Plugin Documentation

A Plugin consists of a zip-archive file containing plugin.xml and upgrade.xml files; optionally, the Plugin may also
contain a plugin.sig and/or any other scripts/resources needed by the Plugin.

The plugin.xml file is the Plugin descriptor file. It is an xml file conforming to the PluginX ML Schema.xsd schema
definition. The plugin.xml document has two attributes on the root element: 'id' and ‘type.' The 'id" attribute specifies
an unchanging value which identifies the Plugin, and the 'type' attribute specifies the type of Plugin (currently sup-
ported types are SOURCE and INTEGRATION). These two attributes can't be changed across versions of the Plu-
gin. The root element has several required child elements: 'version', 'name', and 'description.’ Beyond these basic at-
tributes and elements, a Plugin can also have some additiona structures which may vary in number and specific at-
tributes, depending upon the type of Plugin being implemented. The common components are 'property-groups and

'step-types.

Plugin Properties

The property-group and properties elements (see Plugin Step Types) define what user-configured properties will be
passed to the step, as well as how those properties will be presented to the end-user.

The property-group element is different from the properties element, in that it has type attribute as well as descrip-
tion and validation elements. The number and types of property-groups present in a Plugin are determined by the
type of the Plugin (see Plugin Types).

There are a variety of possible property elements. Each property element has a name, label, description and is op-
tionally required; it may also be marked to be passed as a native environment variables:

» property-text and property-textarea. These properties differ only in how they are presented to the user: both ac-
cept arbitrary text (with property-textarea providing alarger input area than property-text).

» property-secure. Similar to property-text, except that it is represented as a password-style field. Its value is re-
dacted from all output from the step.

» property-checkbox. Displays a checkbox to the user. If the user checks the box, then the value of 'true’ will be
used for the property; otherwise the property is not set.

e property-select. Requires a list of one or more child values that the user may select among; renders as a drop-
down.

» property-group-ref. A select property that is populated with other configured property-groups from this Plugin
of the given type.

The 'validation' script element has a 'file' and a 'lang' attribute. The file attribute is the path for the validation script
within the Plugin file. The 'lang’ attribute denotes the language of the validation script. The validation script is used
to perform both validation at configuration time and at runtime for the step (see Validation Script).

Plugin Step Types

The 'step-type' elements describe the steps which the Plugin is providing. Step-types have a name, description, one
or more tags, any number of properties, an optional custom property-validation script, an optional interpreter, and a
script.

Thetag is used to determine where the step will show up in the step-folder-tree when users are adding stepsto ajob.
A tag can denote sub-directories by incorporating the '/ character for folder-boundaries.

1

Plugin Documentation

The properties element defines what properties users will configure to be passed to the step, as well as how those
properties will be present to user (see Plugin Properties).

The 'validation' script element has a'file' and a'lang' attributes. The file attribute is the path for the validation script
within the Plugin file. The 'lang' attribute denotes the language of the validation script. The validation script is used
to perform both validation at configuration time and at runtime for the step (see Validation Script).

The interpreter element (if present) contains the name of executable to use to run the script (see script element be-
low).

The script element has a 'file' attribute which denotes the path to the script or executable within the Plugin file which
will berun for this step.

Plugin Sub-types

StepTypes may have one of a set of sub-types: All of the 'scm.*" sub-types must have a property which is a hidden
property-group-reference named "source” to a source-type property-val ue-group:

» scm.populate. Must have a property 'date’ which can receive a date to base the checkout upon
» scm.cleanup. <no specific requirements>

» scm.changelog. Must have properties 'startDate’ and 'endDate’ which can receive dates to define the interval for
which a changelog should be produced

» scm.label. Must have properties 'label' and 'message’ which can receive the label to create and the message to use
during the action

» scm.changelog.quietperiod. Must have properties 'startDate’ and ‘endDate’ which can receive dates to define the
interval to examine for changes. The latest change date in this interval should be set as a property 'latest-change'
on the current step via ahptool.

Plugin Types

There are currently two types of Plugins supported:

* INTEGRATION: Integration Plugins are a catch-all type for bundling together a set of related steps which are
not related to Source Control Management systems. An integration Plugin may have up to 1 property-group ele-
ment which must be of type 'integration’. This property group element is used to enable users define Integration
objectsin AnthillPro at the System level which may be reused by the steps within this Plugin.

* SOURCE: Source Plugins are designed to supply new SCM integrations for AnthillPro. A source Plugin must
have exactly one 'source' type and exactly one 'repo’ property-group. Also, the 'source’ type property-value group
must have a property-group-reference named 'repo’ which is hidden; it must also reference a 'repo’ type property-
value group. Additionally, the source Plugin must also supply step-types with sub-type ‘scm.populate
‘'scm.cleanup', ‘'scm.changelog', 'scm.label’, and 'scm.changel og.quietperiod' (see Plugin Sub-types).

Plugins also support global repository triggers for the source-type integrations. This allows you set up one trigger
in your SCM and have AnthillPro determine which projects need to build based on the information passed along
with the trigger request. To use a global repository trigger, you must defineit in your Plugin. See Global Reposit-
ory Triggersfor Plugins.

Plugin Documentation

Plugins and AHPTool Schemas

When writing a Plugin, you will most likely be using AHPTool to control the communication between the server
and the agent in the context of a running workflow. Because AHPT ool can look up or set properties at the system,
step, request, job, Build Life and agent levels -- as well as upload Test, Coverage, Analytics, or Issue data -- it
provides an excellent integration point for writing Plugins. The available Plugin steps listed above can use AHPT ool
to communi cate between the agent and the server, and follow the schemas below.

Issues Schema

<xsd: schema xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema" >
<xsd: conpl exType nanme="1|ssues">
<xsd: sequence>
<xsd: el ement nanme="issue" type="Issue" m nCccurs="0" maxCccurs="unbounded"/ >
</ xsd: sequence>
<xsd:attribute nane="date" type="xsd:string" use="required"/>
</ xsd: conpl exType>
<xsd: conpl exType nanme="Issue" >
<xsd: sequence>
<xsd: el enrent nane="nane" type="xsd:string" m nCccurs="1"/>
<xsd: el enrent nane="type" type="xsd:string" m nCccurs="0"/>
<xsd: el ement nane="status" type="xsd:string" mnCccurs="0"/>
<xsd: el ement nane="description" type="xsd:string" mnCccurs="0"/>
</ xsd: sequence>
<xsd:attribute nane="issue-tracker" type="xsd:string" use="required"/>
<xsd:attribute nane="id" type="xsd:string" use="required"/>
<xsd: attribute name="change-id" type="xsd:|ong" use="optional"/>
</ xsd: conpl exType>
<xsd: el ement nane="i ssues" type="Ilssues"/>
</ xsd: schenma>

Properties Schema

<xsd: schema xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena" >

<xsd: conpl exType nane="Properties">
<xsd: sequence>
<xsd: el emrent nane="property" type="Property" m nCccurs="0"
maxQccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: conpl exType name="Property">
<xsd: si npl eCont ent >
<xsd: ext ensi on base="xsd: string">
<xsd: attribute nane="nane" type="xsd:string" use="required"/>
<xsd:attribute nane="secure" type="xsd: bool ean"/>
</ xsd: ext ensi on>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

<xsd: el ement nanme="properties" type="Properties"/>

</ xsd: schema>

SCM Change Log Schema

<xsd: scherma xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena" >

3

Plugin Documentation

<xsd: conpl exType name="ChangelLog" >
<xsd: sequence>
<xsd: el erent name="1| og-i nfo" t ype="ChangelLogl nf 0" m nCccurs="0"
maxQccur s="1"/ >
<xsd: el ement nane="change-set" type="ChangeSet" m nCccurs="0"
maxQccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: conpl exType name="ChangelLogl nf 0" >
<xsd: sequence>
<xsd: el enent nanme="build-1ife" type="xsd:long" m nCccurs="1"
maxQccurs="1"/>
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: conpl exType name="ChangeSet" >
<xsd: sequence>
<xsd: el enent name="repository-id" type="xsd:string" m nCccurs="1"
maxQccurs="1"/>
<xsd: el enent nane="repository-type" type="xsd:string" m nCccurs="1"
maxQccurs="1"/>
<xsd: el ement nanme="anthill-id" type="xsd:long" m nCccurs="0"
maxQccur s="1"/>
<xsd: el ement nanme="id" type="xsd:string" mnCccurs="0"
maxQccurs="1"/>
<xsd: el enent name="user" type="xsd:string" mnCccurs="1"
maxQccurs="1"/>
<xsd: el enent nane="nodul e" type="xsd:string" m nCccurs="0"
maxQccurs="1"/>
<xsd: el enent nane="branch" type="xsd:string" m nCccurs="0"
maxQccurs="1"/>
<xsd: el ement nane="date" type="date_tine" m nCccurs="1"
maxQccurs="1"/>
<xsd: el ement nanme="file-set" type="FileSet" m nCccurs="1"
maxQccur s="1"/>
<xsd: el ement name="properties" type="Properties" mnCccurs="1"
maxQccurs="1"/>
<xsd: el enent name="coment" type="xsd:string" m nCccurs="0"
maxQccurs="1"/>
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: conpl exType name="Fil eSet">
<xsd: sequence>
<xsd: el ement nane="file" type="Change" m nCccurs="1"
maxQccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: conpl exType nanme="Change" >
<xsd: si npl eCont ent >
<xsd: ext ensi on base="xsd: string">
<xsd: attri bute nane="change-type" type="change type"/>
<xsd:attribute nane="revisi on-nunber" type="xsd:string"/>
</ xsd: ext ensi on>
</ xsd: si mpl eCont ent >
</ xsd: conpl exType>

<xsd: conpl exType nanme="Properties">
<xsd: sequence>
<xsd: el ement nane="property" type="Property" m nCccurs="0"
maxQccur s="unbounded"/ >

Plugin Documentation

</ xsd: sequence>
</ xsd: conpl exType>

<xsd: conpl exType name="Property">
<xsd: sequence>
<xsd: el ement nane="nane" type="xsd:string" m nCccurs="1" maxQccurs="1"/>
<xsd: el ement nane="val ue" type="xsd:string" m nQccurs="1" maxCccurs="1"/>
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: si npl eType name="change_t ype" >
<xsd:restriction base="xsd:string">
<xsd: enuner ati on val ue="A"/>
<xsd: enuneration val ue="M/>
<xsd: enuneration value="D"/>
</xsd:restriction>
</ xsd: si npl eType>

<l-- "yyyy-MMdd HH rmss Z" -->
<xsd: si npl eType name="date_tine">

<xsd:restriction base="xsd:string">
<xsd: pattern value="\d{4}-([O0][1-9]|[211[0-2])-([O0]1[2-91|[2][0-9]1][3][0-1]) (
[0-1][0-9]][2][0-3]):[0-5][0-9]:[0-5][0-9].[0-9]+ .+"/>

</ xsd:restriction>
</ xsd: si npl eType>

<xsd: el ement nane="change-1 o0g" type="ChangelLog"/>

</ xsd: schena>

Source-analytics Schema

<xsd: schema xm ns: xsd="htt p://ww. w3. org/ 2001/ XM_Schema" >

<xsd: conpl exType name="Sour ceAnal yti cs">
<xsd: sequence>
<xsd: el emrent name="fi ndi ng" type="Fi ndi ng" m nCccurs="0"
maxQccur s="unbounded"/ >
</ xsd: sequence>
<xsd: attribute name="nane" type="xsd:string" use="required"/>
<xsd:attribute nane="type" type="xsd:string" use="required"/>
<xsd:attribute nane="buil dLifeld" type="xsd:|long" use="required"/>
<xsd: attribute name="url Li nk" type="xsd:string" use="optional"/>
<xsd: attribute name="findi ngUr | Li nk" type="xsd:string" use="optional"/>
</ xsd: conpl exType>

<xsd: conpl exType nanme="Fi ndi ng" >
<xsd: sequence>
<xsd: el emrent name="id" type="xsd:string” m nCccurs="0" maxCccurs="1"/>
<xsd: el ement nanme="file" type="xsd:string" m nCccurs="0" maxQccurs="1"/>
<xsd: el ement nanme="line" type="xsd:|long" m nOccurs="0" maxCccurs="1"/>
<xsd: el ement nane="nanme" type="xsd:string" m nCccurs="0" maxCccurs="1"/>
<xsd: el ement nane="severity" type="xsd:string" nminCccurs="0"
maxQccur s="1"/ >
<xsd: el ement nane="description" type="xsd:string" mnCccurs="0"
maxQccur s="1"/>
<xsd: el ement nane="status" type="xsd:string" mnCccurs="0" nmaxCccurs="1"/>
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: el emrent nanme="anal yti cs" type="SourceAnal ytics"/>

Plugin Documentation

</ xsd: schema>

Test-coverage Report Schema

<xsd: scherma xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena" >

<xsd: conpl exType name="Cover ageReport" >
<xsd: sequence>

<xsd: el ement nane="cover age- groups" type="Coverage& oup" m nCccurs="0"

maxCccur s="unbounded"/ >
</ xsd: sequence>

<xsd: attri bute nane="nane" type="xsd:string" use="required"/>
<xsd: attribute name="type" type="xsd:string" use="required"/>
<xsd:attribute nane="job-id" type="xsd:|long" use="required"/>

<xsd:attribute nane="1ine-percentage" type="xsd: double"

use="optional "/ >

<xsd: attribute nanme="net hod- percentage" type="xsd: doubl e" use="optional"/>
<xsd: attri bute nane="branch-percentage" type="xsd:double" use="optional"/>

</ xsd: conpl exType>

<xsd: conpl exType nanme="CoverageG oup" >

<xsd:attri bute nane="nane" type="xsd:string" use="required"/>

<xsd:attribute nane="1ine-percentage" type="xsd: doubl e"

use="optional "/ >

<xsd: attri bute nane="net hod- percent age" type="xsd: doubl e" use="optional"/>
<xsd: attri bute nanme="branch-percentage" type="xsd: double" use="optional"/>
<xsd: attribute name="conpl exity" type="xsd: doubl e" use="optional "/>

</ xsd: conpl exType>

<xsd: el ement nane="coverage-report" type="CoverageReport"/>

</ xsd: schena>

Test Report Schema

<xsd: scherma xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena" >

<xsd: conpl exType nane="Test Report">
<xsd: sequence>

<xsd: el ement nane="test-suite" type="TestSuite" m nCccurs="0"

maxCccur s="unbounded"/ >
</ xsd: sequence>

<xsd:attribute nane="nanme" type="xsd:string" use="required"/>
<xsd:attribute nane="type" type="xsd:string" use="required"/>
<xsd: attribute name="job-id" type="xsd:long" use="required"/>
<xsd: attribute name="successes" type="xsd:|ong" use="optional"/>
<xsd:attribute name="failures" type="xsd:long" use="optional"/>

</ xsd: conpl exType>

<xsd: conpl exType nane="Test Suite">
<xsd: sequence>
<xsd: el enent name="test" type="Test" mi nCccurs="0"
</ xsd: sequence>

maxCccur s="unbounded"/ >

<xsd: attribute name="nanme" type="xsd:string" use="required"/>
<xsd:attribute nane="successes" type="xsd:long" use="required"/>
<xsd:attribute nane="failures" type="xsd:long" use="required"/>

</ xsd: conpl exType>

<xsd: conpl exType nane="Test">
<xsd: sequence>

<xsd: el ement nane="nessage" type="xsd:string" m nCccurs="0"/>

</ xsd: sequence>

Plugin Documentation

<xsd: attribute name="nane" type="xsd:string" use="required"/>

<xsd: attribute name="cl ass-nanme" type="xsd:string" use="optional"/>

<xsd:attribute nane="result" type="TestResult" use="required"/>

<xsd:attribute name="tine" type="xsd:unsignedlnt" use="optional"/>
</ xsd: conpl exType>

<xsd: si npl eType nanme="Test Resul t">
<xsd:restriction base="xsd:string">
<xsd: enuner ati on val ue="success"/ >
<xsd: enuneration value="failure"/>
<xsd: enuneration value="error"/>
</ xsd:restriction>
</ xsd: si npl eType>

<xsd: el ement nane="test-report" type="TestReport"/>

</ xsd: schena>

Working Directory Schema

<xsd: schema xm ns: xsd="htt p://ww. w3. org/ 2001/ XM_Schema" >

<xsd: conpl exType name="Wor kDi r" >
<xsd: si npl eCont ent >
<xsd: ext ensi on base="xsd:string">
<xsd:attribute nane="scope" type="Scope" use="required"/>
</ xsd: ext ensi on>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

<xsd: si npl eType nanme="Scope" >
<xsd:restriction base="xsd:string">
<xsd: enuner ati on val ue="job"/>
<xsd: enuneration val ue="wor kfl ow'/ >
</ xsd:restriction>
</ xsd: si npl eType>

<xsd: el ement nanme="work-dir" type="WrkDir"/>

</ xsd: schema>

Plugin Signing

To load a Plugin into a production AnthillPro server, the Plugin must be signed by Urbancode (denoted by a plu-
gin.sig file). Non-production licensed systems may load unsigned Plugins to facilitate testing prior to submitting the
Plugin for signing.

Plugin Runtime

Validation Script. The property validation scripts make use of any supported BSF language. The script is a BSF
language based script which is passed all the property values bound to their property names as well as a map called
‘errors. For any values that the validation script determines are invalid, the script will then place a String message
into the errors map with the key equal to the invalid property's name. These messages are then displayed to the user
asking the user to correct them before proceeding.

Step Execution. Steps are executed by invoking the given interpreter with the script file as the last argument. If no
interpreter is specified then the script file is launched directly by its canonical path.

7

Plugin Documentation

Global Repository Triggers for Plugins

Plugins support global repository triggers for the source-type integrations. This allows you set up one trigger in your
SCM and have AnthillPro determine which projects need to build based on the information passed along with the
trigger request.

To use aglobal repository trigger, you must define it in your Plugin. Note that global triggers are supported for Plu-
gin Schema 5 or greater, so if you are using an older schema you will not be able to use aglobal trigger.

To get started:

1. Ensure that you have a Plugin Schema 5 (or higher) element in your pl ugi n. xnl . It should look
something like this:

xm ns="http://ww. ant hil | pro. com Pl ugi nXM_Schenma_v5"

Example:

<pl ugi n id="com dev. urbancode. anthill 3. plugin.Gt" type="SOURCE"
xm ns="http://wwmv. ant hill pro. com Pl ugi nXM_Schema_v5"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" >

2. Add property-script element to repo property group. The property-script element needs to have afile attribute
that points to a script in the Plugin -- this script is responsible for processing any repository trigger requests.

The name of the element must be t ri gger -- thisis how the Plugin system recognize the special type of ele-
ment. Y ou will also need to specify the scripting language used in the script as part of the lang attribute (groovy,
beanshell and javascript are currently supported). For example:

<property-script nane="trigger" file="git_repo_trigger.groovy" |ang="groovy"
hi dden="true">

Keep in mind that this script will execute on the server and could have negative effects on the system if the script
isusing alot of resources. Use a hidden attribute to make sure the property is not exposed in the repository con-
figuration, thus reducing the chances a user may change the value and break the trigger.

You can also provide a description element that provides examples of what the SCM trigger scripts could be or
what parameters they should passin order for the trigger script to function correctly. The contents of the descrip-
tion element will be displayed under the trigger tab for each repository, so make sure you use plain text or valid
html. In the description you can use ${tri gger Url } and ${tri gger Code} to have AnthillPro provide the
trigger URL and the trigger code for the repository and not have to hard-code it in the Plugin.

Example Repo Property Group:

<property-group type="repo">
<descri pti on>A pl acehol der for using the git scm system
The renote repository is configure on a per workfl ow basis.
</ descri ption>
<property-script name="trigger" file="git_repo_trigger.groovy"
[ang="groovy" hidden="true">
<descri pti on><! [CDATA]
Usi ng wget (Uni x)
<pre cl ass="code">
#1/ bi n/ bash

TRI GGER_URL="${triggerUrl}"
CODE="${tri gger Code}"

Plugin Documentation

REPO="[i nsert repo FON here]" pwd’
BRANCH=$1
wget -O /dev/null --quiet --no-check-certificate
- - post - dat a=" code=$CODE&r epo=$REPO&br anch=$BRANCH" " $URL"

To use curl instead of wget, use this conmand
curl --retry 1 -k -d "code=$CODE&r epo=$REPO&br anch=$BRANCH"

-0 /dev/null "$TRI GGER_URL"
</ pre>
11> o

</ descri ption>
</ property-script>
</ property-group>

3. You will also need a script in your Plugin that will run on every trigger request, based on information
passed by the SCM. The script is responsible for providing a list of source configs that match the changes that
need to be built. The script is part of the Plugin, preferably in the root. In the script you have access to several ob-
jects:

availableSour ceConfigSet -- A hashset of all source configs that reference repositories for this Plugin. The set
will not include source configs that ignore repository triggers or are part of inactive workflows or projects.

matchingSour ceConfigSet -- An empty hashset that the script needs to populate with all source configs from
the avai | abl eSour ceConf i gSet that would be affected by the changes that caused the trigger. In other
words, all the source configs that would check-out the changed files.

trigger PropertyMap -- A map of all the parameters that were part of the HTTP POST request made from the
SCM. This would be the place where you would look for data about what's changed if the SCM trigger is con-
figured correctly.

requestPropertyMap -- An empty map that allows you to specify additional properties to be passed on the re-
quest created from the trigger. This gives you additional control over the build and allows you to put any prop-
erty on the request that can later be used by your workflows/jobs.

log -- thisisan or g. apache. | og4j . Logger instance that allows you to log messages to the server log.
The only place those messages would be visibleisin System >Server Settings > Log/Error tabs.

The following example of atrigger script assumes the git repo passes repo and branch parameters that contain the
path of the repo where the change occurred and which branch (take a look at the description of the example in 2
above):

if (repo & branch) {

for (sc in avail abl eSourceConfigSet) {
for (module in sc.getPropertyVal ueGoups()) {
def scRepo = Par anet er Resol ver. resol veFor Sour ceConfi g
(rodul e. get PropertyVal ue("renoteUr | ") ?. get Val ue(),
sc) ?. toLower Case()
def scBranch = Paramnet er Resol ver. resol veFor Sour ceConfi g
(rmodul e. get PropertyVal ue("branch") ?. get Val ue() ?:' master', sc)
if (scRepo && scRepo.size() > 0)
/1 strip any trailing \ or / the users m ght have specified
while (scRepo[-1] == "'/" || scRepo[-1] == "\\") {
scRepo = scRepo[0. . -1]

i f (scRepo.endsWth(repo) && branch. equal sl gnoreCase
(scBranch)) {
mat chi ngSour ceConfi gSet . add(sc)
| og. debug(" Found mat chi ng source config from project
$sc. project.nane with val ues $scRepo: $scBranch")

9

Plugin Documentation

el se {
| og. debug(" Trigger did not match source config from
project $sc.project.nane with val ues $scRepo: $scBranch")

}
}
}
el se {
| og. warn("Coul d not process Gt repo trigger data:
$triggerPropertyMap - invalid repo and/or branch paraneters")

Upgrading/Updating Plugins

A Plugin can be updated in one of two ways: Either as an unversioned update or as a fully versioned upgrade. In
both cases, the user updating/upgrading the Plugin simply loads the new Plugin file. The user is then presented with
an upgrade/update assessment page which will show what changes have been made to the Plugin, and what config-
uration will be impacted and will no longer validate. The user is then given a final option to accept the upgrade/up-
date or to cancel the process.

Versioned Plugin Upgrades

To create a versioned upgrade of a Plugin, increment the number in the version element in plugin.xml and create a
"migrate” element in the upgradexml with the corresponding 'to-version' attribute. This element will then contain
the property and step-type structure matching your updated plugin.xml.

The advantage of the versioned upgrade is that you can also incorporate "old" and "default”" attributes. The old at-
tribute is the name of a step/property which should be renamed to the current step/property name. The default attrib-
ute on properties allows new properties to be introduced with the given default during the upgrade process. Togeth-
er, the versioned upgrade facilitates more elaborate and robust upgrades to a Plugin.

Unversioned Plugin Updates

An unversioned update of a Plugin is a simple mechanism for making small changesto a Plugin. There is no special
configuration to create a unversioned update. When uploading an unversioned update, any properties or steps that
are missing in the new version will be dropped from current configuration. This mechanism is most useful for devel-
opment of a Plugin and for minor bug-fixes/updates.

10

