IBM Rational University

software

f;‘ é"j».u " Ve

Pattern Implementation Workshop with

IBM Rational Software Architect

RD801/DEV498 April 2007
Student Manual Volume 2

Part No. 800-027312-000

IBM Corporation

Rational University

Pattern Implementation Workshop with IBM Rational Software Architect
Student Manual Volume 2

April 2007
Copyright © International Business Machines Corporation, 2007. All rights reserved.

This document may not be reproduced in whole or in part without the prior written permission
of IBM.

The contents of this manual and the associated software are the property of IBM and/or its
licensors, and are protected by United States copyright laws, patent laws, and various
international treaties. For additional copies of this manual or software, please contact Rational
Software.

IBM and the IBM logo are trademarks or registered trademarks of IBM Corporation, in the
United States, other countries or both.

Rational, the Rational logo, ClearCase, ClearCase LT, ClearCase MultiSite, Unified Change
Management, Rational SoDA, and Rational XDE are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries or both.

WebSphere, the WebSphere logo, and Studio Application Developer, are trademarks or
registered trademarks of International Business Machines Corporation in the United States, other
countries or both.

Microsoft Windows 2000, Microsoft Word, and Internet Explorer, among others, are trademarks
or registered trademarks of Microsoft Corporation.

Java and all Java-based marks, among others, are trademarks or registered trademarks of Sun
Microsystems in the United States, other countries or both.

UNIX is a registered trademark of The Open Group in the United States, other countries or
both.

Other company, product and service names may be trademarks or service marks of others.
Printed in the United States of America.

This manual prepared by:
IBM Rational Software
555 Bailey Ave.

Santa Teresa Lab

San Jose CA 95141-1003
USA

DEV498: Pattern Implementation Workshop with Rational Software Architect

Contents
Module 12: Creating UML Profiles
L@ o= 1AY== OSSR 12-2
What A€ PrOfIES? ...t et sre et 12-4
Lab 9: Create the UX Modeling Profile..........ccoeriiininiiii e 12-17
L L= S 12-18
Further INfFOrMationccceveie i e 12-19

Module 13: Model to Model Transformations

OBJECLIVES ...ttt ettt ettt st b e e b e 13-2
TransforMatioNS REVIEW..........c.coccviiieeecee ettt ettt e sareeeane s 13-5
APISTOr TransformMationsccuvcveirieiieiecie ettt sre e 13-13
Lab 10: Manually Create a Transformation (Optional)ccccceevvveeeiverereesennn, 13-29
Model to MOdel MapPING......c.crueuerririeiirienieeriereeiesi e s 13-35
REVIEW ...ttt ettt e e e e st e e s are e e bt e e sare e sabeesaneesabeesnreesareas 13-58
FUrther INFOrMEEIONcveccviciece ettt s sre e sre e 13-59

Module 14: Designing with UML Patterns

L@ o= 1AV USSR 14-2
REVIEW: PatEINS......co ittt ettt s e saee s sabeeeaee e saaeeeneee e 14-5
APPIYING QUML PaLEIN ...ttt s 14-9
Creating aUML Pattern in Rational Software Architectcccceveveevievenennnn, 14-19
Lab 12: Create the Master Detail Patternccceeveeeeeieiee e 14-37
(YL R 14-38
Further INfOrmMationoooeeiiiiiie ettt 14-39

Module 15: Introduction to the UML 2 API

L@ o= 1AV =S USSP 15-2
TN 1= T o= £ 15-4
(=YL N S 15-8
Further INnfOrmationc.oooeiiiiie e 15-16

Module 16: Plug-ins and Pluglets

L@ o= 1AV =S TSRS 16-2
T o gL 16-4
PLUGIEES ..ttt 16-16
Lab 13: Create aPIUGIELcc.eoieieeee e 16-28
REVIBI ...ttt sttt sttt s e s 16-29

Module 17: Models Templates

L@ o= 1AV OSSR 17-2
MOOE] TEMPIBLES ...ttt bbb 17-3
Lab 14: Create aUX Model TemMpPlateccooeieeereeeee e 17-7
© Copyright IBM Corp. 2007 i

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

DEV498: Pattern Implementation Workshop with Rational Software Architect

Module 18: Packaging Artifacts

L@ o= 1AY== USSP 18-2
ECHPSE FEAUIES. ..ottt ettt ne e sne e ne e 18-5
Reusable Asset Specification (RAS) ..o 18-19
Lab 15: Package Reusable ArtifaCtsS........ccoeiererieieie e 18-23
REVIBI ...ttt sttt ettt ne s 18-24

Module 19: Summary and Conclusion

IBM Software Delivery Platform and EClipSe........cccocevvevevivivsesesceeeseerese e 19-2
Model-Driven Development With Patterns. ... 19-6
Choosing the Kind of Pattern Implementationccccvereneienenieeieneesese e 19-8

Module 20: Advanced Transformation Topics

Advanced Transformation TOPICSccvevereresereeeeieesieseese e sre e e e eaeseesseseesreees 20-2
Cloning TransfOrMatioNS...........cvcvveeeeieererese s ee e 20-14
Enabling Custom Transformation Ul ... 20-18
Reverse Transformations...........coeeeeeeierienese st 20-22

Module 21: Introduction to GMF

INErOdUCEION t0 GIVIF ...ttt ettt s sae e sreene s 21-2
INtrOdUCEION TO DSLveeve ettt ettt e be e 21-10
Optional: Technical detailS.........ccooeeriiiiri e 21-14
Further INfOrmMationoooeeiiii e 21-24

Module 22: XPath: XML Path Language

XPath — XML Path LangUage.........cccccceverieiieieeieeee et st snens 21-2
XPath Address NOEHONcceveieireeere e 21-9
D= 1 2 OSSPSR 21-26
Further INfOrMEationooeoiiie e s 21-30
© Copyright IBM Corp. 2007 ii

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

| IBM Software Group

DEV498: Pattern Implementation Workshop with IBM

Rational Software Architect
Module 12: Extending Models with Profiles

‘Rational. saftware

© 2006 IBM Corporation

Contents
Objectives 12-2
What Are Profiles? 12-4
Lab 9: Create the UX Modeling Profile 12-17
Review 12-18
Further Information 12-19
© Copyright IBM Corp. 2007 12-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

Creating UML Profiles

= Objectives:
» Describe UML profiles
= The uses for profiles
= How to design a profile
= How to create a profile in Rational Software Architect
= How to customize profiles by adding icons and constraints
= How to apply a profile to a model

» Describe the relationship between profiles, models, UML
patterns and transformations.

» Create a UML profile in Rational Software Architect

N
Jln]]
lln
|

© Copyright IBM Corp. 2007 12-2

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

Course Outline in the Context of MDD

Module 12: How do |
create profiles that allow
me to extend UML
notation?

@
Jln]]

We will seethis dlide several times throughout the workshop. 1t will serve asavisual guide
to the skills that you are learning, and to how they fit into MDD.

© Copyright IBM Corp. 2007 12-3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

What Are Profiles?

= Part of the UML standard

= Specializes UML for specific domains
» Projects, process, industry, or technology

= Multiple profiles can be applied to a model

= Properties &3 Tasks | Console Bookmarks | Problems | Servers

General Cz1 = Model> UX Model

Profies Applied Profiles:

Stereotypes

Documentation Mame Version | Release Label | Location

Constraints Default : 1 7.00 C:'\Program F?Ies'\IBM'\SDP
Deployment 1 7.00 C:\Program Files\IBM\SDP

Advanced Standard 1

C:\Program Files\IBM\SDP

<

© Copyright IBM Corp. 2007 12-4
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

Profiles (cont.)

= Profiles consist of stereotypes, which add semantics to model
elements
» Can be localized
» Are versioned and formally deployed
» Are stored in a single file: <profile name>.epx

» Stereotypes can include:

» Properties

= A name-value pair that captures additional information

= Examples: package owner, class QA status, and addressed requirements
» Constraints

= Live and batch rules

= Examples: age > 18, or stereotyped class must inherit from library class

@
Jln]]

!l
]
ml
..|I|I !

]

© Copyright IBM Corp. 2007 12-5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

UML Profiles in Rational Software Architect
= Stored outside the model, using .epx files.

= Created using the Project Explorer view, in the
Modeling perspective, and the Properties view.

L Project Explorer &3 = 4::5 |
- . . *- (22 Models -~
= Existing profiles can be o & b
updated with new = 9 Javodeins
versions of the profile. 22 UM PrimtveTypes)
ActionKind
o Class_global
= Reference .epx files P
directly, or deploy via a 7 Class sercen

display

plug-in and add the profile to
Rational Software Architect.

Linktind
list

A Operation_link

O R I B O R e O s R = B s R = R

I ” <
|
i

®
Jln]]
1
|

Rational Software Architect allows you to develop and apply UML profiles. Y ou can use
UML profilesto create model elements that reflect the semantics of a specific domain or
platform. UML profiles are sets of stereotypes, tagged values, and constraints.

» Stereotype: Elements based on existing types or classesin the UML metamodel, that
extend the metamodel. Stereotypes can extend the semantics, but not the structure of pre-
existing types and classes.

» Tagged Value: A property as a name-value pair; the name is referred to as the “tag.”
e Constraint: A semantic condition or restriction.

Like the other extensihility features, profiles can be deployed as Eclipse plug-in projects. You
author profiles using the Project Explorer view and the Properties view, rather than authoring
them in the diagram editor. When the profile is complete, users can apply the profile to their
models by selecting the target model in the Project Explorer view, and then adding the profile
under the Profiles tab in the Properties view.

© Copyright IBM Corp. 2007 12-6

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

What are Stereotypes?

» They add semantic meaning

= There are multiple £SCrocn
stereotypes per element [Logon
= Their presentation includes g2 «useraction= logon ()

» Project Explorer: text and icon

» Diagram Editor: icon, shape,
and text

ainpube
LogonForm
Eg «textfield» username : String
E «textfield» password : String

= Eﬂ sscreen s BookDetails
[Cg «display= author
[Eg =display= datePublished
[Cg =display= isbn
Cg <display= title
+ Q =sCreens Home

\,
Jln]]
1
|
..|I|

© Copyright IBM Corp. 2007 12-7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

What are Properties?

= Name-value pairs on model elements
» Called “tagged values” when applied
= Include types: String, Boolean, Integer, and Enum

T Properties &3 Tasks Console | Bookmarks

General g <Property> «textfield» books
seis Property Value
Documentation o textfield
Constraints javabean
Advanced label
password False
+ UML

© Copyright IBM Corp. 2007 12-8
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

What are Properties? (cont.)

= Define your own enumerations
» Restrict to predefined values

=] Z% ._Tasks | Console |Bookmarks BEEREEBaY .0
General 2, <Operation> «link» logoff ()
Parameters Property Value
Stereotypes 3 link
Documentation description
Constraints kind 0 - href v
lzbel 0 -href
Advanced LML e |\\-‘;~
£ B

© Copyright IBM Corp. 2007

12-9
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

What Are Constraints?

= Allow you to express a condition or restriction to which the
element must conform

= Can be expressed in: =" useraction _
= {T{Xi@oﬁleﬂonstraint» JavaClassNameConstraint;
» Natural languages or %1y ()
mathematical notation 3 actionpath
» Java [Eg base_Operation
[E% javaclass

» Object Constraint Language (OCL)
Project Explorer View

=l Properties &2 Tasks | Console | Bookmarks =l

General <Constraint> «ProfileConstraint» UXModelin...::JavaClassN onstraint Stereotype Rule
Validation
Stereotypes

Name: JavaClassNameConstraint
Eroer =i Owner: useraction
Advanced Language: Java Class

Value: com.ibm.uxprofie.constraints. JavaClassNameConstraint

10

A consgtraint lets you refine the semantics of a UML model element by expressing a condition
or arestriction to which the element must conform.
Y ou can specify the language that you use to write the body of a constraint so that others who
read the constraint can more easily understand its condition or restriction.
In Rational Software Architect, you can create constraintsin the following languages:
 Natural languages such as English or mathematical notation (in UML comments)
* Java
» Object Constraint Language (OCL)
Y ou can specify constraints within a stereotype in a custom UML profile. When you define
Object Constraint Language (OCL) constraints, the constraints are validated syntactically.
However, Java™ constraints are not validated syntactically. When you apply a stereotype to
amodel element, the attributes of the stereotype are added to the model element. Stereotype
constraints apply to the attributes of the model element to which the stereotype is applied.
The model validation process checks model element attributes for compliance with stereotype

constraints. If you specify avalue for the attribute that does not comply with the constraint,
an error is displayed in the Problems view.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 12 - Creating UML Profiles

12 - 10

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

Creating a Profile in Rational Software Architect

» Create a Profile Project [Giare
Select a wizard —
n Ad d Stereotypes Create a new UML Profile Project
» Use extensions to izarcs:
connect the tvpe ke ext
stereotypes to UML - a
elements e
“gw UML Prajed .2) New UML Profile Project
=-(Z UML Exten
= Add tagged values and . P
constraints > & o
*-{= Transformatior P:::::amg:
. (= Web »
» Test by applying the e
profile'to a project RS (e
UML Primitive Types [Java Primitive Types] Ecore Primitive Types
= Distribute as: _
b RAS file ’ L
» Plug-in
» .epx file -

11

The key stepsin creating a Profile in Rational Software Architect, are:

1. Createaprofile project: Profile projects are aform of modeling project in Rational
Software Architect.

2. Add stereotypes, tagged values, and constraints: These elements are added in the
Project Explorer, using the Modeling Perspective, and modified using the properties
view.

3. Use extensionsto connect the ster eotypesto UML elements. The Extensions pagein
the Properties view for the stereotypes allows you to apply the stereotype to specific
elements (class, component, and so on) in the UML metamodel.

4. Test by applying the profileto a project: Verify that the profileisvalid, and that it is
semantically sound, based on the target domain or technology.

5. Distribute: Profiles are distributed as Eclipse plug-ins.

© Copyright IBM Corp. 2007 12-11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

Distributing Custom Profiles

= When ready for use, profiles have to be released
and made available as an Eclipse plug-in

» After release, modifications are restricted to
adding stereotypes only

» Profiles in plug-in form can be distributed as a
RAS asset

= Tips:

» Do not release the profile
during development (perform
release process for testing only)

» Wait until the profile stabilizes
before distributing it

12

© Copyright IBM Corp. 2007 12-12

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

Demo: Create a Profile

The instructor will now show you how to:
» Create a Profile
» Add Stereotypes
» Specify Extensions
» Create an Enumeration

13

Watch your instructor create asimple profile.

© Copyright IBM Corp. 2007 12-13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

Tips for Creating Profiles
Use the following tips to guide your profile
development:

» Look for published, existing profiles that may meet your
needs

» Determine the level of abstraction that makes the most
sense

» Identify the key terms in the
domain that you are trying to
represent in the profile

» Consider how profiles may work
with custom patterns and
transformations

14

When a project calls for anew UML profile, look for existing profiles that may meet your
needs before trying to design a new profile. Profiles may be available in internal RAS
repositories or publicly available from IBM®’ s developerWorks®, industry repositories, the
OMG, and so on.

If it becomes clear that you must build anew UML profile, consider the following general
suggestions:

» Determine the level of abstraction that makes the most sense for the types of models you
will be creating with the profile.

* |dentify the key terms in the domain that you are trying to represent in the profile. Note
that the terms captured in the profile are not the elements of the solution, but elements
used to describe the solution.

* Design the profile with the UML patterns and transformations in mind that will be used
in the models to be developed with the profile.

© Copyright IBM Corp. 2007 12-14

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

UXModeling Profile

Ry i

= (£ Profikes
= UxModeling
B
<Stereotype:> o)
1. (UMLPrimitiveTypes)
A < Extension>> +-[5] Actionkind
+- & Class_global
= t
Lo ":PI"'D| = +- A Class_input
=] <Enumeration> #- A Class_list .
+- * Clags_screen =2 global
= display #-5 input
[Eg, base_Proper B fink
{'.}. i +-[E] Linkkind %
g javabean - -
Lo = + Cperation_link
+ Operation_useraction
+ Property_display
+ Property_textfield
+ screen
+ textfield
+ useraction
15
© Copyright IBM Corp. 2007 12-15

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

= UxModeling
?!:;" (uml) o =Toaun
?:}', (UMLPrimitiveTypes)
+-[E] Actionkind
#- A~ Class_global “SCreens
«5Creens logon[success
- A Class_input 7 Logon gonl Shome £ tome
- A Class_list -
- S 0.1 | g3 «link» books ()
#- A~ Class_screen 2 global 4, «useraction»logon () if}-jelink» music()
=& display - input ‘ 1 logon[failure] .
[E§ base_Property : @I:Tnkkliind %
[Eg javabean H o
£g label % ¥ Operation_link =lpganform _
- N Operation_useraction <inputr 0.1 music
+- A Property_display fS LogonForm «SCreens
+ Property_textfield gy “textfield» username : String B Music
+-= sreen .
[Eg «textfield» password : Strin =
2 textfield B e d @, <link» logaff ()
3 useraction
16
© Copyright IBM Corp. 2007 12- 16

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

Lab 9: Create the UX Modeling Profile

» Complete the following tasks:
» Create the Workspace
» Create the Profile
» Apply the Profile to a Model
» Add a constraint to the profile
» Add the profile to a plug-in project

17

Complete Lab 9 in the student workbook.

© Copyright IBM Corp. 2007 12 - 17

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

Review

= Describe the difference between a constraint and a
property.
= How many profiles should be applied to a model?

» What languages can be used for specifying a
constraint?

18

© Copyright IBM Corp. 2007 12-18

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 12 - Creating UML Profiles

Further Information

= Rational Software Architect Help Topics
= Web resources
= Literature

19

Rational Software Architect Help Topics

» Extending Rational Software Architect Functionality > Extending the UML
metamodel by using custom UML profiles

Web Resour ces

» Simon Johnston. “UML 2.0 Profile for Software Services.” IBM
devel operWorks, http://www-
128.ibm.com/devel operworks/rational/library/05/419 soa/

» Kim Letkeman. “ Comparing and merging UML modelsin IBM Rational
Software Architect, Part 6: Parallel model development with custom
profiles.” IBM devel operWorks, http://www-
128.ibm.com/devel operworks//rational/library/05/0823_L etkeman/

» Duskco Misic. “Authoring UML profiles using Rational Software Architect
and Rational Software Modeler.” IBM devel operWorks, http://www-
128.ibm.com/devel operworks/rational/library/05/0906 _dusko/index.html#N
10452

* Bran Selic. “Unified Modeling Language version 2.0.” 1BM
devel operWorks, http://www-
128.ibm.com/devel operworks/rational/library/05/321_uml/

Literature

» James Rumbaugh et al. The Unified Modeling Language Reference Manual.
Boston: Addison Wesley, 2005.

© Copyright IBM Corp. 2007 12-19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 12 - Creating UML Profiles

20

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

12-20

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

| IBM Software Group

DEV498: Pattern Implementation Workshop with IBM

Rational Software Architect
Module 13: Model to Model Transformations

‘Rational. software

© 2006 IBM Corporation

Contents
Objectives 13-2
Transformations Review 13-5
APIsfor Transformations 13-13
Lab 10: Manually Create a Transformation (Optional) 13-29
Model to Model Mapping 13-35
Review 13-58
Further Information 13-59
© Copyright IBM Corp. 2007 13-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Model to Model Transformations

= Objectives:
» Design a model to model transformation
» Create a model to model transformation

» Describe the ways in which model mapping and the
resulting transformations can be combined

~
Jln]]

!l
]
ml
..|I|I !

]

This module takes a closer look at model transformations in Rational Software Architect.
Earlier, we saw how UML model transformations can be configured, and how the
transformations can be used to connect a UML model to EMFT JET based transformation.

© Copyright IBM Corp. 2007 13-2

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Course Outline in the Context of MDD

How do | create
model to model
transformations?

@
Jln]]

We will seethis dlide several times throughout the workshop. 1t will serve asavisual guide
to the skills you are learning, and to how they fitinto MDD .

© Copyright IBM Corp. 2007 13-3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Where Are We?

= Transformation Review

» Model to Model using Transformation API
= Model to Model using Mapping

= Connecting Model to Model and Model to Text

This section reviews some of the transformation concepts we' ve already covered.

© Copyright IBM Corp. 2007

13-4
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Review: Transformations

» Transformations create elements in a
target model (domain) based on %—O
elements from a source model]

= Often, the source domain is more
abstract than the target domain FO—0O
/

= Examples: K{ O
» Based on a use-case model, create an
analysis model containing analysis
classes, sequence diagrams, and so on,
that realize the use cases following
company standards]

» Based on the analysis model, create a
design model, containing the appropriate

design classes, that incorporates

elements of the company’s security and

persistence frameworks, and that follows ")
the company standards
» Starting with a UML model, apply |
Rational Software Architect’s standard)
“UML to EJB” transformation to create Transformations
EJB code elements 5 T=Es
© Copyright IBM Corp. 2007 13-5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Review: Model Transformation Uses

» There is flexibility in choosing transformation sources and
targets:

» Transform a model to a model of the same type.
» Transform a model across levels of abstraction.
» Transform one type of model to another.

» Extend another transformation.

Transformation
Definition

=
X E
—~ T
< y
B 9
= o

Model Transformation Tool Model

6

The following transformations are possible:

» Across models of the sametype: When adding levels of refinement, you may
transform from a PSM to another PSM. More details are added, but the type of model
remains the same.

» Acrosslevels of abstraction: Move from a PIM model to a PSM model asyou add in
details about the platform and get closer to the implementation.

e From onetype of model to another: With transformations you can transform UML to
code. Thisisthe most common transformation available in Rational Software Architect.

» Extend another transformation: In Rational Software Architect transformations can
be built on top of existing transformations.

© Copyright IBM Corp. 2007 13-6

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Planning the Transformation

= What is the source of the transformation?
» Examples: use case model, analysis model, design model, and so on
= What is the target of the transformation?
» Examples: analysis model, design model, and so on
= How does the source map to the target?
= How will the transformation work?
» Size and complexity of input
» Complexity of Transform process
» Size and complexity of output

Profile N

e\
I.J”':I P, T
i °,.-\."§:[> £ | et
-

Source /‘
?

Before writing a transformation, determine the following:

Source to Target Mapping

7

» What will be the transformation source (information provider)?
» What will be the transformation target?

» What will the transformation generate?

» What information is required to generate the target?

» Where does this information come from?

» What isthe format of the source information?

e What is the source-to-target mapping (are there any structural differences between the
source and target models)?

» Which datain the source determines the created target?

© Copyright IBM Corp. 2007 13-7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

» What are the semantics of an element?
» What does it translate to?
» Are there constraints? _
» Do | need additional data? R y-herr o
" Flags, other annotations? o myEntityCtx : EntityContext
» Which dependencies do they have? el
» Where is the information located in the © unsetEntityCantext ()
source? ® eibCreate ()
. . . . » ejbPostCreat
» Where is the information located in the e
target? @ ejbLoad ()
@ ejbPassivate ()
«entity» @ ejbRemove ()
© Employee @ ejbStore ()
o name : String ® getld ()
o employeeld : Integer @ setld ()
o socialSecurityNumber :‘: getwam‘-'(())
o . L @ sethhame
o aﬂdof;:ugg;:g Inteaer ® getSocialSecurityMNumber ()
a p i - S ' & @ setSodalSecurityNumber ()
emal : String) @ getAddress ()
o paymentMethod : String @ setaddress ()
© isPayDay () @ getEmal ()
@ getPayamount () @ setEmail ()
L gEtPavmentMEthod () @ getPaymentMethod ()
@ getBarkinfo () @ setPaymentMethod ()
8
© Copyright IBM Corp. 2007 13-8

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Planning the Transformation: Determinations

Determine:
» Transformation rules
» Source navigation
» Transformation customization

3
® M N3 Transformation Rules
Source Navigation ‘\V‘\"’ £ $
RN\

Transformation Customization

9

Other considerationsin the planning of transformations include:
» What transformation rules are required?
» What isthe source and target for each rule?
» How can the transformation be divided?
» What is the source navigation?
» How does the transformation provide each rule with its source?
 Can the transformation be customized?
* Can the transformation be configured?
» What transformation properties are needed?
 Can the transformation be extended?

© Copyright IBM Corp. 2007 13-9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Steps in Creating a Transformation
= Plan the transformation

= Model and analyze the situation
= Drive decisions based on the results
» Model parts of the transformation

» Design parts of the transformation

10

© Copyright IBM Corp. 2007 13- 10
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Where Are We?

= Transformation Review

» Model to Model using Transformation API
= Model to Model using Mapping

= Connecting Model to Model and Model to Text

11

This section describes the steps to devel op a transformation using the Transformation API.

© Copyright IBM Corp. 2007

13-11
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Rational Software Architect 7.0: Overview

[rensformeations & Peiie

UMLZ Dorrllin acagiers UMIL Patterns Erameori

=\

Transienmation Eramenwsri

UNIEZ ENMEIRENZ

EMEEMER

12

© Copyright IBM Corp. 2007 13-12
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

APIs to use in Transformations

Patterns
y = 4

Transformation
:[Lm Pattern [—

Jee” Transformation

UML Modeler
MSL

UML2
P e
EMF JDT
Rational Software Architect APIs Eclipse APIs

13

When devel oping transformations, you should be aware of the following APIs:

» Eclipse UML2: The Eclipse UML2 API isan EMF-based implementation of the UML
2.0 metamodel. This provides us with an underlying structured data model for the models
that we create within Rational Software Architect. Provides CRUD access to model
elements. Supports all UML 2 user model objects and relationships (class, interface,
package, association, dependency, generalization, and so on).

* EMF (The Eclipse M odeling Framework): Enables the Eclipse platform’s modeling
capabilities and code generation facility to interoperate with other tools and applications,
for building tools and other applications based on a structured data model.

» JDT (Java Development Tools): Java development tools, along with the Eclipse
technology, create applications that run on real-time operating systems and embedded
environments.

The following APIs are available in Rational Software Modeler and Rational Software
Architect:

* UML Modeler: A single utility class formsan API that exposes model and profile
lifecycle operations, and provides access to the modeling platform.

* MSL (Modeling Services Layer): The MSL exposes classes and interfaces to manage
Eclipse Modeling Framework (EMF) models.

© Copyright IBM Corp. 2007 13-13
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Elements of a Transformation

» Transformations contain the following elements:
» Transforms: Containers that traverse the transformation
element hierarchy
= Execute extractors, rules, and nested transforms
= Each transform gets its own parse through the source
= Responsible for passing elements to rules

» Rules: Responsible for transforming individual elements

» Extractors: Responsible for extracting the next set of items
from a given item, and passing them back to the transform(
for example, All classes in a package)

14

When you look at amodel in Rational Software Modeler or Rational Software Architect, you
see avisual representation of the model, with diagrams, packages, and classes. The visual
elements simply represent a data structure of the model elements and their relationships.
When thinking about an automated process like transformations, it is best to think of model
elements in terms of data structures. The underlying structure of the model to be transformed
iswhat matters.

A similar case would be an XML document. Y ou can open the document in Rational
Software Architect (or any other XML editor) and view a user-friendly presentation of the
underlying data. This makesit easy for you to review and understand both the data and the
structure of the document. However, if you want to work with the data—either manipulating
the dataor using XSLT to transform the content—then it is the structure of the elements and
the data that matter.

Transforms, rules, and extractors are types of classesin your transformation that will assist
you in working with the source model, and in generating the target model. A transform
contains a set of rules, extractors, and other transforms. When executing a transformation, the
transform is called and will work with its extractors and rules to read data structure for the
source model.

© Copyright IBM Corp. 2007 13- 14
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Transformation Model

Generated by
transformation
service

«artifact>
Transformation Instance «artifact» [
+ Property Values[] 0..1] Transformation Log
Provides values
for properties

Description for Ul I—\
A

Transformation Descriptor

Transformation

+ Name ~ Name Provides stereotypes
+ Identification 1 - 1D reqdProfile | Profile for transformation

+ Description 1| + Source *

+ Required Profiles + Target

+ Source type
+ Target type

+ Properties[]

~—

+ Author J/ Defines transformation, provides
+ Version - i 0
+ Properties[] rootTransform property processing (incl. Ul)
Transform
- D € pan S— . .
1| - Name Container for ordered list of
transform elements
J7 {ordered}1..*
Transform Element ‘ / Generic, ab_stract piece of a
= transformation
- Name
Extracts content from
source and execute Z} % Converts source to
transform on resulting ‘ target
objects 4 [A
Content Extractor Rule

GetFirstElement ()
GetNextElement ()
RunTransformForElement ()

J ConditionLO.,l

ExecuteUpdate()

0..1I

PostProcessing ()
ExecuteCreate ()

15

© Copyright IBM Corp. 2007 13-15

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

«Java Class» «Java Class»
(@ Activator (3 TransformationProviderl
PLUGIN_ID : String
<5 plugin : Activator @ CreateTransformation ()
& Activator () @ validateContext ()
@ start ()
@ stop ()
& getDefault
& getimageDescriptor clser
L Project Explorer &3 = 4;;'; ¥ =0
o vz 4 -
p=J cum.ll.:m.myTransfurmahun «Java Class»
+ @ Diagrams 7
-4 (© Transformation
= EE\ Em;h:.mtitransfnrmahnn & Transformation ()
cvator.java @ setuplnitialize
= {EEm;lljm.r:y‘transfnrmahnn.n'ansfnrmamn.rules B setuEFmaIlze[())
ul] ClassRule.java = addUMLRules ()
= m OperationRule. java
= m PropertyRule.java “lgew
=-H8 com.ibm.mytransformation, ransformationProvider &lgen M
* m Transformation.java
)]| Transfurmaﬁ.onproviderl‘java «Java Classe «Java Class» «Java Class»
C : ;TE S_vsDbem L‘:rﬂﬂ{ k] © OperationRule (@ ClassRule @ PropertyRule
+l lug-in Depencences
E B LTERLE & OperationRule () @ ClassRule () & PropertyRule ()
[buid properties & OperationRule () o ClassRule () o PropertyRule ()
ﬁ(DEV498v7 Sample Config.launch 4. createTarget () 42 createTarget() <, «Overrides createTarget()
plugin. xml
16

The dlide shows a simple example of atransformation created using the Plug-in With
Transformation plug-in project template. In the diagram, you can see the classes that were
described in the abstract on the previous slide: Tr ansf or nat i onPr ovi der,

Transf or mat i on, and Rul e. The other classes are part of the transformation engine or

represent context elements outside the plug-in project.

© Copyright IBM Corp. 2007 13- 16

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Steps to Write a Model to Model Transformation

To write a model to model transformation in Rational
Software Architect:

1.Create a transformation plug-in project
2.Specify type of source and target model

3. Specify associated profiles

4.Add rules to the transformation
5.Implement transformation specific behavior
6. Test the transformation

17

This slide shows the steps in creating a profile from scratch. Those steps are discussed on the
following dlides.

There will aso be cases in which you will reuse the source for an existing transformation (for
example some transformations ship in the sample gallery) or extend an existing
transformation.

© Copyright IBM Corp. 2007 13- 17

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 13 - M2M Transformations

Step 1: Create a Transformation Plug-in Project

= Click File > New >
Generic
Transformation
Project

» Enter a project name

» Select Plug-in with
Transformation from
the available list of
templates

' New Plug-in Project

X

Templates

Select one of the available templates to generate a fully-functioning

plug-in.

[Create a plug-in using one of the templates

Available Templates:

" Custom plug-in wizard

| Figure definitions converter

i Hello, World

#%Plug-in with a incremental project builc
#%Plug-in with a multi-page editor

A% Plug-in with an editor

@ Plug-in with a popup menu
“%Plug-in with a property page
%?"Plug-m with a sub-element counter
A Plug-in with a view

i Plug-in with Patterns

@ Plug-in with sample help content

Plug-in with Transformation

Il Plug-in with Transformation Mapping
< >

This wizard creates a standard plug-in
directory structure with the following:

+ Transformation Provider. A
transformation provider is the
mechanism used to define new
transfarmations.

Extensions Used

.
com.ibm.xtools.transfarm.core.transforr

=

<Bock || e ||

Finish] [Cancel

18

When creating a plug-in project, the Create Project Wizard includes a Plug-in with
Transformation plug-in template that will produce the initial structure of atransformation to
simplify the authoring effort. This structure includes directories for the plug-in class, rules,

and transformation providers.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13-18

Pattern Implementation Workshop with IBM Rational Software Architect

Step 2: Specify Source and Target Model Type

i:"} New Transformation Authering Project Creation

| mew Transformation

Il Create a new transformation and associated propertes

X
=/~ « source and Target models can be

selected from several types of

Module 13 - M2M Transformations

n MyTransformation. transformation d t

Hame Transformaton a a

Class Transformaton

Source Model Type a2 [

Target Model Type resource [:

Group Fath MyTransformation

Verskn Lo.0 Auther

| Select Source MadgTypes ﬁ

Description Key Words I]
[Cluse the raw data from the selection

liam Tips Hama Description

Reverse Transformation I L uML2Nstation Data object cormesponds to 0 UML object disglyed on a diagrarn.
[Notetion Data object comesponds to an object displayed on o disgram.

[Supports Sdent Mode [umz Data object comesponds to o UMLZ semartic elemert.

e L Eobject Dot object cormespands to any EMF Ecore based object
oparten [project Dt object corresponds to an Elipse Project
o iame valse | metaType | Readony st e bote :';;—t e

L resource Dot object comespands o any Eckpse Mesource (project, folder or file).
[JovaSourceFrogment Data object cormespands to o JOT Source fragment.

. [string Data object comesponds b java.lang. String

L] U default UML2 Transformation framework

| oK Cancel
i [<ma nea> |[_mnish][comcel |

19

The next page of the Wizard allows you to specify basic transformation properties.

Source and target models allow you choose a category that will be used as afilter for the
types of projects that can be used as either a Source Model or a Target Model. The category
can be of one of the following types:

 UML2: Redtrictsthe model to only those that contain UML2 elements.

* UML2 Notation: Restrictsthe model to only those that contain representations of
UML2 elements based on the UML2 Notation API.

» Resource: Restricts the model to known Rational Software Architect project types.
» Raw: Nofiltering is applied.

© Copyright IBM Corp. 2007 13-19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Step 3: Specify Additional Options
S p e C Ify Oth e r O ptl O n S |'- +' Mew Transformation Authoring Project Creation K{
associated with the [t et b
tran Sfo rm atl O n o MyTransformation.transformation
» Profiles from which rules of the —
transformation look for stereotypes | ™ . — 0
i . Target Model Type resource E
» Properties that supply additional rovp ot iy Trasfomaton
configuration options to the 100 | At
transformation sscrgtin ey wiords
Frofiles
Feverse Transformaton ID
» Support for silent running and Olsvpports sbnt e
reverse transformation _
o] Hame Valse MtAT ype and()l’.ﬁ- E'
l pad Net > l Finish | cancel J

Specify any profiles associated with the transformation in the Profiles section of the New
Transformation page. Rules that you create in the transformation will ook for stereotypes

from the profiles listed here when the transformation runs and make the appropriate changes
in the target model.

© Copyright IBM Corp. 2007 13- 20

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Step 4. Add Rules to the Transformation

= Create rules for any UML element type
= Name each rule
» A class is created for each rule based on the rule name

e
|

- New Rule Definitions .—‘J“ -
F |
T Create rule definitions for the transformation
UML Element ...] Name Class Package
Class MyTransfor... ClassRule ClassRule

mytransformatic

6] Finish 1 [Cancel

21

Conversion rules can be created based on any UML model element. Rules in a transformation
convert one type of source element into one or more target elements. In addition to
conversion rules, atransformation contains a mechanism to traverse the elements of the
source model and to selectively run the appropriate rules based on the element type and rule-
specific criteria. For example, agiven rule might only run if the type of model element isa
UML class that has a specific stereotype applied to it.

© Copyright IBM Corp. 2007 13-21

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Step 5: Implement Transformation Specific Behavior

» Implement Transformation Specific Behavior using
hotspots

» Hotspots are places in the transformation code where the

transformation author can customize the transformation’s
behavior

= Numerous hotspots are available in the API

[£ Package Explorer 22 Plugrins = B || 45 MyTransformation

5| B2 outine 52 =g
public Cbject createTarget(ITransformContext 14| | JEA -1 ¥ e 5 v
UNLZFackage unlZ = UMLZPackage.eINSTANCE:

-1 Acme Lab 8.1 Tnput

5 MyTransformation. transformati
- Tg‘dMyTransFormat\on Class wyClass = (Class) ruleContext.getion o A;: impart declarations
=22 sre 3tring myClassName = myClass.getMame () ; =@ CassRule
=3 MyTransformation Package wyFackage = (Package) ruleContext et ClassRule()
- [J] MyTransformationPlugin.java Model wyModel = null; @ © ClassRule(String, String)
=1 H MyTransformation.transformation.rules Object to = ruleContext.getTargetContaine)

@ . createTarget(ITransformc
= ClassRule.java

ClassRule
& ClassRule()
& Classhule(String, String)

Interface wylnterface = null:
Class wylmplementationClass = null;
Realization realization = null;

String myInterfacelName = "I™ + myClassHam
@. createTarget(ITransformConkext) String myTmplementationClassNeme = myClas:
+ OperationRule.java S ———— nuJ_L;| @
+ 3 MyTransformation bransformationPravider ¢ 5 ¢ 5
31w Bluoin Denendenc
22 E

Working in the PDE, add code to your rules using the APIs made available in Rational
Software Architect, which we have already discussed. The framework creates and positions
methods in the code called hotspots. Hotspots are the significant non-final, public, or
protected methods that can be overridden to alter framework or transformation behavior in

some way at run-time. Thecr eat eTar get () hotspot is discussed further on the following
side.

© Copyright IBM Corp. 2007 13- 22

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

The createTarget Method

= createTarget:
» Is a key method in transformation rules

» Creates a new target object based on source

public class O assRul e extends AbstractRule {
public dassRule() {

super () ;
}

public dassRule(String id, String nane) {
super (i d, nane);
}

public Object createTarget (| TransfornContext context) {
NanedEl enent el enent = (NanedEl enent) context. get Source();

Systemout.println("dass: " + elenent.getNanme());
return null;

23

When coding the rules for the transformation, the cr eat eTar get hotspot is of central
importance. Thisiswhere information from the source model is converted into information
for the target model. The cr eat eTar get method creates a new element if it does not exist.
In cases where the element already exists you would not have to return anything.

© Copyright IBM Corp. 2007 13- 23

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Accessing Profile Data: Source Code

protected void jd=s) RN (Class aClass) |

out.println("Class: " + aClass.getQualifiedi=me ()]

Stereotype galStatus = aClass.getldpplied3terectype ("QA: 1 QAStatus") ;
if (gaStatus !'= null) {

Enumerationliteral approvalitatus =

Stereotype retest = allass.getlpplied3tereoctype ("0L::Retest™);

out,.println(" QiStatus.ipprover: " + aClass.getValue (gqaltatus, "Lpprover™));
out,.println(" QiStatus.Comments: " + aClass.getValue (gqaltatus, "Comments"));
out,.println(" Qi%tatus.Test: " + aClass.getValue(galStatus, "TestRating™));

[Enumerationliteral)aClass.getValue (gaitatus, "ApprovalStatus™):;

out.println(" Qi3tatus.ipprovalitatus: " + approvalStatus.getllame ()]
¥
else !

out.println(" QA3tatus not applied™):

if (retest !'= null) {

out.println(" Retest.Reason: " + aClass.getValue(retest, "Reason™)):
¥
else !

out.println(" Retest not applied™):

24

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13- 24

Pattern Implementation Workshop with IBM Rational Software Architect

Module 13 - M2M Transformations
Accessing Profile Data: Get QAStatus Stereotype

protected void |fbaAfNlShRB=NEES (Class aClassa) |
out.println("Class:

" + aClass.getQualifiedilamei]] ;

Stereotype dgaStatus = aClass.getippliedSterectype ("OL: 1QAStatus™)
if (gasStatus '= nuall) |
out.println(™

QASCatus. Approver:

" + aClass.getValue (gastatus,

Determine if our stereotype has been applied

TApprover™))

Element.getAppliedStereotype(“Profile::Stereotype”)
» returns the stereotype specified if it is applied

» Specified with “<ProfileName>::<StereotypeName>"
= Additional methods

» apply(), unapply(), getAppliedStereotypes(), isApplied(),
isRequired()

25

© Copyright IBM Corp. 2007

13-25
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Accessing Profile Data: Getting QAStatus Properties

if (gaStatus '= null) {
out.println(™ QAStatus.ipprover: " + aClass.getWalue (gaStatus, "Approver™)):
out.println(™ QAd3catus.Comments: "™ + aClass.getValue (galtatus, "Comtments")):
out.println(® QiStatus.Test: " 4+ aClass.getWValue (galtatus, "TestRating™)):

Enumerationliteral approvalitatus =
[EnumerationlLiteral)aClass.getValue (gaftatus, "ipprovalitatus'™):

out.println(™ QAStatus.ipprovalitatus: " + approvalitatus.getNawe ())
i
else |

out.println(™ QL3tatus not applied™):;

+

Property values can be explicitly accessed
= <Element>.getValue(<Stereotype>, “<PropertyName>")
» Returns an object for the value of the property
» Can print primitive types: String, Integer, Boolean
» Enumerations need special treatment (EnumerationLiteral)

= EnumerationLiteral is a NamedElement
» getName() returns name of literal

26

© Copyright IBM Corp. 2007 13- 26
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Step 6: Test the Transformation

[fs)

= Create source
and target models
to test the
transformation

= Create a configuration
of the transformation
using the wizard

= The configuration is
stored in a .tc file

EE Outline %

g

= & TransformationTest
+ (22 Diagrams
5
== Models

SourceModel
Target Madel
E% FirstConfiguration.tc
E% SecondConfiguration.tc

Inheritance Ex...

27

= Run the transformation in a runtime workbench

) New Transformation Configuration

It

Name and Transformation

Specify the file and transformation information.

Name: mySpecialConfiguratoin

Forwsard transformation:
Transformation (MyTransformation.transformation)
@ (= Data Model Transformations
#-[= Generalize_Classes
= IBM Rational Transformations
== MyTransformation
[l Transformation
= OperationMapping
w (= Utilities

Configuration file destination:

[TransformationTest

Uf

@ Next =] l

Finish

J

Cancel

From the PDE, launch a runtime instance of the workbench that will contain your
transformation plug-in. From the runtime instance of the workbench, test your transformation

by applying it to a model.

Y ou can launch a runtime instance of the developer workbench to test the transformation.
The developer and runtime instances are interactive. Any breakpoints or trace messages that
you included in the transformation code are reported to the developer workbench.

Note: You cannot make changes to the transformation code while the runtime session is

running.
To launch the runtime workbench:

1. Click Window > Open Per spective > Other to open the Select Perspective window.
2.Click Debug and click OK. The Debug perspective opens.

3.Click Run > Debug. The Debug window opens.

4.1n the Configurationslist, click Run-time Workbench and click New.

5. Type a configuration name in the Name field and select the Clear wor kspace data
befor e launching check box to ensure that the latest changes to your pattern are used.

6. Click Debug to launch a new instance of the workbench.
Note: After you set up a debug configuration, you can start a debug session by clicking

the debug icon.

The Rational Software Delivery Platform splash screen appears while the run-time instance is

loading.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 13 - M2M Transformations

13- 27

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Demo: Create a Transformation
The instructor will now show you how to create a generic
transformation

» Create a new plug-in project

» Add rules to the transformation

» Explore the packages and classes generated

28

Watch your instructor demonstrate how to create a simple transformation.

© Copyright IBM Corp. 2007 13- 28

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Lab 10: Manually Create a Transformation (Optional)

= Given:
» Code fragments

= Complete the following tasks:
» Create a New Transformation Project
» Add Rules to the Transformation
» Create a Test Project
» Run the Transformation
» Add a New Rule

29

Complete Lab 10 in the student workbook.

© Copyright IBM Corp. 2007 13- 29
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Where Are We?

» Transformation Review
» Model to Model using Transformation API
= Model to Model using Mapping
= Connecting Model to Model
and Model to Text

30

This section describes the steps to develop a Model to Model transformation using Mapping.
Note that we will be using the same tooling as when we connected a UML model to an
EMFT JET based transformation. Assuch, we'll take a more in-depth look at the Mapping
options and features.

© Copyright IBM Corp. 2007 13- 30

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Creating a complete solution

A

1. Jet Authoring

2. Model-to-model authoring

31

Using Rational Software Architect transformations, you can automate how you create and
deliver software solutions. As shown on this slide, you are able to leverage Exemplar
Authoring to quickly and easily automate how text based artifacts are created. In addition,
you can leverage UML and Domain Specific Languages (DSL) using UML Profiles and
EMF/GMF to create a front-end user representation. The Model mapping discussed earlier

and again here can assist you in moving between levels of abstraction, either between models
or from models to text.

© Copyright IBM Corp. 2007 13-31
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Ways to Drive Architecture: Classic MDD

Create the use-case model

Trail of
traceability
relationships
left by patterns
and
transformations

Create the analysis model

Create the design model

Complete the
implementation using
UML visualization

© Copyright IBM Corp. 2007 13-32

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Review: Mapping Models

Mapping Models Contain Mapping Declarations

Package2EPackage
= [Package «EPackage» > =l [[» EPackage

Class2EClass
= [Class «EClass* > = [[» EClass

» Mapping models are Ecore models
= Mapping models contain references to the Ecore
models that are being mapped, for example:
» UML.ecore (input)
» UML.ecore (output)

» Mapping models are persisted like other Ecore
Models; they are serialized as XML files

33

© Copyright IBM Corp. 2007 13- 33

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Review: Mapping Declarations

Input Object Output Object

=I [¥] Package «EPackages

Package2EPackage
> =| [[» EPackage

eAnnotations EAnnotation [] ednnotations EAnnotation []
ownedComment Comment [] name EString

name String nsURI EString
wisibility VisibilityKind nsPrefix EString
dientDependency Dependency [] eClassifiers EClassifier []

nameExpression StringExpression eSubpackages EPackage []
elementImport ElementImport []

packageImport PackageImport []

ounecfuie el = Mapping Declarations specify how to
owningTemplateParameter TemplateParameter t d t n Out ut Obect |Ven
templateParameter TemplateParameter Cre,a e or up ae a p J g
templateBinding TemplateBinding [] an InDUt ObJeCt

ownedTemplateSignature
packageMerge
packagedElement
profileApplication

TemplateSignature
PackageMerge []
PackageableElement []
ProfileApplication []

packageName EString
nsPrefix EString
nsURI EString
basePackage EString
prefix EString

= Mapping Declarations are named, for
example, Package2EPackage

34

© Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13- 34

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Model to Model Mapping

= Let's take a more in-depth look at model mapping,
including:

» Custom mappings

» Submap refinements
= Condition
= Input Filter
= OQutput Filter
= Extractors

» Move refinements
= Condition

» Integration with Fuse

35

© Copyright IBM Corp. 2007 13-35

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Input Object Output Object
=l [Package «EPackage» =l [E» EPackage
eAnnotations EAnnotation [] eAnnotations EAnnotation []
ownedComment Comment [] name EString
name String nsURT EString
wisibility VisibilityKind nsPrefix EString
dientDependency Dependency [] eClassifiers EClassifier []
e
e e = The transformation source code
owningTemplateParameter TemplateParameter generated for Submap |mp|ements a
templateParameter TemplateParameter H
temEIateB\ndmg TemEIateBlndlng[] RUIe that Ca"S anOther mapplng
onrediemashsanehe ;e”’k"'a‘jls‘g”aﬁe » Can be in a different mapping model
packageMerge 'ackageMerge
packagecCiment Packageshefenen | = The input and output attributes must be
profieApplication ProfileApplication [] -
e = compatible EClasses
robrel = » Both are multi-valued or neither is
o E = Semantics are like method invocation
» Types of actual parameters must be
compatible with formal parameters
» Can be recursive
36
© Copyright IBM Corp. 2007 13- 36

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Submap Mappings

Input Object Qutput Object

=| [Package «EPackage* =l [E» EPackage
efAnnotations EAnnotation [] eAnnotations EAnnotation []
ownedComment Comment [] name EString
name String nsURI EString
) nePrefix EString
actual packagedElement PackageableElement [] eClassifiers EClassifier [] aCtual
profileApplication ProfileApplication []
P S eSubpackages EPackage []
Lo = formal must be directly
nsURI EString .
e = assignable to actual
prefix EString
eClassifiers[o] =
map((Class)packagedElement[i
actual must be castable v p((P g U
to formal

Referenced Mapping Declaration

formal formal

=l [¥ Class «EClass» = [EClass
efAnnotations EAnnotation [] eAnnotations EAnnotation []
= | R
ownedComment Comment [] Move e EString
name String -
instanceClassMame EString
visibility Visibilitykind
abstract EBoolean
37
© Copyright IBM Corp. 2007 13- 37

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 13 - M2M Transformations

Submap Mapping Example

Input Object (UML)

Output Object (Ecore) Before

== Example Smeap |nVOC<':1tIOI’] = # Exam
- 1 «ePackages Package 1
E «eClass» Class1
Q «eClass» Class2
=
L Main
. (UMLPrimitiveTypes)

= % Models = #] platform:/resource/Model to Model Example/Example.ecore

Output Object (Ecore) After

Nested Objects
Transformed

Submap Invocation Pseudo-code
elements = Packagel_src.getPackagedElement();
for (i=0; i<elements.size; i++)
If (elementsi] instanceof uml.Class) {
uml.Class umiClass = (uml.Class)elements]i];

38

=l #]| platform:/resource/Model to Model Example/Example.ecore

B class2

/I filter input attribute

/I adapt input attribute
EClass ecoreClass = Class2EClass(umiClass); // call referenced mapping
Packagel tgt.getEClassifiers().add(ecoreClass); // add to output attribute

© Copyright IBM Corp. 2007

13- 38

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Custom Mappings

Input Object Qutput Object

=) [Package «EPackage= = [L» EPackage

eAnnotations EAnnotation [] eAnnotations EAnnotation []
ownedComment Comment [] name EString
s Sty nSURT EString
visibility Visibilitykind -
dientDependency Dependency [] LR EString

- - eClassifiers EClassifier []
nameExpression StringExpression
elementimport ElementImport [] eSubpackages EPackage []

packageImport PackageImport []

vl Coravant] * The transformation source code
owningTemplateFarameter TemplateParameter g e n e rated fo r C u Sto m

templateParameter TemplateParameter

templateBinding TemplateBinding [] I m p I e m e ntS a R u | e th at Wraps

ownedTemplateSignature TemplateSignature

pacageerse Peckageherg] the custom Java code provided

packagedElement PackageableElement [] H

profileApplication ProfileApplication [] by the tranSformatlon aUthor
packageName EString

nsPrefix EString

nsURT EString

e oo » Custom Mappings must have:
» One or more output attributes
» Zero or more input attributes
_» Zero or one input objects

© Copyright IBM Corp. 2007 13- 39

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Custom Mappings: Java Source Code Snippets

= Java source code snippets for Custom
mappings can be added directly into the
custom mapping specification in the
mapping file

I/ use specified URI if present and default to package name if not present

String uri = (String) UM.Transfor mAut horingUt il . get St er eot ypeVal ue
(Package_src, "Ecore::EPackage::nsUR");

EPackage_t gt.set NsURI (uri!=nul | &uri .| engt h()>0?uri: Package_src. get Nane());
» Code snippets are copied as-is into the generated
transformation source code
= Simple convention for naming variables
» Input objects &attributes: <name>_src
» Output objects &attributes: <name>_tgt

» Duplicate names yield variable names like <name>_src2,
etc.

» Code assistance is provided in the Mapping Edito

40

an]] =
1l
]

© Copyright IBM Corp. 2007 13- 40
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Custom Mappings — Java Classes

» Java classes that implement
com.ibm.xtools.transform.authoring.RuleExtension
can supply the Custom mapping processing

package um _to_ecore_exanpl e. transforns;
inport org.eclipse.enf.ecore. EQbject;
inport org.eclipse.enf.ecore. EPackage;
inport org.eclipse.uni 2. unl. Package;
i mport com i bm xt ool s. transform aut hori ng. Rul eExt ensi on;
inport com i bm xtool s.transform aut hori ng. um 2. UML.Tr ansf or mAut hori ngUti | ;
public class SetNsUri inplenents Rul eExtension {
public void execute(ECbj ect source, Ebject target) {
Package um Package = (Package)source;
EPackage ecorePackage = (EPackage)target;
String uri = (String) UM.TransformAut hori ngltil . get St er eot ypeVal ue
(uni Package, "Ecore::EPackage::nsURI"); //$NON- NLS- 1$
/1 use specified URI if present and default to package nane if not present

ecor ePackage. set NsURI (uri ! =nul | &uri . | engt h()>0?uri : uni Package. get Name()) ;
}

» Recommended over Java snippets in mapping file if:

» Same (or very similar) processing can be used by multiple mappings
(Avoids reuse via copy and paste)

» You want the ability to change custom processing without changing
mapping file

41

© Copyright IBM Corp. 2007 13-41

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Custom Mapping Example

Input Object (UML) Output Object (Ecore)
= Models = #] platform: /resource/Model to Model Example [Example. ecore
= Example = ## Example
+ 3 «ePackage= Packagel + - # Packagel
?;:, (UMLPrimitiveTypes)
Input Attribute Output Attribute

=] Properties &3 —
| Properties 2

[£ <Package> «ePackage» Example::Packagel sy Property Value
Frofiles Keywords: EFactory Instance 1 Packagel
Stereatypes Marne 1= Packagel
Documentation Applied Stereotypes: C u Stom Mz Prefix =

- Ms URI 1= m2mExample
Constraints Stereotype | Profie | Required
Advanced ePackage Ecore False

= The Custom mapping checks the

— input object’s Stereotype attribute
NsURI to see if it has been

specified and, if available, assigns

Stereotype Properties:

Property Value

e that value to the NsURI attribute of
basepadage the output object. If it is not , the
= manEsonple mapping available uses the name
padageme attribute value of the input object

for the assignment.

42

© Copyright IBM Corp. 2007 13-42

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Mapping Refinements

» Refinements are optional customizations of mapping
behavior

» Implementation choices are similar to that used for Custom
mappings
= Java source code snippets
= Java classes

= Refinement applicable to Move mappings
» Condition

= Refinements applicable to Submap mappings
» Condition
» Input Filter
» Output Filter
» Custom Extractor

43

© Copyright IBM Corp. 2007 13- 43

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Mapping Refinements: Condition

= Serves as guard on Move or Submap mapping
execution

» Execute mapping iff condition evaluates to true

= Java source code snippet implementation
» Variable <name>_src designates the input object
» Snippet must return a boolean value

» Java class implementation
» Class must extend
org.eclipse.emf.query.conditions.Condition
» One method needs to be implemented

» boolean isSatisfied(Object object)
— The parameter object is set to the input object

44

© Copyright IBM Corp. 2007 13- 44

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 13 - M2M Transformations

Condition Refinement Example

Input Object (UML)

= % Models
= Example

Conditional

Qutput Object (Ecore)

-0 «ePackage» Packagel

= # Banple
Q «eClass» Class1

) = #]| platform: fresource/Model to Model Example /Example.ecore
Submap Invocation >

Q «eClass» Class2
™

L Main
B2 (UMLPrimitveTypes)

Nested Objects
Transformed iff
Condition is satisfied

& Padage] |

Qutput Object (Ecore) After

=8 Example

- Packagel
B class1
H class2

Java code snippet for condition

= #| platform: fresource /Model to Model ExampleExample.ecore

I/ only process classes for public packages
return Package_src.getVisibility().equals

(org.eclipse.um 2. um . VisibilityKind. PUBLI C LI TERAL);

45

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13- 45

Pattern Implementation Workshop with IBM Rational Software Architect

Mapping Refinements: Input Filter

Module 13 - M2M Transformations

For each value in the collection of the input object’s attribute,
designated in the submap, decide if that value should be
transformed

» Filter is called once for each value in the collection
» Transform input value iff filter evaluates to true

Java source code snippet implementation

collection of the input object’s attribute

» Variable <name>_src designates the current value from the
» Snippet must return a boolean value

Java class implementation

» Class must extend org.eclipse.emf.query.conditions.Condition
» One method needs to be implemented

boolean isSatisfied(Object object)

The parameter object is set to the current value from the collection of the input
object’s attribute

46

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13- 46

Pattern Implementation Workshop with IBM Rational Software Architect

Module 13 - M2M Transformations

Input Filter Refinement Example

- B sePackages Packagel > 8 Packagel |
Q «eClass» Class1
Q «eClass» Class2
™
L Main
B2 (UMLPrimitveTypes)

Transform of each

Input Object (UML) Output Object (Ecore)
= % Models . =l #] platform: fresource/Model to Model Example Example.ecore
5 3 Example Submap Invocation = # ek _

Qutput Object (Ecore) After

nested object decided separately

Java class for filter

5] Class1
H classz

= #] platform: fresource Model to Model Example /Example.ecore

// only include non-abstract classes
package uni _to_ecore_exanpl e. transf or ns;
inmport org.eclipse.enf.query.conditions.Condition;
inport org.eclipse.um 2.um . d ass;
public class |sNotAbstractd ass extends Condition {
public bool ean isSatisfied(Object object) {
return (object instanceof d ass)?
1 ((C ass)object).isAbstract()
:fal se;

47

© Copyright IBM Corp. 2007

13- 47

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Mapping Refinements: Output Filter

= Applicable only if the collection from the output object’s attribute,
that is designated by the submap, is not by containment

» Non-containment implies that there could be duplicates in the
collection

= For each value in the collection of the output object’s attribute
decide if that value should be transformed
» Filter is called once for each value in the collection
» Transform output value iff filter evaluates to true
= Java source code snippet implementation

» Variable <name>_tgt designates the current value from the collection
of the output object’s attribute

» Snippet must return a boolean value
= Java class implementation
» Class must extend org.eclipse.emf.query.conditions.Condition

» One method needs to be implemented
= boolean isSatisfied(Object object)

— The parameter object is set to the current value from the collection of the output
object’s attribute

48 =

© Copyright IBM Corp. 2007 13- 48

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Mapping Refinements: Custom Extractor

= Overrides the default extractor

» Default extractor returns the collection from the input object’s
attribute that is designated by the submap

» Override should return the collection of objects to be used
when invoking mapping declaration designated in submap

» Java source code snippet implementation
» Variable <name>_src designates the current input object
» Snippet must return a java.util.Collection

= Java class implementation

» Class must implement
com.ibm.xtools.transform.authoring.ExtractorExtension
= One method needs to be implemented
— Collection execute(EObject source)
— The parameter object is4gset to the current input object

© Copyright IBM Corp. 2007 13- 49

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Custom Extractor Refinement Example

Input Object (UML) Output Object (Ecore)
= (22 Models . = #] platform: /resourceModel to Model Example Example ecore
o e - Submap Invocation - & samwe e
5B «sPackages Package1 > # Package

Q «eClass» Class1
Q «eClass» Class2
=-[3 «ePackages Package2
= <eClass» Class3
o
| Main

?{; (UMLPrimitiveTypes)

Transformed using derived collection
Output Object (Ecore) After

=l #]| platform:/resource/Model to Model Example/Example.ecore

H dasst
B Class2
H clase3

Java class for custom extractor

package um _to_ecore_exanpl e. transf or ns;
+inmport java.util.Collection;...
public class Addd assesFronNest edPackages i npl enents Extract or Ext ension {
public Collection execute(EQject source) {
Package pkg = (Package) source;
Col l ection ¢ = new Basi cELi st();
I/ recursively add all classes in this package and its nested packages
for (lterator i=pkg.getPackagedEl enents().iterator(); i.hasNext();) {
Gbj ect obj = i.next();
if (obj instanceof O ass) c.add(obj);
else if (obj instanceof Package) c.addAll (execute((Package)obj));

return c;}}

50

© Copyright IBM Corp. 2007 13-50
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Typical Extension: Specify Model Merge Behavior

» The authored transformation outputs a model
» The model need not be complete

» Transformation users will configure the

transformation to place its output in a designated
target container

» The target container may or may not be empty when
transformation runs

» Configure Rational Software Architect Model Fuse to
merge the new output with existing contents

<ext ensi on poi nt="org. eclipse.core.runtine.content Types">
<file-association

cont ent -type="com i bm xt ool s. conpar erner ge. enf . enf Cont ent Type"
file-extensions="input"/>
</ ext ensi on>

A

» Extension can be added to metamodel project or
mapping project

» Generic EMF merge is a good default
» Specify the model type defined in the metamodel project

© Copyright IBM Corp. 2007 13-51
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Lab 11: Create a Model to Model Transformation

= Given:
» Code fragments

= Complete the following tasks:
» Create a New Transformation with Mapping Project
» Create Transformation Mappings
» Generate the Transformation Code
» Create a Test Project
» Run the Transformation
» Add a New Mapping

52

Complete Lab 11 in the student workbook.

© Copyright IBM Corp. 2007 13-52
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 13 - M2M Transformations

Where Are We?

» Transformation Review
» Model to Model using Transformation API
= Model to Model using Mapping

= Connecting Model to Model
and Model to Text

53

This section describes how the different models and transformations can be used in

conjunction.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13- 53

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Review: Activity Flow of a Typical Transformation

CoUser Visible Transformation

Ul Model

Internal Model
Front-end Transformation

Back-end Transformation
Target Domain

54

Thetop-level activity represents the transformation as seen by the user.

© Copyright IBM Corp. 2007 13-54

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

JET Input Metamodel " Exemplar Project
(XSD/Ecore)
N
metamodel of JET?
Authoring
Termpiate User JET2
emplate Lser Template
Instantiation
instance of
v
Sample Input Model JET Templates .- -Sample-Project
(XML) ———— >
Green = Authoring Time Flow Red = Apply Time Flow
‘/E‘] 55
© Copyright IBM Corp. 2007 13-55

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 13 - M2M Transformations

Simplified Model to Model Transformations

Source Model

Iransformations

instance of

metamodel of

i

Source Metamodel

Transformation

=

Run
Transformations

Mapper

a»la

g TargetModel

instance of

metamodel of

v

Green = Authoring Time Flow

Mapping §pe€ification

Red = Apply Time Flow

56

Target Metamodel

© Copyright IBM Corp. 2007

13- 56

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Model to Model and Model to Text Transformation Chain

") = "Sample Input Model

Source Model —— Transformations {typically transient)
: g Run ut
"" 2 Transformations
‘$". .
.
instance of . ** X .
User Initiates Apply Time Flow Instantiate JET2
metamodel of by Running Transformations Templates
| i) m—
3 v
Source-Metamodel » Mapping-Specification
pping-Sp pr—) ~ JET Templates
Transformation A '
Mapper =

v

Exemplar Project JET Input Metamodel Sample-Project

>

»

JET2 Authoring

Green & Blue = Authoring Time Flow Red = Apply Time Flow

‘fh‘] 57
L

© Copyright IBM Corp. 2007 13-57
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Review

= What are mapping refinements?

= What refinements are applicable to Submap
mappings?

= What naming conventions are used when coding a
custom mapping?

58

© Copyright IBM Corp. 2007 13-58

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 13 - M2M Transformations

Further Information

= Rational Software Architect Help
= \Web Resources
= | jterature

59

Rational Software Architect Help Topics
* IBM Rationa Software Modeler AP
» JET Tutorial Part 1 (Introduction to JET)
» JET Tutorial Part 2 (Write Code that Writes Code)

* Introduction to Transformation Authoring (from the Tutorials Gallery, an
asset part of the devel operWorks respository)

Web Resources

* APl Documentation on the Eclipse UML2 component:
http://downl oad.eclipse.org/tool s'uml 2/javadoc/

* “Getting Started with UML2,”
http://dev.eclipse.org/viewcvs/indextool s.cgi/%7Echeckout%7E/uml 2-
home/docsarticles/Getting_Started with UML 2/article.html

» Alan Brown, “An introduction to Model Driven Architecture Part I: MDA
and Today's Systems.” http://www-
128.ibm.com/devel operworks/rational/library/3100.html

« Alan Brown, “ An Introduction to Model-Driven Architecture Part 111:
How MDA affects the iterative development process’ http://www-
128.ibm.com/devel operworks/rational/library/apr05/brown/

Literature

» Frankel, David S. Model-Driven Architecture: Applying MDA to
Enterprise Computing. Indianapolis, IN: Wiley, 2003.

© Copyright IBM Corp. 2007 13-59

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 13 - M2M Transformations

60

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

13-60

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

| IBM Software Group

DEV498: Pattern Implementation Workshop with IBM

Rational Software Architect
Module 14: Creating UML Patterns in Rational Software
Architect

R
‘Rational. saftware

© 2006 IBM Corporation

Contents
Objectives 14-2
Review: Patterns 14-5
Applying aUML Pattern 14-9
Creating a UML Pattern in Rational Software Architect 14-19
Lab 12: Create the Master Detail Pattern 14-37
Review 14-38
Further Information 14-39
© Copyright IBM Corp. 2007 14 -1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Creating UML Patterns with Rational Software Architect

= Objectives:
» Describe the role of UML patterns in designing applications

» Explain the process for authoring a UML pattern in Rational
Software Architect

» Create a simple UML pattern in Rational Software Architect

N
Jln]]
1
|

This module introduces UML pattern development in Rational Software Architect, including
how to design and author UML patterns.

© Copyright IBM Corp. 2007 14 -2

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Course Outline in the Context of MDD

Modules 14 & 15:
How do | use UML
patterns to populate a
model according to
best practices?

We will seethis dlide several times throughout the workshop. 1t will serve asavisual guide
to the skills you are learning, and to how they fit into MDD .

© Copyright IBM Corp. 2007

14 -3
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Where Are We?

= |ntroduction to UML Patterns
= UML Pattern Design

= Creating a UML Pattern in Rational Software Architect

N
Jln]]
1
|
..|I|

This section defines and introduces UML patterns as away to reuse and share software
design solutions.

© Copyright IBM Corp. 2007 14 -4

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Review: Patterns

= A pattern is a solution template for a recurring
problem that has proven useful in a given context.

» Can be used in all phases of development

= A pattern specification has:
» A problem it solves
» A solution for the problem
» A strategy for applying the pattern in its context

» Consequences, advantages, and disadvantages of
implementing the solution.

o
Jln]]
1
|
..|I|

Patterns provide a standard way of capturing and naming solutions, programming idioms, and
best practices. As more devel opers research and understand patterns, patterns become a
standard way for practitioners to communicate and share what they know with others.

For the designer, a set of carefully selected patterns, customized for a specific organization or
project, can reduce time spent on repetitive tasks and help standardize approaches to specific
design problems across projects and applications.

Pattern documentation is important. The pattern user does not need to know how to design a
pattern, but good pattern documentation is needed for the pattern applier to locate, select, and
apply a pattern. The user needs to know what problem the pattern solves, how it is solved,
and the consequences of applying it.

© Copyright IBM Corp. 2007 14 -5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

UML Patterns vs. Transformations

= Model-to-model in-situ substitutions with a Rational
Software Architect UML Pattern:

» If you have a model where in-place model changes are desired

» An example is applying the singleton design pattern to a class
» Existing visual pattern authoring feature

= Model-to-model rule-based substitutions with a Rational
Software Architect Transformation:

» If you need to create a new model based on the content of an
existing model

» An example is the UML to Java transformation

» Model-to-text exemplar-based templates with a JET2
Template:

» If you need to generate and manipulate textual artifacts based on
model state

®
Jln]]
1
|

© Copyright IBM Corp. 2007 14 -6

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

The Role of Rational Software Architect UML Patterns

» In asset development, Rational Software Architect UML
patterns help to develop the input model for a transformation.
» Provide solutions at higher levels of abstraction
» Provide standard ways to develop the solution

» Can help ensure that profile elements are applied correctly and in a
structure that makes sense

j———
A e Iy
~ i
) UML Patterns Emati
Model Template Profile Trpnsfofmations
Populate Manually nfark up ﬁ,u;omrgzt;fs\l,lﬁlh mark up Transform the model
the the model wiith rofile elements. and based on rules that
model profile elemgnts I:lpply best practices recognize model markup
4
PLCLY]
<" —
g — g 1. @ _’i&- % —
Source Source Source Model with Target Model
Model Model with Markup, Patterns
Markup Applied

7

© Copyright IBM Corp. 2007

14 -7
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Representing UML Patterns in Rational Software Architect

A UML Pattern is represented with a UML collaboration,
package, or class

] ¢ Interface > Data Access Object
pe—) > Operation > Query Methods . .
® LiteraBoolean > Provide getAl BI ndlng
«Pattern Defintion»
> Data Access Object / Pattern
«bind» Instance
Data Access Object -> DefautDAO j
«Pattern Instance»
pattern “» Data Access Object Argument
Pattern Parameters / Val ue\
Data Access Object V' 4
Data Access Object [1] : @[DefautDAO
Pattern Query Methods [*]: ®[] <<abstract|0n»\
Parameters Provide getAll [1] :
«Data Access Object»
/ 1 \ O DefaultDAO
Multiplicity Binding Indicator
Parameter Type

8

A UML pattern instance in Rational Software Modeler and Rational Software Architect is
represented with a UML collaboration stereotyped «pattern instance».

The pattern instance includes the following features:

e Parameters: A UML pattern has points of variability, called parameters. Arguments are
provided for parameters when the pattern is expanded into the target model. Each
parameter in the pattern instance takes an argument. When the pattern instance is
created, its parameters show the unbound parameter icon as an empty blue box. Y ou can
add or create an argument using the action bar, or by dragging an existing el ement from
the diagram or Model Explorer view onto the parameter. When bound, the icon changes
to ablue box containing a double arrow.

e Parameter Multiplicity: The parameter’s multiplicity is shown in brackets after the
parameter name.

» Parameter Type: After the multiplicity, an Eclipse-styleicon or text shows the
parameter type (for example, class, interface, or operation).

 Binding Indicator: Anicon or text that shows whether the parameter has an argument
bound to it. An empty blue box indicates that no arguments are bound to the parameter.
A binding icon shows that arguments are bound to the parameter.

» Arguments. One (or more, if the pattern allows it) arguments can be bound to the
parameter.

© Copyright IBM Corp. 2007 14 -8
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Applying a UML Pattern

@ Create a pattern instance by dragging a pattern from

the Pattern Explorer view onto an open diagram, or to
a model in the Project Explorer view.

I Project Explorer £3 = 4.::'; ~ = 0| %4 ApplyPattern.emx i ;!, Pattern Explorer (3 =0
= T=F ApplyPattern HN t)).. t:é:‘ -
85
& g Diagrams = Design Patterns ~
=2 Models =¥ Behaviaral
= B2 ApplyPattern iy
= Q «ConcreteCbservers Class 1 CLeUTIINE e ¥ Chain of Respansiiity
" (Observer) <> Observer # -z Command
s J *-:24 Interpreter
= _ ﬁat:tg;z;nvséince»observer Observer . - 2T N @ Tterator
i & e ConcreteSubject [1]: \ N\ <25 Mediator
Ba ﬂerL.P}imiﬁveT o) {pncreteObserver[F]: | #:Classl A< Memento
i ¥pes) / =-:2 Observer
L1 Main Jo— E ConcreteSubject
Q ConcreteObserver
+-:i State
— -« Strategy
«ConcreEObserver» -+ Template Method
QCI&El H 22 Visitor
5 Creational
& structural)
Short DE‘scripﬁon
L
Drag an existing class from the Use the action bar to create an
diagram or Project Explorer view argument value for a parameter.
onto a pattern parameter to make it
an argument of the pattern, or...
‘B .

Applying a pattern is a two-step process. you first add an instance of a pattern to the model, and then
select (or “bhind”) argument values for the pattern—either existing elements of the model or new
elements that you create while applying the pattern.

There are two ways to apply patterns in Rational Software Architect:

« Apply the pattern using the Apply Pattern wizard. Select amodel as the location for the pattern
instance and then select or create elements to use as argument values. Y ou can continue to add
argument values to the pattern instance after using the wizard.

« Apply the pattern interactively, using the Pattern Explorer view and the diagram editor. Drag the
pattern from the Pattern Explorer and drop it onto an open diagram. If you click or hover the mouse
over aparameter in the pattern instance, the action bar will appear, allowing you either to select an
existing element in the model or to create a new one as the argument value. Y ou can aso drag and
drop an existing model element, either from the diagram or from the Model Explorer view, onto a
pattern instance's parameter to bind that element to the parameter.

To “unapply” apattern, right-click the pattern instance and then click Patterns > Unapply. The pattern
instance is deleted, and al bindings to model elements are del eted.

© Copyright IBM Corp. 2007 14 -9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Pattern Libraries

= Sets of related patterns Tl Zaee X S
are gathered into pattern 2
libraries - pehavira

Creational

= Patterns are sorted within el
libraries into groups Ep.

2 Bridge
=2 Composite
«2i Decorator
:i. Facade
25 Flyweight
22 Proxy
-5 My Struts Patterns
= Transformations
% Authoring Editor project updater
E® C++To UML
¥ com.ibm.xtools, transform.uml2.cpp.j
T Generate JET Taglib Documentation
% IBM Rational Transformation Authorir
E2* Java to UML
BE 1M tnC4+

[

s R S Ry O e B Y

<

10

Patterns are always members of pattern libraries, and are always gathered into groups
within thelibrary. A pattern library is a collection of one or more patterns. Pattern libraries
are implemented as Eclipse plug-ins, and each pattern isimplemented by Java classes and
XML filesin that plug-in.

The groups that are shown in the Model Explorer view can be customized and rearranged.
Right-clicking the elements in the Pattern Explorer provides you with options for creating
new groups, renaming existing groups, and moving patterns between groups.

Rational Software Architect includes a number of patterns, including 23 GoF patternsto
apply, categorized as Behavioral, Creational, and Structural patterns. In addition, there are
eight GoF patterns to modify, including: Implementation, Interface, Keyword List, Directed
Association, Delegation, Strategy, Singleton and Abstract Factory. These modifiable patterns
must be imported into your installation from the Samples library: Welcome page > Samples
> Pattern Library.

© Copyright IBM Corp. 2007 14 - 10
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Role of the Pattern User

» Recognize the modeling consistency and
time-savings benefits when applying
patterns to their UML models and
therefore:

» Explore the universe of available patterns to
find a domain-specific pattern solution to the
problem of interest

» Evaluate the candidate pattern, and verify its
applicability and usefulness to the problem of
interest

» Apply the selected pattern to the model, and
incrementally select the pattern participants for
each specified pattern role

11

© Copyright IBM Corp. 2007 14 -11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Where Are We?

= |ntroduction to UML Patterns
= UML Pattern Design

= Creating a UML Pattern in Rational Software Architect

12

This section introduces the process for designing UML patternsin Rational Software Modeler
and Rational Software Architect, and discusses some issuesto consider for effective UML
pattern design.

© Copyright IBM Corp. 2007

14 -12
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Identifying Opportunities for Pattern Creation
= Patterns are discovered, not invented

= Watch for recurring situations and solutions:

» Explore the relationships between modeled classes in
existing solutions

» Review and inspect code

» Review current literature

= Books, articles, Web sites,
and blogs that identify patterns
particular to a specific
interest area

» Discuss problems and solutions
with other architects, designers,
and developers

13

Some suggestions for finding patterns:

* In existing models, use browse diagram to investigate the relationships between modeled
classes.

» Review the current literature. Many books, articles, Web sites, and blogs identify
patterns particular to a specific interest area.

* |dentify repeating problems and solutions in code reviews and inspections.
* Follow discussions between architects, designers, and developers.
» Keep an eye out for repeating situations and solutions in your own work.

© Copyright IBM Corp. 2007 14 - 13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Role of the Pattern Author

= |[dentify UML modeling pattern candidates
and subsequently:

» Specify the pattern in document form (also
known as the pattern specification)

» Design and Implement the pattern using
Rational Software Architect visual authoring tools,
which generate an Eclipse plug-in with Java code-
and related OMG RAS pattern-profiled manifests

» Publish the pattern, which involves specifying
the pattern parts, documenting the pattern,
packaging the pattern parts in a concise format,
optionally certifying the pattern functionality and
guality conformance levels, distributing the
pattern, and building awareness around the newly
offered pattern

14

© Copyright IBM Corp. 2007 14 - 14

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

UML Pattern Granularity

UML Patterns vary in
granularity:

» Micropatterns are o
primitive type patterns. © ©

» Design patterns are

more abstract, and might
reuse micropatterns or O

other design patterns.

P

o
» Architectural patterns @
are even more abstract,

and might reuse design _
patterns or other Granularity

architectural patterns. Abstraction increases with pattern granularity

15

Patterns vary in granularity, from micropatterns to design patterns to architectural patterns.

» Micropatterns can be thought of as primitives because they cannot be decomposed into
further patterns.

 Design patternsarelarger in granularity and might be defined by reusing micropatterns
and other design patterns.

 Architectural patternsare even larger in granularity and might be defined through
reusing design patterns, other architectural patterns, or both.

© Copyright IBM Corp. 2007 14 - 15
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

UML Patterns as Components In Pattern Authoring

= Consider pattern granularity and relationship to
other patterns

» Because patterns in Rational Software Architect are
implemented with Java code, apply common reuse

Strateg|881 Pattern (Class [1], Interface [1..*])

» Patterns framework mechanisms (patterns as .
components) :

» Traditional OO methods such
as composition :
Or Inherltance Patterns as components:

The pattern signature is the
exposed interface and the
internal implementation is a
black-box (the pattern
specification must also be
exposed).

16

When authoring patterns, reuse can benefit from thinking about a pattern’s granularity and
relationship to other patterns. Because patterns manifest as Java code, all development
techniques used for application development could be used for pattern authoring as well.
Patterns can be thought of as components from a pattern authoring point of view with the
pattern signature being the exposed interface and the internal implementation being a black
box (the pattern specification must also be exposed).

Reuse options available to the author include reuse using patterns framework mechanisms
(patterns as components) or reuse using traditional OO methods such as composition or
inheritance.

© Copyright IBM Corp. 2007 14 - 16

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Rational Software Architect Componential Patterns

Composite Patterns

o
-
e
S
-
.
o
o
3

...................... Component Patterns

+y-++==- Micro-pattern

Componential Pattern Assembly

Micro-pattern

17

© Copyright IBM Corp. 2007 14 - 17

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Where Are We?

= |ntroduction to UML Patterns
= UML Pattern Design

» Creating a UML Pattern in Rational Software
Architect

18

This section follows detailed steps for authoring patterns in Rational Software Architect.

© Copyright IBM Corp. 2007 14 - 18

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Pattern Service and Pattern Framework

» The Pattern Service acts as a
broker for pattern clients

» Discover definitions of patterns

» Create instances of patterns il
» The Patterns Framework: 1
e e seniresey (e
» Can be used to add expand and 1
post-expand behavior to the pattern
Service

19

The Java-based pattern implementation model is created automatically by extending two
plug-ins: a pattern service and a pattern framework that abstracts the use of the pattern
service. Along with the Pattern Authoring view and the Pattern Explorer view in Rational
Software Architect and Rational Software Modeler, the pattern service and pattern
framework provide the basic functions to structure, design, code, search for, organize, and

apply patterns.

The Pattern Service acts as a broker for patterns clients. It is responsible for helping the
clientsto discover patterns as well as create instances of patterns. In addition to being called
when a user applies a pattern, the clients include patterns and transformations that expand
nested patterns.

The Pattern Framework isalayer that operates between the pattern service and your
pattern. The patterns framework provides the default pattern code for the pattern library, its
member patterns, and their parameters. The framework promotes consistency across pattern
libraries. The framework also provides for much of the processing that is common across
patterns.

The pattern authoring tools generate Java source that makes calls into, and is called by, the
framework. The pattern authoring tools generate Java source that makes callsinto, and is
called by, the framework. The main implementation task of a pattern author isto provide
code for pattern behavior in the pattern’s variability points, called hot spots.

© Copyright IBM Corp. 2007 14 - 19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Key APIs and Classes

» EMF (Eclipse Modeling Framework)
» Code generation facility
» Based on a structured data model

= Eclipse UML2:

» An EMF-based implementation of the UML 2.0 metamodel
for the Eclipse platiorm

» Provides CRUD access to model elements

» Supports all UML2 user model objects and relationships
(Class, Interface, Package, Association, Dependency,
Generalization, and so on)

» AbstractPatterninstance:
» Provides utility methods
» Simplifies interactions with UML2 API

20

EMF: A modeling framework and code generation facility for building tools and other
applications based on a structured data model. For the pattern author, it provides a structured
object model that can be traversed and accessed.

Eclipse UML2: The Eclipse UML2 API isan EMF-based implementation of the UML 2.0
metamodel, providing the pattern author with an underlying structured data model for the
models you create in Software Architect. Y ou will work with UML2 elements whenever you
need to examine what elements exist or modify the model as part of the pattern. For
example, if you have a pattern that adds a method to a class you will need to work with the
UML?2 Class object, create a new Operation object, and then add it to the Class object.

AbstractPatter nlnstance: Provides utility methods for many common tasks when working
with the UML2 API. In most cases, the utility methods provide an “intelligent” way to add
information to an element in amodel. In the example already cited, adding an operation to a
class using the UML2 API, you would need to first check to seeif the method exists. If the
method does not exist, you would want to have the operation added, and if not, you would
want to have no changes made. To make this check, you would make asingle call to the
ensur eQper at i on method on Abst r act Pat t er nl nst ance and it will take the

appropriate action.

© Copyright IBM Corp. 2007 14 - 20
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Patterns Framework at Runtime

Pattern Service Clients

Apply Ul Framework Others
.'-, Invokes E Invokes ,-'.
o‘ * ‘o
Service
..‘. Forwards .'..
/'y E Y
Framework |]°"**"% Pattern
Hot-Spots

21

The pattern framework provides support for the base classes that are extended by the standard
pattern implementation model that includes the pattern library, the contained patterns, and the
pattern parameters. The framework promotes consistency in pattern design.

The framework is alayer between a pattern service and the end-user (generated and author
written) pattern implementation. Pattern implementations depend on the pattern framework
and the framework depends primarily on the pattern service. The service needs to know about
what the pattern provides and provides interfaces and abstractions to define the contract of
the pattern. The Framework must actually work with applying an instance of the pattern, so it
needs to access the pattern behavior.

The pattern service discovers the available pattern plug-ins from a variety of sources,
including installed plug-ins and local or remote repositories. The pattern serviceisaso
responsible for discovering pattern definitions, creating pattern instances, and directly
supporting the client Ul components. Both the pattern service and the pattern framework are
Eclipse plug-ins.

Both UML 2.0 and RAS asset metamodel s are supported within the pattern structure. A UML
2.0 representation of the pattern model is persisted in the pattern.

The default pattern model simplifies pattern authoring because the author must supply code
only for the pattern executable behavior. The locations to add the expansion behavior are
known as hot spots, and they are indicated by empty expansion methods. Dependent and
independent expansion code is separated; hot spot update method locations are indicated to
handle expansion dependencies when required by the pattern author.

© Copyright IBM Corp. 2007 14 -21

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Basic Classes Involved in Pattern Building

«Java Class»
(& PatternLibrary

& PatternLibrary ()
. getAvailablePattemDefinitions ()
«use»
«usen
«Java Class»
(3 MasterDetail

" PATTERM_ID : String
5 PATTERM_VER : String
of detailsScreen : DetailsSaeen

«Java Class»
(® Activator
% PLUGIN ID : String

=¥ pluain : Activator
@ Activator ()

@ start () o listScreen: ListScraen
@ stop () . searchScreen : SearchScreen
o getDefault @ MasterDetail ()

& getImageDescriptor

«Java Class»
(® ListScreen
4F PARAMETER ID : String
& Listscreen ()
@ expand ()
@ expand ()

«Java Class»
(ListScreen_DetailsScreenDependency

& ListScreen_DetailsScreenDependency ()

i Update ()

@ update ()
@ update ()

«Java Class»
(® SearchScreen
i PARAMETER_ID : String
& SearchScreen ()
@ expand ()
@ expand ()

«Java Class»

«JavaClass»
(3 DetailsScreen
i PARAMETER_ID : String
& DetailsScreen ()
@ expand ()
@ expand ()

(® SearchScreen_ListScreenDependency

B SearchScreen_ListScreenDependency ()

i update ()
@ update ()
@ update ()

22

Patterns are composed of the following basic classes:

 Pattern Library Class. The outermost abstraction that contains pattern definitions. The
PatternLibrary classin a pattern is a subclass of the AbstractPatternLibrary class, which
is afagade for nearly all invocations forwarded from the pattern service.

 Pattern Definition Class: Contained within a pattern library and instantiated at run-time
by the pattern author’s concrete library.

» Parameter Class: When the pattern author adds parameters to the pattern, they are
added as inner classes (shown in the class diagram with the owned element association)
to the pattern definition class and are instantiated when the pattern is applied by the
pattern definition class's constructor.

» Dependency Class: Parameter classes have inner classes for observing dependents and
observed dependencies, which istypically instantiated by the owning parameter’s
constructor.

© Copyright IBM Corp. 2007 14 - 22

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Pattern Delegate Mechanism

» The Pattern Delegate Mechanism allows you to apply
one pattern from within another

= Key Classes involved are:
» PatternDefinitionUsage
» PatternDependencyDelegate

23

Asdiscussed previously, there will be times when you find that there are other patterns that
implement some behavior that you want to reuse within a new pattern that is being created.
Rather than rewriting, or copying and pasting the code, you can delegate responsihility to the
other pattern.

Key classes:

 PatternDefinitionUsage: Represents the use of a pattern definition. A pattern
definition usage is required when constructing a pattern delegate instance. When you
want to have another pattern used within your pattern, you will first need to create a
PatternDefinitionUsage instance that refers to the pattern that you would like to utilize
within your pattern.

» PatternDependencyDelegate: The delegate enables pattern dependency
implementations to move some of the behavior that a dependency is responsible for into
another pattern.

© Copyright IBM Corp. 2007 14 - 23

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Four Steps of Pattern Creation

To create a pattern:
1.Create a pattern library

2.Add a pattern to the pattern library

3. Define the pattern
= Add template parameters to the pattern
= Specify dependencies between template parameters

4. Implement pattern specific behavior

Using Authoring Ul Using Java Editor

@ | Create Library @ | Create Pattern © | Define Pattern @ | Code Pattern
(PDE pattern project) (Create Java class) (Generate Java code) (Customize Java code)

00} ooo» ooo> o--»

24

Details on the stepsin the above dlide:

A new pattern project is created to contain created patterns and represent the pattern library,
the appropriate libraries are adjusted in the pl ugi n. xm , and amanifest is created.

A new pattern is created using the pattern authoring Uls, Java classes are created to represent
the pattern, and a manifest is created.

A pattern is structured with the Ul by creating signature and parameter dependencies, a Java
inner classis created for each parameter and an inner class for each dependency, and the
manifests are updated.

Additional code is added to the generated Java classes, implementing patterns framework hot
spots (the primary hot spots are expand and update), pattern del egates are coded, and
manifests are adjusted if necessary.

© Copyright IBM Corp. 2007 14 - 24

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Step 1. Create a Pattern Library

» Create a plug-in Project
= Select the plug-in with Patterns template

ta! New Project
Select a wizard
Create 3 Plug-n Project
Wizards: I
J
type fiter text ! Niwer Plug-in Project E
e Templates - =
<" Plugdn Project | Select one of e avnlabie tempiates to generate a Ry Rinctonng plig 1. 7 il [Package Explorer 51 Plug-ns =l
=¥ UML Praject K =
(= General E=S
(= Crystal Reports [Z] greate & piugn usng one of the tesgplates
ERE Yot Avalable Templabes:
#(= Data 1 Custom plug-n wiard Ths wzard creates standard pg-n dreciery | o v Model-to-Text Transformati
(= Edipse Modeling Framewark ot dek i e stnuchre and adds the fsloweyy _7J ode ext Transformations
& & BB ek, World + Pattern Liboa +1=> My Java Project
(= EMFT JET Transformations Phagei wih a incrimental preject buder @ il @53 My UML Mode!
(= Graphical Modeling Framework Pl v mult page editer | e .bJ MyPatterns
= Java 2Pl i an edier Extemsions Used 5-G3 are
& (= Jython -
(= Modeling - £ mypatterns
[Ishow Al Wizards. &8 mypatterns.lb
* B JRE System Library [jdk]
#-Ei Plug-in Dependencies
#-(= icons
& < - META-INF
== PatternFiles
5 MyPatterns.rmd
(] |mib build.properties
« Back Bieat » - Carel
(TN P | . I phugin.rl

25

The example used in this section is the simple interface pattern used in the Rational Software
Architect cheat sheet on pattern authoring. The Interface pattern has two template
parameters. an interface with methods and a class that implements them. The pattern ensures
that the class implements each of the methods on the interface. The apply-time behavior of

the pattern includes adding an implementation relationship and a set of methods bodies to the
class.

Begin by creating a new pattern library. Pattern libraries are implemented as Eclipse plug-ins.

Rational Software Architect also has a plug-in template available to provide a quick start for
pattern authoring.

© Copyright IBM Corp. 2007

14 - 25
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Step 2: Add a New Pattern to the Library

Name and describe the pattern

i’ New Pattern (2! New Pattern
Pattern =N \J Pattern e Y
Create a new pattern T | Create a new pattemn o
General | Detail General | Detall

Pattern Name: | Interface Author: Author Name

Class Mame: | InterfacePattern Shert Deseription: | This pattem . . .

Package: mypatterns, patterns. patterns

Pattern Type: | Collaboration v

Target Types: [¥]Package [¥]Collaboration [v]Class

Parameters:

Name Type Multplici
¥ pldty Keywords: iptertace

Groups: My Patterns Add...

Version: 10.0

26 = =

A pattern definition is created when the pattern author uses the Pattern Authoring view to add

apattern and its template parameters to a pattern library. Each pattern in the pattern library
has its own pattern definition.

The pattern definition isaUML 2.0 element with a keyword of Pattern Definition. Depending
on the pattern type, it is a parameterized collaboration, class, or package.

The pattern author can locate the pattern definition in the pattern definition model (the plug-
in project used to create the pattern). However, the author should not directly modify the

pattern definition. A new pattern definition can be regenerated if it gets out of sync with the
pattern's Java code.

In the pattern application process, the pattern definition provides essential model information.

Although not readily visible to the pattern applier, the pattern definition is bound to all
generated pattern instances.

Pattern templates

The pattern framework supplies default code for each pattern as you add each pattern to the

library. Y ou can modify this code, except where comments indicate that modifications will
render the pattern incompatible.

Pattern Template Parameters

The pattern framework supplies default code for each parameter as you add each one to the
pattern. Y ou can modify this code except where comments indicate that modifications will
render the pattern incompatible. The pattern author would usually add code to the expansion
methods and, if applicable, to the update methods.

© Copyright IBM Corp. 2007 14 - 26

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Step 3: Define the Pattern

» Name

» Class Name

» Short Description

» Type

» Allowable Subtypes

»Add template parameters:

) New Pattern Parameter

Parameter

Add @ new parameter to a pattern,

General Parameter Dependency

Name: Intarface

Module 14 - Designing with UML Patterns

Class Name: Inta}faceParameter

» Multiplicity

Short Description: | This parameter ..,

Type: Class

Allowable Subtypes: | Assodation Class

Allow text entry of argument value
Multiplicity: L5 v

@

27

Template parameters are similar to operation parameters; they are place holders for the actual
argument values that will be supplied later. For templates, this assignment by the pattern user
at apply-time, of argument values to template parametersis called binding.

The principal tasks of a pattern author when creating a new template parameter are: (1) to
specify its properties, such as its name, type, and multiplicity; and (2) to define its apply-time
behavior, in other words, what happens when an argument value is bound to it.

© Copyright IBM Corp. 2007 14 - 27
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Step 3: Define the Pattern (cont.)
Specify dependencies
Template dependencies —
! New Pattern Parameter
are values bound toone .~ e
te m p I ate param ete r th at Add & new parameter to a pattern. <T> e’ {
aﬁe Ct th e General | Parameter Dependency
ap p Iy-tl m e be h avl Or Of S:\;ﬁ:g::ass;irgselhers which depend on this parameter, or select supplier parameters on which this
Other tem plate Existing Parameters: Client Parameters:
parameters
Supplier Parameters:
E interface
@

It is frequently the case that the values bound to one template parameter will affect the apply-
time behavior of other template parameters. These relationships are called template parameter
dependencies and provide direct support for them in the Patterns Framework and pattern
authoring tools. Hot spot methods of a dependent parameter are called by the framework

when the parameter that they are dependent upon has its binding modified, such aswhen a
user assigns a new argument value.

For example, in the Interface pattern, every time an additional interface value is bound, you
want to add another implementation relationship to the class that is bound to the
implementation parameter. Y ou could do this processing with the Interface parameter's hot
spot method, however, it is preferable to do this processing within one of the dependent

parameter's hot spots because, in general, there might be multiple dependent parameters and
dependency relationships.

© Copyright IBM Corp. 2007 14 - 28

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Step 4. Implement Pattern-Specific Behavior

= Implement Pattern-Specific Behavior using “hotspots”

= Hotspots are places in the pattern code where the pattern author can customize
the pattern’s apply-time behavior

= Two hotspots, among many in the API, are of particular interest:
» Expansion Methods
» Update Methods
@ com.ibm.xtocls.pa... gt myPatterns [1) =Patterniibrary.java [[J] InterfacePattem.... &3 % 71t = B[5 outine 33 =08

L AR e T

mypattems.pattems.patterns
#- ‘= import decarations
=49 InterfacePattern
PATTERN_ID : String
¥ PATTERN_VER : String
& interfaceParameter ; InterfacePare
@ " implementationParameter : Impiem
©° InterfacePattem(AbstractPatternL,
& InterfaceParameter
(& ImplementationParameter

public class InterfacePattern extends AbstractPatternDefinition {

private final statie String PATTERN ID =

"mypatterns.patterns.patterns.Int

29

[l

When you add a parameter to a pattern in the Pattern Authoring view, a parameter class with
two expansion methods is added to the pattern implementation model.

The pattern framework creates and positions expansion methods and optional update methods
in the code, known as hot spots. Y ou add Java code to the hot spots to dictate the pattern
behavior when an argument value is added to, or removed from, a parameter. Hot spots are
clearly annotated in the default Java code with TODO comments. The default code is marked
with Javadoc @ener at ed tags. The @ener at ed tags must be removed if the default

code is modified, or the modifications will be overwritten when the implementation model is
regenerated.

These types of hot spots are discussed further on the following slides.

© Copyright IBM Corp. 2007 14 - 29

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Expansion Methods

» Expand methods are called when a parameter is
added to, or removed from, a pattern
» expand(PatternParameterValue value)

= Add pattern behavior after an argument value is supplied to a
template parameter.

» expand(PatternParamterValue.Removed value)
= Allows you to add behavior when a user deletes a value.

30

When you add a parameter to a pattern in the Pattern Authoring view, a parameter class with
two expansion methods is added to the pattern implementation model. The expansion
methods are called whenever a parameter is added or removed from a pattern.

Expansion methods:

e expand(Patt er nPar anet er Val ue val ue) : Allowsyou to add pattern
behavior after an argument value is supplied to atemplate parameter. When writing

the expansion code, you should consider the effects of partial or incremental
expansion.

e expand(Patt er nPar ant er Val ue. Renoved val ue) : Allowsyou to add
behavior when a user deletes avalue.

© Copyright IBM Corp. 2007 14 - 30

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Update Methods

» Update Methods are used in cases where
dependencies between pattern parameters
have been identified

» update(PatternParameterValue value,
PatternParameterValue dependencyValue)

= Execute behavior when two parameters with a
dependency relationship have been bound to the pattern

» update(PatternParameterValue.Maintained value,
PatternParameterValue.Removed
dependencyValue)

» Called when the user removes a dependent parameter
that had already been added to the pattern

» update(PatternParameterValue.Removed
value,PatternParameterValue.Maintained
dependencyValue)

31

A pattern can contain one or more parameters where the argument for one parameter, the
supplier parameter, is used to calculate the values for dependent (client) parameters. When
the user specifies avalid argument for a supplier parameter, the update methods are called to
recompute the dependent client parameters.

Y ou add a dependency relationship by using the New Pattern wizard when adding a new
pattern, or by using the Properties view from the Pattern Authoring view. When added, the
code for update hot spots is added to the pattern implementation model.

The three types of update methods are generated only for the client parameter. update
methods are invoked for the following activities: the addition of a supplier argument, the
rem0\|/_azlad of a supplier argument, and no change to the supplier argument when the patternis
reapplied.

Using update methods, you can suppress total or partial expansion of the client parameter
until the required values are specified in the supplier parameters.

updat e(Pat t er nPar anet er Val ue val ue, PatternParanet erVal ue
dependencyVal ue) : If, when creating your pattern, you identify that thereisa
dependency between the parameters, you will need away to execute behavior when both of
the parameters have been identified. This hot spot is called after both the parametersin the
dependency have been bound to the pattern.

updat e(Pat t er nPar anmet er Val ue. Mai nt ai ned val ue,

Pat t er nPar anet er Val ue. Renoved dependencyVal ue): Thismethodiscalled
when the user removes a dependent parameter that had already been added to the pattern. In
thisform of the method, it isindicating that the dependency has been removed.

© Copyright IBM Corp. 2007 14 - 31

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Hot Spots Revisited
Expand()

» parameter is bound

Expand(remove)
» parameter is unbound

Update()

» dependency is created between arguments

Update(maintained, removed)
» Second parameter was unbound
» Need to reconcile first parameter

32

© Copyright IBM Corp. 2007 14 - 32

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Implement Hot Spots

= Now we just need to add behavior to the hot spots
» Just calls to UML2, EMF, MSL APIs, right?
» Yes, but which hot spot(s)?

= Our desired behavior
» Create implementation relationship between class and interface
» In class, create a method for each operation in interface

= Let's not worry about the remove hot spots right now

» So let’'s map behavior to hot spots

33

© Copyright IBM Corp. 2007 14 - 33

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Test the Pattern

The Eclipse PDE provides support for launching a version of
the Workbench that can be used for testing and debugging.

ER-N C L

public class InterfacePattern extends AbstractPatternDefinition { I ‘

privat{ |BM Rational Software Delivery Platform Inc
y.java Version 7.0

" <1-
B
Al
Error Log | Tasks | Prol
= 1= MyPatterns
S5 Interface
H mnterf

B 1mplementation

34 =

When working in the Plug-in Development Environment (PDE), one of the key artifacts
associated with aplug-inisthe pl ugi n. xni file. When you open thisfilein the
workbench, you can find out important information about the plug-in, such as dependencies,
extension points, and general details about the plug-in. In addition, the workbench provides a
link that will launch a new instance of the workbench with your new pattern loaded.

After the new instance has been loaded, you can test your pattern as well as work with it
using the Debug perspective found in the launching instance of the workbench.

© Copyright IBM Corp. 2007 14 - 34

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

ePattern Ingtancgs <licte P
- Mastar-Detall] MusicListResults T MusicDetails
Master-Detal g «display» artist : String
E earch Sereen [11; élﬁhﬁu&lc g «display» recordingDate : String
' = » «display» genre : Strin
Llst Screen 1) =*sMusicLIg - creates recordl list EEI @dis;a:» ?ating 'String
[atalls Seraan [1]: = w-MusicDatals)] C] e
-displays list
play: i
1 + creates record list
«inpute &SCrEen:s .

MusicForm R MusicList

g «textfield» artist : String [artist : String

[«textfield» genre : String [Cg rating : String

- containedl -generatesSearcCritera
1 + resultscontaineddy
&SCrEen:s -
ER Music
2, «link» logoff ()
{2, «useraction» search ()
35
© Copyright IBM Corp. 2007 14 - 35

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Demo: Create a UML Pattern

The instructor will now show you how to:
» Create a Pattern Project
» Specify dependencies between parameters

36

Watch your instructor create a simple pattern.

© Copyright IBM Corp. 2007 14 - 36

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Lab 12; Create the Master Detail Pattern

Complete the following tasks:
» Create the Pattern Project
» Customize Expand Methods
» Customize Update Methods
» Test the Pattern
» Extra Challenges

37

Complete Lab 12 in the student workbook.

© Copyright IBM Corp. 2007 14 - 37

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Review

= What are the three granular types of patterns?

= Describe examples of an architectural and a design
pattern.

= Describe the role of the
Pattern Framework and
the Pattern Service in
pattern authoring in
Rational Software Architect.

38

© Copyright IBM Corp. 2007 14 - 38

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

Further Information

= Rational Software Architect Help
= \Web resources
= | iterature

39

Softwar e Architect Help

» “Authoring Patterns’ Cheat Sheet

* “IBM Rational Software Modeler API”
Web Resour ces

» Martha Andrews, “Documenting your patterns using Rational Software
Architect.” IBM devel operWorks. http://www-

128.ibm.com/devel operworks/rational/library/05/martha-andrews/

» Alan Brown and Jim Conallen, "An introduction to Model-Driven
Architecture (MDA) Part I1: Lessons from the design and use of an MDA
toolkit.” 1BM devel operWorks. http://mww-
106.ibm.com/devel operworks/rational/library/aprO5/brown/index.html

» Kenn Hussey, “Getting Started with UML2.” IBM devel operWorks.
http://dev.eclipse.org/viewcvs/indextool s.cgi/%7Echeckout%7E/uml 2-
home/docyarticles/Getting_Started with UML 2/article.html

Literature

» JJm D'Anjou et a. The Java Developer's Guide to Eclipse. 2nd Ed. New
Y ork: Addison-Wesley, 2004.

» Erich Gamma et a. Design Patterns. Elements of Reusable Object-
Oriented Software. Boston: Addison-Wesley, 1995.

© Copyright IBM Corp. 2007 14 - 39

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 14 - Designing with UML Patterns

40

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

14 - 40

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

| IBM Software Group

DEV498: Pattern Implementation Workshop with IBM

Rational Software Architect
Module 15: Introduction to the UML 2 API

Bl v iEa
‘Rational. soffwara

© 2006 IBM Corporation

Contents
Objectives 15-2
Profile Helpers 154
Key UML API 15-8
Further Information 15-16
© Copyright IBM Corp. 2007 15-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

Introduction to the UML2 API

» Objectives:

» Describe the UML2 API
= Profile helpers
= Key UML API

» Understand and use key UML2 API elements

© Copyright IBM Corp. 2007 15-2
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

Where Are We?

» Profile Helpers
»Key UML API Elements

© Copyright IBM Corp. 2007 15-3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

Profile Helpers

= getStereotype()

» For a given NamedElement, where a UML stereotype has
been applied, returns the stereotype and stereotype string.

public =static Stereotype getStereotype (NamedElement namedElement, String stereotype) {
if (hasStersotype(namedElement, sterectype))
retnrn namedElement.getBppliedStereotype (stereotype);
return nuwll;

© Copyright IBM Corp. 2007 15-4

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

Profile Helpers
» hasKeyword()

* Method determines if a user defined uml element has the indicated keyword applied.

. obj - java.lang.Cbject (should obviously be of type org.eclipse.uml?.Element)

. stereotype - keyword str
. boolean - true is keyword i=s present, false if it i=s not

public static boolean hasKeyword (Cbject obj, String keyword)

if({(obj instanceof Element) && (keyword != nmll })
return ((Element)oki) .hasEeyword (keyword) ;
} else
return false;
H
5
© Copyright IBM Corp. 2007 15-5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

Profile Helpers

= hasStereotype()

boolean - true is stereotype is applied, false if it is not

fEE

Method determines if a user defined uml element has the indicated uml stereotype applied.
- obj - java.lang.Cbject (should obviously be of type org.eclipse.uml2.Element)

i stereotype - fully gualified stereotype string.

public static boolean hasStereotype (Cbjeect obj, String stereotype) {

if (obj instanceof Element && stereotype != nunll) {
Element element = (Element)obj:
retorn element.getAppliedStereotype (stereotype) '= nmll;

} else
return false;

}
6
© Copyright IBM Corp. 2007 15-6

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

Where Are We?

» Profile Helpers
»Key UML API Elements

© Copyright IBM Corp. 2007 15-7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

Key UML API (1 of 7)
» isUMLModel(), isPackage(), isUMLOperation()

* Method determines if Object i= in fact a root UML Model element
b obj - java.lang.Cbject
b boolean — true if CObject is a UML root Model element, otherwise false

public static boolean isUMLModel (Cbhbject obj)
retorn TMLModelUtility. isUML TypeMatchOf (obj, "Model™):
¥

Method determines if a given Object is in fact a UML Package

A % k% A

obj - java.lang.Object

boolean — true if CObject i=s a UML Package, otherwi

public static boolean isPackage (Cbject obj)
retuorn (obkj instanceof Package) ;

¥
* Method determines i1f a given Object is in fact a UML COperation
b obj — java.lang.OCbject (obviously should be of type org.eclipse.uml2.Element)
b boolean — true if Object is a UML Operation, otherwise false

public static boolean isUMLCperation (Cbject obj)
return (obj instanceof COperation):;

¥

© Copyright IBM Corp. 2007 15-8

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

Key UML API (2 of 7)
= getAlINestedElements()

Method recursively finds all elements of type "typeName™ n levels deep owned by a given package

& pkg - org.eclipse.uml?.Package
& typeName - 5 dicating UML type to be searched for
= elemList - due to recursion this List should be passed in by user as a new list.

publie static void getAllNestedElements (Package pkg, String tvpeName, List elemlist)
List ownedElements = pkg.getCwnedElements();
for (int idx = 0; idx <« ownedElements.size(); idx++)
Element element = (Element) ownedElements.get (idx):
if (element.eClass|().getName () .equals("Package"))
getAlINestedElements((Package) element, typeName, elemList);
if (element.eClass().getNane () .equals(typelame))
elemlist.add (element) ;

© Copyright IBM Corp. 2007 15-9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

Key UML API (3 of 7)
= findAllClasses(), findAllEnumerations()

Method returns =1l Classes for a given 1ist of uml elemencs, uding = recursive search of packages

IEEEE,

elements - list of org.e
t — filtered list o

pse.t .
g.eclipse.uml2.Class

Lis
public static List findAllClasses(List eslements)
Arrayvlist classes = new ArravList():

for (int i = 0; i < elements.size(); i++)
if (elements.get (i) instanceof Package)
Package p = (Package) elements.get (i):
classes.addAll (findAllClasses (p.getOwnedElements (})) ;
} else if (elements.get(i) instanceof Class
classes.add (elements.get (1)) 7

¥
13
return classes;
¥
* Method returns all Enumeracion for a given list of uml elements, irn ing a recursive search of packages
* slements - list of org.s
* List - filtered list

public static List findAllEnumerations (List elements)
Arraylist enums = new ArravLisc (20):

for (int i = 0; i < elements.size(); i++)
if (elements.get (i) instanceof Package)
Package p = (Package) elemencs.get(i):
enums. addall (findAllEnumerations (p.gecOwnedElements ())) ;
} else if (elements.gec(i) instanceof Enumeration)
enums. add (elements.get (1)) 7
¥
13

return enums;

© Copyright IBM Corp. 2007 15- 10

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

Key UML API (4 of 7)
» getClassByName(), getinterfaceByName()

fr®

* Searches a given package for an interface with the specified nanme.
’ elem the source element

’ name the name of the interface

o the interface, if present. Otherwise, null

public static Interface getInterfaceByName (NamedElement elem, String name)
return (Interface) getElementByKindWithName(elem, UMLPackage.sINSTANCE.getInterface(), name):

}
* Searches a given package for an interface with the specified name.
. kg the source package
. name the name of the interface
o the interface, if present. Otherwise, null

public static Class getClassByName (NamedElement pkg, String name) {
return (Class) getElementByKindWithName (pkg, UMLPackage.=INSTANCE.getClass_ (), nane);

}

© Copyright IBM Corp. 2007 15-11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

Key UML API (5 of 7)

» getComment()

* Returns the 5tring comment for a given element
= element - org.eclipse.umlzZ.Element
= String - comment for given element
poblic String getComment (Element element)
Lizt comments = element.getCwnedComments()
for (int i = 0; i <« comments.size (), i++)
Comment ¢ = (Comment) comments.get (i)
retorn c.getBody ()
}

retorn "";

© Copyright IBM Corp. 2007 15-12

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

Key UML API (6 of 7)

= getGeneralizations(), getDependencies()

already exists between the twe

public static Generalization getGeneralization(Classifier specificTarget, Classifier generalTarget)

Generalizatcion generalization — null;
Iterator iter — specificTarget.getGeneralizations().iteratoxr():
while (itex.hasMext())

=Opject ownedElement = (ECbIect) iter.next

if (ownedElement.eClass() —— UMLPackage.eT .getGeneralization ())

Generalization ownedGeneraliz

ion = (Generalization) ownedElement:

if (specificTarget.getName () cwnedGSeneralization.gecSpecific () .getName ()
&2 generalTargec.getName () == ownedGeneralization.getGeneral () .getName())
generalizacion — ownedSeneralization:
break;
3
>
H
return generalization:
H
ther or not a Dependency alTready ©xists between the ©wo

public static D v getD v (NamedEl t supplierTarget, Classifier sourceTaxzget)
Dependency dep — nmll:
Iterator iter — sourceTarget.getClientDependencies().iterator():
while (icexr.hasMext(}) {
=Opject ownedElement = (ECbIect) iter.next
if (ownedElement.=Class() == UMLFackage.=T) .gecDependency ()})
Dependency foundDep — (Dependency) ocwnedElement:
if (sourceTarget.getName() == ((NamedElement) ZfoundDep.getSources ().get (0)).getName ()
& supplierTarget.getName () == ((NamedElement) foundDep.gecSuppliers().get (0)) .gecName ())
dep = foundDep:
preak;
3

>
H
retorn dep:

© Copyright IBM Corp. 2007 15-13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

Key UML API (7 of 7)

= findorCreateClass()

her find a Class with the specified name in the given package
eate one.
If the 'sereotypeName' i=s non-null then the stereotype is applied

to the newly created class.

pkg the package in which to look for the class
name the name of the desired class
the

Class, created if it did not exist

I EEEEEEEERE

public static Class findOrCreateClass (Package pkg, S5tring name, String stereotypeName)
Class theClass = (Class) getElementByKindWithName (pkg, MLPackage.=sINSTANCE.getClass_ (), name);
if (cheClass == null)

Allow 'null' for non-s

if (stereotypeName

/4 Apply the ster ype if it's not already there

Stereotype stereoType = theClass.getipplicableStereotype (stereotypeName) ;

if (stereoType '= null && 'theClass.isStereotypelpplied(stereocType)
theClass.applyStereotype (stereolvpe) !

H

return theClass;

© Copyright IBM Corp. 2007 15-14

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

References

= Help > Extending Rational Software Architect Functionality > Extending the
workbench > UML2Documentation > Reference > APl UML2Documentation

| = Help - Bational Software Architect B
e A e 1

vy Hatunsl Softmare Arihect fusclmnably ledEo
BRI Package Class Use Tree Deprecated Index Help 2
Ay T EBAMED MaESAED

Provides an EMF- the UML™ 21 del foe the Echipse plasform
See:
Description

Ecore Code Generation

il codesen ecore

mll codegen eore geamadsl
mllcodegenetore gramadel generator

st actins. sl codemon etui pramdel 46

Ecore Code Generation Ul
srgeclipse amll codegen ecore geamadel provider
ergeclipse aml codegenecore.si

Common Edit Support

g echipse umll common eda command

UML Model

g echipse umll wml

© Copyright IBM Corp. 2007 15-15

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 15 - Introduction to the UML 2 API

Further Information

=\Web resources
=" Books

Web Resour ces

» Kenn Hussey, “Getting Started with UML2.” IBM developerWorks.
http://dev.eclipse.org/viewcvs/indextool s.cgi/%7Echeckout%7E/uml 2-
home/docdarticles/Getting_Started with UML 2/article.html

Books

« Jm D'Anjou et a. The Java Developer's Guide to Eclipse. 2nd Ed. New Y ork: Addison-
Wesley, 2004.

 James Rumbaugh et al. The Unified Modeling Language Reference Manual. Boston:
Addison Wesley, 2005

© Copyright IBM Corp. 2007 15- 16
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

| IBM Software Group

DEV498: Pattern Implementation Workshop with IBM

Rational Software Architect
Module 16: Plug-ins and Pluglets

Bl v iEa
‘Rational. soffwara

© 2006 IBM Corporation

Contents
Objectives 16-2
Plug-ins 16-4
Pluglets 16-16
Lab 13: Create a Pluglet 16-28
Review 16-29
© Copyright IBM Corp. 2007 16-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 16 - Plug-ins and Pluglets

Plug-ins and Pluglets

= Objectives:

» Describe the following about plug-ins and pluglets
= The differences between them

= The structure and contents of plug-in and pluglet projects
= The plug-in and pluglet authoring processes

» Create a simple pluglet

© Copyright IBM Corp. 2007

16 -2
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 16 - Plug-ins and Pluglets

Course Qutline in the Context of MDD

==X

A| Model 2 Model
: |_Transformation
/ (o]
A

Model 2 Model
Transformation

O O

JET2 based
Transformation

—

Modules 16 & 17: How
do | improve the
consumability of my
patterns using model
templates? How can |
quickly interact with the
available APIs using
pluglets? What are
plugins?

We will seethis dide several times throughout the workshop. 1t will serve asavisua guide

to the skills you are learning, and to how they fit into MDD .

© Copyright IBM Corp. 2007

16 -3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 16 - Plug-ins and Pluglets
Where Are We?

» Plug-ins
» Pluglets

© Copyright IBM Corp. 2007

16-4
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 16 - Plug-ins and Pluglets

What is a Plug-in?

» A plug-in is a set of contributions that:

» Provides an extension to the platform or
another plug-in

» Is built on specific platform
or plug-in extension points

» May have dependencies
on other plug-ins or

platform APIs Exensions
» May have extension points i
of its own :Cﬂ :Dw Extension
i Point
MyPIugln :CU (Optional)
» The platform controls and o ——
manages all contributions » e P

. .
. .
------- .

APl dependencies

@ Eclipse Platform APIs

Earlier, we considered the role of plug-insin making Eclipse a platform for application
devel opment. When you look more closely at a plug-in, you see that it has the following
features:

» Extensions: Every plug-in contributes new behavior to the platform or to other plug-ins.
This new behavior is called an extension. For example, a plug-in that contributes a
simple action to a menu bar provides an extension to the platform extension point,
org.eclipse.ui.actionSets.

Extension Points: The extensions a plug-in provides have to be built on a specific
extension point or points, which are declared on another plug-in or on the platform. Each
extension point defines attributes and expected values (in an associated XML schema)
that the extension’ s syntax must follow. Information about all available extension points
is maintained in the platform’s central plug-in registry.

« Plug-in Dependencies: A plug-in has dependencies to any other plug-ins whose code it
uses, to any plug-insit extends, and to any classes in the Eclipse platform APIs that it
uses.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Example: Contributing to the Workbench Ul

. Editor toolbar
Custom extensions view action <" Action set Custom editor
can be added to the actions
1 £ Resource - sample’i.readme - Eclipse P'latform

WorkbenCh UI USIng File Edit Nawgateamh Project Readms/ Run WWindow Help
Eclipse plug-ins: A 7 I @ED 29[Eoommres

» Toolbar actions =

TS Navigator £5 B || samplet readme 2 m]
» View actions 5% @)~ A
» ACtion set aCtionS iggﬂz:gt SAMPLE README FILE
images
} CUStom edltors 2 ‘l:dr:f:tm il‘u:EE:)I(SN1; & placeholder for the sectic
. samplel.readme 1.1 Subsection
» gon;[ent o.utllners 7 el | Tis cexs 1o a placensider for che o
» Custom views

This text is a placeholder for the sectic
a bit longer in order to span two lines.

< >
Tasks | wBReadme Sertions £ =03

2.1 Subsection
2.2 Subsection

|

1

Content outliner Custom view

6

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 16 - Plug-ins and Pluglets

16-6

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

Eclipse Plug-in Architecture — Typical Arrangement

plug-in A plug-in B

point p € extension

- : i Igments .
@® interface | ‘<_rr|_p © class C

creates, calls

» Plug-in design is based on the Delegation pattern:
» Plug-in A
= Declares extension point P and an interface |
» Plug-in B
= Implements interface | with its own class C
= Contributes class C to extension point P

» Plug-in A instantiates C and calls its | methods

© Copyright IBM Corp. 2007 16-7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 16 - Plug-ins and Pluglets

Plug-in Development Environment

“ Plug-in Development - UXProfilePlug_in - Rational Software Architect

[B9[[=1 % |

Fle Edit Navigste Search Project Data Run Window Help

(i B0 -G |- i EEHE D Y 3@
=
[% Package Explorer 52 = O || g% uxprofiePlug_in 22 %54 UX Model Template... >4 =0
pa— . ~
E = Overview =
20 UX Model Template
J .
=-l=F UxProfilePlug-in General Information Plug-in Co.
U This section describes general information about this plug- The contenl
Package Explorer | " it
m: UxProfilePlug_in %Depen

e e A

E5 | = Plug-in Devel... gk Modeling [Resource

8= Outine 53

(= modeltemplate Ve oo Tise
& &= profiles | 3 g - 3n T TT—
. Plug-in Manifest Editor » = = <.
4 plugin.sml Proviace Classp =[5 Extensions
Platform fiter: compil 5= com.ibm. xtools.uml.msl.UMLProfiles
- ’ run, <~ org.eclipse.gmf.runtime.emf.care Pathn,
Activator: uxprofileplug_in, Activatar 4 Runtir B Extension Points
the libr g
Activate this plug-in when one of its dasses is loaded thatm e
2 Plug-ns 52 =0 this pit
runtimi ¥
Filter matched 1795 of 1795 plug-ins. = | 3
= Overview | Dependendies | Runtime | Extensions | Extensian Paints | Buid| s & (2]
5 = =
;Jf'(Dm‘buswessnbjeds‘UvslﬂleDDHS-dESlgf_"_ = Properties 2 . Tasks | Problems | Console | Project Explorer = =08
“J com.businessobjects.crystalreports. desigr
%= com,businessobjects crystaireports. desigr Advanced plugin.xml - UXProfilePlug-in
o
. . ~
Plug-ins View = ikl o
L - Info
A com.businessobjects.crystalreports. integr derived false
P : ; editable true
A= com businessobjects. crystalreports.integr
-, N N last modified 12/15/06 2:05 PM
= com businessebjects. crystalreparts.integr S e
.
;‘l’ com businessobjects.crystalreports.integr Iocation Ci\Workshopistudentiork\CreateAUXProfileWorkspace \UXPro. .
#-2J com.businessobjects.crystalreports.samph v m— plugin.xml
< > o e =

=] Overview
2] Dependencdies

e

= org.eclipse.i
2 org.ecipse.core.runtime
- com.ibm. xtools.umlms!

= com ihm inole

Outline View

amf mel

The Plug-in Development Environment (PDE) assi sts devel opers with creating, developing,
testing, debugging, and deploying Eclipse plug-ins. The mandate of the PDE also supports the

development of fragments, features, and update sites.

The PDE is part of the Eclipse SDK and does not have to be launched separately. In line with
the general Eclipse platform philosophy, the PDE provides awide variety of platform
contributions (such as views, editors, wizards, launchers, and so on) that blend transparently
with the rest of the Eclipse workbench. These contributions assist the developer in every
stage of plug-in development while working inside the Eclipse workbench.

Host and Runtime Workbench Instances

When working in the PDE, the instance of the workbench in which you create the plugin is
known as the host workbench. When testing and debugging the plugin, the instance of the
workbench that islaunched as part of the testing is known as the runtime workbench instance.

© Copyright IBM Corp. 2007

16-8

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

Plug-in Project

= A plug-in includes a:
» Manifest (plugin.xml)
= Describes the structure, content, and dependencies of the plug-in

» Plug-in class
» Named Activator.java

= Top-level Java class that represents the entire plug-in and controls class
behavior at runtime.

[Package Explorer &1 9 UXModeling. epsx 3 8

1 UK Model Template
=122 UxProfilePlug-in
- (# sre
&2 JRE System Library [jdk]
@ = Plug-n Dependendies
- META-INF
&= modeltemplate
&= profiles

Overview | Dependendies | Runtime | Extensions | Extension Points | Build | MANIFEST.MF | plugin. xmi | >

9

Y ou develop an Eclipse plug-in in a plug-in project. A plug-in project isreally just a Java
project with additional packages and default items shown in the Package Explorer:

A plug-in is composed of a set of Java classes in their own namespace, and a plug-in
manifest, which isan XML file that describes the contents of the plug-in. The manifest fileis
always called plugin.xml, and is always contained in the plug-in project’ s root directory. The
Eclipse Platform uses manifest files to populate or update a registry of information that is
used to configure the whole platform.

* Plug-in Manifest: The manifest includes a plug-in identifier and other meta-
information, as well as sections specifying dependencies with other plug-ins, the plug-
in's extensions, runtime libraries containing classes used by the plug-in, and the plug-
in's extension points.

» Source Folder: The source folder isincluded with the project automatically, and
includes packages containing the plug-in class (with the name PluginNamePlugin.java).
The plug-in classis a top-level Java class that represents the entire plug-in, and controls
class behavior at runtime. The src folder aso includes code for the extensions that the
plug-in class controls.

« Build Configuration: Created when the project is created, the build configuration is
used to compile source folders into JARs. The PDE provides a simple editor for the
build.properties file. The editor has form and source views. The file itself follows the
Java properties format. Y ou need to provide a number of keys and their corresponding
values. Multiple values are separated using a delimiter comma.

» Plug-in Dependencies: Shows the parts of the Eclipse that the project uses.

© Copyright IBM Corp. 2007 16-9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

Plug-in Manifest (plugin.xml file)

<?eclipse version="3.0"?> Plug-in identification

<plugin id = “com exanpl e. t ool "
name = “Exanple Plug-in Tool "
class = "com exanpl e. tool . Tool Pl ugi n">
<requires> . /| Other plug-ins needed
<inport plugin =
"org.eclipse.core.resources"/> /
<inmport plugin = "org.eclipse.ui"/>
</requires>
<runti me> _——1 Location of plug-in’s code

</runtine>
<extension point =

<library name = “tool.jar"/>] /

"org. eclipse.ui.preferencepages"> Declare
<page id = "com exanpl e.tool . preferences"” / . .
icon = "icons/knob.gif" contribution
title = “Tool Knobs" this plug-in makes
class =

"com exanpl e. t ool . Tool Pref erenceW zard“/>
</ ext ensi on>

<extensi on-poi nt nane = “Frob Providers* id = Declare new extension
"com exanpl e. tool . frobProvi der"/ > point open to contributions
</ pl ugi n>

from other plug-ins

An <ext ensi on- poi nt > element has been added for this example.
<pl ugi n>..</ pl ugi n>
The plugin element is the root element of the manifest file. The id attribute (expressed as a

Java package) is the unique identifier the platform uses to reference the plug-in. The class
attribute specifies the main plug-in class.

<runtime>..</runtime>

The runtime element contains a list of the libraries that contain the plug-in's implementation
classes. Asthe project is created the New Plug-in Wizard generates this runtime element.
<requires>..</requires>

The requires element contains alist of the other plug-ins that the plug-in depends on. Each
dependency is captured with the import plugin element.

<ext ensi on- poi nt >..</ ext ensi on- poi nt >

The extension point element contains a list of extension points defined for this plug-in. The
information included here is stored (and made available for developers) in Eclipse’s plug-in

registry. An extension point declaration defines the id and name of the extension point, and
any other plug-in specific information.

An extension point XML schemais also generated to describe the extension points, so that
they can be validated and processed automatically.

<ext ensi on>..</ ext ensi on>

The extension element, with the point attribute, shows which plug-in or platform extension
point(s) this plug-in extends.

Note the difference between the extension-point element and the extension element.
extension-point shows what extension points this plug-in offers to others. The extension
element defines the functionality that extends another plug-in.

© Copyright IBM Corp. 2007 16 - 10

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 16 - Plug-ins and Pluglets

Plug-in Activation

= Each plug-in gets its own Java class loader
» Delegates to required plug-ins

» Restricts class visibility to exported APIs

= Contributions processed without plug-in activation

» Example: Menu constructed from manifest information for
contributed items

» Plug-ins are activated only as needed

» Example: Plug-in activated only when user selects its
menu item

» Initial activation starts the defined (or default) plug-in class,
and then the requested function is invoked

» Scalable for large base of installed plug-ins
» Helps avoid long start-up times

u=

© Copyright IBM Corp. 2007

16 - 11
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 16 - Plug-ins and Pluglets

PDE Runtime and Debug Testing

= Run and debug are supported

= PDE launches another Eclipse workbench

[Pl in Deestopment - JavallassHameComitraint. fava - Rational Software Architect

Fle Ede Sorce Relache havgale Sewth Prowel Dats M Wirdes heb

) <)

L R

2 bodeling
Fle ESL N Sewch homet Dsgum Ca Mdehg A Bide Feb
4 Padage Brglorer 1 Mg | = P p i

1. Workbench
running PDE
(host)

2. Run-time
workbench
(target)

© Copyright IBM Corp. 2007

16 - 12

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

Running a Plug-in

» Host versus run-time instances
» Host instance
= Running as you develop your plug-in using the PDE and other tools
» Run-time instance
= Launched from Run or Debug

= Workspace plug-ins (plug-ins under development) are merged with
the External host plug-ins

= Launch modes

— Run -t

— Debug

Eclipse IDT uses Java remote debugging. The runtime instance becomes the debug server,
with the host instance as the client listening on a port for debug events.

If you want to debug a standalone Java™ application and make use of the hot method replace
functionality, you will need to use a Java Runtime Environment (JRE) that supports hot
method replace (also called hot code replace). The installed default JRE included with the
IBM® Rationa® Software Development Delivery Platform provides this support.

To enable hot method replace when running with the default IBM Rational Software
Development Delivery Platform JRE, go to the Arguments Tab of your Java Application
launch configuration and specify -Xj9 asaJVM Argument.

When debugging Java using hot method replace, there are some limitations. To learn about
these limitations, see the Java and mixed language debug limitations topic.

© Copyright IBM Corp. 2007 16 - 13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Run-time Workbench Configuration Wizard

Session Arguments

Plug-in visibility = s B
control el Q
Tracing options = = .
Source lookup | —

) Clear werioce ota befve g (iotspacen) [Flessiome] [vogsbit

Environment
variables

Launcher options

<

Y ou will use this launcher to start test sessions. Y ou need to become comfortable with
optimizing its use.

Arguments page: Runtime workspace location and the ability to clear the workspace. If
required, choose between the VM, arguments, Eclipse arguments, and other launcher
control details.

Plug-ins and Fragments: Controls which will be included in the test session. When
there are duplicates, workspace copy is used.

Default (1st): isworkspace plus PDE Preferences>Target Platform list

Features (2nd): can test feature definitions, but requires the use of \plugins and
\features directories in the workspace (see the error message when this option is
selected).

Chooselist (3rd): Pick and choose from those in the workspace and target platform list.

Tracing: Allowsyou to select trace control input for plug-ins that are setup to support
tracing (.options)

Sour ce: Where source will be found for debugger visibility

Common: Controls perspective choices after launch (overrides Preferences settings),
shortcuts, and the ability to save the launch config in afile for others to use

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 16 - Plug-ins and Pluglets

16 - 14

Pattern Implementation Workshop with IBM Rational Software Architect

Module 16 - Plug-ins and Pluglets
Where Are We?

» Plug-ins
» Pluglets

This section provides an overview of how you can extend the capabilities of Rational

Software Architect by creating and using pluglets. Y ou can also use pluglets to help create
other extensibility artifacts, such as patterns and transformations.

© Copyright IBM Corp. 2007

16 - 15
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

Pluglets Overview

» What are pluglets?
» They are used to make minor extensions to the workbench

» You can make pluglets that:

= Gather model metrics (fan-in, fan-out, and model enumeration)
= Explore APIs

» They have available templates

» Similar to plug-ins, they have a pluglets.xml manifest file
and a plugletmain() entry point

> They are ava”able In <7uml wersion="1.0" encoding="UTF-8" 7>
Rational Software - cpluglets>
ArCh|teCt, Ratlona-l_ SyStemS a:i?"nport plugin="com.ibm.xtools.pluglets" />
Des|gner’ and Ra‘“onal cimpprt plugin="com.ibm.xtools.modeler" />
Software Modeler Nt
</pluglets>=

Pluglet Manifest

A pluglet, developed in a pluglet project, is alight-weight version of the plug-in, can provide
a script-like extension to the devel opment environment to handle routine tasks. Pluglet
functionality offers you an easy way to explore and learn the application programming
interfaces (APIs) offered by the workbench platform and other product extensions. From a
workbench perspective your can write the statement Pl at f or m get Wor kbench() and
gain completed access to the entire workbench and its parts. From a modeling perspective,
the UMLModeler class allows you access to a model and its contents.

It isasimple Java program that runs from a top-level menu. Because pluglets have alimited
scope, they arerelatively easy to develop and require only minimal knowledge of how plug-
inswork. As Java programs, pluglets can be developed in the Java devel opment environment
and access the workbench plug-in APIs (such asthe Eclipse, UML2, EMF, and Rational
Software Architect APIS). Pluglets can also be tested in the same instance of the workbench.

© Copyright IBM Corp. 2007 16 - 16

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

Pluglet Applicability and Limitations

= Applications
» Use for samples, one-time tools (such as a migration utility), and so on

» Useful for exploring the extensibility APIs when building patterns and
transformations

» Very useful for obtaining access to a model in the current workspace
» Don't use pluglets in place of workbench product extensions
» Shipped samples should include source code

» Required for the Ready for Rational Software program

= Limitations
» Requires a separate Rational Software Architect session to run in the
debugger

» Syst em out is NOT written to console view.
Use Pl ugl et . out

= Start Rational Software Architect with the
—consol el og parameter and you will see
System out . |:

= Can be helpful if your pluglet includes other
classes that require debugging

17

If you reference other classes they probably won’t be extending the Pluglet class, so the out
method is not available. Using System.out with the —consol el og startup of Rational
Software Architect will allow you to see debugging output from those other classes

Thisisvery useful for working with and exploring the api's (uml2, emf, rsa, and so on). It
can be used to figure out how a pattern or transformation should work. Then the code can be
put into the pattern or transformation.

This method can save you a great deal of time, as the pluglet runsin the same eclipse
instance.

© Copyright IBM Corp. 2007 16 - 17
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

Pluglets versus Plug-ins

Pluglets: Plug-ins:

» Provide a lightweight » Require significant effort for
alternative to plug-ins for simple automation work
simple extensions » Need to create a PDE

. Project
» Reside in a Java Pluglet
Project » Need to add a menu
) contribution
’ Ilnvoke<|j_|1fr0n|1 a generic " » Need to deploy the plug-in in
nternal Tools menu similar the host environment
to the External Tools menu
i]] » Used, for example, to add

» Run in the tool instead of in whole perspectives and
a separate workbench views to Eclipse
Instance » Allow debug and hot swap

» Used, for example, to add capabilities during

custom dialogs or retrieve development

model information

» Allow debug and hot swap
capabilities during
development

Y ou can create pluglets to handle routine tasks, and pluglet functionality offers you an easy
way to explore and learn the APIs offered by the workbench platform and other product
extensions. From a workbench perspective you can write the statement

Pl at f or m get Wr kbench() and gain complete access to the entire workbench and its
parts. From a modeling perspective, the UMLModeler class allows you access to a model and
its contents.

© Copyright IBM Corp. 2007 16 - 18

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 16 - Plug-ins and Pluglets

Creating Pluglets

= Create a pluglets project in the Java perspective

= Fill in the pluglets manifest
= Create Java classes

» Test in the same workbench
» Use debug features in a separate session

J Resource - HelloWorld. java - Rational Software Architect

[E0]f=1%

Fle Edit Source Refactor Navigate Search Project Data Run Window Help
BrO Q[@B P @

5 Navigator &2 = O|[[Helloworld.java 52
= <)===> = import com.ibm.xtools.pluglets.Pluglet:
= &5 PlugletProject o o

&) public class HelloWorld extends Pluglet {

(& bin

i| classpath
X| .project
J1 Helloworld java
X pluglets. xml

public void plugletmain(String[] args) {

inform("Hello, world!"); //SNON-NLS-1%

}

Y | 5 Resource
= O || B outine ¢ =0
T
#“= import dedarations
=@, Helloworld
-
@ plgletmain(String[l)

To create a pluglet, you only need the class implementing the desired behavior and the

pluglet.xml file (indicating the other plug-insto import).

Y ou can test your pluglet directly on the same session on which you are developing it. Thisis
as opposed to plug-ins testing, where you need to start a target workbench instance. lif you
like to debug the pluglet and use breakpoints you will need to start a new session.

1. Create anew plug-in:

a. Click File> New > Pluglets Project. The New Pluglets Project wizard appears.
b. On the first page of the New Pluglets Project wizard, enter the project name.

c. Either accept the default directory or specify an output directory for the new

pluglets project and Click Finish.
2. Add apluglet to the pluglet project:

a. Click File> New > Pluglet to display the new pluglet page.

b. On the New Pluglet page, select one of the templates for the new pluglet.

c. Click Next.
d. Enter the name of the new pluglet in the Name field.
e. Click Finish to start working with the pluglet.

3. Write pluglet code. Pluglets extend the Pluglets class, and the plugletmain method is

called first.

4. Test the pluglet. Select the newly created pluglet in the Model Explorer view. Click Run

> Internal Tools > Pluglet-name.

© Copyright IBM Corp. 2007

16 - 19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

Enabling Pluglet Development

To begin developing pluglets, add Plugets and Pluglet
Projects to the New menu.

i) Customize Perspective - Resource @

Shortcuts | Commands

Select the shortcuts that you want to see added as cascade items to the following submenus. The selections made will only affect
the current perspective (Resource).

Submenus: Shortcuts:

Mew [l Shortcut Description

Shortcut Categories: B Pluglet Create a pluglet
=[] Java ~ [zl Pluglets Project Create a Pluglets Project

[Java Run/Debug
[aumit
[] 3ava Emitter Templates
[Iythan
Mapping
M
=[] Modeling
[uML Extensibility
[Plug-n Development
Pluglets

—_— .

To enable pluglets development, you first need to customize the perspective to include menu
items for creating pluglets and pluglets projects:

1. Click Window > Customize Per spective.

2. In the Customize Perspective window, click the Shortcutstab and be sure New is
specified in the Submenuslist.

3. Inthe Shortcut Categorieslist, select Pluglets to enable the related shortcuts. Make
sure that the Pluglet and Pluglets Project check boxes are checked in the Shortcut list.

4. Click the Commandstab. In the Available command groupslist, select Pluglets and
Modeling.

5. Click OK.

To check if your perspectiveis customized, click File > New and check if the Pluglets
Proj ect was added to the pull down menu.

© Copyright IBM Corp. 2007 16 - 20

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

Pluglets Manifest (pluglets.xml)

= Used to identify dependencies on other plug-in libraries
» Serves as the pluglets’ classpath
» Minimally references the pl ugl et s plug-in
» Requires manual update when new plug-in dependences occur
» One pl ugl et s. xm file per project

» Use Help > Extending Rational Software Architect functionality >
Extensibility Reference > API Reference for help on plug-ins to import

E

*| pluglets.xml 2 m UMLModelerPluglet. .. m *TextEditorPlugle... 1 =0

kTX"' wversion="1.0" encoding="UITF-8"72

"com.ibm.xtools.pluglets™ />

m.ibm.xtools.modeler.ui™/ >
g.eclipse.core.runtime™ />
g.eclipse.ui.workbench™ />

L]

.eclipse.jface™ />
.eclipse.jface.text" />
.eclipse.ui.workbench.texteditcor™ />

[L1s]

Design | Source h

This effectively provides the classpath for your pluglet by identifying plug-ins whose
libraries (JAR files) you have a dependency on.

© Copyright IBM Corp. 2007 16 - 21

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

The Pluglet Class

dialogs
» Confirm
» Prompt
» Error
» Question
» Warning

» Provides properties and basic
services used by pluglets

= PrintWriter provides the output
for the pluglet

» The class provides convenience

«lava Class»
(3 Pluglet

o out : PrintWriter

o dialog : PlugletMessageDialog

o directory | String

o file : String

o fullharne : String

o hame ! String

@ Pluglet ()

@ getMame ()

@ setMame ()

@ getFullNarne)

@ setFulMarme ()

@ getFile ()

@ setFie ()

@ getDirectory ()

@ setDirectory ()

@ confirm ()

@ error ()

@ infarm ()

@ prompt ()

@ question ()

@ warning [)

@ printStackTrace ()

@ durnpsStack ()

@ getDialog ()

@ setDialog ()

To use the basic pluglet properties and services, pluglet must extend the Pluglet class from

the Eclipse pluglet API. This classincludes, for example, the following methods:

« get Nane: retrieve the name of the pluglet.

« get Di rect ory: retrieves the full path of the pluglet directory.

Use of this class and extending the classis optional.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 16 - Plug-ins and Pluglets

16 - 22

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

Development Considerations

» Pluglet class
» All pluglets extend this class

» Contains many helper methods for user interaction,
basic i/o, pluglet info, and so on

Field/Method Description

out Printwriter field. Usein
place of Syst em out

i nform question User interaction dialogs

pronpt, confirm
war ni ng, error,

dunpst ack, Diagnostics
print St ackTrace
get XXX, set XXX get/set pluglet data.

directory, file, pluglet name

Examples of user interaction dialogs are on the next slide.
com.ibm.xtools pluglets:
 ClassPluglet
* javalang.Object com.ibm.xtools.pluglets.Pluglet
* Direct Known Subclasses:
* InsertDateAndTime, ListPerspectives, ListProjects, ShowSelection
« public class Pluglet extends Object

 Provides pluglet properties and basic services used by pluglets. To use these properties
and basic services, apluglet class must extend this class. Use of this class (and thus
extending this class) is optional.

 Field Summary PrintWriterout
The output for this pluglet. Constructor SummaryPluglet()
Method Summary:

» bool eanconfrin(String nessage) : Displaysamessage dialog with OK
and Cancel buttons.

* Bool eanconfirn(String nmessage, string titl e:Displaysamessage
dialog with OK and Cancel buttons and the given title.

» Voi ddunmpSt ack() : Printsastack trace of the current thread to the pluglet
output writer.

e voi ddunpSt ack(PrintWiter writer): Printsastack trace of the current
thread to the specified print writer.

e Voi derror(String nessage): Displaysan error dialog with an OK button.
 Voiderror(String nmessage, String title): Displaysanerror diaog
with an OK button and the given title.

* |PlugletMessageDialoggetDialog() : Retrieves the host's IPlugletM essageDia og
implementation.

» StringgetDirector(): Retrievesthe full path of pluglet directory.

© Copyright IBM Corp. 2007 16 - 23

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

Example Pluglet Class Dialogs

‘2 HelloWorld i) HelloWorld
Prompt Dialog: What is Your Name?
| y Inform Diglog: Hello, world!
EIN N
' HelloWorld 2 HelloWorld
€ | Question Dizlog: Is That Correct? | Confirmation Dizlog
iy 2,
= o
./ HelloWorld 2! HelloWorld
) Warning Dizlog @ Error Dialog
LY
[OK oK

More sophisticated dialogs are possible using the Eclipse
JFace and SWT Dialog classes.

24

«Stringget Fi |l e(): Retrievesthe full path of the pluglet file.

e Stringget Ful | Nane() : Retrievesthe full name of the pluglet.

* St ringget Nane(): Retrievesthe name of the pluglet.

evoidi nform(String nessage): Displaysadialog with an OK button.
evoidinform(String nessage, String title): Showsan OK button and title.

evoi dpri nt StackTrace(Thr owabl e t): Printsthe throwable and its backtrace to
the pluglet output writer.

evoi dprint St ackTrace(Throwable t, PrintWiter witer) Printsthe
throwable and its backtrace to the specified print writer.

*Stringpronpt (String nessage): Displaysan input dialog with a prompt
message, atext input field, and OK and Cancel buttons.

Stringpronpt (String nessage, String initial Text): Displaysaninput
dialog with a prompt, the text input field initial text, and OK button and Cancel buttons.
Stringpronpt (String nessage, String initial Text,

String title): Displaysaninput dialog with a prompt message, the text input field
initial text, thetitle, and OK button and Cancel buttons.

*bool eanquestion(String nmessage): Displaysadiaogwith Yes and No.
*bool eanquestion(String message, String title): Displaysaquestion
message dialog with Yes and No buttons and the given title.

evoi dset Di al og(| Pl ugl et MessageDi al og di al og) : Setsthe host's

| PlugletM essageDial og implementation.

evoidsetDirectory(String directory): Setsthefull path of pluglet directory.
evoidsetFile(String file): Setsthefull path of pluglet file.

evoi dset Ful | Nane(String full Nane) : Setsthe full name of the pluglet.

evoi dset Nane(Stri ng nane) : Setsthe name of the pluglet.

evoi dwar ni ng(String nessage) : Displaysawarning dialog with an OK button.

evoi dwar ni ng(String nessage, String title): Displaysadiaogwithan
OK button and title.
© Copyright IBM Corp. 2007 16 - 24

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

Some Pluglet API Entry Points

Rational Software Architect and Eclipse or JDT classes
with static methods that open up particular workbench
API's

Class Plug-in Description

Pl at f or mJI . get Wor kbench org.eclipse.ui Central access point for
workbench Ul

Resour cesPl ugi n. get Wr kspace | org.eclipse.core.resources | Workspace

UM_Model er com.ibm.xtools.modeler.ui | Central access point for
UML model access

UMLDi agr anResour celti | com.ibm.xtools.viz.ui Central access point UML
diagrams

JavaCor e org.eclipse.jdt.core Central access point for
Eclipse JDT model

Javaul org.eclipse.jdt.ui Central access point for
Java Ul

These are classes in Eclipse, Java, and Rational Software Architect that contain static
methods that provide access to root objects in the class hierarchy of these components. They
provide entry points for pluglets.

© Copyright IBM Corp. 2007 16 - 25

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

Testing the pluglet
= Context menu from) HelloWorld
selected pluglet o we
Run > Pluglet L
= Or from the toolbar -5 g s
» Including Modeling 1| E5 1 TextEditarPluglet ,
perspective .| FE 2 UMLModelerPluglet i
EE 3 HelleWorld
Run As koL
¥ Internal Tools...
Organize Favorites. ..

© Copyright IBM Corp. 2007

16 - 26
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

Demo: Create a Pluglet

The instructor will now show you how to:
» Enable Pluglet sub-items in the New menu
» Create a pluglet
» Run the pluglet

Watch your instructor create a simple pluglet.

© Copyright IBM Corp. 2007 16 - 27

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

Lab 13: Create a Pluglet

= Given:
» Pluglet project, PlugletProject.zip
» Code fragments

= Complete the following tasks:
» Create the Workspace
» Configure the Perspective
» Import the Pluglet
» Complete the Pluglet
» Run the Pluglet
» Export the Pluglet

Complete Lab 13 in the student workbook.

© Copyright IBM Corp. 2007 16 - 28

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 16 - Plug-ins and Pluglets

Review

= What is the difference between a host and run-time
workbench?

= What are the components of a plug-in project?
= For what purposes can pluglets be used?

© Copyright IBM Corp. 2007 16 - 29

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 16 - Plug-ins and Pluglets

© Copyright IBM Corp. 2007

16 - 30
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 17 - Models Templates

| IBM Software Group

DEV498: Pattern Implementation Workshop with IBM

Rational Software Architect
Module 17: Model Templates

‘Rational. saftware

© 2006 IBM Corporation

Contents
Objectives 17-2
Model Templates 17-3
Lab 14: CreateaUX Model Template 17-7
Review 17-8
Further Information 17-9
© Copyright IBM Corp. 2007 17-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 17 - Models Templates

Model Templates

= Objectives:
» Describe Rational Software Architect model templates
= The uses for model templates
= How to design a model template
= How to create a model template in Rational Software Architect

» Describe the relationship between model templates,
profiles, UML patterns, and transformations

N
Jln]]
1
|

© Copyright IBM Corp. 2007 17-2

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 17 - Models Templates

Model Templates

= Allow the user to create [T
a new model based on v
a pre-existing structure

File types: Templates:

» Built-in templates available o > —
from the New Project wizard e b
. . . - . 2§ XSD Model
» Used in conjunction with: |
} Profl I es: G Ulde the user |n Create anew Analysis Model following Rational Software Modeler/Architect

Mode! Structure Guidelines

structuring the model as the use
profile stereotypes

File name:

L5 Project Explorer &% = <.===;> |

} UML Patterns Usedto D:::::;T:sﬂ, =I-1=F Miscelaneous Models

populate the model with 8 (& Dagrams

standard elements and = & modsi

structures, such as model A

elements, package structures %7 UMPrimtveTypes)

and dlag rams) fproject} Analysis Overview
» Transformations: Provide : 110 o bt}

a standard, structure, source ‘?‘ @ <Controb> ${control}

, or target for a custom I

transformation g

: Analysis Building Block Instructions
: Instructions
=12 UxProfilePlug-in

© Copyright IBM Corp. 2007 17-3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 17 - Models Templates

Review: Populating a Model Template

= Model templates contain:

I Project Explorer 2 . Outline = -Sa=!
» Packages - = MyProject
» Diagrams +-(22 Diagrams
- s
» Building blocks S5 Models
i . Analysis Model
4 App“ed proflles Enterprise IT Design Model
* The built-in templates can be B e e
CUStomlzed' =-E3 «perspective» Overviews

P} Actors Overview
P} Context Diagram
™ .
L Overviews
% (UMLPrimitiveTypes)
Rl

Ct PO Management Use Cases
& ${project} Use Case Overview
™ .
_ | Instructions

=-E3 Use-Case Building Blocks
+-03 ${functional.area}
+-0 ${use.case}
Example Building Block package () Use-Case Building Block Instructions
=-E3 Versatile Actors
4

3 Versatile Actors

Example Building Block element

Every template contains a «modelLibrary» package called TemplateName Building Blocks.
This package contains chunks of model content that you can use to build the design model
more quickly. Building blocks act as template model elements. Y ou can copy (CTRL+C) and
paste (CTRL+V) the building block elements to create new elements for your model.

To use abuilding block element:

* Inthe Project Explorer, copy abuilding block element from the building blocks package
and paste it in the desired location in the model.

* Right-click the new element and choose Find/Replace to change the placeholder name
{$name} to the desired name.

A best practice for naming diagrams is to come up with a descriptive name and then add the
diagram type. For example, the use-case diagram above is called “ PO Management Use
Cases.” You might also call it “PO Management Use-Case Diagram.”

© Copyright IBM Corp. 2007 17-4
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 17 - Models Templates

Creating a Model Template

= Build a new model structure based on a blank
model or other model

= Create a Plug-in Project

= Add .emx file to the Plug-in

= Connect to an extension point

» Specify template details in the .ve file

5. Navigator 3 = O || 4 com.ibm.example [E] MyModelTemplate. templatedef.ve 4 com.ibm.example 7 =0
5% 7| Extensions
5 = jcom. b, examle
© (= bin All Extensions Extension Element Details
S = = com.ibm. xtools. modeler. i wizards. template e
MANIFEST.MF [templates (directory) path™: | templates
4= src
== templates
MyModelTemplate. templatedef.ve
24 MyTemplate.emx
|5 .dasspath
E .project
[sih build. properties b Body Text
A4t plugin sl

Overview | Dependencies | Runtime | Extensions | Extension Points | Build | MANIFEST.MF | plugin.xml | build. properties

5

Y ou can save amodel in the workspace as a model template. Model templates can contain
pre-defined model elements and provide the basic structure of a new model. Model templates

can be distributed to other team members to ensure that there is a consistent model format
within a project.

To export amodel as atemplate:

1. Build amodel that represents the structure that you wish to make available to others for
reuse.

2.Create a Plug-in project.

3. Copy the .emx file for the model into the plug-in project. By convention, you should
place the .emx fileinto afolder names templates.

4. Connect to the com.ibm.xtools.model er.wizards.template extension point. Add a
directory element and point to the location where you placed the template file.

5. Create a new text document with a .ve extension.
6. Add details to the .ve file that describe your template.
7.Test.

8. Deploy.

© Copyright IBM Corp. 2007 17-5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 17 - Models Templates

Specify Template Details

» The .ve file allows you to specify details for your
model template, including:
» Name
» Description
» lcon

|- MyModelTemplate. templatedef.ve &3 =t

NLS_ENCODING=UTF-8

HLS_MESSAGEFORMAT_NOWE
#
Licensed Materials - Property of IBM

(C) Copyright TBM Corp. 2006. B11 Rights Reserved.

¥

US Government Users Restricted Rights - Use, duplication or disclosure
reatricted by GSA ADPF Schedule Contract with IBM Corp.

¥
templateFile=MyTemplate.emx

name=My Template Model

icon=../iconz/template icon.png

description=Create a new model based on my Template model
id=com.ibm.example.modeltemplate.id

®
Jln]]

The .vefileisused to specify detailsthat will make your model template more consumable
by the template’ s end users. Within the .ve file you can specify the name, description, and an
icon for thetemplate. To ensure that thisinformation is shown in support of just your

template, you also specify the name of the profilefile, aswell astheid of the plug-in that
contains the templ ate.

© Copyright IBM Corp. 2007 17-6

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 17 - Models Templates

Lab 14: Create a UX Model Template

= Complete the following tasks:
» Create the Model Template
» Add the Model Template to a Plug-in
» Apply a Profile to the Model Template

Complete Lab 14 in the student workbook.

© Copyright IBM Corp. 2007 17-7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 17 - Models Templates

Review

= \What elements can be found within a model
template?

» How are model templates distributed?

» \WWhat roles can model templates play
alongside other artifacts?

© Copyright IBM Corp. 2007 17-8

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 17 - Models Templates
Further Information
=\Web resources
= |iterature
Web Resour ces
Literature

» Bran Sdlic. “Unified Modeling Language version 2.0.” IBM devel operWorks, http://www-
128.ibm.com/devel operworks/rational/library/05/321_uml/

« James Rumbaugh et a. The Unified Modeling Language Reference Manual. Boston:
Addison Wesley, 2005.

© Copyright IBM Corp. 2007

17-9
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 17 - Models Templates

10

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

17-10

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

| IBM Software Group

DEV498: Pattern Implementation Workshop with IBM

Rational Software Architect
Module 18: Packaging Artifacts

‘Rational. saftware

© 2006 IBM Corporation

Contents
Objectives 18-2
Eclipse Features 18-5
Reusable Asset Specification (RAS) 18-19
Lab 15: Package Reusable Artifacts 18-23
Review 18-24
© Copyright IBM Corp. 2007 18-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

Packaging Artifacts

= Objectives:
» Describe the methods of managing and packaging
extensibility artifacts:
» Plug-ins
= Features
» Reusable Asset Specification (RAS) Archives

» Create a RAS archive

~
Jln]]
1
[HlH
lln
]

© Copyright IBM Corp. 2007 18-2

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

Course Outline in the Context of MDD

O_ \
e
4| Model 2 Model
: | Transformation
/ (o]
7Y
: | Model 2 Model

Transformation
=
— =,

il

JET2 based
Transformation

e 18: How do | package
3 these elements
J _/ as reusable assets?

We will seethis dlide several times throughout the workshop. 1t will serve asavisual guide
to the skills you are learning, and to how they fit into MDD .

© Copyright IBM Corp. 2007 18-3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

Where Are We?

» Eclipse Features
» Reusable Asset Specification Archives

N
Jln]]

© Copyright IBM Corp. 2007 18-4

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 18 - Packaging Artifacts

Eclipse Features: Packaging and Installing Plug-ins

Eclipse Features
» For packaging plug-ins:

Manager
= |tis possible to brand features

» For installing plug-ins:
= The user can choose to disable or enable features.

= Features are installed and managed using the Update Manager.

Extensions

= Organize plug-ins so that they can be installed and managed by the Update

= Features can be nested to manage the source of service for a set of features.

© Copyright IBM Corp. 2007

18-5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Feature Structure

e®0cccccccccccccccccccccce,
.

<requires> .
q <includes>

» Required plug-ins and features used to validate feature install and
enablement

» Included features are serviced by the parent-defined update URL

» Referenced plug-ins are managed and serviced by referencing feature

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 18 - Packaging Artifacts

18-6

Pattern Implementation Workshop with IBM Rational Software Architect

Module 18 - Packaging Artifacts

What are Install Sites?

file.

= Install sites are the basic building block in a configuration.

= An install site is a location on the file system where the f eat ur es and
pl ugi ns directories can be found.

= An install site is a single location on the file system, but the same
location could be included in multiple configurations and in multiple
Eclipse-based product installations.

* Types of install sites:

» Platform base site: This is where Eclipse itself is installed. It always exists.
» Extension site: Distinguished from other sites through the .eclipseextension

» Update site: Distinguished from other sites through the site.xml file.

”j features ”j plugins

FROECT Fie <@

1KB =

Update Site

7

© Copyright IBM Corp. 2007

18-7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

What are Configurations?

= The Update Manager controls your Eclipse configurations.

» Creates an initial configuration during startup if there is no existing configuration
» Reads the active configuration

» Manages changes that occur to the configuration

= A Configuration identifies:
» What Install sites are accessible
» What Features exist in each site

= Configuration information is saved in the pl at f or m xm , which is
filefound in the confi gurati on/ org. ecl i pse. updat e directory

= A Configuration applies to any workspace that might be accessed

= The default configuration is used when Eclipse is launched
» <eclipse_install>/eclipsel/configuration

= An alternate configuration can be specified using the
-confi gurati on startup parameter

© Copyright IBM Corp. 2007 18-8

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

Feature Scenarios

Installer Technology
Intall | New Product
n mage Or Extension

Install
[=——=]

PDE Feature Project
Packages Sets of Plug-ins

Update M anager
Add, Update, or Remove

Tool Developer

Components

© Copyright IBM Corp. 2007

18-9
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

Create a Feature

1. Open the New wizard dialog & :
by hitting CTRL+N, filter for = New Project X
f eat ur e, and click Next. Select a wizard —>

Create a Feature project

2. Add project name and
Feature Provider, and click Wizards:
Next. featu “

= [= Plug-in Development
{i§ Feature Patch

3. Select required plugins and ¢ [Eeature Project

features, and Finish.
[1Show All wizards.
4. feature.xml opens in a multi-

page editor similar to
plugin.xml.

10

© Copyright IBM Corp. 2007 18- 10

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

Edit a Feature

Overview page
» Define Update URL

cap CVTER 5
- a.E-feahlre
» [nformation page s b g famain s v re | oot vy s
» Define Feature description e oy
» Define Copyright Notice
» Define License Agreement _ _—
» Plug-ins page _
» Define included plug-ins h
n

Feature page
» Define Features to be nested

Crverview | Information | Content | Advanced | Bulkd | fratune oml | bulkd propertes.

11

© Copyright IBM Corp. 2007 18- 11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 18 - Packaging Artifacts

Package a Feature: Overview (1 of 3)

= Packaging plug-ins using features is required to install into Eclipse
= The process is driven by the build.properties, feature.xml, and

plugin.xml files

= Features and their associated plug-ins can be packaged in two ways:

1. Packaging for an Extension site
» ecli pse folder

= . eclipseextension file

= features folder

- <f eat ur el d_ver > folder
- Feat ure. xm

= pl ugi ns folder
- <pl ugi nsl d_ver > folder
- pl ugi n. xm
- <runtime>.jar

12

© Copyright IBM Corp. 2007

18- 12

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

Package a Feature: Overview (2 of 3)

Eclipse features and their associated plug-ins can be packaged in three
ways:

1. As a RAS asset
2. As Packaging for an Extension site
3. As Packaging for an Update site
» updat eSi t e folder
= site.xm file

= Feat ur es folder
- <featureld_ver>.jar

= Pl ugi ns folder
- <pl ugi nld_ver>.jar

13

© Copyright IBM Corp. 2007 18- 13
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

Package a Feature: Overview (3 of 3)

» Packaging options include:
1. Ant scripts using PDE

1. Build for an Extension site
2. Build for an Update site

2. Export Features wizard
1. Export for an Extension site
2. Export for an Update site

3. Site editor’s Build All action

1. Build for an Update site

4. Ant scripts using AntRunner

1. Build for an Extension site
2. Build for an Update site

14

© Copyright IBM Corp. 2007 18- 14

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 18 - Packaging Artifacts

Package a Feature: Export Features Wizard

The Export Features
wizard provides three
options:
1.Export as a directory
structure
= Builds for Extension site

2.Export as a single ZIP file

= Builds for Extension site

3.Export as individual JAR
archives

= Builds for Update site

' Export E
Deployable features ':'...Ixh
‘@ Destination directory must be specified. ‘ |f".___;j
1

Available Features:

- myFeature (1.0.0)
1 out of 1 selected.

Destination | Options

() Directory:

v.
O Archive file:
15

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

18- 15

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

Package an Install Site

= Two options exist for how Features can be installed in Eclipse. The
result of these two techniques is the same.

1.Install Feature from an Extension site
= Tool providers package their Features including an . ecl i pseext ensi on file using
InstallShield.
= . ecli pseext ensi on content includes:
i d=com i bm j dg2e. si npl enodel . ui
nane=JDXE Si npl e Model U
version=1.0.0

2.Install Feature from an Update site
= Tool providers package their Features including a si t e. xm file to a HTTP site.

= site.xm contentincludes:
<site>
<feature url="features/comibm jdg2e.sinplenodel.ui_1.0.0.jar"
id="comibm jdg2e. sinpl enodel .ui" version="1.0.0">
<cat egory nane="j dg2e. service"/>
</ feature>
<cat egory-def nane="jdg2e. service" |abel ="JDXE Service">
<description> JDGE Service Description </description>
</ cat egor y- def >
</site>

16

© Copyright IBM Corp. 2007 18- 16
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

Summary

= [eatures are:
» An installable unit of function
» A packaging construct

= [eatures can:
» Brand plugins
» Nest other features

= Features can be:

» Installed and managed using the Update Manager
» Developed using PDE

17

© Copyright IBM Corp. 2007 18- 17

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 18 - Packaging Artifacts

Where Are We?

= Eclipse Features
» Reusable Asset Specification Archives

18

This section provides an overview of the Reusable Asset Specification.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

18- 18

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

Reusable Asset Specification (RAS)

» The RAS provides a standard format for assembling,
organizing, storing, and documenting reusable assets,
including extensibility artifacts.

» Rational Software Architect supports the exchange of
RAS assets:

» RAS Import and Export

» RAS documentation

» .ras file format

» Support for RAS repositories

19

Rational Software Architect uses the Reusable Asset Specification (RAS) to provide a
standard way to package and extract a set of related files. A RAS asset isa RAS-compliant
collection of related files or artifacts.

A RAS asset can contain many types of artifacts; for example, design and use-case models,
pattern assets, Web links, code samples, text files, and test data. Assets targeted for long-term
reuse benefit from good documentation that summarizes the asset's purpose, use, content, and
context. Documentation plays akey role in helping the consumer determine if the asset
satisfies his requirements.

RAS assets provide the following benefits:

» A method to communicate software solutions easily.

» Organization of diverse, but related, filesin a single package.

* Presentation of consistent information in all assets of the same type.
Multiple and flexible keywords to search repositories for assets.
» Optionsto store and retrieve assets from one or more RAS asset repositories.

Use of simple variations of the standard import and export functions to load and package
assets.

» Maintenance of activities to ensure accurate file restoration upon import or export.

The RUP for Asset-Based Devel opment plug-in describes the asset identification, asset
production, and asset consumption process components of the asset-based devel opment
discipline. This plug-in is available for download from the “List of RUP Plug-ins” on IBM
developerWorks: http://www-128.ibm.com/devel operworks/rational/library/5823.html.

© Copyright IBM Corp. 2007 18- 19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

RAS Assets

= A RAS asset contains:
» Artifacts
» Variability points

Problem
= Parts of a RAS asset file include:
» RAS manifest
» Asset profile Solution

» Activity task types

0 ..
Artifact Artifact

| O variability Point |

20

When you begin using pattern solutions in the development environment, you need to find a
standard way 1o store’and share them (along with other project artifacts). This mechanism for
sharing artifacts is the reusable asset.

A reusable asset is an organized collection of artifacts that provides a solution to a problem
for aas%ven context. Assdis clearly have much in common with patterns. Similar to a pattern,
an :

* Includesinstructions or usaﬂ]e rules, to minimize the time developers need to discover,
analyze, consume, and test the asset.

* Includes standard documentation describing the development and business context in
which the asset can be used.

» Can have variability points, like pattern parameters, that allow users to customize the
asset for a specific project.

An asset js amore general concept than a pattern, since it is a collection of artifacts and not
just a collection of model elements.

An asset can contain more than patterns. An asset for a development prog'ect might contain
requirements, models, source code, and tests. Assets might also be u 0 package and share
deployable components, Web services, frameworks, and templates.

The standard structure of reusable assets is the Reusable Asset Specification (RAS), an OMG
standard. The Rational brand products use the RAS specification for exporting and importing
assets to help with asset-based development. By default, alocal repository isprovided for
storing and retrievi n_? your files. A Pattern repository also comes preloaded in the Asset
Explorer view. Additional repositories can be established using applications for Web-based
access.

* RASasset manifest file: The RAS asset is a compressed file that stores the files that
make up the asset. At export, a manifest fileis created (from the selected RAS profile
file) and isincluded in every RAS asset'sfile.

e Typesof RASasset profiles: RAS asset praofiles allow you to create different types of
assets. A specialized profile extends the original contents of the default profile. Every
RAS manitest must have a RAS profile associated with it.

 Activity task types. Activities should be modified only hy users who are familiar with
usi nsq the Reusable Asset Specification to hand code manitest files. Modifications to the
RAS manifest files-generated activities can render them incompatible. Activities
describe tasks the user should do to reuse the asset. It is recommended that you do not
modify generated activities, but you are encouraged to add your own as needed.

© Copyright IBM Corp. 2007 18- 20

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

Packaging UML Patterns and Transformations

= Patterns with
transformations can be
grouped into pattern
libraries

= Pattern libraries and
transformations can reside
in the same Eclipse plug-in

» Plug-ins can be grouped
and exchanged in RAS
format.

Patterns Library

i
i
]

21

il
v
o]
m
®

Patterns realize their maximum benefit from reuse and distribution as RAS assets. They can
be exported as deployable plug-ins.

As patterns are created, the required meta (RAS manifest) files (which support the RAS
packaging) are added to the pattern project, both to the individual patterns that it comprises
and to the pattern library itself on export. The content of the manifest file is determined by a
pattern’s profile, which specifies the type of the metafile used to package (and also restore)
RAS assets.

A pattern repository is always created for you whenever any pattern plug-ins are detected and
available to your workspace. Patterns installed as plug-ins and patterns in other repositories
al display in the pattern repository and the Pattern Explorer view.

Common RAS features, such as searching and adding groups (folders) are also availablein
the Pattern Explorer view. Thus, pattern functions can be accomplished without using the
Asset Explorer view.

© Copyright IBM Corp. 2007 18-21
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

RAS Repositories

Repository Types
> Developerworks [E Asset Explorer X WREN R s =0
» Local S| FRSP v
=[] DwRAS
= analysis
’ Workg roup et = :nalysis to Design Transform
3 IBM® Ratlona|® XDETM (57 Business ta Use Case Transfarm

(5 UML to #5D Transform
(57 Use Case to Analysis Transform
- = design_jzee
(5 Enterprise Patterns
=[] Patterns Repository
?_, Business Delegate Pattern
?_, Data Access Object Pattern
+-[= Design Patterns
& Design Patterns
+-[= Enterprise Patterns
?_, Message Facade Pattern
?_, Session Facade Patkern

22

Repositories provide away to organize and manage assets so that they can be exchanged
quickly and easily with developers and co-workers. Y ou can easily add a repository to your
repository list so that you can view, search, inspect, and import these assets. The RAS feature
supports the following types of repositories; developerWorks, Local, Workgroup, IBM®
Rational® XDE™, and Patterns.

« developerWorks repository: Contains new Rational Software Modeler Product assets,
and is hosted by IBM on the developerWorks website.

* Local repository: Resides on your local personal computer, and does not contain any
assets until you populate it.

» Workgroup repository: Can be any J2EE Web server repository. Note: Workgroup
repositories run only on IBM® WebhSphere® Application Server 5.1 or later.

» XDE repository: Contains IBM Rationa® XDE assets. Thisformat is provided so that
you can use legacy assets developed and exported from Rational XDE.

Neil Boyette of IBM research has produced a RAS Repository for Workgroups for IBM®
alphaworks®, IBM’ s resource for emerging technologies. The Reusable Asset Specification
Repository for Workgroups supports a variety of ways for users to retrieve information about
the assets in the repository. These include searching and browsing with the RAS 1.0 standard
interface, or with an enhanced interface (to be proposed for incorporation in the next version
of RAS) that supports more complex queries. Administrators can publish assets to the
rept?(s_itory, create and organize the logical view of the assets, and perform measurement
tracking.

Thisrepository ison IBM aphaWorks: http://www.a phaworks.ibm.com/tech/rasrdw

© Copyright IBM Corp. 2007 18- 22
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

Lab 15: Package Reusable Artifacts

= Given:
» Project with Reusable assets

= Complete the following tasks:
» Create a RAS Repository

» Create RAS asset containing reusable assets
» Test RAS asset

23]

Complete Lab 15 in the student workbook.

© Copyright IBM Corp. 2007 18- 23

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 18 - Packaging Artifacts

Review

= Why do we want to package the asset we build?
= Why wrap the plug-in with a feature?
= What is RAS?

24

© Copyright IBM Corp. 2007 18-24

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 19 - Summary and Conclusion

| IBM Software Group

DEV498: Pattern Implementation Workshop with IBM

Rational Software Architect
Module 19: Summary and Conclusion

‘Rational. software

© 2006 IBM Corporation

Contents
IBM Software Delivery Platform and Eclipse 19-2
Model-Driven Development with Patterns 19-6
19-8

Choosing the Kind of Pattern Implementation

© Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 19 - Summary and Conclusion

IBM Software Delivery Platform and Eclipse
The IBM SDP is built on Eclipse and its services

CM; Merge;, Tiraceahility.... GEE

Eclipse Core

N
Jln]]

The Eclipse platform provides an open environment for enterprise development, with the
capacity to support all phases of the application development life cycle, including analysis,
regquirements, design, development, testing, software configuration management, defect
tracking, project management, and so on. The main components include a universal platform
for development tool integration, and a Java development environment built with Eclipse. At
the heart of the Eclipse platform is an extensive toolset with core capabilities, plus support for
extensions through a plug-in architecture.

The components of a development tool chain based on the Eclipse framework are:
» The Eclipse Modeling Framework: A fundamental part of Eclipse, enabling the
platform’s modeling capabilities to interoperate with other tools and applications.

» TheEclipse C and C++ Development Tools (CDT) project: An open-source C and

C++ development plug-in that leverages common open-source underlying tools such as
gcc, gdb and make.

» TheEclipse Test and Performance Tools Platform Project (TPTP): Provides a
common user interface, standard data models, data collection and communications
control, aswell as remote execution environments. Can be extended for solution-specific
tooling and runtimes.

» The Graphical Editing Framework (GEF): Allows you to easily develop graphical
representations for existing models.

» Java Development Tools (JDT): Java development tools, along with the Eclipse

technology, create applications that run on real-time operating systems and embedded
environments.

© Copyright IBM Corp. 2007 19-2

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

» Provide custom stereotypes
» Are often used in patterns

» Are required for transformations

» Model templates

Module 19 - Summary and Conclusion
Artifacts for Reusable Assets in Rational Software Architect
= Profiles

» Allow you to create a new model based on a pre-existing structure
» Can provide a model structure consistent with related patterns and
transformations

» Can be distributed with a custom profile applied
= UML Patterns

» Are developed as Eclipse plug-ins
» Add or change structures in the model

» Are available in libraries for different types of development projects
» Transformations

» Are developed as Eclipse plug-ins

» Work as part of pattern solutions

» Transform model elements based on a transformation definition
» Are applied to specific elements or whole models

© Copyright IBM Corp. 2007

19-3
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 19 - Summary and Conclusion

Integration of Artifacts in Reusable Assets

Profiles, model templates, UML patterns, and

transformations can be used together to increase the
ROI of your extensibility investment.

_with template @ enrniTrae iy 1
<+ . "
— '. ‘.

Model Templates Profiles UML Patterns

Transformations

Automatically Transform the model
Populate Manually mark up mark up the model b
- . X ased on rules that
the the model with with profile recognize
model profile elements elements, and 9
. model markup
apply best practices
e v
— — M — g —
Source i
Source ' Source Model with Target Model
Model Model with Markup, Patterns
Markup Applied

4

Asyou work with Rational Software Architect in your environment, you will come across
situations where plain UML is not able to model the elements of your domain sufficiently. In
addition, there will be patterns of usage that will accompany these domain-specific elements.

UML profiles can be developed in Rational Software Modeler or Rational Software Architect
for these situations.

Creating a UML pattern that can understand and use the domain-specific elements of your
profile will help in ensuring that users are following best practices for your organization. Asa
final step in this workflow, the user would send the model through a transformation. Idealy,
the model elements would then be updated according to the profile, with elements structured
in away that makes the best use of those model elements. The transformation will

understand the domain-specific elements, and will produce an output model that reflects this
understanding.

© Copyright IBM Corp. 2007 19-4
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Accelerating Model-Driven Development

\3 ,é Apply Patiems | Computational ~ BuSiness Use-Cases
Q Independent Business Analysis

Forward Transform Model Business Process Models
(embedded patterns) Reverse Transform

i } | (embedded patterns) |

=

Forward Transform
(embedded patterns)
Platform- L .
PR Independent Application Analysis
L] Model
Forward Transform] [A
(embedded patterns) Reverse Transform
(embedded patterns) . . .
~ - Application Design

E‘ (high abstraction)
I:'_D = d Apply Patterns
L1

Platform-specific model markup

Apply Patterns Application Use-Cases

Reverse Transform
(embedded patterns)

J1vyd3ll

Forward Transform
embedded patterns;

Reverse Transform
(embedded patterns)

Platform-
,::.rj Specific Model |mplementation

- Model-Driven
Code-based Development Architecture RUP Methodology

5 =

A code-generator is an important component of Model Driven Development (MDD). The
goal of MDD isto describe a software system using abstract models (such as EMF/ECORE
models or UML models), and then refine and transform these models into code. Althoughiitis
possible to create abstract models, and manually transform them into code, the real power of
MDD comes from automating this process. Such transformations accelerate the MDD
process. The transformations can capture "best practices' and can ensure that a project
consistently employs these practices.

However, transformations are not always perfect. Best practices are often dependent on
context - what is optimal in one context may be suboptimal in another.

Rational Software Architect is designed to support MDD, the development of the appropriate
models to facilitate all development activities and stages in the lifecycle, plustoolsto
transform models to move devel opment work forward.

An analh/st might begin by modeling the business domain in Rational Software Architect to
define the key products, deliverables, or events. The analyst can then create a use-case model
to define the actors, system boundary, and use cases the system will support.

The architect then uses Rational Software Architect to create a platform-independent design
model from the use-case model. This model or set of models can be transformed in platform-
dependent implementation models (including code and UML) with the assistance of visual
development tools, such as:

* UML editorsfor Java, C++, or data

» Site Designer

 Page Designers
As each new stage of development begins, transformations can create more detailed models
that are incrementally closer to the target platform and infrastructure. Transformations can be
designed to include traceability so that you can query the target model, using el ements from
the source model to find elementsin the target model. This feature is currently built into the
UML to Java transformation that comes with Rational Software Architect. After the

transformation is complete, you can right-click a model element in the design model and
perform a query to find the associated Java code.

© Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 19 - Summary and Conclusion

19-5

Pattern Implementation Workshop with IBM Rational Software Architect Module 19 - Summary and Conclusion

Model-Driven Development with Patterns

—— MDD Process

Framework Development

Instead of capturing architectural
decisions in a document and
applying them manually, capture

them explicitly as assets and
pture experiise " g g
__~-| automate their application.
| Architectural Principles and Pai‘t’erns I

Develop modelling Impl nt patt:
(Cleate sample components) C conventions) (mplement patterms
Development

(Implement fransforms)

Start Framework Development

Model Application

Application Model

Apply
Transformations

Implementation Arifacts

There the two distinct types of activity in the MDD process:

» Expertise Capture and Automation: Thisiswhere you build the MDD framework that
parltl ally automates the devel opment of software that follows a particular architectural
style.

. ApPIication Development: Thisiswhere you apply your chosen MDD framework to
build software components, applications, and solutions. These activities are typically
performed by different groups of people and require different skills. Rational Software
Architect supports both sets of activities. You use Rationa Software Architect to build
UML profiles, patterns, and transformations that are then used to customize Rational
Software Architect to provide an MDD framework.

There is no magic to MDD. Someone must come up with a set of modeling conventions that
are suitable for the software under development. Someone must also develop transformations
that can automate the generation of code from models that follow these conventions. The key
dependencies between the two streams of activity are asfollows:

» UML profiles and patterns must be available when application modeling begins. In some
cases, this dependency is managed in an iterative manner, with profiles and patterns that
address some aspects of design being made available before others.

* Transformations must be available in order to generate implementation artifacts. In some
projects, the target platform and the transformations are selected at the start of the
project. In others, this decision is deferred.

© Copyright IBM Corp. 2007 19-6

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 19 - Summary and Conclusion

The Asset Development Process

o meame s G
—

© Copyright IBM Corp. 2007

19-7
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 19 - Summary and Conclusion
Choosing the Kind of Pattern Implementation

Which
transform type?
Model2Text
RSA Patterns Ul is OK?
Simple UML transform?

Model2Model

Input model is already
suited to Jet2 transform?

© Copyright IBM Corp. 2007

19-8

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 19 - Summary and Conclusion

Class Discussion

» How does the use of reusable assets help in
the design of a software solution?

»How do you plan to apply reusable assets in
your current projects?

» How would you evolve the artifacts
from the workshop?

© Copyright IBM Corp. 2007 19-9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 19 - Summary and Conclusion

10

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

19-10

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

L

| IBM Software Group

DEV498: Pattern Implementation Workshop with IBM

Rational Software Architect
Module 20: Advanced Transformation Topics (Appendix)

E EETEaE W

‘Rational. softwaro
© 2006 IBM Corporation
Contents
Advanced Transformation Topics 20-2
Cloning Transformations 20-14
Enabling Custom Transformation Ul 20-18
Reverse Transformations 20-22
© Copyright IBM Corp. 2007 20-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

Advanced Transformation Topics

= Objectives:
» Describe how to:
= Extend transformations
= Clone transformations
= Customize the Transform GUI
= Decide when reverse transformations are needed

© Copyright IBM Corp. 2007 20-2

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

What Else Can Be Done to Transformations?

= Create Transformation extensions

= Clone a Transformation
= Call a transformation from a menu or other plug-in
= Enhance the Transformation Ul

= Include a reverse transformation

=

© Copyright IBM Corp. 2007 20-3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect
Topics

Module 20 - Advanced Transformation

Where Are We?

= Transformation Extensions

= Cloning Transformations

= Enhance the Transformation Ul
= Reverse Transformations

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

20-4

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

Transformation Extensions

= Transformations in Rational Software Architect, as
Eclipse plug-ins, are designed to be extended

= You can modify a transformation to add customized
behavior

» Generate additional items from your model according to
your own code standards

» A better alternative than
creating your own
transformation from scratch

© Copyright IBM Corp. 2007 20-5

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect
Topics

Types of Extension Points

= Metatype Converters

» This extension defines a metatype converter, which allows new

metatypes to be defined and used by transformations and their
properties.

= Transformation Providers

» This extension point facilitates the configuration of providers for the
transformation service. The transformation service enables Xtools clients
to register model transformations. These transformations can be used to
convert the data from one model into a different model.

= Transformation Extensions

» This extension point facilitates the configuration of extensions to

transformations that are defined by transformation providers registered
with the transformation service. Using a transformation extension, a
client can extend the behavior of an existing transformation.

= Transformation Utilities

» This extension point lets users define and register transform utilities that
can be used by transformations.

Module 20 - Advanced Transformation

© Copyright IBM Corp. 2007

20-6
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect
Topics

Module 20 - Advanced Transformation

Extending Transformations

Extension point:

» Used to:
= Define new properties
= Define new transforms
= Define new rules
= Define new extractors

! Modeling - com.ibm. xtools. transform. core - Rational Seftware Architect
B [tegate Sech Croject Oapa bodelng Gen fyndow b
4. Q| O .

com.ibm.xtools.transform.core.transformationExtensions

= Add new transforms, rules, and extractors to an existing transformation
» Does not create a new transformation, but adds behavior to the existing one

» When you run the transformation, all of its extensions are run
= You must manually disable any plug-ins that you do not want to run

0| 5 Genernloe_Clasots.nappng | 4 Genernkoe Classes | [))]

" | Extension Points

Progect Explarer | 55 Fug-ns
Sher matches 1737 of 1737 pligns.

© Copyright IBM Corp. 2007

20-7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation

Topics
«XML Fragment» The transformation
Transformation extension
Extension
+ properties []
1.*
1 - extendedTransformation - extandedTransform « \ - transformElementExtension
Transformation - * | Transform Transform Element
- transform
Transformation
to be extended Transform (in selected New transform element
transformation) to be to add to (or replace in)
extended the selected transform
s =
© Copyright IBM Corp. 2007 20-8

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

AddRule Element

» AddRule element in the plug-in manifest specifies a rule and
where it should be inserted

» AddRule has the following attributes:
» Index: Shows where the rule is inserted among existing rules
» id: Determines which rule is added. Must match the id of an existing

All Extensions Extension Element Details
Set the properties of "RuleDefinition”
== com.ibm.xtools. transform. core. transformation
=1-|¥] extended_transform. transformationProvid id=: 2
) Edit...
1X] Highest {Priarity) dass™ Default. RuleTwo
=-|¥] Transformation {Transformation)
|¥] system.transformation.property (F name: RuleTwa
== com.ibm.xtools. transform. core. transformation description:

= |¥] Extended Transform. TransformationExten:

[¥] RuleCne (RuleDefinition) acceptCondition: 30
=-|%] Extended Transform. TransformDefinitil
%] RuleTwo (RuleDefinition) —

™ =
<IransformDefinition id="Extended Trans
<RuleDefinition
clasgs="Defaulc.RuleTwo"
ig=ron

name="RuleTwo"/>

</TranaformDefinition>

© Copyright IBM Corp. 2007 20-9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

Extending a Transformation Rule

public EntityTargetRulei(] {
super () ;
zecIdirulelId):
setName (rulelarme) ;
seticceptCondition (new HasStereotype(stersotypeld)|);

B lab11 transform. rules

m EntityClassRule. java /:* o
=] m EntityTargetRule. jav, . ene

o propertyld
o5 ruleld

o8 ruleMame
of stereatypeld

public EntityTargetRule(3tring id, 3tring name) {

super (id, name):

seticceptCondition (new HasZtereotype (stersotypeld));
H

/% [non-Javadoc)
% [@gee com.ibm.xtools,transform.core, tbstractRuleficreateTarget (com, ilm. xtools
i
protected Chiject createTarget (ITransformContext context) throws Exception {
NamedElement source = (MNamedElement)context.getZ3ourcel():
Stereotype Stereotype = sSource.getlbppliedStereotype (stereotypeld)
Chiject propertyValus = source.getWalue (stersotype, propertyld);

m IdPropertyRule.java
[+, Plug-in Dependencies
[+, JRE System Library [eclipse]
|ab build.properties

£ plugin,sml

//setup default file name

String newlTargetFile = "Entity" + source.getMName() + ".txt";
if (propertyWalue !'= null){
neuTargetFile = (String)propertyValue + ".oxc™:

H

//overurite property targetFilelName
context.setPropertyValue ("targetFile”, newTargetFile);

return null:

© Copyright IBM Corp. 2007 20-10
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

Adding Transformation Extensions

» To discover how and where to extend a
transformation, you need to rely on transformation
documentation

» Easy to extend your own transformations or transformations
you have source code available

» Hard to extend 3 party transformations if no documentation
is available

» Transformations designed to be extended must have
well-documented extension points.

© Copyright IBM Corp. 2007 20-11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

Issues with Transformation Extensions

= Transformation extensions extend all instances of the
transformation in the workbench
» Can make customizable:

= Using transformation properties
= Using profiles

= Multiple extensions can extend the same transformation
» Difficult to predict how all extensions will interact within the transformation

» Sometimes difficult to know where to insert new rules, and so on
» It is necessary to know the ID of the transformation to extend

» It is necessary to know the number of the rules of a transformation to
determine the index to extend the transformation

» Extensions should have very specific accept conditions to
prevent unintended side-effects on existing transforms

© Copyright IBM Corp. 2007 20-12

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect
Topics

Module 20 - Advanced Transformation

Where Are We?

= Transformation Extensions

= Cloning Transformations

= Enhance the Transformation Ul
= Reverse Transformations

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

20-13

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

Cloning Transformations

» Instead of simply extending an existing transformation
» Copy a transformation and extend it to leave the original
transformation available without the extension
= Requires new TransformationProvider

= New Transform class
— Get original transformation from Transformation Service
— Add original transformation to new Transform

= Extend the new transform

= Works better if placeholders for extensions are defined
for the original transformation

Good Practice

H
N
[l

© Copyright IBM Corp. 2007 20-14

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

Cloning Transformations

All Extensions

[=)-x= com,ibm,xtools, transform, core. transformationProviders

[=1-[%] lab1Z. TransformationPravider (TransformationPravider)
[X] Highest (Priarity)

B P{R _lone Transformation (Transformation)
Extension Element Details
Set the properties of "Transformation”
name*: [Clone Transformation |
id*: [lab12.transFarm, CloneTransformation |
sourceModelType®: [UMLZ |
targetModelType™®: |Resource |
groupPath®: [Transformation Lab |
wersion®; [1.o.0 |
author: [1EM Reational |
keywiords: [|
description: [Clane of Lab 10 TransFarmation |
document: [|
extensible: [true -]
icar: | |
public: [true =]
prafiles: [|
transformGLT: |
15
© Copyright IBM Corp. 2007 20-15

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

Cloning Transformations Example

public class CloneTransformation extends RootTransform {

L]
Li info
il
public CloneTransformation (ITransformationlescriptor info)] {
super (info) ;
Transform transform = getClone();
initialize(transform, false):;

L
* Build this transform from the Lah 10 transform
%
ki
protected Transform getClone(){
ITransformationbDescriptor descriptor =
TransformationfervicelUtil.getTransformationlescriptor ("labl0.transform.ClassToTextFile™) ;
Transform clone = (Transform) TransformationServicelUtil.createTransformation (descriptor)

//add EntityClassRule

Transform classTransform = (Transform)clone.findTransform("labl0.transform.utputClassTransforn™) ;
classTransform.add (1, new EntityTargetRule()):
classTransform.add (2, new EntityClassRulel));

J/add IdPropertyRule
Transform propertyTransform = (Transform)clone.findTransform("labl0. transform.OutputPropercyTransform™)
propertyTransform.add (0, new IdPropertyRule()):

//add clone into this
dladdiclone)
return clone;

© Copyright IBM Corp. 2007 20-16
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect
Topics

Module 20 - Advanced Transformation

Where Are We?

= Transformation Extensions

= Cloning Transformations

= Enhance the Transformation Ul
= Reverse Transformations

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

20 - 17

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

Enabling Custom Transformation Ul

= Before a transformation author can customize the Ul
for a transformation, he must first inform the
Transformation Service. This is easily accomplished
by doing the following:

» Create a class that is derived from AbstractTransformGUI
and override the appropriate methods, such as
get Confi gurati onTabs()

» In the transformation descriptor in XML, add the
transformGUI attribute where the value is the fully qualified
class created above

© Copyright IBM Corp. 2007 20-18

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

Adding New Configuration Tabs

= The method getConfigurationTabs() returns an array of configuration
tabs to be displayed when a configuration for the associated
transformation is selected. This list should include the three default
tabs, where the Target tab usually comes first and the Common tab
comes last.

= Each custom tab should be derived from AbstractTransformConfigTab
and should be in the middle of the configuration tab list returned by
getConfigurationTabs(). There are two key methods of this class that
must be implemented:

» populateContext(ITransformContext) saves the data from the tab's Ul
controls by defining one or more properties in the context with the
appropriate values. These property values should be defined in the
manner expected by the transformation when it executes.

» populateTab(ITransformContext) resets the data for the tab's Ul controls
by examining one or more properties defined in the context.

© Copyright IBM Corp. 2007 20-19
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

Filtering Displayed Source and Target Objects

= Although the source and target model types defined in the
transformation descriptor enable the Ul to filter the available source
and target objects for the transformation, you may wish to provide
additional pruning of the selection tree.

= There are two methods in AbstractTransformGUI for deciding if an
object is to be displayed in the corresponding selection tree:

» showInSourceTree() is called before an object is added to the
transformation's source selection tree. The method enables the tree to be
pruned. True should be returned if the given object is valid, or if it might
contain a valid object. The method should return false if the object and all
of its contained objects are invalid.

» showInTargetContainerTree() is called before an object is added to the
transformation's target selection tree. This method prunes the object in the
tree in the same manner as the source tree.
.3
R v

@\V

© Copyright IBM Corp. 2007 20- 20

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect
Topics

Module 20 - Advanced Transformation

Where Are We?

= Transformation Extensions

= Cloning Transformations

= Enhance the Transformation Ul
= Reverse Transformations

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

20-21

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

Model-code Reconciliation and Reverse Transformations

Benefits

Allow Elobally distributed teams
to work on design and
|mplementat|on and to
reconcile results

» Enhanced difference and merge
capabilities in Version 7.0

= Reverse transform code to model

= Reconcile models = |
. O bevitatn 1) @

= Merge resulting model s Bgampesma -5

g S=l, . e .

= Forward transform model to code —— = j
» Reverse engineering]
for code-to-model transformation . :
e

= Reverse transformations for Java,
C++

While there have been capabilities to harvest existing code into UML models with IBM
Rational toolsin the past , there has been no comprehensive way to differentiate and merge
models and code. New transformationsin V7 and later include the ability to reverse engineer
code to UML models, reconcile differences, and merge the models together before forward
engineering the merged architecture back to code. This allows globally distributed teams to
work on design and implementation, while being able to ensure architectural integrity.

© Copyright IBM Corp. 2007 20-22
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

Architectural Governance Scenario

Architecture Team a Implementation Team ® Will implementation
. conform to
. specification?
- = How do you account for
. both changing over
Iterate . Iterate time?
Geography,
subcontract,

or corporate culture

© Copyright IBM Corp. 2007 20-23
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

Architectural Governance Scenario (cont.)

Architectural
deviation
introduced

Iterate

Iterate

Compare /

Merge Reverse Transformation

Accepted change

Conformance
restored

Forward Transformation
(omit rejected change)

24

Some architectural deviations introduced by the implementation team may be accepted as
improvements. Others may be rejected due to “bigger picture” concerns.

© Copyright IBM Corp. 2007 20-24

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

Reverse Transformation Configuration

= When configuring a UML-to-Java or a UML-to-C++
transformation, you can choose to enable the
corresponding reverse transformation.

Forward transformation

Name: UML to Java V5.0

Description: This transformation converts a UML2 model to Java code.
Author: IBM Corporation

Id: com.ibm.xtools. transform.uml2.java5.internal UML2JavaTransform
Version: 7.0.0
Profiles: Java 5.0 Transformation

Keywords: UML2, Java5, Transformation

Enable reverse transformation

Reverse transformation

Description: This transformation converts a Java project to a UML model.
Author: IBM Corparation

Id: com.ibm. xtools. transform.java.uml. Java-to-UML
Version: 1.0.0
Profiles:

Keywords: Java, UML, Transformation

View Transformation Documentation

Main Elj Source and Target Elj UML to Java Options EI3 Collections Elj Mapping E% Java to UML Optiens | Comman

© Copyright IBM Corp. 2007 20-25

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

Running the Reverse Transform

= A reverse transformation allows
the developers and designers to
make changes to either the code
or the model, and to keep those
changes in sync.

= Running from code to a model
could add implementation details
to your model.
» After the transformation runs, a

dialogue will allow you to select the
changes to apply.

© Copyright IBM Corp. 2007 20 - 26

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 20 - Advanced Transformation
Topics

Further Information

= Rational Software Architect Help Topics
= Web resources
= Literature

Rational Software Architect Help Topics
» Extending Rational Software Architect Functionality
Web Resour ces

 “Extending the UML to Java Transformation in Rational Software Architect.”
http://www-128.ibm.com/devel operworks/rational/library/05/802_uml/
Literature

 Frankel, David S. Model Driven Architecture: Applying MDA to Enterprise Computing.
Indianapolis: Wiley Publishing, 2003.

© Copyright IBM Corp. 2007 20 - 27

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 20 - Advanced Transformation
Topics

© Copyright IBM Corp. 2007

20- 28
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

| IBM Software Group

DEV498: Pattern Implementation Workshop with IBM

Rational Software Architect
Module 21: Introduction to GMF (Appendix)

Bl v iEa
‘Rational. soffwara

© 2006 IBM Corporation

Contents
Introduction to GMF 21-2
Introduction to DSL 21-10
Optional: Technical details 21-14
Further Information 21-24
© Copyright IBM Corp. 2007 21-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

Introduction to GMF

» Objectives:
» Describe GMF

» Understand how you can use GMF along with JET2
» Understand DSL

© Copyright IBM Corp. 2007

21-2
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

What is GMF?

» GMF = Eclipse Graphical Modeling Framework
= Ability to create totally customized Diagram Editors

= May use UML or EMF (Eclipse Modeling Framework)
and XML-based data

» Resulting diagrams have very similar look and feel to
native Rational Software Architect diagrams

flwn]
I

Remember that it is very easy to wrap XML datainto an EMF-based API, and then create a
GMF-based Diagram Editor for it.

© Copyright IBM Corp. 2007 21-3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

GMF Can Enhance JET

» Remember that JET transformations take XML (or
EMF) files as input

» You can use GMF to create custom Graphical
Diagram editors for JET input files

GMFbased | ,|EMF Based|, XML

Diagram Editor API 1 File BT | Code

Transformation

!!

GMF can be used for many different scenarios. One possible scenario isto create a custom

graphical Diagram editor for JET input files. GMF can be used to create a graphical editor
for any XML file.

© Copyright IBM Corp. 2007 21-4

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 21 - Introduction to GMF

Example

B} default.schema_diagram X

=0
Palette 3
[Select
* Zoom
4 MyConsole = Note
4 Arg
<% Command
cd
e & tast < Console
a.int
b : String

GMF

» Custom Diagram Editor to edit Console
Transformation’s input XML files

[deFault.schema B x
<?uml wersion="1.0" encoding="UTF-8"2>
<root:>
<zonsole nawe="MyConsole'™:
<commwand name="add":>
<arg name="a" type="int"/>

<arg name="b" cype="String"/>
</ command:
<command name="test"/>
</consoler
</root>

XML

=08

The diagram on the right is a custom Console Transformation Input editor. The diagram on

the right isthe resulting XML file.

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

21-5

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

Overview of How GMF Works

= Use a set of GMF Wizards and Editors to define and
generate a new Diagram

= Then write Java code to extend and refine the
generated source code as needed

» The illustrated example is only using generated code
» Took about one hour to create

u=

© Copyright IBM Corp. 2007 21-6

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

Lab 1. Run Example

= Gjven:

» A Project Interchange file that contains a pre-built GMF
based editor

= After completing this lab, you will be able to:
» Use a GMF-based editor

» See how GMF-based editors can edit XML files that can be
used with transformations

!!

© Copyright IBM Corp. 2007 21-7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

Two-Phase Transformation

= Recommendation: When designing a transformation,
derive its input model from the transformation

» Better not to use existing model as input to transformation

» Recommendation: When designing a front-end model
for users, derive the model from the user’s
perspective for ease of entry and maintenance

» The model may be UML, XML, EMF, GMF, and so on
» The model may already exist

= Result: Front-end model may be different from the
transformation’s input model, which is OK

!!

© Copyright IBM Corp. 2007 21-8

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

Two-Phase Transformation (cont.)

= Use another transformation to transform the front-end
information into the Transformation’s input (back-end
model)
» The front-end transformation may use JET

» The front-end transformation may use Rational Software
Architect’s model to model the transformation engine

» Generally, you should design the front-end transformation to
automatically run the back-end transformation

Front-End Editor Front-End . Transformation J Code
(EMF, GMF, UML, ...) Model File] Input File
Transformation JET
Transformation
© Copyright IBM Corp. 2007 21-9

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

Introduction to DSL

» Domain Specific Language

» A custom programming language or graphical modeling
language designed to support a (domain) specific task

= In contrast to
» Generic languages like Java and C++
» Generic modeling languages like UML
= Examples

» The sample Console input model is an EMF-based DSL for
building Console Applications

» The sample Console GMF Editor is a graphical DSL
modeling language for building Console Applications

!!

© Copyright IBM Corp. 2007 21-10

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

How to Implement DSL with Rational Software Architect

= UML with UML Profiles

» UML can be extended and customized using Profiles

= Profiles add Stereotypes, additional model data, and additional model
validation

» Lets you extend and customize UML to create a DSL
» EMF with EMF and GMF based Editors

» Using EMF, you can create a completely custom (XML-
Based) language

» Use EMF and GMF to create non-graphical and graphical
editors for the language

!!

© Copyright IBM Corp. 2007 21-11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

Mix and Match Implementation of DSL

» With Rational Software Architect, you can mix and
match UML, EMF, and GMF in creating a DSL

= Examples:

» Create a custom diagram for UML using GMF
» Include EMF-based data inside of a UML model (emx file)

!!

Rational Software Architect has very flexible support to use EMF, GMF, and UML together
in various configurations. The exampleslisted are far from exhaustive.

© Copyright IBM Corp. 2007 21-12

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

EMF/GMF versus UML/UML Profile-Based DSLs

= UML-based DSLs
» Much easier to create
» Much less flexible

= EMF/GMF-based DSLs
» Much more flexible
» Much harder to create and maintain

Note that UML hasalot of flexibility, but EMF/GMF has more.

© Copyright IBM Corp. 2007 21-13
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

Optional: Technical details

» The remaining slides and lab describe GMF in more
technical detalil

!!

© Copyright IBM Corp. 2007 21-14

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

Overview

Graphical
Definition
Model

Domain
Model
(ecore)

Di Diagram
i lagram . .
> Combine —»| MaPpIng | agram - | Plug-in with

Model
Model Java Source
Code

Tooling
Definition
Model

Note that in Rationa Software Architect V7 and later, al of

the Models have model type-specific non-graphical model
editors.

15

The different models are explained in the next slides

© Copyright IBM Corp. 2007

21-15
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

Domain Model (ecore)

= Defines the data model for the custom editor
= File extension is ecore

» This is any EMF data model which is an input into the
GMF process

!!

© Copyright IBM Corp. 2007 21-16

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

Graphical Definition Model (gmfgraph)

» Defines the graphical elements for the custom editor

» What are the nodes, compartments, connectors, labels, and
S0 on?

» How can | graphically draw them?

= Example, ‘ConnectorZ’ is a two pixel-wide dashed line with an open
arrow head

= File extension is gmfgraph
= You can re-use gmfgraph files for different editors

= Rational Software Architect includes a wizard to
automatically create a default gmfgraph file based on
an EMF Ecore file

= A gmfgraph file is NOT linked to any specific ecore file

H
5
||
|||

u=

© Copyright IBM Corp. 2007 21-17

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

Tooling Def Model (gmftool)

= Defines the tools for the custom editor
» Palette and menu entries

= File extension is gmftool

= Generally, tooling definition is domain model-specific,
and not appropriate to re-use between different
custom diagrams

= Rational Software Architect includes a wizard to
automatlcaII%_/ create a default gmftool file based on an
EMF Ecore file

» Can be created or extended by hand
= A gmftool file is NOT linked to any specific ecore file

!!

© Copyright IBM Corp. 2007 21-18

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

Mapping Model (gmfmap)

= Ties together (maps) the graphical definition
(gmfgraph), tooling definition (gmftool) and domain
model (ecore)

= File extension is gmfmap
= Created using a wizard
» Can be extended and refined by hand

» For example: link together a domain model node with
its graphical definition and its tools (palettes and
menus)

!!

© Copyright IBM Corp. 2007 21-19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

Diagram Gen Model (gmfgen)

» Defines the custom editor’s code generation options

» For example, property defines if Print support should be
included

= File extension is gmfgen

!!

© Copyright IBM Corp. 2007 21-20

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

Generated Code

» From the Diagram Gen Model, you generate the
custom diagram’s code
» Generates a new Eclipse plugin project
» Fully-configured plug-in
» Includes the generated Java source code

= Additional customization and enhancement can be
made to the generated editor
» Edit the generated code

» It is designed to be extensible, and can be extended with
additional plug-ins

!!

© Copyright IBM Corp. 2007 21-21

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

GMF and Rational Software Architect Models

» GMF Diagrams can be stored outside of Rational
Software Architect Model files

» GMF Diagrams can be stored inside of Rational
Software Architect Model files

= GMF Diagrams can reference, display, and
manipulate UML information

= S0, GMF can be used to extend Rational Software
Architect Model capabilities

(el

© Copyright IBM Corp. 2007 21-22

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

Lab 2: Build Console GMF Example

= Gjven:

» The ongoing Console Transformation example and the
generated EMF wrappers for its input files

= After completing this lab, you will be able to:
» Create and run a GMF generated graphical editor

!!

© Copyright IBM Corp. 2007 21-23

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 21 - Introduction to GMF

Further Information

= Web resources
» www.eclipse.org/gmf
= Eclipse page for GMF
» www.eclipse.org/emf
= Eclipse page for EMF
» www.eclipse.org/gef
= Eclipse page for GEF

Web Resour ces
* www.eclipse.org/gmf
(Eclipse page for GMF)
* www.eclipse.org/emf
(Eclipse page for EMF)
» www.eclipse.org/gef
(Eclipse page for GEF)

© Copyright IBM Corp. 2007 21-24

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

| IBM Software Group

DEV498: Pattern Implementation Workshop with IBM

Rational Software Architect
Module 22: XPath — XML Path Language (Appendix)

Bl v A
‘Rational. soffwara

© 2006 IBM Corporation

Contents
XPath — XML Path Language 22-2
XPath Address Notation 22-9
XPath 2.0 22-26
Further Information 22-30
© Copyright IBM Corp. 2007 22-1

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

XPath — XML Path Language

» Objectives:
» Describe the reasons for using XPath

» Define the components and constructs that make up the
XML Path Language

» Describe how XPath can reference data in XML documents
» Write simple XPath expressions

» Identify abbreviated XPath expressions

» Describe how to partition the XPath document

[l
I

© Copyright IBM Corp. 2007 22-2

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

What is XPath?

» XPath is a specification for querying an XML document.
» Originally designed for use by XSLT and XPointer.
» Now used by many XML-related technologies, such as XQuery.

= XPath satisfies the need to address (locate) parts of a
document which meet specified criteria.

» Example: In the XML description of a book, "find all chapters with 'Java’
in the title."

= XPath provides the ability to address any slice of an XML
document in any direction.

» XPath is a W3C Recommendation. __/"—‘ o s
» November 16, 1999 NSXXS

L/

-
Q‘ -
e >
> \d
\d >
\0 -

XPath was defined during the development of XSLT (XML Stylesheet Language
Transformation) and XPointer. It was designed to provide unambiguous traversal of XML
documents.

XPointer and XSLT both use XPath's functionality, but XSLT uses only a subset of XPath,
while X Pointer uses additional syntax to extend its functionality.

XPointer allows forward and backward addressing to specific XML locations internal to a
document, and to locationsin external XML documents.

XQuery is an emerging technology that will eventually provide standardized access to
RDBMS data stores that use XML.

L g

© Copyright IBM Corp. 2007 22-3

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

Why is it Called XPath?

= XML documents are frequently viewed as a tree of nodes.

= Expressions describe a path to a given node or set of nodes
(node-set).

= Consider the DOS, UNIX, or URI syntax for addressing files in
a directory structure.
»/publications/articles/ Transformations. xni
» This is called a pathname to the file.

» It describes the Pa_th to follow, from the root,
through a tree of directories (folders), to
locate a given file.

= Similarly, XPath also uses a forward
slash to separate the nodes of a path.

Paths are a natural way to express a hierarchical structure.

DOS and Windows actually use a backslash to represent the path separators. URI's, X Path,
and most other path addressing schemes use a forward slash, as backslash is used to express

or escape special characters. For example, \t' represents a TAB character, and '\\' represents a
backslash.

© Copyright IBM Corp. 2007

22-4
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Example Tree Representation of XML

<?xm version="1.0"?>

<book>
<aut hor >Tom Wl f e</ aut hor >
<title>The Right Stuff</title>
<price>$6. 00</ pri ce>

</ book>

address ="/"

address ="/ book"

3 I 1 1
‘<aut hor >’ %t itl e>~ %pri ce+f— address ="/ book/ pri ce"

b [[W~ address ="/ book/ *"

V\;;r]?':-- ’ I[Tgteuﬁ 9ht "$6. 00" }1— address ="/ book/ pri ce/ text ()"

This example shows atypical XML document and how it is represented as a tree of nodes.
Thereisasingle root node, that contains several other types of nodes.

There are seven node typesin XML. They are:
1. root nodes
2.element nodes
3.text nodes
4. attribute nodes
5. namespace nodes
6. processing instruction nodes
7.comment nodes

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 22 - XPath: XML Path Language

22-5

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

XPath Expression Evaluation

= An XPath expression is a series of steps.
» A step is a search criteria statement.
» Example: "find figures in the current chapter.”
= An XPath expression has a current context.

» A node in the tree that is the starting point for the step.
» Example: "current chapter in the book."

» Each step, except the last, must evaluate to a set of nodes in
the XML tree.

» Example: "all the chapters in a book."
» Steps are evaluated against one or more nodes.
» The resulting set of nodes may be empty.
» The last step returns one of these:
» Number
» Boolean
» String
» Node-set

Think of an XPath expression as a series of steps through the XML tree. Each step isarung
in the ladder, or layer of the tree.

Wildcards permit a single step to represent many layers, much like skipping several rungs
when climbing down the ladder.

© Copyright IBM Corp. 2007 22-6
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

XPath Current Context

The active element within the XPath address step
-/ Root/ .../ Ancestor/ Parent/ SELF/ Chi | d/ Descendant

/ (Root)

/ Par ent

pr ecedi ng-si bl i ng

Self is always a

single node. It can only have

one parent and one root. It may have
multiple children, ancestors, and so forth.

7

/ Sel f
(Cont ext Node)

f ol | owi ng-si bling

The current context is simply a"you are here" designation within a complete X Path address.
As an XPath expression is evaluated, the current context usually shifts.
Relative paths do not make sense as standal one entities. They must be combined in some

Module 22 - XPath: XML Path Language

other context based on the document root.

© Copyright IBM Corp. 2007

22-7

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

XPath Step Syntax

= An XPath location path is made up of one or more
steps separated by forward slashes ("/").

= Each step within the path consists of:

» A)éis: Branch of the node tree relative to the current context
node.

» NodeTest: Tests node for inclusion.
» Predicate: Optional filter of matched nodes.
= Example:
>.>L<|03%%¢_ all chapters titles in the book that contain the string

/Pﬁpﬂ}:hi I d::chapter/child::title[contains(text(),"'XP
a

...laxis::nodeTest[predicate]/...

XPath provides a simple method to traverse an XML tree structure, and to select a dlice of
information in any direction as defined by the Axis.

Paths starting with aforward slash are absolute paths from the root downward through the
document tree; paths not beginning with a slash are relative to the current (context) node of
the node list.

XPath is not alanguage, but more of an addressing syntax used to identify dlices of
information within an XML document. XPath uses a path notation to define locations within
adocument. For brevity, this syntax does not use XML constructs.

XPaths, when expressed in an XML document, usually appear as an attribute value, asin an
xsl:template element in XSLT.

© Copyright IBM Corp. 2007 22-8

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

XPath Address Notation

» An address is a node (or several nodes) in a tree that
IS your starting point for searching.

= Abbreviated syntax is allowed for several different
axes.

» "chi | d: : " has an empty default as it is the default axis

= Example: "/ chi |l d:: catal og/ child::tools/"isthe same as
"/ cat al og/t ool s/ "

= A complete XPath expression may consist of only a
location path.

» Absolute location path:
» Starts search at the root of the tree
» Search begins with a forward slash
= Example: / cat al og/t ool s
= Relative location path:

» Sequence of one or more location steps, or referenced from
the current context node.

= Example: cat al og/ t ool s

!!

All axes and abbreviations will be discussed later in this unit.
Absolute paths are sometimes called fully-referenced or full paths.
Relative paths are sometimes called partia paths.

© Copyright IBM Corp. 2007 22-9
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

Example: Absolute Addressing

= /paper/chapter[1]/section[2]/title Title for first chapter, second section
= /paper/chapterftitle Titles for all chapters
= /paper/*/title Any title that is a child of any

child of paper

y Al |
title 'Chaptel' appendix
= & | —
title | | section section title | | section section title | | section
title | [section title title| | @status | [title title | | section
title b

[lnnl] | =
D

© Copyright IBM Corp. 2007 22-10

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

Example: Absolute Addressing with Predicates
Instructor Notes:

1. /paper/*/section[last()]/title Titles for last sections
2. [Ipaper/*/section[last()-1]/title Titles for the second-to-last sections
3. [Ipaper/chapter[1]/section[title="Sect.1.1 Select title by name

Title')/title

root
paper

itle W‘ chapter

itle chon || sectlon tit section

t|tIe || section t|tIe | |title | |@status ||title | |tit|e || sectilon |

o
SectLl 1 it ti
Titl"

-III

BN,

| section | |title | | section |

=
)

© Copyright IBM Corp. 2007 22-11

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Module 22 - XPath: XML Path Language

Testing XPaths in Rational Application Developer

= Rational Application
Developer provides the
XPath Expression Builder to
build and evaluate XPath
EXxpressions.

» Available from within XSL
editor.

» To use, position cursor within
an <xsl:template> tag and
choose XPath Expression...
from the context menu, or press
Ctrl+Shift+Z.

= Allows expressions to be
built "by example" from
elements in a representative
document, or entered by
hand.

» Results are shown both as a
tree and in terms of source.

<?¥ml wersion="1.0" encodiy
<xzlistvleshest xmlns:xsls=s
<xzl:template match="/">
</wal:templatex
</xsl:stylesheet>

@ %Path Expression Builder

XPath Expression Builder

Build and Evaluate XPath Expressio

ns «

Ctrl+Shift+Z

55| Edit XPath

Evaluation Context: |/

paperjchapter(2)/section[1]

=i

55| Source Tree

i~ || 5 Results Tree

- [e] #document £
E[€] paper
[g] title [My Paper]
£ [€] chapter

=-[€] s

[e] title [Chapter 1]

le [Section 1.1]

=@ Modeset [length = 1]
-[2] section

|»

Result Tree [Result Source

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

22-12

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

Example: Relative Addressing
Ipaper/chapter[2]/section[1] - Absolute path to "current context"
1. parent::node() or.. Parent of current context
2. self::node() or. Context node (self)
3. ... Parent of parent of context node
4. child::* (default) Children of the current context node
5. ./follow ng-sibling::node()/ @tatus Status attribute of any following
or./follow ng-sibling::*/ @tatus sibling node siblings1
/@
paper
[
| t|tIe | | sectlon | sectlon | | title | sectlon | | sectlon | tltle | section
1
| title | | section | | title | | title | | @status | title | | title | | section |
title
1 T

This chart demonstrates rel ative addressing, based on a current context of the first section of
the second chapter. It introduces the abbreviations"." (for self, the current node) and ".." (for

the parent of self). These abbreviations are similar to those used in Windows and UNIX® file
systems.

The chart also introduces the @ notation for identifying attributes.

The examples show the following: The parent of the current context is the second chapter
element.

1. The current context.
2. The parent of the parent of the current context.
3. The default next step of the current context is always its child or children.

4. The status attribute of the sibling element that follows the current context (in this case,
section) .

© Copyright IBM Corp. 2007 22-13

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

XPath: The Thirteen Axes

Axis Name Description

1. ancestor Ancestors of context node: parent, grandparent, and so on

2. ancestor-or-self Context node and its ancestors

3. attribute Attributes of the context node

4. child Children of the context node

5. descendant Descendants of the context node: child, grandchild, and so on

6. descendant-or-self Context node and its descendants

7. following All nodes that follow the context node, not including descendants, attributes, and
namespaces

8. following-sibling All siblings that follow the context node

9. namespace Namespace node of context node

10.parent Parent of context node if it exists. Parent of attribute or namespace is the element
that contains it.

11.preceding All nodes that are before the context node, not including ancestors, attributes and
namespaces

12.preceding-sibling All siblings that precede the context node

13.self The context node

There are 13 axes defined in XPath that enable you to search different parts of the XML
Document from the current context node or the root. Despite the singular form of axis names
(such as "ancestor" and "child"), only parent and self always refer to a single node.

All axes can be used in both relative and absolute paths.

© Copyright IBM Corp. 2007 22-14

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

Abbreviated Step Notation
| EeeEes JEewE

child:: chapt er/ secti on expands to
child::chapter/child::section (all the
section children of all the chapter children of
the context node)

sel f:: node() ./attribute::name expands to
sel f::node()/attribute::nane (the name
attribute of the context node)

parent: : node() ..lattribute::nane expands to
parent::node()/attribute::nane (the name
attribute of the parent of the context node)

@ | attribute:: . | @ane expands to
sel f::node()/attribute::nane (the name
attribute of the context node)

/1 | I descendent -or - ./l chapter expands to ./ descendant - or -
sel f::node()/ sel f:: node()/chapter (all the chapter
descendants of the context node)

15

The commonly-used axes, such as attribute, child, and descendent-or-self, have a shorthand
syntax.

If the shorthand syntax is used the "::" separator that follows the axis name is omitted.
chi | d: : isthedefault axisif no axisis specified.

© Copyright IBM Corp. 2007 22-15

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 22 - XPath: XML Path Language

Pattern Implementation Workshop with IBM Rational Software Architect

XPath: Partitioning the Document
» Self, ancestor, descendant, preceding, and
following partition the entire document.

Ancestor
Preceding paper Following
I
Self
|

|title | | section |

| | [
|titIeH section ‘ |section |
| | N
|title|| section | |title| |title| |@status ||titIJ| |title|| section |

Descendant

I
|tit|e|| section || section |

For the node labeled "Self" (the current context node), the labels on the various nodes

indicate their axis relationship to "Self".
These five axes contain all the nodes within the document, and do not overlap.

22-16

© Copyright IBM Corp. 2007
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

Example: Addressing with Axes

1. /paper/chapter[last()] /following::* Everything after the last
chapter.

2. [paper/chapter[2]/descendant::node()/title All title descendants of
chapter 2.

3. /[*[attribute::status] or //* [@status] All element nodes

containing a status attribute.

| | |

|tit|e || section || section | |tit||e || sectilon

[sectilon |

@D

|tit|e || section | |tit |tit

title

These samples depict the variety and scale of simple XPath queries using different axis
notation. This path extracts everything following the last chapter in the book.

1. This path extracts every title element up to and including the second chapter.
2.This path extracts all the descendents of self that have a status attribute.

© Copyright IBM Corp. 2007 22-17

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

XPath Axis Node Type and Node Tests

Axis type Type of nodes returned

attribute attribute node

namespace namespace node

all other axes element node

Node test Result

* (Wl dcard) Select all nodes of the given axis type.

MNane Selects node if it has the specified namespace qualified name (if namespace
is null, then name is not in any namespace).

NCNane: * Selects node if it has the specified namespace.

text() Returns the node's body text.

processi ng- Returns the processing instruction (for Pl nodes). The processing-instruction

instruction() node test can have an optional predicate which contains a literal.

comment () Returns the comment (for comment nodes).

node() Is true for any node of any type whatsoever.

i d("val ue") Returns the node containing an ID type attribute of the specified value.

Thefirst table lists the types or axes, and the corresponding type of node returned. Thislist
only indicates the principal node type. For example, an axis of child::* will return nodes of
type element, but the returned elements may have child nodes that are of type attribute.

The second table lists the node tests and the resulting node (or node list). A node test follows
the Axisin the address step, and qualifies the nodes to be included or excluded in the search.
The most common form of node test isthe QName or actual element name.

The wildcard ("*") node test selects al nodes of the given type. For example,
attribute::* seectsal attributes.

© Copyright IBM Corp. 2007 22-18

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

Sample Node Tests

/I comment ()

» Extract all comments from a document.
/[book/*/title

» Extract all top-level titles regardless of parent type (that is,
Chapter, Appendix, and so on).
/ processi ng-instruction()
» Extract all processing instructions that exist outside of the
root element.
/ book/ chapter[2]//text()
» Extract the actual text from all elements inside the second
chapter.
chapter/section[2][@tatus="Draft"]
» Extract the second section child of every chapter child of the

context node where the section status attribute has a value
of "Draft".

H
5
||

|||

u=

© Copyright IBM Corp. 2007 22-19

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

Predicates

= All comparisons or function calls are within the
predicate, enclosed within [].
= Predicates test a set of nodes and return one of:
» A new set of nodes
» A string
» A Boolean
» A number
= Each node in the list of nodes is tested to see if the
predicate is true.

» If predicate is true then the node is included in the resulting
list of nodes.

= |f a predicate results in no matching nodes, an empty
result set is returned.

[l
I

Predicatesfilter alist of nodes. Predicate expressions can be function calls, numbers, literals,
or location paths.

© Copyright IBM Corp. 2007 22-20

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

Predicate Expressions

= Predicate expression types:
» Function call
» Number
» Literal
» Location path

= Operators may be used inside a predicate.
» Node-set
| (union)
» Boolean
and or

» Relational
= l= < > <= >=

» Arithmetic
+ - * div nod

Predicates offer awide variety of built-in functionsto aid in filtering nodes. A predicate may
consist of asingle test, which may itself consist of a direct address node index, or a boolean
function. However, most predicate tests consist of one or more comparison operations.
Multiple tests can be combined within asingle predicate test using operators.

A predicate may combine two node-sets using the union ("|") operator.

A predicate expression may contain logical operators. If A and B are expressions with a
boolean value (such as"a=1"), then A and B istrueif both expressions aretrue, and A or B is
trueif either condition istrue. Thereisno "not" operator, but the not () function (described
later in this unit) may be used instead.

The div operator performs floating point division. The mod operator provides a remainder
function.

© Copyright IBM Corp. 2007 22-21

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

Predicate Core Functions

last () number Returns the index of the last node in the current
context, that is, the context size.

posi tion() number Returns the index of the current node within
the context.

count (node- set - number Returns the number of nodes in the node-set

expr) identified by the given expression.

i d(obj ect) node-set | Returns a node-set containing the nodes that
have the specified IDs.

I ocal - nanme string Split a fully qualified name (namespace:object)

(node- set - expr) and return the object's name.

namespace- uri string Split a fully qualified name and return the

(node-set - expr) namespace URI

nanre§ node- set - string Returns the fully qualified name for the first

expr

node in the node-set

22

Thetable lists the X Path predicate functions that are part of the core function library. A node-
set-expr is arelative or absolute path.

For the id function, the object parameter may contain more that one node, in which case the
returned node-set may contain more than one node.

A few functions, such as local-name and Namespace-URI, have optional arguments. If no
argument is present, the current context node is treated as the argument.

Examples:

/child::chapter[position()=1] returnsthefirst chapter element that isunder the
document root.

/ chapt er [1] isthe abbreviated form of the same expression.

© Copyright IBM Corp. 2007 22-22

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

Predicate String Functions (1 of 2)

String Functions Return Description
Type
string (object) string Converts object into a string.
starts-with (source, target) Boolean | Returns true if source starts with
the characters of target.
contains (source, target) Boolean | Returns true if source contains
the characters of the target.
substring-after (source, string Returns the substring of source
target) following the first occurrence of
target.
substring-before (source, string Returns the substring of source
target) preceding the first occurrence of
target.
substring (sour)ce, i ndex, string Returns a substring of source,
count

starting at index for an optional
count.

Almost any object type can be passed into string functions. The processor will attempt to
convert non-string objects to their string representation. Booleans are converted to the strings

"true" and "false". The string value of an element is the concatenation of all the characters of
the element and its descendants.

In the string function, only the first node of the argument node-set is converted to a string.

© Copyright IBM Corp. 2007 22-23

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

Predicate String Functions (2 of 2)

String Functions Return Type Description
string-length (string) number Returns the string length.
concat (stri n)g, string, string Returns a concatenation of its

arguments. Must have at least
two arguments.

nornal i ze- space (string) string Removes leading and trailing

whitespace, and replaces
adjacent whitespace characters
with a single whitespace.

translate (source, from string Returns source with each

to) character that appears in from
replaced by the corresponding
character in to.

© Copyright IBM Corp. 2007 22-24

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect

Predicate Number and Boolean Functions

Number Functions

Description

nurmber (obj ect)

Converts an object to a number.

sum (node-set)

Returns the sum of values of nodes of the node set.

floor (nunber)

Returns the largest integer that is not greater than
argument (rounds down).

ceiling (nunber)

Returns the smallest integer that is not less than argument
(rounds up).

round (nunber)

Returns the closest integer to argument.

Boolean Functions

Description

not (bool ean)

Returns true if the argument is false and false otherwise.

true ()

Returns true.

false ()

Returns false.

The number functions all return numbers. The boolean functions al return booleans.

The nunber () function attempts to convert its argument or the current context to a number.

If it isunableto do this, it returns NaN ("Not a Number").

© Copyright IBM Corp. 2007

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Module 22 - XPath: XML Path Language

22-25

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

XPath 2.0

= XPath 2.0 is more powerful and more complex than
XPath 1.0.

= XPath 2.0 processes sequences.

» Like a node-set, but can include additional atomic values
» Ordered set of values without duplicates

= XPath 2.0 reﬁlaces the primitive XPath 1.0 data types
with XML Schema data types.

» For example, XPath 1.0 has no date-time data types.
= Additional functions augment the XPath 1.0 ones
» XPath 2.0 is a syntactic subset of XQuery 1.0.

!!

XPath 2.0 became a W3C candidate recommendation in June 2006. For the basic

specification, see http://www.w3.0rg/ TR/xpath20/. For the specification pertaining to the new
XPath 2.0 functions, see http://www.w3.org/TR/xpath-functions.

© Copyright IBM Corp. 2007 22 - 26
Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

Checkpoint Questions (1 of 3)

1. Which of the following items are part of the XPath
step syntax?

a. Predicate
b. AxisName
c. Ancestor
d. Ceiling

e. NodeTest

2. The axis shorthand notation of // indicates what?

a. Ancestor
b. Parent
c. Ancestor-or-self
d. Descendant-or-self
© Copyright IBM Corp. 2007 22 - 27

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

Checkpoint Questions (2 of 3)

3. Which XPath statement will return the number of
guestions on a test?

a. count(/test/question)
b. /test/question/count()
c /test[count(question)]
d. None of the above

4. The predicate function starts-with ("XML is Great",
"XML") will return:

a. XML
b. true
c. Is Great
d. False
e. XML is Great
© Copyright IBM Corp. 2007 22 -28

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

Checkpoint Questions (3 of 3)
5. What will be the results of the following XPath:

/| news/ story[@ear="'2001"']/sel f::node()[cont
ains(text(),'IBM)]/

a. All 2001 news stories that contain IBM inside the text
element

b. All news stories with a year element = 2001 and a text
element of IBM

c. Any news story with either IBM or 2001 in its text

d. All 2001 news stories that contain the letters IBM in any
order

e. Error, as this is an invalid XPath statement

!!

© Copyright IBM Corp. 2007 22-29

Course materials may not be reproduced in whole or in part without the prior written permission of IBM.

Pattern Implementation Workshop with IBM Rational Software Architect Module 22 - XPath: XML Path Language

Further Information

» Rational Software Architect Help Topics
=\Web Resources

Rational Software Architect Help Topics

» Developing Applications and Websites > Building XML applications > Creating X Path
Expressions
Web Resour ces
» W3C XPath specification

www.w3.0rg/TR/xpath
Interactive tutorial

http://www.zvon.org/xxI/X PathTutorial/General/exampl es.html
Expression testers

http://www.zvon.org:9001/saxon/cgi-bin/X Lab/X ML /xlabl ndex.html ?
stylesheetFile=X SL T/xlablndex.xslt

Axis Powers (two parts)

http://www.xml.com/pub/a/2000/12/20/xpathaxes.html

http://mww.xml.com/pub/a/2001/01/03/xpathaxes.html
Finding Relatives

http://www.xml.com/pub/a/2000/10/04/transforming/trxml 5.html

© Copyright IBM Corp. 2007

22-30
Course materials may not be reproduced in whole or in part without the prior written permission of IBM

	rd801gv1_stuman_cov
	DEV498Stuman_TOC
	Contents

	DEV498_M00_About_This_Course_stud
	DEV498_M01_Best_Practices_stud
	DEV498_M02_Reusable_Assets_stud
	DEV498_M03_Templating_101_stud
	DEV498_M04_JET_Model_stud
	DEV498_M05_JET_Tags_stud
	DEV498_M06_More_JET_Tags_stud
	DEV498_M07_JET_Examples_stud
	DEV498_M08_Exemplar_Analysis_stud
	DEV498_M09_IntroEMF_stud
	DEV498_M10_Intro_Transformations_stud
	DEV498_M11_Designing_stud
	DEV498_M12_Profiles_stud
	DEV498_M13_Transformations_stud
	DEV498_M14_Patterns_stud
	DEV498_M15_IntroToUML2API_stud
	DEV498_M16_Plugins_stud
	DEV498_M17_Templates_stud
	DEV498_M18_Packaging_stud
	DEV498_M19_Summary_stud
	DEV498_M20_Advanced_Transform_stud
	DEV498_M21_IntroGMF_stud
	DEV498_M22_XPath_Overview_stud

