OOAD with UML2 and RSM

‘ IBM Software Group | Rational Software France

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

PART Ill - Object-Oriented Design

software

(@ business on demand software

Version 1.1 (2007-11-09) © 2005-2007 IBM Corporation

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

'% | IBM Software Group | Rational software

Table of Contents

10. Identify Design Elements

11. Identify Design Mechanisms

12. Class Design

13. Subsystem Design

14. Describe the Run-Time Architecture and Distribution

15. Design the Database

p. 03
p. 31
p. 51
p. 79

p. 97

p. 127

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational Software France

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

10. Identify Design Elements

software

(@business on demand software

© 2005-2007 IBM Corporation

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

EE:,; | IBM Software Group | Rational software

Roadmap for the OOAD Course

= Analysis

e e = = == === - .

. . /) \
» Architectural Analysis | AnaIyS|s ?

(Define a Candidate Architecture)
» Use-Case Analysis
(Analyze Behavior)
= Design
» Identify Design Elements

(Refine the Architecture)

» Identify Design Mechanisms
(Refine the Architecture)

» Class Design
(Design Components)

» Subsystem Design
(Design Components)

» Describe the Run-time
Architecture and Distribution

Define a Candidate Architecture

- e e = -

v
)
Analyze Behavior /7

b e]

_________ l SISISISIN
2
&5 I]
Refine the Architecture

&5 5

Design Components Design the Database

\
|
I
|
I
1
I
|

/

(Refine the Architecture) \DeSIQ L é
» Design the Database

- e o o o o e

In Architectural Analysis, an initial attempt was made to define the layers of our system,

concentrating on the upper layers. In Use-Case Analysis, you analyzed your requirements
and allocated the responsibilities to analysis classes.

In Identify Design Elements, the analysis classes are refined into design elements (design
classes and subsystems).

In Use-Case Analysis, you were concerned with the “what.” In the architecture activities, you
are concerned with the “how”. Architecture is about making choices.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

|[dentify Design Elements

= Purpose

» To analyze interactions of analysis classes to identify design model
elements

= Role
» Software Architect
= Major Steps
» Map Analysis Classes to Design Elements
» |ldentify Subsystems and Subsystem Interfaces
» Update the Organization of the Model

= Note:

» The objective is to identify design elements, NOT to refine the design, which
is covered in Design Components

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

Egg,—-;__ | IBM Software Group | Rational software

Where Are We?

E=) Map Analysis Classes to Design Elements
= |dentify Subsystems and Subsystem Interfaces
= Update the Organization of the Model

Part Il — Object-Oriented Design

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

From Analysis Classes to Design Elements
Analysis Classes Design Elements

<<boundary>>

<<control>> O+ =]
<<subsystem>>
O_ Subsystem
<<entity>> _|
<<boundary>> $:|
O— <<subsystem>>
Subsystem

Many-to-Many Mapping

Part Il — Object-Oriented Design

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

ZE:,: | IBM Software Group | Rational software

Analysis Classes vs. Design Elements

= Analysis classes:
» Handle primarily functional requirements
» Model objects from the “problem” domain

= Design elements:
» Must also handle nonfunctional requirements
» Model objects from the “solution” domain

Itis in Identify Design Elements that you decide which analysis classes are really classes,
which are subsystems (which must be further decomposed), and which are existing
components and do not need to be “designed” at alll.

Once the design classes and subsystems have been created, each must be given a name
and a short description. The responsibilities of the original analysis classes should be
transferred to the newly created subsystems. In addition, the identified design mechanisms
should be linked to design elements (next module).

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Drivers When ldentifying Design Elements

= Non-functional requirements, for instance consider:
» Application to be distributed across multiple servers
» Real-time system vs. e-Commerce application
» Application must support different persistent storage implementations
= Architectural choices
» For instance, .NET vs. Java Platform
= Technological choices
» For instance, Enterprise Java Beans can handle persistence
= Design principles (identified early in the project’s life cycle)

» Use of patterns (discussed in detail in the Identify Design Mechanisms
module)

» Best practices (industry, corporate, project)

» Reuse strategy

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Mapping the Design Model to Other Models

= Maintaining a separate analysis model

» Every Analysis Class in the Analysis Model should be associated with at
least one design class in the Design Model

& BidOnItemController |<“<<F3'C'é‘>>m ElBidOnItemDispatcher |

= Mapping design to implementation

» The decision to map design to implementation should be made before
design starts

» May vary based on how you map the design elements to implementation
classes, files, packages and subsystems in the implementation model but
should be consistent

= |Impact of using an MDD/MDA approach

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

10

OOAD with UML2 and RSM

ZE:,: | IBM Software Group | Rational software

|[dentifying Design Classes

= An analysis class maps directly to a design class if:
» It is a simple class
» It represents a single logical abstraction
= Typically, entity classes survive relatively intact into Design
= A more complex analysis class may:
» Be split into multiple classes
» Become a part of another class

» Become a package

» Become a subsystem (discussed later)
» Become a relationship

» Be partially realized by hardware

» Not be modeled at all

» Any combination ...

Some examples:

» Asingle boundary class representing a user interface may result in multiple
classes, one per window.

» Acontrol class may become a design class directly, or become a method within a
design class.

* Asingle entity class may become multiple classes (for example, an aggregate with
contained classes, or a class with associated database mapping or proxy classes,
etc.).

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

11

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Example: Analysis

= At the end of Analysis, let's assume we ended up with the (very simple
and yet generic) model below

» Our requirements stipulate that this is a typical J2EE Web application, with a
thin client and a Web server...

[1:action () |
1.1:request () |
: 1.1.1| performAction ()
|
I
1.2: request ()
l “Form = ActionController
| 2: action () |
r* I | #action () 1 | ®request ()
| # performAction ()

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 12

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Example: Design

«— Client Tier —», WebTier ———— 15 our example, the
! ,

[Fi0eer | [EWebForm!” E FrontController | [E7Actionvap| [[EmyAction:Acion | form becomes a JSP

. ; v and the controller is
ﬂ’m‘i : : Returns myAction =

1
1.1: procegsRequest (request,response) -

|
| splitin 2 classes: a
[| FrontController servlet
1.1.1:|detAction (forThisRequest) | (a J2EE best practice
|
|

and pattern) and an
Action class that does

1.1.2: JetAction (forThisReguest)

1.3: processRequesL (request, responsd) the actual work
I (performAction)

1.1.3.1: FerformAction) Patterns are

discussed in detail in
J1.4: processRequest (request, response|) the next module

1.2: processRequest (request], response)

|
|
|
|
|
|
|
|
|
|
|
%: userAction (|) \

|
* | | <I5P>» sends:request
! | | ElWebForm |------- Fomeeaand = FrontController
[1 I ! L& userAction ()| : # processRequest
In fact our architect has decided to use the forwards request
Struts framework, which will among other 04 A “Q —
things handle the FrontController and = ActionMap | retrieves = e
H - ‘0Ocessrequest

ActionMap parts ... @ getAction () fzprgerformAccgion()

The purpose of this slide is not to describe a complete solution. In fact there are many
possible variants depending on many factors. And this is what we need to have a generic
solution (the FrontController and Action scheme here) for a common problem (user actions
in web pages). The next module (Identify Design Mechanism) discusses this topic in more
detail.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13

OOAD with UML2 and RSM

S==

| IBM Software Group | Rational software

Where Are We?

= Map Analysis Classes to Design Elements
==) |dentify Subsystems and Subsystem Interfaces

= Update the Organization of the Model

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

14

OOAD with UML2 and RSM

| IBM Software Group | Rational software

only through public interfaces

» Subsystems support multiple
implementation variants

= Subsystems can be used to partition
the system into units which:
» Can be independently changed without
breaking other parts of the systems

» Can be independently developed (as
long as the interfaces remain
unchanged)

» Can be independently ordered,
configured, or delivered

[ctbsysten» |

SubsystemA

Subsystems As Replaceable Design Elements

= Subsystems are components that provide services to their clients

» Any two subsystems that realize the same interfaces are interchangeable

[ctbsysten» |

SubsystemB

2 Somelnterface
someService ()

2 Somelnterface

SIClient 2l Somelnterface

someService ()

& someService ()

Part Il — Object-Oriented Design

© Copyright IBM Corp. 2005-2007

Subsystems are ideal for modeling components - the replaceable
units of assembly in component-based development

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

15

OOAD with UML2 and RSM

zz,ﬁ: | IBM Software Group | Rational software

Candidate Subsystems

= Analysis Classes providing complex services and/or utilities
» For example, security authorization services

= Boundary classes
» User interfaces
» Access to external systems and/or devices

= Classes providing optional behavior or different levels of the same
services

= Highly coupled elements

= Existing products that export interfaces o-CrderEntry
(communication software, database access T
support, etc.)

«subsystem»
Order

A complex analysis class is mapped to a design subsystem if it appears to embody behavior
that cannot be the responsibility of a single design class acting alone. A complex design
class may also become a subsystem, if it is likely to be implemented as a set of
collaborating classes.

The design subsystem is used to encapsulate these collaborations in such a way that clients
of the subsystem can be completely unaware of the internal design of the subsystem, even
as they use the services provided by the subsystem. If the participating classes/subsystems
in a collaboration interact only with each other to produce a well-defined set of results, the
collaboration and its collaborating design elements should be encapsulated within a
subsystem.

This rule can be applied to subsets of collaborations as well. Anywhere part or all of a
collaboration can be encapsulated and simplified, doing so will make the design easier to
understand.

Part Il — Object-Oriented Design

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

16

OOAD with UML2 and RSM

EEZ;__ | IBM Software Group | Rational software

Packages and Subsystems

= Packages and subsystems both provide structure
» In fact in UML 1.x, subsystems were a cross between packages (providing
structure) and classes (providing behavior)
= Both packages and subsystems can be used to achieve the desired
effect (see diagram)

» Subsystems should be preferred in most cases, as they provide better
encapsulation, better de-coupling and are more easily replaceable

«subsystem»
=/Client # SubsystemA

_ 2 Somelnterface
= Class2 # someService ()

= Class1
@someService ()| | e N

2 Somelnterface

someService ()

Collections of types and data structures (e.g. stacks, lists, queues) may be better
represented as packages, because they reveal more than behavior, and it is the particular
contents of the package that are important and useful (and not the package itself, which is
simply a container).

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

17

OOAD with UML2 and RSM

zz,ﬁ: | IBM Software Group | Rational software

Example: Course Registration System

Analysis Design

«subsystem»
CourseCatalog

[ICourseCatalog
«Boundary» N . . . N
1@ CourseCatalog - # retrieveCourseOfferings (forSeme:ster : Semester) : CourseOfferingList

// refrieve course offerings for semester ()

v
«interface»
[ICourseCatalog
retrieveCourseQfferings (forSemester : Semester) : CourseOfferingList

«subsystem»
BillingSystem

«Boundary»
HOBillingSystem ‘ [BillingSystem
— #submitBill (amount : Double, to : PersonData) : Boolean
& // submit bill () T

«interface»
2 BillingSystem
submitBill (amount : Double, to : PersonData) : Boolean

During Use-Case Analysis, we modeled two boundary classes, the BillingSystem and the
CourseCatalog, whose responsibilities were to cover the details of the interfaces to the
external systems. It was decided by the architects of the Course Registration System that
the interactions to support external system access will be more complex than can be
implemented in a single class. Thus, subsystems were identified to encapsulate these
responsibilities and provide interfaces that give the external systems access.

The BillingSystem subsystem provides an interface to the external billing system. It is used
to submit a bill when registration ends and students have been registered in courses.

The CourseCatalog subsystem encapsulates all the work involved for communicating to the
legacy Course Catalog System. The system provides access to the unabridged catalog of
all courses and course offerings provided by the university, including those from previous
semesters.

These are subsystems rather than packages because a simple interface to their complex
internal behaviors can be created. Also, by using a subsystem with an explicit and stable
interface, the particulars of the external systems to be used (in this case, the Billing System
and the legacy Course Catalog) could be changed at a later date with no impact on the rest
of the system.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 18

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Incorporating Interfaces in Class Diagrams

= Every relationship to the initial analysis class must be replaced by an
equivalent relationship to the subsystem interface

W
- %‘ . Etl 5’F ¥0 CourseCatalog Keep in mind that you
. m?registrationform @ / refrieve course offerings () may be introducing new
o - coursecatal dgpendencnes for the
0.1 client classes: here
- registrationcontroller RegistrationController
” now also depends on
ol Semester and
& RegistrationController CourseOfferingList
[/ refrieve course offerings ()
// register for selected courses () |
«nterface»

» ICourseCatalog
O RegistrationForm

“Fegistrationform # retrieveCourseOfferings (forSemester : Semester) : CourseOfferingList
0.1 - coursecatalog

- registrationcontroller

«Control>

& RegistrationController

Same role name

@ /{ refrieve course offerings ()
@ /{ register for selected courses ()

In RSA/RSM, these changes have to be performed manually:
* Retrieve the interface to use and drag it to the diagram

» Select the relationship and move the target end from the analysis class to the
interface

» Delete the analysis class from the diagram
» Delete the analysis class from the design model after all changes have been made

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

= | IBM Software Group | Rational software

Incorporating Interfaces in Sequence Diagrams
[7 Shuert| | 7 Regstatioorm | wﬁ—m rrrmrj

1./ reé;lster for courses request ()
1|1: // refrieve course offeri s'() |
| 1.1.1: // refrieve course offerun_gL‘)

P

1.4.2:

P

/{ refrieve course offerings ()

—
N

2: /{ retrieve course offerings [) I
| |
1.34| A/ display selection form wiﬂ1 course offerings () !

|
|
|
|
|
|
|

2: //retil;;sterforcoursesret e :Student o ;EEEE orm I

1./ rqlglster for courses regyest () |
1: // refrieve course offerings|()

I
|
e '
1.1.1: retrieveCourseOffierings (forSemester : Semester) : CourseOfferingList

1.1.2: retrieveCourseOfferings (forSemester : Semester) @ CourseOfferingList

—

2: /{ retrieve course offerings [)

- |

2./ rﬁleter for courses reg jest) :

|
|
|
1.3: // display selection forfn with course offerings () |
|
|
|

In RSA/RSM, simply drag the interface over the analysis object and update the message.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Subsystem Dependencies

= Keep in mind: The interfaces provided (and/or required) by a
subsystem are outside the subsystem

= Often the services described by an interface will involve non-standard
types, e.g. Semester and CourseOfferingList

» You can group the m
CourseCatalog

interfaces and types
in a single package

[ICourseCatalog
@ retrieveCourseOfferings ()

» Both the client packages
and the realizing
subsystem have
dependencies on this
package

2 ICourseCatalog

@ retrieveCourseOfferings (forSemester : Semester) : CourseOfferingList
[[ElcourseofferingList | [/Semester |

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 21

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

S==

| IBM Software Group | Rational software

Where Are We?

= Map Analysis Classes to Design Elements

= |dentify Subsystems and Subsystem Interfaces
E=) Update the Organization of the Model

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

22

OOAD with UML2 and RSM

| IBM Software Group | Rational software

The Building Blocks of our Architecture

= Keep in mind: we are building a component-based architecture

» The building blocks of our architecture are the packages, subsystems, and
other components of our system

= The building blocks are “layered” in order to achieve a number of
goals like application
availability, security,
performance, user-friendliness,
reuse, ..., and of course
functionality to end-users

= To achieve our goals, we
need to control how our
building blocks are packaged

and assigned across layers ©iUniversityData

Al

EIBusiness

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 23

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

ZEE;—*; | IBM Software Group | Rational software

Design Packages

= Design packages are used to group related design elements together
= Design packages and subsystems are the building blocks of our
architecture
» They should be organized to achieve the goals of this architecture
» Simply grouping logically related classes is not enough
» Apply the basic object-oriented principles:
= Encapsulation
= Separation of interface and implementation
= Loose coupling with the “outside”

= Design packages are also often used as configuration units and to
organize the allocation of work across development teams

= Remember: If one element of package A has a relationship with at
least one element of package B, then package A depends on package

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 24

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

Eﬂ ‘ IBM Software Group | Rational software

Example 1: What Is Wrong With This Picture?

= Can you point out the weaknesses of this model organization?
= What changes would you suggest?

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 25

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Example 2: Improve This Model

= How would you improve this model?
= Could you use an interface instead of an abstract class?

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 26

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Packaging Tips

= Consider grouping two design elements in the same package if:
» They are dependent on each other (relationships)

» Their instances interact with a large number of messages (to avoid having a
complicated intercommunication)

» They interact with, or affected by changes in, the same actor

= |f an element is related to an optional service, group it with its
collaborators in a separate subsystem

= Consider moving two design elements in different packages if:
» One is optional and the other mandatory
» They are related to different actors

= Think of the dependencies that co-located elements may have on your
element

= Consider how stable your design element is:
» Try to move stable elements down the layer hierarchy, unstable elements up

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 27

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

‘ IBM Software Group | Rational software

Evaluating

Avoid circular
dependencies

Only public
classes can be

Package Coupling

referenced
outside of the
owning
package

© Copyright IBM Corp. 2005-2007

Part Il — Object-Oriented Design
28

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Packages in
lower layers
should not be
dependent
upon packages
in upper layers

Avoid skipping
layers

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Exercise

= Perform the exercise provided by
the instructor (lab 6)

Part Il — Object-Oriented Design

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

29

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

30

OOAD with UML2 and RSM

| IBM Software Group | Rational Software France

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

11. Identify Design Mechanisms

software

(@business on demand software

© 2005-2007 IBM Corporation

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

31

OOAD with UML2 and RSM

= | IBM Software Group | Rational software

Roadmap for the OOAD Course

= Analysis
e ——— -~
. . \
» Architectural Analysis / i
]
(Define a Candidate Architecture) ! AnaIySIS 1
. I
» Use-Case Analysis I E5l I
(Analyze Behavior) 1 Define a Candidate Architecture 1
. 1
= Design : 7 .
» Identify Design Elements | Eg '
(Refine the Architecture) \ O !
: : ; S| e e AnghzeBehaviol, _ _ /
» Identify Design Mechanisms F==Z======= === =<
(Refine the Architecture) i E_%j
» Class Design | Refine the Architecture l l
(Design Components) ! B:@ e 5
Design Components Design the Database

» Subsystem Design
(Design Components)

» Describe the Run-time
Architecture and Distribution

(Refine the Architecture) . DeSIQn é
» Design the Database

N

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

|[dentify Design Mechanisms

= Purpose

» To analyze interactions of analysis classes to identify design model
elements

= Role
» Software Architect

= Major Steps
» Identify Design and Implementation Mechanisms
» Document Architectural Mechanisms

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

33

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Where Are We?

E=) Introduction to Design Patterns
= |dentify Design and Implementation Mechanisms

= Document Architectural Mechanisms

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

34

OOAD with UML2 and RSM

ZE:,: | IBM Software Group | Rational software

What Is a Design Pattern?

= A design pattern describes a commonly-recurring structure of
communicating components that solves a general design problem
within a particular context

= Popularized by Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides (the “Gang of Four”) in Design Patterns, Elements of
Reusable Object-Oriented Software, Addison Wesley, 1994

= Deep, really useful patterns are typically ancient; you see one and will
often remark, “Hey, I've done that before.”

(Grady Booch, Foreword in Core J2EE Patterns, Deepak Alur, John Crupi & Dan Malks,
Prentice Hall, 2003)

= Patterns are “half baked,” meaning that you always have to finish
them off in the oven of your own project
(Martin Fowler, Patterns of Enterprise Application Architecture, Addison Wesley, 2003)

Design patterns are medium-to-small-scale patterns, smaller in scale than architectural
patterns but typically independent of programming language. When a design pattern is
bound, it forms a portion of a concrete design model (perhaps a portion of a design
mechanism). Design patterns tend, because of their level, to be applicable across domains.

We will introduce several patterns in this module and the remaining design modules.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

= | IBM Software Group | Rational software

Some of the GoF Patterns

Pattern

Command
(behavioral pattern)

Abstract factory
(creational pattern)

Proxy
(structural pattern)

Observer
(behavioral pattern)

Example

Issue a request to an object without knowing anything about the
operation requested or the receiver of the request: for example, the
response to a menu item, an undo request, the processing of a time-
out

Create GUI objects (buttons, scrollbars, windows, etc.) independent of
the underlying OS: the application can be easily ported to different
environments

Handle distributed objects in a way that is transparent to the client
objects (remote proxy)

Load a large graphical object or any entity object “costly” to
create/initialize only when needed (on demand) and in a transparent
way (virtual proxy)

When the state of an object changes, the dependent objects are
notified. The changed object is independent of the observers.

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part Il — Object-Oriented Design

36

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Example of a Structural Pattern: Composite (GoF)

Client = Composite *

- children

 operation ()

= SImpieEiement = Comp]exﬁemert -

operation () # operation ()_

for (Composite ¢ : children) {
c.operation();

= Examples:

» File system composed of files and directories
» Graphic composed of elementary shapes and assemblages of shapes

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

37

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Case Study: Building a Generic GUI Component

= The problem
» Imagine we want to build a reusable GUI component

» To keep it simple, we will limit ourselves to the implementation of generic
menus in a windowing system (in such a way that it will be possible to add
new menus without having to modify the GUI component)

= The solution
» Is based on the Command pattern
» Will now be exposed by your instructor

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 38

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Representing Patterns in UML

= A design pattern is a parameterized collaboration
» Note: <<role>> is not a standard stereotype

Parameters of the collaboration

i Client : Class P4
¢ Invoker : Class

\%ConcreteComman}>
£ ConcreteCommand : Class
“»Command

& process ()

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 39

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Where Are We?

= |ntroduction to Design Patterns
==) |dentify Design and Implementation Mechanisms

= Document Architectural Mechanisms

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

40

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Design Mechanisms

= A design mechanism is a refinement of a corresponding analysis
mechanism
» It adds concrete detail to the conceptual analysis mechanism, but stops

short of requiring particular technology - for example, a particular vendor's
implementation of a RDBMS

» It may instantiate one or more patterns (architectural or design patterns)

= To identify design mechanisms from analysis mechanisms:
» Identify the clients of each analysis mechanism
» Identify characteristic profiles for each analysis mechanism
» Group clients according to their use of characteristic profiles

» Proceed bottom up and make an inventory of the design mechanisms that
you have at your disposal

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

41

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Example: Design Mechanisms

C_& >

In-Memory Storage

/’\%

sm: Flash card
SlStency \ 0 i ;0
Binary File
3
RDBMS

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 42

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

'§'—,=.§ | IBM Software Group | Rational software

Implementation Mechanisms

= An implementation mechanism is a refinement of a corresponding
design mechanism

» It may use, for example, a particular programming language and other
implementation technology

» It may instantiate one or more idioms or implementation patterns

RDBMS - S—

JAVA
Analysis Design Mechanism: Implementation
Mechanism: RDBMS Mechanism:
Persistency JDBC

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 43

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

EEZ;__ | IBM Software Group | Rational software

Where Are We?

= |ntroduction to Design Patterns
= |dentify Design and Implementation Mechanisms
==) Document Architectural Mechanisms

Part Il — Object-Oriented Design

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

44

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Document Architectural Mechanisms

= A mechanism represents a pattern that constitutes a common solution
to a common problem

» Our ultimate goal is to ensure consistency in the implementation of our
system, while improving productivity

= Having defined what implementation mechanism should be used by all
client classes with the same characteristics profile, the software
architect also defines how to use it

» The end result is a collaboration that will be documented like any other
collaboration: using sequence diagrams and diagrams of participating
classes

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 45

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

@new ()
& add (¢ : PersistentClass

@ getData ()
& setData ()
& command ()
& new

& create () : PersistentClass
@ read (searchCriteria) : PersistentClassList
& update (¢ : PersistentClass)
& delete (¢ : PersistentClass)

I DriverManager
(from java.sql)

) # getConnection (url, user, pass) : Connection
i y;

C/ResultSet 1
(from java.sql) H B
- ; N L
L#getString () | ./ Connection
AN . : {from java.sql)
\'4
|| Statement «---- ¥ createStaternent () : Staternent
(from java.sql)
executeQuery (sql) : ResultSet

The next few slides demonstrate the JDBC mechanism chosen for our persistent classes in
our example.

For JDBC, a client works with a DBPersistentClass to read and write persistent data. The
DBPersistentClass is responsible for accessing the JDBC database using the
DriverManager Java class. Once a database Connection is opened, the DBPersistentClass
can then create SQL statements that will be sent to the underlying RDBMS and executed
using the Statement class. The Statement is what “talks” to the database. The result of the
SQL query is returned in a ResultSet object.

DBPersistentClass understands the OO-to-RDBMS mapping and has the ability to interface
with the RDBMS. It flattens the object, writes it to the RDBMS, reads the object data from
the RDBMS, and builds the object. Every class that is persistent has a corresponding
DBPersistentClass.

The PersistentClassList is used to return a set of persistent objects as a result of a
database query (for example, DBClass.read()).

The <<role>> stereotype was used for anything that should be regarded as a placeholder
for the actual design element to be supplied by the developer. This convention makes it
easier to apply the mechanism, because it is easier to recognize what the designer must

supply.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 46

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

JDBC Mechanism: Initializing the Connection

= |nitialization must occur before any persistent class can be accessed
» getConnection() returns a Connection object for the specified url

[JDBC ROBHS tzs.
_

|
|
|
U 1.1: getConnection { url, user, pass) : Connection
|
|
|
|

— O

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 47

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

; | IBM Software Group | Rational software

JDBC Mechanism: Retrieving Data

[C/JDBCRDBMS Read |
)) l Returns a I
[1: read(string) | | statement The SQL statement built by the DBClass using
|) 1.4: cregISHEemET)! the given criteria is passed to executeQuery()

| T

) /
The criteria used to access) N |
data for the persistent class 1.2 executeQulery(string) Create a list to hold all
I | _|retrieved data
l1.3: PersistentClasitist()
|

[
| |

100p [for each class from execute query] |
| 1: quistentclass()

| |

== [for each attribute inlclass] |

1: getString ()l

|
|
|
|
|
|
|
i H
]
|2:5eIData()

Il
T
|
|

?

|
f
|
|
f
|
|
[
|
|
|
]
|

1
T
|
|
I
2: add(PersistentClass) |
|
|
I
|

|
I
|

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 48

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Exercise

= There is no exercise in this
module

Part Il — Object-Oriented Design

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

49

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 50

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational Software France

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

12. Class Design

software

(@business on demand software

© 2005-2007 IBM Corporation

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

51

OOAD with UML2 and RSM

= | IBM Software Group | Rational software

Roadmap for the OOAD Course

= Analysis
» Architectural Analysis
(Define a Candidate Architecture)

» Use-Case Analysis
(Analyze Behavior)

= Design

» Identify Design Elements
(Refine the Architecture)

» Identify Design Mechanisms
(Refine the Architecture)

» Class Design
(Design Components)

» Subsystem Design
(Design Components)
» Describe the Run-time

Architecture and Distribution
(Refine the Architecture)

» Design the Database

e e - -
’ . N
i Analysis ? :
|
I &5)
I Define a Candidate Architecture 1
I I
|
: L !
. r &5 !
Sa s s assss = Analyze Behavior __ /
e e S
/ E_%] \
| Refine the Architecture B:@ ll 1
A5 |
I nl;eDmabase 1
I I
I I
| | |
I T 1
\ Design /
P ————— e ——————— ’

Part Il — Object-Oriented Design

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

52

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Class Design

= Purpose

» To ensure that the class provides the behavior the use-case realizations
require

» To ensure that sufficient information is provided to unambiguously
implement the class

» To handle nonfunctional requirements related to the class

» To incorporate the design mechanisms used by the class
= Role

» Designer

= Major Steps
» Create Initial Design Classes
» Refine Design Classes

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

53

OOAD with UML2 and RSM

S==

| IBM Software Group | Rational software

Where Are We?

E=) Create Initial Design Classes
= Refine Design Classes

Part Il — Object-Oriented Design

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

54

OOAD with UML2 and RSM

ZE:,: | IBM Software Group | Rational software

Class Design Considerations

= Specific strategies can be used to %
[N

design a class, depending on its
original analysis stereotype (boundary,

control, entity) \‘ /
» Analysis stereotypes not maintained in - @
Design —
= Consider how design patterns can be |

used to help solve implementation
issues

(...) I argue that the goal of a model is

= Consider how the architectural to capture design decisions as directly

mechanisms will be realized in terms as possible, and the best way to do
: ; this is to evolve the model by adding
of the defined design classes elements rather than by replacing
them.
(Jim Rumbaugh, p.1 in OMT Insights,
Prentice Hall, 1996)

Specific strategies can be used to design a class, depending on its original analysis
stereotype (boundary, control, and entity). These stereotypes are most useful during Use-
Case Analysis when identifying classes and allocating responsibility. At this point in design,
you really no longer need to make the distinction — the purpose of the distinction was to get
you to think about the roles objects play, and make sure that you separate behavior
according to the forces that cause objects to change. Once you have considered these
forces and have a good class decomposition, the distinction is no longer really useful.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

55

OOAD with UML2 and RSM

S==

| IBM Software Group | Rational software

How Many Classes Are Needed?

= Many, simple classes means that each class:
» Encapsulates less of the overall system intelligence
» |s more reusable
» Is easier to implement
= A few, complex classes means that each class:
» Encapsulates a large portion of the overall system intelligence
» Is less likely to be reusable
» Is more difficult to implement

A class should have a single well-focused purpose.
A class should do one thing and do it well!

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

56

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Strategies for Designing Analysis Classes

= Boundary Classes
» Consider the use of subsystems (see module 10, Identify Design Elements)
» Many patterns available for Web Browser-based User Interfaces
= See for instance Core J2EE Patterns, Deepak Alur, John Crupi & Dan
Malks, Prentice Hall, 2003
= Control Classes

» Control classes are directly impacted by issues of concurrency and
distribution: see module 14, Describe the Run-time Architecture and

Distribution

= Entity Classes
» Entity classes are usually persistent: see module 15, Design the Database

Remember: the software architect is responsible for the overall design of the
architecture and the designer for the actual contents — there is sometimes a fine line
between the two. In the remainder of this module we discuss issues related to the

detailed design of our classes.

Part Il — Object-Oriented Design

© Copyright IBM Corp. 2005-2007 57
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

S==

| IBM Software Group | Rational software

Where Are We?

= Create Initial Design Classes
E=) Refine Design Classes

Part Il — Object-Oriented Design

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

58

OOAD with UML2 and RSM

Egg,—-;__ | IBM Software Group | Rational software

type)

= Student

Eghame
Egaddress
g studentID

 /{ add schedule ()

/{ has pre-requisites ()

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Define Design Operations

= Additional operations
» Operations not explicitly defined in analysis (e.g. getters/setters)
» Manager functions (like constructors, destructors)

» Functions for copying objects, to test for equality, to test for optional
relationships (e.g. isProfessorAssigned() for a CourseOffering class), etc.

» Helper functions (often private or protected)

= Design operations are directly derived from analysis responsibilities
» Specify operation name and full operation signature (parameters and return

= Student

cghame
Egaddress

EgstudentID : String
g dateOfBirth : Date

addSchedule (theSchedule : Schedule) : Boolean
hasPrerequisites (forCourseOffering : CourseOffering) : Boolean

getStudentID () : String

Part Il — Object-Oriented Design

59

OOAD with UML2 and RSM

| IBM Software Group | Rational software

address could be

typed as a Stringor ——»
as a new class
Address

Define Design Attributes

= Design attributes are derived from analysis attributes
» Specify name, type and optional default value
» Private visibility in most cases
= Type can be a built-in data type (UML2 or other), user-defined data
type, or user-defined class
» Consider not using data types from the implementation language

=IStudent

Eghame

Egaddress
EgstudentID : String
g dateOfBirth : Date

addSchedule (theSchedule : Schedule) : Boolean
hasPrerequisites (forCourseOffering : CourseOffering) : Boolean
getStudentID () : String

Part Il — Object-Oriented Design

© Copyright IBM Corp. 2005-2007

60

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Derived Attributes

= Attributes whose value may be calculated based on the value of other
attributes, typically introduced for performance reason

» But avoid optimizing before you know you really need it!
= |dentified by a “/”

|{se|f.numsmdents = self.reglstered—>slze()}'ﬁ

) = Company ¢-org " IDepartment
QMerlng 1 *

cacourseRef : String |~ registered 1

CastartTime ﬁ|,‘ E?@ :: | 1~ fcompany D - department
Gadays-int

g fnumStudents @ int

N

'-Q-Person

Also applicable to roles P {self.company = self.department.org}'j

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 61

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

Zg,m | IBM Software Group | Rational software

Refining Classes: Example

= Performance requirements may force some re-factoring

1 0.1
|
ElFatClassDataHelper ElFatClassLazyDataHelper
g commonlyUsedAttrl cgrarelyUsedAtri
g commonlyUsedAttr2 cgrarelyUsedAtr2

Analysis : Design
|
I EFatClass
1 g privateAtr
S 1 # getCommonlyUsedAttr1 ()
@ FatClass 1 # getCommonlyUsedAttr2 ()
EgprivateAtr I # getRarelyUsedAttrl ()
EgcommonlyUsedAttrl # getRarelyUsedAtr2 ()
g commonlyUsedAttr2 !
cgrarelyUsedAttr1 |
cgrarelyUsedAtr2 I
|
|
|
|
|
|
|

During Analysis, entity classes may have been identified and associated with the analysis
mechanism for persistence, representing manipulated units of information. Performance
considerations may force some re-factoring of persistent classes, causing changes to the
Design Model that are discussed jointly between the database designer and the designer
responsible for the class. The details of a database-based persistence mechanism are
designed during Database Design, which is beyond the scope of this course.

Here we have a persistent class with five attributes. One attribute is not really persistent; it
is used at runtime for bookkeeping. From examining the use cases, we know that two of the
attributes are used frequently. Two other attributes are used less frequently. During Design,
we decide that we’d like to retrieve the commonly used attributes right away, but retrieve the
rarely used ones only if some client asks for them. We do not want to make a complex
design for the client, so, from a data standpoint, we will consider the FatClass to be a proxy
in front of two real persistent data classes. It will retrieve the FatClassDataHelper from the
database when it is first retrieved. It will only retrieve the FatClassLazyDataHelper from the
database in the rare occasion that a client asks for one of the rarely used attributes.

Such behind-the-scenes implementation is an important part of tuning the system from a
data-oriented perspective while retaining a logical object-oriented view for clients to use.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 62

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Refine Relationships

= Navigability

= Multiplicity

= Generalization vs. aggregation
= Factoring and delegation

= Refactoring

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 63

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Navigability: Which Directions Are Really Needed?

= Restricting navigability reduces dependencies and increases reuse

r -
* ? *

[Eproduct |_* [Sorder | [Eproduct | [Sorder |

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 64

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

'% | IBM Software Group | Rational software

Navigability: Alternatives

1. The total number of orders Eproduct | _* @ = Order
is small, or we rarely need a
list of orders that reference
a given product PS—— @ T
2. The total number of "
products is small, or we
rarely need a list of T MSorder |
products included in a given N B
order @
3. The numbers of products " Product | = Order |
and orders are not small *

and one must be able to *
navigate in both directions Sy —

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 65

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Multiplicity Design

= Multiplicity = 1, or Multiplicity = 0..1
» May be implemented directly as a simple value or pointer
» No further “design” is required

= Professor m * = Cotrseo—fferlng
N, A
- Thstructor

= Multiplicity > 1
» Cannot use a simple value or pointer

» Further “design” may be required Needs a container for
CourseOffering objects
SProfessor | 0.1 mmﬁalm
- instructor

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 66

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Modeling a Container Class

= The container class may be implied by the multiplicity (n > 1) or it may
be explicitly modeled

The container is implied

PO 0.t =T ey

-instructor - courseList

OR

MEProfessor | - instructor - courseList ["=] CourseOfferingList

0.1 1

Role name unchanged but
multiplicity transferred ering

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 67

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Parameterized Class

= A class definition that defines other classes
= In UML, known as “templates”

= Often used for container classes
» Sets, lists, dictionaries, stacks, queues

= C++ Java s

) " Formal parameter(s)

i Actual parameter(s)
«bind»
Item -> CourseOffering /

peervin N s R

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 68

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Generalization vs. Aggregation
= Generalization and aggregation are often confused

» Generalization represents an “is a” or “kind-of” relationship
» Aggregation represents a “part-of” relationship

= scrollbar |

=l Window

N

='windowwithScrollbar |

Is this correct?

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 69

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Generalization vs. Aggregation (cont.)

Wi Scrollbar

—tl

A WindowWithScrollbar “is a” Window
= Window A WindowWithScrollbar “contains a” Scrollbar

i o~ scrolibar [Serolibar |

{

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 70

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

EE:,; | IBM Software Group | Rational software

Generalization: Substitution Principle

= Follows the “is @” style of programming

= Liskov Substitution Principle: It should be possible to replace an object
of type T by any instance of a subtype of T

ElList

= Animal

#insertTop (item)

& communicate () # insertBottom (item)
@removeTop ()
#removeBottom ()

& insert (item, atPosition)

ElLion HTiger
communicate () # communicate () = Stack

Do these classes follow the “is a” style of programming?

A subtype is a type of relationship expressed with inheritance. A subtype specifies that the
descendent is a type of the ancestor and must follow the rules of the “is a” style of
programming.

The “is @” style of programming states that the descendent "is a" type of the ancestor and
can fill in for all its ancestors in any situation.

The “is @” style of programming passes the Liskov Substitution Principle, which states: “If for
each object O1 of type S there is an object O2 of type T such that for all programs P defined
in terms of T, the behavior of P is unchanged when O1 is substituted for O2 then S is a
subtype of T.”

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 71

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

EEZ;__ | IBM Software Group | Rational software

= Classes

Generalization: Substitution Principle (cont.)

Lion and Tiger follow the Substitution Principle, not Stack

ElList
= Animal
& insertTop (item)
& communicate () # insertBottom (item)

@removeTop ()
—

@ insert

ELion

= Tiger

communicate ()

communicate ()

The classes on the left-ha

nd side of the diagram do follow the "is a" style of programming: a

Lion is an Animal and a Tiger is an animal.

The classes on the right side of the diagram do not follow the “is a” style of programming: a
Stack is not a List. Stack needs some of the behavior of a List but not all of the behavior. If a
method expects a List, then the operation insert(position) should be successful. If the

method is passed a Stack

© Copyright IBM Corp. 2005-2007

, then the insert (position) will fail.

Part Il — Object-Oriented Design

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

72

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Sharing Implementation: Factoring

= Supports the reuse of the implementation of another class
= Cannot be used if the class you want to “reuse” cannot be changed

Q Seq.lenﬁai(:onaina'

HList # insertTop (item)
#&removeTop ()

@ insertTop (item)
& insertBottom (item)
@removeTop ()

& removeBottom ()
& insert (item, atPosition)
= List
Stack & insertBottom (itemn)

& removeBottom ()
& insert (item, atPosition)

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 73

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

EEE’?—E__ | IBM Software Group | Rational software

Sharing Implementation: Delegation

= Supports the reuse of the implementation of another class
= Can be used even if the class you want to “reuse” cannot be changed

HList

@ insertTop (item)

insertBottom (item)

#removeTop () Clotack = List

#removeBottom () g -lst @ insertTop (itermn)

 insert (item, atPosition) ®push ()| ® L~ | ®insertBottom (item)
#@pop () #removeTop ()

#removeBottomn ()
- # insert (item, atPosition)
Elstack

With delegation, you use a composition relationship to “reuse” the desired functionality. All
operations that require the “reused” service are “passed through” to the contained class
instance.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

74

OOAD with UML2 and RSM

EE:,; | IBM Software Group | Rational software

Refining Relationships: Example

= |n the university, there are full-time students and part-time students

» Part-time students may take a maximum of three courses but there is no
maximum for full-time students

» Full-time students have an expected graduation date but part-time students
do not

= A generalization may be created to factor out common data
» But what happens if a part-time student becomes a full-time student?

= Student
Eaname
Egaddress
I PartTimeStudent = FullTimeStudent g studentID
Egname Eaname
Egaddress cgaddress Z[\
EgstudentlD g studentID
g maxiNumCourses cggrade
= PartTimeStudent = FullTimeStudent
g maxNumCourses Eggrade

Changing a student from part-time to full-time involves a non-trivial sequence of steps:
» Creation of an object FullTimeStudent.
» Copy of the shared data from PartTimeStudent to FullTimeStudent.
» Notification to all clients of PartTimeStudent.
» Destruction of the PartTimeStudent object.
And what happens if in addition there is a requirement to maintain a history of the student.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

zz,ﬁ: | IBM Software Group | Rational software

Refining Relationships: Example (cont.)

= The solution makes the change from PartTime to FullTime simple and
efficient (no data copy or notifications)

= Now possible to maintain a history by simply changing the
composition multiplicity to 1..*
= Added flexibility: e.g. if a student lives on the campus, we could add

additional data, such as the room location, in a Resident/nfo class with
a 0..1 composition from Student to Residentinfo

Student -
Egname -— Classification
Egaddress 1
EgstudentID [[\
= PartTime = FullTime
Ea maxNumCourses Eagrade

The solution makes the change from PartTime to FullTime simple and efficient. The data
copy and the notifications to clients of PartTime are no longer required. It is now possible to
maintain a history by simply changing the composition multiplicity to 1..*. A dateOfChange
attribute can then be added to Classification and the history list can be ordered by date.

What's more, this structure adds to the flexibility of the model: imagine for instance that the
student lives on the campus. In this case, we could add additional data, such as the room
location, in a Residentinfo class with a 0..1 composition from Student to Residentinfo.

Note: The State pattern uses this structure in which a class State is introduced instead of
Classification. The aggregate (the equivalent of Student in our diagram) can then invoke
operations without having to know the current state. When there is a change of state, the
aggregate receives a new State object, an instance of a subclass of State. When a request
is received, the aggregate simply invokes the correct operation of State, as it is
implemented in the subclass.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 76

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Exercise

= Perform the exercise provided by
the instructor (lab 7)

Part Il — Object-Oriented Design

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

77

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 78

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

