
OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
1

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
2

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
3

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
4

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
5

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
6

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
7

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
8

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
9

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
10

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
11

Software teams often do not model.

Many software teams build applications approaching the problem like they were building
paper airplanes :

• Start coding from project requirements

• Work longer hours and create more code

• Lacks any planned architecture

• Doomed to failure

Modeling is a common thread to successful projects.

Some general facts about models:

• The model you create influences how the problem is attacked

• Every model may be expressed at different levels of precision

• The best models are connected to reality

• No single model is sufficient

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
12

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
13

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
14

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
15

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
16

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
17

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
18

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
19

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
20

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
21

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
22

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
23

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
24

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
25

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
26

The state of an object is one of the possible conditions in which an object may exist.
State normally changes over time.

The state of an object is usually implemented by a set of properties called attributes,
along with the values of the properties and the links the object may have with other
objects.

State is not defined by a “state” attribute or set of attributes. Instead, state is defined by
the total of an object’s attributes and links. For example, if Professor Clark’s status
changed from Tenured to Retired, the state of the Professor Clark object would change.

The second characteristic of an object is that it has behavior. Objects are intended to
mirror the concepts that they are modeled after, including behavior.

Behavior determines how an object acts and reacts to requests from other objects.

Object behavior is represented by the operations that the object can perform. For
example, Professor Clark can choose to take a sabbatical once every five years. The
Professor Clark object represents this behavior through the TakeSabbatical() operation.

In the real world, two people can share the same characteristics: name, birth date, job
description. Yet, there is no doubt that they are two individuals with a unique identity.

The same concept holds true for objects. Although two objects may share the same state
(attributes and relationships), they are separate, independent objects with their own
unique identity.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
27

The key to encapsulation is an object’s interface. The object interface ensures that all
communication with the object takes place through a set of predefined operations. Data
inside the object is only accessible by the object’s operations. No other object can reach
inside the object and change its attribute values.

For example, Professor Clark needs to have her maximum course load increased from
three classes to four classes per semester. Another object makes a request to Professor
Clark to set the maximum course load to four. The attribute, MaxLoad, is then changed
by the SetMaxLoad() operation.

Encapsulation is beneficial in this example because the requesting object does not need
to know how to change the maximum course load. In the future, the number or variables
that are used to define the maximum course load may be increased, but it doesn’t affect
the requesting object. It depends on the operation interface for the Professor Clark
object.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
28

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
29

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
30

public (+)

Visible to all elements that can access the contents of the namespace that owns it

private (-)

Only visible inside the namespace that owns it

protected (#)

Visible to elements that have a generalization relationship to the namespace that
owns it

package (~)

Only named elements that are not owned by packages can be marked as having
package visibility

Any element marked as having package visibility is visible to all elements within the
nearest enclosing package

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

To display the full “signature” of an attribute or operation in RSA or RSM, right-click the
container class and select Filters > Show Signature.

Part I - UML2
31

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

In UML 2, the objects on the right are called “instance specifications”. They are depicted in
Object Diagrams. There is an example of object diagram at the end of module 3 (section
Miscellaneous Topics). In the slide, we are showing instances of classes, but instance
specifications can apply to any type of UML 2 classifiers, for instance components and
relationships.

The name of the instance specification is an underlined concatenation of the instance name
(if any), a colon (‘:’) and the classifier name. Examples of valid names: customer, :Map,
carol:Professor.

Part I - UML2
32

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
33

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
34

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
35

Objects need to collaborate:

• Each object is responsible for its own behavior and status

• No one object can carry out every responsibility on its own

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
36

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
37

The sequence diagram is “the mainstay of dynamic modeling” (The Object Primer, Third
Edition, Scott W. Ambler, 2004). It describes a pattern of interaction among objects,
arranged in a chronological order.

Sequence diagrams are used to:

• Illustrate use-case realizations.

• Illustrate detailed structural designs.

• Model the detailed design of an operation or service.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
38

An object is represented by its lifeline, a rectangle forming its “head” followed by a
vertical line, which may be dashed.

Note the inclusion of the actor instance (Peggy Sue:Student). This is important as it
explicitly models what elements communicate with the “outside world.”

A message reflects either an operation call and start of execution or a sending and
reception of a signal. The object’s class and the message’s operation may be initially
unspecified.

An Execution specification is a specification of the execution of a unit of behavior or
action within the Lifeline.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
39

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
40

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
41

An Interaction Use allows multiple interactions to reference an interaction that
represents a common portion of their specification.

Other useful Combined Fragments include alt (represents a choice of behavior, opt
(option), break (if a guard is included, and the guard is true, the rest of the enclosing
Interaction Fragment is ignored), par (parallel). The operator critical can be used to
indicate that a (critical) region is treated atomically by the enclosing fragment. More
advanced operators: neg (negative), assert and ignore/consider, strict (strict sequencing)
/ seq (weak sequencing).

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
42

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
43

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
44

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
45

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
46

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
47

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
48

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
49

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
50

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
51

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
52

The association name may include an arrow (like in “manages�”) to indicate the
direction the name applies to. If Schedule is then placed on the left of
RegistrationController, the association name should then be displayed as “�manages”.
This is not supported by RSA/RSM.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
53

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
54

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
55

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
56

Although UML only has the notion of a comment, RSM has separate menu entries for
notes and comments. Comments in RSM map directly to comments in UML and, as
such, will appear in the model hierarchy. Notes are constructs that are bound to the
actual diagrams. If a diagram is deleted, its notes are also deleted.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
57

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
58

In RSM, to add a qualified association, you must right-click the association role (here
returneditem) in the Project Explorer, then select Add UML > Qualifier.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
59

Aggregation is used to model a whole-part relationship between model elements. There
are many examples of whole-part relationships: a Library contains Books, Departments
are made up of Employees, a Computer is composed of a number of Devices.

A hollow diamond is attached to the end of an association path on the side of the
aggregate (the whole) to indicate aggregation.

An aggregation relationship that has a multiplicity greater than one for the aggregate is
called shared. Destroying the aggregate does not necessarily destroy the parts. By
implication, a shared aggregation forms a graph or a tree with many roots. Shared
aggregations are used when one instance is a part of two other instances. So, the same
instance can participate in two different aggregations.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
60

Composition is a form of aggregation with strong ownership and coincident lifetimes of
the part with the aggregate. The whole “owns” the part and is responsible for the creation
and destruction of the part. The part is removed when the whole is removed. The part
may be removed (by the whole) before the whole is removed.

A solid filled diamond is attached to the end of an association path (on the “whole side”)
to indicate composition.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
61

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
62

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
63

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
64

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
65

Generalization can be defined as:

• A specialization/generalization relationship, in which objects of the specialized element (the child) are
substitutable for objects of the generalized element (the parent). (The Unified Modeling Language User
Guide, Booch, 1999.)

• The subclass may be used where the super-class is used, but not vice versa.

• The child inherits from the parent.

• Generalization is transitive. You can always test your generalization by applying the “is a kind of” rule.
You should always be able to say that your generalized class “is a kind of” the parent class.

• The terms “generalization” and “inheritance” are generally interchangeable, but if you need to
distinguish, generalization is the name of the relationship. Inheritance is the mechanism that the
generalization relationship represents/models.

Inheritance can be defined as:

• The mechanism by which more specific elements incorporate the structure and behavior of more
general elements. (The Unified Modeling Language User Guide, Booch, 1999.)

• Single inheritance: The subclass inherits from only one super-class (has only one parent).

• Multiple inheritance: The subclass inherits from more than one super-class (has multiple parents).

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
66

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
67

In UML 2, you can indicate that a redefinable element, such as an operation, is a “leaf”,
which indicates that it is not possible to further specialize the element.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
68

The label <<interface>> is called a stereotype. Stereotypes are formally introduced later
on in this module.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
69

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
70

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
71

A Package can be defined as:

• A general purpose mechanism for organizing elements into groups. (The Unified
Modeling Language User Guide, Booch, 1999.)

• Models can contain hundreds and even thousands of model elements. The sheer
number of these elements can quickly become overwhelming. Therefore, it’s critical to
group model elements into logical collections to maintain and easily read the model
(application of modularity and hierarchy).

• Packages are a general grouping mechanism for grouping elements into semantically
related groups. A package contains classes that are needed by a number of different
packages, but are treated as a “behavioral unit.”

• A package is simply a grouping mechanism. No semantics are defined for its
instances. Thus, packages do not necessarily have a representation in
implementation, except maybe to represent a directory.

• In the UML, a package is represented as a tabbed folder.

• Package diagrams depict dependencies between packages and are now formalized in
UML 2.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
72

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
73

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
74

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
75

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
76

Class diagrams are used for a variety of purposes. According to Scott Ambler (The
Elements of UML Style, 2005), “they are used to:

• explore domain concepts in the form of a domain model,

• analyze requirements in the form of a conceptual/analysis model,

• depict the detailed design of object-oriented or object-based software.”

Any diagram that depicts only packages (and their interdependencies) is considered a
package diagram. The term “UML package diagrams” is in fact new to UML 2.

One important use of packages is to logically organize the design of your system.
Another fundamental – but possibly underestimated – use of packages is to provide a
high-level overview of the system, showing the main parts/components and their
interdependencies. This is a topic we will discuss in detail at several points in this course.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
77

The example above illustrates one use of object diagrams that is often overlooked, and
yet points to the real challenge of the object-oriented analysis and design approach:
traditional systems were focused on how to implement the algorithms of the system. In
OO algorithms are encapsulated in specialized objects and the challenge has moved to
identifying the objects that provide the correct functionality.

If we go back to our example, the class diagram makes it clear that the purpose of this
system is for a DeliveryMan to deliver Parcels to a person identified by the parcel
attributes. The object diagram shows the state of the system BEFORE the DeliveryMan
object boris has started its processing: boris has access to the parcels to deliver and to a
map, but not (yet) to the addressee (the object PM in the case of parcel1). boris will use
its map to identify the correct Building using the Parcel’s address. Having access to the
building, it can ask the Reception object (a singleton in the scope of a given building) to
identify the occupant given the addressee’s name. At that point, boris will have a
(presumably transient) link to PM and will be able to complete the processing of parcel1.
Alternatively, boris could deliver the parcel to the Reception object, which, in turn, will
identify the addressee and hand over the parcel to PM. No matter what the solution is,
boris will need to obtain some kind of Receipt object (not shown here) in exchange…

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
78

RSM Implementation Note: The use of a note to express the constraint is optional in
UML. For instance, it should be possible to draw a dashed line with the label “xor”
between the Account-Person and Account-Corporation associations. In RSM, the use of
the note symbol is imposed in most cases: in our example, the exception is “ordered” that
applies to the employees role.

RSM has a built-in OCL editor with completion lists. The 2 examples on the right were
written using this editor.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
79

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
80

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
81

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
82

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
83

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
84

In RSA, you can either show the structure compartment on the class of interest in any
class diagram (as is the case in our example) or create a separate composite structure
diagram (right-click on the class > Add Diagram > Composite Structure Diagram). The
advantage of the separate diagram is that it has its own palette.

To show/hide compartments, you can either right-click > Filters > Show/Hide
Compartment > Structure Compartment or, even better, work from the Properties view,
Appearance tab.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
85

The relationship between a component and an interface is an interface realization. UML2
introduces also a component realization for a component to realize (or implement)
other classifiers, including other components.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
86

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
87

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
88

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
89

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
90

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
91

An Execution Environment is a node that offers an execution
environment for specific types of components that are deployed on
it in the form of executable artifacts

Examples: OS, workflow engine, database system, J2EE container

Execution Environment instances are assigned to node instances
by using composite associations (the Execution Environment plays
the role of the part)

Execution Environments can be nested (e.g., a database
Execution Environment may be nested in an operating system
Execution Environment)

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
92

A state machine diagram describes the states an object or interaction may be in, as
well as the transitions between states. Typically used to explore the design of a complex
class or component.

The diagram above uses the notion of history. If a transition terminates on a shallow
history pseudostate (as the return transition in our example), the active substate
becomes the most recently active substate prior to this entry, unless the most recently
active substate is the final state or if this is the first entry into this state. In the latter two
cases, the default history state is entered. This is the substate that is target of the
transition originating from the history pseudostate.

Deep history entry : The rule here is the same as for shallow history except that the rule
is applied recursively to all levels in the active state configuration below this one.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
93

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
94

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
95

An actor models a type of role played by an entity that interacts with the system, but
which is external to the system. Actors may represent roles played by human users,
external hardware, or other systems.

An actor is active (initiates a use case) or passive.

Some authors, like Scott Ambler (The Elements of UML 2.0 Style, 2005), recommend
stereotyping system actors

A use case is the specification of a set of actions performed by a system, which yields
an observable result that is, typically, of value for one or more actors.

An include relationship between two use cases means that the behavior defined in the
including use case is included in the behavior of the base use case. The include
relationship is intended to be used when there are common parts of the behavior of two
or more use cases.

An extend relationship means that the extending use case continues the behavior of a
base use case by inserting additional action sequences. The extending use case can
only extend the base use case at specific extension point and only when the extension
conditions (if any) are fulfilled.

OOAD with UML2 and RSM

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Part I - UML2
96

