
uDeploy® Introduction

4.8.5

uDeploy Introduction: 4.8.5

Publication date August 2013
Copyright © 2011, 2013 UrbanCode, an IBM Company, Inc.

iii

About ... 1
Product Documentation ... 1
Product Support ... 1
Document Conventions .. 1

Documentation notices for IBM uDeploy .. 2
Introduction ... 5

Overview .. 6
Components ... 7

Component Processes .. 7
Plug-ins .. 9
Component Versions and the CodeStation Repository .. 9

Applications ... 10
Application Process ... 10
Environments ... 10
Snapshots .. 10

Agents .. 11
Resources .. 11

Resource Groups .. 11
Architecture Overview ... 12

Service Tier ... 13
Clients .. 14

Data Tier ... 15
Relational Database ... 15
File Storage—CodeStation .. 15
Data Center Configuration .. 16

Agents .. 18
Server-Agent Communication ... 19
Remote Agents--Crossing Network Boundaries and Firewalls 20
Agent Security ... 21
User Impersonation ... 21
SSL Mutual Key-based Authentication ... 22

Frequently Asked Questions—FAQ ... 24
Deployments .. 24
Agents/Targets/Hosts ... 24
Rollbacks .. 25
Approvals/Notifications .. 25
Data Repository and File Storage .. 26
Miscellaneous ... 26

Glossary .. 28
Index .. 38

1

About
This material describes how to use the uDeploy product and is intended for all users.

Product Documentation
uDeploy online Help is installed along with the product software and can be accessed from the product's
web-based user interface. Product books are available in PDF format at the Documentation portal: http://
docs.urbancode.com/, and are included with the installation package.

Product Support
The support portal, http://support.urbancode.com/, provides information that can address any of your
questions about the product. The portal enables you to:

• review product FAQs

• view release notes that contain last-minute product information

• review product availability and compatibility information

• access white papers and product demonstrations

Document Conventions
This book uses the following special conventions:.

• Program listings, code fragments, and literal examples are
presented in this typeface.

• Product navigation instructions are provided like this:

Home > Components > [selected component] > Versions > [selected
version] > Add a Status [button]

This example, which explains how to add a status to a component version, means: from the uDeploy
home page click the Components tab (which displays the Components pane); select a component (which
displays a pane with information for the selected component); click the Versions tab (which displays a
pane with information about the selected version); and click the Add a Status button.

• User interface objects, such as field and button names, are displayed with initial Capital Letters.

• Variable text in path names or user interface objects is displayed in italic text.

• Information you are supposed to enter is displayed in this format.

2

Documentation notices for IBM
uDeploy

Copyright © 2011, 2013

© Copyright UrbanCode, an IBM Company 2011, 2013.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Programming interfaces: Intended programming interfaces allow the customer to write programs to obtain
the services of IBM uDeploy.

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your
area. Any reference to an IBM product, program, or service is not intended to state or imply that only that
IBM product, program, or service may be used. Any functionally equivalent product, program, or service
that does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not grant you any license to these patents. You can send license
inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM® may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Documentation notices
for IBM uDeploy

3

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact:

Intellectual Property Dept. for IBM® Software
IBM Corporation
5 Technology Park Drive
Westford, MA 01886
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and cannot
confirm the accuracy of performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

Copyright license
This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform
for which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Documentation notices
for IBM uDeploy

4

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.

If you are viewing this information in softcopy, the photographs and color illustrations may not appear.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software Offerings”) may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to tailor
interactions with the end user or for other purposes. In many cases no personally identifiable information
is collected by the Software Offerings. Some of our Software Offerings can help enable you to collect
personally identifiable information. If this Software Offering uses cookies to collect personally identifiable
information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use persistent cookies that
collect each user’s user name and password for purposes of authentication and enhanced user usability.
These cookies can be disabled, but disabling them will also likely eliminate the functionality they enable.
This Software Offering uses session cookies for purposes of session management. These cookies cannot
be disabled.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes,
see IBM's privacy policy at [http://www.ibm.com/privacy], IBM's Online Privacy Statement at http://
www.ibm.com/privacy/details/us/en, including the section entitled "Cookies, Web Beacons and Other
Technologies," and the "IBM Software Products and Software-as-a-Service Privacy Statement" at http://
www.ibm.com/software/info/product-privacy.

Trademark acknowledgments
IBM, the IBM logo, and IBM are trademarks or registered trademarks of International Business Machines
Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks
of IBM or other companies. A current list of IBM trademarks is available on the web at www.ibm.com/
legal/copytrade.shtml [http://www.ibm.com/legal/copytrade.shtml].

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

http://www.ibm.com/privacy
http://www.ibm.com/privacy
http://www.ibm.com/privacy/details/us/en
http://www.ibm.com/privacy/details/us/en
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Introduction

6

Overview
At its base, software deployment is a simple concept that sometimes gets obscured by jargon. A
deployment is the process of moving software (broadly defined) through various preproduction stages
to final production. Typically, each stage represents a step of higher criticality, such as quality
assurance to production. Complexity arises from the sheer volume of things deployed, the number
and variety of deployment targets, constantly-decreasing deployment cycles, and the ever-increasing
rate of technological change. While virtualization provides some relief to the process, it also—perhaps
paradoxically—increases the challenge with its exponential growth of deployment targets.

uDeploy helps you meet the challenge by providing tools that improve deployment speeds while
simultaneously improving their reliability. uDeploy's release automation tools provide complete visibility
into n-tiered deployments, enabling you to model processes that orchestrate complex deployments across
every environment and approval gate. uDeploy's drag-and-drop design tools decrease design-time by
making it easy to visualize the end-to-end deployment process and develop the big picture—the What,
How, and Where of the deployment workflow:

• What: the deployable items—binaries, static content, middleware updates, database changes and
configurations, and anything else associated with the software—that uDeploy delivers to target
destinations.

• How: refers to combining deployable items with processes to create components, and designing
applications that coordinate and orchestrate multi-component deployments.

• Where: the target destination's hosts and environments—uDeploy can scale to any environment.

Figure 1. Deployment Process

Overview

7

In uDeploy, deployable items are combined into logical groupings called components. Components are
deployed by component processes which consist of user-configured steps, many taken from integrations
with third-party tools called plug-ins. Multi-component deployments are handled by user-assembled
applications.

uDeploy represents deployment targets by what it calls resources. Resources—databases, servers, and so
on—reside on hosts. Complex deployments can contain numerous components that target multiple hosts.
Deployments are managed by agents residing on the hosts. Components can also remain independent of one
another, which enables incremental or targeted deployments. Of course, you can model your components
as you see fit—uDeploy is flexible and works the way you work.

Server

The uDeploy server is a standalone server that provides uDeploy's core services such as the user interface,
component and application configuration tools, workflow engine, and security services, among others.
Many services are REST-based.

uDeploy supports cross-network deployments with relay servers. Relay servers enable network-to-network
communications.

Agents

An agent is a lightweight process that runs on a host and communicates with the uDeploy server. Agents
manage the resources that are the actual deployment targets. Each machine participating in a deployment
usually has an agent installed on it. When not performing deployments, agents run in the background with
minimal overhead. See the section called “Resources”.

Repository

The uDeploy-supplied artifact repository, CodeStation, provides secure and tamper-proof storage. It tracks
artifact versions as they change and maintains an archive for each artifact. Associations between repository
files and components are built-in and automatic.

Security

In uDeploy’s role-based security system, users are assigned roles, and role-permissions are assigned
to things such as projects, build configurations, and other resources. For example, a developer may be
permitted to build a project, but only view non-project related material. See ???.

Components
Understanding how uDeploy uses the term component is critical to understanding uDeploy. Components
represent deployable items along with user-defined processes that operate on them, usually by deploying
them. Deployable items--also called artifacts--can be files, images, databases, configuration materials, or
anything else associated with a software project. Components have versions which are used to ensure that
proper component instances get deployed.

Artifacts can come from a number of sources: file systems, build servers such as AnthillPro, source
version control systems, Maven repositories, as well as many others. When you create a component, you
identify the source and define how the artifacts will be brought into uDeploy. If the source is Subversion,
for example, you specify the Subversion repository containing the artifacts. Each component represents
artifacts from a single source.

Component Processes
A component process is a series of user-defined steps that operate on a component's artifacts. Each
component has at least one process defined for it and can have several. A component process can be as

Overview

8

simple as a single step or contain numerous steps and relationships. The switch step, for instance, enables
you to create conditional processes. You might, say, take artifacts from a source like an AnthillPro project
and map the ones that get deployed to an HTTP server into one component; those that get deployed to a
J2EE container to another; and those that get deployed to a database to yet another. Or, to take another
example, a single-component deployment might consist of two processes: the first moves component files
to a server on Friday night (a lengthy operation), while the second deploys the files Saturday morning.

Figure 2. Process Editor with a Component Process Containing a Switch Step

Component processes are created with uDeploy's process editor. The process editor is visual drag-and-
drop editor that enables you to drag process steps onto the design space and configure them as you go.
As additional steps are placed, you visually define their relationships with one another. Process steps are
selected from a menu of standard steps that replace typical deployment scripts and manual processes.
uDeploy provides steps for several utility processes, such as inventory management, and workflow control.
Additional process steps are provided by plug-ins. Plug-ins provide integration with common deployment
tools and application servers, such as WebSphere, Microsoft IIS, and many others. Out-of-the-box,
uDeploy provides plug-ins for many common processes, such as downloading and uploading artifacts, and
retrieving environment information. A component process can have steps from more than one plug-in.

A component process is defined for a specific component. A component can have more than one process
defined for it, but each component requires at least one process.

For example, deploying a J2EE EAR file to WebSphere server typically consists of the following
operations:

1. transfer the EAR file to the target machine

Overview

9

2. stop the WebSphere server instance

3. invoke wsAdmin with deployment properties

4. start the WebSphere instance

5. verify that the deployment succeeded by accessing a specified URL

The WebSphere plug-in provides a configurable process step for each operation.

A frequently used component process can be saved as a template and applied later to new components.

Component processes are executed by uDeploy agents running on hosts. One instance of a component
process is invoked for each resource mapped to a component in the target environment, see the section
called “Resources”.

Plug-ins
Plug-ins provide basic processing functions as well as integration with third-party tools. uDeploy ships
with plug-ins for several common deployment processes, and others are readily available for a wide variety
of tools, such as middleware tools, databases, servers, and other deployment targets.

Third-party tools exhibit wide and varied functions, of course. Plug-in integration is achieved by breaking
down a tool's functions into simple, discrete steps that invoke a specific behavior. A plug-in step might
invoke a tool, or invoke different functions in a tool, such as extracting or inserting some type of data.

When you use plug-ins to create a component process, you can use steps from several plug-ins and
configure the steps as you go. For example, you might create a process using a plug-in for a source control
tool that deploys a component to a middleware server, and another plug-in to configure a step that removes
the component from the server.

A component process that contains a plug-in step requires an agent. Unless the agent needs to interact with
the host's file system or system processes, the agent does not have to be on the same host as the target
resource.

uDeploy enables you to download and install numerous component plug-ins. UrbanCode, an IBM
Company does not charge any additional fees for plug-ins. The plug-in system is open and extensible--
plug-ins can be written in any language.

Component Versions and the CodeStation Repository
After defining a component's source and processes, you import its artifacts into uDeploy's artifact
repository CodeStation. Artifacts can be imported automatically or manually. By default, a complete
copy of an artifact's content is imported into CodeStation (the original artifacts are untouched). This
provides several benefits, such as tamper-proof storage, and the ability to review and validate artifacts
with uDeploy's user interface. But if you have storage concerns or use a tool like Maven, you can limit
CodeStation to using references to the artifacts instead of actually copying them.

Each time a component is imported, including the first time, it is versioned. Versions can be assigned
automatically by uDeploy, applied manually, or come from a build server. Every time a component's
artifacts are modified and reimported, a new version of the component is created. So a component might
have several versions in CodeStation and each version will be unique.

A version can be full or incremental. A full version contains all component artifacts; an incremental version
only contains artifacts modified since the previous version was created.

Overview

10

Applications
An applications is the mechanism that initiate component deployments; they bring together components
with their deployment targets, and orchestrate multi-component deployments.

Application Process
When you create an application, you identify the included components and define an application process.
Application processes, like component processes, are created with the process editor. uDeploy provides
several common process steps, otherwise application processes are assembled from processes defined for
their associated components.

Application processes can run manually, automatically on some trigger condition, or on a user-defined
schedule. When a component has several processes defined for it, the application determines which ones
are executed and in which order. For instance, an n-tiered application might have a web tier, a middleware
tier, and a database tier. And, continuing the example, the database tier must be updated before the other
two, which are then deployed concurrently. An application can orchestrate the entire process, including
putting servers on- and off-line for load-balancing as required.

When an application process executes, it interacts with a specific environment. An environment is a
collection of one or more resources. At least one environment must be associated with the application
before the process can be executed. Application processes are environment agnostic; processes can be
designed independently of any particular environment. This enables a single application to interact with
separate environments, such as QA, or production. To use the same application process with multiple
environments (a typical scenario), you associate each environment with the application and execute the
process separately for each one.

In addition to deployments, several other common processes are available, such as rolling-back
deployments. uDeploy tracks the history of each component version, which enables application processes
to restore environments to any desired point.

Environments
An environment is a user-defined collection of resources that host an application. Environments are
typically modeled on some stage of the software project life cycle, such as development, QA, or production.
A resource is a deployment target, such as a database or J2EE container. Resources are usually found on
the same host where the agent that manages them is located. A host can be a physical machine, virtual
machine, or be cloud-based.

Environments can have different topologies--for example: an environment can consist of a single machine;
be spread over several machines; or spread over clusters of machines. Environments are application scoped.
Although multi-tenant machines can be the target of multiple applications, experience has shown that most
IT organizations use application-specific environments. Additionally, approvals are generally scoped to
environments.

uDeploy maintains an inventory of every artifact deployed to each environment and tracks the differences
between them.

Snapshots
A snapshot is a collection of specific component versions, usually versions that are known to work together.
Typically, a snapshot is generated in an uncontrolled environment--meaning one without— approvals.
When a snapshot is created, a picture of the application's current state is captured. As an application moves
through different environments, snapshots can ensure that proper component versions are used.

Overview

11

Snapshots help manage complex deployments—deployments with multiple tiers and development teams.
For example, after testing and confirming that team A's component works with teams B's, a snapshot can
be taken. Then, as development progresses, additional snapshots can be taken and used to model the effort
and drive the entire deployment, coordinating versions, configurations, and processes.

Agents
An agent is a process that runs on target host and communicates with the uDeploy server. Agents are
integral to uDeploy's client/server architecture. Agents perform the actual work of deploying components
and so relieves the server from the task, making large deployments involving thousands of targets possible.

Typically, an agent runs on the same host where the resources it handles are located. A single agent can
handle all resources on its host. If a host has several resources, an agent process is invoked separately for
each resource. For example, a test environment might contain a single web server, a single middleware
server, and a single database server all running on the same host (machine). A deployment to this
environment might have one agent and three separate resources.

Depending on the number of hosts in an environment, a deployment might require a large number of
agents. Agents are unobtrusive and secure. Agent communications use SSL encryption and mutual key-
based authentication. For added security, agents do not listen to ports, but open direct connections to the
server instead.

Resources
A resource is a user-defined construct based on uDeploy's architectural model. Resources aid bookkeeping;
inventory is tracked for resources. Resources are created and managed through the user interface.

A resource represents a deployment target--a physical machine, virtual machine, database, J2EE container,
and so on. Components are deployed to resources by agents (which are physical processes). Resources
generally reside on the same host where its managing agent runs. A host can have more than one resource.
If an agent is configured to handle multiple resources, a separate agent process is invoked for each one.

A resource can represent a physical machine, which is the simplest configuration, or a specific target on
a machine, such as a database or server. So a host (machine) can have several resources represented on
it. In addition, a resource can represent a process distributed over several physical or virtual machines.
Finally, environments consist of resources.

To perform a deployment, at least one resource must be defined and (usually) at least one agent. ("Usually"
because trivial deployments can be done without an agent.) Typically, each host in a participating
environment has an agent running on it to handle the resources located there.

A proxy resource is a resource effected by an agent on a host other than the one where the resource is
located. If an agent does not require direct interaction with the file system or with process management
on the host, a proxy resource can be used. When a deployment needs to interact with a service exposed on
the network (a database or J2EE server, for instance), the interaction can happen from any machine that
has access to the networked service.

Resource Groups
A resource group is a logical collection of resources. Resource groups enable collections of resources
to be easily reused. Resource groups can manage multi-tenant scenarios, for example, in which several
machines share the same resources.

12

Architecture Overview
uDeploy architecture consists of a service tier and a data tier. The service tier has a central server that
provides a web server front-end and core services, such as workflow, agent management, deployment,
inventory, security, as well as others. A service can be thought of as a self-contained mechanism for hosting
a piece of business logic. Services can be consumed by clients\agents or other services. Deployments are
orchestrated by the server and performed by agents distributed throughout the network. Most clients use
browsers to communicate with the web server via HTTP(S). Most server-agent communication is done
via JMS (discussed below) but HTTP(S) is also used as required.

uDeploy uses stateless communications for server-agent communications (JMS-based) as well as client-
web service communications. Stateless, as used here, means the server retains little session information
between requests and each request contains all the information required to handle it. The server sets-up
listening sockets and listens for agents, relays, and users (clients). For added security, agents do not listen
on ports. Agents send requests when they are ready to make the transition to a new state.

Server-agent communication is built around transferring—deploying—components. Components can
contain any business-meaningful content, such as environment information, configuration data, source,
static files, or anything else associated with a software project. Because JMS connections are persistent
and not based on a request-response protocol, uDeploy does not have to continually open and close ports,
which enables the server to communicate with agents at any time while remaining secure and scalable.

Many uDeploy services are REST-type (representational state transfer). REST-style services are web
services that focus on transferring resources over HTTP. A resource can be any business-meaningful piece
of data. Resources are transferred by a self-describing format such as XML or JSON (JavaScript Object
Notation). The XML and JSON representations typically model resource states at the time of agent/client
requests. REST-style services achieve statelessness by ensuring that requests include all the data needed
by the server to make a coherent response.

The data tier's relational database stores configuration and run-time data. The data tier's file store—
CodeStation—contains log files, artifacts, and other non-structured data objects. Reporting tools can
connect directly to the relational database.

Architecture Overview

13

Figure 3. Overview

Service Tier
The uDeploy server provides a variety of services, such as: the user interface, component and application
configuration tools, workflow engine, and security services among others. The REST-based user interface
provides the web-based front-end that is used to create components and fashion workflows; request
processes, and manage security and resources, among other things.

When a workflow is requested, many services are used to fulfill the request, which are shown in the
following illustration:

Figure 4. Services and Process Workflow

Workflow requests are initiated with the user interface, either the web-based application or the CLI
(command line interface).

Table 1. Services

Service Description

User Interface Used to create components and fashion workflows, request processes and
manage security and resources, among other things. REST-based.

Workflow Engine Manages workflows—application and component processes. Calls the agent
responsible for performing the workflow's current plug-in step. When the
workflow is finished, alerts the notification and inventory services. Called by
the deploy service. REST-based.

Agent Tracks installed agents and routes plug-in commands to affected agents.
Commands come from plug-in steps. Invoked by the workflow service.
REST-based.

Architecture Overview

14

Service Description

Work Item Operates in tandem with the approval service; provides approver alerts and
enables approvers to accept or reject workflows. If a scheduled workflow
remains unapproved at run-time, the job fails automatically. REST-based.

Plug-in Manager uDeploy can interact with virtually any system through its extensible plug-
in system; plug-ins provide functions by breaking-down tool features into
automated steps. Plug-ins can be configured at design- and run-time. When
a plug-in step executes, the controlling agent invokes its run-time process to
execute the step.

When a new component version is available, the agent compares the current
component version and downloads and only new or changed artifacts.

Event The event service is ubiquitous; it alerts other services as various trigger
conditions occur.

Deployment Service Manages deployments. When a deployment process is requested, invokes the
workflow engine to perform the process. Works in tandem with the security
service to ensure users have required permissions. REST-based.

Notification Manager Notifies users about the status of deployments; notifications are sent to
approvers if the system is configured with an email server and the user has an
email address. Invoked by the workflow manager. REST-based.

Inventory Manager When a workflow finishes, the inventory manager updates affected inventory
records. uDeploy maintains an inventory of every deployed artifact in every
environment, which provides complete visibility across environments.
REST-type service.

Approval Engine Enables creation of approval-requiring jobs and approver roles. Works in
tandem with the work item service to ensure required approvals are made
before scheduled jobs. REST-based.

Security Controls what users can do and see; maps to organizational structures by
teams, roles, activities, etc. REST-based.

Calendar Used to schedule processes to being at some future point; works in tandem
with the approval and work item services. REST-based.

CodeStation Handles versioning of artifacts; agents invoke it when downloading
component versions. REST-based.

Clients

Web browsers are uDeploy's most common client (agents are discussed in another topic, see the section
called “Agents”) but other clients can be developed to access the web services. Clients are deployed locally
(on the same LAN as the uDeploy server) or remotely, and communicate with the server via HTTP or
HTTPS. The uDeploy browser-based GUI is a Rich Internet Application (RIA) that maintains much of its
functionality in the browser. Clients interact with RESTful (representational state transfer) services on the
server as needed. A command line client is available that provides most of features found in the browser-
based GUI. The command line client is also built on top of RESTful services.

Architecture Overview

15

Data Tier

Relational Database
Your relational database is a critical element for performance and disaster recovery. The provided Derby
database, while sufficient for proof-of-concept work, is generally insufficient for the enterprise. Full-
featured databases like Oracle, MS SQL Server, or MySQL are better options. Ideally, the database
—whichever is used—should be configured for high-availability, high-performance, and be backed-up
regularly.

10-20 GB of database storage should be sufficient for most environments. For Oracle, an architecture
based on Oracle RAC is recommended; for Microsoft SQL Server, a clustered configuration is preferred;
for MySQL, utilize MySQL Cluster.

File Storage—CodeStation
The data tier also provides log file and Codestation artifact storage. Artifacts represent deployable items
such as files, images, databases, configuration materials, or anything else associated with a software
project. By default, these are stored in the var subdirectory in the uDeploy server installation directory.
In an enterprise environment, the default installation might not be ideal, see the section called “Relocating
Codestation” for a discussion about enterprise options.

uDeploy's secure and tamper-proof artifact repository ensures that deployed components are identical to
those tested in preproduction environments. Without the repository, artifacts would have to be pulled from
network shares or some other system, increasing both security risks and the potential for error.

The artifact repository uses content addressable storage to maximize efficiency while minimizing disk
use. The repository tracks file versions and maintains a complete history for all components. Maximizing
efficiency is important, since the artifact repository stores files that are much larger than source files.
Association of files with Components is built into the system. Without any configuration, each Component
gets its own area of the repository for its files. There is no chance of confusion or mix-up of files to
Components. And, each Component Package is mapped to a specific set of files and versions corresponding
to the Component.

The artifact repository comes with a client application that provides remote access to the repository. Using
the client, the user can add/modify files, create Packages, retrieve files, as well as view the history of
changes. The client application provides a file transfer capability that can be used to deliver files to target
servers during deployments. This built-in transfer mechanism verifies the integrity of all transferred files
against their expected cryptographic signatures, thus guaranteeing that files have not been corrupted during
transmission or tampered with during storage. In addition to the client application, the artifact repository
exposes REST-based web services. These services are used to build integrations between build systems
such as AnthillPro and uDeploy. Such integrations automatically place the artifacts produced by the build
process in the artifact repository, thus making the artifacts available for deployment.

Relocating Codestation

By default, the data tier's log files and Codestation artifacts are stored in the var subdirectory within the
uDeploy server directory. Ideally, this data should be stored on robust network storage that is regularly
synchronized with an off-site disaster recovery facility. In addition, the uDeploy server should have a fast
network connection to storage (agents do not need access to the storage location). In Unix environments,
you can use symbolic links from the var subdirectory to network storage. On Windows platforms there are
several options for redirecting logs and artifacts, including mklink (supported in Windows 7 and later).

Architecture Overview

16

If you want to relocate Codestation, relocate both the var directory as well as the \logs\store
directory. A good rule-of-thumb for determining Codestation storage requirements is: average
artifact size * number of versions imported per day * average number
of days before cleanup

Distributed teams should also take advantage of uDeploy location-specific Codestation proxies to improve
performance and lower WAN usage.

Data Center Configuration

This section provides several installation recommendations.

Cold Standby

uDeploy employs the cold standby HA strategy for the application tier. When the primary system fails,
the cold standby is brought online and promoted to primary server. Once online, the standby reestablishes
connections with all agents, performs recovery, and proceeds with any queued processes. Because the most
intense work is handed-off to agents, a high performance configuration should not have an agent installed
on the same hardware as the main server.

The uDeploy server aggressively utilizes threading and takes advantage of any additional CPU cores
assigned to it. A small to midrange server with 2-4 multi-core CPUs is ideal, but, because it is relatively
easy to move an existing uDeploy server installation to a new machine, starting small and scaling as needed
is a very legitimate strategy. The memory available to the application tier should also be increased from
the default 256 MB to something on the order of 1 GB.

Platform Considerations

uDeploy agents are platform agnostic, and can be installed on anything that provides a Java 1.5 JDK.
The server process is also platform agnostic. Our customer base includes large uDeploy installations on
Windows, Solaris, AIX, HP-UX, other Unix flavors and various Linux platforms, all running successfully.

We have seen somewhat better performance from Unix and Linux operating systems, but recommend
installing on the platform with which you are most familiar and comfortable.

Recommended Server Installation

• Two server-class machines

UrbanCode, an IBM Company recommends two machines for the server: a primary machine and a
standby for fail-over. In addition, the database should be hosted on a separate machine.

• Separate machine for the database

• Processor 2-4 CPUs, 2+ cores for each.

• RAM 8 GB

• Storage Individual requirements depend on usage, retention policies, and application types. In general,
the larger number of artifacts kept in uDeploy's artifact repository (CodeStation), the more storage
needed.

• Network Gigabit (1000) Ethernet with low-latency to the database.

Architecture Overview

17

Agent Minimum Requirements

Designed to be minimally intrusive, agents require 64-256 MB of memory and 100 MB of disk space.
Additional requirements are determined by the processes the agent will run. Agents should be installed on
separate machines. For evaluation purposes, a good option is to install an agent on a virtual machine.

Typical Data Center Configurations

Most organizations configure the data tier with network storage and a clustered database. The service tier
performs best when it's on a dedicated, stable, multi-core machine with a fast connection to the data tier.
A standby machine should be maintained and kept ready in case the primary server goes down.

The following figures illustrate typical uDeploy configurations.

Figure 5. Single Data Center Configuration

There are no remote agents or agent relays in this configuration.

Architecture Overview

18

Figure 6. Multiple Data Centers

Recovery Using a Database Back-up

To prepare a back-up of your uDeploy installation, copy the database and server files. Back-up the server
by copying the server directory along with all subdirectories. This ensures that you can revert to a server
version that matches your configuration, while also preserving your artifact repository.

If you are not using the Derby database, copy the database too. If you are using Derby, it will be copied
along with the server files.

Install the back-up using the original path, or some configuration files will need to be changed.

Agents
Agents play a central role in the uDeploy architecture. An agent is a lightweight process that runs
on a deployment-target host and communicates with the uDeploy server. Agents perform the actual
work of deployment which relieves the server from the task. All processes—packaging, configuration,
deployments, and so on—requested by the uDeploy server are executed on hardware assigned to agents.
Once an installed agent has been started, the agent opens a socket connection to the uDeploy server.
Communication between server and agents uses a JMS-based (Java Message Service) protocol and can be
secured using SSL, with optional mutual key-based authentication for each end-point. This communication
protocol is stateless and resilient to network outages (the benefits of statelessness are discussed below).

While we characterize an agent as a single process, technically an agent consists of a worker process and
a monitor process. The worker is a multi-threaded process that performs the actual deployment work after
receiving commands from the server. Work commands come from plug-in steps which provide seamless
integration with many third-party tools. The monitor is a service that manages the worker process--starting
and stopping, handling restarts, upgrades, and security, for example. Agents are rarely upgraded because

Architecture Overview

19

their functionality is derived from plug-ins, which can be upgraded at will. Once an agent is installed, it
can be managed from the uDeploy web application.

Figure 7. Agent Processes

Agents are an important part of uDeploy's scalability. By adding more agents, the throughput and capacity
of the system increases almost exponentially and so can scale to fit even the largest enterprise.

Server-Agent Communication

Most agent communication is done with JMS, but some agent activities—posting logs, transmitting test
results, or posting files to CodeStation, for example—use the web tier via HTTP(s) as needed. The JMS
channel is uDeploy's primary control channel; it's the channel the server uses to send agent commands. By
default the server listens on only three ports: port 7918 for JMS, 8080 for HTTP, 8443 for HTTPS.

The agent monitor service uses JMS for all server communications and for sending commands, such as
"run step," to the worker process. The worker process uses JMS for system communications, and HTTP
REST services when performing plug-in steps or retrieving information from the server.

Stateless server-agent communication provides significant benefits to performance, security, availability,
and disaster recovery. Because each agent request is self-contained, a transaction consists of independent
message which can be synchronized to secondary storage as it occurs. Either endpoint--server or agent—
can be taken down and brought back up without repercussion (other than lost time). If communications fail
mid-transaction, no messages are lost. Once reconnected, the server and agent automatically determine
which messages got through and what work was successfully completed. After an outage, the system
synchronizes the endpoints and recovers affected processes. The results of any work performed by an agent
during the outage are communicated to the server.

Architecture Overview

20

Figure 8. Stateless Communication

In Figure 8, “Stateless Communication”, the arrow represent the direction in which communications was
established, but the flow can be in both directions with JMS.

Remote Agents--Crossing Network Boundaries and
Firewalls

uDeploy supports remote agents—cross-network deployments. As long as there is at least a low bandwidth
WAN connection between the server and remote agents, the uDeploy server can send work to agents
located in other geographic locations. To aid performance and ease maintenance, uDeploy uses agent
relays to communicate with remote agents. An agent relay requires that only a single machine in the remote
network contact the server. Other remote agents communicate with the server by using the agent relay.
All agent-server communication from the remote network goes through the relay. Agent relays can be
configured as CodeStation proxies in order to optimize the transfer of large objects.

The following, a simple artifact move, illustrates the mechanics of remote communications:

1. A remote agent starts and establishes a connection to the agent relay via JMS, which, in turn, alerts the
uDeploy server via JMS that the remote agent is online.

2. The server sends, say, an artifact download command to the relay via JMS, and the relay delivers the
message to the remote agent (also via JMS).

3. The server locates the artifacts, and then:

• Uploads the artifacts to the relay over HTTP(s), which begins streaming them directly to the agent
over the server-relay HTTP(s) connection.

• Once the remote agent completes the work, it informs the server via JMS.

Architecture Overview

21

Figure 9. Crossing Network Boundaries

By default, agent relays open the connection to the uDeploy server, but the direction can be reversed if
your firewall requires it. Remote agents open connections to the agent relay.

In configurations with relay agents, agents local to the uDeploy server continue to use direct
communications.

Agent Security
uDeploy agents employ user impersonation when required to perform tasks for which they would not
otherwise have permission. To run a database update script, for example, an agent might need to be the
"oracle" user; but to update the application, the agent might need to be the "websphere" user. By using
impersonation, the same agent can run the script and update the application, which enables you to combine
these steps into a single process. For information about user impersonation, see the section called “User
Impersonation”

User Impersonation
uDeploy can use user impersonation when an agent must execute a command for which it might not
otherwise have permission, or when a specific user must be employed for a given process. On Unix/Linux
systems the su/sudo commands are used to impersonate users; on Windows uDeploy provides a utility
program to handle impersonation. You implement impersonation when you configure a component's plug-
in process step.

Using su/sudo

The su command (as used by uDeploy) enables a user to start a shell as another user (process steps
can be considered individual shells). When you configure a process step (see ???), you can tell uDeploy
to use impersonation for the step. By default, su is used but you can use sudo instead. To configure
impersonation, you supply the user name required by the target host. When the impersonation-configured
process step runs, the su or sudo command runs the step as the impersonated user. Each step that needs
user impersonation must be configured independently.

Architecture Overview

22

Before sudo can be used, impersonation privileges must be defined in the /etc/sudoers file. When
you configure sudoers, ensure that the impersonating user does not have to supply a password.
Typically, you would configure the /etc/sudoers file like this:

Defaults:X !requiretty

X ALL=(Y) NOPASSWD: ALL

where X and Y are user names. Configured this way, user X can run any command as user Y without
supplying a password.

su and sudo maintain a record in the system logs of all of their activity. su can be used without
configuring the sudoers file. For information about su/sudo see the Unix/Linux documentation.

Note

For Unix- or Linux-based agents the password option is ignored.

Impersonation on Windows Systems

For agents running on Windows platforms, uDeploy provides a program that handles impersonation. You
implement impersonation for Windows-based agents the same way you do for Unix- or Linux-based
agents: when you configure a process step, you specify the local user credentials—user name and password
—that will be used when the step is processed. For impersonation purposes, a local user is one whose user
name and password are stored on the target computer and who is part of the administration group and has,
at a minimum, the following privileges:

• SE_INCREASE_QUOTA_NAME (adjust memory quotas for a process)

• SE_ASSIGNPRIMARYTOKEN_NAME (replace a process-level token)

• SE_INTERACTIVE_LOGON_NAME (local logon)

You can also impersonate the Windows LocalSystem account. The LocalSystem account is installed on
every Windows machine and is the equivalent of the root user on Unix/Linux. It is guaranteed to have
the privileges listed above.

Note

For Windows-based agents the sudo option is ignored if selected.

SSL Mutual Key-based Authentication
SSL (Secure Socket Layer) technology enables clients and servers to communicate securely by
encrypting all communications. Data are encrypted before being sent and decrypted by the recipient—
communications cannot be deciphered or modified by third-parties.

SSL technology can be used in several modes. In unauthenticated mode, communication is encrypted/
decrypted but users do not have to authenticate or verify their credentials. By default uDeploy uses this
mode for its JMS-based server/agent communication. By default, JMS-based communication uses port
7918.

SSL unauthenticated mode can also be used for HTTP communication. You can implement this mode for
HTTP during server/agent installation, or activate it afterward. See ???.

Architecture Overview

23

In mutual authentication mode, communications are encrypted as usual, but users are also required to
authenticate themselves by providing digital certificates. A digital certificate is a cryptographically signed
document intended to assure others as to the identity of the certificate's owner. uDeploy certificates are
self-signed.

When mutual authentication mode is active, uDeploy uses it for JMS-based server/agent communication.
In this mode, the uDeploy server provides a digital certificate to each agent, and each agent provides one
to the server. This mode can be implemented during server/agent installation, or activated afterward. See
??? for information about activating this mode and exchanging certificates between the server and agents.

Unauthenticated mode for HTTP and mutual authentication mode for JMS are optional; you can implement
one without implementing the other, or implement both.

24

Frequently Asked Questions—FAQ
Deployments
Can uDeploy forecast download times for specific targets?

While uDeploy does not currently forecast deployment times for specific hosts, it does calculate the
average time for previous deployments. Using that information and several other factors, such as the
number and size of files, and machine and network speed, estimates can closely mirror actual results.
Reports are available for numerous deployment metrics, including average deployment time.

Can deployments be versioned?

Yes, all deployments are versioned. Every deployment tracks artifact (file) versions, process versions, and
parameter and configuration versions. Every deployment is completely audit-able and reproducible.

What deployment mechanisms are supported?

While target machines/agents pull from the uDeploy server, the server actually directs the work by
instructing agents to pull. See the section called “Can an agent/target host check the uDeploy server for
outstanding work?”.

What happens when a target host is unexpectedly down during a
deployment?

When the target host comes back online, an event is generated. If the deployed items do not match what
should have been deployed, the machine is considered non-compliant. The event handler generates a new
event that can be handled in a number of ways:.

• a notification can be sent to users

• a deployment can be automatically triggered to bring the host into compliance

Agents/Targets/Hosts
How are target hosts added to uDeploy?

Target hosts typically have a uDeploy agent installed on them. They can also be accessed through agent
relays (also called proxy agents), see the section called “Remote Agents--Crossing Network Boundaries
and Firewalls”. Agents automatically register themselves with uDeploy when they come online.

Can an agent/target host check the uDeploy server for outstanding
work?

Yes. This is handled by the event system. For example, when a new agent comes online for the first time,
the event engine automatically matches it to a resource group that might be associated with an application
environment. The event engine can then determine if any outstanding work should be performed.

A schedule can also create events for agents.

Frequently Asked Questions—FAQ

25

Can changes to an individual target host be shown?

Yes. Each target can be individually viewed, along with its file versions and requests.

Can uDeploy compare the image of an item to be downloaded to
what is currently deployed?

Yes. uDeploy knows file versions and the differences between versions, and can download only changed
files if desired.

Rollbacks
How are deployment rollbacks handled?

Rollbacks are taken into consideration during the development of integrations with deployment targets,
such as content systems, databases, and middleware. Deployment rollbacks typically involve making
changes to non-transactional systems and are done with compensating actions—actions that undo prior
actions.

For example, to rollback an incremental deployment (one in which files are added, deleted, and modified),
added files need to be removed, deleted files need to be restored, and modified files changed back to their
original state. uDeploy provides built-in plug-in steps to perform incremental updates as well as rollbacks.

How are database rollbacks handled?

uDeploy's database deployment toolkit provides forward scripts that can apply database changes, as well
as corresponding rollback scripts to undo those changes. The database deployment toolkit can handle
database deployments and rollbacks.

How are middleware rollbacks handled?

Most middleware rollbacks, such as WAR or EAR file deployments, are usually straightforward. In most
situations, rolling back to a prior version of an EAR file is as simple as re-deploying an earlier version.
Middleware configuration rollbacks might be more complex as they sometimes require service restarts.

Approvals/Notifications
What are the approval capabilities of uDeploy?

uDeploy's approval-type workflows provide great flexibility when designing approvals with multiple roles
or paths. Approvals can be attached to applications and/or environment. Whenever a workflow executes,
uDeploy determines if an approval is required; if it is, notifications are sent to all users in approver roles.
Only when the approval workflow completes successfully will the deployment be executed.

What are the alerting/notification capabilities of uDeploy?

Notifications are triggered by events—anything that happens in uDeploy can have a notification associated
with it. Notification schemes enable you to configure who should be notified, as well as how and when
notifications should be made. 'How' refers to the method of delivery, such as email or SMS, as well as the
message template. 'When' identifies the triggering event. For example, uDeploy can notify you if a process
has failed and identify the effected machines.

Frequently Asked Questions—FAQ

26

Why are descriptions missing from notifications?

If a description is not supplied when a process is started, the triggered notification will not have a
description.

Data Repository and File Storage
How are Applications Stored and Versioned?

Files associated with an application are versioned in our artifact repository, CodeStation. CodeStation
ensures that files deployed to production environments are exactly the same as those deployed for testing
and approved for production.

In addition to CodeStation, uDeploy can integrate with external repositories (SCM, network share, Maven
repositories, etc.) where versioned files can be stored. When an external repository is used, uDeploy
maintains meta data about the files along with references to the external repositories.

How are files transferred?

uDeploy uses a highly optimized file transfer protocol that is secured using SSL encryption with optional
mutual authentication.

Miscellaneous
What command line tools are available?

uDeploy provides a command-line interface that has access to the uDeploy server. It can be used
to find or set properties, and perform numerous product functions. To install the tool, download the
udclient.zip from the uDeploy release page on Supportal (http://support.UrbanCode, an IBM
Company.com).

How can uDeploy scale to handle, say, 60K server instances?

The uDeploy server supports active-active architecture which enables multiple server instances to share
work and load balancing. Multiple active-active instances of uDeploy can share workflow execution, which
enables a large number of concurrent workflows to be executed.

In addition, agent relays act as agent proxies and work on behalf of the uDeploy server. By providing
a single avenue of communication, a relay can provide the logical configuration for a large number of
targets. This reduces the overhead of agent management and artifact distribution.

What is the largest number of Unix-based data centers supported
by a customer?

Our largest customer has multiple data centers with over 3,000 Unix servers in each one. The data centers
are located in different geographic regions and time zones.

Can user-created scripts be incorporated in deployments?

Yes, scripts can be added to any process. uDeploy supports scripting with PowerShell, groovy, Unix shell,
JavaScript, windows batch files, and many others. In addition, any type of script interpreter can be added

Frequently Asked Questions—FAQ

27

to uDeploy’s shell step in workflow processes. For example, you can configure the network by running
a PowerShell script on the target machine, then perform automated deployment steps, then, finally, run
another script to verify that the deployment has been performed.

28

Glossary

A
Agent Agents are light-weight Java processes that run on the agent machine. Agents

allow the distribution of tasks for performance and multi-platform support. The
agent contacts the server whenever the agent process is started. Since the agent
communicates with the central server, it need not be on the same network as the
central server. However, the agent must be able to open a socket connection to the
server. By default, all communication between the central server and the agent is
not secure. Communication may be secured using SSL.
Agents are light-weight Java processes that run on the agent machine. Agents
allow the distribution of tasks for performance and multi-platform support. The
agent contacts the server whenever the agent process is started. Since the agent
communicates with the central server, it need not be on the same network as the
central server. However, the agent must be able to open a socket connection to the
server. By default, all communication between the central server and the agent is
not secure. Communication may be secured using SSL.

agent An agent is a lightweight process that runs on a host and communicates with
the uDeploy server. Agents manage the resources that are the actual deployment
targets.

Agent Filters Agent Filters are used to select one or more agent(s) at run time and to monitor
the quiet period.

agent pools An agent pool helps you organize and manage agents installed in different
environments.

Agent Relays The new communication relay acts as a proxy for agents (which perform work on
behalf of the AnthillPro server) that are located behind a firewall or in another
network location. Available under separate download.

agent relays An agent relay is used to communicate with remote agent. An agent relay requires
that only a single machine in the remote network contact the server.

AHPTool AHPTool is a command-line interface for AnthillPro that provides communication
between agent-side commands, scripting and the AnthillPro central server.
AHPTool is focused on setting and retrieving information from the AnthillPro
server in the context of a running workflow: It can be used to look up or set
properties at the system, step, request, job, Build Life and agent levels. AHPTool
can upload and retrieve Test, Coverage, Analytics, or Issue data in the form of
an XML document to AnthillPro -- making it an excellent integration point for
writing your own plug-in or script.

Any Agent Filter An any agent filter selects the first available agent. Also, it returns all online agents
in the environment, ordered by a combination of current load and throughput
metric.

applications An application is the mechanism that initiates component deployment; they
bring together components with their deployment target and orchestrates multi-
componet deployments. An Application must have one component.

Glossary

29

application process An application process can run automatically, manually, or on a user-defined
schedule. An application process can orchestrate the entire process including
putting servers on-and-off line for load-balancing as required.

Application Security Report The application security report provides information about user roles and
privileges defined for uDeploy-managed applications.

Artifact For any artifact associated with this project, the files produced by a workflow
published as the artifact.

artifacts Artifacts are files, images, databases, configuration materials, or anything else
associated with a software project.

Artifact Retention Policy Manages how long you will keep the artifacts in order to save disk space.

Artifact Set An Artifact Set is a label for a collection of build artifacts. Artifact Sets are used
to define dependency relationships: Any project that another project depends on
generates one or more collections of files used by the dependent project.

Authentication Realm Authentication Realms are used to determine a user’s identity within an
Authorization Realm.

Authorization Realm Authorization reals are used to associate Users with Roles and to determine user
access to AnthillPro.

B
Bar Chart Displays the data in a bar chart embedded in HTML. Data must all be numeric.

blackout Blackouts are set per-environment, per-application. Once set, no deployments
(nor Snapshots) can be scheduled to occur in that Environment. Any previously
scheduled deployments to the Environment will fail if they fall within the blackout
date you set.

Build-Farm The default environment containing all agents used for pure-build processes.

Build Life represents all the transformations a build has gone through, and the processes such
as deployments and testing that the artifacts have undergone.

Build Life Links Build Life Links are used to pass the URL of resources outside of AnthillPro to
the Build Life.

Build Life Originating
Workflow Request Property

When set as a workflow property, the value will get pushed to the Build Life
originating workflow before the build begins.

Build Life Properties typically used to hold variable data for builds or to create an audit trail. Once the
property is set, and the build has run, the Build Life Property will be visible on
the Build Life page.

Build Request Property Build Life Tools- Build Life Tools are available through the UI to help you
diagnose problems and mange Build Lives.

Build Request Property The property will get pushed to the build request before the build begins.

Build Workflow A build workflow defines the process for running jobs.

Glossary

30

C
Caching Proxy Could reduce bandwidth and improve AnthillPro’s response time. This is

especially helpful in distributed development environments: the proxy can
improve performance for users at off-site locations because commonly used pages
are loaded from the locally stored cache.

Cleanup Cleanup configures AnthillPro to periodically cleanup old Build Lives, build
request and miscellaneous jobs generated by a project. Cleanup is on a per-project
basis, so every project that uses the same Life-Cycle Model will have the same
policy. To clean up the Build Life, the user can delete, inactivate, or archive the
Build Life.

Cleanup Build Lives determines when to cleanup build lives. The cleanup of build lives is base on the
status the build life has achieved.

Cleanup Policy Specifies when to delete information about old Build Lives and other task
associated with the project.

Cleanup Schedule A Cleanup Schedule kicks-off the Cleanup.

Cleanup Build Request A Cleanup Build Request determines when build request are cleaned up.

Clone Instance Cloning an instance of your AnthillPro server will allow you to change scripts,
optimize processes, improve build performance, move the server, etc., without
having to experiment on the production server.

CodeStation CodeStation is the name of AnthillPro’s artifact repository management and
access tool set. It provides support of dependencies of third-party tool kits and
software libraries. CodeStation is also responsible for bringing the dependency
management lookup and retrieval utilities to the individual developer.

CodeStation CodeStation is uDeploy's artifact repository. It provides secure and tamper-proof
storage. It tracks artifact versions as they change and maintains an archive for each
artifact.

CodeStation Artifact Time-to-
Live

This feature determines how long unused artifacts remain in the cache.

components A component represents deployable items along with user-defined processes that
operate on it. Components are deployed to a resource by agents.

component inventory A component inventory tells you what version of the component is running on a
resource.

component process A component process is a series of user-defined steps that operate on a components
artifacts.

Component Security Report A component security report provides information about user roles and privileges
defined for components.

component template Component templates enable you save and reuse component processes and
properties. Components based on templates inherit the template's properties and
process.

Glossary

31

Conflict Strategy A Conflict Strategy allows you to control how AnthillPro acts when a conflict
occurs within the dependency tree.

Cron Schedule A cron schedule may be configured to consider more complex criteria than a
simple interval.

D
Defined-value property Basic property type. Displays a secured field for the user (either the property name

or default value) when running a build.

Dependencies Specifies the specific artifacts, including version, from other projects that should
be retrieved in order to support the workflow. Also specifies the artifacts from
other projects and the directory in the checked-out source that those artifacts
should be placed in.

deployment A deployment is the process of moving software through various preproduction
stages to final production.

Deployment Average Duration
Report

A deployment average duration report provides the average deployment time for
applications executed during a user-specified reporting period.

Deployment Count Report A deployment count report provides information about the number of deployments
executed during a user-specified reporting period.

Deployment Detail Report The deployment detail report provides information about deployments executed
during a user-specified reporting period.

Deployment Reports A deployment report provides information about user roles and privileges defined
with the uDeploy security system.

Deployment Total Duration
Report

A deployment total duration report provides total deployment for applications
executed during a user-specified period.

design space The process editor's work area, where plug-in steps are configured and process
flows defined.

Dev-kit The Dev-kit provides comprehensive documentation on AnthillPro scripting,
remoting, using SOAP-based web services with AnthillPro, the AHPTool
(command-line tool) and creating your own Plug-in for AnthillPro.

digital certificate A digital certificate is a cryptographically signed document intended to assure
others about the identity of the certificate's owner.

Distributed Servers Distributed Servers is a complimentary product to AnthillPro designed to reduce
the reliance on WAN connections by performing all the heavy lifting (builds,
etc.) on local networks. There are three main components to Distributed Servers:
Distributed Web Interface, Codestation 2.0, and Agent Relay.

Distributed Web Interface The interface mirrors the AnthillPro server, providing the same information and
functionality as the main server, for AnthillPro users.

E
Empty-value properties enable users to set a standard for the available attributes a user can provide when

executing a resource. Using an empty-value property gives users the option to

Glossary

32

define a required value or simply pass a blank value that AnthillPro will effectively
ignore.

environment An environment is a user-definded collection of one or more resources that host an
application. At least one environment must be associated with the process before
the process can be executed.

Environment An environment is a partition grid of agents that is specific for different stages of
a project life-cycle.

Environment Group determines the set of environments that project workflows may be executed on.
Each environment group must contain at least one environment.

environment inventory An environment inventory tells you both what versions of any given component
is running on a particular resource.

Environment Property Environment Properties are used to set default values for a particular environment.

Environment Security Report An environment security report provides information about user roles and
privileges defined for environments.

Event Triggers Event Triggers use scripts to create an Event Filter that listens to events passing
through the AnthillPro Event Service. When the Event Script detects an event, it
can then trigger another action by the AnthillPro server.

F
Fixed Agent Filter Fixed Agent Filters always select a specific agent within the environment. If the

requested agent is locked or can’t receive more work, the request will be queued
until the agent frees up.

full version A full version contains all component artifacts.

G
Guest User Account The Guest User Account gives anonymous access to AnthillPro, and does not

require a user name or password at login.

I
IDE Plug-ins The plug-ins enable developers to view the current activity and state of projects,

start new builds, map their projects to projects in AnthillPro, and resolve the
project’s dependency artifacts.

incremental version An incremental version contains only artifacts that have been modified since the
previous version was created.

Independent Scheduling Related projects do not need to know about each other for independent scheduling.
A dependent project starts each build by gathering the most recent artifacts from
its dependencies.

Internal Projects Allows for dependency relationships between concurrently developed AnthillPro
projects.

Glossary

33

Interval Schedule Regularly fires after a fixed interval of time.

J
Job A job is a series of steps detailing how to get something done.

Job-execution Property Use the Job-execution property type if the value, default value or options are to
be generated by a job that executes on an agent.

Job Iteration Property Job iteration properties are configured after iterating a job. They are typically used
to set parameters for a single job that is run many times, with a slightly different
parameter each time.

Job Iteration Job Iterations are used to run the same job multiple times.

Job Wizard A Job Wizard assists in the creation of build jobs. The Wizard takes you through
the steps to configure the builder and the publisher required by the job, and is
the best way to ensure your build job will be configured successfully. The Build
Life is a map of (1) what occurred during the build; (2) the processes that were
performed on the generated artifacts; (3) where the build artifacts ended up.

L
Library Jobs A Library Job is a way for you to create template jobs. Once a Library Job has

been configured, it can be used by multiple projects or can be turned into a project-
specific job.

Library Workflow The Library Workflow can only use library jobs as part of its definition.

Life-Cycle Build The Life-Cycle Build provides a wealth of information and visibility into the build
and release cycle. It is defined by its Life-Cycle Model, Environments, and Build
workflow.

Life-Cycle Model The Life-Cycle Model provides a template for managing the dependencies,
artifacts, deployments, etc, associated with every build of the project. They are
reusable, allowing you to apply the same standards to any similar project.

LDAP A lightweight directory access protocol (LDAP) is a widely used protocol used to
access distributed directory information over the internet protocol (I.P) networks.

lock A lock is routinely used to ensure that processes do not interfere with one another.

Lockable Resource A Lockable Resource specifies a resource that might be used by multiple
workflows, gives it a name and forces arbitrary workflows to run one at a time
or in small groups.

N
Network Settings Network Settings are used to configure communication between the AnthillPro

server and agents.

Notification Notifications inform the recipient of the status of a CI build.

notifications Notifications play a role in approving deployments: uDeploy can be configured
to send out an e-mail to either a single individual or to a group or people (based

Glossary

34

on their security role) notifying them that they need to approve a requested
deployment.

Notification Scheme Notification Schemes determine who to notify of build status, what conditions to
notify them on, and what mechanism to notify them with. sets rules determining
what groups of users are sent which kind of notification about specific events.

notification scheme A notification scheme enables uDeploy to send out notifications based on events.
For example, the Default Notification scheme will send out an e-mail when an
Application Deployment fails or succeeds.

Notification Template Notification Templates are Velocity templates that take information about the
build and produce a document.

O
Operational Project Operational Projects provide a simplified interface that allows AnthillPro users to

execute ancillary tasks not easily run during a build, deployment, etc., workflow.

P
Permission Permissions associate the role, resource, and an action that may be performed on

the resource. Typical actions include the ability to read or view the resource, the
ability to write to or modify the resource, the ability to modify the security settings
for a resource, or the ability to execute the resource.

plug-ins A plug-in is the integration with third-party tools.

Preflight Build Preflight Builds allow developers to run a test build in the authoritative build
environment before committing their changes to source control.

process Processes play a coordination role. They are authored using a visual drag-n-drop
editor.

process editor A process editor is a visual drag-and-drop editor that enables you to drag process
steps onto the design space and configure them as you go.

processing property A processing property is a way to add user-supplied information to a process.

Project Environment Property Project Environment Properties are automatically placed as environment variables
for all commands run in the target environment.

Project Property Project Properties are used for all workflows regardless of the target environment.

Property Properties identify various properties that must be specified when the workflow
is executed. Properties are used to manage variables passed into commands, agent
filters, and custom stamping algorithm templates.

proxy resource A proxy resource is a resource effected by an agent on a host other than the one
where the resource is located.

Pull Build A Pull Build will build every dependency that is out of date prior to building the
top level of a project.

Pure Build Pure builds take the source as input and transforms it into artifacts. In AnthillPro,
it generates the Build Life.

Glossary

35

Push Build Push Builds perform the minimum number of builds, in the correct order, to ensure
that a change to a component does not break anything that depends on it directly
or transitively. A push build can become resource intensive.

Push Scheduling Push Scheduling are used when an originating workflow builds, the workflows
that depend on it automatically build.

Q
Quiet Periods Quiet Periods are configured on the project, and play an integral part in ensuring

that the source code AnthillPro obtains from the SCM contains a consistent set
of changes. The quiet period is a measure of time that must pass without anyone
committing changes to the source.

R
Read Permission Read permissions allow a user to resolve/download the artifacts associated with

a Build Life.

relay servers A relay server enables network-to-network communication.

remote agents A remote agent is an agent that will communicate with the server via an agent
relay.

Report Reports provide information about system activity.

Repository Trigger Repository Triggers are used for Continuous Integration builds. Once the trigger
is active for a workflow, every commit of source changes will initiate a build.

resource A resource is a user-defined construct based on uDeploy's architectural model. A
resource represents a deployment target.

resource group A resource group is a group of resources used to help organize and manage the
agent installed in a different environment.

Resource Security Report A resource security report provides information about user roles and privileges
defined for resources.

role A role enables you to further refine how a resource is utilized, and is similar to
subresources.

S
Schedule A Schedules determines when events such as builds, cleanups, backups, etc., are

automatically run by the system. Once a schedule has been created, it may be used
by many different AnthillPro resources.

Schedule Trigger A Scheduled Trigger runs on its own timer that pools the SCM for changes. If
changes are detected, the build is registered with the schedule and kicked off when
the schedule fires. Scheduled Triggers give the option to force a build regardless
of whether source changes have occurred.

schema A schema is a visual representation of the different parts of uDeploy that may be
secured. Each Schema interacts with users indirectly, through the role.

Glossary

36

Script Library the script library is used to create, organize, and provide security around often-
used AnthillPro scripts. The Script Library is most helpful for large organizations,
allowing them to ensure that only the appropriate team members can modify a
script.

Scripted Property Scripted value properties are properties where the value, default value or options
are generated by a script that is executed before workflow execution.

Scripted Agent Filters A scripted agent filter selects agent based on an agent filter script.

SSL A secure socket layer (SSL) enables clients and servers to communicate securely
by encrypting all communications.

Security Permission Security Permissions allows users to determine who can set security for the artifact
set.

Security Reports A security report provides information about user roles and privileges.

Security Setting A Security Setting is used to configure access to the Anthill Server setting for
configuration and artifact management.

Server Proxy Server proxies enable you to access servers/repositories that are on external
networks.

snapshot A snapshot is a collection of specific component versions, usually versions that
are known to work together.

Source Configuration Source Configuration identifies exactly which source code should be retrieved
from a repository.

Stamp A Stamp is a configurable name for the build number, build identifier, or version
number used to identify a build. This allows you to mimic your strategies.

Stamp Context Script Stamp Context Scripts generate values for variables in the stamp context when
creating a stamp (for builds, etc.).

Stamp Mapping For every stamp style in the project’s stamp style group, one must specify
what stamping strategy will be used. A typical stamp style group might specify
for development builds to a version number and strategy for incrementing that
number.

Stamp Style Stamp Styles are used to apply different stamps to a single build, and allow you
to help track a build throughout its life-cycle.

Stamp Style Group A Stamp Style Group creates common names for types of stamps.

Status Group A Status Group is a set of common names for statuses.

stateless Stateless means the server retains little session information between requests, and
each request contains all information needed to handle it.

subresource A subresource enables you to apply logical identifiers or categories within any
given group.

switch step A switch step enables you to create conditional processes.

System Tray Monitor The System Tray Monitor provides feedback directly to the desktop, without
having to open or refresh a browser.

Glossary

37

System Property The System property is used to set default values for a particular property for all
workflows and project system wide.

T
Template Reports Template Reports are good for generating tabular data in one or more types of

output.

Trigger A Trigger is an automated mechanism for kicking off a workflow.

U
uncontrolled environment A uncontrolled environment is an environment that does not contain approvals

approval gates.

user impersonation uDeploy can use user impersonation when an agent must execute a command for
which it might not otherwise have permission.

V
Velocity Report Velocity Reports are good for customizing the AnthillPro UI.

version A version is set each time a component changes. There are two types of versions
a full version and an incremental version.

W
Workflow Definition A Workflow Definition defines which job should be run, species the order of jobs,

as well as the elements to be run in parallel.

Workflow Priorities Workflow Priorities allow you to determine the order in which workflows run.
Use workflow priorities to determine which workflow will run first.

Workflow Property Workflow properties are used to send a build to a particular platform when writing
native code for multiple platforms.

Workflow Request Context A workflow request context is a collection of requests for workflows that are
processed together.

Workflow Task A Workflow Task allow you to set up manual gates, etc., that must be performed.

Workflow Tool There are two major categories of work flow tools: priorities and requests.

Workflow Request The Workflow Request is the first action taken by the server when executing an
originating or secondary workflow.

38

Index
A
agent relay, 24
agent requests, 24

C
CodeStation, 15

D
deployment mechanism, 24
deployment versions, 24
digital certificates, 23
disaster recovery, 18

E
event engine, 24

F
FAQ, 24

agent relay, 24
agent requests, 24
agents, 24

forecast download times, 24
Frequently Asked Questions, 24

J
JavaScript Object Notation, 12
JMS communication, 12
JSON, 12

L
local user credentials, 22

M
mutual key-based authentication, 22

R
relocating CodeStation, 15
REST-based user interface, 13

S
SE_ASSIGNPRIMARYTOKEN_NAME, 22
SE_INCREASE_QUOTA_NAME, 22
SE_INTERACTIVE_LOGON_NAME, 22
SSL mutual key-based authentication, 22
sudo, 22

U
user impersonation, 21

V
versioning, 24

	uDeploy® Introduction
	Table of Contents
	About
	Product Documentation
	Product Support
	Document Conventions

	Documentation notices for IBM uDeploy
	Introduction
	Overview
	Components
	Component Processes
	Plug-ins
	Component Versions and the CodeStation Repository

	Applications
	Application Process
	Environments
	Snapshots

	Agents
	Resources
	Resource Groups

	Architecture Overview
	Service Tier
	Clients

	Data Tier
	Relational Database
	File Storage—CodeStation
	Relocating Codestation

	Data Center Configuration
	Cold Standby
	Platform Considerations
	Recommended Server Installation
	Agent Minimum Requirements

	Typical Data Center Configurations
	Recovery Using a Database Back-up

	Agents
	Server-Agent Communication
	Remote Agents--Crossing Network Boundaries and Firewalls
	Agent Security
	User Impersonation
	Using su/sudo
	Impersonation on Windows Systems

	SSL Mutual Key-based Authentication

	Frequently Asked Questions—FAQ
	Deployments
	Agents/Targets/Hosts
	Rollbacks
	Approvals/Notifications
	Data Repository and File Storage
	Miscellaneous

	Glossary
	Index

