
OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
1

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
2

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
3

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
4

In Architectural Analysis, an initial attempt was made to define the layers of our system,
concentrating on the upper layers. In Use-Case Analysis, you analyzed your requirements
and allocated the responsibilities to analysis classes.

In Identify Design Elements, the analysis classes are refined into design elements (design
classes and subsystems).

In Use-Case Analysis, you were concerned with the “what.” In the architecture activities, you
are concerned with the “how”. Architecture is about making choices.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
5

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
6

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
7

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
8

It is in Identify Design Elements that you decide which analysis classes are really classes,
which are subsystems (which must be further decomposed), and which are existing
components and do not need to be “designed” at all.

Once the design classes and subsystems have been created, each must be given a name
and a short description. The responsibilities of the original analysis classes should be
transferred to the newly created subsystems. In addition, the identified design mechanisms
should be linked to design elements (next module).

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
9

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
10

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
11

Some examples:

• A single boundary class representing a user interface may result in multiple
classes, one per window.

• A control class may become a design class directly, or become a method within a
design class.

• A single entity class may become multiple classes (for example, an aggregate with
contained classes, or a class with associated database mapping or proxy classes,
etc.).

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
12

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
13

The purpose of this slide is not to describe a complete solution. In fact there are many
possible variants depending on many factors. And this is what we need to have a generic
solution (the FrontController and Action scheme here) for a common problem (user actions
in web pages). The next module (Identify Design Mechanism) discusses this topic in more
detail.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
14

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
15

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
16

A complex analysis class is mapped to a design subsystem if it appears to embody behavior
that cannot be the responsibility of a single design class acting alone. A complex design
class may also become a subsystem, if it is likely to be implemented as a set of
collaborating classes.

The design subsystem is used to encapsulate these collaborations in such a way that clients
of the subsystem can be completely unaware of the internal design of the subsystem, even
as they use the services provided by the subsystem. If the participating classes/subsystems
in a collaboration interact only with each other to produce a well-defined set of results, the
collaboration and its collaborating design elements should be encapsulated within a
subsystem.

This rule can be applied to subsets of collaborations as well. Anywhere part or all of a
collaboration can be encapsulated and simplified, doing so will make the design easier to
understand.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
17

Collections of types and data structures (e.g. stacks, lists, queues) may be better
represented as packages, because they reveal more than behavior, and it is the particular
contents of the package that are important and useful (and not the package itself, which is
simply a container).

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
18

During Use-Case Analysis, we modeled two boundary classes, the BillingSystem and the
CourseCatalog, whose responsibilities were to cover the details of the interfaces to the
external systems. It was decided by the architects of the Course Registration System that
the interactions to support external system access will be more complex than can be
implemented in a single class. Thus, subsystems were identified to encapsulate these
responsibilities and provide interfaces that give the external systems access.

The BillingSystem subsystem provides an interface to the external billing system. It is used
to submit a bill when registration ends and students have been registered in courses.

The CourseCatalog subsystem encapsulates all the work involved for communicating to the
legacy Course Catalog System. The system provides access to the unabridged catalog of
all courses and course offerings provided by the university, including those from previous
semesters.

These are subsystems rather than packages because a simple interface to their complex
internal behaviors can be created. Also, by using a subsystem with an explicit and stable
interface, the particulars of the external systems to be used (in this case, the Billing System
and the legacy Course Catalog) could be changed at a later date with no impact on the rest
of the system.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
19

In RSA/RSM, these changes have to be performed manually:

• Retrieve the interface to use and drag it to the diagram

• Select the relationship and move the target end from the analysis class to the
interface

• Delete the analysis class from the diagram

• Delete the analysis class from the design model after all changes have been made

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
20

In RSA/RSM, simply drag the interface over the analysis object and update the message.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
21

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
22

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
23

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
24

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
25

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
26

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
27

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
28

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
29

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
30

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
31

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
32

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
33

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
34

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
35

Design patterns are medium-to-small-scale patterns, smaller in scale than architectural
patterns but typically independent of programming language. When a design pattern is
bound, it forms a portion of a concrete design model (perhaps a portion of a design
mechanism). Design patterns tend, because of their level, to be applicable across domains.

We will introduce several patterns in this module and the remaining design modules.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
36

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
37

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
38

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
39

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
40

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
41

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
42

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
43

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
44

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
45

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
46

The next few slides demonstrate the JDBC mechanism chosen for our persistent classes in
our example.

For JDBC, a client works with a DBPersistentClass to read and write persistent data. The
DBPersistentClass is responsible for accessing the JDBC database using the
DriverManager Java class. Once a database Connection is opened, the DBPersistentClass
can then create SQL statements that will be sent to the underlying RDBMS and executed
using the Statement class. The Statement is what “talks” to the database. The result of the
SQL query is returned in a ResultSet object.

DBPersistentClass understands the OO-to-RDBMS mapping and has the ability to interface
with the RDBMS. It flattens the object, writes it to the RDBMS, reads the object data from
the RDBMS, and builds the object. Every class that is persistent has a corresponding
DBPersistentClass.

The PersistentClassList is used to return a set of persistent objects as a result of a
database query (for example, DBClass.read()).

The <<role>> stereotype was used for anything that should be regarded as a placeholder
for the actual design element to be supplied by the developer. This convention makes it
easier to apply the mechanism, because it is easier to recognize what the designer must
supply.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
47

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
48

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
49

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
50

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
51

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
52

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
53

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
54

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
55

Specific strategies can be used to design a class, depending on its original analysis
stereotype (boundary, control, and entity). These stereotypes are most useful during Use-
Case Analysis when identifying classes and allocating responsibility. At this point in design,
you really no longer need to make the distinction — the purpose of the distinction was to get
you to think about the roles objects play, and make sure that you separate behavior
according to the forces that cause objects to change. Once you have considered these
forces and have a good class decomposition, the distinction is no longer really useful.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
56

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
57

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
58

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
59

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
60

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
61

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
62

During Analysis, entity classes may have been identified and associated with the analysis
mechanism for persistence, representing manipulated units of information. Performance
considerations may force some re-factoring of persistent classes, causing changes to the
Design Model that are discussed jointly between the database designer and the designer
responsible for the class. The details of a database-based persistence mechanism are
designed during Database Design, which is beyond the scope of this course.

Here we have a persistent class with five attributes. One attribute is not really persistent; it
is used at runtime for bookkeeping. From examining the use cases, we know that two of the
attributes are used frequently. Two other attributes are used less frequently. During Design,
we decide that we’d like to retrieve the commonly used attributes right away, but retrieve the
rarely used ones only if some client asks for them. We do not want to make a complex
design for the client, so, from a data standpoint, we will consider the FatClass to be a proxy
in front of two real persistent data classes. It will retrieve the FatClassDataHelper from the
database when it is first retrieved. It will only retrieve the FatClassLazyDataHelper from the
database in the rare occasion that a client asks for one of the rarely used attributes.

Such behind-the-scenes implementation is an important part of tuning the system from a
data-oriented perspective while retaining a logical object-oriented view for clients to use.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
63

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
64

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
65

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
66

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
67

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
68

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
69

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
70

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
71

A subtype is a type of relationship expressed with inheritance. A subtype specifies that the
descendent is a type of the ancestor and must follow the rules of the “is a” style of
programming.

The “is a” style of programming states that the descendent "is a" type of the ancestor and
can fill in for all its ancestors in any situation.

The “is a” style of programming passes the Liskov Substitution Principle, which states: “If for
each object O1 of type S there is an object O2 of type T such that for all programs P defined
in terms of T, the behavior of P is unchanged when O1 is substituted for O2 then S is a
subtype of T.”

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
72

The classes on the left-hand side of the diagram do follow the "is a" style of programming: a
Lion is an Animal and a Tiger is an animal.

The classes on the right side of the diagram do not follow the “is a” style of programming: a
Stack is not a List. Stack needs some of the behavior of a List but not all of the behavior. If a
method expects a List, then the operation insert(position) should be successful. If the
method is passed a Stack, then the insert (position) will fail.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
73

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
74

With delegation, you use a composition relationship to “reuse” the desired functionality. All
operations that require the “reused” service are “passed through” to the contained class
instance.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
75

Changing a student from part-time to full-time involves a non-trivial sequence of steps:

• Creation of an object FullTimeStudent.

• Copy of the shared data from PartTimeStudent to FullTimeStudent.

• Notification to all clients of PartTimeStudent.

• Destruction of the PartTimeStudent object.

And what happens if in addition there is a requirement to maintain a history of the student.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
76

The solution makes the change from PartTime to FullTime simple and efficient. The data
copy and the notifications to clients of PartTime are no longer required. It is now possible to
maintain a history by simply changing the composition multiplicity to 1..*. A dateOfChange
attribute can then be added to Classification and the history list can be ordered by date.

What’s more, this structure adds to the flexibility of the model: imagine for instance that the
student lives on the campus. In this case, we could add additional data, such as the room
location, in a ResidentInfo class with a 0..1 composition from Student to ResidentInfo.

Note: The State pattern uses this structure in which a class State is introduced instead of
Classification. The aggregate (the equivalent of Student in our diagram) can then invoke
operations without having to know the current state. When there is a change of state, the
aggregate receives a new State object, an instance of a subclass of State. When a request
is received, the aggregate simply invokes the correct operation of State, as it is
implemented in the subclass.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
77

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part III – Object-Oriented Design
78

