OOAD with UML2 and RSM

| IBM Software Group | Rational Software France

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

13. Subsystem Design

software

(@business on demand software

© 2005-2007 IBM Corporation

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

79

OOAD with UML2 and RSM

= | IBM Software Group | Rational software

Roadmap for the OOAD Course

= Analysis e N
. . \
» Architectural Analysis / i
(Define a Candidate Architecture) AnaIySIS ?
» Use-Case Analysis E5l
(Analyze Behavior)

= Design

|
|
|
| Define a Candidate Architecture
|
|
|

» Identify Design Elements

(Refine the Architecture) \ E%J .
. : . __L ________ Anhispebeke 7
» Identify Design Mechanisms Pl e l SASR=is

(Refine the Architecture) E_%]

» Class Design Refine the Archtecture
CML 3

- e e = -

(Design Components)

» Subsystem Design
(Design Components)

» Describe the Run-time

I
I

Architecture and Distribution X Design é
\

(Refine the Architecture)

» Design the Database

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Subsystem Design

= Purpose

» To incorporate the subsystems in the Design model and document their
behavior

= Role
» Designer

= Major Steps
» Incorporate the subsystems into the Design model
» Specify the internal behavior of the subsystems

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

81

OOAD with UML2 and RSM

S==

| IBM Software Group | Rational software

Where Are We?

E=) Incorporate the subsystems into the Design model

= Specify the internal behavior of the subsystems

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

82

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Review: Subsystem and Subsystem Interfaces

= Subsystems are components that provide services to their clients only
through public interfaces

» Any two subsystems that realize the same interfaces are interchangeable

» Subsystems and subsystem interfaces were identified in the Identify Design
Elements task (module 10)

Analysis Design
CourseCatalog
& ICourseCatalog

Y Catalog # retrieveCourseOfferings (forSeme:ster : Semester) : CourseOfferingList

/{ refrieve course offerings for semester ()

2 ICourseCatalog
| @ refrieveCourseOfferings (forSemester : Semester) : CourseOfferingList

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 83

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Review: Incorporating Interfaces in Class Diagrams

= Every relationship to the initial analysis class must be replaced by an
equivalent relationship to the subsystem interface

W
- %‘ . Etl 5’F ¥0 CourseCatalog Keep in mind that you
. m?registrationform @ / refrieve course offerings () may be introducing new
o - coursecatal dgpendencnes for the
0.1 client classes: here
- registrationcontroller RegistrationController
” now also depends on
ol Semester and
& RegistrationController CourseOfferingList
[/ refrieve course offerings ()
// register for selected courses () |
«nterface»

» ICourseCatalog
O RegistrationForm

“Fegistrationform # retrieveCourseOfferings (forSemester : Semester) : CourseOfferingList
0.1 - coursecatalog

- registrationcontroller

«Control>

& RegistrationController

Same role name

@ /{ refrieve course offerings ()
@ /{ register for selected courses ()

In RSA/RSM, these changes have to be performed manually:
* Retrieve the interface to use and drag it to the diagram

» Select the relationship and move the target end from the analysis class to the
interface

» Delete the analysis class from the diagram
» Delete the analysis class from the design model after all changes have been made

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

= | IBM Software Group | Rational software

Review: Incorporating Interfaces in Sequence Diagrams
[Sidert| [7o RegeraiorForm | wﬁ—m rrrmrj

1./ reé;lster for courses request ()
1|1: // refrieve course offeri s'() |
| 1.1.1: // refrieve course offerun_gL‘)

P

1.4.2:

P

/{ refrieve course offerings ()

—
N

2: /{ retrieve course offerings [) I
| |
1.34| A/ display selection form wiﬂ1 course offerings () !

|
|
|
|
|
|
|

2: //retil;;sterforcoursesret e :Student o ;EEEE orm I

1./ rqlglster for courses regyest () |
1: // refrieve course offerings|()

I
|
e '
1.1.1: retrieveCourseOffierings (forSemester : Semester) : CourseOfferingList

1.1.2: retrieveCourseOfferings (forSemester : Semester) @ CourseOfferingList

—

2: /{ retrieve course offerings [)

- |

2./ rﬁleter for courses reg jest) :

|
|
|
1.3: // display selection forfn with course offerings () |
|
|
|

In RSA/RSM, simply drag the interface over the analysis object and update the message.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Encapsulating Subsystem Interactions

= Subsystem interactions must be described in their own interaction
diagrams (next topic)

= |Imagine we have an analysis interaction involving an analysis class
(A) that is converted to an interface IA

design, then the call to :B
should be described in the
subsystem interaction only

. | .
Analysis I Design
| -
A B 1 PR - RS
. H 1 IA -7 B *
[] - " . . \
w 1 . - / — : \
| -
n | b -~) . : 1
b |3 Lor i
] : n ; I}
. i I . R PO Y /
M : 1 : i \\\ . H P
1 n \\\ _ 7/
| -
If A becomes an interface in 1 Subsystem A
|
|
1

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 86

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

S==

| IBM Software Group | Rational software

Where Are We?

= |ncorporate the subsystems into the Design model

==) Specify the internal behavior of the subsystems

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

87

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Internal Behavior of Subsystems

= So far, we have only reasoned in terms of the outside view of the
subsystems (the interfaces)

= We are now looking at the internal behavior

» Keep in mind, encapsulation is the key: the client is completely independent
of the subsystems that provide the implementation

[y S —
LN
CourseCatalog
W\ Subsystems are similar to
@ retrieveCourseOfferings () packages in the sense they
contain other design
elements:

= At least one of those
design elements will
“realize” the interface(s)

= Design elements inside a
subsystem are never
public

@ refrieveCourseOfferi forSemester : Semester) : CourseOfferingList

el

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 88

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Internal Behavior of Subsystems (cont.)

= Similar to any collaboration

» One (or more) interaction diagram(s) for each service provided by the
subsystem

» One (or more) class diagram(s) showing the classes involved in the
implementation of the services

» Toillustrate this discussion, we will use the CourseCatalog subsystem

= In Identify Design Mechanisms, we described a JDBC Mechanism to
apply to persistent classes

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 89

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

(from java.sql)

getConnection { url, user, pass) : Connection

See module 11,
slides 46 to 48 for a

(from java.sql)

getString () 1 Co is
AR (from java sql) more complete
i description of the
- ¥ createStaternent () : Statement JDBC mechanism

(from java.sql)

& executeQuery (sql) : ResultSet
executeUpdate (sqgl) : int

Part Il — Object-Oriented Design

© Copyright IBM Corp. 2005-2007 90
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

T | IBM Software Group | Rational software

Step 1: Create the Class That Realizes the Interface

CourseCataloglimpl
CourseCatalogImpl Main Class Diagram

£ ICourseCatalog

@ refrieveCourseOfferings () “

seCatalog

from ouseCatdogI
ifaretrieveCoqrseOfferings)

[@refrieveCourseOfferings () ©ICourseCatalog

(from CourseCatalog)
retrieveCourseOfferings ()

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 91

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

(from Cou’seCatdogIrrpl)

& retrieveCourseQfferings (forSemester Semester) : CourseOfferingList
(from CouseCaraloglmpl)

£ ICourseCatalog
g) @ create () : CourseOffering

@ retrieveCourseOfferings () @ read (searchCriteria) : CourseOfferingList ourseOffering
@update (¢ : CourseOffering) (from CourseCatdog)
) # delete (¢ : CourseOffering)

M‘)
(from java.sq)

_L#®& getConnection ()
@ getString () | 5 ! o
(fromjavasd) | (from java.sq)
@ executeQuery () @ createStatement ()
executeUpdate ()

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 92

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

; | IBM Software Group | Rational software

Note the use of an
anonymous object
to represent the
client

Retrieve Course Offerings Interaction Diagram

t/JRetrieve Course Offerings |

/

1 etrieveCOLrseOfferirIgs (forSemester : Semester I) . CourseOfferingList

1.1: read

(searchCriteria) : CourseQfferingList

1.2: read

re

JDBC Mechanism: Retrieving Data

4

(searchCriteria) : Cou'seCfIIeringList

2

[
I
I
I
:
I
:I

L
I I
I I

[
|
etrieveCourseOfferings (forSemester : Semester I) . CourseOfferingList :
|
|
|
[

Rather than duplicating the information, we make use of the
Interaction Use UML2 construct

I

© Copyright IBM Corp. 2005-2007

Part Il — Object-Oriented Design

93

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Controlling Dependencies

= Controlling dependencies is critical for the architecture (see slides in
module 8 about component-based architectures and in module 9
about layered architectures)

= Dependencies result from:

» Relationships from one element to (r—————
another # CourseCatalogImpl

» References to another element in an HCourseCatalog
operation parameters and/or return type & retrieveCourseOfferings ()

» References to another element in an
attribute type

= In the case of our subsystem,

it was very easy to determine y
the dependencies from our
subsystem to other components "y

» For a complete system, you need to

automate this processing (see exercise)

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 94

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

S==

| IBM Software Group | Rational software

Exercise

= Perform the exercise provided by
the instructor (lab 8)

Part Il — Object-Oriented Design

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

95

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 96

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational Software France

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

14. Describe the Run-Time Architecture and Distribution

software

(@business on demand software

© 2005-2007 IBM Corporation

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

97

OOAD with UML2 and RSM

= | IBM Software Group | Rational software

Roadmap for the OOAD Course

= Analysis

”~
» Architectural Analysis / Analysis ? N

(Define a Candidate Architecture)

» Use-Case Analysis
(Analyze Behavior)

= Design

|
|
|
| Define a Candidate Architecture
|
|
|

» Identify Design Elements

(Refine the Architecture) \ E%J .
. . . Sy T Atz Bemn = Y
» Identify Design Mechanisms v_—=T"====== l SI=ESIS
(Refine the Architecture) E_%j

Refine the Architecture

- e e = -

» Class Design
(Design Components)

» Subsystem Design
(Design Components)
» Describe the Run-time

Architecture and Distribution A é
(Refine the Architecture) \DeSIQ n

k-3
3
:
g
é.
z
o
g
§

!
1
|
|
|
|
|
|
\

» Design the Database

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

98

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Where Are We?

= Run-Time Architecture

E=) Introduction to Concurrency
» Modeling Processes and Threads
» Concurrency Control

= Distribution
» Client/Server Architectures
» Mapping Processes to Nodes
» Design Considerations

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

99

OOAD with UML2 and RSM

ZE:,: | IBM Software Group | Rational software

What Is Concurrency?

= The performance of two or more =~ ————— oy __ -
activities during the same time R0
. Parallel
interval _
() AL DT
= Example of concurrency at work: @ ——m—m—m————— ———
o x
» Parallel roads require little —

N Two-way
coordination

» Two-way roads require some |
coordination for safe interaction I

» Intersections require careful

coordination It

Intersections @l

Concurrency is the tendency for things to happen at the same time in a system.
Concurrency is a natural phenomenon, of course. In the real world, at any given time many

things are happening simultaneously. When we design software to monitor and control real-
world systems, we must deal with this natural concurrency.

When dealing with concurrency issues in software systems, you must consider two
important aspects:

» Being able to detect and respond to external events occurring in a random order.
» Ensuring that these events are responded to in some minimum required interval.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

100

OOAD with UML2 and RSM

Why Do We Need Concurrency?

= Some reasons for concurrency
» Reactive software systems:

= Many systems must respond to externally generated events which may
occur at somewhat random times, in some-what random order, or both

» Optimized processing time
= Executing tasks in parallel
= Preventing one activity from blocking another while waiting for /O
» Controllability of the system
= Ability to start, stop, or otherwise influence in mid-stream a system
function

= Concurrent software permits a “separation of concerns” among
concurrent activities

= But, when concurrent activities interact or share the same resources,
concurrency issues will arise

» Lost updates, race conditions, deadlocks, etc.

Some of the driving forces behind finding ways to manage concurrency are external. That is,
they are imposed by the demands of the environment. In real-world systems, many things
are happening simultaneously and must be addressed “in real-time” by software. To do so,
many real time software systems must be “reactive.” They must respond to externally
generated events that might occur at somewhat random times, in somewhat random order,
or both.

There also can be internally inspired reasons for concurrency. For example, performing
tasks in parallel can substantially speed up the computational work of a system if multiple
CPUs are available. Even within a single processor, multitasking can dramatically speed
things up by preventing one activity from blocking another while waiting for I/0. A common
situation in which this occurs is during the startup of a system. There are often many
components, each of which requires time to be made ready for operation. Performing these
operations sequentially can be painfully slow.

Controllability of the system can also be enhanced by concurrency. For example, one
function can be started, stopped, or otherwise influenced in midstream by other concurrent
functions — something extremely difficult to accomplish without concurrent components.

If each concurrent activity evolved independently, in a truly parallel fashion, managing them
would be relatively simple: we could just create separate programs to deal with each activity.
However, this is not the case. The challenges of designing concurrent systems arise mainly
because of the interactions that happen between concurrent activities. When concurrent
activities interact, some sort of coordination is required.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 101

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Realizing Concurrency:. Concurrency Mechanisms

= To support concurrency, a system must provide for multiple threads of
control

= Common concurrency mechanisms
» Multitasking

= The operating systems simulate concurrency on
a single CPU by interleaving the execution of
different tasks

» Multiprocessing

= Multiple CPUs execute concurrently :
» Application-based solutions : >

= The application software takes responsibility for
switching between different branches of code
at appropriate times

Of course, multiple processors offer the opportunity for truly concurrent execution. Most
commonly, each task is permanently assigned to a process in a particular processor, but
under some circumstances tasks can be dynamically assigned to the next available
processor. Perhaps the most accessible way of doing this is by using a “symmetric
multiprocessor.” In such a hardware configuration, multiple CPUs can access memory
through a common bus.

Operating systems that support symmetric multiprocessors can dynamically assign threads
to any available CPU. Examples of operating systems that support symmetric
multiprocessors are SUN's Solaris and Microsoft's Windows NT.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

102

OOAD with UML2 and RSM

IBE | IBM Software Group | Rational software

Concurrency Requirements

= Concurrency requirements are driven by:
» The degree to which the system must be distributed
» The degree to which the system is event-driven
» The computation intensity of key algorithms
» The degree of parallel execution supported by the environment

= Concurrency requirements are ranked
in terms of importance to resolve conflicts

Concurrency requirements define the extent to which parallel execution of tasks is required
for the system. These requirements help shape the architecture.

A system whose behavior must be distributed across processors or nodes virtually requires
a multi-process architecture. A system that uses some sort of Database Management
System or Transaction Manager also must consider the processes that those major
subsystems introduce.

If dedicated processors are available to handle events, a multi-process architecture is
probably best. On the other hand, to ensure that events are handled, a uni-process
architecture may be needed to circumvent the “fairness” resource-sharing algorithm of the
operating system: It may be necessary for the application to monopolize resources by
creating a single large process, using threads to control execution within that process.

In order to provide good response times, it might be necessary to place computationally
intensive activities in a process or thread of their own so that the system still is able to
respond to user inputs while computation takes place, albeit with fewer resources. If the
operating system or environment does not support threads (lightweight processes), there is
little point in considering their impact on the system architecture.

The above requirements are mutually exclusive and might conflict with one another.
Ranking requirements in terms of importance will help resolve the conflict.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 103

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

ZE:,: | IBM Software Group | Rational software

Example: Course Registration System

= |n the Course Registration System, the concurrency requirements
come from the requirements and the architecture:

» Multiple users must be able to perform their work concurrently

» If a course offering becomes full while a student is building a schedule
including that offering, the student must be notified

» Risk-based prototypes have found that the legacy course catalog database
cannot meet our performance needs without some creative use of mid-tier
processing power

The above concurrency requirements were documented in the Course Registration System
Supplemental Specification.

The first requirement is typical of any system, but the multi-tier aspects of our planned
architecture will require some extra thought for this requirement.

The second requirement demonstrates the need for a shared, independent process that
manages access to the course offerings.

The third issue leads us to use some sort of mid-tier caching or preemptive retrieval
strategy.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 104

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Where Are We?

= Run-Time Architecture
» Introduction to Concurrency
=) Modeling Processes and Threads
» Dealing With Concurrency Problems

= Distribution
» Client/Server Architectures
» Mapping Processes to Nodes
» Design Considerations

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 105

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Processes and Threads

= Process
» Provides heavyweight flow of control
» |s stand-alone
» Can be divided into individual threads

» Provides isolation for the internal data
it works on but use up a lot of resources

= Thread
» Provides lightweight flow of control

» Runs in the context of an enclosing process

» Provides good utilization of resources but
usually share memory, which leads to
concurrent problems

When the operating system provides multitasking, a common unit of concurrency is the
process. A process is an entity provided, supported, and managed by the operating system
whose sole purpose is to provide an environment in which to execute a program. The
process provides a memory space for the exclusive use of its application program, a thread
of execution for executing it, and perhaps some means for sending messages to and
receiving them from other processes. In effect, the process is a virtual CPU for executing a
concurrent piece of an application.

Many operating systems, particularly those used for real-time applications, offer a “lighter
weight” alternative to processes, called “threads” or “lightweight threads.”

Threads are a way of achieving a slightly finer granularity of concurrency within a process.
Each thread belongs to a single process, and all the threads in a process share the single
memory space and other resources controlled by that process.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 106

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

Zz;‘% | IBM Software Group | Rational software

Modeling Processes
= Processes can be modeled using process» Wread
» Active classes (Class Diagrams) =ActiveClassl | EHThreadName
and Objects (Interaction Diagrams)
» Components (Component
Diagrams)
) Stereotype <<process>> An active class is a class that
“owns” its own thread of
= Process relationships can be execution
i (this is not the standard UML2
modeled as dependencies representation)
= Threads can be modeled using
» Regular classes A CLCTo
“]ComponentName
» Stereotype <<thread>>
= Process to thread and
process/thread to class/subsystem
modeled as compositions = -
ClassA # SubsystemName

You can use “active” classes to model processes and threads. An active class is a class that
“owns” its own thread of execution and can initiate control activity, contrasted with passive
classes that can only be acted upon. Active classes can execute in parallel (that is,
concurrently) with other active classes.

The model elements can be stereotyped to indicate whether they are processes
(<<process>> stereotype) or threads (<<thread>> stereotype).

Note: Even though you use “active” classes to model processes and threads, they are
classes only in the meta-modeling sense. They aren’t the same kind of model elements as
classes. They are only meta-modeling elements used to provide an address space and a
run-time environment in which other class instances execute, as well as to document the
process structure. If you try to take them further than that, confusion may result.

Process communication is modeled using dependency relationship whether you use classes
or components to represent your processes.

In cases where the application has only one process, the processes may never be explicitly
modeled. As more processes or threads are added, modeling them becomes important.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 107

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

Zg,m | IBM Software Group | Rational software

Example: Course Registration System

= StudentApplication

» One instance for each
student who is currently «process»
registering for courses = StudentApplication

= CourseRegistrationProcess

» One instance for each :
student who is currently «Process»

registering for courses & CourseRegistrationProcess
= CourseCatalogSystem
: «thread»
» Separate process that can ¥ E CourseCache
be shared by multiple users «process» -
registering for courses 5 CourseCatalogSystem
= The threads are used to - «thread>»

1 | E OfferingCache

asynchronously retrieve
items from the legacy
system

The above example demonstrates how processes and threads are modeled. Processes and
threads are represented as stereotyped classes. Separate processes have dependencies
among them. When there are threads within a process composition is used. The
composition relationship indicates that the threads are contained within the process (that is,
cannot exist outside of the process).

The StudentApplication process manages the student functionality, including user interface
processing and coordination with the business processes. There is one instance of this
process for each student who is currently registering for courses.

The CourseRegistrationProcess encapsulates the course registration processing. There is
one instance of this process for each student who is currently registering for courses.

The CourseRegistrationProcess talks to the separate CourseCatalogSystemAccess
process, which manages access to the legacy system. CourseCatalogSystemAccess is a
separate process that can be shared by multiple users registering for courses. This allows
for a cache of recently retrieved courses and offerings to improve performance.

The separate threads within the CourseCatalogSystemAccess process, CourseCache, and
OfferingCache are used to asynchronously retrieve items from the legacy system. This
improves response time.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 108

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

ZEZ:,__ | IBM Software Group | Rational software

Modeling Process Lifecycles
«hread>

£l CustomerInterface

«process» (¥ «thread>

TA™ [T E NetworkInterface

S

= DeviceController

[% Operator | [<T:ATM | ['E DeviceContraller | ["= iNetworkinterface | ["H :Customerinterface
1: start-up (! :

I
111: create thread (| :
|
I
|

1|2 create thread

1.4: cre!ate thread ()

l
|
|
|
|
|
|
|
|

1.5: create thread ()

|

|

T

|

|

| .
| 1.3: create thread ()
|

|

|

|

|

| l
| |

|

| |

| 1.6: create thread ()
|

|

In the Automated Teller Machine, asynchronous events must be handled coming from three
different sources: the user of the system, the ATM devices (in the case of a jam in the cash
dispenser, for example), or the ATM Network (in the case of a shutdown directive from the
network). To handle these asynchronous events, we can define three separate threads of
execution within the ATM itself, as shown below using active classes in UML.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 109

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Modeling Process Relationships

= Process relationships can be modeled as dependencies
= Process relationships must support design element relationships

W CIClassB
= ProcessY |e

7 *

ClassA

4

= ProcessX

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 110

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

lication

Example: Course Registration System

{Process

“JCourseRegistrationProcess

“ICourseCatalogSystem

CourseCatalogImpl

2 [CourseCatalog
retrieveCourseOfferings ()

© Copyright IBM Corp. 2005-2007

1 in s
i Syl —_— £ ICourseCatalog

refrieveCourseOfferings ()

- coursecatalog

Part Il — Object-Oriented Design
111

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Where Are We?

= Run-Time Architecture

» Introduction to Concurrency

» Modeling Processes and Threads
E==) Concurrency Control

= Distribution

» Client/Server Architectures
» Mapping Processes to Nodes
» Design Considerations

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 112

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Dealing With Concurrency Problems

= About concurrency problems:
» Difficult to enumerate the possible scenarios
» Hard to test for
» Difficult to reproduce

= Two main situations
» Loss of data during the execution of database transactions

= Example: two sessions S1 and S2 read the same record holding a value
“X”, S1 appends a “Y” to the data and commits the result (“XY”), S2
appends a “Z” to the data and commits the result (“XZ”) overwriting S1's
update (lost update)

» Incorrect results generated during the concurrent execution of multiple
interacting computational tasks (concurrent computing)

= Example: if two threads T1 and T2, which increment the value of a global
integer by one, run simultaneously without locking or synchronization, the
result can be 1 or 2 (race condition)

Software flaws in Life-critical systems can be disastrous. Race conditions were among the
flaws in the Therac-25 radiation therapy machine, which led to the death of five patients and
injuries to several more. Another example is the Energy Management System provided by
GE Energy and used by Ohio-based FirstEnergy Corp. (and by many other power facilities
as well). A race condition existed in the alarm subsystem; when three sagging power lines
were tripped simultaneously, the condition prevented alerts from being raised to the
monitoring technicians, delaying their awareness of the problem. This software flaw
eventually led to the North American Blackout of 2003. (GE Energy later developed a
software patch to correct the previously undiscovered error.)

(Source: Wikipedia 2007)

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

113

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Concurrency Control (in the Field of Databases)

= Purpose
» To ensure that database transactions are executed in a safe manner

= Two main forms of concurrency control:
» Optimistic lock
= Conflict detection scheme
» Pessimistic lock
= Conflict prevention scheme
= Can lead to deadlock situations

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 114

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

Optimistic Lock Pattern

= Source: Martin Fowler, ! ! !

T . | 1 getData () | |

Optimistic Offline Lock S1 and 52 read the same record

. identifed by its version number 17.
in Patterns of :

. . P R R - v Gy wli '_ ---------

Enterprise Application Sobata () | |

. . | 1

Architecture, Addison 4 gepats ()| :

Wesley, 2003 | | I

I]

| ledData()

| 1

| 6: updateData () | :

Business Transaction Boundary ' :

7: updateData () | |

_______ _i [——

The record is successfully updated. Its
version number is 18.

' | 9: updateData ()

/=
: |8:LpdateData(2;|-|y

|

|

|

|

|

|
A failure code is returned because of a T

System Transaction Boundary — _r_ _______

[]:ul): rollback ()

mismatch between the version numbers
for the record (17 and 18).

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 115

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Where Are We?

= Run-Time Architecture
» Introduction to Concurrency
» Modeling Processes and Threads
» Concurrency Control

= Distribution

=) Client/Server Architectures
» Mapping Processes to Nodes
» Design Considerations

Client/server is a conceptual way of breaking up the application into service requestors
(clients) and service providers (servers).

A client often services a single user and often handles end-user presentation services
(GUIs). A system can consist of several different types of clients, examples of which include
user workstations and network computers.

The server usually provides services to several clients simultaneously. These services are
typically database, security, or print services. A system can consist of several different types
of servers. For example: database servers, handling database machines such as Oracle,
DB2; print servers, handling the driver logic, such as queuing for a specific printer;
communication servers (TCP/IP, ISDN, X.25); window manager servers (X); and file servers
(NFS under UNIX).

The application and business logic is distributed among both the client and the server
(application partitioning).

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 116

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Client/Server Architectures Criont
(R
= Typical applications include E] WWW Browser
» Application Services —
. . \ J
» Business Services
» Data Services Web Server I ~
= Different types of architectures Application |ll— - \“g(“;,LH ASP ’ Java
based on how these services Services ; ;
are allocated to processing Business
nodes, for instance: Services e—
» Two-Tier “Fat Client” Architecture L Engine)
» Three-Tier Architecture)
» Web Application Architecture » Data Services v Database Server(s)

Fat client distribution pattern: Much of the functionality in the system runs on the client.

Three-tier architecture: The system is divided into three logical partitions: application services, business
services, and data services. The “logical partitions” may in fact map to three or more physical nodes.

Application services, primarily dealing with GUI presentation issues, tend to execute on a dedicated desktop
workstation with a graphical, windowing operating environment.

Data services tend to be implemented using database server technology, which normally executes on one or
more high-performance, high-bandwidth nodes that serve hundreds or thousands of users, connected over a
network.

Business services are typically used by many users in common, so they tend to be located on specialized
servers as well, although they may reside on the same nodes as the data services.

Partitioning functionality along these lines provides a relatively reliable pattern for scalability: by adding servers
and rebalancing processing across data and business servers, a greater degree of scalability is achieved.

At the other end of the spectrum from the fat client is the typical Web Application (which might be
characterized as fat server or “anorexic client”). Since the client is simply a Web browser running a set of
HTML pages and Java applets, Java Beans, or ActiveX components, there is very little application there at all.
Nearly all work takes place on one or more Web servers and data servers.

Web applications are easy to distribute and easy to change. They are relatively inexpensive to develop and
support (since much of the application infrastructure is provided by the browser and the web server). However,
they might not provide the desired degree of control over the application, and they tend to saturate the network
quickly if not well-designed (and sometimes despite being well-designed).

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 117

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Where Are We?

= Run-Time Architecture
» Introduction to Concurrency
» Modeling Processes and Threads
» Concurrency Control

= Distribution
» Client/Server Architectures
‘ Mapping Processes to Nodes
» Design Considerations

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 118

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Process-to-Node Allocation Considerations

= Client/Server architecture

= Response time and system throughput

= Minimization of cross-network traffic

= Node capacity

= Communication medium bandwidth

= Availability of hardware and communication links

= Rerouting requirements

Processes must be assigned to a hardware device for execution in order to distribute the
workload of the system.

Those processes with fast response time requirements should be assigned to the fastest
processors.

Processes should be allocated to nodes so as to minimize the amount of cross-network
traffic. Network traffic, in most cases, is quite expensive. It is an order of magnitude or two
slower than inter-process communication. Processes that interact to a great degree should
be co-located on the same node. Processes that interact less frequently can reside on
different nodes. The crucial decision, and one that sometimes requires iteration, is where to
draw the line.

Additional considerations:
* Node capacity (in terms of memory and processing power)
¢ Communication medium bandwidth (bus, LANs, WANS)
 Availability of hardware and communication links
» Rerouting requirements for redundancy and fault-tolerance

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 119

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

EE:,; | IBM Software Group | Rational software

Modeling the Allocation of Processes to Nodes

= Processes are typically represented as components stereotyped

<<process>>

»

“]ComponentName

«executable»
= ExecutableName

«exeo.i'l':d.)le»

= ExecutableName

INodeName
Deployments Textual
B ExecutableName

= Processes will be rendered in the physical world as executables
» An executable will be represented as an artifact stereotyped <<executable>>

.. «manifest> |

= Executables will be deployed to processing nodes

(the three representations above are equivalent)

«process»

“]ComponentName

[JNodeName

Deployments Graphical

«executable»
= ExecutableName

Deployment diagrams allow you to capture the topology of the system nodes, including the

assignment of run-time elements to them.

A deployment diagram contains nodes connected by associations. The associations indicate

a communication path between the nodes.

Nodes may contain artifacts which indicates that the artifact lives on or runs on the node. An

example of a run-time object is a process.

Part Il — Object-Oriented Design

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

120

OOAD with UML2 and RSM

===

E__sﬁ__ | IBM Software Group | Rational software

Deployment Diagram with Allocated Processes

CIClient Workstation

& StudentApplication
0..2000

«campius LAN»

1

[
CJApplication Server
- CourseRegistration
-5 CourseCatalog
~#BillingSystem
«campus LAN» «campus LAN»
1 1

CIBilling System
(£JCourseCatalog Database

The above diagram once again illustrates the Deployment View for the Course Registration

System. Note: No threads are shown in the above diagram, because threads always run in
the context of a process.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 121

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Where Are We?

= Run-Time Architecture
» Introduction to Concurrency
» Modeling Processes and Threads
» Concurrency Control

= Distribution

» Client/Server Architectures

» Mapping Processes to Nodes
‘ Design Considerations

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 122

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

Zg,m | IBM Software Group | Rational software

Example of a Distribution Mechanism: Java RMI

= RMI = Remote Method Invocation

—= 1: lookup(serverUrl)

<—— 2:Remote ‘Naming
N 1nvoke,d,;() _____________________ S — 4:InvokeOp()
| | | JrE————

Client: RemoteStub RemoteSkeleton | ‘RemoteCbject
| ! /
1 1
1 1
1 1
I ! RemoteObject is the
1 — Lo » »
.\ RMI Tra " ! distributed class

Remote Method Invocation (RMI) is a Java-specific mechanism that allows client objects to
invoke operations on server objects as if they were local. The only catch is that, with basic
RMI, you must know where the server object resides.

The mechanisms of invoking an operation on a remote object are implemented using
“proxies” on the client and server, as well as a service that resides on both that handles the
communication.

The client establishes the link with the remote object via the Naming utility that is delivered
with RMI. There is a single instance of the Naming class on every node. The Naming
instances communicate with one another to locate remote objects. Once the connection is
established (via lookup()), it may be reused any time the client needs to access the remote
object.

RemoteStub and RemoteSkeleton are automatically generated. To get them, you run the
compiled distributed class through the rmic compiler to generate the stubs and skeletons.
You then must add the code to look up the object on the server. The lookup returns a
reference to the auto-generated RemoteStub.

For example, say we had a class, ClassA, that is distributed through RMI. Once ClassA is
created, it is run through the rmic compiler, which generates the stub and skeleton. When
you do the lookup, the Naming object returns a reference to a ClassA, but it is really a
ClassA stub. Thus, no client adjusting needs to happen. Once a class is run through rmic,
you can access it as if it were a local class, the client does not know the difference.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 123

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Using the Proxy Design Pattern

= A proxy is a placeholder
for another object to

. . = Subject
control access to it = Client - -
o reques
- Applicability 1
Depends onl

» Remote proxy (our Ssz;’;ts only on
example)

» Virtual proxy (creates ElProxy o EREEEDRR
“expensive” objects on el g f——
demand)

» Etc.

if (loc == null) {

/I retrieve copy of the RealSubject instance
/I from a remote site
loc=..;

}
loc.request();

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 124

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

S==

| IBM Software Group | Rational software

Exercise

= Perform the exercise provided by
the instructor (lab 9)

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 125

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 126

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational Software France

Object-Oriented Analysis and Design with UML2 and
Rational Software Modeler

15. Design the Database

software

(@business on demand software

© 2005-2007 IBM Corporation

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 127

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

= | IBM Software Group | Rational software

Roadmap for the OOAD Course

= Analysis

-~
» Architectural Analysis / i
(Define a Candidate Architecture) AnaIySIS

» Use-Case Analysis
(Analyze Behavior)

= Design

» Identify Design Elements

(Refine the Architecture) \ D
. . . ~ —— e w——————— —— — —— —
» Identify Design Mechanisms P l ===

(Refine the Architecture) E_%]

Refine the Architecture

» Class Design
(Design Components)

» Subsystem Design
(Design Components)

» Describe the Run-time
Architecture and Distribution
(Refine the Architecture)

» Design the Database

!
|
|
|
|
|
|
|
\

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 128

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

S==

| IBM Software Group | Rational software

Where Are We?

E=) Relational Databases and Object Orientation
= Mapping Objects to Tables

= Strategies for Implementing Persistence

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 129

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

Z_;‘i | IBM Software Group | Rational software

The “Object/Relational Impedance Mismatch”

= RDBMS and Object Orientation are not entirely compatible

» RDBMS
= Focus is on data
= Better suited for ad-hoc relationships and reporting application
= Expose data (column values)

» Object Oriented system
= Focus is on behavior
= Better suited to handle state-specific behavior where data is secondary
= Hide data (encapsulation)

Relational databases and object orientation are not entirely compatible. They represent two
different views of the world: In an RDBMS, all you see is data; in an object-oriented system,
all you see is behavior. The object-oriented model tends to work well for systems with
complex behavior and state-specific behavior in which data is secondary, or systems in
which data is accessed navigationally in a natural hierarchy (for example, bills of materials).
The RDBMS model is well suited to reporting applications and systems in which the
relationships are dynamic or ad hoc.

The real fact of the matter is that a lot of information is stored in relational databases, and if
object-oriented applications want access to that data, they need to be able to read and write
to an RDBMS. In addition, object-oriented systems often need to share data with non-
object-oriented systems. It is natural, therefore, to use an RDBMS as the sharing
mechanism.

While object-oriented and relational design share some common characteristics (an object’s
attributes are conceptually similar to an entity’s columns), fundamental differences make
seamless integration a challenge. The fundamental difference is that data models expose
data (through column values) while object models hide data (encapsulating it behind its
public interfaces).

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 130

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

IBM Software Group | Rational software

The Data and Object Models
. Department cgname
An Object Model » aid ; + l=&id
Egname cptitle
EIDEPT HourlyEmployee rg' a||'En- p
2% DEPT_ID PI;EECIMALU ,0) = U I Regu' one
£ DEPT_NAME : CHAR(25) EghourlyRate cgband
EIEMPLOYEE
YWorks for 7 EMP_ID : DECIMAL(7 , 0) Although the two technologies are not fully
""""" ~O<{"§ EMP_NAVE : CHAR(25) compatible, it is relatively easy to derive one
B EMP_DESC : VARCHAR(256)) N
¢ DEPT_ID : DECIMAL(7 , 0) [FK] model from the other if you can define the
mapping between tables and classes ...
EIREGULAR EIHOURLY <« And the Relational Data Model
% EMP_ID : DECIMAL(7 , 0) [FK] % EMP_ID : DECIMAL(7 , O) [FK]
£ EMP_BAND : CHAR(1) £ EMP_RATE : DECIMAL(S, 2)

Part Il — Object-Oriented Design

© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

131

OOAD with UML2 and RSM

S==

| IBM Software Group | Rational software

Where Are We?

= Relational Databases and Object Orientation
==) Mapping Objects to Tables
= Strategies for Implementing Persistence

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 132

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Mapping Persistent Classes to Tables

= Only persistent UML classes should be mapped to DB tables
» Typically <<Entity>> classes

A Data Modeling Profile

= A UML object maps to a row

= A UML profile should be

= A persistent UML attribute maps to a column provided to fine-tune the

= Either the primary key of the table maps to
explicit attributes in the UML class or it
must be created (no equivalent in the UML

class)
«Entity»
Student = STUDENT
= . % STUDENT_ID : CHAR(S)
t?«pk» uljs.tbong ‘ T NAME : VARCHAR(32)
aname : String & ADDRESS: VARCHAR(100)
Egaddress : String

The persistent classes in the Design Model represent the information the system must store.
Conceptually, these classes might resemble a relational design (for example, the classes in
the Design Model might be reflected in some fashion as entities in the relational schema).
As we move from elaboration into construction, however, the goals of the Design Model and
the Relational Data Model diverge. The objective of relational database development is to
normalize data, whereas the goal of the Design Model is to encapsulate increasingly
complex behavior. The divergence of these two perspectives — data and behavior — leads
to the need for mapping between related elements in the two models.

In a relational database written in third normal form, every row in the tables — every “tuple”
— is regarded as an object. A column in a table is equivalent to a persistent attribute of a
class (keep in mind that a persistent class may have transient attributes). So, in the simple
case where we have no associations to other classes, the mapping between the two worlds
is simple. The data type of the attribute corresponds to one of the allowable data types for
columns.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 133

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

ZE:,: | IBM Software Group | Rational software

Mapping Associations Between Persistent Classes

= Associations between two persistent objects are realized as foreign
keys to the associated objects

» A foreign key is a column in one table that contains the primary key value of
associated object

Entity ECOLRSE_QOFEFRING
»

5 COURSE_ID : CHAR(E) [FK
CourseOffering fﬁgmm-m/[
g «pk» number : String

- course

1 B COURSE
S 7 COURSE_ID : CHAR(E)

Course T NAME : VARCHAR(32)

Egname : String E DESCRIPTION : VARCHAR(256)

Egdescription @ String

g «pk» courseld : String

Associations between two persistent objects are realized as foreign keys to the associated
objects. A foreign key is a column in one table that contains the primary key value of the
associated object.

Assume we have the above association between Course and CourseOffering. When we
map this into relational tables, we get a Course table and a Course Offering table. The
Course Offering table has columns for attributes listed, plus an additional COURSE_ID
column that contains foreign-key references to the primary key of associated rows in the
Course table. For a given Course Offering, the COURSE_ID column contains the code of
the Course with which the Course Offering is associated. Foreign keys allow the RDBMS to
join related information together.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 134

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

ZE:,: | IBM Software Group | Rational software

Mapping Aggregation to the Data Model

= Aggregation is also modeled using foreign key relationships

«Entity» I STUDENT

Student 7% STUDENT_ID : CHAR(S)
= P - B NAME : VARCHAR(32)
S «pk> ".j :Long & £ ADDRESS: VARCHAR(100)
Egname : String
Egaddress : String

\ FISCHEDILE
Entity> «; STUDENT_IID:CHAR(S) [FK]
Schedule

Egsemester : Semester

Aggregation is also modeled using foreign key relationships.

Assume we have the above aggregation between Student and Schedule. (Note: This is
modeled as a composition, but remember that composition is a nonshared aggregation).

When we map this into relational tables, we get a Student table and a Schedule table. The
Schedule table has columns for attributes listed, plus an additional column for Student_ID
that contains foreign-key references to associated rows in the Student table. For a given
Schedule, the Student_ID column contains the Student_ID of the Student that the Schedule
is associated with. Foreign keys allow the RDBMS to join related information together.

In addition, to provide referential integrity in the Data Model, we would also want to

implement a cascading delete constraint, so that whenever the Student is deleted, all of its
Schedules are deleted as well.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 135

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

ZE:,: | IBM Software Group | Rational software

Other Relationships

= Modeling many-to-many relationships

» Creation of an associative table holding the foreign keys to the other two
tables

= Modeling Inheritance in the Data Model

» A Data Model does not support modeling inheritance in a direct way
» Three options:

= Map the entire class hierarchy to a single table
= Map each concrete class to its own table
= Map each class to its own table

The standard relational Data Model does not support modeling inheritance associations in a
direct way. A number of strategies can be used to model inheritance:

» Use separate tables to represent the super-class and subclass. Have, in the
subclass table, a foreign key reference to the super-class table. In order to
“instantiate” a subclass object, the two tables would have to be joined together.
This approach is conceptually easier and makes changes to the model easier, but
it often performs poorly due to the extra work.

Duplicate all inherited attributes and associations as separate columns in the

subclass table. This is similar to de-normalization in the standard relational Data
Model.

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 136

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

S==

| IBM Software Group | Rational software

Where Are We?

= Relational Databases and Object Orientation
= Mapping an Object Model to a Data Model

E=) Strategies for Implementing Persistence

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 137

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Strategies for Implementing Persistence

= Business objects access data sources directly

» In Java applications, this is typically done using JDBC

» Simple but business objects directly coupled to the database
= Data access objects (DAOs)

» DAOs encapsulate the database access logic

» Isolate business objects from the data sources
= Persistence frameworks

» Database access code automatically generated by the persistence
framework

» Overall performance usually better

» Examples: Enterprise JavaBeans (EJB), Hibernate, OJB
(ObJectRelationalBridge)

= Any combination of the above

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 138

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

The Data Access Object (DAQO) Pattern

Prentice Hall, 2003

= Source: Core J2EE Patterns, Deepak Alur, John Crupi & Dan Malks,

= A Data Access Object encapsulates all access to the persistent store:
» The DAO manages the connection with the data source to store and obtain

data
EiClient uses = DataAccessObject accesses = DataSource
@create () L
#read ()
#update ()
% delete () creates
: uses
créates %
: = ResultSet

| creates / uses 1

\ TransferObject
Core Pattern

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

(TO) is another J2EE

139

OOAD with UML2 and RSM

1 create

The Data Access Object (

%

3: getData ()

| 2! lookup ()

i I

4: getData ()

3.1: open connection LB

3.2: execute query ()

3.4: create

3.2.1: create
3.3: getData () @
[

1

i
|
| 3.5: setData ()|

[CER0a |
|

3.6: close connection d

I 5: getviue ()

- ———

© Copyright IBM Corp. 2005-2007

|
|
|
|
f
|

Part Il — Object-Oriented Design
140

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Exercise

= There is no exercise in this
module

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 141

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

OOAD with UML2 and RSM

| IBM Software Group | Rational software

Part Il — Object-Oriented Design
© Copyright IBM Corp. 2005-2007 142

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

