Object-Oriented Analysis and Design with
UMLZ2 and Rational Software Modeler

Student Workbook
V1.1 (2007-11-09)

OOAD with UML2 and RSM — Student Workbook

Table of contents

Lab 1 — SeqUENCE DIAgramcccuuiieieieieeeee e e e e e e e aa e e e e e e aeaaans 3
Lab 2 — ClasS DIAQIamMSuuuueiieien oo e e e e et eeeeeaaeeeeeaaa e e es et e e s enneeeestnsaeesesnaaaeaens 5
Task 2.1: Modeling graphs, points and CONNECLOIS.........cccevvviiieiiiiiiie e, 5
Task 2.2: Modeling a family treeuoeeeri e 5
Task 2.3: Modeling a file SYSteMui e e 5
Lab 3 — Requirements ManagEemENL........... o eeerrnneeeeruieeeesnieeesesineeessrnaeeeeseeeeennnn 7
Task 3.1: Preliminary SEIUDcoviiuii e e e e e eeeeaas 7
Task 3.2: Identify the actors and use cases gbalyeoll system............cccceeeeviiiiiriinnn 12
Lab 4 — Architectural ANGIYSIScoouuiieiiii e e e e e e e e 15
Task 4.1: Creating the AnalysisS Model ... 15
Task 4.2: Identify the Key Abstractions of the RAlyBystemcccccviiiiiiiiiiiiins 17
Task 4.3: Represent the Higher Layers of the ABCHIITe..............oouuviiireiiiiiiiiiii v 19
Lab 5 — USe CasS@ ANAIYSIScoiiiiiiiii ettt 21
Task 5.1: Create Use-Case RealiZationsSccceeeeueuieieiiiieeiiiiee e e eeeeeneeeeeees 21
Task 5.2: Assign the Use-Case Behavior to Classes..........ccovviviiiiiiiiiiiineeeeeeei. 25
Task 5.3: Complete the VOPC ...t e e e 32
Task 5.4: Map Analysis Mechanisms t0 ClaSSeS.ccoo..ovviiiiiiiiieeieeeeiii e 35
Lab 6 — Identify Design EIeMENTS...........uiierriiieee e 37
Task 6.1: Transform an Analysis Class int0 & SUBSYS............cccovvviiiiiiiieeeiieiiiiiiees 37
[Lo Al O = E S I T =Y T [PP 47
Lab 8 — SUDSYSIEM DESION....ccuuii it ceeeee e e e e e e e e e e e aaeaas 49
Lab 9 — Finalize the Design MOdelceeiiiiiic et 55
Appendix 1 — Lab 2 SOIULIONS.........ccoiiiie e e e e 57
Modeling graphs, points and CONNECIONScccueemiiuiiieiiiiiie e e e e e 57
Modeling a family tree (without generalization)..............cccouuiiiiiiiiiiiiiiiiiii e, 57
Modeling a family tree (with generalization)coouuiiiiiiieiiiiiii e 58
MoOdeliNg @ file SYSTEIM ... et e e e e eeeeeneanans 58
Appendix 2 — Course Registration REQUINEMENTS e cceeeeevviiiiie e 61
Problem SEAtEMENT..........coiiiiii ittt ettt e e e e e e e e eaaaa e e e e e e e eeansnanns 61
(€1 (01T ST= Y PPN 62
Supplementary SPeCIfiCAtIONSccmmmm e ee e e e e 63
RegiSter FOr COUrsES UCo ceeeeme e e e e e e e e e e e e eaees 65
Appendix 3 — Payroll SYSEM........cccooiiii e 69
Problem SEAtEMENT..........coiiiiiiieiiiie ettt e e et e e e e e eanaa e e e e e e eeensnanns 69
(€1 (01T ST= 1Y PP 71
Supplementary SPeCIfiCAtIONScocemmm e ee e e e e e e 72
Maintain TIMECAId UCiiiiiiiiiiiiii et e e e e e e e e e eeeeaannns 73
RUN PAYIOll UC ... et e et e e e e e e e et e e e e et eaaee 75

OOAD with UML2 and RSM — Student Workbook 2

Lab 1 — Sequence Diagram

Interpret the following sequence diagram:

‘ = Jorge:Borrower ‘ ‘ = :Librarian ‘ ‘Q:Catalog| |Q lda};:\fideo‘

Ll.l: check if valid

|I ________________ ok -

.3 title requested 7

"A dant in the life of a programmer
_____________________________________ -

|
|
|
|
|
|
|
1.5 refrieve video "A da |

1.5.1; find kideo "& day .."
|

1.5.2: is available ?

urnavailable

1.7 order "Aday ..."

|

: =i = mewCirder: Order |
|

|

|

|

1.8: add newOrder |
T ' |

..................................... > |
] | |

OOAD with UML2 and RSM — Student Workbook 3

OOAD with UML2 and RSM — Student Workbook

Lab 2 — Class Diagrams

Task 2.1: Modeling graphs, points and connectors

Create a class diagram to model the following cptxe

A drawing is composed of several graphs.

A graph is composed of one or more points, that beagonnected or not.

One connector connects two points. There can beard connector between two
points.

Every point has a color.

Every connector has a color.

All the connectors of a given graph have the saoharc

All the points of a given graph have the same color

Destroying a point also destroys the associatedexiors.

wn e

©ONo O A

You can complete these statements with your owanagsons.

Task 2.2: Modeling a family tree

Model in a class diagram a family tree: the faet ttne has parents and possibly children.
Add relevant attributes.

Focus on the “biological” family ties — one has ayjw two parents, even if they are deceased.

Consider creating a first model without using gefizations, and a second one with
generalizations.

Hint: It might be necessary to add constraintsctugately model the family tree.

Task 2.3: Modeling a file system

Model a simple file system: a directory may contatiner directories and/or files.

Implement thedestroy(Joperation for both directories and files. Assunsd thfile or
directory can destroy itself by calling a hypothatisystem functio®ystem.destroy(self)
However, in the case of a directory, this functwam be called onlyf the directory is empty.
For a file, thedestroy()operation looks like (in Java-like pseudo-code):

public class File {
public void destroy() {
Syst em destroy(self);
}

OOAD with UML2 and RSM — Student Workbook 5

Solutions to these exercises can be found in appénd

OOAD with UML2 and RSM — Student Workbook

Lab 3 — Requirements Management

Task 3.1: Preliminary setup
For the remaining labs, the following files are\pded:

to automate some operations.

during the design phase.

ArchitectAssistant_xxx.zipntains a plug-in that you will be using in soafiehe labs
JDBCPattern_xxx.zifs another plug-in that provides a pattern that wdluse

PayrollSystem.zipontains the solutions to the different labs ¢stgrfrom lab 3).

Please do NOT open the RSM/RSA models before bdelddo.

Installing the plug-ins (ArchitectAssistant and JDBCPattern):
1. Unzip ArchitectAssistant xxx.zgendJDBCPattern_xxx.zipto a valid RSM

extension location:

a. An extension location is where plug-ins are instllYou can see all extension

locations by using the commahielp > Software Updates > Manage
Configuration(this may take a long time). The snapshot belowvstibe
default configuration settings: in this exampleyghould us€:\Program
Files\IBM\SDP7(as theC:\Program Files\IBM\SDP70Sharddcation is not

updatable.

=

% Product Configuration

File
% | ¥
= @;} {Rational Software Architect |

[#-*3 Z:\Program Files\IEM\3DP70
+ “i_il Z:Program Filest IBMSDPTOShare

= =
-1 == HEl

Ry

R T
A .

b.
C:\Program Files\IBM\SDP7@irectory:

OOAD with UML2 and RSM — Student Workbook

0 il 2

¢

y

In the example below, the contents of the zip fildlsbe extracted into the

B Winip - Architecthssistant RSA7 1.1.... [J[CJE3

wr By 0 e
e Qpen Favarites Add
Marne Twpe
@ architect. jar Executable Jar File
E‘]dependenciesZJP"' 0E (= Traso,
i_ijdependenciesl.] Extract @
;}j hierarchy. PG
E;i] readme, htrol Extract bo:
=] Architectassistan @ [v]
;ﬂlayers.JPG T e— - : T
C : Files Folders/drives:
@ plugin, ol e e =FET,
] feature.xm el | 2D E0F [a
() Al files i - i bin
Sl OFikes . | B conli
Selected O files, 0 by : E" if:i:u; 3
[] Ovenarite existing files & S idkg
[] Skip older files I oD um
Use folder names :: E“: rpill;glr;v;
[] Open Explarer windaw [E3E dl >

2. To ensure that RSA/RSM picks up the newly added-pis, you must restart
RSA/RSM with the-cleanoption

a. To add the-cleanoption, create (or edit) the RSM/RSA shortcut add ‘&
clean” as shown below:

IBM Rational Software Architect 7 Properties

General | Shortcut | Compatibility | 5 ecurity

|BM Rational S oftware Architect 7

Target twpe: Application
Target location: SDPY0

Target: n.ibm.rational.rza. product.ide -shawlacati |

Start in: "C:\Program FileshBM\SDPYO"
Shotcut key:. [Mone

Run; MHaormal window hd

Comment: Rational Software Architect

[Find T arget... l [Change lzan... l [Advanced...

b. Restart RSM/RSA.

c. Verify that theArchitectAssistanplug-in was correctly added. (We will check
the JDBCPatternplug-in at a later time.) Right-click on any UMlagkage or

OOAD with UML2 and RSM — Student Workbook 8

model. You should have &rchitect Assistansubmenu as shown below:
(please note that you might see more entries irtbkitect Assistantnenu
than shown below — this is normal)

l Add LIML v

1 F #dd Diagram L4
= Add Mote

Mavigate 4

Yisualize L4

File 3

Edit 4

¥ Delete From Diagram
¥ Delete from Model

Modeling References 4

Find/Replace...

Fatmnat 4

Filters 4

Linkability 4

Transform 4
% vali

> Fix Access Wiolations

Architect Assistant

- Show Access Violations
] Show Properties Yiew r

UML Properties. ..

3. If the Architect Assistansubmenu is not available, the plug-in may be llestdut not
enabled

a. SelectHelp > Software Updates > Manage Configuratighis may take a
long time).

b. Open the Eclipse location where you installed ymug-in (C:\Program
Files\IBM\SDP70n our example).

c. If you do not see an entArchitect Assistant x.y.press th&show Disabled
Featuresicon as shown below:

% Product Co nfiguration ;
File

\'f; E i =R *

=l @;ERatiDnal Software Architect | ’
=3 Ci\Program Files\IBMISDPTO f#
-l U To Web Feature 2.0.3 L
[+l ‘ﬁ CiProgram Files\IBMYSDP70Shared lé")

-l potdn, T
- s, il e L o A

d. If you now see thérchitect Assistant x.yenmtry with the symbcﬁﬂ?, the
feature is disabled. At this point, you simply neéedlick onEnableas shown
below and restart the workspace as requestedultipa’t see thérchitect

OOAD with UML2 and RSM — Student Workbook 9

Assistant x.y.entry, it is likely you have not extracted thegia to the
correct location. Go back to step 1!

&7 Product Configuration
File:

ol = | 4R =RRE

‘.'.
f
<
Architect Assistant 1.1.0 (

Architect Assiskant consists of a menu itern .ﬂrchitef
Model Explarer view and Diagram area of the Modet
two commands: - Show Access Violations identifies ac
andfor packages. - Fix Access Violations identifies?

them based on the model lavered architecture an
these commands, select one or more packages anw,
pop-up menu, More info... y

Available Tasks

‘ou can enable or disable the Functionality of a F?

action.
Show Properties ;
P e, . . \-'ieu-.\.l_!a_raperln:i_es of the feature such as versian,}

4. Remove the-cleanoption from the shortcut (or create a separatetsimr

Importing the Payroll System solutions (RSA only for RSM, see next section):
1. File > Import ... > Project Interchange > Next
2. In thelmport Project Interchange Conterdgalog:
a. SelectPayrollSystem.zipsing theBrowsebutton to the right of the fielErom
zip file:
b. Check thePayrollSystenproject and clickinish

.J Import Project Interchange Contents

Import Projects

Import Projects from a zip file, |

S [[o —]
Fromapfie: T UML2 and RSRIo4. 2 Flesipa olSyste. 2 |2

Project location root: | CiiDocuments and Setkings) Administrator iy Documents

PayroIISystem

Importing the Payroll System solutions (RSM — alsevorks with RSA):
1. Ifitis not already the case, start RSM (or RSAJ go to theMlodelingperspective.
2. Create a new project call&hyrollSystenusing theProjectwizard:

OOAD with UML2 and RSM — Student Workbook 10

-

") New

Select a wizard

\Wizards:
proj

4% Java Project

Java Project From Existing Ant Buildfile
[E4] Managed Make C++ Project

5% Plug-in Project

%6y LML Project

=

: 'ﬁ Project

= = Business Inteligence and Reporting Tools
‘ih‘j' Report Project

L SEF SR e PIOTINT 1 JO aa

3. Open the zip file, select all the .emx file (seob@ and extract them into the
directory where your project was created (checkloaifull path of the project in the
Propertieswindow):

~ ,'__,’\'\..

s Oy

Mew Open
Marme -~
Hﬁl.project

[03, Use-Case Madel.emsx

=] 4. Analysis.emy
@‘l 05,1, Analysis.emx
ﬁ 05,2, Analysis.emx
;Ti 05,4, Analysis.emx
;] 06, Design.emx
ﬂ 07, Design.em:x
.'j', 08, Design.em:x
_:_ﬂ 09, Design.emx
ﬁ java.sgl.em:x

LS I o SRR e P i

Filez Falders/drives:

(®) Selected fles |) CustomerSearchippEAR |4
O &l files i EJBTest :
O Files: ,j EJBTestClient

] Overwiite existing files
[15kip older files
Use folder names

L TestUTowebbodels 1

vl
|

[] Open E=plorer windows |IL< | | i B |

4
4> = @ -@ A 22 i &
§ L 4 ;‘ 4 = T 2
> § 8= & o2 @ ¢
Favarites &dd Exkract Wi Checkout Wizard 1
Type Madified Size| Ratio Packﬁd?
PROJECT File 050212007 0321 340 46 15

E— o&7

'? 4 .":
Extract D e o

Ewtract to:

106
E stract é
583 f
Cancel REG

5?74«-’

B56
7o
333
141

5

L

D o A

£
¢
:
{
X

4. In RSM, right-click thePayrollSystenproject and select tHeefreshcommand to see
the files in theProject Explorer

OOAD with UML2 and RSM — Student Workbook

11

Task 3.2: Identify the actors and use cases of the payroll system
1.

If it is not already the case, start RSM (or RSAJ go to theModelingperspective.
2.

Create in théayrollSystenproject a new blank model namgde-Case Modekith
Use Case Diagraras the default diagram type.

=l T=F Payroll3ystem
+ [g Diagrarms

=22 Mad
"""""" Create ML Maodel |
04, Analysis
- [NP I
1 New UML Model
Create a new UYL model
Provide file name For the new model
File types: Templates:
= UML Modeling ®2 Blank Madel A
%4 Enterprise IT Design Model
{8t Service Design Madel
?h Use Case Model
%0 %50 Madel -
Template Description:
Create a blank UML model,
File narne:

Use-Case Model
Destination folder:
PayrallSystem
Default diagram

Create a default diagram in the new model,

Defaulk diagram tvpe: |Use Case Diagram

Finish l [Cancel

3. Rename the diagraMain asGlobal View

OOAD with UML2 and RSM — Student Workbook

12

—I-E21 Use-Case Model

Yisualize L4

Rename

Refackor * [_Rename...
of Cut +}s Move, .,

=1 A

4. Create and briefly describe the actors and usesdas¢he Payroll System in this
diagram, based on the problem statement, glossarg@pplementary specifications
provided in the Appendix 3 of this document.

OOAD with UML2 and RSM — Student Workbook 13

OOAD with UML2 and RSM — Student Workbook

14

Lab 4 — Architectural Analysis

Task 4.1: Creating the Analysis Model

1.

In thePayrollSystenproject, create a new blank model, narAedlysis and with
class diagram as the default diagram type.

Create in thédnalysismodel two class diagrams respectively nasehitectural
LayersandKey Abstractions

06, Design
07, Degiam
05, D Add UML k
09. Des Add Diagram * |B| Class Diagram
—I-E= Analysi e 4 3 Camposite Skructure Diagrar
EII% Mai Add Shortcut ﬁ Component Diagram
s (U Open 1 Deplovment Diagrarm
jawva.so . - . .
5 B Uss-Ca Open Wikh P M Object Diagram

Wl

The analysis model should look like this in thejgcb explorer:

-2 analysis
\El| Architectural Lavers
|El| Key Abskractions
Bl Main
S, (UMLPrimitiveTypes)

In theMain diagram, create shortcuts to the newly createdraiag. To do this, you
can simply drag and drop each diagram (make sueatbthe note below before you
do) from theProject Exploreronto theMain diagram.

Note In some configurations, clicking on a diagranthia project explorer or
attempting to drag-and-drop it automatically britigs diagram to the front if it is
already open, thus hiding the intended targetNtaa diagram). To avoid this
situation, close thArchitectural LayersandKey Abstractionsliagrams or use “split
screens” as in the snapshot below.

OOAD with UML2 and RSM — Student Workbook 15

|E| Main 3

[l Architectural Layers
Double-click to see the architectural layers

|5 Key Abstractions
Double-click tosee thekey abstractions

El| Architectural Layers 2| Key Abstractions 2

Important Every package in a model (including the modelli)ysshould have a
“default diagram”. This default diagram is the gripint into the package, i.e. the
diagram that is opened when double-clicking onpihekage. Th#lain diagram
should contain all relevant information for the useeasily find his/her way in the

package (shortcuts to other diagrams, main nestekbges, textual information and
notes, etc.).

4. Add the profilesAnalysis ProfileandArchitectAssistanto theAnalysismodel. First
select the model in the project explorer, thenRhafilestab in thePropertiesview.
You will need to repeat thédd Profilefor each profile.

<) Select Profile
=] &8 Tasks | Console | Bookmarks | Searcl| (%) Deploved Profile
General B2 <Model> Analysis Analysis Profile w

i JProfile in Workspace
Profiles Applied Profiles: O >
Stereckypes
Docurmentation MNarne Yersion | Release L C"-
JFile
Constrainks Diefault 1 .00
Deplovment 1 7.00

Advanced Standard 1

* I (0] I [Cancel

add Profile, .. Pl

The profiles should appear in tApplied Profiledist. We will use them later on.

OOAD with UML2 and RSM — Student Workbook 16

= Properties 52 Tasks | Console | Bookmarks | Search | Servers | Problems | Requirement o

General E2 <Model> Analysis

Profiles fpplied Profiles:

Stereokypes

Dacurmentation Marne Wersion | Release Label | Location

CErEieiEs Architectfssistant ¥ 1.0.5 Z\Pragram F?Ies'l,IEEM'\SDI
Default 1 .00 Z:\Program Files)IEMS0I

Advanced Ceploymen 1 7.00 C:YProgram Files\IBM SO

RUPAnalysis B .00 Z:\Program Files)IEM S0

Standard CiProgram Filest IBRSDI

add Profile. ..

—_

Task 4.2: Identify the Key Abstractions of the Payroll System

1. For this task, you need:
a. The problem statement and glossary for the Pagsastem in Appendix 3 You
should already be familiar with these documentgoasused them in lab 3.
b. The Use-Case Model created in lab 3: you can eitheithe model you created
or the solution provided in mod@B. Use Case Modelvhichyou can now
open.

2. Open theKey Abstractiongliagram in théAnalysismodel.

3. ldentify the key abstractions of the system andasgnt them as classes in Key
Abstractiongdiagram:

a. Remember: A key abstraction is a concept, an etfi#ty/the system must be
able to handle. The key abstractions form an irse of classes that is useful
to “jump-start” the analysis work.

b. As an_exampleconsider the following extracted from the problstatement:
“Some employees (...) submit timecards that recordateeand number of
hours worked for a particular charge number.

i. Employees and timecards are major entities thasyktem will have to
handle. They are key abstractions. We thereford wecreate two
classes to represent theBmployeeandTimecard This is also the
right time to provide a brief description of eadhss.

OOAD with UML2 and RSM — Student Workbook 17

|E| Key Abstractions &3

Q Employee

=
= Q Timecard

= Properties &3 Tasks | Console | Bookmarks | Search | Servers | Proble

General H «Class> Analysis::Employee

Attributes

Operations

& person working For the Acme companty.

Stereatypes
Dacumentation

Canstraints

ii. Because each employee “owns” the timecards thahbefubmits every
week, we will add an association between the ZelRsAn employee
may have 0 to n timecards. A timecard only makesesé it can be
associated with exactly 1 employee.

|E| Key Abstractions &2

Q — -employes - timecards

-?i—i*—‘ =/ Timecard

*

iii. Because it is also said that the timecards re¢@dlate and number of
hours worked for a particular charge number, weadidperiod (date
is not enough) andours per projecas attributes ofimecard

|E| Key bstractions &3

= Employee
-employee timecards

1 Q Timecard
* (Eg petiod
[haurs per project

Shouldhours per projecbe more detailed? First, keep in mind that the
purpose of key abstractions_is otcreate classes that will survive
throughout design (although most will). It may makesise to provide a
more detailed representation (introducing additiefesses), but it is
only just that: another representation of the sarfegmation... And
there are other factors: knowledge of the busidessain, whether this
is a new application or an overhaul of an existing, etc.

OOAD with UML2 and RSM — Student Workbook 18

Note When a class is created in a diagram, its pasehe package
containing the diagram. For now, we will not woatyout the exact
location of the classes. If it helps you organtee information, feel free
to allocate those classes to specific packagedebatvare we may
have to change this allocation.

Task 4.3: Represent the Higher Layers of the Architecture

1. The architect has indicated that, at this stagbefnalysis, two architectural layers
must be created: tHeresentatiorayer and th&usinesdayer. ThePresentatiorayer
depends on thBusinesdayer.

2. Open théArchitectural Layersliagram in theAnalysismodel.

3. While in theArchitectural Layergliagram, create two packag@sesentatiorand
Business.

|E| *architectural Layers &3

i R |

i CJ Presentation E

1 Business

4. Assign the stereotype<layer>> to these packages: you can select both packages (a
shown in the picture above), then apply the stgpeotrom thePropertieswindow as
shown below:

OOAD with UML2 and RSM — Student Workbook 19

=] &

General
Prafiles
Stereotypes
Documentation
Canstraints
Appearance

Advanced

5. Draw the necessary relationship to support thestant “thePresentatioriayer
depends on thBusinesdayer”. Your diagram should now look somethingelik

_.]' Apply Stereotypes

Tasks | Console | Servers | Search | Call Hierarchy
2 <Package: 2 items selected

Keywords:

Applied Stereotypes:

Stereotype | Profile | Reguired

laver
~ ’

Mame

[] externaltibrary
] Framewark
- =l

|:| perspective
|:| trace

Apply Stereotypes. .. J]-—_ by I]

Stereotyvpe Properties:

Property Walue

Profile
Architectissistant
Standard
Architeckhssistant
Architectissistant
Standard
Diefault
Architectissistant

(o] 4] [Cancel

)

]

«layers
[Presentation

«layers
[Business

Note Our two layers are empty for now. In later lalve, will assign our classes and
other packages to these layers. But for now, wealestructuring our model for
future use. As previously mentioned, if it helpsiyarganize the information, feel free
to allocate your classes and packages to the actiial layers.

OOAD with UML2 and RSM — Student Workbook

20

Lab 5 — Use Case Analysis

Task 5.1: Create Use-Case Realizations

1. You have been assigned the use ¢damtain Timecardo analyze. Your first task is
to prepare the model for the analysis wdtér this task, you may use the Analysis

model you created in the previous lab or the médelAnalysis Modewhichyou can
now open.

2. Working in theProject Explorer(see snapshot below), create the packige

Realizations
- Iif' ﬂgf Add LML b B Package
H g Add Diagram »
Mew b % Ackor
+-0
o | Add shorteut Subsystem
—-E= Analysis *
=,

25 Associations

Bl Main

3. Drag the newly created package to k&n diagram of the analysis model:

L™ *Project Explorer &3 = |E] *Main

51 Analysis *

'%‘ Associakions

ET «lavers Business || Architectural Layers

5 «layers Presentation Double-click to see the architectural lavers |
CJ UC Realizations

CIUC Realizations
Bl architectural Law ———
E| key Abstractions

[E] Key Abstractions

+- =] CommissionedEmployes Double-click to see the key abstractions
+ Q Employes

+ Q HaourlvErmplayee

+ g Paycheck

|

4. You can use th@ppearancdab in thePropertieswindow to modify the appearance
of elements like packages and classes in diagfaonsnstance, you can hide the
Package Contentsompartment of th&/C Realizationgthe bottom part of the

package in the picture above) by un-checking?thekage contentsheckbox as
shown below.

OOAD with UML2 and RSM — Student Workbook 21

E| *Main 3

|5l Architectural Layers

Double-click to see the architectural layers |
I UC Realizations

|5l Key Abstractions
Double-click to see the key abstractions

| Properties &3 Tasks | Console | Servers | Search | Call Hierarchy | Problems | Styles | Debug

£1 <Package> Analysis::UC Realizations

General
Profiles Fonks and Colors:
Stereotypes Tahoma L

Documentation

Conskrainks @

Appearance

Advanced Parent Style: Show Stereatype: Show Compartments Show Compartrnent Titles
(%) Mone) Mone ckage contents [rackage contents
O Marne O Text

() qualified Mame () Decoration
{*) Decoration and Text
() shape Image

5. Open theMain diagram in the packaddC Realizationsnd use the Action bar to
create a package calldthintain Timecard

L™ *Project Explorer &2

C=T Analysis ™
5 B[

(22 Assaciations B H B = B @ = =

+-CJ «layers Business S

+-E3 «lavers Presentation __Pac Qe

£ 1UC Realizations

|El Architectural Lavers
Bl Kev Abstractions

Note If you don't see the action bar, click again ahgne in the diagram.
6. Double-click on theMaintain Timecardgackage to open it (make sure to double-click
outside the text area as this would turn on teitingpinstead of opening the package

— double-clicking on the upper left tab of the g will ensure you get the desired
effect).

OOAD with UML2 and RSM — Student Workbook 22

[[Project Explorer 52 = *‘_l% 7 = 8| B Main |2 Main 3
= &nalysis]
[+ % Associations

Double-click here
to "open” the

i3 «lavers Business package

B3 «lavers Presentation

I-F3 UC Realizations 3
=3 Maintain Timecard ‘—K
[El Main e
ol - C1Maintain Timecard
H| Main
- |8 &rchitectural Layers

T E @

7. You are now in thé/lain diagram of the packadéaintain TimecardYou are going
to create a use-case realization naiMegthtain TimecardKeep in mind: we are still
in the process of structuring the model.

a. Select theCollaborationtool in theClassdrawer under th€lass entry

== Class -

£ Package

] Class i

v chass @ Inkerface
E2 Stereatyped Class " Association -
=1 Signal A Generalization
P -

Enumerakion . : Realization =
Data Type .;,,. Dependency -
] rtifact i, Element Import -
rtiFac
- iCollaboration

b. With theCollaborationtool selected, click once in ti\dain diagram and name
the collaboratiomMaintain Timecard Optionally, hide the structure
compartment as explained in step 4 above.

L™ *Project Explarer 55 = B8 %24 *analysis.emx |E| *Main |E| *Main
e
==
=-E2 analysis * |

+ % Assaciations

+-C3 «layers Business
#-07 slayers Presentation
=I-E3 UC Realizations

=-EJ Maiptain Timecard
(Main)

E| Main
E| Architectural Layers
Bl ke Abstractions

~2Maintain Timecard

Note The collaboration is displayed as a rectanguiaps. In the version of
RSM used for setting up this lab, it is not possiiol change it to its icon
representation.

OOAD with UML2 and RSM — Student Workbook 23

c. Retrieve in théProject Explorerthe use casklaintain Timecarctreated in lab
3 (or use the use case from mod@l Use-Case ModelThen drag and drop
the use case in the diagram next to the collalwras shown below:

L™ *Project Explorer 23 = 8 8 *Main |E] *Main Bl *Main 3
o
==
=I-E=1 03. Use Case Model A

¥

OOAD with

J_%’ Associations
3 Global Yiew e

,% Bank System y Y
% Commissioned Emploves

,% Emnployves —_—

/% Printing Service Maintain Timecard
% Project Management Dakaba
,% Reqistrar

,% System Clock

2 Create an administrative rep

~>*Maintain Timecard

0 Create an employes report
2 Enter a purchase order
2 Enker emploves data
2 Mainkain Timecard
2 Run Payrall

Note The use case has a little arrow in the upperctafter. This indicates that
it is located in a different model as the diagranwhich it appears.

d. Draw aRealizationrelationship from the use-case realization toue case.

= Class »
- 1 Package
22 Collaboration -
[Interface
~ Assodation -
. Generalization
¥ Realization 2
" Dependency o

D
& Interface Realization iz, Element Import .~

i Substitution

The diagram should look something like:

““Maintain Timecard | > Y

Maintain Timecard

Note The use-case description and the use-case reatizae best kept
separated as they will often be handled by diffepeople and/or at different
times. Also having the use case “shortcut” in tizgchm makes it very easy to
locate the use case in the model where it is defiaed therefore to get access
to any associated information, including its tektlescription (use-case
specification), documenting diagrams, etc.

UML2 and RSM - Student Workbook 24

5 ——
"2 Maintain Timecard [--------------------------- +(
; Add LIrL 4
Maintai add Diagram 4
& Add Maote
Iavigate * Showin k i‘& Inheritance Explorer
Visialize * (2] Project Explorer
Instantiate J

‘L. Data Project Explarer

Task 5.2: Assign the Use-Case Behavior to Classes

1. For this exercise, you will need the specificationthe Maintain TimecardJC in
Appendix 3 of this document. You can either woknirtheAnalysismodel created
during the previous exercise, or from mo@gll. Analysis

2. If this is not already the case, make sureMiaén diagram for theMaintain Timecard
UC Realization is displayed on your screen.

3. Create a new sequence diagram for the basic flalweofise case:

a. In theProject Explorey right-click theMaintain Timecarccollaboration =)
and selecAdd Diagram > Sequence Diagram

[UC Realizations
=I-E3 Maintain Timecard

Bl Main
USRS g g
El ﬂain #dd Ciagram H |E| Class Diagram
[El Architectural L - .)
E| Kev Abstractic Create Fragment. .. _;L Compasite Structure Diagram
[E] mMain 4] Component Diagrarn
¥ Q Commissioneds N.avigfate g 1 Deployment Diagram
+ Q Emplayes "."ISLIEI|I2IIB ’ =) Obiect Diagram
¥ Q HourlyEmploye Instantiate L —
+ Q Paycheck Fename 3 Use Case Diagram
- Purchaseorder Refactor y| B Activity Diagram
: % ji‘::?jmplm of Cut =) State Machine Diagram

B (UMLPrimitiveT 1= COPY
¥ Delete From Model

Sequence Diagram

PAlE

Communication Diagram

.
=) Walidate Freeform Diagram

15

b. Name the interactior’]) andthe diagram®) Maintain Timecard — Basic
Flow:

=3 UC Realizations
=-F3 Mainktain Timecard
|5 Main Name both of these Maintain

(=2 Mainkain Timecard E‘mgcg}‘d = Bﬂjl‘ﬂ ngu
HCE | Interactionl -

T amresbagrant >

Ei Main

OOAD with UML2 and RSM — Student Workbook 25

c. Create a class diagram cal@PCunder theMaintain Timecardcollaboration

().

=-E0 U Realizations
=3 Mainkain Timecard
E| Main
=23 Mainkain Timecard
g vorc
=1~ Maintain Timecard — Basic Flow
3 Mainkain Timecard — Basic Flow
ey {Mainktain Timecard)
E| Main

d. Drag and drop th# OPCand Maintain Timecard — Basic Flow diagrams onto
the Main diagram of theMaintain TimecardJC, which should look like this:

L7 *Project Explarer 28 = <‘}==';> ¥ = 0] = *analysis.emx 2] *Main >! 3 *Maintain Timecard —
=2 Analysis * »
+ J_%“ Associations
£ «layers Business

e
#-E3 «layers Presentation

£ UC Realizations T [N
=B Maintain Timecard | “-*Maintain Timecard |---------------- [y
Maintain Timecard

=25 Mainkain Timecard

[l vorc —a

=+-E] mainkain Timecard — Basic Flaw

3 IMainkain Timecard — Basic Flow =] WP
-7 {Maintain Timecard) \

El Mai = . . .
= _a'n) Maintain Timecard — Basic Flow
|El| architectural Lavers -

|El| Kev Abstractions

e. Now here is the challenging bit: From the textusdatiption of the basic flow
of the use case, identify the classes that paatieip the use case and assign
use case behavior to these classes as this wasysigvshown by the
instructor: (an example follows)

i. Each object must be assigned to a class (existingw).
ii. Each message between objects must correspondassaoperation.

iii. Each participating class will be added to Y@PCdiagram in the second
part of the exercise (keep in mind: for the timabewe are not
concerned with the actual location of the classtss-will be dealt with
at a later time).

iv. For each class, define its documentation, anasgsigotypelfoundary
control or entity), and main attributetity classes).

Example Let’s take the example of the Run Payroll UC.

What we have:
1. A use-case diagram:

OOAD with UML2 and RSM — Student Workbook 26

4 [—
2

—
Run Payroll ™ Bank System
H\H"-.
~

System Clock

Printing Service

2. The description for the Run Payroll UC:

Basic Flow

1. The use case begins when it's time to run the playiioe payroll is run
automatically every Friday and the last working dayhe month.

2. The system retrieves all employees who should lkegrathe current date.

3. ..

3. A set of key abstractionEmployeeand its subclasseBaycheckTimecard
PurchaseOrder

Get started with the sequence diagram:

1. The actor initiating the use case is 8ystem ClockWe'll instantiate this actor by
dragging it from thd’roject Explorerinto our sequence diagram:

L™ *Project Explarer 23 — <§} = B || %2 *analysis.emx [E] *Main [E] *Main

=-E21 03, Use Case Model ~ | s3ystem Clock
+ % Associations

3 Glabal Wiew
Bank Swskem

% Commissioned Employes |H% iSystern Clack |

Employves LT |

Printing Service 1

' |Run Payroll - Basic Flow

+
+
+

+ Project Management Datab,

+ i Reiistrar |
0 Create an administrative report |

0 Create an emplovee report

qHoHoHOHOHO

2. As discussed in the course, we will define one rotlietr object (PayrollManage) for
handling the sequencing of actions in the scen#miothis use case. Note that in the
process we automatically create the correspondass ¢as shown in the snapshot
below). We also create boundary objects: one ger-ase case pair, although for our
example we’ll create only oneServiceSchedulgiand skip the other twoRankSystem
and:PrintingServicé.

OOAD with UML2 and RSM — Student Workbook 27

&' /Run Payroll - Basic Flow

B System Clock ‘

Click anywhere in
the diagram to
display the action

bar

We now have the following diagram:

Note All three objects are unnamed. This is becausg éine unique, at least within the

Unspecified

= Create Class

% Create Ackor

= | Create Component
Select Existing Element

' [Run Payroll - Basic Flow

|ﬂ% :System Clock H = Serviceschedulr H = PayrolManager |

context of this scenario.

Let's not forget to stereotype the classes appatglyi. Here is a useful tip: from an obje

in the sequence diagram, you can select ifPtiogect Explorerits “type” (the parent
class in this case) directly from the right click:

' |Run Payroll - Basic Flow

|W% :Systern Clock |

Add LML

" add Note

Mavigate
Yisualize

File:

Edit

The diagram now looks something like:

3

] :ServiceScheduler | | = :F‘agrollManagerJ

Showin # “24 Show Type in Project Explorer

[zl Praject Explarer

2Ct

OOAD with UML2 and RSM — Student Workbook

28

£ |Run Payroll - Basic Flow

|H% 1Systemn Clock | | HO :«Boundary»ServiceScheduer ‘ | & «ControlPayrolManager

To reduce the width of the objects on the screeun,rgight also want to display the icon
without its text:

Py e o “* mvu:vh‘:“—_‘v . ; "v -rE 100%s o

o v v Stereokype: Decoration and Text

i8< *FAnalysis, emx || *Main |E| *Main || *Main

R . ;
| 1Syskern Clock, | s«BoundarysServicescheduler | v Stersotype: Decoration

“,j* Stereokype; Shape Image

' |Run Payroll - Basic Flow “ Shereatype: Text

ge— “*Steregtype: Mone

m, .,
|H% :Systemn Clock | HO («Boundary»ServiceScheduer '

| | v o Compartment Stereatype: Decoration
= Compartment Stereotype; Text

8 Cornparkment Stereotype: Mone

Z* vigihility Style: Text
“* wisibility Style: None

| |
| |
| | v 8 Wisibilicy Style: Decoration
| |
I |

' |Run Payroll - Basic Flow

|H% :Systern Clock | | M@ :ServiceScheduler | | © :PayrolManager |
|

3. Step 1 of our basic flow readBhe use case begins when it's time to run the playioe
payroll is run automatically every Friday and treest working day of the montfihis
translates in our actor-obje&ystem Clockending a notification ttServiceScheduler
What really happens is that some timer previoustyegpires, and that we had register
our service scheduler to be notified upon expiryedlly doesn’t matter at this stage how
this is done exactly. We are only interested herthe result.

D
o

OOAD with UML2 and RSM — Student Workbook 29

£'|Run Payroll - Basic Flow

|H% 1Systern Clock | | HO :ServiceScheduler | | & PayrolManager ‘

| YWinspecified, |

«) Enter Operation name

Operation name

/i pracess payroll timer expiry

Ok l [Cancel]

4. On receipt, our scheduler object knows this ispdngroll timer (again we are interested
the result, not in how this is determined) and thateed to perform the run payroll
processing. The scheduler object being a boundgecy it will simply pass the
information to thePayrollIManagerby invoking, say, itsun payroll operation. Our
sequence diagram now looks like this:

' |Run Payroll - Basic Flow

|H% :System Clock | | H& ' ServiceScheduker | | O :PayrollManager |

i process payrall tirmer E}{Dir'y'll:]

| Firun payrall |

| £ run payroll
| S —
i pq‘u:ucess payrall timer expiry [)

5. Step 2 says thathe system retrieves all employees who should ideopahe current
date At this stage, we’ll make the assumption tRayrollIManagerknows about all the
employees. This seems reasonable enough. Aftehiliis the payroll manager! In
practice this will translate at the class levebiah associatiol..nfrom PayrollManager
to Employeewith a role name likallEmployee®r staft

However we are interested onlyemployees who should be paid on the current date
Because an employee knows its classification (ypsdlaried, commissioned) and the
associated data (e.g. hourly rate and number ashearked for an hourly employee),
and when the last payment was made Bhwloyeeobject has a list dPaycheclobjects

OOAD with UML2 and RSM — Student Workbook 30

with the date and amount), it seems natural tdlsatythe employee should be able to
answer the questiddhould you be paid at this date?

In our sequence diagram, we will materialize omutihts by adding a loop on all
employees and asking each one if he/she has taite p

' |Run Payroll - Basic Flow

|H,% :Systemn Clock H H& :ServiceScheduler H é:F‘agrDIIManager | | QEUI’:EI‘H@DEEE |

£ pocess payrall tirmer expirﬂ(]
| £ run payrall

&l ernployess

[oop

| :
|

| [0,*] Jf st be paid? ()
|

| Jf st be paid? ()
| R
|

|

|

|
|
Hrun payroll |
|
|

Notes

1) What is thicur:Employeebject? As we iterate through the list of all eixigt
employees, we usaur:Employedo reference the employee object being currently
examined. If they are 10 employeesr will successively point to each one of the 10
employees.

2) To draw the loop fragment, first select it ie {halette:

apt| Option Combined
Fragrnenk

[| Interaction Use

Sequence Diagram Drawer

v [opt|Option Combined Fragment

ait | Alternative Combined Fragment
iwopLOOP Combined Fragment

brk | Break Combined Fragment

seq Weak Sequencing Combined Fragment
stet Skrick Sequencing Combined Fragment

; _M;Jf.;rfugliggmlsi@q Fraomasts . . o L asnnmnn s

Then drag across the lifelines of the objects tecoObjects can also be added or

OOAD with UML2 and RSM — Student Workbook 31

removed after the fact.)

' |Run Payroll - Basic Flow |

|F'1¥ :Systern Clock ‘ | K& :ServiceSchedukr | [© :PayrolManager ‘ | = curEmploves ‘
| | |
i pfocess payroll tirmer expiml{)] | Click and drag |
i Horun payrol | |

| 4 run payral \L

S |

#f ptocess payroll timer expir |

LA | |

—

Task 5.3: Complete the VOPC

1. For this exercise, you will need tMaintain Timecard — Basic Flosequence
diagram created in task 5.2. You can either warsknftheAnalysismodel created
during the previous exercise, or from mo@gl2. Analysis

2. Open thevOPCdiagram for théMaintain TimecardJC Realization.

3. Complete the diagram as follows: (an example fadlpw
a. Add stereotypes to all classes (if not already jlone
b. Create relationships between classes: remembety;, kvie between object is
an instance of a relationship between the corrafipgrclasses. To that effect,
you can use thArchitectAssistanplug-in you installed earlier: right-click on
the package containing your interaction diagrantsssatect the command
Architect Assistant > Show Orphaned Links

OOAD with UML2 and RSM — Student Workbook 32

—-F Run Pasrall
Add LML b

Add Diagram L
Add Shortout
Create Model from Package

+

e

+

m

£

)

Create Fragment...

F- -
-3

?EEQE@@@

| i i -

Visualize L

Rename
Refactor »
of Cut
= Copy
¥ Delete from Model

| 1 I = I = =1 I =1

¥ validate

=1 =]

Modeling References L
Find/Replace...

| = I =1 =

3 Model Query...

=l

B Generate Report...
O
5[Architect Assistant k

H Show Orphaned Links
I)

E UML Properties... e e oatons
* - .
5[Linkability 3 . Shnwl.ﬁ.cuiess Violations

The results are logged in the console. In the satmdow, a missing
relationship has been detected betweersSt#eiceScheduleriass and the
PayrollManagerclass. This is because an object of tgeeviceSchedulas
invoking the operatioff run payrollon an object of typBayroliIManager
(You can actually see these objects on the sequitageam in the previous

page.)

Properties | Tasks El canscle 2 Servers | Search | Call Hierarchy | Problems | Styles | Debug
Show Access Violations

+++ Starting Show Missing Relations on Oct 5, 2007 12:32:22 PM +++

==» Processing Package 'Run Payroll'

—--— Processing Diagram Sequence Run Pavroll - Basic Flow
#*%% Missing Relationship > synchCall message '// run payroll' from Class 'ServiceScheduler' to Class 'PayrollManager'

—-> 1 missing relationship(s) found

+++ End of Show Missing Relations on Cct 5, 2007 12:32:22 PM +4+

We fix this case by adding a bi-directional asatien between the two classes.
This is discussed in more detail in the examplewel

Run theShow Orphaned Linksommand until you have no missing relations
left. To ensure you have not missed any, you carihreShow Orphaned Links
command against the whole model.

OOAD with UML2 and RSM — Student Workbook 33

c. Specify multiplicity and role names as appropriate.
d. Add class responsibilities (if not already done).

e. Add relevant attributes to entity classes (if notady done).

Example

1.

In the previous example, we had defined 4

objects::SystemClock ServiceSchedulerPayroliIManagerandcur:Employee The
object:SystemClockorresponds to an actor and is outside our systémlast three
are classes in our model. Two of the classes weeded as a result of our work,
classEmployeehad been identified in task 4.2 (Identify Key Alastions).

Let's drag the three classes to our VOPC:

«BoLndarys

H@ ServiceScheduler

Corrtrolks

& PayrollManager

g2 4f run payrall ()

g3 /) process payroll tirmer expiry ()

—| Employee

[E name
[addrass

&2 [rust be paid? ()

We note that we forgot to masmployeean <<Entity>> class.

If you remember the example, we had made the agsamtpatPayrollManager
knows about all the employees and we had statédhisavould translate into an
associatiord..nfrom PayrolIManagerto Employee Our VOPC now looks like:

«Boundary:

H@ ServiceScheduler

42 !/ process payrall timer expiry ()

T4

wControls

& PayrolManager

&l un payrall {)

s
i
£

/
s
/

/
/

i

/

w J
/

- AlEmployess

«BErtitys
@ Employee

[Eg name
[E addrass

&2 I rmust be paid? (]

OOAD with UML2 and RSM — Student Workbook

34

5. BecauseServiceScheduldras a link taPayrollIManager we need to add a
relationship betwee8erviceSchedulendPayrollManager For now, we will not
specify the exact nature and details of this reshetnip.

BecausePayrolIManagertalks tocur:Employeewe will represent this relationship
as an association froRayrollIManagerto Employeeawith a role name ofur and a
multiplicity of 0..1 Since we don’t want entities to depend on cor{toboundary)
objects, we will use a one-way association — agliddor theallEmployees

association.
“Boundary: sControls
H@ ServiceScheduler & PayrolManager
42 /1 pracess payroll timer expiry ©) g3 4 run payroll)
/’I’/r
//J
.lx-l
V4
" /,/
14 - alEmployess
«Entityms
@ Employee 0.1

[Cg name)
[Eg address i
g Jf must be paid? ()

Task 5.4: Map Analysis Mechanisms to Classes

The architect has indicated that the following gsial mechanisms have been identified:
Persistence

Distribution

Security

Legacy interface

PoObhPE

Inspect all the classes in your model and deterithieenechanisms to apply to each one. You
will do this by completing the documentation fi@bithe corresponding classes as shown
below.

OOAD with UML2 and RSM — Student Workbook 35

=l properties &2 Tasks | Clmsnle| SErvers | Search | Call Hierarchy | Problems | Styles | Debug |

General @ <Class> «Entity» 05.4. Analysis::PurchaseOrder
Attributes The record of a sale effected by an employee,
Operations ﬂ____-————
| isms: persi -
Stereotypes Mechanisms: persistence, security

Documentation

Constraints

oY

Advanced

OOAD with UML2 and RSM — Student Workbook

36

Lab 6 — Identify Design Elements

Task 6.1: Transform an Analysis Class into a Subsystem

1. For this exercise, you will work from the mod&.4. AnalysisYour task is to

transform theéProjectManagementDBoundary class into a subsystem and its
corresponding interface.

Because we are nhow moving into design, let’s craatew design model based on the
analysis model:

a. Make sure the modéb.4. Analysiss closed.
b. Create a new UML model in your project:

=I-T=F PayrollSystem

+ [g Diagrams

Create ML Model |

04, Analysis

A a4 AL

c. IntheNew UML ModeHialog, selecExisting Modelthen clickNext

1) New UML Model -
Create UML Model f
Create a new UML model :
=
L2
Create new UML mode! from: y
) standard template -
(O} el {;
P
Creates a new UML model using an existing model as a template 7
e e e R T r

d. Select05.4. Analysiss the model file and entBesignas theFile name then
click Finish.

OOAD with UML2 and RSM — Student Workbook 37

2] New UML Model

Create a new UML model

A source model file must be selected

Select a model file:

I PayrollSystem/05.4, Analysis.emx

]

[Brnwse...]

Referenced models

be copied to the destination project

These models are referenced by the PayrollSystemf05.4. Analysis.emx and wil

C:'\Documents and Settings\Administrator My Documents\RSA ProjectsidemaoPay

File name:

Destination folder:

PayrollSystem

—

Fj

.

Browse...
+ _ 7

- PR

e. Although you named the filBesign the modeis still named5.4. Analysis
(as shown below on the left). Select the model asihg thePropertiesview,

rename iDesign Save.

05.2. Analysis
#-E21 05.4. Analysis
05.4. Analysis
065, Design
07, Design
08. Design

—)

09, Design

05.2. Analysis
05.4. Analysis
06. Design
07, Design
03, Design
09. Design

+-E= Design *

Note Some of the snapshots below were created ireeadrsions of this
document and still referen@.4. Analysisnstead oDesign

3. Create the subsystefrojectManagementDB theBusinespackage:

OOAD with UML2 and RSM — Student Workbook

38

[75 *Project Explorer 52

|| *Main £3

=)@ *man =5
[t e . ~ v
=] . s o =|/.
= 054, Anlysis * Tl 1. Select the Stereotyped

é&—’ Associations
= B3 «layer» Business,
= | Component1

2. Click anywhere in
the diagram and ...

Create «auxiliarys Component
L kbuildComponent: Component

Component in the
Component drawer

focuss Component

simplements Component |L.=- Compon=my

'i-':__,!-_ Stereotyped Component 2

BB UE R adiechions T perese «implementationClass: Component
% |§| Architectural Layers Create «metaclass: Component Eroloss i
= . Create «bypes Component Inkerface
|2 Key Abstractions
E . Create sutility: Component [Arkifack
=] Main
= @ «Entitys CommissionedEmp| . Create «entitys C 3 ... select the Create pisaae -
@ «Entitys Employes Creats «process» <<subsystemn>> nstance
@ «Entitys HourlyEmployes Create «realization Component entry ompasite Struckure
- @ «Entitys Paycheck Create «services CRULIL L X o
- @ sEntity» PurchaseCrder ificati omonenty T EC
=@ «Entitys SalariedEmployes | |lertsease
- . . T =
& g «Entity» Timecard H@ Create «Boundarys Component [k=slenioyment
et (UMLPlrlmltlveTypes) s é Create «Cantrols Companent | == Geometric Shapes
05,4, Analysis | - i
<1 22 [E i Q Creake «Entitys Component & i
= = - L Create «traces Component - i 95 = =]
= B 3 : =5 < . : i : B
o= Outline. &3 Inheiitanes Explorer. || E Properties 57 Tasks | Console | Servers | Search | Call Hierarchy | Problems | Styles | Debug | R 1
=] T="'E| § _ . . s
— | — 3 <PackageZ «layers» 05.4. Analysis::Business _=—
Rulers & Grid Pl Main
Appeatance
Advanced Type: Class
Descripkion:

Name the componeRrojectManagementDEbe careful not to delete the stereotype
while renaming it if you are working from th&roject Explorey.

4. Create a packaderojectManagementServicestheBusinesgpackage. This new
package will contain the interface correspondintheosubsystem as well as
associated data. Your model should now look like: th

| L5 *Project Explorer 51 . =
= 0. Design *

& i—i’? Assodations

| = | ==
=k

=-E0 «ayers Business
+-E3 ProjectManagementServices
- esubsystems ProjectManagementDB
[E main
- B3 «dayers Presentation
i-F3 UC Realizations
|§| Architectural Layers
: @ Key Abstractions
2 |§| Main
- @ sEntitys CommissionedEmployee
- @ sEntitys Employee
@ sEntity= HourlyEmployee
- @ «Entitys Paychecdk
- @ «Entity: PurchaseOrder

fira)

1F

&

5.
ProjectManagementDB

= O || %24 =06. Design.emx | [E] *Main [E] Main &2
|
s5ubsysterns
ProjectManagementDB
]

£ ProjectManagementServices |

In theProjectManagementDBubsystem, create a class diagram c&leosystem

a. Right-click the subsystem in th&roject Explorerand selecAdd Diagram >

Class Diagram

OOAD with UML2 and RSM — Student Workbook

39

L™ *Project Explorer &3

—I-E=21 05,4, Analysis *

+ %‘ Associakions

=3 #layers Business

& < = O

El Main

Lk,
A
+-C3 ProjectManagementata
i} izsubsystems Proj =" e
.. Add LML
Add Diagram

+

£ #layers Presentation
E3 uC Realizations
Architectural Lavers
Key Abskractions
Iain

+

[@

Subsystem ProjectMar

Q <Enkikys Cormissione:

@ <Ertitys Emplayes

@ «Ertitys HourlyEmploy

@ «Entitvs Pavcheck “'f-’

G

Create Fragment...

Mavigake
Visualize
Inskankiake

Renarme
Refactor
Zuk

|2 *Main (2] Main |2 *Main &2
' | it
| |E| Class Diagram LB
E Composite Struckure Diagramm —
E Camponent Diagram :
: 1 Deployment Diagranm
. E Cbiject Diagram
3 Ise Case Diagram tData
» 2 Ackivity Diagram
= State Machine Diagram

b. Name the diagrarBubsystem ProjectManagementDB
c. Right-click the newly created diagram in tRmject Explorerand selecMake

Default Diagram

L™ *Project Explorer 22

=-E=1 05.4. Analysis *
+ %" Associakions

-I-E3 «lavers Business
+-F0 ProjectManagementData

= asubsystems ProjectManagementDE

|E| Eubsystem |

El Main
+-C0 «layers Presentation
+-E3 UC Realizations
\E| Architectural Lavers
Bl Kev Abstractions

Make Defaulk Diagram

Wisualize L4
Rename
Refactor L4

6. Move theProjectManagementDBlass into thé’rojectManagementDBubsystem:

a. Locate the<<boundary>> classProjectManagementDB
b. Move the class to therojectManagementDBubsystem: From theroject
Explorer, drag the class into the subsystem as shown below.

OOAD with UML2 and RSM — Student

Workbook

40

= -H-mbsystem»ijec@da ementDB
E| Subsystem Praojec agementDB
Bl Main
+-E3 «ayers Presentation
=13 UC Realizations
=30 Maintain Timecard
+ %’ Associations
+ E-’“ Events
E| Main
+-HD l«Boundary ProjectManagementDE |
+-H@ «Boundary= TimecardForm
+ é sControls TimecardManager
+-2 Maintain Timecard

c. Remove the stereotype<boundary>>:

[Properties &4 Hierarchy | Problen

Select the stereotype

then click Linapply
General . Stereotypes
Attributes

Operations | | e :
siilinni Boundary | “RUPAnalysis False
| Gtereotypes
Documentation
Constraints
: [Apply Stereotypes... I [Unapply Stereotypes J
Advanced

d. Add the class to thBubsystem ProjectManagementBiBgram.

e. Transform the responsibility retrieve charge numbeisto a full operation.
Name the operatioretrieveChargeNumbers(Add the appropriate parameters
and return value. An example of transforming a oesjbility into an operation
is provided below.

Example

During the use-case analysis of the Run Payrollidegtified the responsibility transfer
funds with paycheck + bank infos clasBankSystem

We first decide to name the operattoansferFunds()

In terms of parameters, we might be tempted tgpageheckandbank infosas parameters.
We do have a class<Entity>> PayCheck However, because we also want to reuse
BankSysterutside the scope of our payroll system, we detmdiefine the first parameter
as the amount to transfer and to assign it the Dgeble a primitive type defined for the
project. For the second parameter, we decide tohedaternational Bank Account Numbe
(IBAN), an internationally standardized and uniform repreation for the bank and account
number, elaborated by the European Committee fakidg Standards (ECBS). We
therefore create dban class:

OOAD with UML2 and RSM — Student Workbook 41

—|Than

Our BankSysternlass now looks like this:

Q BankSystem

§2, transferFunds { amount @ Double, ban: Than)

For the return value, we could use a simple statuiswe did note that the basic flow for the
Run Payroll UC includes the following step:

If the payment delivery method is direct deposit system creates a bank transaction and
sends it to the Bank System for processing.

As a result we will create BankTransactiortlass with the appropriate attributes. Here is the
resulting model:

—| BankSystem

&2, transferFunds { amount : Double, iban @ Than) @ Bank Transaction

’

—|Than -
[Eg countryCode —| BankTransaction
(g checkDigt 5 date
[Eg hationalBankCode S amaurt
[Cfy accounthurrber g confirmationMurber
[Cg status

If, in the process of transforming the respondipilyou have created new
classes, move these classes tcdPtmectManagementServicpackage. (As
stated previously, this package will contain therface corresponding to the
subsystem as well as associated data.) Add theedlas théVlain diagram in
the ProjectManagementServicpackage.

To see the “full signature” of the operation in thagram:

OOAD with UML2 and RSM — Student Workbook 42

. e

Q ProjectManagem Add UML ,
-

=42, retrieveChargeNu Add Diagram »

= Add Mote

Mavigate 4

Visualize 4

Instantiate 4

File 3

Edit L4

¥ Delete from Diagram
¥ Delete from Model

Modeling References L4
Find/Replace. ..
Farmat 3
Filters » Show Hide Compartment r
Linkability | = SortfFiter Compartment Items...
Transform ' = Show [Hide Relationships...
¥ Validate +"Show Related Elements. ..
Architect Assistant 4

"h Show Qualified Name
E Show Properties View | ?Shnw Signature
UML Properties. .. [|

['=]5tereotype and Visibility Style +
h Parent Style P

7. Keep in mind what we are up to! The analysis cRrsgectManagementDRBwith the
responsibility// retrieve charge numbeis afull operation is becoming in design:

(1) An interfacelProjectManagementDBwith the operation
retrieveChargeNumberg()

(2) A subsystenProjectManagementDBhat will realize the interface
IProjectManagementDB

(3) A classProjectManagementDRithin our subsystem that will realize the
interfacelProjectManagementDBand therefore implement the operation
retrieveChargeNumberg()

For information about subsystems and subsystenfaets, refer to the slides on p. 14
to 21 inPart 1ll — Object-Oriented Desigaf the course (module 10, sectimentify
Subsystems and Subsystem Interfaces

In step 6, we moved — and modified — the analysiss®rojectManagementDB the
subsystem. The result of this operation is thesalasntioned in (3) above. We will
now create the interface (1). TAechitectAssistanplug-in you installed earlier on

OOAD with UML2 and RSM — Student Workbook 43

provides the functionality to “promote” a classatointerface. This functionality
applied toProjectManagementDBRiill perform the following:

» Create the interfadérojectManagementDB

» Create the interface realization frdPnojectManagementDB
IProjectManagementDB

* Duplicate theaetrieveChargeNumbers@peration

« “Migrate” relationships fronProjectManagementDB
IProjectManagementDB

* Change the type of every lifeline froRrojectManagementDB
IProjectManagementDB

To create the interfad®rojectManagementDBRight-click ProjectManagementDB
and selecArchitect Assistant > Promote To Interface

-~
L

2 -projectManagementDB

Q ProjectManagementDB [
Add UML L4

=52, retrieveChargeNumbers |
~ Add Diagram L4
& Add Mote

Mavigate L4
Visualize L4
Instantiate L4
File L4
Edit L4

Delete from Diagram
¥ Delete from Model

Modeling References L4

Find/Replace...

Format L4

Filters 4

Linkability L4

Transform 4

¥ Validate
Architect Assistant »| Promote To Interface

=] Show Properties View
UML Properties...

Carefully review the comments in the console tafyehat the changes are what you
expected.

You now need to complete the work performedMoghitectAssistanas follows:

OOAD with UML2 and RSM — Student Workbook 44

a. Locate the interfacB’rojectManagementDih the Project Explorer and move
it to theProjectManagementServicpackage.

b. Add IProjectManagementDBo theMain diagram of the
ProjectManagementServices.

c. IntheSubsystem ProjectManagementBiBgram of the subsystem
ProjectManagementDBadd the interfacdProjectManagementDB

d. IntheMain diagram of the<<layer>> Businesspackage, add the interface
IProjectManagementDHEDraw an interface realization relationship from the
subsysteniProjectManagementDB the interface.

«interfaces
«subsysterms - IProjectManaacementDB
ProjectManagementDB | -7 T 0 Create Usage
—U 5 retrieve —
Lhp == =" % Create Interface Realization

s Create Abstraction
Create Bidirectional Assodation

|
£ ProjectManagementServices

You can remove the interface from the diagram, wisicould now look
something like: (hint: to obtain the same look &wl, use thé\ppearanceab
in thePropertiesview for the subsystem)

«subsystem:
ProjectManagementDB
Provided Interfaces

=] 1ProjectManagementDE
{2, retrieveChargeNumbers ()

|
£3 ProjectManagementServices

You can also show the contents of BrejectManagementServicpackage as
follows:

a. First in theAppearancdab of thePropertiesview of the package,
checkPackage Contentdake sure to click the triangle as shown
below.

OOAD with UML2 and RSM — Student Workbook 45

j—

b. Then enlarge the rectangle and drag the classéaiced in
ProjectManagementServicesthePackage Contentsompartment.

| IProjectManagementDB
ﬁ retrieveChargeNumbers ()
& projectM
B)
E Hrh:mnmjﬁlhn

c. The end result might be something like:

% ProjectManagementDB
Provided Interfaces
=] 1ProjectManagementDE

{2 retrieveChargeNumbers ()

IProjectManagementDB

OOAD with UML2 and RSM — Student Workbook 46

Lab 7 — Class Design
1. For this exercise, you will work from the mod. Design
2. Inspect the model:

a. From the model'$ain diagram, double-click on tHBusinesgackage, then
on theEmployeadiagram shortcut:
=] Employves
Double-click to see detais about the employves classes

b. The diagram contains the cldssployeeits subclasses and several associated
classes.

i. The clasaycheckis not displayed not to overload the diagram.

ii. Note the attributes in classes liEeployeeandTimecard Most of them
are now typed except th@urs per projecattribute inTimecard for
which we didn’t have enough information.

iii. IntheEmployeeclass, note that most operations are shown witin O
parameters and return values. For the operggdiethodPayment(jve
have introduced a new class of typeumeration

iv. In the clas$?urchaseOrdergetters have been added.

v. Finally, note that the compositioEsnployee > Timecardand
CommissionedEmployee > PurchaseOrdes unidirectional.

vi. In order to type the miscellaneous attributes aavdpeters, the classes
DateandDoublehave been added to tReimitives package.

3. You have been asked to complete the following gamthe diagram:

a. For the remainder of the exercise, use ONLY thegyaready defined
(includingDate andDoublée):

i. Atime interval or period (of time) will be expresswith two attributes
(or parameters) of typate for instancdrom : Dateandto : Date

b. Change the responsibilityretrieve amount to pay theEmployeeclass into a
calculatePay(pperation:

i. calculatePay(yeturns the amount to pay an employee for a gpeziod
of time.

ii. It must be designed with polymorphism in mind: ilshbe possible to
calculate the amount to pay for Bmployeeobject WITHOUT knowing
its type (hourly, salaried, commissioned).

OOAD with UML2 and RSM — Student Workbook 47

c. Update the analysis clasanecard

i. Make sure in particular that the analysis attridhdars per projecis
converted to a proper design type.

d. A new requirement has been added: it must be dedsilthange an hourly
employee into a salaried employee. What do youestgg handle this
situation? (Discussion with the instructor.)

OOAD with UML2 and RSM — Student Workbook 48

Lab 8 — Subsystem Design

1. For this exercise, you will work from the mod#l. Design

2. Your task is to apply the JDBC mechanism describedodule 13 to the subsystem
ProjectManagementDB

a.

In the ProjectManagementDBubsystem, create a collaboration named

IProjectManagementDB Implementation

=3 «dayer» Business

O = B B B

%‘ Associations

"(f_—,-g’“ Events

£J BankServices

£3 ProjectManagementServices

ssubsystem:= BankSystem

ssubsystems ProjectManageme~+"2
Subsystem ProjectManager Add UML

+ Q ProjectManagementDB Add Diagram
A (IProjectManagementDE) Create Fragment...
Employee
Main Mavigate
+ Q ProjectHours Visualize
+-[E] paymentMethod Instantiate
+- Caloulate Pay
+-B3 «layers Presentation Rename
+-E3 PrimitiveTypes Refactor
+-C30 UC Realizations of Cut
Architectural Layers = Copy
Key Abstractions ¥ Delete from Model

Main

o o I [e O A

@ <Entity» CommissionedEmployee | 4| Validate
@ «Entity» Employee

& «Entity» HourlyEmployee
@ <Entitys Paycheck

@ <Entitys PurchaseOrder
o «Entity» SalariedEmployes
] «Entitys Timecard

Modeling References
Find/Replace...

E Model Query...
Architect Assistant

[
[

4
4
4

[

3 Package

(= Attribute
8} Operation
& Part

O Port
Subsystem

Q Class

2 | Component
[E Enumeration
@ Interface
Data Type
Primitive Type

oo Activity

.- Collaboration

= Collaboration Use

@3 Opague Behavior

In the collaboration, createratrieveChargeNumbers VORsIass diagram and
a sequence diagram titleetrieveChargeNumbers Implementatidwd these

diagrams to the subsystem main diagram.

To apply the JDBC mechanism, we will use a pattern:

OOAD with UML2 and RSM — Student Workbook

49

i. Open theSubsystem ProjectManagementBiBgram (main diagram of
the subsysterRrojectManagementDB

ii. Import thejava.sqllibrary:

Add uML 4

Add Diagram 4
New »
Add Shartcut
Open
s _
% Open With L4
B Close
] Close All
'EE" Save As...
= 'EE" Navigate 4
Visualize 4
Rename
Refactor 4
¥ Delete
d[Import Model Library...
£y Import. ..
25| 1) Export...
f =
. Import Model Library B
(") Deployed Library
(%) Library in Workspace
| WewPayrolSystem\javasd.emx |
) File
[K I [Cancel

iii. Open the Pattern Explorer view:

OOAD with UML2 and RSM — Student Workbook 50

Window

Mew Window
Mew Editor
Open Perspective L
Show View ¥ [J]l Bookmarks
Customize Perspective. .. B console Alt+5hift+Q, C
Save Perspective As... 1!& Inheritance Explorer
Reset Perspective 0= Outline
Close Perspective @ Palette
Close All Perspectives [Project Explorer
Mavigation ¥] Properties
|1y Report Explorer
== . Wl oo
-4 Working Sets @5 Requirement Explorer
Web Browser » E Tasks
Preferences... Other... Alt+shift+0, Q
i — — i
s Show View
= (= Modeling

-E2% Pattern Authoring
L ':-;i; Pattern Explorer

Li. "J-.____L__*_ ﬁ____h 5 ’_ ‘F"—'*:—-\- ¥ h'"-__\@_ »_M}

iv. In thePattern Exploreyyou should see tHeML Academygroup.
Expand it, select the patted®DBCPersistencand drag it onto the
Subsystem ProjectManagementBiBgram. (If you don’'t seeML
Academyplease check the installation steps in task 3.1.)

OOAD with UML2 and RSM — Student Workbook

51

L «Pattern Instances
“I IProjectManagementDB Implementation
=
[JDBCPersistence
PersistentClass [1]: = |
. PersistentClassList[1]: = |

Properties Eﬁ Pattern Explorer &3 Ta J_i.'Ii:nrls:mIF_ Servers | Search | Call

¥ Design Patterns
MDD Patterns
Transformations
=5 ML Academy
+/:-» JDBCPersistence

Simple IDBC Persistence mechanism for use with the UML Academy

v. Drag the classeShargeNumbeandChargeNumberLisbnto the pattern
parameter®ersistentClasandPersistentClassLigespectively.

. «Pattern Instances
I IProjectManagementDB Implementation

=
[~ JDBCPersistence

PersistentClass[1]:

2:ChargeMumber

PersistentClassList[1] :

)

]

|.-5.DD: Crop element here to bind element to parameter|

vi. Open thaetrieveChargeNumbergOPCdiagram and add the
DBChargeNumbeiChargeNumbeandChargeNumberListlasses to the
diagram. (NoteDBChargeNumbewas created by the pattern.)

Note The current version of thEDBCPersistenceattern will create an
aggregation relationship from tiRersistentClassLigble to the
PersistentClassole, even if it already exists. You should remtve
duplicate relation if it exists.

vii. Modify the display preferences for classes as shostow {Vindow >
Preferences .): (the purpose is to allow us to display jaea.sqglclasses
without showing the many attributes and operatfrthese classes)

OOAD with UML2 and RSM — Student Workbook 52

type filter text

Model Validation
[=I- Modeling
C/C++ Modeling
Default Diagrams
=l Diagrams
Activity Diagram
[=l- Appearance
Connectors
Shapes
[=I-UML Preference
UML Component
UML Part
UML Port

Compaosite Structure Diagram

viii.

UML Classifier

|

Shape settings

show operations
show attributes

[]show signal receptions

Right-click DBChargeNumbeand selecFilters > Show Related

Elements...In theShow Related Elements in Diagraiialog, click
Detailsand clear thé\bstractionentry as shown below. (These
relationships are used to show the relationship@tlasses involved in
the pattern to the pattern instance.)

-

|4 Show Related Elements in Diagram

Select in Model(s):

|AI| open models

Custom Query: Relationship Types:

[show Al R.ela-ﬁnnships [ljg-ﬁl:ﬂt] -3 D_[(_E All Elements |.A!
Implementing elements [Default]) - (i
Specifying elements [Default] i .;: /: Assnaatlon.s 3
Implementing and specifying elements [Default] = . : =~:1u:!enge_s i 1
Show All Constraints [Default] i -4 45, Abstraction

Show All Comments/URLs [Default] T cal '

‘Custom Query [Defaul] il

v Dependency
[/ 5 Deployment
=l

- 4 Derive

] 5 Instantiate)

o, (v, ¥ ey A |

Stopping List:

Levels:

() Outgeing
" Al Connected
(%) Both

|None

1 |
[| Expand Indefinitely

| [_conce

ix. Your diagram should now look something like this:

OOAD with UML2 and RSM — Student Workbook

53

«PersistentClasslist:
Q ChargeNumberList
__'-";% add ()
Al ginterfaces . 1
%] connection ’
0.1 «usﬂa:&"
-connection)
1
- cHargeMumbers
Q DBChargeNumber
«Persistentdasss
g create() | auser) || ChargeNumber
&2 ;D;ﬂate () Eg ProjectName : String
% reeailt[ej” e | g chargeNumber : String
«lisen use»
\E_.-" Y o ey
Bl sinterfaces 21 «interfaces “I_ DriverManager
=] Statement = ResultSet

X. Restore the display preferences for classes ifwish (see step vii).

Xi.

Optionally, build the sequence diagram ffletrieveChargeNumbers
Implementatiorbased on the diagram on page 48 ofRh# Il — Object-
Oriented Desigrascicule.

OOAD with UML2 and RSM — Student Workbook 54

Lab 9 — Finalize the Design Model

For this exercise, you will work from the mod. Design

All the classes you have created must be assignpddkages. The packages in turn must be
assigned to the layers of your architecture. Raiatbetween classes determine the
dependencies between packages. The potentialise réhe scalability and the flexibility of
your system depend on the resulting hierarchy.

Allocate all classes to packages contained withéPresentatiorandBusinessdayers. Please
refer to the following slides for information:

e In PART Il — Object-Oriented Analysis, slides 5850 (about Layered Architectures)

* In PART Il — Object-Oriented Analysis, slides 85, 89, 90, 94, 95 (about Analysis
Classes and their positioning in the architecture)

* In PART IIl — Object-Oriented Design, slides 23 (about the Organization of the
Models)

Here are a few high-level suggestions (note: soinieese suggestions are minimalist — in
real life, the package structure would be signiftbadifferent):

1. Stereotype the packatC Realizationgs <<perspective>> (this means tba
Realizationonly contains diagrams and no classes or other @Minents).

2. Add the stereotypeagobal andlayer to the packag@rimitivesTypegagain reality
would be quite different but it does not modify onessage).

3. Consider creating two packages in Bresentatiordayer (for instancé&dminActivities
andEmployeeActivities Hint: Application-dependent control classes aomhe of the
boundary classes should be allocated to these geska

4. All other classes are allocated to packages iBtlenesdayer. Consider the potential
reuse you can expect for those classes (in paatifoit service-oriented classes).

Solve the access violations:

1. Right-click on theDesignmodel in theProject Explorer then select
ArchitectAssistant > Show Access Violatiovieu should get a number of access
violations reported in the console.

2. To solve the access violations, useAlnehitectAssistant > Fix Access Violatiof®
keep this processing manageable, it is recommetodedrk on one package at a time.
Fix Access Violationattempts to automatically resolve the access twwla based on
the layered architecture. When a potential acciedation is identified Fix Access
Violationscan:

a. Create a dependency if the violation can be scdwgdmatically.

b. Report an error in the case of a “true” violatidor (nstance if thdBusiness
layer attempts to access tReesentatioriayer).

OOAD with UML2 and RSM — Student Workbook 55

c. Prompt the user in all other cases.
3. Inspect theConsoleand/orProblemsview to identify the remaining access violations
and modify the model to eliminate them.
4. When all packages have been processed, rufirtifetectAssistant > Show Access
Violationson the model itself until you get no access viola left.

Create a diagram titlelackage DependencigstheDesignmodel (at the same level Bkin,
Key AbstractionsandArchitectural Layersliagrams). Add to this diagram all the packages

and subsystems from the layers. Inspect the result.

OOAD with UML2 and RSM — Student Workbook 56

Appendix 1 — Lab 2 Solutions

This appendix 1 offers possibdelutions for the Lab 2 exercises. There are npasgible

variations.

Modeling graphs, points and connectors

= Drawing

- graphs

= Graph

*

= Eg pointColor
Eg connectorColor

*

=/ Point

- points

- connectorEnds

- connectors

= Connector

An additional constraint (text or OCL) is needed to express the fact that there can be
only one connector between 2 points.

Modeling a family tree (without generalization)

Here is a very simple solution:

2

- parents

. Personne

[5exe

Eg firstName
g lastname
&g dateOfBirth

- children
: Sexe

{self.parents->select(1).sexe <>
self.parents->select(2).5exe }

And here is a variant:

OOAD with UML2 and RSM — Student Workbook

= Couple

- parents

1
- parents
* //’
- couple
i
/
/
o
e
/
* /
//
- 50N
!
~/Man

N

*

- c::nuple\

1

N\

1 - daughter
= Woman

Modeling a family tree (with generalization)

- children

*

1
- father f

= Ma;i

Modeling a file system

=/ Person

- children

#

- mother

—/Woman

The solution below is an application of tBempositedesign pattern.

OOAD with UML2 and RSM — Student Workbook

=/ File

%dest_roy ()

—| FSFlement

& destroy ()

public void destroy() {
}

System.destroy(self);

OOAD with UML2 and RSM — Student Workbook

- glements
*
~
\\ * .
N - directory
| Directory

& destroy ()

public void destroy() {
for each elt in elements {
elt.destroy();
s

System.destroy(self);

S

58

OOAD with UML2 and RSM — Student Workbook

60

Appendix 2 — Course Registration Requirements

Problem Statement

As the head of information systems for Wylie Collggu are tasked with developing a new
student registration system. The college would éikeew client-server system to replace its
much older system developed around mainframe téohynoThe new system will allow
students to register for courses and view repadsciiom personal computers attached to the
campus LAN. Professors will be able to accessybtem to sign up to teach courses as well
as record grades.

Due to a decrease in federal funding, the collegmot afford to replace the entire system at
once. The college will keep the existing courselogt database where all course information
is maintained. This database is an Ingres reldtiastabase running on a DEC VAX.
Fortunately the college has invested in an open B@face that allows access to this
database from the college’s Unix servers. The kpggstem performance is rather poor, so
the new system must ensure that access to theddte legacy system occurs in a timely
manner. The new system will access course infeom&tom the legacy database but will not
update it. The registrar’s office will continuert@intain course information through another
system.

At the beginning of each semester, students mayesta course catalogue containing a list
of course offerings for the semester. Informatbout each course, such as professor,
department, and prerequisites, will be includelddlp students make informed decisions.

The new system will allow students to select faaurse offerings for the coming semester.

In addition, each student will indicate two alteima choices in case the student cannot be
assigned to a primary selection. Course offenmigjshave a maximum of ten students and a
minimum of three students. A course offering widtver than three students will be canceled.
For each semester, there is a period of time thdeats can change their schedule. Students
must be able to access the system during thisttradd or drop courses. Once the
registration process is completed for a studeptréigistration system sends information to
the billing system so the student can be billedHersemester. If a course fills up during the
actual registration process, the student must béawbof the change before submitting the
schedule for processing.

At the end of the semester, the student will be &blccess the system to view an electronic
report card. Since student grades are sensitieenation, the system must employ extra
security measures to prevent unauthorized access.

Professors must be able to access the on-linensystendicate which courses they will be

teaching. They will also need to see which stuslsigned up for their course offerings. In
addition, the professors will be able to recorddtedes for the students in each class.

OOAD with UML2 and RSM — Student Workbook 61

Glossary

Introduction

This document is used to define terminology spectdithe problem domain, explaining terms,
which may be unfamiliar to the reader of the usseadescriptions or other project documents.
Often, this document can be used as an informal diationary, capturing data definitions so
that use-case descriptions and other project dostsnean focus on what the system must do
with the information.

Definitions

The glossary contains the working definitions fog key concepts in the Course Registration
System.

Course
A class offered by the university.

Course Offering

A specific delivery of the course for a specifiecrgster — you could run the same course in
parallel sessions in the semester. Includes the ofathe week and times it is offered.

Course Catalog
The unabridged catalog of all courses offered lyuthiversity.

Faculty
All the professors teaching at the university.

Finance System

The system used for processing billing information.

Grade

The evaluation of a particular student for a patéiccourse offering.
Professor

A person teaching classes at the university.

Report Card

All the grades for all courses taken by a studerst given semester.
Roster

All the students enrolled in a particular courseohg.

Student

A person enrolled in classes at the university.

Schedule

The courses a student has selected for the cleeemsster.

Transcript

The history of the grades for all courses, for dipalar student sent to the finance system,
which in turn bills the students.

OOAD with UML2 and RSM — Student Workbook 62

Supplementary Specifications

Objectives

The purpose of this document is to define requirgmef the Course Registration System.
This Supplementary Specification lists the requiata that are not readily captured in the
use cases of the use-case model. The Supplem&meacyfications and the use-case model
together capture a complete set of requirementee@grystem.

Scope

This specification defines the non-functional regments of the system; such as reliability,
usability, performance, and supportability, as vaslfunctional requirements that are
common across a humber of use cases. (The funtctearements are defined in the Use
Case Specifications.)

References
None.

Functionality

Multiple users must be able to perform their wookcurrently.
If a course offering becomes full while a studenbuilding a schedule including that offering,
the student must be notified.

Usability
The desktop user-interface shall be Windows 958patiant.

Reliability
The system shall be available 24 hours a day 7 @aysek, with no more than 10% down
time.

Performance

The system shall support up to 2000 simultaneoessiwegainst the central database at any
given time, and up to 500 simultaneous users ag#nadocal servers at any one time.

The system shall provide access to the legacy eaatalog database with no more than a 10
second latency.

Note: Risk-based prototypes have found that thadggourse catalog database cannot meet
our performance needs without some creative usadtier processing power

The system must be able to complete 80% of alktretions within 2 minutes.

Supportability
None.

Security

The system must prevent students from changingelngdules other than their own, and
professors from modifying assigned course offeriiogother professors.

Only Professors can enter grades for students.

Only the Registrar is allowed to change any studgntmation.

OOAD with UML2 and RSM — Student Workbook 63

Design Constraints
The system shall integrate with an existing legatem, the Course Catalog System, which

is an RDBMS database.
The system shall provide a Windows-based desktiepfate.

OOAD with UML2 and RSM — Student Workbook 64

Register for Courses UC

Brief Description

This use case allows a Student to register forseoafferings in the current semester. The
Student can also update or delete course seledtionanges are made within the add/drop
period at the beginning of the semester. The CabDatalog System provides a list of all the
course offerings for the current semester.

Flow of Events

Basic Flow

This use case starts when a Student wishes taeefps course offerings, or to change
his/her existing course schedule.

1.

The Student provides the function to perform (ohthe sub flows is executed):
If the Student selected “Create a Schedule”, tleatéra Schedule subflow is
executed.

If the Student selected “Update a Schedule”, thddthpa Schedule subflow is
executed.

If the Student selected “Delete a Schedule”, thieteea Schedule subflow is
executed.

Create a Schedule

1. The system retrieves a list of available courseraffis from the Course
Catalog System and displays the list to the Student

2. The Select Offerings subflow is executed.

3. The Submit Schedule subflow is executed.

Update a Schedule

1. The system retrieves and displays the Studenttecuschedule (e.g., the
schedule for the current semester).

2. The system retrieves a list of available courseroffs from the Course
Catalog System and displays the list to the Student

3. The Student may update the course selections arutinent selection by
deleting and adding new course offerings. The Stusielects the course
offerings to add from the list of available couddterings. The Student also
selects any course offerings to delete from thstiexj schedule.

4. Once the student has made his/her selectionsyshens updates the schedule
for the Student using the selected course offerings

5. The Submit Schedule subflow is executed.

Delete a Schedule

1. The system retrieves and displays the Studenttecuschedule (e.g., the
schedule for the current semester).

2. The system prompts the Student to confirm the weletf the schedule.

3. The Student verifies the deletion.

4. The system deletes the Schedule. If the schedul@ios “enrolled in” course
offerings, the Student must be removed from thesmoffering.

Select Offerings

OOAD with UML2 and RSM — Student Workbook 65

The Student selects 4 primary course offerings2aaliiernate course offerings
from the list of available offerings.

Once the student has made his/her selectionsyshens creates a schedule for the
Student containing the selected course offerings.

Submit Schedule

For each selected course offering on the schedulalready marked as “enrolled
in”, the system verifies that the Student has #wessary prerequisites, that the
course offering is open, and that there are nocsdbeconflicts.

The system then adds the Student to the selectedecoffering. The course
offering is marked as “enrolled in” in the schedule

The schedule is saved in the system.

Alternative Flows

Save a Schedule
At any point, the Student may choose to save adstbeather than submitting it. If this
occurs, the Submit Schedule step is replaced Wwittidllowing:

The course offerings not marked as “enrolled i mrarked as “selected” in the schedule.
The schedule is saved in the system.

Unfulfilled Prerequisites, Course Full, or ScheduleConflicts

If, in the Submit Schedule sub-flow, the systenedeines that the Student has not satisfied
the necessary prerequisites, or that the seleciede offering is full, or that there are
schedule conflicts, an error message is displayide Student can either select a different
course offering and the use case continues, savectiedule, as is (see Save a Schedule
subflow), or cancel the operation, at which pon& Basic Flow is re-started at the beginning.

No Schedule Found

If, in the Update a Schedule or Delete a Schedibeflows, the system is unable to retrieve
the Student’s schedule, an error message is deghlajhe Student acknowledges the error,
and the Basic Flow is re-started at the beginning.

Course Catalog System Unavailable

If the system is unable to communicate with ther€@eCatalog System, the system will
display an error message to the Student. The Stad&nowledges the error message, and
the use case terminates.

Course Registration Closed

When the use case starts, if it is determinedrgistration for the current semester has been
closed, a message is displayed to the Studenthengse case terminates. Students cannot
register for course offerings after registrationtfte current semester has been closed.

Delete Cancelled

If, in the Delete A Schedule sub-flow, the Studéstides not to delete the schedule, the
delete is cancelled, and the Basic Flow is re-atisait the beginning.

OOAD with UML2 and RSM — Student Workbook 66

Special Requirements
None.

Pre-Conditions
The Student must be logged onto the system bdiwaise case begins.

Post-Conditions

If the use case was successful, the student sehedeleated, updated, or deleted. Otherwise,
the system state is unchanged.

OOAD with UML2 and RSM — Student Workbook 67

OOAD with UML2 and RSM — Student Workbook

68

Appendix 3 — Payroll System

Problem Statement

As the head of Information Technology at Acme, Iyou are tasked with building a new
payroll system to replace the existing system, Wwigchopelessly out of date. Acme needs a
new system to allow employees to record timecaiarimation electronically and
automatically generate paychecks based on the musfibeurs worked and total amount of
sales (for commissioned employees).

The new system will be state of the art and willdha Windows-based desktop interface to
allow employees to enter timecard information, eptechase orders, change employee
preferences (such as payment method), and creadeiyaeports. The system will run on
individual employee desktops throughout the emtinmpany. For reasons of security and
auditing, employees can only access and edit thvairtimecards and purchase orders.

The system will retain information on all employ@eshe company (Acme currently has
around 5,000 employees world-wide.) The system pagteach employee the correct
amount, on time, by the method that they spec#g (sossible payment methods described
later). Acme, for cost reasons, does not wantpgtace one of their legacy databases, the
Project Management Database, which contains atimétion regarding projects and charge
numbers. The new system must work with the exigfirgject Management Database, which
is a DB2 database running on an IBM mainframe. Fagroll System will access, but not
update, information stored in the Project ManagdrDatabase.

Some employees work by the hour, and they aregraliburly rate. They submit timecards
that record the date and number of hours worked fmarticular charge number. If someone
works for more than 8 hours, Acme pays them 1.gsitheir normal rate for those extra
hours. Hourly workers are paid every Friday.

Some employees are paid a flat salary. Even ththaghare paid a flat salary, they submit
timecards that record the date and hours workéus i$ so the system can keep track of the
hours worked against particular charge numbersy Hne paid on the last working day of the
month.

Some of the salaried employees also receive a cesionibased on their sales. They submit
purchase orders that reflect the date and amouhedale. The commission rate is
determined for each employee, and is one of 10%, 5%, or 35%.

One of the most requested features of the newrayistemployee reporting. Employees will
be able to query the system for number of hourkedyrtotals of all hours billed to a project
(i.e., charge number), total pay received yearatedremaining vacation time, etc.

Employees can choose their method of payment. Thmeyhave their paychecks mailed to the
postal address of their choice, or they can reqliestt deposit and have their paycheck
deposited into a bank account of their choosing @mployee may also choose to pick their
paychecks up at the office.

The Payroll Administrator maintains employee infatran. The Payroll Administrator is
responsible for adding new employees, deleting eyggls and changing all employee

OOAD with UML2 and RSM — Student Workbook 69

information such as name, address, and paymessifcdasion (hourly, salaried,
commissioned), as well as running administratiyerts.

The payroll application will run automatically eyefriday and on the last working day of the
month. It will pay the appropriate employees orsthdays. The system will be told what date
the employees are to be paid, so it will generatenents for records from the last time the

employee was paid to the specified date. The netesyis being designed so that the payroll
will always be generated automatically, and theitebe no need for any manual intervention.

OOAD with UML2 and RSM — Student Workbook 70

Glossary

Introduction

This document is used to define terminology spectdithe problem domain, explaining terms,
which may be unfamiliar to the reader of the usseadescriptions or other project documents.
Often, this document can be used as an informal diationary, capturing data definitions so
that use-case descriptions and other project dostsnean focus on what the system must do
with the information.

Definitions
The glossary contains the working definitions fog key concepts in the Payroll System.

Bank System

Any bank(s) to which direct deposit transactiores sent.

Employee

A person that works for the company that owns gretates the payroll system (Acme, Inc.)

Payroll Administrator
The person responsible for maintaining employeéseanmployee information in the system.

Project Management Database
The legacy database that contains all informagarding projects and charge numbers.

System Clock

The internal system clock that keeps track of tifitee internal clock will automatically run
the payroll at the appropriate times.

Pay Period
The amount of time over which an employee is paid.

Paycheck
A record of how much an employee was paid durisgexified Pay Period.

Payment Method
How the employee is paid, either pick-up, maildmect deposit.

Timecard
A record of hours worked by the employee duringecgied pay period.

Purchase Order
A record of a sale made by an employee.

Salaried Employee
An employee that receives a salary.

Commissioned Employee
An employee that receives a salary plus commissions

Hourly Employee
An employee that is paid by the hour.

OOAD with UML2 and RSM — Student Workbook 71

Supplementary Specifications

Objectives

The purpose of this document is to define requirgmef the Payroll System. This
Supplementary Specification lists the requiremémas are not readily captured in the use
cases of the use-case model. The Supplementaryfi§gians and the use-case model
together capture a complete set of requirementi@system.

Scope

This Supplementary Specification applies to ther@lagystem, which will be developed by
the OOAD students.

This specification defines the non-functional regments of the system; such as reliability,
usability, performance, and supportability as vaslifunctional requirements that are common
across a number of use cases. (The functionalresgents are defined in the Use Case
Specifications.).

Functionality

None.
Usability
None.
Reliability

The main system must be running 98% of the timis.ithperative that the system be up and
running during the times the payroll is run (evenday and the last working day of the
month).

Performance

The system shall support up to 2000 simultaneoessiweainst the central database at any
given time, and up to 500 simultaneous users ag#nadocal servers at any one time.

Supportability
None.

Security

The system should prevent employees from changigidimecards other than their own.
Additionally, for security reasons, only the Pay/Adiministrator is allowed to change any
employee information with the exception of the paytndelivery method.

Design Constraints

The system shall integrate with an existing legatem, the Project Management Database,
which is a DB2 database running on an IBM mainframe

The system shall interface with existing bank syst@ia an electronic transaction interface
The system shall provide a Windows-based desktepfate.

OOAD with UML2 and RSM — Student Workbook 72

Maintain Timecard UC

Brief Description

This use case allows the Employee to update andistimecard information. Hourly and
salaried employees must submit weekly timecardsrdétg all hours worked that week and
which projects the hours are billed to. An Emplogaa only make changes to the timecard
for the current pay period and before the timetesibeen submitted.

Flow of Events

Basic Flow

This use case starts when the Employee wishedéo leours worked into his current
timecard.

1. The system retrieves and displays the current ameefor the Employee. If a
timecard does not exist for the Employee for theesu pay period, the system
creates a new one. The start and end dates tirtbeard are set by the system
and cannot be changed by the Employee.

2. The system retrieves and displays the list of abéel charge numbers from the
Project Management Database.

3. The Employee selects the appropriate charge nunalnerenters the hours worked
for any desired date (within the date range oftithecard).

4, Once the Employee has entered the informationsykEem saves the timecard.

Submit Timecard

1. At any time, the Employee may request that theesystubmit the timecard.

2. At that time, the system assigns the current datlkd timecard as the submitted
date and changes the status of the timecard toriitigol.” No changes are
permitted to the timecard once it has been subahitte

3. The system validates the timecard by checking tmeber of hours worked
against each charge number. The total number akheorked against all charge
numbers must not exceed any limit establishedifeEmployee (for example, the
Employee may not be allowed to work overtime).

4, The system retains the number of hours workeddoh &harge number in the
timecard.

5. The system saves the timecard.

6. The system makes the timecard read-only, and tlegiluchanges are allowed once

the timecard is submitted.

Alternative Flows

Invalid Number of Hours

If, in the Basic Flow, an invalid number of housseintered for a single day (>24), or the
number entered exceeds the maximum allowable &Ethployee, the system will display an
error message and prompt for a valid number of$i0tine Employee must enter a valid
number, or cancel the operation, in which caseitigecase ends.

Timecard Already Submitted

If, in the Basic Flow, the Employee’s current tiragst has already been submitted, the system
displays a read-only copy of the timecard and mfthe Employee that the timecard has

OOAD with UML2 and RSM — Student Workbook 73

already been submitted, so no changes can be méadelihe Employee acknowledges the
message and the use case ends.

Project Management Database Not Available

If, in the Basic Flow, the Project Management Datahis not available, the system will
display an error message stating that the listaflable charge numbers is not available. The
Employee acknowledges the error and may eithersghtmcontinue (without selectable
charge numbers), or to cancel (any timecard chaagediscarded and the use case ends).
Note: Without selectable charge numbers, the Engglayay change hours for a charge
number already listed on the timecard, but he/stig mot add hours for a charge number that
is not already listed.

Special Requirements
None.

Pre-Conditions
The Employee must be logged onto the system bédfi@eise case begins.

Post-Conditions

If the use case was successful, the Employee tidécformation is saved to the system.
Otherwise, the system state is unchanged.

OOAD with UML2 and RSM — Student Workbook 74

Run Payroll UC

Brief Description

The use case describes how the payroll is run éugéday and the last working day of the
month.

Flow of Events

Basic Flow

4. The use case begins when it's time to run the playiiee payroll is run
automatically every Friday and the last working dayhe month.

5. The system retrieves all employees who should megrathe current date.

6. The system calculates the pay using entered tidecpurchase orders, employee
information (e.g., salary, benefits, etc.) andedhl deductions.

7. If the payment delivery method is mail or pick-tipe system prints a paycheck.

8. If the payment delivery method is direct deposig system creates a bank
transaction and sends it to the Bank System fargasing.

9. The use case ends when all employees receivinfppdlye desired date have been
processed.

Alternative Flows

Bank System Unavailable

If the Bank System is down, the system will attetopgend the bank transaction again after a
specified period. The system will continue to mipe to re-transmit until the Bank System
becomes available.

Deleted Employees
After the payroll for an Employee has been proaséehe employee has been marked for
deletion (see the Maintain Employee use case), ttieerystem will delete the employee.

Special Requirements
None.

Pre-Conditions
None.

Post-Conditions
Payments for each employee eligible to be paichercurrent date have been processed.

OOAD with UML2 and RSM — Student Workbook 75

