describes in detail, how to use the adapter in your applications

Using the Authentication Dialog Example
This describes how to use an example class,
examples.adapters. WESAuthenticationGUIAdapter. This class is derived
from the base WES adapter class and provides a small user interface to
collect the ID and password of the user.

Using the Application Example
This describes how to use the supplied example file
examples.application.Example7 which is configured to use the base WES
adapter.

The information in this section assumes that both the WebSphere Everyplace
authentication proxy and WebSphere MQ Everyplace have been installed and
configured correctly. It is also assumed that an WebSphere MQ Everyplace server
queue manager and an WebSphere MQ Everyplace client queue manager have
been configured.

Chapter 2. Adapters 33

WebSphere adapter

General Operation

1.

Configure the client queue manager to send messages using the new adapter
by modifying the client queue manager’s configuration .ini file so that the
Network alias points to com.ibm.mqe.adapters. MQeWESAuthenticationAdapter.
Use the following command:

(ascii)Network=com.ibm.mge.adapters.MQeWESAuthenticationAdapter

Configure the server queue manager to decode the stream of data that the
Client Adapter supplies using either the new adapter or the standard HTTP
adapter. Do this by changing the line in the server queue manager’s
configuration .ini file so that the Network alias points to either
com.ibm.mge.adapters. MQeWESAuthenticationAdapter or
com.ibm.mge.adapters. MQeTcpipHttpAdapter. Use one of the following
commands:

(ascii)Network=com.ibm.mge.adapters.MQeWESAuthenticationAdapter
(ascii)Network=com.ibm.mge.adapters.MQeTcpipHttpAdapter

Modify the client queue manager code so that the required user 1D and
password are set before the first network operation is started. For example,
insert the following line near the top of your code:

com.ibm.mge.adapters.MQeWESAuthenticationAdapter.
setBasicAuthorization("myUserId@myRealm", "myPassword");

Replace the parameters with a valid WES Server user ID and password.

You also need to add code to catch the new MQeException
Except_Authenticate after each network operation, in case the supplied
credentials were invalid.

Check that the client queue manager can still send messages to the server
queue manager without going through the proxy.

Configure the client machine to send HTTP requests through the proxy.
Depending on how WES has been configured, the adapter will need to work
with either a transparent proxy or an authentication proxy.

As a transparent proxy
In this mode, the WES server acts as a simple HTTP proxy. In this case,
you need to set the following Java application system properties that
relate to proxy information:

http.proxyHost
Must be set to the host name of the WES proxy

http.proxyPort
Must be set to the name of the port that the proxy is listening on

http.proxySet
Must be set to true, which tells the adapter to use transparent
proxy mode

The above parameters can be set by adding the following to your Java
application:

System.getProperties().put("http.proxySet", "true");
System.getProperties().put("http.proxyHost", "wes.hursley.ibm.com");
System.getProperties().put("http.proxyPort", "8082");

34 WebSphere MQ Everyplace: Systems Programming Guide

The client queue manager’s connection to the target WebSphere MQ
Everyplace server is similar to a connection that doesn’t use the WES

Pproxy.

E%Update com.ibm.mge.administration.MJeConn

Enterwvalueds) in field{s) to be changed

Target Cihigr
Description

Channel

Metwork adapter
Metwork adapter parms
Metwaork adapter options

pdate

-|0O] x|
Server |7
rull [
DefaultChannel |_

Netwnrk:mqe.hurslev.ibm.cnm:aﬂm| |7

null [

null I

Apply Cancel

Figure 4. Administration interface panel

You need to restart the server and client queue managers for the new

WebSphere adapter

settings to take effect. The client should then be able to send messages
to the server through the proxy.

As an Authentication Proxy

In this mode, the WES server forwards requests to services, based on

the URL that you supply. For example, you may want requests for
http://wes.hursley.ibm.com/mqe to be forwarded to an WebSphere MQ
Everyplace queue manager running on mge.hursley.ibm.com:8082.

To set this up from WebSphere MQ Everyplace you need to update the
client’s connection reference to the server.

Target network adapter
Should point to the Authentication Proxy machine and port

Network adapter parameters
Should contain the pathname to the required service

If you are using the WebSphere MQ Everyplace Example

Administration tool, select Connection and then Update to configure

this.

Chapter 2. Adapters

35

WebSphere adapter

E\E’%Update cun'|.ibn1.n1qe.administratiun.MQEEunnEﬁ: O] x|
Entervalue(s) in field{s) to he changed
Target Ghgr Server |7
Description ndll |—
Channel DefaultChannel [
Metwark adapter Metworkwes hursley.ibm.com: 8081 [v
Metwork adapter parms mged v
Metwork adapter options | null [
Ipdate | Apply Cancel |

Figure 5. Administration interface panel

Note: The reference to the WES Server is entered in the Network
adapter field, and the pathname is entered in the Network
adapter parms field.

You need to restart the server and client queue managers for the new

settings to take effect. The client should then be able to send messages

to the server through the proxy.

Using the Authentication Dialog Example

The following information describes the use of the example class file,
examples.adapters. WESAuthenticationGUIAdapter. This class adds a small user
interface to the base WES adapter function.

1. Follow steps (1) and (2) of the "General operation” procedures, but substitute
"WESAuthenticationGUIAdapter” for "'WESAuthenticationAdapter” in step (1).

2. Configure the client’s TCP/IP settings as in step (5) of ‘General operation’.

f=3 wEs Authenticator x|

Userid I myllserldi@myRealm
Fasswaord I ***""“"’"”‘1

]18 | Cancel |

Figure 6. WebSphere Everyplace Suite adapter user dialog

The client should now able to send messages to the server using the
WESAuthenticationGUIAdapter. This adapter intercepts write calls to the WES
adapter, and on the first request it pops up a dialog box that prompts for user ID
and password information.

When the user clicks on OK or presses the Enter key, the setBasicAuthorization()
method is called with the values from the userid and password fields. The write()
is then forwarded on to the underlying WES adapter. The dialog box also has a
Cancel button which, when selected, cancels the current write operation by not
forwarding the request to the WES adapter. This causes an MQeException
(Except_Stopped) to be thrown.

If authentication fails, the dialog box is redisplayed on the next write() along with
any information provided by the server. In order to learn of an authentication

36 WebSphere MQ Everyplace: Systems Programming Guide

WebSphere adapter

failure, the example adapter intercepts read() calls and catches any
Except_Authenticate MQeExceptions coming from the adapter.

Note: Web browsers do not generally send authentication information on the first
flow. This typically results in a 401 or 407 response that contains the realm
information. Only then does the browser send the authenticated request.
User clients may wish to follow this convention.

Using the Application Example

The following information describes the use of the example application file,
examples.application.Example?. This example behaves in a similar way to the
MQSeries Everyplace programming example examples.application.Examplel and
uses the basic WES adapter for communications.

1. Follow steps (1) and (2) of the ‘General operation” procedures.
2. Configure the client’s TCP/IP settings as in step (5) of ‘General operation’.

3. Edit the example file ...\Java\examples\application\Example7 java inserting a
valid user ID and password, and then recompile the application.

4. Restart the server.
5. Run the Example7 program using the following command:
java examples.application.Example7 Server client.ini

where

Server
is the name of the remote queue manager (that the client already knows
how to reach)

client.ini
points to the client’s .ini configuration file.

The application starts the client queue manager, authenticates with the proxy,
puts a message to server and then get a message from the server.

Chapter 2. Adapters 37

WebSphere adapter

38 WebSphere MQ Everyplace: Systems Programming Guide

Chapter 3. Rules

Websphere MQ Everyplace uses rules to allow applications to monitor and modify
the behavior of some of its major components. Rules take the form of methods on
Java classes or functions in C methods that are loaded when WebSphere MQ
Everyplace components are initialized.

A component’s rules are invoked at certain points during its execution cycle. Rules
methods with particular signatures are expected to be available, so when providing
implementations of rules, ensure that you use the correct signatures.

Default or example rules are provided for all relevant WebSphere MQ Everyplace
components. You can customize these to satisfy particular user requirements.
Within the Java codebase, the MQeQueueProxy interface provides the user with
accessor methods for queues, allowing the user to interact with queues in certain
rule methods.

Rules may be grouped into the following categories:

Queue manager rules.
Queue rules.

Attribute rules. For information on attribute rules, refer to the WebSphere MQ
Everyplace Application Programming Guide and the WebSphere MQ Everyplace
Configuration Guide.

Bridge rules. For information on bridge rules, refer to the WebSphere MQ
Everyplace Application Programming Guide.

Rules may also be categorized into two groups depending upon whether they can
affect application behavior, ‘modification’ rules, or are intended for notification
purposes only, notification” rules.

Queue manager rules

Queue manager rules are invoked when:

The queue manager is activated

The queue manager is closed

A queue is added to the queue manager (Java codebase only)

A queue is removed from the queue manager (Java codebase only)
A put message operation occurs

A get message operation occurs

A delete message operation occurs

An undo message operation occurs

The queue manager is triggered to transmit any pending messages, as described
in[Transmission rules|

© Copyright IBM Corp. 2000, 2002 39

Loading and activating queue manager rules

Java codebase

Queue manager rules are loaded, or changed whenever a queue manager
administration message containing a request to update the queue manager rule
class is received.

If a queue manager rule has already been applied to the queue manager, the
existing rule is asked whether it may be replaced with a different rule. If the
answer is yes, the new rule is loaded and activated. A restart of the queue
manager is not required.

The QueueManagerUpdater command-line tool in the package
examples.administration.commandline shows how to create such an administration
message.

C codebase

The user’s rules module is loaded and initialized when the queue manager is
loaded into memory. This occurs as a result of calls either to
mgeAdministrator_QueueManager_create() or to mgeQueueManager_new(). The set-up
steps are as follows:

* The application must register a rules alias, linking the rules alias to the rules
module name and entry point, by using mqgeClassAlias_add(), for example:
#define RULES_ALIAS "myAlias"

#define MODULE_NAME "myRulesModule.d11"
#define ENTRY_POINT "myRules_new"

mgeString_newUtf8(pExceptBlock,
&rulesAlias, RULES ALIAS);
mgeString_newUtf8(pExceptBlock,
&moduleName, MODULE_NAME);
mgeString_newUtf8(pExceptBlock,
&entryPoint, ENTRY_POINT);
mgeClassAlias_add(pExceptBlock,
rulesAlias, moduleName, entryPoint);

* The rules alias must be included in the queue manager start-up parameters
passed to either mqeAdministrator_QueueManager_create() or
mgeQueueManager_new(), for example.:

MQeQueueManagerParms gmParams;
gmParams.hQueueStore = msgStore; /* String parameters for thex/
/*location of the msg store */
gmParams.hQueueManagerRules = rulesAlias; /* add in rules alias */

/* Indicate what parts of the structure have been set */
gmParams.opFlags = QMGR_Q STORE_OP | QMGR_RULES OP;

rc = mgeAdministrator_QueueManager_create(hAdmin,pExceptBlock,
&hQM,qmName, &qmParms, ®Parms);

* An initialization function or entry point must be supplied by the user. The
following is an example of an initialization function for a rules implementation.
The members of the parameter structures are documented in the WebSphere MQ
Everyplace C Programming Reference.

40 WebSphere MQ Everyplace: Systems Programming Guide

MQERETURN myRules new(MQeRulesNew_in_ * pInput,MQeRulesNew out * pOutput) {

MQERETURN rc = MQERETURN_OK;

/* declare an instance of the private data */
/*structure passed around between rules invocations. */
/*This holds user data which is 'global' between rules. */

myRules * myData = NULL;

/* allocate the memory for the structure =/
myData = malloc(sizeof(myRules));
if(myData !'= NULL) {
/* map user rules implementations to
function pointers in output parameter structure =/
pOutput->fPtrActivateQMgr = myRules_ActivateQMgr;

pOutput->fPtrCloseQMgr = myRules_CloseQMgr;
pOutput->fPtrDeleteMessage = unitTestRules_DeleteMessage;
pOutput->fPtrGetMessage = myRules_getMessage;
pOutput->fPtrPutMessage = myRules_putMessage;

pOutput->fPtrTransmitQueue = myRules_TransmitQueue;
pOutput->fPtrTransmitQMgr = myRules_TransmitQMgr;
pOutput->fPtrActivateQueue = myRules_activateQueue;
pOutput->fPtrCloseQueue = myRules_CloseQueue;
pOutput->fPtrMessageExpired = myRules_messageExpired;

/* initialize data in the private data structure */
mydata->carryOn = MQE_TRUE;

mydata->hAdmin = NULL;

mydata->hThread = NULL;

mydata->ifp = NULL;

mydata->triggerInterval = 15000;

/* now assign the private data structure to */
/*the output parameter structure variable */
pOutput->pPrivateData = (MQEVOID *)mydata;

else {
/* We had a problem so clear up any strings in the structure -
none in this case */

}

return rc;

}

The rules module is unloaded when the queue manager is freed. Note that, unlike
the java codebase, the rules implementation is linked to the execution lifecycle of a
single queue manager and may not be replaced during the course of this lifecycle.

Using queue manager rules

This section describes some examples of the use of queue manager rules.

In the Java codebase, a user provides an implementation of a rule method by
subclassing the MQeQueueManagerRule class.

In the C codebase, a user maps rules functions to relevant rules function pointers.
These pointers are passed into the rules initialization function, which is also the

entry point to the user’s rules module.

For a description of all parameters passed to rules functions in the C codebase, see
the WebSphere MQ Everyplace C Programming Reference.

Chapter 3. Rules 41

Example put message rule

This first example shows a put message rule that insists that any message being
put to a queue using this queue manager must contain a WebSphere MQ
Everyplace message ID field:

Java codebase
/* Only allow msgs containing an ID field to be placed on the Queue x/

public void putMessage(String destQMgr, String destQ, MQeMsgObject msg,
MQeAttribute attribute, long confirmId) {
if (!(msg.Contains(MQe.Msg MsgId))) {
throw new MQeException(Except_Rule, "Msg must contain an ID");
}

}

C codebase

MQERETURN myRules_putMessage(MQeRulesPutMessage in_ * pInput,
MQeRulesPutMessage _out_ * pOutput) {
// Only allow msgs containing an ID field to be placed on the Queue
MQERETURN rc = MQERETURN_OK;
MQEBOOL contains = MQE_FALSE;

MQeExceptBlock * pExceptBlock=(MQeExceptBlockx) (pOutput->pExceptBlock);
SET_EXCEPT BLOCK_TO_DEFAULT(pExceptBlock);

rc = mgeFields_contains(pInput->hMsg,pExceptBlock,
&contains, MQE_MSG_MSGID);
1f(MQERETURN_OK == rc && !contains) {
SET_EXCEPT_BLOCK(pExceptBlock,
MQERETURN_RULES_DISALLOWED BY RULE,
MQEREASON_NA) ;

}

Notice the manner in which the exception block instance is retrieved from the
output parameter structure and then set with the appropriate return and reason
codes. This is the way in which the rule function communicates with the
application, thus modifying application behaviour.

Example get message rule

The next example rule is a get message rule that insists that a password must be
supplied before allowing a get message request to be processed on the queue
called OutboundQueue. The password is included as a field in the message filter
passed into the getMessage() method.

Java codebase

/* This rule only allows GETs from 'OutboundQueue',
if a password is =*/
/* supplied as part of the filter */

public void getMessage(String destQMgr,
String destQ, MQeFields filter,
MQeAttribute attr, Tong confirmld) {
super.getMessage(destQMgr, destQ, filter, attr, confirmId);
if (destQMgr.equals(Owner.GetName ()
&& destQ.equals("OutboundQueue")) {
if (!(filter.Contains("Password")) {
throw new MQeException(Except Rule,
"Password not supplied");

else {
String pwd = filter.getAscii("Password");
if (!(pwd.equals("1234"))) {

42 WebSphere MQ Everyplace: Systems Programming Guide

throw new MQeException(Except Rule,
"Incorrect password");

}

}
}

C codebase

MQERETURN myRules_getMessage(MQeRulesGetMessage_in_ * pInput,
MQeRulesGetMessage out_ * pOutput) {
MQeStringHnd1l hQueueManagerName, hCompareString, hCompareString2,
hFieldName, hFieldValue;
MQEBOOL isEqual = MQE_FALSE;
MQEBOOL contains = MQE_FALSE;
MQeQueueManagerHndl hQueueManager;

MQERETURN rc = MQERETURN_OK;
MQeExceptBlock * pExceptBlock =
(MQeExceptBlock =)
(pOutput->pExceptBlock);
SET_EXCEPT_BLOCK_TO_DEFAULT (pExceptBlock);

/* get the current queue manager */
rc = mgeQueueManager_getCurrentQueueManager (pExceptBlock,
&hQueueManager) ;
if(MQERETURN_OK == rc) {
// if the destination queue manager is the local queue manager
rc = mgeQueueManager_getName(hQueueManager,

pExceptBlock,
&hQueueManagerName);
if(MQERETURN_OK == rc) {
rc = mqeString_equalTo(pInput->hQueue QueueManagerName,
pExceptBlock,
&isEqual,

hQueueManagerName) ;
if(MQERETURN_OK == rc && isEqual) {
// if the destination queue name is "OutboundQueue"
rc = mgeString_newUtf8(pExceptBlock,
&hCompareString,
"OutboundQueue") ;
rc = mgeString_equalTo(pInput->hQueueName,
pExceptBlock,
&isEqual,
hCompareString) ;
if(MQERETURN_OK == rc && isEqual) {
// password required for this queue
MQEBOOL contains = MQE_FALSE;
rc = mgeString_newUtf8(pExceptBlock,
&hFieldName,
"Password");
rc = mgeFields_contains(pInput->hFilter,
pExceptBlock,
&contains,
hFieldName);
i (MQERETURN_OK == rc && contains == MQE_FALSE) {
SET_EXCEPT_BLOCK(pExceptBlock,
MQERETURN_RULES_DISALLOWED_BY RULE,
MQEREASON_NA) ;
}
else {
// parse password, etc.
1

Chapter 3. Rules 43

This previous rule is a simple example of protecting a queue. However, for more
comprehensive security, you are recommended to use an authenticator. An
authenticator allows an application to create access control lists, and to determine
who is able to get messages from queues.

Example remove queue rule

The next example rule is called when a queue manager administration request tries
to remove a queue. The rule is passed an object reference to the proxy for the
queue in question. In this example, the rule checks the name of the queue that is
passed, and if the queue is named PayrollQueue, the request to remove the queue
is refused.

Java codebase

/* This rule prevents the removal of the Payroll Queue */
public void removeQueue(MQeQueueProxy queue)
throws Exception {
if (queue.getQueueName().equals("PayrollQueue")) {
throw new MQeException(Except_Rule,
"Can't delete this queue");

}

C codebase
This rule is not implemented in the C codebase.

Transmission rules

A message that is put to a remote queue that is defined as synchronous is
transmitted immediately. Messages put to remote queues defined as asynchronous
are stored within the local queue manager until the queue manager is triggered
into transmitting them. The queue manager can be triggered directly by an
application. The process can be modified or monitored using the queue manager’s
transmission rules.

The transmission rules are a subset of the queue manager rules. The two rules that
allow control over message transmission are:

ftriggerTransmission ()|
This rule determines whether to allow message transmission at the time
when the rule is called. This can be used to veto or allow the transmission
of all messages, that is, either all or none are allowed to be transmitted.

transmit()
This rule makes a decision to allow transmission on a per queue basis for
asynchronous remote queues. For example, this makes it possible only to
transmit the messages from queues deemed to be high priority. The
transmit() rule is only called if the triggerTransmission() rule returns
successfully.

Trigger transmission rule

WebSphere MQ Everyplace calls the triggerTransmission rule when transmission
is triggered. This occurs when the queue manager triggerTransmission method or
function is explicitly called from an application or a rule. Additionally, in the Java
codebase, the rule may be invoked when a message is put onto a remote
asynchronous queue. The default rule behavior in both Java and C allows the
attempt to transmit pending messages to proceed. For example, this is the default
Java rule in com.ibm.mqe.MQeQueueManagerRule:

44 WebSphere MQ Everyplace: Systems Programming Guide

/% default trigger transmission rule -
always allow transmission =/
public boolean triggerTransmission(int noOfMsgs,
MQeFields msgFields){
return true;

}

The return code from this rule tells the queue manager whether or not to transmit
any pending messages. A return code of true means "transmit”, while a return code
of false means "do not transmit at this time".

The user may over-ride the default behavior by implementing their own
triggerTransmission() rule. A more complex rule can decide whether or not to
transmit immediately based on the number of messages awaiting transmission on
asynchronous remote queues. The following example shows a rule that only allows
transmission to continue if there are more than 10 messages pending transmission.

Java codebase

/* Decide to transmit based on number of pending messages */
public boolean triggerTransmission(int noOfMsgs, MQeFields msgFields) {
if(no0OfMsgs > 10) {
return true; /* then transmit =/

else {
return false; /* else do not transmit =/
}

}

C codebase

/* The following function is mapped to the
fPtrTransmitQMgr function pointer =/
/* in the user's initialization function output parameter structure. x*/

MQERETURN myRules_TransmitQMgr(MQeRulesTransmitQMgr_in_ * pInput,
MQeRulesTransmitQMgr_out_ * pOutput) {
MQeExceptBlock * pExceptBlock =
(MQeExceptBlock=*) (pOutput->pExceptBlock);
SET_EXCEPT_BLOCK_TO_DEFAULT (pExceptBlock);

/* allow transmission to be triggered only
if the number of pending messages > 10 */
if(pInput->msgsPendingTransmission <= 10) {
SET_EXCEPT_BLOCK(pExceptBlock,
MQERETURN_RULES_DISALLOWED_BY RULE,
MQEREASON_NA) ;

Transmit rule

The transmit() rule is only called if the triggerTransmission() rule allows
transmission. It returns a value of true or MQERETURN_OK. The transmit() rule is
called for every remote queue definition that holds messages awaiting
transmission. This means that the rule can decide which messages should be
transmitted on a queue by queue basis. The example rule below only allows
message transmission from a queue if the queue has a default priority greater than
5. If a message has not been assigned a priority before being placed on a queue, it
is given the queue’s default priority.

Java codebase

Chapter 3. Rules 45

public boolean transmit(MQeQueueProxy queue) {
if (queue.getDefaultPriority() > 5) {
return (true);
}

else {
return (false);
}

}

C codebase

/* The following function is mapped to the fPtrTransmitQueue functionx/
/* pointer in the user's initialization
/* function output parameter structure. */

MQERETURN myRules_TransmitQueue(MQeRulesTransmitQueue_in_ * pInput,
MQeRulesTransmitQueue _out_ * pOutput) {
MQERETURN rc = MQERETURN_OK;
MQEBYTE queuePriority;

MQeRemoteAsyncQParms queueParms = REMOTE_ASYNC_Q INIT VAL;
myRules * myData = (myRules *)(pInput->pPrivateData);

MQeExceptBlock * pExceptBlock =
(MQeExceptBlock *) (pOutput->pExceptBlock);
SET_EXCEPT_BLOCK_TO_DEFAULT(pExceptBlock);

/* inquire upon the default priority of the queue*/
/* specify the subject of the inquire
in the queue parameter structurex/
queueParms.baseParms.opFlags = QUEUE_PRIORITY_OP ;

rc = mgeAdministrator_ AsyncRemoteQueue_ inquire(myData->hAdmin,
pExceptBlock,
pInput->hQueueName,
pInput->hQueue_QueueManagerName,
&queueParms) ;
// if the default priority is less than 6, disallow the operation
if(MQERETURN_OK == rc
&& queueParms.baseParms.queuePriority < 6) {
SET_EXCEPT_BLOCK (pExceptBlock,
MQERETURN_RULES_DISALLOWED BY RULE,
MQEREASON_NA) ;

}

A sensible extension to this rule can allow all messages to be transmitted at
‘off-peak’” time. This allows only messages from high-priority queues to be
transmitted during peak periods.

A more complex example

The following example assumes that the transmission of the messages takes place
over a communications network that charges for the time taken for transmission. It
also assumes that there is a cheap-rate period when the unit-time cost is lower. The
rules block any transmission of messages until the cheap-rate period. During the
cheap-rate period, the queue manager is triggered at regular intervals.

Java codebase

import com.ibm.mge.*;
import java.util.*;
[**
* Example set of queue manager
rules which trigger the transmission

* of any messages waiting to be sent.
*

46 WebSphere MQ Everyplace: Systems Programming Guide

*

*/
pu

These rules only trigger the
transmission of messages if the current
time is between the values defined

in the variables cheapRatePeriodStart
and cheapRatePeriodEnd

(This example assumes that transmission
will take place over a

communication network which charges

for the time taken to transmit)

blic class ExampleQueueManagerRules extends MQeQueueManagerRule

implements Runnable

}

The cheapRatePeriodStart and cheapRatePeriodEnd functions define the
extent of this cheap rate period. In this example, the cheap-rate period is

// default interval between triggers is 15 seconds
private static final Tong
MILLISECS_BETWEEN_TRIGGER_TRANSMITS = 15000;

// interval between which we c

heck whether the queue manager is closing down.
private static final Tong
MILLISECS_BETWEEN_CLOSE_CHECKS = 1000 ;

// Max wait of ten seconds to kill off

the background thread when

// the queue manager is closing down.

private static final Tong
MAX_WAIT_FOR_BACKGROUND_THREAD MILLISECONDS = 10000;

// Reference to the control block used to
communicate with the background thread

// which does a sleep-trigger-sleep-trigger loop.
// Note that freeing such blocks for garbage
collection will not stop the thread

// to which it refers.

private Thread th = null;

// Flag which is set when shutdown of
the background thread is required.
// Volatile because the thread using the
flag and the thread setting it to true
// are different threads, and it is
important that the flag is not held in
// CPU registers, or one thread will
see a different value to the other.
private volatile boolean toldToStop = false;
//cheap rate transmission period start and end times
protected int cheapRatePeriodStart = 18; /*18:00 hrs */
protected int cheapRatePeriodEnd = 9; /%09:00 hrs =/

defined as being between 18:00 hours in the evening until 09:00 hours the

fo

llowing morning.

The constant MILLISECS_BETWEEN_TRIGGER_TRANSMITS defines the period of

time, in milliseconds, between each triggering of the queue manager. In

this example, the trigger interval is defined to be 15 seconds.

The triggering of the queue manager is handled by a background thread

that wakes up at the end of the triggerInterval period. If the current time is

in:

side the cheap rate period, it calls the

MQeQueueManager.triggerTransmission() method to initiate an attempt to

transmit all messages awaiting transmission. The background thread is

Chapter 3. Rules

47

created in the queueManagerActivate() rule and stopped in the
queueManagerClose() rule. The queue manager calls these rules when it is
activated and closed respectively.

[x%

* OQverrides MQeQueueManagerRule.queueManagerActivate()

* Starts a timer thread

*

/

public void queueManagerActivate()throws Exception {
super.queueManagerActivate();
// background thread which triggers transmission
th = new Thread(this, "TriggerThread");
toldToStop = false;
th.start(); // start timer thread

[**

* Overrides MQeQueueManagerRule.queueManagerClose()

* Stops the timer thread

*/

public void queueManagerClose()throws Exception {
super.queueManagerClose();

// Tell the background thread to stop,
as the queue manager is closing now.
toldToStop = true ;

// Now wait for the background thread,
if it's not already stopped.
if (th = null) {
try {
// Only wait for a certain time before
giving up and timing out.
th.join(MAX_WAIT FOR_BACKGROUND_ THREAD MILLISECONDS);

// Free up the thread control block for garbage collection.
th = null
} catch (InterruptedException e) {
// Don't propogate the exception.
// Assume that the thread will stop shortly anyway.

The code to handle the background thread looks like this:
[**

* Timer thread
* Triggers queue manager every interval until thread is stopped
*
/
public void run() {

/* Do a sleep-trigger-sleep-trigger loop until the */

/* queue manager closes or we get an exception.*/
while (!toldToStop) {
try {

// Count down until we've waited enough
// We do a tight loop with a smaller granularity because
// otherwise we would stop a queue manager from closing quickly
long timeToWait = MILLISECS_BETWEEN_TRIGGER_TRANSMITS ;
while(timeToWait > 0 && !toldToStop) {

// sleep for specified interval
Thread.sleep(MILLISECS BETWEEN_CLOSE_CHECKS);

// We've waited for some time.

48 WebSphere MQ Everyplace: Systems Programming Guide

Account for this in the overall wait.
timeToWait -= MILLISECS_BETWEEN_CLOSE_CHECKS ;

1
if(!toldToStop && timeToTransmit()) {
// trigger transmission on QMgr (which is rule owner)
((MQeQueueManager)owner) .triggerTransmission();

} catch (Exception e) {
e.printStackTrace();
}

}
}
}

The variable owner is defined by the class MQeRule, which is the ancestor
of MQeQueueManagerRule. As part of its startup process, the queue manager
activates the queue manager rules and passes a reference to itself to the
rules object. This reference is stored in the variable owner.

The thread loops indefinitely, as it is stopped by the queueManagerClose()
rule, and it sleeps until the end of the
MILLISECS_BETWEEN_TRIGGER_TRANSMITS interval period. At the end of this
interval, if it has not been told to stop, it calls the timeToTransmit ()
method to check if the current time is in the cheap-rate transmission
period. If this method succeeds, the queue manager’s
triggerTransmission() rule is called.The timeToTransmit method is shown
in the following code:
protected boolean timeToTransmit() {

/* get current time */

Calendar calendar = Calendar.getInstance();

calendar.setTime(new Date());

/* get hour */

int hour = calendar.get(Calendar.HOUR OF DAY);

if (hour >= cheapRatePeriodStart || hour

< cheapRatePeriodEnd) {
return true; /* cheap rate */

else {
return false; /* not cheap rate x/
}

}

C codebase
The C example emulates the java codebase example. While the native C
codebase is entirely single-threaded, it is possible for the user to write
platform-specific code in which threads are created. In this example of a
user-written queue manager activate rule, a thread is spawned which
loops, sleeping for a period of time defined in a triggerInterval variable
and then, providing it has not been asked to stop, checking that we are in
a cheap rate period prior to attempting to trigger transmission. Data,
which is required between rules invocations, is stored in the rule’s private
data structure. Refer to the WebSphere MQ Everyplace C Programming
Reference on how rules private data is carried around between rules
invocations. The queue manager’s close rule function is used to provide
the thread’s terminating condition, setting a boolean switch, carryOn to
MQE_FALSE. This switch can be initialized to MQE_TRUE in the rules
initialization function. This function waits until the thread is suspended
before passing control back to the application.

The private data structure passed between rule invocations is as follows:

Chapter 3. Rules 49

50

struct myRules_st_ {

// rules instance structure
MQeAdministratorHndl hAdmin;

// administrator handle to carry around between

// rules functions
MQEBOOL carryOn;

// used for trigger transmission thread
MQEINT32 triggerInterval;

// used for trigger transmission thread
HANDLE hThread;

// handle for the trigger transmission thread

}s
typedef struct myRules_st_myRules;
The queue manager activate rule:

MQEVOID myRules_activateQueueManager(MQeRulesActivateQMgr_in_ * pInput,
MQeRulesActivateQMgr out_ * pOutput) {
// retrieve exception block - passed from application
MQeExceptBlock * pExceptBlock = (MQeExceptBlock *)
(pOutput->pExceptBlock) ;

// retrieve private data structure passed
between user's rules invocations
myRules * myData = (myRules *)(pInput->pPrivateData);

MQeQueueManagerHndl hQueueManager;
MQERETURN rc = MQERETURN_OK;

rc = mgeQueueManager_getCurrentQueueManager(pExceptBlock,
&queueManager) ;
if(MQERETURN_OK == rc) {
// set up the private data administrator
handle using the retrieved
// application queue manager handle.
This is done here rather than in
// the rules initialization function as the
queue manager has not yet been
// activated fully when the rules
//initialization function is invoked.
rc = mgeAdministrator_new(pExceptBlock,
&myData>hAdmin,hQueueManager) ;
}
if(MQERETURN_OK == rc) {
DWORD tid;
// Launch thread to govern calls to trigger transmission
myData->hThread = (HANDLE) CreateThread(NULL,
0,
timeToTrigger,
(MQEVOID *)myData,
0’
&tid);
if(myData>hThread == NULL) {
// thread creation failed
SET_EXCEPT_BLOCK(pExceptBlock,
MQERETURN_RULES_ERROR,
MQEREASON_NA) ;
}

}

The timeToTrigger function provides the equivalent functionality of the
run() method in the java example above. Notice the use of the private data
variable carryOn, type MQEBOOL, as one of the conditions for the while loop

WebSphere MQ Everyplace: Systems Programming Guide

to continue. Once this variable has a value of MQE_FALSE, the while loop
will terminate, causing the thread to terminate when the function is exited.

DWORD _stdcall timeToTrigger(myRules * rulesStruct) f{

MQERETURN rc = MQERETURN_OK;
MQeQueueManagerHndl hQueueManager;
MQeExceptBlock exceptBlock;

myRules * myData = (myRules x)rulesStruct;
SET_EXCEPT_BLOCK_TO_DEFAULT (&exceptBlock);

/* retrieve the current queue manager */
rc = mgeQueueManager_getCurrentQueueManager(&exceptBlock,
&hQueueManager) ;
if (MQERETURN_OK == rc) {
/* so long as there is not a grave
internal error and the termination
condition has not been set */
while(!(EC(&exceptBlock) ==
MQERETURN_QUEUE_MANAGER_ERROR &&
ERC(&exceptBlock) ==
MQEREASON_INTERNAL ERROR) &&
myData->carryOn == MQE_TRUE) {
/* Are we in a cheap rate transmission period? */
if(timeToTransmit()) {
/* if so, attempt to trigger transmission */
rc = mgeQueueManager_triggerTransmission(hQueueManager,
&exceptBlock);

/* wait for the duration of the trigger interval */
Sleep(myData->triggerInterval);

}
}
return 0;

}

The timeToTransmit() function returns a boolean to indicate whether or
not we are in a cheap transmission period:

MQEBOOL timeToTransmit() {

SYSTEMTIME timelnfo;
GetLocalTime(&timeInfo);

if (timeInfo.wHour >= 18 || timeInfo.wHour < 9) {
return MQE_TRUE;

} else {
return MQE_FALSE;

}

}

It would probably be a better idea to define constants for the cheap rate
interval boundary times and carry these around in the rules private data
structure also but that has been not been done here for reasons of clarity.

The function returns MQE_TRUE to suggest that we are in a cheap rate
period, that is between the hours of 18:00 and 09:00. A return value of
MQE_TRUE is one of the prerequisites for transmission to be triggered in
timeToTrigger(). Finally, the queue manager close rule is used to terminate
the thread.Notice that one of the conditions for termination of the
timeToTrigger() function is for the boolean variable carryOn to have a
value of MQE_FALSE. In the close function, the value of carryOn is set to
false. But, there may still be a considerable lapse of time between when
this value is set to MQE_FALSE and when the timeToTrigger() function is

Chapter 3. Rules 51

exited. The value of triggerInterval + the time taken to perform a
triggerTransmission operation. Also, we wait for the thread to terminate
in this function. We also call triggerTransmission() one more time in case
there are still some pending messages.

MQEVOID myRules CloseQMgr(MQeRulesCloseQMgr in_ * pInput,
MQeRulesCloseQMgr_out_ * pQOutput) {

MQERETURN rc = MQERETURN_OK;

MQeQueueManagerHndl hQueueManagers;
myRules * myData = (myRules *)pInput->pPrivateData;
DWORD result;

MQeExceptBlock exceptBlock =

*((MQeExceptBlock)pOutput->pExceptBlock);

SET_EXCEPT_BLOCK_TO_DEFAULT (&exceptBlock);

// Effect the ending of the thread by

setting the MQEBOOL continue to MQE_FALSE

// This leads to a return from timeToTrigger()

and hence the implicit call

// to _endthread
myData->carryOn = MQE_FALSE;

/* wait for the thread in any case */
result = WaitForSingleObject (myData->hThread, INFINITE);

/* retrieve the current queue manager */
rc = mgeQueueManager_getCurrentQueueManager (&exceptBlock,
&hQueueManager) ;
if(MQERETURN_OK == rc) {
/* attempt to trigger transmission one
/* last time to clean up queue */
rc = mgeQueueManager_triggerTransmission(hQueueManager,
&exceptBlock);

Activating asynchronous remote queue definitions

The queue manager can activate its asynchronous remote queue definitions and
home server queues at startup time. In the Java codebase, activating asynchronous
remote queue definitions results in an attempt to transmit any messages they
contain, while activating home server queues results in an attempt to get any
messages that are waiting on their assigned store-and-forward queue. The
activateQueues() rule allows this behavior to be configured.

The default rule just returns true.

public boolean activateQueues() {
return true; /* activate queues on queue manager start-up */
}

/*As with other rules examples above,
a check can be made to see if the current */
/* time is inside the cheap-rate transmission period.
This information can then */
/* be used to determine whether queues should be activated or not.

public boolean activateQueues() {
if (timeToTransmit()) {
return true;
1

else {
return false;
}

52 WebSphere MQ Everyplace: Systems Programming Guide

If activateQueues() returns false, the remote queue definitions are only activated
when a message is put onto them. Home server queues can be activated by calling
the queue manager’s triggerTransmission() method.

In the C codebase, activation of home server queues and asynchronous queues
does not result in any attempts to transmit or pull down pending messages. Only
explicit calls to the queue manager’s triggerTransmission() function have this
result. There is no implementation of an activateQueues rule in the C codebase.
Activation of queues occurs at queue manager start-up.

Queue rules

In the Java codebase, each queue has its own set of rules. A solution can extend the
behavior of these rules. All queue rules should descend from class
com.ibm.mge.MQeQueueRule.

In the C codebase, only a single set of rules is loaded. A user can implement
different rules for different queues by loading other rules modules from the
‘master’ module. The master rules functions can then invoke the corresponding
functions in any other modules as required.

Queue rules are called when:

¢ The queue is activated.

* The queue is closed.

* A message is placed on the queue using a put operation (Java codebase only).
* A message is removed from the queue using a get operation.

* A message is deleted from the queue using a delete operation (Java codebase
only).

¢ The queue is browsed.

¢ An undo operation is performed on a message on the queue.

* A message listener is added to the queue (Java codebase only).

* A message listener is removed from the queue (Java codebase only).
* A message expires.

e An attempt is made to change a queue’s attributes, that is authenticator, cryptor,
compressor (Java codebase only).

* A duplicate message is put onto a queue.
* A message is being transmitted from a remote asynchronouse queue.

Using queue rules

This section describes some examples of the use of queue rules.

The first example shows a possible use of the message expired rule. Both queues
and messages can have an expiry interval set. If this interval is exceeded, the
message is flagged as being expired. At this point the messageExpired() rule is
called. On return from this rule, the expired message is deleted.

In the following example, a copy of the message is put onto a Dead Letter Queue.

Java codebase
/* This rule puts a copy of any expired messages to a Dead Letter Queue */

public boolean messageExpired(MQeFields entry, MQeMsgObject msg)
throws Exception {

Chapter 3. Rules 53

/* Get the reference to the Queue Manager */
MQeQueueManager gmgr = MQeQueueManager.getReference(
((MQeQueueProxy)owner) .getQueueManagerName()) ;

/* need to set re-send flag so that put of message
to new queue isn't rejected */

msg.putBoolean(MQe.Msg Resend, true);

/* if the message contains an expiry

interval field - remove it */

if (msg.contains(MQe.Msg_ExpireTime) {

msg.delete(MQe.Msg_ExpireTime);
}

/* put message onto dead letter queue */
gmgr.putMessage(null, MQe.DeadLetter Queue Name,
msg, null, 0);

/* Return true. Note that no use is made

of this return value - the message is
always deleted but the return value is kept
for backward compatibility */

return (true);

1

C codebase

MQEVOID myRules_messageExpired(MQeRulesMessageExpired in_ * pInput,
MQeRulesMessageExpired out_ * pOutput) {
MQERETURN rc = MQERETURN_OK;
MQeExceptBlock * pExceptBlock =
(MQeExceptBlock *) (pOutput->pExceptBlock);

MQEBOOL contains = MQE_FALSE;
MQeFieldsHnd1 hMsg;

MQeQueueManagerHndl hQueueManager;
SET_EXCEPT_BLOCK_TO DEFAULT (pExceptBlock) ;

/* Set re-send flag so that attempt to put
message to new queue isn't rejected */
// First, clone the message as the
//input parameter is read-only
rc = mgeFields_clone(pInput->hMsg, pExceptBlock,
&hMsg) ;
1f(MQERETURN_OK == rc) {
rc = mgeFields_putBoolean(hMsg, pExceptBlock,
MQE_MSG_RESEND, MQE_TRUE);
if(MQERETURN_OK == rc) {
// if the message contains an expiry
interval field - remove it
rc = mgeFields_contains(hMsg, pExceptBlock,
&contains,
MQE_MSG_EXPIRETIME);
if(MQERETURN_OK == rc && contains) {
rc = mgeFields_delete(hMsg, pExceptBlock,
MQE_MSG_EXPIRETIME);
}
1f(MQERETURN_OK == rc) {
// put message onto dead letter queue
MQeStringHndl hQueueManagerName;
rc = mgeQueueManager_getCurrentQueueManager(pExceptBlock,
&hQueueManager) ;
if(MQERETURN_OK == rc) {
rc = mgeQueueManager_getName (hQueueManager,
pExceptBlock,
&hQueueManagerName) ;
if(MQERETURN_OK == rc) {
// use a temporary exception block as don't care
// if dead letter queue does not exist
MQeExceptBlock tempExceptBlock;
SET_EXCEPT_BLOCK TO_DEFAULT (&tempExceptBlock);

54 WebSphere MQ Everyplace: Systems Programming Guide

rc = mgeQueueManager_putMessage(hQueueManager,
&tempExceptBlock,
hQueueManagerName,

MQE_DEADLETTER_QUEUE_NAME,

hMsg, NULL, 0);

(MQEVOID)mgeString_free(hQueueManagerName,

&tempExceptBlock);
}

}

}

The previous example sends any expired messages to the queue manager’s
dead-letter queue, the name of which is defined by the constant
MQe.DeadlLetter_Queue Name in the Java codebase and MQE_DEADLETTER_QUEUE_NAME
in the C codebase. It is worth noting that the queue manager rejects a put of a
message that has previously been put onto another queue. This protects against a
duplicate message being introduced into the Websphere MQ Everyplace network.
So, before moving the message to the dead-letter queue, the rule must set the
resend flag. This is done by adding the Java MQe.Msg_Resend or C MQE_MSG_RESEND
field to the message.

The message expiry time field must be deleted before moving the message to the
dead-letter queue. The following example shows how to log an event that occurs
on the queue.

In the Java example, the event that occurs is the creation of a message listener, in
the C example, it is a put message request. However, the principle is the same in
both cases:

Java codebase
In the example, the queue has its own log file, but it is equally as valid to
have a central log file that is used by all queues. The queue needs to open
the log file when it is activated, and close the log file when the queue is
closed. The queue rules, queueActivate and queueClose can be used to do
this. The variable 1ogFile needs to be a class variable so that both rules
can access the log file.

/* This rule logs the activation of the queue */
public void queueActivate() {
try {
logFile = new LogToDiskFile(\\log.txt);
Tog(MQe_Log_Information, Event Activate, "Queue " +
((MQeQueueProxy)owner) .getQueueManagerName() + " + " +
((MQeQueueProxy)owner) .getQueueName() + " active");
}
catch(Exception e) {
e.printStackTrace(System.err);
}

}

/* This rule logs the closure of the queue */
public void queueClose() {
try {

Tog(MQe_Log Information, Event Closed, "Queue " +
((MQeQueueProxy)owner) .getQueueManagerName() + " + " +
((MQeQueueProxy)owner) .getQueueName() + " closed");

/* close log file =/
logFile.close();

Chapter 3. Rules 55

catch (Exception e) {
e.printStackTrace(System.err);
}

}

The addListener rule is shown in the following code. It uses the MQe.1og
method to add an Event_Queue_AddMsglListener event.

/* This rule logs the addition of a message Tistener */
public void addListener(MQeMessagelListenerInterface Tistener,
MQeFields filter) throws Exception
{

log(MQe_Log_Information, Event Queue_AddMsgListener,
"Added listener on queue "
+ ((MQeQueueProxy)owner) .getQueueManagerName() + "+"
+ ((MQeQueueProxy)owner) .getQueueName());

}

C codebase
In the C codebase example, a central log is set up for all queues using the
queue activate and close rules. This log is then used to keep track of all
putMessage operations. Because the log is shared between rules
invocations, the information needed to access the log is stored in the rules
private data structure - see the Websphere MQ Everyplace for
Multiplatforms C Programming Reference for information on how the rules
private data structure is passed around between rules invocations. In this
case, the private data structure contains a file handle for passing between
rules invocations:

struct myRulesData_ {
// rules instance structure
MQeAdministratorHndl hAdmin; /
administrator handle to carry around between
// rules functions
FILE * ifp;
// file handle for logging rules
1
typedef struct myRulesData_ myRules;

In the rules queue activate function, the file is opened and the activation of
the queue logged:

MQEVOID myRules_activateQueue(MQeRulesActivateQueue_in_ * pInput,
MQeRulesActivateQueue out * pOutput) {
MQERETURN rc = MQERETURN_OK;
MQECHAR =* gName;
MQEINT32 size;

// recover the private data from the input
structure parameter pInput
myRules * myData = (myRules =*)(pInput->pPrivateData);

MQeExceptBlock * pExceptBlock =
(MQeExceptBlock *) (pOutput->pExceptBlock);
SET_EXCEPT_BLOCK_TO_DEFAULT (pExceptBlock);

if(myData->ifp == NULL) {
// initialized to NULL in the rules initialization function
myData->ifp = fopen("traceFile.txt","w");
rc = mgeString_getUtf8(pInput->hQueueName,
pExceptBlock, NULL, &size);
if(MQERETURN_OK == rc) {
gName = malloc(size);
rc = mgeString_getUtf8(pInput->hQueueName,
pExceptBlock, gName, &size);
if (MQERETURN_OK ==

56 WebSphere MQ Everyplace: Systems Programming Guide

rc && myData->ifp != NULL) {
fprintf(myData->ifp,
"Activating queue %s \n", gName);

}
}

In the rules queue close function, the file is closed after the closure of the
queue is logged:

MQEVOID myRules_closeQueue (MQeRulesCloseQueue_in_ * pInput,
MQeRulesCloseQueue_out_ * pOutput) {
MQERETURN rc = MQERETURN_OK;
MQECHAR =* gName;
MQEINT32 size;

// recover the private data from the
input structure parameter pInput
myRules * myData = (myRules *)(pInput->pPrivateData);

MQeExceptBlock * pExceptBlock =
(MQeExceptBlock *) (pOutput->pExceptBlock);
SET_EXCEPT_BLOCK_TO_DEFAULT (pExceptBlock);

if(myData->ifp != NULL) {
rc = mqeString_getUtf8(pInput->hQueueName,
pExceptBlock, NULL, &size);
if (MQERETURN_OK == rc) {
gName = malloc(size);
rc = mgeString_getUtf8(pInput->hQueueName,
pExceptBlock, gName, &size);
if(MQERETURN_OK == rc) {
fprintf(myData->ifp,
"Closing queue %s \n", gName);

}
fclose(myData->ifp);
MyData->ifp = NULL;

}

The rules put message function ensures that each put message operation is

logged:
MQERETURN myRules_putMessage (MQeRulesPutMessage_in_ * pInput,
MQeRulesPutMessage out_ * pOutput) {
MQERETURN rc = MQERETURN_OK;
MQECHAR * gName, * gMgrName;
MQEINT32 size;

// recover the private data from the input structure parameter pInput
myRules * myData = (myRules *)(pInput->pPrivateData);

MQeExceptBlock * pExceptBlock =
(MQeExceptBlock =) (pOutput->pExceptBlock);
SET_EXCEPT_BLOCK_TO DEFAULT(pExceptBlock);

if(myData->ifp != NULL) {
rc = mqeString_getUtf8(pInput->hQueueName,
pExceptBlock, NULL, &size);
if(MQERETURN_OK == rc) {
gName = malloc(size);
rc = mgeString_getUtf8(pInput->hQueueName,
pExceptBlock, gName,&size);

if(MQERETURN_OK == rc) {

Chapter 3. Rules

57

rc = mqeString_getUtf8(pInput->hQueue_QueueManagerName,
pExceptBlock,
NULL, &size);
if(MQERETURN_OK == rc) {
gMgrName = malloc(size);
rc = mgeString_getUtf8(pInput->hQueue_QueueManagerName,
pExceptBlock,
gMgrName, &size);
}
}
if(MQERETURN_OK == rc) {
fprintf(myData->ifp, "Putting a message
onto queue %S on queue
manager %s\n",gName, gMgrName);
}
}

/* allow the operation to proceed regardless of what
went wrong in this rule %/

SET_EXCEPT_BLOCK_TO_DEFAULT (pExceptBlock);

return EC(pExceptBlock);

58 WebSphere MQ Everyplace: Systems Programming Guide

Chapter 4. Aliases

Aliases can be assigned for WebSphere MQ Everyplace queues to provide a level
of indirection between the application and the real queues. For example, a queue
can be given a number of aliases and messages sent to any of these names will be
accepted by the queue.

Using queue aliases

The following examples illustrate some of the ways that aliasing can be used with

queues.

Examples of queue aliasing

Merging applications

Suppose you have the following configuration:

* A client application that puts data to queue Q1

* A server application that takes data from Q1 for processing

* A client application that puts data to queue Q2

* A server application which takes data from Q2 for processing

Some time later the two server applications are merged into one
application supporting requests from both the cllient applications. It may
now be appropriate for the two queues to be changed to one queue. For
example, you may delete Q2, and add an alias of the Q1 queue, calling it Q2.

Messages from the client application that previously used Q2 are
automatically sent to Q1.

Upgrading applications

Suppose you have the following configuration:
* A queue Q1

* An application that gets messages from Q1

* An application that puts messages to Q1

You then develop a new version of the application that gets the messages.
You can make the new application work with a queue called Q2. You can
define a queue called Q2 and use it to exercise the new application. When
you want it to go live, you let the old version clear all traffic off the Q1
queue, and then create an alias of Q2 called Q1. The application that puts to
Q1 will still work, but the messages will end up on Q2.

Using different transfer modes to a single queue

© Copyright IBM Corp. 2000, 2002

Suppose you have a queue MY_Q_ASYNC on queue manager MQE1. Messages
are passed to MY_Q_ASYNC by a different queue manager MQE2, using a
remote queue definition that is defined as an asynchronous queue. Now
suppose your application periodically wants to get messages in a
synchronous manner from the MY_Q_ASYNC queue.

The recommended way to achieve this is to add an alias to the MY_Q_ASYNC
queue, perhaps called MY_Q_SYNC. Then define a remote queue definition on
your MQE2 queue manager, that references the MY_Q_SYNC queue. This

provides you with two remote queue definitions. If you use the MY_Q_ASYNC

59

definition, the messages are transported asynchronously. If you use the
MY_Q_SYNC definition, synchronous message transfer is used.

MQE2 queue manager
Remote queue MY_Q_ASYNC MQE1 queue manager
(mode=asynchronous) N Queue MY_Q_ASYNC

Remote queue MY_Q_SYNC M (st ELEVING)
(mode=synchronous)

Both remote queues reference the same queue,
using different attributes and different names

Figure 7. Two modes of transfer to a single queue

Using queue manager aliases

Aliases can be used for WebSphere MQ Everyplace queue managers, and can be
used by application programs, to provide a level of indirection between the
application and the real object.

The following examples illustrate some of the ways that aliasing can be used with
queue managers.

Examples of queue manager aliasing

Addressing a queue manager with several different names

Suppose you have a queue manager SERVER23QM on the server SAMPLEHOST,
listening on port 8082. You have an application SERVICEX that accesses this
queue manager, and wants to refer to the queue manager as SERVICEXQM.
This can be achieved using an alias for the queue manager as follows:

* Configure a connection on the SERVER23QM :

Connection Name/Target queue manager:

SERVICEXQM
Description: Alias definition to enable SERVER23QM to
receive messages sent to SERVICEXQM
Channel: "null”
Network Adapter: "null”
Network adapter options: "null”

* Create a local queue on the SERVER23QM queue manager:
Queue Name: SERVICEXQ
Queue Manager: SERVER23QM
The server-side application takes messages from this queue, and process
them, sending messages back to the client.

A WebSphere MQ Everyplace application can now put messages to the
SERVICEXQ on either the SERVER23QM queue manager, or the SERVICEXQM
queue manager. In either case, the message will arrive on the SERVICEXQ.

60 WebSphere MQ Everyplace: Systems Programming Guide

SERVER23QM queue manager

Connection
name=SERVICEQM
channel=null
adapter=null
adapter parameters=null

v

| SERVICEX queue |¢ PutMessage ("SERVICEX"...)

A

PutMessage ("SERVICEQM”...)

Both messages arrive at SERVICEX queue
Figure 8. Addressing a queue manager with two different names

If the SERVICEXQ queue is moved to another queue manager, the connection
alias can be set up on the new queue manager, and the applications do not
need to be changed.

Different routings from one queue manager to another
Using the scenario just described, an WebSphere MQ Everyplace queue
manager on a mobile device (MOBILEOO58QM) can now access the SERVICEXQ
queue in a number of different ways. Two examples are described here:

 Aliasing on the sending side

Using this method of routing, the receiving queue manager does not
know that the sending queue manager has given him an alias name. The
aliasing is confined to the sending queue manager only.

On the mobile device:

— Create a connection from MOBILEOO58QM to the SERVER23QM queue
manager:

Connection name
SERVER23QM

Network Adapter parameter
Network:SAMPLEHOST:8082

— Create an alias called SERVICEXQM for queue manager SERVER23QM

When a message is sent from the mobile device application to the
SERVICEXQM queue manager, WebSphere MQ Everyplace maps the
SERVICEXQM name to SERVER23QM in the connection , and sends the
message to the SERVER23QM queue manager.

If the Mobi1e58QM then wished to send its messages to a different server
queue manager, Server24QM, it would remove the alias SERVICEXQM from
the Server23QM connection, and add it to a Server24QM connection. This
has no impact on the receiving queue managers, or the sending
applications.

Chapter 4. Aliases 61

Mobile58QM queue manager

Connection Server23QM queue manager
name="Server23QM”

channel=DefaultChannel
adapter=Network:server23:8081 > » Queue

| Alias="SERVICEXQM"

PutMessage("SERVICEXQM)

v
— Alias="SERVICEXQM" —— Server24QM queue manager
Coninection
name="Server24QM” m » Queue

channel=DefaultChannel
adapter=Network:server24:8081

The message goes to either Server23QM or Server24QM
depending on which connection the alias is attached to

Figure 9. Addressing a queue manager with two different names

* Virtual queue manager on the receiving side

Using this method, the sending queue managers think that its messages
are routed through an intermediate queue manager before reaching the
target queue manager. The target queue manager doesn’t actually exist.
The "intermediate’ queue manager captures all the message traffic for
this virtual target queue manager.

On the mobile device:

— Create a connection from MOBILEOO58QM to the SERVER23QM queue
manager:

Connection name SERVER23QM

Network Adapter parameter Network:SAMPLEHOST:8082

— Create a second connection to the SERVICEXQM that routes messages
through the first connection:

Connection name
SERVICEXQM

Network Adapter parameter
SERVER23QM

Note: This is not an alias. It is a via routing, indicating that messages
headed for SERVICEXQM are to be routed via the SERVER23QM
queue manager on the receiving side.

The via routing on the mobile device causes any messages that are put
to SERVICEXQM to be directed to Server23QM. Server23QM gets the
messages and notes that they are destined for the SERVICEXQM queue
manager. It resolves the SERVICEXQM name and finds that it is an alias
which represents the Server23QM queue manager (itself). The Server23QM
queue manager then accepts the messages and puts them onto the
queue.

62 WebSphere MQ Everyplace: Systems Programming Guide

Mobile58QM queue manager

Connection Server23QM queue manager
name="Server23QM” | * ¢
channel=DefaultChannel v "
adapter=Network:server23:8081 Alias="SERVICEXQM
A Connéction
: name="Server23QM”
A channel=null
Connection adaptgr=null
name="SERVICEXQM” 1
channel=DefaultChannel T vy i
adapter=Server23QM arge
: queue

y

Queue manager SERVICEXQM
PutMessage(SERVICEXQM) does not really exist

Figure 10. Addressing a queue manager with two different names

As an alternative to the above, you can keep the SERVICEXQM in existence,
but move it from its original machine to the same machine (but a
different JVM) as the Server23QM queue manager. SERVICEXQM needs to
listen on a different port, so the connection from Server23QM to
SERVICEXQM needs to be changed as well.

Chapter 4. Aliases 63

64 WebSphere MQ Everyplace: Systems Programming Guide

Chapter 5. Applying maintenance

Applying maintenance to WebSphere MQ Everyplace Maintenance updates for
WebSphere MQ Everyplace are always shipped as a complete new release. There
are two options when upgrading from one release to another:

1. Completely uninstall the current level, and install the new level in the same
directory. We recommend that you keep the install package for the current level
to allow it to be restored later if necessary.

2. Keep the existing level and install the new level into a new directory. After
installation, check your classpath to ensure that the latest level of WebSphere
MQ Everyplace is being invoked. If installing on Windows, make sure that you
give the shortcuts folder for the new install a different name to the existing
one.

For more general information on maintenance updates and their availability see
the WebSphere MQ family Web page at http:/ /www.software.ibm.com/mqseries/.

© Copyright IBM Corp. 2000, 2002 65

66 WebSphere MQ Everyplace: Systems Programming Guide

Chapter 6. Trace and logging

This chapter provides information on trace and logging for WebSphere MQ
Everyplace applications under the following headings.

* [Trace information in the Java codebase]

* [Trace information in the C codebase|

Trace information in the Java codebase

The trace mechanism provided and used by WebSphere MQ Everyplace has the
following features:

* A pluggable interface to allow user-written trace handlers to be implemented if
required.

* A veriety of implementations of the trace handler interface to cater for a veriety
of uses. One such implementation supports a crude form of circular logging, so
older trace information is discared when newer trace information becomes
available. See the com.ibm.mge.trace.MQeTraceToBinaryFile for more details.

* A separation between the trace point number, and the meaning, or textual
representation of that trace point. This separation of the number from lengthy
meanful string information allows for collection of the trace point numbers to be
performed at run-time, and the rendering of that information to a readable
format to be done off-line at a later time. This can mean trace information files
are smaller and generated more quickly at the point of capture, but much larger
and more accessable at the time they are read.

* Dynamic, run-time filtering of trace information.

Generating trace information

Tracing in the Java codebase is performed using the com.ibm.mge.MQeTrace class.
All calls to com.ibm.mge.MQeTrace.trace() methods pass the following
information:

* A number, by which the trace point can be identified.

* A group bit-mask, which identifies this trace point as being classified as part of
one or more groups of trace points. This information is used in conjunction with
the MQeTrace.setFilter() method, to allow unwanted trace information to be
filtered-out at run-time. Many of the bits in the group bit-mask have a defined
meaning. For example, if the MQeTrace.GROUP_ERROR bit is set, then the trace
point indicates that an error is being reported. Multiple group bits can be set for
the same trace point.

* A number of parameters. A tostring() method is invoked for each parameter,
so that a string is extracted at run-time, and added to the trace point.

Classes shipped in WebSphere MQ Everyplace generate lots of trace information
using these methods, such that the trace point numbers are all negative. We
recommend that programs using this trace mechanism use positive numbers, or
Zero.

Several bit-fields are reserved for user applications, for example, the

MQeTrace.GROUP_MASK USER DEFINED bits-fields. For convenience,
MQeTrace.GROUP_USER_DEFINED_1 maps to one such bit, for example:

© Copyright IBM Corp. 2000, 2002 67

MQeTrace.trace(this, (short) 1, MQeTrace.GROUP_ERROR |
MQeTrace.GROUP_USER_DEFINED_1, thingTolLog);

This statement implements a logical AND operation on the GROUP_ERROR and
GROUP_USER_DEFINED_1, maintaining the run-time filter with the MQeTrace class. If
the result is non-zero, then the corresponding method on the MQeTraceHandler
interface class is called, if a handler has been set.

There are several variants of the MQeTrace.trace() method, including methods that
trace different numbers of parameters with the trace point.

Capturing trace information

WebSphere MQ Everyplace does not automatically capture the trace information
provided by the MQeTrace.trace() methods. The solution programmer must
capture the trace messages. We strongly recommend that your solution includes a
mechanism to allow the capture of WebSphere MQ Everyplace trace events, as this
output may be requested by the IBM service teams when investigating any
problems reported.

To capture WebSphere MQ Everyplace trace information, you need to ensure that

* A trace handler has been provided, and set using the MQeTrace.setHandler()
method.

* The run-time filter maintained by the MQeTrace.setFilter() method is not
excluding the information you want to capture.

The required trace handler must implement the MQeTraceHandler interface.
WebSphere MQ Everyplace ships with several trace handlers, used for different
purposes:

MQeTraceToReadable
This renders trace information to a printstream in a readable format.

MQeTraceToBinaryFile
This collects trace information into a file, or sequence of files.

MQeTraceFromBinaryFile
You can use this to render this binary information file format into readable
text.

MQeTraceToBinaryMidp
Collects binary trace information when running inside a MIDP java
environment.

// Allocate a trace instance, so our handler
//isn't garbage collected when its' on.
myMQeTrace = new MQeTrace();

// Allocate a trace handler
// This one puts trace output to stdout by default.
MQeTraceHandler handler = (MQeTraceHandler)

new com.ibm.mge.trace.MQeTraceToReadable();

// Set this handler as the one MQe uses.
MQeTrace.setHandler(handler);

// Set the filter so we collect those

//pieces of trace we are interrested in.
// In this case, collect all the default trace information.
MQeTrace.setFilter(MQeTrace.GROUP_MASK DEFAULT);

68 WebSphere MQ Everyplace: Systems Programming Guide

// To end trace set the filter to zero and the handler to null
MQeTrace.setFilter(0);
MQeTrace.setHandler(null);

This example shows the creation of a trace handler, MQeTraceToReadable in this
case, and setting of the filter to capture the default trace informaton. This can
result in lots of information being captured. You can use a more restrictive filter to
capture only a subset of the data. For example, collecting errors, warnings, and
user-coded trace points might be more appropriate:

MQeTrace.GROUP_ERROR | MQeTrace.GROUP_WARNING | MQeTrace.GROUP_MASK_USER DEFINED

Notes:

1. The IBM Service team may ask you to use the MQeTrace.GROUP_MASK_ALL value
when diagnosing a problem.

2. When using the MQeTraceToBinaryMidp tracehandler, you require an
additional step to recover the trace. The MIDP tracehandler either stores the
trace in a record store or in memory. Once trace has finished, call
sendDataToUr1() to recover this binary data. By default, this sends the data to a
servlet. For more information, refer to the examples.trace.MQeTraceServiet
section of the WebSphere MQ Everyplace Java Programming Reference.

Writing your own trace handler

Solution providers may wish to write their own trace handlers, to
* Do more complex filtering.

e Store trace information in a different place or form to that used by the supplied
trace handlers

* Re-route trace information generated through this mechanism to another trace
capture mechanism. For example, the trace handlers supplied with WebSphere
MQ Everyplace rely on function supplied by underlying classes:

com.ibm.mgqe.trace. MQeTracePointGroup
This class holds information about a logical grouping of trace points.

com.ibm.mgqe.trace. MQeTraceRenderer
Provides a programmatic way of managing a collection of
tracePointGroups and tracePoints information. It provides methods to
add or remove tracePointGroups, individual tracePoints to and from the
collection of tracePointGroups, and collection of tracePoints.

com.ibm.mgqe.trace. MQeTracePoint
A collection of information that describes a particular trace point.

The trace handlers in the product populate a series of MQeTracePointGroup objects
with a collection of MQeTracePoint objects. The groups are added to the
MQeTraceRenderer, and the MQeTraceRenderer is used to map from the trace
point number passed on the MQeTrace.trace() methods, to a readable string.

The separation of the readable string from the trace point number allows the code
to collect just the number, and separate the information collection stage from the
stage that renders to readable strings.

Where possible, the trace handlers supplied also gather stack trace information

when a java.lang.throwable is passed as a parameter to the MQeTrace.trace()
method.

Chapter 6. Trace and logging 69

You can implement the trace handler interface, and intercept trace information
from your application and the WebSphere MQ Everyplace system classes. For
examples of this, refer to the following classes in the WebSphere MQ Everyplace
Java Programming Reference:

* examples.trace.MQeTrace
* examples.trace.MQeTraceToFile

You can add trace points to existing trace point groups, or to your own trace point
groups. You can add these to the base MQeTraceRenderer, and use them in
conjunction with the existing trace handlers. For an example of this, please refer to
the MQeTrace class section of the WebSphere MQ Everyplace Java Programming
Reference.

Trace points generated from WebSphere MQ Everyplace

All of the WebSphere MQ Everyplace trace points use negative trace point
numbers. They are provided to facilitate problem diagnosis for the IBM Service
team, when investigating a reported problem on the Websphere MQ Everyplace
product.

Each trace point may change its meaning, value, and order in respect of other trace
points between versions of the WebSphere MQ Everyplace classes. A trace point
used in one version of WebSphere MQ Everyplace might never be issued in
another. For this reason, we strongly recommend that solutions do not use a trace
point as a trigger for application logic.

When rendering trace point information to a readable format, maintain a consistent
version between all of the WebSphere MQ Everyplace classes. Failure to do so
might result in misleading information being written to the trace output.

Trace information in the C codebase

This section describes trace and logging in the C codebase. It shows you how to
enable WebSphere MQ Everyplace trace on PocketPC and PocketPC2002 devices
and emulators.

Information on trace and logging is organised under the following headings:

* [Trace architecture|

* |Configuring trace

Trace architecture

In WebSphere MQ Everyplace, trace is configured globally. This means that trace is
enabled for the device, and when enabled, all C WebSphere MQ Everyplace
applications generate trace.

You can configure the location where you want trace files to be written. Each
application generates a unique file in the form MQEnnnnn.trc, where "nnnnn” is
the process identifier of the application. WebSphere MQ Everyplace trace files are
written in a binary format to minimise their size. You can either send these binary
trace files directly to an IBM Service Representative to decode them or,
alternatively, use the MQenativeTraceFormatter.exe utility provided with
WebSphere MQ Everyplace. This utility runs on Windows, but does not run on
PocketPC. It takes the trace file as an argument and prints the decoded output to
standard out. The output can be captured in a file by running a command, such as:

MQenativeTraceFormatter.exe AMQ12345.trc > AMQ12345.txt

70 WebSphere MQ Everyplace: Systems Programming Guide

This will decode the file AMQ12345.trc and place the output in a file called

AMQ12345.txt.

Configuring trace in the C codebase
Trace is controlled on the PocketPC via entries in the "Windows Registry”. These

trace values are under the
HKEY_LOCAL_MACHINE\SOFTWARE\IBM\MQe\CurrentVersion\Trace key.

You can set the values in a number of ways:

* Manually, using a registry editor, such as the Remote Registry Editor provided

with eMbedded Visual Tools V3.0

* With a .Reg file, which you can download to the device and then execute

* Programatically, using the supplied mqgeTrace_setOptions function

For information on the mgeTrace_setOptions function, see the C Programming
Reference on the product CD. If you set the value manually or use a .Reg file, all
values should be of type REG_SZ. WebSphere MQ Everyplace supports the

following values:

Table 1. Trace values supported in WebSphere MQ Everyplace

Value Name Supported Description

values

Enable Yes or no Turns trace on and off.

Location Full path Directory where trace files are written to. The
location string must be a valid file path, for
example mqetrace.

Timestamp Yes or no Determine if timestamp information is added to
each tracepoint. Set to "no” to reduce file size
and increase speed.

Parameters Yes or no Determine if parameter information is added to
each tracepoint. Set to "no” to reduce file size
and increase speed.

WrapLength Value Advanced value, described in the following list
under [Wraplength}

SubtractMethodFilter Value Advanced value, described in the following list
under |JAddMethodFilter and]
[SubtractMethodFilter]

AddMethodFilter Value Advanced value, describted in the following list
under [AddMethodFilter and|
[SubtractMethodFilter]

In [Table 1} the following conditions apply:

WrapLength

This is the maximum size, in bytes, that an individual trace file will reach.
Once this value is reached, the trace file begins to wrap using a "circular
buffer” algorithm. However, this takes a considerable amount of time, and
may significantly slow down execution speed once the file starts wrapping.
Therefore, leave this value at -1, except in circumstances where disk space
is at a premium.

Note: This is the maximum length of a single trace file. If an application is
run multiple times, or multiple applications are run, then each
generated trace file reaches this size.

Chapter 6. Trace and logging 71

AddMethodFilter and SubtractMethodFilter
These values allow sophisticated control over exactly what trace points are
produced. Incorrect use can seriously limit the effectiveness and
understandability of the trace files. You should leave these fields blank,
unless an IBM service representative instructs you otherwise. If you do
send trace files to IBM, you must include details of what both of these
fields are set to.

72 WebSphere MQ Everyplace: Systems Programming Guide

Chapter 7. WebSphere MQ Everyplace Diagnostic tool

WebSphere MQ Everyplace includes a small diagnostic tool that can be used to
gather the information required by technical support personnel to assist with
problem determination. The tool collects information about the local WebSphere
MQ Everyplace environment. In particular:

¢ CLASSPATH and PATH information

e Java and C system variables

* Version information of the WebSphere MQ Everyplace classes

No personal information or WebSphere MQ Everyplace message data is collected

by this program, and it should normally only be used at the request of IBM
technical support personnel.

This tool should not be confused with the trace facility, which is used to gather
debugging information on a running WebSphere MQ Everyplace system.

Invoking the MQeDiagnostics Tool

If you need to use this tool it can be invoked as follows.

On Windows NT and Windows 2000

1. From a command prompt change to the ...\mge\Java\demo\Windows\ folder.

2. Edit the MQeDiagnostics.bat file to suit your environment. The file makes use
of the JavaEnv.bat script, so either ensure that JavaEnv.bat correctly sets up
your CLASSPATH and PATH environment variables, or configure them directly
from within the MQeDiagnostics.bat script.

3. Run the MQeDiagnostics.bat file and follow the on screen prompts.

4. Once the tool has completed, look through the MQeDiagnostics.out file for any
errors. Common errors include:

"AMQeDiagnostics.properties could not be found”
The tool requires the MQeDiagnostics.properties file to be supplied as
input. Edit MQeDiagnostics.bat so that it points to the correct location
for this file and rerun the tool.

"com.ibm.mgqe.support.MQeDiagnostics is not recognized as an internal or
external command...”
JavaEnv.bat is not configured correctly. Edit MQeDiagnostics.bat and
JavaEnv.bat if necessary and rerun the tool.

"java.lang.NoclassDefFoundError: com/ibm/mgqe/support/MQeDiagnostics”
Edit JavaEnv.bat and MQeDiagnostics.bat if necessary so that the
...\MQe\Java\Jars\MQeDiagnostics.jar can be found in the CLASSPATH
environment variable.

Note: Not all WebSphere MQ Everyplace classes can supply version
information, so the MQeDiagnostics.out file may include some
"Unknown version!” messages.

5) Send MQeDiagnostics.out to the WebSphere MQ Everyplace support

personnel.

© Copyright IBM Corp. 2000, 2002 73

diagnostic tool

On UNIX systems
1. From a command prompt change to the C folder name or the
..\mge\Java\demo\UNIX\ folder.

2. Edit the MQeDiagnostics script to suit your environment. The file makes use of
the JavaEnv script, so either ensure that JavaEnv correctly sets up your
CLASSPATH and PATH environment variables, or configure them directly from
within the MQeDiagnostics script.

3. Run the MQeDiagnostics script and follow the on screen prompts.

4. Once the tool has completed, look through the MQeDiagnostics.out file for any
errors. Common errors include:

"\MQeDiagnostics.properties could not be found”
The tool requires the MQeDiagnostics.properties file to be supplied as
input. Edit MQeDiagnostics.bat so that it points to the correct location
of this file and rerun the tool.

"com.ibm.mgqe.support.MQeDiagnostics : command not found”
JavaEnv is not configured correctly. Edit MQeDiagnostics and JavaEnv
if necessary and rerun the tool.

"java.lang.NoClassDefFoundError: com/ibm/mgqe/support/MQeDiagnostics”
Edit JavaEnv and MQeDiagnostics if necessary so that the
...\MQe\Java\Jdars\MQeDiagnostics.jar file can be found in the
CLASSPATH environment variable.

Note: Not all WebSphere MQ Everyplace classes can supply version
information, so the MQeDiagnostics.out file may include some
"Unknown version!” messages.

5. Send MQeDiagnostics.out to the WebSphere MQ Everyplace support personnel.

Other systems
On other systems, the MQeDiagnostics tool should be invoked directly.
1. Add the MQeDiagnostics.jar file to your classpath.

2. Invoke the com.ibm.mge.support.MQeDiagnostics class from the Java runtime
environment. For example:

C example

java com.ibm.mge.support.MQeDiagnostics
MQeDiagnostics.properties > MQeDiagnostics.out

The program takes the MQeDiagnostics.properties file as an argument.

3. Send the output from the tool to the WebSphere MQ Everyplace support
personnel.

74 WebSphere MQ Everyplace: Systems Programming Guide

Appendix. Notices

This information was developed for products and services offered in the U.S.A.
IBM® may not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,

© Copyright IBM Corp. 2000, 2002 75

notices

Winchester,
Hampshire
England
S0O21 2JN

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Trademarks

The following terms are trademarks of International Business machines
Corporation in the United States, or other countries, or both.

IBM
MQSeries

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Windows NT is a registered trademark of Microsoft Corporation in the United
States andin the United States and/or other countries other countries.

Other company, product, and service names may be trademarks or service marks
of others.

76 WebSphere MQ Everyplace: Systems Programming Guide

Bibliography

Related publications:

WebSphere MQ Everyplace Read Me First,
GC34-6276-00

WebSphere MQ Everyplace Introduction,
SC34-6277-00

WebSphere MQ Everyplace Application
Programming Guide, SC34-6278-00
WebSphere MQ Everyplace C Bindings
Programming Guide, SC34-6280-00
WebSphere MQ Everyplace Java Programming
Reference

WebSphere MQ Everyplace C Programming
Reference

WebSphere MQ Everyplace C Programming Guide
for PalmQOS, SC34-6281-00

WebSphere MQ Everyplace Configuration Guide,
SC34-6283-00

WebSphere MQ An Introduction to Messaging and
Queuing, GC33-0805-01

WebSphere MQ for Windows NT V5R1 Quick
Beginnings, GC34-5389-00

© Copyright IBM Corp. 2000, 2002

77

78 WebSphere MQ Everyplace: Systems Programming Guide

Index
A

about this book v
activeMaster()
C 6
java 1
activeSlave()
C 6
java 1
adapter
communications 32
communications, example 20
message store, example 28
adapters 17
communications 17
how to write adapters 18

storage 17
alias 59
queue 59

queue manager 60
applying maintenance 65
asynchronous remote queue
definitions 52
authenticators 1

c codebase 4

example logon 3

how to write 1

jave codebase 1

WinCEAuthenticator 7

C

certificate management 12
examining certificates 13
renewing certificates 15

communications adapter 32
example 20

communications adapters 17

D

diagnostic tool 73
invoking 73

E

environment variables
collecting information 73
example
communications adapter 20
message store adapter 28

F

free() 6

© Copyright IBM Corp. 2000, 2002

L

legal notices 75
licence warning v
logging 67

M

maintenance, applying 65
management, certificates 12
message store adapter
example 28
migration
from version 1.2.6 vii
from version 1.2.7 vii
trace vii

N

new() 5
notices, legal 75

P

prerequisite knowledge v

Q

queue manager rules 39
loading and activating 40
using 41

queue rules 53

R

rules 39

activating queue manager rules 40

loading queue manager rules 40
queue 53

queue manager 39
transmission 44

transmit 45

trigger transmission 44

S

security 1
authenticators 1
slaveResponse()
c 7
java 2
storage adapters 17

—~

tool
diagnostic 73
trace 67

trace (continued)
architecture 70
C information 70
capturing information 68
cinfiguring in C 71
generating information 67
handler, writing 69
java information 67
points generated 70
tramsmission rules 44
transmit rule 45
trigger transmission rule 44

w

WebSphere communications adapter 32

79

80 WebSphere MQ Everyplace: Systems Programming Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
* By mail, to this address:

User Technologies Department (MP095)

IBM United Kingdom Laboratories

Hursley Park

WINCHESTER,

Hampshire

S0O21 2JN
United Kingdom

¢ By fax:
— From outside the U.K,, after your international access code use
44-1962-842327
— From within the UK., use 01962-842327
¢ Electronically, use the appropriate network ID:
— IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
- IBMLink ": HURSLEY(IDRCF)

— Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:

* The publication title and order number

* The topic to which your comment applies

* Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2000, 2002 81

82 WebSphere MQ Everyplace: Systems Programming Guide

Printed in U.S.A.

SC34-6274-00

	Contents
	About this book
	License warning
	Who should read this book
	Prerequisite knowledge

	Migration notes
	Migrating from version 1.2.6 or lower to version 1.2.7 or higher
	Migrating to version 2.0
	Trace

	Chapter 1. Security
	Authenticators
	How to write an authenticator
	Java codebase

	The example logon authenticator
	C codebase
	The example WinCEAuthenticator

	Certificate management
	Examining certificates
	Renewing certificates

	Chapter 2. Adapters
	Storage adapters
	Communications adapters
	How to write adapters
	An example of a simple communications adapter
	An example of a simple message store adapter
	The WebSphere Everyplace Suite (WES) communications adapter
	The WebSphere Everyplace adapter files
	Using the WebSphere Everyplace adapter
	General Operation
	Using the Authentication Dialog Example
	Using the Application Example

	Chapter 3. Rules
	Queue manager rules
	Loading and activating queue manager rules
	Java codebase
	C codebase

	Using queue manager rules
	Example put message rule
	Example get message rule
	Example remove queue rule

	Transmission rules
	Trigger transmission rule

	Transmit rule
	A more complex example

	Activating asynchronous remote queue definitions
	Queue rules
	Using queue rules

	Chapter 4. Aliases
	Using queue aliases
	Examples of queue aliasing

	Using queue manager aliases
	Examples of queue manager aliasing

	Chapter 5. Applying maintenance
	Chapter 6. Trace and logging
	Trace information in the Java codebase
	Generating trace information
	Capturing trace information
	Writing your own trace handler
	Trace points generated from WebSphere MQ Everyplace

	Trace information in the C codebase
	Trace architecture
	Configuring trace in the C codebase

	Chapter 7. WebSphere MQ Everyplace Diagnostic tool
	Invoking the MQeDiagnostics Tool
	On Windows NT and Windows 2000
	On UNIX systems
	Other systems

	Appendix. Notices
	Trademarks

	Bibliography
	Index
	Sending your comments to IBM

