
OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
1

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
2

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
3

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
4

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
5

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
6

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
7

Developing iteratively is a technique that is used to deliver the functionality of a system in a
successive series of releases of increasing completeness. Each release is developed in a
specific, fixed time period called an iteration .
Each iteration is focused on defining, analyzing, designing, building, and testing a set of
requirements.
The earliest iterations address the greatest risks. Each iteration includes integration and
testing and produces an executable release. Iterations help:

• Resolve major risks before making large investments.
• Enable early user feedback.
• Make testing and integration continuous.
• Define a project’s short-term objective milestone.
• Make deployment of partial implementations possible.

Instead of developing the whole system in lock step, an increment (for example, a subset of
system functionality) is selected and developed, then another increment, and so on. The
selection of the first increment to be developed is based on risk, with the highest priority
risks first. To address the selected risk(s), choose a subset of use cases. Develop the
minimal set of use cases that will allow objective verification (that is, through a set of
executable tests) of the risks that you have chosen. Then, select the next increment to
address the next-highest risk, and so on.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
8

In the waterfall process, there is usually a diseconomy of scale. This means that the larger
the size of the software, the higher it costs per unit to build. In an iterative process, there is
an improvement in the economy of scale. That is, the software becomes cheaper to build
per unit as you build more.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
9

The overriding goal of the Inception phase is to achieve concurrence among all
stakeholders on the lifecycle objectives for the project. The Inception phase is of
significance primarily for new development efforts, in which there are significant business
and requirements risks which must be identified before the project can proceed.

The goal of the Elaboration phase is to baseline the architecture of the system to provide a
stable basis for the bulk of the design and implementation effort in the construction phase.
The architecture evolves out of a consideration of the most significant requirements (those
that have a great impact on the architecture of the system) and an assessment of risk. The
stability of the architecture may be evaluated through one or more architectural prototypes.
Other equally important risks are also the business risks.

The goal of the Construction phase is implementing the remaining requirements and
completing the development of the system based upon the baselined architecture. The
Construction phase is in some sense a manufacturing process, where emphasis is placed
on managing resources and controlling operations to optimize costs, schedules, and quality.

The focus of the Transition Phase is to ensure that software is available for its end users.
The Transition Phase can span several iterations, and includes testing the product in
preparation for release, and making minor adjustments based on user feedback.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
10

The 1994 report from the Standish Group confirms that a distinct minority of software
development projects is completed on time and on budget. In their report, the success rate
was only 16.2%, while challenged projects (operational, but late and over budget) accounted
for 52.7%. Impaired (canceled) projects accounted for 31.1%. These failures are attributed
to incorrect requirements definition from the start of the project and poor requirements
management throughout the development lifecycle. (Source: Chaos Report,
http://www.standishgroup.com)

Aspects of requirements management:

• Analyze the problem

• Understand user needs

• Define the system

• Manage scope

• Refine the system definition

• Manage changing requirements

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
11

Architecture is a part of Design. It is about making decisions on how the system will be built.
But it is not all of the design. It stops at the major abstractions, or, in other words, the
elements that have some pervasive and long-lasting effect on system performance and
ability to evolve.

A software system’s architecture is perhaps the most important aspect that can be used to
control the iterative and incremental development of a system throughout its lifecycle.

The most important property of an architecture is resilience –flexibility in the face of change.
To achieve it, architects must anticipate evolution in both the problem domain and the
implementation technologies to produce a design that can gracefully accommodate such
changes. Key techniques are abstraction, encapsulation, and object-oriented Analysis and
Design. The result is that applications are fundamentally more maintainable and extensible.

Software architecture is the development product that gives the highest return on
investment with respect to quality, schedule, and cost, according to the authors of Software
Architecture in Practice (Len Bass, Paul Clements, and Rick Kazman [1998] Addison-
Wesley). The Software Engineering Institute (SEI) has an effort underway called the
Architecture Tradeoff Analysis (ATA) Initiative that focuses on software architecture, a
discipline much misunderstood in the software industry. The SEI has been evaluating
software architectures for some time and would like to see architecture evaluation in wider
use. As a result of performing architecture evaluations, AT&T reported a 10% productivity
increase (from news@sei, Vol. 1, No. 2).

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
12

Quality , as used within the RUP, is defined as “The characteristic of having demonstrated
the achievement of producing a product which meets or exceeds agreed-upon
requirements, as measured by agreed-upon measures and criteria, and is produced by an
agreed-upon process." Given this definition, achieving quality is not simply “meeting
requirements" or producing a product that meets user needs and expectations. Quality also
includes identifying the measures and criteria (to demonstrate the achievement of quality)
and the implementation of a process to ensure that the resulting product has achieved the
desired degree of quality (and can be repeated and managed).

This principle is driven by a fundamental and well-known property of software development:
It is a lot less expensive to correct defects during development than to correct them after
deployment.

Tests for key scenarios ensure that all requirements are properly implemented.

• Poor application performance hurts as much as poor reliability.

• Verify software reliability by checking for memory leaks and bottlenecks.

• Test every iteration by automating testing.

Inception, Elaboration, Construction, and Transition are all RUP terms that will be discussed
shortly.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
13

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
14

The Rational Unified Process (RUP) is a generic business process for object-oriented
software engineering. It describes a family of related software-engineering processes
sharing a common structure and a common process architecture. It provides a disciplined
approach to assigning tasks and responsibilities within a development organization. Its goal
is to ensure the production of high-quality software that meets the needs of its end users
within a predictable schedule and budget. The RUP captures the Best Practices in modern
software development in a form that can be adapted for a wide range of projects and
organizations.

The UML provides a standard for the artifacts of development (semantic models, syntactic
notation, and diagrams): the things that must be controlled and exchanged. But the UML is
not a standard for the development process. Despite all of the value that a common
modeling language brings, you cannot achieve successful development of today’s complex
systems solely by the use of the UML. Successful development also requires employing an
equally robust development process, which is where the RUP comes in.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
15

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
16

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
17

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
18

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
19

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
20

A use-case model describes a system's functional re quirements in terms of use
cases.

It is a model of the system's intended functionality (use cases) and its environment (actors).
Use cases enable you to relate what you need from a system to how the system delivers on
those needs.

Think of a use-case model as a menu, much like the menu you'd find in a restaurant. By
looking at the menu, you know what's available to you, the individual dishes as well as their
prices. You also know what kind of cuisine the restaurant serves: Italian, Mexican, Chinese,
and so on. By looking at the menu, you get an overall impression of the dining experience
that awaits you in that restaurant. The menu, in effect, "models" the restaurant's behavior.

Because it is a very powerful planning instrument, the use-case model is generally used in
all phases of the development cycle by all team members.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
21

The use-case model consists of both diagrams and text. The diagrams give a visual
overview of the system. The text gives descriptions of the actors and the use cases.

Use cases involve writing text. Drawing the pictures is only a small part of the effort.
Typically, more than 80 percent of all effort during requirements capture is to write the
textual description of what happens in each use case, the non-functional requirements, and
rules. The description of what happens is called the flow of events.

Activity diagrams are another useful tool you can use to describe a use case. It is quite
common to use an activity diagram to describe complex flows of events. When using activity
diagrams, it is advisable to use partitions to represent each actor and the system. Without
partitions, the activities float in a “semantic emptiness” and quickly become meaningless.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
22

An actor represents a role that interacts with the system.

A use case describes a sequence of interactions between actors and the system that occur
when an actor uses the system to achieve a certain business goal.

A use case describes:

• The system, its environment, and the relationship between them.

• How things outside the system interact with the system.

• The desired behavior for the system.

Use cases are containers for contextually related requirements of the system under
development. They are containers because they group all requirements related to achieving
a particular goal into a single story of how that is achieved.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
23

A use-case model shows what the system is supposed to do (use cases), the system's
surroundings (actors), and the relationship between actors and use cases.

The use-case diagram is a graphical description of the use-case model. Can you tell at a
glance what users can do with an ATM?

What do you think the priorities for the use cases above would be? The diagram already
helps to determine these priorities; without the first one we do not have an ATM, so we
better get it right, (e.g. during elaboration); other use cases like deposit funds are nice to
have, but would also have quite an architectural impact.

It is also useful to distinguish between primary use case and secondary use cases: Primary
use cases support the customers/actors and business. Secondary use cases we get,
because we decided on a particular technical solution and thus have to specify "extra"
functionality to run this technical solution; thus, Maintain ATM, Print logs, Start, Stop,
Backup the System, etc are required. These could be also be organized in a separate
diagram.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
24

Use cases contain the detailed functional software requirements. Every time a use case
says, “The system …,” is a detailed requirement of what the system must do.

Also, remember the definition: “A sequence of actions performed by a system that yields a
measurable result of value for a particular actor.”

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
25

Use cases are a way to organize requirements from a user perspective . All the
requirements for a user to accomplish a particular task are gathered together in a single use
case. The use-case model is the collection of all the individual use cases.

Advantages of use-case modeling include:
• Use cases show why the system is needed. Use cases show what goals the users

can accomplish by using the system.
• System requirements are placed in context. Each requirement is part of a logical

sequence of actions to accomplish a goal of a user.
• Use cases are easy to understand. The model expresses requirements from a

user perspective and in the user’s own vocabulary. The model shows how users
think of the system and what the system should do. Traditional forms of
requirements capture need some translation to make them useable to different
stakeholder types. When you translate something, information is often lost or
misinterpreted. Use cases require no such translation and therefore provide a
more consistent and reliable form of requirement capture.

• The model is a means to communicate requirements between customers and
developers to make sure that the system we build is what the customer wants.

Use-case modeling is the best tool (so far) to capture requirements and put them in context.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
26

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
27

The difference between an actor and an individual system user is that an actor represents a
particular class of user rather than an actual user. Several users can play the same role,
meaning they can be the same actor. In that case, each user constitutes an instance of the
actor.

However, in some situations, only one person plays the role modeled by an actor. For
example, there may be only one individual playing the role of system administrator for a
rather small system.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
28

The use-case diagram shown here is a graphic description of the use-case model for an
online Course Registration System. It shows two of the actors (Student and Course Catalog
System) and one use case (Register for Courses) that they participate in.

The diagram is incomplete. You use the online course registration system as a case study in
this module. You develop the use-case model for this example as we go through the
module.

Take some time to look at the use-case model for an online Course Registration System in
the Student Workbook. This example gives you an idea of what a use-case model looks like
before you begin to develop one.

The use-case model for an online Course Registration System in the Student Workbook is
incomplete. It contains only enough artifacts for the purpose of this module: Introduction to
Use-Case Modeling. A larger, much more fully developed case study is presented later in
the course.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
29

Each use case should have a name that indicates what is achieved by its interactions with
the actor(s).

A good rule of thumb (but not dictated by any standard) is to attach the actor’s name (of the
primary actor) at the beginning of the use-case name to see if it makes a meaningful
sentence. For example, does it make sense to say “The student registers for a course?”
Does it make sense to say, “The student takes a course?”

Another approach is to ask, “Why does the actor want to use the system?”

Be focused on identifying the goal that is trying to be attained by using the system.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
30

Creating a use-case model involves putting the pieces you have learned together. First, the
actors and the use cases are found by using the requirements of customers and potential
users as vital information. As they are discovered, the use cases and the actors are
identified and illustrated in a use-case diagram. Next, the steps in a use case are outlined to
get a sketch of the flow.
The actor's name must clearly denote the actor's role. Make sure there is little risk at a
future stage of confusing one actor's name with another.
Define each actor by writing a brief description that includes the actor's area of responsibility
and what the actor needs the system for. Because actors represent things outside the
system, you need not describe them in detail.
Each use case should have a name that indicates what is achieved by its interactions with
the actor(s). The name may have to be several words to be understood. No two use cases
can have the same name.
Define each use case by writing a brief description of it. As you write the description, refer to
the glossary and, if you need to, define new terms.

When the actors and use cases have been found, each use case is described in detail.
These descriptions show how the system interacts with the actors and what the system
does in each individual case. In an iterative development environment, you select a set of
use case flows to be detailed in each iteration. These are prioritized in such a way that
technical risk is mitigated early and the customer gets important functionality before less
important functionality.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
31

To identify the actors for a system, the simplest question to ask is: “Who is doing the actual
interaction?” The actor is the one who is interacting with the system.

What if a person is using a speech recognition system? Then the actor is the one talking
with the system.

An actor is any person or any thing that is outside the system and that exchanges data with
the system. An actor can either give information, receive information, or give and receive
information.

Actor is a role, not a particular person or thing. The name of the actor should represent, as
clearly as possible, the actor’s role.

Make sure that there is little risk of confusing one actor’s name with another at a future
stage of the work. Also, try to avoid an actor called “User,” rather try to figure out the role of
that particular user.

In most instances, some person or some other system does something to trigger the start of
the use case. If a use case in your system is initiated at a certain time, for example, at the
end of the day or the end of the month, this can be modeled with a special actor, such as
the “scheduler” or “time.” “Scheduler,” as opposed to “time,” is a useful name for such an
actor because scheduler may be human or non-human. “Time” leaves an element of design
in your use case model.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
32

Identifying the use cases is the next step in developing your use-case model, once the
actors have been identified. Use cases describe what an actor wants a system to do that
provides some value to the actor. Use this process to identify the use cases for each actor.

The best way to find use cases is to consider what each actor requires of the system. Go
through all the actors and identify the particular needs of each actor.

When you have made your first list of use cases, verify that all required functionality has
been treated. Do not forget special use cases for system startup, termination, or
maintenance. Also, do not forget to include use cases for automatically scheduled events.
For example, a time-initiated job may run the payroll at midnight on the last day of each
month. Use cases that concern automatically scheduled events are usually initiated by a
special actor: the scheduler.

Try to keep all use cases at approximately the same level of importance. The notion of use-
case levels as popularized by some authors is not recommended. It can lead to a
functionally decomposed system.

Is the use case too complex? If it is, you may want to split it (a use-case report significantly
longer than 10 pages may be a candidate).

Give each use case a name that indicates what an instance of the use case does. The
name may have to consist of several words to be clearly understood.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
33

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
34

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
35

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
36

A use-case instance describes one particular path through the flows of events described in a
use case. It is a specific sequence of actions that illustrates the behavior of the system. This
is also called a scenario . In the example here, the sketch of Scenario 1 for the Register for
Courses use case shows a Student interacting with the Course Registration System and
successfully enrolling in a course the first time. Scenario 2 shows a Student interacting with
the Course Registration System and entering an invalid subject; that student must re-enter
the subject before successfully getting the course list.

A use case defines a set of related scenarios. A use case represents all the possible
sequences that might happen until the resulting value is achieved or until the system
terminates the attempt. The Register for Courses use case represents both of these
sequences, and all the other possible sequences of interactions that may occur when a
Student tries to enroll in a course.

Users and stakeholders can often identify the sequence of actions they want to perform to
obtain a result. Asking stakeholders for the sequence of actions they perform is a good way
to start identifying the steps in a use case.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
37

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
38

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
39

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
40

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
41

Outputs :

• The analysis model contains the analysis classes and any associated work products.
The analysis model may be a temporary work product, as it is in the case where it
evolves into a design model, or it may continue to live throughout some or all of the
project, and perhaps beyond, serving as a conceptual overview of the system.

• The design model is an abstraction of the implementation of the system. It is used to
conceive as well as document the design of the software system. It is a comprehensive,
composite work product encompassing all design classes, subsystems, packages,
collaborations, and the relationships between them.

• The software architecture document provides a comprehensive overview of the
architecture of the software system. It serves as a communication medium between the
software architect and other project team members regarding architecturally significant
decisions which have been made on the project.

• The data model is used to describe the logical and physical structure of the persistent
information managed by the system. The data model may be initially created through
reverse engineering of existing persistent data stores (databases) or may be initially
created from a set of persistent design classes in the Design Model.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
42

Perform Architectural Synthesis constructs and assesses an Architectural Proof-of-
Concept to demonstrate that the system, as envisioned, is feasible.

Define a Candidate Architecture creates an initial sketch of the software architecture.

Refine the Architecture completes the architecture for an iteration.

Analyze Behavior transforms the behavioral descriptions provided by the requirements into
a set of elements upon which the design can be based.

Design Components refines the design of the system.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
43

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
44

The software architect role leads and coordinates technical activities and artifacts
throughout the project. The software architect establishes the overall structure for each
architectural view: the decomposition of the view, the grouping of elements, and the
interfaces between these major groupings. Therefore, in contrast to the other roles, the
software architect's view is one of breadth as opposed to one of depth.

The software architect must be well-rounded and possess maturity, vision, and a depth of
experience that allows for grasping issues quickly and making educated, critical judgment in
the absence of complete information.

The designer role defines the responsibilities, operations, attributes, and relationships of
one or several classes, and determines how they are adjusted to the implementation
environment. In addition, the designer role may have responsibility for one or more classes,
including analysis, design, subsystems, or testability.

The designer must have a solid working knowledge of use-case modeling techniques,
system requirements, software design techniques (including UML and OOAD), and
technologies with which the system will be implemented.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
45

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
46

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
47

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
48

The main driver to define iteration objectives are risks . You need to mitigate or retire your
risks as early as you can. This is mostly the case in the elaboration phase, where most of
your risks should be mitigated, but this can continue to be a key elements in construction as
some risks remain high, or new risks are discovered. But since the goal of the elaboration
phase is to baseline an architecture, some other considerations have to come into play,
such as making sure that the architecture addresses all aspects of the software to be
developed (coverage). This is important since the architecture will be used for further
planning: organization of the team, estimation of code to be developed, etc.

Finally, while focusing on risks is important, one should keep in mind what are the primary
missions of the system; solving all the hard issues is good, but this must not be done in
detriment of the core functionality: make sure that the critical functions or services of the
system are indeed covered (criticality), even if there is no perceived risk associated with
them.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
49

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
50

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
51

Architectural analysis focuses on defining a candidate architecture and constraining the
architectural techniques to be used in the system. It relies on gathering experience gained in
similar systems or problem domains to constrain and focus the architecture so that effort is
not wasted in architectural rediscovery. In systems where there is already a well-defined
architecture, architectural analysis might be omitted; architectural analysis is primarily
beneficial when developing new and unprecedented systems.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
52

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
53

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
54

Design patterns are studied in the Design part of the course.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
55

Layers : The layers pattern is where an application is decomposed into different levels of
abstraction. The layers range from application-specific layers at the top to
implementation/technology-specific layers on the bottom.

Model-View-Controller : The MVC pattern is where an application is divided into three
partitions: The Model, which is the business rules and underlying data, the View, which is
how information is displayed to the user, and the Controllers, which process the user input.

Pipes and Filters : In the Pipes and Filters pattern, data is processed in streams that flow
through pipes from filter to filter. Each filter is a processing step.

Blackboard : The Blackboard pattern is where independent, specialized applications
collaborate to derive a solution, working on a common data structure.

Architectural patterns can work together. (That is, more than one architectural pattern can
be present in any one software architecture.)

The architectural patterns listed above imply certain system characteristics, performance
characteristics, and process and distribution architectures. Each solves certain problems
but also poses unique challenges. For this course, you will concentrate on the Layers
architectural pattern.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
56

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
57

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
58

Context

A large system that requires decomposition.

Problem

A system which must handle issues at different levels of abstraction. For example:
hardware control issues, common services issues and domain-specific issues. It would be
extremely undesirable to write vertical components that handle issues at all levels. The
same issue would have to be handled (possibly inconsistently) multiple times in different
components.

Forces

• Parts of the system should be replaceable.

• Changes in components should not ripple.

• Similar responsibilities should be grouped together.

• Size of components-complex components may have to be decomposed.

Solution

Structure the systems into groups of components that form layers on top of each other.
Make upper layers use services of the layers below only (never above). Try not to use
services other than those of the layer directly below (don't skip layers unless intermediate
layers would only add pass-through components).

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
59

Layers are used to encapsulate conceptual boundaries between different kinds of services
and provide useful abstractions that make the design easier to understand.

When layering, concentrate on grouping things that are similar together, as well as
encapsulating change.

There is generally only a single application layer. On the other hand, the number of domain
layers is dependent upon the complexity of both the problem and the solution spaces.

When a domain has existing systems, complex systems composed of inter-operating
systems, and/or systems where there is a strong need to share information between design
teams, the Business-Specific layer may be structured into several layers for clarity.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
60

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
61

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
62

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
63

While defining the initial analysis classes, you can also define any relationships that exist
between them. The relationships are those that support the basic definitions of the
abstractions. It is not the objective to develop a complete class model at this point, but just
to define some key abstractions and basic relationships to “kick off” the analysis effort. This
will help to reduce any duplicate effort that may result when different teams analyze the
individual use cases.

Relationships defined at this point reflect the semantic connections between the defined
abstractions, not the relationships necessary to support the implementation or the required
communication among abstractions.

The analysis classes identified at this point will probably change and evolve during the
course of the project. The purpose of this step is not to identify a set of classes that will
survive throughout design, but to identify the key abstractions the system must handle. Do
not spend much time describing analysis classes in detail at this initial stage, because there
is a risk that you might identify classes and relationships that are not actually needed by the
use cases. Remember that you will find more analysis classes and relationships when
looking at the use cases.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
64

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
65

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
66

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
67

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
68

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
69

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
70

Analysis mechanisms are primarily used as “placeholders” for complex technology in the
middle and lower layers of the architecture. When mechanisms are used as “placeholders”
in the architecture, the architecting effort is less likely to become distracted by the details of
mechanism behavior.
Mechanisms allow the analysis effort to focus on translating the functional requirements into
software concepts without bogging down in the specification of relatively complex behavior
needed to support the functionality but which is not central to it. Analysis mechanisms often
result from the instantiation of one or more architectural or analysis patterns.
Persistence provides an example of analysis mechanisms. A persistent object is one that
logically exists beyond the scope of the program that created it. The need to have object
lifetimes that span use cases, process lifetimes, or system shutdown and startup, defines
the need for object persistence. Persistence is a particularly complex mechanism. During
analysis we do not want to be distracted by the details of how we are going to achieve
persistence. This gives rise to a “persistence” analysis mechanism that allows us to speak
of persistent objects and capture the requirements we will have on the persistence
mechanism without worrying about what exactly the persistence mechanism will do or how it
will work.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
71

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
72

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
73

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
74

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
75

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
76

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
77

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
78

A use-case realization describes how a particular use case is realized within the
Analysis/Design Model, in terms of collaborating objects. A use-case realization ties together
the use cases from the Use-Case Model with the classes and relationships of the
Analysis/Design Model. A use-case realization specifies what classes must be built to
implement each use case.

A use-case realization in the Analysis/Design Model can be traced to a use case in the Use-
Case Model. A realization relationship is drawn from the use-case realization to the use
case it realizes.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
79

Use-case realizations are represented as stereotyped collaborations. The symbol for a
collaboration is an ellipsis containing the name of the collaboration. The symbol for a use-
case realization is a dotted line version of the collaboration symbol. In RSA 7.0, a UML
Collaboration can only be shown as a rectangle.

A use-case realization consists of a set of diagrams that model the context of the
collaboration (the classes/objects that implement the use case and their relationships —
class diagrams), and the interactions of the collaborations (how these classes/objects
interact to perform the use cases — communication and sequence diagrams).

The number and types of the diagrams that are used depend on what is needed to provide a
complete picture of the collaboration and the guidelines developed for the project under
development.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
80

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
81

Examine the use-case description to see if the internal behavior of the system is clearly
defined. The internal behavior of the system should be unambiguous , so that it is clear
what the system must do.

Sources of information for this detail include domain experts who can help define what the
system needs to do. A good question to ask, when considering a particular behavior of the
system, is "what does it mean for the system to do that thing?".

The following alternatives exist for supplementing the descriptio n of the Flow of Events:

• Do not describe it at all. This might be the case if you think the interaction diagrams
are self-explanatory, or if the Flow of Events of the corresponding use case provides a
sufficient description.

• Supplement the existing Flow of Event description. Add supplementary descriptions to
the Flow of Events in areas where the existing text is unclear about the actions the
system should take.

• Describe it as a complete textual flow, separate from the "external" Use Case Flow of
Events description. This is appropriate in cases where the internal behavior of the
system bears little resemblance to the external behavior of the system. In this case, a
completely separate description, associated with the analysis use-case realization
rather than the use case, is warranted.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
82

This section and the following cover the following steps in the RUP Use-Case Analysis task:

• Find Analysis Classes from Use-Case Behavior

• Distribute Behavior to Analysis Classes

• Describe Responsibilities

• Describe Attributes and Associations

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
83

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
84

Analysis classes represent an early conceptual model for “things in the system that have
responsibilities and behavior”.

Analysis classes handle primarily functional requirements. They model objects from the
problem domain. Analysis classes can be used to represent "the objects we want the
system to support" without making a decision about how much of them to support with
hardware and how much with software.

Three aspects of the system are likely to change independently from each other:

• The boundary between the system and its actors

• The information the system uses

• The control logic of the system

In an effort to isolate the parts of the system that will change more frequently, the following
types of analysis classes are identified:

• Boundary

• Entity

• Control

Each of these types of analysis classes are discussed on the following slides.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
85

A boundary class intermediates between the interface and something outside the system.
Boundary classes insulate the system from changes in the surroundings (for example,
changes in interfaces to other systems and changes in user requirements), keeping these
changes from affecting the rest of the system.

A system can have several types of boundary classes:

• User interface classes : Classes that intermediate communication with human
users of the system.

• System interface classes : Classes that intermediate communication with other
systems. A boundary class that communicates with an external system is
responsible for managing the dialog with the external system; it provides the
interface to that system for the system being built.

• Device interface classes : Classes that provide the interface to devices which
detect external events. These boundary classes capture the responsibilities of the
device or sensor.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
86

A boundary class is used to model interaction between the system's surroundings and its
inner workings. Such interaction involves transforming and translating events and noting
changes in the system presentation (such as the interface).

Because boundary classes are used between actors and the working of the internal system
(actors can only communicate with boundary classes), they insulate external forces from
internal mechanisms and vice versa. Thus, changing the GUI or communication protocol
should mean changing only the boundary classes, not the entity and control classes.

A boundary object (an instance of a boundary class) can outlive a use-case instance if, for
example, it must appear on a screen between the performance of two use cases. Normally,
however, boundary objects live only as long as the use-case instance.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
87

One recommendation for the initial identification of boundary classes is one boundary class
per actor/use-case pair. This class can be viewed as having responsibility for coordinating
the interaction with the actor. This may be refined as a more detailed analysis is performed.
This is particularly true for window-based GUI applications where there is typically one
boundary class for each window, or one for each dialog box.

In the above example:

• The RegisterForCoursesForm contains a Student's "schedule-in-progress." It
displays a list of Course Offerings for the current semester from which the Student
may select courses to be added to his or her Schedule.

• The CourseCatalogSystem interfaces with the legacy system that provides the
unabridged catalog of all courses offered by the university.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
88

When identifying and describing analysis classes, be careful not to spend too much time on
the details. Analysis classes are meant to be a first cut at the abstractions of the system.
They help to clarify the understanding of the problem to be solved and represent an attempt
at an idealized solution.

User Interface Classes : Boundary classes may be used as “holding places” for GUI
classes. The objective is not to do GUI design in this analysis, but to isolate all environment-
dependent behavior. The expansion, refinement and replacement of these boundary classes
with actual user-interface classes (probably derived from purchased UI libraries) is a very
important activity of Class Design. Sketches or screen captures from a user-interface
prototype may have been used during the Requirements discipline to illustrate the behavior
and appearance of the boundary classes. These may be associated with a boundary class.
However, only model the key abstractions of the system; do not model every button, list,
and widget in the GUI.

System and Device Interface Classes : If the interface to an existing system or device is
already well-defined, the boundary class responsibilities should be derived directly from the
interface definition.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
89

Entity classes represent stores of information in the system. They are typically used to
represent the key concepts that the system manages. They are usually persistent, having
attributes and relationships needed for a long period, sometimes for the lifetime of the
system.

An entity object is usually not specific to one Use-Case Realization and sometimes it is not
even specific to the system itself. The values of its attributes and relationships are often
given by an actor. An entity object may also be needed to help perform internal system
tasks. Entity objects can have behavior as complicated as that of other object stereotypes.
However, unlike other objects, this behavior is strongly related to the phenomenon the entity
object represents. Entity objects are independent of the environment (the actors).

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
90

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
91

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
92

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
93

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
94

Control classes provide coordinating behavior in the system. The system can perform some
use cases without control classes by using just entity and boundary classes. This is
particularly true for use cases that involve only the simple manipulation of stored
information. More complex use cases generally require one or more control classes to
coordinate the behavior of other objects in the system. Examples of control classes include
transaction managers, resource coordinators, and error handlers.
Control classes effectively decouple boundary and entity objects from one another, making
the system more tolerant of changes in the system boundary. They also decouple the use-
case specific behavior from the entity objects, making them more reusable across use
cases and systems.
Control classes provide behavior that:

• Is surroundings-independent (does not change when the surroundings change).
• Defines control logic (order between events) and transactions within a use case.
• Changes little if the internal structure or behavior of the entity classes changes.
• Uses or sets the contents of several entity classes, and therefore needs to

coordinate the behavior of these entity classes.
• Is not performed in the same way every time it is activated (flow of events

features several states).

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
95

A control class is a class used to model control behavior specific to one or more use cases.
Control objects (instances of control classes) often control other objects, so their behavior is
of the coordinating type. Control classes encapsulate use-case-specific behavior.

The behavior of a control object is closely related to the realization of a specific use case. In
many scenarios, you might even say that the control objects "run" the Use-Case
Realizations. However, some control objects can participate in more than one Use-Case
Realization if the use-case tasks are strongly related. Furthermore, several control objects
of different control classes can participate in one use case. Not all use cases require a
control object. For example, if the flow of events in a use case is related to one entity object,
a boundary object may realize the use case in cooperation with the entity object. You can
start by identifying one control class per Use-Case Realization, and then refine this as more
Use-Case Realizations are identified, and commonality is discovered.

Control classes can contribute to understanding the system, because they represent the
dynamics of the system, handling the main tasks and control flows.

When the system performs the use case, a control object is created. Control objects usually
die when their corresponding use case has been performed.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
96

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
97

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
98

You can identify analysis classes responsible for the required behavior by stepping through
the flow of events of the use case. In the previous step, we outlined some classes. Now it is
time to see exactly where they are applied in the use-case flow of events.

In addition to the identified analysis classes, the Interaction diagram should show
interactions of the system with its actors. The interactions should begin with an actor, since
an actor always invokes the use case. If you have several actor instances in the same
diagram, try keeping them in the periphery of that diagram.

Interactions between actors should not be modeled. By definition, actors are external, and
are out of scope of the system being developed. Thus, you do not include interactions
between actors in your system model. If you need to model interactions between entities
that are external to the system that you are developing (for example, the interactions
between a customer and an order agent for an order-processing system), those interactions
are best included in a Business Model that drives the System Model.

Guidelines for how to distribute behavior to classes are described on the next slide.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
99

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
100

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
101

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
102

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
103

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
104

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
105

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
106

A responsibility is a statement of something an object can be asked to provide.
Responsibilities evolve into one (or more) operations on classes in design; they can be
characterized as:

• The actions that the object can perform.

• The knowledge that the object maintains and provides to other objects.

Responsibilities are derived from messages on interaction diagrams. For each message,
examine the class of the object to which the message is sent. If the responsibility does not
yet exist, create a new responsibility that provides the requested behavior.

We have chosen to document analysis class responsibilities as “analysis” operations by
adopting the naming convention to precede the “analysis” operation name by “//”. This
naming convention indicates that the operation is being used to describe the responsibilities
of the analysis class and that they WILL PROBABLY change/evolve in design.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
107

A link between two objects (explicit in the Communication diagrams, implicit in the
Sequence diagrams) indicate that there must be some form of relationship between the
corresponding classes. This relationship can be an association, an aggregation, a
dependency, etc. A link is an instance of a relationship.

Reflexive links do not need to be instances of reflexive relationships; an object can send
messages to itself. A reflexive relationship is needed when two different objects of the same
class need to communicate.

The navigability of the relationship should support the required message direction. In the
above example, if navigability was not defined from the Client to the Supplier, then the
PerformResponsibility message could not be sent from the Client to the Supplier.

Remember to give the associations role names and multiplicities. You can also specify
navigability, although this will be refined in Class Design.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
108

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
109

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
110

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
111

Different use cases will contribute to the same classes. In the example above, the classes
CourseCatalogSystem, CourseOffering, Schedule and Student participate in both the
Register for Courses and Close Registration use cases.

A class can participate in any number of use cases. It is therefore important to examine
each class for consistency across the whole system.

Merge classes that define similar behaviors or that represent the same phenomenon.

Merge entity classes that define the same attributes, even if their defined behavior is
different; aggregate the behaviors of the merged classes.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
112

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
113

In Architectural Analysis, the possible analysis mechanisms were identified and defined.

From that point on, as classes are defined, the required analysis mechanisms and analysis
mechanism characteristics should be identified and documented. Not all classes will have
mechanisms associated with them. Also, it is not uncommon for a client class to require the
services of several mechanisms.

A mechanism has characteristics, and a client class uses a mechanism by qualifying these
characteristics. This is to discriminate across a range of potential designs. These
characteristics are part functionality, and part size and performance.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
114

As analysis classes are identified, it is important to identify the analysis mechanisms that
apply to the identified classes.

The classes that must be persistent are mapped to the persistency mechanism.

The classes that are maintained within the legacy Course Catalog system are mapped to
the legacy interface mechanism.

The classes for which access must be controlled (that is, control who is allowed to read and
modify instances of the class) are mapped to the security mechanism. Note: The legacy
interface classes do not require additional security as they are read-only and are considered
readable by all.

The classes that are seen to be distributed are mapped to the distribution mechanism. The
distribution identified during analysis is that which is specified/implied by the user in the
initial requirements. Distribution will be discussed later during Design. For now, just take it
as an architectural given that all control classes are distributed for the OOAD course
example and exercise.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
115

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part II – Object-Oriented Analysis
116

