SOAP Documentation

Anthill Pro provides a SOAP-based, web services facade to enable third-party and user-created applications to
cleanly integrate. The SOAP interface, available at launch, will provide a number of lookup utilities to provide in-
formation on system state, project progress, and current activity. Also, as standard build and deploy web services
vocabularies evolve in the Eclipse Application Life-Cycle Framework project, this SOAP interface will provide
whatever functionality is specified.

Using the Interface

The simplest way to use the SOAP interface may be to create a Java integration using the SOAP WSDL. The WSDL
provides utilities to look up the anthill3 server, and models for the data types and requests. It is the mechanism Ec-
lipse plug-ins use to provide AnthillPro data to the Eclipse IDE. These classes are detailed in the AnthillPro SOAP
WSDL. It isavailable at SOAP WSDL on the Developer Tools page.

If you would like to use SOAP, please contact [http://support.urbancode.com/] support.

For example, using Groovy you can call the client jar with something like this:
i mport com ur bancode. anthill 3.integration.*

/*

** Assunmes you have a standard properties file here with at |east
** these 3 properties:

** user = <username>

** password = <password>

** url = <http://host:port>
*/
def filename = "${System properties['user.honme']}/.anthill/properties"

def props = new Properties()
new File(filenane).w thlnputStream{ props.load(it) }

def dashboard = new DashboardServi ceLocat or ("${props['url']}/services/Dashboard?wsdl ",
new j avax. xm . namespace. QNane(' i ntegration.anthill 3. urbancode. com, 'DashboardService')
get Dashboar d(new URL("${props['url']}/services/Dashboard"))

dashboar d. get MyProj ect s(props[' user'], props[' password']).each { proj->
println "name: ${proj.nane}, id: ${proj.nane}"
println "workflows:"
dashboar d. get Proj ect Wr kf | ows(props['user'], props['password'], proj.id).each { wf->
println "\t${wf.nane}"

Create Your Own

Web services are great because the standard interface allows any team to create its own application using the techno-
logies of their choice. As an example, here is a small Ruby program that looks up the get Recent Wor k-
fl owAct i vity operation:

require 'soap/wsdl Driver'
i ncl ude SOAP

wsdl _file = "http://1ocal host: 8080/ servi ces/ Dashboar d?wsdl
user name = ARGV 0]

http://support.urbancode.com/
http://support.urbancode.com/

SOAP Documentation

password = ARGV 1]

Load WSDL and create driver

factory = SOAP:: WSDLDri ver Fact ory. new(wsdl _file)
ws = factory.create_rpc_driver

ws. wi redunp_dev = STDOUT

activities = ws. get Recent Wr kfl owActivity(usernane, password, 10)

activities.each { |activity]|
printf("Retrieved activity: % % % % %\n",
activity.buildLifeld,
activity. project Nane,
activity.workfl owNane,
activity. | atestStanp,
activity. | atestStatus)

And building a project isjust as easy:

require 'soap/wsdl Driver'
i ncl ude SOAP

wsdl file = "http://1ocal host: 8080/ servi ces/ Dashboar d?wsdl '
user nane RGV[0]

passwor d RGV[1]

projectld = ARGV[2]

wor kfl owm d = ARGV[3]

force = ARGV[4]

= A
= A

Load WSDL and create driver

factory = SOAP:: WSDLDri ver Fact ory. new(wsdl _file)
ws = factory.create_rpc_driver

ws. wi redunp_dev = STDOUT

ws. bui | dPr oj ect (user nanme, password, projectld, workflowd, force)

Operations Supported by the Interface

Most of the operations supported by this interface are used to lookup recent build-life activity. The exceptions are
the operations that run originating and non-originating workflows. The operations supported are detailed below.

getProjectRequest

AnthillPro responds to this request by looking up the appropriate project and returning a ProjectFacade for it. Thisis
used to lookup the name for projects.
» Parameters:

* Username

» Password

e Project Id

SOAP Documentation

» Response (getProj ectResponse):
* ProjectFacade

getWorkflowServerGroupsRequest

Requests alist of ServerGroups that this user may run a given workflow on.

» Parameters:
* Username
* Password
* Workflow Id
» Response (getWor kflowSer ver GroupsResponse):

« Anarray of ServerGroupFacades (ArrayOf ServerGroupFacade)

getRecentWorkflowActivityRequest

Requests a listing of the most recent workflows that have been executed.

» Parameters:

* Username

* Password

¢ Count. An integer detailing the number of workflow activity items requested.
* Response (getRecentWor kflowActivityResponse):

« An array of WorkflowA ctivityFacades (ArrayOfWorkflowA ctivityFacade)

getRecentActivityForProjectRequest

Requests a listing of the most recent workflows that have been executed for a given project.

e Parameters:
¢ Username
¢ Password

¢ Count. Aninteger detailing the number of workflow activity items requested.

* Response (getRecentActivityFor ProjectResponse):

SOAP Documentation

* Anarray of WorkflowActivityFacades (ArrayOfWorkflowActivityFacade)

getRecentActivityForWorkflowRequest

Requests alisting of the most recent workflows that have been executed for a given workflow.

» Parameters:

* Username

* Password

* Workflow Id

¢ Count. An integer detailing the number of workflow activity items requested.
» Response (getRecentActivityFor Wor kflowResponse):

* Anarray of WorkflowActivityFacades (ArrayOfWorkflowA ctivityFacade)

getMyProjectsRequest

Requests alisting of projects a user has access to.

* Parameters:
e Username

¢ Password

» Response(getM yPr oj ectsResponse):

e Anarray of ProjectFacades (ArrayOfProjectFacade)

runWorkflowRequest

Triggers the specified non-originating workflow to run. To use this, you must identify the build life the workflow
should be run against as well as the server group to run the workflow on.
» Parameters:

* Username

* Password

 Build Lifeld

* Workflow Id

SOAP Documentation

¢ Environment Id

* Response(runWorkflowResponse):

» Thisresponseisjust an acknowledgement that the request has been received.

buildProjectRequest

Triggers the specified originating workflow to run for the specified project. The force flag instructs it to continue
running even if there are no changes detected in source control.

e Parameters:
¢ Username
* Password

e Project Id

Workflow Id

» Response (buildPr ojectResponse):

Force Build (boolean)

» Thisresponseisjust an acknowledgement that the request has been received.

Available Objects

All data retrieved through the SOAP interface will be exposed as one of the following objects. There are a set of
provided Java classes that model these items. Of course, they can be modeled using the tools of your choice.

WorkflowFacade. A named workflow for a project.

Field Name Type Description
id String Theinternal id for the workflow.
name String The name of the workflow.
originating Boolean Trueif the workflow is originating.
projectld String Theinternal id of the project.

WorkflowActivityFacade. The record of an executed

workflow.

SOAP Documentation

Field Name Type Description

buildLifeld String Theinternal id for the build life.

caseld String Theinternal id of the workflow case.

date String The date the workflow was run.

latestStamp String The most recent stamp applied to this
build life.

latestStatus String The most recent status attained by
thisbuild life.

projectld String The interna id of the workflow ex-
ecuted.

ProjectName String The name of the project the workflow
was executed on.

workflowld String The interna id of the workflow ex-
ecuted.

workflowld String The human readable name of the

workflow executed.

ServerGroupFacade. The name and id of a server group.

Field Name Type Description
id String Theinternal id for a server group.
name String The name of a server group.

ProjectFacade. The name and id of a project.

Field Name Type Description
id String Theinternal id for a project.
name String The name of a project.
Note

The WSDL exposes each of these object types collected in the form of an array aswell.

