
WebSphere MQ Everyplace

Application Programming Guide
Version 2.0

SC34-6278-00

���

WebSphere MQ Everyplace

Application Programming Guide
Version 2.0

SC34-6278-00

���

Take Note!

Before using this information and the product it supports, read the general information under Appendix D, “Notices”, on
page 157

First Edition (November 2002)

This edition applies to WebSphere® MQ Everyplace™ Version 2.0 and to all subsequent releases and modifications
until otherwise indicated in new editions.

This document is continually being updated with new and improved information. For the latest edition, please see
the WebSphere MQ family library Web page at http://www.ibm.com/software/ts/mqseries/library/.

© Copyright International Business Machines Corporation 2000, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book vii
License warning. vii
Who should read this book viii
Prerequisite knowledge viii
Terms used in this book viii

Summary of changes. xi

Migration notes. xiii
General migration issues. xiii

What is the same? xiii
What is different? xiii

Not supported xiii
Migration warnings xiv
Cross API changes xiv

mqeQueueManager APIs xiv
Fields API xv
Constants xvi
Administration messages xvi
Configuration and administration. xvi

Deprecated classes xvi
Migrating from version 1.2.7 to version 2.0 . . . xvi

Changes to MQeFields xvi
Peer channels xvii
Changes to MQeChannel xvii
MQeAttribute xvii

Migrating from version 1.2.6 or lower to version
2.0 xvii

Aliases xvii
Attribute keys xvii
MQBridge programming xviii
Mini-certificate server xviii
Registry xviii
Trace xviii

Chapter 1. Introduction 1

Chapter 2. ″HelloWorld″ messaging . . . 3
Java codebase 3

Developing the Java ″HelloWorld″ application . . 3
Running the Java ″HelloWorld″ application . . . 5

C codebase 6
Designing the C ″HelloWorld″ application . . . 6
Developing the C ″HelloWorld″ application . . . 6
Deploying the C ″HelloWorld″ application . . . 9
Running the C ″HelloWorld″ application . . . 10

Chapter 3. Running Applications . . . 11
Development environment 11

Java development 11
C development 12
Threading 14
Calling convention 14
Handles and items 15

WebSphere MQ Everyplace memory functions. . 15
MQeString. 16
J2ME environment 18

Windows security configuration 18
Java development 18
C development 20

Deploying applications 20
Java deployment. 20
C deployment 21

Post install test 22
Java 22
C 23

Chapter 4. Messaging 25
MQeFields. 25
What are WebSphere MQ Everyplace messages? . . 27

Message Filters 30
Message Expiry 30

Chapter 5. Queues. 33
What are WebSphere MQ Everyplace queues? . . . 33
Queue Names 33
Queue types 35

Local queue 35
Remote queue 35
Store-and-forward queue 36
Dead-letter queue 37
Administration queue 37
Home-server queue. 37
WebSphere MQ bridge queue 37

Queue persistent storage 38
WebSphere MQ Everyplace connection definitions 38
Using queue aliases 40

Examples of queue aliasing 41

Chapter 6. Queue manager operations 43
What is a WebSphere MQ Everyplace queue
manager? 43
The queue manager lifecycle. 44
Starting queue managers 44

Starting queue managers in Java 44
Queue manager parameters 45
Starting queue managers in C 46
Registry parameters for a queue manager . . . 47
Client queue managers 48
Server queue managers 50
Environment relationship 51

Messaging lifecycle 51
Message states 52
Message events 53
Message index fields 53

Messaging operations 54
Queue Ordering 58

Reading messages on a queue 58
Browse and Lock 58

© Copyright IBM Corp. 2000, 2002 iii

Message listeners 60
Message polling 61
Trigger transmission 61

Deleting queue managers. 62
Java 62
C 63

Servlet 64
Security 67

Connection security 67
Aliases 68

Chapter 7. Message Delivery 69
Asynchronous message delivery 69
Synchronous message delivery 69
Assured and non-assured message delivery . . . 70

Assured message delivery 70
Non-assured message delivery 70

Synchronous assured message delivery 71
Put message 71
Get message 74

Chapter 8. Security 79
Security features 79
Local security. 80

Usage scenario 81
Usage guide for Java 82
Usage guide for C 84

Message-level security 87
Usage scenario 87
Usage guide 89

Mini-certificate issuance service. 94
Renewing mini-certificates 95
Obtaining new credentials (private and public
keys) 95
Listing mini-certificates 96
Updated mini-certificate format for WebSphere
MQ Everyplace Version 2.0 97

Private registry service 97
Private registry and the concept of
authenticatable entity 97
Usage scenario 98
Usage guide 99

Public registry service 100
Usage scenario 100
Usage guide 101

Chapter 9. Java Message Service . . . 103
Using JMS with WebSphere MQ Everyplace . . . 103

Obtaining jar files 103
Testing the JMS class path 104
Running other WebSphere MQ Everyplace JMS
example programs. 105

Writing JMS programs 106
The JMS model 106

Restrictions in this version of WebSphere MQ
Everyplace 114
Using Java Naming and Directory Interface (JNDI) 115

Storing and Retrieving objects with JNDI . . . 115
Using the example programs with JNDI . . . 116

Mapping JMS messages to WebSphere MQ
Everyplace messages 119

Naming MQeMsgObject fields. 120
WebSphere MQ Everyplace JMS information 121
JMS header files 121
JMS properties 122
WebSphere MQ Everyplace JMS classes . . . 124

Chapter 10. Error and error handling 127
Error handling in the Java codebase 127
Error handling in the C codebase. 127

Structure of the codes 127
Exception block 127
Useful macros 128

Chapter 11. Deployment of
applications from Webshpere Studio
Device Developer. 131
Getting started 131

Palm: What you need to get started 132
PocketPC: What you need to get started . . . 133

Debugging 134
Debugging on the Palm using WSDD 134
Debugging on the PocketPC using WSDD . . . 134
Debugging locally using WSDD 134

Available runnable classes 134
MIDlets 135

Giving parameters to the MIDlet 135
Cleaning up after the applications 136
Problems with SmartLinker. 136
Additional help 137

Chapter 12. Open Services Gateway
Initiative 139
WebSphere MQ Everyplace example bundle
contents 139
Using WebSphere MQ Everyplace within OSGi . . 140
Running the Example Bundles. 140

Server application (MQeServerBundle.jar) . . . 140
Client Application (MQeClientBundle.jar). . . 140
Running the example. 141

Providing user-defined rules and dynamic class
loading 142

Appendix A. WebSphere MQ
Everyplace Java programming
examples 143
Examples 143
examples.adapters 143
examples.administration.commandline package . . 143
examples.administration.console package 143
examples.administration.simple package 144
examples.application package 144
examples.attributes package 145
examples.awt package 146
examples.certificates package 147
examples.eventlog package 147
examples.install package 147
examples.mqbridge.awt package 148

iv WebSphere MQ Everyplace Application Programming Guide

examples.mqbridge.administration.commandline
package 149
examples.mqbridge.application.GetFromMQ . . . 149
examples.mqeexampleapp package 149
examples.nativecode package 150
examples.queuemanager package. 150
examples.rules package 151
examples.trace package 151

Appendix B. Applying maintenance to
WebSphere MQ Everyplace 153

Appendix C. Differences between
trace in WebSphere MQ Everyplace
version 1.2.6 or lower and version 2.0 . 155

How to migrate from WebSphere MQ Everyplace
version 1 to the WebSphere MQ Everyplace version
2.0 trace mechanism 155

Appendix D. Notices 157
Trademarks 158

Glossary 159

Bibliography. 161

Index 163

Sending your comments to IBM . . . 165

Contents v

vi WebSphere MQ Everyplace Application Programming Guide

About this book

This book is a programming guide for the WebSphere MQ Everyplace product. It
contains information on how to use the WebSphere MQ Everyplace Java™ class
and C class libraries, that are described in WebSphere MQ Everyplace Java
Programming Reference, on the product CD, and the client platform C APIs that are
described in the WebSphere MQ Everyplace C Programming Reference.

It provides guidance to help you to decide which classes or APIs to use for
common messaging tasks, and in many cases example code is supplied.

For more information on writing Java and C-based programs for WebSphere MQ
Everyplace, refer to the WebSphere MQ Everyplace Java Programming Reference and
the WebSphere MQ Everyplace C Programming Reference, on the product CD. The C
APIs discussed in this manual are intended to provide client platform functionality.
For information on writing C-based programs that provide server platform
functionality, refer to the WebSphere MQ Everyplace C Bindings Programming Guide.

Chapter 1, “Introduction”, on page 1 provides a brief introduction for those who
are unfamiliar with the concepts and components of WebSphere MQ Everyplace.
Chapter 3, “Running Applications”, on page 11 provides help for setting up your
environment, and shows you how to use examples to create applications. The rest
of the book contains more detailed information about various aspects of
programming with WebSphere MQ Everyplace.

If you choose to program in Java, you should use this book in conjunction with the
WebSphere MQ Everyplace Java Programming Reference and existing books or manuals
on Java and C programming.

To program in C, uset this book in conjunction with the WebSphere MQ
Everyplace C Programming Reference.

This document is continually being updated with new and improved information.
For the latest edition, please see the WebSphere MQ family library Web page at
http://www.ibm.com/software/mqseries/library/.

License warning
WebSphere MQ Everyplace Version 2.0 (Program number: 5724-C77) is a toolkit
that enables users to write WebSphere MQ Everyplace applications and to create
an environment in which to run them.

Before deploying this product, or applications that use it, in a production
environment, please make sure that you have the necessary licenses.

To use WebSphere MQ Everyplace on specified server platforms, other than for
purposes of code development and test, you must obtain capacity-unit Use
Authorizations so that you are licensed to use the program on each machine and
machine upgrade. These licences are recorded on Proof of Entitlement documents
and authorize the use of WebSphere MQ Everyplace according to published
capacity unit and pricing group tables.

© Copyright IBM Corp. 2000, 2002 vii

You require device platform use authorizations to use the product (other than for
purposes of code development and test) on specified client platforms. These
licences are recorded on Proof of Entitlement documents and authorize the use of
WebSphere MQ Everyplace. However, they do not entitle you to use the
WebSphere MQ Everyplace Bridge, or to run on the server platforms specified in
the WebSphere MQ Everyplace pricing group lists published by IBM® and also
available on the Web via the following URL:

Please refer to http://www.ibm.com/software/mqseries for details of these restrictions.

Who should read this book
This book is intended for anyone who wants to write Java and C based WebSphere
MQ Everyplace programs to exchange secure messages within WebSphere MQ
Everyplace systems, and between WebSphere MQ Everyplace systems and other
members of the WebSphere MQ family of messaging and queueing products.

For information on the availability of development kits for environments other
than Java and C, see the WebSphere MQ Web site at
http://www.ibm.com/software/mqseries/

Prerequisite knowledge
This book assumes that the reader has a working knowledge of either Java or C
programming.

An initial understanding of the concepts of secure messaging is an advantage. If
you do not have this understanding, you may find it useful to read the following
WebSphere MQ books:
v WebSphere MQ An Introduction to Messaging and Queuing

v WebSphere MQ for Windows NT® V5R1 Quick Beginnings, or the WebSphere MQ
Quick Beginnings book that is relevant to the operating system that you are
using.

These books are available in softcopy form from the Book section of the online
WebSphere MQ library. The library can be reached from the WebSphere MQ Web
site, URL address http://www.ibm.com/software/mqseries/library/

Terms used in this book
The following terms are used throughout this book:

WebSphere MQ family
refers to the following WebSphere MQ products:
v WebSphere MQ Workflow simplifies integration across the whole

enterprise by automating business processes involving people and
applications.

v WebSphere MQ Integrator is powerful message-brokering software that
provides real-time, intelligent rules-based message routing, and content
transformation and formatting.

v WebSphere MQ Messaging provides any-to-any connectivity from
desktop to mainframe, through business quality messaging, supporting
over 35 platforms.

WebSphere MQ Messaging
refers to the following messaging product groups:

viii WebSphere MQ Everyplace Application Programming Guide

v Distributed messaging: WebSphere MQ for Windows NT, AIX®,
AS/400®, HP-UX, Sun Solaris, and other platforms

v Host messaging: WebSphere MQ for OS/390®

v Workstation messaging: WebSphere MQ for Windows
v Pervasive messaging: WebSphere MQ Everyplace

WebSphere MQ
refers to the following three WebSphere MQ Messaging product groups:
v Distributed messaging
v Host messaging
v Workstation messaging

WebSphere MQ Everyplace
Refers to the fourth WebSphere MQ Messaging product group, pervasive
messaging.

Device platform
A small computer that is capable of running WebSphere MQ Everyplace
only as a client

Server platform
A computer of any size that is capable of running WebSphere MQ
Everyplace as a server or client

Gateway
A computer of any size running WebSphere MQ Everyplace programs that
include the WebSphere MQ bridge function

About this book ix

x WebSphere MQ Everyplace Application Programming Guide

Summary of changes

This is a new book that replaces the MQSeries® Everyplace Programming Guide,
released with previous versions of WebSphere MQ Everyplace. While the old
programming guide concentrated on Java programming, this book aims to provide
information on both the Java and C codebases.

© Copyright IBM Corp. 2000, 2002 xi

xii WebSphere MQ Everyplace Application Programming Guide

Migration notes

This section contains information that you may need to consider when migrating
from one version or release of WebSphere MQ Everyplace to a higher version or
release.

General migration issues
The following lists the differences and similarities between the CBindings and the
Native C implementations of WebSphere MQ Everyplace. Note that this is a
complete Native C implementation of WebSphere MQ Everyplace rather than
wrapping Java APIs. As a result of this, some changes have been required.
However, it is still WebSphere MQ Everyplace, so concepts of assured message
delivery, and so on, still apply.

What is the same?
v It is still a handle based API, with the same basic types, for example MQEINT32.
v APIs still have the same form.
v Errors are still handled in the same mannger.

What is different?
v Numeric Error codes have changed, some operations return new return or

reason codes for situations.
v It is pirmilary a device QueueManager, therefore server style functionality does

not apply.
v A limited set of adapters, cryptors and compressors is available.

Not supported
The native C implementation is targeted as a device queuemanager.

WebSphere MQ bridge
MQeMQMessages can be constucted. Refer to the MQ_message example in
the WebSphere MQ Everyplace C Programming Reference.

RunList
Not supported.

Adapters
Only supports the TcpIpHttpAdapter.

Cryptors
Only supports the RC4 cryptor.

Compressors
Only supports the RLE compressor.

Channel listener and manager
Not supported.

© Copyright IBM Corp. 2000, 2002 xiii

Migration warnings
v When compiliing against the bindings, a set of messages is dislayed. These are

next to APIs, and so on, that have been changed. Details are given in the
following section on Cross API warnings.

v LocalSecure localsecure:1 read attribute hdnl - Attribute Hanld change
localsercure:2 write attribute hdnl

Cross API changes
The Bindings use MQeAttributeHndl as a base type for many differnet types of
attributes. These types have been more tightly specified, for example getMessage
calls take MQeFieldsAttrHndl.

The Bindings used a wrapper around the Java Enumeration classes. This has been
replaced with a native MQeVector. The major change here is in terms of memory
management. This is detailed in the Programming Reference/Examples/HTML
reference guides.

Note: Specific sections of the API are referenced in the following sections. Note
that the main headerfile MQe_API.h should always be included rather than
specific API header files.

mqeQueueManager APIs
The following warnings are applicable to :

QM_01
QueueManager new parameters change. NAtive C requires the parameters,
queue manager and registry, to be supplied in the new function rather than
activate.

QM_02
QueueManager activate - > mqeQueueManager_start(). no longer requires
additional params, see QM_01.

QM_03
No message listener currnetly in native C.

QM_04
Browse Messages attribute handle type is now MQeFieldsAttrHndl.
Messages are now returned in an MQeVector.

QM_05
As QM_04 but for browseAndLock.

QM_06
mqeQueueManager_close is replaced with mqeQueueManager_stop.

QM_07
mqeQueueManager_getMessage attribute hndl.

QM_08
mqeQueueManager_getReference API has changed to
mqeQueueManager_getCurrentQueueManager.

QM_09
mqeQueueManager_putMessage attribute hndl.

QM_10
Message Listener not currently supprted in native C.

xiv WebSphere MQ Everyplace Application Programming Guide

QM_11
mqeQueueManager_waitForMessage not currently supported in native C.

QM_12
mqeQueueManager_setGlobalHashtable not supported in native C

Fields API
Fields_01

FieldEnumeraion deprecated, replace with MQeVector.

Fields_02
mqeFields_getAttribute.

Fields_03
Get and Put array length not supported in native C.

Fields_04
mqeFields_setAttribute attribute handle.

Fields_05
mqeFields_putDoubles() is deprecated. Use mqeFields_putArrayOfDouble()
instead.

Fields_06
mqeFields_putFloats is deprecated. Use mqeFields_putArrayOfFloat()
instead.

Fields_07
mqeFields_putInt32s is deprecated. Use mqeFields_putArrayOfInt32()
instead.

Fields_08
mqeFields_putInt64s is deprecated. Use mqeFields_putArrayOfInt64()
instead.

Fields_09
mqeFields_putInt16s is deprecated. Use mqeFields_putArrayOfInt16()
instead.

Fields_10
mqeFields_putBytes is deprecated. Use mqeFields_putArrayOfByte()
instead.

Fields_11
mqeFields_getDoubles() is deprecated. Use mqeFields_getArrayOfDouble()
instead.

Fields_12
mqeFields_getFloats() is deprecated. Use mqeFields_getArrayOfFloat()
instead.

Fields_13
mqeFields_getDoubles() is deprecated. Use mqeFields_getArrayOfInt32()
instead.

Fields_14
mqeFields_getInt64s() is deprecated. Use mqeFields_getArrayOfInt64()
instead.

Fields_15
mqeFields_getInt16s() is deprecated. Use mqeFields_getArrayOfInt16()
instead.

Migration notes xv

Fields_16
mqeFields_getBytes() is deprecated. Use mqeFields_getArrayOfByte()
instead.

Constants
WebSphere MQ Everyplace still supplies the full range of constants. New constants
are thelist of constants to construct MQeMqMsgObjects from first principles.
Specifiy MQeM.
v MQe_Adapter_Constants.h
v MQe_Admin_Constants.h
v MQe_Attribute_Constants.h

Administration messages
The native C implementation provides a fields implemention. The various subtypes
though of fields, such as Administration messages are not supplied. A number of
helper methods are provided to help construct the usual WebSphere MQ
Everyplace Messages.

Various other subclasses of message can be constructed from a basic fields object,
the required constants for the field labels, and the mqeFIelds_setClassName
method. This method sets a field indicated what class this must be when
reinstantiated in a Java queue manager.

Configuration and administration
MQe_QueueManagerConfigure.h is not applicable to the nativeC codebase. A new
API defined by MQe_Administrator.h is provided. This allows configuration of the
queue manager.

Deprecated classes
A number of classes have been removed from the product. We reccomend that you
update any applications written to make use of the classes listed below to use the
equivalent function provided in WebSphere MQ Everyplace version 2.0. To enable
existing applications to be run during this migration, WebSphere MQ Everyplace
provides the MQeDeprecated.jar jar file.

The MQeDeprecated.jar file contains the following classes:
v MQeMQBridge.class
v MQeChannelListener.class
v MQeChannelListenerTimer.class
v MQeChannelManager.class
v MQeTraceInterface.class

For more details on replacements for the above classes, refer to the the listing for
each class in the WebSphere MQ Everyplace Java Programming Reference.

Migrating from version 1.2.7 to version 2.0

Changes to MQeFields
In order to comply with Java 2 Platform Micro Edition’s (J2ME) Connected Limited
Device Configuration(CLDC)/Mobile Information Device Protocol (MIDP)
specification several methods have been modified or removed from MQeFields:

xvi WebSphere MQ Everyplace Application Programming Guide

v The explicit use of the floating point types, float and double, have had to be
removed, for example you putFloat(″Val1″, -1.234). Under java platforms that
enable the use of float/double this functionality can be mimicked by explicity
converting the data into the equivalent int or long using the base types Java
Object convert method i.e. the above method is replaced with
putFloatAsInt(″Val1″,Float.floatToIntBits(-1.234)).

Note: Version 1 applications can retrieve these values as normal.
v Methods dumpToFile/restoreFromFile have been removed. Applications that

used these functions now have to dump the MQeFields object and write the byte
array to the specified file.

v Xor’ing of dumped data has also been removed due to changes made in the ’C’
code base.

Peer channels
Peer channels have been removed from the WebSphere MQ Everyplace version 2.0
codebase, because they caused problems with message routing and assured
delivery.

Changes to MQeChannel
The com.ibm.mqe.MQeChannel class has been moved and is now known as
com.ibm.mqe.communications.MQeChannel. Any references to the old class name
in administration messages is replaced automatically with the new class name.

MQeAttribute
The following changes have been implemented in relation to MQeAttribute:
v The implementation of the equals() method on MQeAttribute and its subclasses

in version 1.2.7 (and lower versions) has been renamed as isAcceptable().
v An MQeAttributeRule now ships with the product. You should now extend your

attribute rules from this class instead of MQeRule. All methods on MQeAttribute
and its subclasses, which used to take an MQeRule object as one of its
parameters now take an MQeAttributeRule object instead.

Migrating from version 1.2.6 or lower to version 2.0
If you are migrating from version 1.2.6 or lower to WebSphere MQ Everyplace
version 2.0, consider the following product changes on your existing application.

Aliases
Several Java class aliases, which were commonly used in version 1.2.6 are
defaulted in version 2.0. The WebSphere MQ Everyplace Java Programming
Reference section on MQeAlias() methods provides more information on this.

Attribute keys
In WebSphere MQ Everyplace version 1 code, the MQeFields structure passed to
the MQeQueueManager specifies the default class names to use when loading
attribute keys, where an attribute key class was not specified:
(ascii)AttributeKey_2=com.ibm.mqe.attributes.MQeSharedKey
(ascii)AttributeKey_1=com.ibm.mqe.MQeKey

Migration notes xvii

In version 2.0, you cannot change these values using the alias mechanism, because
they are hardcoded. If you specify the values in .ini files, or calls to the
MQeQueueManager, they are not used, but cause no problems.

MQBridge programming
In previous versions of WebSphere MQ Everyplace you had to instantiate an
MQBridges object in order to connect to a WebSphere MQ system. In version 2.0,
the bridge function is automatically available providing the relevant services are
available on the class path. Chapter 9, provides more information on the bridge
function.

Mini-certificate server
In previous versions of WebSphere MQ Everyplace the product code included a
WLTS certificate issuance server, with application programming interfaces to allow
programmatic control of the server. Version 2.0 replaces this with SupportPac™,
ESO3, ″WebSphere MQ Everyplace WTLS Mini-Certificate Server″, which you can
download for free from the WebSphere MQ Web site at
http://www.ibm.com/software/mqseries/txppacs.

Registry
Improvements to the persistent data representation in the registry and the message
store means changes in the format of the data. These changes mean that a registry
generated under version 1 of WebSphere MQ Everyplace is not acceptable to a
queue manager started using version 2.0 of WebSphere MQ Everyplace. The
application generates an exception error to signal this fact. In Java this is
com.ibm.mqe.MQeExceptionCodes.Except_QMgr_RegistryDataVersion. If you
encounter this exception you will need to migrate the data in the registry.
WebSphere MQ Everyplace provides classes to perform this migration. The
required classes are in the package com.ibm.mqe.validation, and the only public
class is com.ibm.mqe.validation.MQeDiskImageValidator. An example of how to
use this class to perform migration is provided in examples.migration.Migrator.

Trace
The tracing mechanism for WebSphere MQ Everyplace Version 2.0 differs from the
mechanism provided by version 1 of the product. These differences are detailed in
Appendix C, “Differences between trace in WebSphere MQ Everyplace version
1.2.6 or lower and version 2.0”, on page 155

xviii WebSphere MQ Everyplace Application Programming Guide

Chapter 1. Introduction

This book describes how to customize the basic functions of WebSphere MQ
Everyplace. It describes WebSphere MQ Everyplace messages, queues, and queue
managers, detailing their functions, how to create links with other messaging
software, and how to implement WebSphere MQ Everyplace security. It also
provides C and Java programming examples for most sections.

As described in the WebSphere MQ Everyplace Introduction, WebSphere MQ
Everyplace code can run on a large range of platforms including pervasive and
mobile devices.

© Copyright IBM Corp. 2000, 2002 1

2 WebSphere MQ Everyplace Application Programming Guide

Chapter 2. ″HelloWorld″ messaging

This section describes how to create a basic application using the WebSphere MQ
Everyplace Java and C APIs. It contains information on designing, developing,
deploying, and running the application under the following main headings:
v Java codebase
v C codebase

Java codebase
This section describes how to develop and run a basic ″HelloWorld″ application in
the Java codebase.
v Developing the Java ″HelloWorld″ application
v Running the Java ″HelloWorld″ application

Developing the Java ″HelloWorld″ application
The following code is in the examples.helloworld.Run class in its complete state.
Solutions using WebSphere MQ Everyplace classes are often separated into several
separate tasks:
v Installation of the solution
v Configuration of the queue manager, leaving the configuration information on

the local hard disk
v Use of the queue manager
v Removal of the queue manager
v Un-install of the solution

Before reading the information in this chapter, you need to configure a queue
manager. The examples.helloworld.Configure program demonstrates the
configuration of the queue manager. The examples.helloworld.Unconfigure
program demonstrates the removal of the queue manager. This section of the
documentation describes how to use the queue manager.

Overview of the examples.helloworld.run program
The main method controls the flow of the hello world application. From this code,
you can see that the queue manager is started, a message is put to a queue, a
message is got from a queue, and the queue manager is stopped.

Trace information can be redirected to the standard output stream if the
MQE_TRACE_ON symbolic constant has its’ value changed to ’true’.
public static void main(String[] args) {

try {
Run me = new Run();

if (MQE_TRACE_ON) {
me.traceOn();

}
me.start();
me.put();
me.get();
me.stop();
if (MQE_TRACE_ON) {

me.traceOff();
}

© Copyright IBM Corp. 2000, 2002 3

} catch (Exception error) {
System.err.println("Error: " + error.toString());
error.printStackTrace();

}
}

Stage 1: Start the queue manager
The examples.helloworld.Configure program creates an image of the HelloWorldQM
queue manager on disk.

Before a queue manager can be used, it must be instantiated in memory, and
started. The start method in the example program does this.
public void start() throws Exception {

System.out.println("Starting the queue manager.");

String queueManagerName = "HelloWorldQM";
String baseDirectoryName =

"./QueueManagers/" + queueManagerName;

// Create all the configuration
information needed to construct the

// queue manager in memory.
MQeFields config = new MQeFields();

// Construct the queue manager section parameters.
MQeFields queueManagerSection = new MQeFields();

queueManagerSection.putAscii(MQeQueueManager.Name,
queueManagerName);

config.putFields(MQeQueueManager.QueueManager,
queueManagerSection);

// Construct the registry section parameters.
// In this examples, we use a public registry.
MQeFields registrySection = new MQeFields();

registrySection.putAscii(MQeRegistry.Adapter,
"com.ibm.mqe.adapters.MQeDiskFieldsAdapter");

registrySection.putAscii(MQeRegistry.DirName,
baseDirectoryName + "/Registry");

config.putFields("Registry", registrySection);

System.out.println("Starting the queue manager");
myQueueManager = new MQeQueueManager();
myQueueManager.activate(config);
System.out.println("Queue manager started.");

}

To start the queue manager, at a minimum you must know its name, location, and
the adapter which should be used to read the queue manager’s configuration
information from its registry.

Activating the queue manager causes the configuration data from the disk to be
read using the disk fields adapter, and the queue manager is then started and
running, available for use.

Stage 2: Create a message and put to a local queue
The following code constructs a message, adds a unicode field with a value of
″Hello World!″ and the message is then put to the SYSTEM.DEFAULT.LOCAL.QUEUE on
the local HelloWorldQM queue manager.

4 WebSphere MQ Everyplace Application Programming Guide

public void put() throws Exception {
System.out.println("Putting the test message");
MQeMsgObject msg = new MQeMsgObject();

// Add my hello world text to the message.
msg.putUnicode("myFieldName" , "Hello World!");

myQueueManager.putMessage(queueManagerName,
MQe.System_Default_Queue_Name, msg, null, 0L);

System.out.println("Put the test message");
}

Stage 3: Get message from a local queue
The following code gets the ″top″ message from the local queue,
SYSTEM.DEFAULT.LOCAL.QUEUE, checks that a message with the field myFieldName
was obtained, and displays the text held in the unicode field.

Stage 4: Shutdown
This section describes how to stop a queue manager and delete the definition of
the queue manager.

Stopping the queue manager: You can stop the queue manager using a controlled
shutdown.

public void stop() throws Exception {
System.out.println("Stopping the queue manager.");
myQueueManager.closeQuiesce(QUIESCE_TIME);
myQueueManager = null;
System.out.println("Queue manager stopped.");

}

Deleting the definition of the queue manager from the disk: You can use
the examples.helloworld.Unconfigure program to remove the queue manager
from disk.

Running the Java ″HelloWorld″ application
From a command prompt, set up your classpath to refer to the WebSphere MQ
Everyplace class files. These are available in the Java directory, in which you
installed the Websphere MQ Everyplace product.

Ensure that your shell has the ability to create and modify the ./QueueManagers
directory on your system. If it does not have this ability, you should change the
source of the examples.helloworld programs, such that they refer to an accessible
directory, and re-compile the java code.

Invoke the Configure program to create the queue manager. The syntax will
depend on the Java Virtual Machine (JVM) you use. The IBM JVM is invoked
using the ″java″ command, for example java examples.helloworld.Configure. This
creates the queue manager on disk.

Run the java examples.helloworld.Run hello world program. This puts a message
to a local queue, gets the message back and displays part of it.

You can now destroy the queue manager on the disk using java
examples.helloworld.Unconfigure.

Refer to Chapter 3, “Running Applications”, on page 11, to understand how to set
up an environment, which runs WebSphere MQ Everyplace applications.

Chapter 2. ″HelloWorld″ messaging 5

C codebase
This section describes how to design, develop, deploy and run a ″HelloWorld″
application in the C codebase, under the following headings:
v Designing the C ″HelloWorld″ application
v Developing the C ″HelloWorld″ application
v Deploying the C ″HelloWorld″ application
v Running the C ″HelloWorld″ application

Designing the C ″HelloWorld″ application
This application aims to create and use a single queue manager with a local queue.
It involves putting a message to the local queue and then removing it.

You can create queue managers for use by one program. Once this program has
completed, you can run a second program that reinstates the previous queue
manager configuration.

Typically, configuring new entities is a separate process from their actual use. Once
configured, administering these entities also requires a different process than using
them. This section concentrates on usage rather than administration. The
WebSphere MQ Everyplace Configuration Guide contains information on
configuring and administering resources.

Assuming that the queue manager entity has already been configured, the
HelloWorld application has the following flow for both the C and Java codebases:
1. Start the queue manager

This starts the queue manager based on information already created
2. Create a message

Creates a structure that you can use to send a message from one queue
manager to another

3. Put to a local queue
Puts the message on the local queue

4. Get from a local queue
Retrieves the message from the local queue and checks that the message is
valid

5. Shutdown
Clears and stops the queue manager

Note: The C codebase does not have an equivalent of the Java Garbage Collection
function. Therefore, clearing the queue manager features more strongly in C.

Developing the C ″HelloWorld″ application
This section covers the high level coding required for the ″HelloWorld″ application.

C Development
The following code is in the example HelloWorld_Runtime.c in its complete state.
The example contains code to handle the specifics of running a program on a
PocketPC, which mainly involves writing to a file to cope with the lack of
command line options. Use the display function to write to a file, as shown in the
examples contained in the following sections.

Preparation: You need to include just one header file to access the APIs.

6 WebSphere MQ Everyplace Application Programming Guide

Note: You must include the NATIVE definition to indicate that this is not the
CBindings. You must also define the MQE_PLATFORM upon which you
intend to run the application.

#define NATIVE
#define MQE_PLATFORM = PLATFORM_WINCE
#include<published/MQe_API.h>

All of the code, including variable declarations, is inside the main method. You
require structures for error checking. The MQeExceptBlock structure is passed into
all functions to get the error information back. In addition, all functions return a
code indicating success or failure, which is cached in a local variable:

/* ... Local return flag */
MQERETURN rc;
MQeExceptBlock exceptBlock;

You must create a number of strings, for example for the queue manager name:
MQeStringHndl hLocalQMName;

...

if (MQERETURN_OK == rc) {
rc = mqeString_newUtf8(&exceptBlock,

&hLocalQMName,
"LocalQM");

}

The first API call made is session initialize:
/* ... Initalize the session */
rc = mqeSession_initialize(&exceptBlock);

Stage 1: Start the queue manager: This process involves two steps:
1. Create the queue manager item.
2. Start the queue manager.

Creating the queue manager requires two sets of parameters, one set for the queue
manager and one for the registry. Both sets of parameters are initialized. The queue
store and the registry require directories.

Note: All calls require a pointer to ExceptBlock and a pointer to the queue
manager handle.

if (MQERETURN_OK == rc) {

MQeQueueManagerParms qmParams = QMGR_INIT_VAL;
MQeRegistryParms regParams = REGISTRY_INIT_VAL;
qmParams.hQueueStore = hQueueStore;
qmParams.opFlags = QMGR_Q_STORE_OP;

/* ... create the registry parameters -
minimum that are required */

regParams.hBaseLocationName = hRegistryDir;
display("Loading Queue Manager from registry \n");
rc = mqeQueueManager_new(&exceptBlock,

&hQueueManager,
hLocalQMName,

&qmParams,
®Params);

}

You can now start the queue manager and carry out messaging operations:

Chapter 2. ″HelloWorld″ messaging 7

/* Start the queue manager */

if (MQERETURN_OK == rc) {
display("Starting the Queue Manager\n");
rc = mqeQueueManager_start(hQueueManager,

&exceptBlock);
}

Stage 2: Create a message: To create a message, firstly create a new fields object.
The following example adds a single field. Note that the field label strings are
passed in:
MQeFieldsHndl hMsg;

display("Creating a new message\n");
rc = mqeFields_new(&exceptBlock,&hMsg);
if (MQERETURN_OK == rc) {
rc = mqeFields_putInt32(hMsg,&exceptBlk,

hFieldLabel,42);
}

Stage 3: Put to a local queue: Once you have created the message, you can put it
to a local queue using the putMessage function. Note that the queue and queue
manager names are passed in. NULL and 0 are passed in for the security and
assured delivery parameters, as they are not required in this example. Once the
message has been put, you can free the MQeFields object:

if (MQERETURN_OK == rc) {
display("Putting a message \n");
rc = mqeQueueManager_putMessage(hQueueManager,

&exceptBlock,
hLocalQMName,
hLocalQueueName,

hMsg,
NULL,
0);

(void) mqeFields_free(hMsg,NULL);
}

Stage 4: Get from a local queue: Once the message has been put to a queue, you
can retrieve and check it. Similar options are passed to the getMessage function.
The difference is that a pointer to a fields handle is passed in. A new Fields object
is created, removing the message from the queue:

MQeFieldsHndl hReturnedMessage;
display("Getting the message back \n");

rc = mqeQueueManager_getMessage(hQueueManager,
&exceptBlock,

&hReturnedMessage,
hLocalQMName,
hLocalQueueName,

NULL,
NULL,
0);

}

Once the message has been obtained, you can check it for the value that was
entered. Obtain this by using the getInt32 function. If the result is valid, you can
print it out:

if (MQERETURN_OK == rc) {
MQEINT32 answer;
rc = mqeFields_getInt32(hReturnedMessage,

&exceptBlock,

8 WebSphere MQ Everyplace Application Programming Guide

&answer,
hFieldLabel);

if (MQERETURN_OK == rc) {
display("Answer is %d\n",answer);
}
else {

display("\n\n %s (0x%X) %s (0x%X)\n",
mapReturnCodeName(EC(&exceptBlock)) ,
EC(&exceptBlock),
mapReasonCodeName(ERC(&exceptBlock)),
ERC(&exceptBlock));

}

}

Stage 5: Shutdown: Following the removal of the message from the queue, you
can stop and free the queue manager. You can also free the strings that were
created. Finally, terminate the session:

(void)mqeQueueManager_stop(hQueueManager,&exceptBlock);
(void)mqeQueueManager_free(hQueueManager,&exceptBlock);

/* Lets do some clean up */
(void)mqeString_free(hFieldLabel,&exceptBlock);
(void)mqeString_free(hLocalQMName,&exceptBlock);
(void)mqeString_free(hLocalQueueName,&exceptBlock);
(void)mqeString_free(hQueueStore,&exceptBlock);
(void)mqeString_free(hRegistryDir,&exceptBlock);

(void)mqeSession_terminate(&exceptBlock);

C Compilation
To simplify the process of compiling, the examples directory includes a makefile.
This is the makefile exported from eMbedded Visual C (EVC). A batchfile runs this
makefile. This batch file will setup the paths to the EVC directories, along with the
paths to the WebSphere MQ Everyplace installation. You may need to edit the
batch file, depending on how you want to install WebSphere MQ Everyplace.

Running the batch file will compile the example. By default, the batch file compiles
for Debug PocketPC 2000 (either Emulator or ARM processor).

Deploying the C ″HelloWorld″ application
In order to deploy the ″HelloWorld″ application, you need to create a queue
manager. There are various ways to do this, which are covered in the WebSphere
MQ Everyplace Configuration Guide. In this case, the HelloWorld_Admin program
is used. Run this as described below.

C deployment
The next chapter, Running applications, covers C deployment in detail. The basics,
applicable to both the emulator and an actual device, are as follows:
1. Copy across all the DLLs to the root of the device. Take these from either the

arm or x86 emulator directories.
2. Build the example code using the supplied makefile.

Note: You need to compile the HelloWorld_Admin.c and
HelloWorld_Runtime.c files.

3. Copy across these binaries to the device or emulator that is running PocketPC
or Emulator.

Chapter 2. ″HelloWorld″ messaging 9

Running the C ″HelloWorld″ application
This section describes how to run the ″HelloWorld″ application in Java and C.

PocketPC or emulator
This example involves two steps:
1. Create the queue manager. To do this, run the HelloWorld_Admin

program.Running this creates the persistent disk representation of the
QueueManager.

2. Run the HelloWorld_Runtime program. This starts a QueueManager based
upon the established registry. To check the program has worked correctly, look
at the log file that has been generated. By default, this is in the root of the
device.

10 WebSphere MQ Everyplace Application Programming Guide

Chapter 3. Running Applications

This section introduces Version 2.0 of the WebSphere MQ Everyplace Development
Kit. The development kit is a development environment for writing messaging and
queuing applications based on Java 1.1 and C.

Note: For information on the availability of development kits for environments,
other than Java and C, and on other supported platforms, see the
WebSphere MQ Web site at http://www.ibm.com/software/ts/mqseries/

The code portion of the Java development kit comes in two sections:

Base WebSphere MQ Everyplace classes
A set of Java classes that provide all the necessary function to build
messaging and queuing applications.

Examples
Java source code and classes that demonstrate how to use many features of
WebSphere MQ Everyplace. Some examples are supplied in Appendix A,
“WebSphere MQ Everyplace Java programming examples”, on page 143 of
this book.

The code portion of the C development kit also comes in two sections:

Base WebSphere MQ Everyplace functions
C code that provides all the necessary function to build messaging and
queuing applications.

Examples
C source code that demonstrates how to use many features of WebSphere
MQ Everyplace.

Development environment
This section describes the tools you will need to develop programs using the
WebSphere MQ Everyplace Development Kit. It covers the following environments:
v Java development
v C development
v J2ME environment

Java development
To develop programs in Java using the WebSphere MQ Everyplace development
kit, you must set up the Java environment as follows:
v Set the CLASSPATH so that the Java Development Kit (JDK) can locate the

WebSphere MQ Everyplace classes.

Windows

In a Windows® environment, using a standard JDK, you can use the
following:
Set CLASSPATH=<MQeInstallDir>\Java;%CLASSPATH%

UNIX®

In a UNIX environment you can use the following:

© Copyright IBM Corp. 2000, 2002 11

CLASSPATH=<MQeInstallDir>/Java:$CLASSPATH
export CLASSPATH

v If you are developing code that uses or extends the WebSphere MQ–bridge, the
WebSphere MQ Classes for Java must be installed and made available to the
JDK.

You can use many different Java development environments and Java runtime
environments with WebSphere MQ Everyplace. The system configuration for both
development and runtime is dependent on the environment used. WebSphere MQ
Everyplace includes a file that shows how to set up a development environment
for different Java development kits. On Windows systems this is a batch file called
JavaEnv.bat, for UNIX systems it is a shell script called JavaEnv. To use this file,
copy the file and modify the copy to match the environment of the machine that
you want to use it on.

A set of batch files and shell scripts that run some of the WebSphere MQ
Everyplace examples use the environment file described above, and, if you wish to
use the example batch files, you must modify the environment file as follows:
v Set the JDK environment variable to the base directory of the JDK.
v Set the JavaCmd environment variable to the command used to run Java

applications.
v If WebSphere MQ Classes for Java is installed, set the MQDIR environment

variable to the base directory of the WebSphere MQ Classes for Java.

Note: Customized versions of JavaEnv.bat or JavaEnv may be overwritten if you
reinstall WebSphere MQ Everyplace.

When you invoke JavaEnv.bat on Windows you must pass a parameter that
determines the type of Java development kit to use.

Possible values are:

Note: These parameters are case sensitive and must be entered exactly as shown.

Sun - Sun

JB - Borland JBuilder

MS - Microsoft®

IBM - IBM

If you do not pass a parameter, the default is IBM.

The JavaEnv shell script on UNIX does not use a corresponding parameter.

On Windows, by default, you must run JavaEnv.bat from the
<MQeInstallDir>\java\demo\Windows directory. On UNIX, by default, you must
run JavaEnv from the <MQeInstallDir>/Java/demo/UNIX directory. Both files can
be modified to allow then to be run from other directories or to use other Java
development kits.

C development
To develop programs in C, using the WebSphere MQ Everyplace Development Kit,
you need the following tools:

running applications

12 WebSphere MQ Everyplace Application Programming Guide

Microsoft eMbedded Visual C++ (EVC) Version 3.0.
This is included in Microsoft eMbedded Visual Tools 3.0, which is available
as a free download from the Microsoft web page:
http://msdn.microsoft.com/mobile/
You must use version 3.0 as version 4.0 does not support PocketPC.

An SDK for your chosen platform
Microsoft eMbedded Visual Tools 3.0 includes an SDK for PocketPC 2000.
You can also download an SDK for PocketPC 2002 from Microsoft:
http://msdn.microsoft.com/mobile/

Compilation information
The two main subdivisions of the native C codebase are code for PocketPC 2000
and code for PocketPC 2002. For both, there are binary files for the actual device
and also for the emulator. Binary files are compiled for the ARM processors.

Binary files
The root of the binarie, as well as documentation and examples, is the C directory,
found in the main installation directory. This contains directories for the examples,
documentation, and separate directories for PocketPC 2000 and 2002.

PocketPC 2002

v DLL files in C\PocketPC 2002\arm\bin
v LIB files in C\PocketPC 2002\arm\lib

PocketPC 2000

v DLL files in C\PocketPC 2000\arm\bin
v LIB files in C\PocketPC 2000\arm\lib

Using eMbedded Visual C++
You can compile applications using the EVC Integrated Development Environment
(IDE), or optionally, from the command line. However, you must consider the
following:
v Set the appropriate ″Active WCE Configuration″, using the WCE Configuration

toolbar. To do this, under Target Operating System select either PocketPC or
PocketPC 2002. Also, under Target Processor , select one of the following:
– Win32 (WCE x86em) Debug
– Win32 (WCE x86em) Release
– Win32 (WCE ARM) Debug
– Win32 (WCE ARM) Release

Note: Some of the Target Processor or Target Operating System options may
not be available, depending on which SDKs you have installed.

v Include the header files for the native C codebase. These are shared between the
two versions of PocketPC and by the C Bindings. The header file location is in
the installation directory under include. If you include the root header file,
MQe_API.h, you include all the functions that you may require. As header files
are shared, you need to define which version of the codebase you are using, as
shown in the following example:
#define NATIVE
#define MQE_PLATFORM PLATFORM_WINCE

/*Alternatively, we recommened that you add this to the Preprocessor Definintions
in the Project Settings Dialog. Add the following to the start

running applications

Chapter 3. Running Applications 13

of the list*/
NATIVE,MQE_PLATFORM=PLATFORM_WINCE

#include <published\MQe_API.h>

v Include an entry for the top level WebSphere MQ Everyplace include directory
in ″Additional include directories″. This varies according to where you install
the product.

v Insert the following .lib file names in the ″Project Settings″ dialog, under Link —
> Input :
– HMQ_nativeAPI.lib
– HMQ_nativeCnst.lib

Note: There are variations of these files for each supported release, for example
one for PocketPC 2000 ARM, one for PocketPC 2000 x86em, and so on. To
ensure that you use the correct verion, qualify the filename fully for each
target build.

We recommend that you develop applications using the PocketPC or PocketPC2002
emulator as this typically provides a faster compilation and debug environment.
However, current emulators are API emulators, meaning that they do not emulate
ARM hardware. They emulate PocketPC API calls, but the code is still x86, that is
running in an x86 virtual machine in the PocketPC 2002 emulator case. Therefore,
we recommend that you regularly test the application on the real target device, as
many problems such as byte-alignment only becomes apparent on the real device.

Note: WebSphere MQ Everyplace emulator binaries are provided only for
development purposes and are not suitable for deployment into a
production environment.

Threading
The native codebase is designed to be re-entrant. The actual codebase does not use
threads, but this does not preclude the use of multiple threads in the application.
For example, you can create an application thread to repeatedly call
mqeQueueManager_triggerTransmission(). If you want to use multiple threads, you
do not need to call any specific APIs.

Although it is not a requirement. we recommend that you have an exception block
per thread. If you use one exception block shared across threads, an exception
block for a thread that fails can be overwritten by the exception block for a thread
that succeeds.

Note: You must call mqeSession_initialize or mqeSessuion_terminateonce only,
before any threads use a WebSphere MQ Everyplace API call. To ensure this,
call it in the main thread before any application threads are created. For
example, do not use the following:
mqeSession_initialize();
mqeSession_initialize();
mqeSession_terminate();
mqeSession_terminate();

Calling convention
The calling convention for all of the APIs has been explicitly set at _cdec1.
However, you can use

a different default calling convention in your application.

running applications

14 WebSphere MQ Everyplace Application Programming Guide

Handles and items
An application needs a mechanism for accessing WebSphere MQ Everyplace items
such as the queue manager, fields, strings, and so on. Handles use WebSphere MQ
Everyplace items. The handle points to an area of memory used to store the
specific information for that instance of the item. Type information is held for each
item. Therefore, you must take care to initialize the handle correctly.

To use a handle, you must initialize it. You can do this by calling the new function
of the associated item to be used. For example, to create an MQeString, you must
first call the mqeString_new() function and pass a pointer to MQeStringHndl to that
function. The mqeString_new() function allocates memory for the internal structure
and sets the required default values by MQeString. Once completed successfully,
the function returns the handle, which can now be used in subsequent calls to
MQeString functions.

Once an item has been finished with, it is important to call the free() function of
the item with which the handle is associated. The free() functions release all the
systems resources used by that item. Seting the handle to NULL introduces a
memory leak to the application and the system may run out of resources. To avoid
this, set the handle to NULL after it has been freed.

Note: We recomment that you do not attempt to free a handle more than once, as
this can cause unprecedented results.

You must use handles only with their associated items. You must also initialize and
free them in the correct manner. The only instances where the application is not
responsible for initializing the handle is when a pointer to a handle is passed as an
input parameter to a WebSphere MQ Everyplace API. In such instances, a fully
initialized handle is returned to the application without the user having to invoke
the relevant new() function. An example of this is
mqeQueueManager_BrowseMessages(), which has a pointer to an MQeVectorHndl as an
input parameter. However, in instances like this, the application is still responsible
for freeing the handle.

WebSphere MQ Everyplace memory functions
WebSphere MQ Everyplace provides the following functions for memory
management:
v mqeMemory_allocate

v mqeMemory_free

v mqeMemory_reallocate

These functions use the same memory management routines that are used within
the WebSphere MQ Everyplace codebase. These are available for use by application
programs. An application can generally use its own choice of memory
management. However, some API calls, for example
mqeAdministrator_QueueManager_inquire, need to return blocks of memory
containing information. In this case, the memory must be freed using
the mqeMemory_free function.

An additional advantage of using the mqeMemory functions is that their use gets
traced along with mqe processing. However, never mix the memory allocation
calls. For example, do not free memory allocation with mqeMemory_allocate with
the C runtime free() call, as the application can become unstable.

running applications

Chapter 3. Running Applications 15

MQeString
The MQeString class contains user defined and system strings. It is an abstraction
of character strings used throughout the C API where a string is required.
MQeString allows you to create a string in a number of formats, such as arrays
containing Unicode code points, with each code point stored in a 1, 2, or 4 byte
memory space, and UTF-8. The current implementation of MQeString supports
external formats only.

Note: Although they are passed using an MQeString, some API calls require the
actual string to lie within the valid ASCII range.

Constant Strings

A number of constant strings are provided. These are defined in the
following header files:
v MQe_Admin_Constants.h
v MQe_Adapter_Constants.h
v MQe_Attribute_Constants.h
v MQe_Connection_Constants.h
v MQe_MQe_Constants.h
v MQe_MQeMessage_Constants.h
v MQe_Queue_Constants.h
v MQe_Registry_Constants.h

Constructor
MQERETURN osaMQeString_new(MQeExceptBlock* pExceptBlock,

MQEVOID* pInputBuffer,
MQETYPEOFSTRING type,
MQeStringHndl * phNewString

);

This function creates a new MQeString object from a buffer containing
character data. The data can be in a number of supported formats
including, null terminated single byte character arrays (i.e. normal C char*
strings), null terminated double-byte Unicode character arrays, null
terminated quad-byte Unicode character arrays, and null terminated UTF-8
arrays. The type parameter tells the function what format the input buffer
is in.

Destructor
MQERETURN osaMQeString_delete(MQeExceptBlock* pExceptBlock,

MQeString_* pString
);

This function destroys an MQeString object that was created using
osaMQeString_new, or MQeString_duplicate, or
MQeString_getMQeSubstring

Getter
MQERETURN osaMQeString_get(MQeExceptBlock* pExceptBlock,

MQEVOID* pOutputBuffer,
MQEINT32* pBufferLength,
MQETYPEOFSTRING requiredType,
MQECONST MQeStringHndl hString
);

running applications

16 WebSphere MQ Everyplace Application Programming Guide

This function populates a character buffer with the contents of an
MQeString performing conversion wherever necessary. Only simple
conversions are carried out. No codepage conversion is attempted. For
example, if an SBCS string has been put into the string, then trying to get
the data out as DBCS (Unicode) data works correctly. If the data was put
in as DBCS however, and you try to get the data out as SBCS, this only
works if the data does not have any values that cannot be represented with
a single byte. When get() is used for SBCS, DBCS, or QBCS, each character
is represented by its Unicode code point value.

MQERETURN osaMQeString_getSubstring(MQeExceptBlock* pExceptBlock,
MQEVOID* pOutputBuffer,
MQEINT32* pBufferLength,
MQETYPEOFSTRING requiredType,
MQECONST MQeStringHndl hString,
MQEINT32 from,
MQEINT32 to
);

This function is very similar to osaMQeString_get except that it only gets a
substring (from from to to inclusive).

MQERETURN osaMQeString_getMQeSubstring(MQeExceptBlock* pExceptBlock,
MQeStringHndl * phOutput,
MQECONST MQeStringHndl hString,
MQEINT32 from,
MQEINT32 to
);

This function is very similar to osaMQeString_getSubstring except it
returns its result as an MQeString.

MQERETURN osaMQeString_duplicate(MQeExceptBlock * pExceptBlock,
MQeStringHndl * phNewString,
MQECONST MQeStringHndl hString
);

This function duplicates an MQeString.
MQERETURN osaMQeString_codePointSize(MQeExceptBlock* pExceptBlock,

MQEINT32 * pSize,
MQECONST MQeStringHndl hString
);

This function finds the memory size (in bytes) required for the largest
character in the string.

MQERETURN osaMQeString_getCharLocation(MQeExceptBlock* pExceptBlock,
MQEINT32* pOutIndex,
MQECONST MQeStringHndl hString,
MQECHAR32 charToFind,
MQEINT32 startFrom,
MQEBOOL searchForward
);

This function returns the location index (starting from 0) of the first
appearance of a specified character, specified as its Unicode code point
value. You can specify the starting point of your search and the direction of
the search.

Tester
MQERETURN osaMQeString_isAsciiOnly(MQeExceptBlock* pExceptBlock,

MQEBOOL* pIsAsciiOnly,
MQECONST MQeString_* pString
);

running applications

Chapter 3. Running Applications 17

This function determines whether the string contains any non-invariant
ASCII characters.

MQERETURN osaMQeString_equalTo(MQeExceptBlock* pExceptBlock,
MQEBOOL* pIsEqual,
MQECONST MQeString_* pString,
MQECONST MQeString_* pEqualToString
);

This function determines whether two strings are equivalent.
MQERETURN osaMQeString_isNull(MQeExceptBlock * pExceptBlock,

MQEBOOL * pIsNull,
MQECONST MQeStringHndl hString
);

This function determines if a string is a null string. A a NULL handle is
considered as a null string as well.

The Single Byte Character Set (SBCS) is the standard mode of operating with C on
an ASCII code page. Java works in Unicode only and there may be platforms to
support, that do not load an SBCS code page, for example in some countries
languages are represented in DBCS. As it does not include the character pointer,
the string item allows you to create strings on an ASCII machine without
considering Unicode requirements. WebSphere MQ Everyplace carries out any
necessary conversions. Use the UTF-8 representation of the string as this can cope
with any character representation and does the conversion for you. Once created,
an MQeString cannot be altered. However, a number of functions facilitate the use
of the MQeString type. You can also create constant MQeStrings in a similar
manner to using #define NAME "mystring". Using MQeString ensures portability of
the application.

J2ME environment
There are two distinct J2ME environments:

Connected Device Configuration (CDC) and Profile
An example is Foundation + Applications in the CDC environment, which
can effectively be developed like a normal Java 2 Platform Standard
Edition (J2SE) application. The only change required is modifying the
bootclasspath option to point to the relevent CDC jar or zip class file.

Note: The ’bootclasspath’ option may not be available on all JVM’s

Connected Limited Device Configuration (CLDC) and Mobile Information
Device Profile (MIDP)

Applications developed for MIDP can also be compiled using a normal
J2SE JVM (again using the bootclasspath to point to the required Midp
class library), but they normally have to be run within a Midp Emulator.
Therefore, we recommend developing the application using one of the
MIDP Toolkits available on the Web. WebSphere MQ Everyplace provides a
MIDP jar that should be used within this environment. The
MQeMidpBase.jar is in the <MQeInstallDir>\Java\Jars directory.

Windows security configuration

Java development
WebSphere MQ Everyplace provides a sample Windows NT authenticator, but the
default WebSphere MQ Everyplace installation does not make all the changes

running applications

18 WebSphere MQ Everyplace Application Programming Guide

necessary for this authenticator to execute. If you wish to use the authenticator you
should complete the following configuration.

Note: The Windows NT authenticator is used by the MQe_Explorer that is shipped
in SupportPac ES02.

1. The file JavaNT.dll, which interfaces between WebSphere MQ Everyplace and
Windows security, must be placed in the search path or in the current directory.
In a standard installation, this file is located in C:\Program
Files\MQe\Java\demo\Windows\i86\NT. Put a copy of this file in the
directory that contains your Windows .dll files (normally
C:\WINNT\system32).

Note: This makes the sample authenticator available to all WebSphere MQ
Everyplace applications. If you only wish to make the authenticator
available to the MQe_Explorer, put the copy of JavaNT.dll in the same
directory as MQe_Explorer.exe.

2. Security permissions must be set correctly for the JavaNT.dll to be granted
permission to access the Windows user/password database.

On Windows 2000:

a. From the Start button click on Programs, then Administrative Tools,
then Local Security Policy

b. In the Local Security Settings panel click on Local Policies in the left
hand pane, then User Rights Assignment. In the right hand pane
check that your current user ID is assigned all of the following
privileges:
v Act as part of the operating system
v Log on as a service
v Log on locally

If all these privileges are not assigned to your ID, double click the
relevant privilege and add your user ID.

On Windows NT:

a. From the Start button click on Programs, then Administrative Tools,
then User Manager.

b. In the Policies menu click on User Rights
c. In the User Rights Policy dialogue, check the box Show Advanced

User Rights. Check the following rights in turn:
v Act as part of the operating system
v Log on as a service
v Log on locally

Each right should be granted to the logged on user ID. If your ID,
or a group to which your ID belongs, is not listed for any of these
rights, click the Add button to add your ID to the Grant to list.

When all the privileges have been set you must then logoff Windows
and logon again to get these privilege enabled for the current session (it
is not necessary to reboot the machine).

running applications

Chapter 3. Running Applications 19

C development
WebSphere MQ Everyplace provides a sample Windows CE authenticator. If you
want to use the authenticator, copy the WinCEAuthenticator.dll to your decive.
Refer to Chapter 10, “Error and error handling”, on page 127for information on
how to do this.

Deploying applications
This section dsescribes how to deploy WebSphere MQ Everyplace applications for
Java and C.

Java deployment
When deploying WebSphere MQ Everyplace applications, you are recommended to
pack the minimum set of classes required by the application into compressed jar
files. This ensures that the application requires the minimum system resources.
WebSphere MQ Everyplace provides the following examples of how the
WebSphere MQ Everyplace classes can be packaged into .jar files. These examples
are in the<MQeInstallDir>\Java\Jars directory of a standard WebSphere MQ
Everyplace installation.

WebSphere MQ Everyplace ships the following .jar files

MQeBase.jar
This file contains basic information only. It does not contain any security
information, compressors, cryptors, or authenticators. It contains all
communication information, queue types, administration for all of the
included resources. It also contains a client and server. With the
MQeBase.jar, you can send WebSphere MQ Everyplace and WebSphere MQ
Everyplace MQ messages. It supports the diskfields, memory, and
reduceddiskfields adapters.

MQeBindings.jar
This file contains all C bindings specific information. You need this .jar file
to use the C library bindings to control a Java WebSphere MQ Everyplace
queue manager. It includes com.ibm.mqe.bindings, which you need to use
the C library bindings.

MQeCore.jar
This contains mandatory classes.

MQeDeprecated.jar
This contains all of the deprecated class files that are no longer needed by
a WebSphere MQ Everyplace application. These deprecated class files help
you run applications written using a previous version of WebSphere MQ
Everyplace, without making any changes.

MQeDiagnostics.jar
This file helps to diagnose problems with WebSphere MQ Everyplace
classes. It contains tooling to search the class path to find out the level of
each class found.

MQeExamples.jar
A packaging of all the WebSphere MQ Everyplace examples into one jar
file. This includes all of the examples supplied with WebSphere MQ
Everyplace, but excludes the deprecated classes.

running applications

20 WebSphere MQ Everyplace Application Programming Guide

MQeGateway.jar
This contains the classes that can be used on a server platform. It includes
the bridge class, but excludes the deprecated classes.

MQeJMS.jar
This contains the classes that provide a subset of the JMS interface, suitable
for use on smaller devices.

MQeMidp.jar
This is equivalent to MQeBasic.jar, but it is for use with J2ME.

MQeMigration.jar
This contains classes in the com.ibm.mqe.validation package.

MQeRetail.jar
This contains extra message stores with short filenames.

MQeSecurity.jar
A set of classes that can be used to extend both the MQeBasic.jar to allow
both queue and message based security.

A new jar file, the MQeMidpBase.jar

To run WebSphere MQ Everyplace applications, you must set up the Java runtime
environment to include the required WebSphere MQ Everyplace and application
classes. Using a standard Java runtime environment (JRE), you must set the
CLASSPATH to include any required jar files.

Example statements are:

Windows
Set CLASSPATH=<MQeInstallDir>\Jars\MQeDevice.jar;%CLASSPATH%

UNIX
CLASSPATH=<MQeInstallDir>/Java/Jars/MQeDevice.jar:$CLASSPATH
export CLASSPATH

C deployment
To deploy applications on the PocketPC 2000 or PocketPC 2002 devices, you need
to copy the WebSphere MQ Everyplace DLLs to the device. Copy the DLLs to the
Windows directory, the root directory, or the same directory that holds the
application. The following tables show which DLLs you need for different
WebSphere MQ Everyplace entities. You need the following DLLs for the local
queuing base:
v HMQ_Core.dll
v HMQ_DiskAdapter.dll
v HMQ_HAL.dll
v HMQ_nativeAPI.dll
v HMQ_nativeOSA.dll
v HMQ_RegistryFileSession.dll
v HMQ_LocalQueue.dll

Along with the base DLLs you require the following DLLs depending on how you
wish to configure your application:

Remote queuing
Add the HMQ_HttpAdapter.dll to the local queuing base DLLs.

deploying application

Chapter 3. Running Applications 21

Note: You can remove HMQ_LocalQueue.dll, if you do not want to
support administration queues or local queueing.

Synchronous remote queue support
Add HMQ_SyncRemoteQueue.dll to the local queuing base DLLs.

Asynchronous remote queue support
Add HMQ_AsyncRemoteQueue.dll to the local queuing base DLLs.

Home server queue support
Add HMQ_HomeServerQueue.dll to the local queuing base DLLs.

Administration queue support
Add HMQ_AdminQueue.dll and HMQ_LocalQueue.dll to the local
queuing base DLLs.

RLE compressor support
Add HMQ_RleCompressor.dll to the local queuing base DLLs.

RC4 crytpor support
Add HMQ_RC4Cryptor.dll to the local queuing base DLLs.

Support for included examples
Add BrokerDLL.dll to the local queuing base DLLs.

Post install test
This section describes how to run a set of examples that verify the successful
installation of a WebSphere MQ Everyplace development kit.

Java
Once you have installed WebSphere MQ Everyplace you can use the following
procedures to run a set of examples that determine whether the installation of the
development kit was successful.
v Ensure that the Java environment is set up as described in “Development

environment” on page 11. When running any of the Windows batch files
described in this section, the first parameter of each is the name of the Java
development kit to use. If you do not specify a name, the default is IBM.

Note: The UNIX shell scripts do not have a corresponding parameter.
v Move to the correct directory:

Windows
Change to the <MQeInstallDir>\Java\demo\Windows directory.

UNIX Change to the <MQeInstallDir>/Java/demo/UNIX directory.
v Create a queue manager as follows:

Windows
Run the batch file
CreateExampleQM.bat <JDK>

UNIX Run the shell script
CreateExampleQM

to create an example queue manager called ExampleQM.

deploying application

22 WebSphere MQ Everyplace Application Programming Guide

Part of the creation process sets up directories to hold queue manager
configuration information and queues. The example uses a directory called
ExampleQM that is relative to the current directory. Within this directory are two
other directories:
– Registry - holds files that contain queue manager configuration data.
– Queues - for each queue there is a subdirectory to hold the queue’s messages.

(The directory is not created until the queue is activated.)
v Run a simple application as follows:

Once you have created a queue manager you can start it and use it in
applications. You can use the batch file ExamplesMQeClientTest.bat or the shell
script ExamplesMQeClientTest to run some of the simple application examples.
The batch file runs examples.application.Example1 by default. This example puts
a test message to queue manager ExampleQM and then gets the message from the
same queue manager. If the two messages match, the application ran
successfully.
There are a set of applications in the examples.application package that
demonstrate different features of WebSphere MQ Everyplace. You can run these
examples as follows:

Windows
Pass parameters to the batch files:
ExamplesMQeClientTest <JDK> <ExampleNo>

UNIX Pass parameters to the shell scripts:
ExamplesMQeClientTest <ExampleNo>

where ExampleNo is the suffix of the example. This can range from 1 to 6.
v Delete a Queue manager.

When a queue manager is no longer required you can delete it. To delete the
example queue manager ExampleQM:

Windows
Run the batch file
DeleteExampleQM.bat <JDK>

UNIX Run the shell script
DeleteExampleQM

.

Once you have deleted a queue manager you cannot start it.

Note: The examples use relative directories for ease of set up. You are strongly
recommended to use absolute directories for anything other than base
development and demonstration. If the current directory is changed, and
you are using relative directories, the queue manager can no longer locate
its configuration information and queues.

C
Once you have installed WebSphere MQ Everyplace you can run the examples,
from the WebSphere MQ Everyplace C Programming Reference, to determines
whether the installation of the development kit was successful.

deploying application

Chapter 3. Running Applications 23

24 WebSphere MQ Everyplace Application Programming Guide

Chapter 4. Messaging

The WebSphere MQ Everyplace programming model uses several entities, for
example messages, queues, and queue managers, that work together as a flexible
toolkit. Each entity has a specific purpose and works together with other entities to
provide solutions for message topologies.

Assuming you have read the WebSphere MQ Everyplace Introduction, this chapter
introduces the concept of messaging under the following headings:
v MQeFields
v What are WebSphere MQ Everyplace messages?
v Message filters
v Message expiry
v Queue aliases

MQeFields
MQeFields is a container data structure widely used in WebSphere MQ Everyplace.
You can put various types of data into the container. It is particularly useful for
representing data that needs to be transported, such as messages. The following
code creates an MQeFields structure:

Java code
/* create an MQeFields object */
MQeFields fields = new MQeFields();

C code
MQeFieldsHndl hFields;
rc = mqeFields_new(&exceptBlock, &hFields);

MQeFields contains a collection of orderless fields. Each field consists of a triplet of
entry name, entry value, and entry value type. MQeFields forms the basis of all
WebSphere MQ Everyplace messages.

Use the entity name to retrieve and update values. It is good practice to keep
names short, because the names are included with the data when the MQeFields
item is transmitted.

The name must:
v Be at least 1 character long
v Conform to the ASCII character set (characters with values 20 < value < 128)
v Exclude any of the characters { } [] # () : ; , ’ ″ =
v Be unique within MQeFields

The following example shows how to store values in an MQeFields item:

Java code
/* Store integer values into a fields object */

fields.putInt("Int1", 1234);
fields.putInt("Int2", 5678);
fields.putInt("Int3", 0);

C code

© Copyright IBM Corp. 2000, 2002 25

MQeStringHndl hFieldName;
rc = mqeString_newChar8(&errStruct, &hFieldName, "A Field Name");
rc = mqeFields_putInt32(hNewFields,&errStruct,hFieldName,1234);

The following example shows how to retrieve values from an MQeFields item:

Java code
/* Retrieve an integer value from a fields object */

int Int2 = fields.getInt("Int2");

C code
MQEINT32 value;
rc = mqeFields_getInt32(hNewFields, &errStruct, &value, hFieldName);

WebSphere MQ Everyplace provides methods for storing and retrieving the
following data types:
v A fixed length array is handled using the putArrayOftype and getArrayOftype

methods. type can be Byte, Short, Int, Long, Float, or Double.
v The ability to store variable length arrays is possible, but has been deprecated in

this release. You can access these arrays using the Java puttypeArray and
gettypeArray calls or the C puttypes calls. Refer to the WebSphere MQ
Everyplace Java Programming Reference and WebSphere MQ Everyplace C
Programming Reference for more information.

v The Java codebase has a slightly special form of operations for Float and Double
types. This provides compatability with the MicroEdition. Floats are put using
an Int representation and Doubles are put using a Long representation. Use the
Float.floatToIntBits() and Double.doubleToLongBits() to perform the
conversion. However, this is not required on the C API.

An MQeFields item may be embedded within another MQeFields item by using
the putFields and getFields methods.

The contents of an MQeFields item can be dumped in one of the following forms:

binary Binary form is normally used to send an MQeFields or MQeMsgObject
object through the network. The dump method converts the data to binary.
This method returns a binary byte array containing an encoded form of the
contents of the item.

Note: This is not Java serialization.

When a fixed length array is dumped and the array does not contain any
elements (its length is zero), its value is restored as null.

encoded string (Java only)
The string form uses the dumpToString method of the MQeFields item. It
requires two parameters, a template and a title. The template is a pattern
string showing how the MQeFields item data should be translated, as
shown in the following example:
"(#0)#1=#2\r\n"

where

#0 is the data type (ascii or short, for example)

#1 is the field name

#2 is the string representation of the value

messaging

26 WebSphere MQ Everyplace Application Programming Guide

Any other characters are copied unchanged to the output string. The
method successfully dumps embedded MQeFields objects to a string, but
due to restrictions, the embedded MQeFields data may not be restored
using the restoreFromString method.

What are WebSphere MQ Everyplace messages?
Messages are simply collections of data sent by one application and intended for
another application. WebSphere MQ Everyplace messages contain
application-defined content. When stored, they are held in a queue and such
messages may be moved across a WebSphere MQ Everyplace network.

WebSphere MQ Everyplace messages are a special type of MQeFields items, as
described in “MQeFields” on page 25. Therefore, you can use methods that are
applicable to MQeFields with messages.

Therefore, messages are Fields objects with the addition of some special fields. Java
provides a subclass of MQeFields, MQeMsgObject which provides methods to
manage these fields. The C codebase does not provide such a subclass. Instead,
there are a number of mqeFieldsHelper_operation functions. The following fields
form the Unique ID of a WebSphere MQ Everyplace message:
v In Java, the timestamp, generated when the message is first created or, in C,

when the message is first put to a queue
v The name of the queue manager, to which the message is first put

The Unique ID identifies a message within a WebSphere MQ Everyplace network
provided all queue managers within the WebSphere MQ Everyplace network are
named uniquely. However, WebSphere MQ Everyplace does not check or enforce
the uniqueness of queue manager names.

In Java, the message is created when an instance of MQeMsgObject is created. In
C, the Message is ″created″, that is UniqueID fields are added, when the message
is put to a queue.

The getMsgUIDFields()method or mqeFieldsHelpers_getMsgUidFields() function
accesses the UniqueID of a message, for example:

Java code
MQeFields msgUID = msgObj.getMsgUIDFields();

C code
rc = mqeFieldsHelpers_getMsgUidFields(hMgsObj,

&exceptBlock,&hUIDFields);

WebSphere MQ Everyplace adds property related information to a message (and
subsequently removes it) in order to implement messaging and queuing
operations. When sending a message between queue managers, you can add
resend information to indicate that data is being retransmitted.

Typical application-based messages have additional properties in accordance with
their purpose. Some of these additional properties are generic and common to
many applications, such as the name of the reply-to queue manager. Therefore,
WebSphere MQ Everyplace supports the following message properties:

messaging

Chapter 4. Messaging 27

Table 1. Message properties

Property name Java type C type Description

Action int MQEINT32 Used by administration to indicate
actions such as inquire, create, and
delete

Correlation ID byte[] MQEBYTE[] Byte string typically used to correlate a
reply with the original message

Errors MQeFields MQeFieldsHndl Used by administration to return error
information

Expire time int or long MQEINT32 or
MQEINT64

Time after which the message can be
deleted (even if it is not delivered)

Lock ID long MQEINT64 The key necessary to unlock a message

Message ID byte[] MQEBYTE[] A unique identifier for a message

Originating queue
manager

string MQeStringHndl The name of the queue manager that
sent the message

Parameters MQeFields MQeFieldsHndl Used by administration to pass
administration details

Priority byte MQEBYTE Relative order of priority for message
transmission

Reason string MQeStringHndl Used by administration to return error
information

Reply-to queue string MQeStringHndl Name of the queue to which a message
reply should be addressed

Reply-to queue
manager

string MQeStringHndl Name of the queue manager to which a
message reply should be addressed

Resend boolean MQEBOOL Indicates that the message is a resend
of a previous message

Return code byte MQEBYTE Used by administration to return the
status of an administration operation

Style byte MQEBYTE Distinguishes commands from
request/reply for example

Wrap message byte[] MQEBYTE[] Message wrapped to ensure data
protection

For the symbolic names corresponding to the message properties in the previous
table, refer to the WebSphere MQ Everyplace Java Programming Reference and the
WebSphere MQ Everyplace C Programming Reference.

In all cases, a defined constant allows the property name to be carried in a single
byte. For example, priority (if present) affects the order in which messages are
transmitted, correlation ID triggers indexing of a queue for fast retrieval of
information, expire time triggers the expiry of the message, and so on. Also, the
default message dump command minimizes the size of the generated byte string
for more efficient message storage and transmission.

The WebSphere MQ Everyplace Message ID and Correlation ID allow the
application to provide an identity for a message. These are also used in
interactions with the rest of the WebSphere MQ family:

Java

messaging

28 WebSphere MQ Everyplace Application Programming Guide

MQeMsgObject msgObj = new MQeMsgObject;
msgObj.putArrayOfByte(MQe.Msg_ID, MQe.asciiToByte("1234"));

C
rc = mqeFields_putArrayOfByte(hMsg,&exceptBlock,

MQE_MSG_MSGID,pByteArray,sizeByteArray);

Priority contains message priority values. Message priority is defined as in other
members of the WebSphere MQ family. It ranges from 9 (highest) to 0 (lowest):

Java
MQeMsgObject msgObj = new MQeMsgObject();
msgObj.putByte(MQe.Msg_Priority, (byte)8);

C
rc = mqeFields_putByte(hsg,&exceptBlock, MQE_MSG_PRIORITY, (MQEBYTE)8);

Applications can create fields for their own data within messages:

Java
MQeMsgObject msgObj = new MQeMsgObject();
msgObj.putAscii("PartNo", "Z301");
msgObj.putAscii("Colour", "Blue");
msgObj.putInt("Size", 350);

C
MQeFieldsHndl hPartMsg;
MQeStringHndl hSize_FieldLabel;
rc = mqeFields_new(&exceptBlock,&hPartMsg);
rc = mqeString_newUtf8(&exceptBlock,

&hSize_FieldLabel,"Size");

rc = mqeFields_putInt32(hPartMsg,
&exceptBlock,hSize_FieldLabel,350);

The priority of the message is used, in part, to control the order in which messages
are removed from the queue. If the message does not specify any, then the queue
default priority is used . This, unless changed, is 4. However, the application must
interpret the different levels of priority.

In Java, you can extend the MQeMsgObject to include some methods that assist in
creating messages, as shown in the following example:
package messages.order;
import com.ibm.mqe.*;

/*** This class defines the Order Request format */
public class OrderRequestMsg extends MQeMsgObject
{

public OrderRequestMsg() throws Exception
{
}

/*** This method sets the client number */
public void setClientNo(long aClientNo) throws Exception
{

putLong("ClientNo", aClientNo);
}

/*** This method returns the client number */
public long getClientNo() throws Exception

messaging

Chapter 4. Messaging 29

{
return getLong("ClientNo");

}

To find out the length of a message, you can enumerate on the message as each
data type has methods for getting its length.

Message Filters
Filters allow WebSphere MQ Everyplace to perform powerful message searches.
Most of the major queue manager operations support the use of filters. You can
create filters using MQeFields.

Using a filter, for example in a getMessage() call, causes an application to return
the first available message that contains the same fields and values as the filter.
The following examples create a filter that obtains the first message with a message
id of "1234":

Java
MQeFields filter = new MQeFields();
filter.putArrayOfByte(MQe.Msg_MsgID,

MQe.AsciiToByte("1234"));

C rc = mqeFields_putArrayOfByte(hMsg,,
&exceptBlock, MQE_MSG_MSGID,
pByteArray, sizeByteArray);

You can use this filter as an input parameter to various API calls, for example
getMessage.

Message Expiry
Queues can be defined with an expiry interval. If a message has remained on a
queue for a period of time longer than this interval then the message is
automatically deleted. When a message is deleted, a queue rule is called. Refer to
Chapter 3, Rules, of the WebSphere MQ Everyplace System Programming Guide
for information on queue rules. This rule cannot affect the deletion of the message,
but it does provide an opportunity to create a copy of the message.

Messages can also have an expiry interval that overrides the queue expiry interval.
You can define this by adding a C MQE_MSG_EXPIRETIME or Java MQe.Msg_ExpireTime
field to the message. The expiry time is either relative (expire 2 days after the
message was created), or absolute (expire on November 25th 2000, at 08:00 hours).
Relative expiry times are fields of type Int or MQEINT32, and absolute expiry
times are fields of type Long or MQEINT64.

In the example below, the message expires 60 seconds after it is created (60000
milliseconds = 60 seconds).
/* create a new message */
MQeMsgObject msgObj = new MQeMsgObject();
msgObj.putAscii("MsgData", getMsgData());
/* expiry time of sixty seconds after message was created */
msgObj.putInt(MQe.Msg_ExpireTime, 60000);

In the example below, the message expires on 15th May 2001, at 15:25 hours.
/* create a new message */
MQeMsgObject msgObj = new MQeMsgObject();
msgObj.putAscii("MsgData", getMsgData());

messaging

30 WebSphere MQ Everyplace Application Programming Guide

/* create a Date object for 15th May 2001, 15:25 hours */
Calendar calendar = Calendar.getInstance();
calendar.set(2001, 04, 15, 15, 25);
Date expiryTime = calendar.getTime();
/* add expiry time to message */
msgObj.putLong(MQe.Msg_ExpireTime, expiryTime.getTime());
/* put message onto queue */
qmgr.putMessage(null, "MyQueue", msgObj, null, 0);

messaging

Chapter 4. Messaging 31

messaging

32 WebSphere MQ Everyplace Application Programming Guide

Chapter 5. Queues

This chapter provides information on different types of WebSphere MQ Everyplace
queues under the following headings:
v What are WebSphere MQ Everyplace queues?
v Queue names
v Queue types
v Queue persistent storage
v Queue ordering

What are WebSphere MQ Everyplace queues?
WebSphere MQ Everyplace queues store messages. The queues are not directly
visible to an application and all interactions with the queues take place through
queue managers. For queue proxies, in the case of Java queue rules, refer to
Chapter 3, Rules, of the WebSphere MQ Everyplace System Programming Guide.
Each queue manager can have queues that it manages and owns. These queues are
known as local queues. WebSphere MQ Everyplace also allows applications to
access messages on queues that belong to another queue manager. These queues
are known as remote queues. Similar sets of operations are available on both local
and remote queues, with the exception of defining message listeners. Refer to
“Message listeners” on page 60 for more information. The Queue types section
provides more information on the different types of queue you can have.

Messages are held in the queue’s persistent store. A queue accesses its persistent
store through a queue store adapter. These adapters are interfaces between
WebSphere MQ Everyplace and hardware devices, such as disks or networks, or
software stores such as a database. Adapters are designed to be pluggable
components, allowing the protocols available to talk to the device to be easily
changed.

Queues may have characteristics, such as authentication, compression and
encryption. These characteristics are used when a message object is stored on a
queue. Chapter 9, Security provides more information on this.

Queue Names
WebSphere MQ Everyplace queue names can contain the following characters:
v Numerics 0 to 9
v Lower case a to z
v Upper case A to Z
v Underscore _
v Period .
v Percent %

There are no inherent name length limitations in WebSphere MQ Everyplace.

For additional naming recommendations when interacting with WebSphere MQ
networks, see . Queues are configured using administration messages. Refer to the

© Copyright IBM Corp. 2000, 2002 33

WebSphere MQ Everyplace Configuration Guide for more information on
configuring WebSphere MQ Everyplace using administration messages.

Queue properties are shown in the following table. Not all the properties shown
apply to all the queue types:

Table 2. Queue properties

Property Explanation Java type C type

Admin_Class Queue class String admtype

Admin_Name ASCII queue name String admname

Queue_Active Queue in active/inactive state boolean qact

Queue_AttRule Rule class controlling security
operations

String qar

Queue_Authenticator Authenticator class String qau

Queue_BridgeName Owning WebSphere MQ bridge
name

String q-mq-bridge

Queue_ClientConnection Client connection name String q-mq-client-con

Queue_CloseIdle Close the connection to the
remote queue manager once all
messages have been transmitted

boolean qcwi

Queue_CreationDate Date that the queue was created long qcd

Queue_Compressor Compressor class qco

Queue_Cryptor Cryptor class qcr

Queue_CurrentSize Number of messages on the
queue

qcs

Queue_Description Unicode description qd

Queue_Expiry Expiry time for messages qe

Queue_ FileDesc Location and adapter for the
queue

qfd

Queue_MaxMsgSize Maximum length of messages
allowed on the queue

qms

Queue_MaxQSize Maximum number of messages
allowed

qmqs

Queue_Mode Synchronous or asynchronous qm

Queue_MQQMgr WebSphere MQ queue manager
proxy

Queue_Priority Priority to be used for messages
(unless overridden by a message
value)

qp

Queue_QAliasNameList Alternative names for the queue String[] qanl

Queue_QMgrName Queue manager owning the real
queue

qqmn

Queue_QMgrNameList Queue manager targets ?

Queue_RemoteQName Remote WebSphere MQ field
name

?

Queue_Rule Rule class for queue operations qr

Queue_QTimerInterval Delay before processing pending
messages

qti

queues

34 WebSphere MQ Everyplace Application Programming Guide

Table 2. Queue properties (continued)

Property Explanation Java type C type

Queue_TargetRegistry Target registry type qtr

Queue_Transporter Transporter class qtc

Queue_TransporterXOR Transporter to use XOR
compression

qtxor

Queue_Transformer Transformer class q-mq-
transformer

For the symbolic names corresponding to the properties in the previous table, refer
to the WebSphere MQ Everyplace Java Programming Reference and the WebSphere
MQ Everyplace C Programming Reference.

Queue types
There are several different types of queues that you can use in a WebSphere MQ
Everyplace environment. The following are the types of queue that are available in
the WebSphere MQ Everyplace development package:

Local queue
The simplest type of queue is a local queue. This type of queue is local to, and
owned by, a specific queue manager. It is the final destination for all messages.
Applications on the owning queue manager can interact directly with the queue to
store messages in a safe and secure way, excluding hardware failures or loss of the
device.

You can use local queues either online or offline, either connected or not connected
to a network. Queues can also have security attributes set, in a very similar
manner to protecting messages with attributes. Chapter 8, “Security”, on page 79,
discusses queue security in more detail.

Access to messages on local queues is always synchronous, which means that the
application waits until WebSphere MQ Everyplace returns after completing the
operation, for example a put, get, or browse operation.

The queue owns access and security and may allow a remote queue manager to
use these characteristics, when connected to a network. This allows others to send
or receive messages to the queue.

For more detailed information about local queues, see .

Remote queue
A remote queue is a local queue belonging to another queue manager. This remote
queue definition exchanges messages with the remote local queue.

WebSphere MQ Everyplace can establish remote queues automatically. If you
attempt to access a queue on another queue manager, for example to send a
message to that queue, WebSphere MQ Everyplace looks for a remote queue
definition. If one exists it is used. If not, queue discovery occurs.

Note: The concept of queue discovery does not apply to the C codebase.
WebSphere MQ Everyplace discovers the authentication, cryptography, and
compression characteristics of the real queue and creates a remote queue definition.
Such queue discovery depends upon the target being accessible. If the target is not

queues

Chapter 5. Queues 35

accessible, a remote definition must be supplied in some other way. When queue
discovery occurs, WebSphere MQ Everyplace sets the access mode to synchronous,
because the queue is now known to be synchronously available.

Synchronous remote queues are queues that can be accessed only when connected
to a network that communicates with the owning queue manager. If the network is
not established, the operations return an error. The owning queue controls the
access permissions and security requirements needed to access the queue. It is the
application’s responsibility to handle any errors or retries when sending or
receiving messages, because, in this case, WebSphere MQ Everyplace is no longer
responsible for once and once-only assured delivery.

Asynchronous remote queues are queues used to send messages to remote queues
and can store messages pending transmission. They cannot remotely retrieve
messages. If the network connection is established, messages are sent to the
owning queue manager and queue. However, if the network is not connected,
messages are stored locally until there is a network connection and then the
messages are transmitted. This allows applications to operate on the queue when
the device is offline. As a result, these queues temporarily store messages at the
sending queue manager while awaiting transmission.

Store-and-forward queue

Note: Store-and-forward queues are not implemented in the C codebase.
A store-and-forward queue stores messages on behalf of one or more remote queue
managers until they are ready to receive them. This can be configured to perform
either of the following:
v Push messages either to the target queue manager or to another queue manager

between the sending and the target queue managers.
v Wait for the target queue manager to pull messages destined for it.

A store-and-forward queue stores messages associated with one or more target
queue manager destinations. Messages addressed to a specific or target queue
manager are placed on the relevant store-and-forward queue. The
store-and-forward queue can optionally have a forwarding queue manager name
set. If this name is set, the queue attempts to send all its messages to that named
queue manager. If the name is not set, the queue just holds the messages.

Note: A store-and-forward queue and a home server queue should not have the
same target queue manager. A store-and-forward queue with a queue
QueueManagerName that is not the same as its host QueueManagerName,
attempts to push messages to the remote queue manager. If that remote
queue manager has a home server queue, it may attempt to pull the same
message simultaneously, causing the message to lock.

Store-and-forward queues can hold messages for many target queue managers, or
there may be one store-and-forward queue for each target queue manager.

This type of queue is normally, but not necessarily, defined on a server or gateway
in Java only. Multiple store-and-forward queues can exist on a single queue
manager, but the target names must not be duplicated. The contents of a
store-and-forward queue are not available to application programs. Likewise a
message sending application is quite unaware of the presence or role of
store-and-forward queues in message transmission.

queues

36 WebSphere MQ Everyplace Application Programming Guide

Dead-letter queue
WebSphere MQ Everyplace has a similar dead-letter queue concept to WebSphere
MQ. Such queues store messages that cannot be delivered. However, there are
important differences in the manner in which they are used.
v In WebSphere MQ, if a message is being moved from queue manager A to queue

manager B, then if the target queue on queue manager B cannot be found, the
message can be placed on the receiving queue manager’s (B’s) dead-letter queue.

v In WebSphere MQ Everyplace, if home-server queue on a client pulls a message
from a server and is not able to deliver the message to a local queue and the
client has a dead letter queue, the message will be placed on the client’s dead
letter queue.

Note: In C, the Dead letter queue is just a local queue with a specific name.

The use of dead-letter queues with an WebSphere MQ bridge needs special
consideration. Refer to for more details.

Administration queue
The administration queue is a specialized queue that processes administration
messages.

Messages put to the administration queue are processed internally. Because of this
applications cannot get messages directly from the administration queue. Only one
message is processed at a time, other messages that arrive while a message is
being processed are queued up and processed in the sequence in which they
arrive.

Home-server queue
This type of queue usually resides on a client and points to a store-and-forward
queue on a server known as the home-server. The home-server queue pulls
messages from the home-server store-and-forward queue when the client connects
on the network.

In Java, home-server queues normally have a polling interval that causes them to
check for any pending messages on the server while the network is connected.

When this queue pulls a message from the server, it uses assured message delivery
to put the message to the local queue manager. The message is then stored on the
target queue.

Home-server queues have an important role in enabling clients to receive messages
over client-server connections.

WebSphere MQ bridge queue

Note: The C codebase does not support WebSphere MQ bridge queues.

This type of queue is always defined on a WebSphere MQ Everyplace gateway
queue manager and provides a path from the WebSphere MQ Everyplace
environment to the WebSphere MQ environment. The WebSphere MQ bridge
queue is a remote queue definition that refers to a queue residing on a WebSphere
MQ queue manager.

queues

Chapter 5. Queues 37

Applications can use put, get, and browse operations on this type of queue, as if it
were a local WebSphere MQ Everyplace queue.

For more detailed information about the WebSphere MQ bridge queue, see .

Information on setting up and administering the various types of queues is
provided in .

Queue persistent storage
Local queues and asynchronous remote queues store messages and therefore have
properties to determine how and where the messages are stored.

The message store determines how the messages are mapped to the storage
medium. The C and Java versions of WebSphere MQ Everyplace support a default
message store, allowing long file names. The Java version of WebSphere MQ
Everyplace has two additional message stores, MQeShortFilenameMessageStore that
ensures the file name does not exceed eight characters, and the
MQe4690ShortFilenameMessageStore that supports the default file system on a 4690.
A storage adapter provides the message store access to the storage medium, the
Java and C versions of WebSphere MQ Everyplace provide disk adapters with the
Java version also providing a case insensitive adapter and a memory adapter.

The backing store used by a queue can be changed using a WebSphere MQ
Everyplace administration message. Changing the backing store is not allowed
while the queue is active or contains messages. If the backing store used by the
queue allows the messages to be recovered in the event of a system failure, then
this allows WebSphere MQ Everyplace to assure the delivery of messages.

WebSphere MQ Everyplace connection definitions
WebSphere MQ Everyplace supports a method of establishing logical connections
between queue managers, in order to send or receive data.

WebSphere MQ Everyplace clients and servers communicate over connections
called client/server channels.

Client/server channels have the following attributes:
v They are dynamic, that is created on demand. This differentiates them from

WebSphere MQ connections which have to be explicitly created.
v You can only establish the connection from the client-side.
v A client can connect to many servers, with each connection using a separate

channel.
v The server-side queue manager can accept many connections simultaneously,

from a multitude of different clients, using a listener for each protocol.
v They work through a Firewall, if the server-side of the connection is behind the

Firewall. However, this depends on the configuration of the Firewall.
v They are unidirectional and support the full range of functions provided by

WebSphere MQ Everyplace, including both synchronous and asynchronous
messaging.

Note: Unidirectional means that the client can send data to, or request data from
the server, but the server-side cannot initiate requests of the client.

queues

38 WebSphere MQ Everyplace Application Programming Guide

Standard connections, used for the client/server connection style, are
unidirectional, but depend on a listener at the server, as servers cannot initiate data
transfer. The client initiates the connection request and the server responds. A
server can usually handle multiple incoming requests from clients. Over a standard
connection, the client has access to resources on the server. If an application on the
server needs synchronous access to resources on the client, a second connection is
required where the roles are reversed. However, because standard connections are
themselves bidirectional, messages destined for a client from its server’s
transmission queue, are delivered to it over the standard (client/server) connection
that it initiated.

A client can be a client to multiple servers simultaneously. The client/server
connection style is generally suited for use through Firewalls, because the target of
the incoming connection is normally identified as being acceptable to the Firewall.

Note: Supposing there are two server queue managers, SQM1 and SQM2. SQM2
has listener address host 2: 8082. Also, suppose that SQM1 has a connection
to SQM2 and a listener addresss, host 1:8081. If you create a connection
definition on a client queue manager, named SQM2 with address host 1:
8081, this transports commands for SQM2 to SQM1, which then transports
them to SQM2. Avoid this construct, as it is inefficient.

Because of the way channel security works, when a specific attribute rule is
specified for a target queue, it forces the local queue manager to create an instance
of the same attribute rule, examples.rules.AttributeRule and
com.ibm.mqe.MQeAttributeRule are treated as the same rule. If this is not a
desirable behaviour, you can specify a null rule for the target queue. In this case,
com.ibm.mqe.MQeAttributeDefaultRule takes effect.

Connections can have various attributes or characteristics, such as authentication,
cryptography, compression, or the transmission protocol to use. Different
connections can use different characteristics. Each connection can have its own
value set for each of the following attributes:

Authenticator
This attribute causes authentication to be performed. This is a security function
that challenges the putting application environment or user to prove their
identity. It has a value of either NULL or an authenticator that can perform user
or connection authentication.

Cryptor
This attribute causes encryption and decryption to be performed on messages
passing through the channel. This is a security function that encodes the
messages during transit so that you cannot read them without the decoding
information. Either null or a cryptor that can perform encryption and
decryption.

The simplest type of cryptor is MQeXorCryptor, which encrypts the data being
sent by performing an exclusive-OR of the data. This encryption is not secure,
but it modifies the data so that it cannot be viewed. In contrast,
MQe3DESCryptor implements triple DES, a symmetric-key encryption method.

Channel
The class providing the transport services.

Compressor
This attribute causes compression and decompression to be performed on
messages passing through the channel. This attempts to reduce the size of

overview - connection definitions

Chapter 5. Queues 39

messages while they are being transmitted and stored. Either null or a
compressor that can perform data compression and decompression. The simplest
type of compressor is the MQeRleCompressor, which compresses the data by
replacing repeated characters with a count.

Destination
The server and port number for the connection. The target for this connection,
for example SERVER.XYZ.COM

Typically, authentication only occurs when setting up the connection. All flows
normally use compressors and cryptors.

For more detailed information about connections see . Also, for more information
about authenticators, compressors, and cryptors, see Chapter 8, “Security”, on
page 79.

You can establish WebSphere MQ Everyplace connections using a variety of
protocols allowing them to connect in a number of different ways, for example:
v Permanent connection, for example a LAN, or leased line
v Dial out connection, for example using a standard modem to connect to an

Internet service provider (ISP)
v Dial out and answer connection, using a CellPhone, or ScreenPhone for example

WebSphere MQ Everyplace implements the communications protocols as a set of
adapters, with one adapter for each of the supported protocols. This enables you to
add new protocols.

Using queue aliases
Aliases can be assigned for WebSphere MQ Everyplace queues to provide a level
of indirection between the application and the real queues. Hence the attributes of
a queue that an alias relates to can be changed without the application needing to
change. For instance, a queue can be given a number of aliases and messages sent
to any of these names will be accepted by the queue.

The following examples illustrate some of the ways that aliasing can be used with
queues.

Authenticator

Compressor

Cryptor

Authenticator

Compressor

Cryptor

Communications
protocol

Figure 1. WebSphere MQ Everyplace connection

overview - connection definitions

40 WebSphere MQ Everyplace Application Programming Guide

Examples of queue aliasing
Merging applications

Suppose you have the following configuration:
v A client application that puts data to queue Q1

v A server application that takes data from Q1 for processing
v A client application that puts data to queue Q2

v A server application which takes data from Q2 for processing

Some time later the two server applications are merged into one
application supporting requests from both the client applications. It may
now be appropriate for the two queues to be changed to one queue. For
example, you may delete Q2, and add an alias of the Q1 queue, calling it Q2.
Messages from the client application that previously used Q2 are
automatically sent to Q1.

Upgrading applications
Suppose you have the following configuration:
v A queue Q1

v An application that gets messages from Q1

v An application that puts messages to Q1

You then develop a new version of the application that gets the messages.
You can make the new application work with a queue called Q2. You can
define a queue called Q2 and use it to exercise the new application. When
you want it to go live, you let the old version clear all traffic off the Q1
queue, and then create an alias of Q2 called Q1. The application that puts to
Q1 will still work, but the messages will end up on Q2.

Using different transfer modes to a single queue

Suppose you have a queue MY_Q_ASYNC on queue manager MQE1. Messages
are passed to MY_Q_ASYNC by a different queue manager MQE2, using a
remote queue definition that is defined as an asynchronous queue. Now
suppose your application periodically wants to get messages in a
synchronous manner from the MY_Q_ASYNC queue.

The recommended way to achieve this is to add an alias to the MY_Q_ASYNC
queue, perhaps called MY_Q_SYNC. Then define a remote queue definition on
your MQE2 queue manager, that references the MY_Q_SYNC queue. This
provides you with two remote queue definitions. If you use the MY_Q_ASYNC
definition, the messages are transported asynchronously. If you use the
MY_Q_SYNC definition, synchronous message transfer is used.

overview - connection definitions

Chapter 5. Queues 41

overview - connection definitions

42 WebSphere MQ Everyplace Application Programming Guide

Chapter 6. Queue manager operations

This chapter explains in detail the messaging operations that you can perform on a
queue manager. Chapter 1, “Introduction”, on page 1 provides a high-level
description of the services provided by WebSphere MQ Everyplace queues and
queue managers, while Chapter 3, ″Messaging″ and Chapter 4, ″Queues″ of this
book explain messaging and detail the different types of queues that you can have.

This chapter describes the services, functions, and uses of queue managers under
the following headings:
v What is a WebSphere MQ Everyplace queue manager?
v The queue manager lifecycle
v Starting queue managers
v Messaging lifecycle
v Deleting queue managers
v Servlet
v Security
v Aliases

What is a WebSphere MQ Everyplace queue manager?
The WebSphere MQ Everyplace queue manager is the focal point of the WebSphere
MQ Everyplace system. It provides:
v A central point of access to a messaging and queueing network for WebSphere

MQ Everyplace applications
v Optional client-side queuing
v Optional administration functions
v Once and once-only assured delivery of messages
v Recovery from failure conditions
v Extendable rules-based behavior

Unlike base WebSphere MQ, WebSphere MQ Everyplace has a single queue
manager type. However, you can program WebSphere MQ Everyplace queue
managers to act as traditional clients or servers. You can also customize queue
manager behavior using rules. The WebSphere MQ Everyplace queue manager is

MQE2 queue manager
MQE1 queue managerRemote queue MY_Q_ASYNC

(mode=asynchronous) Queue MY_Q_ASYNC
(alias:MY_Q_SYNC)

Remote queue MY_Q_SYNC
(mode=synchronous)

Both remote queues reference the same queue,
using different attributes and different names

Figure 2. Two modes of transfer to a single queue

© Copyright IBM Corp. 2000, 2002 43

embedded within user written programs and these programs can run on any
WebSphere MQ Everyplace supported device or platform.

You can configure queue managers in a number of different ways, the main types
being client, server, and gateway. Refer to “Starting queue managers” for
descriptions of these types. You can also update the queue store of a queue
manager using administration messages. For more information on administration
messages, refer to the WebSphere MQ Everyplace Configuration Guide.

A WebSphere MQ Everyplace queue manager can control the various types of
queue that are described in “Queue Names” on page 33. Communication with
other queue managers on the WebSphere MQ messaging network can be
synchronous or asynchronous. If you want to use synchronous communications,
the originator, and the target WebSphere MQ Everyplace queue managers must
both be available on the network. Asynchronous communication allows a
WebSphere MQ Everyplace application to send messages even when the remote
queue manager is offline.

The queue manager lifecycle
Typically, an application creates a new queue manager, configures it with a number
of queues, and then frees the queue manager. An application also opens an existing
queue manager, starts it, carries out messaging operations, and then stops. A
further administration program can reopen the queue manager, remove all of its
queues, and then stop. The following diagram displays this information:

Starting queue managers
Queue managers need to be created before use. The creation step uses the
QueueManagerConfigure Java class or the C administration API to create
persistent queue manager data in a registry. The queue manager then uses the
registry each time its starts. The WebSphere MQ Everyplace Configuration Guide
provides further information on configuring queue managers.

Starting queue managers in Java
Normally, creating and starting a queue manager can require a large set of
parameters. Therefore, the required parameters are supplied as an instance of
MQeFields, storing the values as fields of correct type and name.

Load
existing

Free

Start

Stop

Create
queue

manager

Delete
queue

manager

Queue
manager

non-existant

Queue
manager

exists in the
registry

Created Active

Figure 3. The queue manager lifecycle

overview - queue manager

44 WebSphere MQ Everyplace Application Programming Guide

The parameters fall into two categories, queue manager parameters and registry
parameters. Each of these categories is represented by its own MQeFields instance,
and both are also enclosed in an MQeFields instance. The following Java example
explains this concept, passing the queue managers name, ″ExampleQM″ and the
location of a registry, ″C:\ExampleQM″:
/*create fields for queue manager parameters and place the queue manager name
MQeFields queueManagerParameters = new MQeFields();
queueManagerParameters.putAscii(MQeQueueManager.Name, "ExampleQM");

/*create fields for registry parameters and place the registry location
MQeFields registryParameters = new MQeFields();
registryParameters.putAscii(MQeRegistry.DirName, "C:\\ExampleQM\\registry");

/*create fields for combined parameters and place the two sub fields
MQeFields parameters = new MQeFields();
parameters.putFields(MQeQueueManager.Registry, queueManagerParameters);
parameters.putFields(MQeQueueManager.Registry, registryParameters);

Wherever you see ″initialize the parameters″ in code snippets, prepare a set of
parameters as shown in the example, including the appropriate options. Only one
queue manager name and one registry location are mandatory.

Queue manager parameters
The following lists the parameter names that you can pass to the queue manager
and the registry:

Queue manager Parameters

MQeQueueManager.Name(ascii)
This is the name of the queue manager being started.

Registry Parameters

MQeRegistry.LocalRegType(ascii)
This is the type of registry being opened. WebSphere MQ Everyplace
currently supports:

file registry
Set this parameter to com.ibm.mqe.registry.MQeFileSession.

private registry
Set this parameter to com.ibm.mqe.registry.MQePrivateSession.

You also need a private registry for some security features. Chapter 9,
Security, for more information on security.

MQeRegistry.DirName(ascii)
This is the name of the directory holding the registry files. You must pass
this parameter for a file registry.

MQeRegistry.PIN(ascii)
You need this PIN for a private registry.

Note: For security reasons, WebSphere MQ Everyplace deletes the PIN and
KeyRingPassword, if supplied, from the startup parameters as soon
as the queue manager is activated.

MQeRegistry.CAIPAddrPort(ascii)
You need this address and port number of a mini-certificate server for
auto-registration, so that the queue manager can obtain its credentials from
the mini-certificate server.

starting queue managers

Chapter 6. Queue manager operations 45

MQeRegistry.CertReqPIN(ascii)
This is the certificate request number allocated by the mini-certificate
administrator to allow the registry to obtain its credentials. You need this
for auto-registration, so that the queue manager can obtain its credentials
from the mini-certificate server.

MQeRegistry.Separator(ascii)
This is used to specify a non-default separator. A separator is the character
used between the the components of an entry name, for example
<QueueManager><Separator><Queue>. Although this parameter is specified
as a string, it must contain a single character. If it contains more than one,
only the first character is used. Use the same separator for each registry
opened and do not change it once a registry is in use. If you do not specify
this parameter, the separator defaults to ″+″.

MQeRegistry.RegistryAdapter(ascii)
This is the class, or an alias that resolves to a class, of the adapter that the
registry uses to store its data. You must include this class if you want the
registry to use an adapter other than the default MQeDiskFieldsAdapter.
You can use any valid storage adapter class.

You always need the first two parameters. The last two are for auto-registration of
the registry if it wishes to obtain credentials from the mini-certificate server.

MQeRegistry.RegistryAdapter (ascii)
The class, (or an alias that resolves to a class), of the adapter that the
registry uses to store its data. This value should be included if you want
the registry to use an adapter other than the default
MQeDiskFieldsAdapter. Any valid adapter class can be used.

A queue manager can run:
v As a client
v As server
v In a servlet

The following sections describe the example client, servers and servlet that are
provided in the examples.queuemanager package. All queue managers are
constructed from the same base WebSphere MQ Everyplace components, with
some additions that give each its unique properties. WebSphere MQ Everyplace
provides an example class, MQeQueueManagerUtils, that encapsulates many of the
common functions.

All the examples require parameters at startup. These parameters are stored in
standard ini files. The ini files are read and the data is converted into an
MQeFields object. The loadConfigFile() method in the MQeQueueManagerUtils
class performs this function.

Starting queue managers in C
The mqeQueueManager_new function loads a queue manager for an established
registry. To do this, you need information supplied by a queue manager parameter
structure and a registry parameter structure.

The following example shows how you can set these structures to their default
values, supplying only the directories of the queue store and registry:

starting queue managers

46 WebSphere MQ Everyplace Application Programming Guide

MQeQueueManagerHndl hQueueManager;
MQeRegistryParms regParms = REGISTRY_INIT_VAL;
MQeQueueManagerParms qmParms = QMGR_INIT_VAL;
regParms.hBaseLocationName = hRegistryDirectory;
qmParms.hQueueStore = hStore;
qmParms.opFlags = QMGR_Q_STORE_OP;
rc = mqeQueueManager_new(&exceptBlock,

&hQueueManager, hQMName,
®Params, &qmParms);

This creates a queue manager and loads its persistant information from the registry
and creates queues. However, you must start the queue manager to:
v Create messages
v Get and put messages
v Process administration messages, using the administration queue

Note: In C, the queues are activated on starting the queue manager.

To start the queue manager, use
rc = mqeQueueManager_start(&hQueueManager, &exceptBlock);

Once the queue manager is started, messaging operations can take place and any
queues that have messages on them are loaded.

To stop the queue manager, use:
rc = mqeQueueManager_stop(&hQueueManager, &exceptBlock);

Once stopped, you can restart the queue manager as required.

At the end of the application, you must free the queue manager to release any
resources it uses, for example memory. First, stop the queue manager and then use:
rc = mqeQueueManager_free(&hQueueManager, &exceptBlock);

Registry parameters for a queue manager
The registry is the primary store for queue manager-related information; one exists
for each queue manager. Every queue manager uses the registry to hold its:
v Queue manager configuration data
v Communications listener resource definitions
v Queue definitions
v Remote queue definitions
v Remote queue manager definitions
v User data, including configuration-dependent security information
v Optional bridge resource defintitions

Registry type
MQE_REGISTRY_LOCAL_REG_TYPE

The type of registry being opened. file registry and private registry are
currently supported. A private registry is required for some of the security
features. See Chapter 8, “Security”, on page 79.

For a file registry this parameter should be set to:
com.ibm.mqe.registry.MQeFileSession

starting queue managers

Chapter 6. Queue manager operations 47

For a private registry it should be set to:
com.ibm.mqe.registry.MQePrivateSession

Aliases can be used to represent these values.

Client queue managers
A client typically runs on a device platform, and provides a queue manager that
can be used by applications on the device. It can open many connections to other
queue managers.

A server usually runs for long periods of time, but clients are started and stopped
on demand by the application that use them. If multiple applications want to share
a client , the applications must coordinate the starting and stopping of the client.

Starting a client queue manager
Starting a client queue manager involves:
1. Ensuring that there is no client already running. (Only one client is allowed per

Java Virtual Machine.)
2. Adding any aliases to the system
3. Enabling trace if required
4. Starting the queue manager

The following code fragment starts a client queue manager:
/*-------------------------------------*/
/* Init - first stage setup */
/*-------------------------------------*/
public void init(MQeFields parms) throws Exception
{

if (queueManager != null)
/* One queue manager at a time */

{
throw new Exception("Client already running");

}
sections = parms;

/* Remember startup parms */
MQeQueueManagerUtils.processAlias(sections);

/* set any alias names */

// Uncomment the following line to start trace
before the queue manager is started

// MQeQueueManagerUtils.traceOn("MQeClient Trace", null);
/* Turn trace on */

/* Display the startup parameters */
System.out.println(sections.dumpToString("#1\t=\t#2\r\n"));

/* Start the queue manage */
queueManager = MQeQueueManagerUtils.processQueueManager(sections, null);

}

Once you have started the client, you can obtain a reference to the queue manager
object either from the static class variable MQeClient.queueManager or by using the
static method MQeQueueManager.getReference(queueManagerName).

The following code fragment loads aliases into the system:
public static void processAlias(MQeFields sections) throws Exception
{

if (sections.contains(Section_Alias))
/* section present ? */

starting queue managers

48 WebSphere MQ Everyplace Application Programming Guide

{
/* ... yes */

MQeFields section = sections.getFields(Section_Alias);
Enumeration keys = section.fields();

/* get all the keywords */
while (keys.hasMoreElements())

/* as long as there are keywords*/
{

String key = (String) keys.nextElement();
/* get the Keyword */

MQe.alias(key, section.getAscii(key).trim());
/* add */

}
}

}

Use the processAlias method to add each alias to the system. WebSphere MQ
Everyplace and applications can use the aliases once they have been loaded.

Starting a queue manager involves:
1. Instantiating a queue manager. The name of the queue manager class to load is

specified in the alias QueueManager. Use the WebSphere MQ Everyplace class
loader to load the class and call the null constructor.

2. Activate the queue manager. Use the activate method, passing the MQeFields
object representation of the ini file. The queue manager only makes use of the
[QueueManager] and [Registry] sections from the startup parameters.

The following code fragment starts a queue manager:
public static MQeQueueManager processQueueManager(MQeFields sections,

Hashtable ght) throws Exception
{
/* */

MQeQueueManager queueManager = null;
/* work variable */

if (sections.contains(Section_QueueManager))
/* section present ? */

{
/* ... yes */

queueManager = (MQeQueueManager) MQe.loader.loadObject(Section_QueueManager);
if (queueManager != null)

/* is there a Q manager ? */
{

queueManager.setGlobalHashTable(ght);
queueManager.activate(sections);

/* ... yes, activate */
}

}
return(queueManager);

/* return the alloated mgr */
}

Example MQePrivateClient
MQePrivateClient is an extension of MQeClient with the addition that it configures
the queue manager and registry to allow for secure queues. For a secure client, the
[Registry] section of the startup parameters is extended as follows:
(ascii)LocalRegType=PrivateRegistry

Location of the registry

(ascii)DirName=.\ExampleQM\PrivateRegistry
Adapter on which registry sits

client queue managers

Chapter 6. Queue manager operations 49

(ascii)Adapter=RegistryAdapter
Network address of certificate authority

(ascii)CAIPAddrPort=9.20.7.219:8082

Refer to Chapter 8, “Security”, on page 79 for more details on secure queues and
MQePrivateClient.

For MQePrivateClient and MQePrivateServer to work, the startup parameters must
not contain CertReqPIN, KeyRingPassword and CAIPAddrPort.

Server queue managers
A server usually runs on a server platform. A server can run server-side
applications but can also run client-side applications. As with clients, a server can
open connections to many other queue managers on both servers and clients. One
of the main characteristics that differentiate a server from a client is that it can
handle many concurrent incoming requests. A server often acts as an entry point
for many clients into an WebSphere MQ Everyplace network . WebSphere MQ
Everyplace provides the following server examples:

MQeServer
A console based server.

MQePrivateServer
A console based server with enhanced security.

AwtMQeServer
A graphical front end to MQeServer.

MQBridgeServer
In addition to the normal WebSphere MQ Everyplace server functions, this
server can send and receive messages to and from other members of the
WebSphere MQ family. This server is in package
examples.mqbridge.queuemanager and is described in .

Example MQeServer
MQeServer is the simplest server implementation.

When two queue managers communicate with each other, WebSphere MQ
Everyplace opens a connection between the two queue managers. The connection
is a logical entity that is used as a queue manager to queue manager pipe.
Multiple connections may be open at any time.

Server queue managers, unlike client queue managers can have one or more
listeners. A listener waits for communications from other queue managers, and
processes incoming requests, usually by forwarding them to its owning queue
manager. Each listener has a specified adapter that defines the protocol of
incoming communications, and also specifies any extra data required.

You can create listeners on the local queue manager using either the
MQeAdministrator class or administration messages, remotely and locally.
However, a remote queue manager must have a listener in order to receiver a
message.

This section describes how to create a listener using the MQeAdministrator class.
As the listener can take a number of arguments, use MQeProperties to pass the

client queue managers

50 WebSphere MQ Everyplace Application Programming Guide

parameters as name and value string pairs. The adapter defines the parameter
names and their values. The following example defines a listener using a
TcpipHttp adapter, listening on port 8080:
/*create a properties object to pass the

adapter parameters to the listener
String listenerName = "MyListener";
String adapter = "com.ibm.mqe.adapters.MQeTcpipHttpAdapter";
String port = "8080";
MQeProperties properties = new MQeProperties();
properties.setProperty(MQeCommunicationsAdapter.COMMS_ADAPTER_CLASS,

adapter);
properties.setProperty(MQeCommunicationsAdapter.COMMS_ADAPTER_PORT,

port);
properties.setProperty(MQeCommunicationsAdapter.COMMS_ADAPTER_LISTEN,

true);

/* create an administrator
MQeAdministrator admin = new MQeAdministrator(myQMgr);

/* created the administrator, now use it to create the listener
admin.listenCreateNew(listenerName, properties,

timeout, maxChannels);
/* now use the administrator
itself to start the listener
admin.listenerStart(listenerName);

When the listener is started, the server is ready to accept network requests.

When the server is deactivated:
1. The listener is stopped, preventing any new incoming requests
2. The queue manager is closed

Example MQePrivateServer
MQePrivateServer is an extension of MQeServer with the addition that it
configures the queue manager and registry to allow for secure queues. See
Chapter 8, “Security”, on page 79.

Environment relationship
The following section describes some requirements for running Java and C
implementations of WebSphere MQ Everyplace and.

Java code
The java queue manager runs inside an instance of a JVM. You can have only one
queue manager per JVM. However, you can invoke multiple instances of the JVM.

Each of these queue managers must have a unique name. Java applications run
inside the same JVM as the queue manager they use.

C code
You can run only one queue manager within a native C process. You need multiple
processes for multiple queue managers. Each of these queue managers must have a
unique name.

Messaging lifecycle
When a message is put to a queue it progresses through a series of states. This
section describes these states and related commands or events under the following
headings:
v Message states

server queue managers

Chapter 6. Queue manager operations 51

v Message events
v Message index fields

Although, this section gives brief details of algorithms required for assured
message delivery, Chapter 7, Message Delivery, provides more information on
assured message delivery.

Message states
Most queue types hold messages in a persistent store, for example a hard disk.
While in the store, the state of the message varies as it is transferred into and out
of the store. As shown in Figure 4:

In Figure 2, ″start″ and ″deleted″ are not actual message states. They are the entry
and exit points of the state model. The message states are:

Put unConfirmed
A message is put to the message store of a queue with a confirmID. The
message is effectively hidden from all actions except confirmPutMessage or
undo.

Unlocked
A message has been put to a queue and is available to all operations.

Locked for Browse
A browse with lock retrieves messages. Messages are hidden from all

start

putUnconfirmed

Deleted

browseGetUnconfirmed

lockedForBrowse

unlocked

putMessage
(with confirmId>0)

confirmPutMessage

getUnconfirmed

PutMessage
(with confirmId=0)

undo

unlockMessage

undo

browseWithLock

undo

getMessage
(with confirmId>0)

getMessage

deleteMessage

deleteMessage

getMessage
(with confirmId=0)

getMessage
(with confirmId>0)

confirmGetMessage

confirmGetMessage

undo

Figure 4. Stored message state flow

Messaging lifecycle

52 WebSphere MQ Everyplace Application Programming Guide

queries except getMessage, unlock, delete, undo, and unlockMessage. A
lockID is returned from the browse operation. You must supply this lockID
to all other operations.

Get Unconfirmed
A getMessage call has been made with a confirmID, but the get has not
been confirmed. The message is invisible to all queries except
confirmGetMessage, confirm, and undo. Each of these actions requires the
inclusion of the matching confirmID to confirm the get.

Browse Get Unconfirmed
A message got while it is locked for browse. You can do this only by
passing the correct lockID to the getMessage function.

On an asynchronous remote queue, other states exist where a message is being
transmitted to another machine. These states are entered as ″unlocked″, that is only
confirmed messages are transmitted.

Message events
Messages pass from one state to another as a result of an event. These events are
typically generated by an API call. The possible message events, as shown in
Figure 4 on page 52, are:

putMessage
Places a message on a queue. This does not require a confirmID.

getMessage
Retrieves a message from a queue. This does not require a confirmID.

putMessage with confirmId>0
Places a message on a queue. This requires a confirmID. However,
messages do not arrive at the receiving end in the order of sending, but in
the order of confirmation.

confirmPutMessage
A confirm for an earlier putMessage with a confirmID>0.

getMessage with confirmId>0
Retrieves message from a queue. This requires a confirmID.

confirmGetMessage
A confirm for an earlier getMessage with a confirmID>0.

browseWithLock
Browses messages and lock those that match. Prevents messages from
changing while browse is in operation.

unlockMessage
Unlocks a message locked with a browsewithLock command.

undo Unlocks a message locked with a browse, undoes a getMessage with a
confirmID>0, or undoes a putMessage with a confirmID>0.

deleteMessage
Removes a message from a queue.

Message index fields
Due to memory size constraints, complete messages are not held in memory, but,
to enable faster message searching, WebSphere MQ Everyplace holds specific fields
from each message in a message index. The fields that are held in the index are:

Messaging lifecycle

Chapter 6. Queue manager operations 53

Java In Java, the following fields are held in the index:

UniqueID
MQe.Msg_OriginQMgr + MQe.Msg_Time

MessageID
MQe.Msg_ID

CorrelationID
MQe.Msg_CorrelID

Priority
MQe.Msg_Priority

C In C, the following fields are held in the index:

UniqueID
MQE_MSG_ORIGIN_QMGR + MQE_MSG_TIME

MessageID
MQE_MSG_MSGID

CorrelationID
MQE_MSG_CORRELID

Priority
MQE_MSG_PRIORITY

Providing these fields in a filter makes searching more efficient, since WebSphere
MQ Everyplace may not have to load all the available messages into memory.

Messaging operations
The following table shows which types of messaging operations are valid on local
queues, synchronous remote queues, and asynchronous remote queues. Note that
the Listen and Wait operations are supported in Java only.

Table 3. Messaging operations on WebSphere MQ Everyplace queues

Operation Local queue Synchronous remote
queue

Asynchronous
remote queue

Put Yes Yes Yes

Get Yes Yes No

Browse Yes Yes No

Delete Yes Yes No

Listen Yes No No

Wait Yes Yes No

Notes:

1. The synchronous remote wait operation is implemented through a poll of the
remote queue, so the actual wait time is a multiple of the poll time

2. The WebSphere MQ bridge supplied with WebSphere MQ Everyplace only
supports an assured or unassured put, unassured get, and unassured browse
(without lock).

The following list describes each message operation in detail:

Put This operation places specified messages on a specified queue. The queue
can belong to a local or remote queue manager. Puts to remote queues can

Messaging lifecycle

54 WebSphere MQ Everyplace Application Programming Guide

occur immediately, or at a later time, depending on how the remote queue
is defined on the local queue manager.

If a remote queue is defined as synchronous, message transmission occurs
immediately. If a remote queue is defined as asynchronous, the message is
stored within the local queue manager. The message remains there until it
is transmitted. The put message call may finish before the message is put.
Refer to “Asynchronous message delivery” on page 69 for more
information.

Note: In Java, if the local queue manager does not hold a definition of the
remote queue then it attempts to contact the queue sychronously.
This does not apply to the C codebase.

Assured delivery depends on the value of the confirmID parameter.
Passing a non-zero value transmits the message as normal, but the message
is locked on the target queue until a subsequent confirm is received.
Passing a value of zero transmits the message without the need for a
subsequent confirm. However, message delivery is not assured. Refer to
Chapter 7, “Message Delivery”, on page 69, for more information on
assured and non-assured message delivery.

You can protect a message using message-level security. Refer to Chapter 8,
“Security”, on page 79 for detailed information on message-level security.

Get

This operation returns an available message from a specified queue and
removes the message from the queue. The queue can belong to a local or
remote WebSphere MQ Everyplace queue manager, but cannot be an
asynchronous remote queue.

If you do not specify a filter, the first available message is returned. If you
do specify a filter, the first available message that matches the filter is
returned. Including a valid lockID in the message filter allows you to get
messages that have been locked by a previous browse operation. If no
message is available, the get operation returns an error.

Using assured message delivery depends on the value of the confirmID
parameter. Passing a non-zero value returns the message as normal.
However, the message is locked and is not removed from the target queue
until it receives a subsequent confirm. You can issue a confirm using the
confirmGetMessage() method. However, message delivery is not assured.
Refer to Chapter 7, “Message Delivery”, on page 69, for more information
on assured and non-assured message delivery.

Delete

This method deletes a message from a queue. It does not return the
message to the application that called it. You must specify the UniqueID
and you can delete only one message per operation. The queue can belong
to a local or synchronous remote WebSphere MQ Everyplace queue
manager. Including a valid lockID in the message filter allows you to
delete messages that have been locked by a previous operation, for
example browse. If a message is not available, the application returns an
error.
/* Example for deleting a message */
MQeFieldsHndl hMsg,hFilter;

/* create the new message */
rc = mqeFields_new(&exceptBlock, &hMsg);

Messaging lifecycle

Chapter 6. Queue manager operations 55

if (MQERETURN_OK == rc) {

/* add application fields here */
/* ... */

/* put message to a queue */
rc = mqeQueueManager_putMessage(hQueueManager,

&exceptBlock,
hQMName,
hQueueName, hMsg,
NULL,0);

if (MQERETURN_OK == rc) {
/* Delete requires a filter -

this can most easily be*/
/* found from the UID fields of the message*/

rc = mqeFieldsHelper_getMsgUidFields(hMsg,
&exceptBlock,
&hFilter);

}

}

/* some time later want to delete the message -
use the esatblished filter */

rc = mqeQueueManager_deleteMessage(hQueueManager,
&exceptBlock,
hQMName,
hQueueName,
hFilter);

Browse

You can browse queues for messages using a filter, for example message ID
or priority . Browsing retrieves all the messages that match the filter, but
leaves them on the queue. The queue can belong to a local or remote
queue manager. However, the implementation of the browse command is
codebase specific.

WebSphere MQ Everyplace also supports Browsing under lock. This allows
you to lock the matching messages on the queue. You can lock messages
individually, or in groups identified through a filter, and the locking
operation returns a lockID. Use the lockID to get or delete messages. An
option on browse allows you to return either the full messages, or only the
UniqueIDs.
MQeVectorHndl hListMsgs;

rc = mqeQueueManager_browseMessages(hQueueManager,
&exceptBlock,
&hListMsgs,
hQMName,
hQueueName,
hFilter,
NULL,MQE_FALSE);

if (MQERETURN_OK == rc) {
/* process list using mqeVector_* apis */

/* free off the vector */
rc = mqeVector_free(hListMsgs,&exceptBlock);

}

Messaging lifecycle

56 WebSphere MQ Everyplace Application Programming Guide

Returning an entire collection of messsages can be expensive in terms of
system resources. Setting the justUID parameter to true and returns the
uniqueID of each message that matches the filter only.

The messages returned in the collection are still visible to other WebSphere
MQ Everyplace APIs. Therefore, when performing subsequent operations
on the messages contained in the enumeration, the application must be
aware that another application can process these messages once the
collection is returned. To prevent other applications from processing
messages, use the browseMessagesAndLock method to lock messages
contained in the enumeration.

confirmPut
This method performs the confirmation of a previously successful
putMessage() operation.

confirmGet
This method confirms the successful receipt of a message retrieved from a
queue manager by a previous getMessage() operation. The message
remains locked on the target queue until it receives a confirm flow.

Listen Applications can listen for WebSphere MQ Everyplace message events,
again with an optional filter. However, in order to do this, you must add a
listener to a queue manager. Listeners are notified when messages arrive
on a queue.

Wait

This method implements message polling. It allows you to specify a time
for messages to arrive on a queue. Java implements a helper function for
this. The C codebase, as it is non-threaded, must implement a function in
application layer code. The following example demonstrates the Wait
method:

Java Message polling uses the waitForMessage() method. This
command issues a getMessage() command to the remote queue at
regular intervals. As soon as a message that matches the supplied
filter becomes available, it is returned to the calling application:
qmgr.waitForMessage("RemoteQMgr",

"RemoteQueue",
filter,
null,
0,
60000);

The waitForMessage() method polls the remote queue for the
length of time specified in its final parameter. The time is specified
in milliseconds. Therefore, in the example, polling lasts for 6
seconds. This blocks the thread on which the command is running
for 6 seconds, unless a message is returned earlier. Message polling
works on both local and remote queues.

Note: Using this technique sends multiple requests over the
network.

Messaging lifecycle

Chapter 6. Queue manager operations 57

Queue Ordering
The order of messages on a queue is primarily determined by their priority.
Message priority ranges from 9 (highest) to 0 (lowest). Messages with the same
priority value are ordered by the time at which they arrive on the queue, with
messages that have been on the queue for the longest being at the head of the
priority group.

Reading messages on a queue
If you issue a getMessage command when a queue is empty, the queue throws a
Java codebase Except_Q_NoMatchingMsg exception or returns a C codebase
MQERETURN_QUEUE_ERROR, MQEREASON_NO_MATCHING_MSG. This allows you to create an
application that reads all the available messages on a queue.

Java
Encasing the getMessage() call inside a try..catch block allows you to test the
code of the resulting exception. This is done using the code() method of the
MQeException class. You can compare the result from the code() method with a
list of exception constants published by the WebSphere MQ Everyplace class. If the
exception is not of type Except_Q_NoMatchingMsg, throw the exception again.

The following code shows this technique:
try
{

while(true)
{ /* keep getting messages until
an exception is thrown */
MQeMsgObject msg = qmgr.getMessage("myQMgr", "myQueue",

null, null, 0);
processMessage(msg);
}

}
catch (Exception e)
{

if (e.code() != MQe.Except_Q_NoMatchingMsg)
throw e;

}

Therefore, you can read all messages from a queue by iteratively getting messages
until MQe.Except_Q_NoMatchingMsg is returned.

C
You can read all messages from a queue by looping, until the return code is
MQERETURN_QUEUE_WARNING and the reason code is MQEREASON_NO_MATCHING_MSG.

Browse and Lock
Performing BrowseAndLock on a group of messages allows an application to ensure
that no other application is able to process messages when they are locked. The
messages remain locked until that application unlocks them. No other application
can unlock the messages. Any messages that arrive on the queue after the
BrowseAndLock operation are not locked.

An application can perform either a get or a delete operation on the messages to
remove them from the queue. To do this, the application must supply the lockID
that is returned with the enumeration of messages.

Specifying the lockID allows applications to work with locked messages without
having to unlock them first.

Messaging lifecycle

58 WebSphere MQ Everyplace Application Programming Guide

Instead of removing the messages from the queue, it is also possible just to unlock
them. This makes them visible once again to all WebSphere MQ Everyplace
applications. You can achieve this by using the unlockMessage method.

Note: See for special considerations with WebSphere MQ bridge queues.
The following examples demonstrate the use of BrowseAndLock:

Java example

The MQeEnumeration object contains all the messages that match the filter
supplied to the browse. MQeEnumeration can be used in the same manner
as the standard Java Enumeration. You can enumerate all the browsed
messages as follows:

Note: You must supply a confirmID, in case the action of locating
messages fails. It must be possible to undo the location, and this
action requires the confirmID.

long confirmID = MQe.uniqueValue();
MQeEnumeration msgEnum = qmgr.browseMessagesAndLock(null,

"MyQueue",
null, null,

confirmID, false);

while(msgEnum.hasMoreElements())
{

MQeMsgObject msg = (MQeMsgObject)msgEnum.nextElement();
System.out.println("Message from queue manager: " +

msg.getAscii(MQe.Msg_OriginQMgr));
}

The following code performs a delete on all the messages returned in the
enumeration. The message’s UniqueID and lockID are used as the filter on
the delete operation:
while(msgEnum.hasMoreElements())
{

MQeMsgObject msg = (MQeMsgObject)
msgEnum.getNextMessage(null,0);

processMessage(msg);

MQeFields filter = msg.getMsgUIDFields();
filter.putLong(MQe.Msg_LockID,

msgEnum.getLockId());

qmgr.deleteMessage(null, "MyQueue", filter);
}

C example
The C codebase example gets the actual message. Note the additional
parameters, a confirmID in case the operation needs undoing, and the
lockID.
MQeVectorHndl hMessages;
MQEINT64 lockID, confirmID=42;
rc = mqeQueueManager_browseAndLock(hQueueManager,

&exceptBlock,
&hmessages,
&lockID,
hQueueManagerName,
hQueueName,
hFilter,
NULL, /*No Attribute*/
confirmID,
MQE_TRUE); /*Just UIDs*/

Messaging lifecycle

Chapter 6. Queue manager operations 59

/*process vector*/
MQeFieldsHndl hGetFilter;
rc = mqeFields_new(&exceptBlock, &hGetFilter);
if (MQERETURN_OK == rc){
rc = mqeFields_putInt64(&hGetFilter,

&exceptBlock,
MQE_MSG_LOCKID,
lockID);

if (MQERETURN_OK == rc){
rc = mqeQueueManager_getMessage(&hQueueManager,

&exceptBlock,
hQueueManagerName,
hQueueName,

hGetFilter,
&hMsg);

}

Message listeners

Note: This section does not apply to the C codebase.

WebSphere MQ Everyplace allows an application to listen for events occurring on
queues. The application is able to specify message filters to identify the messages
in which it is interested, as shown in the following Java example:
/* Create a filter for "Order" messages of priority 7 */
MQeFields filter = new MQeFields();
filter.putAscii("MsgType", "Order");
filter.putByte(MQe.Msg_Priority, (byte)7);
/* activate a listener on "MyQueue" */
qmgr.addMessageListener(this, "MyQueue", filter);

Listeners do not start automatically when you create a queue manager. A call to
MQeAdministrator is required. However, listeners are persistent in the registry.
This means that, once created, listeners that exist at queue manager start-up are
started automatically.

The following parameters are passed to the addMessageListener() method:
v The name of the queue on which to listen for message operations
v A callback object that implements MQeMessageListenerInterface

v An MQeFields object containing a message filter

When a message arrives on a queue with a listener attached, the queue manager
calls the callback object that it was given when the message listener was created.

The following is an example of the way in which an application would normally
handle message events in Java:
public void messageArrived(MQeMessageEvent msgEvent)
{
String queueName =msgEvent.getQueueName();
if (queueName.equals("MyQueue"))
{

try
{

/*get message from queue */
MQeMsgObject msg =qmgr.getMessage(null,queueName,

msgEvent.getMsgFields(),null,0);

processMessage(msg);
}
catch (MQeException e)

Messaging lifecycle

60 WebSphere MQ Everyplace Application Programming Guide

{
...
}

}
}

messageArrived() is a method implemented in MQeMessageListenerInterface. The
msgEvent parameter contains information about the message, including:
v The name of the queue on which the message arrived
v The UID of the message
v The messageID

v The correlationID

v Message priority

Message filters only work on local queues. A separate technique known as polling
allows messages to be obtained as soon as they arrive on remote queues.

Message polling

Note: This section does not apply to the C codebase.

Message polling uses the waitForMessage() method. This command issues a
getMessage() command to the remote queue at regular intervals. As soon as a
message that matches the supplied filter becomes available, it is returned to the
calling application.

A wait for message call typically looks like this:
qmgr.waitForMessage("RemoteQMgr", "RemoteQueue",

filter, null, 0, 60000);

The waitForMessage() method polls the remote queue for the length of time
specified in its final parameter. The time is specified in milliseconds, so in the
example above, the polling lasts for 60 seconds. The thread on which the command
is executing is blocked for this length of time, unless a message is returned earlier.

Message polling works on both local and remote queues.

Note: Use of this technique results in multiple requests being sent over the
network.

Trigger transmission
This method attempts to transmit pending messages. Only unlocked messages are
transmitted.

Asynchronous remote queues and home server queues respond to trigger
transmission processing. Put messages with no confirmID or put messages and
confirm them before calling this method. Only messages that are fully put can be
transmitted.

Trigger transmission rules
There are a number of rules, which can control the trigger transmission processing,
if processing occurs. Chapter 3, Rules, or the WebSphere MQ Everyplace System
Programming Guide provides detailed information on trigger transmission rules.
Chapter 3, ″Rules″, of the WebSphere MQ Everyplace System Programming Guide
contains information on trigger transmission rules.

Messaging lifecycle

Chapter 6. Queue manager operations 61

rc = mqeQueueManager_triggerTransmission(hQueueManager,&exceptBlock);

Deleting queue managers
This section details how to delete a queue manager in Java and C.

Java
The basic steps required to delete a queue manager are:
1. Use the administration interface to delete any definitions
2. Create and activate an instance of MQeQueueManagerConfigure
3. Delete the standard queue and queue manager definitions
4. Close the MQeQueueManagerConfigure instance

When these steps are complete, the queue manager is deleted and can no longer be
run. The queue definitions are deleted, but the queues themselves are not deleted.
Any messages remaining on the queues are inaccessible.

Note: If there are messages on the queues they are not automatically deleted. Your
application programs should include code to check for, and handle,
remaining messages before deleting the queue manager.

1. Delete any definitions
You can use MQeQueueManagerConfigure to delete the standard queues that you
created with it. You should use the administration interface to delete any other
queues before you call MQeQueueManagerConfigure.

2. Create and activate an instance of
MQeQueueManagerConfigure
This process is the same as when creating a queue manager.

3. Delete the standard queue and queue manager definitions
Delete the default queues by calling:
v deleteAdminQueueDefinition() to delete the administration queue
v deleteAdminReplyQueueDefinition() to delete the administration reply queue
v deleteDeadLetterQueueDefinition() to delete the dead letter queue
v deleteSystemQueueDefinition() to delete the default local queue

These methods work successfully even if the queues do not exist.

Delete the queue manager definition by calling deleteQueueManagerDefinition()

import com.ibm.mqe.*;
import examples.queuemanager.MQeQueueManagerUtils;
try
{
MQeQueueManagerConfigure qmConfig;
MQeFields parms = new MQeFields();
// initialize the parameters
...
// Establish any aliases defined by the .ini file
MQeQueueManagerUtils.processAlias(parms);
qmConfig = new MQeQueueManagerConfigure(parms);
qmConfig.deleteAdminQueueDefinition();
qmConfig.deleteAdminReplyQueueDefinition();
qmConfig.deleteDeadLetterQueueDefinition();
qmConfig.deleteSystemQueueDefinition();
qmConfig.deleteQueueManagerDefinition();

Messaging lifecycle

62 WebSphere MQ Everyplace Application Programming Guide

qmconfig.close();
}
catch (Exception e)
{ ... }

You can delete the default queue and queue manager definitions together by
calling deleteStandardQMDefinitions(). This method is provided for convenience
and is equivalent to:
deleteDeadLetterQueueDefinition();
deleteSystemQueueDefinition();
deleteAdminQueueDefinition();
deleteAdminReplyQueueDefinition();
deleteQueueManagerDefinition();

4. Close the MQeQueueManagerConfigure instance
When you have deleted the queue and queue manager definitions, you can close
the MQeQueueManagerConfigure instance.

The complete example looks like this:
import com.ibm.mqe.*;
import examples.queuemanager.MQeQueueManagerUtils;
try
{
MQeQueueManagerConfigure qmConfig;
MQeFields parms = new MQeFields();
// initialize the parameters
...
// Establish any aliases defined by the .ini file
MQeQueueManagerUtils.processAlias(parms);
qmConfig = new MQeQueueManagerConfigure(parms);
qmConfig.deleteStandardQMDefinitions();
qmconfig.close();
}
catch (Exception e)
{ ... }

C
The steps in deleting a queue manager are essentially the same between the :
1. Remove all Connection Definitions.
2. Remove all Queues, including any ″system″ queues, for example the dead letter

queue. Ensure all queues are empty.
3. Remove the queue manager.

You require an administrator to perform these functions. We also recommend
stopping the queue manager first.

Note: Deleting the queue mananger will free the queue manager handle for you.
MQeAdministratorHndl hAdmin:
/* Create the new administrator based on the exisitng QM Handle */
rc = mqeAdministrator_new(&exceptBlock,

&hAdmin,hQueueManager);
if (MQERETURN_OK == rc) {

if (MQERETURN_OK == rc) {
/* delete any conncetion definitins for example :*/
rc = mqeAdministrator_Connection_delete(hAdmin,

&exceptBlock,
hRemoteQM);

}

deleting a queue manager

Chapter 6. Queue manager operations 63

/* delete all the local queues here - remember to do "special*/
/*queues" for example ... */

if (MQERETURN_OK == rc) {
rc = mqeAdministrator_LocalQueue_delete(hAdmin,

&exceptBlock,
MQE_DEADLETTER_QUEUE_NAME,
hLocalQMName);

}

/* Finally delete the queue manager */
if (MQERETURN_OK == rc) {

rc = mqeAdministrator_QueueManager_delete(hAdmin,
&exceptBlock);

}

/* free of the amdinsitrator */
(void)mqeAdministrator_free(hAdmin, &exceptBlock);

}

Servlet
As well as running as a standalone server, a queue manager can be encapsulated
in a servlet to run inside a Web server . A servlet queue manager has nearly the
same capabilities as a server queue manager. MQeServlet provides an example
implementation of a servlet. As with the server, servlets use ini files to hold start
up parameters. A servlet uses many of the same WebSphere MQ Everyplace
components as the server.

The main component not required in a servlet is the connection listener, this
function is handled by the Web server itself. Web servers only handle http data
streams so any WebSphere MQ Everyplace client that wishes to communicate with
an WebSphere MQ Everyplace servlet must use the http adapter
(com.ibm.mqe.adapters.MQeTcpipHttpAdaper). When you configure connections to
queue managers running in servlets, you must specify the name of the servlet in
the parameters field of the connection. The following definitions configure a
connection on servlet /servlet/MQe with queue manager PayrollQM:

Connection name
PayrollQM

Channel
com.ibm.mqe.communications.MQeChannel

Note: The com.ibm.mqe.MQeChannel class has been moved and is now
known as com.ibm.mqe.communications.MQeChannel. Any
references to the old class name in administration messages is
replaced automatically with the new class name.

Channel Adapter
com.ibm.mqe.adapters.MQeTcpipAdapter:192.168.0.10:80

Parameters
/servlet/MQe

Options

Alternatively, if the relevant aliases have been set up, you can configure the
connection as follows:

deleting a queue manager

64 WebSphere MQ Everyplace Application Programming Guide

Connection name
PayrollQM

Channel
DefaultChannel

Adapter
Network:192.168.0.10:80

Parameters
/servlet/MQe

Options

Web servers can run multiple servlets. It is possible to run multiple different
WebSphere MQ Everyplace servlets within a Web server, with the following
restrictions:
v Each servlet must have a unique name
v Only one queue manager is allowed per servlet
v Each WebSphere MQ Everyplace servlet must run in a different Java Virtual

Machine (JVM)

The WebSphere MQ Everyplace servlet extends javax.servlet.http.HttpServlet and
overrides methods for starting, stopping and handling new requests. The following
code fragment starts a servlet:
/**
* Servlet initialization......
*/
public void init(ServletConfig sc) throws ServletException
{

// Ensure supers constructor is called.
super.init(sc);

try
{

// Get the the server startup ini file
String startupIni;
if ((startupIni = getInitParameter("Startup")) == null)

startupIni = defaultStartupInifile;

// Load it
MQeFields sections = MQeQueueManagerUtils.loadConfigFile(startupIni);

// assign any class aliases
MQeQueueManagerUtils.processAlias(sections);

// Uncomment the following line to start trace before the queue
// manager is started
// MQeQueueManagerUtils.traceOn("MQeServlet Trace", null);

// Start connection manager
channelManager = MQeQueueManagerUtils.processChannelManager(sections);

// check for any pre-loaded classes
loadTable = MQeQueueManagerUtils.processPreLoad(sections);

// setup and activate the queue manager
queueManager = MQeQueueManagerUtils.processQueueManager(sections,
channelManager.getGlobalHashtable());

// Start ChannelTimer (convert time-out from secs to millisecs)
int tI =

sections.getFields(MQeQueueManagerUtils.Section_Listener).getInt

servlet queue managers

Chapter 6. Queue manager operations 65

("TimeInterval");
long timeInterval = 1000 * tI;
channelTimer = new MQeChannelTimer(channelManager, timeInterval);

// Servlet initialization complete
mqe.trace(1300, null);

}
catch (Exception e)
{

mqe.trace(1301, e.toString());
throw new ServletException(e.toString());

}
}

The main differences compared to a server startup are:
v The servlet overrides the init method of the superclass. This method is called by

the Web server to start the servlet. Typically this occurs when the first request
for the servlet arrives.

v The name of the startup ini file cannot be passed in from the command line. The
example expects to obtain the name using the servlet method getInitParameter()
which takes the name of a parameter and returns a value. The WebSphere MQ
Everyplace servlet uses a Startup parameter that it expects to contain an ini file
name. The mechanism for configuring parameters in a Web server is Web server
dependant.

v A listener is not started as the Web server handles all network requests on behalf
of the servlet.

v As there is no listener a mechanism is required to time-out connections that have
been inactive for longer than the time-out period. A simple timer class
MQeChannelTimer is instantiated to perform this function. The TimeInterval
value is the only parameter used from the [Listener] section of the ini file.

A servlet relies on the Web server for accepting and handling incoming requests.
Once the Web server has decided that the request is for an WebSphere MQ
Everyplace servlet, it passes the request to WebSphere MQ Everyplace using the
doPost() method. The following code handles this request:
/**
* Handle POST......
*/
public void doPost(HttpServletRequest request,

HttpServletResponse response)
throws IOException

{
// any request to process ?
if (request == null)

throw new IOException("Invalid request");
try
{

int max_length_of_data = request.getContentLength();
// data length

byte[] httpInData = new byte[max_length_of_data];
// allocate data area

ServletOutputStream httpOut = response.getOutputStream();
// output stream

ServletInputStream httpIn = request.getInputStream();
// input stream

// get the request
read(httpIn, httpInData, max_length_of_data);

// process the request
byte[] httpOutData = channelManager.process(null, httpInData);

servlet queue managers

66 WebSphere MQ Everyplace Application Programming Guide

// appears to be an error in that content-
length is not being set
// so we will set it here
response.setContentLength(httpOutData.length);
response.setIntHeader("content-length", httpOutData.length);

// Pass back the response
httpOut.write(httpOutData);

}
catch (Exception e)
{

// pass it on ...
throw new IOException("Request failed" + e);

}
}

This method:
1. Reads the http input data stream into a byte array. The input data stream may

be buffered so the read() method is used to ensure that the entire data stream is
read before continuing.

Note: WebSphere MQ Everyplace only handles requests with the doPost()
method, it does not accept requests using the doGet() method

2. The request is passed to WebSphere MQ Everyplace through a connection
manager. From this point, all processing of the request is handled by core
WebSphere MQ Everyplace classes such as the queue manager.

3. Once WebSphere MQ Everyplace has completed processing the request, it
returns the result wrapped in http headers as a byte array. The byte array is
passed to the Web server and is transmitted back to the client that originated
the request.

Security
The queue manager fully supports the security functions supplied with WebSphere
MQ Everyplace. Any messages stored in a queue defined with security
characteristics are encoded using those characteristics. Any connections set up
between a queue manager and a secure queue use the security characteristics of
the queue, or an existing connection with equal or higher security.

Messages can be individually protected by attaching security characteristics to
them directly. The correct characteristics must be presented whenever dealing with
a message protected in this manner.

Connection security
Because of the way channel security works, when a specific attribute rule is
specified for a target queue, it forces the local queue manager to create an instance
of the same attribute rule, examples.rules.AttributeRule and
com.ibm.mqe.MQeAttributeRule are treated as the same rule. If this is not a
desirable behaviour, you can specify a null rule for the target queue. In this case,
com.ibm.mqe.MQeAttributeDefaultRule takes effect.

See Chapter 8, “Security”, on page 79 for a detailed discussion of WebSphere MQ
Everyplace security.

servlet queue managers

Chapter 6. Queue manager operations 67

Aliases
WebSphere MQ Everyplace provides two forms of aliasing, queue manager aliasing
and queue aliasing. Both provide a level of indirection between the applications
logical view of an item and the real item. The WebSphere MQ Everyplace System
Programming Guide provides detailed information on using queue and queue
manager aliasing.

queue manager security

68 WebSphere MQ Everyplace Application Programming Guide

Chapter 7. Message Delivery

WebSphere MQ Everyplace networks are composed of connected queue managers
and can include gateways. They can span multiple physical networks and route
messages between them. In general they provide synchronous and asynchronous
access to queues with a programming model that is independent of queue location.

This chapter describes different types of the message delivery process in detail,
under the following headings:
v Asynchronous message delivery
v Synchronous message delivery
v Assured and Non-assured message delivery
v Synchronous assured message delivery

Asynchronous message delivery
An asynchronous put to a remote queue places the message on the backing store
associated with the local definition of that queue, along with its destination queue
manager name, queue name, and the compressor, authenticator, and cryptor
characteristics that match the target destination of the message. The message’s
dump method is called as it is saved to persistent storage in a secure format that is
defined by its destination queue. The queue manager controls message delivery. It
identifies or establishes a connection with appropriate characteristics to the queue
manager for the next hop, then creates or reuses a transporter to the target queue
manager. The transporter dumps the message and transmits the resulting byte
string. The target queue manager and queue name are not part of that message
flow.

If appropriate, the message is encrypted and compressed over the connection. If it
has reached its destination queue manager, it is decrypted and decompressed. A
new message is created, using the restore method, and the resultant message is
placed on the destination queue. If the message has not reached its destination
queue manager, it is decrypted and decompressed. It is then re-encrypted,
compressed, and placed on a store-and-forward queue for onward transmission, if
a store-and-forward queue exists. In both cases it is held on its respective queue in
a secure format, as defined by its destination queue.

A characteristic of asynchronous message delivery is that messages are passed to
the queue manager at intermediate hops, being queued for onward transmission.
Messages are taken off the intermediate queues first in order of priority, then in
order of arrival on the queue. Duplicate messages, created when you resend a
message, are also taken off the intermediate queues in the order of their arrival on
the queue.

Synchronous message delivery
Synchronous message delivery is similar to the asynchronous case described above,
but the queue manager involvement in intermediate hops takes place at a much
lower level, involving the transporter and connections. An end-to-end connection is
established, using the adapters defined in the protocol specifications at each
intermediate node, to identify the next link. At the end of the last link, where no
further relevant file descriptors exist, the message gets passed to the higher layers

© Copyright IBM Corp. 2000, 2002 69

of the queue manager for processing. Thus the sending node does not queue the
message but passes it along the connection, through intermediate hops, and then
gives it to the destination queue manager to place it on the target queue.

The link into WebSphere MQ uses a bridge queue on the gateway, which
transforms the message into a WebSphere MQ format. This mechanism means that
synchronous WebSphere MQ Everyplace style messaging from a device is possible
to WebSphere MQ, with the connection terminating at the gateway. The message is
delivered in real time from the gateway, through a client channel, to a WebSphere
MQ server. From there its destination can require it to be routed asynchronously
along WebSphere MQ message channels.

In a similar manner, a device capable of only synchronous messaging can send
messages to an asynchronous WebSphere MQ Everyplace queue, provided that a
suitable intermediary is available.

Assured and non-assured message delivery
Message delivery using synchronous message transmission can be assured or
non-assured.

Assured message delivery
Asynchronous transmission introduces the concept of assured message delivery.
When delivering messages asynchronously, WebSphere MQ Everyplace delivers
each message once, and once-only, to its destination queue. However, this
assurance is only valid if the definition of the remote queue and remote queue
manager match the current characteristics of the remote queue and remote queue
manager. If a remote queue definition and the remote queue do not match, then it
is possible that a message may become undeliverable. In this case the message is
not lost, but remains stored on the local queue manager.

Non-assured message delivery
Non-assured delivery of a message takes place in a single network flow. The queue
manager sending the message creates or reuses a channel to the destination queue
manager.

The message to be sent is dumped to create a byte-stream, and this byte stream is
given to the channel for transmission. Once program control has returned from the
channel the sender queue manager knows that the message has been successfully
given to the target queue manager, that the target has logged the message on a
queue, and that the message has been made visible to WebSphere MQ Everyplace
applications.

However, a problem can occur if the sender receives an exception over the channel
from the target. The sender has no way of knowing if the exception occurred
before or after the message was logged and made visible. If the exception occurred
before the message was made visible it is safe for the sender to send the message
again. However, if the exception occurred after the message was made visible,
there is a danger of introducing duplicate messages into the system since an
WebSphere MQ Everyplace application could have processed the message before it
was sent the second time.

The solution to this problem involves transmitting an additional confirmation flow.
If the sender application receives a successful response to this flow, then it knows
that the message has been delivered once and once-only.

message delivery

70 WebSphere MQ Everyplace Application Programming Guide

Synchronous assured message delivery

Put message
You can perform assured message delivery using synchronous message
transmission, but the application must take responsibility for error handling.

The confirmID parameter of the putMessage method dictates whether a confirm
flow is expected or not. A value of zero means that message transmission occurs in
one flow, while a value of greater than zero means that a confirm flow is expected.
The target queue manager logs the message to the destination queue as usual, but
the message is locked and invisible to WebSphere MQ Everyplace applications,
until a confirm flow is received. When you put messages with the confirmID, the
messages are ordered by confirm time, not arrival time.

An WebSphere MQ Everyplace application can issue a put message confirmation
using the confirmPutMessage method. Once the target queue manager receives the
flow generated by this command, it unlocks the message, and makes it visible to
WebSphere MQ Everyplace applications. You can confirm only one message at a
time. It is not possible to confirm a batch of messages.

The confirmPutMessage() method requires you to specify the UniqueID of the
message, not the confirmID used in the prior put message command. The
confirmID is used to restore messages that remain locked after a transmission
failure. This is explained in detail on page 77.

A skeleton version of the code required for an assured put is shown below:

Java codebase
long confirmId = MQe.uniqueValue();

try
{

Application puts message,
specifying a confirm ID.

Message is unlocked and
is now visible to other
WebSphere MQ Everyplace
applications.

Message is saved to
persistent store. Message is
locked and is not yet visible
to other WebSphere MQ
Everyplace applications.

Application knows that the
message has been successfully
delivered.

Application confirms the
put of the message.

Application knows that the
message is locked on target
queue manager.

Originator Target queue manager

Step 1

Step 2

Network

Put

Put
success

Confirm
success

Confirm

Figure 5. Assured put of synchronous messages

assured and non-assured message delivery

Chapter 7. Message Delivery 71

qmgr.putMessage("RemoteQMgr", "RemoteQueue",
msg, null, confirmId);

}
catch(Exception e)
{

/* handle any exceptions*/
}

try
{

qmgr.confirmPutMessage("RemoteQMgr", "RemoteQueue",
msg.getMsgUIDFields());

}
catch (Exception e)
{

/* handle any exceptions */
}

C codebase
/* generate confirm Id */
MQEINT64 confirmId;
rc = mqe_uniqueValue(&exceptBlock,

&confirmId);

/* put message to queue using this confirm Id */
if(MQERETURN_OK == rc) {

rc = mqeQueueManager_putMessage(hQMgr,
&exceptBlock,
hQMgrName, hQName,
hMsg, NULL, confirmId);

/* now confirm the message put */
if(MQERETURN_OK == rc) {

/* first get the message uid fields */
MQeFieldsHndl hFilter;
rc = mqeFieldsHelper_getMsgUidFields(hMsg,

&exceptBlock,
&hFilter);

if(MQERETURN_OK == rc) {
rc = mqeQueueManager_confirmPutMessage(hQMgr,
&exceptBlock,
hQMgrName,
hQName, hFilter);

}
}

}

If a failure occurs during step 1 in Figure 5 on page 71 the application should
retransmit the message. There is no danger of introducing duplicate messages into
the WebSphere MQ Everyplace network since the message at the target queue
manager is not made visible to applications until the confirm flow has been
successfully processed.

If the WebSphere MQ Everyplace application retransmits the message, it should
also inform the target queue manager that this is happening. The target queue
manager deletes any duplicate copy of the message that it already has. The
application sets the MQe.Msg_Resend field to do this.

If a failure occurs during step 2 in Figure 5 on page 71 the application should send
the confirm flow again. There is no danger in doing this since the target queue
manager ignores any confirm flows it receives for messages that it has already
confirmed. This is shown in the following example, taken from
examples.application.example6.

Java codebase

assured and non-assured message delivery

72 WebSphere MQ Everyplace Application Programming Guide

boolean msgPut = false;
/* put successful? */
boolean msgConfirm = false;
/* confirm successful? */
int maxRetry = 5;
/* maximum number of retries */

long confirmId = MQe.uniqueValue();

int retry = 0;
while(!msgPut &&

retry < maxRetry)
{

try
{

qmgr.putMessage("RemoteQMgr",
"RemoteQueue",
msg, null,
confirmId);

msgPut = true;
/* message put successful */

}
catch(Exception e)
{

/* handle any exceptions */
/* set resend flag for

retransmission of message */
msg.putBoolean(MQe.Msg_Resend, true);
retry ++;

}
}

if (!msgPut)
/* was put message successful?*/

/* Number of retries has
exceeded the maximum allowed,
/*so abort the put*/
/* message attempt */

return;

retry = 0;
while(!msgConfirm &&

retry < maxRetry)
{

try
{

qmgr.confirmPutMessage("RenoteQMgr",
"RemoteQueue",

msg.getMsgUIDFields());
msgConfirm = true;

/* message confirm successful*/
}
catch (Exception e)
{

/* handle any exceptions*/
/* An Except_NotFound

exception means */
/*that the message has already */

/* been confirmed */
if (e instanceof MQeException &&

((MQeException)e).code() == Except_NotFound)
putConfirmed = true;

/* confirm successful */
/* another type of exception -

assured and non-assured message delivery

Chapter 7. Message Delivery 73

need to reconfirm message */
retry ++;

}
}

C codebase
MQEINT32 maxRetry = 5;

rc = mqeQueueManager_putMessage(hQMgr,
&exceptBlock,
hQMgrName,
hQName, hMsg,
NULL, confirmId);

/* if the put attempt fails,
retry up to the maximum number*/

/*of retry times permitted,
setting the re-send flag. */

while (MQERETURN_OK != rc
&& --maxRetry > 0) {
rc = mqeFields_putBoolean(hMsg, &exceptBlock,

MQE_MSG_RESEND, MQE_TRUE);
if(MQERETURN_OK == rc) {

rc = mqeQueueManager_putMessage(hQMgr, &exceptBlock,
hQMgrName, hQName,
hMsg, NULL, confirmId);

}
}

if(MQERETURN_OK == rc) {
MQeFieldsHndl hFilter;
maxRetry = 5;
rc = mqeFieldsHelper_getMsgUidFields(hMsg,

&exceptBlock,
&hFilter);

if(MQERETURN_OK == rc) {
rc = mqeQueueManager_confirmPutMessage(hQMgr,

&exceptBlock,
hQMgrName, hQName,
hFilter);

}
while (MQERETURN_OK != rc

&& --maxRetry > 0) {
rc = mqeQueueManager_confirmPutMessage(hQMgr,

&exceptBlock,
hQMgrName,
hQName,
hFilter);

}
}

Get message
Assured message get works in a similar way to put. If a get message command is
issued with a confirmId parameter greater than zero, the message is left locked on
the queue on which it resides until a confirm flow is processed by the target queue
manager. When a confirm flow is received, the message is deleted from the queue.
Figure 6 on page 75 describes a get of synchronous messages:

assured and non-assured message delivery

74 WebSphere MQ Everyplace Application Programming Guide

The following code is taken from examples.application.example6

Java codebase
boolean msgGet = false;
/* get successful? */
boolean msgConfirm = false;
/* confirm successful? */
MQeMsgObject msg = null;
int maxRetry = 5;
/* maximum number of retries */

long confirmId = MQe.uniqueValue();
int retry = 0;
while(!msgGet && retry < maxRetry)
{

try
{

msg = qmgr.getMessage("RemoteQMgr",
"RemoteQueue",
filter, null,

confirmId);
msgGet = true;

/* get succeeded */
}
catch (Exception e)
{

/* handle any exceptions */
/* if the exception is of type
Except_Q_NoMatchingMsg, meaning that */
/* the message is unavailable
then throw the exception */

if (e instanceof MQeException)
if (((MQeException)e).code() ==

Except_Q_NoMatchingMsg)
throw e;

retry ++;
/* increment retry count */
}

}

if (!msgGet)
/* was the get successful? */

/* Number of retry attempts has

Originator Target

O1. Application issues a Get Message (specifying a confirm Id)

T1.Message state in persistent store
changed to ‘Get_Uncomfirmed’.
Message returned to originator.

O2. Application issues a Confirm Get Message.

T2.Message removed from queue.

O3. Application now holds sole copy of message.

Figure 6. Assured get of synchronous messages

assured and non-assured message delivery

Chapter 7. Message Delivery 75

exceeded the maximum allowed, so abort */
/* get message operation */
return;

while(!msgConfirm && retry < maxRetry)
{

try
{

qmgr.confirmGetMessage("RemoteQMgr",
"RemoteQueue",

msg.getMsgUIDFields());
msgConfirm = true;

/* confirm succeeded */
}
catch (Exception e)
{

/* handle any exceptions */
retry ++; /* increment retry count */

}
}

C codebase
MQEINT32 maxRetry = 5;

rc = mqeQueueManager_getMessage(hQMgr,
&exceptBlock,
hQMgrName,
hQName, hMsg,
NULL, confirmId);

/* if the get attempt fails, retry
up to the maximum number of*/

/*retry times permitted,
setting the re-send flag. */
while (MQERETURN_OK != rc &&

--maxRetry > 0) {
rc = mqeFields_getBoolean(hMsg,

&exceptBlock,
MQE_MSG_RESEND,
MQE_TRUE);

if(MQERETURN_OK == rc) {
rc = mqeQueueManager_getMessage(hQMgr,

&exceptBlock,
hQMgrName,
hQName, hMsg,
NULL,
confirmId);

}
}

if(MQERETURN_OK == rc) {
MQeFieldsHndl hFilter;
maxRetry = 5;
rc = mqeFieldsHelper_getMsgUidFields(hMsg,

&exceptBlock,
&hFilter);

if(MQERETURN_OK == rc) {
rc = mqeQueueManager_confirmGetMessage(hQMgr,

&exceptBlock,
hQMgrName,
hQName,
hFilter);

}
while (MQERETURN_OK != rc &&

--maxRetry > 0) {
rc = mqeQueueManager_confirmPutMessage(hQMgr,

assured and non-assured message delivery

76 WebSphere MQ Everyplace Application Programming Guide

&exceptBlock,
hQMgrName,
hQName,
hFilter);

}
}

The value passed as the confirmId parameter also has another use. The value is
used to identify the message while it is locked and awaiting confirmation. If an
error occurs during a get operation, it can potentially leave the message locked on
the queue. This happens if the message is locked in response to the get command,
but an error occurs before the application receives the message. If the application
reissues the get in response to the exception, then it will be unable to obtain the
same message because it is locked and invisible to WebSphere MQ Everyplace
applications.

However, the application that issued the get command can restore the messages
using the undo method. The application must supply the confirmId value that it
supplied to the get message command. The undo command restores messages to
the state they were in before the get command.

Java codebase
boolean msgGet = false;
/* get successful? */
boolean msgConfirm = false;
/* confirm successful? */
MQeMsgObject msg = null;
int maxRetry = 5;
/* maximum number of retries */

long confirmId = MQe.uniqueValue();
int retry = 0;
while(!msgGet && retry < maxRetry)
{

try
{

msg = qmgr.getMessage("RemoteQMgr",
"RemoteQueue",
filter, null,

confirmId);
msgGet = true;

/* get succeeded */
}
catch (Exception e)
{

/* handle any exceptions */
/* if the exception is of type
Except_Q_NoMatchingMsg, meaning that */
/* the message is unavailable
then throw the exception */
if (e instanceof MQeException)

if (((MQeException)e).code() == Except_Q_NoMatchingMsg)
throw e;

retry ++; /* increment retry count */
/* As a precaution, undo the message
on the queue. This will remove */
/* any lock that may have been put on
the message prior to the */
/* exception occurring */
myQM.undo(qMgrName, queueName, confirmId);

}
}

if (!msgGet)

assured and non-assured message delivery

Chapter 7. Message Delivery 77

/* was the get successful? */
/* Number of retry attempts has

exceeded the maximum allowed, so abort */
/* get message operation */

return;

while(!msgConfirm && retry < maxRetry)
{

try
{

qmgr.confirmGetMessage("RemoteQMgr",
"RemoteQueue",

msg.getMsgUIDFields());
msgConfirm = true;

/* confirm succeeded */
}
catch (Exception e)
{

/* handle any exceptions */
retry ++;

/* increment retry count */
}

}

C codebase
MQeFieldsHndl hMsg;
rc = mqeQueueManager_getMessage(hQMgr, &exceptBlock,

&hMsg, hQMgrName,
hQName, hFilter,
NULL, confirmId);

/* if unsuccessful, undo the operation */
if(MQERETURN_OK != rc) {

rc = mqeQueueManager_undo(hQMgr, &exceptBlock,
hQMgrName, hQName,
confirmId);

}

The undo command also has relevance for the putMessage and
browseMessagesAndLock commands. As with get message, the undo command
restores any messages locked by the browseMessagesandLock command to their
previous state.

If an application issues an undo command after a failed putMessage command, then
any message locked on the target queue awaiting confirmation is deleted.

The undo command works for operations on both local and remote queues.

assured and non-assured message delivery

78 WebSphere MQ Everyplace Application Programming Guide

Chapter 8. Security

WebSphere MQ Everyplace provides an integrated set of security features that
enable the protection of data when held locally and when it is being transferred.
There are three different categories of security:

Local security
Local security provides protection for any WebSphere MQ Everyplace data.

Queue-based security
Queue-based security automatically protects WebSphere MQ Everyplace
message data between the initiating queue manager and queue, on the
queue, and between the queue and the receiving queue manager. This
protection is independent of whether the target queue is owned by a local
or a remote queue manager. Using queue-based security does not require
any change to application code and, therefore, is not described any further
in this chapter. The WebSphere MQ Everyplace Configuration Guide
describes how to add security attributes to a queue.

Message-level security
Message-level security provides protection for message data between an
initiating and receiving WebSphere MQ Everyplace application.

Note: Throughout the world there are varying government regulations concerning
levels and types of cryptography. You must always use a level and type of
cryptography that complies with the appropriate local legislation. This is
particularly relevant when using a mobile device that is moved from
country to country. WebSphere MQ Everyplace provides facilities for this,
but it is the responsibility of the application programmer to implement it.

In this chapter, security is explained under the following headings:
v Security features
v Local security
v Message-level security
v Mini-certificate issuance service
v Private registry service
v Public registry service

Security features
Queue based security is handled internally by WebSphere MQ Everyplace and
does not require any specific action by the initiator or recipient of the message.
Local and Message-level security must be initiated by an application.

All three categories protect Message data by the application of an MQeAttribute ,
or a descendent. Depending on the category, the attribute is either explicitly or
implicitly applied.

Every attribute can contain any or all of the following objects:
v Authenticator
v Cryptor
v Compressor
v Key

© Copyright IBM Corp. 2000, 2002 79

v Target Entity Name

The way these objects are used depends on the category of WebSphere MQ
Everyplace security. Each category of security is described in detail later in this
chapter.

WebSphere MQ Everyplace also provides the following services to assist with
security:

Private registry services
WebSphere MQ Everyplace private registry provides a repository in which
public and private objects can be stored. It provides (login) PIN protected
access so that access to a private registry is restricted to the authorized
user. It also provides additional services so that functions can use the
entity’s private key, (for digital signature, and RSA decryption) without the
private credentials leaving the PrivateRegistry instance.

These services are used by queue-based security and message-level security
using MQeTrustAttribute.

Public registry services
WebSphere MQ Everyplace public registry provides a publicly accessible
repository for mini-certificates.

These services can be used by queue-based and message-level security.

Mini-certificate issuance service
WebSphere MQ Everyplace provides SupportPac ES03, ″WebSphere MQ
Everyplace WTLS Mini-Certificate Server″, which includes a default
mini-certificate issuance service that you can configure to issue
mini-certificates to a carefully controlled set of entity names.

These services can be used by queue-based and message-level security.

These services are described in more detail later in the chapter.

Local security
Local security protects WebSphere MQ Everyplace message or MQeFields data
locally. This is achieved by creating an attribute with an appropriate symmetric
cryptor and compressor, creating and setting up an appropriate key, by providing a
password. The key is explicitly attached to the attribute, and the attribute is
attached to the WebSphere MQ Everyplace message. WebSphere MQ Everyplace
provides the MQeLocalSecure Java class and C API to assist with the setup of local
security, but in all cases it is the responsibility of the local security user
(WebSphere MQ Everyplace internally or a WebSphere MQ Everyplace application)
to set up an appropriate attribute and manage the password key.

Local security provides protection for WebSphere MQ Everyplace data, MQeFields
objects, including Java message objects, for example MQeMsgObject. The protected
data is returned in a byte array. To apply local security to a data object you must:
1. Create an attribute with an appropriate authenticator, cryptor, and compressor.
2. Set up an appropriate key, by providing a password.
3. Explicitly attach the key to the attribute, the attribute to the data, MQeFields

object, and invoke the dump() method on the data object.

security features

80 WebSphere MQ Everyplace Application Programming Guide

The authenticator determines how access to the data is controlled. It is invoked
every time a piece of data is acessed. The cryptor determines the cryptographic
strength protecting the data confidentiality. The compressor determines the amount
of storage required by the message.

WebSphere MQ Everyplace provides the MQeLocalSecure class to assist with the
use of local security. However, it is the responsibility of the local security user to
setup an appropriate attribute and provide the password. MQeLocalSecure
provides the function to protect the data and to save and restore it from backing
storage. If an application chooses to attach an attribute to a message without using
MQeLocalSecure, it also needs to save the data after using dump and must retrieve
the data before using restore.

Usage scenario
Consider a scenario where mobile agents working on many different customer sites
want to ensure that the confidential data of one customer is not accidentally shared
with another. Local security features, using different keys, and possibly different
cryptographic strengths, provide a simple method for protecting different customer
data held on a single machine .

A simple extension of this scenario could be that the protected local data is
accessed using a key that is pulled from a secure queue on an WebSphere MQ
Everyplace server node. The agents client has to authenticate itself to access the
server queue and pull the local key data, but never knows the actual key.

One of the advantages of taking this approach is that an audit trail is easily
accumulated for all access to customer specific data.

Secure feature choices
When using local security, WebSphere MQ Everyplace provides attribute choices
for authentication, encryption, and compression. The algorithms supported by
WebSphere MQ Everyplace for authentication, encryption, and compression are
listed in Table 4.

Table 4. Authentication, encryption and compression support

Function Algorithm

Authentication WTLS mini-certificate (NTAuthenticator or
UserIdAuthenticator, Java only)

Validation Windows NT, Windows 2000, AIX, or Solaris
identity

WinCEAuthenticator (C only)

Compression LZW (Java only)

RLE (Java and C)

GZIP (Java only)

Encryption Triple DES (Java only)

DES (Java only)

MARS (Java only)

RC4 (Java and C)

RC6 (Java only)

XOR (Java only)

local security

Chapter 8. Security 81

You can use your own implementations of authenticators, provided that your
cryptor is symmetric.

Selection criteria
You should use an authenticator if you need to provide additional controls to
prevent access to the local data by unauthorized users. In some ways using an
authenticator is unnecessary since providing the key password automatically limits
access to those who know this secret.

Queue-based security, uses mini-certificate based mutual authentication, and
message-level protection.

The choice of cryptor is driven by the strength of protection required. The stronger
the encryption, the more difficulty an attacker would face when trying to get
illegal access to the data. Data protected with symmetric ciphers that use 128 bit
keys is acknowledged as more difficult to attack than data protected using ciphers
that use shorter keys. However, in addition to cryptographic strength, the selection
of a cryptor may also be driven by many other factors. An example is that some
financial solutions require the use of triple DES in order to get audit approval.

You should use a compressor if you need to optimize the size of the protected
data. However, the effectiveness of the compressor depends on the content of the
data. The Java MQeRleCompressor and the C MQE_RLE_COMPRESSOR perform
run length encoding. This means that the compressor routines compress or expand
repeated bytes. Hence it is effective in compressing and decompressing data with
many repeated bytes. MQeLZWCompressor uses the LZW scheme. The simplest
form of the LZW algorithm uses a dictionary data structure in which various
words, or data patterns, are stored against different codes. This compressor is
likely to be most effective where the data has a significant number of repeating
words, or data patterns. The MQeGZIPCompressor uses the same compression
algorithm as the gzip command on UNIX. This searches for repeating patterns in
the data and replaces subsequent occurrences of a pattern with a reference back to
the first occurrence of the pattern.

Usage guide for Java
1. The following code protects an MQeFields object using MQeLocalSecure

try
{
.../* SIMPLE UNPROTECT FRAGMENT */
.../* instantiate a DES cryptor */
MQeDESCryptor desC = new MQeDESCryptor();
.../* instantiate an attribute using the DES cryptor */
MQeAttribute desA = new MQeAttribute(null, desC, null);
.../* instantiate a (a helper) LocalSecure object */
MQeLocalSecure ls = new MQeLocalSecure();
.../* open LocalSecure obj

identifying target file and directory */
ls.open(".\\", "TestSecureData.txt");
/*instantiate a MQeFields object */
MQeFields myData =new MQeFields();
/*add some test data */
myData.putAscii("testdata","0123456789abcdef....");
.../* use LocalSecure write to protect data*/
ls.write(myData.dump(), desA, "It_is_a_secret"));
...
}
catch (Exception e)
{
e.printStackTrace(); /* show exception */

local security

82 WebSphere MQ Everyplace Application Programming Guide

}

try
{
.../* SIMPLE UNPROTECT FRAGMENT */
.../* instantiate a DES cryptor */
MQeDESCryptor des2C = new MQeDESCryptor();
.../* instantiate an attribute using the DES cryptor */
MQeAttribute des2A = new MQeAttribute(null, des2C, null);
.../* instantiate a (a helper) LocalSecure object */
MQeLocalSecure ls2 = new MQeLocalSecure();
.../* open LocalSecure obj identifying

target file and directory */
ls2.open(".\\", "TestSecureData.txt");
.../* use LocalSecure read to restore

from target and decode data*/
String outData = MQe.byteToAscii(ls2.read(desA2,

"It_is_a_secret"));
.../* show results.... */
trace ("i: test data out = " + outData);
...
}

catch (Exception e)
{
e.printStackTrace();

/* show exception */
}

2. The following code protects an MQeMsgObject locally without using
MQeLocalSecure.
try
{

.../*SIMPLE PROTECT FRAGMENT */

.../*instantiate a DES cryptor */
MQeDESCryptor desC = new MQeDESCryptor();
.../*instantiate an Attribute using the DES cryptor */
MQeAttribute attr = new MQeAttribute(null,desC,null);
.../*instantiate a base Key object */
MQeKey localkey = new MQeKey();
.../*set the base Key object local key */
localkey.setLocalKey("my secret key");
.../*attach the key to the attribute */
attr.setKey(localkey);
/*instantiate an MQeFields object */
MQeFields myData = new MQeFields();
/*attach the attribute to the data object */
myData.setAttribute(attr);
/*add some test data */
myData.putAscii("testdata", "0123456789abcdef....");
trace ("i:test data in = " + myData.getAscii("testdata"));
/*encode the data */
byte [] protectedData = myData.dump();
trace ("i:protected test data = " + MQe.byteToAscii(protectedData));
}
catch (Exception e)
{

e.printStackTrace(); /*show exception */
}

try
{
.../*SIMPLE UNPROTECT FRAGMENT */
.../*instantiate a DES cryptor */
MQeDESCryptor desC2 = new MQeDESCryptor();
.../*instantiate an Attribute using the DES cryptor */
MQeAttribute attr2 = new MQeAttribute(null,desC2,null);

local security

Chapter 8. Security 83

.../*instantiate a base Key object */
MQeKey localkey2 = new MQeKey();
.../*set the base Key object local key */
localkey2.setLocalKey("my secret key");
.../*attach the key to the attribute */
attr2.setKey(localkey2);
/*instantiate a new data object */
MQeFields myData2 = new MQeFields();
/*attach the attribute to the data object */
myData2.setAttribute(attr2);
/*decode the data */
myData2.restore(protectedData);
/*show the unprotected test data */
trace ("i:test data out = " + myData2.getAscii("testdata"));
}
catch (Exception e)
{

e.printStackTrace(); /*show exception */
}

Usage guide for C
1. The following code protects an MQeFields structure using MQeLocalSecure:

/* write to a file */
MQeFieldsAttrHndl hAttr = NULL;
MQeStringHndl hKeySeed = NULL, hDir = NULL, hFile = NULL;
MQeStringHndl hFieldName = NULL, hFieldData = NULL;
MQeExceptBlock exceptBlock;
MQeLocalSecureHndl hLocalSecure = NULL;
MQeFieldsHndl hData = NULL;
MQEBYTE outBuf[128];
MQEINT32 bufLen = 128;

MQERETURN rc;

/* create a key seed string */
rc = mqeString_newChar8(&exceptBlock,

&hKeySeed,
"my secret key");

/* create a new attribute with a RC4 cryptor */
rc = mqeFieldsAttr_new(&exceptBlock,

hAttr, NULL,
MQE_RC4_CRYPTOR_CLASS_NAME,
NULL, hKeySeed);

/* create a dir string */
rc = mqeString_newChar8(&exceptBlock, &hDir, ".\\");
/* create a file name string */
rc = mqeString_newChar8(&exceptBlock,

&hFile,
"localSecureFile.txt");

/* create an MQeLocalSecure */
rc = mqeLocalSecure_new(&exceptBlock, &hLocalSecure);
/* open file */
rc = mqeLocalSecure_open(hLocalSecure, &exceptBlock, hDir, hFile);
/* create a data Fields */
rc = mqeFields_new(&exceptBlock, &hData);
/* add some test data */
rc = mqeString_newChar8(&exceptBlock,

&hFieldName,
"testdata");

rc = mqeString_newChar8(&exceptBlock,
&hFieldData,
"0123456789abcdef....");

rc = mqeFields_putAscii(hData, &exceptBlock,
hFieldName, hFieldData);

/* dump (protect) data Fields */

local security

84 WebSphere MQ Everyplace Application Programming Guide

rc = mqeFields_dump(hData, &exceptBlock,
outBuf, &buflen);

/* write to .\\ocalSecureFile.txt */
rc = mqeLocalSecure_write(hLocalSecure, &exceptBlock,

outBuf, bufLen, hAttr, NULL);

/* read from a file */
MQeFieldsAttrHndl hAttr = NULL;
MQeStringHndl hKeySeed = NULL, hDir = NULL, hFile = NULL;
MQeStringHndl hFieldName = NULL, hFieldData = NULL;
MQeExceptBlock exceptBlock;
MQeLocalSecureHndl hLocalSecure = NULL;
MQERETURN rc;
MQEBYTE outBuf[128];
MQEINT32 bufLen = 128;

/* create a key seed string */
rc = mqeString_newChar8(&exceptBlock,

&hKeySeed,
"my secret key");

/* create a new attribute with a RC4 cryptor */
rc = mqeFieldsAttr_new(&exceptBlock,

&hAttr, NULL,
MQE_RC4_CRYPTOR_CLASS_NAME,
NULL, hKeySeed);

/* create a dir string */
rc = mqeString_newChar8(&exceptBlock,

&hDir, ".\\");
/* create a file name string */
rc = mqeString_newChar8(&exceptBlock,

&hFile,
"localSecureFile.txt");

/* create an MQeLocalSecure */
rc = mqeLocalSecure_new(&exceptBlock,

&hLocalSecure);
/* open file */
rc = mqeLocalSecure_open(hLocalSecure, &exceptBlock,

hDir, hFile);
/* read from .\\ocalSecureFile.txt */
rc = mqeLocalSecure_read(hLocalSecure,

&exceptBlock, outBuf,
&Buflen, hAttr, NULL);

/* create a data Fields */
rc = mqeFields_new(&exceptBlock, &hData);
/* restore data Fields */
rc = mqeFields_restore(hData, &exceptBlock,

outBuf, bufLen);
/* read test data */
rc = mqeString_newChar8(&exceptBlock, &hFieldName,

"testdata");
rc = mqeFields_getAscii(hData, &exceptBlock,

&hFieldData, hFieldName);

2. The following code protects an MQeFields structure without using
MQeLocalSecure:

/* dump to a buffer */
MQeFieldsAttrHndl hAttr = NULL;
MQeStringHndl hKeySeed = NULL, hFieldName =

NULL, hFieldData = NULL;
MQeExceptBlock exceptBlock;
MQeFieldsHndl hData = NULL;
MQEBYTE outBuf[128];
MQEINT32 bufLen = 128;
MQERETURN rc;

/* create a key seed string */

local security

Chapter 8. Security 85

rc = mqeString_newChar8(&exceptBlock,
&hKeySeed,
"my secret key");

/* create a new attribute with a RC4 cryptor */
rc = mqeFieldsAttr_new(&exceptBlock,

&hAttr, NULL,
MQE_RC4_CRYPTOR_CLASS_NAME,
NULL, hKeySeed);

/* create a data Fields */
rc = mqeFields_new(&exceptBlock, &hData);
/* set the attribute to the data Fields */
rc = mqeFields_setAttribute(hData, &exceptBlock, hAttr);
/* add some test data */
rc = mqeString_newChar8(&exceptBlock,

&hFieldName,
"testdata");

rc = mqeString_newChar8(&exceptBlock,
&hFieldData,
"0123456789abcdef....");

rc = mqeFields_putAscii(hData, &exceptBlock,
hFieldName, hFieldData);

/* dump (protect) data Fields */
rc = mqeFields_dump(hData, &exceptBlock,

outBuf, &bufLen);

/* restor from a buffer */
MQeFieldsAttrHndl hAttr = NULL;
MQeStringHndl hKeySeed = NULL, hFieldName =

NULL, hFieldData = NULL;
MQeExceptBlock exceptBlock;
MQERETURN rc;
MQEBYTE outBuf[128];
MQEINT32 bufLen = 128;

...
/* assume protected data is in inBuf
and its length is in bufLen */

/* create a key seed string */
rc = mqeString_newChar8(&exceptBlock,

&hKeySeed,
"my secret key");

/* create a new attribute with a RC4 cryptor */
rc = mqeFieldsAttr_new(&exceptBlock,

&hAttr, NULL,
MQE_RC4_CRYPTOR_CLASS_NAME,
NULL, hKeySeed);

/* create a data Fields */
rc = mqeFields_new(&exceptBlock, &hData);
/* set the attribute to the data Fields */
rc = mqeFields_setAttribute(hData, &exceptBlock, hAttr);
/* restore data Fields */
rc = mqeFields_restore(hData, &exceptBlock,

inBuf, bufLen);
/* read test data */
rc = mqeString_newChar8(&exceptBlock,

&hFieldName, "testdata");
rc = mqeFields_getAscii(hData, &exceptBlock,

&hFieldData, hFieldName);

local security

86 WebSphere MQ Everyplace Application Programming Guide

Message-level security
Message-level security facilitates the protection of message data between an
initiating and receiving WebSphere MQ Everyplace application. Message-level
security is an application layer service. It requires the initiating WebSphere MQ
Everyplace application to create a message-level attribute and provide it when
using putMessage() to put a message to a target queue.

The receiving application must set up and pass a matching message-level attribute
to the receiving queue manager so that the attribute is available when the
application invokes getMessage() to get the message from the target queue.

Like local security, message-level security exploits the application of an attribute on
a message, an MQeFields object descendent. The initiating application’s queue
manager handles the application’s putMessage() with the message Java dump
method or C API, which invokes the attached attribute’s Java encodeData()
method or C API to protect the message data. The receiving application’s queue
manager handles the application’s getMessage() with the message’s Java ’restore’
method or C API, which in turn uses the supplied attribute’s decodeData() method
to recover the original message data.

Usage scenario
Message-level security is typically most useful for:
v Solutions that are designed to use predominantly asynchronous queues.
v Solutions for which application level security is important, that is solutions

whose normal message paths include flows over multiple nodes perhaps
connected with different protocols. Message-level security manages trust at the
application level, which means security in other layers becomes unnecessary.

A typical scenario is a solution service that is delivered over multiple open
networks. For example over a mobile network and the internet, where, from outset
asynchronous operation is anticipated. In this scenario, it is also likely that
message data is flowed over multiple links that may have different security
features, but whose security features are not necessarily controlled or trusted by
the solution owner. In this case it is very likely the solution owner does not wish
to delegate trust for the confidentiality of message data to any intermediate, but
would prefer to manage and control trust management directly.

WebSphere MQ Everyplace message-level security provides solution designers with
the features that enable the strong protection of message data in a way that is
under the direct control of the initiating and recipient applications, and that
ensures the confidentiality of the message data throughout its transfer, end to end,
application to application.

Secure feature choices
WebSphere MQ Everyplace supplies two alternative attributes for message-level
security.

MQeMAttribute
This suits business-to-business communications where mutual trust is
tightly managed in the application layer and requires no trusted third
party. It allows use of all available WebSphere MQ Everyplace symmetric
cryptor and compressor choices. Like local security it requires the
attribute’s key to be preset before it is supplied as a parameter on
putMessage() and getMessage(). This provides a simple and powerful

message-level security

Chapter 8. Security 87

method for message-level protection that enables use of strong encryption
to protect message confidentiality, without the overhead of any public key
infrastructure (PKI).

MQeMTrustAttribute

Note: The MQeMTrustAttribute does not apply to the C codebase.
This provides a more advanced solution using digital signatures and
exploiting the default public key infrastructure to provide a digital
envelope style of protection. It uses ISO9796 digital signature or validation
so that the receiving application can establish proof that the message came
from the purported sender. The supplied attribute’s cryptor protects
message confidentiality. SHA1 digest guarantees message integrity and
RSA encryption and decryption, ensuring that the message can only be
restored by the intended recipient. As with MQeMAttribute, it allows use
of all available WebSphere MQ Everyplace symmetric cryptor and
compressor choices. Chosen for size optimization, the certificates used are
mini-certificates which conform to the WTLS Specification approved by the
WAP forum. WebSphere MQ Everyplace provides a default public key
infrastructure to distribute the certificates as required to encrypt and
authenticate the messages.

A typical MQeMTrustAtribute protected message has the format:
RSA-enc{SymKey}, SymKey-enc {Data, DataDigest, DataSignature}

where:

RSA-enc:
RSA encrypted with the intended recipient’s public key, from his
mini-certificate

SymKey:
Generated pseudo-random symmetric key

SymKey-enc:
Symmetrically encrypted with the SymKey

Data: Message data

DataDigest:
Digest of message data

DigSignature:
Initiator’s digital signature of message data

Selection Criteria
MQeMAttribute relies totally on the solution owner to manage the content of the
key seed that is used to derive the symmetric key used to protect the
confidentiality of the data. This key seed must be provided to both the initiating
and recipient applications. While it provides a simple mechanism for the strong
protection of message data without the need of any PKI, it clearly depends of the
effective operational management of the key seed.

MQeMTrustAttribute exploits the advantages of the WebSphere MQ Everyplace
default PKI to provide a digital envelope style of message-level protection. This not
only protects the confidentiality of the message data flowed, but checks its
integrity and enables the initiator to ensure that only the intended recipient can
access the data. It also enables the recipient to validate the originator of the data,
and ensures that the signer cannot later deny initiating the transaction. This is
known as non-repudiation.

message-level security

88 WebSphere MQ Everyplace Application Programming Guide

Solutions that wish to simply protect the end-to-end confidentiality of message
data will probably decide that MQeMAttrribute suits their needs, while solutions
for which one to one (authenticatable entity to authenticatable entity) transfer and
non-repudiation of the message originator are important may find
MQeMTrustAttribute is the correct choice.

Usage guide
The following code fragments provide examples of how to protect and unprotect a
message using MQeMAttribute, in both Java and C, and alsoMQeMTrustAttribute,
which is Java specific.

Message-level security using MAttribute for Java

Note:
/*SIMPLE PROTECT FRAGMENT */

{
MQeMsgObject msgObj = null;
MQeMAttribute attr = null;
long confirmId = MQe.uniqueValue();
try{

trace(">>>putMessage to target Q using MQeMAttribute"
+" with 3DES Cryptor and key=my secret key");

/* create the cryptor */
MQe3DESCryptor tdes = new MQe3DESCryptor();
/* create an attribute using the cryptor */
attr = new MQeMAttribute(null,tdes,null);
/* create a local key */
MQeKey localkey = new MQeKey();
/* give it the key seed */
localkey.setLocalKey("my secret key");
/* set the key in the attribute */
attr.setKey(localkey);
/* create the message */
msgObj = new MQeMsgObject();
msgObj.putAscii("MsgData","0123456789abcdef...");
/* put the message using the attribute */
newQM.putMessage(targetQMgrName, targetQName,

msgObj, attr, confirmId);
trace(">>>MAttribute protected msg put OK...");
}

catch (Exception e)
{
trace(">>>on exception try resend exactly once...");
msgObj.putBoolean(MQe.Msg_Resend, true);
newQM.putMessage(targetQMgrName, targetQName,

msgObj, attr, confirmId);
}

}

/*SIMPLE UNPROTECT FRAGMENT */
{

MQeMsgObject msgObj2 = null;
MQeMAttribute attr2 = null;
long confirmId2 = MQe.uniqueValue();

try{
trace(">>>getMessage from target Q using MQeMAttribute"+

" with 3DES Cryptor and key=my secret key");
/* create the attribute - we do not have to specify the cryptor, */
/* the attribute can get this from the message itself */
attr2 = new MQeMAttribute(null,null,null);
/* create a local key */
MQeKey localkey = new MQeKey();
/* give it the key seed */
localkey.setLocalKey("my secret key");

message-level security

Chapter 8. Security 89

/* set the key in the attribute */
attr2.setKey(localkey);
/* get the message using the attribute */
msgObj2 = newQM.getMessage(targetQMgrName, targetQName,

null, attr2, confirmId2);
trace(">>>unprotected MsgData = "

+ msgObj2.getAscii("MsgData"));
}

catch (Exception e)
{
/*exception may have left */
newQM.undo(targetQMgrName,

/*message locked on queue */
targetQName, confirmId2);

/*undo just in case */
e.printStackTrace();

/*show exception reason */
}
...

}

Message-level security using MAttribute for C
/* putMessage */
MQeMsgAttrHndl hAttr = NULL;
MQeStringHndl hKeySeed = NULL, hQMgrName =

NULL, hQName = NULL;
MQeStringHndl hFieldName = NULL, hFieldData = NULL;
MQeExceptBlock exceptBlock;
MQeFieldsHndl hData = NULL;
MQeQueueManagerHndl hQMgr = NULL;
MQERETURN rc;

...
/* assume queue manager handle in hQMgr,

/*QMgr name in hQMgrName, and queue name in hQName */

/* create a key seed string */
rc = mqeString_newChar8(&exceptBlock, &hKeySeed,

"my secret key");
/* create a new attribute with a RC4 cryptor */
rc = mqeMsgAttr_new(&exceptBlock, &hAttr, NULL,

MQE_RC4_CRYPTOR_CLASS_NAME,
NULL, hKeySeed);

/* create a data Fields */
rc = mqeFields_new(&exceptBlock, &hData);
/* add some test data */
rc = mqeString_newChar8(&exceptBlock, &hFieldName,

"MsgData");
rc = mqeString_newChar8(&exceptBlock, &hFieldData,

"0123456789abcdef....");
rc = mqeFields_putAscii(hData, &exceptBlock,

hFieldName, hFieldData);
/* send message */
rc = mqeQueueManager_putMessage(hQMgr, &exceptBlock,

hQMgrName, hQName,
hData, hAttr, 0);

/* getMessage */
MQeMsgAttrHndl hAttr = NULL;
MQeStringHndl hKeySeed = NULL, hQMgrName =

NULL, hQName = NULL;
MQeStringHndl hFieldName = NULL, hFieldData = NULL;
MQeExceptBlock exceptBlock;
MQeQueueManagerHndl hQMgr = NULL;
MQERETURN rc;

...

message-level security

90 WebSphere MQ Everyplace Application Programming Guide

/* assume queue manager handle in hQMgr, QMgr
name in hQMgrName, and queue name in hQName */

/* create a key seed string */
rc = mqeString_newChar8(&exceptBlock, &hKeySeed,

"my secret key");
/* create a new attribute with a RC4 cryptor */
rc = mqeMsgAttr_new(&exceptBlock, &hAttr, NULL,

MQE_RC4_CRYPTOR_CLASS_NAME,
NULL, hKeySeed);

/* get message */
rc = mqeQueueManager_getMessage(hQMgr, &exceptBlock,

&hData, hQMgrName,
hQName, NULL, hAttr, 0);

/* get test data */
rc = mqeString_newChar8(&exceptBlock, &hFieldName,

"MsgData");
rc = mqeFields_getAscii(hData, &exceptBlock,

&hFieldData, hFieldName);

Message-level security using MTustAttribute (Java only)
For an explanation about MQePrivateRegistry and MQePublicRegistry, used in the
following example, refer to “Private registry service” on page 97and “Public
registry service” on page 100.

/*SIMPLE PROTECT FRAGMENT */
{

MQeMsgObject msgObj = null;
MQeMTrustAttribute attr = null;
long confirmId = MQe.uniqueValue();

try {
trace(">>>putMessage from Bruce1 intended for Bruce8"

+ " to target Q using MQeMTrustAttribute
with MARSCryptor ");
/* create the cryptor */
MQeMARSCryptor mars = new MQeMARSCryptor();
/* create an attribute using the cryptor */
attr = new MQeMTrustAttribute(null, mars, null);
/* open the private registry belonging to the sender */
String EntityName = "Bruce1";
String PIN = "12345678";
Object Passwd = "It_is_a_secret";
MQePrivateRegistry sendreg = new MQePrivateRegistry();
sendreg.activate(EntityName, ".\\MQeNode_PrivateRegistry",

PIN, Passwd, null, null);
/* set the private registry in the attribute */
attr.setPrivateRegistry(sendreg);
/* set the target (recipient) name in the attribute */
attr.setTarget("Bruce8");
/* open a public registry to get the target’s certificate */
MQePublicRegistry pr = new MQePublicRegistry();
pr.activate("MQeNode_PublicRegistry", ".\\");
/* set the public registry in the attribute */
attr.setPublicRegistry(pr);
/* set a home server, which is used to find the certificate*/
/* if it is not already in the public registry */
attr.setHomeServer(MyHomeServer +":8082");
/* create the message */
msgObj =new MQeMsgObject();
msgObj.putAscii("MsgData","0123456789abcdef...");
/* put the message using the attribute */
newQM.putMessage(targetQMgrName, targetQName,

msgObj, attr, confirmId);
trace(">>>MTrustAttribute protected msg put OK...");
}

catch (Exception e)
{

message-level security

Chapter 8. Security 91

trace(">>>on exception try resend exactly once...");
msgObj.putBoolean(MQe.Msg_Resend, true);
newQM.putMessage(targetQMgrName, targetQName,

msgObj, attr, confirmId);
}

}

/*SIMPLE UNPROTECT FRAGMENT */
{

MQeMsgObject msgObj2 = null;
MQeMTrustAttribute attr2 = null;
long confirmId2 = MQe.uniqueValue();

try {
trace(">>>getMessage from Bruce1 intended for Bruce8"

+ " from target Q using MQeMTrustAttribute with MARSCryptor ");
/* create the cryptor */
MQeMARSCryptor mars = new MQeMARSCryptor();
/* create an attribute using the cryptor */
attr2 = new MQeMTrustAttribute(null, mars, null);
/* open the private registry belonging to the target */
String EntityName = "Bruce8";
String PIN = "12345678";
Object Passwd = "It_is_a_secret";
MQePrivateRegistry getreg = new MQePrivateRegistry();
getreg.activate(EntityName, ".\\MQeNode_PrivateRegistry",

PIN, Passwd, null, null);
/* set the private registry in the attribute */
attr2.setPrivateRegistry(getreg);
/* open a public registry to get the sender’s certificate */
MQePublicRegistry pr = new MQePublicRegistry();
pr.activate("MQeNode_PublicRegistry", ".\\");
/* set the public registry in the attribute */
attr2.setPublicRegistry(pr);
/* set a home server, which is used to find the certificate*/
/* if it is not already in the public registry */
attr2.setHomeServer(MyHomeServer +":8082");
/* get the message using the attribute */
msgObj2 = newQM.getMessage(targetQMgrName,

targetQName, null, attr2, confirmId2);
trace(">>>MTrustAttribute protected msg = "

+ msgObj2.getAscii("MsgData"));
}

catch (Exception e)
{
/*exception may have left */
newQM.undo(targetQMgrName, /*message locked on queue */

targetQName, confirmId2); /*undo just in case */
e.printStackTrace(); /*show exception reason */
}

}

Non-repudiation
The MQeMTrustAttribute digitally signs messages. This enables the recipient to
validate the creator of the message, and ensures that the creator cannot later deny
creating the message. This is known as non-repudiation. This process depends on
the fact that only one public key can validate the signature successfully generated
by a particular private key. This validation proves that the signature was created
with the corresponding private key. The only way the alleged creator can deny
creating the message is to claim that someone else had access to the private key.

When a message is created with the MQeMTrustAttribute, it uses the private key
from the sender’s private registry to create the digital signature and it stores the
sender’s name in the message. When the message is read with the queue
manager’s getMessage() method, it uses the sender’s public certificate to validate

message-level security

92 WebSphere MQ Everyplace Application Programming Guide

the digital signature. The message is read successfully only if the signature
validates successfully, proving that the message was created by the entity whose
name was stored in the message as the sender.

When the MQeMTrustAttribute is specified as a parameter to the queue manager’s
getMessage() method, the attribute validates the digital signature but by the time
the message is returned to the user’s application all the information relating to the
signature has been discarded. If non-repudiation is important to you, you must
keep a record of this information. The simplest way to do this is to keep a copy of
the encrypted message, because that includes the digital signature. You can do this
by using the getMessage() method without an attribute. This returns the encrypted
message which you can then save, for example in a local queue. You can decrypt
the message by applying the attribute to access the contents of the message.

The following code fragment provides an example of how to save an encrypted
message.

Saving a copy of an encrypted message
/*SIMPLE FRAGMENT TO SAVE ENCRYPTED MESSAGE*/
{
MQeMsgObject msgObj2 = null;
MQeMTrustAttribute attr2 = null;
long confirmId2 = MQe.uniqueValue();
long confirmId3 = MQe.uniqueValue();
try {

trace(">>>getMessage from Bruce1
intended for Bruce8"

+ " from target Q using MQeMTrustAttribute
with MARSCryptor ");
/* read the encrypted message without an attribute */
MQeMsgObject tmpMsg1 = newQM.getMessage(targetQMgrName,

targetQName, null, null, confirmId2);
/* save the encrypted message -
we cannot put it directly */
/* to another queue because of
the origin queue manager */
/* data. Embed it in another message */
MQeMsgObject tmpMsg2 = new MQeMsgObject();
tmpMsg2.putFields("encryptedMsg", tmpMsg1);
newQM.putMessage(localQMgrName, archiveQName,

tmpMsg2, null, confirmId3);
trace(">>>encrypted message saved locally");
/* now decrypt and read the message & */
/* create the cryptor */
MQeMARSCryptor mars = new MQeMARSCryptor();
/* create an attribute using the cryptor */
attr2 = new MQeMTrustAttribute(null, mars, null);
/* open the private registry belonging to the target */
String EntityName = "Bruce8";
String PIN = "12345678";
Object Passwd = "It_is_a_secret";
MQePrivateRegistry getreg = new MQePrivateRegistry();
getreg.activate(EntityName,
".\\MQeNode_PrivateRegistry",
PIN, Passwd, null, null);
/* set the private registry in the attribute */
attr2.setPrivateRegistry(getreg);
/* open a public registry to
get the sender’s certificate */
MQePublicRegistry pr = new MQePublicRegistry();
pr.activate("MQeNode_PublicRegistry", ".\\");
/* set the public registry in the attribute */
attr2.setPublicRegistry(pr);

message-level security

Chapter 8. Security 93

/* set a home server, which is
used to find the certificate*/
/* if it is not already in the public registry */
attr2.setHomeServer(MyHomeServer +":8082");
/* decrypt the message by unwrapping it */
msgObj2 = tmpMsg1.unwrapMsgObject(attr2);
trace(">>>MTrustAttribute protected msg = "

+ msgObj2.getAscii("MsgData"));

catch (Exception e)
{ /*exception may have left */

newQM.undo(targetQMgrName,
/*message locked on queue */

targetQName, confirmId2);
/*undo just in case */

e.printStackTrace();
/*show exception reason */
}

}

Mini-certificate issuance service
The ES03 WebSphere MQ Everyplace SupportPac, ″WebSphere MQ Everyplace
WTLS Mini-Certificate Server″ is available as a separate free download from
http://www.ibm.com/software/ts/mqseries/txppacs/. WebSphere MQ Everyplace includes
a default mini-certificate issuance service that can be configured to satisfy private
registry auto-registration requests. With the tools provided, a solution can setup
and manage a mini-certificate issuance service so that it issues mini-certificates to a
carefully controlled set of entity names. These are a prerequisite for
MQeMTrustAttribute-based message-level security. The characteristics of this
issuance service are:
v Management of the set of registered authenticatable entities.
v Issuance of mini-certificates. The mini-certificate conforms to the WAP WTLS

specification.
v Management of the mini-certificate repository.

The tools provided in the ES03 SupportPac enable a mini-certificate issuance
service administrator to authorize mini-certificate issuance to an entity by
registering its entity name and registered address and defining a one-time-use
certificate request PIN. This would normally be done after off line checking to
validate the authenticity of the requestor. The certificate request PIN can be posted
to the intended user, as bank card PINs are posted when a new card is issued. The
user of the private registry (for example the WebSphere MQ Everyplace application
or WebSphere MQ Everyplace queue manager) can then be configured to provide
this certificate request PIN at startup time. When the private registry triggers
auto-registration, the mini-certificate issuance service validates the resulting new
certificate request, issues the new mini-certificate and then resets the registered
certificate request PIN so it cannot be reused. All auto-registration of new
mini-certificate requests is processed on a secure channel.

We recommend that you refer to the MQe_MiniCertificateServer documentation
included in the ES03 SupportPac, ″WebSphere MQ Everyplace WTLS
Mini-Certificate Server″, for more details of how to install and use the WTLS
digital certificate issuance service for WebSphere MQ Everyplace.

message-level security

94 WebSphere MQ Everyplace Application Programming Guide

Renewing mini-certificates
The certificates issued for an entity by the mini-certificate issuance service are valid
for one year from the date of issue and it is advisable to renew them before they
expire. Renewed certificates are obtained from the same mini-certificate issuance
service. Before requesting a renewal, the request must be authorized with the
issuance service and a one-time-use certificate request PIN obtained, in just the
same way as for the initial certificate issuance. When you use the server to obtain
the PIN for renewal, remember that you are updating the entity, not adding it.

When a certificate is issued for an entity, a copy of the mini-certificate server’s own
certificate is issued with it. This is needed to check the validity of other certificates.
With versions of WebSphere MQ Everyplace earlier than 1.2, the certificate server’s
certificate could expire before the entity’s certificate. If this happens you can renew
the server’s certificate by requesting a renewal of the entity’s certificate; a new
copy of the mini-certificate server’s certificate will be returned along with the
entity’s certificate. From mini-certificate server Version 1.2, the mini-certificate
server’s certificate will expire later than the entity’s certificate.

The class com.ibm.mqe.registry.MQePrivateRegistryConfigure contains a method
renewCertificates() which can be used to request renewed certificates. This is used
in the example program examples.certificates.RenewWTLSCertificates, which
implements a command-line program that requests renewed certificates from the
issuance service

The program has four compulsory parameters:
RenewWTLSCertificates <entity> <ini file> <MCS addr> <MCS Pin>

where:

entity is the name of the entity for which a renewed certificate is required. This
should be either a queue manager, a queue or other authenticatable entity.
The name of a queue should be specified as <queue manager>+<queue>, for
example myQM+myQueue.

ini file
is the name of a configuration file that contains a section for the registry.
This is typically the same configuration file that is used for the queue
manager. For a queue, this typically the configuration file for the queue
manager that owns the queue.

MCS addr
is the host name and port address of the mini-certificate server (for
example: myServer:8085)

MCS Pin
is the one-time use PIN issued by the mini-certificate server administrator
to authorize this renewal request.

Obtaining new credentials (private and public keys)
When you renew a certificate, you get an updated certificate for your existing
public key. This allows you to continue to use your existing private and public key
pair. If you want to change your private and public key pair, you must request
new credentials. This includes a request to the mini-certificate issuance service for
a new public certificate embodying the new public key. Before requesting a
certificate for the new credentials, the request must be authorized with the
issuance service and a one-time-use certificate request PIN must be obtained, in the

mini-certificate issuance service

Chapter 8. Security 95

same way as for the initial certificate issuance. (When you use the server to obtain
the PIN for the new certificate, remember that you are updating the entity, not
adding it.)

The class com.ibm.mqe.registry.MQePrivateRegistryConfigure contains a method
getCredentials() which can be used to request new credentials. This is used in the
example program examples.install.GetCredentials, which implements a GUI
program that requests new credentials from the issuance service.

Note: When new credentials are issued, the existing ones are archived in the
registry. You will no longer be able to decrypt messages created using your
earlier credentials. The new certificate will not validate a digital signature
(used with MQeMTrustAttribute) created with your earlier credentials.

Listing mini-certificates
It can be useful to list the certificates in a registry, for example to check on their
expiry dates. You can do this using methods in the class
com.ibm.mqe.attributes.MQeListCertificates. These are used in the example
program examples.certificates.ListWTLSCertificates, which implements a
command-line program that lists certificates.

The program has one compulsory and three optional parameters:
ListWTLSCertificates <reg Name>[<ini file>] [<level>] [<cert names>]

where:

regName
is the name of the registry whose certificates are to be listed. It can be a
private registry belonging to a queue manager, a queue or another entity; it
can be a public registry, or (for the administrator) it can be the
mini-certificate server’s registry. If you want to list the certificates in a
queue’s registry, you must specify its name as <queue manager>+<queue>,
for example myQM+myQueue. If you want to list the certificates in a public
registry, it must have the name MQeNode_PublicRegistry, it will not work
for a public registry with any other name. The name of the mini-certificate
server’s registry is MiniCertificateServer.

ini file
is the name of a configuration file that contains a section for the registry.
This is typically the same configuration file that is used for the queue
manager or mini-certificate server. For a queue, this is typically the
configuration file for the queue manager that owns the queue. This
parameter should be specified for all registries except public registries, for
which it can be omitted.

level is the level of detail for the listing. This can be:

-b or -brief prints the names of the certificate, one name per line

-n or -normal prints the names of the certificates, one per line, followed
by their type (old or new format)

-f or -full prints the names of the certificates, their type, and some of
the contents

This parameter is optional and if omitted the ″normal″ level of detail is
used.

mini-certificate issuance service

96 WebSphere MQ Everyplace Application Programming Guide

cert names
is a list of names of the certificates to be listed. It starts with the flag -cn
followed by names of the certificates, for example: -cn ExampleQM putQM. If
this parameter is used, only the named certificates are listed. If this
parameter is omitted, all the certificates in the registry are listed.

Updated mini-certificate format for WebSphere MQ Everyplace
Version 2.0

The mini-certificates used by WebSphere MQ Everyplace are based on the WTLS
certificates used by WAP. The certificates used by WebSphere MQ Everyplace
Versions 1.0 and 1.1 were based on the latest draft of the WTLS specification that
was available at the time of development. A standard for the certificates has since
been approved. In WebSphere MQ Everyplace Version 2.0, updated
mini-certificates that conform to the approved standard have been introduced.

You can upgrade your certificates to the new format by running the mini-certificate
server from WebSphere MQ Everyplace Version 2.0 and renewing the certificates.
The renewed certificates are in the new format.

Private registry service

Note: The private registry service does not apply to the C codebase.
This section describes the private registry service provided by WebSphere MQ
Everyplace.

Private registry and the concept of authenticatable entity
Queue-based security, that uses mini-certificate based mutual authentication and
message-level security, that uses digital signature, have triggered the concept of
authenticatable entity. In the case of mutual authentication it is normal to think
about the authentication between two users but, messaging generally has no
concept of users. The normal users of messaging services are applications and they
handle the user concept.

WebSphere MQ Everyplace abstracts the concept of target of authentication from
user to authenticatable entity. This does not exclude the possibility of
authenticatable entities being people, but this would be application selected
mapping.

Internally, WebSphere MQ Everyplace defines all queue managers that can either
originate or be the target of mini-certificate dependent services as authenticatable
entities. WebSphere MQ Everyplace also defines queues defined to use
mini-certificate based authenticators as authenticatable entities. So queue managers
that support these services can have one (the queue manager only), or a set (the
queue manager and every queue that uses certificate based authenticator) of
authenticatable entities.

WebSphere MQ Everyplace provides configurable options to enable queue
managers and queues to auto-register as an authenticatable entity. WebSphere MQ
Everyplace private registry service, MQePrivateRegistry provides services that
enable a WebSphere MQ Everyplace application to auto-register authenticatable
entities and manage the resulting credentials.

All application registered authenticatable entities can be used as the initiator or
recipient of message-level services protected using MQeMTrustAttribute.

mini-certificate issuance service

Chapter 8. Security 97

Private registry and authenticatable entity credentials
To be useful every authenticatable entity needs its own credentials. This provides
two challenges, firstly how to execute registration to get the credentials, and
secondly where to manage the credentials in a secure manner. WebSphere MQ
Everyplace private registry services help to solve these two problems. These
services can be used to trigger auto-registration of an authenticatable entity
creating its credentials in a secure manner and they can also be used to provide a
secure repository.

Private registry (a descendent of base registry) adds to base registry many of the
qualities of a secure or cryptographic token. For example, it can be a secure
repository for public objects (mini-certificates) and private objects (private keys). It
provides a mechanism to limit access to the private objects to the authorized user.
It provides support for services (for example digital signature, RSA decryption) in
such a way that the private objects never leave the private registry. Also, by
providing a common interface, it hides the underlying device support.

Auto-registration
WebSphere MQ Everyplace provides default services that support auto-registration.
These services are automatically triggered when an authenticatable entity is
configured; for example when a queue manager is started, or when a new queue is
defined, or when an WebSphere MQ Everyplace application uses
MQePrivateRegistry directly to create a new authenticatable entity. When
registration is triggered, new credentials are created and stored in the
authenticatable entity’s private registry. Auto-registration steps include generating
a new RSA key pair, protecting and saving the private key in the private registry;
and packaging the public key in a new-certificate request to the default
mini-certificate server. Assuming the mini-certificate server is configured and
available, and the authenticatable entity has been pre-registered by the
mini-certificate server (is authorized to have a certificate), the mini-certificate
server returns the authenticatable entity’s new mini-certificate, along with its own
mini-certificate and these, together with the protected private key, are stored in the
authenticatable entity’s private registry as the entity’s new credentials.

While auto-registration provides a simple mechanism to establish an
authenticatable entity’s credentials, in order to support message-level protection,
the entity requires access to its own credentials (facilitating digital signature) and
to the intended recipient’s public key (mini-certificate).

Usage scenario
The primary purpose of WebSphere MQ Everyplace’s private registry is to provide
a private repository for WebSphere MQ Everyplace authenticatable entity
credentials. An authenticatable entity’s credentials consist of the entity’s
mini-certificate (encapsulating the entity’s public key), and the entity’s keyring
protected private key.

Typical usage scenarios need to be considered in relation to other WebSphere MQ
Everyplace security features:

Queue-based security with MQeWTLSCertAuthenticator
Whenever queue-based security is used, where a queue attribute is defined
with MQeWTLSCertAuthenticator, mini-certificate based mutual
authentication, the authenticatable entities involved are WebSphere MQ
Everyplace owned. Any queue manager that is to be used to access
messages in such a queue, any queue manager that owns such a queue
and the queue itself are all authenticatable entities and need to have their

private registry service

98 WebSphere MQ Everyplace Application Programming Guide

own credentials. By using the correct configuration options and setting up
and using an instance of WebSphere MQ Everyplace mini-certificate
issuance service, auto-registration can be triggered when the queue
managers and queues are created, creating new credentials and saving
them in the entities’ own private registries.

Message-level security with MQeMTrustAttribute
Whenever message-level security is used with MQeMTrustAttribute, the
initiator and recipient of the MQeMTrustAttribute protected message are
application owned authenticatable entities that must have their own
credentials. In this case, the application must use the services of
MQePrivateRegistry (and an instance of WebSphere MQ Everyplace
mini-certificate issuance service) to trigger auto-registration to create the
entities’ credentials and to save them in the entities’ own private registries.

Secure feature choices
WebSphere MQ Everyplace does not provide support for any alternative secure
repository for an authenticatable entity’s credentials. If queue-based security with
MQeWTLSCertAuthenticator or message-level security using MQeMTrustAttribute
are used, private registry services must be used.

Usage guide
Prior to using queue-based security, WebSphere MQ Everyplace owned
authenticatable entities must have credentials. This is achieved by completing the
correct configuration so that auto-registration of queue managers is triggered. This
requires the following steps:
1. Setup and start an instance of WebSphere MQ Everyplace mini-certificate

issuance service.
2. Using MQe_MiniCertificateServer, add the name of the queue manager as a

valid authenticatable entity, and the entity’s one-time-use certificate request
PIN.

3. Configure MQePrivateClient1.ini and MQePrivateServer1.ini so that when
queue managers are created using SimpleCreateQM, auto-registration is
triggered. This section explains which keywords are required in the registry
section of the ini files, and where to use the entity’s one-time-use certificate
request PIN.

Prior to using message-level security to protect messages using
MQeMTrustAttribute, the application must use private registry services to ensure
that the initiating and recipient entities have credentials. This requires the
following steps:
1. Setup and start an instance of WebSphere MQ Everyplace mini-certificate

issuance service.
2. Add the name of the application entity, and allocate the entity a one-time-use

certificate request PIN.
3. Use a program similar to the pseudo-code fragment below to trigger

auto-registration of the application entity . This creates the entity’s credentials
and saves them in its private registry.

/* SIMPLE MQePrivateRegistry FRAGMENT*/
try

{
/* setup PrivateRegistry parameters */
String EntityName = "Bruce";
String EntityPIN = "11111111";
Object KeyRingPassword = "It_is_a_secret";
Object CertReqPIN = "12345678";

private registry service

Chapter 8. Security 99

Object CAIPAddrPort = "9.20.X.YYY:8082";
/* instantiate and activate a

Private Registry. */
MQePrivateRegistry preg = new MQePrivateRegistry();
preg.activate(EntityName,

/* entity name */
".//MQeNode_PrivateRegistry",

/* directory root */
EntityPIN,

/* private reg access PIN */
KeyRingPassword,

/* private credential keyseed */
CertReqPIN,

/* on-time-use Cert Req PIN */
CAIPAddrPort);

/* addr and port MiniCertSvr */
trace(">>> PrivateRegistry activated OK ...");
}

catch (Exception e)
{
e.printStackTrace();
}

Public registry service
This section describes the public registry service provided by WebSphere MQ
Everyplace.

WebSphere MQ Everyplace provides default services facilitating the sharing of
authenticatable entity public credentials (mini-certificates) between WebSphere MQ
Everyplace nodes. Access to these mini-certificates is a prerequisite for
message-level security. WebSphere MQ Everyplace public registry, also a
descendent of base registry, provides a publicly accessible repository for
mini-certificates. This is analogous to the personal telephone directory service on a
mobile phone, the difference being that it is a set of mini-certificates of the
authenticatable entities instead of phone numbers. WebSphere MQ Everyplace
public registry is not a purely passive service. If accessed to provide a
mini-certificate that is does not hold, and if the public registry is configured with a
valid home server, the public registry automatically attempts to get the requested
mini-certificate from the public registry of the home server. It also provides a
mechanism to share a mini-certificate with the public registry of other WebSphere
MQ Everyplace nodes. Together these services provide the building blocks for an
intelligent automated mini-certificate replication service that can facilitates the
availability of the right mini-certificate at the right time.

Usage scenario
A typical scenario for the use of the public registry would be to use these services
so that the public registry of a particular WebSphere MQ Everyplace node builds
up a store of the most frequently needed mini-certificates as they are used.

A simple example of this is to setup an WebSphere MQ Everyplace client to
automatically get the mini-certificates of other authenticatable entities that it needs,
from its WebSphere MQ Everyplace home server, and then save them in its public
registry.

Secure feature choices
It is the Solution creator’s choice whether to use the public registry active features
for sharing and getting mini-certificates between the public registries of different
WebSphere MQ Everyplace nodes.

private registry service

100 WebSphere MQ Everyplace Application Programming Guide

The alternative to this intelligent replication may be to have an out-of-band utility
to initialize an WebSphere MQ Everyplace node’s public registry with all required
mini-certificates before enabling any secure services that uses them.

Selection criteria
Out-of-band initialization of the set of mini-certificates available in an WebSphere
MQ Everyplace node’s public registry may have advantages over using the public
registry active features in the case where the solution is predominantly
asynchronous and the synchronous connection to the WebSphere MQ Everyplace
node’s home server may be difficult. But in the case where this connection is more
likely to be available, the public registry’s active mini-certificate replication services
are useful tools to automatically maintain the most useful set of mini-certificates on
any WebSphere MQ Everyplace node public registry.

Usage guide
/*SIMPLE MQePublicRegistry shareCertificate FRAGMENT */

try {
String EntityName = "Bruce";
String EntityPIN = "12345678";
Object KeyRingPassword = "It_is_a_secret";
Object CertReqPIN = "12345678";
Object CAIPAddrPort = "9.20.X.YYY:8082";

/*instantiate and activate PublicReg */
MQePublicRegistry pubreg = new MQePublicRegistry();
pubreg.activate("MQeNode_PublicRegistry",".\\");

/* auto-register Bruce1,Bruce2...Bruce8 */
/* ... note that the mini-certificate issuance service must */
/* have been configured to allow the auto-registration */

for (int i = 1; i < 9; i++)
{
EntityName = "Bruce"+(new Integer(i)).toString();
MQePrivateRegistry preg = new MQePrivateRegistry();

/* activate() will initiate auto-registration */
preg.activate(EntityName, ".\\MQeNode_PrivateRegistry",
EntityPIN, KeyRingPassword, CertReqPIN, CAIPAddrPort);

/* save MiniCert from PrivReg in PubReg*/
pubreg.putCertificate(EntityName,
preg.getCertificate(EntityName));

/*before share of MiniCert */
pubreg.shareCertificate(EntityName,
preg.getCertificate(EntityName),"9.20.X.YYY:8082");
preg.close();
}
pubreg.close();
}
catch (Exception e)
{
e.printStackTrace();
}

Notes:

1. It is not possible to activate a registry instance more than once, hence the
example above demonstrates the recommended practice of accessing a private
registry by creating a new instance of MQePrivateRegistry, activating the
instance, performing the required operations and closing the instance.

2. If you want to share certificates using a public registry on the home-server, the
public registry must be called MQeNode_PublicRegistry.

public registry service

Chapter 8. Security 101

public registry service

102 WebSphere MQ Everyplace Application Programming Guide

Chapter 9. Java Message Service

The WebSphere MQ Everyplace classes for Java Message Service (JMS) are a set of
Java classes that implement the Sun JMS interfaces to enable JMS programs to
access WebSphere MQ Everyplace systems. This chapter describes how to use the
WebSphere MQ Everyplace classes for JMS.

The initial release of JMS classes for WebSphere MQ Everyplace Version 2.0,
supports the point-to-point model of JMS, but does not support the publish or
subscribe model.

The use of JMS as the API to write WebSphere MQ Everyplace applications has a
number of benefits, because JMS is open standard:
v The protection of investment, both in skills and application code
v The availability of people skilled in JMS application programming
v The ability to write messaging applications that are independent of the JMS

implementations

This chapter contains information under the following headings:
v Using JMS with WebSphere MQ Everyplace
v Writing JMS programs
v Restrictions in this version of WebSphere MQ Everyplace
v Using Java Naming and Directory Interface (JNDI)
v Mapping JMS messages to WebSphere MQ Everyplace messages

More information about the benefits of the JMS API is on Sun’s Web site at
http://java.sun.com.

Using JMS with WebSphere MQ Everyplace
This section describes how to set up your system to run the example programs,
including the Installation Verification Test (IVT) example which verifies your
WebSphere MQ Everyplace JMS installation. To use JMS with WebSphere MQ
Everyplace you must have the following jar files, in addition to MQeBase.jar, on
your class path:

jms.jar
This is Sun’s interface definition for the JMS classes

MQeJMS.jar
This is the WebSphere MQ Everyplace implementation of JMS

Obtaining jar files
WebSphere MQ Everyplace does not ship with Sun’s JMS interface definition,
which is contained in jms.jar, and this must be downloaded before JMS can be
used. At the time of writing, this can be freely downloaded from
http://java.sun.com/products/jms/docs.html
The JMS Version 1.0.2b jar file is required.

In addition, if JMS administered objects are to be stored and retrieved using the
Java Naming and Directory Interface (JNDI), the javax.naming.* classes must be on

© Copyright IBM Corp. 2000, 2002 103

the classpath. If Java 1 is being used, for example, a 1.1.8 JRE, jndi.jar must be
obtained and added to the classpath. If Java 2 is being used, a 1.2 or later JRE, the
JRE might contain these classes. You can use WebSphere MQ Everyplace without
JNDI, but at the cost of a small degree of provider dependence.WebSphere MQ
Everyplace-specific classes must be used for the ConnectionFactory and
Destination objects. You can download JNDI jar files from
http://java.sun.com/products/jndi

Testing the JMS class path
You can use the example program examples.jms.MQeJMSIVT to test your JMS
installation. Before you run this program, you need a WebSphere MQ Everyplace
queue manager that has a SYSTEM.DEFAULT.LOCAL.QUEUE. In addition to the JMS jar
files mentioned above, you also need the following or equivalent jar files on your
class path to run examples.jms.MQeJMSIVT:
v MQeBase.jar
v MQeExamples.jar

You can run the example from the command line by typing:
java examples.jms.MQeJMSIVT -i

<ini file name>

where <ini file name> is the name of the initialisation (ini) file for the WebSphere
MQ Everyplace queue manager. You can optionally add a ″-t″ flag to turn tracing
on:
java examples.jms.MQeJMSIVT -t -i

<ini file name>

The example program checks that the required jar files are on the class path by
checking for classes that they contain. It creates a QueueConnectionFactory and
configures it using the ini file name that you passed in on the command line. It
starts a connection, which:
1. Starts the WebSphere MQ Everyplace queue manager
2. Creates a JMS Queue representing the queue SYSTEM.DEFAULT.LOCAL.QUEUE on

the queue manager
3. Sends a message to the JMS Queue
4. Reads the message back and compares it to the message it sent

The SYSTEM.DEFAULT.LOCAL.QUEUE should not contain any messages before running
the program, otherwise the message read back will not be the one that the
program sent. The output from the program should look like this:
using ini file ’<.ini file name>’

to configure the connection
checking classpath
found JMS interface classes
found MQe JMS classes
found MQe base classes
Creating and configuring QueueConnectionFactory
Creating connection
From the connection data, JMS
provider is IBM WebSphere MQ Everyplace Version 2.0.0.0
Creating session
Creating queue
Creating sender
Creating receiver
Creating message
Sending message
Receiving message

JMS

104 WebSphere MQ Everyplace Application Programming Guide

HEADER FIELDS
--
JMSType: jms_text
JMSDeliveryMode: 2
JMSExpiration: 0
JMSPriority: 4
JMSMessageID: ID:00000009524cf094000000f052fc06ca
JMSTimestamp: 1032184399562
JMSCorrelationID: null
JMSDestination: null:SYSTEM.DEFAULT.LOCAL.QUEUE
JMSReplyTo: null
JMSRedelivered: false

PROPERTY FIELDS (read only)

JMSXRcvTimestamp : 1032184400133

MESSAGE BODY (read only)

A simple text message from the MQeJMSIVT program

Retrieved message is a TextMessage; now checking
for equality with the sent message
Messages are equal. Great!
Closing connection
connection closed
IVT finished

Running other WebSphere MQ Everyplace JMS example
programs

WebSphere MQ Everyplace provides two other example programs for the JMS
classes. The program examples.jms.PTPSample01 is similar to the IVT examples
described above, but there is a command line argument to tell it not to use the Java
Naming and Directory Interface (JNDI) and it does not have the same checks on the
class path. The program requires the same JMS and WebSphere MQ Everyplace jar
files on the class path as examples.jms.MQeJMSIVT, that is jms.jar, MQeJMS.jar,
MQeBase.jar, and MQeExamples.jar. It also requires the jndi.jar file, even if it does
not use JNDI, because the program imports javax.naming. The section on Using
JNDI provides more information on the jndi.jar file. You can run the example from
the command line by typing:
java examples.jms.PTPSample01 -nojndi -i <ini file name>

where <ini file name > is the name of the initialisation (ini) file for the WebSphere
MQ Everyplace queue manager. By default, the program will use the
SYSTEM.DEFAULT.LOCAL.QUEUE on this queue manager. You can specify a different
queue by using the -q flag:
java examples.jms.PTPSample01 -i <ini file name> -q <queue name>

You can also turn tracing on by adding the -t flag:
java examples.jms.PTPSample01 -t -i <ini file name> -q <queue name>

The examples.jms.PTPSample02 program uses message listeners and filters. This
program creates a QueueReceiver with a ″blue″ filter and creates a message listener
for it. It creates a second QueueReceiver with a ″red″ filter and message listener. It
then sends four messages to a queue, two with the filter property colour set to
blue and two with the filter property colour set to red, and checks that the
message listeners receive the correct messages. The program has the same
command line parameters as examples.jms.PTPSample01.

JMS

Chapter 9. Java Message Service 105

Writing JMS programs
This section provides information on writing WebSphere MQ Everyplace JMS
applications. It provides a brief introduction to the JMS model and information on
programming some common tasks that application programs may need to perform.

The JMS model
JMS defines a generic view of a message service. It is important to understand this
view, and how it maps onto the underlying WebSphere MQ Everyplace system.
The generic JMS model is based around the following interfaces that are defined in
Sun’s javax.jms package:

Connection
This provides a connection to the underlying messaging service and is
used to create Sessions.

Session
This provides a context for producing and consuming messages, including
the methods used to create MessageProducers and MessageConsumers.

MessageProducer
This is used to send messages.

MessageConsumer
This is used to receive messages.

Destination
This represents a message destination.

Note: A connection is thread safe, but sessions, message producers, and message
consumers are not. While the JMS specification allows a Session to be used
by more than one thread, it is up to the user to ensure that Session resources
are not concurrently used by multiple threads. The recommended strategy is
to use one Session per application thread.

Therefore, in WebSphere MQ Everyplace terms:

Connection
This provides a connection to a WebSphere MQ Everyplace queue
manager. All the Connections in a JVM must connect to the same queue
manager, because WebSphere MQ Everyplace supports a single queue
manager per JVM. The first connection created by an application will try
and connect to an already running queue manager, and if that fails will
attempt to start a queue manager itself. Subsequent connections will
connect to the same queue manager as the first connection.

Session
This does not have an equivalent in WebSphere MQ Everyplace

Message producer and message consumer
These do not have direct equivalents in WebSphere MQ Everyplace. The
MessageProducer invokes the putMessage() method on the queue manager.
The MessageConsumer invokes the getMessage() method on the queue
manager.

Destination
This represents a WebSphere MQ Everyplace queue.

JMS

106 WebSphere MQ Everyplace Application Programming Guide

Note: WebSphere MQ Everyplace JMS can put messages to a local queue or an
asynchronous remote queue and it can receive messages from a local queue.
It cannot put messages to or receive messages from a synchronous remote
queue.

The generic JMS interfaces are subclassed into more specific versions for
Point-to-point and Publish or Subscribe behaviour. WebSphere MQ Everyplace
implements the Point-to-point subclasses of JMS. The Point-to-point subclasses are:

QueueConnection
Extends Connection

QueueSession
Extends Session

QueueSender
Extends MessageProducer

QueueReceiver
Extends MessageConsumer

Queue
Extends destination

We recommend writing application programs that use only references to the
interfaces in javax.jms. All vendor-specific information is encapsulated in
implementations of:
v QueueConnectionFactory
v Queue

These are known as ″administered objects″, that is, objects that can be administered
and stored in a JNDI namespace. A JMS application can retrieve these objects from
the namespace and use them without needing to know which vendor provided the
implementation. However, on small devices looking up objects in a JNDI
namespace may be impractical or represent an unnecessary overhead. We,
therefore, provide two versions of the QueueConnectionFactory and Queue classes.
The parent classes, MQeQueueConnectionFactory.class, MQeJMSQueue.class, provide
the base JMS functionality but cannot be stored in JNDI, while subclasses,
MQeJNDIQueueConnectionFactory.class, and the MQeJMSJNDIQueue.class, add
the necessary functionality for them to be stored and retrieved from JNDI.

Building a connection
You normally build connections indirectly using a connection factory. A JNDI
namespace can store a configured factory, therefore insulating the JMS application
from provider-specific information. See the section Using JNDI, below, for details
on how to store and retrieve objects using JNDI.

If a JNDI namespace is not available, you can create factory objects at runtime.
However, this reduces the portability of the JMS application because it requires
references to WebSphere MQ Everyplace specific classes. The following code
creates a QueueConnectionFactory. The factory uses a WebSphere MQ Everyplace
queue manager that is configured with an initialisation (ini) file:
QueueConnectionFactory factory;
factory = new com.ibm.mqe.jms.MQeJNDIQueueConnectionFactory();
((com.ibm.mqe.jms.MQeJNDIQueueConnectionFactory)factory).
setIniFileName(<initialisation file>)

The section on Configuring WebSphere MQ Everyplace JMS objects provides more
information about configuring connection factories.

JMS

Chapter 9. Java Message Service 107

Using the factory to create a connection: Use the createQueueConnection() to
create a QueueConnection:
QueueConnection connection;
connection = factory.createQueueConnection();

Starting the connection
Under the JMS specification, connections are not active upon creation. Until the
connection starts, MessageConsumers that are associated with the connection
cannot receive any messages. Use the following command to start the connection:
connection.start();

Obtaining a session
Once a connection has been created, you can use the createQueueSession()
method on the QueueConnection to obtain a session. The method takes two
parameters:
1. A boolean that determines whether the session is ″transacted″ or

″non-transacted″.
2. A parameter that determines the ″acknowledge″ mode. This is used when the

session is ″non-transacted″.

The simplest case is that where acknowledgements are used and are handled by
JMS itself with AUTO_ACKNOWLEDGE, as shown in the following code fragment:
QueueSession session;
boolean transacted = false;
session = connection.createQueueSession(transacted, Session.AUTO_ACKNOWLEDGE);

Sending a message
Messages are sent using a MessageProducer. For point-to-point this is a
QueueSender that is created using the createSender() method on QueueSession. A
QueueSender is normally created for a specific Queue, so that all messages sent
using that sender are sent to the same destination. Queue objects can be either
created at runtime, or built and stored in a JNDI namespace. Refer to “Using Java
Naming and Directory Interface (JNDI)” on page 115, for details on how to store
and retrieve objects using JNDI.

JMS provides a mechanism to create a Queue at runtime that minimizes the
implementation-specific code in the application. This mechanism uses the
QueueSession.createQueue() method, which takes a string parameter describing the

QueueSender

QueueReceiver
Queue

QueueConnectionFactory

createQueueConnection()

QueueSession

createReceiver()

createSender()

QueueConnection

createQueueSession()

Figure 7. Obtaining a session once a connection is created

JMS

108 WebSphere MQ Everyplace Application Programming Guide

destination. The string itself is still in an implementation-specific format, but this is
a more flexible approach than directly referencing the implementation classes.

For WebSphere MQ Everyplace JMS the string is the name of the WebSphere MQ
Everyplace queue. This can optionally contain the queue manager name. If the
queue manager name is included, the queue name is separated from it by a plus
sign ’+’, for example:
ioQueue = session.createQueue("myQM+myQueue");

This will create a JMS Queue representing the WebSphere MQ Everyplace queue
″myQueue″ on queue manager ″myQM″. If no queue manager name is specified
the local queue manager is used, i.e. the one that JMS is connected to. For example:
String queueName = "SYSTEM.DEFAULT.LOCAL.QUEUE";

...

ioQueue = session.createQueue(queueName);

This will create a JMS Queue representing the WebSphere MQ Everyplace queue
SYSTEM.DEFAULT.LOCAL.QUEUE on the queue manager that the JMS Connection is
using.

Message types: JMS provides several message types, each of which embodies
some knowledge of its content. To avoid referencing the implementation-specific
class names for the message types, methods are provided on the Session object for
message creation. In the sample program, a text message is created in the
following manner:
System.out.println("Creating a TextMessage");
TextMessage outMessage = session.createTextMessage();
System.out.println("Adding Text");
outMessage.setText(outString);

The message types that can be used are:
v BytesMessage
v ObjectMessage
v TextMessage

Note: Note that Version 2.0 of WebSphere MQ Everyplace does not support these
two message types:
v MapMessage
v StreamMessage

The message types are described in more detail later in this section.

Receiving a message
Messages are received by using a QueueReceiver. This is created from a Session by
using the createReceiver() method. This method takes a Queue parameter that
defines where the messages are received from. See ″Sending a message″ above for
details of how to create a Queue object. The sample program creates a receiver and
reads back the test message with the following code:
QueueReceiver queueReceiver = session.createReceiver(ioQueue);
Message inMessage = queueReceiver.receive(1000);

The parameter in the receive call is a timeout in milliseconds. This parameter
defines how long the method should wait if there is no message available
immediately. You can omit this parameter, in which case the call blocks indefinitely.

JMS

Chapter 9. Java Message Service 109

If you do not want any delay, use the receiveNoWait() method. The receive
methods return a message of the appropriate type. For example, if a TextMessage
is put on a queue, when the message is received the object that is returned is an
instance of TextMessage . To extract the content from the body of the message, it is
necessary to cast from the generic Message class, which is the declared return type
of the receive methods, to the more specific subclass, such as TextMessage . If the
received message type is not known, you can use the ″instanceof″ operator to
determine which type it is. It is good practice always to test the message class
before casting, so that unexpected errors can be handled gracefully. The following
code illustrates the use of ″instanceof″, and extraction of the content from a
TextMessage:
if (inMessage instanceof TextMessage){

String replyString = ((TextMessage)inMessage).getText();
...

} else {
//Print error message if Message was not a TextMessage.
System.out.println("Reply message was not a TextMessage");

}

Message selectors: JMS provides a mechanism to select a subset of the messages
on a queue so that only the subset is returned by a receive call. When creating a
WebSphere MQ Everyplace, a string can be provided that contains an Structured
Query Language (SQL) expression to determine which messages to retrieve. The
selector can refer to fields in the JMS message header as well as fields in the
message properties (these are effectively application-defined header fields).

This version of WebSphere MQ Everyplace JMS supports a restricted set of
selectors, which are equivalent to the filter mechanism within WebSphere MQ
Everyplace itself. The message selectors supported by WebSphere MQ Everyplace
JMS are described in the JMS Messages section below.

The following example shows how to select on a user-defined property named
myProp:
queueReceiver = session.createReceiver(ioQueue, "myProp =’blue’");

Note: The JMS specification does not permit the selector associated with a receiver
to be changed. Once a receiver is created, the selector is fixed for the lifetime
of that receiver. This means that if you require different selectors, you must
create new receivers.

Asynchronous delivery: An alternative to making calls to
QueueReceiver.receive() is to register a method that is called automatically when
a suitable message is available. The following fragment illustrates the mechanism:
import javax.jms.*;
public class MyClass implements MessageListener
{

// The method that will be called by JMS when a message is available.
public void onMessage(Message message)
{

System.out.println("message is "+message);
//application specific processing here

...
}

}
...

//In Main program (possibly of some other class)

JMS

110 WebSphere MQ Everyplace Application Programming Guide

MyClass listener = new MyClass();
queueReceiver.setMessageListener(listener);
//main program can now continue with other application specific
//behaviour.

Note: Use of asynchronous delivery with a QueueReceiver marks the entire
Session as asynchronous. All other QueueReceivers belonging to the same
Session should also use asynchronous delivery. It is an error to make an
explicit call to the receive methods of a QueueReceiver that is associated
with a Session that is using asynchronous delivery.

WebSphere MQ Everyplace strictly interprets the JMS specification requirement
that Sessions are single threaded. This has the following consequences:
v The connection must be in stopped mode to set up a session with more than one

message listener. The reason for this is that when a connection is actively
delivering messages, once the first message listener for a session has been
registered, the session is now controlled by the thread of control that delivers
messages to it. At that point a client thread of control cannot be used to further
configure the session.

v Once an asynchronous listener is active the commit() method may only be called
from the message listener. In other circumstances the listener must first be
stopped in order to make the thread of control available to the client.

Handling errors
Any runtime errors in a JMS application are reported by exceptions. The majority
of methods in JMS throw JMSExceptions to indicate errors. It is good programming
practice to catch these exceptions and handle them appropriately. Unlike normal
Java Exceptions, a JMSException may contain a further exception embedded in it.
For JMS, this can be a valuable way to pass important detail from the underlying
transport. When a JMSException is thrown as a result of WebSphere MQ
Everyplace raising an exception, the exception is usually included as the embedded
exception in the JMSException. The standard implementation of JMSException does
not include the embedded exception in the output of its toString() method.
Therefore, it is necessary to check explicitly for an embedded exception and print it
out, as shown in the following fragment:
try {

...code which may throw a JMSException
} catch (JMSException je) {

System.err.println("caught "+je);
Exception e = je.getLinkedException();
if (e != null) {

System.err.println("linked exception:"+e);
}

}

Exception listener: For asynchronous message delivery, the application code
cannot catch exceptions raised by failures to receive messages. This is because the
application code does not make explicit calls to receive() methods. To cope with
this situation, it is possible to register an ExceptionListener, which is an instance of
a class that implements the onException() method. When a serious error occurs,
this method is called with the JMSException passed as its only parameter. Further
details are in Sun’s JMS documentation.

JMS messages
JMS messages are composed of the following parts:

JMS

Chapter 9. Java Message Service 111

Header All messages support the same set of header fields. Header fields
contain values that are used by both clients and providers to
identify and route messages.

Properties Each message contains a built-in facility to support
application-defined property values. Properties provide an efficient
mechanism to filter application-defined messages.

Body JMS defines several types of message body which cover the
majority of messaging styles currently in use. JMS defines five
types of message body:

Text A message containing a java.lang.String

Object
A message that contains a Serializable java object

Bytes A stream of uninterpreted bytes for encoding a body to
match an existing message format

Stream
A stream of Java primitive values filled and read
sequentially, not supported in this version of WebSphere
MQ Everyplace JMS

Map A set of name-value pairs, where names are Strings and
values are Java primitive types. The entries can be accessed
sequentially or randomly by name. The order of the entries
is undefined. Map is not supported in this version of
WebSphere MQ Everyplace JMS.

The JMSCorrelationID header field is used to link one message with another. It
typically links a reply message with its requesting message.

Message selectors: A Message contains a built-in facility to support
application-defined property values. In effect, this provides a mechanism to add
application-specific header fields to a message. Properties allow an application, via
message selectors, to have a JMS provider select or filter messages on its behalf,
using application-specific criteria. Application-defined properties must obey the
following rules:
v Property names must obey the rules for a message selector identifier.
v Property values can be boolean, byte, short, int, long, float, double, and String.
v The JMSX and JMS_ name prefixes are reserved.

Property values are set before sending a message. When a client receives a
message, the message properties are read-only. If a client attempts to set properties
at this point, a MessageNotWriteableException is thrown. If clearProperties() is
called, the properties can then be both read from, and written to.

A property value may duplicate a value in a message’s body, or it may not. JMS
does not define a policy for what should or should not be made into a property.
However, for best performance, applications should only use message properties
when they need to customize a message’s header. The primary reason for doing
this is to support customized message selection. A JMS message selector allows a
client to specify the messages that it is interested in by using the message header.
Only messages whose headers match the selector are delivered. Message selectors
cannot reference message body values. A message selector matches a message
when the selector evaluates to true when the message’s header field and property
values are substituted for their corresponding identifiers in the selector.

JMS

112 WebSphere MQ Everyplace Application Programming Guide

A message selector is a String, which can contain:

Literals

v A string literal is enclosed in single quotes. A doubled single quote
represents a single quote. Examples are ’literal’ and ’literal’’s’. Like Java
string literals, these use the Unicode character encoding.

v An exact numeric literal is a numeric value without a decimal point,
such as 57, -957, +62. Numbers in the range of Java long are supported.

v An approximate numeric literal is a numeric value in scientific notation,
such as 7E3 or -57.9E2, or a numeric value with a decimal, such as 7.,
-95.7, or +6.2. Numbers in the range of Java double are supported. Note
that rounding errors may affect the operation of message selectors
including approximate numeric literals.

v The boolean literals TRUE and FALSE.

Identifiers

v An identifier is an unlimited length sequence of Java letters and Java
digits, the first of which must be a Java letter. A letter is any character
for which the method Character.isJavaLetter returns true. This
includes ″_″ and ″$″. A letter or digit is any character for which the
method Character.isJavaLetterOrDigit returns true.

v Identifiers cannot be the names NULL, TRUE, or FALSE.
v Identifiers cannot be NOT, AND, OR, BETWEEN, LIKE, IN, and IS.
v Identifiers are either header field references or property references.
v Identifiers are case-sensitive.
v Message header field references are restricted to:

– JMSDeliveryMode
– JMSPriority
– JMSMessageID
– JMSTimestamp
– JMSCorrelationID
– JMSType

JMSMessageID, JMSTimestamp, JMSCorrelationID, and JMSType values
may be null, and if so, are treated as a NULL value.

v Any name beginning with ″JMSX″ is a JMS-defined property name
v Any name beginning with ″JMS_″ is a provider-specific property name
v Any name that does not begin with ″JMS″ is an application-specific

property name
v If there is a reference to a property that does not exist in a message, its

value is NULL. If it does exist, its value is the corresponding property
value.

White space
This is the same as is defined for Java, space, horizontal tab, form feed,
and line terminator.

Logical operators
Currently supports AND only.

Comparison operators

v Only equals (’=’) is currently supported.
v Only values of the same type can be compared.

JMS

Chapter 9. Java Message Service 113

v If there is an attempt to compare different types, the selector is always
false.

v Two strings are equal if they contain the same sequence of characters.
v The IS NULL comparison operator tests for a null header field value, or a

missing property value. The IS NOT NULL comparison operator is not
supported.

Note that Arithmetic operators are not currently supported.

The following message selector selects messages with a message type of car and a
colour of blue: "JMSType =’car ’AND colour =’blue’"

When selecting Header fields WebSphere MQ Everyplace will interpret exact
numeric literals so that they match the type of the field in question, that is a
selector testing the JMSPriority or JMSDeliveryMode Header fields will interpret
an exact numeric literal as an int, whereas a selector testing JMSExpiration or
JMSTimestamp will interpret an exact numeric literal as a long. However, when
selecting message properties WebSphere MQ Everyplace will always interpret an
exact numeric literal as a long and an approximate numeric literal as a double.
Application specific properties intended to be used for message selection should
therefore be set using the setLongProperty and setDoubleProperty methods
respectively.

Restrictions in this version of WebSphere MQ Everyplace
This version of WebSphere MQ Everyplace JMS implements the Point-to-Point
subset of JMS with a few restrictions. It does not implement any of the optional
classes:
v The application server classes ConnectionConsumer, ServerSession, and

ServerSessionPool
v The XA classes:

– XAConnection
– XAConnectionFactory
– XAQueueConnection
– XAQueueConnectionFactory
– XAQueueSession
– XASession
– XATopicConnection
– XATopicConnectionFactory
– XATopicSession

It does not implement the TemporaryQueue class, which means that the
QueueRequestor class will not work or the MapMessage and StreamMessage
classes.

In the QueueConnectionFactory, the createQueueConnection() method that takes a
username and password as parameters is not implemented, WebSphere MQ
Everyplace does not have the concept of a user. The method with no parameters is
implemented.

JMS

114 WebSphere MQ Everyplace Application Programming Guide

When a message is read from a queue but not acknowledged, the message is
returned to the queue for redelivery. In this case the JMSRedelivered header field
should be set in the message. WebSphere MQ Everyplace JMS does not set this
header field.

WebSphere MQ Everyplace JMS can put messages to a local queue or an
asynchronous remote queue and it can receive messages from a local queue. It
cannot put to or receive messages from a synchronous remote queue.

Using Java Naming and Directory Interface (JNDI)
One of the advantages of using JMS is the ability to write applications which are
independent of the JMS implementations, allowing you to plug in a JMS
implementation which is appropriate for your environment. However, certain JMS
objects must be configured in a way which is specific to the JMS implementation
you have chosen. These objects are the connection factories and destinations,
queues, and they are often referred to as ″administered objects″. In order to keep
the application programs independent of the JMS implementation, these objects
must be configured outside of the application programs. They would typically be
configured and stored in a JNDI namespace. The application would lookup the
objects in the namespace and would be able to use them straight away, because
they have already been configured.

There may be situations, such as on a small device, where it would not be
desirable to use JNDI. In these cases the objects could be configured directly in the
application. The cost of not using JNDI would be a small degree of
implementation-dependence in the application.

Storing and Retrieving objects with JNDI
Before using JNDI to either store or retrieve objects, an ″initial context″ must be set
up, as shown in this fragment taken from the MQeJMSIVT_JNDI example
program:
import javax.jms.*;
import javax.naming.*;
import javax.naming.directory.*;

...
java.util.Hashtable environment =new java.util.Hashtable();
environment.put(Context.INITIAL_CONTEXT_FACTORY, icf);
environment.put(Context.PROVIDER_URL, url);
Context ctx = new InitialContext(environment);

where:

icf defines a factory class for the JNDI context. This depends upon the JNDI
provider that you are using. The documentation supplied by the JNDI
provider should tell you what value to use for this. See also the examples
below.

url defines the location of the namespace. This will depend on the type of
namespace you are using. If you are using the file system, this will be a
file url that identifies a directory in your file system. If you are using
LDAP this will be a ldap url that identifies a LDAP server and location in
the directory tree of that server. The documentation supplied by the JNDI
provider should describe the correct format for the url.

For more details about JNDI usage, see Sun’s JNDI documentation.

JMS

Chapter 9. Java Message Service 115

Note: Some combinations of the JNDI packages and LDAP service providers can
result in an LDAP error 84. To resolve the problem, insert the following line
before the call to InitialContext.

environment.put(Context.REFERRAL,"throw");

Once an initial context is obtained, objects can be stored in and retrieved from the
namespace. To store an object, use the bind() method:
ctx.bind(entryName, object);

where ’entryName’ is the name under which you want the object stored, and
’object’ is the object to be stored, for example to store a factory under the name
″ivtQCF″:
ctx.bind("ivtQCF", factory);

To store an object in a JNDI namespace, the object must satisfy either the
javax.naming.Referenceable interface or the java.io.Serializable interface, depending
on the JNDI provider you use. The MQeJNDIQueueConnectionFactory and
MQeJMSJNDIQueueclasses implement both of these interfaces. To retrieve an object
from the namespace, use thelookup() method:
object = ctx.lookup(entryName);

where entryName is the name under which you want the object stored , for
example, to retrieve a QueueConnectionFactory stored under the name ″ivtQCF″:
QueueConnectionFactory factory;
factory = (QueueConnectionFactory)ctx.lookup("ivtQCF");

Using the example programs with JNDI
The example program examples.jms.MQeJMSIVT_JNDI can be used to test your
installation using JNDI. This is very similar to the examples.jms.MQeJMSIVT
program, except that it uses JNDI to retrieve the connection factory and the queue
that it uses. Before you can run this program you must store these two
administered objects in a JNDI namespace:

Table 5. Administered objects for a JNDI namespace

Entry name Java class Description

ivtQCF MQeJNDIQueueConnectionFactory A QueueConnectionFactory
configured to use a WebSphere
MQ Everyplace queue manager

ivtQ MQeJMSJNDIQueue A Queue configured to represent
a WebSphere MQ Everyplace
queue which is local to the
queue manager used by the
ivtQCF entry

The program examples.jms.CreateJNDIEntry or the MQeJMSAdmin tool ,
explained in the following section, can be used to create these entries. Larger
installations may have a Lightweight Directory Access Protocol (LDAP) directory
available, but for smaller installations a file system namespace may be more
appropriate. When you have decided on a namespace you must obtain the
corresponding JNDI class files to support the namespace and add these to your
classpath. These will vary depending on your choice of namespace and the version
of Java you are using.

JMS

116 WebSphere MQ Everyplace Application Programming Guide

You must always have the javax.naming.* classes on your classpath. If you are
using Java 1 (for example a 1.1.8 JRE) you must obtain a copy of the jndi.jar file
and add it to your classpath. If you are using Java 2 (a 1.2 or later JRE) the JRE
may contain these classes itself.

If you want to use an LDAP directory, you must obtain JNDI classes that support
LDAP, for example Sun’s ldap.jar or IBM’s ibmjndi.jar, and add these to your
classpath. Some Java 2 JREs may already contain Sun’s classes for LDAP. See also
the section below about LDAP support for Java classes.

If you want to use a file system directory, you must obtain JNDI classes that
support the file system, for example Sun’s fscontext.jar (which requires
providerutil.jar as well) and add these to your classpath. The CreateJNDIEntry
example program requires the MQeJMS.jar file on your classpath, in addition to
the JNDI jar files. It takes the following command line arguments:
java examples.jms.CreateJNDIEntry -url<providerURL>

[-icf<initialContextFactory>][-ldap]
[-qcf<entry name><MQe queue manager ini file>]
[-q<entry name><MQe queue name>]

An alternative arguement to use is:
java examples.jms.CreateJNDIEntry -h

In the previous two examples:

-url<providerURL>
The URL of the JNDI initial context (obligatory parameter)

-icf<initialContextFactory>
The initialContextFactory for JNDI that defaults to the file system:
com.sun.jndi.fscontext.RefFSContextFactory

-ldap This should be specified if you are using an LDAP directory

-qcf<entry name><MQe queue manager ini file>
The name of a JNDI entry to be created for a JMS QueueConnectionFactory
and the name of an initialisation (ini) file for a WebSphere MQ Everyplace
queue manager to be used to configure it

-h Displays a help message

The url, -url, must be specified and either a QueueConnectionFactory (-qcf) or a
Queue (-q), or both, must be specified. The context factory, -icf, is optional and
defaults to a file system directory. The LDAP flag, -ldap, should be specified if an
LDAP directory is being used, this prefixes the entry name with ″cn=″, which is
required by LDAP.

For example, if a queue manager with the initialisation file
d:\MQe\exampleQM\exampleQM.ini exists, and you are using a JNDI directory
based in the file system at d:\MQe\data\jndi\, type (all on one line):
java examples.jms.CreateJNDIEntry -url file://d:/MQe/data/jndi -qcf ivtQCF
d:\MQe\exampleQM\exampleQM.ini

Note that forward slashes are used in the url, even if the file system itself uses
back slashes. The url directory must already exist. To add an entry for the queue
you would type (all on one line):
java examples.jms.CreateJNDIEntry -url file://
d:/MQe/data/jndi -q ivtQ SYSTEM.DEFAULT.LOCAL.QUEUE

JMS

Chapter 9. Java Message Service 117

You could use another local queue instead of the
SYSTEM.DEFAULT.LOCAL.QUEUE.

You could also specify the queue name as exampleQM+SYSTEM.DEFAULT.LOCAL.QUEUE,
where exampleQM is the name of the queue manager. If the name of the queue
manager is not specified, the local queue manager is used.

Both entries could be added at the same time by typing:
java examples.jms.CreateJNDIEntry

-url file://d:/MQe/data/jndi -qcf ivtQCF
d:\MQe\exampleQM\exampleQM.ini -q ivtQ

SYSTEM.DEFAULT.LOCAL.QUEUE

Again, you should type all of this command on one line. A maximum of one
connection factory and one queue can be added at a time.

When the JNDI entries have been created, you can run the example
.jms.MQeJMSIVT_JNDI program. This requires the same jar files on the classpath as
the MQeJMSIVT program, that is:
v jms.jar, Sun’s interface definition for the JMS classes
v MQeJMS.jar, the WebSphere MQ Everyplace implementation of JMS
v MQeBase.jar

v MQeExamples.jar

It also requires the JNDI jar files, as used for the CreateJNDIEntry example
program. The example can be run from the command line by typing:
java examples.jms.MQeJMSIVT_JNDI

-url<providerURL>

where <providerURL> is the specified URL of the JNDI initial context. By default
the program uses the file system context for JNDI:
com.sun.jndi.fscontext.RefFSContextFactory

If necessary you can specify an alternative context:
java examples.jms.MQeJMSIVT_JNDI -url<providerURL>

-icf<initialContextFactory>

You can optionally add a -t flag to turn tracing on:
java examples.jms.MQeJMSIVT_JNDI -url<providerURL>

-icf<initialContextFactory> -t

To use the entries in the file system directory created in the CreateJNDIEntry
example above, type:
java examples.jms.MQeJMSIVT_JNDI -url file://d:/MQe/data/jndi

The example program checks that the required jar files are on the classpath by
checking for classes that they contain. It looks up the QueueConnectionFactory and
the Queue in the JNDI directory. It starts a connection, which starts the WebSphere
MQ Everyplace queue manager, sends a message to the Queue, reads the message
back and compares it to the message it sent. The queue should not contain any
messages before running the program, otherwise the message read back will not be
the one that the program sent. The first lines of output from the program should
look like this:
using context factory

’com.sun.jndi.fscontext.RefFSContextFactory’ for the directory
using directory url ’file://d:/MQe/data/jndi’

JMS

118 WebSphere MQ Everyplace Application Programming Guide

checking classpath
found JMS interface classes
found MQe JMS classes
found MQe base classes
found jndi.jar classes
found com.sun.jndi.fscontext.RefFSContextFactory classes
Looking up connection factory in jndi
Looking up queue in jndi
Creating connection

The rest of the output should be similar to that from the example without JNDI.
You can also run the two other example programs, examples.jms.PTPSample01 and
example .jms.PTPSample02, using JNDI. These programs requires the same JMS
and WebSphere MQ Everyplace jar files on the classpath as the MQeJMSIVT_JNDI
program, that is:
v jms.jar

v MQeJMS.jar

v MQeBase.jar

v MQeExamples.jar

They also require the jndi.jar file and the jar files for the JNDI provider you are
using, for example, file system or LDAP. The examples can be run from the
command line by typing:
java examples.jms.PTPSsample01 -url<providerURL>

As in the previous example, providerURL is the URL of the JNDI initial context. By
default, the program uses the file system context for JNDI, that
is com.sun.jndi.fscontext.RefFSContextFactory. If necessary you can specify an
alternative context:
java examples.jms.PTPSsample01 -url<providerURL>

-icf<initialContextFactory>

You can optionally add a ″-t″ flag to turn tracing on: java examples.jms.
PTPSsample01 -url <providerURL><-icf initialContextFactory> -t . To use the
entries in the file system directory created in the CreateJNDIEntry example above,
you would type:
java examples.jms.PTPSample01 -url file://d:/MQe/data/jndi

The program examples.jms.PTPSample02 uses message listeners and filters. It
creates a QueueReceiver with a filter ″colour=’blue’″ and creates a message listener
for it. It creates a second QueueReceiver with a filter ″colour=’red’″ and also creates
a message listener. It sends four messages to a queue, two with the property
″colour″ set to ″red″ and two with the property ″colour″ set to ″blue″, and checks
that the message listeners receive the correct messages. The program has the same
command line parameters as the PTPSample01 program and can be run in the same
way. Simply substitute PTPSample02 for PTPSample01.

Mapping JMS messages to WebSphere MQ Everyplace messages
This section describes how the JMS message structure is mapped to a WebSphere
MQ Everyplace message. It is of interest to programmers who wish to transmit
messages between JMS and traditional WebSphere MQ Everyplace applications.

As described earlier, the JMS specification defines a structured message format
consisting of a header, three types of property and five types of message body,
while WebSphere MQ Everyplace defines a single free-format message object,

JMS

Chapter 9. Java Message Service 119

MQeMsgObject. WebSphere MQ Everyplace defines some constant field names that
messaging applications require, for example UniqueID, MessageID, and Priority,
while applications can put data into a WebSphere MQ Everyplace message as
<name, value> pairs.

To send JMS messages using WebSphere MQ Everyplace, we define a constant
format for storing the information contained in a JMS message within an
MQeMsgObject. This adds three top-level fields and four MQeFields objects to an
MQeMsgObject, as shown in the following example.

The following sections describe the contents of these fields.

Naming MQeMsgObject fields
An MQeMsgObject stores data as a <name, value> pair. The field names used to map
JMS message data to the MQeMsgObject are defined in com.ibm.mqe.MQe and
com.ibm.mqe.jms.MQeJMSMsgFieldNames:

MQeJMS field names
MQe.MQe_JMS_VERSION
MQeJMSMsgFieldNames.MQe_JMS_CLASS

JMS message field names
MQeJMSMsgFieldNames.MQe_JMS_HEADER
MQeJMSMsgFieldNames.MQe_JMS_PROPERTIES
MQeJMSMsgFieldNames.MQe_JMS_PS_PROPERTIES
MQeJMSMsgFieldNames.MQe_JMSX_PROPERTIES
MQeJMSMsgFieldNames.MQe_JMS_BODY

JMS header field names
MQeJMSMsgFieldNames.MQe_JMS_DESTINATION
MQeJMSMsgFieldNames.MQe_JMS_DELIVERYMODE
MQeJMSMsgFieldNames.MQe_JMS_MESSAGEID
MQeJMSMsgFieldNames.MQe_JMS_TIMESTAMP
MQeJMSMsgFieldNames.MQe_JMS_CORRELATIONID
MQeJMSMsgFieldNames.MQe_JMS_REPLYTO
MQeJMSMsgFieldNames.MQe_JMS_REDELIVERED
MQeJMSMsgFieldNames.MQe_JMS_TYPE
MQeJMSMsgFieldNames.MQe_JMS_EXPIRATION
MQeJMSMsgFieldNames.MQe_JMS_PRIORITY

MQeMsgObjectJMS message

Header

Properties

Body

WebSphere MQ
Everyplace/

JMS information

Map

MQeFields object

MQeFields object

MQeFields object

MQeFields object

Copy

Figure 8. Mapping a JMS message to a WebSphere MQ EveryplaceMQeMsgObject

JMS

120 WebSphere MQ Everyplace Application Programming Guide

WebSphere MQ Everyplace JMS information
Two <name, value> pairs holding information required for WebSphere MQ
Everyplace to recreate the JMS message are added directly to the MQeMsgObject:

MQe.MQe_JMS_VERSION
This contains a short describing the version number of the WebSphere MQ
Everyplace JMS implementation used to store the message. The current
version number is 1. The presence or absence of a field named
MQe.MQe_JMS_VERSION is used to determine if an MQeMsgObject contains a
WebSphere MQ Everyplace JMS message.

MQeJMSMsgFieldNames.MQe_JMS_CLASS
This contains a String describing the type of JMS message body stored in
the MQeMsgObject. It defines the strings in Table 24.

Table 6. Strings in MQeJMSMsgFieldNames.MQe_JMS_CLASS

JMS message type MQe.MQe_JMS_CLASS

Bytes message jms_bytes

Map message jms_map

Null message jms_null

Object message jms_object

Stream message jms_stream

Text message jms_text

JMS header files
JMS Header fields are stored within an MQeMsgObject using the following rules:
1. If a JMS header field is identical to a defined MQeMsgObject field then the

header value is mapped directly to the appropriate field in the MQeMsgObject.
2. If a JMS header field does not map directly to a defined field but can be

represented using existing fields defined by WebSphere MQ Everyplace then
the JMS header value is converted as appropriate and then set in the
MQeMsgObject.

3. If WebSphere MQ Everyplace has not defined an equivalent field by then, the
header field is stored within an MQeFields object, which is then embedded in
the MQeMsgObject. This ensures that the JMS header field in question can be
restored when the JMS message is recreated.

The header fields that map directly to MQeMsgObject fields are:

Table 7. Header fields that map directly to MQeMsgObject fields

JMS header field MQeMsgObject defined field

JMSTimestamp MQe.Msg_Time

JMSCorrelationID MQe.Msg_CorrelID

JMSExpiration MQe.Msg_ExpireTime

JMSPriority MQe.Msg_Priority

Two JMS header fields, JMSReplyTo and JMSMessageID, are converted prior to being
stored in MQeMsgObject fields.

JMS

Chapter 9. Java Message Service 121

JMSReplyTo is split between MQe.Msg_ReplyToQMgr and MQe.Msg_ReplyToQ, while
JMSMessageID is the String "ID:" followed by a 24-byte hashcode generated from a
combination of MQe.Msg_OriginQMgr and MQe.Msg_Time.

The remaining four JMS header fields, JMSDeliveryMode, JMSRedelivered, and
JMSType have no equivalents in WebSphere MQ Everyplace. These fields are stored
within an MQeFields object in the following manner:
v As an int field named MQe.MQe_JMS_DELIVERYMODE

v As a boolean field named MQe.MQe_JMS_REDELIVERED

v As a String field named MQe.MQe_JMS_JMSTYPE

This MQeFields object is then stored within the MQeMsgObject as
MQe.MQe_JMS_HEADER. Finally, JMSDestination is recreated when the message is
received and, therefore does not need to be stored in the MQeMsgObject.

JMS properties
When storing JMS property fields in an MQeMsgObject, the <name, value> format
used by the JMS properties corresponds very closely to the format of data in an
MQeFields object:

Table 8. JMS property fields and the MQeFields object

Property type Corresponding MQeFields object

Application-specific MQe.MQe_JMS_PROPERTIES

Standard (JMSX_name) MQe.MQe_JMSX_PROPERTIES

Provider-specific (JMS_provider_name) MQe.MQe_JMS_PS_PROPERTIES

Three MQeFields objects, corresponding to the three types of JMS property,
application-specific, standard, and provider-specific are used to store the <name,
value> pairs stored as JMS message properties.

These three MQeFields objects are then embedded in the MQeMsgObject with the
following names:
v MQe.MQe_JMS_PROPERTIES, application-specific
v MQe_MQe_JMSX_PROPERTIES, standard properties
v MQe.MQe_JMS_PS_PROPERTIES, provider-specific

Note that WebSphere MQ Everyplace does not currently set any provider specific
properties. However, this field is used to enable WebSphere MQ Everyplace to
handle JMS messages from other providers, for example WebSphere MQ.

JMS message body
Regardless of the JMS message type, WebSphere MQ Everyplace stores the JMS
message body internally as an array of bytes. For the currently supported message
types, this byte array is created as follows:

Table 9. Caption. Description

JMS message type Conversion

Bytes message ByteArrayOutputStream.toByteArray();

Object message <serialized object>.toByteArray();

Text message String.getBytes(″UTF-8″);

When the JMS message body is stored in an MQeMsgObject, this byte array is added
directly to the MQeMsgObject with the name MQe.MQe_JMS_BODY.

JMS

122 WebSphere MQ Everyplace Application Programming Guide

The following code fragment creates a WebSphere MQ Everyplace JMS text
message by adding the required fields to an MQeMsgObject:
// create an MQeMsgObject
MQeMsgObject msg = new MQeMsgObject();

// set the JMS version number
msg.putShort(MQe.MQe_JMS_VERSION, (short)1);
// and set the type of JMS message this MQeMsgObject contains
msg.putAscii(MQeJMSMsgFieldNames.MQe_JMS_CLASS, "jms_text");

// set message priority and exipry time - these are mapped to
JMSPriority and JMSExpiration
msg.putByte(MQe.Msg_Priority, (byte)7);
msg.putLong(MQe.Msg_ExpireTime, (long)0);

// store JMS header fields with no WebSphere MQ Everyplace
equivalents in an MQeFields object
MQeFields headerFields = new MQeFields();
headerFields.putBoolean(MQeJMSMsgFieldNames.MQe_JMS_REDELIVERED,

false);
headerFields.putAscii(MQeJMSMsgFieldNames.MQe_JMS_TYPE,

"testMsg");
headerFields.putInt(MQeJMSMsgFieldNames.MQe_JMS_DELIVERYMODE,
Message.DEFAULT_DELIVERY_MODE);
msg.putFields(MQeJMSMsgFieldNames.MQe_JMS_HEADER,

headerFields);

// add an integer application-specific property
MQeFields propField = new MQeFields();
propField.putInt("anInt", 12345);
msg.putFields(MQeJMSMsgFieldNames.MQe_JMS_PROPERTIES,

propField);

// the provider-specific and JMSX properties are blank
msg.putFields(MQeJMSMsgFieldNames.MQe_JMSX_PROPERTIES,

new MQeFields());
msg.putFields(MQeJMSMsgFieldNames.MQe_JMS_PS_PROPERTIES,

new MQeFields());

// finally add a text message body
String msgText =

"A test message to WebSphere MQ Everyplace JMS";
byte[] msgBody = msgText.getBytes("UTF8");
msg.putArrayOfByte(MQeJMSMsgFieldNames.MQe_JMS_BODY,

msgBody);

// send the message to a WebSphere MQ Everyplace Queue
queueManager.putMessage(null,

"SYSTEM.DEFAULT.LOCAL.QUEUE",
msg, null, 0);

Now, we use JMS to receive the message and print it:
// first set up a QueueSession, then...
Queue queue = session.createQueue

("SYSTEM.DEFAULT.LOCAL.QUEUE");
QueueReceiver receiver = session.createReceiver(queue);

// receive a message
Message rcvMsg = receiver.receive(1000);

// and print it out
System.out.println(rcvMsg.toString());

This gives:

JMS

Chapter 9. Java Message Service 123

HEADER FIELDS

JMSType: testMsg
JMSDeliveryMode: 2
JMSExpiration: 0
JMSPriority: 7
JMSMessageID: ID:00000009524cf094000000f07c3d2266
JMSTimestamp: 1032876532326
JMSCorrelationID: null
JMSDestination: null:SYSTEM.DEFAULT.LOCAL.QUEUE
JMSReplyTo: null
JMSRedelivered: false

PROPERTY FIELDS (read only)

JMSXRcvTimestamp : 1032876532537
anInt : 12345

MESSAGE BODY (read only)
--
A test message to WebSphere MQ Everyplace JMS

Note that JMS sets some of the JMS message fields, for examole JMSMessageID,
JMSXRcvTimestamp internally.

WebSphere MQ Everyplace JMS classes
WebSphere MQ Everyplace classes for Java Message Service consist of a number of
Java classes and interfaces that are based on the Sun javax.jms package of
interfaces and classes. They are contained in the com.ibm.mqe.jms package. The
following classes are provided:

Table 10. WebSphere MQ Everyplace JMS classes

Class Implements

MQeBytesMessage BytesMessage

MQeConnection Connection

MQeConnectionFactory ConnectionFactory

MQeConnectionMetaData ConnectionMetaData

MQeDestination Destination

MQeJMSEnumeration Java.util.Enumeration from QueueBrowser

MQeJMSJNDIQueue Queue

MQeJMSQueue Queue

MQeMessage Message

MQeMessageConsumer MessageConsumer

MQeMessageProducer MessageProducer

MQeObjectMessage ObjectMessage

MQeQueueBrowser QueueBrowser

MQeQueueConnection QueueConnection

MQeJNDIQueueConnectionFactory QueueConnectionFactory

MQeQueueConnectionFactory QueueConnectionFactory

MQeQueueReceiver QueueReceiver

MQeQueueSender QueueSender

JMS

124 WebSphere MQ Everyplace Application Programming Guide

Table 10. WebSphere MQ Everyplace JMS classes (continued)

Class Implements

MQeQueueSession QueueSession

MQeSession Session

MQeTextMessage TextMessage

Note that MessageListener and ExceptionListener are implemented by applications.

JMS

Chapter 9. Java Message Service 125

126 WebSphere MQ Everyplace Application Programming Guide

Chapter 10. Error and error handling

This chapter describes what happens if an error occurs within the Java and C
codebases, under the following headings:
v Error handling in the Java codebase
v Error handling in the C codebase

Error handling in the Java codebase
Errors within the Java codebase are handled using exceptions. The WebSphere MQ
Everyplace Java Programming Reference documents all of the exception codes that
the WebSphere MQ Everyplace Java code can return in the following classes:
v com.ibm.mqe.MQeExceptionCodes
v com.ibm.mqe.mqbridge.MQeBridge.ExceptionCodes

Error handling in the C codebase
The C codebase indicates errors using Return and Reason codes. The C code does
not have any exception handling mechanism, as in C++. WebSphere MQ
Everyplace does not use the operating system error handling functions. An
MQeExceptBlock handles errors and returns values from the functions. An
application is free to install any operating system exception handlers that it
requires.

The specific nature of an error condition is returned using two values, MQERETURN
and MQEREASON. MQERETURN determines the general area in which the application
failed, and distinguishes between warnings and errors. You can ignore warnings,
but you must not ignore errors. With errors, your application needs to solve the
problem in order to continue safely.

MQERETURN and MQEREASON are both returned in the MQeExceptBlock. The MQERETURN
value is also the return value from the function.

Structure of the codes
The MQe_nativeReturnCodes.h header file lists all of the return and reason codes.
They are divided into funtion area and then by error or warning. For example,
MQERETURN_QUEUE_MANAGER_ERROR and MQERETURN_QUEUE_MANAGER_WARNING. Warnings
indicate that a situation may be ignored.

Exception block
The MQeExceptBlock structure is used to pass the return code and reason code,
generated by a function call, back to the user. If a function call does not return
MQERETURN_OK, use the ERC macro to get the reason code.

WebSphere MQ Everyplace ships two macros:

EC This macro resolves to the return code in the exception block structure.

ERC This macro resolves to the reason code in the exception block structure.

The convention within WebSphere MQ Everyplace is that a pointer to an exception
block is passed first on a new function. A pointer to the object handle is passed

© Copyright IBM Corp. 2000, 2002 127

second, followed by any additional parameters. On subsequent calls, the object
handle is the first parameter passed, and the pointer to the exception block is
second, followed by any additional parameters.

The structure of the exception block, as shown in the following example, is
MQeExceptBlock_st.
struct MQeExceptBlock_st
{

MQERETURN ec;
/* return code*/

MQEREASON erc;
/* reason code*/

MQEVOID* reserved;
/* reserved for internal use only*/

}

Obtaining an Exception Block
We recommend that you allocate the Exception Block on the stack, rather than the
heap. This simplifies possible memory allocations, although there are no
restrictions on allocating space on the heap. The following code demonstates how
to do this:
MQERETURN rc
MQeExceptBlock exceptBlock;
/*.....initialisation*/
rc = mqeFunction_anyFunction(&exceptBlock,
/*parameters go here*/);
if (MQERETURN_OK ! = rc) {
printf("An error has occured, return code =

%d, reason code =%d \n",
exceptBlock.ec exceptBlock.erc);

}else {
}

Using exception blocks
All API calls need to take exception blocks. The C Bindings codebase permits
NULL to be passed to an API call. However, this feature is deprecated in the C
codebase and, therefore, not recommended.

You should use a different exception block for each thread in the application.

Note: If an error is not corrected, subsequent API calls can put the system in an
unpredictable state.

Useful macros
A number of macros help to access the exception block:

SET_EXCEPT_BLOCK
Sets the return and reason codes to specific values, for exampe:
MQeExceptBlock exceptBlock;
SET_EXCEPT_BLOCK(&exceptBlock,

MQERETURN_OK,
MQEREASON_NA);

SET_EXCEPT_BLOCK_TO_DEFAULT
Sets return and reason codes to non-error values, for example:
MQeExceptBlock exceptBlock;
SET_EXCEPT_BLOCK_TO_DEFAULT(&exceptBlock);

EC Accesses the return code, for example:

error and error handling

128 WebSphere MQ Everyplace Application Programming Guide

MQeExceptBlock exceptBlk;
/*WebSphere MQ Everyplace API call */
MQERETURN returncode;
returnCode = EC(&exceptBlock);

ERC Accesses the reason code, for example:
MQeExceptBlock exceptBlk;
/*WebSphere MQ Everyplace API call*/
MQEREASON reasoncode;
MQEREASON reasonCode = ERC(&exceptBlock);

NEW_EXCEPT_BLOCK
Can create a temporary exception block. This is useful for temporary
clean-up operations, for example:

error and error handling

Chapter 10. Error and error handling 129

error and error handling

130 WebSphere MQ Everyplace Application Programming Guide

Chapter 11. Deployment of applications from Webshpere
Studio Device Developer

This chapter describes how to develop and deploy applications to devices from
WebSphere Studio Device Developer (WSDD). To fully understand the concepts
outlined here we recommend that you have Java programming skills, knowledge
of J2ME and MIDlets, and basic knowledge of WebSphere MQ Everyplace.

The example application aims to aid your understanding of the WebSphere MQ
Everyplace interface. The code can be split into 3 parts:

The message service
This runs WebSphere MQ Everyplace, controls a queue manager and
performs functions such as queue creation and message sending. This is
the core of the examples and allows them to be written with minimal calls
to the WebSphere MQ Everyplace API. This also means that to see the code
required to create a local queue for example, a user can simply look at the
relevant function within MQeMessageService.

Example 1: The message pump
This is a very simple application consisting of a single server and client.
The client is set to send a message to the server every 3 seconds which,
when received by the server, will be displayed to the user. Queues are
asynchronous. Implementations of the client are available for both MIDP
and J2SE, while the server is only available for J2SE.

Example 2: The text application
This is slightly more complex than the first example, consisting of 2 servers
and a client. When initiating, the client is required to register with the
registration server. The registration server adds the client to a
store-and-forward queue on the gateway server and replies with a success
or failure message. The client can then send user-defined messages to the
gateway server (which it will display). The aim of this application is to
show how a seperate server can be used to create resources necessary for a
new client on the system to aid scalability of large WebSphere MQ
Everyplace networks.

This chapter presents information under the following headings:
v Getting started
v Debugging
v Available runnable classes
v MIDlets
v Cleaning up after applications
v Problems with SmartLinker
v Additional help

Getting started
This section details how to set up both of the devices that you use and WebSphere
Studio Device Developer (WSDD) to work with those devices.

© Copyright IBM Corp. 2000, 2002 131

Palm: What you need to get started
The following are prerequisites required for writing and testing WebSphere MQ
Everyplace applications for the Palm:
v A Palm device or Palm Emulator (you can download POSE from

http://www.palmos.com/dev/tools/emulator/)
v A copy of a J2ME virtual machine installed on the Palm, for example the Sun’s

K Virtual Machine (KVM) and IBM’s J9, available from http://java.sun.com and
http://www.embedded.oti.com

v A cradle to synchronize the palm with your pc
v Something to generate .prc files, that is palm executables, to run on the plam,

such as Sun’s J2ME Wireless Toolkit (available at http://java.sun.com) and IBM’s
WSDD, available at http://www.embedded.oti.com, which includes J9 as
standard

v WebSphere MQ Everyplace JARs/classes

This documentation concentrates on J9 and WSDD.

Palm: Getting started with WSDD
You must complete several tasks before using the palm device or palm emulator to
run WebSphere MQ Everyplace MIDlets:
1. Get the virtual machine onto the unit. The .prc files required for this are

located in the C:\IBM\wsdd\wsdd4.0\ive\runtimes\palmos\68k\ive\bin
directory or the equivilant location for your installation. You need the following
files:
v j9_vm_bundle.prc
v j9pref.prc
v midp15.prc
v j9_dbg_bundle.prc (only if you are planning to debug an application)

2. Once you have installed these files on your palm device (it should come with
instructions on how to do this), use WSDD to create a new MIDlet suite (in the
java perspective - [File][New][Other][J2ME for J9][Create MIDlet Suite]).

3. Import the source for the example application into the src directory. Include the
WebSphere MQ Everyplace library in the list of libraries to use, that is
right-click the name of the project in the packages window and select
[Properties] [Java Build Path] and the Libraries tab. Use the ’Add External
JARs’ option to add the WebSphere MQ Everyplace MIDP jar to the list. Note
the following files are not meant for use under MIDP:
v mqeexampleapp.msgpump.NormalClient
v mqeexampleapp.msgpump.NormalServer
v mqeexampleapp.msgpump.InputThread
v mqeexampleapp.textapp.Client
v mqeexampleapp.textapp.GatewayServer
v mqeexampleapp.textapp.RegistrationServer

These should be run in Foundation or J2SE to act as commandline
implementations of the clients and servers. There are no MIDP servers as it is
not an environment that servers are designed to run in.

4. Set WSDD to run files on that device. With normal palms, an installation
program is provided to enable the installation of new programs from a desktop
computer (e.g. C:\Palm\Instapp.exe). This needs to be set in WSDD in
[Window][Preferences][Device Developer][PalmOS Java Configuration] under
PalmOS Install Tool. You also meed to set the other options in this menu:

132 WebSphere MQ Everyplace Application Programming Guide

PalmOS Emulator
This is required if you want to use POSE or a similar PalmOS emulator

PilRC resource compiler
This creates the PRC files from the jad and jar. The WSDD help
describes the java options in more detail.

Palm: Building for the Palm in WSDD
Once WSDD has been set up to work with the palm, try building and running the
example application on your palm device. To do this:
1. Double-click the wsddbuild.xml file from within your project. If you created a

J2ME for J9 project and not a normal java one, it will appear after all the
packages.

2. Select the builds tab from the bottom of the window. Currently, your list of
builds should be empty. This window specifies the platforms you are building
the project for, that is palm, pocketpc, windows, and so on.

3. Click Add Build and select the palm option from the pulldown platforms
menu.

4. Click Next and enter any creator ID and a name for the application.
5. Click Next again until you reach the final select launcher screen. If you are using

a palm device, select the manual option. If you are using the emulator, select
the emulator option.

6. Click Finish and select the launch tab. Your device should now be a launch
option.

PocketPC: What you need to get started
To run WebSphere MQ Everyplace applications on the PocketPC you need:
v A Pocket PC device. Emulators exist, but they are not as true to the original

device as the Palm emulators are to the Palm.
v A copy of a J2ME virtual machine installed on the device. A cradle to sync the

pocket pc with your desktop
v J9 for the Pocket PC comes with WSDD and is located in

C:\IBM\wsdd\wsdd4.0\ive\runtimes\pocketpc\arm\ive. The files required
from here are:
– bin\iverel15.dll
– bin\j9.exe
– bin\j9dbg15.dll
– bin\j9dyn15.dll
– bin\j9hook15.dll
– bin\j9midp15.dll
– bin\j9prt15.dll
– bin\j9thr15.dll
– bin\j9vm15.dll
– bin\j9w.exe
– bin\j9zlib15.dll
– bin\swt-win32-ce-2023.dll
– lib\jclMidp
– lib\jclMidp.jxe

These are specified in the WSDD help file. Create a similar directory structure on
the device, for example, program files or wsdd with bin and lib subdirectories.

Chapter 11. Deployment of applications from Webshpere Studio Device Developer 133

Then copy the files to the relevant places. Note that the example application
functions under MIDP,hence the need for the jclMidp.jxe file. The Palm: What you
need to get started section provides details on downloading WSDD.

PocketPC: Getting started with Websphere Studio Device
Developer
To run applications on the Pocket PC from WSDD, you need to tell WSDD where
the various files you copied to your device are located. This is done in
[Window][Preferences][Device Developer][PocketPC Java Configuration]. Set the
three options to: \Program Files\WSDD \My Documents\WSDD \Windows\Start
Menu, assuming that you copied the J9 files to ’\Program Files\WSDD’ earlier

PocketPC: Building for the Pocket PC in Websphere Studio
Device Developer
This procedure is almost identical to that described in the Building for the Palm in
WSDD section. However, with the final choice for launcher, choose ’MIDlet Suite
on PocketPC Device’ rather than the manual option. This means that the
application automatically copies to the relevant device and runs automatically..

Debugging
This section describes how to set the example application debugging using WSDD,
both locally and remotely, on various devices.

Debugging on the Palm using WSDD
To debug on the palm using WSDD:
1. Install the j9_dbg_bundle.prc file on the target device before attempting to

debug. This is located in
C:\IBM\wsdd\wsdd4.0\ive\runtimes\palmos\68k\ive\bin.

2. On on the target device, run prefs and navigate to the J9 Java VM section.
Ensure that ’Enable Debug’ is selected, otherwise you cannot debug an
application.

3. When the application launches (via wsddbuild.xml - launches), select debug
rather than run.

Debugging on the PocketPC using WSDD
The files specified in the PocketPC: What you need to get started section include
the necessary components to debug remotely. Simply launch the application using
the debug command rather than the run command, as described in Debugging on
the palm using WSDD.

Debugging locally using WSDD
Select debug rather than run to start the application.

Available runnable classes
The following classes can be run the prompt:

mqeexampleapp.msgpump.NormalClient
A J2SE client for the Message Pump

mqeexampleapp.msgpump.NormalServer
A J2SE server for the Message Pumpv

mqeexampleapp.textapp.Client
A J2SE client for the Text App

134 WebSphere MQ Everyplace Application Programming Guide

mqeexampleapp.textapp.RegServer
A J2SE registration server for the Text App

mqeexampleapp.textapp.GatewayServer
A J2SE gateway server for the Text App

MIDlets
The following MIDlets are available in this example application:

mqeexampleapp.msgpump.MidpClient
The MIDP client for the Message Pump

mqeexampleapp.textapp.MidpClient
The MIDP client for the Text App

mqeexampleapp.messageservice.RMSclea
A simple utility to clear all RMS stores within the MIDlet suite

Giving parameters to the MIDlet
A useful feature of MIDlets is that they can retrieve parameters from their jad file.
The example applications take advantage of this to allow simple changes to the
MIDP clients without having to alter the code. Unfortunately, you cannot perform
the necessary changes to the jad file in WSDD. To use this feature, open the jad of
your project in a text editor. User defined parameters are specified as follows:
parameter: value

Use the following parameters for the two example applications:
1. MsgPump Client

Pump_SecurityLevel
Specifies the security level that the application should use:
v 0 for no security
v 1 for message based security
v 2 for queue based security

Pump_ServerQueue
Specifies the name of the queue that messages should be sent to

Pump_ServerIP
Specifies the IP of the server that will sent messages

Pump_ServerPort
Specifies the port that the server will be listening on

Pump_ServerQueueManager
Specifies the name of the queue manager that messages will be sent to

2. TextApp Client

pp_Registration_ServerIP
The IP address of the registration server

App_Gateway_ServerIP
The IP address of the gateway server

An example jad file may look something like this:
MIDlet-Version:
MIDlet-Name: ExampleAppv2NewestMQe MIDlet-Jar-Size:
MIDlet-Jar-URL:
MIDlet-1: pumpclient,,mqeexampleapp.msgpump.MidpClient

Chapter 11. Deployment of applications from Webshpere Studio Device Developer 135

MIDlet-2: clear,,mqeexampleapp.messageservice.RMSclear
MIDlet-3: textapp,,mqeexampleapp.textapp.MidpClient
MIDlet-Vendor:

Pump_SecurityLevel: 0
Pump_ServerQueue: A_Queue
Pump_ServerPort: 8083
Pump_ServerQueueManager: QM_Mr_Server
Pump_ServerIP: 10.0.0.101

App_Registration_ServerIP: 10.0.0.100
App_Gateway_ServerIP: 10.0.0.131

Any value not specified in this manner defaults to its usual value.

Cleaning up after the applications
As with all WebSphere MQ Everyplace queue managers, registries and messages
are left on the system after the queue manager has been shut down. This design
allows queue managers to restart witout losing their messages or recreating all
their queues and registry settings. If, one of the examples crashes on starting, the
data they leave behind should automatically be removed to prevent them from
being restarted with an incomplete registry. If the example does not crash, or you
wish to start the queue manager from scratch, you can use the following methods
to remove the registry from the system:

J2SE The example application uses the MQeDiskFieldsAdapter, which will save
registry settings to the Hard Drive. These are located in c:/MQe/QM/.
Delete this directory to remove the remaining information.

MIDP The example application uses the MQeMidpFieldsAdapter for MIDP
environments. This means that the registry is stored in the record stores of
the MIDlet Suite. You can remove them using the RMSclear MIDlet located
in the exampleapp.messageservice package.

Note: If you delete a MIDlet Suite from a device, its record store is also
removed.

Problems with SmartLinker
A program called SmartLinker is used to strip unused classes and methods before
packing a project into a .jxe file. Although this gives the benefit of a much smaller
application, it also causes dynamically loaded classes to be stripped from the
application when the .jxe is built.

An example of this is the various adapters that are dynamically loaded for
different environments. Because these adapters are not explicitly refered to
anywhere in the code, they are removed and so a NoClassDefFoundException is
thrown.

The cleanest way to solve this problem is to specify in the jxeLinkOptions file that
you wish to include a specific class. You can do this in WSDD in the following
manner:
1. In the packages view of your project, open the directory for the device you are

creating the jxe for (e.g. palm68k) and open the jxeLinkOptions file (e.g.
ExampleApp.jxeLinkOptions.

136 WebSphere MQ Everyplace Application Programming Guide

2. Select the in or exclusion tab and pic [include whole classes] from the
pulldown menu. This screen shows all the classes that the user has specified
will definitely be included.

3. To add a new class to the list, select [new] and enter the class in the [Rule
pattern] box, for example . com.ibm.mqe.adapter.MQeMidpFieldsAdapter. The
following files require inclusion in this manner for the MIDP clients to work:
v mqeexampleapp.messageservice.QueueManagerRules
v com.ibm.mqe.adapters.MQeMidpFieldsAdapter
v com.ibm.mqe.adapters.MQeMidpHttpAdapter
v com.ibm.mqe.MQeAttributeRule
v com.ibm.mqe.messagestore.MQeMessageStore
v com.ibm.mqe.registry.MQeFileSession

Additional help
WSDD help provides additional information under: Websphere Studio Device
Developer Product Documentation\WSDD Product Documentation
\Tasks\Working with Palm OS Targets

Chapter 11. Deployment of applications from Webshpere Studio Device Developer 137

138 WebSphere MQ Everyplace Application Programming Guide

Chapter 12. Open Services Gateway Initiative

Open Services Gateway Initiative (OSGi) is an application framework capable of
deploying java applications or services, which can be dynamically employed,
updated, or removed. Therefore, it can be a very useful means for providing
service updates and ensuring that all the required classes for an application are
made available as and when required. WebSphere MQ Everyplace provides an
example bundle that provides WebSphere MQ Everyplace messaging within this
framework.

In this chapter, WebSphere MQ Everyplace and OSGi are explained under the
following headings:
v WebSphere MQ Everyplace example bundle contents
v Using WebSphere MQ Everyplace within OSGi
v Running the example bundles
v Providing user-defined Rules and dynamic class loading

WebSphere MQ Everyplace example bundle contents
WebSphere MQ Everyplace provides one main bundle for OSGi development and
two example application bundles that provide hints on how to create a WebSphere
MQ Everyplace client or server application within OSGi. No bundle exports or
imports a service; they all rely on package dependency. The following table details
the bundles and their dependencies.

Table 11. Bundles and dependencies

Bundle name Description Export packages Import packages

MQeBundle.jar Bundle containing all
the required
WebSphere MQ
Everyplace classes
excluding mqbridge
functionality

com.ibm.mqe
com.ibm.mqe.adapters
com.ibm.mqe.administration
com.ibm.mqe.attributes
com.ibm.mqe.communications
com.ibm.mqe.messagestore
com.ibm.mqe.mqemqmessage
com.ibm.mqe.registry
com.ibm.mqe.trace

MQeServerBundle.jar Example bundle
containing a
WebSphere MQ
Everyplace Server
application

com.ibm.mqe
com.ibm.mqe.adapters
com.ibm.mqe.administration
com.ibm.mqe.trace
org.osgi.framework

MQeClientBundle.jar Example bundle
containing a
WebSphere MQ
Everyplace Client
application

com.ibm.mqe
com.ibm.mqe.adapters
com.ibm.mqe.administration
com.ibm.mqe.trace
org.osgi.framework

Both example application bundles, MQeClientBundle.jar and MQeServerBundle.jar
contain bundle activators which start and stop the application when the
framework starts or stops the bundle. The bundles are in MQE_HOME/Java/Jars.

© Copyright IBM Corp. 2000, 2002 139

Using WebSphere MQ Everyplace within OSGi
When developing your own bundles, importing the correct WebSphere MQ
Everyplace packages into your bundles manifest file ensures that the WebSphere
MQ Everyplace bundle is also installed into the framework when your bundle is
installed.

One major factor in developing a bundle is that only one WebSphere MQ
Everyplace queue manager is able to be run within an OSGi runtime. This means
that there may be conflicts if several bundles are installed and each requires its
own queue manager. Careful design of the bundle application is required to
eliminate this problem. However, there should be no limit on the number of
bundles that can use the same queue manager.

Running the Example Bundles
As an example of how to use WebSphere MQ Everyplace within the OSGi
environment, we providedtwo example application bundles that are designed to
work together in a simple scenario. The scenario consists of a client application
and a server application. The Server simply sits and waits for messages and prints
out any that it receives, the Client just sends one message. Within this scenario it is
possible to have multiple Clients sending to the same Server or the same Client
can be stopped and restarted to send another message to the Server. These bundles
are explained in more detail below:

Server application (MQeServerBundle.jar)
When this bundle is started an MQeQueueManager is created and started with a
listener and default queues in memory. The Application code is then run in a new
thread and waits for incoming messages using a message listener; any received
messages are displayed in the console. This thread continues to listen until the
bundle is stopped, at which time it stops and then deletes the MQeQueueManager.

Client Application (MQeClientBundle.jar)
When this bundle is started it checks to see if an MQeQueueManager is already
running in the JVM, if so it assumes it is running in the same runtime as the server
and so uses that queue manager. If no queue manager is detected then a new one
is defined and started in memory and a connection definition and remote queue
definition are setup to the server. Client application code is then run in a new
thread which sends a single message to the server. No checks are made to ensure
the message is received. If we created a new QueueManager for the Client, it is
stopped and deleted when the bundle is stopped.

The source for the classes included in the bundles can be seen in the
MQe\Java\examples\osgi directory. More details are given in the java doc for
these classes.

Some points to note when running the applications:
v Each application was written with two parts in mind. The first is setup of the

underlying WebSphere MQ Everyplace messaging infrastructure and the second
is the main application. This is why each one has a separate class providing
function for each part.

v The MQeClientBundle.class and MQeServerBundle.class are both started in their
own threads by the bundle activator start method. This way the start method is

140 WebSphere MQ Everyplace Application Programming Guide

not delayed in completing as the tasks of sending and receiving messages can
take some time. This ensures a smooth transition of the bundles state from
resolved to started.

Note: The Client and Server share the same MQeAdmin class in their bundles.
This class could have been placed in its own bundle to avoid the
duplication but for simplicities sake we have not done this.

v The Server must always be started before any Clients. Each Server must run in
its own runtime. A single client can share the servers runtime or can reside in its
own.

Running the example
However, you run the examples the following bundle is required by both the client
and server and must be present on the bundle server. See the Configuration Guide
for details on submitting bundles to a server.

MQeBundle.jar
To run the example you will need to first start the Server:
1. Import the MQeServerBundle.jar bundle onto the Bundle Server.
2. Start a new SMF runtime and Install and start the MQeServerBundle bundle on

it. This should also install the three prerequisite bundles.
3. The server then starts listening, you should see output on the console

including:
MQeServerBundle - registering message listener

This means the server is ready for messages.

Next you need to run a client to send a message. There are two methods for
runnning the client bundle:

Method 1
In the same SMF runtime as the server:
1. Import the MQeClientBundle.jar bundle onto the Bundle Server.
2. Install and start the MQeClientBundle bundle on the runtime.
3. The client now starts and sends a message, which the server will print

on the console. You can stop and start the client bundle to send another
message.

Method 2
In separate SMF runtimes:
1. Import the MQeClientBundle.jar bundle onto the Bundle Server.
2. Start a new SMF runtime and Install and start the MQeClientBundle

bundle on it. This should also install the three prerequisite bundles.
3. The client starts and sends a message, which the server will print on

the console. You can stop and start the client bundle to send another
message.

By default the example expects both client and server to be on the same machine
running with the receiver listening on port 8085. However, you can change the
port and address of the server, that is run the server on a separate machine. Before
the server is started, you can tell it which port to run on by setting the java system
property, ″examples.osgi.server.port″. This can be set in the Runtime IDE by
selecting ″show runtime properties″ from the drop down menu.

Chapter 12. Open Services Gateway Initiative 141

To tell the client the address and port that the server is listening on, set the
″examples.osgi.server.address″ and ″examples.osgi.server.port″ system properties
before the client is started.

Note: The server ignores the address property if it is not present. Also, if the client
has already been run and you want to change the address and port, the
runtime needs to be terminated and restarted to ensure that old
MQeConnectionDefinition information is wiped from memory.

Providing user-defined rules and dynamic class loading
The OSGi runtime controls package visibility across bundles. If a bundle does not
explicitly import a package, then it will not have access to classes within that
package when it comes to dynamically loading them. This is especially important
to WebSphere MQ Everyplace, because it has been designed with this flexibility in
mind. Without some small changes to the bundles, developers cannot use 3rd party
or their own Rules or Adapters. There are two ways to remove this problem:
1. OSGi version 3 includes a DynamicImport-Package statement for the bundles

manifest file. This has been included in the MQeBundle.jar and as long as the
user-defined classs package is exported from its bundles manifest. WebSphere
MQ Everyplace will be able to have access to this class.

Note: This functionality is available to SMF version 3.1.0 or higher.
2. 2. Create a new MQeLoader and add all the user-defined classes before they

will be used, most likely within the bundles activator, for example:
String MyRule = "UserQMRule";
MQeLoader loader = new MQeLoader();
loader.addClass(MyRule, Class.forName(MyRule));
MQe.setLoader(loader);

Take care when using the second method, that the loader within WebSphere MQ
Everyplace is not replaced with another loader from another bundle during the
application runtime.

142 WebSphere MQ Everyplace Application Programming Guide

Appendix A. WebSphere MQ Everyplace Java programming
examples

This appendix provides WebSphere MQ Everyplace programming examples for
java developpers.

Examples
The examples previously described form a small part of the set of examples
provided with WebSphere MQ Everyplace. Each example demonstrates how to use
or extend a feature of WebSphere MQ Everyplace. Most are described in the
relevant sections of this Guide. They are all listed and briefly described in the
following sections

examples.adapters
This package provides two example classes that conform to the MQSeries
Everyplace adapters specification.

MQeDiskFieldsAdapter
This example class is identical in functionality to the disk fields adapter
found in com.ibm.mqe.adapters. It supports the reading and writing of
data on the local file store.

WESAuthenticationGUIAdapter
Wrappers the WESAuthenticationAdapter found inside
com.ibm.mqe.adapters. This example enhances the
WESAuthenticationAdapter by displaying a dialog box that prompts the
user for login information when connecting to a Websphere Everyplace
proxy.

See Chapter 1, Adapters of the WebSphere MQ Everyplace System Programming
Guide for more information on adapters in WebSphere MQ Everyplace.

examples.administration.commandline package
This package contains a suite of example tools for creating base WebSphere MQ
Everyplace objects from the command line. Each program is a simple example of
how to send administration messages and how to interpret the replies.

Using these tools and a script you can reliably set up exactly the same
configuration on a number of machines.

See for details of the tools and examples of how to use them.

examples.administration.console package
This package contains a set of classes that implement a simple graphical user
interface (GUI) for managing WebSphere MQ Everyplace resources.

Admin
Front end to the example administration GUI.

© Copyright IBM Corp. 2000, 2002 143

Additionally there is a suite of classes that provides the graphical user interface for
each WebSphere MQ Everyplace managed resource.

The GUI can be invoked in any of the following ways:
v Using the batch file ExamplesAdminConsole.bat
v From the command line:

java examples.administration.console.Admin

v From a button on the example server examples.awt.AwtMQeServer

Refer to the WebSphere MQ Everyplace Configuration Guide, for more details
information about using the WebSphere MQ Everyplace administration functions.

examples.administration.simple package
This package contains a set of examples that show how to use some of the
administrative features of WebSphere MQ Everyplace in your programs. As with
the application examples, these examples can work with either a local or a remote
queue manager.

Example1
Create and delete a queue.

Example2
Add a connection definition for a remote queue manager.

Example3
Inquire on the characteristics of a queue manager and the queues it owns.

ExampleAdminBase
The base class that all administration examples inherit from.

For details of WebSphere MQ Everyplace administration functions, refer to the
WebSphere MQ Everyplace Configuration Guide.

examples.application package
This package contains a set of examples that demonstrate various ways to interact
with a queue manager. These include putting a message to and getting a message
from a queue. All the examples can be used with either a local queue manager or a
remote queue manager. Before you can use any of these applications, the queue
managers that are to be used must be created. You can use the
CreateExampleQM.bat batch file on Windows, or the CreateExampleQM shell
script on UNIX, to create queue managers ExampleQM (see “Post install test” on
page 22).

Example1
Simple put and get of a message.

Example2
Put several messages and then get the second one using a match field.

Example3
Use a message listener to detect when new messages arrive.

Example5
Lock messages then get, unlock, and delete them.

Example6
Simple put and get of a message using assured message delivery.

examples

144 WebSphere MQ Everyplace Application Programming Guide

Example7
Simple put and get of a message through a Websphere Everyplace proxy.

ExampleBase
The base class that all application examples inherit from.

These examples can be run as follows:

Windows
Using batch file ExamplesMQeClientTest.bat
ExamplesMQeClientTest <JDK> <example no>

<remoteQMgrName> <localQMgr ini file>

UNIX Using shell script ExamplesMQeClientTest
ExamplesMQeClientTest <example no>
<remoteQMgrName> <localQMgr ini file>

where

<JDK> is the name of the Java environment (see “Development environment” on
page 11 for details). The default is IBM

Note: This parameter is not used on UNIX.

<example no>
is the number of the example to run (suffix of the name of the example).
The default is 1 (Example1).

<remoteQMgrName>
is the name of the queue manager that the application should work with.
This can be the name of the local or a remote queue manager. If it is a
remote queue manager, a connection must be configured that defines how
the local queue manager can communicate with the remote queue
manager.

By default the local queue manager is used, as defined in
ExamplesMQeClient.ini.

<localQMgrIniFile>
is an ini file containing startup parameters for a local queue manager. By
default ExamplesMQeClient.ini is used.

For more details on how to write applications that interact with a queue manager
see Chapter 6, “Queue manager operations”, on page 43.

examples.attributes package
This package contains a set of classes that show how to write additional
components to extend WebSphere MQ Everyplace security. However, they are not
designed to be used for asynchronous messaging and do not provide very strong
security.

NTAuthenticator
An authenticator that authenticates a user to the Windows NT security
database. To authenticate correctly the user must have the following User
Rights set on the target NT system:
v Act as part of the operating system
v Logon locally
v Logon as a service

examples

Appendix A. WebSphere MQ Everyplace Java programming examples 145

The NT authenticator uses the Java native interface (JNI) to interact with
Windows NT security. The code for this can be found in the
examples.nativecode directory. The dll built from this code must be placed
in the PATH of the NT machine that owns the target resource.

UnixAuthenticator
An authenticator that authenticates a user using the UNIX password or
shadow password system. The UNIX authenticator uses the JNI to interact
with the host system. The code for this can be found in the
examples.nativecode directory. If your system supports the shadow
password file, you must recompile this native code with the USE_SHADOW
preprocessor flag defined. You must also ensure the code has sufficient
privileges to read the shadow password file when it executes. This
example does not work if your system uses a distributed logon service
(such as Lightweight Directory Access Protocol (LDAP)).

LogonAuthenticator
Base logon authentication support.

UseridAuthenticator

Support for base userID authentication.

This example requires a UserIDS.txt file as input. This file must have the
format:

[UserIDs]

User1Name=User1Password

...

UserNName=UserNPassword

See Chapter 8, “Security”, on page 79 for more detailed information about the
WebSphere MQ Everyplace security features.

examples.awt package
This package provides a toolkit for building applications that require a small
graphical interface. It also contains example applications that provide a graphical
front end to WebSphere MQ Everyplace functions.

AwtMQeServer
A graphical front end to the examples.queuemanager.MQeServer example.
The MQeTraceResourceGUI class provides a resource bundle that contains
internationalized strings for use by the GUI. MQeTraceResourceGUI is in
package examples.trace.

You can use the batch file ExamplesAwtMQeServer.bat to run this
application.

See “Server queue managers” on page 50 for more details about running a
queue manager in a server environment.

AwtMQeTrace
A graphical front end to examples.trace.MQeTrace.

See Chapter 9, “Java Message Service”, on page 103 for more information
about the WebSphere MQ Everyplace trace facility.

examples

146 WebSphere MQ Everyplace Application Programming Guide

Classes AwtDialog, AwtEvent, AwtFormat, AwtFrame, and AwtOutputStream
provide a toolkit for building small footprint awt-based graphical applications.
These classes are used by many of the graphical WebSphere MQ Everyplace
examples.

examples.certificates package
This package contains examples for managing mini-certificates (see
“Mini-certificate issuance service” on page 94) for more information on these
examples, and using mini-certificates.

ListWTLSCertificates
This example uses methods in the class
com.ibm.mqe.attributes.MQeListCertificates to implement a command line
program which lists mini-certificates in a registry, to varying levels of
detail.

RenewWTLSCertificates
This example uses methods in the class
com.ibm.mqe.registry.MQePrivateRegistryConfigure to implement a
command line program which renews mini-certificates in a registry. This
should only be used on a private registry.

examples.eventlog package
This package contains some examples that demonstrate how to log events to
different facilities.

LogToDiskFile
Write events to a disk file.

LogToNTEventLog
Write events to the Windows NT event log. This class uses the JNI to
interact with the Windows NT event log. The code for this is in the
examples.nativecode directory.

LogToUnixEventLog
Write events to the UNIX event log (which is normally
/var/adm/messages). This class uses the JNI to interact with the UNIX
event logging system. The code for this can be found in the
examples.nativecode directory. The syslog daemon on your system should
be configured to report the appropriate events.

examples.install package
This package contains a set of classes for creating and deleting queue managers.

DefineQueueManager
A GUI that allows the user to select options when creating to queue
manager. When the options have been selected, this example creates an ini
file containing the queue manager startup parameters, and then creates the
queue manager.

CreateQueueManager
A GUI program that requests the name and directory of an ini file that
contains queue manager startup parameters. When the name and directory
are provided, a queue manager is created.

SimpleCreateQM
A command line program that takes a parameter that is the name of an ini

examples

Appendix A. WebSphere MQ Everyplace Java programming examples 147

file that contains queue manager startup parameters. It also optionally
takes a parameter that is the root directory where queues are stored.
Provided a valid ini file is found, a queue manager is created.

DeleteQueueManager
A GUI program that takes the name of an ini file that contains queue
manager startup parameters. Provided a valid ini file is found, the queue
manager is deleted.

SimpledDeleteQM
A command line program that takes a parameter that is the name of an ini
file that contains queue manager startup parameters. Provided a valid ini
file is found, the queue manager is deleted.

GetCredentials
A GUI program that takes the name of an ini file that contains queue
manager startup parameters. Provided a valid ini file is found, new
credentials (private/public key pair and public certificate) are obtained for
the queue manager. The mini-certificate server must be running and the
request for a new certificate must have been authorized for this to succeed
(see “Mini-certificate issuance service” on page 94).

All the configuration files use the resources and utilities provided in
ConfigResource, and ConfigUtils.

For more details about creating and deleting queue managers, see Chapter 6,
“Queue manager operations”, on page 43.

examples.mqbridge.awt package
This package contains a set of classes that show how to use and extend the
WebSphere MQ bridge. Some of the examples extend other WebSphere MQ
Everyplace examples.

AwtMQBridgeServer
This is an example of a graphical interface for the underlying
examples.mqbridge.queuemanager.MQBridgeServer class.

The MQBridgeServer class source code demonstrates how to add bridge
functionality to your WebSphere MQ Everyplace server program, following
these guidelines.

To start the bridge enabled server:
1. Instantiate the base WebSphere MQ Everyplace queue manager, and

start it running.
2. Instantiate a com.ibm.mqe.mqbridge.MQeMQBridges object, and use its

activate() method, passing the same .ini file information as you passed
to the base WebSphere MQ Everyplace queue manager.

The bridge function is then usable.

To stop the bridge-enabled server:
1. Disable the bridge function by calling the MQeMQBridges.close()

method. This stops all the current WebSphere MQ bridge operations
cleanly, and shuts down all the WebSphere MQ bridge function.

2. Remove your reference to the MQeMQBridges object, allowing it to be
garbage-collected.

3. Stop and close the base WebSphere MQ Everyplace queue manager.

examples

148 WebSphere MQ Everyplace Application Programming Guide

ExamplesAwtMQBridgeServer.bat
This file provides an example of how to invoke the MQBridgeServer using
the Awt server. It also shows how to control the initial settings of the
AwtMQBridgeTrace module.

ExamplesAwtMQBridgeServer.ini
This file provides an example configuration file for a queue manager that
supports WebSphere MQ bridge functionality.

Refer to the for more details about the WebSphere MQ bridge.

examples.mqbridge.administration.commandline package
This package contains a suite of example tools, similar to those in the
examples.administration.commandline package, designed to administer the objects
required for an WebSphere MQ bridge.

See for details of the tools and examples of how to use them.

examples.mqbridge.application.GetFromMQ
The example programs in this package are useful for proving that WebSphere MQ
Everyplace and WebSphere MQ can communicate with each other. These examples
are WebSphere MQ bindings programs that use the Java classes and are driven by
a simple command-line syntax.

GetFromMQ
This class destructively reads any message appearing on a specified
WebSphere MQ queue, and provides timing statistics on when the message
arrives. Optionally the message content can be dumped to the standard
output screen.

This example is useful when testing a link between WebSphere MQ
Everyplace and WebSphere MQ, to see what throughput is being achieved
between the two systems. Scripts dealing with connectivity between
WebSphere MQ Everyplace and WebSphere MQ can refer to and use this
class.

PutFromMQ
This class puts a message to an WebSphere MQ queue, such that the user
can specify the target queue and the target queue manager. It specifically
uses the long form of the MQQueueManager.accessQueue() method to
make use of any WebSphere MQ Everyplace queue manager alias
definitions that might be defined on the WebSphere MQ queue.

examples.mqeexampleapp package
This package contains two example applications to aid your understanding of the
MQe interface. The example code can be split into 3 parts:

The message service (examples.mqeexampleapp.messageservice)
This runs WebSphere MQ Everyplace, controls a queue manager and
performs functions such as queue creation and message sending. This is
the core of the examples and allows them to be written with minimal calls
to the WebSphere MQ Everyplace API. This also means that to see the code
required to create a local queue for example, a user can simply look at the
relevant function within MQeMessageService.

examples

Appendix A. WebSphere MQ Everyplace Java programming examples 149

Example 1: The message pump (examples.mqeexampleapp.msgpump)
This is a very simple application consisting of a single server and client.
The client is set to send a message to the server every 3 seconds which,
when received by the server, will be displayed to the user. Queues are
asynchronous. Implementations of the client are available for both MIDP
and J2SE, while the server is only available for J2SE.

Example 2: The text application (examples.mqeexampleapp.textapp)
This is slightly more complex than the first example, consisting of 2 servers
and a client. When initiating, the client is required to register with the
registration server. The registration server adds the client to a
store-and-forward queue on the gateway server and replies with a success
or failure message. The client can then send user-defined messages to the
gateway server (which it will display). The aim of this application is to
show how a seperate server can be used to create resources necessary for a
new client on the system to aid scalability of large WebSphere MQ
Everyplace networks.

examples.nativecode package
Several of the examples require access to operating system facilities on Windows
NT, or UNIX (AIX and Solaris). WebSphere MQ Everyplace accesses these
functions using the JNI. For Windows, the code in the examples\native directory
provides the JNI implementation required by
examples.attributes.NTAuthenticator and examples.eventlog.LogToNTEventLog.
For UNIX, the code in the file examples/native/JavaUnix.c provides the JNI
implementation required by the examples.attributes.UnixAuthenticator and
examples.eventlog.LogToUnixEventLog.

examples.queuemanager package
A queue manager can run in many different types of environment. This package
contains a set of examples that allow a queue manager to run as a client, server, or
servlet:

MessageWaiter
An example of how to wait for messages without using the deprecated
waitFormessage method.

MQeClient
A simple client typically used on a device.

MQePrivateClient
A client that can be used with secure queues and secure messaging.

MQeServer
A server that can connect concurrently to multiple queue managers (clients
or servers). This is typically used on a server platform. Batch file
ExamplesAwtMQeServer.bat can be used to run the
examples.awt.AwtMQeServer example which provides a graphical front end
to this server.

MQePrivateServer
Similar to MQeServer but allows the use of secure queues and secure
messaging.

MQeServlet
An example that shows how to run a queue manager in a servlet.

examples

150 WebSphere MQ Everyplace Application Programming Guide

MQeChannelTimer
An example that polls the channel manager so that it can time-out idle
channels.

MQeQueueManagerUtils
A set of helper methods that configure start various WebSphere MQ
Everyplace components.

For more details about running queue managers in different environments see
“Starting queue managers” on page 44. For details on queue managers that provide
an environment for secure queues and messaging (MQePrivateClient and
MQePrivateServer), see Chapter 8, “Security”, on page 79.

examples.rules package
You can control and extend the base WebSphere MQ Everyplace functionality
using rules. Some components of WebSphere MQ Everyplace invoke rules classes.
These rules provide a means of changing the functionality of the component. This
package contains the following example rules classes:

ExamplesQueueManagerRules
Example queue manager rules class makes regular attempts to transmit
any held messages.

See Chapter 7, “Message Delivery”, on page 69 for more details.

AttributeRule
Example attribute rule that controls the use of attributes.

The ″examples.mqbridge.rules″ package of the Programming Interface Reference for
Java programmers provides details on how to use bridge rules.

examples.trace package
This package contains an example trace handler that can be used for debugging an
application during development, and for tracing a completed application.

MQeTrace
The base WebSphere MQ Everyplace trace class.

AwtMQeTrace, which is in the examples.awt package, provides a graphical
front end to the MQeTrace class.

MQeTraceResource
A resource bundle that contains trace messages that can be output by
WebSphere MQ Everyplace.

MQeTraceResourceGUI
This class contains all the translatable text for the trace window controls.

examples

Appendix A. WebSphere MQ Everyplace Java programming examples 151

examples

152 WebSphere MQ Everyplace Application Programming Guide

Appendix B. Applying maintenance to WebSphere MQ
Everyplace

Maintenance updates for WebSphere MQ Everyplace are always shipped as a
complete new release. There are two options when upgrading from one release to
another:

Completely uninstall the current level, and install the new level in same
directory

When doing this it is recommended you keep the install package for the
current level to allow it to be restored later if necessary.

Keep the existing level and install the new level into a new directory
After installation, check your classpath to ensure that the latest level of
WebSphere MQ Everyplace is being invoked. If installing on Windows,
make sure that you give the shortcuts folder for the new install a different
name to the existing one.

For more general information on maintenance updates and their availability see
the WebSphere MQ family Web page at http://www.software.ibm.com/mqseries/.

© Copyright IBM Corp. 2000, 2002 153

154 WebSphere MQ Everyplace Application Programming Guide

Appendix C. Differences between trace in WebSphere MQ
Everyplace version 1.2.6 or lower and version 2.0

The tracing mechanism for WebSphere MQ Everyplace version 2.0 differs from the
mechanism provided by version 1 of the product. The main objectives of these
changes are to:
v Allow static methods to use the WebSphere MQ Everyplace trace mechanism
v Allow dynamic filtering of trace before the expense of gathering all trace data

has been spent. Version 1 collected all information to be traced, then if a trace
handler wished to discard that information, the cost of its’ collection was wasted
effort. Setting a filter in the com.ibm.mqe.MQeTrace class allows user code to
direct WebSphere MQ Everyplace product code not to collect the trace
information in the first place, reducing wasted memory and CPU cycles spent.

v Separate tracing functionality out from the WebSphere MQ Everyplace base
class, allowing tracing to occur without instantiating a WebSphere MQ
Everyplace object.

v Remove the dependency of tracing code on a resource bundle in the
examples.trace package

v Remove the ability for users to modify the meaning of WebSphere MQ
Everyplace product trace points. Such user changes confused IBM service staff.

v Remove the ability for users to generate WebSphere MQ Everyplace product
trace in non-English language. Support of the product might require English
trace information to be collected and analysed.

v Provide a selection of optional, fully-supported trace information collectors
v Provide a trace collection mechanism which does not need to render binary trace

information into string information before storing data to persistent storage. The
necessity to retain many trace strings in the JVM creating the trace information
reduces the footprint of the WebSphere MQ Everyplace solution, while retaining
the ability to collect trace information in a more compact form on persistent
media.

v Retain a pluggable trace interface for extension by user code

How to migrate from WebSphere MQ Everyplace version 1 to the
WebSphere MQ Everyplace version 2.0 trace mechanism

To migrate from version 1 of the product to version 2.0 of the product:
1. Review the documentation presented in the Java programming reference

material, particularly the following classes
v com.ibm.mqe.MQeTrace

v com.ibm.mqe.MQeTraceHandler

v All classes in the com.ibm.mqe.trace package
2. Stop using the com.ibm.mqe.MQeTraceInterface class. This class is deprecated in

version 2.0. Change your code to implement the com.ibm.mqe.MQeTraceHandler
interface instead.

3. Stop using the com.ibm.mqe.MQe.setTraceHandler() method. Use the
com.ibm.mqe.MQeTrace.setHandler() method instead.

4. Stop using the com.ibm.mqe.MQe.getTraceHandler() method. Use the
com.ibm.mqe.MQeTrace.getHandler() method instead.

© Copyright IBM Corp. 2000, 2002 155

5. Stop using the com.ibm.mqe.MQe.trace(...) methods. Use the
com.ibm.mqe.MQeTrace.trace(...) methods instead.

6. Remove any dependencies your code has on examples.trace.MQeTraceResource
string resource bundle classes. This class has been removed from version 2.0 of
WebSphere MQ Everyplace. The version 2.0 trace mechanism does not provide
a simple resource bundle in the examples.trace package to use when decoding
trace information. Access to WebSphere MQ Everyplace product trace data is
provided through the com.ibm.mqe.trace.MQeTraceRenderer,
com.ibm.mqe.trace.MQeTracePoint and com.ibm.mqe.trace.MQeTracePointGroup
classes.

7. Consider whether trace information can be left in binary format, using the
com.ibm.mqe.trace.TraceToBinaryFile or similar classes provided by the
WebSphere MQ Everyplace product.

8. Consider instantiating a trace collection handler, and setting it into the
MQeTrace class, but setting the filter in the MQeTrace class to discard or collect
information as desired.

9. Consider that IBM service staff may ask for capture of trace information to
diagnose the cause of problems reported. Allowing the setting of the MQeTrace
filter may be easier than allowing the configuration of a collection trace
handler.

156 WebSphere MQ Everyplace Application Programming Guide

Appendix D. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM United Kingdom Laboratories,
Mail Point 151,
Hursley Park,

© Copyright IBM Corp. 2000, 2002 157

Winchester,
Hampshire
England
SO21 2JN

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Trademarks
The following terms are trademarks of International Business machines
Corporation in the United States, or other countries, or both.

AIX DB2
Everyplace IBM iSeries MQSeries

SupportPac UNIX
WebSphere z/OS zSeries

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

UNIX is a registered trademark of X/Open in the United States and other
countries.

Windows and Windows NT are registered trademark of Microsoft Corporation in
the United States and other countries.

Other company, product, and service names may be trademarks or service marks
of others.

notices

158 WebSphere MQ Everyplace Application Programming Guide

Glossary

This glossary describes terms used in this book
and words used with other than their everyday
meaning. In some cases, a definition may not be
the only one applicable to a term, but it gives the
particular sense in which the word is used in this
book.

If you do not find the term you are looking for,
see the index or the IBM Dictionary of Computing,
New York:. McGraw-Hill, 1994.

Application Programming Interface (API). An
Application Programming Interface consists of the
functions and variables that programmers are allowed
to use in their applications.

asynchronous messaging. A method of
communicating between programs in which the
programs place messages on message queues. With
asynchronous messaging, the sending program
proceeds with its own processing without waiting for a
reply to its message. Contrast with synchronous
messaging.

authenticator. A program that checks that verifies the
senders and receivers of messages.

bridge. An WebSphere MQ Everyplace object that
allows messages to flow between WebSphere MQ
Everyplace and other messaging systems, including
WebSphere MQ.

channel. See dynamic channel, client/server channel,
peer channel, and MQI channel.

channel manager. An WebSphere MQ Everyplace
object that supports logical multiple concurrent
communication pipes between end points.

class. A class is an encapsulated collection of data and
methods to operate on the data. A class may be
instantiated to produce an object that is an instance of
the class.

client. (1)In WebSphere MQ Everyplace, a client is
WebSphere MQ Everyplace code running without a
channel manager or channel listener. Contrast with
server (1). (2)In WebSphere MQ, a client is a run-time
component that provides access to queuing services on
a server for local user applications.

client/server channel. An WebSphere MQ Everyplace
a unidirectional channel between a client and a server
that can only be established from the client side.
Contrast with peer channel.

compressor. A program that compacts a message to
reduce the volume of data to be transmitted.

cryptor. A program that encrypts a message to
provide security during transmission.

device. A small portable machine running WebSphere
MQ Everyplace as a client. Contrast with server(1).

dynamic channel. This is a name given to WebSphere
MQ Everyplace channels that connect clients and
servers to enable the transfer of messages. They are
called dynamic because they are created on demand. See
client/server and peer channels. Contrast withMQI
channel.

encapsulation. Encapsulation is an object-oriented
programming technique that makes an object’s data
private or protected and allows programmers to access
and manipulate the data only through method calls.

gateway. An WebSphere MQ Everyplace gateway is a
computer running the WebSphere MQ Everyplace
WebSphere MQ bridge code.

Hypertext Markup Language (HTML). A language
used to define information that is to be displayed on
the World Wide Web.

instance. An instance is an object. When a class is
instantiated to produce an object, we say that the object
is an instance of the class.

interface. An interface is a class that contains only
abstract methods and no instance variables. An
interface provides a common set of methods that can
be implemented by subclasses of a number of different
classes.

Internet. The Internet is a cooperative public network
of shared information. Physically, the Internet uses a
subset of the total resources of all the currently existing
public telecommunication networks. Technically, what
distinguishes the Internet as a cooperative public
network is its use of a set of protocols called TCP/IP
(Transport Control Protocol/Internet Protocol).

Java Developers Kit (JDK). A package of software
distributed by Sun Microsystems for Java developers. It
includes the Java interpreter, Java classes and Java
development tools: compiler, debugger, disassembler,
appletviewer, stub file generator, and documentation
generator.

Java Naming and Directory Service (JNDI). An API
specified in the Java programming language. It
provides naming and directory functions to
applications written in the Java programming language.

© Copyright IBM Corp. 2000, 2002 159

Lightweight Directory Access Protocol (LDAP).
LDAP is a client-server protocol for accessing a
directory service.

Local area network (LAN). A computer network
located on a user’s premises within a limited
geographical area.

message. In message queuing applications, a message
is a communication sent between programs.

message queue. See queue

message queuing. A programming technique in which
each program within an application communicates with
the other programs by putting messages on queues.

method. Method is the object-oriented programming
term for a function or procedure.

MQI channel. An MQI channel connects a WebSphere
MQ client to a queue manager on a server system and
transfers MQI calls and responses in a bidirectional
manner. MQI channels must be explicitly created.
Contrast with dynamic channels.

WebSphere MQ. WebSphere MQ is a family of IBM
licensed programs that provide message queuing
services.

object. (1) In Java, an object is an instance of a class. A
class models a group of things; an object models a
particular member of that group. (2) In WebSphere MQ,
an object is a queue manager, a queue, or a channel.

package. A package in Java is a way of giving a piece
of Java code access to a specific set of classes. Java code
that is part of a particular package has access to all the
classes in the package and to all non-private methods
and fields in the classes.

peer channel. A bidirectional WebSphere MQ
Everyplace channel, normally used between clients. The
connection can be established from either end.

personal digital addistant (PDA). A pocket sized
personal computer.

private. A private field is not visible outside its own
class.

protected. A protected field is visible only within its
own class, within a subclass, or within packages of
which the class is a part

public. A public class or interface is visible
everywhere. A public method or variable is visible
everywhere that its class is visible

queue. A queue is a WebSphere MQ object. Message
queueing applications can put messages on, and get
messages from, a queue

queue manager. A queue manager is a system
program the provides message queuing services to
applications.

server. (1) An WebSphere MQ Everyplace server is
WebSphere MQ Everyplace code with an WebSphere
MQ Everyplace channel manager, and WebSphere MQ
Everyplace channel listener, configured. This provides
the ability to receive from multiple devices and servers
concurrently. Contrast with client (1). (2)A computer
running WebSphere MQ Everyplace server code.
Contrast with device. (3) A WebSphere MQ server is a
queue manager that provides message queuing services
to client applications running on a remote workstation.
(4) More generally, a server is a program that responds
to requests for information in the particular
two-program information flow model of client/server,
or the computer on which a server program runs.

servlet. A Java program which is designed to run only
on a web server.

subclass. A subclass is a class that extends another.
The subclass inherits the public and protected methods
and variables of its superclass.

superclass. A superclass is a class that is extended by
some other class. The superclass’s public and protected
methods and variables are available to the subclass.

synchronous messaging. A method of communicating
between programs in which programs place messages
on message queues. With synchronous messaging, the
sending program waits for a reply to its message before
resuming its own processing . Contrast with
asynchronous messaging.

Transmission Control Protocol/Internet Protocol
(TCP/IP). A set of communication protocols that
support peer-to-peer connectivity functions for both
local and wide area networks.

Web. See World Wide Web.

Web browser. A program that formats and displays
information that is distributed on the World Wide Web.

World Wide Web (Web). The World Wide Web is an
Internet service, based on a common set of protocols,
which allows a particularly configured server computer
to distribute documents across the Internet in a
standard way.

160 WebSphere MQ Everyplace Application Programming Guide

Bibliography

Related publications:
v WebSphere MQ Everyplace Read Me First,

SC34-6276-00
v WebSphere MQ Everyplace Introduction,

SC34-6277-00
v WebSphere MQ Everyplace Java Programming

Reference, SC34-6279-00
v WebSphere MQ Everyplace System Programming

Guide, SC34-6274-00
v WebSphere MQ Everyplace C Bindings

Programming Guide, SC34-6280-00
v WebSphere MQ Everyplace C Programming

Reference

v WebSphere MQ Everyplace C Programming Guide
for Palm OS, SC34-6281-00

v WebSphere MQ Everyplace Configuration Guide,
SC34-6283-00

v WebSphere MQ An Introduction to Messaging and
Queuing, GC33-0805-01

© Copyright IBM Corp. 2000, 2002 161

162 WebSphere MQ Everyplace Application Programming Guide

Index

A
alias 68
applications,

deploying 20
assured delivery of synchronous

messages 71
asynchronous messaging 69
authenticatable entities and

auto-registration 98
authenticatable entity 97
authenticatable entity credentials 98
auto-registration of authenticatable

entities 98

B
bibliography 161
Browse and Lock

browse and lock 58

C
client

MQSeries Everyplace 48
common registry parameters 46
configuring

security for Windows 18
connections

WebSphere MQ Everyplaces
Everyplace 38

credentials of authenticatable entity 98

D
dead-letter queues 37
deleting

queue definitions 62
queue manager definitions 62
queue managers 62
standard queue definitions 62

delivery of messages 69
deploying

HelloWorld application 9
deploying applications 20
deployment

C 20
Java 20

designing
HelloWorld application 6

detecting queue events 60
developing

HelloWorld application 6
development environment 11
distributed messaging ix

E
environment

development, C 11

environment (continued)
development, Java 11
J2ME 11

example
files 143
files, bridge 148, 149
MQePrivateClient 49
MQePrivateServer 51
MQeServer 50

examples.adapters 143
examples.administration.console 143
examples.administration.simple 144
examples.application 144
examples.attributes 145
examples.awt 146
examples.certificates 147
examples.eventlog 147
examples.install 147
examples.nativecode 150
examples.queuemanager 150
examples.rules 151
examples.trace 151
examples.WebSphere MQ bridge 149
examples.WebSphere MQ bridge,

command line 149
expiry of messages 30

F
file registry parameters 45
files

bridge, example 148, 149
example 143

filters, message 30

G
get message 74

reading all on queue 58
getting started 11
glossary 159

H
HelloWorld application

deploying 6
designing 6
developing 6
running 6

home-server
queues 37

host messaging ix

I
installation test 22
issuance service, mini-certificate 94

operation 94
renewing mini-certificates 95

J
jar files 20
java

programming examples 143
Java development kit (JDK) 11
Java Message Service (JMS) 103
java programming examples 143
JDK 11
JMS 103

K
knowledge, prerequisite viii

L
lifecycle, message 51
listeners, message 60
listing mini-certificates 96
local queue 35
local security

secure feature choices 81
selection criteria 82
usage guide 82
usage scenario 81

lock ID 58
locking messages

locking 58

M
message

expiry 30
filters 30
index fields 54
listeners 60
polling 61

Message
Create 27
expiry 27
filters 27
What are WebSphere MQ Everyplace

messages? 27
message delivery 69
message lifecycle 51
message states 52
message-level security 87

secure feature choices 87
selection criteria 88
usage guide 89
usage scenario 87

messaging
MQeFields 25
MQeMsgObject 25
queue aliases 25

messaging, asynchronous 69
messaging, synchronous 69
mini-certificates 100

issuance service 94

© Copyright IBM Corp. 2000, 2002 163

mini-certificates (continued)
listing 96
obtaining new credentials 95
renewing 95
updating format 97

MQeDevice.jar 20
MQeExamples.jar 20
MQeFields 25
MQeGateway.jar 20
MQeMAttribute 87
MQeMiniCertificate.jar 20
MQeMQBridge.jar 20
MQeMTrustAttribute 88
MQePrivateClient example 49
MQePrivateServer, example 51
MQeRegistry parameters for queue

manager
registry parameters 47

MQeRegistry.DirName 45
MQeRegistry.LocalRegType

types 45
MQeRegistry.Separator 46
MQeServer, example 50
MQSeries Everyplace

client 48
server 50

N
naming

queues 33
notices 157

O
objects

storing and retrieving 25
obtaining new credentials for

mini-certificates 95
operations, messages

messaging, operations 54

P
packages example

packages 143
parameters

file registry 45
pervasive messaging ix
polling messages 61
post install test 22

C 22
Java 22

prerequisite knowledge viii
private registry service

authenticatable entity 97
private 97
secure feature choices 99
service 97
usage guide 99
usage scenario 98

programming examples
java 143

public registry 100
secure feature choices 100
selection criteria 101

public registry (continued)
service 100
usage guide 101
usage scenario 100

Q
queue

administration 37
definitions deleting 62
events, detecting 60
naming 33
ordering 58

queue alias 68
queue manager 43

definitions, deleting 62
queues 33, 35

dead-letter 37
home-server 37
local 35
remote 35
store-and-forward 36
WebSphere MQ bridge 38

R
reading

all messages on a queue 58
registry

queue manager parameters 47
related publications 161
remote queue 35
renewing mini-certificates 95
retrieving objects 25
running

HelloWorld application 10
running applications

deploying applications 11
development environment 11
HelloWorld 11
post install test 11
running 11
Windows security configuration 11

S
secure feature choices

local security 81
message-level security 87
private registry 99
public registry 100

security
configuring on Windows 18
features 79
local 80
message level 87
mini-certificate issuance service 94
public registry service 100
WebSphere MQ Everyplace 67

selection criteria
local security 82
message-level security 88
public registry 101

server
WebSphere MQ Everyplace 50

servlet queue manager
servlet 64

standard queue definitions, deleting 62
starting queue managers in C

queue managers, starting in C 44
starting queue managers in Java

queue managers, starting in Java 46
startup parameters, queue manager

startup parameters 48
store-and-forward queues 36
storing objects 25
synchronous assured message

delivery 71
synchronous messaging 69

T
terms viii
test, post install 22
trademarks 158

U
updating format of mini-certificates 97
usage guide

local security 82
private registry 99
public registry 101

usage scenario
local security 81
message-level security 87
private registry 98
public registry 100

W
Web server, running a queue manager

running in a Web server 64
WebSphere MQ bridge queues 38
WebSphere MQ Integrator viii
WebSphere MQ Workflow viii
Windows security configuration 18
workstation messaging ix

164 WebSphere MQ Everyplace Application Programming Guide

Sending your comments to IBM

If you especially like or dislike anything about this book, please use one of the
methods listed below to send your comments to IBM.

Feel free to comment on what you regard as specific errors or omissions, and on
the accuracy, organization, subject matter, or completeness of this book.

Please limit your comments to the information in this book and the way in which
the information is presented.

To make comments about the functions of IBM products or systems, talk to your
IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate, without incurring
any obligation to you.

You can send your comments to IBM in any of the following ways:
v By mail, to this address:

User Technologies Department (MP095)
IBM United Kingdom Laboratories
Hursley Park
WINCHESTER,
Hampshire
SO21 2JN
United Kingdom

v By fax:
– From outside the U.K., after your international access code use

44–1962–842327
– From within the U.K., use 01962–842327

v Electronically, use the appropriate network ID:
– IBM Mail Exchange: GBIBM2Q9 at IBMMAIL
– IBMLink™: HURSLEY(IDRCF)
– Internet: idrcf@hursley.ibm.com

Whichever method you use, ensure that you include:
v The publication title and order number
v The topic to which your comment applies
v Your name and address/telephone number/fax number/network ID.

© Copyright IBM Corp. 2000, 2002 165

166 WebSphere MQ Everyplace Application Programming Guide

���

SC34-6278-00

	Contents
	About this book
	License warning
	Who should read this book
	Prerequisite knowledge
	Terms used in this book

	Summary of changes
	Migration notes
	General migration issues
	What is the same?
	What is different?

	Not supported
	Migration warnings
	Cross API changes
	mqeQueueManager APIs
	Fields API
	Constants
	Administration messages
	Configuration and administration

	Deprecated classes
	Migrating from version 1.2.7 to version 2.0
	Changes to MQeFields
	Peer channels
	Changes to MQeChannel
	MQeAttribute

	Migrating from version 1.2.6 or lower to version 2.0
	Aliases
	Attribute keys
	MQBridge programming
	Mini-certificate server
	Registry
	Trace

	Chapter 1. Introduction
	Chapter 2. "HelloWorld" messaging
	Java codebase
	Developing the Java "HelloWorld" application
	Overview of the examples.helloworld.run program
	Stage 1: Start the queue manager
	Stage 2: Create a message and put to a local queue
	Stage 3: Get message from a local queue
	Stage 4: Shutdown

	Running the Java "HelloWorld" application

	C codebase
	Designing the C "HelloWorld" application
	Developing the C "HelloWorld" application
	C Development
	C Compilation

	Deploying the C "HelloWorld" application
	C deployment

	Running the C "HelloWorld" application
	PocketPC or emulator

	Chapter 3. Running Applications
	Development environment
	Java development
	C development
	Compilation information
	Binary files
	Using eMbedded Visual C++

	Threading
	Calling convention
	Handles and items
	WebSphere MQ Everyplace memory functions
	MQeString
	J2ME environment

	Windows security configuration
	Java development
	C development

	Deploying applications
	Java deployment
	C deployment

	Post install test
	Java
	C

	Chapter 4. Messaging
	MQeFields
	What are WebSphere MQ Everyplace messages?
	Message Filters
	Message Expiry

	Chapter 5. Queues
	What are WebSphere MQ Everyplace queues?
	Queue Names
	Queue types
	Local queue
	Remote queue
	Store-and-forward queue
	Dead-letter queue
	Administration queue
	Home-server queue
	WebSphere MQ bridge queue

	Queue persistent storage
	WebSphere MQ Everyplace connection definitions
	Using queue aliases
	Examples of queue aliasing

	Chapter 6. Queue manager operations
	What is a WebSphere MQ Everyplace queue manager?
	The queue manager lifecycle
	Starting queue managers
	Starting queue managers in Java
	Queue manager parameters
	Starting queue managers in C
	Registry parameters for a queue manager
	Registry type

	Client queue managers
	Starting a client queue manager
	Example MQePrivateClient

	Server queue managers
	Example MQeServer
	Example MQePrivateServer

	Environment relationship
	Java code
	C code

	Messaging lifecycle
	Message states
	Message events
	Message index fields

	Messaging operations
	Queue Ordering
	Reading messages on a queue
	Java
	C

	Browse and Lock
	Message listeners
	Message polling
	Trigger transmission
	Trigger transmission rules

	Deleting queue managers
	Java
	1. Delete any definitions
	2. Create and activate an instance of MQeQueueManagerConfigure
	3. Delete the standard queue and queue manager definitions
	4. Close the MQeQueueManagerConfigure instance

	C

	Servlet
	Security
	Connection security

	Aliases

	Chapter 7. Message Delivery
	Asynchronous message delivery
	Synchronous message delivery
	Assured and non-assured message delivery
	Assured message delivery
	Non-assured message delivery

	Synchronous assured message delivery
	Put message
	Get message

	Chapter 8. Security
	Security features
	Local security
	Usage scenario
	Secure feature choices
	Selection criteria

	Usage guide for Java
	Usage guide for C

	Message-level security
	Usage scenario
	Secure feature choices
	Selection Criteria

	Usage guide
	Message-level security using MAttribute for Java
	Message-level security using MAttribute for C
	Message-level security using MTustAttribute (Java only)
	Non-repudiation

	Mini-certificate issuance service
	Renewing mini-certificates
	Obtaining new credentials (private and public keys)
	Listing mini-certificates
	Updated mini-certificate format for WebSphere MQ Everyplace Version 2.0

	Private registry service
	Private registry and the concept of authenticatable entity
	Private registry and authenticatable entity credentials
	Auto-registration

	Usage scenario
	Secure feature choices

	Usage guide

	Public registry service
	Usage scenario
	Secure feature choices
	Selection criteria

	Usage guide

	Chapter 9. Java Message Service
	Using JMS with WebSphere MQ Everyplace
	Obtaining jar files
	Testing the JMS class path
	Running other WebSphere MQ Everyplace JMS example programs

	Writing JMS programs
	The JMS model
	Building a connection
	Starting the connection
	Obtaining a session
	Sending a message
	Receiving a message
	Handling errors
	JMS messages

	Restrictions in this version of WebSphere MQ Everyplace
	Using Java Naming and Directory Interface (JNDI)
	Storing and Retrieving objects with JNDI
	Using the example programs with JNDI

	Mapping JMS messages to WebSphere MQ Everyplace messages
	Naming MQeMsgObject fields
	WebSphere MQ Everyplace JMS information
	JMS header files
	JMS properties
	JMS message body

	WebSphere MQ Everyplace JMS classes

	Chapter 10. Error and error handling
	Error handling in the Java codebase
	Error handling in the C codebase
	Structure of the codes
	Exception block
	Obtaining an Exception Block
	Using exception blocks

	Useful macros

	Chapter 11. Deployment of applications from Webshpere Studio Device Developer
	Getting started
	Palm: What you need to get started
	Palm: Getting started with WSDD
	Palm: Building for the Palm in WSDD

	PocketPC: What you need to get started
	PocketPC: Getting started with Websphere Studio Device Developer
	PocketPC: Building for the Pocket PC in Websphere Studio Device Developer

	Debugging
	Debugging on the Palm using WSDD
	Debugging on the PocketPC using WSDD
	Debugging locally using WSDD

	Available runnable classes
	MIDlets
	Giving parameters to the MIDlet

	Cleaning up after the applications
	Problems with SmartLinker
	Additional help

	Chapter 12. Open Services Gateway Initiative
	WebSphere MQ Everyplace example bundle contents
	Using WebSphere MQ Everyplace within OSGi
	Running the Example Bundles
	Server application (MQeServerBundle.jar)
	Client Application (MQeClientBundle.jar)
	Running the example
	MQeBundle.jar

	Providing user-defined rules and dynamic class loading

	Appendix A. WebSphere MQ Everyplace Java programming examples
	Examples
	examples.adapters
	examples.administration.commandline package
	examples.administration.console package
	examples.administration.simple package
	examples.application package
	examples.attributes package
	examples.awt package
	examples.certificates package
	examples.eventlog package
	examples.install package
	examples.mqbridge.awt package
	examples.mqbridge.administration.commandline package
	examples.mqbridge.application.GetFromMQ
	examples.mqeexampleapp package
	examples.nativecode package
	examples.queuemanager package
	examples.rules package
	examples.trace package

	Appendix B. Applying maintenance to WebSphere MQ Everyplace
	Appendix C. Differences between trace in WebSphere MQ Everyplace version 1.2.6 or lower and version 2.0
	How to migrate from WebSphere MQ Everyplace version 1 to the WebSphere MQ Everyplace version 2.0 trace mechanism

	Appendix D. Notices
	Trademarks

	Glossary
	Bibliography
	Index
	Sending your comments to IBM

