
SOAP Documentation
Anthill Pro provides a SOAP-based, web services facade to enable third-party and user-created applications to
cleanly integrate. The SOAP interface, available at launch, will provide a number of lookup utilities to provide in-
formation on system state, project progress, and current activity. Also, as standard build and deploy web services
vocabularies evolve in the Eclipse Application Life-Cycle Framework project, this SOAP interface will provide
whatever functionality is specified.

Using the Interface
The simplest way to use the SOAP interface may be to create a Java integration using the SOAP WSDL. The WSDL
provides utilities to look up the anthill3 server, and models for the data types and requests. It is the mechanism Ec-
lipse plug-ins use to provide AnthillPro data to the Eclipse IDE. These classes are detailed in the AnthillPro SOAP
WSDL. It is available at SOAP WSDL on the Developer Tools page.

If you would like to use SOAP, please contact [http://support.urbancode.com/] support.

For example, using Groovy you can call the client jar with something like this:

import com.urbancode.anthill3.integration.*

/*
** Assumes you have a standard properties file here with at least
** these 3 properties:
** user = <username>
** password = <password>
** url = <http://host:port>
*/
def filename = "${System.properties['user.home']}/.anthill/properties"

def props = new Properties()
new File(filename).withInputStream { props.load(it) }

def dashboard = new DashboardServiceLocator("${props['url']}/services/Dashboard?wsdl",
new javax.xml.namespace.QName('integration.anthill3.urbancode.com', 'DashboardService')).
getDashboard(new URL("${props['url']}/services/Dashboard"))

dashboard.getMyProjects(props['user'], props['password']).each { proj->
println "name: ${proj.name}, id: ${proj.name}"
println "workflows:"
dashboard.getProjectWorkflows(props['user'], props['password'], proj.id).each { wf->

println "\t${wf.name}"
}

}

Create Your Own
Web services are great because the standard interface allows any team to create its own application using the techno-
logies of their choice. As an example, here is a small Ruby program that looks up the getRecentWork-
flowActivity operation:

require 'soap/wsdlDriver'
include SOAP

wsdl_file = 'http://localhost:8080/services/Dashboard?wsdl'
username = ARGV[0]

1

http://support.urbancode.com/
http://support.urbancode.com/

password = ARGV[1]

Load WSDL and create driver
factory = SOAP::WSDLDriverFactory.new(wsdl_file)
ws = factory.create_rpc_driver
ws.wiredump_dev = STDOUT

activities = ws.getRecentWorkflowActivity(username, password, 10)

activities.each { |activity|
printf("Retrieved activity: %s %s %s %s %s\n",

activity.buildLifeId,
activity.projectName,
activity.workflowName,
activity.latestStamp,
activity.latestStatus)

}

And building a project is just as easy:

require 'soap/wsdlDriver'
include SOAP

wsdl_file = 'http://localhost:8080/services/Dashboard?wsdl'
username = ARGV[0]
password = ARGV[1]
projectId = ARGV[2]
workflowId = ARGV[3]
force = ARGV[4]

Load WSDL and create driver
factory = SOAP::WSDLDriverFactory.new(wsdl_file)
ws = factory.create_rpc_driver
ws.wiredump_dev = STDOUT

ws.buildProject(username, password, projectId, workflowId, force)

Operations Supported by the Interface
Most of the operations supported by this interface are used to lookup recent build-life activity. The exceptions are
the operations that run originating and non-originating workflows. The operations supported are detailed below.

getProjectRequest
AnthillPro responds to this request by looking up the appropriate project and returning a ProjectFacade for it. This is
used to lookup the name for projects.

• Parameters:

• Username

• Password

• Project Id

SOAP Documentation

2

• Response (getProjectResponse):

• ProjectFacade

getWorkflowServerGroupsRequest
Requests a list of ServerGroups that this user may run a given workflow on.

• Parameters:

• Username

• Password

• Workflow Id

• Response (getWorkflowServerGroupsResponse):

• An array of ServerGroupFacades (ArrayOfServerGroupFacade)

getRecentWorkflowActivityRequest
Requests a listing of the most recent workflows that have been executed.

• Parameters:

• Username

• Password

• Count. An integer detailing the number of workflow activity items requested.

• Response (getRecentWorkflowActivityResponse):

• An array of WorkflowActivityFacades (ArrayOfWorkflowActivityFacade)

getRecentActivityForProjectRequest
Requests a listing of the most recent workflows that have been executed for a given project.

• Parameters:

• Username

• Password

• Count. An integer detailing the number of workflow activity items requested.

• Response (getRecentActivityForProjectResponse):

SOAP Documentation

3

• An array of WorkflowActivityFacades (ArrayOfWorkflowActivityFacade)

getRecentActivityForWorkflowRequest
Requests a listing of the most recent workflows that have been executed for a given workflow.

• Parameters:

• Username

• Password

• Workflow Id

• Count. An integer detailing the number of workflow activity items requested.

• Response (getRecentActivityForWorkflowResponse):

• An array of WorkflowActivityFacades (ArrayOfWorkflowActivityFacade)

getMyProjectsRequest
Requests a listing of projects a user has access to.

• Parameters:

• Username

• Password

• Response(getMyProjectsResponse):

• An array of ProjectFacades (ArrayOfProjectFacade)

runWorkflowRequest
Triggers the specified non-originating workflow to run. To use this, you must identify the build life the workflow
should be run against as well as the server group to run the workflow on.

• Parameters:

• Username

• Password

• Build Life Id

• Workflow Id

SOAP Documentation

4

• Environment Id

• Response(runWorkflowResponse):

• This response is just an acknowledgement that the request has been received.

buildProjectRequest
Triggers the specified originating workflow to run for the specified project. The force flag instructs it to continue
running even if there are no changes detected in source control.

• Parameters:

• Username

• Password

• Project Id

• Workflow Id

• Force Build (boolean)

• Response (buildProjectResponse):

• This response is just an acknowledgement that the request has been received.

Available Objects
All data retrieved through the SOAP interface will be exposed as one of the following objects. There are a set of
provided Java classes that model these items. Of course, they can be modeled using the tools of your choice.

WorkflowFacade. A named workflow for a project.
Field Name Type Description

id String The internal id for the workflow.

name String The name of the workflow.

originating Boolean True if the workflow is originating.

projectId String The internal id of the project.

WorkflowActivityFacade. The record of an executed
workflow.

SOAP Documentation

5

Field Name Type Description

buildLifeId String The internal id for the build life.

caseId String The internal id of the workflow case.

date String The date the workflow was run.

latestStamp String The most recent stamp applied to this
build life.

latestStatus String The most recent status attained by
this build life.

projectId String The internal id of the workflow ex-
ecuted.

ProjectName String The name of the project the workflow
was executed on.

workflowId String The internal id of the workflow ex-
ecuted.

workflowId String The human readable name of the
workflow executed.

ServerGroupFacade. The name and id of a server group.
Field Name Type Description

id String The internal id for a server group.

name String The name of a server group.

ProjectFacade. The name and id of a project.
Field Name Type Description

id String The internal id for a project.

name String The name of a project.

Note

The WSDL exposes each of these object types collected in the form of an array as well.

SOAP Documentation

6

