
Scripting Documentation
The scripts in AnthillPro are written in BeanShell, which is a JSR-approved Java scripting language. Other scripting
languages are also supported for select activities. The Scripting section of the User Documentation provides a basic
introduction to scripting and AnthillPro.

Script Types
While there are a large variety of uses for scripting, scripts come in two basic forms. The first is an in-line script.
These are extremely short one line script fragments used to look up a variable value. The other type is a full script.
These scripts may be as long as needed, often involving complicated logic.

Variable Resolution
Because different projects, agents, and environments may have properties that build scripts and other actions need to
be aware of, many of the settings in AnthillPro accept either a normal value or a specially formatted string indicating
a variable should be looked up. These strings always begin with a dollar sign and enclosed by curly braces. The first
part denotes the type of variable to be looked up, the second part indicates the variable. This is laid out like:
${type/variable_name}.

So to look up an environment variable which specifies where the correct version of gmake is installed on a particular
agent, the path entered might be: ${env/GMAKE_BIN}.

The list of available variables (properties) on a particular agent may be viewed on the Variables tab of the Agent
configuration (System > Agents > select an agent > Properties).

Short Scripts
Short scripts are usually comprised of a single call to one of the script helpers (see Script Helpers). The classic ex-
ample of this is to lookup the most recent stamp (version) applied to a particular build life and pass that to the build
script as the version. The build script can then use that to name the binaries generated with the version number or in-
ject that value into the executable. To do that for an Ant build script, enter the following script fragment into the
build script properties: -Dversion=${bsh:StampLookup.getLatestStampValue()}.

The format for these scripts also requires a leading dollar sign with the contents enclosed in curly braces. The type
specified is an indication of the scripting language to use (currently only BeanShell is supported), and the delimiter
is a colon. The result of the script will be substituted back in. So if building version 1.0.5 of a project, the parameter
-Dversion=1.0.5 will be passed to the build script.

Longer Scripts
Longer scripts are used wherever there is a multi-line text field that requests a script from the user. There is no re-
quirement to wrap the script in any extra markers. AnthillPro will assume the contents of the text field are a script of
the selected language. If there is no language selector on the page then BeanShell is the language option.

These scripts are used in locations where something interesting may need to be done. For instance, when creating
notifications you may want to look up some information about a build that is not exposed to the template in an easy
way. A detailed script could look this information up, process it into useful state and inject it into the Velocity con-
text. These scripts also allow you to override AnthillPro’s default options for incrementing build numbers to create a
custom algorithm.

Like short scripts, these scripts may take advantage of the Script Helpers.

1

The AnthillPro API
The API is available under the server installation through the web UI. The majority of the API is available at the
tools page, including a copy of the AnthillPro API documentation (JavaDoc). The objects in the API strongly reflect
what is seen in the user interface.

Looking up general information about Build Lives, workflows, and requests is often best done by using the dash-
board helpers available in com.urbancode.anthill3.dashboard and the DashboardFactory in partic-
ular.

Other lookup helpers are available in the com.urbancode.anthill3.runtime.scripting.helpers
package. These are discussed in some length in the scripting overview documentation.

To tap into the behavior of the system (rather than the data in the system), look at the options in the
com.urbancode.anthill3.services package. The event service is of particular note, as many actions in
the system fire events that are grabbed and acted on by listeners.

Script Assumptions
Because there are some basics that are used by a large number of scripts, particularly the short scripts, AnthillPro
will automatically import the classes of three (3) packages.

You do not need to import these packages in your own scripts:

• com.urbancode.anthill3.runtime.scripting.helpers

• com.urbancode.anthill3.runtime.scripting.properties

• com.urbancode.anthill3.runtime.scripting.session

Script Helpers
Script helpers are available to every script and never need to be imported. They are always accessed statically, so to
access them, follow the approach detailed in the Short Scripts section. Use the name of the of helper and the method
name.

Debugging Scripts
Debugging scripts can be tricky. For lengthy scripts, it may make sense to write the script first as a proper Java class
in an IDE that has imported AnthillPro libraries. This can help you spot simple syntax errors without rerunning a
script repeatedly.

The error messages presented by a failed script in the UI and log, often present a line number in the script where the
error has occurred. It’s worth observing that if the text box you are looking at has wrapped a line, it is easy to count
that line twice instead of once.

Using the Script Library
Use the script library to create, organize, and provide security around often-used scripts. The basic organizational
and security tool is the Script Group. The Script Group is a collection of AnthillPro scripts within the Script Library,
and are often used to ensure that different departments/teams cannot edit each other's scripts (while ensuring each
department/team may edit the scripts assigned to the Script Group they participate in). Once a Script Group is cre-
ated and permissions set, assign AnthillPro scripts, listed on the System page under the Scripting menu, to a group.

Scripting Documentation

2

To use the Script Library, see Create a Script Group and Create a Script in the Script Library.

Create a Script Group
The Script Group is a collection of AnthillPro scripts within the Script Library, and are used to ensure that different
departments/teams cannot edit each other's scripts, while allowing each department/team to edit the scripts assigned
to their Script Group. For example, large organizations often use Script Groups to create a boundary between devel-
opment and QA teams, etc., based on the permissions assigned to the users in those environments. This allows de-
velopers and testers to modify the scripts they use, but does not allow developers to modify scripts used in QA and
vice versa.

You must have administrative permissions to the System page in order to create a Script Group. To create a Script
Group:

1. Go to System > Script Groups under the Script Library menu.

2. On the Script Group main page, click the Create New button.

3. Name the Script Group.

4. Description. Give an optional description of the scripts to be included in the group.

5. Click Save.

6. Assign permissions. To set which roles can access this Script Group, click the View Security icon under the Op-
erations menu. Determine permissions and click Save. For example, a "tester" role may need to view an agent se-
lection script, but should not be able to edit that script. In this case, assign the 'tester' role 'read' permissions but
not 'write' permissions. Accordingly, a 'build master' role may need to use, edit, and set security for a script, so
assign the build master all the permissions.

7. Click Done.

8. Add Scripts to a Script Group. Scripts in the Script Library (on the system page) are assigned to a Script
Group. During script creation (see Create a Script in the Script Library), select the appropriate Script Group from
the drop-down menu.

To reassign a script to a new group, open the script configuration page and select the new Script Group from the
drop-down menu.

Create a Script in the Script Library
Script creation is performed on the System page, so make sure you have administrative permissions before continu-
ing. AnthillPro ships with a set of default scripts that control how AnthillPro performs basic tasks; however, you
will most likely want to create custom scripts to further define how AnthillPro behaves. To create a new script, go to
the System page and select the appropriate script type from the Script Library menu. The process for creating scripts
in the Script Library is the same for each script type; however, the actual scripts will vary.

To create a new Script in the Script Library:

Scripting Documentation

3

1. Go to the System page and select the appropriate script type under the Script Library menu. Currently, you can
create an new script for the following:

• Agent Filter Scripts

• Event Scripts

• Job Pre-Condition Scripts

• Post-Processing Scripts

• Stamping Scripts

• Step Pre-Condition Scripts

• Workflow Priority Scripts

• Working Directory Scripts

2. On the Script List page, click the Create New button.

3. Create Script:

• Name the script.

• Description. Give a description of the new script.

• Script Group. Select the appropriate Script Group from the drop-down menu. See Create a Script Group.

• Language. Select a scripting language from the drop-down menu.

• Script. Input the body of the script. For instructions on writing the script, see either Agent Filter (Selection)
Scripts, Event Scripts, Job Pre-Condition Scripts, Scripted Stamping, Step Pre-Condition Scripts, or Working
Directory Scripts.

4. Click Save.

5. To organize and secure the script, see Create a Script Group.

Agent Filter (Selection) Scripts
Scripted Agent Filters return any agent matching an arbitrary script. Usually this is used to check properties on the
available agents (e.g., to find an agent with a specific tool installed or one that is used for a special purpose). The
script-driven filter will also allow you to specify the number of agents to use. For simple jobs like builds, the default
of one is appropriate; for load testing, where a set number would be useful, putting in a number like five would work
better. You can also instruct AnthillPro to run the job on every matching machine in an environment. This is pretty
typical for doing things like deploying static HTML to a load balanced set of front-end servers. The script knows
how to select the front-end servers, and the number setting directs it to deploy to all of them.

Custom properties may be set by going to System > Agents under the Environment menu. Select an agent and cre-
ate a new property on the Properties tab.

Creating an Agent Filter Script

The script must evaluate to return a Where class or subclass, which is used to filter an array of agents to a subset of
that array. Agent selection then proceeds from the array.

Scripting Documentation

4

All the helpers (see Agent Helpers) implement the abstract Criteria.filter() method in a manner consistent
with their name, and are directly available to the script. One may add the line import
com.urbancode.anthill3.runtime.scripting.helpers.*; in order to access the normal scripting
helpers and implement more advanced filters.

Agent Helpers

AnthillPro Agent Helpers are classes used to help determine which agent to use.

Where Helper

All agent selector scripts must return a Where Helper. Where Helpers can use other forms of criteria (listed further
down).

• Where.is(Criteria) -- Allows agent that match the contained criteria.

• Where.not(Criteria)-- Allows agents that do NOT match the contained criteria.

• Where.any() -- Matches all agents.

• Where.any(Criteria[]) -- Allows agents that match any of the criteria contained in the array.

• Where.any(Criteria, Criteria) -- Allows agents that match either of the criteria passed in.

• Where.all(Criteria[])-- Allows agents that match all of the criteria contained in the array.

• Where.all(Criteria, Criteria)-- Allows agents that match both of the criteria passed in.

Variable Criteria Helper

The Variable Criteria Helper checks a variable on the agent and can be used by the Where criteria above.

• Variable.isPresent(variable_name). Matches if the variable named is present on an agent.

• Variable.equals(variable_name, value). Matches if the variable named is on an agent and its
value matches the value.

• Variable.matches(variable_name, reg_ex). Matches if the variable named is present on an agent
and its value matches the regular expression passed in.

Advanced Criteria Helper

Concrete criteria implementations are available and can be extended (as demonstrated in the advanced
scripts above). The available choices:

public class VariableEqualsCriteria extends Variable
public VariableEqualsCriteria(String name, String value)
protected VariableEqualsCriteria(String name)
protected void setValue(String value)

public class VariableMatchesCriteria extends Variable
public VariableMatchesCriteria(String name, String regex)
protected VariableMatchesCriteria(String name)
protected void setRegex(String regex)

Scripting Documentation

5

public class VariablePresentCriteria extends Variable
public VariablePresentCriteria(String name)

public class AndCriteria extends Where
public AndCriteria(Criteria[] criteria)

public class IsCriteria extends Where
public IsCriteria(Criteria criteria)

public class NotCriteria extends Where
public NotCriteria(Criteria criteria)

public class OrCriteria extends Where
public OrCriteria(Criteria[] criteria)

Add JobConfig to Agent Filter Script

If the agent selection script is filtering for a workflow job, then the job configuration will be available in the context
of the script as jobConfig. This allows access to the job in the agent filter script. See Agent Filter (Selection)
Scripts.

Example: Select Linux Server with Ant Installed Script

This script will select a server that has Ant installed (by checking for the ANT_HOME environment vari-
able). The Where.all() requires all the criteria included to be matched.

return
Where.all(
Variable.isPresent("env/ANT_HOME"),
Variable.equals("sys/os.name", "Linux")

);
)

Example: Manually Select a Platform to Build on Script

This script expects the workflow to prompt the user for a ‘platform’ property and then matches that against
the operating system type of the agents as supplied by the sys/os.name agent variable. This is an advanced
script that creates a new filter class and runs against it.

import com.urbancode.anthill3.domain.agent.Agent;
import com.urbancode.anthill3.runtime.scripting.helpers.*;

public class PropertyEqualsAgentVar extends VariableEqualsCriteria {
String propertyname;
public PropertyEqualsAgentVar(String propertyname, String varName) {

super(varName);
this.propertyname = propertyname;

}

public Agent[] filter(Agent[] agents){
String platform = BuildRequestLookup.getCurrent()

.getProperty(propertyname);
this.setValue(platform);
return super.filter(agents);

}
}

return Where.is(new PropertyEqualsAgentVar("platform", "sys/os.name"));

Scripting Documentation

6

Example: Run on Same Agent as Originating Workflow Script

This script is designed for non-originating workflows. It runs on the same agent that the originating workflow ran
on. The script ships as part of AnthillPro. To view the script, go to System > Agent Filter and select "From Previ-
ous Job" on the Agent Filter Scripts page.

import com.urbancode.anthill3.domain.agent.Agent;
import com.urbancode.anthill3.runtime.scripting.helpers.*;

Where myWhere = new Where() {
public Agent[] filter(Agent[] agents) {

// assumes that the build job was the first job in
orig-workflow

Agent targetAgent = BuildLifeLookup.getCurrent()
.getOriginatingWorkflow()
.getJobTraceArray()[0].getAgent();

boolean found = false;
for (int i = 0; i < agents.length; i++) {

if (agents[i].equals(targetAgent)) {
found = true;
break;

}
}
if (found) {

return new Agent[]{targetAgent};
}
else {

return new Agent[0];
}

}
};

return Where.is(myWhere);

Example: Select Agents Based on Job-iteration Properties

Use the Select Agents Based on Job-iteration Properties Script to select the agent(s) for every job iteration based
on the value of each job-iteration property. For example, a job with two iterations has a property with a name of
"my_property" set on it. Each iteration property has a different value (i.e., iteration one has a value of "1" and itera-
tion two has a value of "2"). In order for iteration one to run on a specific agent, you will need to set the same prop-
erty-value pair on that agent (i.e., you will need to set "my_property" with a value of "1"). The same goes for itera-
tion two. When the script is run, AnthillPro will evaluate the job-iteration properties and run each iteration on the
agent with the corresponding property-value pair.

String propValue = PropertyLookup.get("my_property");
return Where.is(Variable.equals("my_property", propValue));

Example: Return All Online Agents

Use the All Online Agent Filter Script to select every online agent when iterating a job. While this script returns all
online agents, work will be delegated based on the number of times the job is iterated. For example, if the script re-
turns 50 agents and the job has 7 iterations, only 7 agents will perform work.

To view the script, go to System > Agent Filter and select "All Online Agents" on the Agent Filter Scripts page.
Below is a copy of the script that ships with AnthillPro:

import com.urbancode.anthill3.domain.agent.Agent;

Scripting Documentation

7

import com.urbancode.anthill3.services.agent.AgentManager;
import com.urbancode.anthill3.runtime.scripting.*;
import com.urbancode.anthill3.runtime.scripting.helpers.*;
import com.urbancode.commons.util.CollectionUtil;

/* Return all agents online */
return new Where() {

public Agent[] filter(Agent[] agents) {
agentList = new ArrayList();
for (agent : agents) {

status = AgentManager.getInstance().getAgentStatus(agent);
if (status != null && status.isOnline()) {

agentList.add(agent);
}

}
return agentList.toArray(new Agent[agentList.size()]);

}
}

Event Scripts
Event scripts are used to create an Event Filter that listens to (automatically thrown) events passing through the
Event Service. An internal service manages listeners for events, and makes various AnthillPro activities available to
the service. Including:

• BuildLifeForBuildRequestStartedEvent -- Announces a Build Life started based on a request.

• getBuildRequest() -- Gives the BuildRequest that was fulfilled by a new build.

• BuildRequestFailedEvent -- Made available whenever a build request fails.

• getBuildRequest() -- Gives the BuildRequest object for the failing request.

• JobEndedEvent -- Announces the end of a job.

• getJob() -- Gives the job that ended.

• JobStartedEvent -- Announces the start of a job.

• getJob() -- Gives the job that started.

• StepTraceEndDateChangeEvent -- Made available when a particular step ends.

• getStep() -- Gives the step that ended.

• StepTraceStartDateChangeEvent -- Made available when a particular step starts.

• getStep() -- Gives the Step that was started.

• WorkflowEndEvent

• getBuildRequest() -- Returns the BuildRequest that caused this workflow to run.

• getWorkflowCase() -- Returns the runtime information on the workflow that completed.

• WorkflowStepEndedEvent

• getBuildRequest() -- Returns the BuildRequest that caused this workflow to run.

Scripting Documentation

8

• getStepTrace() -- Returns the runtime information on the executed step.

• getWorkflowCase() -- Returns the runtime information on the workflow that ran this step.

• WorkflowStepStartedEvent

• getBuildRequest() -- Returns the BuildRequest that caused this workflow to run.

• getStepTrace() -- Returns the runtime information on the executing step.

• getWorkflowCase() -- Returns the runtime information on the workflow running this step.

See also Using the Script Library.

Event Script Extra Inputs

Once configured, the Event Script is immediately active and listening for events. The project, trigger, workflow and
parameters provide references to the Event Trigger itself, as well as the workflow and project it belongs to.

Event scripts are passed the following:

Name Usage Class

project The configuration for the project in
question.

com.urbancode.anthill3.do
main .project.Project

trigger Used to get a hook back to the using
trigger.

com.urbancode.anthill3.do
main
.trigger.event.Trigger

workflow The configuration for the workflow. com.urbancode.anthill3.do
main .workflow.Workflow

Event Script Returns

Event scripts are responsible returning an Event Trigger:
com.urbancode.anthill3.services.event.EventTrigger

Example Event Script

The script below, which triggers when any dependencies are completed, is a duplication of the one that ships with
AnthillPro. It is provided here as a reference for commentary. The approach taken is to declare a new Java class, in-
stantiate an instance of it, and return that to the Event Trigger that is trying to register itself. Matching events is a
matter of using Field Criteria.

There are two default implementations of Field Criteria:

• Field Equal Criteria. Takes an event field and looks up the value of that field in the event. If it matches the cri-
teria value provided, a match is made. Otherwise, it does not (see example below).

• Field Member Of Criteria. Creates a list of acceptable values and matches if the value in the event matches. For
example, triggering if a status is failed or error rather that one or the other.

import java.util.*;
import com.urbancode.anthill3.domain.persistent.Handle;

Scripting Documentation

9

import com.urbancode.anthill3.domain.trigger.event.*;
import com.urbancode.anthill3.domain.workflow.*;
import com.urbancode.anthill3.services.event.*;
import com.urbancode.anthill3.services.event.criteria.*;

class MyEventFilter implements EventFilter {
Handle triggerHandle = null;

//---
public MyEventFilter(EventTrigger trigger) {

this.triggerHandle = new Handle(trigger);
}

//--
public Class getEventClass() {

return WorkflowEndEvent.class;
}

//---
public Criteria[] getCriteria() {

Criteria[] result = null;

EventTrigger trigger = (EventTrigger)triggerHandle.dereference();

result = new Criteria[]{
new FieldMemberOfCriteria("workflow",

Arrays.asList(
WorkflowLookup.getDependency

WorkflowsFor(trigger
.getWorkflow())

)
),
new FieldEqualsCriteria("status",

WorkflowStatusEnum.COMPLETE)
};

return result;
}

};

return new MyEventFilter(trigger);

Create a New Event Script

The Event Script is commonly used in conjunction with an Event Trigger that looks for actions such as a completed
build of a related project or of an originating workflow with the auto-deploy flag set to "true." In order to create an
Event Script, you must have Administrative permissions.

1. Go to System > Event under the Script Library menu.

2. On the Event Scripts page, click the Create New button.

3. Input script:

• Name the script.

• Description. Provide a description of the script.

• Language. Select a scripting language from the drop-down menu. Currently, AnthillPro supports BeanShell,

Scripting Documentation

10

Groovy, and JavaScript.

• Script. Input the script body. This script should return a Criteria object which will be used to evaluate the res-
ults of steps/commands. The object will determine if the command executed successfully or should be failed.
Use of the Criteria used by static methods or classes.

4. Click Save then Done.

Event Selectors

An Event Selector is responsible for inspecting events that pass through the event service for a workflow and return-
ing true if a notification should fire. This could look at pretty much anything related to the event. For instance, if the
selector is working on a workflow event and is intended for workflows that use tests supported by AnthillPro, it
could examine the test results and notify if more than 10% of the tests failed, or if the tests took longer than expec-
ted.

AnthillPro ships with a number of Event Selectors that can be used as an example in creating custom selectors.

1. To view, go to System > Event Selectors under the Notification menu.

2. on the Event Selectors page, select the edit icon of the Selector of interest.

Example Event Selector Script

This is the default workflow success selector. It finds that the event is related to a workflow, then checks to see
that the workflow is both complete and successful.

import com.urbancode.anthill3.domain.workflow.*;

result = false;
if (event instanceof WorkflowEvent &&

event.getCase().isComplete() &&
event.getCase().getStatus().isSuccess()) {

result = true;
}
return result;

Usage Scenario: Event Selector (JUnit)

New event selectors can be created (if there are some more specific conditions that should be checked). One ex-
ample would be to run a script if the build completed successfully but failures occurred in the JUnit tests.

To add a new JUnit Event Selector, click the Create Event Selector button and provide the script below:

import com.urbancode.anthill3.domain.workflow.*;

result = false;
if (event instanceof WorkflowEvent &&

event.getCase().isComplete() &&
JUnitReportHelper.getJUnitReportArray(event.getCase())!=null) {

workflow = event.getCase();
junitReports = JUnitReportHelper.getJUnitReportArray(workflow);
for (int i = 0; i < junitReports.length; i++) {

summary = junitReports[i].getTestSummary();

Scripting Documentation

11

if(summary.getPassingTests() != summary.getTests()) {
result = true;

}
}

}
return result;

Job Pre-Condition Scripts
Job Pre-Condition script are used to determine if a Job should run, and must return a Criteria object. Job Pre-
Condition scripts may be created and/or edited at System > Job Pre-Condition. AnthillPro is packaged with a de-
fault library of Job Pre-Condition Scripts that will meet most needs; however, it is possible to add new scripts (see
Creating Job Pre-Condition Scripts) based on other events. Currently, AnthillPro ships with the following Step Pre-
Condition Scripts:

• All Ancestor Jobs Success. AnthillPro will run this Job only if all previous jobs succeed.

• Always. AnthillPro always executes this job, regardless of previous job success or failure.

• Never. AnthillPro will never run this job.

• Parent Job Success. AnthillPro will run this Job only if the parent job succeeds.

Note that when editing existing Job Pre-Condition Scripts, any changes made will be applied to every job using that
script. It is usually best to copy the script of an existing Job Pre-Condition Script and paste it into a newly created
script to avoid any deleterious effects on other projects.

Job Pre-Condition Script Prerequisites

• You must have permissions to the System page.

• Understanding of AnthillPro scripting. See Scripting Basics.

Creating Job Pre-Condition Scripts

To create and/or edit a Job Pre-Condition Script:

1. Go to System > Job Pre-Condition under the Script Library menu.

2. Click Create New on the Job Pre-Condition Scripts page to create a new script.

If editing an existing Job Pre-Condition Script, select it from the Name menu or select the View icon under the
Operations menu. When editing scripts, all changes will effect every job that uses the script.

3. Create/edit script:

• Name. Give a name of this script. Once created, the name will appear in the Job Pre-Condition field during
configuration.

• Description. Give a description of this script. The description will appear on the Job Pre-Condition main page.

• Language. Select a scripting language. Currently, AnthillPro supports BeanShell, Groovy and JavaScript.

Scripting Documentation

12

• Script. Give the script, returning a Criteria object, that will determine if the job should run or not. See Custom
Job Pre-Condition Scripts.

4. Click Save.

Once created, the Job Pre-Condition Script will appear on the Job Pre-Condition Scripts page. The Used In menu
details what projects and/or library jobs use the script.

Using Job Pre-Condition Scripts

Once a Job Precondition Script has been created, select it from the drop-down menu when adding a job to a work-
flow.

Custom Job Pre-Condition Scripts

It is also possible to create custom Job Pre-Condition Scripts based on other events. For example, the Job Pre-
Condition Script below will only run the job if a particular status ("candidate") has been applied to the Build Life. If
the Build Life does not have that status, the job will not run:

return new Criteria() {
public boolean matches(Object obj)

throws Exception {
return BuildLifeLookup.getCurrent().hasStatus(StatusLookup.getStatusByName("candidate"));
}
}

See also Status Selection Scripts.

Post-Processing Scripts
A post processing script checks the exit code and log from an executed step and determines whether that step was a
success or failure. A typical script might check for a non-zero exit code and declare failure. Or it might look for the
string ‘Build Success’ and mark the step as a success.

The Post Process Script returns a Criteria object which is then used to evaluate the Command Result for each ant-
hill-command in a step (if Criteria evaluates to false it will fail the command). All the helper methods return Criteria
Objects.

See also Using the Script Library.

Example Script

There are a handful of example scripts that ship with AnthillPro. The script for Ant based systems checks for a
non-zero exit code, as well as checking for ‘Build Failed’ for Windows machines that don’t return a proper
error code.

return Fail.unless(
Logic.and(

Logic.not(Output.contains("BUILD FAILED")),
ExitCode.is(0)

)
)

The Helper Methods

Scripting Documentation

13

The Helper Methods are fairly self explanatory. A list of them is below. These criteria will cause the build to fail if
the criteria they contain is met.

• Fail.always()

• Fail.never()

• Fail.on(Criteria a)

• Fail.onAny(Criteria a, Criteria b)

• Fail.onAny(Criteria[] a)

• Fail.onAll(Criteria a, Criteria b)

• Fail.onAll(Criteria[] a)

• Fail.unless(Criteria a)

• Fail.unlessAny(Criteria a, Criteria b)

• Fail.unlessAny(Criteria[] a)

• Fail.unlessAll(Criteria a, Criteria b)

• Fail.unlessAll(Criteria[] a)

Output Filters inspect the output log from the command and return true if the patterns listed are found in the log.

• Output.contains(String regex)

• Output.containsAny(String[] regexs)

Exit Code Filters inspect the exit code from the commands issued and returns true if they match.

• ExitCode.is(int exitCode)

• ExitCode.is(int[] exitCodes)

To apply boolean operators to criteria, use the Logic Helper.

• Logic.or(Criteria a, Criteria b)

• Logic.or(Criteria[] a)

• Logic.and(Criteria a, Criteria b)

• Logic.and(Criteria[] a)

• Logic.not(Criteria a)

Some helpers take full regular expressions. The standard Java regular expression format is honored here. See Java

Scripting Documentation

14

Documentation [http://java.sun.com/reference/docs/].

Post Process Limitations

Post Process is not the solution to every need to determine success or failure because it is limited, run on the agents,
and lacks access to helpers and files that we store on the server.

AnthillPro has a more powerful scripting step which can be used for added functionality. For instance, a testing suite
will normally fail if any tests fail. If one wants to accept 5% of failures in a tool like JUnit, the post processing script
will have to pass any number of failing tests. As a follow-up step, you could very easily use an "evaluate
(BeanShell) script" step after the report publisher and use our JUnitReportHelper to get the object model of the JUnit
tests and simply throw an exception (or print out something and use a post-process on that steps output to fail this
step).

When success and failure can be determined by examining an exit code or some text in the log, the post-process
script is excellent. When it requires knowing more about the project, other approaches are needed.

Highlighting Lines of Interest in Log Files

You can use regular expressions to highlight lines of interest in log files. The only limitation is that in order to avoid
loading multi-gigabyte output/log files into memory, AnthillPro does the matching on a line-by-line basis: therefore
it is not possible to do an effective multiline pattern. For case sensitivity, AnthillPro follows Java convention (see ht-
tp://java.sun.com/j2se/1.5.0/docs/api/java/util/regex/Pattern.html [???]). By default AnthillPro is case sensative;
however, you can turn that (and other flags) on and off. For example, use: /(?i)error/ (@ee sections on "special con-
structs" and flags for doing things like matching whitespace, case sensitivity, unicode case-sensitivity, etc.).

Examples:

/foo.*bar|bar.*foo/

/^error (?!foo|bar)/ (matches 'error baz' but not 'error foo' or 'error bar')

Stamping Scripts
A typical stamping strategy has a base number that is incremented either by the default algorithm in AnthillPro or a
scripted updater. In contrast, a scripted stamping strategy uses some other logic to determine a stamp using the Ant-
hillPro API.

See also Using the Script Library.

Keeping a Build Number Script

One approach for stamping promoted builds is to just rename a build from DEV 1.2.3 to QA 1.2.3 this script
does exactly that:

String currentStamp = StampLookup.getLatestStampValue();
int dev = currentStamp.indexOf("(DEV");

return "QA - " + currentStamp.substring(dev);

Using a Changeset ID Script

A relatively common approach is to take the most recent change-set or change-list number of the most recent
commit a living build holds and use that as a stamp. This has seen particular adoption in the Perforce and Sub-
version crowds.

import com.urbancode.vcsdriver3.*;

Scripting Documentation

15

http://java.sun.com/reference/docs/
http://java.sun.com/reference/docs/
???
???
???

import com.urbancode.anthill3.runtime.scripting.helpers.*;

ChangeLog[] changeLogArray = ChangeLogHelper.getChangeLogArray();
int highestChangeset = 0;

// Look up the highest changeset id in the revision log.
for (int i = 0; i < changeLogArray.length; i++) {
ChangeSet[] changesetArray = changeLogArray[i].getChangeSetArray();
for (int j = 0; j < changesetArray.length; j++) {
ChangeSet changeset = changesetArray[j];
id = changeset.getId();
// edit out the 'r' character for svn
if (id.startsWith("r")) {

id = id.substring(1);
}
int num = (new Integer(id.trim())).intValue();
if (num > highestChangeset) {
highestChangeset = num;

}
}
}

// If there is no changelog, look up the most recent failed and good build
// and take the highest number. We assume that the version number will
// be the first stamp.
if (highestChangeset == 0) {
lastSuccess = BuildLifeLookup.mostRecentSuccess();
lastFailure = BuildLifeLookup.mostRecentFailure();

if (lastSuccess != null) {
successStampArray = lastSuccess.getStampArray();
if (successStampArray.length > 0) {
stampStr = successStampArray[0].getStampValue();
highestChangeset = (new Integer(stampStr.trim())).intValue();

}
}
if (lastFailure != null) {
failureStampArray = lastFailure.getStampArray();
if (failureStampArray.length > 0) {
stampStr = failureStampArray[0].getStampValue();
int num = (new Integer(stampStr.trim())).intValue();
if (num > highestChangeset) {
highestChangeset = num;

}
}

}
}

stamp = "" + highestChangeset;
return stamp;

Scripted Stamp Update

For stamp updaters that should take an existing number and modify it, the basic updated often works fine. For cus-
tom updating of version numbers through, a scripted updater can be useful. This script must return the string value
of the stamp to apply.

This updater increments the third number found rather than the last one. So it will update 1.2.3.4 to 1.2.4.4.

// The String 'input' is the current value
String current = input;
int startIndex = 0;

Scripting Documentation

16

int endIndex = 0;

startIndex = current.indexOf(".", startIndex);
startIndex = current.indexOf(".", startIndex + 1) + 1;
endIndex = current.indexOf(".", startIndex);

long lastDigits = Long.parseLong(current.substring(startIndex, endIndex));
lastDigits ++;
String result = current.substring(0,startIndex) + String.valueOf(lastDigits)

+ current.substring(endIndex,current.length());

return result;

Stamp Style Script

Stamp steps let you choose the name of the stamping style to use by script. There is nothing special passed into these
scripts. The last line must evaluate to the name to be used. While you could do a sophisticated script here, an easy
short cut is to name your script styles after whatever they are used for, like deploying to a particular environment.
That way, simply looking up the Environment provides the stamping style to use.

This script just looks up the environment the promotion is happening on and selects the stamping style of the
matching name. If the environment names are long, using the getShortName() method instead can be appropriate.

EnvironmentLookup.getCurrent().getName();

Step Pre-Condition Scripts
Step Pre-Condition script are used to determine if a step should run, and must return a Criteria object. Step Pre-
Condition scripts may be created and/or edited at System > Step Pre-Condition (see Creating Step Pre-Condition
Scripts), or when the Show Additional Options link is selected during step configuration (see On-the-fly Step Pre-
Condition Scripting).

AnthillPro is packaged with a default library of Step Pre-Condition Scripts that will meet most needs; however, it is
also possible to add new scripts (see Custom Step Pre-Condition Scripts) based on other events. Currently, Ant-
hillPro ships with the following Step Pre-Condition Scripts:

• All Prior Success. AnthillPro will run this step only if all previous steps in the job succeed.

• Always. AnthillPro executes this step every time the job is run, regardless of previous step success or failure.

• Any Prior Failure. If any previous job step fails, AnthillPro will run this step.

• Never. AnthillPro will never run this step.

• Prior Failure. If the immediately preceding step failed, AnthillPro will run this step.

• Prior Success. AnthillPro will run this step only if the immediately preceding step succeeded.

Note that when editing existing Step Pre-Condition Scripts, any changes made will be applied to every step using
that script. It is usually best to copy an existing Step Pre-Condition Script and paste it into a newly created script to
avoid any deleterious effects on other projects.

See also Using the Script Library.

Step Pre-Condition Script Prerequisites

Scripting Documentation

17

• You must have permissions to the System page.

• Understanding of AnthillPro scripting. See Scripting Basics.

Creating Step Pre-Condition Scripts

To create and/or edit a Step Pre-Condition Script:

1. Go to System > Step Pre-Condition under the Script Library menu.

2. Click Create New on the Step Pre-Condition Scripts page to create a new script.

If editing an existing Step Pre-Condition Script, select it from the Name menu or select the View icon under the
Operations menu. When editing scripts, all changes will effect every project and/or job that use the script.

3. Create/edit script:

• Name. Give a name of this script. Once created, the name will appear in the Step Pre-Condition field during
step configuration.

• Description. Give a description of this script. The description will appear on the Step Pre-Condition main
page, and be displayed during step configuration when a user chooses to edit this script. For example, the de-
scription could include a warning not to edit the script, etc.

• Language. Select a scripting language. Currently, AnthillPro supports BeanShell, Groovy and JavaScript.

• Script. Give the script, that returns a Criteria object, that will determine if the step should run or not. See Cus-
tom Step Pre-Condition Scripts.

4. Click Save.

5. Once created, the Step Pre-Condition Script will appear on the Step Pre-Condition Scripts page. The Used In
menu details what projects and/or library jobs use the script.

Alternatively, Step Pre-Condition Scripts may be created during step configuration. See On-the-fly Step Pre-
Condition Scripting.

On-the-fly Step Pre-Condition Scripting

Step Pre-Condition Scripts may be created and/or edited during step configuration, in addition to creating/editing
Step Pre-Condition Scripts on the System page (see Creating Step Pre-Condition Scripts). To create a script during
step configuration:

1. Select the Show Additional Options link on the step page.

2. If creating a new script, select the New Script link on the Pre-Condition Script field and proceed to Item Four.

3. If editing a script, select the existing script from the drop-down menu and then select the Edit Script link.

Note that any changes made to an existing script will effect all steps that use the script.

4. Follow the procedures outlined in Creating Step Pre-Condition Scripts, Items Three and Four.

5. Once created, the Step Pre-Condition Script will appear on the Step Pre-Condition Scripts page. The Used In
menu details what projects and/or library jobs use the script.

Scripting Documentation

18

Custom Step Pre-Condition Scripts

It is also possible to create custom Step Pre-Condition Scripts based on other events. For example, the Step Pre-
Condition Script below determines if the step should run based on the value ("true") of the property ("MyProp-
erty"):

return new Criteria() {
public boolean matches(Object obj)

throws Exception {
return "true".equals(PropertyLookup.get("MyProperty"));

}
}

Workflow Priority Scripts
Use workflow priority scripts to dynamically determine which workflow will run first. It is possible to set a dynamic
workflow priority based on the Build Life (if applicable), environment, project, request, user, and/or workflow. The
workflow priority script will run at the beginning of a workflow request, so if it fails for any reason the workflow re-
quest will fail, and the workflow will not run. See Creating a Workflow Priority Script and Using a Workflow Prior-
ity Script.

The priority, either High, Normal or Low, will be assigned to the workflow request based on the WorkflowPrior-
ityEnum object given, and will be passed to all dependent workflow requests down the dependency graph. For ex-
ample, if a workflow priority script sets a High priority based on the user making the request, and the requested
workflow kicks off a build of a secondary workflow and a dependent workflow, those workflows will be assigned a
High priority for the duration of the workflow.

Creating a Workflow Priority Script

To create a workflow priority script:

1. Go to System > Workflow Priority under the Script Library menu. If you can't access the System page, contact
your AnthillPro administrator.

2. Select Create New on the workflow priority list page.

3. Name the script. Give a name that reflects what this script does. For example, Environment Priority. The name
will be used during workflow configuration/editing. See Using a Workflow Priority Script.

4. Description. Enter a description of this script.

5. Language. Select a language. Currently, BeanShell, Groovy, and JavaScript are supported.

6. Script. Enter the script that returns a WorkflowPriorityEnum object. Priority may be based on the Build Life (if
applicable), environment, project, request, user, and/or workflow.

7. Click Save then Done.

8. See Using a Workflow Priority Script.

Using a Workflow Priority Script

If the workflow priority must be determined dynamically, first create a custom workflow priority script (see Creat-
ing a Workflow Priority Script) before editing/configuring a workflow.

Scripting Documentation

19

During workflow configuration, select the priority from the drop-down menu. Additionally, to change the priority of
an existing workflow go to Administration, select the workflow, and click the Edit Workflow icon on the Main
page. Select the new priority from the drop-down and click Save. The next time the workflow runs, the new priority
will be used.

Working Directory Scripts
Working directory scripts are created on the System page and are used by a project's source configuration to determ-
ine the directory the checked-out source will be placed in. Also, the set working directory step for a non-originating
workflow job uses working directory scripts.

A working directory script is designed as a short script, so hard coded values may be entered for things like using a
file system repository, or always running an installer from a particular directory. Nothing special is passed into
working directory scripts, and the value generated is computed at workflow execution time on the agent in order to
generate the working directory.

AnthillPro is packaged with a Default Working Directory Script that is available for every project that uses a
working directory script (go to System > Work Dir under the Script Library menu to view). It, as well as the Ant-
hill-Example working directory script, may be used as an example when creating new scripts.

When editing a working directory script, remember that any changes you make to a script will effect every project
using that script. The easiest way to modify a script is to copy it and then create a new one with the changes.

• Not every SCM type uses a working directory script: some determine checkout by configuration, client specifica-
tions, etc. If your SCM type does not use a working directory script, that option will not be when you create a
workflow.

Including any ${property:} variables and ${bsh:...} scriptlets in the working directory script gives you
more control over how builds and deployments are carried out (such as setting up a separate directory for each Build
Life, etc.).

See also Using the Script Library.

Create and Use Working Directory Scripts

If a Set Working Directory job step is used, it will always override the Working Directory Script set on the originat-
ing workflow. For example, adding a job step that sets the Working Directory to
C:\Project_A\Subproject_01 will override the Working Directory (of C:\Project_A\) selected during
Source Configuration. The job will always be run in the C:\Project_A\Subproject_01 directory.

Ensure that the Working Directory is not set to something like C: or C:\ because the entire contents of the C
drive will be permanently removed. Also note that if the Working Directory of C:\Project_A\ is set to clean
up the workspace, the contents of C:\Project_A\Subproject_01 will be removed as well. This may have an
adverse effect on jobs that use the C:\Project_A\Subproject_01 directory.

Before you start, make sure you have Administrative permissions to the System page.

1. Go to System > Work Dir under the Script Library menu.

2. Click the Create New button.

3. Create Script:

• Name the script.

Scripting Documentation

20

• Description. Give an optional description.

• Script. Input the path of the working directory in the text field. This may include any ${property:} variables
and ${bsh:...} scriptlets.

It is advisable to create a separate Working Directory Script for each project.

4. Click Save.

New Workspace for Each Living Build Script

The following script is an example of how to set up a separate working directory for each build life. It’s not-
able in that it uses a mix of hard-coded and scripted paths, as well as using the path helper (makes paths safe for the
agent operating system) and the build life lookup helper:

${anthill3/work.dir}/buildlife/
${bsh:PathHelper.makeSafe(BuildLifeLookup.getCurrent().getId())}

One Workspace Per Project Script

The standard working directory script also uses several helpers, but just creates a working directory for each
project.

${anthill3/work.dir}/projects/
${bsh:PathHelper.makeSafe(ProjectLookup.getCurrent().getName())}

Build Life Note Scripts
A short BeanShell script is used to add a workflow property (requiring a user response) as a Build Life Note for de-
ployments.

The script should look up the current Build Life and workflow, the user requesting the deployment, the environment,
and the property that is being used to create a Build Life Note.

Additionally, the script must also include a string that adds the user's response as a Note on the Build Life. The ex-
ample below uses a property called "Reason":

bl = BuildLifeLookup.getCurrent();
wf = WorkflowLookup.getCurrentCase();
user = wf.getRequest().getRequesterName();
env = EnvironmentLookup.getCurrent().getName();
reason = PropertyLookup.get("Reason");

note = user + " deployed to " + env + " to " + reason;
bl.addNote(note);

Logging from a Script
For scripted logging, either create a log4j logger or write to the command output:

• Use a log4j logger. May be used whenever a script is evaluated by AnthillPro. See Logging from a Script (log4j).

Scripting Documentation

21

• Write to the command output. Use in an Evaluate Script step. See Logging from a Script (Command Output).

See also Tools > Scripting API > LogHelper.

Logging from a Script (log4j)
May be used whenever a script is evaluated by AnthillPro by creating a log4j logger. The output will typically be
available on the Dashboard Job page when the Show Log icon is selected. However, under some circumstances
(e.g., if used in a Post Processing script) output will be available on the agent's log, etc., depending on where the
script is evaluated.

To log using log4j, use:

import org.apache.log4j.Logger;
Logger log = Logger.getLogger("script");

Then log at a level that is visible:

log.warn("This should appear in the log");

or

log.info("Only if info is enabled");

For information on creating a log4j logger, see Logger (Apache Log4j) [ht-
tp://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Logger.html].

See also Tools > Scripting API > LogHelper.

Logging from a Script (Command Output)
Write to the command output with a commandOutput object. In the Evaluate Script Step script context, use com-
mandOutput.println("text"); to see the string in the command output.

See also Tools > Scripting API > LogHelper.

Recipient Generator Scripts
A recipient generator is responsible for determining which users should be notified when the Event Selector determ-
ines a notification should go out. What is provided (supplied) to the script depends on whether the triggering event is
related to a request, a workflow, or a task:

Event Type Supplied to Script

workflow event workflow and request

build request event request

task event task, trace, workflow, and request

For notifications relating to a workflow, the following is put in the context:

Scripting Documentation

22

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Logger.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Logger.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Logger.html

Name Purpose Class

workflow The execution of the workflow. com.urbancode.anthill3.domain
.workflow.WorkflowCase

request The request that started the work-
flow.

com.urbancode.anthill3
.domain.buildrequest .BuildRequest

For notifications relating to a request, the following is put in the context:

Name Purpose Class

request The request in question. com.urbancode.anthill3.domain
.buildrequest.BuildRequest

Recipient generator scripts can also resolve project and workflow properties. This allows you to send notifications to
an external list, etc., without having to set up a new scheme for each project. For example, if you set a project prop-
erty (something like: project-mailing-list=myProjectTeam@myCompany.com) on each project, you can use that
property to return your external e-mailing list in the recipient generator.

Scripted Recipient Generator Examples
A fairly common usage pattern is to contact specific individuals, perhaps the system administrator, a manager, or a
QA contact. To specify individual users, create a script like the one below.

This example assumes that there is no LDAP integration in place and uses the default realm. If there is LDAP
in place, use the appropriate realm.

import com.urbancode.anthill3.domain.security.*;
userFactory = UserFactory.getInstance();
result = new User[] {

userFactory.restoreForNameAndRealm("Eric","Anthill"),
userFactory.restoreForNameAndRealm("dbeckham","Anthill")

};

• If the event selected is a BuildRequestEvent and not a WorkflowEvent, the script will not receive a
workflow object. Instead, the script will be passed as a build request object named request. The same issue effects
notification templates.

Retrieves Two Specific Users

Make sure the last line of the script should evaluate to an array of User objects.

import com.urbancode.anthill3.domain.security.*;

userFactory = UserFactory.getInstance();
result = new User[] {
userFactory.restoreForNameAndRealm("my_user","Anthill"),
userFactory.restoreForNameAndRealm("dbeckham","Anthill")

};

Retrieves the User Who Started a Workflow

Scripting Documentation

23

Make sure the last line of the script should evaluate to an array of User objects.

import com.urbancode.anthill3.domain.buildrequest.RequestSourceEnum;
import com.urbancode.anthill3.domain.security.User;
if (RequestSourceEnum.MANUAL.equals(request.getRequestSource())) {

return new User[] { request.getRequester() };
}
return null;

Reporting Scripts
Reports are essentially an opportunity to use the API to gather data out of the system and display it in a custom way.
A report is composed of no less than three scripts and a display template. The focus here will be on those three
scripts. Those are:

• Meta-data Script

• Report Script

• Template Context Script

The Meta-data script is responsible for determining the inputs to a report as well as what data columns are displayed
in that report. The report script is charged with looking up the appropriate data and collecting it as rows and columns
for a report. The template context script is responsible for putting needed information into the context of the display
template.

Our example report looks up the recent workflows in the last seven days for either all projects the user can see, or a
specific project. It then displays a graphical breakdown showing which days were most active and which were more
prone to be failure.

DoW Example: Builds by Day of Week (Meta-data) Script
The meta data script is used to establish some of the guidelines of the report in question. This is a fairly advanced
meta data script. Near the bottom, you see the most common component to a meta-data script which is the listing of
the columns that will be used in the report.

The top section involves a parameter. Reports can demand a parameter which is always a simple String value. It can,
however, be configured to prompt with options using a drop down box. In this case, we are asking which project
should we run the builds by day of the week report on. So we have looked up all the projects in the system the user
has access to, put them in a drop down list and added an all option to permit a view from a higher level.

import com.urbancode.anthill3.domain.project.*;
import com.urbancode.anthill3.domain.reporting.*;

ReportMetaData rmd = new ReportMetaData();

// Add some parameters to the report
SelectParamMetaData params = new SelectParamMetaData();

Project[] allMyProjectsArray = ProjectFactory.getInstance().restoreAllActive();
String[] labels = new String[allMyProjectsArray.length + 1];
String[] values = new String[allMyProjectsArray.length + 1];
for (int i = 0; i < allMyProjectsArray.length; i++) {

labels[i] = allMyProjectsArray[i].getName();
values[i] = allMyProjectsArray[i].getId().toString();

}

Scripting Documentation

24

labels[allMyProjectsArray.length] = "All";
values[allMyProjectsArray.length] = "all";

params.setLabels(labels);
params.setValues(values);
params.setName("project");
params.setLabel("Project");
params.setDescription("Select the project to report on.

Or select 'All' for all projects.");

// Now we add our parameter options to the meta data
rmd.addParameter(params);

// Configure columns
rmd.addColumn("Monday");
rmd.addColumn("Tuesday");
rmd.addColumn("Wednesday");
rmd.addColumn("Thursday");
rmd.addColumn("Friday");
rmd.addColumn("Saturday");
rmd.addColumn("Sunday");

// Lastly, return the meta data
return rmd;

See also Adding Parameters to Reporting Meta-Data Scripts.

DoW Example: Builds by Day of Week (Report Genera-
tion) Script
The report script is responsible for taking any parameters specified in the meta-data script and using them to look up
rows of data that are compiled into a report. A report script is responsible for returning a ReportOutput object that
contains all the data for the report.

The script below starts by setting a date range for looking up recent build lives, and uses one week. It then uses the
property named project from the meta data script (which is populated into the script context automatically) to find
the appropriate project to run against.

After that, it’s a simple matter of looking up the workflow summaries and counting the number of successful and
failed workflows for each day in the week. Successful and failed builds are split out into separate rows which are
then added to the report output.

import com.urbancode.anthill3.dashboard.*;
import com.urbancode.anthill3.domain.reporting.*;
import com.urbancode.anthill3.domain.userprofile.*;
import com.urbancode.anthill3.domain.workflow.WorkflowStatusEnum;
import java.util.*;

// Get the timezone for the current user
TimeZone timeZone = UserProfileFactory.getTimeZone();

Calendar cal = Calendar.getInstance(timeZone);
Calendar lastWeek = (Calendar) cal.clone();
lastWeek.add(Calendar.DATE, - 7);

// Figure out the project to use. "project" is the name of
// the parameter in the meta data script. It is provided here.
Long projectId = null;
if (project == null || project.equals("all")) {

// leave as null

Scripting Documentation

25

}
else {

projectId = Long.parseLong(project);
}

// Get workflows for the last 7 days for the right project
DashboardFactory dashFact = DashboardFactory.getInstance();
BuildLifeWorkflowCaseSummary[] summaries;
summaries = dashFact.getBuildLifeWorkflowSummaries(projectId,

lastWeek.getTime(), cal.getTime());

// Initialize counts
int mondayCount = 0;
int tuesdayCount = 0;
int wednesdayCount = 0;
int thursdayCount = 0;
int fridayCount = 0;
int saturdayCount = 0;
int sundayCount = 0;
int failedMondayCount = 0;
int failedTuesdayCount = 0;
int failedWednesdayCount = 0;
int failedThursdayCount = 0;
int failedFridayCount = 0;
int failedSaturdayCount = 0;
int failedSundayCount = 0;

for (int i = 0; i < summaries.length; i++) {
Calendar tempCal = (Calendar) cal.clone();
tempCal.setTime(summaries[i].getEndDate());
boolean failed = (summaries[i].getStatus() == WorkflowStatusEnum.FAILED

|| summaries[i].getStatus() == WorkflowStatusEnum.ERROR);

int dow = tempCal.get(Calendar.DAY_OF_WEEK);
switch (dow) {

case Calendar.MONDAY:
if (failed) failedMondayCount++; else mondayCount++;
break;

case Calendar.TUESDAY:
if (failed) failedTuesdayCount++; else tuesdayCount++;
break;

case Calendar.WEDNESDAY:
if (failed) failedWednesdayCount++; else wednesdayCount++;
break;

case Calendar.THURSDAY:
if (failed) failedThursdayCount++; else thursdayCount++;
break;

case Calendar.FRIDAY:
if (failed) failedFridayCount++; else fridayCount++;
break;

case Calendar.SATURDAY:
if (failed) failedSaturdayCount++; else saturdayCount++;
break;

case Calendar.SUNDAY:
if (failed) failedSundayCount++; else sundayCount++;
break;

}
}

// The output of a report is based on the meta-data
ReportOutput output = new ReportOutput(metaData);

ReportRow row = new ReportRow(output, "Failed");
row.setColumnValue("Monday", failedMondayCount + "");

Scripting Documentation

26

row.setColumnValue("Tuesday", failedTuesdayCount + "");
row.setColumnValue("Wednesday", failedWednesdayCount + "");
row.setColumnValue("Thursday", failedThursdayCount + "");
row.setColumnValue("Friday", failedFridayCount + "");
row.setColumnValue("Saturday", failedSaturdayCount + "");
row.setColumnValue("Sunday", failedSundayCount + "");
output.addRow(row);

ReportRow row = new ReportRow(output, "Successful");
row.setColumnValue("Monday", mondayCount + "");
row.setColumnValue("Tuesday", tuesdayCount + "");
row.setColumnValue("Wednesday", wednesdayCount + "");
row.setColumnValue("Thursday", thursdayCount + "");
row.setColumnValue("Friday", fridayCount + "");
row.setColumnValue("Saturday", saturdayCount + "");
row.setColumnValue("Sunday", sundayCount + "");

output.addRow(row);

return output;

DoW Example: Builds by Day of Week (Context)
The final script involved is the template context script. Once the ReportOutput has been created, a report template is
responsible for presenting that data in an attractive or useful way. The template language used, is Velocity from the
Apache Foundation [http://velocity.apache.org/]. Unfortunately, Velocity strongly limits the logic done within the
template proper. To address this limitation, AnthillPro provides an extra BeanShell script that runs prior to the tem-
plate execution. This script populates the Velocity context with anything needed, but does not have to return any-
thing.

The report template script has access to some items that AnthillPro has already put in the velocity context. These in-
clude:

Name Purpose Class

report The report configuration. com.urbancode.domain
.reporting.Report

output The data from the report com.urbancode.domain
.reporting.ReportOutput

request The request object in case it is
needed

javax.servlet.http
.HttpServletRequest

response The response object in case it is
needed

javax.servlet.http
.HttpServletResponse

• Graphical hooks. There are hooks provided to display the data in graphical form. Most of the work in this case is
done in the template script. The key here is to first define a report, and then request a URL for that report. The
URL is then passed into the template which uses it to display the image. See
com.urbancode.anthill3.domain.reporting.graphing.GraphicsHelper for details.

• This script. This script demonstrates how to set up a basic bar chart that displays the data in its various categor-
ies.

import com.urbancode.anthill3.domain.reporting.graphing.*;
import com.urbancode.anthill3.domain.singleton.serversettings.*;
import java.awt.Color;

Scripting Documentation

27

http://velocity.apache.org/
http://velocity.apache.org/
http://velocity.apache.org/

import com.urbancode.anthill3.domain.reporting.graphing.*;
import com.urbancode.anthill3.domain.singleton.serversettings.*;
import java.awt.Color;

producer = new ReportDataProducer();
dataMap = new HashMap();
dataMap.put("data", context.get("output"));
report = context.get("report");
Color[] colorScheme = new Color[] {Color.RED, Color.GREEN}
chart = GraphicsHelper.createChart(producer, "stackedverticalbar3d",

report.getName(),
"Builds", report.getName(), dataMap, colorScheme);

String chartUrl = GraphicsHelper.getChartUrlString(context.get("request"),
context.get("response"), chart, 600, 400);

context.put("chartUrl", chartUrl);

• The template. A simple report template that only contains the image designed by the context script is easy
enough to produce. That URL where the chart is temporarily stored is provided to template for display to the
users.

<html>

<head>
<title>$report.Name</title>
</head>

<body>
<center>
<h1> Report: $report.Name</h1>

</center>
</body>
</html>

Adding Parameters to Reporting Meta-Data Scripts
To parameterize a report, attach either a SelectParamMetaData or TextParamMetaData object to the Report-
MetaData object returned by the Meta-Data Script.

SelectParamMetaData. To display properties in a drop-down, add something similar to below:

Project[] allMyProjectsArray = ProjectFactory.getInstance().restoreAllActive();
String[] labels = new String[allMyProjectsArray.length + 1];
String[] values = new String[allMyProjectsArray.length + 1];
for (int i = 0; i < allMyProjectsArray.length; i++) {
labels[i] = allMyProjectsArray[i].getName();
values[i] = allMyProjectsArray[i].getId().toString();

}
labels[allMyProjectsArray.length] = "All";
values[allMyProjectsArray.length] = "all";

param.setLabels(labels);
param.setValues(values);

Scripting Documentation

28

param.setName("project");
param.setLabel("Project");
param.setDescription("Select the project to evaluate successful and failed executions of that project. Or select ''All'' to display all projects together.");

rmd.addParameter(param);

TextParamMetaData. For simple text properties, add something similar to below:

TextParamMetaData param = new TextParamMetaData();
param.setName("enabled");
param.setLabel("Enabled");

rmd.addParamert(param);

Scripted Lockable Resources
To dynamically select a Lockable Resource, use a BeanShell script that returns the name of a resource or a Locka-
bleResource object. Scripted Lockable Resources are configured during workflow creation, and return a resource ex-
clusive to the environment you want the workflow to run in (e.g., a server name, etc.). When the workflow is run, it
will then acquire the lockable resource, which may then be viewed on the Lockable Resources list. Scripted Lock-
able Resources are created with a maximum lock holder setting of one (1), so only a single workflow can acquire it
at any given time.

For example, The following script creates/uses a Lockable Resource with the name of the environment the workflow
is running in, plus the name of a server (i.e., "dev-server", "qa-server", "prod-server", etc.):

• EnvironmentLookup.getCurrent().getName() + "-server";

To script Resource Locks:

1. Go to Administration and select the workflow the Resource Lock is to be added to.

2. On the Workflow Main page, select Add Resource.

3. Set Lock:

• Explicit Resource. Do not select a resource.

• Scripted Resource. Give a BeanShell script that returns the name of a resource or a LockableResource object.
If the name does not already exist, AnthillPro will create it once the workflow runs.

• Exclusive. Check "Yes" to have AnthillPro exclusively lock the resource. When enabled, AnthillPro will ob-
tain an exclusive lock for this resource, and override the maximum number of lock holders set during resource
configuration.

4. Click Save then Done.

5. To add another Lockable Resource, repeat Items One thru Four.

Scripting Notification Templates
AnthillPro Notification Templates are used to format information sent to team members regarding build status. To

Scripting Documentation

29

do so, the data is loaded into an Apache Velocity [http://velocity.apache.org/] template which is then processed and
sent out.

While the Velocity template script has access to items AnthillPro puts in the Velocity context, Velocity's logic is
limited. To extend the Velocity template logic, AnthillPro provides an extra BeanShell script (called Context
Script) that runs prior to the Velocity template execution. See Example Notification Template Scripts.

• Before proceeding, if you are not familiar with Velocity templates, see the Velocity Documentation [ht-
tp://velocity.apache.org/].

Parameters
For notifications relating to a specific job, the following is put in the context:

Name Purpose Class

trace The trace of the steps executed in the
job

com.urbancode.anthill3
.domain.jobtrace.JobTrace

For notifications relating to a workflow, the following is put in the context:

Name Purpose Class

workflow The execution of the workflow com.urbancode.anthill3
.domain.workflow.Workflow
Case

request The request that started the workflow com.urbancode.anthill3
.domain.buildrequest
.BuildRequest

See Tools > Scripting API for additional variables that can be passed to the Velocity Template.

Example Notification Template Scripts
Because the notification template for a job is necessarily different from that for a workflow, different template
scripts are used. AnthillPro supports two basic Notification Template types: one for e-mails and one for instant mes-
saging.

The same parameters are passed to both template types. When and how each type will be used is project and team
specific. Depending on your needs, you will most likely have a combination of e-mail and IM templates notifying
team members on a number of events.

• Any other AnthillPro actions that require either an e-mail or IM to be sent may fail unless the Notification Tem-
plate is properly configured.

Example E-mail Notification Template Script

The script for the Simple Workflow Email Template that ships with AnthillPro is pretty typical, and can be used as
a prototype for creating other templates. It looks up the server settings so that the template can provide a link back to
the project in question. It also looks up any change logs associated with the workflow so the changes in the build can
be sent to interested parties.

Scripting Documentation

30

http://velocity.apache.org/
http://velocity.apache.org/
http://velocity.apache.org/
http://velocity.apache.org/
http://velocity.apache.org/

1. To view, go to System > Notification Templates under the Notification menu.

2. On the Notification Template List page, select the edit icon of the Simple Workflow Email Template. (The
Template may have a different name depending on what version of AnthillPro you are running.)

E-mail Notification Template Context Script

The Context Script is a BeanShell script that AnthillPro runs prior to executing the Velocity template. The Context
Script populates the Velocity context with anything needed, but does not have to return anything. The contents of
the Context Script will vary depending on the type of information to be sent to team members.

E-mail Notification Template Text

The Template Text is where the Velocity Template is created. In addition to the standard Velocity text (see the Ve-
locity Documentation [http://velocity.apache.org/]), the Template Text must import the AnthillPro-specific informa-
tion from the BeanShell Context Script in order to deliver the appropriate information in the e-mail. This is accom-
plished at the beginning of the template body.

• The ## BEGIN SECTION Subject and ## End SECTION Subject lines are required for sending e-
mail notifications, in addition to the ## BEGIN SECTION Body and ## End SECTION Body lines.

BEGIN SECTION Subject

#set($project = $workflow.project)

Workflow: $project.Name - $workflow.Name
($workflow.BuildLife.LatestStampValue):
#if($workflow.Status.Name.equalsIgnoreCase('Complete'))
Success

#else
$workflow.Status.Name

#end

END SECTION Subject

BEGIN SECTION Body
PROPERTY Content-Type: text/html
PROPERTY X-Priority: 3

Scripting Documentation

31

http://velocity.apache.org/
http://velocity.apache.org/
http://velocity.apache.org/

...

...

END SECTION Body

Once the AnthillPro information is identified, it is incorporated in the Velocity Template. Complete Velocity Tem-
plate creation is outside the scope of AnthillPro. For detailed instructions on Velocity Template usage, see the Velo-
city Documentation [http://velocity.apache.org/].

Example IM Notification Script

Typically, IM templates are used to notify team members on workflow success or failure. The Template Text should
be similar to what is below, and can be configured to return other events.

1. To view, go to System > Notification Templates under the Notification menu.

2. On the Notification Template List page, select the edit icon of the Simple IM Template. (The Template may
have a different name depending on what version of AnthillPro you are running.)

• The ## BEGIN SECTION Body and ## END SECTION Body lines are necessary in order for the message
to be sent. IM templates have no "Subject" lines, so make sure they are removed if you are modifying an e-mail
template.

BEGIN SECTION Body

#set($project = $workflow.project)

Workflow: $project.Name - $workflow.Name
($workflow.BuildLife.LatestStampValue):
#if($workflow.Status.Name.equalsIgnoreCase('Complete'))
Success

#else
$workflow.Status.Name

#end

END SECTION Body

Status Selection Scripts
The status scripts allow you to write a short script to select a status to either promote a living build to or get the
change log since. The change log since script is designed so that when you promote something to an environment
like QA you can hand the QA team a list of code changes since the previous deployment. That can give them clues
about where to spend their time. This script currently uses the short script format. That means it must be a single
line, return or evaluate to the name of the status in question and must use the ${bsh:} format. The script can be
several statements if necessary, but line breaks are forbidden.

Simply selects the status matching the name of the environment the deployment or promotion is occurring on. For
environments with long names, matching against the getShortName() method might make more sense.

return EnvironmentLookup.getCurrent().getName();

Scripting Documentation

32

http://velocity.apache.org/
http://velocity.apache.org/
http://velocity.apache.org/

