
OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
79

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
80

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
81

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
82

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
83

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
84

In RSA/RSM, these changes have to be performed manually:

• Retrieve the interface to use and drag it to the diagram

• Select the relationship and move the target end from the analysis class to the
interface

• Delete the analysis class from the diagram

• Delete the analysis class from the design model after all changes have been made

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
85

In RSA/RSM, simply drag the interface over the analysis object and update the message.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
86

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
87

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
88

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
89

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
90

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
91

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
92

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
93

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
94

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
95

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
96

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
97

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
98

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
99

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
100

Concurrency is the tendency for things to happen at the same time in a system.
Concurrency is a natural phenomenon, of course. In the real world, at any given time many
things are happening simultaneously. When we design software to monitor and control real-
world systems, we must deal with this natural concurrency.

When dealing with concurrency issues in software systems, you must consider two
important aspects:

• Being able to detect and respond to external events occurring in a random order.

• Ensuring that these events are responded to in some minimum required interval.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
101

Some of the driving forces behind finding ways to manage concurrency are external. That is,
they are imposed by the demands of the environment. In real-world systems, many things
are happening simultaneously and must be addressed “in real-time” by software. To do so,
many real time software systems must be “reactive.” They must respond to externally
generated events that might occur at somewhat random times, in somewhat random order,
or both.
There also can be internally inspired reasons for concurrency. For example, performing
tasks in parallel can substantially speed up the computational work of a system if multiple
CPUs are available. Even within a single processor, multitasking can dramatically speed
things up by preventing one activity from blocking another while waiting for I/O. A common
situation in which this occurs is during the startup of a system. There are often many
components, each of which requires time to be made ready for operation. Performing these
operations sequentially can be painfully slow.
Controllability of the system can also be enhanced by concurrency. For example, one
function can be started, stopped, or otherwise influenced in midstream by other concurrent
functions — something extremely difficult to accomplish without concurrent components.
If each concurrent activity evolved independently, in a truly parallel fashion, managing them
would be relatively simple: we could just create separate programs to deal with each activity.
However, this is not the case. The challenges of designing concurrent systems arise mainly
because of the interactions that happen between concurrent activities. When concurrent
activities interact, some sort of coordination is required.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
102

Of course, multiple processors offer the opportunity for truly concurrent execution. Most
commonly, each task is permanently assigned to a process in a particular processor, but
under some circumstances tasks can be dynamically assigned to the next available
processor. Perhaps the most accessible way of doing this is by using a “symmetric
multiprocessor.” In such a hardware configuration, multiple CPUs can access memory
through a common bus.

Operating systems that support symmetric multiprocessors can dynamically assign threads
to any available CPU. Examples of operating systems that support symmetric
multiprocessors are SUN’s Solaris and Microsoft’s Windows NT.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
103

Concurrency requirements define the extent to which parallel execution of tasks is required
for the system. These requirements help shape the architecture.

A system whose behavior must be distributed across processors or nodes virtually requires
a multi-process architecture. A system that uses some sort of Database Management
System or Transaction Manager also must consider the processes that those major
subsystems introduce.

If dedicated processors are available to handle events, a multi-process architecture is
probably best. On the other hand, to ensure that events are handled, a uni-process
architecture may be needed to circumvent the “fairness” resource-sharing algorithm of the
operating system: It may be necessary for the application to monopolize resources by
creating a single large process, using threads to control execution within that process.

In order to provide good response times, it might be necessary to place computationally
intensive activities in a process or thread of their own so that the system still is able to
respond to user inputs while computation takes place, albeit with fewer resources. If the
operating system or environment does not support threads (lightweight processes), there is
little point in considering their impact on the system architecture.

The above requirements are mutually exclusive and might conflict with one another.
Ranking requirements in terms of importance will help resolve the conflict.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
104

The above concurrency requirements were documented in the Course Registration System
Supplemental Specification.

The first requirement is typical of any system, but the multi-tier aspects of our planned
architecture will require some extra thought for this requirement.

The second requirement demonstrates the need for a shared, independent process that
manages access to the course offerings.

The third issue leads us to use some sort of mid-tier caching or preemptive retrieval
strategy.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
105

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
106

When the operating system provides multitasking, a common unit of concurrency is the
process. A process is an entity provided, supported, and managed by the operating system
whose sole purpose is to provide an environment in which to execute a program. The
process provides a memory space for the exclusive use of its application program, a thread
of execution for executing it, and perhaps some means for sending messages to and
receiving them from other processes. In effect, the process is a virtual CPU for executing a
concurrent piece of an application.

Many operating systems, particularly those used for real-time applications, offer a “lighter
weight” alternative to processes, called “threads” or “lightweight threads.”

Threads are a way of achieving a slightly finer granularity of concurrency within a process.
Each thread belongs to a single process, and all the threads in a process share the single
memory space and other resources controlled by that process.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
107

You can use “active” classes to model processes and threads. An active class is a class that
“owns” its own thread of execution and can initiate control activity, contrasted with passive
classes that can only be acted upon. Active classes can execute in parallel (that is,
concurrently) with other active classes.

The model elements can be stereotyped to indicate whether they are processes
(<<process>> stereotype) or threads (<<thread>> stereotype).

Note: Even though you use “active” classes to model processes and threads, they are
classes only in the meta-modeling sense. They aren’t the same kind of model elements as
classes. They are only meta-modeling elements used to provide an address space and a
run-time environment in which other class instances execute, as well as to document the
process structure. If you try to take them further than that, confusion may result.

Process communication is modeled using dependency relationship whether you use classes
or components to represent your processes.

In cases where the application has only one process, the processes may never be explicitly
modeled. As more processes or threads are added, modeling them becomes important.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
108

The above example demonstrates how processes and threads are modeled. Processes and
threads are represented as stereotyped classes. Separate processes have dependencies
among them. When there are threads within a process composition is used. The
composition relationship indicates that the threads are contained within the process (that is,
cannot exist outside of the process).

The StudentApplication process manages the student functionality, including user interface
processing and coordination with the business processes. There is one instance of this
process for each student who is currently registering for courses.

The CourseRegistrationProcess encapsulates the course registration processing. There is
one instance of this process for each student who is currently registering for courses.

The CourseRegistrationProcess talks to the separate CourseCatalogSystemAccess
process, which manages access to the legacy system. CourseCatalogSystemAccess is a
separate process that can be shared by multiple users registering for courses. This allows
for a cache of recently retrieved courses and offerings to improve performance.

The separate threads within the CourseCatalogSystemAccess process, CourseCache, and
OfferingCache are used to asynchronously retrieve items from the legacy system. This
improves response time.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
109

In the Automated Teller Machine, asynchronous events must be handled coming from three
different sources: the user of the system, the ATM devices (in the case of a jam in the cash
dispenser, for example), or the ATM Network (in the case of a shutdown directive from the
network). To handle these asynchronous events, we can define three separate threads of
execution within the ATM itself, as shown below using active classes in UML.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
110

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
111

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
112

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
113

Software flaws in Life-critical systems can be disastrous. Race conditions were among the
flaws in the Therac-25 radiation therapy machine, which led to the death of five patients and
injuries to several more. Another example is the Energy Management System provided by
GE Energy and used by Ohio-based FirstEnergy Corp. (and by many other power facilities
as well). A race condition existed in the alarm subsystem; when three sagging power lines
were tripped simultaneously, the condition prevented alerts from being raised to the
monitoring technicians, delaying their awareness of the problem. This software flaw
eventually led to the North American Blackout of 2003. (GE Energy later developed a
software patch to correct the previously undiscovered error.)

(Source: Wikipedia 2007)

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
114

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
115

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
116

Client/server is a conceptual way of breaking up the application into service requestors
(clients) and service providers (servers).

A client often services a single user and often handles end-user presentation services
(GUIs). A system can consist of several different types of clients, examples of which include
user workstations and network computers.

The server usually provides services to several clients simultaneously. These services are
typically database, security, or print services. A system can consist of several different types
of servers. For example: database servers, handling database machines such as Oracle,
DB2; print servers, handling the driver logic, such as queuing for a specific printer;
communication servers (TCP/IP, ISDN, X.25); window manager servers (X); and file servers
(NFS under UNIX).

The application and business logic is distributed among both the client and the server
(application partitioning).

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
117

Fat client distribution pattern: Much of the functionality in the system runs on the client.

Three-tier architecture: The system is divided into three logical partitions: application services, business
services, and data services. The “logical partitions” may in fact map to three or more physical nodes.

Application services, primarily dealing with GUI presentation issues, tend to execute on a dedicated desktop
workstation with a graphical, windowing operating environment.

Data services tend to be implemented using database server technology, which normally executes on one or
more high-performance, high-bandwidth nodes that serve hundreds or thousands of users, connected over a
network.

Business services are typically used by many users in common, so they tend to be located on specialized
servers as well, although they may reside on the same nodes as the data services.

Partitioning functionality along these lines provides a relatively reliable pattern for scalability: by adding servers
and rebalancing processing across data and business servers, a greater degree of scalability is achieved.

At the other end of the spectrum from the fat client is the typical Web Application (which might be
characterized as fat server or “anorexic client”). Since the client is simply a Web browser running a set of
HTML pages and Java applets, Java Beans, or ActiveX components, there is very little application there at all.
Nearly all work takes place on one or more Web servers and data servers.

Web applications are easy to distribute and easy to change. They are relatively inexpensive to develop and
support (since much of the application infrastructure is provided by the browser and the web server). However,
they might not provide the desired degree of control over the application, and they tend to saturate the network
quickly if not well-designed (and sometimes despite being well-designed).

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
118

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
119

Processes must be assigned to a hardware device for execution in order to distribute the
workload of the system.

Those processes with fast response time requirements should be assigned to the fastest
processors.

Processes should be allocated to nodes so as to minimize the amount of cross-network
traffic. Network traffic, in most cases, is quite expensive. It is an order of magnitude or two
slower than inter-process communication. Processes that interact to a great degree should
be co-located on the same node. Processes that interact less frequently can reside on
different nodes. The crucial decision, and one that sometimes requires iteration, is where to
draw the line.

Additional considerations:

• Node capacity (in terms of memory and processing power)

• Communication medium bandwidth (bus, LANs, WANs)

• Availability of hardware and communication links

• Rerouting requirements for redundancy and fault-tolerance

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
120

Deployment diagrams allow you to capture the topology of the system nodes, including the
assignment of run-time elements to them.

A deployment diagram contains nodes connected by associations. The associations indicate
a communication path between the nodes.

Nodes may contain artifacts which indicates that the artifact lives on or runs on the node. An
example of a run-time object is a process.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
121

The above diagram once again illustrates the Deployment View for the Course Registration
System. Note: No threads are shown in the above diagram, because threads always run in
the context of a process.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
122

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
123

Remote Method Invocation (RMI) is a Java-specific mechanism that allows client objects to
invoke operations on server objects as if they were local. The only catch is that, with basic
RMI, you must know where the server object resides.
The mechanisms of invoking an operation on a remote object are implemented using
“proxies” on the client and server, as well as a service that resides on both that handles the
communication.
The client establishes the link with the remote object via the Naming utility that is delivered
with RMI. There is a single instance of the Naming class on every node. The Naming
instances communicate with one another to locate remote objects. Once the connection is
established (via lookup()), it may be reused any time the client needs to access the remote
object.
RemoteStub and RemoteSkeleton are automatically generated. To get them, you run the
compiled distributed class through the rmic compiler to generate the stubs and skeletons.
You then must add the code to look up the object on the server. The lookup returns a
reference to the auto-generated RemoteStub.
For example, say we had a class, ClassA, that is distributed through RMI. Once ClassA is
created, it is run through the rmic compiler, which generates the stub and skeleton. When
you do the lookup, the Naming object returns a reference to a ClassA, but it is really a
ClassA stub. Thus, no client adjusting needs to happen. Once a class is run through rmic,
you can access it as if it were a local class, the client does not know the difference.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
124

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
125

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
126

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
127

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
128

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
129

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
130

Relational databases and object orientation are not entirely compatible. They represent two
different views of the world: In an RDBMS, all you see is data; in an object-oriented system,
all you see is behavior. The object-oriented model tends to work well for systems with
complex behavior and state-specific behavior in which data is secondary, or systems in
which data is accessed navigationally in a natural hierarchy (for example, bills of materials).
The RDBMS model is well suited to reporting applications and systems in which the
relationships are dynamic or ad hoc.

The real fact of the matter is that a lot of information is stored in relational databases, and if
object-oriented applications want access to that data, they need to be able to read and write
to an RDBMS. In addition, object-oriented systems often need to share data with non-
object-oriented systems. It is natural, therefore, to use an RDBMS as the sharing
mechanism.

While object-oriented and relational design share some common characteristics (an object’s
attributes are conceptually similar to an entity’s columns), fundamental differences make
seamless integration a challenge. The fundamental difference is that data models expose
data (through column values) while object models hide data (encapsulating it behind its
public interfaces).

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
131

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
132

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
133

The persistent classes in the Design Model represent the information the system must store.
Conceptually, these classes might resemble a relational design (for example, the classes in
the Design Model might be reflected in some fashion as entities in the relational schema).
As we move from elaboration into construction, however, the goals of the Design Model and
the Relational Data Model diverge. The objective of relational database development is to
normalize data, whereas the goal of the Design Model is to encapsulate increasingly
complex behavior. The divergence of these two perspectives — data and behavior — leads
to the need for mapping between related elements in the two models.

In a relational database written in third normal form, every row in the tables — every “tuple"
— is regarded as an object. A column in a table is equivalent to a persistent attribute of a
class (keep in mind that a persistent class may have transient attributes). So, in the simple
case where we have no associations to other classes, the mapping between the two worlds
is simple. The data type of the attribute corresponds to one of the allowable data types for
columns.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
134

Associations between two persistent objects are realized as foreign keys to the associated
objects. A foreign key is a column in one table that contains the primary key value of the
associated object.

Assume we have the above association between Course and CourseOffering. When we
map this into relational tables, we get a Course table and a Course Offering table. The
Course Offering table has columns for attributes listed, plus an additional COURSE_ID
column that contains foreign-key references to the primary key of associated rows in the
Course table. For a given Course Offering, the COURSE_ID column contains the code of
the Course with which the Course Offering is associated. Foreign keys allow the RDBMS to
join related information together.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
135

Aggregation is also modeled using foreign key relationships.

Assume we have the above aggregation between Student and Schedule. (Note: This is
modeled as a composition, but remember that composition is a nonshared aggregation).

When we map this into relational tables, we get a Student table and a Schedule table. The
Schedule table has columns for attributes listed, plus an additional column for Student_ID
that contains foreign-key references to associated rows in the Student table. For a given
Schedule, the Student_ID column contains the Student_ID of the Student that the Schedule
is associated with. Foreign keys allow the RDBMS to join related information together.

In addition, to provide referential integrity in the Data Model, we would also want to
implement a cascading delete constraint, so that whenever the Student is deleted, all of its
Schedules are deleted as well.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
136

The standard relational Data Model does not support modeling inheritance associations in a
direct way. A number of strategies can be used to model inheritance:

• Use separate tables to represent the super-class and subclass. Have, in the
subclass table, a foreign key reference to the super-class table. In order to
“instantiate” a subclass object, the two tables would have to be joined together.
This approach is conceptually easier and makes changes to the model easier, but
it often performs poorly due to the extra work.

• Duplicate all inherited attributes and associations as separate columns in the
subclass table. This is similar to de-normalization in the standard relational Data
Model.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
137

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
138

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
139

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
140

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
141

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
142

