
IBM uDeploy® Architecture Guide

5.0

IBM uDeploy Architecture Guide: 5.0

Publication date September 2013
Copyright © 2011, 2013 IBM, Inc.

iii

Documentation notices for IBM uDeploy .. 1
Architecture Overview ... 4

Service Tier ... 5
Clients .. 6

Data Tier .. 7
Relational Database .. 7
File Storage—CodeStation ... 7
Data Center Configuration ... 8

Agents .. 10
Server-Agent Communication ... 11
Remote Agents--Crossing Network Boundaries and Firewalls 12
Agent Security ... 13
User Impersonation ... 13
SSL Mutual Key-based Authentication ... 14

High Availability .. 16
Options ... 16

Option 1: Cold Standby ... 16
Option 2: Clustered ... 16

Converting a Cold Standby Installation to Clustered .. 18
Agents .. 19

JMS Communications .. 19
HTTP/HTTPS Communications ... 20

Servers .. 20
Importing Files (CodeStation) ... 20
Events ... 20
Workflow Engine .. 20
Failure Handling ... 21

Load Balancing .. 21
Upgrading HA .. 21

Multi-Datacenter Clustering .. 23
MDHA Topology ... 23
MDHA Setup ... 24

MDHA Configuration .. 24
A. High-availability Use Cases .. 26

1

Documentation notices for IBM
uDeploy

Copyright © 2011, 2013

© Copyright IBM 2011, 2013.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Programming interfaces: Intended programming interfaces allow the customer to write programs to obtain
the services of IBM uDeploy.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your
area. Any reference to an IBM product, program, or service is not intended to state or imply that only that
IBM product, program, or service may be used. Any functionally equivalent product, program, or service
that does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM® may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Documentation notices
for IBM uDeploy

2

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

Intellectual Property Dept. for IBM® Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and cannot
confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

Copyright license
This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Documentation notices
for IBM uDeploy

3

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.

If you are viewing this information in softcopy, the photographs and color illustrations may not appear.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to tailor
interactions with the end user or for other purposes. In many cases no personally identifiable information
is collected by the Software Offerings. Some of our Software Offerings can help enable you to collect
personally identifiable information. If this Software Offering uses cookies to collect personally identifiable
information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use persistent cookies that
collect each user’s user name and password for purposes of authentication and enhanced user usability.
These cookies can be disabled, but disabling them will also likely eliminate the functionality they enable.
This Software Offering uses session cookies for purposes of session management. These cookies cannot
be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes,
see IBM's privacy policy at [http://www.ibm.com/privacy], IBM's Online Privacy Statement at http://
www.ibm.com/privacy/details/us/en, including the section entitled "Cookies, Web Beacons and Other
Technologies," and the "IBM Software Products and Software-as-a-Service Privacy Statement" at http://
www.ibm.com/software/info/product-privacy.

Trademark acknowledgments
IBM, the IBM logo, and IBM are trademarks or registered trademarks of International Business Machines
Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the web at www.ibm.com/
legal/copytrade.shtml [http://www.ibm.com/legal/copytrade.shtml].

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

http://www.ibm.com/privacy
http://www.ibm.com/privacy
http://www.ibm.com/privacy/details/us/en
http://www.ibm.com/privacy/details/us/en
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

4

Architecture Overview
IBM uDeploy architecture consists of a service tier and a data tier. The service tier has a central server
that provides a web server front-end and core services, such as workflow, agent management, deployment,
inventory, security, as well as others. A service can be thought of as a self-contained mechanism for hosting
a piece of business logic. Services can be consumed by clients\agents or other services. Deployments are
orchestrated by the server and performed by agents distributed throughout the network. Most clients use
browsers to communicate with the web server via HTTP(S). Most server-agent communication is done
via JMS (discussed below) but HTTP(S) is also used as required.

IBM uDeploy uses stateless communications for server-agent communications (JMS-based) as well
as client-web service communications. Stateless, as used here, means the server retains little session
information between requests and each request contains all the information required to handle it. The server
sets-up listening sockets and listens for agents, relays, and users (clients). For added security, agents do
not listen on ports. Agents send requests when they are ready to make the transition to a new state.

Server-agent communication is built around transferring—deploying—components. Components can
contain any business-meaningful content, such as environment information, configuration data, source,
static files, or anything else associated with a software project. Because JMS connections are persistent and
not based on a request-response protocol, IBM uDeploy does not have to continually open and close ports,
which enables the server to communicate with agents at any time while remaining secure and scalable.

Many IBM uDeploy services are REST-type (representational state transfer). REST-style services are web
services that focus on transferring resources over HTTP. A resource can be any business-meaningful piece
of data. Resources are transferred by a self-describing format such as XML or JSON (JavaScript Object
Notation). The XML and JSON representations typically model resource states at the time of agent/client
requests. REST-style services achieve statelessness by ensuring that requests include all the data needed
by the server to make a coherent response.

The data tier's relational database stores configuration and run-time data. The data tier's file store—
CodeStation—contains log files, artifacts, and other non-structured data objects. Reporting tools can
connect directly to the relational database.

Architecture Overview

5

Figure 1. Overview

Service Tier
The IBM uDeploy server provides a variety of services, such as: the user interface, component and
application configuration tools, workflow engine, and security services among others. The REST-based
user interface provides the web-based front-end that is used to create components and fashion workflows;
request processes, and manage security and resources, among other things.

When a workflow is requested, many services are used to fulfill the request, which are shown in the
following illustration:

Figure 2. Services and Process Workflow

Workflow requests are initiated with the user interface, either the web-based application or the CLI
(command line interface).

Table 1. Services

Service Description

User Interface Used to create components and fashion workflows, request processes and
manage security and resources, among other things. REST-based.

Workflow Engine Manages workflows—application and component processes. Calls the agent
responsible for performing the workflow's current plug-in step. When the
workflow is finished, alerts the notification and inventory services. Called by
the deploy service. REST-based.

Agent Tracks installed agents and routes plug-in commands to affected agents.
Commands come from plug-in steps. Invoked by the workflow service.
REST-based.

Architecture Overview

6

Service Description

Work Item Operates in tandem with the approval service; provides approver alerts and
enables approvers to accept or reject workflows. If a scheduled workflow
remains unapproved at run-time, the job fails automatically. REST-based.

Plug-in Manager IBM uDeploy can interact with virtually any system through its extensible
plug-in system; plug-ins provide functions by breaking-down tool features
into automated steps. Plug-ins can be configured at design- and run-time.
When a plug-in step executes, the controlling agent invokes its run-time
process to execute the step.

When a new component version is available, the agent compares the current
component version and downloads and only new or changed artifacts.

Event The event service is ubiquitous; it alerts other services as various trigger
conditions occur.

Deployment Service Manages deployments. When a deployment process is requested, invokes the
workflow engine to perform the process. Works in tandem with the security
service to ensure users have required permissions. REST-based.

Notification Manager Notifies users about the status of deployments; notifications are sent to
approvers if the system is configured with an email server and the user has an
email address. Invoked by the workflow manager. REST-based.

Inventory Manager When a workflow finishes, the inventory manager updates affected inventory
records. IBM uDeploy maintains an inventory of every deployed artifact in
every environment, which provides complete visibility across environments.
REST-type service.

Approval Engine Enables creation of approval-requiring jobs and approver roles. Works in
tandem with the work item service to ensure required approvals are made
before scheduled jobs. REST-based.

Security Controls what users can do and see; maps to organizational structures by
teams, roles, activities, etc. REST-based.

Calendar Used to schedule processes to being at some future point; works in tandem
with the approval and work item services. REST-based.

CodeStation Handles versioning of artifacts; agents invoke it when downloading
component versions. REST-based.

Clients

Web browsers are IBM uDeploy's most common client (agents are discussed in another topic, see the
section called “Agents”) but other clients can be developed to access the web services. Clients are deployed
locally (on the same LAN as the IBM uDeploy server) or remotely, and communicate with the server
via HTTP or HTTPS. The IBM uDeploy browser-based GUI is a Rich Internet Application (RIA) that
maintains much of its functionality in the browser. Clients interact with RESTful (representational state
transfer) services on the server as needed. A command line client is available that provides most of features
found in the browser-based GUI. The command line client is also built on top of RESTful services.

Architecture Overview

7

Data Tier

Relational Database
Your relational database is a critical element for performance and disaster recovery. The provided Derby
database, while sufficient for proof-of-concept work, is generally insufficient for the enterprise. Full-
featured databases like Oracle, MS SQL Server, or MySQL are better options. Ideally, the database
—whichever is used—should be configured for high-availability, high-performance, and be backed-up
regularly.

10-20 GB of database storage should be sufficient for most environments. For Oracle, an architecture
based on Oracle RAC is recommended; for Microsoft SQL Server, a clustered configuration is preferred;
for MySQL, utilize MySQL Cluster.

File Storage—CodeStation
The data tier also provides log file and Codestation artifact storage. Artifacts represent deployable items
such as files, images, databases, configuration materials, or anything else associated with a software
project. By default, these are stored in the var subdirectory in the IBM uDeploy server installation
directory. In an enterprise environment, the default installation might not be ideal, see the section called
“Relocating Codestation” for a discussion about enterprise options.

IBM uDeploy's secure and tamper-proof artifact repository ensures that deployed components are identical
to those tested in preproduction environments. Without the repository, artifacts would have to be pulled
from network shares or some other system, increasing both security risks and the potential for error.

The artifact repository uses content addressable storage to maximize efficiency while minimizing disk
use. The repository tracks file versions and maintains a complete history for all components. Maximizing
efficiency is important, since the artifact repository stores files that are much larger than source files.
Association of files with Components is built into the system. Without any configuration, each Component
gets its own area of the repository for its files. There is no chance of confusion or mix-up of files to
Components. And, each Component Package is mapped to a specific set of files and versions corresponding
to the Component.

The artifact repository comes with a client application that provides remote access to the repository. Using
the client, the user can add/modify files, create Packages, retrieve files, as well as view the history of
changes. The client application provides a file transfer capability that can be used to deliver files to target
servers during deployments. This built-in transfer mechanism verifies the integrity of all transferred files
against their expected cryptographic signatures, thus guaranteeing that files have not been corrupted during
transmission or tampered with during storage. In addition to the client application, the artifact repository
exposes REST-based web services. These services are used to build integrations between build systems
such as AnthillPro and IBM uDeploy. Such integrations automatically place the artifacts produced by the
build process in the artifact repository, thus making the artifacts available for deployment.

Relocating Codestation

By default, the data tier's log files and Codestation artifacts are stored in the var subdirectory within
the IBM uDeploy server directory. Ideally, this data should be stored on robust network storage that is
regularly synchronized with an off-site disaster recovery facility. In addition, the IBM uDeploy server
should have a fast network connection to storage (agents do not need access to the storage location). In Unix
environments, you can use symbolic links from the var subdirectory to network storage. On Windows
platforms there are several options for redirecting logs and artifacts, including mklink (supported in
Windows 7 and later).

Architecture Overview

8

If you want to relocate Codestation, relocate both the var directory as well as the \logs\store
directory. A good rule-of-thumb for determining Codestation storage requirements is: average
artifact size * number of versions imported per day * average number
of days before cleanup

Distributed teams should also take advantage of IBM uDeploy location-specific Codestation proxies to
improve performance and lower WAN usage.

Data Center Configuration
This section provides several installation recommendations.

Cold Standby

IBM uDeploy employs the cold standby HA strategy for the application tier. When the primary system fails,
the cold standby is brought online and promoted to primary server. Once online, the standby reestablishes
connections with all agents, performs recovery, and proceeds with any queued processes. Because the most
intense work is handed-off to agents, a high performance configuration should not have an agent installed
on the same hardware as the main server.

The IBM uDeploy server aggressively utilizes threading and takes advantage of any additional CPU cores
assigned to it. A small to midrange server with 2-4 multi-core CPUs is ideal, but, because it is relatively
easy to move an existing IBM uDeploy server installation to a new machine, starting small and scaling as
needed is a very legitimate strategy. The memory available to the application tier should also be increased
from the default 256 MB to something on the order of 1 GB.

Platform Considerations

IBM uDeploy agents are platform agnostic, and can be installed on anything that provides a Java 1.5
JDK. The server process is also platform agnostic. Our customer base includes large IBM uDeploy
installations on Windows, Solaris, AIX, HP-UX, other Unix flavors and various Linux platforms, all
running successfully.

We have seen somewhat better performance from Unix and Linux operating systems, but recommend
installing on the platform with which you are most familiar and comfortable.

Recommended Server Installation

• Two server-class machines

IBM recommends two machines for the server: a primary machine and a standby for fail-over. In
addition, the database should be hosted on a separate machine.

• Separate machine for the database

• Processor 2-4 CPUs, 2+ cores for each.

• RAM 8 GB

• Storage Individual requirements depend on usage, retention policies, and application types. In general,
the larger number of artifacts kept in IBM uDeploy's artifact repository (CodeStation), the more storage
needed.

• Network Gigabit (1000) Ethernet with low-latency to the database.

Architecture Overview

9

Agent Minimum Requirements

Designed to be minimally intrusive, agents require 64-256 MB of memory and 100 MB of disk space.
Additional requirements are determined by the processes the agent will run. Agents should be installed on
separate machines. For evaluation purposes, a good option is to install an agent on a virtual machine.

Typical Data Center Configurations

Most organizations configure the data tier with network storage and a clustered database. The service tier
performs best when it's on a dedicated, stable, multi-core machine with a fast connection to the data tier.
A standby machine should be maintained and kept ready in case the primary server goes down.

The following figures illustrate typical IBM uDeploy configurations.

Figure 3. Single Data Center Configuration

There are no remote agents or agent relays in this configuration.

Architecture Overview

10

Figure 4. Multiple Data Centers

Recovery Using a Database Back-up

To prepare a back-up of your IBM uDeploy installation, copy the database and server files. Back-up the
server by copying the server directory along with all subdirectories. This ensures that you can revert to a
server version that matches your configuration, while also preserving your artifact repository.

If you are not using the Derby database, copy the database too. If you are using Derby, it will be copied
along with the server files.

Install the back-up using the original path, or some configuration files will need to be changed.

Agents
Agents play a central role in the IBM uDeploy architecture. An agent is a lightweight process that runs
on a deployment-target host and communicates with the IBM uDeploy server. Agents perform the actual
work of deployment which relieves the server from the task. All processes—packaging, configuration,
deployments, and so on—requested by the IBM uDeploy server are executed on hardware assigned to
agents. Once an installed agent has been started, the agent opens a socket connection to the IBM uDeploy
server. Communication between server and agents uses a JMS-based (Java Message Service) protocol
and can be secured using SSL, with optional mutual key-based authentication for each end-point. This
communication protocol is stateless and resilient to network outages (the benefits of statelessness are
discussed below).

While we characterize an agent as a single process, technically an agent consists of a worker process and
a monitor process. The worker is a multi-threaded process that performs the actual deployment work after
receiving commands from the server. Work commands come from plug-in steps which provide seamless

Architecture Overview

11

integration with many third-party tools. The monitor is a service that manages the worker process--starting
and stopping, handling restarts, upgrades, and security, for example. Agents are rarely upgraded because
their functionality is derived from plug-ins, which can be upgraded at will. Once an agent is installed, it
can be managed from the IBM uDeploy web application.

Figure 5. Agent Processes

Agents are an important part of IBM uDeploy's scalability. By adding more agents, the throughput and
capacity of the system increases almost exponentially and so can scale to fit even the largest enterprise.

Server-Agent Communication

Most agent communication is done with JMS, but some agent activities—posting logs, transmitting test
results, or posting files to CodeStation, for example—use the web tier via HTTP(s) as needed. The JMS
channel is IBM uDeploy's primary control channel; it's the channel the server uses to send agent commands.
By default the server listens on only three ports: port 7918 for JMS, 8080 for HTTP, 8443 for HTTPS.

The agent monitor service uses JMS for all server communications and for sending commands, such as
"run step," to the worker process. The worker process uses JMS for system communications, and HTTP
REST services when performing plug-in steps or retrieving information from the server.

Stateless server-agent communication provides significant benefits to performance, security, availability,
and disaster recovery. Because each agent request is self-contained, a transaction consists of independent
message which can be synchronized to secondary storage as it occurs. Either endpoint--server or agent—
can be taken down and brought back up without repercussion (other than lost time). If communications fail
mid-transaction, no messages are lost. Once reconnected, the server and agent automatically determine
which messages got through and what work was successfully completed. After an outage, the system
synchronizes the endpoints and recovers affected processes. The results of any work performed by an agent
during the outage are communicated to the server.

Architecture Overview

12

Figure 6. Stateless Communication

In Figure 6, “Stateless Communication”, the arrow represent the direction in which communications was
established, but the flow can be in both directions with JMS.

Remote Agents--Crossing Network Boundaries and
Firewalls

IBM uDeploy supports remote agents—cross-network deployments. As long as there is at least a low
bandwidth WAN connection between the server and remote agents, the IBM uDeploy server can send
work to agents located in other geographic locations. To aid performance and ease maintenance, IBM
uDeploy uses agent relays to communicate with remote agents. An agent relay requires that only a single
machine in the remote network contact the server. Other remote agents communicate with the server by
using the agent relay. All agent-server communication from the remote network goes through the relay.
Agent relays can be configured as CodeStation proxies in order to optimize the transfer of large objects.

The following, a simple artifact move, illustrates the mechanics of remote communications:

1. A remote agent starts and establishes a connection to the agent relay via JMS, which, in turn, alerts the
IBM uDeploy server via JMS that the remote agent is online.

2. The server sends, say, an artifact download command to the relay via JMS, and the relay delivers the
message to the remote agent (also via JMS).

3. The server locates the artifacts, and then:

• Uploads the artifacts to the relay over HTTP(s), which begins streaming them directly to the agent
over the server-relay HTTP(s) connection.

• Once the remote agent completes the work, it informs the server via JMS.

Architecture Overview

13

Figure 7. Crossing Network Boundaries

By default, agent relays open the connection to the IBM uDeploy server, but the direction can be reversed
if your firewall requires it. Remote agents open connections to the agent relay.

In configurations with relay agents, agents local to the IBM uDeploy server continue to use direct
communications.

Agent Security
IBM uDeploy agents employ user impersonation when required to perform tasks for which they would
not otherwise have permission. To run a database update script, for example, an agent might need to be
the "oracle" user; but to update the application, the agent might need to be the "websphere" user. By using
impersonation, the same agent can run the script and update the application, which enables you to combine
these steps into a single process. For information about user impersonation, see the section called “User
Impersonation”

User Impersonation
IBM uDeploy can use user impersonation when an agent must execute a command for which it might not
otherwise have permission, or when a specific user must be employed for a given process. On Unix/Linux
systems the su/sudo commands are used to impersonate users; on Windows IBM uDeploy provides a utility
program to handle impersonation. You implement impersonation when you configure a component's plug-
in process step.

Using su/sudo

The su command (as used by IBM uDeploy) enables a user to start a shell as another user (process steps can
be considered individual shells). When you configure a process step (see ???), you can tell IBM uDeploy
to use impersonation for the step. By default, su is used but you can use sudo instead. To configure
impersonation, you supply the user name required by the target host. When the impersonation-configured
process step runs, the su or sudo command runs the step as the impersonated user. Each step that needs
user impersonation must be configured independently.

Architecture Overview

14

Before sudo can be used, impersonation privileges must be defined in the /etc/sudoers file. When
you configure sudoers, ensure that the impersonating user does not have to supply a password.
Typically, you would configure the /etc/sudoers file like this:

Defaults:X !requiretty

X ALL=(Y) NOPASSWD: ALL

where X and Y are user names. Configured this way, user X can run any command as user Y without
supplying a password.

su and sudo maintain a record in the system logs of all of their activity. su can be used without
configuring the sudoers file. For information about su/sudo see the Unix/Linux documentation.

Note

For Unix- or Linux-based agents the password option is ignored.

Impersonation on Windows Systems

For agents running on Windows platforms, IBM uDeploy provides a program that handles impersonation.
You implement impersonation for Windows-based agents the same way you do for Unix- or Linux-based
agents: when you configure a process step, you specify the local user credentials—user name and password
—that will be used when the step is processed. For impersonation purposes, a local user is one whose user
name and password are stored on the target computer and who is part of the administration group and has,
at a minimum, the following privileges:

• SE_INCREASE_QUOTA_NAME (adjust memory quotas for a process)

• SE_ASSIGNPRIMARYTOKEN_NAME (replace a process-level token)

• SE_INTERACTIVE_LOGON_NAME (local logon)

You can also impersonate the Windows LocalSystem account. The LocalSystem account is installed on
every Windows machine and is the equivalent of the root user on Unix/Linux. It is guaranteed to have
the privileges listed above.

Note

For Windows-based agents the sudo option is ignored if selected.

SSL Mutual Key-based Authentication
SSL (Secure Socket Layer) technology enables clients and servers to communicate securely by
encrypting all communications. Data are encrypted before being sent and decrypted by the recipient—
communications cannot be deciphered or modified by third-parties.

SSL technology can be used in several modes. In unauthenticated mode, communication is encrypted/
decrypted but users do not have to authenticate or verify their credentials. By default IBM uDeploy uses
this mode for its JMS-based server/agent communication. By default, JMS-based communication uses
port 7918.

SSL unauthenticated mode can also be used for HTTP communication. You can implement this mode for
HTTP during server/agent installation, or activate it afterward. See ???.

Architecture Overview

15

In mutual authentication mode, communications are encrypted as usual, but users are also required to
authenticate themselves by providing digital certificates. A digital certificate is a cryptographically signed
document intended to assure others as to the identity of the certificate's owner. IBM uDeploy certificates
are self-signed.

When mutual authentication mode is active, IBM uDeploy uses it for JMS-based server/agent
communication. In this mode, the IBM uDeploy server provides a digital certificate to each agent, and
each agent provides one to the server. This mode can be implemented during server/agent installation,
or activated afterward. See ??? for information about activating this mode and exchanging certificates
between the server and agents.

Unauthenticated mode for HTTP and mutual authentication mode for JMS are optional; you can implement
one without implementing the other, or implement both.

16

High Availability
Options

There are two options to ensure IBM uDeploy services are uninterrupted: cold standby, and clustering.

Option 1: Cold Standby
The cold standby option is simple to implement, reduces downtime near to zero, but does not improve
IBM uDeploy performance. In this setup, there is a single active IBM uDeploy server (primary server)
connected to a database and a remote file system. There is also a secondary IBM uDeploy server configured
to connect to the same database and file system, but IBM uDeploy is not running. If the active node fails,
the secondary server is started and network traffic is routed to it. This is called failover. IBM uDeploy has
no automatic process to failover, but it can be automated.

Figure 8. Cold Standby

Option 2: Clustered

High Availability

17

The IBM uDeploy high availability (HA) feature increases scalability and availability by distributing
processing across n number of servers. Each server is an independent node cooperating in common
processing. The goal is to be as fault-tolerant as possible while requiring little or no manual intervention.

The IBM uDeploy servers create a JMS mesh (via ActiveMQ); all servers know about each other. All
services are alive on each server.

Figure 9. HA Design

Note

The clustering feature is part of a suite of features scheduled for the IBM uDeploy 5.0 release,
and is provided in the 4.8 release for those designers and architects interested in the feature.

High Availability

18

Converting a Cold Standby Installation to
Clustered

Typically, in a cold standby configuration, the IBM uDeploy server shares the database and file system with
a standby server. During a disruption, the DNS routes the traffic to the standby. A typical configuration
is shown in the following illustration.

Figure 10. Cold Standby Topology

To convert the cold standby configuration to clustered:.

1. Upgrade all IBM uDeploy servers to the same version, if necessary.

2. Start the standby server and ensure all servers can communicate with one another.

3. Add a load balancer and point it to both servers.

4. Modify the DNS to point to the load balancer. At this point, traffic will start to be routed to the previously
cold server.

The converted configuration is shown in the following illustration.

High Availability

19

Figure 11. HA Topology

Agents

JMS Communications

JMS communications is subscription based. All agents subscribe to all topics and filter the list using their
agent ID (which is one reason agents should have unique IDs).

For JMS-based communications, agents can be configured in several ways:

• Approach 1 Agents configured to connect to a series of endpoints which will be tried in some order
if failures occur (not optimal)

• Approach 2 Agents connect to a single endpoint that uses round-robin DNS or an agent relay
(recommended)

With Approach 2, workloads are distributed randomly and transparently. If a server cannot keep up with
the workload, work is queued—no additional configuration is required.

High Availability

20

HTTP/HTTPS Communications
HTTP/HTTPS server-agent communications are handled by a standard load balancer. Authentication is
performed on every request; any server can perform validation for any request.

In case of server failure, user-server authentication must be redone unless ‘remember me’ cookie used.

Servers
All servers use the same database and a common file share. The file share is used for logs and several
other directories—specifically: var/config, var/email, var/plugins, and var/repository. Each server also
independently maintains some configuration information, such as ports and hosts. The database is used
for configuration information, run-time data, etc.

Because the servers share the database, all servers run on the same interval.

Some configuration properties remain on the server, such as database and JMS connection information.
Database configuration is handled during product installation; no additional configuration is required post-
installation.

Importing Files (CodeStation)
All servers poll for component version changes. Polling intervals are specified by a user-configured
parameter (15 minutes by default). The database handles server synchronization: before writing to the
repository, a server acquires a lock in the database. Polling times are reset after a job finishes.

Events
Events are handled by the server firing the event.

Workflow Engine
Workflows consist of activities. Activities can be performed sequentially, run in parallel with one another,
or some combination of the two. A typical workflow might consist of several sequential activities, such as:

For JMS-based communications, agents can be configured in several ways:

• Activity A: run process A on Agent 1

• Activity B: run process B on Agent 2

• Activity C: run process C on Agent 3

All servers constantly poll for pending workflows, so any server might initiate the workflow. The server
that acquires this workflow will:

1. Create a run-time instance of Activity A and acquire a database lock.

2. Record the command it intends to send in the database.

3. Send the command to the agent over JMS.

4. Release the database lock.

High Availability

21

After performing the work, the agent will send a response message over JMS. The message will be written
to the database (by one of the servers) and the next activity started (by one of the servers). The server
starting Activity B will perform the same steps as described above.

In the simple workflow sketched here, the activities might all be handled by the same server or different
servers (or some combination). Of course, the same would be true if this workflow consisted of three
parallel activities.

An application workflow is maintained by a single record in the database (only one thread handles a
workflow at the same time).

Failure Handling
During application processing, command failures are marked in the workflow. Error handling is the
responsibility of the application author. Component rollback can be handled with rollback command/steps.
Rolling-back, as used here, means reinstalling an earlier component version.

If the server crashes while an agent is performing a command, the JMS mesh will assign the workflow
to another server.

If an agent crashes or otherwise disappears while running a command (remembering that failed steps do not
cause agents themselves to fail), the server assumes the command is still running—there is no ‘automatic
time out. Normally, it is neither feasible nor practicable to assign a time-out interval.

Load Balancing
Standard load balancing is assumed. Each server has the same configuration and points to the same
database. Load balancing is done around user requests and associated workflows.

In addition, load-balancing should improve the performance of the IBM uDeploy user interface.

Upgrading HA
All servers configured for the HA feature must be on the same version, which means all servers must be
upgraded at the same time.

Table 2. Server Upgrade Task Flow

Step Task

Step 1 Download and uncompress the installation package. Upgrades are done with
the same package used to perform new installations.

Step 2 Shutdown the servers. As usual, make sure the servers have actually stopped
before performing the upgrade.

Step 3 Run the server installation script.

Step 4 When prompted for the location of the installation directory, enter the path to
one of the servers.

By specifying an existing installation, you are asked if you want to upgrade
the current installation. If you answer yes, the script will lead you through the
required steps.

High Availability

22

Step Task

Step 5 When the script prompts you to upgrade the database, answer yes for the first
server (only). When performing a database-only upgrade, the script will ensure
that the update is performed only once.

Note: upgrading the first server is sufficient even when using multiple data
centers.

Step 6 Restart the upgraded server. Always use service scripts to start/stop the server.

Step 7 Once the first server is back on line, upgrade the other servers, taking care to
skip the database upgrade step when prompted.

23

Multi-Datacenter Clustering

MDHA Topology
In a multi-datacenter high availability topology, each datacenter runs the same application and has
access two copies of the database (which maintains application state). Users can communicate with any
datacenter. There is no single point of failure, and any element can be removed—or fail—transparently.

Figure 12. General Topology

Changes to one database are replicated in the others. There are many techniques for replicating data, such
as asynchronous, synchronous replication, or transactional.

Master-master or multi-homing datacenters as described here can work well as long as there is a low
latency connection between data centers.

The following illustrates one viable approach.

Multi-Datacenter Clustering

24

Figure 13. Sample Topology

MDHA Setup
This section discusses MDHA-specific setup. For general information about installing and configuring
IBM uDeploy, see ???.

MDHA Configuration
The following activities should be performed in the order presented.

1. Install database The shared database should be installed on a separate machine and before the servers
are installed. See ???. Complete database installation by configuring the appropriate JDBC driver
(typically supplied by the database vendor).

2. Create an empty database for IBM uDeploy The database should have at least one dedicated user
account.

3. Install the first IBM uDeploy server See see ??? for server installation information.

For HDMA, link the following server directories to a shared network drive:

 server_install_directory/logs
 /var/config
 /var/email
 /var/plugins
 /var/repository

In the uDeploy web-based user interface, configure the server as a network relay by defining:

 Name

Multi-Datacenter Clustering

25

 Host
 Port

Make sure you check the Active check box.

4. Additional servers For each additional server participating in the HDMA topology:

• Link it to the listed directories on the shared drive.

• Configure each one to use the same database configuration as the first server.

• Configure each one as a network relay, as described above.

5. Install load balancers The load balancers should be in front of the IBM uDeploy web-based user
interface.

26

Appendix A. High-availability Use
Cases

These cases cover situations that could negatively impact communication or activity on servers and agents.

Case 1: Server crashes during Agent HTTP/S request

Description

Agent is retrieving information from the server over HTTP/S when the server stops responding.

Scenario

Log requests on the agents will retry after a failure and that new request will be routed to an available
server that will fulfill the request.

Plug-ins control their own communication with the server, and therefore may not have a retry on failure
mechanism. For these, the step will fail.

Case 2: Server crashes during UI session

Description

Server crashes during a user session in the UI.

Scenario

The next request will be fulfilled by a different server. If the “remember me” option was checked, the user
does not need to log back in. Otherwise, the user is prompted to login again.

Case 3: Server crashes during importing of data from an
external source

Description

Two or more servers poll for a component in the artifact repository at the same time.

Scenario

Only one server acquires the lock for a component and polls for that artifact while the other servers wait
for the lock. Once the lock is released, another server will receive the lock and poll and not get the same
work as the last one.

Case 4: Server crashes after sending command to agent

Description

Communication between the agent and server is severed after a command begins executing on the agent.

High-availability Use Cases

27

Scenario

The reply from command execution will be queued and another server will process that reply.

Case 5: Server issues command to agent and crashes
before writing the status to the database

Description

The server crashes after it has sent a command to an agent and before it writes the status to the database.

Scenario

The next server will restore the workflow and send the command again since the server does not know it
was sent the first time. So the agent will get the command twice.

Case 6: Server crashes when about to issue a command

Description

When running a workflow the server crashes as it’s about to issue a command to an agent.

Scenario

The next server will load the workflow instance, issue the command to the agent, and continue on with
the execution of the workflow.

Case 7: Server crashes before a workflow runs any
steps on the agent

Description

When running a workflow the server crashes before any plug-in steps are run.

Scenario

The next server will load up the workflow instance. The workflow will execute on the next server.

	IBM uDeploy® Architecture Guide
	Table of Contents
	Documentation notices for IBM uDeploy
	Architecture Overview
	Service Tier
	Clients

	Data Tier
	Relational Database
	File Storage—CodeStation
	Relocating Codestation

	Data Center Configuration
	Cold Standby
	Platform Considerations
	Recommended Server Installation
	Agent Minimum Requirements

	Typical Data Center Configurations
	Recovery Using a Database Back-up

	Agents
	Server-Agent Communication
	Remote Agents--Crossing Network Boundaries and Firewalls
	Agent Security
	User Impersonation
	Using su/sudo
	Impersonation on Windows Systems

	SSL Mutual Key-based Authentication

	High Availability
	Options
	Option 1: Cold Standby
	Option 2: Clustered

	Converting a Cold Standby Installation to Clustered
	Agents
	JMS Communications
	HTTP/HTTPS Communications

	Servers
	Importing Files (CodeStation)
	Events
	Workflow Engine
	Failure Handling

	Load Balancing
	Upgrading HA

	Multi-Datacenter Clustering
	MDHA Topology
	MDHA Setup
	MDHA Configuration

	Appendix A. High-availability Use Cases

