
AnthillPro Documentation



AnthillPro Documentation



I. Concepts ................................................................................................................................ 1
1. Projects .......................................................................................................................... 3
2. Workflows ..................................................................................................................... 4
3. Jobs .............................................................................................................................. 6
4. Build Life ....................................................................................................................... 7
5. Dependencies and Artifacts ............................................................................................... 8
6. Environments .................................................................................................................. 9
7. Life-Cycle Models ......................................................................................................... 10

II. Getting Started ...................................................................................................................... 11
8. Installation ................................................................................................................... 12
9. Setting Up the Server ...................................................................................................... 51
10. Create a New Project .................................................................................................... 56
11. Setting Up Continuous Integration ................................................................................... 67
12. Basic Notifications ....................................................................................................... 70
13. Setting Up a Deployment ............................................................................................... 72
14. Defining a Basic Dependency ......................................................................................... 80
15. Integrating Other Tools ................................................................................................. 81

III. Upgrade ............................................................................................................................. 83
16. Server Upgrade ............................................................................................................ 84
17. Migrate Server Database ................................................................................................ 85
18. Agent Upgrade ............................................................................................................ 88
19. Distributed Servers Upgrade ........................................................................................... 89
20. Agent Relay Upgrade .................................................................................................... 90
21. What's New in AnthillPro 5.0 ......................................................................................... 91

22. Uninstalling AnthillPro ......................................................................................................... 94
Uninstall the Server ........................................................................................................... 94
Uninstall the Agent ............................................................................................................ 94

IV. Schedules ........................................................................................................................... 97
23. Create Interval Schedule ................................................................................................ 98
24. Create Cron Schedule ................................................................................................... 99

V. Reporting .......................................................................................................................... 100
25. Running a Report ....................................................................................................... 101
26. Creating a Template Report .......................................................................................... 102
27. Creating a Velocity Report ........................................................................................... 103
28. Writing a Report Template ........................................................................................... 104
29. RSS and Reporting ..................................................................................................... 107

VI. Dependency Management .................................................................................................... 108
30. Configure Dependencies .............................................................................................. 110
31. Using Codestation Projects .......................................................................................... 120
32. Configure Dependencies Tutorial .................................................................................. 122

VII. Advanced Authoring ......................................................................................................... 130
33. Managing Projects ...................................................................................................... 131
34. Authoring Workflows ................................................................................................. 133
35. Administrating Jobs .................................................................................................... 152
36. Reusing Workflow Definitions and Jobs ......................................................................... 154
37. Using Life-Cycle Models ............................................................................................. 158
38. Notifications ............................................................................................................. 166
39. Properties ................................................................................................................. 176
40. Build Life Links ........................................................................................................ 201

VIII. Advanced Usage .............................................................................................................. 203
41. Build Life Tools ........................................................................................................ 204
42. Workflow Tools ......................................................................................................... 212
43. Job Tools .................................................................................................................. 218
44. User Views ............................................................................................................... 219
45. System Tray Monitor .................................................................................................. 222

IX. Developer Tools ................................................................................................................ 223
46. Dev-kit .................................................................................................................... 224

iii



47. IDE Plugins .............................................................................................................. 226
48. Preflight Builds ......................................................................................................... 227
49. Codestation for Developers .......................................................................................... 228

X. Server Management ............................................................................................................. 232
50. Server Settings .......................................................................................................... 233
51. Backups of AnthillPro ................................................................................................. 238
52. Optimizing Server Performance .................................................................................... 244
53. Create Server Proxy .................................................................................................... 248
54. Clone AnthillPro Instance ............................................................................................ 249
55. Moving the AnthillPro Database ................................................................................... 251
56. Distributed Servers ..................................................................................................... 252
57. Using Externally Signed Certificate with Tomcat ............................................................. 257

XI. Agent Management ............................................................................................................ 258
58. Agent Configuration ................................................................................................... 262
59. Environment Management ........................................................................................... 264
60. Configure and Edit Agent Filters ................................................................................... 269
61. Agent Settings ........................................................................................................... 271
62. Dynamically Set Agent's Environment Variables .............................................................. 273

XII. Tool Integrations .............................................................................................................. 274
63. SCM Tools ............................................................................................................... 275
64. Build Tools ............................................................................................................... 348
65. Testing Tools ............................................................................................................ 362
66. Coverage Tools ......................................................................................................... 401
67. Source-code Analysis Tools ......................................................................................... 415
68. Issue Tracking Tools ................................................................................................... 439
69. Virtualization Tools .................................................................................................... 520
70. Using AnthillPro Plugins ............................................................................................. 524

XIII. Security ......................................................................................................................... 526
71. Setting Up Security .................................................................................................... 527
72. Securing Artifact Sets ................................................................................................. 541
73. Set Up and Manage Guest Users ................................................................................... 543
74. Perform Security Audits .............................................................................................. 544

AnthillPro Documentation

iv



Part I. Concepts
AnthillPro is a complete, extensible platform for build & deployment management that enables you to create con-
sistency throughout the entire application lifecycle -- from development to release -- based on your current pro-
cesses:

• Build management. AnthillPro allows for distributed and multi-platform building. Every time AnthillPro builds
a project, it publishes the artifacts -- including docs and binaries -- to AnthillPro's embedded artifact and depend-
ency management system. This allows AnthillPro to provide extensive information regarding your builds, espe-
cially for Continuous Integration: Most of the SCM integrations allow for commit triggers, changelog parsing,
etc.

When properly set up, many -- if not all -- pieces of your builds will be repeatable, standardized, and traceable be-
cause your current processes are automated as part of the configuration process. See Setting Up a Build to get
started.

• Deployment management. AnthillPro's deployment management features allow you to use the same deployment
scripts across all your environments, so you can automate your deployment processes while enforcing standards
throughout your organization.

AnthillPro's binary promotion model and artifact repository ensure that you are using the exact same binaries
from environment to environment. And to account for environmental differences, AnthillPro allows you to set
job-iteration, environment-specific properties, etc. See Setting Up a Deployment for more on how AnthillPro
deals with deployment management.

• Dependency and artifact management. Complex projects can depend on dozens of subprojects, and even simple
projects might use half a dozen libraries or more. To deal with these complexities, AnthillPro has a built-in de-
pendency and artifact management system called Codestation.

Codestation enables you to track and visualize dependencies across libraries and subprojects based on version
numbers or release statuses that you control. Because Codestation is part of AnthillPro, there is no need for a
third-party management system -- dependency management is performed through the AnthillPro UI. (If you don't
use AnthillPro for dependency management, you can still use it for build and deployment management, as well as
process automation.)

Codestation is also used to manage the artifacts generated by every build. Through the UI, you can configure
which files are available as a dependency to other projects, which files should be included in a deployment, as
well as the files you want sent to the testing lab. See Dependency Management for more.

• Tool integration and data aggregation. AnthillPro integrates with leading tools used throughout the application
lifecycle. Most integrations go beyond a simple command-line integration to include data aggregation (e.g., pars-
ing of the output, knowledge of the tool options, etc.).

A complete list of the current integrations is available on the UrbanCode website here [ht-
tp://www.urbancode.com/html/products/build/integrations/default.html].

For example, when AnthillPro gets the changelog from an SCM, that information is stored in the AnthillPro data
warehouse and then made available through the UI. For integrations with issue trackers, AnthillPro can add a
comment to an existing issue, or even create an issue in the other tool. And for testing integrations, AnthillPro
collects test results and can then provide you with metrics for both a single build and for many builds over time --
or even fail a build based on test results. See Tool Integrations for more on any of the individual integrations.

• Process automation. As you start building projects and configure AnthillPro with your SCM, testing, issue track-
ing tools and more, it becomes clear how all of the parts fit together to automate your processes: AnthillPro en-

http://www.urbancode.com/html/products/build/integrations/default.html
http://www.urbancode.com/html/products/build/integrations/default.html
http://www.urbancode.com/html/products/build/integrations/default.html


forces automation throughout the entire application life-cycle, which in turn makes managing your projects easier.
For more advanced users, AnthillPro offers host of advanced authoring features that enable you to add additional
automation to your AnthillPro processes: Including the creation of automated operations or processes, full access
to the API (see Tools > Anthill Development Tools) and the ability to write your own Plugin.



Chapter 1. Projects
In AnthillPro, there are three project types: Life-Cycle Based, used to run builds, deployments, etc.; Codestation
Projects, used to manage dependencies of third-party tool kits and software libraries; and Operational
(Non-Life-Cycle Based) Projects, used for administrative, operational, and system maintenance. Following is a brief
outline of the major components of each project type:

• Life-Cycle Based Projects provide a wealth of information and visibility into the build and release cycle. The
Life-Cycle Based project is used when configuring builds, and always creates a Build Life (in its simplest terms,
the Build Life can be thought of as a build number) every time a build is run. Life-Cycle Based projects corres-
pond to components of your application, and build independently of each other. For example, a typical web ap-
plication might have UI, database, and logic tiers. In AnthillPro, these can be mapped as three projects that build
separately. Configured in this way, you don't have to build the entire application to make a simple UI change, etc.
The majority of the projects you set up in AnthillPro will be Life-Cycle Based. A Life-Cycle Based Project is
defined by its:

• Life-Cycle Model. Provides a template for managing the dependencies, artifacts, deployments, etc., associated
with every build of the project. Because a Life-Cycle Model is reusable, it allows you to apply the same stand-
ards to any similar projects. See Life-Cycle Models for more.

• Environments. A project will usually participate in many environments that correspond to the different stages
the project goes through. For example, most organizations will have something similar to DEV, QA, and
PROD environments that correspond to their different teams, etc. Essentially, a project's environment groups is
the collection of environments it uses. If a project will never build on or deploy to certain environments, an en-
vironment group can be used to help segregate the project. See Environments for more.

• Build, or originating, workflow. Defines the process for running jobs. When manually starting a build or
scheduling work, a workflow is being executed. Each originating workflow will contain at least one job that
runs your build script, etc. The originating workflow is also where you let AnthillPro know what specific
source code is being built by the project, as well as configuring any dependencies. Any secondary workflows
(to perform deployments, testing, etc.) configured for a project will inherit much of the information from the
build workflow. The best way to learn about originating workflows is to set up a build process.

• Codestation Projects model products not built by your organization as an AnthillPro project. This allows the use
of third-party tools as dependencies, testing them as new releases come out to track their approval status within
the Application.

In addition to making stored artifacts available to the build process, Codestation Projects also make the configured
dependency graph, and the artifacts themselves, available to developers. Through either an IDE Plugin, a com-
mand-line utility, or Ant tasks, a Codestation resolve operation on the developer's machine fetches the appropriate
artifacts. See Using Codestation Projects and Codestation (Developers).

• Operational (Non-Life-Cycle Based) Projects provide a simplified interface that allows AnthillPro users to ex-
ecute ancillary tasks not easily run during a build, deployment, etc., workflow. Because of their flexibility, Opera-
tional Projects can be used to automate most tasks associated with the traditional build and release cycles. For ex-
ample, an Operational Project can be used to verify the integrity of deployed artifacts; start and recycle services
on restricted machines; and automate other process that do not fit neatly into a traditional build. Steps can be run
in parallel, on different agents, execute arbitrary commands, integrate with third-party tools, execute scripts, or
perform any task or series of tasks that a normal project can perform. Similar to Life-Cycle Based projects, Oper-
ational Projects are defined by the environments they participate in and their workflows. See Using Operational
Projects.

3



Chapter 2. Workflows
A workflow is a series of jobs that should be run, and determines how, when and where the jobs should be run.
Workflows assemble jobs into processes, and are the unit of automation. Workflows, also manage the order and par-
allelization of jobs.

As a rule, when manually starting a build or scheduling work, a workflow is being executed. Workflows assemble
many of the other configurable items into something usable:

• A job is a series of steps detailing how to get something done. It may specify the steps in a build, deployment, or
other business need. The job configuration also dictates what types and number of machines the job will be run on
(a deployment job may target every machine in a cluster).

• A trigger is an automated mechanism for kicking off a workflow.

• Source Configuration identifies exactly which source code should be retrieved from a repository. How these are
configured will vary between source code management tools.

To start, AnthillPro has two basic types: originating and non-origination. Originating workflows are used to start
Build Lives, utilizing Life-Cycle Models, source configuration, and dependency information. Non-origination
workflows specify secondary processes that can be run on an existing Build Life (e.g., a deployment). Underneath,
the difference is that originating workflows have corresponding BuildProfile objects.

Components of a Workflow:

• Workflow Definition. Defines which job should be run, specifies the order of jobs, as well as the elements to be
run in parallel.

• Environment. For builds, this will almost always be the Build-Farm. For workflows that handle deployments,
these might be deployment targets like QA Servers or production.

• An originating workflow may only select one environment, while a non-originating can select any number of
target environments.

• Notification Scheme. Determines who to notify of build status, what conditions to notify them on, and what
mechanism to notify them with.

• Lockable Resource. Specifies a resource that might be used by multiple workflows, gives it a name, and forces
arbitrary workflows to run one at a time or in small groups.

• Properties. Identifies various properties that must be specified when the workflow is executed. See Workflow
Property.

• Triggers. Allows workflow to be kicked off automatically.

• Source Configuration (Originating Only). Specifies the source that should be used for the workflow. Often
this means selecting a branch of your project to run a workflow against. By creating a workflow for each branch,
the stamping strategy used for each can be unique, while activities and jobs only need to be configured once.

• Stamp Mapping (Originating Only). For every stamp style in the project’s stamp style group, one must specify
what stamping strategy will be used. A typical stamp style group might specify the styles of development and
production. In the workflow, you map the concept of a style used for development builds to a version number
and strategy for incrementing that number.

• Dependencies (Originating Only). Specifies the specific artifacts, including version, from other projects that

4



should be retrieved in order to support the workflow. Also specifies the artifacts from other projects and the dir-
ectory in the checked-out source that those artifacts should be placed in.

• Artifacts (Originating Only). For any artifact associated with this project, the files produced by a workflow
published as the artifact.

Workflows can either be created for individual projects or be used by multiple projects. To use the same Workflow
for multiple projects, a Workflow Library (Workflow Definition) is created. Once configured, Workflow Definitions
are added to existing projects as part of the project-workflow creation process (on the project-workflow Definition
tab). Workflow Definitions do not necessarily have to be placed in Workflow Library folder. Any Workflows (on
the Administration page) not in a folder or as part of a project subdirectory are Workflow Definitions.

Workflows

5



Chapter 3. Jobs
The job is composed of a series of distinct actions the server must perform (called "steps" in AnthillPro) to success-
fully run a build, deployment, or any other AnthillPro process. For any job you create, the steps (actions) are ex-
ecuted by the server one at a time, in a specific order.

Job configuration comprises a major component of a project. Each job step may be laid out explicitly or generated
implicitly by a special job definition. Typical jobs are "build", "deploy", or "run functional tests". AnthillPro
provides a Job Wizard to assist in the creation of build jobs. The Wizard takes you through the steps to configure the
builder and the publisher required by the job, and is the best way to ensure your build job will be configured suc-
cessfully.

To learn about job configuration, see Create a New Job in the Setting Up a Build section.

6



Chapter 4. Build Life
The Build Life represents all the transformations a build has gone through, and the processes such as deployments
and testing that the artifacts have undergone.

Whether you are a developer, tester, manager or release engineer, AnthillPro provides comprehensive view
(presented in a single location) of your builds from beginning to end: When a build is created, a Build Life number
is created. When automated tests are run against the build, the results are recorded under the Build Life. When QA
tests a build, their findings are included as part of the Build Life. Finally, when a release is performed, it is the
Build Life that provides an exact trace to every change that went into the build, all the testing that was performed
on the build, and the different environments the build progressed through.

In effect, the Build Life is a map of (1.) what occurred during the build; (2.) the processes that were performed on
the generated artifacts; and (3.) where the build artifacts ended up:

1. The build. Often called the pure build, this step takes the source as input and transforms it into artifacts. In Ant-
hillPro, it is the pure build (or simply build) which generates the Build Life -- represented on the dashboard as the
Build Life number. The build process is configured as an originating workflow in AnthillPro.

2. Secondary processes. Once a build is successful, that is where the Build Life begins to come into play. The gen-
erated artifacts are stored in AnthillPro and made available for additional processes -- most commonly testing.
For example, many organizations have a suite of tests that run every night to check the stability of the applica-
tion. When this is the case, a secondary workflow is configured to executes the processes. The testing process in-
herits a majority of its configuration properties from the build (originating) workflow. Once the test suit is com-
plete, the data is collected and presented on the AnthillPro dashboard, under the same Build Life number gener-
ated by the build.

3. Deployments and releases. Generally, deployment and release processes are treated much the same way as test-
ing processes. They are usually configured as secondary workflows. Once a deployment or release has been run,
the results, includes the environments the artifacts were sent to, will be made available on the dashboard's Build
Life page.

Much of the information presented as part of the Build Life is determined by processes you configure in AnthillPro:
You configure the source and the location of the build, map out the different stages of the build's life-cycle -- includ-
ing all the testing processes that the build will go through -- and configure dependencies. All of these moving parts
are brought together as a Build Life.

7



Chapter 5. Dependencies and Artifacts
Dependencies between projects are very common. Often a project will produce a library used by another project.
When few project dependencies exist, manually adding the products of one project into another is straightforward.
However, when dependencies start to get complicated, you need an automated solution.

Dependency relationships are often used to configure build scheduling. Typically, there are three main approaches:
use of a scheduling method independent of the dependency graph; a pulling model; and a pushing model:

• Independent Scheduling. Related projects do not need to know about each other for independent scheduling. A
dependent project starts each build by gathering the most recent artifacts from its dependencies.

• Push Scheduling. Also called the bottom-up model. When an originating workflow (that other projects depend
on) builds, the workflows that depend on it automatically build. Because changes to the dependency result in
changes to the dependent, rapid feedback as to whether the dependent was broken by the changes is available.

• Pull Scheduling. The dependent is not automatically built whenever the dependencies are built. Rather, it is built
according to its own schedules. When it builds, however, it starts the process by checking to see if there have
been any changes to the dependencies and building them first if required. This is helpful to ensure that the latest
check-ins are tested together.

In AnthillPro, dependencies between projects are described at the workflow level. Workflows in dependencies spe-
cify the location (in the working directory) of the artifacts used by dependent projects. A workflow may be both a
dependency and dependent, but cycles are not allowed. When a workflow uses dependency artifacts, AnthillPro
maintains a record of which build life the artifacts came from. This provides instant traceability from the dependent
project back to its own source files, as well as those of each of its dependencies. See Configuring Dependencies.

AnthillPro provides an internal artifact store to track generated artifacts, tie them to build lives, and provide them to
the dependent workflows. This store also makes it easy for a workflow to specify that it needs an artifact from a de-
pendency that comes from a specific build life. For instance, this could be a requirement that the shared library has
passed testing. Or an artifact could be locked down to a specific version. This approach is common as a project
nears release because it helps prevent the team from making any deleterious changes. See Using Codestation
Projects.

• Codestation. The name for AnthillPro’s artifact repository. In addition to making stored artifacts available to the
build process, Codestation also makes the configured dependency graph, and the artifacts themselves, available
to developers. Through either an IDE Plugin, a command-line utility, or Ant tasks, a Codestation resolve opera-
tion on the developer’s machine fetches the appropriate artifacts.

• Third-party Artifacts. Codestation provides a utility for uploading approved versions of third-party libraries. It
provides these libraries to builds (similar to the way in-house dependencies are managed).

8



Chapter 6. Environments
An environment is a partition grid of agents that is specific for different stages of a project Life-Cycle (QA, PROD,
etc.). Each environment may also be configured to a specific technology (Java, .NET, etc.).

Workflows within AnthillPro execute on a specified environment. This allows the definition of a single deployment
workflow that can then be used to deploy the application to separate QA and production environments, etc. The
same deployment workflow executed on the QA environment deploys the application to the QA environment. When
executed on the production environment, it deploys the application to the production environment.

• Agents can participate in multiple environments. This allows the use of an agent that communicates with a net-
work deployment manager capable of deploying applications to multiple environments.

Environments are organized as part of an Environment Group: Each individual environment participates in at least
one group, or container. An environment group determines the set of environments that project workflows may be
executed on. Each environment group must contain at least one environment (typically models a development, QA,
production, or other environment).

Using Environment Groups: Consider an organization that develops software using two different technologies.
The first is J2EE. Our hypothetical organization has a development, a QA, and a production J2EE environment,
with each containing application servers configured to the corporate standard. The second technology used is C++,
with development, QA, and production environments for all C++ projects. The C++ environments use different
physical servers than the corresponding J2EE environments. In this scenario, J2EE projects and C++ projects are
configured into two environment groups: one called 'J2EE Env Group', and the other called 'C++ Env Group'. The
'J2EE Env Group' contains the J2EE development, QA, and production environment groups, and the 'C++ Env
Group' contains the C++ environment groups. With these environment groups, the organization derailed any confu-
sion about what set of servers a J2EE or C++ project should be deployed to.

AnthillPro ships with one implied environment: the Build-Farm which can't be deleted. It is the default environ-
ment containing all agents used for pure-build processes. Because there are no restrictions on how the Build-Farm is
used, it may be used for deployments as well. Additionally, AnthillPro has no restriction to prevent you from using
other environment groups for pure build processes.

9



Chapter 7. Life-Cycle Models
Life-Cycle Model allow you to create a reusable template that maps your organizational structure, giving you con-
trol over how a build is identified, the different stages a build must go through on its way to the end user, how arti-
facts are handled, and which clean-up policies are enforced.

A Life-Cycle Model consists of:

• Cleanup Policy specifies when to delete information about old Build Lives and other tasks associated with the
project.

• Stamp Style Group creates common names for types of stamps.

• Artifact Set is a grouping of related build products, such as the scripts used to populate a database, artwork for a
video game, a CD ISO, or code library. Because most projects generate similar types of artifacts, the artifact set
group holds the names of artifact sets for a type of project.

• Status Group is a set of common names for statuses. 'Failed' and 'Successful' are default status names, but com-
mon other names might be 'Deployed to Test', 'Deployed to Production', 'Retired', 'Passed Function Testing' or
'Approved'.

A typical life-cycle (or pipeline) would be DEV > QA > PROD: a build starts out in development, is deployed to
quality assurance for testing, and then finally sent to production for release. You would configure the Life-Cycle
Model to apply a new status when a build is sent to QA, and one when the build is sent to PROD. Likewise, a
stamp style (essentially a build identifier) can be applied to each build that corresponds to the status. This enables
you to know exactly which build is in which environment because the status and stamp are recorded on the Dash-
board. See Using Life-Cycle Models for more.

10



Part II. Getting Started
This section provides a general introduction to using AnthillPro's build and deployment management capabilities.

Before you begin, it is recommended you read the Concepts section to get a general understanding of the termino-
logy used. For example, it will be helpful to know what is meant by "Lifecycle Model," "Environment (and Environ-
ment Group)," "Workflow," and "Job."

The step-by-step instructions -- which, in general, should be followed in the order of presentation -- take a hands-on
approach to using AnthillPro:

1. Install AnthillPro. Takes you through the different installation scenarios. Since AnthillPro is a Java application, it
can run on most any operating system. The system requires you to install the central server, including a backing
database, as well as at least one agent.

2. Set up the server. Walks through basic server configuration you will most likely need to perform before creating
your first project. In general, you will need to activate the license, set up a user and configure security, assign
agents to an environment, and then configure at least one repository (and possibly a trigger).

3. Create a new project. Begins the process for getting a build going in AnthillPro.

4. Set up a build. Covers what you need to know to set up a basic build in AnthillPro. With a build process in place,
AnthillPro is configured to provide all you will need for Build Management.

5. Set up Continuous Integration. Introduces you to implementing Continuous Integration with AnthillPro. Building
upon the "Setting Up a Build Process" section, you can see how to add unit testing to the build, as well as set up a
basic notification scheme.

6. Configure basic notifications. Shows you the different options for notifying developers (and others) on the state
of the build. You can configure the instant message and/or email integrations.

7. Set up a deployment (secondary or non-originating workflow). Takes you through the steps necessary to deploy
the build artifacts. This section introduces the concept of Artifact Sets, which are used by the AnthillPro Deploy-
ment Management system. Once you have a deployment process in place, AnthillPro automatically links every
deployment to a build (also called a Build Life).

8. Add dependencies with another project. Gives you the basics of how the AnthillPro dependency management
system works, including instruction on setting up a simple dependency relationship. Most projects will depend on
the artifacts from another project in order to build; however, it is possible to use AnthillPro without the depend-
ency management feature.

9. Integrating other tools. Provides a general overview of what tools AnthillPro integrates with, and how the integ-
rations are configured through the UI.

Once you are familiar with AnthillPro basics, the Advanced Authoring and Advanced Usage sections give you a
deeper look at extending AnthillPro.



Chapter 8. Installation
To get AnthillPro running, you will need to install Java (on both the server and agent machines), the database, the
server, and then the agent.

To evaluate AnthillPro, fill out the request an evaluation copy of AnthillPro [https://support.urbancode.com] form.
Once your request is approved, you will be provided with login access to Urbancode's support team.

Most users have found the following procedures -- executed in the order presented -- helpful:

1. Review the Install Recommendations section.

2. Determine minimum system requirements. Before you get started, please review the System Requirements
section. AnthillPro should run on most modern machines; however, if you are installing a production instance the
System Requirements section outlines what current users have had success with.

3. Select a database type. AnthillPro requires a backing database -- so if you are not using Derby (included in the
download for evaluation purposes) you will need to decide which database to use. It is recommended to review
the Database Installation section before continuing.

4. Install Java on the server and agent machines. Both the server and agent require Java JRE 5 or greater be in-
stalled on the machine, as well as the JAVA_HOME environment variable set. The JAVA_HOME environment
variable must point to the Java directory that you want AnthillPro to use.

You may also use the appropriate version of the JDK. (It is recommended to use the Sun JDK. There have been
some issues with the third-party JDK's from IBM and others.) See also 32- and 64-bit JVM Support.

5. Install the database. AnthillPro ships with the Derby database, which should be fine for evaluation purposes but
is not suitable for most enterprise applications. Currently, AnthillPro supports the following databases to store
server and project information:

Apache Derby (included in download) MySQL with InnoDB storage (4.1.22 and later)

DB2 (requires 9.7 or later) Oracle, including RAC

Microsoft SQL Server PostgreSQL

To install the database (except for Derby, which does not require a separate installation) you will need to:

a. Download the appropriate JDBC driver file for your database. These are typically downloaded from the
database vendor. If using the Derby database, you can skip this item.

b. Create an empty database for AnthillPro to use with a dedicated user. If using the Derby database, you
can skip this item. Follow the instructions given for your database type:

Install Using DB2 (requires 9.7 or later) Install Using Oracle

Install Using Microsoft SQL Server Install Using PostgreSQ

6. Next, Download AnthillPro if not already done so.

7. Finally, install the server and agent. See either Windows Installation or Linux/Unix Installation.

12

https://support.urbancode.com
https://support.urbancode.com


Install Recommendations
Since the AnthillPro agent performs most of the heavy lifting (e.g., performing builds, running tests, etc.), agent in-
stallation is critical to maximizing performance. Following are a few installation recommendations to reduce the
chances of performance-related issues:

• Install the server as a user account. Typically, the server should be installed as a dedicated system account
when possible. However, AnthillPro will run very well as a Root (or Local System on Windows) and running that
way is often the easiest way to start as you never get permissions errors.

• Install the agent as dedicated system account. Ideally, the account used should be one created just for Ant-
hillPro. Because AnthillPro agents are remote command execution engines, it is advisable to limit what they can
do on each machine by creating a user just for the automation engine and grant it appropriate privileges. For ex-
ample, if you plan on using the agent to run tests, it will need permissions to the testing tool executable, etc. If
you install the agent as Root (or Local System on Windows), ensure that the processes you perform don't wipe out
the file system, etc.

• Do not install an agent on the AnthillPro server machine. Because the agent is resource intensive, installing
one on the server machine will degrade server performance when a build, etc., is running on that agent. The agent
is responsible for doing the "heavy lifting." When a build is run, the agent checks out the code, compiles it, per-
forms any other processes you have configured, and then moves the build artifacts.

• Install only one agent on a given machine where possible. As with installing an agent on the server box, having
multiple agents on the same machine will have negative effects on each other ... resulting in slow builds, etc. This
situation often arises when an organization installs multiple agents for different environments on the machine in-
stead of installing one agent and assigning it to multiple environments. However, there may be instances where
installing multiple agents is necessary. When this is the case, you will see varying performance when more than
one agent is busy.

System Requirements
AnthillPro is OS agnostic, and will run on both Windows and UNIX-like systems. While the minimum requirements
should suffice for initial evaluation purposes, it will be necessary to run the AnthillPro server on a server-class ma-
chine for most production deployments.

Server
Minimum requirements. The AnthillPro server will run on any modern business machine:

• Processor. Single core, 1.5 GHz +.

• Disk Space. 300 MB.

• Memory. 2 GB, with 256 MB available to AnthillPro.

Recommended system requirements. For larger deployments (e.g., you will be running thousands of processes a
day), most users have found the following guidelines helpful:

• Small to medium sized server-class machines. It is recommended to have two machines: The primary machine
and a cold standby for fail-over.

The back-end database should be hosted on a separate machine, according to vendor guidelines. See also Data-

Installation

13



base Requirements.

• Processor. 2 CPU. 2+ core each.

• RAM. 8 GB.

• Storage. Your individual requirements depend on your usage, retention policies, and types of applications. In
general, the more artifacts you keep in AnthillPro's artifact repository (Codestation), the greater the storage needs
(e.g., you keep the generated artifacts from every CI build). Additionally, the server logs must also be taken into
consideration -- over time log storage can add up.

For further assistance in determining storage requirements, please contact support
[http://support.urbancode.com/].

• Network. Gigabit (1000) Ethernet with low latency to database.

Agent
Agents are designed to be minimally intrusive, and should only require 64-256 MB of memory and 100 MB on disk.
Additional requirements are determined by the processes the agent will run.

For small evaluations, it is possible to install the agent on the same physical machine as the server; however, this
should be avoided for large deployments of AnthillPro.

For further assistance in determining agent requirements (e.g., a heavily used build machine), please contact support
[http://support.urbancode.com/].

32- and 64-bit JVM Support
The AnthillPro server must run against the 32-bit JDK for the Windows 2003 64-bit server. However, the 64-bit
JDK can be used for agents that run builds. (It is recommended to use the Sun JDK. There have been some issues
with the third-party JDK's from IBM and others.) Because AnthillPro does not require a multi-gigabyte heap, there
is little advantage to using a 64-bit JVM for any operating system. However, for those on a 64-bit Windows plat-
form, AnthillPro supports it with a 32-bit JVM; for other 64-bit platforms, AnthillPro uses a 64-bit JVM:

Operating System JVM 32 JVM 64

Windows 32-bit Yes N/A

Windows 64-bit Yes No

Non-windows 32-bit Yes N/A

Non-windows 64-bit Yes Yes

Database Installation
If you are installing a production instance, you will most likely need to use a database other than Derby. Currently,
AnthillPro supports the following databases to store information:

• Oracle. Use the JDBC driver for Oracle 10.2 or higher, regardless of what version of the database is used.

Starting with AnthillPro 3.7.3, you can use Oracle RAC (version 10g or later) as the backing database. For clean
installs of AnthillPro, simply select Oracle as the backing database. If you are currently running AnthillPro with
Oracle, switching to RAC is straightforward: after backing up your current database, update the base.xml and
installed.properties files to use the new Oracle RAC configuration.

Installation

14

http://support.urbancode.com/
http://support.urbancode.com/
http://support.urbancode.com/
http://support.urbancode.com/


• MySQL with InnoDB storage (works with 4.1.22 and later). It is recommended that the InnoDB [ht-
tp://www.innodb.com/] storage engine be used. Also recommended is to use row or mixed binary logging
format (not statement).

• For MySQL 5, use the 5.0.8 driver version. The 5.1 version has known issues that will cause the AnthillPro
server to throw an error. If you are using the 5.1 version, switch the driver jar file in the server's lib/ext dir-
ectory and then restart.

• For MySQL 5, use the 5.0.8 connector. There are some known issues in connector version 5.1.12 that result in
errors.

• Microsoft SQL Server. The MS SqlServer 2.0 driver (sqljdbc4.jar) will not work with AnthillPro. To install the
server using Microsoft SQL Server, you will need to use one of the following drivers, depending on which ver-
sion of Java the AnthillPro server uses:

Java 5. Use either the 1.2 driver or the 2.0 sqljdbc.jar driver.

Java 6. Use the 1.2 driver.

• DB2 (requires 9.7 or later).

• PostgreSQL. Due to a known defect with PostgreSQL 8.4.0, AnthillPro can't be installed with that version. Use
version 8.3.7.

Install Using DB2
AnthillPro uses the Apache Derby database by default, but can also use DB2 9.7 or later as a database. An existing
installation of DB2 9.7 or later must be installed either on the same machine as the AnthillPro server (for evaluation
purposes only) or somewhere accessible on the network. You will need to provide the AnthillPro installation with
the connection information to the DB2 9.7 or later database as well as a user login that is allowed to create tables.

Once the DB2 9.7 or later Server database and user have been created, obtain the correct JDBC driver that allows
AnthillPro to connect to the DB2 9.7 or later database.

1. Contact your DB2 9.7 or later vendor and request the JDBC driver that corresponds to the database version in
use.

2. After downloading AnthillPro, expand the archive.

3. Copy the JDBC jar file into the anthill3-install/lib/ext directory.

4. Proceed with the normal installation instructions until you reach the choice of database. See either Linux/Unix In-
stallation or Windows Installation.

5. When prompted for the database type, enter db2.

6. Provide the following:

• Driver. The JDBC driver class that AnthillPro will use to connect to the database. Default:
com.ibm.db2.jcc.DB2Driver.

• Connection string. Format of the connection string that is dictated by the JDBC driver you are using. For ex-
ample, jdbc:db2://localhost:48665/anthill3.

Installation

15

http://www.innodb.com/
http://www.innodb.com/
http://www.innodb.com/


7. Follow the AnthillPro installation instructions for your operating system. See either Linux/Unix Installation or
Windows Installation.

Install Using Oracle
AnthillPro uses the Apache Derby database by default, but can also use Oracle/Oracle RAC as a database. An exist-
ing installation of Oracle must be installed either on the same machine as the AnthillPro server (for evaluation pur-
poses only) or somewhere accessible on the network. You will need to provide the AnthillPro installation with the
connection information to the Oracle database as well as a user login that is allowed to create tables.

Starting with AnthillPro 3.7.3, you can use Oracle RAC (version 10g or later) as the backing database. For clean
installs of AnthillPro, simply select Oracle as the backing database. If you are currently running AnthillPro with
Oracle, switching to RAC is straightforward: after backing up your current database, update the base.xml and
installed.properties files to use the new Oracle RAC configuration.

It is best to create a unique user for this database, and you may need to ensure that the user does not have Adminis-
trator privileges.

• Use the JDBC driver for Oracle 10.2 or higher, regardless of what version of the database is used.

To install the AnthillPro server with Oracle, download either the zip or tar.gz distribution. Once you have the distri-
bution downloaded, you may unpack it, but do not start the installation yet.

Before installation, obtain a JDBC driver for the AnthillPro server to use. (Use the JDBC driver for Oracle 10.2 or
higher, regardless of what version of the database is used.) The JDBC driver is the Java code that allows the server
to connect to the Oracle database. Oracle should provide a JDBC jar file with its installation. The driver is unique to
the version of Oracle you are running. You need to locate the JDBC jar file and copy it into the expanded installa-
tion directory.

The JDBC jar file needs to be copied to the anthill3-install/lib/ext directory.

Proceed with the normal installation instructions until you reach the choice of database. You will be prompted for
the type of database you want to use. Enter oracle. You will also need to provide information specific to the Or-
acle database.

First, give the JDBC driver class that AnthillPro will use to connect to the database. The default value is or-
acle.jdbc.driver.OracleDriver. It's a good idea to check your Oracle installation or driver file to see if the class is
different before allowing the default value.

Second, you will be prompted for the JDBC connection string. The format of the connection string is dictated by the
JDBC driver. See Oracle documentation [http://www.oracle.com/technology/documentation/index.html].

Typically, it will match the following format:

jdbc:oracle:thin:@[DB_URL]:[DB_PORT]

Eg. jdbc:oracle:thin:@localhost:1521

• If you are having trouble, and have a DBA account, try including the service name parameter, similar to:

jdbc:oracle:thin:@[DB_URL]:[DB_PORT]:[SERVICE_NAME]

Installation

16

http://www.oracle.com/technology/documentation/index.html
http://www.oracle.com/technology/documentation/index.html


After providing the JDBC connection string, you will be prompted for the user and password. Enter those and com-
plete the installation normally. If you receive errors during the installation, please copy the error output and contact
support [https://support.urbancode.com/].

Install Using Microsoft SQL Server
AnthillPro can use Microsoft SQL server as its backing database. AnthillPro requires a newly created database in
Microsoft SQL server, as well as a user that is allowed to create tables. It is best to install the database on a different
machine as the server (except for evaluation purposes) under a unique user for AnthillPro to use.

You will also need to obtain the correct JDBC driver from Microsoft.

• The MS SqlServer 2.0 driver (sqljdbc4.jar) will not work with AnthillPro. To install the server using Microsoft
SQL Server, you will need to use one of the following drivers, depending on which version of Java the AnthillPro
server uses:

Java 5. Use either the 1.2 driver or the 2.0 sqljdbc.jar driver.

Java 6. Use the 1.2 driver.

First, create a database and a user in your SQL Server database before installing AnthillPro. You can do this
by running the following commands (change the password to something secure):

CREATE DATABASE anthill3;

USE anthill3;

CREATE LOGIN anthill3 WITH PASSWORD = 'password';

CREATE USER anthill3 FOR LOGIN anthill3 WITH DEFAULT_SCHEMA = anthill3;

CREATE SCHEMA anthill3 AUTHORIZATION anthill3;

GRANT ALL TO anthill3;

Once the Microsoft SQL Server database and user have been created, obtain a JDBC driver for the AnthillPro server
to use. The JDBC driver is the Java code that allows the server to connect to the Microsoft SQL Server database. On
their web site, Microsoft provides a JDBC driver jar to download. Please download the driver version that corres-
ponds to your version of Microsoft SQL Server.

• The MS SqlServer 2.0 driver (sqljdbc4.jar) will not work with AnthillPro. To install the server using Microsoft
SQL Server, you will need to use one of the following drivers, depending on which version of Java the AnthillPro
server uses:

Java 5. Use either the 1.2 driver or the 2.0 sqljdbc.jar driver.

Java 6. Use the 1.2 driver.

Locate the JDBC jar file and copy it into the AnthillPro installation directory at:
anthill3-install/lib/ext.

Proceed with the normal installation instructions until you reach the choice of database. When prompted for the type
of database to use, enter sqlserver to use the Microsoft SQL Server database. Also provide the JDBC driver
class that AnthillPro will use to connect to the database. The default value is
com.microsoft.sqlserver.jdbc.SQLServerDriver. Check your Microsoft SQL Server driver down-

Installation

17

https://support.urbancode.com/
https://support.urbancode.com/
https://support.urbancode.com/


load to see if the class is different before using the default.

Next, give the JDBC connection string. The format of the connection string is dictated by the JDBC driver. See Mi-
crosoft SQL Server documentation [http://www.microsoft.com/sql/default.mspx].

Typically, it will match the following format:

jdbc:sqlserver://[DB_URL]:[DB_PORT];databaseName=[DB_NAME]

Eg. jdbc:sqlserver://localhost:1433;databaseName=anthill3

After providing the JDBC connection string, you will be prompted for the user and password. Enter those and com-
plete the installation normally. If you receive errors during the installation, please copy the error output and contact
support [https://support.urbancode.com/].

Install Using MySQL
AnthillPro uses the Apache Derby database by default, but you can also use MySQL (with InnoDB storage) as the
database. An existing installation of MySQL (with InnoDB storage) must be installed either on the same machine as
the AnthillPro server (if you are evaluating AnthillPro) or somewhere accessible on the network. You will need to
provide the AnthillPro installation with the connection information to the MySQL database as well as a user login
that is allowed to create tables. It is best to create a unique user for this database.

• MySQL with InnoDB storage (works with 4.1.22 and later). It is recommended that the InnoDB [ht-
tp://www.innodb.com/] storage engine be used. Also recommended is to use row or mixed binary logging
format (not statement).

• For MySQL 5, use the 5.0.8 driver version. The 5.1 version has some bugs that will cause the AnthillPro server
to throw an error. If you are using the 5.1 version, switch the driver jar file in the server's lib/ext directory and
then restart.

• For MySQL 5, use the 5.0.8 connector. There are some known issues in connector version 5.1.12 that result in
errors.

To install the AnthillPro server with MySQL, download either the zip or tar.gz distribution. Once you have the dis-
tribution downloaded, unpack it but do not start the installation yet.

First, create a database and a user in your MySQL database before installing AnthillPro. You can do this by
running the following commands (change the password to something secure):

CREATE DATABASE anthill3;

GRANT ALL ON anthill3.* TO 'anthill3'@'%'
IDENTIFIED BY 'password' WITH GRANT OPTION;

Before installation, obtain a JDBC driver for the AnthillPro server to use. The JDBC driver is the Java code that al-
lows the server to connect to the MySQL database. MySQL should provide a JDBC jar file with its installation. The
driver is unique to the version of MySQL you are running. Locate the JDBC jar file and copy it into the expanded
installation directory. The JDBC jar file needs to be copied to the anthill3-install/lib/ext directory.

Proceed with the normal AnthillPro installation instructions until you reach the choice of database. You will be
prompted for the type of database you want to use, so enter mysql. You will also need to provide need to provide
the JDBC driver class that AnthillPro will use to connect to the database. The default value is
com.mysql.jdbc.Driver. Check your MySQL installation or driver file to see if the class is different before

Installation

18

http://www.microsoft.com/sql/default.mspx
http://www.microsoft.com/sql/default.mspx
http://www.microsoft.com/sql/default.mspx
https://support.urbancode.com/
https://support.urbancode.com/
https://support.urbancode.com/
http://www.innodb.com/
http://www.innodb.com/
http://www.innodb.com/


accepting the default value.

Next, you will be prompted for the JDBC connection string. The format of the connection string is dictated by the
JDBC driver. See MySQL documentation [http://dev.mysql.com/doc/].

Typically, it will match the following format:

jdbc:mysql://[DB_URL]:[DB_PORT]/[DB_NAME]

Eg. jdbc:mysql://localhost:3306/anthill3

After providing the JDBC connection string, you will be prompted for the user and password. Enter those and com-
plete the installation normally. If you receive errors during the installation, please copy the error output and contact
support [https://support.urbancode.com/].

Install Using PostgreSQL

• Due to a known defect with PostgreSQL 8.4.0, AnthillPro can't be installed with that version. Use version 8.3.7.

AnthillPro uses the Apache Derby database by default, but can also use PostgreSQL as a database. An existing in-
stallation of PostgreSQL must be installed either on the same machine as the AnthillPro server (for evaluation pur-
poses only) or somewhere accessible on the network. You will need to provide the AnthillPro installation with the
connection information to the PostgreSQL database as well as a user login that is allowed to create tables.

Once the PostgreSQL Server database and user have been created, obtain the correct JDBC driver that allows Ant-
hillPro to connect to the PostgreSQL database.

1. Go to www.PostgreSQL.org and download the JDBC driver [http://jdbc.postgresql.org/download.html] for the
version of PostgreSQL you use.

2. After downloading AnthillPro, expand the archive.

3. Copy the JDBC jar file into the anthill3-install/lib/ext directory.

4. Proceed with the normal installation instructions until you reach the choice of database. See either Linux/Unix In-
stallation or Windows Installation.

5. When prompted for the database type, enter postgres.

6. Provide the following:

• Driver. The JDBC driver class that AnthillPro will use to connect to the database. Default:
org.postgresql.Driver.

• Connection string. Format of the connection string that is dictated by the JDBC driver you are using. For ex-
ample, jdbc:postgresql://localhost:5432/anthill3.

7. Follow the AnthillPro installation instructions for your operating system. See either Linux/Unix Installation or
Windows Installation.

If you receive errors during the installation, please copy the error output and contact support [sup-
port.urbancode.com].

Download AnthillPro

Installation

19

http://dev.mysql.com/doc/
http://dev.mysql.com/doc/
https://support.urbancode.com/
https://support.urbancode.com/
https://support.urbancode.com/
http://jdbc.postgresql.org/download.html
http://jdbc.postgresql.org/download.html
support.urbancode.com
support.urbancode.com
support.urbancode.com


The installation package is available from the Urbancode Support Portal. If you are evaluating AnthillPro, the Sup-
portal account where you download AnthillPro also gives you access to the support team -- where you can create a
support ticket.

1. Go to the Urbancode Support Portal [http://support.urbancode.com/]. You must already be a license holder to ac-
cess Supportal. If you do not have an account, please create one.

2. Go to the PRODUCTS tab and select the version of AnthillPro you are downloading.

3. Select the appropriate command-line installer. The contents of both packages are the same:

• anthill3-<version>.tar.gz. Command line installer for Unix/Linux.

• anthill3-<version>.zip. Command line installer for Windows.

AnthillPro allows you to install Agents on any supported platform, regardless of the operating system the server is
installed on. To do so, simply run the appropriate script included in the install package you chose. See either In-
stalling the Agent (Windows) or Installing the Agent (Linux/Unix).

4. See either Windows Installation or Linux/Unix Installation.

Windows Installation
To complete an installation, yinstall the server and at lest one agent. Typically, an agent is installed on a different
machine as the server to avoid performance issues. When the server and agent are on the same machine, a busy build
environment can slow down the server.

For evaluation purposes, installing the agent and server on the same machine should suffice. If you do this, it is best
to install the agent in its own directory (e.g., c:\anthill-agent) and not in the server's directory.

Before you continue, ensure that you have the correct JVM/JDK for the server and agent. (It is recommended to use
the Sun JDK. There have been some issues with the third-party JDK's from IBM and others.) If you are using a data-
base other than Derby, make sure you have reviewed the Installation section and have gathered the appropriate
driver, etc.

Server Installation (Windows)

For newer versions of Windows, you will need to execute an Administrator Command Prompt to install as a Win-
dows Service. This can be done by right clicking cmd.exe and selecting "Run As Administrator."

To install the AnthillPro server:

1. Download the anthill3-<version>.zip file.

2. Expand the zip file using a tool like WinZip. Expanding will create an anthill3-install directory.

3. Open the anthill3-install directory created in the previous step in Windows.

4. If you are using a database other than Apache Derby, copy the JDBC driver file(s) into the ant-
hill3-install\lib\ext directory. See Database Requirements.

Installation

20

http://support.urbancode.com/
http://support.urbancode.com/


5. Run the install script install-server.bat.

6. Provide the following information:

• Directory where the AnthillPro server should be installed. For example: C:\Program Files\anthill3\server. If
the directory does not already exist, enter Y to have the installer create the directory. Default is Y.

• Home directory of the JRE/JDK used to run the server. For example: C:\Program Files\Java\jre1.6.0_07.

• Port used to communicate with the agent(s). Recommended default value is 7915.

• Port on which AnthillPro server should listen for remoting or distributed servers. Default is 4567.

• IP address that the server web UI should listen on. We suggest leaving this blank so that AnthillPro listens on
all available IP addresses.

• Secured connections using SSL. If using a secured connection for all web UI communication, enter Y.

When using SSL, you need to turn it on for both the server and the agent -- otherwise the agents will not be able to
connect to the server. If you are using the agent relay, ensure that SSL is turned on for all three components:
server, agent, and agent relay. This rule also applies if using mutual authentication.

If using a caching proxy, see Caching and SSL before continuing. Under certain conditions, using HTTPS may
effect server performance.

• If using a secured connection for HTTP requests, give the port the AnthillPro sever should listen on. Recom-
mended default is 8443.

• Unsecured HTTP port for the Web UI. This will be used to redirect unsecured requests to the secured HT-
TPS port when using HTTPS for the Web UI. Default is 8080.

• HTTP port for the Web UI (if not using SSL). Default is 8080.

• Database type (if other than the embedded Derby database). See Database Requirements.

• Database user name. Default is anthill3.

• Database password. Default is password.

7. Install as Windows service (optional). Type Y to install as Windows service. Type N to finish installation pro-
cess. Note that when installing as a service, AnthillPro only captures the value for the PATH variable. The values
captured at installation will always be used, even if you later make changes.

For newer versions of Windows, you will need to execute an Administrator Command Prompt to install as a Win-
dows Service. This can be done by right clicking cmd.exe and selecting "Run As Administrator."

8. To automatically install the AnthillPro server as a Windows service, enter:

• Service name and click OK. Default is ah3server. (A unique name is required for each instance.)

• Login for the installed server and click OK. Default is .\localsystem.

• Yes to automatically start ah3server service.

To manually install the AnthillPro server as a Windows service (optional):

For newer versions of Windows, you will need to execute an Administrator Command Prompt to install as a Win-

Installation

21



dows Service. This can be done by right clicking cmd.exe and selecting "Run As Administrator."

• Run ah3server.cmd install uniqueservicename (located in the server's bin\service directory).

• Provide the service name and account information.

To run the AnthillPro server and complete installation:

1. In Windows, go to the AnthillPro server directory created during installation. For example, C:\Program
Files\anthill3\server. Enter the bin directory.

2. Run: start_ah3server.cmd.

3. Alternatively, from the command line run the start command bin\ah3server.cmd.

4. When the AnthillPro server has started, open a web browser and give the AnthillPro URL. For example, ht-
tp://localhost:8080.

5. Complete installation:

• External URL. Enter the URL users will use to access AnthillPro. This URL will be used to generate links
back to the application in e-mail notifications, as well as for some agent communication. The URL may in-
clude http(s):// and any non-standard ports. For example http://localhost:8080 if you are using default install-
ation values.

• Administrator E-mail Address. Give the e-mail address that should be notified about system issues. The Ad-
ministrator account will have complete access to AnthillPro, and is the initial user that must set up security.
See Security.

• Administrator Password. Enter the password the AnthillPro administrator (created above) will use to access
AnthillPro.

Note that this password (and the user name admin) will be required to complete installation of the Distributed
Web interface if the AnthillPro server is going to be used in conjunction with the Distributed Web product. For
information on the Distributes Web interface, contact <info@urbancode.com>.

• Confirm Administrator Password. Enter the password again.

• License. Paste your AnthillPro license in the text field after retrieving it from Supportal [ht-
tp://www.support.urbancode.com/].

a. Go to Supportal [http://www.support.urbancode.com/] to retrieve the license from your account.

b. Go to TEAMS/USERS > Licenses. If you do not see a license, either one does not exist for your account or
you do not have permissions to download a license. Please contact your sales representative for more in-
formation.

c. Select the view license link on the right hand side of the appropriate license.

d. In the pop-up, click download.

e. Open the license, copy it, and paste it in the License field.

If you are evaluating AnthillPro, you download a 30-day, temporary license. The only difference between this and a
production license is the expiration date. If you need a new production license, please contact your sales represent-

Installation

22

http://www.support.urbancode.com/
http://www.support.urbancode.com/
http://www.support.urbancode.com/
http://www.support.urbancode.com/
http://www.support.urbancode.com/


ative or create a Supportal [http://www.support.urbancode.com/] ticket with your request.

6. Click Complete.

The application can now be accessed in the web browser. If you log out, give the user name admin and the pass-
word set in Item Five to log back in.

7. Select pre-installed Plugins to activate/deactivate. AnthillPro ships with pre-configured integrations that are
written as Plugins. If you choose to deactivate any of the Plugins, you will not be able to use the AnthillPro integ-
ration with that tool until you reactivate it. If you don't know what tool integrations you want deactivated, you
can leave them all active to start with and then edit the setting later. Click Done to go to the Dashboard.

Installing the Agent (Windows)
When installing the agent in a production environment, most people typically create a dedicated user that is respons-
ible for running the agent (i.e., they create an "Anthill" user on the machine the agent is being installed on).

• Note that for evaluation purposes, you can simply run the agent as the "Admin" user.

In general, the agent will need the appropriate rights in order to communicate with the AnthillPro server; to commu-
nicate with any tools AnthillPro will integrate with (e.g., repository, testing tool, issue tracking tool, e-mail/IM,
etc.); and to perform other tasks you will want AnthillPro to perform. Each agent should have permission to:

• Create a cache. By default the cache is located in the home directory of the user running AnthillPro. However,
the cache may be moved or disabled.

• Open a TCP connection. The agent must use a TCP connection to communicate with the AnthillPro server's
JMS port.

• Open a HTTP(S) connection. The agent must be able to connect to the AnthillPro UI to download artifacts from
the AnthillPro artifact repository (Codestation).

• Access the file system. Many agents will need read/write permissions to items on the file system that are expec-
ted to go through AnthillPro.

To install the AnthillPro agent:

1. Download the anthill3-<version>.zip file.

2. Expand the zip file using a tool like WinZip. Expanding will create an anthill3-install directory.

3. Open the anthill3-install directory created in the previous step in Windows.

4. Run the install script install-agent.bat. For advanced agent installation, see also Unattended Agent Installation
Scripts.

5. Provide the following information:

• Directory where the AnthillPro agent should be installed. For example: C:\Program Files\anthill3\agent. To
have the installer create the directory, enter Y.

Installation

23

http://www.support.urbancode.com/
http://www.support.urbancode.com/


• Home directory of the JRE/JDK used to run the agent. Default is C:\Program Files\Java\jre1.6.0_07.

• Relay connection. Enter the default N if not using Urbancode's Distributed Servers product, available under
separate license. If using Distributed Servers, see Installing Distributed Servers before continuing.

If you are interested in using the Agent Relay for agent-server communication, contact
<info@urbancode.com>.

• Enter the host name or address of the AnthillPro server. Default is localhost.

• Enter the port which the AnthillPro server will use for internal communication. Default is 7915.

• Determine if internal communication should use SSL. Default is N.

When using SSL, you need to turn it on for both the server and the agent -- otherwise the agents will not be able to
connect to the server. If you are using the agent relay, ensure that SSL is turned on for all three components:
server, agent, and agent relay. This rule also applies if using mutual authentication.

• If using SSL, determine if communication should be mutually authenticated. Default is N.

6. Enter name of agent.

7. Type Y to automatically install the AnthillPro agent as a Windows service. Type N to complete installation pro-
cess.

For newer versions of Windows, you will need to execute an Administrator Command Prompt to install as a Win-
dows Service. This can be done by right clicking cmd.exe and selecting "Run As Administrator."

8. Install Agent as Windows Service. Note that when installing as a service, AnthillPro only captures the value for
the PATH variable. The values captured at installation will always be used, even if you later make changes.

For newer versions of Windows, you will need to execute an Administrator Command Prompt to install as a Win-
dows Service. This can be done by right clicking cmd.exe and selecting "Run As Administrator."

If automatically installing the AnthillPro agent as a Windows service, enter:

• Service unique name. Default is ah3agent. (A unique name is required for each instance.)

• Login for installed agent service. Default is .\localsystem.

• Yes to automatically start service.

To manually install the AnthillPro agent as a Windows service:

• Run ah3agent.cmd install uniqueservicename (located in bin\service folder of the AnthillPro directory).

• Provide the service name and account information.

To run the AnthillPro agent:

1. In Windows, navigate to the AnthillPro agent directory created during the installation. Default is: C:\Program
Files\anthill3\agent. Enter the bin directory.

Installation

24



2. Run the start script: start_ah3agent.cmd.

3. Alternatively, from the command line run the start command bin\ah3agent.cmd start.

4. See Configure Agents. You will not be able to build a project until an agent is properly configured.

Linux/Unix Installation
To complete an installation, install the server and at lest one agent. Typically, an agent is installed on a different ma-
chine as the server because the agent is responsible for performing resource-intensive tasks such as builds. When the
server and agent are on the same machine, a busy build environment can effect server performance.

For evaluation purposes, installing the agent and server on the same machine should suffice. If you do this, it is best
to install the agent in its own directory.

Server Installation (Linux/Unix)
To install the AnthillPro server:

1. Download the anthill3-<version>.tar.gz file.

2. Open a UNIX shell to the directory containing the above downloaded file.

3. Extract the downloaded file. Type: tar -zxf anthill3-<version>.tar.gz.

• On some installations of Solaris and HP-UX the default tar command will not properly handle our tar files.
You may need to use \ install GNU tar.

When installing AnthillPro on Solaris, it is recommended to use korn shell (ksh).

4. cd anthill3-install.

5. If you are using a database other than Apache Derby, copy the JDBC driver file(s) into the ant-
hill3-install/lib/ext directory. See Database Requirements.

6. Run the install script ./install-server.sh.

You can also install the server to run automatically using the init.d script. To do so, go to the install directory: /
anthill3-install/bin/server/init, copy the ah3server file into your init directory, and make
sure the INSTALL MODIFICATION section contains the correct information. Once your modifications are com-
pleted, make the file available to run.

7. Provide the following:

• Directory where the AnthillPro server should be installed. For example: /opt/anthill3/server. If the directory
does not already exist, enter Y to have the installer create the directory. Default is Y.

• Home directory of the JRE/JDK used to run the server.

• Port on which AnthillPro server should listen for remoting or distributed servers. Default is 4567.

• IP address that the server web UI should listen on. We suggest using the default 'all IP addresses bound to
machine' so that AnthillPro listens on all available IP addresses.

Installation

25



• JMS port of the server. This is the port used for internal communications between the agent(s) and server. Re-
commended default value is 7915.

• Secured connections using SSL. If using a secured connection for all web UI communication, enter Y. If us-
ing a caching proxy, see Caching and SSL before continuing. Under certain conditions, using HTTPS may ef-
fect server performance.

When using SSL, you need to turn it on for both the server and the agent -- otherwise the agents will not be able to
connect to the server. If you are using the agent relay, ensure that SSL is turned on for all three components:
server, agent, and agent relay. This rule also applies if using mutual authentication.

• If using a secured connection for HTTP requests, give the port the AnthillPro sever should listen on. Recom-
mended default is 8443.

• Unsecured HTTP port for the Web UI. This will be used to redirect unsecured requests to the secured HT-
TPS port when using HTTPS for the Web UI. Default is 8080.

• HTTP port for the Web UI (if not using SSL). Default is 8080.

• Database type (if other than the embedded Derby database). See Database Requirements.

• Database user name. Default is anthill3.

• Database password. Default is password.

To run the AnthillPro server and complete installation:

1. Open a UNIX shell to the directory where you installed the server. If you took our suggestion, then this is: /
opt/anthill3/server.

2. cd bin.

3. Run the start script: ./ah3server start.

4. The application can now be accessed in the web browser.

5. Complete installation:

• External URL. Enter the URL users will use to access AnthillPro. This URL will be used to generate links
back to the application in e-mail notifications, as well as for some agent communication. The URL may in-
clude http(s):// and any non-standard ports. For example http://localhost:8080 if you are using default install-
ation values.

• Administrator E-mail Address. Give the e-mail address that should be notified about system issues. The Ad-
ministrator account will have complete access to AnthillPro, and is the initial user that must set up security.
See Security.

• Administrator Password. Enter the password the AnthillPro administrator (created above) will use to access
AnthillPro.

Note that this password (and the user name admin) will be required to complete installation of the Distributed
Web interface if the AnthillPro server is going to be used in conjunction with the Distributed Web product. For
information on the Distributes Web interface, contact <info@urbancode.com>.

• Confirm Administrator Password. Enter the password again.

Installation

26



• License. Paste your AnthillPro license in the text field after retrieving it from Supportal [ht-
tp://www.support.urbancode.com/].

a. Go to Supportal [http://www.support.urbancode.com/] to retrieve the license from your account.

b. Go to TEAMS/USERS > Licenses. If you do not see a license, either one does not exist for your account or
you do not have permissions to download a license. Please contact your sales representative for more in-
formation.

c. Select the view license link on the right hand side of the appropriate license.

d. In the pop-up, click download.

e. Open the license, copy it, and paste it in the License field.

If you are evaluating AnthillPro, you download a 30-day, temporary license. The only difference between this and a
production license is the expiration date. If you need a new production license, please contact your sales represent-
ative or create a Supportal [http://www.support.urbancode.com/] ticket with your request.

6. Click Complete.

The application can now be accessed in the web browser. If you log out, give the user name admin and the pass-
word set in Item Five to log back in.

7. Select pre-installed Plugins to activate/deactivate. AnthillPro ships with pre-configured integrations that are
written as Plugins. If you choose to deactivate any of the Plugins, you will not be able to use the AnthillPro integ-
ration with that tool until you reactivate it. If you don't know what tool integrations you want deactivated, you
can leave them all active to start with and then edit the setting later. Click Done to go to the Dashboard.

Installing the Agent (Linux/Unix)
When installing the agent in a production environment, most people typically create a dedicated user that is respons-
ible for running the agent (i.e., they create an "Anthill" user on the machine the agent is being installed on).

• Note that for evaluation purposes, you can simply run the agent as the "Admin" user.

In general, the agent will need the appropriate rights in order to communicate with the AnthillPro server; to commu-
nicate with any tools AnthillPro will integrate with (e.g., repository, testing tool, issue tracking tool, e-mail/IM,
etc.); and to perform other tasks you will want AnthillPro to perform. Each agent should have permission to:

• Create a cache. By default the cache is located in the home directory of the user running AnthillPro. However,
the cache may be moved or disabled.

• Open a TCP connection. The agent must use a TCP connection to communicate with the AnthillPro server's
JMS port.

• Open a HTTP(S) connection. The agent must be able to connect to the AnthillPro UI to download artifacts from
the AnthillPro artifact repository (Codestation).

• Access the file system. Many agents will need read/write permissions to items on the file system that are expec-
ted to go through AnthillPro.

Installation

27

http://www.support.urbancode.com/
http://www.support.urbancode.com/
http://www.support.urbancode.com/
http://www.support.urbancode.com/
http://www.support.urbancode.com/
http://www.support.urbancode.com/
http://www.support.urbancode.com/


See Agent Installation (VMS) if you want to install the agent for VMS. The process is manual, and uses an exist-
ing, but modified, UNIX-installation.

To install the Agent:

1. Download the anthill3-<version>.tar.gz file.

2. Open a UNIX shell to the directory containing the above downloaded file.

3. Extract the downloaded file. Type: tar -zxf anthill3-<version>.tar.gz.

• On some installations of Solaris and HP-UX the default tar command will not properly handle our tar files.
You may need to use \ install GNU tar.

When installing AnthillPro on Solaris, it is recommended to use korn shell (ksh).

4. cd anthill3-install.

5. Run the install script ./install-agent.sh.

You can also install the agent to run automatically using the init.d script. To do so, go to the install directory: /
anthill3-install/bin/agent/init, copy the ah3agent file into your init directory, and make sure
the INSTALL MODIFICATION section contains the correct information. Once your modifications are completed,
make the file available to run.

6. Provide the following information:

• Directory where the AnthillPro agent should be installed. For example: /opt/anthill3/agent. To have the in-
staller create the directory, enter Y.

• Home directory of the JRE/JDK used to run the agent.

• Relay connection. Enter the default N if not using Urbancode's Distributed Servers product, available under
separate license. If using Distributed Servers, see Installing Distributed Servers before continuing.

If you are interested in using the Agent Relay for agent-server communication, contact
<info@urbancode.com>.

• Enter the host name or address of the AnthillPro server. Default is localhost.

• Enter the port which the AnthillPro server will use for internal communication. Default is 7915.

• Determine if internal communication should use SSL. Default is N.

• If using SSL, determine if communication should be mutually authenticated. Default is N.

7. Enter name of agent.

To run the AnthillPro agent, follow the steps below:

1. Open a UNIX shell to the directory where you installed the agent. If you took our suggestion, then this is: /
opt/anthill3/agent.

2. cd bin.

Installation

28



3. Run the script: ./ah3agent start.

4. See Configure Agents. You will not be able to build a project until an agent is properly configured.

Configure SSL
AnthillPro allows the server and agents to communicate securely using SSL in two modes: unauthenticated and mu-
tual authentication. In unauthenticated mode, the communication between the server and agents is secured with SSL,
but there is no authentication to verify the server or agent credentials.

When using SSL, turn it on for both the server and the agent -- otherwise the agents will not be able to connect to
the server. If you are using the agent relay, ensure that SSL is turned on for all three components: server, agent,
and agent relay. This rule also applies if using mutual authentication.

In mutual authentication mode, the communication between server and agent is secured with SSL and authentication
takes place to verify the server is really the server and the agent is really the agent.

Configuring Server-Agent SSL
To use SSL between the server and agent, both the sides need a private key created in a keystore. This key and key-
store is created during the installation process of the server and agent. There should be a ah3.keystore file in
the conf directory of each installation. If there is not, please contact support [https://support.urbancode.com/] for
assistance.

To turn SSL on, make sure the server is running and go to the Web UI. On the System tab, click the Server Settings
link under the Server menu. In the new window, enable the Use SSL Between Server and Agents setting. After
this, restart the server. That completes the server configuration for enabling SSL.

When using SSL, turn it on for both the server and the agent -- otherwise the agents will not be able to connect to
the server. If you are using the agent relay, ensure that SSL is turned on for all three components: server, agent,
and agent relay. This rule also applies if using mutual authentication.

For each agent installed, first shutdown the agent, and then go to the conf/agent directory and edit the agent's
installed.properties file (note: this file was previously agent.properties on older installations). The
settings in the file that controls the SSL communication is locked/server.secure. If this property is not
present add the line: locked/server.secure=Y.

Start the agent, and go in to the server Web UI to verify that the agent shows up as online. To further test that com-
munication is working properly, go to the Agent and select the Properties tab to validate the agent properties are re-
trieved correctly.

Configuring Mutual Authentication
For mutual authentication between server and agent communication, you must facilitate a public key exchange
between the two. To do this, export the public key from the certificate keystore and import it into the keystore of that
which you are communicating with: Export the server key and import it into the agent keystore, and export the agent
key and import it into the server keystore. Also ensure that every agent using mutual authentication has the
locked/server.mutual_auth=Y property in the installed.properties (or agent.properties)
file.

1. To export the public key from the server certificate keystore, open a command-line shell to the server installa-
tion’s conf directory and run:

Installation

29

https://support.urbancode.com/
https://support.urbancode.com/


keytool -export -keystore ah3.keystore -storepass changeit
-alias ah3_server -file ah3_server.crt

2. This file needs to be copied to your agents. Place it into the agent installation’s conf directory and run the fol-
lowing to import it:

keytool -import -keystore ah3.keystore -storepass changeit
-alias ah3_server -file ah3_server.crt -keypass changeit -noprompt

3. While on the agents, run the following from their installation’s conf directory to export their public keys
(change the name of the file argument to match the agent name):

keytool -export -keystore ah3.keystore -storepass changeit
-alias ah3_agent -file [agent_name].crt

4. Open the Agent's installed.properties (or agent.properties) file (in the conf\agent direct-
ory) in a text editor. Set the locked/server.mutual_auth property to true: locked/serv-
er.mutual_auth=Y and save your changes.

5. Copy the agent public keys to the server’s conf directory and run the following command to import them
(change the name of the file argument to match your file name and the name of the alias argument to match your
agent name):

keytool -import -keystore ah3.keystore -storepass changeit
-alias [agent_name] -file [agent_name].crt -keypass changeit -noprompt

6. To complete mutual authentication, make sure the server is running, go to the System page, and click the Server
Settings link under the Server menu.

7. In the next window, enable the Enforce Mutual Authentication setting.

8. Restart agent(s).

9. Verify that communication is working properly between server and agents.

To list the certificates that are loaded into a keystore, run the following from the same directory:

keytool -list -keystore ah3.keystore -storepass changeit

SSL and Distributed Servers
It is possible to configure the AnthillPro server to use SSL with the Distributed Web Interface. To do so, import an
existing certificate and switch to https. Before you begin, make sure AnthillPro is not running any jobs (you can do
this on the Current Activity page). The ports listed in the examples may be different than those used by your Ant-
hillPro system. See Using SSL with Distributed Web Interface.

Agent Installation (VMS)
AnthillPro Agent installation must be done manually for VMS, as there are no installation scripts included with the
product. This is easiest if an existing Unix-based installation is modified and packaged for installation on the VMS
system.

Installation

30



The only prerequisite for the target VMS system:

• JVM installed must be at least Java 1.4.

• The logical JAVA$FORK_PIPE_STYLE must be set to 1.

There are no modifications to the VMS environment as a result of the agent installation.

To installl:

1. Choose any existing Unix-based agent installation and make a complete copy.

• Run: cp –R agent vmsAgent

2. Modify classpath.conf file.

• Run: vi vmsAgent/bin/classpath.conf

• Change all paths in file to match the target VMS path. VMS paths must be specified using Unix-style as op-
posed to VMS-style. For example:

dir /opt/anthill3/agent/conf/client

becomes

dir /VSI_KIT_ROOT1/ANTHILL/KIT/AGENT/CONF/CLIENT

3. Modify agent.properties file.

• Run: vi vmsAgent/conf/agent/agent.properties

• Change all paths in file to match the target VMS path. VMS paths must be specified using Unix-style as op-
posed to VMS-style. For example:

anthill3/temp.dir=/opt/anthill3/agent/var/temp

becomes

anthill3/temp.dir=/VSI_KIT_ROOT1/ANTHILL/KIT/AGENT/VAR/TEMP

• The following is a list of all path properties that need to be changed.

anthill3/temp.dir

anthill3/var.dir

locked/agent.home

locked/java.home

anthill3/work.dir

anthill3/logs.dir

anthill3/root.dir

locked/ant.home

Installation

31



• Change the agent name property (replace {VMS host name} with the actual host name).

locked/anthill3.name <http://anthill3.name>={VMS host name}

• Change the agent ID property.The ID can be anything as long as it's unique from every other agent (host name
may be used if desired).

locked/anthill3.id <http://anthill3.id>={desired ID}

4. Create a VMS DCL file to enable launching of the agent process.

• Run: vi vmsAgent/bin/AH3AGENT.COM <http://AH3AGENT.COM>

• Add the following content to the file.

$ ! setup.com <http://setup.com>
$
$ @sys$startup:java$150_setup.com <http://150_setup.com>
$
$ java -jar [.]launcher.jar [.]classpath.conf
"com.urbancode.anthill3.main.agent.AnthillAgent"

$

5. Package the VMS agent installation.

Run:

cd vmsAgent zip –r anthill_vms_agent.zip *

• Run: cd vmsAgent zip –r anthill_vms_agent.zip *

6. Copy the agent package to the target VMS host.

7. Unzip the agent package in desired location (must match paths used in steps 2 and 3).

8. Start the agent.

• Run:

SET DEFAULT VSI_KIT_ROOT1:[ANTHILL.KIT.AGENT.BIN]

@AH3AGENT

9. Open a browser and go to http://anthill.unix.swx.ch <http://anthill.unix.swx.ch/>

• Log in as "admin" using password from Server Installation.

• Click the System tab. In some versions of AnthillPro, agents have their own top-level Agents tab.

• Click Agents in the Environment Administration section.

• Find the new agent under Available Agents.

• Click Configure.

• Select the Build-Farm checkbox.

• Click Set then Done.

Installation

32



Unattended Agent Installation Scripts
To install a large number of agents quickly, AnthillPro provides an Unattended Agent Installation script that invokes
the agent installer. The script allows you to specify how many agents to install in a chosen directory, and set the re-
quisite agent properties. The script uses all of the agent installation defaults, so you will most likely need to modify
the script to fit your needs. Once the script is modified, it is also possible to customize it; e.g., install agents in dif-
ferent directories, install agents with different names, etc.

The Unattended Agent Installation script is available with the standard AnthillPro installation package. There are
two versions of the script, one for installing agents on Windows and one for installing agents on Linux/Unix.

Unattended Agent Installation Script (Windows)
Below is a copy of unattended-install-agent.bat, which is included in the AnthillPro Installation Pack-
age. The script invokes the AnthillPro agent installer, and requires you to set all the agent properties that are given
during a command-line installation. To get started:

1. Download the appropriate AnthillPro Installation Package.

2. Open unattended-install-agent.bat file in a text editor.

3. Set the agent properties. Please refer to Installing the Agent (Windows) and the AnthillPro server in-
stall.properties file (located in the \conf\server\ directory) for the appropriate settings.

4. Once the properties are set, remove lines 11 and 12, which prevent the script from accidentally running. The easi-
est way to do this is simply comment out the lines as follows:

REM echo REMOVE THIS LINE AFTER MODIFYING THIS SCRIPT FOR YOUR NEEDS
REM GOTO END

• Note that if the unattended-install-agent.bat script is not in the same directory as the install-
agent.bat file, you will have to make additional modifications to script to install the agent(s).

5. Save your changes.

6. Open the command line, point it to the anthill3-install directory, and run unattended-in-
stall-agent.bat.

7. Start the agent(s). See Installing the Agent (Windows).

Example Unattended Agent Installation Script (Windows):

@echo off
setlocal
REM ###########################################################################
REM WARNING: This script is an example of how to create an unattended
REM installation script. The parameters below as well as the script content
REM may and probably WILL need to be modified to accommodate your situation.
REM
REM The parameters which can be modified to alter the unattended installation.
REM ###########################################################################

echo REMOVE THIS LINE AFTER MODIFYING THIS SCRIPT FOR YOUR NEEDS
GOTO END

set AGENT_JAVA_HOME=C:\Program Files\Java\jre6

Installation

33



set CONNECT_VIA_RELAY=N
set INSTALL_AGENT_REMOTE_HOST=<PUT ANTHILL3 SERVER HOSTNAME HERE>
REM IF CONNECT_VIA_RELAY
REM set INSTALL_AGENT_REMOTE_PORT=7916
REM ELSE
set INSTALL_AGENT_REMOTE_PORT=7915

set INSTALL_AGENT_REMOTE_PORT_SSL=N
set INSTALL_AGENT_REMOTE_PORT_MUTUAL_AUTH=N
REM IF CONNECT_VIA_RELAY
set INSTALL_AGENT_RELAY_HTTP_PORT=20080
REM ELSE
REM set INSTALL_AGENT_RELAY_HTTP_PORT=

set INSTALL_AGENT_NAME=anthill3-agent
set INSTALL_AGENT_DIR=C:\Program Files\anthill3\batch\agent

set INSTALL_SERVICE=N
set INSTALL_SERVICE_NAME=ah3agent
set INSTALL_SERVICE_LOGIN=.\localsystem
set INSTALL_SERVICE_PASSWORD=nopass
set INSTALL_SERVICE_AUTOSTART=N

set agent_count=10

REM ###########################################################################
REM The installation script
REM ###########################################################################

cd %~dp0

set ANT_HOME=opt\apache-ant-1.7.1
set CLASSPATH=

set i=0
:LOOP
CALL opt\apache-ant-1.7.1\bin\ant.bat -f install.with.groovy.xml ^
"-Dinstall-agent=true" ^
"-Dinstall-server=false" ^
"-Dinstall.java.home=%AGENT_JAVA_HOME%" ^
"-Dinstall.agent.connect_via_relay=%CONNECT_VIA_RELAY%" ^
"-Dinstall.agent.jms.remote.host=%INSTALL_AGENT_REMOTE_HOST%" ^
"-Dinstall.agent.jms.remote.port=%INSTALL_AGENT_REMOTE_PORT%" ^
"-Dinstall.agent.relay.http.port=%INSTALL_AGENT_RELAY_HTTP_PORT%" ^
"-Dinstall.agent.remote.port.ssl=%INSTALL_AGENT_REMOTE_PORT_SSL%" ^
"-Dinstall.agent.remote.port.mutual_auth=%INSTALL_AGENT_REMOTE_PORT_MUTUAL_AUTH%" ^
"-Dinstall.agent.name=%INSTALL_AGENT_NAME%-%i%" ^
"-Dinstall.agent.dir=%INSTALL_AGENT_DIR%-%i%" ^
"-Dinstall.service=%INSTALL_SERVICE%" ^
"-Dinstall.service.name=%INSTALL_SERVICE_NAME%" ^
"-Dinstall.service.login=%INSTALL_SERVICE_LOGIN%" ^
"-Dinstall.service.password=%INSTALL_SERVICE_PASSWORD%" ^
"-Dinstall.service.autostart=%INSTALL_SERVICE_AUTOSTART%" ^

install-non-interactive
set /a i=i+1
if "%i%"=="%agent_count%" goto END
goto LOOP

:END

Unattended Agent Installation Script (Linux/Unix)
Below is a copy of unattended-install-agent.sh, which is included in the AnthillPro Installation Pack-

Installation

34



age. The script invokes the AnthillPro agent installer, and requires you to set all the agent properties that are given
during a command-line installation. To get started:

1. Download the appropriate AnthillPro Installation Package.

2. Open unattended-install-agent.sh file in a text editor.

3. Set the agent properties. Please refer to Installing the Agent (Linux/Unix) and the AnthillPro server in-
stall.properties file (located in the /conf/server/ directory) for the appropriate settings.

4. Once the properties are set, remove lines 9 and 10, which prevent the script from accidentally running. The easi-
est way to do this is simply comment out the lines as follows:

# echo REMOVE THIS LINE AFTER MODIFYING THIS FILE FOR YOUR PURPOSES
# exit

• Note that if the unattended-install-agent.sh script is not in the same directory as the install-
agent.sh file, you will have to make additional modifications to script to install the agent(s).

5. Save your changes.

6. Open the command line, point it to the anthill3-install directory, and run
unattended-install-agent.sh.

7. Start the agent(s). See Installing the Agent (Linux/Unix) .

Example Unattended Agent Installation Script (Linux/Unix):

#!/bin/sh
################################################################################
# WARNING: This script is an example of how to create an unattended
# installation script. The parameters below as well as the script content
# may and probably WILL need to be modified to accommodate your situation.
#
# The parameters which can be modified to alter the unattended installation.
################################################################################
echo REMOVE THIS LINE AFTER MODIFYING THIS FILE FOR YOUR PURPOSES
exit

AGENT_JAVA_HOME=/usr/lib/jvm/java-6-sun-1.6.0.10

CONNECT_VIA_RELAY=N
INSTALL_AGENT_REMOTE_HOST=<YOUR SERVER HOSTNAME HERE>
# IF CONNECT_VIA_RELAY
#INSTALL_AGENT_REMOTE_PORT=7916
# ELSE
INSTALL_AGENT_REMOTE_PORT=7915

INSTALL_AGENT_REMOTE_PORT_SSL=N
INSTALL_AGENT_REMOTE_PORT_MUTUAL_AUTH=N
# IF CONNECT_VIA_RELAY
INSTALL_AGENT_RELAY_HTTP_PORT=20080
# ELSE
# INSTALL_AGENT_RELAY_HTTP_PORT=

INSTALL_AGENT_NAME=anthill3-agent
INSTALL_AGENT_DIR=/opt/anthill3/batch/agent

INSTALL_SERVICE=N
INSTALL_SERVICE_NAME=ah3agent

Installation

35



INSTALL_SERVICE_LOGIN=.\localsystem
INSTALL_SERVICE_PASSWORD=nopass
INSTALL_SERVICE_AUTOSTART=N

agent_count=10

################################################################################
# The installation script.
################################################################################
PREVIOUS_DIR=$(pwd)
PREVIOUS_ANT_HOME=$ANT_HOME
PREVIOUS_CLASSPATH=$CLASSPATH
OUR_ANT_VERSION=1.7.1

SHELL_NAME=$0
SHELL_PATH=$(dirname ${SHELL_NAME})

if [ "." = "$SHELL_PATH" ]
then

SHELL_PATH=$(pwd)
fi
cd ${SHELL_PATH}

export ANT_HOME=opt/apache-ant-${OUR_ANT_VERSION}

chmod +x opt/apache-ant-${OUR_ANT_VERSION}/bin/ant

export CLASSPATH=

# Run the installation.
i=0
while [ $i -lt "$agent_count" ]
do
opt/apache-ant-${OUR_ANT_VERSION}/bin/ant \
"-Dinstall-agent=true" \
"-Dinstall-server=false" \
"-Dinstall.java.home=$JAVA_HOME" \
"-Dinstall.agent.connect_via_relay=$CONNECT_VIA_RELAY" \
"-Dinstall.agent.jms.remote.host=$INSTALL_AGENT_REMOTE_HOST" \
"-Dinstall.agent.jms.remote.port=$INSTALL_AGENT_REMOTE_PORT" \
"-Dinstall.agent.relay.http.port=$INSTALL_AGENT_RELAY_HTTP_PORT" \
"-Dinstall.agent.remote.port.ssl=$INSTALL_AGENT_REMOTE_PORT_SSL" \
"-Dinstall.agent.remote.port.mutual_auth=$INSTALL_AGENT_REMOTE_PORT_MUTUAL_AUTH" \
"-Dinstall.agent.name=$INSTALL_AGENT_NAME-$i" \
"-Dinstall.agent.dir=$INSTALL_AGENT_DIR-$i" \
"-Dinstall.service=$INSTALL_SERVICE" \
"-Dinstall.service.name=$INSTALL_SERVICE_NAME" \
"-Dinstall.service.login=$INSTALL_SERVICE_LOGIN" \
"-Dinstall.service.password=$INSTALL_SERVICE_PASSWORD" \
"-Dinstall.service.autostart=$INSTALL_SERVICE_AUTOSTART" \
-f install.with.groovy.xml install-non-interactive

i=$(($i+1))
done

# Restore previous state
cd ${PREVIOUS_DIR}
export ANT_HOME=${PREVIOUS_ANT_HOME}
export CLASSPATH=${PREVIOUS_CLASSPATH}

Run with Apache Server
The embedded Tomcat instance can be configured to run behind Apache HTTPD. This is desirable to make the Ant-

Installation

36



hillPro UI available on the standard HTTP/HTTPS ports (80/443) without the security risk of running the JVM as
root.

• $ANTHILL3_HOME should be replaced with your AnthillPro server home directory. Host names
(anthill3.example.com) should be replaced by values appropriate to your site.

See also Optimizing Server Performance.

Tomcat Configuration
Locate the Tomcat server configuration file, server.xml, which is in
$ANTHILL3_HOME/opt/tomcat/conf. Add a connector child element to the service element (this should be
near the top of the file):

<Connector port="8009" minProcessors="5" maxProcessors="256"
protocol="AJP/1.3" />

AnthillPro must be restarted for this to take effect.

Apache 2.0 Configuration
Configuring Apache to use mod_jk is somewhat complicated. First, for Apache 2.0, use mod_jk version 1.2.19.
You may need to look in the Tomcat project archives to find the appropriate binary. Later versions only support
Apache 2.2. After downloading, extract mod_jk.so and add it to the Apache modules directory.

Add the following to Apache’s httpd.conf:

LoadModule jk_module modules/mod_jk.so

JkWorkersFile "conf/workers.properties"

<VirtualHost *:80>
ServerName anthill3.example.com
JkMount /* anthill3

</VirtualHost>

Create a file called workers.properties in the Apache conf directory:

worker.list=anthill3
worker.anthill3.type=ajp13
worker.anthill3.host=anthill3.example.com
worker.anthill3.port=8009

The worker.anthill3.host should match the value of ServerName in httpd.conf and work-
er.anthill3.port must match the value of the Connector port in server.xml.

Apache 2.2 Configuration
For Apache 2.2, use mod_jk version 1.2.21 or later. The binaries are accessible via the normal Tomcat/Jk connect-
or download [http://tomcat.apache.org/connectors-doc/] page. The configuration is identical to Apache 2.0.

In addition to mod_jk, Apache 2.2 adds a new proxy module, mod_proxy_ajp designed to work with Tomcat.
This module is part of Apache 2.2, so a separate download is not necessary.

Installation

37

http://tomcat.apache.org/connectors-doc/
http://tomcat.apache.org/connectors-doc/
http://tomcat.apache.org/connectors-doc/


The Tomcat configuration is the same as above.

Add these lines to httpd.conf:

LoadModule proxy_module modules/mod_proxy.so
LoadModule proxy_ajp_module modules/mod_proxy_ajp.so

<VirtualHost *:80>
ServerName anthill3.example.com
ProxyPass / ajp://internal.example.com:8009/
ProxyPassReverse / ajp://internal.example.com:8009/

</VirtualHost>

Changing the Context Path on Apache-based Installa-
tions
The above directions assume the Anthill UI is running as the root context (that is, the UI would be viewable at ht-
tp://anthill3.example.com/), but it is possible to run the UI with a different context path (e.g., ht-
tp://www.example.com/anthill3). This is not a fully supported configuration and upgrading may become difficult.

To change the context path from / to /anthill on Apache-based installations, do the following: Edit server.xml
and change the context element to have path="/anthill" and docBase="anthill". Then, rename
$ANTHILL3_HOME/opt/tomcat/webapps/ROOT to
$ANTHILL3_HOME/opt/tomcat/webapps/anthill.

In httpd.conf, update the URLs in the JkMount and ProxyPass... directives:

JkMount /anthill/* anthill3

or:

ProxyPass /anthill ajp://internal.example.com:8009/anthill
ProxyPassReverse /anthill ajp://internal.example.com:8009/anthill

Additionally, add JkMount and ProxyPass... lines for the AnthillPro Help:

JkMount /anthillpro-help/* anthill3

or:

ProxyPass /anthillpro-help ajp://internal.example.com:8009/anthillpro-help

ProxyPass /anthillpro-help ajp://internal.example.com:8009/anthillpro-help
ProxyPassReverse /anthillpro-help ajp://internal.example.com:8009/anthillpro-help

Changing the Context Path on Non-Apache Installations
To change the context path if AnthillPro is not behind an Apache server:

Installation

38



1. Shut down AnthillPro.

2. Rename the opt/tomcat/webapps/ROOT directory to the context you want to use.

3. Edit opt/tomcat/conf/server.xml and change the context path and docbase attribute, for example

Context path="/anthill" docBase="anthill"

4. Delete the opt/tomcat/work/Catalina directory.

5. Start AnthillPro.

Installing Distributed Servers
Installation of Distributed Servers is similar to installing the central AnthillPro server. You will need a Distributed
Web Interface license (in addition to the AnthillPro Server license) and, if connecting agents via the Agent Relay, an
Agent Relay license.

To complete installation of Distributed servers, do the following:

1. Install the AnthillPro main server. See Installing AnthillPro.

2. Retrieve Distributed Servers license and load it in the AnthillPro server UI. See Upload Distributed Servers Li-
cense.

3. Install the Distributed Web Interface. See either Install Distributed Web Interface (Windows) or Install Distrib-
uted Web Interface (Linux/Unix).

4. Install the Agent Relay (optional). See either Install Agent Relay (Windows) or Install Agent Relay
(Linux/Unix).

5. Install Agents. See either Install the Agent with Relay (Windows) or Install the Agent with Relay (Linux/Unix).

6. Configure Agents to use the Distributed Web Interface for Codestation caching (optional). See Distributed Serv-
ers and Agent Configuration.

See also Distributed Servers: Best Practices for Installation.

Prerequisites: Distributed Web Interface Installation

• JRE v1.5.0 (or greater) installed in the OS. Set the JAVA_HOME environment variable to point to the Java dir-
ectory.

• The AnthillPro server must already be installed. See Installing AnthillPro.

• You must have a license for the Distributed Web Interface and/or Agent Relay, depending on how you plan to in-
stall Distributed Servers. Contact support [https://support.urbancode.com/] for more information. See Upload Dis-
tributed Servers License.

• The 'admin' account and password, created during AnthillPro server installation, must be available to complete the
installation.

• Familiarity with the Distributed Servers system architecture.

Installation

39

https://support.urbancode.com/
https://support.urbancode.com/


Upload Distributed Servers License
Once the AnthillPro server is installed and running (see Installing AnthillPro), retrieve the Distributed Servers li-
cense and upload it in the AnthillPro server UI.

1. Go to the AnthillPro download page [https://support.urbancode.com/] and log in to your account.

2. Get a copy of your Distributed Servers license.

3. Log in to the AnthillPro server as the 'admin'.

4. Go to System > License under the Server menu.

5. Paste the license in the Upload New License text field.

6. Click Upload then Done.

7. See Install Distributed Web Interface (Windows) or Install Distributed Web Interface (Linux/Unix).

Install Distributed Web Interface (Windows)
Make sure the AnthillPro server is already installed. See Windows Server Installation from zip File.

1. Download the anthill3-distributed-web-<version>.zip file from the Urbancode Support Portal.

2. Expand the zip file using a tool like WinZip. Expanding will create a anthill3-distributed-web directory.

3. Open the anthill3-distributed-web directory in Windows.

4. Run: install.cmd.

5. Provide the following:

• Directory where the Distributed Web Interface is to be installed. Enter the directory where the Distributed
Web interface should be installed. Default is C:\Program Files\anthill3\dist-web. If the directory does not
already exist, enter Y to have the installer create it.

• Java home. Enter the Java home used to run the Distributed Web interface. The installer will attempt to find it,
or use the JAVA_HOME variable. If not found, enter it here.

• AnthillPro server IP or host name. Enter the IP or host name of the AnthillPro server. This is the host, or IP,
on which the Distributed Web Interface can contact the main AnthillPro server. To determine the AnthillPro
server IP or host name, go to: AnthillPro UI > System > Server Settings.

• HTTP or HTTPS for AnthillPro server. If the AnthillPro server is using HTTPS, enter Y. Otherwise, enter
N. Default is N. To find if the AnthillPro server uses HTTPS, go to the AnthillPro server's \conf\server\ direct-
ory and open the install.properties file in a text editor. Check the install.server.web.always.secure= prop-
erty.

• AnthillPro server port for web connection. Enter the port on which the AnthillPro server listens for web
connections.

• If using HTTP, the default port used for web connections is 8080.

• If using HTTPS, the default port used for web connections is 8443.

Installation

40

https://support.urbancode.com/
https://support.urbancode.com/


To find the port, go to the AnthillPro server's \conf\server\ directory and open the install.properties file in a
text editor. Check the install.server.web.port= property.

• Legacy communication port. Enter the legacy port on which the AnthillPro server listens for remote connec-
tions. If AnthillPro is being installed for the first time, use the default 4567.

For 3.6.x communication has been changed, so the legacy port must be updated. To find the port, go to the
AnthillPro server's \conf\server\ directory and open the install.properties file in a text editor. Check the in-
stall.server.port= property.

• New AnthillPro internal communication port. Enter the new communication port which the AnthillPro serv-
er listens on. The new default value is 7915.

• Distributed Web Interface communication port. Enter the port on which the Distributed Web interface
should use for communication. Default is 7917.

• Secure communication. Determine if using secure communication. To use secure connection between the
agent, the Relay (if used), and the AnthillPro server, enter Y. Default is N.

• Mutual authentication. If using secure communication, determine if mutual authentication is required. To
require mutual authentication, enter Y. Default is N.

• Distributed Web Interface user name. Enter the user name to use when connecting the Distributed Web in-
terface to the AnthillPro server. Default is admin. This is the admin account created during installation of the
AnthillPro server. The default user name, admin, should be used, along with the current password associated
with this account.

• Password. Enter the password to use when connecting the Distributed Web interface to the AnthillPro server.
Default is admin. This is the password associated with the admin account created during installation of the
AnthillPro server. The default user name, admin, should be used, along with the current password associated
with this account.

• Name. Give a name for this Distributed Web node. Each node should have a unique, meaningful name. De-
fault is dist-web.

• Distributed Web IP or host name. Enter the IP or hostname the Distributed Web will listen on. Default is
0.0.0.0. The default value will allow the Distributed Web to listen on all IPs associated with the AnthillPro
server.

• HTTP or HTTPS for Distributed Web Interface. Determine if the Distributed Web should use HTTPS or
not. Enter Y to use HTTPS, or N to use HTTP. Default is N.

• Distributed Web port for web connections. If using HTTPS, enter the port on which the Distributed Web
will listen for web connections. Default is 8443.

• Distributed Web port for web connections. Enter the port on which the Distributed Web interface will listen
for web connections. Default is 8080.

6. Start the Distributed Web Interface.

• To start the Distributed Web in a new shell, go to the Distributed Web's \bin directory and run
start_ah3web.cmd.

Or:

• To start the Distributed Web from the command line, run ah3web run.

Installation

41



7. If using the Agent Relay, see Install Agent Relay (Windows). Otherwise, follow the instructions given in In-
stalling the Agent (Windows).

Install Agent Relay (Windows)
If Agent communication is routed through the relay proxy, the Relay must be installed before installing the agents
that will use it.

Before installing the Agent Relay, make sure the AnthillPro server is installed (see Windows Server Installation
from zip File) and that the license has been uploaded to the AnthillPro server (see Upload Distributed Servers Li-
cense).

1. Download the anthill3-agent-relay-<version>.zip file.

2. Expand the zip file using a tool like WinZip. Expanding will create a anthill3-agent-relay directory.

3. Open the anthill3-agent-relay directory.

4. Run the install script install.cmd.

5. Provide the following:

• Location of Agent Relay. Give the directory where the Agent Relay should be installed. Default is
C:\Program Files\anthill3\relay. If the directory does not already exist, enter Y to have the installer create it.
Default is Y.

• Java home. Enter the Java home used to run the Distributed Web interface. The installer will attempt to find it,
or use the JAVA_HOME variable. If not found, you will need to enter it here.

• Name. Give a name for the relay. Each Agent Relay should be given a unique, meaningful name. Default
name is agent-relay.

• Agent Relay IP or host name. Enter the IP or hostname the Agent Relay will listen on. Default is 0.0.0.0. The
default value will allow the Agent Relay to listen on all IPs associated with the AnthillPro server.

• Port Relay listens on for HTTP requests. Enter the port on which the Agent Relay should listen for HTTP
requests coming from the agent(s). Default is 20080.

• Port Relay uses for communication. Enter the port on which the Agent Relay will use for communication
with the agent. Default is 7916.

• AnthillPro server IP or host name. Enter the IP or host name of the AnthillPro server. This is the host, or IP,
on which the Agent Relay can contact the main AnthillPro server. To determine the AnthillPro server IP or
host name, go to: AnthillPro UI > System > Server Settings.

• AnthillPro server communication port. Enter the port which the AnthillPro server uses for communication.
If you used the default value during server installation, use 7915. If the AnthillPro server uses a different port,
go to the AnthillPro server's \conf\server\ directory and open the install.properties file in a text editor. The
port is listed in the install.server.jms.port= property.

• Secure communication. Determine if using secure communication between the server, the relay, and the
agents. To use secure connection, enter Y. Default is N.

• Mutual authentication. If using secure communication, determine if mutual authentication is required. To
require mutual authentication, enter Y. Default is N.

6. Optionally, install Agent Relay as Windows Service:

Installation

42



For newer versions of Windows, you will need to run as Administrator from the command line to install as a Win-
dows Service. For example: C:\Windows\system32>.

• Open the command line and point it to the Agent Relay's \bin\service directory.

• Run: ah3relay.cmd install.

• Follow the instructions on the installer to run the service with Log on Service rights.

• Enter the user account name, including the domain path, to run the service. Default is .\localsystem.

• Enter Y to start service automatically. Default is N. Service must be manually started the first time.

• To remove the Agent Relay as Windows Service, run: ah3relay.cmd remove.

7. Start the Agent Relay.

• To start the Agent Relay in a new shell, go to the Agent Relay's \bin directory and run start_ah3relay.cmd.

Or:

• To start the Agent Relay from the command line, run ah3relay run.

8. See Install the Agent with Relay (Windows).

Install the Agent with Relay (Windows)
Make sure the AnthillPro server, Distributed Web Interface (if used), and Agent Relay are installed. See Windows
Server Installation from zip File; Install Distributed Web Interface (Windows); and Install Agent Relay (Windows).

If you are not using the Agent Relay, follow the agent installation instructions found in Installing AnthillPro.

1. Download the anthill3-<version>.zip file. If you only installing agents, you can download the ant-
hill3-agent-<version>.zip file, which is much smaller.

2. Expand the zip file using a tool like WinZip. Expanding will create a anthill3-install directory.

3. Open the anthill3-install directory.

4. Run the install script install-agent.bat.

5. Provide the following information:

• Directory where the AnthillPro agent should be installed. For example: C:\Program Files\anthill3\agent. To
have the installer create the directory, enter Y.

• Java home. Enter the Java home used to run the Agent. The installer will attempt to find it, or use the
JAVA_HOME variable. If not found, you will need to enter it here.

• Relay connection. Enter Y. Before continuing, make sure the Agent Relay is already installed (separate down-
load). See Install Agent Relay (Windows).

• Host name or address of the Agent Relay. Default is localhost.

• Port which the Agent Relay will use for communication. Default is 7916.

Installation

43



• Determine if communication should be secured using SSL. Default is N.

When using SSL, you need to turn it on for both the server and the agent -- otherwise the agents will not be able to
connect to the server. If you are using the agent relay, ensure that SSL is turned on for all three components:
server, agent, and agent relay. This rule also applies if using mutual authentication.

• If using SSL, determine if mutual authentication should be used. Default is N.

• HTTP port the Agent Relay will use for web requests. Default is 20080.

6. Name. Give a unique, meaningful name for every agent installed.

7. Type Y to automatically install the AnthillPro agent as a Windows service. Type N to complete installation pro-
cess.

For newer versions of Windows, you will need to run as Administrator from the command line to install as a Win-
dows Service. For example: C:\Windows\system32>.

8. If automatically installing the AnthillPro agent as a Windows service, enter:

• Service unique name. Default is ah3agent. (A unique name is required for each instance.)

• Login for installed agent service. Default is .\localsystem.

• Yes to automatically start service.

To manually install the AnthillPro agent as a Windows service:

For newer versions of Windows, you will need to run as Administrator from the command line to install as a Win-
dows Service. For example: C:\Windows\system32>.

• Run ah3agent.cmd install uniqueservicename (located in bin\service folder of the AnthillPro directory).

• Provide the service name and account information.

To run the AnthillPro agent:

1. In Windows navigate to the AnthillPro server directory created during the installation. If you took our sugges-
tion, then this is: C:\Program Files\anthill3\agent. Enter the bin directory.

2. Run the start script: start_ah3agent.cmd.

3. Alternatively, from the command line run the start command bin\ah3agent.cmd start.

4. See Distributed Servers and Agent Configuration.

Install Distributed Web Interface (Linux/Unix)
Make sure the AnthillPro server is already installed. See Linux/Unix Server Installation from tar.gz File.

Installation

44



1. Download the anthill3-distributed-web-<version>.tar.gz file.

2. Expand the archive. Expanding will create the anthill3-distributed-web directory.

3. Open the anthill3-distributed-web directory.

4. Run: install.sh.

5. Provide the following:

• Directory where the Distributed Web Interface is to be installed. Enter the directory where the Distributed
Web interface should be installed. Default is /opt/anthill3/dist-web. If the directory does not already exist,
enter Y to have the installer create it.

• Java home. Enter the Java home used to run the Distributed Web interface. The installer will attempt to find it,
or use the JAVA_HOME variable. If not found, you will need to enter it here.

• AnthillPro server IP or host name. Enter the IP or host name of the AnthillPro server. This is the host, or IP,
on which the Distributed Web Interface can contact the main AnthillPro server. To determine the AnthillPro
server IP or host name, go to: AnthillPro UI > System > Server Settings.

• HTTP or HTTPS for AnthillPro server. If the AnthillPro server is using HTTPS, enter Y. Otherwise, enter
N. Default is N. To find if the AnthillPro server uses HTTPS, go to the AnthillPro server's /conf/server/ direct-
ory and open the install.properties file in a text editor. Check the install.server.web.always.secure= prop-
erty.

• AnthillPro server port for web connection. Enter the port on which the AnthillPro server listens for web
connections.

• If using HTTP, the default port used for web connections is 8080.

• If using HTTPS, the default port used for web connections is 8443.

To find the port, go to the AnthillPro server's /conf/server/ directory and open the install.properties file in a
text editor. Check the install.server.web.port= property.

• Legacy communication port. Enter the legacy port on which the AnthillPro server listens for remote connec-
tions. If AnthillPro is being installed for the first time, use the default 4567.

For 3.6.x communication has been changed, so the legacy port must be updated. To find the port, go to the
AnthillPro server's /conf/server/ directory and open the install.properties file in a text editor. Check the in-
stall.server.port= property.

• New AnthillPro internal communication port. Enter the new communication port which the AnthillPro serv-
er listens on. The new default value is 7915.

• Distributed Web Interface communication port. Enter the port on which the Distributed Web interface
should use for communication. Default is 7917.

• Secure communication. Determine if using secure communication. To use secure connection between the
agent, the Relay (if used), and the AnthillPro server, enter Y. Default is N.

• Mutual authentication. If using secure communication, determine if mutual authentication is required. To
require mutual authentication, enter Y. Default is N.

• Distributed Web Interface user name. Enter the user name to use when connecting the Distributed Web in-
terface to the AnthillPro server. Default is admin. This is the admin account created during installation of the
AnthillPro server. The default user name, admin, should be used, along with the current password associated
with this account.

Installation

45



• Password. Enter the password to use when connecting the Distributed Web interface to the AnthillPro server.
Default is admin. This is the password associated with the admin account created during installation of the
AnthillPro server. The default user name, admin, should be used, along with the current password associated
with this account.

• Name. Give a name for this Distributed Web node. Each node should have a unique, meaningful name. De-
fault is dist-web.

• Distributed Web IP or host name. Enter the IP or hostname the Distributed Web will listen on. Default is
0.0.0.0. The default value will allow the Distributed Web to listen on all IPs associated with the AnthillPro
server.

• HTTP or HTTPS for Distributed Web Interface. Determine if the Distributed Web should use HTTPS or
not. Enter Y to use HTTPS, or N to use HTTP. Default is N.

• Distributed Web port for web connections. If using HTTPS, enter the port on which the Distributed Web
will listen for web connections. Default is 8443.

• Distributed Web port for web connections. Enter the port on which the Distributed Web interface will listen
for web connections. Default is 8080.

6. Start the Distributed Web Interface.

• Open the Distributed Web interface's '/bin' directory.

• Run: 'ah3web run'.

OR:

• Start the Distributed Web interface in the background. Run: 'ah3web start'.

7. Retrieve the Distributed Web Interface license.

8. Go to the AnthillPro server UI. Navigate to System > Licenses and paste the license in the Upload New License
text field. Click Upload then Done.

9. See Install Agent Relay (Linux/Unix) and Managing Distributed Servers.

Install Agent Relay (Linux/Unix)
If Agent communication is routed through the relay proxy, the Relay must be installed before installing the agents
that will use it.

Before installing the Agent Relay, make sure the AnthillPro server is installed (see Linux/Unix Server Installation
from tar.gz File) and that the license has been uploaded to the AnthillPro server (see Upload Distributed Servers Li-
cense).

1. Download the anthill3-agent-relay-<version>.tar.gz file.

2. Expand the file to create the anthill3-agent-relay directory.

3. Open the anthill3-agent-relay directory.

4. Run the install script install.sh.

5. Provide the following:

Installation

46



• Location of Agent Relay. Give the directory where the Agent Relay should be installed. Default is /
opt/anthill3/relay. If the directory does not already exist, enter Y to have the installer create it. Default is Y.

• Java home. Enter the Java home used to run the Distributed Web interface. The installer will attempt to find it,
or use the JAVA_HOME variable. If not found, you will need to enter it here.

• Name. Give a name for the relay. Each Agent Relay should be given a unique, meaningful name. Default
name is agent-relay.

• Agent Relay IP or host name. Enter the IP or hostname the Agent Relay will listen on. Default is 0.0.0.0. The
default value will allow the Agent Relay to listen on all IPs associated with the AnthillPro server.

• Port Relay listens on for HTTP requests. Enter the port on which the Agent Relay should listen for HTTP
requests coming from the agent(s). Default is 20080.

• Port Relay uses for communication. Enter the port on which the Agent Relay will use for communication
with the agent. Default is 7916.

• AnthillPro server IP or host name. Enter the IP or host name of the AnthillPro server. This is the host, or IP,
on which the Agent Relay can contact the main AnthillPro server. To determine the AnthillPro server IP or
host name, go to: AnthillPro UI > System > Server Settings.

• AnthillPro server communication port. Enter the port which the AnthillPro server uses for communication.
If you used the default value during server installation, use 7915. If the AnthillPro server uses a different port,
go to the AnthillPro server's /conf/server/ directory and open the install.properties file in a text editor. The
port is listed in the install.server.jms.port= property.

• Secure communication. Determine if using secure communication between the server, the relay, and the
agents. To use secure connection, enter Y. Default is N.

• Mutual authentication. If using secure communication, determine if mutual authentication is required. To
require mutual authentication, enter Y. Default is N.

6. Start the Agent Relay.

• To start the Agent Relay in a new shell, go to the Agent Relay's /bin directory and run ah3relay start.

Or:

• To start the Agent Relay from the command line, run ah3relay run.

7. See Install the Agent with Relay (Linux/Unix).

Install the Agent with Relay (Linux/Unix)
Make sure the AnthillPro server and Distributed Web Interface are installed. See Linux/Unix Server Installation
from tar.gz File and Install Distributed Web Interface (Linux/Unix).

If you are not using the Agent Relay, follow the agent installation instructions found in Installing AnthillPro.

1. Download the anthill3-<version>.tar.gz file. If you only installing agents, you can download the ant-
hill3-agent-<version>.tar.gz file, which is much smaller.

2. Open a UNIX shell to the directory containing the above downloaded file.

3. Extract the downloaded file. Type: tar -zxf anthill3-<version>.tar.gz.

Installation

47



• On some installations of Solaris and HP-UX the default tar command will not properly handle our tar files.
You may need to use \ install GNU tar.

When installing AnthillPro on Solaris, it is recommended to use korn shell (ksh).

4. cd anthill3-install.

5. Run the install script: ./install-agent.sh.

6. Provide the following information:

• Directory where the AnthillPro agent should be installed. For example: /opt/anthill3/agent . To have the in-
staller create the directory, enter Y.

• Java home. Enter the Java home used to run the Agent. The installer will attempt to find it, or use the
JAVA_HOME variable. If not found, you will need to enter it here.

• Relay connection. Enter Y. Before continuing, make sure the Agent Relay is already installed (separate down-
load). See Install Agent Relay (Linux/Unix).

• Host name or address of the Agent Relay. Default is localhost.

• Port which the Agent Relay will use for communication. Default is 7916.

• Determine if communication should be secured using SSL. Default is N.

When using SSL, you need to turn it on for both the server and the agent -- otherwise the agents will not be able to
connect to the server. If you are using the agent relay, ensure that SSL is turned on for all three components:
server, agent, and agent relay. This rule also applies if using mutual authentication.

• If using SSL, determine if mutual authentication should be used. Default is N.

• HTTP port the Agent Relay will use for web requests. Default is 20080.

7. Enter name of agent.

To run the AnthillPro agent, follow the steps below:

1. Open a UNIX shell to the directory where you installed the agent. If you took our suggestion, then this is: /
opt/anthill3/agent.

2. cd bin.

3. Run the script: ./ah3agent start.

See Distributed Servers and Agent Configuration.

Distributed Servers and Agent Configuration
Configure the Agent to use the Distributed Web Interface for Codestation caching. Follow the instructions given in
Configure Agent(s). From the Preferred Server drop-down menu, select the Distributed Server you want this agent
to receive work from.

Installation

48



Agents that are installed on the same LAN as the distributed server will maximize server performance. See Man-
aging Distributed Servers.

Using SSL with Distributed Web Interface
It is possible to configure the AnthillPro server to use SSL with the Distributed Web Interface. To do so, you will
need to import an existing certificate and switch to https. Before you begin, make sure AnthillPro is not running any
jobs (you can do this on the Current Activity page). The ports listed in the examples may be different than those
used by your AnthillPro system.

1. Shutdown the AnthillPro server and backup the following files:

• conf/server/installed.properties

• opt/tomcat/conf/server.xml

• opt/tomcat/webapps/ROOT/WEB-INF/web.xml

2. Edit conf/server/installed.properties file:

• Change: install.server.web.always.secure=Y

Add: install.server.web.https.port=8443

3. Edit opt/tomcat/conf/server.xml file:

• Change: port 8080 connector

Add: redirectPort="8443"

Add a new connector:

<Connector port="8443"
address="0.0.0.0"
maxThreads="150"
minSpareThreads="25"
enableLookups="false"
acceptCount="100"
debug="0"
connectionTimeout="20000"
disableUploadTimeout="true"
algorithm="SunX509"
scheme="https"
secure="true"
clientAuth="false"
sslProtocol="TLS"
keystoreFile="conf/tomcat.keystore"
keystorePass="changeit" />

4. Edit opt/tomcat/webapps/ROOT/WEB-INF/web.xml file:

• Replace: <!-- security-constraints --> with:

Installation

49



<security-constraint>
<web-resource-collection>
<web-resource-name>
Tools

</web-resource-name>
<url-pattern>/tools/*</url-pattern>

</web-resource-collection>
</security-constraint>

<security-constraint>
<web-resource-collection>
<web-resource-name>
Automatic SSL Forwarding

</web-resource-name>
<url-pattern>/*</url-pattern>

</web-resource-collection>
<user-data-constraint>
<transport-guarantee>
CONFIDENTIAL

</transport-guarantee>
</user-data-constraint>

</security-constraint>

5. To import certificate go to opt/tomcat/conf directory and run the following command (assuming Java /
bin directory is on your path):

• keytool -import -noprompt -alias tomcat -file path_to_certificate_file.crt
-storepass "changeit" -keystore tomcat.keystore

6. Start server.

Installation

50



Chapter 9. Setting Up the Server
Before you can start buildign projects, it is recommended to take some time and set up the AnthillPro server's global
settings. At the minimum, most users find the following necessary:

1. License activation.If not already done so, obtain a license and install it in the server. AnthillPro will not run
without a license.

2. Set up security and users. If you are going to have more than the "admin" user, you will most likely need to con-
figure security and add users.

3. Assign agent to an environment (configure agent). All builds and other similar processes run on an agent. In or-
der for an agent to be available for a build, it needs to be assigned to an environment.

4. Set up the global repository. You build projects need to be associated with a specific SCM. You will need to set
the global SCM integration prior to project configuration.

Installing a License
As part of installation, you should have already download and activated your license. If not, you will need to go to
Supportal [http://www.support.urbancode.com/], the Urbancode support portal, where you downloaded the installa-
tion package and retrieve the license:

1. Go to Supportal [http://www.support.urbancode.com/] to retrieve the license from your account.

2. Go to TEAMS/USERS > Licenses. If you do not see a license, either one does not exist for your account or you
do not have permissions to download a license. Please contact your sales representative for more information.

3. Select the view license link on the right hand side of the appropriate license.

4. In the pop-up, click download.

5. Open the license, copy it, and paste it in the License field as outlined in either the Windows Installation or Linux/
Unix Installation section.

Basic Security and User Configuration
In AnthillPro, you have detailed control over what a user can see and do. The system enables you to map your or-
ganizational structure by teams, activities, etc. For example, you can set up AnthillPro so that a developer only sees
the projects they work on, or the QA team can only access the build artifacts.

Security management begins with Roles. In turn, each Role has corresponding Permissions to either restrict or allow
a user to perform tasks, view pages, etc. Once the Roles and Permissions have been configured, Authorization
Realms realms and then Authentication Realms are configured. Once security is configured, Audits may be per-
formed for the who-when changes Administrative users make to the system.

While you can configure a project as the admin user, and allow multiple people to concurrently log on to Ant-
hillPro as the same user, it is advisable to add users -- and assign them a default role -- before going forward. This
will allow you to see how AnthillPro integrates with other tools such as LDAP as well as allow you to control who
gets notified for which events.

51

http://www.support.urbancode.com/
http://www.support.urbancode.com/
http://www.support.urbancode.com/
http://www.support.urbancode.com/


To set up security and add users, see the Security section.

Configure Agent
When an agent is installed and started on a host (i.e., a different machine), it contacts the AnthillPro central server.
When a connection is established, the agent will show up under the Available tab (go to Agents > Agent > Avail-
able). The agents listed on the Available tab must be configured before they can start accepting work from the serv-
er and running commands, such as invoking your build script.

To configure an agent:

1. Go to Agents > Agent.

2. Select the Available tab. This page lists all the agents that can access the server, but are not available to run a
build. If you installed an agent but it does not appear on this tab, make sure the agent is running and able to con-
nect to the server (e.g., there is no firewall blocking server-agent communication).

3. Provide the following:

• Name. Give the agent a descriptive name. The current name of the agent was given during the installation pro-
cess. AnthillPro will automatically update the agent if it's name is changed.

• Throughput Metric. The throughput metric provides a hint to AnthillPro’s load balancer. In a busy Build-
Farm, it may be that several machines could handle a request, but each is already running builds. To determine
which machine is best equipped to handle the additional build, the load balancer compares the machine’s
throughput metric number to the number of jobs that are running on it. So a server with a metric of 10 will get
a third job assigned to it before a server with a metric of 1 gets its second job.

• Maximum Job Count. Agents can also be given a maximum number of jobs that they may run. If all agents a
job can run on are at their maximum, it waits queued until a machine frees up.

• Preferred Server. If utilizing distributed servers, select the appropriate server. In most cases, the agent should
be connected to the preferred server via a LAN. Otherwise, select "none". See Distributed Servers and Agent
Configuration.

• Environments. You must check at least one environment. For running builds, most people select Build-Farm.
This information will be used during project configuration.

If you are setting up AnthillPro for the first time, you can configure the agent to participate in all of the default
environments (Build-Farm, Production, and QA). See Environment Management for a more detailed discus-
sion.

4. Click Set then Done. The agent will automatically move to the Configured tab.

See also Agent Configuration for a more detailed discussion.

Agent Properties (Installation)
The Properties tab (see below) on the agent configuration page allows you to view or set custom variables on the
agent.

• The custom variables can indicate where build or testing tools are installed.

• In the Locked Variables section, review the system and environment variables. Those are often used in agent fil-

Setting Up the Server

52



ters.

See also Agent Configuration for a more detailed discussion.

Agent Security tab
Manage user access on the Security tab. Administrators can define what roles have access to read, write, or determ-
ine security for agents.

See also Agent Configuration for a more detailed discussion.

Using Agent Proxies
Once the agent has been installed, a proxy may be set up. Use an agent proxy for any agents where the direct agent-
sever communication is prohibited. Once enabled, the proxy allows the agent to send logs, reports and other artifacts
to the server. See Using Agent Proxies.

Set Up Repositories
The SCM integrations enable AnthillPro to check out code, access the changelog, and label the repository (where
supported). To do this, AnthillPro is first configured with your repository type at the System level, and then each
workflow is associated with the source to be built.

The SCM integrations are implemented as job steps for a build job. Once you have completed source configuration,
you can use the Job Wizard to automatically add steps to your build job -- this ensures that AnthillPro will consist-
ently checkout and build the correct code.

Each SCM integration typically performs the following for any repository:

• Checkout. This step enables you to define which version of code to check out from the SCM. For example, you
can configure this step to checkout the latest source code; or perform a checkout based on a branch, label, date,
etc. (depending on what your SCM supports).

• Get-changelog. The retrieved changelog is usually based on the changes made since the previous build. This step
enables AnthillPro to extract data from the SCM and then store it in the AnthillPro data warehouse. Since Ant-
hillPro stores the changelogs, it can parse the data, allowing you to override the default behavior. For example,
you can select a starting point for the changelog based on criteria such as the latest production build.

• Label. AnthillPro can also apply a label to the source code used in the build (e.g., snapshot, baseline). This
unique identifier for a build can be used to recreate a build if necessary.

• SCM-specific commands. For most repository types, AnthillPro can also perform tasks only supported by that
particular SCM.

To set up the global repository configuration, choose from the following (it is possible to configure multiple global
repositories):

AccuRev Perforce

ClearCase PVCS

CVS Rational Team Concert (SCM)

Dimensions StarTeam

File System Subversion (SVN)

Setting Up the Server

53



Git Synergy

Harvest TFS Source Control

(Integrity) MKS Source Integrity Vault (SourceGear)

Mercurial Visual SourceSafe (VSS)

Using Commit and Other Triggers
Enabled on the workflow, a trigger is an automated mechanism for kicking off a process, such as an automated
build. If you use the repository-type trigger, AnthillPro will kick off a build every time a change is detected. In Ant-
hillPro, you can use one of three trigger types:

• Scheduled trigger. The simplest type to configure, the scheduled trigger fires either on a regular interval (e.g.,
every few minutes, hours, etc.) or can utilize a Cron expression for irregular, but recurring, schedules. When used
for CI, the scheduled trigger polls the SCM for source changes. If changes are found, a build is kicked off. See
Use Agent Filters and Quiet Periods for more detailed information.

• Repository (commit) trigger. Many SCM types support commit triggers that allow AnthillPro to kick off a build
at the time source changes are made. Repository triggers are far more efficient than scheduled triggers, as they
don't poll the SCM, and are the most common trigger type used for CI builds. See Use Agent Filters and Quiet
Periods for more detailed information.

If you are unsure if your SCM supports commit triggers, please check the SCM Tools section for instructions on
configuring a commit trigger.

• Event trigger. An advanced trigger type, the event trigger allows for a custom filter that taps into the AnthillPro
event service and triggers actions when certain events occur. For example, an event trigger would listen for build
completed events, check those events against the project’s dependencies, and force a build of the project if a de-
pendency builds successfully.

This section is for general trigger usage. If you followed the instructions for setting up a CI build, you should have
already configured a trigger. If not, you can follow the process below. Otherwise, you can use this section as a
basis for switching to a repository trigger.

To activate a commit trigger, ensure that your SCM type supports it. Generally, AnthillPro provides a hook script
for most SCMs that support commit triggers. If you are unsure, please check the SCM Tools section for instructions
on configuring a commit trigger. Generally, trigger configuration is as follows:

1. Go to Administration and select the workflow of the project you want to trigger.

2. On the Workflow page, select the Triggers tab and then click the New Trigger button.

3. Select Trigger type from the drop-down menu and click Select.

4. Configure trigger. Generally, you have the following options:

• Name. Give a name that identifies this trigger.

• Force. By default, AnthillPro does not force a build if the trigger does not find any code changes when the
trigger fires. It is rare that you will want to force a build every time the trigger fires, so leave this filed blank.

• Enabled. By default, when you create a new trigger it is enabled, which is what you want for a CI build.

Setting Up the Server

54



• Click Save then Done.

5. The next time the trigger fires, and it detects a source change, the build will take place. It will be identified (on
the Dashboard) by the type of trigger that kicked of the build.

Note that if you are not seeing builds, it is most likely because no changes have been made to the source code.

Setting Up the Server

55



Chapter 10. Create a New Project
Creating a Project brings together two other AnthillPro concepts: Lifecycle Models and Environment Groups. When
setting up a project for the first time, you can use the default options (given below) for simplicity. However, it is
also possible to configure custom Models and Environment Groups: if you go this route, it may be worth reading the
Concepts section first.

Setting Up a Build
When getting started with AnthillPro, it is helpful to think of the build process (simply called the "build") as having
three stages:

• Input. Consists of the source code, located in an SCM. To run a build, AnthillPro will need to know where to find
the source code.

• Transformation. The actions necessary to generate the output. In AnthillPro, this corresponds to the workflow
and job.

• Output. The result of the transformation, called the build artifacts.

To achieve a successful build:

1. Make sure the AnthillPro server and at least one agent are installed and running.

2. Know the AnthillPro server URL (e.g., http://localhost:8080/), as well as your user name and password, to log on
to AnthillPro.

3. The URL of the source repository (e.g., CVS, Subversion, TFS, etc.). Because AnthillPro will check out a copy
the source code when a build is requested, you will also need to give AnthillPro access to the repository, usually
assigning a user account to AnthillPro.

4. Configure a new project. This project, called a Life-Cycle Based project in AnthillPro, is composed of at least
one workflow that will run the build.

5. Configure the repository (SCM). Let AnthillPro know about the source repository before you configure a work-
flow.

6. Create a new workflow. The workflow is AnthillPro's basic unit of process automation. It is where you define
how the transformation (i.e., the build) will take place, as well where you will perform source configuration.

7. Create a new job. The job is the building block of the transformation, and is composed of a series of actions the
server must perform (called "steps" in AnthillPro). The job, in turn, is added to the workflow.

8. Complete build process configuration. Before you can run a build, you need to tie the workflow and job into a
complete build process.

9. Run a build. Once the configuration is done, you are ready to build!

Configure Project
To create a new project:

56



1. Go to the Administration page click the New Project icon.

2. On the Create a Project page, check the Life-Cycle Based project and click Select. In AnthillPro, it is the Life-
Cycle Based project that is used to run a build.

For those just starting out, it is best to use the default settings and configurations, where possible, when setting up
your build. Once you become more familiar with AnthillPro, you can begin to use the more advanced features.

• Name. Give a name for this project. Typically, the name should reflect the type of project. You can map the
name to your existing build infrastructure.

• Description (optional). Give a description of this project. The descriptions allow you to convey more informa-
tion about the project.

• Life-Cycle Model. Select the Example Life-Cycle Model. This is the default model that ships with AnthillPro.

If you want to use your own Life-Cycle Model, see Using a Custom Lifecycle Model.

• Environment Group. Select the Default Environment Group that ships with AnthillPro.

• Click Save.

Using a Custom Lifecycle Model
A Life-Cycle Model allows you to create a reusable template that maps your organizational structure. For example, a
typical set-up would be DEV, QA, PROD process (i.e., pipeline or life-cycle): a build starts out in development, is
deployed to quality assurance for testing, and then finally sent to production for release. You would configure the
Life-Cycle Model to apply a new status when a build is sent to QA, and one when the build is sent to PROD. Like-
wise, a stamp style (essentially a build identifier) can be applied to each build that corresponds to the status. This en-
ables you to know exactly which build is in which environment because the status and stamp are recorded on the
Dashboard.

Life-Cycle Models, then, give you control over how a build is identified, the different stages a build must go through
on its way to the end user, how artifacts are handled, and which clean-up policies are enforced.

Life-Cycle Models are closely associated with AnthillPro's Build Life concept: Much of what you configure in the
Life-Cycle Model determines how a Build Life is identified and used. See Build Life for more.

Once a Life-Cycle Model is created, it may be used for multiple projects with similar Life-Cycles without having to
reconfigure a list of Statuses, Stamps, Artifact Sets, and Cleanup for the new project. This enables you to create sys-
tem-wide standards that every team must use when configuring projects.

Create a New Project

57



When getting started, it is usually best to use the default Lifecycle Model until you are familiar with how the models
work. Once you have few builds going, and even deploying, you can create your own model that better reflects you
organizational structure.

See Using Life-Cycle Models for a complete discussion.

Configure the Repository (SCM)
Before you can configure a project's build workflow, you need to let AnthillPro know about the repository type you
use (if not already done so as outlined in the Setting Up the Server section). The information you give in this section
will eventually be shared by multiple projects.

1. Select your repository type from the list below and follow the instructions.

AccuRev Perforce

ClearCase PVCS

CVS Rational Team Concert (SCM)

Dimensions StarTeam

File System Subversion (SVN)

Git Synergy

Harvest TFS Source Control

(Integrity) MKS Source Integrity Vault (SourceGear)

Mercurial Visual SourceSafe (VSS)

2. See Create a New Workflow.

Create a New Workflow
The workflow is AnthillPro's basic unit of process automation for a project. It is where you define how the trans-
formation (build) will take place, as well as the source code that corresponds to the project (source configuration).
During workflow creation, you will need to provide further information about the SCM type you configured on the
System page.

1. Select the Add Workflow icon of your new project.

2. Next, check Originating workflow and click Select on the New Workflow page. In AnthillPro, it is the Originat-

Create a New Project

58



ing workflow that is used to run build. Non-Originating workflows are secondary processes (such as deploy-
ments) that can be run on the build.

3. Workflow configuration:

• Name. Give a name for this workflow. Typically, the name should reflect the type of work to be performed
when this workflow runs. For example, "Trunk Build."

• Description (optional). Give a description of this workflow. The description allows you to convey more in-
formation about the workflow.

• Environment. Assign the workflow to the Build-Farm environment. In AnthillPro, the environment is the loc-
ation where the build takes place. AnthillPro ships with 3 default environments:

• Build-Farm. Generally, this is the environment that all builds take place within, and is most closely associ-
ated with Development. This is the environment you want your builds to run in.

• QA. This environment is provided for performing quality assurance testing. Most often, when you are send-
ing a build to testing, you want that workflow to run in this environment. See Setting Up a Deployment for
more.

• Production. This environment is typically used to deploy your builds once they are ready for production.
See Setting Up a Deployment for more.

• Notification Scheme. Select the Default Notification scheme. By default, AnthillPro will send an e-mail noti-
fication to all AnthillPro users on completion of the workflow. For now, don't worry if you aren't getting any e-
mails. This will be covered in more detail when you set up a Continuous Integration build.

• Priority. Use the default Normal Priority. Once you have a lot of projects going in AnthillPro, you may need
to prioritize which workflows run first.

• Skip Quiet Period. Select No, the default value. This will ensure that the build takes the most recent source
code. It is not recommended to skip the workflow's quite period under most circumstances. By default, Ant-
hillPro based the quiet period on the changelog, which is what you need when configuring scheduled builds.
See Use Agent Filters and Quiet Periods for more.

• Click Save.

4. Source Configuration. Select the repository you want to associated with this workflow and click Set. This
should correspond to the repository you configured earlier.

Once the repository is selected, you will be able to configure additional properties that tie this workflow to the
specific source that will be built. See the Source Configuration section of the repository type used by this work-
flow. When done, go to the next item.

AccuRev Mercurial

ClearCase Base Dynamic View Perforce

ClearCase Base Snapshot View PVCS

ClearCase UCM Dynamic View Rational Team Concert (SCM)

ClearCase UCM Snapshot View StarTeam

CVS Subversion (SVN)

Dimensions Synergy

File System TFS Source Control

Git Vault (SourceGear)

Harvest Visual SourceSafe (VSS)

Create a New Project

59



(Integrity) MKS Source Integrity

5. Set stamp value. To complete workflow configuration you will need to add a value to the default stamp (DEV)
under the Stamping Strategies menu. The stamp enables you to apply a custom identifier to a build, in addition to
the Build Life which AnthillPro automatically generates.

Without a Stamp Style value, AnthillPro will not be able to complete a build.

• Click the Create Value icon under the Action menu.

• Stamp. Give the value AnthillPro will use to stamp the build. The simplest way to make the stamp unique for
each build is to associate it with the Build Life number that AnthillPro automatically generates. For now, use
the following to generate a stamp:

build_${bsh:BuildLifeLookup.getCurrent().getId()}

The short BeanShell script looks up the current build ID and then applies that number to the stamp. So for
Build Life 1 the stamp will be build_1; for Build Life 2 the stamp will be build_2, etc.

For a detailed discussion on Stamps, see the Stamping section.

• Click Save.

6. Click Done.

7. See Create a New Job.

Originating (Build) Workflow and Artifacts Sets
Once a build has completed, the generated artifacts are still in the working directory. To have AnthillPro track the
artifacts, and make them available for deployments, etc., the artifacts need to captured and delivered to Codestation,
the artifact management system. Once the artifacts are in Codestation, AnthillPro will be able to keep track of them
as well as any other process, such as deployment to testing, etc., the artifacts are subjected to.

Capture and Deliver Build Artifacts

Since AnthillPro does not know what artifacts you want captured, you will need to label them so they can be
grouped and stored together. This is done by defining an artifact set on your build process. You can think of the arti-
fact set as a grouping of build artifacts (files) that allows for fine-grained consumption of the artifacts. Once the arti-
facts are labeled and grouped into an artifact set, you will need to manually add a Deliver Artifact step to your build
job.

To capture and deliver build artifacts:

1. Go to Administration and select the workflow you created in the Setting Up a Build section.

2. On the Workflow page, select the Artifacts tab, then click the New Artifact Config button.

Create a New Project

60



3. Configure artifact set:

• Artifact Set. Select an artifact set from the drop-down menu (using one of the defaults is fine). AnthillPro
ships with 3 default artifacts sets that correspond to the most common tiers of a 3-tier web application:

• APP. Used to group objects for deployment to the application tier of a 3-tier application.

• DB. Used to group objects for deployment to the database tier of a 3-tier application.

• WEB. Used to group objects for deployment to the web tier of a 3-tier application.

Generally, an artifact set is named for the type of objects which are grouped inside of them. The objects within
an artifact set, in turn, are grouped by how the objects are going to be consumed. (For now, we are focusing on
Artifact Sets used for deploying a project. In another section, we will cover using Artifacts Sets for depend-
ency management.)

• Base Directory. Here, you need to give the directory where the artifacts (say a jar or dll file) are placed once
the build is complete. This directory is relative to the build's working directory. So if your build places the arti-
facts in a "dist" directory, you would specify dist/ here. Note that if you leave this filed blank, AnthillPro
will include the entire contents of the working directory in the artifact set.

• Include Artifacts. List the artifacts to be retrieved from within the base directory. You can specify the names
of files that reside in the base directory: e.g., myProjectArtifacts.zip. Or, if the artifacts are located in
a sub directory, you specify something like bin/myProjectArtifacts.jar. Each include pattern must
be entered on a separate line.

You can also use the following wild cards to tell AnthillPro what to include in the artifact set:

• ** Indicates include every directory within the base directory.

• * Used to include every file. So, if you use *.zip, the files matching this pattern will be included.

• **/* Tells AnthillPro to retrieve the entire file tree underneath the base directory.

If you leave this filed blank, AnthillPro will include all the files in the base directory (if one was specified).

Advanced: To include symbolic links and empty directories, add the link/directory as part of your include pattern.
See Configure Server Miscellaneous Settings.

• Exclude Artifacts. Give the patterns of the artifacts that should be skipped from the include. This field is set in
the same way as the Include Artifacts field, only you are telling AnthillPro what NOT to include. If you leave
this filed blank, AnthillPro will exclude no files.

• Click Save.

4. To send the build artifacts to the management system (Codestation), you need to add the Artifact Delivery step
to your build job. Go to the job configuration page of the job you created in the Setting Up a Build section.

5. Click the Insert After icon of the step prior to where this step should run. Remember, the steps run in order, so
any step, such as the Artifact Deliver step, which deals with the build artifacts must come after the actual "build"
step.

6. On the Steps page, expand the Artifacts folder, select Artifact Deliver, and click Select.

7. Configure step:

• Name. Give a name for this step. A simple "Artifact Deliver" is sufficient.

Create a New Project

61



• Artifact Set. Select the artifact set you just finished configuring.

• Show Additional Options. These are advanced settings. For a simple deployment, you can skip these settings.

• Click Save.

8. If you configured more than one artifact set for the build, add an Artifact Deliver step for each set. For example,
if you are collecting different artifacts into the APP, DB, and WEB artifact sets, then you will need three deliver
steps -- one for each artifact set.

9. The next time your build runs, the artifacts will be delivered to the AnthillPro artifact management system. (If
you like, you can force a manual build.) This will make the artifacts available on the Dashboard.

To view the artifacts, go to the Dashboard and select your build workflow. Click on the most recent Build Life
(i.e., build number) and then select the Artifacts tab.

Once you have verified that the correct artifacts have been captured and delivered, see Create a Deployment Work-
flow. to send them to a different location.

Create a New Job
The job is the building block of the transformation, and is composed of a series of distinct actions the server must
perform (called "steps" in AnthillPro) to successfully run a build. For any job you create, the steps (actions) are ex-
ecuted by the server one at a time, in a specific order. When you are first starting out with AnthillPro, it is best prac-
tice to use the Job Wizard when creating a build job. That way you are ensured that the server will perform the cor-
rect action at the correct time.

1. To create a job, click the Add Job icon of your project. Note that a job can only be created after the project's ori-
ginating workflow has been created. If you get a message saying, "You must create an originating workflow and
configure a source config before creating any jobs," see Create a New Workflow before continuing.

2. Use the Job Wizard to create your build job. Check Yes and click Select. The Job Wizard will take you through
the steps necessary to create a build job.

3. Set up the job. On the Job's main page, you configure a number of controls, mostly dealing with how AnthillPro
should interact with source. When possible, beginners should use the default values. For any job, configure the
following:

• Name. Give a name for this job. Typically, the name should reflect the type of work to be performed by the
job. For example, "Build."

Create a New Project

62



• Description (optional). Give a description of this job. The description allows you to convey more information
about what this job does, etc.

• Stamp Style. Choose the DEV stamping style configured during workflow creation.

• For items such as Should Tag, Should Cleanup, Change Log Start Status, etc., use the default settings.
These are advanced settings.

• Click Next.

4. Add a builder. On the Builders tab, click Add a Builder.

• For any job, you need to let AnthillPro know what builder you use when you build source code for this project.
Choose your builder from the list below for instructions on configuring this item.

Ant Maven Ruby (Builder)

Groovy MSBuild Visual Studio (Builder)

Make Nant Shell/Perl Scripts

• Click Next.

5. Click Done. It is not necessary to add a publisher to complete a build. Publishers are used to share information
about the completed build or send the build artifacts to Codestation, AnthillPro's artifact management system.

6. See Complete Build Configuration.

Creating a Custom Build Job
Using the Job Wizard to create a build job is recommended, as it is the best way to ensure that your builds will be
configured correctly. However, it is also possible to create a custom build job. What this job will look like, and what
steps it contains, will depend on your processes and tools used. Generally, every build job should contain the follow-
ing steps at a minimum:

1. Cleanup Step. Cleans up the workspace prior to populating it. This ensures that any files you might pick up from
the build actually belong to the build and not a previous build.

2. Populate Workspace. Places the checked-out code (defined in the workflow's source configuration) in the work-
space.

3. Get Changelog. The retrieved changelog is usually based on the changes made since the previous build. This
step enables AnthillPro to extract data from the SCM and then store it in the AnthillPro data warehouse. Since
AnthillPro stores the changelogs, it can parse the data, allowing you to override the default behavior. For ex-
ample, you can select a starting point for the changelog based on criteria such as the latest production build.

4. Stamp. Applies a stamp to the build, which is used to identify the build within AnthillPro. See Stamping for
more.

5. Get Dependency Artifacts. If your project depends on any other project, you need to specify it here. Otherwise,
this step will just be skipped if no dependencies are defined.

6. Builder. Usually points to the location of tool or script used for the build.

Ant Maven Ruby (Builder)

Create a New Project

63



Groovy MSBuild Visual Studio (Builder)

Make Nant Shell/Perl Scripts

7. Assign Status - Success. Applies the status when the build completes successfully.

8. Assign Status - Failure. Applies the status when the build fails.

This build configuration uses generic job steps -- which should suffice for most builds. However, most of the SCM
integrations also include tool-specific steps (commands, etc.) that you can add to your build job. While these steps
are not required for a basic build, they may be helpful as you design more complicated build jobs.

When configuring a job, the steps are available under the SCM folder. The tool-specific job steps that may be added
to the generic build job or used to replace one of the generic steps where appropriate. For example, the ClearCase in-
tegration includes the following tool-specific steps that can be used to either replace or append the generic build:

• ClearCase Changelog. Performs a ClearCase changelog. You can use this step in place of the standard step.

• ClearCase Cleanup. Perform a cleanup of the current ClearCase working directory. You can use this step in
place of the standard step.

• ClearCase Label. ClearCase-specific label step. You can use this step in place of the standard step, if labels are
being used.

• Lock (ClearCase Base Dynamic Plugin only). Locks ClearCase resources. This steps adds ClearCase specific
functionality to the build job.

• Unlock (ClearCase Base Dynamic Plugin only). Unlocks ClearCase resources. This steps adds ClearCase spe-
cific functionality to the build job.

• ClearCase Populate Workspace (Legacy integration only). Populates the workspace With source from Clear-
Case. You can use this step in place of the standard step.

Complete Build Configuration
Once the job has been created, it needs to be added to the originating workflow you created earlier. This process ties
the build process together, and allows AnthillPro to generate the build artifacts when the build is run.

1. Go to the workflow you created in the Create a New Workflow section.

2. Select the Definition tab. The Workflow Definition is used to define the execution of the Job used by this work-
flow. A Workflow Definition has a single starting point and a single end point.

3. Use the default Embedded Definition. Click Select.

4. Click the Start button and select Insert Job After. Configure:

• Job. Select the job you created in the Create a New Job section. The job will appear in the drop-down menu
under "Project Jobs."

• Pre-Condition. Select Always as the pre-condition for this job. That way, the job will always run.

• Agent Filter. Select at least one agent from the Fixed Agent Selection list. Highlight the agent name in the list

Create a New Project

64



and click the plus sign (it will suffice to select one agent).

Once you are more familiar with AnthillPro, you can use agent filtering to determine which agent(s) a job can run
on, including using scripted agent selection. For more on scripted agent selection scripts, see the scripting docu-
mentation in the Development Kit Bundle at tools > anthill3-dev-kit.zip.

• Working Directory. Select Source Config's Work Directory from the menu. This will ensure that the build
takes place in the correct location.

• Lock for Workflow. Use the default value of No. Locking is an advanced feature.

• Click Insert Job.

5. Now that you have configured the build process, the next step is to run the build. See Run a Manual Build.

Run a Manual Build
Running a manual build is a simple push-button process. Once on the workflow's Main tab, you will be presented
with build options. For now, we simply need to get the project building.

1. Go to the Dashboard and select the workflow you want to build.

2. On the workflow's Main page, Click the Build button.

• If you get a message saying "New Build Life Not Needed," make sure the Force option is selected and click
the Build button again. Normally, AnthillPro only builds if the server finds source changes. Since this is the
first build, you may have to force the build.

• Delay Build (Advanced). To delay a build, check the box and then give the date and time you wish this work-
flow to run. This is a one-time event, not to be confused with a scheduled build. Once you configure a delayed
build, it appears on the Current Activity tab under the Delayed Builds (or Planned Workflow Execution in
some versions of AnthillPro) menu. There, you can delete the request for a delayed build.

3. Once the build has been started, you can check the build status on the workflow's My Activity tab. Refresh the
page to update status.

When done, you can consider some Next Steps.

Next Steps

• Continuous Integration. Now that you have the basic build going, try Setting Up Continuous Integration.

Create a New Project

65



• Notifications. You can configure AnthillPro to send out notifications about the state of your builds. See Basic
Notifications.

• Setting up a deployment process. Now that you have success with the basic CI build, you can turn your atten-
tion to the "output" phase of your build process: setting up an automated deployment process. See Setting Up a
Deployment.

• Add a dependency. Most project's will depend on another project. AnthillPro includes a dependency manage-
ment system that allows you to use the build tool to define all your dependencies. See Defining a Basic Depend-
ency.

Create a New Project

66



Chapter 11. Setting Up Continuous
Integration
Once you have the basic build going and delivering the artifacts to Codestation (see Setting Up a Build), you are
ready to create a Continuous Integration (CI) build process. To get the most out of CI, the build process can be sup-
plemented with the following AnthillPro features:

• Trigger. When a trigger is activated for a build workflow, AnthillPro will automatically kick off a CI build when
source changes are detected.

• Notifications. Send an e-mail to users when a workflow completes.

• Test integration. Integrate unit testing into your AnthillPro CI build workflow.

It's worth noting that you can add these "CI" features to your build process without having to practice CI. All the CI
features either add automation or extend ease of use to every build.

Before you continue, make sure you have a consistent build going. If your project has a few successful builds, that
will make it easier to troubleshoot problems as you add CI components to the build process (see Setting Up a Build).
To start notifying team members about the state of the build, you will also need administrative access to your e-mail
server.

Add a Workflow Trigger
Enabled on the workflow, a trigger is an automated mechanism for kicking off a process. In relation to CI, the trig-
ger will allow for automated builds. In AnthillPro, you can use one of three trigger types to kick off a build:

• Scheduled trigger. The simplest type to configure, the scheduled trigger fires either on a regular interval (e.g.,
every few minutes, hours, etc.) or can utilize a Cron expression for irregular, but recurring, schedules. When used
for CI, the scheduled trigger polls the SCM for source changes. If changes are found, a build is kicked off. See
Use Agent Filters and Quiet Periods for more detailed information.

• Repository trigger. Many SCM types support commit triggers that allow AnthillPro to kick off a build at the
time source changes are made. Repository triggers are far more efficient than scheduled triggers, as they don't poll
the SCM, and are the most common trigger type used for CI builds. See Use Agent Filters and Quiet Periods for
more detailed information.

• Event trigger. An advanced trigger type, the event trigger allows for a custom filter that taps into the AnthillPro
event service and triggers actions when certain events occur. For example, an event trigger would listen for build
completed events, check those events against the project's dependencies, and force a build of the project if a de-
pendency builds successfully.

When setting up your first CI build in AnthillPro, using the "Every 15 minutes" schedule for your trigger is the
simplest way to get the build going. The schedule was designed to be used in conjunction with the CI trigger.

To begin, activate a scheduled trigger:

1. Go to Administration and select the workflow of the project you created in the Setting Up a Build section.

2. On the Workflow page, select the Triggers tab and then click the New Trigger button.

67



3. Select Scheduled Trigger from the drop-down menu and click Select.

4. Configure trigger:

• Name. Give a name that identifies this trigger. For example, "CI Trigger."

• Schedule. From the drop-down menu, select the "Every 15 minutes" schedule that ships with AnthillPro. This
is the default schedule to be used in conjunction with CI. Fifteen minutes is a good interval for CI, in that it al-
lows for quick feedback and avoids unnecessary builds.

• Force. By default, AnthillPro does not force a build if the trigger does not find any code changes when it polls
the SCM. It is rare that you will want to force a build every time the trigger fires, so leave this filed blank.

• Enabled. By default, when you create a new trigger it is enabled, which is what you want for a CI build.

• Click Save then Done.

5. The next time the trigger fires, and it detects a source change, the CI build will take place. It will be identified as
a "Scheduled" build on the Dashboard.

Note that if you are not seeing scheduled builds, it is most likely because no changes have been made to the
source code. To see a scheduled build, you need commit a source change and wait for the CI build to occur.

6. See Set Up Notifications.

Set Up Notifications (CI)
You can set up AnthillPro to notify users when a build completes, to provide developers with more feedback on the
CI build. To do this, each workflow is assigned what is called a notification scheme in AnthillPro. The notification
scheme defines:

• Who is notified. For example, you can choose to notify just the developers who committed changes to the build,
every user that works with the project, every AnthillPro user, etc.

• When a notification is sent. AnthillPro can be configured to send a message when a workflow status changes (i.e.,
the build breaks), when any workflow completes regardless if it fails or not, etc.

• How the notification is sent. Standard notifications are sent either by e-mail or instant message.

AnthillPro ships with a Default CI Notification Scheme (in some versions it is simply called Default Notification
Scheme) that sends an e-mail to all repository committers upon a change in status to a CI workflow. Since you are
just getting started, it will be easiest to use this notification scheme.

Since you will be setting up AnthillPro to send e-mails, you will need to do some basic configuration within Ant-
hillPro and on your e-mail server. To begin sending notifications:

1. Follow the instructions given in the Configure Mail Server section and then go to the next item.

2. Go to Administration and select the workflow you created in the Create a New Workflow section.

Setting Up Continuous Integration

68



3. On the workflow Main page, verify that you are using the Default CI Notification Scheme. If so, you are done.
If not, go to the next item.

4. If the workflow is not using the Default CI Notification Scheme, click the Edit icon (the pencil on the left).

5. Select Default CI Notification Scheme from the Notification Scheme menu then click Save.

The next time a build is completed, committers to this project will receive an e-mail notification.

6. See Integrate Testing with Your CI Build.

Integrate Testing with Your CI Build
With AnthillPro automatically kicking off builds and sending out notifications, including a unit test suite that runs
every time you run a build will help identify any decrease in code quality. If you use CppUnit, JUnit, or NUnit, Ant-
hillPro has a built-in integration that will parse and then store your test results, making them available on the Dash-
board. This will enable you to use AnthillPro to view results, track changes over time, and even have AnthillPro e-
mail the results.

To integrate unit testing with your CI build, select the type of unit test you use from the list below and follow the in-
structions for adding them to your build process.

CppUnit NUnit

JUnit TestNG

When done, you can consider some Next Steps.

Next Steps

• Switch to a repository trigger. AnthillPro can be configured to use a repository trigger in conjunction with a
SCM system. With a repository commit trigger in place, a build is kicked off every time changes are committed to
the SCM. See Use Agent Filters and Quiet Periods and Workflow Triggers and Scheduled Builds.

• Configure custom notifications. Set up custom notifications with AnthillPro based on a number of different cri-
teria, including e-mailing test results. See Managing Notifications.

• Setting up a deployment workflow. Now that you have success with the basic CI build, you can turn your atten-
tion to the "output" phase of your build process: setting up an automated deployment process. See Setting Up a
Deployment.

Setting Up Continuous Integration

69



Chapter 12. Basic Notifications
Once configured, AnthillPro can routinely run builds with no interaction with the development or build team.
However, if it fails to communicate the results of builds, deployments, and promotions back to the team, it is only
useful when people log-in to the system to manually check the status. That is not very good. A better model is to
have AnthillPro send e-mails, instant messages, and other notifications to select team members.

The fundamental unit for managing notifications sent by AnthillPro is the Notification Scheme. A notification
scheme sets rules determining what groups of users are sent which kind of notification about specified events. Each
workflow is configured with a notification scheme within AnthillPro. The same scheme may be shared by many
workflows, even workflows in different projects.

AnthillPro sends a number of notifications to users in a variety of formats. Most commonly, AnthillPro is con-
figured to send either an e-mail or IM message regarding the state of a CI build. The recipient list of these notifica-
tions, as with other notifications AnthillPro sends out, are usually tied to the LDAP integration, etc., which is con-
figured as part of AnthillPro's security system; as well as your mail server and/or IM provider. This allows you an
easy way to send notifications to AnthillPro users (it is also possible to send notifications to non-users as well). You
can even compose custom notifications that send the information you want in the format you want. Currently, you
have the following standard options:

• Email notifications. The fundamental unit for managing notifications sent by AnthillPro is the Notification
Scheme. A notification scheme sets rules determining what groups of users are sent which kind of notification
about specified events. Each workflow is configured with a notification scheme within AnthillPro. The same
scheme may be shared by many workflows, even workflows in different projects. See Managing Notifications.

• Instant Messaging. AnthillPro can be used to send instant messages using Google Talk, Jabber, or MSN IM. For
example, AnthillPro may be configured to send an instant message to a group of committing developers when a
build fails, etc. See Managing Notifications.

The Google Talk and Jabber integrations are configured by following the XMPP IM link under the Notification
menu on the System page. The integration can be disabled any time by clicking the Disable button. Using the
Test User ID and Service Status fields allow you to troubleshoot the connection.

In addition to sending notifications via e-mail and IM, administrators can send out announcements to all AnthillPro
users. Once an announcement is sent, it will appear at the top of the UI for all AnthillPro users. Common uses for
announcements are to let everyone know when the server is going down for maintenance, report network problems,
etc. See Managing Notifications.

Set Up Basic Notifications
Each workflow is assigned what is called a notification scheme in AnthillPro. The notification scheme defines:

• Who is notified. For example, you can choose to notify just the developers who committed changes to the build,
every user that works with the project, every AnthillPro user, etc.

• When a notification is sent. AnthillPro can be configured to send a message when a workflow status changes (i.e.,
the build breaks), when any workflow completes regardless if it fails or not, etc.

• How the notification is sent. Standard notifications are sent either by e-mail or instant message.

If you followed the instructions for setting up a CI build, you have already configured the basic notifications. This
section is intended for those who are not configuring CI builds.

70



AnthillPro ships with a Default Notification Scheme that sends an e-mail to all repository committers upon a change
in status to a workflow. We'll use this as a basic notification. To begin sending notifications:

1. Follow the instructions given in the Configure Mail Server section and then go to the next item.

2. Go to Administration and select the workflow you want to add notifications to.

3. On the workflow Main page, verify that you are using the Default Notification Scheme. If so, you are done. If
not, go to the next item.

4. If the workflow is not using the Default Notification Scheme, click the Edit icon (the pencil on the left).

5. Select Default Notification Scheme from the Notification Scheme menu then click Save.

The next time a build is completed, committers to this project will receive an e-mail notification.

Basic Notifications

71



Chapter 13. Setting Up a Deployment
If you recall, the build process is composed of three stages: input, transformation, and output. Once you have a con-
sistent build going, you should have a pretty good idea on how AnthillPro tackles the first two phases of the build
process to generate output and deliver the artifacts to Codestation (the artifact management system). At this point,
you can set up a deployment process in AnthillPro that will enable you to move the artifacts (or the output of the
build process) to a different location. For example, the deployment process is typically used to move the artifacts so
they can be: tested in a different environment; delivered to specialized hardware; subjected to exhaustive testing; etc.
Once the deployment process is set up, AnthillPro will keep track of what was deployed; when the deployment took
place; where the artifacts ended up; who ran the deployment; as well as the build that generated the artifacts.

Setting up a deployment process is similar to setting up the build process: you will need to configure a workflow and
a job. However, since a deployment is a secondary process (called a non-originating workflow in AnthillPro) that
runs after a build has completed, you will need to configure what is called a non-originating workflow. In other
words, a non-originating workflow is configured for any process you want to subject an existing build to. So a de-
ployment is one type of secondary process responsible for moving the artifacts around.

To achieve a successful deployment, you will need to:

1. Already have at least one successful build in AnthillPro. It's a good idea to get a consistent build process in place
before dealing with deploying artifacts. If you have not successfully built a project in AnthillPro, see Setting Up a
Build.

2. Create a deployment workflow. Creation is similar to that of a build workflow, but is simpler to configure. A
deployment workflow (implemented as a non-originating workflow) inherits many of its properties from the
project's build workflow.

3. Create a deployment job. Similar to creating a build job, the deployment job includes steps that move the arti-
facts to a different location. However, you will not use the Job Wizard to create the deployment job.

4. Run a deployment. Once configuration is done, you are ready to run the deployment.

Create a Deployment Workflow
Remember that in AnthillPro the originating workflow is used for setting up a build process, and that the non-
originating workflow is set up to run a secondary process on a completed build. So when setting up a deployment
process, you will need to configure a non-originating workflow.

To create a deployment workflow:

1. Go to Administration and select the Add Workflow icon of the project you created in the Setting Up a Build
section.

2. Next, check Non-originating workflow and click Select on the New Workflow page. In AnthillPro, it is the non-
originating workflow that is used to run a deployment.

3. Workflow configuration:

• Name. Give a name for this workflow. Typically, the name should reflect the type of work to be performed
when this workflow runs. For example, "Deploy."

• Description (optional). Give a description of this workflow. The description allows you to convey more in-
formation about the workflow.

72



• Environment. In AnthillPro, the environment is the location where the deployment takes place. Select the en-
vironment you would like this deploy workflow to run in. For example, if your build took place in the Build-
Farm and you want to deploy it to the QA environment, select the QA environment from the drop-down. If you
recall, AnthillPro ships with 3 default environments:

• Build-Farm. Generally, this is the environment that all builds take place within, and is most closely associ-
ated with Development. This is the environment you want your builds to run in.

• QA. This environment is provided for performing quality assurance testing. Most often, when you are send-
ing a build to testing, you want that workflow to run in this environment. This is the environment you want
to use when running a secondary process (i.e., non-originating workflow) that deploys the artifacts to your
testing environment.

• Production. This environment is typically used to deploy your builds once they are ready for production.

• Notification Scheme. Select the Default Notification scheme. By default, AnthillPro will send an e-mail noti-
fication to AnthillPro users. For now, don't worry if you aren't getting any e-mails. Notifications are covered in
more detail in the Basic Notifications section. If you have not already done so, you may want to configure the
notifications for this and other workflows.

• Priority. Use the default Normal Priority. Once you have a lot of projects going in AnthillPro, you may need
to prioritize which workflows run first.

• Click Save.

4. See Create a Deployment Job.

Create a Deployment Job
The job is composed of a series of distinct actions the server must perform (called "steps" in AnthillPro) to success-
fully run a deployment. For any job you create, the steps (actions) are executed by the server one at a time, in a spe-
cific order. When configuring the deployment process, you will need to manually create a job.

Every deployment job must:

• Set and clean the working directory. To ensure that a clean deployment is performed every time, this step will
allow AnthillPro to run a clean-up at the beginning of the job.

• Resolve the artifacts. This step retrieves artifacts generated by the originating workflow and deposit them in a
specified directory.

• Deploy the content. This step uses a builder to run a deploy script. For example, if you use Ant, you would select
it from the Builders menu and then configure the script.

To configure the deployment job:

1. Go to Administration and select the Add Job icon of the project you created in the Setting Up a Build section.

2. Check No and click Select. Do not use the Job Wizard.

3. Set up job:

• Name. Give a name for this job. Typically, the name should reflect the type of work to be performed by the

Setting Up a Deployment

73



job. For example, "Deploy."

• Description (optional). Give a description of this job. The description allows you to convey more information
about what this job does, etc.

• Click Set.

4. On the Job Configuration page, click the Create Step button.

5. Next, add a Set Working Directory step. Expand the Miscellaneous folder, select Set Working Directory, and
then click Select.

• Working Directory Script. Select the Default Project Working Directory script form the drop-down. For most
projects, the default script will be sufficient.

• Clean Working Directory. Check this box. This will erase files and subdirectories in the Working Directory
when this step runs, thus ensuring that a clean deployment will take place.

If you did not use a default working directory script above, you will need to verify that the working directory is
not set to something like C: or C:\ because the entire contents of the C drive will be permanently re-
moved when the Clean Working Directory step is run.

• Show Additional Options. These are advanced settings. For a simple deployment, you can skip these settings.

• Click Save.

6. Add the Resolve My Artifacts step. This step will retrieve the artifacts generated by the build you configured
earlier. Click the Insert After icon (under the Actions Menu) of the Set Working Directory step, expand the Ar-
tifacts folder, select Resolve My Artifacts, and click Select.

• Name. Giving a simple name of "Resolve Artifacts" is sufficient.

• Artifact Set. Select the artifact set you configured in the Capture and Deliver Build Artifacts section during
basic build job creation.

• Directory. Specify what directory you want to artifacts delivered to. This is relative to the working directory.
For example, if this workflow's working directory is C:\myProject\deployWorkflow\, and you spe-
cify "artifacts" here, the artifacts will be delivered to C:\myProject\deployWorkflow\artifacts.

• Transfer Only Changed Files. Check here if you want AnthillPro to transfer only changed files based on
checksums. For configuring your first deployment, this optional feature is unnecessary. See also Server Secur-
ity.

If you are using the Transfer Only Changed Files option for your Resolve Artifact step, you must activate the Di-
gest Algorithm server setting. Once set, AnthillPro will use either a SHA or MD cryptographic hash function to
protect the build and deployment artifacts. AnthillPro will then use the generated file checksums for the resolve,
and skip the Codestation caching on the agent. Use of this feature can result in faster deployments that use less
bandwidth -- especially if the deployment target is a remote server and only a small proportion of the files will
change between deployments.

• Include Patterns. List the artifacts to be resolved. If you want to include all the artifacts, simply leave this
field blank, (or use the wild card **/*). You can refer to the Capture and Deliver Build Artifacts section for
additional information on using include patterns.

• Exclude Patterns. Give the patterns of the artifacts that should be skipped from the include. This field is set in
the same way as the Include Artifacts field, only you are telling AnthillPro what NOT to include. If you leave
this filed blank, AnthillPro will exclude no files. You can refer to the Capture and Deliver Build Artifacts sec-

Setting Up a Deployment

74



tion for additional information on using exclude patterns.

• Show Additional Options. These are advanced settings. For a simple deployment, you can skip these settings.

• Click Save.

7. If you configured more than one artifact set for the build, add the Resolve and step for each set. For example, if
your build published different artifacts into the APP, DB, and WEB artifact sets, then you will need three resolve
steps -- one for each artifact set.

8. Add a Deploy Artifacts step. This step will deliver the resolved artifacts to the target destination. To do this,
you will have to configure a Builder step that will run your deploy script. Most users simply use the same tool
for builds and deployments. To configure this step:

• Click the Insert After icon (under the Actions Menu) of the Resolve My Artifacts step, and then expand the
Builders folder.

• You will need to select one of the following and then click Select:

Ant Maven Ruby (Builder)

Groovy MSBuild Visual Studio (Builder)

Make Nant Shell/Perl Scripts

• Follow the instructions given for the builder you are using to run your deploy script.

Note that when configuring the step, give it a name such as "Deploy Artifacts" so that it can be differentiated
from other builder steps. Also, if you see a Script Content tab, that means you can write your script directly in
the AnthillPro UI.

9. When you have added the Deploy Artifacts (Builder) step, see Complete Deployment Configuration.

Complete Deployment Configuration
Once the deployment job has been created, it needs to be added to the deployment workflow you created earlier.
This ties the deployment process together, and allows AnthillPro to send the artifacts to the desired location.

1. Go to the workflow you created in the Create a Deployment Workflow section.

2. Select the Definition tab. The Workflow Definition is used to define the execution of the Job used by this work-
flow. A Workflow Definition has a single starting point and a single end point.

3. Use the default Embedded Definition. Click Select.

4. Click the Start button and select Insert Job After. Configure:

• Job. Select the job you created in the Create a Deployment Job section. The job will appear in the drop-down
menu under "Project Jobs."

• Pre-Condition. Select Always as the pre-condition for this job. That way, the job will always run.

• Agent Filter. Select at least one agent from the Fixed Agent Selection list. Highlight the agent name in the list
and click the plus sign (it will suffice to select one agent).

Setting Up a Deployment

75



Once you are more familiar with AnthillPro, you can use agent filtering to determine which agent(s) a job can run
on, including using scripted agent selection. For more on scripted agent selection scripts, see the scripting docu-
mentation in the Development Kit Bundle at tools > anthill3-dev-kit.zip.

• Working Directory. Select Source Config's Work Directory from the menu. This will ensure that the build
takes place in the correct location.

• Lock for Workflow. Use the default value of No. Locking is an advanced feature.

• Click Insert Job.

5. Now that you have configured the deployment process, the next step is to run the deployment. See Run a Deploy-
ment.

Run a Deployment
Running a manual deployment is a simple push-button process performed on the Dashboard. Once you select a build
number (called Build Life in AnthillPro), the build's Main page gives you an option to run a secondary process (i.e.,
run the deployment workflow you just set up).

To run your deployment:

1. Go to the Dashboard and select the build workflow of your project.

2. On the workflow's Main page, Select the Build Life number of one of your builds.

3. On the Build Life page, click the Run Secondary Process button.

4. Next, run the secondary process (i.e., deployment workflow):

• Workflow. Unless you have configured multiple non-originating workflows for this project, AnthillPro will
automatically populate this field.

If you are given a drop-down, select the workflow you created in the Create a Deployment Workflow section
and then click Next.

Setting Up a Deployment

76



• Environment. AnthillPro will automatically populate this field for you if you only check one environment
while configuring the deployment workflow.

If you are given an option, select the environment you want this workflow to run in. For example, if you want
it to run in a QA environment, select it here.

• Delay. You can leave this blank. That way, the deployment will run immediately.

Advanced: To delay a deployment, check the box and then give the date and time you wish this workflow to run.
This is a one-time event, not to be confused with a scheduled deployment. Once you configure a delayed deploy-
ment, it appears on the Current Activity tab under the Delayed Builds (or Planned Workflow Execution in some
versions of AnthillPro) menu. There, you can delete the request for a delayed deployment.

• Click Run.

5. Once the deployment has been started, you can check the status on the Build Life page (the page you were re-
turned to). Refresh the page to update status. When the deployment is completed, it will be listed on the Build
Life page, along with the build (originating workflow).

It's worth noting here that the same deployment process can be run on any build (Build Life). For example, if you
have 3 successful builds, you can run the same deployment process on each Build Life.

Also, there is no limit to how many time a secondary process can be run on a build (Build Life). So, you can run the
same deployment as many times as you want for any given build.

AnthillPro will always keep track of which deployment belongs to which Build Life (build), and how many times
the deployment was run on each particular build.

Set Up Automated Deployment
Once you have your basic deployment workflow running, you may want to automate the deployment instead of hav-
ing to click the deploy button every time. There are a number of ways to do this, but following are the two most
common scenarios.

• Add a "deploy" job to your build. If you want to practice continuous deployment, appending your build job
with a "deploy" job -- which contains a single step: Run Another Workflow -- will deploy the content every time
a build is successful. It's worth noting that this option can become resource intensive if used on every project. To
auto deploy upon build completion:

1. Ensure that your deployment workflow successfully runs. If it you have not created one yet, go to the begin-
ning of this section and create one. You will also need to ensure that your build workflow is delivering the arti-
facts to AnthillPro's artifact management system.

2. Go to Administration and then select the Project that you want to deploy.

3. Click on the Add Job icon. Do not use the Job Wizard.

4. Name the job ... something like "Send to [Environment]" and give a description. It's a good idea to give this
job a different name than the job used by the actual deploy workflow.

5. Insert a single step in the job: Run Another Workflow. This step is contained in the Miscellaneous folder.
Configure the step:

• Name the step.

Setting Up a Deployment

77



• Description. Give an optional description.

• Workflow. Select the deploy workflow you want to run.

• Environment. Select the environment you want this workflow to run in. This will typically be the environ-
ment that your deploy workflow runs in.

• Wait for Workflow. Check the box if you want AnthillPro to wait until the workflow completes before run-
ning the deploy workflow. For this scenario, you should be able to skip this option. (If any of them fails,
then this step will be failed) Caution: While waiting, this workflow will still hold any Lockable Resource,
and this job will count as running on an agent.

• Pass Properties. You have the option of passing properties from the build workflow to the deploy work-
flow. Under this scenario, you can select Do Not Pass. However, if you need to pass all the properties, se-
lect Pass All, or if you need to pass only matching properties -- properties that are set on both workflows --
use that option.

• Show Additional Options (optional; advanced). Select the Show Additional Options link to configure
more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed.
See Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as
timed out and abort it.

6. Click Save.

7. Next, still on the Administration page, go to the originating (build) workflow and click the Definition tab.

8. Click on the Stop icon (at the bottom) and select Insert Job Before. If you have more than one job in the
definition, be sure you add the deploy job to the end. Then set the job configuration:

• Pre-Condition. Here, if you select the default option "All Ancestor Jobs Success or Not Needed" then this
job will run (i.e., kick off the deployment) when the build job is successful. This option will only kick of a
deployment upon build completion. The "not needed" portion comes into play if you have multiple jobs in
the build definition but not all of them run all the time.

• Agent Filter. Here, if you select the same options as you did for your build job everything should work fine.
Since the job is simply calling another workflow, nothing much is going on here that requires a specific
agent.

• Working Directory. Selecting Parent Job's Working Directory is the simplest option. As with the Agent
Filter, nothing much is going on here to be concerned about.

• Lock for Workflow. Typically, selecting No will suffice. Unless you start having locking issues or have
multiple jobs attempting to run the same working directory at the same time, it is unnecessary to lock for the
workflow.

Setting Up a Deployment

78



9. Save the your work.

The next time your project builds, it will automatically kick of the deploy workflow.

• Add a scheduled trigger to your deploy workflow. This method is most commonly used when you want to run
a deployment on a regular schedule (e.g., deploy the most recent build to a testing environment during down
time).

To do this, go to the deploy workflow, select the trigger tab and then choose Scheduled Trigger. A basic interval
schedule can be used if you are deploying a nightly build, or if you have a more complex scenario, you can use a
cron schdule. See Workflow Triggers and Scheduled Builds for more.

Next Steps

• Integrating with other tools. Now that you have a successful build-and-deploy process going, you can add fur-
ther automation to your processes by using AnthillPro's robust integrations. See Integrating Other Tools.

• Setting up dependencies between projects. Use AnthillPro's unique dependency management system that lets
you set up relationships and provide visibility into your dependency structures. See Dependency Management.

Setting Up a Deployment

79



Chapter 14. Defining a Basic
Dependency
Dependencies are configured on originating (build) workflows so that the artifacts of the child project can be re-
trieved at run time. Codestation, AnthillPro's dependency-management system, enables you to set how dependency
builds occur. For example, a dependency can be configured so that the parent project checks its dependencies and
builds them at run time. This is called a pull build. Or, a build for the child project can kick off a build of the parent.
This is called a push build.

It is recommended to review the Configure Dependencies section for more -- especially when configuring the con-
flict strategy.

To successfully configure a dependency relationship requires configuration on both the parent and child projects:

1. Artifact Set configuration on the child project. AnthillPro stores the build artifacts of the child project in
Codestation as an Artifact Sets.

Before you can complete a dependency relationship, AnthillPro will need to capture the child project's build arti-
facts and then deliver those artifacts to the embedded dependency-management system (called Codestation).
Once the artifacts are in Codestation, AnthillPro will be able to keep track of when and where they are used as
dependencies.

Since AnthillPro does not know what artifacts you want captured, you will need to label them so they can be
grouped and stored together. This is done by defining an artifact set on your build process. You can think of the
artifact set as a grouping of build artifacts (files) that allows for fine-grained consumption of the artifacts. Once
the artifacts are labeled and grouped into an artifact set, you will need to manually add a Deliver Artifact step to
your build job.

See Capture and Deliver Build Artifacts (Child Project) for more.

2. Dependency configuration on the parent project. Once the child project's build artifacts are captured and de-
livered to Codestation, the dependency is configured on the parent project's originating workflow. You will also
need to add a Resolve Dependency Artifacts step to the parent project's build job.

Once the child project's artifacts are in Codestation, you need to configure the dependency relationship on the
parent project's originating (build) workflow, and add a resolve dependency step to the build job. When configur-
ing dependencies, you will also need to tell AnthillPro how you want your dependencies handled.

See Configure Dependency (Parent) for more.

80



Chapter 15. Integrating Other Tools
AnthillPro ships with a number of built-in integrations with many of the tools used throughout the project's lifecycle.
The integrations, which are implemented at the job and step levels, enable AnthillPro to distribute process execution
and invoke third-party tools. In addition to driving other tools, the integrations allow AnthillPro to act as an informa-
tion hub: enabling AnthillPro to exchange information with other tools, and then perform actions based on the in-
formation.

If AnthillPro does not currently integrate with a tool you use, you can either contact us at
<sales@urbancode.com> or you try writing your own integration using the Plugins feature.

Tool Integrations
AnthillPro currently supports integrations with the following tool types:

• Source Code Management Tools. Enables AnthillPro to check out code, access the changelog, and label the re-
pository (where supported). See SCM Tools.

• Build Tools. AnthillPro integrates with many build tools to support building and deploying. See Build Tools.

• Testing Tools. Allows you to run a suite of automated tests either on your build workflow or as a secondary pro-
cess -- in addition to gathering data from tests that are invoked with your build script. See Testing Tools.

• Coverage Tools. Collects information on the coverage tests that you invoke with your build script. Enables you
to perform trending over time, see which tests are failing, track coverage, and even fail a build based on the cap-
tured results. See Coverage Tools.

• Source-code Analysis Tools. You can have AnthillPro run your source-code analysis tool and then collect the
results. The integrations also allow AnthillPro to collect the test output and store it in the AnthillPro data ware-
house. See Source-code Analysis Tools.

• Issue Tracking Tools. Enables you to associate an issue with a particular build, link to that issue in your issue
tracker, and view the status of the issue. The integrations also allow AnthillPro to perform tasks within the issue
tracking tool. See Issue Tracking Tools.

• Virtualization. Allows AnthillPro to clone, deploy, and undeploy configurations. Implemented as job steps, the
integration can be used as part of your build workflows or as a secondary process. See VMware Lab Manager.

Plugins
With Plugins, you can write your own integration with third-party tools (such as testing, SCM, source-code analytic,
etc., tools) and then add it to your AnthillPro processes. If you are at least minimally familiar with programming,
you can easily write your own custom integrations. See Using AnthillPro Plugins.

Other Integrations
AnthillPro can be configured to use your security and notification systems, as well as with an IDE:

• Security. AnthillPro enables you to use your existing server for authorization and authentication, and to map ex-
isting users to roles in AnthillPro. See Setting Up Security.

81



• Notifications. AnthillPro notifications use your current tools to send a variety of notifications. See Notifications.

• IDE Plugins. The Plugins enable you to view the current activity and state of your projects, kick off a new build,
map your projects to projects in AnthillPro, and to retrieve the project’s dependency artifacts -- all from the IDE.
See the Developer Kit on the AnthillPro Tools page (go to Tools > Developer Kit Bundle).

Integrating Other Tools

82



Part III. Upgrade
It is a best practice to back up your AnthillPro server before upgrading. The minimum suggested backup is to
backup the database. If you are using the embedded Apache Derby database, then a backup can be done through the
AnthillPro Web UI on the System tab by following the Backup Settings link under the Server menu. Click the
Backup Now button. The backup will take a few moments.

• To backup other databases, please follow the procedures outlined by the respective database vendor. See Config-
ure Backups of AnthillPro before continuing.

Once you have backed up the database, upgrade the server before upgrading the agents, distributed servers, or agent
relay.



Chapter 16. Server Upgrade
Before running the upgrade script, you should shut down the server. To perform an upgrade, follow the installation
instructions. See Installation.

When using SSL, you need to turn it on for both the server and the agent -- otherwise the agents will not be able to
connect to the server. If you are using the agent relay, ensure that SSL is turned on for all three components:
server, agent, and agent relay. This rule also applies if using mutual authentication.

• If you are planning to migrate databases as part of the upgrade, see Migrate Server Database before continuing.

When asked for the directory to install the server, enter the existing server directory.

To upgrade the AnthillPro Server:

1. Follow steps 1 to 5 of the installation process.

2. When prompted, give the current AnthillPro server directory. For example: C:\Program Files\anthill3\server
(Windows) or /opt/anthill3/server (Linux).

3. The installer will ask you if you want to upgrade the existing server. Type Yes to upgrade or No to exit the in-
staller. Once the upgrade is under way, the installer will use most of your existing values.

4. Provide the Home directory of the JRE/JDK used to run the server, if different from the original.

5. If the AnthillPro server is installed as a Windows service: Input the unique name in the dialog box and click
OK to stop and remove service (Windows service will be recreated, if desired, at the end of the upgrade process).

• If more than one instance of the AnthillPro server is installed as a Windows service, make sure the correct ser-
vice name is entered.

See also Install as Windows Service.

6. Once the installer is complete, you can start the server.

84



Chapter 17. Migrate Server Database
We have seen some scalability issues with the embedded Apache Derby database. If you experience slowness in the
AnthillPro Web UI or if the server process is taking up too much memory, it is likely time to migrate to a different
database.

The AnthillPro command line installers include a database migration utility that exports your existing database data
and imports it into another supported database.

If you want to move or create a test instance of your AnthillPro server, but keep the same database type, see Clone
AnthillPro Instance.

The following databases are supported using the migration utility:

• Oracle. Use the JDBC driver for Oracle 10.2 or higher, regardless of what version of the database is used.

• MySQL with InnoDB storage (works with 4.1.22 and later). If using MySQL 5, use the 5.0.8 driver version. The
5.1 version has some bugs that will cause the AnthillPro server to throw an error. If you are using the 5.1 version,
switch the driver jar file in the server's lib/ext directory and then restart. It is also recommended that the InnoDB
[http://www.innodb.com/] storage engine be used.

• Microsoft SQL Server. The MS SqlServer 2.0 driver (sqljdbc4.jar) will not work with AnthillPro. To install the
server using Microsoft SQL Server, you will need to use one of the following drivers, depending on which ver-
sion of Java the AnthillPro server uses:

Java 5. Use either the 1.2 driver or the 2.0 sqljdbc.jar driver.

Java 6. Use the 1.2 driver.

• DB2 (requires 9.7 or later).

• PostgreSQL. Due to a known defect with PostgreSQL 8.4.0, AnthillPro can't be installed with that version. Use
version 8.3.7.

See the Installation for migrating server database.

Database Requirements
These requirements apply if you want to use a database other than Apache Derby:

1. You must use one of the command line installers for installation.

2. You need to download the appropriate JDBC driver file for your database. These are typically downloaded from
the database vendor.

3. You need to create an empty database for AnthillPro to use with a dedicated user.

• The database migration should only be run after you have completed an upgrade to the version you are using to
migrate. So if you download a new version and want to migrate, you must first do an upgrade.

85

http://www.innodb.com/
http://www.innodb.com/


Windows Database Migration
To migrate the AnthillPro database:

1. Shut down the server.

2. Download the anthill3-<version>.zip file.

3. Expand the zip file using a tool like WinZip. Expanding will create an anthill3-install directory.

4. Open the anthill3-install directory created in the previous step in Windows.

5. Copy the JDBC driver file(s) of the database you are migrating to into the anthill3-install\lib\ext directory.

6. Run the migration script migrate-db.bat.

7. If the AnthillPro server is installed as a Windows service: Input the unique name in the dialog box and click
OK to stop and remove service (Windows service may be recreated, if desired, in step 10).

• If more than one AnthillPro server is installed as a Windows service, make sure the correct service name is
entered.

8. Provide the directory where the AnthillPro server is installed.

9. Input Y to upgrade the existing server.

10
.

Provide the following:

• Database type AnthillPro should migrate to [derby, oracle, mysql].

• Database driver. See your database vendor documentation for the JDBC driver class to use.

• Database connection string. See your database vendor documentation on the format of this value.

• Database user name.

• Database password.

11
.

Follow the remainder of step 7 through step 10 of the Windows installation process. See Windows Installation.

Linux/Unix Database Migration
To migrate the AnthillPro database, follow the steps below:

1. Shut down the server.

2. Download the anthill3-<version>.tar.gz file.

3. Open a UNIX shell to the directory containing the above downloaded file.

4. Extract the downloaded tar.gz file. Type tar -zxf anthill3-<version>.tar.gz.

On some installations of Solaris and HP-UX the default tar command will not properly handle our tar files. You
may need to use \ install GNU tar. When installing AnthillPro on Solaris, it is recommended to use korn
shell (ksh).

Migrate Server Database

86



5. cd anthill3-install.

6. Copy the JDBC driver file(s) of the database you are migrating to into the anthill3-install/lib/ext directory.

7. Run the migration script ./migrate-db.sh.

During the migration you will be prompted for the following information:

1. Directory where the AnthillPro server is installed.

2. Database type AnthillPro should migrate to (derby, oracle, mysql, etc.).

3. Database driver. See your database vendor documentation for the JDBC driver class to use.

4. Database connection string. See your database vendor documentation on the format of this value.

5. Database user name.

6. Database password.

Migrate Server Database

87



Chapter 18. Agent Upgrade
You should upgrade the server before upgrading any agents. AnthillPro supports an auto-upgrade feature to upgrade
running agents.

The upgrade can be performed through the AnthillPro Web UI at Agents > Agent. Select the agents you want to up-
grade and then click the Upgrade Agents button to begin the auto-upgrade process. The upgrade can take some time,
so refresh the page to view progress.

• Because of extensive agent-server communication changes made for version 3.6, if you are upgrading to Ant-
hillPro 3.6 the following applies: Communication port. A new port needs to be opened to the server (default
value of this port is 7915) for agent communication.Windows service (upgrading from 3.5 to 3.6.1). AnthillPro
will attempt to upgrade agent Windows services and restart them after upgrade. However, if the agent service is
running as a user that does not have permission to modify the service settings, the Windows service will need to
be remove and reinstalled.

If you need to manually upgrade an agent, stop the agent and follow the same instructions as an installation. When
asked for the directory to install the agent, enter the existing agent directory.

1. Shut down the server and agent.

2. Follow steps 1 to 4 of the installation process.

3. Give the Directory where the AnthillPro agent should be upgraded.

4. Input Y to upgrade an existing AnthillPro agent.

5. Give the home directory of the JRE/JDK used to run the agent.

6. Relay connection. Enter the default N if not using Urbancode's Distributed Servers product, available under sep-
arate license. If using Distributed Servers, see Installing Distributed Servers before continuing.

If you are interested in using the Agent Relay for agent-server communication, contact
<info@urbancode.com>.

7. Determine if internal communication should use SSL. Default is N.

When using SSL, you need to turn it on for both the server and the agent -- otherwise the agents will not be able to
connect to the server. If you are using the agent relay, ensure that SSL is turned on for all three components:
server, agent, and agent relay. This rule also applies if using mutual authentication.

• If using SSL, determine if communication should be mutually authenticated. Default is N.

8. If the AnthillPro agent is installed as a Windows service: Input the unique name in the dialog box and click OK
to stop and remove service (Windows service will be recreated, if desired, at the end of the upgrade process).

• If more than one AnthillPro agent is installed as a Windows service, make sure the correct service name is
entered.

See also Install Agent as Windows Service.

88



Chapter 19. Distributed Servers
Upgrade
Beginning with version 3.6.3, AnthillPro provides an upgrade path for Distributed Servers. If you are using an older
version (i.e., 3.6.2 or older), you will need to install version 3.6.3 in order to perform future upgrades.

1. Before performing the upgrade, stop Distributed Servers and backup the Distributed Servers directory.

2. Run the install script in the Distributed Servers installation package.

3. When asked for the directory, give the directory the old version is installed in.

4. The installer will ask you if you want to upgrade. Answer Y.

5. Follow the instructions for an installation.

See also Agent Relay Upgrade and Installing Distributed Servers.

89



Chapter 20. Agent Relay Upgrade
Beginning with version 3.6.3, AnthillPro provides an upgrade path for the Agent Relay. If you are using an older
version (i.e., 3.6.2 or older), you will need to install version 3.6.3 in order to perform future upgrades.

When using SSL, you need to turn it on for both the server and the agent -- otherwise the agents will not be able to
connect to the server. If you are using the agent relay, ensure that SSL is turned on for all three components:
server, agent, and agent relay. This rule also applies if using mutual authentication.

1. Before performing the upgrade, stop the Agent Relay and backup the Agent Relay directory.

2. Run the install script in the Agent Relay installation package.

3. When asked for the directory, give the directory the old version is installed in.

4. The installer will ask you if you want to upgrade. Answer Y.

5. Follow the instructions for an installation.

See also Upgrade Distributed Servers and Installing Distributed Servers.

90



Chapter 21. What's New in AnthillPro
5.0
Welcome to AnthillPro 5.0. Included in the 5.0 release is the introduction of labels, a new feature that makes model-
ing your SCM branching and dependencies in AnthillPro easier. As with other major releases, version 5.0 includes a
host of new improvements that expand AnthillPro's functionality and many improvements.

New Features

• Labels. AnthillPro 5.0 introduce the concept of labels to support branching and creating patch builds. Using the
new feature, you can label a Build Life and then use the label when resolving dependencies. Labels can be manu-
ally added to a Build Life on the Dashboard page, via the new dependency viewer, or by including an Assign La-
bel step in the build job.

• Change a project's source. It is now possible to change an existing project's Source Type directly from the
project page. If you select this option, you will have to reconfigure the source for every workflow, in addition to
reconfiguring some job steps. See Changing a Project's Source.

• Current Activity filtering. Filtering has been added that allows you to save searches.

• Dependency viewer. A new way to visualize and configure dependencies has been introduced. A new tab has
been added to the Administration page. There, you can configure depedencies, configure new ones, and edit exist-
ing dependencies -- all in one place. So, if you have to change a lot of dependency relationships at once, you no
longer have to do it from each individual workflow.

• Request Plans. Request Plans are a way to save the configuration for running one or more originating workflows.
This allows you to run select builds as part of the same request context. See Use Workflow Request Plan.

New Integrations

• Quality Center. The integration with Quality Center has been rewritten as an AnthillPro Plugin, providing ex-
panded support over the original Quality Center integration. If you are using the older integration, you can contin-
ue to do so. The Quality Center Plugin includes support for custom parameters, and the ability to update Quality
Center issues (in addition to the resolve task). See Quality Center Plugin (Testing) and/or Quality Center Plugin
(Issue Tracking).

• Rally. The integration with Rally has been rewritten as an AnthillPro Plugin, providing expanded support over the
original Rally integration. If you are using the older integration, you can continue to do so. The Rally Plugin in-
cludes support for multiple Rally workspaces; the ability to have AnthillPro comment on user stories and tasks;
update defects and tasks; publish reports for defects, user stories, and tasks; and report the build status back to
Rally. See Rally Plugin.

• Rational Team Concert (SCM). You can now add any projects in your RTC repository to your AnthillPro build
process. See Rational Team Concert (SCM) for configuration instruction.

• TestNG. Expanding on the existing functionality, AnthillPro now includes an integration that publishes the
TestNG report to the Build Life Test tab, allowing you to track test results over time and drill down into findings.
See TestNG.

91



Improvements

• Agent and Environment Management UI. Agent and environment management (including configuration) has
been moved to its own top-level tab. This change enables access to agents without having to go to the System
page. If you are upgrading from an older version of AnthillPro, you will not need to change any of your existing
permission/security settings -- anyone who had access to agents, environments, and/or environment groups will
still have them.

For those with a large number of agents, you can use the Status field to make searching for agents easier. Once
the search is complete, you can then perform an Action on the returned list by selecting the appropriate agent(s).

• Artifact set UI improvements. Now, you have a drop-down from which to select the artifact set you want to see
the artifacts for. This improves loading time.

• Cleanup configuration. Cleanup schedules are no longer configured as part of individual Life-Cycle Models. In-
stead, a new link has been added to the System page (go to System > Project Support > Cleanup). This will en-
able the same cleanup schedule to be used by multiple Life-cycle Models and Operational Projects. The changes
also introduce cleanup of unused working directories, lockable resources, and operational workflows/jobs. See
Cleanup.

• ClearCase UCM Snapshot integration. It is now possible to define the view strategy, host, gpath and hpath op-
tions during source configuration. See ClearCase UCM Snapshot View Source Configuration.

• Delayed builds and deployments. Once you configure a delayed build or deployment, it now appears on the
Current Activity tab under the Delayed Builds (or Planned Workflow Execution in some versions of Ant-
hillPro) menu. There, you can delete the request for a delayed build/deployment.

• Drag-and-drop for job steps, authentication realms, and statuses. Reordering job steps, authentication realms,
and Life-Cycle Model statuses is now performed using the drag-and-drop feature. For existing jobs (or when
copying steps), authentication realms, and statuses you can reorder them by selecting the grab tool and dragging
the step, realm, or status to the new location.

• Plugin support for global repository triggers. This allows you set up one trigger in your SCM and have Ant-
hillPro determine which projects need to build based on the information passed along with the trigger request. See
the Developer Kit (follow the tools link in the upper right-hand corner of the AnthillPro UI) for more details.

• Preflight builds. The UI has been redesigned and new functionality added. See the Developer Kit (follow the
tools link in the upper right-hand corner of the AnthillPro UI) for more details.

What's New in AnthillPro 5.0

92



• Property description fields. You can give a brief description to your environment, project environment, and
project properties.

• Subversion repository trigger and multiple branches. You can now build multiple branches of source within
the same workflow, by setting the Start Stamp Pattern on the SVN Get Changelog step in your build job. See
Building Multiple Branches of Source with the SVN Repository Trigger.

• Working directory script page. The page has been redesigned to improve loading. Now, the Used In field is a
link, and not populated automatically.

What's New in AnthillPro 5.0

93



Chapter 22. Uninstalling AnthillPro
Both the AnthillPro server and agent are installed within a root directory, so under most circumstances simply delet-
ing them from the file system is sufficient. The only exception is if the server or agent is installed as a service -- in
this case it is necessary to remove the service (see here for the server and here for the agent) prior to deleting the
server or agent from the file system.

Uninstall the Server
If the server is not installed as a service, uninstall AnthillPro by deleting it from the file system after stopping the
server. If the agent is installed as a Windows Service, you will need to remove the service before removing the agent
from the file system (see below).

To uninstall the server:

1. Shutdown the server.

2. Delete the server from the file system.

To uninstall the server running as a Windows Service:

1. Shutdown the server and stop the service.

2. Open the Administrative Command Prompt. Note that you will not be able to remove the service unless you
are running as the Windows administrator. For example, run:

runas /noprofile /user:mymachine\administrator cmd

and then enter the password when prompted. Please consult the Windows documentation if you are having
trouble running as the administrator.

3. Go to %SERVER_HOME%\bin\service on the file system where the server is installed.

4. With the Administrative Command Prompt pointing to the server's \bin\service directory, run:

ah3server remove <<uniquename>>

Ensure that you replace the value uniquename with the actual name used to install the server as a service.

5. Verify that the service has been removed.

6. Once the service has been removed, you can delete the server from the file system.

Once the server is deleted, it is also a good idea to uninstall all the agents that were connected to it (see Uninstall the
Agent).

Uninstall the Agent
Uninstalling the agent is similar to that of the server -- it simply needs to be removed from the file system. However,
if the agent is installed as a Windows Service, you will need to remove the service before removing the agent from
the file system (see below).

94



To uninstall an agent:

1. Shutdown the agent.

2. Remove all references to the agent from the AnthillPro UI. For example:

• Fixed Agent Filters

• Fixed Agents on Quiet Period

• Any Build Lives that reference the agent

• Any scripts of properties that reference the agent

If you do not remove every reference, any build, etc., that references the removed agent will most likely fail.

3. Ignore the agent in the UI.

4. Delete the ignored agent.

5. Delete the agent from the file system.

To uninstall an agent running as a Windows Service:

1. Shutdown the agent and stop the service.

2. Remove all references to the agent from the AnthillPro UI. For example:

• Fixed Agent Filters

• Fixed Agents on Quiet Period

• Any Build Lives that reference the agent

• Any scripts of properties that reference the agent

If you do not remove every reference, any build, etc., that references the removed agent will most likely fail.

3. Ignore the agent in the UI.

4. Delete the ignored agent.

5. Open the Administrative Command Prompt. Note that you will not be able to remove the service unless you
are running as the Windows administrator. For example, run:

runas /noprofile /user:mymachine\administrator cmd

and then enter the password when prompted. Please consult the Windows documentation if you are having
trouble running as the administrator.

6. Go to %AGENT_HOME%\bin\service on the file system where the agent is installed.

7. With the Administrative Command Prompt pointing to the agent's \bin\service directory, run:

ah3agent remove <<uniquename>>

Ensure that you replace the value uniquename with the actual name used to install the agent as a service.

Uninstalling AnthillPro

95



8. Verify that the service has been removed.

9. Once the service has been removed, you can delete the agent from the file system.

Uninstalling AnthillPro

96



Part IV. Schedules
AnthillPro uses schedules to determine when events such as builds, cleanups, backups, etc., are automatically run by
the system. Typically, schedules are created on an as-needed basis when you are configuring projects. Once a sched-
ule has been created, it may be used by many different AnthillPro resources. For example, if you want to schedule a
nightly build for a project, set up a schedule that fires once a day and then add that schedule to the project's trigger.
Or, you can set up a cleanup schedule that is used by numerous projects. There are two types of schedules you can
create in AnthillPro:

• Interval Schedule. Regularly fires after a fixed interval of time, and is the simplest schedule. See Create Interval
Schedule.

• Cron Schedules. May be configured to consider more complex criteria than a simple interval. See Create Cron
Schedules.

Which schedule type you use is based, in part, on the complexity of the event you are scheduling. For daily/nightly
builds, the interval schedule is sufficient. However, for backups, you may want the schedule to fire the first Saturday
of the month -- except on holiday weekends, etc. In this case use a Cron schedule.

To create a schedule, you must have permissions to the System page. See Setting Up Security.



Chapter 23. Create Interval Schedule
The Interval Schedule regularly fires after a fixed interval of time, and is the simplest schedule. These are typically
used for nightly builds, backups, cleanups, etc.

To create a Schedule, you must have Administrative permissions. See Setting Up Security.

1. Go to System > Schedules under the Project Support menu.

2. Click the Create Schedule button.

3. Check the schedule type:

• Interval Schedule. Fires after a fixed interval of time passes.

4. Click Set.

5. Configure Interval Schedule:

• Name the schedule.

• Description. Give a description of the schedule.

• Build Interval (minutes). Give the amount of minutes that will pass before the scheduled task runs.

• Interval Start Time (hh:mm). Provide the time at which this schedule should start running. Note that the start
time will be determined by the time zone that the AnthillPro server is in.

6. Click Set then Done.

98



Chapter 24. Create Cron Schedule
Cron Schedules may be configured to consider nightly or weekly outages of servers (for backups), weekly builds,
or builds that occur on every other Friday except in February, etc.

To create a Schedule, you must have Administrative permissions. See Setting Up Security.

1. Go to System > Schedules under the Project Support menu.

2. Click the Create Schedule button.

3. Check the schedule type:

• Cron Expression Schedule. Fires based on a Cron expression.

4. Click Set.

5. Configure Cron Schedule.

• Name the schedule.

• Description. Give a description of the schedule.

• Cron Expression. Provide the Cron expression to use for determining the schedule. See the New Schedule
page of the AnthillPro UI for detailed instructions.

6. Click Set then Done.

99



Part V. Reporting
AnthillPro ships with a number of built-in reports that provide information about system activity. Available on the
main Reports page, you can easily run a report that:

• Displays builds by day of the week.

• Shows all the failed and successful builds by time of day.

• Lists all the Codestation Artifacts.

• Provides a list of all projects and their immediate dependencies.

• Returns a detailed list of all projects and their direct dependencies.

• Gives the size of all artifact sets associated with a project.

• Lists recent Build Life Activity (includes support for RSS).

If the standard reports do not meet your needs, AnthillPro provides a flexible utility to create custom, tabular reports
and RSS feeds. There are no restrictions on what can be reported on.

Custom reports are generated by using scripts that have the full AnthillPro database and API at their disposal. Re-
ports can be designed to produce well-formatted output like XML files, and can be accessed using simple HTTP re-
quests -- making them a great integration point. You can design reports to produce information of interest that other
applications can look up.

You can create two types of reports:

• Velocity Reports use a Velocity template unique to each report to render the content. Velocity Reports are good
for customizing the AnthillPro UI. When integrated, an Apache Velocity [http://velocity.apache.org/] report will
be passed to the Build Life page, where they can be directly accessed. Once created, Velocity Reports can be run
directly from the Build Life Reports tab. See Creating a Velocity Report.

You must have administrative permissions to the System page to create custom reports (see Setting Up Security).

• Template Reports are good for generating tabular data in one or more types of output. AnthillPro ships with sup-
port for HTML, CSV, RSS, and Bar Chart formats, which should meet most of your needs. However, you can
write your own report template to support a different format type. See Creating a Template Report.

All reports -- including your custom reports -- may be made public (go to System > Reports, select the report, and
activate the Publicly-Available option). This will make the report URL available to people who do not have Ant-
hillPro login permissions (e.g., managers, executives, etc.).

http://velocity.apache.org/
http://velocity.apache.org/


Chapter 25. Running a Report
Once a report has been created (see Creating a Template Report and Creating a Velocity Report), the new report be-
comes available on the Reports page, along with the standard AnthillPro reports. To run a report:

1. Go to Reports and select the Run Report icon for the report you want to run.

2. Select the Report Template and click the Run button to generate the report.

Ensure that the correct Report Template is selected. The desired output determines which template to use. For ex-
ample, the output of the Builds by Time of Day report supports the Bar Chart option; however, it does not sup-
port RSS. If a "report output does not support the template" exception is thrown, select a different template from
the drop-down menu. To add a custom template type, see Writing a Report Template.

3. When the report opens in the browser, you can bookmark the URL for future viewing.

It is possible to make individual reports publicly available to those without AnthillPro login credentials. To do so,
simply check the Publicly Available option on the report configuration page (see Creating a Template Report and
Creating a Velocity Report).

101



Chapter 26. Creating a Template Report
Template Reports are good for generating tabular data in output such as HTML, CSV, and RSS -- all supported by
AnthillPro. To generate a report, you will need to write a report script that returns the content of the report. In addi-
tion, you will also need to make sure the content matches one of the report-template types, otherwise the contents
may not display properly. Because column names and numbers are determined by the report scripts, a single report
template may be used by many report scripts.

Detailed instructions, including examples, on writing Report Scripts is available. To view the documentation, go to
Tools and download the Development Kit Bundle. In the scripting directory, open Scripting.pdf and scroll down
to the Reporting Scripts section. Urbancode also maintains a publicly available list of report and report-template
scripts that may be helpful when writing a custom report. They are viewable here [ht-
tps://bugs.urbancode.com/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=10110&component=10147].

If one of the standard template types does not meet your needs, AnthillPro allows you write your own Report Tem-
plate.

1. Go to System > Reports under the Reporting menu. Make sure you have administrative permissions to the Sys-
tem page (see Setting Up Security).

2. Click the Create Report button on the Reports main page.

3. Check the Template Report box and click Select.

4. Name and give a description (optional) of the report.

5. Publicly Available. Check the box to make the report URL available to people who do not have AnthillPro login
permissions (e.g., a manager, executive, etc).

6. Meta-Data Script. For the most part, this script is just responsible for listing the columns that will be used by the
report. Enter a BeanShell script that should return a ReportMetaData object which describes the inputs to the
Report Script below, as well as the data fields of the report itself.

7. Report Script. Enter a BeanShell script that creates the report and returns a ReportOutput object. This script
will receive the inputs that were defined as parameters in the Meta-Data Script above. All the inputs will be
passed to the script as parameters with their respective names. The ReportMetaData object will also be sup-
plied to the script as the parameter "metaData". The key thing is to create a ReportOutput object using the
meta-data created in the script above and add ReportRows to it.

8. Click Save.

102

https://bugs.urbancode.com/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=10110&component=10147
https://bugs.urbancode.com/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=10110&component=10147
https://bugs.urbancode.com/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=10110&component=10147


Chapter 27. Creating a Velocity Report
Velocity Reports use a Velocity template unique to each report to deliver the content. Velocity Reports are good for
customizing the UI, as they can automatically be made available on the Build Life page. Once created, Velocity Re-
ports can be run directly from the Build Life Reports tab.

Detailed instructions, including examples, on writing Report Scripts is available. To view the documentation, go to
Tools and download the Development Kit Bundle. In the scripting directory, open Scripting.pdf and scroll down
to the Reporting Scripts section. Urbancode also maintains a publicly available list of report and report-template
scripts that may be helpful when writing a custom report. They are viewable here [ht-
tps://bugs.urbancode.com/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=10110&component=10147].

For advanced users, the Apache Velocity Project [http://velocity.apache.org/] provides numerous resources that may
be of benefit.

1. Go to System > Reports under the Reporting menu. Make sure you have administrative permissions to the Sys-
tem page (see Setting Up Security).

2. Click the Create Report button on the Reports main page.

3. Check the Velocity Report box and click Select.

4. Configure report:

• Name the report.

• Description. Provide a description.

• Content Type. Optionally, you can give the MIME type of the report content. This will be sent to the browser
when the report content is generated. E.g.: text/plain, text/csv, or text/html.

• Publicly Available. Check the box to make the report URL available without having to login to AnthillPro.
This is helpful for managers, executives, etc., who need to view the report.

• Integrations. Check the box to select the UI integration points for this report. When integrated, the report will
be available directly in the UI and the context script will be passed to the Build Life as 'buildLife'.

• Context Script. Give an optional BeanShell script to populate the context of the template. The script should
return a Map object as the context for the Velocity template to render. This script will be passed all request
properties when it is run, as well as a Map object called 'context'.

• Template Text. Input the BeanShell script that creates the report and returns a ReportOutput object. This
script will receive the inputs that were defined as parameters. All the inputs will be passed to the script as para-
meters with their respective names. The ReportMetaData object will also be supplied to the script as the
parameter "metaData".

5. Click Save.

103

https://bugs.urbancode.com/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=10110&component=10147
https://bugs.urbancode.com/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=10110&component=10147
https://bugs.urbancode.com/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=10110&component=10147
http://velocity.apache.org/
http://velocity.apache.org/


Chapter 28. Writing a Report Template
A key role of the report template is to manage the format of the data being displayed. The ReportOutput object
(see Creating a Template Report and Creating a Velocity Report) is passed into the template as output and the meta-
data is passed in as meta-data.

AnthillPro ships with 4 standard Report Templates that should meet most of your needs:

• Bar Chart. Displays the data in a bar chart embedded in HTML. Data must all be numeric.

• CSV. Renders a comma-separated CSV format.

• HTML (Anthill Style). Renders HTML output in a table form using the Anthill style.

• RSS 2.0. Renders a RSS feed.

If you need to render the report in a different format, follow the instructions below for creating a new template type.
Once that is done, the new template type will be available as an option to anyone who runs a report.

Detailed instructions, including examples, on writing Report Scripts is available. To view the documentation, go to
Tools and download the Development Kit Bundle. In the scripting directory, open Scripting.pdf and scroll down
to the Reporting Scripts section. Urbancode also maintains a publicly available list of report and report-template
scripts that may be helpful when writing a custom template. They are viewable here [ht-
tps://bugs.urbancode.com/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=10110&component=10147].

1. Go to System > Report Template under the Reporting menu. Make sure you have administrative permissions to
the System page (see Setting Up Security).

2. Click the Create Template button.

3. Name the new template, provide a description (optional), and provide the following:

• Content Type. Give the MIME type of the report content. This will be sent to the browser when the report
content is generated. E.g.: text/plain, text/csv, or text/html.

• Context Script. Optionally, give the context script. For many report templates, the context-script can be left
blank.

• Template Text. Enter the content of the template here. A ReportOutput object will be automatically
provided to the script as "output". The Report object will also be provided to the script as "report". For an ex-
ample, see below.

4. Click Save.

Example template for a review of Build Life events

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>
<title>Workflow</title>
<STYLE TYPE="text/css">

104

https://bugs.urbancode.com/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=10110&component=10147
https://bugs.urbancode.com/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=10110&component=10147
https://bugs.urbancode.com/secure/IssueNavigator.jspa?reset=true&mode=hide&pid=10110&component=10147


<!--
table.data-table td {

vertical-align: top;
}

table.data-table
{

font-family: arial, helvetica, sans-serif;
font-size: 12px;
background-color: #567596;

}

table.data-table caption
{

padding-top: 10px;
padding-bottom: 10px;
text-align: left;

}

table.data-table th
{

text-align: center;
background-color: #cfdbef;
height: 25px;

}

table.data-table td
{

vertical-align: top;
}

table.data-table tr.odd
{

background-color: #ffffff;
}

table.data-table tr.even
{

background-color: #f6f6f6;
}

.data-table-button-bar
{

padding-top: 10px;
padding-bottom: 10px;

}

.data-table-container
{

padding-top: 10px;
padding-bottom: 10px;

}
-->
</STYLE>
</head>
<body>

<h1> Report: $report.Name</h1>
<p>
<div class="data-table-container">
<table class="data-table" cellpadding="4" cellspacing="1" width="100%">
<table-body>
<tr class="data-table-head">

Writing a Report Template

105



#foreach($column in $output.MetaData.ColumnArray)
<th scope="col" align="left" valign="middle"><strong>$column</strong></th>

#end
</tr>
#foreach($row in $output.RowArray)
<tr bgcolor="#ffffff">
#foreach($columnValue in $row.ColumnValueArray)
<td>$columnValue </td>

#end
</tr>

#end
</table-body>
</table>

</body>
</html>

Writing a Report Template

106



Chapter 29. RSS and Reporting
A report designed for RSS will need RSS-style rows. RSS works nicely with the report system since requests for re-
ports are all done using HTTP GETS. The generated URLs will work for an automated connection. A context script
that checks for the presence of those rows can be helpful.

Typical context script for an RSS (2.0) feed

import com.urbancode.anthill3.domain.reporting.*; ReportOutput output =
(ReportOutput)

context.get("output"); // validate that the report can be turned into a
RSS feed if

(!output.hasColumn("title") || !output.hasColumn("date") ||
!output.hasColumn("link") ||

!output.hasColumn("guid") || !output.hasColumn("description"))
{ throw new Exception
("The report output

does not support the RSS template"); } context.put("pubDate", new Date());

With the context script done, you then pair it with the RSS template (similar to what is below):

RSS template paired with context script

<?xml version="1.0"?>
<rss version="2.0">
<channel>
<title>$report.Name</title>
<link>$reportUrl</link>
<description>$report.Description</description>
<language>en-us</language>
<pubDate>$pubDate</pubDate>
<generator>Anthill3</generator>

#foreach($row in $output.RowArray)
<item>
<title>$row.getColumnValue("title")</title>
<link>$row.getColumnValue("link")</link>
<description>$row.getColumnValue("description")</description>
<pubDate>$row.getColumnValue("date")</pubDate>
<guid>$row.getColumnValue("guid")</guid>

</item>
#end
</channel>

</rss>

107



Part VI. Dependency Management
Often, an application will require outside libraries or other files to build: the dependent (parent) project will use the
artifacts (e.g., versioned, released binaries) produced by a child project. This guideline is easy to follow if the child's
artifacts never, or rarely, change. In this case, you can check the project into source control and manually update the
library when you decide to move to a different version. However, the parent project can also rely on the artifacts
generated by other projects your organization develops. When this is the case, manually updating dependencies be-
comes increasingly difficult, and a more robust dependency-management solution is needed.

To address these needs, AnthillPro includes a dependency-management system -- called Codestation -- that provides
fine-grained management for your dependencies. Through the AnthillPro UI, you are able to configure and manage
dependencies for:

• Third-party libraries and tools. Most organizations will use externally developed libraries, projects, etc. For ex-
ample, the parent project may depend on a specific version of the Apache Tomcat server that your organization
does not actively develop. AnthillPro provides a special project type -- called Codestation Projects -- to manage
these dependency types. A Codestation project is always at the bottom of the dependency tree: it can never de-
pend on another project (i.e., it must always be a child project).

• Internal projects. Allows for dependency relationships between concurrently developed AnthillPro projects. For
example, your application may be composed of numerous components or modules that are independently built.
For these types of projects, dependencies are configured in much the same way as with Codestation dependencies.
The main difference is that for internal dependencies, the parent project may also be a child project (e.g., project
A depends on project B, which in turns depends on project C; however, cycles are not allowed). AnthillPro is con-
figurable to automatically update a parent project with the latest releases of the projects it depends on; lock down
the dependency on a specific version (build) of the artifacts; and control whether a dependency should kick off a
build or not.

In AnthillPro, dependencies are configured at the workflow level (Codestation projects are a bit different; more on
that later), and depend on the artifacts associated with the Build Life of the child project. For example, if your parent
project depends on the artifact sets of 2 other project Build Lives, you configure 2 dependencies on the parent's
build (originating) workflow -- one for each project (see Configure Dependencies and Using Codestation Projects).

When configuring dependencies, you will need to:

1. Determine which project your parent project depends on. This information will usually come from your existing
dependency-management system or build scripts.

2. Configure an artifact set on the project your parent project depends on (i.e., the child project). This should in-
clude all the files that your parent project needs to successfully build. A publish artifacts step will also need to be
added to the child project. See Capture and Deliver Build Artifacts (Child Project).

If the child project is a Codestation project, see Using Codestation Projects.

3. Go to your parent project and add a new dependency configuration. You will need to complete the configuration
on the Dependencies tab of the originating (build) workflow, as well as add a resolve dependencies step to the
build job. See Configure Dependencies.

Once the system is configured, AnthillPro maintains a record of which Build Life the artifacts came from. This
provides instant traceability from the parent project back to its own source files, as well as those of each of its de-
pendencies (the children projects).

AnthillPro also allows you to use file-defined dependency configurations. You can use a Codestation method to set



the dependencies of a Build Life from a file-defined resolve and then add it to the client and CLI. File-defined de-
pendencies, using an XML file, is supported for both historical resolves and transitive dependencies. Once your file
is configured, you can have Codestation pull down the dependencies. For more, go to Tools > Developer Tools >
Codestation Client.



Chapter 30. Configure Dependencies
Dependencies are configured on originating (build) workflows so that the artifacts of the child project can be re-
trieved at run time. Codestation, AnthillPro's dependency-management system, enables you to set how dependency
builds occur. For example, a dependency can be configured so that the parent project checks its dependencies and
builds them at run time. This is called a pull build. Or, a build for the child project can kick off a build of the parent.
This is called a push build.

To successfully configure a dependency relationship requires configuration on both the parent and child projects:

1. Artifact Set configuration on the child project. AnthillPro stores the build artifacts of the child project in
Codestation as an Artifact Sets. See Capture and Deliver Build Artifacts (Child Project).

2. Dependency configuration on the parent project. Once the child project's build artifacts are captured and de-
livered to Codestation, the dependency is configured on the parent project's originating workflow. You will also
need to add a Resolve Dependency Artifacts step to the parent project's build job. See Configure Dependency
(Parent).

Dependencies may also be configured using the Dependency Viewer on the Administration tab. While the view is
different, the basic process is the same as outlined below. The one main advantage to using the Dependency Viewer
is that you can manipulate multiple dependency configurations without haveing to navigate to the individual
projects.

Dependency Configuration Prerequisites

• You will need read and write permission to the Administration page, as well as administrative permissions for
configuring Life-Cycle Models if you need to add a new Artifact Set. See Setting Up Security or contact your
AnthillPro administrator.

• The child project should already have at least one successful Build Life. If you are configuring a dependency on a
Codestation project, make sure you have configured a Build Life. See Using Codestation Projects.

Capture and Deliver Build Artifacts (Child
Project)
Before you can complete a dependency relationship, AnthillPro will need to capture the child project's build artifacts
and then deliver those artifacts to the embedded dependency-management system (called Codestation). Once the ar-
tifacts are in Codestation, AnthillPro will be able to keep track of when and where they are used as dependencies.

Since AnthillPro does not know what artifacts you want captured, you will need to label them so they can be
grouped and stored together. This is done by defining an artifact set on your build process. You can think of the arti-
fact set as a grouping of build artifacts (files) that allows for fine-grained consumption of the artifacts. Once the arti-
facts are labeled and grouped into an artifact set, you will need to manually add a Deliver Artifact step to your build
job.

To capture and deliver build artifacts:

1. Go to Administration and select the child project's build workflow.

110



2. On the Workflow page, select the Artifacts tab, then click the New Artifact Config button.

3. Configure artifact set:

• Artifact Set. Select an artifact set from the drop-down menu (using one of the defaults is fine if you are just
starting out). AnthillPro ships with 3 default artifacts sets that correspond to the most common tiers of a 3-tier
application:

• APP. Used to group objects for deployment to the application tier of a 3-tier application.

• DB. Used to group objects for deployment to the database tier of a 3-tier application.

• WEB. Used to group objects for deployment to the web tier of a 3-tier application.

Generally, an artifact set is named for the type of objects which are grouped inside of them. The objects within
an artifact set, in turn, are grouped by how the objects are going to be consumed.

Most users will eventually need to configure their own artifact sets to better reflect the contents. The process is
rather simple for an existing project: You simply add a new artifact set to the project's Life-Cycle Model.

• Base Directory. Here, you need to give the directory where the artifacts (say a jar or dll file) are placed once
the build is complete. This directory is relative to the build's working directory. So if your build places the arti-
facts in a "dist" directory, you would specify dist/ here. Note that if you leave this filed blank, AnthillPro
will include the entire contents of the working directory in the artifact set.

• Include Artifacts. List the artifacts to be retrieved from within the base directory. You can specify the names
of files that reside in the base directory: e.g., myProjectArtifacts.zip. Or, if the artifacts are located in
a sub directory, you specify something like bin/myProjectArtifacts.jar. Each include pattern must
be entered on a separate line.

You can also use the following wild cards to tell AnthillPro what to include in the artifact set:

• ** Indicates include every directory within the base directory.

• * Used to include every file. So, if you use *.zip, the files matching this pattern will be included.

• **/* Tells AnthillPro to retrieve the entire file tree underneath the base directory.

If you leave this filed blank, AnthillPro will include all the files in the base directory (if one was specified).

Advanced: To include symbolic links and empty directories, add the link/directory as part of your include pattern.
See Configure Server Miscellaneous Settings.

• Exclude Artifacts. Give the patterns of the artifacts that should be skipped from the include. This field is set in
the same way as the Include Artifacts field, only you are telling AnthillPro what NOT to include. If you leave
this filed blank, AnthillPro will exclude no files.

• Click Save.

4. To deliver your build artifacts to Codestation, you need to add the Artifact Delivery step to the build job. Go to
the child project's job configuration page (on the Administration page).

In order for AnthillPro to manage the artifacts, they must be sent to Codestation, AnthillPro's built-in artifact/
dependency management system. If the deliver step is not included, the artifacts will remain in the working dir-
ectory (until it is cleaned up, etc.) and unavailable for dependency relationships.

5. Click the Insert After icon of the step prior to where this step should run. Remember, the steps run in order, so
any step, such as the Artifact Deliver step, which deals with the build artifacts must come after the actual "build"

Configure Dependencies

111



step.

6. On the Steps page, expand the Artifacts folder, select Artifact Deliver, and click Select.

7. Configure step:

• Name. Give a name for this step. A simple "Artifact Deliver" is sufficient.

• Artifact Set. Select the artifact set you just finished configuring.

• Show Additional Options. These are advanced settings. For a simple dependency relationship, you can skip
these settings.

• Click Save.

8. Run a build of the child project. The artifacts will be delivered to the AnthillPro dependency-management sys-
tem. This will make the artifacts available as a dependency to other projects.

To view the artifacts, go to the Dashboard and select your build workflow. Click on the most recent Build Life
(i.e., build number) and then select the Artifacts tab.

9. After verifying the correct artifacts have been captured and delivered, see Configure Dependency (Parent).

Configure Dependency (Parent)
Once the child project's artifacts are in Codestation, you need to configure the dependency relationship on the parent
project's originating (build) workflow, and add a resolve dependency step to the build job. When configuring de-
pendencies, you will also need to tell AnthillPro how you want your dependencies handled. To get started:

1. Go to Administration and select the parent project's originating (build) workflow.

2. Select the Dependencies tab.

3. Click New Dependency at the bottom of the page. Configure the dependency:

• Project. Begin typing the name of the child project. You can use the wild card * (star) to return all available
projects. The auto fill will give you both the name of the project and associated workflows. If the child project
has multiple originating workflows, make sure you select the correct one. See Capture and Deliver Build Arti-
facts (Child Project). Click Select.

• Build Life Criteria. Allows you to define which Build Life on the child project will be used to fulfill the de-
pendency. The criteria for this is based on the status and/or stamp value.

The values given here will also be used when a build, based on the dependency trigger (see below), fails. Should a
requested child-project build fail or if one is not needed, AnthillPro will use the Build Life Criteria to determine
which child-project Build Life to use when building the parent project. Build Life Criteria is cumulative. Having
"success" and "1.2.*" will match successful builds whose build number starts with 1.2.* -- not with successful
builds or those that start with 1.2 (without the final period).

• With Status. Select a status from the drop-down menu. The statuses used here were configured on the child
project's Life-Cycle Model. If you select a status, only Build Lives that assigned the status are available to
the parent project.

• With Stamp. You can either input the exact stamp or specify a stamp pattern using '?' for a single character

Configure Dependencies

112



and '*' for matching any sequence of characters. If you use a stamp, make sure it matches the stamp used on
the child project.

If configuring a dependency on a Codestation project, make sure you have assigned the appropriate Status and
Stamps on the that project's configuration page. See Using Codestation Projects.

• Dependency Trigger. Determine how AnthillPro should treats builds of the parent project.

Before configuring a Dependency Trigger, please see Pulling Builds and Pushing Builds.

• None. AnthillPro will look up the matching build and use it. No additional builds will be created by the de-
pendency relationship.

• Pull Build. Before the parent project's workflow runs, it will create a new build request for the child project.
See Pulling Builds.

Use existing if pull fails. AnthillPro will use the most recent child-project build if the request results in a
failed build.

Always force. Will always build, even if a failure occurs down the dependency graph.

Cascade force. Forces a build of all the projects down the dependency tree.

• Push Build. Pushes builds up the dependency relationship. Each time a new build of the child project meets
the criteria, a build request for the parent project's workflow is created. See Pushing Builds.

• Artifact Retrieval. Tell AnthillPro which Artifact Set to put in what location. The locations are relative to the
workflow working directory. Check the box next to each artifact to retrieve.

• Retrieve. Check the box next to the appropriate artifact set.

• Transitive. Check to retrieve dependencies of the dependency into the same folder. The grandchildren must
have an artifact set of the same name and the dependency must also check the transitive box for each of
those dependencies.

• Location. Specify the relative path(s) from the working directory (of the parent project) to copy the depend-
ency artifacts to. You can set multiple locations by using the add link. Project and workflow properties are
the only scripting allowed. E.g. ${property:deps_dir}. Use '.' for the current working directory, leave empty
to remove.

• Click Save.

4. Conflict Strategy. Tell AnthillPro how you want to deal with dependency conflicts.

The conflict strategy works a bit differently for pulling and pushing dependency triggers. For examples, see De-
pendency Conflict Strategy.

Click the Edit button under the Conflict Strategy menu and select one of the following from the drop-down:

• Fail. This option will fail the parent-project's build when a conflict is detected. If your notifications are con-
figured correctly, AnthillPro will notify you that the build failed. The parent project will not build until you
correct the conflict.

• Favor old. Use this option to have the oldest Build Life's artifacts overwrite those from newer Build Lives.

Configure Dependencies

113



AnthillPro will always use the oldest available artifacts from the child project when a conflict occurs.

• Favor new. Allows the newest Build Life's artifacts to overwrite those from older Build Lives. AnthillPro will
use the most recent child-project artifacts when a conflict occurs.

5. Add Resolve Dependency Artifacts job step. This will allow AnthillPro to retrieve the artifacts generated by
the child project.

Go to Administration and select the parent-project's build job. Click the Insert After icon of the step prior to
where the resolve step is to be included. This should be added before the build step, typically after the populate,
changelog, and stamp steps. Configure step:

• Name. Give the step a descriptive step. For example, Get Dependency Artifacts.

• Transfer Only Changed Files. Retrieves only files that are not already present. To have AnthillPro transfer
only changed files based on checksums of the secured artifacts, check the box. Before you run the build, see
Secure Artifact Sets.

• File Include Patterns. Leave blank or use **/* for all artifacts. To include specific files, give the name pat-
terns that describe the files that will be resolved.

• File Exclude Patterns. Give the file name patterns identifying the files that will NOT be resolved.

• Artifact Set Include Patterns. Give the patterns matching artifact set names that will be resolved. Use * to
match zero or more characters, or ? to match exactly one character.

• Artifact Set Exclude Patterns. Give the patterns matching artifact set names that will be resolved. Use * to
match zero or more characters, or ? to match exactly one character.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

6. Click Save.

Pulling Builds
Pull builds will build every dependency that is out of date prior to building the top level project. Before the parent-
project's workflow runs, it will create a build request for the child project. The build request may or may not result
in a new Build Life of the child project. If the request determines changes have been made to the child project since
the last time the parent project was built, the request will kick off a new build of the child project. When the child
project finishes building, the new Build Life will be used to fulfill the dependency (see example below).

Configure Dependencies

114



• If a Build Life is not created or the creation of the Build Life fails, AnthillPro will use the Build Life Criteria to
determine which child-project Build Life to use when building the parent project. If you are setting a dependency
trigger, make sure the Build Life Criteria is configured. Build Life Criteria is cumulative. Having "success" and
"1.2.*" will match successful builds whose build number starts with 1.2.* -- not with successful builds or those
that start with 1.2 (without the final period).

Pulling Builds

When project A builds, it checks for any new builds of projects B and C since the last time project A was built. For
build A1, both projects B and C have been built since the last time project A built, so the project A build kicks off
(pulls) builds B1 and C1 and then uses the artifacts of the new builds. For build A2, only project C has changed, so
build C2 is pulled and used. Since project B has not changed since the last build of project A, build B1 is used for
build A2.

When project A builds for a third time (A3), it detects changes in both dependent projects, so it pulls a build for
both projects (B2 and C3 respectively). For build A4 of project A, no builds of the dependent projects (A and B)
are required because no changes have been made to either project since the last build of project A (build A3). So,
build A4 simply uses the artifacts of builds B2 and C3 during the build.

A Pull Dependency configuration uses less resources than pushing builds, and can be used if resources are scarce.
However, there is a trade off when compared to pushing builds: A pulled build does not have the same guarantee
that every child project down the dependency tree will compile when the parent project builds. This is highlighted
when the dependency trigger is configured to use an existing build if a pulled build fails (see example below).

Configure Dependencies

115



Use Existing Build if Pull Build Fails

Each project in the dependency tree successfully built (builds B0, C0, and D0 respectively) when the parent project
A0 was built. When another build (A1) of project A (the parent project), it created a request for a build of all the
projects down the dependency. However, the second build of project C (C1) failed. Because AnthillPro was con-
figured to use an existing build of a child project, the build of project A (the parent) takes the most recent success-
ful build of project C (C0).

If your notifications are configured correctly, AnthillPro will notify you that the build of project C (C1) failed. You
can then view the Request Context of project C's failed build to diagnose the problem.

Pushing Builds
Push builds perform the minimum number of builds, in the correct order, to ensure that a change to a component
does not break anything that depends on it directly or transitively. In a typical scenario core libraries (represented by
project C in the illustration) rebuild rarely and so rarely trigger builds. If low level libraries change frequently, Push
builds will rebuild large parts of the tree regularly causing many builds.

It is worth noting that push builds can become resource intensive, especially when you have a large dependency tree.
However, pushing builds provides the best assurance the parent project will compile successfully (see example be-
low).

Pushing Builds

Configure Dependencies

116



When changes are made to a child project (projects B and C), a build is kicked off. If a push-build dependency
trigger is configured on the parent project (project A), AnthillPro will build both the child and parents.

For example, when project B builds (B1), a build of project A is pushed (kicked off), creating build A1.

When project C builds (C1), a build of project A is pushed. Likewise, when project B builds again (B2), a build of
project A is pushed, creating build A3. The pushed build of project A then checks the dependency relationship with
project C, and uses the most recent project C build (C1).

When project C builds (C2), a build of project A is pushed, creating build A4. Build A4 uses build B2. So when a
build of Project A is kicked off (A5), it will use the most recent builds of projects B and C (B2 and C2 respect-
ively).

Dependency Conflict Strategy
The dependency conflict strategy allows you to control how AnthillPro acts when a conflict occurs within the de-
pendency tree. To configure, see Conflict Strategy.

Conflicts typically show up when the parent project (project A in the examples below) depends on two different
child projects (B and C respectively) that depend on the same project (D). Looking at the examples below, the build
requests are conflicted because two different builds of the same project have been requested in the same context.

When determining the conflict strategy, you can select the following options:

• Fail. This option will fail the parent project's build when a conflict is detected. If your notifications are configured
correctly, AnthillPro will notify you that the build failed. The parent project will not build until you correct the
conflict.

• Favor old. Use this option to have the oldest Build Life's artifacts overwrite those from newer Build Lives. In the

Configure Dependencies

117



examples below, AnthillPro would use project D's original build (D0) as part of build A1 for the parent project.

• Favor new. Allows the newest Build Life's artifacts to overwrite those from older Build Lives. AnthillPro will
use the most recent child-project artifacts when a conflict occurs. In the examples below, AnthillPro would use
project D's newest build (D1) as part of build A1 for the parent project.

Conflict Strategy with Pull Dependencies

When project A needs to build (A1), it creates a request for build B1 and C1. Likewise, builds B1 and C1 both re-
quest a build of project D (i.e., they both want build D1) within the same context. This is where the conflict comes
in: Build C1 fails, and build A1 reverts to build C0. Unfortunately, C0 depends on build D0 and build B1 depends
on build D1. Because two versions of D are in use, there is a conflict.

The conflict strategy is used to determine which version of project D to use when building project A (build A1) or
to fail the build of project A.

See also Pulling Builds.

How the conflict strategy behaves is different for a pulled builds and pushed builds; however, the strategy is con-
figured the same for both dependency trigger types.

Conflict Strategy with Push Dependencies

When project D needs to build (D1), it creates a request for builds B1 and C1. The builds of projects B and C result
in a request for a build of project A (project A depends on a successful build of projects B and C). However, when
project D builds, it pushes an new build of project C (C1). When the build of project C fails, the latest successful
build of project C reverts back to build C0 -- this creates a mismatch with project D build versions, causing the

Configure Dependencies

118



project A build to fail.

The conflict strategy is used to determine which version of project C to use when building project D (build D1) or
to fail the build of project D.

See also Pushing Builds.

Configure Dependencies

119



Chapter 31. Using Codestation Projects
A Codestation project models products (such as third-party tool kits and software libraries) not built by your organ-
ization. For example, if your web application requires Java 5, you configure a Codestation project and upload Java 5
into an artifact set. Once this is done, your other AnthillPro projects that require Java 5 will depend on the artifact
set of this Codestation project. However, this Codestation project can never depend on another project.

Codestation projects also allow you to version the third-party tools or libraries within the artifact set. So if you de-
cide to upgrade to Java 6, you can create a new Build Life (either on the project's Administration or Dashboard
pages) and add the new artifacts. When the dependency is called during a build, AnthillPro will use your settings to
determine which version to use (see Configure Dependencies). For example, it is possible for one component of
your application to depend on Version 1 and a second component of your application to depend on Version 2 of the
same Codestation project. This gives you fine-grained control of which versions of a third-party tool or library each
AnthillPro project depends on.

Configure Codestation Project

1. Go to Administration > New Codestation icon.

2. Enter a name, give a description, select a Life-Cycle Model, and click Save.

3. If using Maven, you must assign a property by selecting the Property tab, clicking New Property, giving the
property a name and value, and clicking Save.

4. Set permissions for who can use and edit the Codestation project. Select the appropriate roles on the Security
tab. When done, click Save. See Setting Up Security.

5. Create Build Life. Because AnthillPro will not be building the project, you need to manually create a Build Live
and upload new artifacts so they can be used by other projects. A typical approach would be to create a Build
Life for every release of the third-party artifact managed, and then stamp that Build Life with the version of the
library under management:

• Click the New button under the Build Life section.

• Input the stamp (e.g., if you are going to upload Java, give a stamp of Java 1.5, etc.) and click Done.

• Select either Upload File or Upload Many Files (for uploading a .zip Archive).

• Select the correct artifact set. The artifact set was inherited from the lifecycle model you selected in a previ-
ous step. If an existing artifact set does not exist, you may need to go to System > Life-Cycle Models and cre-
ate one for the appropriate model.

• Directory Prefix. Optionally, give a base directory at the root of the artifact set and upload the file.

When the file is uploaded a hash code is generated for the uploaded file to ensure that it is not modified and there
are no corruptions when it is delivered to builds.

• Click Upload.

6. Once configured, the project's artifacts are available as dependencies of AnthillPro projects. See Configure De-
pendencies.

7. For Codestation projects, a special status group reflecting your own approval system for third-party libraries is re-
commended. That way you can mark a new release of a library as under review or experimental while established

120



releases might be marked as approved. This makes it easy for a development team to use the recent release of the
artifact that has been approved.

With this configuration in place, the Codestation project can be used in dependency schemes in the same way as
any internal project. And when you need to start testing a newer version of the artifacts, simply come back and
create a new Build Life and mark it appropriately.

• Properties tab. Add properties to the Codestation project to be used when resolving dependencies. See Man-
aging Properties.

• Status History tab. Allows the administrator to promote this Build Life to additional statuses. It also tracks
when those statuses were assigned. This can be useful when you have configured custom statuses on the Life-
Cycle Model. Click Add Status, select the status from the drop-down menu, and click Add.

If you do not assign a status, you must configure your dependencies to use this Build Life's Stamp.

To add more statuses, repeat the process.

• Dependencies tab. Review which projects are using this Codestation Build Life. Once you configure an Ant-
hillPro project to depend on this Build Life, it will be listed here.

Using Codestation Projects

121



Chapter 32. Configure Dependencies
Tutorial
This tutorial shows how to facilitate code reuse in a controlled manner, and is based on the Release Reuse Equival-
ency principle first published by Robert Martin in Granularity [ht-

122

http://www.objectmentor.com/resources/articles/granularity.pdf#search=%22Release%20Reuse%20Equivalency%22
http://www.objectmentor.com/resources/articles/granularity.pdf#search=%22Release%20Reuse%20Equivalency%22
http://www.objectmentor.com/resources/articles/granularity.pdf#search=%22Release%20Reuse%20Equivalency%22


.

For dependency configuration instruction, see the main Configure Dependencies section.

Using the ABC Dependency project (hosted on Urbancode's public CVS server), this tutorial is designed to illustrate
how dependencies are configured and how to troubleshoot problems. Projects B and C are each standalone
(children) projects that generate Java libraries. Project A, the parent, uses those libraries (i.e., it depends on the other
two projects).

1. To start, the b.jar and c.jar libraries are removed from project A.

2. Both jar files are configured as an independent AnthillPro project (Project B and Project C respectively).

3. Now, projects B and C compile fine, but without their libraries, Project A will not compile (as illustrated in the
image below).

4. Drilling down into the build output log shows that the libraries from B and C were not available to the build.

Configure Dependencies Tutorial

123



Dependencies and Artifact Sets

Configure Dependencies Tutorial

124



Any project that another project depends on is going to generate one or more collections of files (artifacts) the de-
pendent project uses. In AnthillPro, each artifact collection is named to create an artifact set. For this set of projects,
Project B and Project C are each going to have an artifact set for the libraries they produce, and are configured in a
similar manner.

• Artifact sets. are also used to specify files that may be used in secondary workflows.

• Example Artifacts:

• A code library used by multiple projects.

• A platform-specific client.

• Documentation of the shared library to be rolled into developer documentation (javadoc).

• The deployable executable of a top-level project.

Because these are existing projects, the artifact sets have already been configured as part of a Life-Cycle Model. To
view the artifact sets, follow the Artifact Sets link on the Life-Cycle Model page. The lib artifact set to hold the lib-
raries and a test artifact set to manage test suites should be visible. See Using Life-Cycle Models.

Once the artifact sets are in place, go back to Project B (and C) and select this new group for those projects. You can
also use this new artifact set for any other library-style project that might produce some tests. Now, you need to tell
AnthillPro which libraries should be treated as part of the lib artifact set and when to publish the artifacts. Do this by
editing the build job and workflow.

Edit the Dependency Build Job
In order for Project A to build successfully, the build jobs on Projects B and C must be edited so that the appropriate
artifact sets are delivered. The process is the same for both projects.

1. From the Project B Administration page, select the Edit Job icon.

Configure Dependencies Tutorial

125



2. Select the Edit icon for the Artifacts Deliver step.

3. Select the artifact set to be delivered (lib). Click Save.

Edit the Dependency Workflow
In order for Project A to build successfully, the workflows on Projects B and C must be edited so that the appropri-
ate artifact sets are delivered. The process is the same for both projects.

1. From the Project B configuration page, select the Edit Workflow icon.

2. Select the Artifacts tab and specify what artifacts generated by this workflow are available for AnthillPro to re-
trieve and provide to other workflows and projects (the lib artifact set).

3. Identify the artifacts. Enter the base directory (relative to the directory that the checkout happened from) and one
or more artifact patterns to include. Click Save.

• For a simple jar file, the base directory and the name of that file are sufficient.

• Include Artifacts. Lists artifacts to be retrieved. The wild card ** indicates every directory and the wild card
* indicates every file. So the pattern dist/**/* would retrieve the entire file tree underneath this dist direct-
ory. Project and workflow properties are the only scripting allowed. See Scripting.

To include symbolic links and empty directories, add the link/directory as part of your include pattern. See
Configure Server Miscellaneous Settings.

Configure Dependencies Tutorial

126



• Exclude Artifacts. Patterns of artifacts that are in the include pattern but should be skipped. Project and work-
flow properties are the only scripting allowed. See Scripting.

4. Once the artifacts are configured, future workflow executions of the build job will publish that library to Ant-
hillPro's artifact store (Codestation). See Using Codestation Projects.

Configure the Dependent Project
Now that Projects B and C are delivering their artifacts to AnthillPro, instruct Project A to retrieve those artifacts.

1. Go to the Project A Main page (Administration) and select the Edit Workflow icon for the project a build
workflow.

2. Select the Dependencies tab and choose Fail from the drop-down menu.

• This will let you know a conflict has occurred which needs to be resolved before continuing.

Configure Dependencies Tutorial

127



3. Click the New Dependency button to create a dependency with Project B and Project C. Select the project and
workflow creating the dependency and then determine how the dependency artifacts are to be provided.

4. Tell AnthillPro which Artifact Set to put in what location. The locations are relative to the workflow working
directory. If an artifact set is not needed for this workflow (like the tests) simply do not check the box for it. In
the example below, the artifacts for the lib artifact set (just the library produced by B) will be copied into the lib
directory directly under the Project A root (shortly after checkout).

• Artifact Retrieval. 'Retrieve' indicates which artifact sets to retrieve from the dependency build life. 'Transit-
ive' indicates whether the artifact sets with the same name from transitive dependency build lives should also
be retrieved. 'Location' specifies the relative path(s) from the working directory to copy the dependency arti-
facts to. You can set multiple locations by using the add link. Project and Workflow properties are the only
scripting allowed; e.g., ${property:deps_dir}. (Use '.' for the current working directory, leave empty to re-
move).

Configure Dependencies Tutorial

128



5. Once both dependencies have been listed, rebuild both Project B and C to generate and deliver their artifacts for
the first time. When a build of Project A is requested, the artifacts from Projects B and C that were delivered to
the lib directory will be used to build Project A.

Configure Dependencies Tutorial

129



Part VII. Advanced Authoring
Many of the default settings for projects, workflows, jobs, and other AnthillPro resources can be customized and ex-
tended to meet your specific needs. A majority of the advanced authoring features are designed for users responsible
for configuring AnthillPro for build and deployments. The tools allow these advanced users the ability to create re-
usable resources; copy configurations; use properties throughout the application; and control what information Ant-
hillPro provides:

• Projects. Create, edit, copy, move, deactivate, activate, delete, import, and export projects on the Main Adminis-
tration page.

• Workflows. Create, edit, copy, deactivate, activate, delete, any workflow on the Main Administration page.

• Jobs. Create, edit, copy, and delete jobs on the Main Administration page. In addition, you any job can be iter-
ated.

• Reusing Workflow Definitions and Jobs. Use library workflow definitions and library jobs are typically used to
set up standardized processes across multiple projects.

• Using Life-Cycle Models. Determine how a build is identified, the different stages a build must go through on its
way to the end user, how artifacts are handled, and which clean-up policies are enforced.

• Notifications. Have AnthillPro send e-mails, instant messages, and other notifications to select team members, or
anyone who is interested in information the server generates.

• Properties. Use properties to manage variables passed into commands, agent filters, and custom stamping al-
gorithm templates. Properties can also be used to set up manual gates in your automated processes.

• Build Life Links. Pass the URL of resources outside of AnthillPro to the Build-Life Reports tab.



Chapter 33. Managing Projects
All types of AnthillPro projects are created, edited, copied, moved, deactivated, activated, deleted, imported, and ex-
ported on the Main Administration page by selecting the appropriate icon. Projects may be created within folders or
just under the Administration root folder. Only users with read/write appropriate permissions are able to perform
these tasks. If you do not have the required permissions, contact your AnthillPro administrator. See Manage
Security.

Importing and Exporting a Project
Importing and exporting projects is done from the Administration page. AnthillPro exports the project configura-
tions as an XML file. The exported file may be used to transfer project configurations between multiple instances of
AnthillPro, for troubleshooting purposes, etc. A project may be imported either into the Administration folder or in-
to any sub-folder on the Administration page. Once successful, the imported project will have the same configura-
tions as the original.

See also Import and Export Library Jobs and Import and Export Workflow Definitions.

Changing a Project's Source
Changing a project's source allows you to remove all source configuration from workflows within the project and
then set up the project using a different SCM type, etc. This process cannot be reversed. If you choose to change a
project's source type, you will need to reconfigure all the source for your originating workflows. If your recon-
figured source is of a different type from what was originally used, you must also replace all the SCM-specific steps
within jobs (both library and project) used by the project.

• This feature is not intended to be used on any production project, except at the direction of Urbancode sup-
port.

To change a project's source type:

1. Go to Administration and select the project.

2. On the project's page, click Edit.

3. Click the Reset All Source Configurations link.

4. Confirm that you want to change the Source Type. Note that once you click Done, all the source configurations
for the project will be removed. You will then have to reconfigure the source for every originating workflow used
by this project.

5. Select the originating workflow(s) associated with this project. You will be prompted with the Repository config-
uration page. Proceed with source configuration as you would for a new workflow. See Source Configuration.

6. You will also need to change any SCM-specific steps in your existing jobs if the repository type has changed.
When modifying job steps, make sure to use the same step for the new SCM type.

Operational Projects
Use Operational (Non-Life-Cycle Based) Projects for administrative, operational, and system maintenance. Opera-

131



tional Projects are not connected to a Life-Cycle Model, and the project's workflows will not create a Build Life
when a job is run.

If you have a lot of Operational Projects, you may want to include them in the Cleanup Policy. This will allow you
to determine how long operational workflows and jobs are kept. See Cleanup Schedule.

Operational Projects are configured like regular projects on the Administration page, are managed identically to oth-
er projects, and visible on the Dashboard. Once the project is created, workflows and jobs are added to the project
just as with any project.

In general, Operational Projects are used to automate processes ancillary to traditional build and release cycles, and
can be thought of as secondary workflows that are not associated with a Build Life.

Managing Projects

132



Chapter 34. Authoring Workflows
All types of workflows are created, edited, copied, copied to another project, deactivated, activated, deleted, on the
Main Administration page by selecting the appropriate icon. Only those with the appropriate permissions are able to
perform these tasks. If you do not have the required permissions, contact your AnthillPro administrator. There are
numerous advanced-authoring tools that enable you add additional automation, enforce process rules, and map Ant-
hillPro processes to your existing strategies:

• Stamping. In AnthillPro, a stamp is a configurable name for the build number, build identifier, or version number
used to identify a build. This allows you to mimic your current strategies.

• Lockable Resources. Use a Lockable Resource to specify a resource that needs to be identified and/or reserved
(e.g., an agent or environment) when executing a workflow. AnthillPro prevents access to the resource when the
lock is acquired, and queues all other requests for that resource until the lock is released upon workflow comple-
tion.

• Workflow Tasks. Workflow tasks allow you to set up manual gates, etc., that must be performed. For example, a
task could be created for the QA lead to approve a build being promoted to another environment.

• Triggers and Scheduled Builds. With Triggers, builds may be performed in a number of ways. For Continuous
Integration builds, it is ideal to run the build every time a file is checked in with a Repository Trigger. Other regu-
lar builds, such as nightly builds, are managed by schedules and kicked off by Scheduled Triggers.

Stamping
In AnthillPro, a stamp is a generic name for the build number, build identifier, or version number used to identify a
build. Each stamp type may use a different algorithm to generate the stamp. Though stamps can be converted into la-
bels (or baselines) on the corresponding source control, it is not required. In general, the stamp value should contain
an incremental property with the syntax ${+property:<propname>} on the project's originating workflow,
making the property transparent to other originating workflows.

Though less robust, it is possible to generate a simple stamp using a short BeanShell script that returns the build
ID. An example of this can be seen in the Setting Up a Build Process section.

Most projects will use numerous stamps: For example, a stamp may be applied to development builds using a
source-control version number or may simply count build numbers. Another stamp may be applied only to more
tested builds and use a releasable version number, etc. Because multiple stamps may identify the same build (within
the Build Life), stamps are organized into stamp style for differentiation. See Applying Multiple Stamps to a Build.

Stamp styles are tied to stamp-value and/or stamp-context-script attributes that track version numbers and increment
stamps through workflows. For example, a DEV stamp style would be used for marking development builds, a QA
stamp style would be used for releasing to QA, etc. Typically, a new stamp style is used to identify when a build has
reached a different stage of the application life-cycle. See Stamp Style.

• To use a stamp style, it must first be created on the project's Life-Cycle Model. See Using Life-Cycle Models.

• To use more than one stamp to track a build throughout its life-cycle, see Applying Multiple Stamps to a Build.

Once configured, all the stamps applied to a build can be viewed/traced on the Dashboard and Current Activity
page.

133



Stamp Configuration Basics
Stamp configuration is (primarily) done with a string for each stamp style that may contain:

• Foo. Constant material.

• ${property:<propname>}. Property material.

• ${+property:<propname>}. Incrementing property.

• ${stampContext:<valuename>}. Values generated from the stamp context script.

The ${+property:} token can only reference originating-workflow properties and project properties, and is
primarily used for a build-counter type functionality. It should not be referenced elsewhere in the workflow via
${property:} notation because there is no guarantee that another concurrently running build has not incremen-
ted the value since the stamp was created. To have a separate counter for each originating workflow, it is usually ne-
cessary to create a workflow property.

See the Setting Up a Build Process section if you just want to return the build ID. In this way, there is no need to
set any properties and the stamp will be assigned the Build Life number.

Stamp Context Scripts (Advanced)
Use stamp context scripts to generate values for variables in the stamp context when creating a stamp (for builds,
etc.). The stamp context script is used by the stamping strategy to create a stamp within a workflow. The script
should not modify any properties or objects, etc. Stamp context scripts are similar to normal AnthillPro scripts, ex-
cept that the additional variable "stampContext" is provided an empty HashMap.

Any stamp configuration may be concatenated similar to:
${property:ProductName}-b${+property:buildCounter}.${stampContext:revision}
with a stamp context script. The ${stampContext:} tokens are resolved by looking up values from the map
generated by the stamp context script. For example, a stamp context script can be used to:

• Get the SCM revision number of the source that went into the build.

• Place the revision number in the map variable stamp context within the script.

It would look something like: stampContext.put("revision", revisionNumber). The script can then
be incorporate into the stamp by using the token ${stampContext:revision}. The advantages over a simple
${bsh:} in the stamp value is that a stamp context script can be reused by multiple workflows/stamps and can be
written in scripting languages other than BeanShell. See Scripting.

Example Stamp Context Script: ChangeSet ID
The ChangeSet ID script below gets the most recent change set and is accessible to the stamp via
${stampContext:<name>} syntax.

import com.urbancode.vcsdriver3.*;
import com.urbancode.anthill3.runtime.scripting.helpers.*;
int getMaxChangeSet(ChangeLog[] changelogArray) {
int result = 0;
for (int i = 0; i < changelogArray.length; i++) {
ChangeSet[] changesetArray = changelogArray[i].getChangeSetArray();

Authoring Workflows

134



for (int j = 0; j < changesetArray.length; j++) {
ChangeSet changeset = changesetArray[j];
id = changeset.getId();
// edit out the "r" character for svn
if (id.startsWith("r")) {
id = id.substring(1)

}
int num = (new Integer(id.trim())).intValue();
if (num > result) {
result = num;

}
}

}
return result;

}
int highestChangeset = getMaxChangeSet(ChangeLogHelper.getChangeLogArray());
// If there is no changelog, look up the most recent failed and good build
// and take the highest number. We assume that the version number will
// be the first stamp.
if (highestChangeset == 0) {
lastSuccess = BuildLifeLookup.mostRecentSuccess();
lastFailure = BuildLifeLookup.mostRecentFailure();
if (lastSuccess != null) {
int num = getMaxChangeSet(ChangeLogHelper.getChangeLogArray(lastSuccess));
if (num > highestChangeset) {
highestChangeset = num;

}
}
if (lastFailure != null) {
int num = getMaxChangeSet(ChangeLogHelper.getChangeLogArray(lastFailure));
if (num > highestChangeset) {
highestChangeset = num;

}
}
}
stampContext.put("changeset", ""+highestChangeset);

Create a Project Property for Stamping

1. Go to Administration and select the appropriate project.

2. On the Project page, select the Properties tab.

3. On the Properties tab, click the New Property button under the Project Properties menu.

4. Name the property and give it a description (optional). Give the value as myStamp or another name that easily
identifies it as a stamp.

• Pass to Builders. Check Yes to automatically pass this property to applicable builders. Otherwise, check No.
Automatically passing the property to the builder is not recommended, as it can lead to inaccurate stamps un-
der certain conditions. If the stamp is going to be incorporated into the product, then pass something like this
BeanShell script${bsh:StampLookup.getLatestStampValue()}, or
${bsh:StampLookup.getLatestStampValue("dev")}, etc.

• Set in Environment. Check Yes to automatically set this property in the environment for applicable builders.

Automatically setting the property in the environment is not recommended, as it can lead to inaccurate stamps
under certain conditions.

Authoring Workflows

135



• Value. Input the property value.

• Click Save.

Add Stamp to Workflow

1. Go to Administration and select the Originating Workflow that you want to stamp.

2. Under the Stamping Strategies menu, click the Create Value icon under the Action menu to add a stamping
strategy.

3. On the Stamping Strategy configuration page, enter the string used to generate stamps.

• Properties may be used as per the normal ${property:<propname>} syntax.

• Any properties that should be auto-incremented (such as a build counter) should be specified as
${+property:<propname>}.

Authoring Workflows

136



4. To set Advanced Settings, see Stamp Context Scripts (Advanced).

5. Click Save.

Advanced Settings (Stamp Context Script)
In order to use the advanced settings, first create a stamp context script and then add it to the appropriate workflow.

1. Go to System > Stamp Context under the Script Library menu.

2. On the Stamp Context Scripts page, click the Create New button.

3. Name the script and provide a description (optional).

• Language. Choose a scripting language from the drop-down menu. AnthillPro supports BeanShell, Groovy,
and JavaScript.

• Script. Input the script body. Set the properties in the stampContext map variable. These will then be access-
ible to the stamp via ${stampContext:<name>} syntax. See Stamp Context Scripts (above) and
Scripting.

• Click Save.

Authoring Workflows

137



4. Go to the appropriate Stamping Strategy configuration page and select the Show Advanced Settings link.

5. From the drop-down menu, select the script used to populate the stampContext attributes for the stamp (you
may access them via ${stampContext:<attributeName>} in the stamp).

• Enter the string used to generate stamp.

• Click Save.

Authoring Workflows

138



Applying Multiple Stamps to a Build
To identify the same build with different stamps, the Create Stamp step must be included in the secondary process
(workflow) job. (While the step may be included anywhere within the job, most users include it after the Populate
Workspace and Get Changelog steps if applicable.) For example, to stamp a build when it is sent to QA, the de-
ploy (secondary) workflow must contain the Create Stamp step that tells AnthillPro to apply a new stamp whenever
the workflow is performed. To apply additional stamps, each secondary workflow must contain the appropriate
stamp style.

Adding New Stamp to Secondary Workflow
Add a new stamp to a build when a secondary process is run, typically to identify that the build has been sent to a
different environment, etc. The process for applying a second (or third, etc.) stamp to a build is similar for stamping
the build, except that the new stamp is tied to the secondary (non-originating) workflow used to send the build to an-
other environment (QA, PROD, etc.). This is done by including a Create Stamp step in the deploy job.

1. Create new Stamp Style. Create the new stamp style that you want to apply to a build when the secondary work-
flow is run. See Using Life-Cycle Models.

2. Create a Project Property. In addition to the property for stamping the originating workflow, create a property
for stamping the build when running a secondary workflow (process) with a different stamp. See Create a Project
Property.

3. Create the secondary workflow that will apply the new stamp (via the job).

4. Create Job to be run by the Secondary Workflow. Once the secondary workflow has been created, configure
the job that will deploy the artifacts.

• Include the Create Stamp step near the beginning of the job.

Make sure to select the Stamp Style (from the drop-down menu) you want to apply when running this work-
flow.

5. Add job to workflow.

6. To add different stamps, for QAT, PROD, etc., follow Items 1-5 for each secondary process (workflow) that de-

Authoring Workflows

139



ploys the artifacts to the specific environment.

Creating Lockable Resources
Use a Lockable Resource to specify a resource that needs to be identified and/or reserved (e.g., an agent or environ-
ment) when executing a workflow. AnthillPro prevents access to the resource when the lock is acquired, and queues
all other requests for that resource until the lock is released upon workflow completion.

After creating a Lockable Resource at System > Lockable Resources (see Configure Lockable Resources), it may
be edited, reset, or deleted on the Lockable Resources page:

• Edit. Select the edit icon to change the Lock Resource configuration.

• Reset. Selecting the Reset icon removes all locks that have been acquired on the resource. For example, if the
workflow is taking too long, or is hung up, clicking the Reset button will allow other workflows to acquire the re-
source. Resetting the Lockable Resource only effects workflows that have acquired the resource. Subsequent
workflows will still use the Lockable Resource normally.

• Delete. A Lockable Resource configured on at least one workflow cannot be deleted.

When adding Locks to a workflow, there are two options:

• Lock the Environment. Select "Lock Environment" icon to have AnthillPro exclusively lock the environment
when this workflow runs. See Exclusively Lock the Environment.

• Resources to Lock. Select the Add Resource link to have AnthillPro obtain a lock during workflow execution.
Either choose a resource from the drop-down menu (see Use Lockable Resources); or select a resource dynamic-
ally with a BeanShell script.

If scripting a Resource Lock, it must return the name of a resource or a LockableResource object. When the work-
flow is run, AnthillPro will add the scripted Resource Lock to the Lockable Resources page. See Scripting.

Once a Lockable Resource is configured, it may be viewed (but not edited) by AnthillPro users with permissions to
the Current Activity page.

Lockable Resources Prerequisites

• You must have administrative permissions. See Manage Security.

• At least one project must be active in AnthillPro.

Configure Lockable Resources
After creating a Lockable Resource, it must be added to a workflow so AnthillPro will lock a resource at workflow
execution. See Use Lockable Resources.

Authoring Workflows

140



1. Go to System > Lockable Resources under the Project Support menu.

2. On the Lockable Resources page, click Create New.

3. Configure:

• Name the Lockable Resource.

• Description (optional). Give a description.

• Maximum Number Of Lock Holders. Determine the maximum number of objects that can acquire this re-
source at any one time. Specifying "1" means that only one workflow can be run on the resource; specifying
"5" means that a maximum of five different workflows can run concurrently using this resource.

It is also possible to override this setting for individual workflows. See Use Lockable Resources, Item Three.

4. Click Save then Done.

5. Proceed to Use Lockable Resources.

Use Lockable Resources
Once a Lockable Resource is configured (see Configure Lockable Resources), add it to a workflow on the Adminis-
tration Workflow Main Page. This section covers the steps necessary to add an existing Lockable Resource to an ex-
isting workflow. To select a resource dynamically, see Scripted Lockable Resources.

1. Go to Administration and select the workflow the resource is to be acquired on.

2. On the Workflow Main page, select the Add Resource link.

3. Set the Lockable Resource:

• Explicit Resource. Select an existing Lockable Resource from the drop-down menu. See Configure Lockable
Resources.

• Scripted Resource. If a Lockable Resource was selected above, skip this item. To dynamically set a Lockable
Resource, see Scripted Lockable Resources.

• Exclusive. Check "Yes" to have AnthillPro exclusively lock the resource. When enabled, AnthillPro will ob-
tain an exclusive lock for this resource, and override the Maximum Number of Lock Holders set during re-
source configuration. See Configure Lockable Resources. When enabled, all other requests to acquire the re-
source will be queued.

4. Click Save then Done.

5. To add another Lockable Resource, repeat Items One through Four.

Exclusively Lock the Environment
Select the "Lock Environment" icon to have AnthillPro lock the environment when this workflow runs. When en-
abled, this option exclusively locks the environment, and ensures that no other workflow is able to run in the envir-
onment while this workflow is running. Additionally, if a request to run this workflow is made, and another work-
flow is currently running in the environment, this workflow will be placed on hold until the environment is free.

To turn exclusive environment locking off, select the icon again.

Authoring Workflows

141



Creating Workflow Tasks
Assign the "task execute" permission to a user, on a workflow-by-workflow basis, to restrict that user's ability to ex-
ecute another workflow. When a user is assigned this permission, they are allowed to only execute a workflow (such
as a deployment, etc.) via a task (see Create and Use Workflow Choice Task and Create and Use Yes/No Task).
Users with the "task execute" permission will not be allowed to manually run a secondary process, etc., and have no
system permissions. This is useful in situations where AnthillPro users are only tasked with deploying, but not
building, a project or workflow. To set a "task execute" permission, see Setting Workflow Permissions.

The task is cerated for originating workflows of Life-Cycle-Based projects, and typically result in a secondary work-
flow (such as a deployment) being run. See Create and Use Workflow Choice Task and Create and Use Yes/No
Task.

Create and Use Workflow Choice Task
Use the Workflow Choice Task to require specific users to manually answer a question. When the question is
answered with a workflow selected from all available workflows, that workflow will be run on the Build Life. To
create a Task, add it to the job. When the job is run, the Task will appear on the Dashboard Tasks Tab for the users
with the appropriate role (see Use Workflow Choice Task).

The Workflow Choice Task can be used with both an Embedded Job and a Library Job. (The Yes/No Task also may
be used with a Library Job. See Create and Use Yes/No Task.) Because it requires a Build Life, the Task cannot be
used in conjunction with Operational projects.

See also Execute Workflow via Task and Setting Workflow Permissions.

Workflow Choice Task Prerequisites

• You must have administrative permissions. See Manage Security.

• At least one Life-Cycle Based project must be active in AnthillPro. The Task will not work with Operational
(Non-Life-Cycle Based) projects.

• The workflow to run the Task and the workflow(s) to be run when the Task is complete must be created.

Create Workflow Choice Task
While there is no restriction where the Workflow Choice Task is placed within the job, most users include it near the
end of the job. For a typical build job, it is included after the Set Working Directory, Populate Workspace, Get De-
pendency Artifacts, and Build steps. The Workflow Choice Task may be added to either an originating or secondary
(non-originating) workflow; however, it may only kick off a secondary (non-originating) workflow.

1. Go to Administration and select the job to add the Workflow Choice Task to. For detailed instructions on job
creation.

2. Select the Insert After icon of the job step prior to where the Create Workflow Task step is to be included. For
example, if inserting the Task step after the Build step, select the Insert After icon of the Build step.

Authoring Workflows

142



3. Expand the Miscellaneous folder, select Manual Workflow Choice Task, and click Select.

4. Configure step:

• Name the step.

• Question. Give the question that a user must answer. The filed may be scripted (advanced). See Scripting.

• Role. Select a role from the drop-down menu. Only one role may be selected. Any user assigned the selected
role will be able to answer the question by selecting one of the available workflows.

To restrict who can answer the question and execute the workflow, See Execute Workflow via Task.

• Workflow Choices. Check the secondary workflow(s) that will be displayed for the user to choose from (see
Use Workflow Choice Task). For example, if multiple workflows are available to the user, one can be used to
send the artifacts to QA, or one used to send the artifacts to QAT, etc.

Only secondary workflows associated with the project are available: i.e., a Library Workflow cannot be kicked
off with this Task. For details on creating secondary workflows.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. Select the pre-condition script which must pass before the step will execute. Editing
an existing script will effect all projects that use the script.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

5. Click Save.

6. For usage, see Use Workflow Choice Task.

Use Workflow Choice Task

Authoring Workflows

143



1. Run the workflow that contains the job configured in Create Workflow Choice Task.

2. Once the workflow is complete, go to Dashboard > Tasks. If you have the appropriate role, the Task will be lis-
ted.

3. Under the Description menu, select the appropriate Task.

4. In the Task dialog box, answer the question configured in Create Workflow Choice Task.

• Workflow. Select the workflow to be run from the drop-down menu. Because there are multiple options, make
sure you know which workflow to choose before completing the Task.

• Click Yes to add the appropriate workflow.

5. Click Yes again to kick of the workflow. If you click No the workflow will not run. Clicking Cancel will return
you to the main Tasks tab.

6. To view the status and history of every Task, see Task History Tab.

Create and Use Yes/No Task
Use a Yes/No Task to require a specified user role to perform a manual procedure in order to kick off another work-
flow. To create a Task, add it to the job. When the job is run, the Task will appear on the Dashboard Tasks Tab for
the users with the appropriate role (see Use Yes/No Task).

For example, use a Task to verify that a QA lead reviewed the automated test logs. When "Yes" is selected
(indicating approval) a workflow that deploys the application to QA is triggered.

The Yes/No Task may be used with both an Embedded Job (see Create Yes/No Task with Embedded Job) and a
Library Job (see Create Yes/No Task with Library Job). Because it requires a Build Life, the Task cannot be used in
conjunction with Operational projects.

See also Execute Workflow via Task and Setting Workflow Permissions.

Yes/No Task Prerequisites

• You must have administrative permissions. See Manage Security.

Authoring Workflows

144



• At least one Life-Cycle Based project must be active in AnthillPro. The Task will not work with Operational
(Non-Life-Cycle Based) Projects.

• The workflow to run the Task and the workflow to be run by the Task must already be created.

Create Yes/No Task with Embedded Job
For a typical build job, the Task is included after the Set Working Directory, Populate Workspace, Get Dependency
Artifacts, and Build steps. Most users include the step near the end of the Job. The Yes/No Task may be added to
either an originating or secondary workflow; however, it may only kick off a secondary (non-originating) workflow
for the same Build Life.

1. Go to Administration and select the job to add the Yes/No Task to. For detailed instructions on job creation.

2. Select the Insert After icon of the job step prior to the point where the Yes/No Task step is to be included. For
example, if inserting the Task step after the Build step, select the Insert After icon of the Build step to add the
Task step after the Build step.

3. Expand the Miscellaneous folder, select Manual Yes/No Question Task, and click Select.

4. Configure step:

• Name the step.

• Question. Give the question that a user must answer. The filed may be scripted. See Scripting.

• Role. Select a role from the drop-down menu. Only one role may be selected. Any user assigned the selected
role will be able to answer the question.

To restrict who can answer the question and execute the workflow, See Execute Workflow via Task.

• Workflow to Run. Select the workflow that will run when the question is answered. Only when the user an-
swers "Yes" to the question will the secondary workflow execute on the Build Life.

• Environment. Select the environment the secondary workflow will run in (once it has been kicked off by the
manual Task). If "Any Environment" is chosen, AnthillPro will run the workflow on the first available agent
associated with the project. If the workflow to be run requires a resource only available in a single environ-
ment, select that environment. See Environments.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

Authoring Workflows

145



• Pre-Condition Script. Select the pre-condition script which must pass before the step will execute. Editing
an existing script will effect all projects that use the script.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

5. Click Save.

6. For usage, see Use Yes/No Task.

Create Yes/No Task with Library Job
Creating a Yes/No Task for a Library Job follows much the same process described in Create Yes/No Task with
Embedded Job; however, because the Library Job may be used by multiple projects, the workflow to be run and the
specific environment must be determined by a short script.

To use the Task with a Library Job, you should already be familiar with AnthillPro scripting. See Scripting.

1. Follow the directions for creating a Library Job.

2. Go to Administration and select the Library Job to add the Yes/No Task to.

3. Select the Insert After icon of the job step prior to the point where the Yes/No Task step is to be included. For
example, if inserting the Task step after the Build step, select the Insert After icon of the Build step to add the
Task step after the Build step.

4. Expand the Miscellaneous folder, select Manual Yes/No Question Task, and click Select.

5. Configure step:

• Name the step.

• Question. Give the question that a user must answer. The filed may be scripted (see Scripting).

• Role. Select a role from the drop-down menu. Only one role may be selected. Any user assigned the selected
role will be able to answer the question.

To restrict who can answer the question and execute the workflow, See Execute Workflow via Task.

• Workflow Script. Give the script (see Scripting) that will determine the workflow to run when the question is
answered "Yes". The script should return the name of the workflow or the workflow object to run.

For example, enter

• return "Deploy"; to kick off the secondary workflow named Deploy when the question is answered
"Yes";

or

Authoring Workflows

146



• return ProjectLookup.getCurrent().getWorkflow("Deploy"); to first look up the cur-
rent project and kick off the secondary workflow named Deploy when the question is answered "Yes".

• Environment Script. Give the script (see Scripting) that will determine the environment to run the workflow
when the question is answered "Yes". The script should return the name of the environment.

For example, enter

• return "QA"; to run the secondary workflow in the QA environment when the question is answered
"Yes". See Environments.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. Select the pre-condition script which must pass before the step will execute. Editing
an existing script will effect all projects that use the script.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

6. Click Save.

7. For usage, see Use Yes/No Task.

Use Yes/No Task

1. Run the workflow that includes the job configured in either Create Yes/No Task with Embedded Job or Create
Yes/No Task with Library Job. See Run Builds for originating workflows or Run Deployment for secondary
workflows.

2. Once the build is complete, go to Dashboard > Tasks. If you have the appropriate role, the Task will be listed.

3. Under the Description menu, select the appropriate Task.

4. In the Task dialog box, answer the question configured in Create Yes/No Task with Embedded Job or Create
Yes/No Task with Library Job. Click Yes to kick of another workflow. If you click No the workflow will not run.
Clicking Cancel will return you to the main Tasks tab. Once a Task has been completed, it will be removed from
the Tasks tab.

Authoring Workflows

147



5. To view the status and history of every Task, see Task History Tab.

Workflow Triggers and Scheduled Builds
With Triggers, builds may be performed in a number of ways. For Continuous Integration builds, it is ideal to run
the build every time a file is checked in with a Repository Trigger. Other regular builds, such as nightly builds, are
managed by schedules and kicked off by Scheduled Triggers.

Builds (and deployments) may also be started based on arbitrary events in the system using a scripted Event Trigger.
For example, event triggers can be used to look for actions such as a completed build of a related project or comple-
tion of an originating workflow with the auto-deploy flag set to "true".

If you use Subversion, see also Using Triggers with Subversion.

AnthillPro supports three trigger types:

• Event Triggers. Looks for actions automatically thrown by AnthillPro and initiates another action (e.g., initiates
a deployment on successful completion of an originating workflow). See Event Triggers.

• Repository Triggers. Kicks off a build when changes are committed to source. Most commonly used for CI. See
Repository Triggers.

• Scheduled Trigger. Each schedule runs on its own timer. The build is registered with the schedule and kicked off
when the schedule fires. See Scheduled Triggers.

Triggers and Scheduled Builds Prerequisites

• You must have Administrative permissions. See Manage Security.

• Prior to adding an Event Trigger to the workflow, the Event Script must be created. See Event Scripts.

• If you are unfamiliar with AnthillPro scripting, see Scripting and Tools > Developer Tools before creating an
Event Trigger.

Authoring Workflows

148



• See also Use Agent Filters and Quiet Periods.

Event Triggers
Event Triggers use scripts to create an Event Filter that listens to events passing through the AnthillPro Event Ser-
vice. When the Event Script detects an event (e.g., that a dependency of the trigger's workflow is used; a completed
build of a related project; or a completed originating workflow with the auto-deploy flag set to "true"; etc.), it can
then trigger another action by the AnthillPro server.

In general, once configured, the scripts are immediately active and listening for events. The trigger, workflow, and
project parameters provide references to the Event Trigger itself, as well as the workflow and project it belongs to.
The AnthillPro API exposes its event service so the Trigger may be configured to listen for specific events. See
Event Scripts and Scripting.

See also Use Agent Filters and Quiet Periods.

Create Event Trigger

1. Go to Administration and select the workflow the trigger is to be added to.

2. Select the Triggers tab, and click the New Trigger button.

3. Select Event Trigger from the drop-down menu and click Select.

4. Configure trigger:

• Name the trigger.

• Force. Check the box to force a build every time this trigger executes.

• Event Script. Select the script that returns an EventListener. Available parameters are the workflow to be
triggered (workflow); this project (project); and this trigger (trigger). See Event Scripts.

5. Click Save then Done.

Repository Triggers
For Continuous Integration builds, it is ideal to build every time a file is checked in. In this case, a post-commit
script is added to the SCM that alerts AnthillPro of source changes. Once the Repository Trigger is active for a
workflow, every commit of source changes will initiate a build.

See also Use Agent Filters and Quiet Periods.

1. Go to Administration and select the workflow the trigger is to be added to.

• If using Subversion, triggers can be set up at the repository level. Once done, they are available to all work-
flows using that repository. An individual workflow trigger does not need to be created. See Subversion Re-
pository Trigger Configuration.

2. Select the Triggers tab, and click the New Trigger button.

3. Select Repository Trigger from the drop-down menu and click Select.

Authoring Workflows

149



4. Configure trigger:

• Name the trigger.

• Force. Check the box to force a build every time this trigger executes.

5. Click Save then Done.

Scheduled Triggers
Add a Scheduled Trigger to workflows in a similar manner to the Repository Trigger. Each Schedule Trigger runs
on its own timer that polls the SCM for changes. If changes are detected, the build is registered with the schedule
and kicked off when the schedule fires.

Scheduled Triggers give the option to force a build regardless of whether source changes have occurred. Unless the
forced option is set, AnthillPro will not initiate a build if no source changes are detected.

See also Use Agent Filters and Quiet Periods.

Create Schedule for Trigger
A schedule must be created prior to adding to the trigger. To do so, go to System > Schedules under the Project
Support menu. When creating a schedule, make sure to give it a name and description that makes it easy for others
to identify (e.g., Name: Hourly Schedule; Description: kicks off a build every hour).

To create a schedule, see Create Schedules.

Add Schedule to Workflow Trigger
Before continuing, make sure you have already created a schedule. See Create Schedule for Trigger.

1. Go to Administration and select the workflow the trigger is to be added to.

2. Select the Triggers tab, and click the New Trigger button.

3. Select Scheduled Trigger from the drop-down menu and click Select.

Authoring Workflows

150



4. Configure trigger:

• Name the trigger.

• Schedule. Select a schedule from the drop-down menu. See Create Schedule for Trigger.

• Force. Check the box to force a build every time this trigger executes, even if source changes have not been
detected.

5. Click Save then Done.

Authoring Workflows

151



Chapter 35. Administrating Jobs
Jobs are created, edited, copied, copied to another project, and deleted on the Main Administration page by selecting
the appropriate icon. Any job may also be iterated (to allow for multi-platform builds, etc.) to run multiple times.
AnthillPro also provides a way for you to create templated jobs, called a Library Job. Once a Library Job has been
configured, it can be used by multiple projects or can be turned into a project-specific job. When used in concert
with Reusable Workflow Definitions, the Library Job can provide fine-grained control over your AnthillPro pro-
cesses, as well as cut down on the amount of configuration necessary when editing existing and creating new
projects. See Reusing Workflow Definitions and Jobs for more.

Reusing Job Steps
It is possible to copy steps between jobs in the same project, between jobs is different projects, or past them within
the same job. This allows you to reuse configured steps. Once the step has been copied and used to the new location,
you can edit the step's settings to customize it for the particular job.

1. Select the Copy Step icon (under the Actions menu) of every step to be copied.

2. Once all the steps have been added to the clipboard, navigate to the destination project and then paste the step(s)
into the appropriate job by selecting either the Paste or Paste and Remove icon on the clipboard.

3. When pasted, the step(s) will appear at the end of the existing job. To move the step, use the grab tool (to the

right of the step name) and drag the step to the desired location. To clear the clipboard, click the Remove icon.

4. Make any necessary changes to the copied step.

5. To clear the clipboard, click the Remove icon.

Iterate a Job
Use job iterations to run the same job multiple times. When used in conjunction with Job Iteration Properties, you
can set the parameters for a single job to run with slight variations each time. For example, if you want to run a de-
ployment on several machines, you can set a property on each iteration that identifies the machine (with an Ant-
hillPro agent installed on it) to run the deployment on. Or, in the case of a multi-platform build, you can set itera-
tions that will iterate the build across each platform. Before you begin, make sure:

• You must have AnthillPro administrative privileges to iterate a job. See Manage Security.

• A Project with an originating workflow and at least one job must already be active.

• If you are planning on using job-iteration properties to determine which agent each iteration will run on, you will
need to create a new Agent Filter Script. See Tools > anthill3-dev-kit.zip > Scripting > Example: Select Agents
Based on Job-iteration Properties.

• Corresponding properties must be set on the agent(s) so that when the agent filter script runs, it will select the cor-
rect agent(s). See Configure and Edit Agent Filters.

Configure Job Iterations:

1. Go to Administration and select the workflow that contains the job to be iterated.

152



2. On the workflow page, select the Definition tab.

3. Click the job to be iterated and select Iterate Job from the menu.

4. Configure Job Iterations:

• Job. This is the name of the job to be iterated. This field is automatically populated by AnthillPro.

• Iterations. Give the number of times this job is going to be iterated. Use -1 to iterate a number of times equal
to the number of agents returned by the job's agent filter. If -1 is used, Unique Agents must be set to Yes. For
example, if the agent filter returns 4 agents, setting the iterations to -1 will iterate the job four times.

• Unique Agents. To have each iteration run on a unique (different) agent, check Yes. If the number of itera-
tions set above is -1, you must check Yes here, otherwise the iterated job will fail.

If you are planning on using job-iteration properties to determine which agent each iteration will run on, make
sure you check No -- otherwise your jobs may fail. See Job Iteration Properties for more.

• Run Parallel. Check Yes to run in parallel (default is No). Depending on your system, running parallel jobs
may not be possible; however, running parallel jobs can significantly decrease build times.

5. Click Set Iteration.

6. To set job iteration properties, see Job Iteration Properties.

Administrating Jobs

153



Chapter 36. Reusing Workflow
Definitions and Jobs
Library workflow definitions and library jobs are typically used to set up standardized processes across multiple
projects.

The library job can be used either by a project workflow or a library workflow definition. When added to a project
during workflow configuration, the job is added on the workflow Definition page as an embedded job. This allows
each individual workflow to use a combination of library jobs and project jobs, and provides flexibility while still al-
lowing you to reuse many of the same processes.

The library workflow, configured similar to a project workflow, can only use library jobs as part of its definition.
When added to a project during workflow configuration, the workflow definition is added on the workflow Defini-
tion page as a library definition.

Library jobs and workflow definitions do not necessarily have to be placed in the Job Library/Workflow Library
folder -- they can be placed anywhere within the Admin tree. Additionally, any jobs or workflow definitions (on the
Administration page) not in a folder or as part of a project subdirectory are library jobs and workflow definitions.

See Creating Library Jobs and Creating Workflow Definitions.

Creating Library Jobs
Once configured, the library jobs are added to workflows of any existing project on the workflow Definition tab.
Library jobs may also be added to library workflows, and will be used by any project configured to use that Work-
flow Definition (see Creating Workflow Definitions). Additionally, Library Jobs may also be created by copying an
existing project job.

Set Up a New Library Job

1. Go to Administration > Job Library.

2. On the Job Library page, click the New Job link.

3. Configure the job.

If the job is to be used in an Operational Project, do not select a Life-Cycle Model or SCM type. See Operation-
al Projects.

4. Click Save.

Add Library Job to a Project Workflow

1. Go to Administration and select the project that will use this job.

2. Select the workflow that this job will be added to as part of the definition.

3. Select the Definition tab.

4. Select Embedded Definition from the drop-down menu, and click Select.

154



5. Click the START icon to insert the job.

6. Select the job from the drop-down menu, select the Pre-condition Script, and click Insert Job.

To use a library job as part of a library workflow definition, see Creating Workflow Definitions.

Import and Export Library Jobs
To export a Library Job:

1. Go to Administration.

2. Click the Export Job icon of the job to be exported.

3. The Job configuration will be exported to the specified directory (or opened up in an XML editor).

To import a Library Job:

1. Go to Administration > Import Project icon of the Library Job folder.

2. Import the file containing the XML description, or paste the XML description into the text field.

3. Click Import.

See also Import and Export Workflow Definitions.

Creating Workflow Definitions
Once configured, Workflow Definitions are added to existing projects as part of the project-workflow creation pro-
cess (on the project-workflow Definition tab).

Set Up New Workflow Definition

1. Go to Administration > Workflow Library.

2. On the Workflow Library page, follow the New Workflow link.

3. Configure the Workflow Definition and click Save.

4. Add a job to the Workflow Definition. Only jobs created in the Job Library may be added to this workflow defin-
ition. See Creating Library Jobs.

Specify Workflow Definition Properties
Specify any Properties to be passed to all workflows using this library workflow. You will need to define a property
on the library workflow, the value of which will be different for each project workflow that uses the library defini-
tion.

For example, you have two projects that use a library workflow for builds. To have each project use the correct build
script, you would define a property on the library workflow. Then, when you configure the projects that use this

Reusing Workflow Definitions and
Jobs

155



workflow definition you would assign a value to the property.

1. Go to Administration > Workflow Library and select the appropriate Workflow Definition.

2. Select the Add Property icon.

3. Name the Property and click Save.

Set Workflow Definition Security
Configure the permissions for the Workflow Definition. Determine what user roles can perform which actions on the
Workflow Definition. See Manage Security.

1. Go to Administration > Workflow Library and select the appropriate Library Definition.

2. Select the Security icon.

3. Determine permissions. See Manage Security.

4. Click Save then Done.

Add Workflow Definition to a Project

1. Go to Administration and select the workflow that the Workflow Definition is to be added to.

2. Select the Definition tab.

3. Click the Reset button and select the Workflow Definition from the drop-down menu.

Reusing Workflow Definitions and
Jobs

156



4. Click Select.

5. Select the Properties tab if Property has been specified on the Workflow Definition. See Specify Workflow
Definition Properties.

6. Select the Property created in the Specify Workflow Definition Properties step.

7. Configure Property:

• Name. The name of this Property has been inherited from the Workflow Definition. Do not change the name.

• Description. Provide a description for this Property to be shown when prompting users for a value.

• Default Value. Give the value for this property.

• User May Override. Check the box if the user may specify a new value when running the workflow.

• Label. Provide a label for this Property to be shown when prompting users for value (leave blank to use the
Name as the label).

• Is Required. Check the box to require a non-empty value for this property when running this workflow.

• Allowed Values. Give the values users are allowed to select for this property (leave blank for no value restric-
tion). Separate each value by entering it on its own line.

8. Click Save.

Import and Export Workflow Definitions
To export a Library Workflow:

1. Go to Administration.

2. Click the Export Workflow icon of the workflow to be exported.

3. The workflow configuration will be exported to the specified directory (or opened up in an XML editor).

To import a Library Workflow:

1. Go to Administration > Import Project icon of the Library Workflow folder.

2. Import the file containing the XML description, or paste the XML description into the text field.

3. Click Import.

See also Import and Export Library Jobs.

Reusing Workflow Definitions and
Jobs

157



Chapter 37. Using Life-Cycle Models
A Life-Cycle Model allows you to create a reusable template that maps your organizational structure. For example, a
typical set-up would be DEV, QA, PROD process (i.e., pipeline or life-cycle): a build starts out in development, is
deployed to quality assurance for testing, and then finally sent to production for release. You would configure the
Life-Cycle Model to apply a new status when a build is sent to QA, and one when the build is sent to PROD. Like-
wise, a stamp style (essentially a build identifier) can be applied to each build that corresponds to the status. This en-
ables you to know exactly which build is in which environment because the status and stamp are recorded on the
Dashboard.

Life-Cycle Models, then, give you control over how a build is identified, the different stages a build must go through
on its way to the end user, how artifacts are handled, and which clean-up policies are enforced.

Life-Cycle Models are closely associated with AnthillPro's Build Life concept: Much of what you configure in the
Life-Cycle Model determines how a Build Life is identified and used. See Build Life for more.

Once a Life-Cycle Model is created, it may be used for multiple projects with similar Life-Cycles without having to
reconfigure a list of Statuses, Stamps, Artifact Sets, and Cleanup for the new project. This enables you to create sys-
tem-wide standards that every team must use when configuring projects.

Creating a Life-Cycle Model
Make sure you have administrative permissions before continuing. See Manage Security.

1. Go to System > Life-Cycle Models under the Project Support menu, and click the Create New button.

2. Give the Model a name and a brief description (optional). Click Save.

Status
Success and failure statuses are applied by default (because they are required), but common status names such
PROD or QA can be created and associated with a color (using a drop-down menu) for ease in spotting Build Lives
at a given status. As an indication of what stage a Build Life has reached, status names similar to those of environ-
ment groups can be useful in identifying which environment groups a Build Life has been deployed to.

If you have a number of statuses in your Life-Cycle Models, you can reorder them using the drag-and-drop tool so
that the ones you are most interested in appear at the top of the list. The order set here will be displayed on the
Dashboard Workflow page once a workflow is complete.

1. To create a new status, select the Status link from the New Life-Cycle Model main page.

2. Click the Create New button.

3. Name, give a description of, and assign a color to the new status. When selecting a color, you can use the up/
down keys to quickly scroll through the picker.

158



4. Click Save.

5. Arrange order by using the Move Status Up and/or Move Status Down icons under the Operations menu.

Stamp Style
Stamps are essentially numbers or labels used to identify a build, and are used to help identify a particular build.
Stamp styles (or stamp types), then, are used to apply different stamps to a single build, and allow you to help track
a build throughout its life-cycle. While most projects will only need a single stamp representing the build number,
many AnthillPro users find it helpful to apply multiple stamp styles to specific projects, such as those released into
production.

Typically, apply a new stamp to a build when it is promoted (or deployed or released) to a new stage in the life-cycle
by creating multiple stamp styles. So a DEV stamp style would be used to identify development builds; a QA stamp
style would be used for identifying the build when it is sent to QA; and a PROD (production) stamp style would be
used to identify when the build has been released into production.

In this way, you can set up AnthillPro to stamp a build according to the protocol of each individual environment (or
stage) that the build goes through. For example, a single build may have 3 (three) stamps throughout its life, each
represented by a different stamp style:

• DEV Stamp Style. Typically, this stamp style uses a simple Build Number stamp for development builds, often
using a source-control version number or just counts successive builds: i.e., dev-500, dev-501, dev-502; or simply
100, 101, 102, etc. See Stamping.

Though stamps can be used as the basis of version control baseline, label or tag, that is strictly optional.

• QA Stamp Style. When a build has been deployed to quality assurance, the QA stamp style will typically contain
a stamp such as qa-100, qa-101, qa-102, etc., identifying that the build has reached the quality assurance stage of
the life-cycle. See Applying Multiple Stamps to a Build.

Using Life-Cycle Models

159



• PROD Stamp Style. Will usually contain a different number (or identifier) that's easier for customer's to under-
stand: i.e., 1.1, 1.2, 1.3. This stamp style may correspond with your release numbers, but it does not have to. See
Applying Multiple Stamps to a Build.

Once a stamp style is created, AnthillPro ties the stamp to the workflow, and automatically identifies all successive
builds. When multiple stamp styles are used, AnthillPro will assign a new stamp to a build based on criteria you
define when configuring the stamp style or based on the Create Stamp job step of the secondary workflow. See Ap-
plying Multiple Stamps to a Build.

1. To create a new Stamp Style, select the Stamp Styles link and click Create New.

2. Give the Stamp Style a name and description.

3. Click Save.

Artifact Sets
In AnthillPro, an Artifact Set is a label for a collection of build artifacts. AnthillPro allows you to create as many
Sets as you want, and then associate the build artifacts with a particular Artifact Set. This gives you fine-grained
control over how the artifacts are used.

Some types of commonly used Artifact Sets:

• A code library used by multiple projects.

• A platform-specific client.

• Images or video incorporated into a product.

• Documentation of the shared library to be rolled into developer documentation (JavaDoc).

• The deployable executable of a top-level project.

In general, similar projects often have similar artifacts. In AnthillPro, instead of managing these artifacts on every
project, you manage them as part of the Life-Cycle Model by creating Artifact Sets. When you create an Artifact Set
on a Life-Cycle Model, that Artifact Set will be available to every project that uses the Model. Once that is done,
you then associate the build artifacts with an Artifact Set during workflow configuration. For example, projects that
generate a shared library might have an Artifact Set called lib which contains the library. On the build workflow,
you associate the library with the lib Artifact Set. This makes the artifacts (the library) available to be used in de-
pendencies, deployments, or other processes.

In AnthillPro, Artifact Sets are used to define dependency relationships: Any project that another project depends on
generates one or more collections of files used by the dependent project. These collection of files are called an Arti-
fact Set in AnthillPro. When configuring a dependency, you select which Artifact Sets a project depends on (see De-
pendency Management for more information on how AnthillPro manages dependencies). Artifact Sets are also used
to specify files that may be used in secondary workflows. The most common secondary workflow that uses Artifact
Sets is the deployment workflow: AnthillPro will send the artifacts to a different location (say a server in QA) based
on the Artifact Sets you configure (see Setting Up a Deployment Process for more information on how Artifact Sets
are used in deployments).

1. To create a new Artifact Set, select the Artifact Sets link and click Create New.

Using Life-Cycle Models

160



2. Give the Artifact Set a name and description (optional).

3. Click Save.

4. See also Artifact Set Security and Setting an Artifact Retention Policy (under Cleanup).

Artifact Set Security
Once an artifact set has been configured, it is possible to secure it. This will enable you to control, based on the de-
fault permissions for user roles, who can download/resolve an artifact set and who can set security permissions for
an artifact set. If you do not see a security icon (a yellow badge) in the Operations menu, Artifact Set Security has
not been enabled or you do not have the appropriate permission.

• Please see Securing Artifact Sets for detailed instructions. To properly secure an artifact set, you will need to first
enable default permissions, change a system setting (System > Server Settings > Security) and then set the arti-
fact security for the artifact set(s) by selecting the Security icon on the Operations menu.

Cleanup
The Cleanup configures AnthillPro to periodically clean up old Build Lives, build requests, and miscellaneous jobs
generated by a project. Cleanup is on a per-project basis, so every project that uses the same Life-Cycle Model will
have the same policy.

If you set a cleanup policy that keeps the 5 most recent successful Build Lives for 1 week, AnthillPro will enforce
the policy on a per-workflow basis. So, if you have a "trunk" and a "branch" originating workflow in the same
project, AnthillPro will keep the 5 most recent successful Build Lives of "trunk" AND of "branch" for 1 week.

There are three basic options for Build Life cleanups:

• Delete. Fully deletes the Build Life, artifacts and logs from the server. See Setting an Artifact Retention Policy for
more.

• Inactivate. Deletes the Build Life's artifacts and marks the Build Life as inactive, preventing execution of work-
flows on the Build life and any use of the inactive Build Life to satisfy dependencies. See Setting an Artifact Re-
tention Policy for more.

• Archive. Deletes the Build Life's artifacts and marks the Build Life with an archived status. The Build Life can
later be unarchived and its artifacts rebuilt with an unarchive process. See Setting an Artifact Retention Policy for
more.

Click the Cleanup link to determine a Cleanup Schedule, choose how Builds Requests are handled, and set how
Build Lives are cleaned-up.

Setting an Artifact Retention Policy
There is no one-size-fits-all "policy": what you want to keep and for how long depends on your organizational
guidelines/processes. Eventually, you will need to decide how long to keep the artifacts in order to save disk space.
Following is a general guideline that should work for most organizations:

Using Life-Cycle Models

161



• CI/Daily Builds (Success): 15 days: the 5 most recent builds marked as "success" (for CI and/or nightly builds.
Any build sent to testing, generally released requires different retention policy).

• Any Build (Failure): 3 days / 0 builds for failed. No reason to keep them -- often failures do not result in arti-
facts.

• Builds Sent for Testing: 30 days for testing builds (or the minimum testing cycle, whichever is longer). Most
Agile testing cycles are shorted than 1-month, so keeping the artifacts around for at least that long is a good idea.
If your testing cycle is longer than 30 days, then keeping the artifacts until the testing cycle is complete is a good
idea.

• General Release Builds: Production should be kept around until the build has reached its end of life or regula-
tions allow for deletion.

See also Artifact Sets above.

Cleanup Schedule
Cleanup is kicked-off via a schedule, which must created at System > Schedules under the Project Support menu
(see Create Schedules). AnthillPro will automatically execute the cleanup rules you set in the Cleanup Build Re-
quests and Cleanup Build Lives sections, based on the cleanup-policy schedule. In addition, the cleanup policy al-
lows you to configure cleanups of lockable resources, operational workflows and operational jobs.

1. Go to System > Cleanup under the Project Support menu.

2. Click the Edit icon and configure the cleanup policy:

• Schedule. Select the schedule. If you do not have an appropriate schedule, please create one before continuing.
See Create Schedules.

How often the schedule should fire is determined, in part, by the cleanup rules set on the Life-cycle Model. For ex-
ample, if you have cleanup run on a weekly schedule and the Cleanup Build Request set to Never, no build requests
will be cleaned up. Likewise, if you have Cleanup Build Lives for "All Build Lives" set to be kept for 2 weeks, the
first time the cleanup schedule runs (one week from the starting date) no Build Lives will be deleted because the
policy only allows Build Lives to be cleaned up every 2 weeks. However, the second time (two weeks from the ini-
tial creation of the schedule) the schedule runs all Build Lives 2 weeks and older will be cleaned up.

• Active. Check the box to activate the cleanup schedule. Make sure the schedule you selected above is also
marked as Active. To do this go to System > Schedules and ensure that it says "Yes" under the Active menu.
If you select an inactive schedule, your cleanup policy will not run, even if it is marked as active here.

• Days to Keep Lockable Resources. Give the number of days that lockable resources should be kept after they
are last used. This applies to limited resources (e.g., working directories). If you are using unique resources
(such as unique working directories), this setting can come in handy to save space. Default value is 30 days.
Use -1 to never clean up.

• Days to Keep Operation Workflows. Give the number of days you want to keep operational workflow execu-
tions. Use -1 (the default value) to never clean up. If you rarely use operational projects, the default values
should suffice. The only cleanup option is to delete the workflow.

• Days to Keep Operation Misc Jobs. Give the number of days that operational miscellaneous jobs, such as
cleanup jobs and notification jobs, are kept for. Default value is 1 day. Use -1 to never clean up. If you rarely
use operational projects, the default values should suffice. The only option is to delete the jobs.

3. Click Done.

Using Life-Cycle Models

162



4. See Cleanup Build Requests and Cleanup Build Lives.

Cleanup Build Request
Use this section to determine when Build Requests are cleaned up. Once set, the Cleanup Schedule will apply these
settings every time it automatically fires. For example, if your cleanup schedule fires once a week, but you set the
Misc. Job field to 100 days, when the cleanup schedule fires, only jobs that are older than 100 days will be cleaned
up.

1. To schedule the automatic deletion of build requests, select the Edit icon of the Cleanup Build Request menu.

2. In the Misc. Jobs field, enter the number of days a miscellaneous job will exist before it is cleaned up. To keep
jobs indefinitely, leave this field blank.

3. In the Build Requests Without Build Life field, enter the number of days a build request that did not produce a
build life will exist. To keep all requests, leave this field blank. Click Save.

Cleanup Build Lives
The cleanup of Build Lives is based on the status the Build Life has achieved. For example, set the cleanup to keep
all Build Lives a minimum number of days or choose a specific status, such as failure, to expire after a minimum
number of days, etc. Once set, the Cleanup Schedule will apply these settings every time it automatically fires. For
example, if your cleanup schedule fires once a week, but you set the All Build Lives field to 100 days, when the
cleanup schedule fires, only Build Lives that are older than 100 days will be cleaned up. To set the Build Life
cleanup policy:

1. Under the Cleanup Build Lives menu, select the Edit icon for the appropriate status.

2. Keep Days. Give the minimum number of days to keep all Build Lives that have been assigned this status (leave
the field blank to keep all Build Lives).

For example, setting the days at "5" will keep every Build Life that has been assigned this status for a minimum
of 5 days, unless overridden by the Keep Latest Build Life specification. When the cleanup schedule fires, it will
clean up Build Lives that are older than 5 days.

3. Keep Latest. Specify the number of the most recent Build Lives that have been assigned this status from being

Using Life-Cycle Models

163



cleaned up, regardless of the Keep Days policy.

For example, if the Keep Days field is set to "5" (days) and the Keep Latest field set to "2" (Latest Build Lives),
when the 2 most recent Build Lives that have been assigned this status are 5 days old, they will not be cleaned up
by the Keep Days policy. This allows you to keep a copy of the most recent Build Lives no matter how old they
are.

4. Cleanup Type. Select the cleanup type from the drop-down menu. Options are Delete (see Delete a Build Life),
Inactivate (see also Inactivate Build Life), and Archive (see also Archive and Unarchive Build Life).

5. Click Save.

6. Repeat Items One thru Five for every status.

Editing a Life-Cycle Model
Edit a Life-Cycle Model any time by following the procedures outlined in the Creating a Life-Cycle Model section
of this tutorial. Simply select the Model to edit and click the Edit icon for the feature to be change. Click Save.

• Projects using the same Life-Cycle Model may not all respond the same to changes. Each project may need to be
reconfigured if any changes are made to its Life-Cycle Model.

Migrating a Life-Cycle Model
Migrating a Life-Cycle Model will transfer all Projects, Library Workflows and Library Jobs using it. The Status,
Artifact Sets, and Stamps will be reconfigured during the migration.

1. Go to System > Life-Cycle Model under the Project Support menu.

2. On the Life-Cycle Models page, click the Migrate icon of the Life-Cycle Model you want to migrate.

Using Life-Cycle Models

164



3. Migrate To. Select the Life-Cycle Model to migrate to from the drop-down menu and click Migrate.

4. On the Migrate Life-Cycle Model, select:

• Status Migration. Select one or more new statuses to migrate each of the old statuses to.

• Artifact Migration. Select a new artifact set to migrate each of the old artifact sets to.

The Life-Cycle Model being migrated to must have artifact sets configured that AnthillPro can map to. See Ar-
tifact Sets.

• Stamp Migration. Select a new stamp style to migrate each of the old stamp styles to.

The Life-Cycle Model being migrated to must have stamps configured that AnthillPro can map to. See Stamp
Style.

5. Click Migrate then Done.

Life-Cycle Model Security
User access to a Life-Cycle Model is managed on the Security tab. Administrators can define what roles have ac-
cess to read, write, or determine security for Life-Cycle Models. You need administrative permissions to set envir-
onment security. See Manage Security.

1. Go to System > Life-Cycle Models under the Project Support menu.

2. On the Life-Cycle Models page, select the appropriate Life-Cycle Model from the list.

3. Select the Life-Cycle Model's Security tab and click Edit.

4. Check the Roles and permissions for this agent. See Define Roles and Set and Manage Permissions.

5. Click Save then Done.

Using Life-Cycle Models

165



Chapter 38. Notifications
AnthillPro sends a number of notifications to users in a variety of formats. Most commonly, AnthillPro is con-
figured to send either an e-mail or IM message regarding the state of a CI build. The recipient list of these notifica-
tions, as with other notifications AnthillPro sends out, are usually tied to the LDAP integration, etc., which is con-
figured as part of AnthillPro's security system; as well as your mail server and/or IM provider. This allows you an
easy way to send notifications to AnthillPro users (it is also possible to send notifications to non-users as well). You
can even compose custom notifications that send the information you want in the format you want.

In addition to sending notifications via e-mail and IM, administrators can send out announcements to all AnthillPro
users. Once an announcement is sent, it will appear at the top of the UI for all AnthillPro users. Common uses for
announcements are to let everyone know when the server is going down for maintenance, report network problems,
etc.

Configure Mail Server
AnthillPro requires an external mail server to route messages through (via SMTP). It is recommended that you set
up an 'AnthillPro' user on the server so that e-mails can be sent (e.g., anthill@yourcompany.com).

• Some e-mail servers and firewalls will treat e-mails with different Sender and User names as suspicious. If this
happens, use the same name for both fields.

Mail Server Prerequisites

• You must have administrative permissions to the System page. See Manage Security.

• An external mail server must already have an 'AnthillPro' user account created (e.g., anthill@yourcompany.com).

Mail Server

1. Go to System > Mail Server from the Notification menu.

2. Click Edit and configure the Mail Server.

• Name the Mail Server.

• Mail Host. Give the mail server host name. This should be an IP or a network name that can be resolved from
the server running Anthill Pro.

• Mail Port. Provide the mail server port. Default value is 25.

• Sender. Give the email address to send messages as (e.g., anthill3@yourcompany.com). This will appear in
the 'From' header of the e-mail.

• User Name. Provide the user name to be used to authenticate with the SMTP server. The user name is used to
log into the SMTP server and to actually send the e-mail.

• Password. Give the password to be used to authenticate with the SMTP server.

• Use TLS if available. Check the box to use TLS.

166



3. Click Set.

Configure Instant Messaging
AnthillPro can be used to send instant messages using Google Talk, Jabber, or MSN IM. For example, AnthillPro
may be configured to send an instant message to a group of committing developers when a build fails, etc. See Man-
aging Notifications.

The Google Talk and Jabber integrations are configured by following the XMPP IM link under the Notification
menu on the System page. The integration can be disabled any time by clicking the Disable button. Using the Test
User ID and Service Status fields allow you to troubleshoot the connection.

Google Talk
AnthillPro requires an external Google Talk server to route messages. Any steps within AnthillPro relying on
Google Talk (XMPP) will not work until this configuration is complete.

Google Talk Prerequisites

• You must have administrative permissions to the System page. See Manage Security.

• AnthillPro notification and security systems must be configured in order for the integration to work. See Man-
aging Notifications.

• AnthillPro is added as a Google Talk user.

Configure Google Talk

1. Go to System > XMPP IM from the Notification menu.

2. On the XMPP page, click Enable then click Edit.

3. Configure the integration:

• Name. Give the name of this XMPP configuration.

• Server Host. Provide the XMPP server host name, typically an IP or host name that can be resolved from the
server running AnthillPro. For example: jabber.org or talk.google.com.

• Server Port. Give the XMPP server port. If using multiple ports, separate then with commas (e.g., 5222, 5223,
5224).

• Domain. Provide the XMPP user domain.

• Username. Give the user name (e.g., anthill3).

• Password. Give the password.

4. Click Set then Done.

5. To begin sending instant messages, click Enable. (If Disable is visible, the instant message integration is cur-
rently active.)

Notifications

167



Check Google Talk Connection

If there is a problem with the Google Talk integration, first check that the Service Status field says connected.
Trouble shoot the connection by giving a Test User ID and clicking the Test button. If there is a problem, Ant-
hillPro will give you a message (see below).

Jabber
AnthillPro requires an external Jabber server to route messages. Any steps within AnthillPro relying on Jabber
(XMPP) will not work until this configuration is complete.

Jabber Prerequisites

• You must have administrative permissions to the System page. See Manage Security.

• AnthillPro notification and security systems must be configured in order for the integration to work. See Man-
aging Notifications.

• AnthillPro is added as a valid Jabber user.

Configure Jabber

1. Go to System > XMPP IM from the Notification menu.

2. On the XMPP page, click Enable then click Edit.

3. Configure the integration:

• Name. Give the name of this XMPP configuration.

• Server Host. Provide the XMPP server host name, typically an IP or host name that can be resolved from the
server running AnthillPro. For example: jabber.org or talk.google.com.

• Server Port. Give the XMPP server port. If using multiple ports, separate then with commas (e.g., 5222, 5223,
5224).

• Domain. Provide the XMPP user domain.

• Username. Give the user name (e.g., anthill3).

• Password. Give the password.

4. Click Set then Done.

5. To begin sending instant messages, click Enable. (If Disable is visible, the instant message integration is cur-

Notifications

168



rently active.)

Test Jabber Connection

If there is a problem with the Jabber integration, first check that the Service Status field says connected. Trouble
shoot the connection by giving a Test User ID and clicking the Test button. If there is a problem, AnthillPro will
give you a message (see below).

MSN IM
Configure MSN instant messaging. AnthillPro requires an external IM server to route messages. Any steps within
AnthillPro relying on MSN IM will not work until it is configured.

MSN IM Prerequisites

• You must have administrative permissions to the System page. See Manage Security.

• AnthillPro notification and security systems must be configured in order for the integration to work. See Man-
aging Notifications.

• AnthillPro is added as a valid MSN IM user.

Configure MSN IM

1. Go to System > MSN IM from the Notification menu.

2. On the MSN page, click Enable then click Edit.

3. Configure the integration:

• Name. Give the name of this MSN configuration.

• Email (owner). Provide the e-mail address used to authenticate with the MSN server.

• Password. Give the password.

4. Click Set then Done.

5. To begin sending instant messages, click Enable. (If Disable is visible, the instant message integration is cur-
rently active.)

Test MSN IM Connection

If there is a problem with the MSN IM integration, first check that the Service Status field says connected. Trouble
shoot the connection by giving a Test User ID and clicking the Test button. If there is a problem, AnthillPro will
give you a message (see below).

Notifications

169



Setting Up Notifications
Once configured, AnthillPro can routinely run builds with no interaction with the development or build team.
However, if it fails to communicate the results of builds, deployments, and promotions back to the team, it is only
useful when people log-in to the system to manually check the status. That is not very good. A better model is to
have AnthillPro send e-mails, instant messages, and other notifications to select team members.

The fundamental unit for managing notifications sent by AnthillPro is the Notification Scheme. A notification
scheme sets rules determining what groups of users are sent which kind of notification about specified events. Each
workflow is configured with a notification scheme within AnthillPro. The same scheme may be shared by many
workflows, even workflows in different projects.

A Notification Scheme is composed of the following (See Composing a Notification Scheme):

• Recipient Generator. Selects which users to contact. For existing mailing lists (e.g., generated from LDAP), it
may be helpful to create a user representing a mailing list. See Manage Security.

• Event Selector. Selects which events (created by a workflow event) to send notifications about.

• Medium. Selects how the notification will be sent (e-mail or instant message).

• Notification Template. AnthillPro uses Velocity templates to generate the notification text. See Scripting Noti-
fication Templates.

Notification Prerequisites

• In order to manage notifications, you must have read and write permissions to the System page.

• An existing Authentication Realm and at least one user must be created. See Manage Security.

• In order to send e-mails, the email server must be configured. See Configure Mail Server.

• To send instant messages, AnthillPro must first be configured. See Configuring Instant Messaging.

Recipient Generator
Users in the system are going to be interested in different events, with most users only interested in notifications
about projects they work on. For example, developers are more concerned about the state of a broken build than a
system administrator, who is more interested in knowing when a build does not start due to problems with source
control.

The default options, All Users, All Users for Project, Committing Developers, or Tasked Users allow adminis-
trators to determine who is notified based on the Role(s) assigned to them. Adding additional Roles (see Manage Se-

Notifications

170



curity) or creating new Generator scripts (see also Recipient Generator Scripts) provides flexibility to customize Re-
cipient Generators.

1. Go to System > Recipient Generators under the Notification menu.

2. Click the Create Recipient Generator button.

3. Select the Notification Recipient Generator Type from the drop-down menu.

• Fixed. Enter the recipient information such as email or IM address. Proceed to Item Five.

• Role-Based. Generate notification recipients based on roles (see Manage Security). Proceed to Item Six.

• Scripted. Use a BeanShell script to generate notification recipients (see Recipient Generator Scripts). Proceed
to Item Seven.

4. Click Set.

5. Configure the Fixed Notification Recipient Generator.

• Name the Generator.

• Description. Provide a description.

• Click Save. The Recipients menu will appear.

• Under the Recipients menu, give the Email, XMPP, and/or MSN address(es). Click Add.

The e-mail values can be set as AnthillPro properties. This enables you to send a notification to an existing mail
list, etc., without having to configure individual e-mail addresses in AnthillPro. For example, in the Email field,
you can configure the selector to send a notification to: ${property:mailing-list}@mycompany.com.
Then add a Project Property called mailing-list with a value of myProjectTeam, to you project. Once this
is done, AnthillPro will send notifications to myProjectTeam@mycompany.com. Using this approach, you can
send notifications to any number of lists. See Managing Properties.

• Click Done.

6. Configure the Role-Based Notification Recipient Generator.

• Name the Generator.

• Description. Provide a description.

• Roles. Check the Roles to associate with this Generator. See Manage Security.

• Click Save then Done.

7. Configure the Scripted Recipient Generator.

• Name the Generator.

• Description. Provide a description.

• BeanShell script. Input the script that generates the list of recipients. See Recipient Generator Scripts.

• Click Save then Done.

Notifications

171



Event Selector
In order to determine which events should trigger a notification, AnthillPro maintains a set of event selectors. These
are scripts that examine events generated by workflows and workflow requests, and return true if a notification
should occur and false otherwise. For most circumstances, users will not need to write new event selectors. The
product ships with a good set of default scripts:

• Workflow Success. Triggers notifications when the workflow completed successfully.

• Workflow Fails. Triggers notifications when the workflow completes without success.

• Workflow Success or Failure. Triggers when a workflow completes regardless of status.

• Build Request Failed. Triggers when a workflow does not occur due to an error in the build request. See Script-
ing.

1. Go to System > Event Selectors under the Notification menu.

2. Click the Create Event Selector button on the main page.

3. Name the new Event Selector, give it a description (optional), provide a script, and click Save. See Event Se-
lector (Scripting).

Notifications

172



Notification Template
AnthillPro Notification Templates are Velocity templates that take information about the build and produce a docu-
ment. Appropriate templates need to be paired with the appropriate event cases. If there is a WorkflowEvent, that
means that a WorkflowCase was created and will be the main piece of information provided to the script as work-
flow. Likewise, a BuildRequest will be passed to the script as request.

Different templates will also be appropriate to send out on different mediums. Generally, a template used for instant
messages will be very short, while one that targets e-mail will need to be longer. A template targeted at instant mes-
sages will not have a subject section.

AnthillPro ships with a catalog of Velocity templates that can be used as a reference in creating your own templates.
At System > Notification Templates under the Notification menu, view the templates similar to the one you wish
to create. See Scripting Notification Templates.

• Best practices for writing templates is beyond the scope of this tutorial. However, it should be noted that the type
of event handled will dictate the inputs to the template. See Velocity Documentation [http://velocity.apache.org/].

1. Go to System > Notification Templates under the Notification menu.

2. Click the Create New button.

3. Input a name, description (optional), context script (optional for IM), and template script. Click Set. See
Scripting Notification Templates.

Composing a Notification Scheme
Once the notification components have been configured, they are composed into a new Notification Scheme. The
Notification Scheme defines who will be notified and when they will be notified. For example, a "Default" scheme
can be used to notify everyone on a project about a failed build; or a "Unit Test" scheme can be configured to notify

Notifications

173

http://velocity.apache.org/
http://velocity.apache.org/


only committing developers if the tests fail, etc.

To compose a scheme, a series of Recipient Generators (e.g., one Generator for sending e-mails; one copying [CC]
e-mails; and for sending blind [BCC] e-mails) are typically created. In addition, the appropriate Case Selector(s)
must be created for each scheme. See Recipient Generator and Event Selector.

1. Go to System > Notification Schemes under the Notification menu.

2. Click the Create Notification Scheme button on the Notification Schemes main page.

3. Name, provide a description (optional), and click Save.

4. Click the Add Who-When button to specify who should be contacted when a specific event occurs.

5. Specify combinations of users, message types, and events that need unique notification formats.

• Recipient Generator. Select the Recipient Generator from the drop-down menu. This field allows AnthillPro
to send an e-mail "To" users.

• CC Recipient Generator. Select the appropriate Recipient Generator from the drop-down menu. This field al-
lows AnthillPro to copy, "CC", a defined group on an e-mail. Leave this field blank to not send copies or if
configuring Instant Messaging.

• BCC Recipient Generator. Select the appropriate Recipient Generator from the drop-down menu. This field
allows AnthillPro to anonymously copy, "BCC", a defined group on an e-mail. Leave this field blank to not
send copies or if configuring Instant Messaging.

• Case Selector. Select the appropriate case selector from the drop-down menu.

6. Click Save.

7. Determine how users are notified. Click the Add Medium-Template button.

• Select the Notification Medium and the Message Template from the drop-down menus. Click Save.

Creating a series of who-when-how combinations establishes a scheme of sending the appropriate notifications out
that can be used between project teams.

Setting Up and Using Announcements
Once an announcement is created by an AnthillPro administrator, the message will automatically appear at the top of
the AnthillPro UI for every user. Users can hide any announcement by following the hide link within any announce-
ment. Selecting the announcements link in the upper right-hand corner of the AnthillPro UI allows users to view all
active messages, including those previously hidden.

Creating Announcements

1. Go to System > Announcements under the Server menu.

2. On the Announcements page, Click the New button.

3. Configure the message:

• Message. Enter the message. Up to 4,000 characters maximum.

Notifications

174



• Priority. Select the priority (default is normal) from the drop-down menu.

• Low. Displays message in gray.

• Normal. Displays message in black.

• High. Displays message in red.

• Click Save then Done.

Editing and Deleting Announcements

1. Go to System > Announcements under the Server menu.

2. On the Announcements page, select the Edit icon of the announcement to be edited.

3. Modify the text in the Message filed and/or change the Priority. When done, click Save then Done.

• If an announcement has been hidden by a user, changes are only viewable on the Your Announcements page.
See Viewing Announcements.

4. To delete an announcement, click the Delete icon and then OK.

Viewing Announcements
Once an announcement has been sent, it appears at the top of every user's AnthillPro UI. If an announcement has
been hidden, it can be viewed on the Your Announcements page.

• Hide any announcement by following the hide link within any announcement. If the hidden announcement is ed-
ited by the sender, it will not automatically reappear.

• Select the announcements link in the upper right-hand corner of the AnthillPro UI to view all active announce-
ments on the Your Announcements page.

Notifications

175



Chapter 39. Properties
AnthillPro properties use the syntax ${property:[property_name]} to pass property values to commands
being executed by AnthillPro. Often, properties are used to manage variables passed into commands, agent filters,
and custom stamping algorithm templates.

For example, if a workflow has a property named platform passed into a Nant script via the Nant integration,
something similar to PlatProp=${property:platform} would be set on the Nant Properties tab. At the
command line, this would translate to the flag -D:PlatProp:x86 if the value of the property was 'x86'. Here,
the property is used as if it was passed to the Nant executable on the command line.

Properties are resolved from the smallest scope to the most general scope (e.g., Job properties are resolved before
project properties, which in turn are resolved before system properties).

Property Resolution Order:

1. Job Instance and Job Iteration Property. Configured in the settings of an iterating job, they set the parameters
for a single job that is run many times. See Job Instance and Job Iteration Properties.

2. Build Request Property. When set as a workflow property as shown below, the property will get pushed to the
build request before the build begins. See Build Request Properties.

3. Workflow Property. Used to specify a property for a given execution of a workflow. Workflow properties are
also used to send a build to a particular platform when writing native code for multiple platforms, etc. See Work-
flow Properties. See also:

• Workflow Request Properties

• Workflow Properties (from Originating-build Workflow)

4. Build Life Property. See Build Life Properties.

5. Build Life Originating Workflow Request Property. When set as a workflow property, the value will get
pushed to the Build Life originating workflow before the build begins. See Build Life Originating Workflow Re-
quest Properties.

6. Project Environment Property. Used to customize deployments based on the environment they are deployed to.
Project Environment properties are automatically placed as environment variables for all commands run in the
target environment. See Project Environment Properties.

7. Project Property. Used for all workflows regardless of the target environment. See Project Properties.

8. Environment Property. Environment properties are used to set default values for a particular environment. Oth-
er property types, except system properties, always override the environment-level properties See Environment
Properties.

9. System Property. Used to set default values for a particular property for all workflows and projects system wide.
See System Properties.

In addition, AnthillPro has two other property types, which are resolved separately from those listed above. See Spe-
cialized Builder Properties and Agent Properties.

Property Resolution
176



Below is a general outline of property resolution used throughout the AnthillPro system:

Property Resolution

${property:<property-name>}

or
${p:<property-name>}

Return the non-agent property value if defined. If not
defined, return the given expression.

${property-:<property-name>}

or
${p-:<property-name>}

Return the non-agent property value if defined. If not
defined, return null.

${property?:<property-name>}

or
${p?:<property-name>}

If defined as a non-agent property, replace with the
value. If not defined, replace the expression source.

${agent:<property-name>}

or
${a:<property-name>}

Return the agent property value if defined. If not defined,
return the given expression.

${agent?:<property-name>}

or
${a?:<property-name>}

or

${?:<property-name>}

If defined as an agent property, replace with the value. If
not defined, replace the expression source.

${<property-name>}

or
${<property-name>}

Return the agent property value if defined. If not defined,
return null.

Empty Values in Properties
Empty-value properties enable users to set a standard for the available attributes a user can provide when executing
a resource. For example, using an empty-value property (for both user-overridable and non-overridable properties)
will allow the same library job to be reused across a large number of projects, even if different projects require dif-
ferent values. If most projects using the same library job need to pass parameters at run time, but some of them
don't, using a empty-value property gives users the option to define a required value or simply pass a blank value
that AnthillPro will effectively ignore. Used in this way, empty-value properties can be used to create standardized
templates for creating new projects.

Example usage for resolving empty properties using a simple echo use case. If nothing follows "echo," that means
empty has been returned.

Property Resolution

echo ${property:property}
When "property" is not defined:

Properties

177



echo ${property:property}

When "property" is defined on project as "value":

echo value

When "property" is defined on project as "":

echo

When "property" is defined on agent as "value":

echo ${property:property}

echo ${p:property}
When "property" is not defined:

echo ${p:property}

When "property" is defined on project as "value":

echo value

When "property" is defined on project as "":

echo

When "property" is defined on agent as "value":

echo ${p:property}

echo ${property?:property}
When "property" is not defined:

echo

When "property" is defined on project as "value":

echo value

When "property" is defined on project as "":

echo

When "property" is defined on agent as "value":

echo

echo ${p?:property}
When "property" is not defined:

echo

When "property" is defined on project as "value":

echo value

When "property" is defined on project as "":

echo

Properties

178



When "property" is defined on agent as "value":

echo

echo ${agent:property}
When "property" is not defined:

echo ${agent:property}

When "property" is defined on project as "value":

echo ${agent:property}

When "property" is defined on project as "":

echo ${agent:property}

When "property" is defined on agent as "value":

echo value

echo ${a:property}
When "property" is not defined:

echo ${a:property}

When "property" is defined on project as "value":

echo ${a:property}

When "property" is defined on project as "":

echo ${a:property}

When "property" is defined on agent as "value":

echo value

echo ${agent?:property}
When "property" is not defined:

echo

When "property" is defined on project as "value":

echo

When "property" is defined on project as "":

echo

When "property" is defined on agent as "value":

echo value

echo ${a?:property}
When "property" is not defined:

echo

When "property" is defined on project as "value":

Properties

179



echo

When "property" is defined on project as "":

echo

When "property" is defined on agent as "value":

echo value

echo ${?:property}
When "property" is not defined:

echo

When "property" is defined on project as "value":

echo

When "property" is defined on project as "":

echo

When "property" is defined on agent as "value":

echo value

echo ${property}
When "property" is not defined:

echo ${property}

When "property" is defined on project as "value":

echo ${property}

When "property" is defined on project as "":

echo ${property}

When "property" is defined on agent as "value":

echo value

echo
${bsh:ProjectLookup.getCurrent().getNa
me()}

When "property" is not defined:

echo Resolve to Null Test

When "property" is defined on project as "value":

echo Resolve to Null Test

When "property" is defined on project as "":

echo Resolve to Null Test

When "property" is defined on agent as "value":

echo Resolve to Null Test

Properties

180



echo
${bsh:PropertyLookup.get("property")} When "property" is not defined:

echo
${bsh:PropertyLookup.get("property")}

When "property" is defined on project as "value":

echo value

When "property" is defined on project as "":

echo

When "property" is defined on agent as "value":

echo
${bsh:PropertyLookup.get("property")}

Setting Default Properties
Properties are commonly used to enforce conventions across the system, environment, project, workflow, and/or job.
To control how a group of related resources act, a property is set at the lower property-resolution level: For example,
to set a default property for every workflow within a project, you would set a project property. Likewise, if most
projects require a specific tool when deploying, then setting a system property will help ensure that all projects de-
ploy correctly. For the odd projects that don't conform to the default patterns, the property may be overridden at a
level closer to the job execution (i.e., if you have a system default property, it may be overridden at the project,
workflow, or job levels on a as-needed basis).

Consider this common scenario: A team stores most of their build scripts for almost every project in a folder
called "build" under the root of their project. There are a number of ways (and places) to configure a property that
can act as a default for most projects, ensuring the correct script is used when building: Basic AnthillPro configura-
tion suggests creating either a project or workflow property called build.dir and reference the property in the
configuration that kicks off the build script(s). This works for all but the corner cases, but can include a lot of con-
figuration if you have a lot of projects and/or workflows. For setting these types of standards, however, it's usually
easier to create a system level property (System > Properties) and only specify the build.dir property on the
odd projects/workflows that don't conform to the common pattern. In this case, the System level property would be
"build". If an absolute path is needed for some reason, System Properties can reference runtime properties. So a
System Property of ${property:work.dir.path}/build would result in the absolute path to the same
build sub-folder. A workflow that set the build.dir to /some/other/path would use that -- completely ig-
noring the System level setting because properties set closer to the execution of a step always override properties
set at higher levels.

Job Instance and Job Iteration Properties
Job iteration properties are configured after iterating a job. They are typically used to set the parameters for a single
job that is run many times, with a slightly different parameter each time. For example, a job iteration property might
include variations such as "module to compile", "test to run", etc.

Typically, properties set on the job iteration are used by a scripted agent selection (filter) script that you must create
yourself. The script evaluates the property when the job is requested, and then runs each iteration on the agent(s) that
have the appropriate (i.e., corresponding) property-value pair. For example, if you set a property called
"my_property" with a value of "1" on iteration one, the agent selection script will only run iteration one on the
agent(s) that have "my_property" with a value of "1" set on it/them. (More at Tools > anthill3-dev-kit.zip > Script-

Properties

181



ing > Example: Select Agents Based on Job-iteration Properties).

Job Iteration Properties Prerequisites

• You must have AnthillPro administrative privileges to set job properties. See Manage Security.

• A Project with an originating workflow and at least one job must already be active.

• The job must already be iterated. See Iterate a Job.

• If you are planning on using job-iteration properties to determine which agent each iteration will run on, you will
need to create a new Agent Filter Script. See Tools > anthill3-dev-kit.zip > Scripting > Example: Select Agents
Based on Job-iteration Properties.

• Corresponding properties must be set on the agent(s) so that when the agent filter script runs, it will select the cor-
rect agent(s). See Configure and Edit Agent Filters.

Setting Job Iteration Properties
Properties are set in the name=value format. For example, to iterate a job to run two different test suites, you can set
a property (with a name of dir-location) that has two values (/temp/test1 and /temp/test2), with each
value corresponding to a single iteration of a job:

Once you configure the names and properties of each job iteration, AnthillPro will set the iteration name and itera-
tion number as job properties during each job iteration. The iteration name is set as: ant-
hill.job.iteration.name and the iteration number is set as: anthill.job.iteration. Once the job
has run, you can view this on the Build Life.

In addition, corresponding properties must be set on the appropriate agent(s) if you want AnthillPro to select an
agent based on job-iteration properties. See Configure and Edit Agent Filters.

1. See Tools > anthill3-dev-kit.zip > Scripting > Example: Select Agents Based on Job-iteration Properties be-
fore continuing.

2. Go to Administration and select the workflow that contains the iterated job. See Iterate a Job.

3. On the workflow page, select the Definition tab.

4. Click the iterated job and select Iteration Properties from the menu.

Properties

182



5. Iteration Properties page. The iterations you already set (see Iterate a Job) are populated with a default name
(e.g., Iteration 1 , Iteration 2, etc.). If you want to change the name of an iteration, click the name and type the
new name.

To add a new property name, give the name of the iteration property (e.g., dir-location) and click Set.
(Note you may have to scroll to the bottom of the page, depending on how large the browser window is.) When
that is done, you can create iteration values (e.g., /temp/test1 and /temp/test2) for each property by
clicking the appropriate cell and typing.

You can also include a value when creating the property name. When created in this way, the same value (e.g., /
temp/test1), will be added to each iteration property. So, if you have a number of iterations that require the
same property value, you only have to type it once if you configure the property in this manner.

6. Click Save.

7. When done, click Cancel to exit the Iteration Properties page.

Build Request Properties
When set as a workflow property as shown below, the property will get pushed to the build request before the build
begins.

Example Build Request Property:

import com.urbancode.anthill3.runtime.scripting.helpers.*;
import com.urbancode.anthill3.domain.buildrequest.*;

//look up the current build request

BuildRequest br = BuildRequestLookup.getCurrent();

Properties

183



//set the property

br.setProperty("myProperty", "myValue");

Workflow Properties
Workflow properties are used to specify a property for a given execution of a workflow (see Managing Properties).
A common example of a workflow property is the tag (or label, or baseline) used in a "Build From Label" workflow
that checks out a particular version of the source code from source control and performs a build.

Workflow properties are also used to send a build to a particular platform when writing native code for multiple
platforms, etc. Workflow properties may be either optional or required, may have default values, may be locked so
that end users can't change the default, or dynamic (i.e., AnthillPro generates the property value based on user-
defined criteria). Once a workflow property is created, the display type may be changed by selecting the Change
icon on the configuration page.

Additionally, use the Operations menu (on the workflow's Properties tab) to (a.) determine the order of properties;
(b.) edit a configured property; and (c.) delete a property.

There are six different workflow property types to choose from. They range from the simple Checkbox type to the
Text Area type, which can pass small scripts:

• Checkbox. Use to require a user to check the box in order to run a workflow.

• Multi-Select. Use to set pre-defined values where multiple values can be selected.

• Select. Use to present a selection of pre-defined values where one value can be selected.

• Text. Use to present a text input where a value can be entered. The Text property type may be scripted.

• Text (secure). Use to present a text input where a secure value must be entered. The value is obfuscated in any
output.

• Text Area. Use to present a text area input where a longer value can be entered. The Text Area property type may
be scripted.

See also Using Workflow Properties for Build Life Notes and Cascading Workflow Properties.

Workflow Properties Prerequisites

• You must have AnthillPro administrative privileges. See Manage Security.

• A Project with an originating workflow and at least one job must already be active.

Using Checkbox Workflow Properties
Use the checkbox workflow property to require a user to check the box in order to run a workflow. The Checkbox

Properties

184



property displays a checkbox and sets a value of true if checked or false if not checked. By default, the property is
selected; however the administrator may choose not to have the property set as a default. To run the workflow
without the property, the administrator must allow users to override the default. For example, the user can run the
workflow even though no value is selected. See Setting Properties.

1. Go to Administration and select the workflow to add properties to.

2. On the workflow page, select the Properties tab.

3. Click New Property, select Checkbox form the drop-down menu, click Select, and provide the following:

• Name. Give the name of the property: the property <name> will be accessed as ${property:<name>}.

• Description. Provide an optional description for this property. If given, the description will be shown when
prompting users for a value.

4. Value. Select the value type. Choose either Defined (see Item 5), Job Execution (see Item 6), or Scripted (see
Item 7).

5. Defined-value property. Basic property type. Displays a checkbox for the user when running a build. To config-
ure, give the following:

• Default Value. Check the box to make this a default value. If unchecked, and the User Can Enter Value op-
tion is configured, the user can run the workflow without checking the box. When the default value is set but
the user can't override the value, the property will not be visible to the user.

• User Can Enter Value. To allow users to specify a non-default value when running this workflow, check the
box. If the user may override the default property, give the following:

• Label. Give a label for this property to be shown when prompting users for value. Leave blank to use the
Name (defined above) as the Label.

• Click Save and go to Item 8.

6. Job-execution property. Use this property type if the value, default value, or options are to be generated by a
job that executes on an agent.

• Agent Filter. Select the agent filter script to be used when determining the value of this property. See Agent
Filter (Selection) Scripts.

• Job. Select the job to execute that will set the property value using this property name. Either project or library
jobs may be used. When this job runs, the value of this property will be set.

• User Can Enter Value. To allow users to enter a value when running this workflow, check the box. If the user
may enter a value for the property, give the following:

• Label. Give a label for this property to be shown when prompting users for value. Leave blank to use the
Name (defined above) as the Label.

• Click Save and go to Item 8.

7. Scripted property. Scripted value properties are properties where the value, default value, or options are gener-
ated by a script that is executed before workflow execution.

• Value Script. Give a BeanShell script that returns Boolean. The BeanShell script will be passed the following
implicit variables when applicable: project, workflow, Build Life, environment.

• User Can Enter Value. To allow users to enter a value when running this workflow, check the box. If the user

Properties

185



may enter a value for the property, give the following:

• Label. Give a label for this property to be shown when prompting users for value. Leave blank to use the
Name (defined above) as the Label.

• Click Save and go to Item 8.

8. To use Workflow properties run a build.

Using Multi-select Workflow Properties
Use the multi-select workflow property to set pre-defined values where multiple values can be selected. Once set, all
selected values will become values of the property in one comma-separated value. See Setting Properties.

1. Go to Administration and select the workflow to add properties to.

2. On the workflow page, select the Properties tab.

3. Click New Property, select Multi-select form the drop-down menu, click Select, and provide the following:

• Name. Give the name of the property: the property <name> will be accessed as ${property:<name>}.

• Description. Provide an optional description for this property. If given, the description will be shown when
prompting users for a value.

4. Value. Select the value type. Choose either Defined (see Item 5), Job Execution (see Item 6), or Scripted (see
Item 7).

5. Defined-value property. Basic property type. Displays options for the user (either the property name or default
value) when running a build. To configure, give the following:

• Default Value. Check the box to make this a default value. The default value must be a value from the allowed
values list configured below if more than one value will be allowed.

• User Can Enter Value. To allow users to enter a new value when running this workflow, check the box. If the
user may override the property, give the following:

• Label. Give a label for this property to be shown when prompting users for value. Leave blank to use the
Name as the Label.

• Is Required. Check the box to require the user to select a value for this property when the workflow is run.

• Allowed Values. Give the values users will select from when running the workflow. Each value must be input
on a separate line. If any value is given, you must also define a default value above.

• Click Save and go to Item 8.

6. Job-execution property. Use this property type if the value, default value or options are to be generated by a job
that executes on a agent.

• Agent Filter. Select the agent filter script to be used when determining the value of this property. See Agent
Filter (Selection) Scripts.

• Job. Select the job to execute that will set the property value using this property name. Either project or library
jobs may be used. When this job runs, the value of this property will be set.

Properties

186



• User Can Enter Value. To allow users to enter a value when running this workflow, check the box. If the user
may enter a value for the property, give the following:

• Label. Give a label for this property to be shown when prompting users for value. Leave blank to use the
Name as the Label.

• Is Required. Check the box to require the user to select a value for this property when the workflow is run.

• Click Save and go to Item 8.

7. Scripted property. Scripted value properties are properties where the value, default value or options are gener-
ated by a script that is executed before workflow execution.

• Value Script. Give a BeanShell script that returns string array or collection. The BeanShell script will be
passed the following implicit variables when applicable: project, workflow, Build Life, environment.

• User Can Enter Value. To allow users to enter a value when running this workflow, check the box. If the user
may enter a value for the property, give the following:

• Label. Give a label for this property to be shown when prompting users for value. Leave blank to use the
Name as the Label.

• Is Required. Check the box to require the user to select a value for this property when the workflow is run.

• Click Save and go to Item 8.

8. To use Workflow properties run a build.

Using Select Workflow Properties
Use the select workflow property to present a selection of pre-defined values where one value can be selected. See
Setting Properties.

1. Go to Administration and select the workflow to add properties to.

2. On the workflow page, select the Properties tab.

3. Click New Property, select Select form the drop-down menu, click Select, and provide the following:

• Name. Give the name of the property: the property <name> will be accessed as ${property:<name>}.

• Description. Provide an optional description for this property. If given, the description will be shown when
prompting users for a value.

4. Value. Select the value type. Choose either Defined (see Item 5), Job Execution (see Item 6), or Scripted (see
Item 7).

5. Defined-value property. Basic property type. Displays choices for the user (either the property name or default
value) when running a build. To configure, give the following:

• Default Value. Check the box to make this a default value. The default value must be a value from the allowed
values list configured below if more than one value will be allowed.

• User Can Enter Value. To allow users to specify a new value when running this workflow, check the box. If
the user may override the property, give the following:

Properties

187



• Label. Give a label for this property to be shown when prompting users for value. Leave blank to use the
Name as the Label.

• Is Required. Check the box to require the user to select a value for this property when the workflow is run.

• Allowed Values. Give the values users may provide for this property. Each value must be input on a separate
line.

• Click Save and go to Item 8.

6. Job-execution property. Use this property type if the value, default value or options are to be generated by a job
that executes on an agent.

• Agent Filter. Select the agent filter script to be used when determining the value of this property. See Agent
Filter (Selection) Scripts.

• Job. Select the job to execute that will set the property value using this property name. Either project or library
jobs may be used. When this job runs, the value of this property will be set.

• User Can Enter Value. To allow users to enter a value when running this workflow, check the box. If the user
may enter a value for the property, give the following:

• Label. Give a label for this property to be shown when prompting users for value. Leave blank to use the
Name as the Label.

• Is Required. Check the box to require the user to select a value for this property when the workflow is run.

• Click Save and go to Item 8.

7. Scripted property. Scripted value properties are properties where the value, default value or options are gener-
ated by a script that is executed before workflow execution.

• Value Script. Give a BeanShell script that returns string array or collection. The BeanShell script will be
passed the following implicit variables when applicable: project, workflow, Build Life, environment.

• User Can Enter Value. To allow users to enter a value when running this workflow, check the box. If the user
may enter a value for the property, give the following:

• Label. Give a label for this property to be shown when prompting users for value. Leave blank to use the
Name as the Label.

• Is Required. Check the box to require the user to select a value for this property when the workflow is run.

• Click Save and go to Item 8.

8. To use Workflow properties run a build.

Using Text Workflow Properties
Use the text workflow property to present a text input where a value can be entered. The Text property type may be
scripted. See Scripting and Setting Properties.

1. Go to Administration and select the workflow to add properties to.

2. On the workflow page, select the Properties tab.

Properties

188



3. Click New Property, select Text form the drop-down menu, click Select, and provide the following:

• Name. Give the name of the property: the property <name> will be accessed as ${property:<name>}.

• Description. Provide an optional description for this property. If given, the description will be shown when
prompting users for a value.

4. Value. Select the value type. Choose either Defined (see Item 5), Job Execution (see Item 6), or Scripted (see
Item 7).

5. Defined-value property. Basic property type. Displays a text input for the user (either the property name or de-
fault value) when running a build. To configure, give the following:

• Default Value. Check the box to make this a default value. The default value must be a value from the allowed
values list configured below if more than one value will be allowed.

• User Can Enter Value. To allow users to specify a new value when running this workflow, check the box. If
the user may override the property, give the following:

• Label. Give a label for this property to be shown when prompting users for value. Leave blank to use the
Name as the Label.

• Is Required. Check the box to require the user to select a value for this property when the workflow is run.

• Click Save and go to Item 8.

6. Job-execution property. Use this property type if the value, default value or options are to be generated by a job
that executes on an agent.

• Agent Filter. Select the agent filter script to be used when determining the value of this property. See Agent
Filter (Selection) Scripts.

• Job. Select the job to execute that will set the property value using this property name. Either project or library
jobs may be used. When this job runs, the value of this property will be set.

• User Can Enter Value. To allow users to enter a value when running this workflow, check the box. If the user
may enter a value for the property, give the following:

• Label. Give a label for this property to be shown when prompting users for value. Leave blank to use the
Name as the Label.

• Is Required. Check the box to require the user to select a value for this property when the workflow is run.

• Click Save and go to Item 8.

7. Scripted property. Scripted value properties are properties where the value, default value or options are gener-
ated by a script that is executed before workflow execution.

• Value Script. Give a BeanShell script that returns a string value. The BeanShell script will be passed the fol-
lowing implicit variables when applicable: project, workflow, Build Life, environment.

• User Can Enter Value. To allow users to enter a value when running this workflow, check the box. If the user
may enter a value for the property, give the following:

• Label. Give a label for this property to be shown when prompting users for value. Leave blank to use the
Name as the Label.

• Is Required. Check the box to require the user to select a value for this property when the workflow is run.

Properties

189



• Click Save and go to Item 8.

8. To use Workflow properties run a build.

See also Using Workflow Properties for Build Life Notes.

Using Text (secure) Workflow Properties
Use to present a text input where a secure value must be entered. The value is obfuscated in any output (i.e., all
strings matching secure value are replaced with **** in the output). The Text (secure) property type may be scrip-
ted. See Scripting and Setting Properties.

1. Go to Administration and select the workflow to add properties to.

2. On the workflow page, select the Properties tab.

3. Click New Property, select Text-secure form the drop-down menu, click Select, and provide the following:

• Name. Give the name of the property: the property <name> will be accessed as ${property:<name>}.

• Description. Provide an optional description for this property. If given, the description will be shown when
prompting users for a value.

4. Value. Select the value type. Choose either Defined (see Item 5), Job Execution (see Item 6), or Scripted (see
Item 7).

5. Defined-value property. Basic property type. Displays a secured field for the user (either the property name or
default value) when running a build. To configure, give the following:

• Default Value. Check the box to make this a default value. If unchecked, the user must manually check the
value when executing the workflow.

• Confirm. Re-enter the secure value.

• User Can Enter Value. To allow users to specify a new value when running this workflow, check the box. If
the user may override the property, give the following:

• Label. Give a label for this property to be shown when prompting users for value. Leave blank to use the
Name as the Label.

• Is Required. Check the box to require the user to select a value for this property when the workflow is run.

• Click Save and go to Item 8.

6. Job-execution property. Use this property type if the value, default value or options are to be generated by a job
that executes on an agent.

• Agent Filter. Select the agent filter script to be used when determining the value of this property. See Agent
Filter (Selection) Scripts.

• Job. Select the job to execute that will set the property value using this property name. Either project or library
jobs may be used. When this job runs, the value of this property will be set.

• User Can Enter Value. To allow users to enter a value when running this workflow, check the box. If the user
may enter a value for the property, give the following:

Properties

190



• Label. Give a label for this property to be shown when prompting users for value. Leave blank to use the
Name as the Label.

• Is Required. Check the box to require the user to select a value for this property when the workflow is run.

• Click Save and go to Item 8.

7. Scripted property. Scripted value properties are properties where the value, default value or options are gener-
ated by a script that is executed before workflow execution.

• Value Script. Give a BeanShell script that returns a string value. The BeanShell script will be passed the fol-
lowing implicit variables when applicable: project, workflow, Build Life, environment.

• User Can Enter Value. To allow users to enter a value when running this workflow, check the box. If the user
may enter a value for the property, give the following:

• Label. Give a label for this property to be shown when prompting users for value. Leave blank to use the
Name as the Label.

• Is Required. Check the box to require the user to select a value for this property when the workflow is run.

• Click Save and go to Item 8.

8. To use Workflow properties run a build.

Using Text Area Workflow Properties
Use the text area workflow property to present a text area input where a longer value can be entered. The Text Area
property type may be scripted. See Scripting and Setting Properties.

1. Go to Administration and select the workflow to add properties to.

2. On the workflow page, select the Properties tab.

3. Click New Property, select Text Area form the drop-down menu, click Select, and provide the following:

• Name. Give the name of the property: the property <name> will be accessed as ${property:<name>}.

• Description. Provide an optional description for this property. If given, the description will be shown when
prompting users for a value.

4. Value. Select the value type. Choose either Defined (see Item 5), Job Execution (see Item 6), or Scripted (see
Item 7).

5. Defined-value property. Basic property type. Displays a text area for the user (either the property name or de-
fault value) when running a build. To configure, give the following:

• Default Value. Check the box to make this a default value. The default value must be a value from the allowed
values list configured below if more than one value will be allowed.

• User Can Enter Value. To allow users to specify a new value when running this workflow, check the box. If
the user may override the property, give the following:

• Label. Give a label for this property to be shown when prompting users for value. Leave blank to use the
Name as the Label.

Properties

191



• Is Required. Check the box to require the user to select a value for this property when the workflow is run.

• Click Save and go to Item 8.

6. Job-execution property. Use this property type if the value, default value or options are to be generated by a job
that executes on an agent.

• Agent Filter. Select the agent filter script to be used when determining the value of this property. See Agent
Filter (Selection) Scripts.

• Job. Select the job to execute that will set the property value using this property name. Either project or library
jobs may be used. When this job runs, the value of this property will be set.

• User Can Enter Value. To allow users to enter a value when running this workflow, check the box. If the user
may enter a value for the property, give the following:

• Label. Give a label for this property to be shown when prompting users for value. Leave blank to use the
Name as the Label.

• Is Required. Check the box to require the user to select a value for this property when the workflow is run.

• Click Save and go to Item 8.

7. Scripted property. Scripted value properties are properties where the value, default value or options are gener-
ated by a script that is executed before workflow execution.

• Value Script. Give a BeanShell script that returns string value. The BeanShell script will be passed the follow-
ing implicit variables when applicable: project, workflow, Build Life, environment.

• User Can Enter Value. To allow users to enter a value when running this workflow, check the box. If the user
may enter a value for the property, give the following:

• Label. Give a label for this property to be shown when prompting users for value. Leave blank to use the
Name as the Label.

• Is Required. Check the box to require the user to select a value for this property when the workflow is run.

• Click Save and go to Item 8.

8. To use Workflow properties run a build.

Workflow Request Properties
Workflow request properties are configured when a user adds input fields to a workflow (showing on the dashboard
for build workflows and the secondary process pop-up for secondaries). For example, a workflow request property
could be "clean vs. incremental build" or "Branch to build from". See Setting Properties.

Workflow Properties (from Originating-build Workflow)
The workflow property (from originating-build workflow) is similar to the Workflow Request Property; however, it
is a secondary process resolving the variables from a previous Workflow. See Setting Properties.

Cascading Workflow Properties

Properties

192



If you have properties set on a workflow (e.g., parent workflow) that are also required when kicking off a child
workflow (i.e., a deployment workflow), you can configure your job to pass the configured properties to the child
workflow. Cascading properties is commonly accomplished when using the Run Another Workflow step. To cas-
cade properties when kicking off another workflow:

1. Go to your job and select the Insert After icon of the step immediately preceding where the Run Another
Workflow step is to be included. Typically, this step is added near the end of a job.

2. Open the Miscellaneous folder, select Run Another Workflow, and click Select.

3. Configure step:

• Name the step.

• Description. Give an optional description.

• Workflow. Select the workflow you want AnthillPro to run. Only secondary workflows available to this
project will appear in the drop-down. Click Set.

• Environment. Select the environment the child workflow is going to run in. If you don't see the environment
you want, that is because the workflow you selected does not participate in that environment.

• Wait for Workflow. Checking the box will force AnthillPro to wait for the parent workflow to complete be-
fore kicking off the child workflow. If checked, this step will not run if any previous job steps fail. Note that
while waiting for the parent workflow to complete, the child workflow holds any Lockable Resource and
counts as running on an agent.

• Pass Properties. Select one of the options to cascade the properties from the parent workflow to the child
workflow.

• Do not pass properties. This is AnthillPro's default behavior. No request properties defined on the parent
workflow will cascade to the child workflow.

• Only properties with matching names. A request property on the parent workflow will cascade to the child if
and only if the child workflow defines a property of the same name. For example, if both the parent work-
flow and the child workflow are configured with a property named 'agents', that property (including the
value set on the parent workflow) will be passed to the child when this step executes. However, if the parent
workflow has a property named 'Linux' configured but the child workflow does not, the 'Linux' property will
not cascade to the child workflow.

• Pass all properties. Pass all request properties from the current originating workflow to the child workflow,
even if no matching property name is configured on the child workflow. For example, if both the parent
workflow and the child workflow are configured with a property named 'agents', but have different values,
the value set on the parent workflow will be used when running the child workflow. If a particular property
is configured on the parent workflow, but not on the child, that property -- including its value -- will be
passed to the child workflow at run time.

• Show Additional Options (optional; advanced). Select the Show Additional Options link to configure more
options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

Properties

193



• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

4. Click Save.

Dynamic Workflow Properties
The exercise below shows how dynamic workflow properties can be used to control which agents will be targeted
for deployment. Configuration consists of creating a scripted multi-select workflow property, a scripted agent filter,
and adding the run another workflow step to a job.

1. Go to your build job (originating workflow) and set the iterations to -1 and unique agents. When set to -1, Ant-
hillPro will iterate a job equal to the number of agents returned by the agent selection filter (discussed below).
Selecting Unique Agents will cause AnthillPro to run each iteration on a separate agent.

2. Create a new Agent Filter script (see Configure and Edit Agent Filters for more) that will return all agents that
are referenced in the property value discussed below. The property name in the example is 'agents'. The property
name in this script should be the name of the workflow property you will add in subsequent steps. Here is the
script:

import com.urbancode.anthill3.domain.agent.Agent;
import java.util.*;

return new Where() {
public Agent[] filter(Agent[] agents) {

agentNames = PropertyLookup.get("agents");
nameArray = agentNames.split(",");
agentList = new ArrayList();
for (int a=0; a<agents.length; a++) {

for (int n=0; n<nameArray.length; n++) {
if (agents[a].getName().equals(nameArray[n])) {

agentList.add(agents[a]);
}

}
}
agents = agentList.toArray(new Agent[agentList.size()]);
return agents;

}
};

3. On your workflow, create a scripted multi-select property. In the example, It is named 'agents'. The Agent Filter
script created above must use the same name. When configuring the property, it should be user overridable and
required. The script for value is:

import com.urbancode.anthill3.services.agent.AgentManager;
import com.urbancode.anthill3.domain.agent.AgentFactory;

endpoints = AgentManager.getInstance().getOnLineEndpointArray(environment);
values = new String[endpoints.length];
for (int i=0; i<endpoints.length; i++) {
agent = AgentFactory.getInstance().restoreByEndpoint(endpoints[i]);
values[i] = agent.getName();

Properties

194



}
return values;

4. Save your settings.

The next time the build runs, the user will be prompted to select an agent that was dynamically selected. The work-
flow will only be run if the user selects an agent form the list.

Build Life Properties
Set Build Life properties on originating workflows using an Evaluate Script job step. Build Life properties are typic-
ally used to hold variable data for builds (such as compiler version, etc.) or to create an audit trail. Once the property
is set, and the build has run, the Build Life property will be visible on the Build Life page.

To use a Build Life property, add the Evaluate Script step to the job -- typically after the Populate Workspace and
Get Change Log steps of the typical job. Once set on the originating workflow, Build Life properties are available to
all secondary workflows (such as deployments, etc.) run on the Build Life, and are unique to the Build Life.

• For originating workflows, use: BuildLifeLookup.getCurrent().setProperty("name",
"value") to set the property at build time.

• For secondary workflows, use: ${bsh: BuildLifeLookup.getCurrent().get(name)} to resolve
the property when the workflow is run.

For more information on AnthillPro scripting, see Scripting Basics.

Build Life Originating Workflow Request Prop-
erty
When set as a workflow property, the value will get pushed to the Build Life originating workflow before the build
begins. This can be useful if you set user-overridable properties on the build workflow. See Workflow Properties to
set the property.

Project-Environment Properties
Project environment properties may be used to customize deployments based on the environment they are deployed
to. Project Environment properties are automatically placed as environment variables for all commands run in the
target environment. This eases their use in shell scripts, Perl scripts, and make commands. They can also be looked
up using the ${property:..} syntax (see Scripting). They are set on the properties tab on the Administration
page.

In a J2EE project, for example, a typical deployment might involve deploying an EAR file to a server with a specific
environment, user name, and password. These properties may be marked as secured. If secured, the value of the
properties will appear in the UI and logs as '*****', and the properties will be encrypted in the database. The secured
option guards against the leak of information (such as database passwords) to those permitted to configure a project
or read a project log, but who are not permitted to deploy to some environments.

Most projects participate in multiple environments. Because each environment is different, project environment
properties must be set for each environment the project is associated with. The process is the same for each environ-
ment; however, depending on the environment the property may be different. See Setting Properties.

Properties

195



Project Environment Properties Prerequisites

• You must have AnthillPro administrative privileges. See Manage Security.

• A Project with an originating workflow and at least one job must already be active.

Set Project Environment Properties

1. Go to Administration and select the project to add properties to.

2. On the project page, select the Properties tab.

Use the ALL sub-tab to set properties for this project (see Project Properties). Any property set here will be set in
every environment this project participates in.

The environments this project participates in are listed as sub-tabs. To set an environment-specific property, se-
lect an environment. These properties are typically unique to the environment.

3. Select a specific environment. Click the Add Property link on the Project Properties page. If the project is part
of multiple environments, each environment will be listed separately. Set the project environment property for
one environment then proceed to the others.

4. Set property:

• Name. Give the name of the property: the property <name> will be accessed as ${property:<name>}.

• Value. Give the value, often a number or other value used to manage variables passed into commands, agent
filters, and custom algorithm templates. See also Empty Values in Properties.

• Secure. If using password properties and secure properties, check Yes. If the value does not need to be secure,
check No. The value will be obfuscated in output and the UI.

• Pass to Builders. Select Yes to pass this property to the builder. For example, if using Ant, AnthillPro typic-
ally calls the build.xml file for a build. However, if you select Yes, you can use AnthillPro to pass a property to
the build script. The call would look something like ant build.xml -Dproperty. See Specialized
Builder Properties.

• Set in Environment. Select Yes to automatically set this property in the environment. This will allow the
property to be passed to SCM steps and any other step that uses a shell command.

5. To add another property, select the Add Property link again. Click Save when done.

6. Repeat Items 3-5 to set project environment properties for other environments.

Project Properties
Project properties may be used for all workflows regardless of the target environment. They are set on the Properties
tab on the Project's Administration page, and may be looked up by integration points and e-mail notifiers.

Project Properties Prerequisites

• You must have AnthillPro administrative privileges. See Manage Security.

Properties

196



• A Project with an originating workflow and at least one job must already be active.

Using Project Properties

1. Go to Administration and select the project to add properties to.

2. On the project page, select the Properties tab.

3. Select the ALL sub-tab. Click the Add Property link on the Project Properties page. Any property set here will
be set in every environment this project participates in.

If the project is part of multiple environments, each environment will be listed separately. Set the project environ-
ment property for one environment then proceed to the others. See Project Environment Properties.

4. Set property:

• Name. Give the name of the property: the property <name> will be accessed as ${property:<name>}.

• Value. Give the value, often a number or other value used to manage variables passed into commands, agent
filters, and custom algorithm templates. See also Empty Values in Properties.

• Secure. If using password properties and secure properties, check Yes. If the value does not need to be secure,
check No. The value will be obfuscated in output and the UI.

• Pass to Builders. Select Yes to pass this property to the builder. For example, if using Ant, AnthillPro typic-
ally calls the build.xml file for a build. However, if you select Yes, you can use AnthillPro to pass a property to
the build script. The call would look something like ant build.xml -Dproperty. See Specialized
Builder Properties.

• Set in Environment. Select Yes to automatically set this property in the environment. This will allow the
property to be passed to SCM steps and any other step that uses a shell command.

5. To add another property, select the Add Property link again. Click Save when done.

Environment Property
Environment properties are used to set default values for a particular environment. Other property types, except sys-
tem properties, always override the environment-level properties. To set an environment property:

1. Go to Agents > Environment.

2. On the Environments Page, select the environment you want to set a property for.

3. Click Add Property.

4. Configure settings:

• Name the property.

• Value. Give the value of the property.

• Description. Give an optional description.

5. Click Done.

Properties

197



System Properties
System properties are used to set default values for a particular property for all workflows and projects system wide.
A frequently used default property name is useful when setting values for multiple projects. Other property types al-
ways override the system-level properties.

1. Go to System > Properties under the Server menu.

2. Click the Add Property button.

3. Configure settings:

• Name the property.

• Value. Give the value of the property. A frequently used default property name is useful when setting values
for multiple projects. If using a server property, all other property types may override the server property. See
also Empty Values in Properties.

• Description. Give an optional description.

4. Click Done.

Specialized Builder Properties
Specialized 'builder' steps for tools like Ant, Maven, and Nant have a properties tab (these are properties as those
tools understand them) available through the AnthillPro UI. Properties are then passed into the tools at the command
line, using the tools specific format (usually -D.... ). Values for the properties may be one of the other property
types or even a one-line BeanShell script.

Many users employ a builder property that looks up a job's stamp and then pass the stamp to a version property. In
BeanShell, it would look like this: ${bsh:WorkfspaceVersion.get()}. For more scripting, see Tools >
Development Kit Bundle > Scripting.

Agent Properties
Agent properties can be used when the behavior of a command needs to change depending on the particular server it
is running on. Agent properties are also typically used to identify where build or testing tools are installed on a par-
ticular agent, etc.

To lookup an agent property in the configuration of a step, no special identifier need be used. Just use the syntax
${[agent_variable]}. For example, the Ant installation directory for version 1.7.2 of Ant might be looked
up using ${ANT_HOME_1_7_2}. For more scripting, see Tools > Development Kit Bundle > Scripting.

The agent properties (go to Agents > Agent > select an agent) are stored on the server. When the agent starts up, it
passes all of its properties to the server, which then stores it. If a property is added or changed, or the agent is up-
graded, etc., the properties will be automatically updated on the server.

Note that there are four groupings of agent properties, but you can only configure Agent Properties. The other three
categories are set by the AnthillPro system and are not configurable via the UI.

See Manage Agents, Configure Agent(s), and Setting Properties.

Properties

198



AnthillPro Properties
AnthillPro has a number of properties automatically set by the system. A number of the properties are used in con-
junction with integrations, and are automatically set during configuration or at runtime. Most users will not need to
modify the AnthillPro properties once they are set.

Agent Properties Description

codestation.cache.dir Location of the agent Codestation cache. Default is the
agent user's home directory plus '.codestation'.

codestation.cache.timeToLive Number of days to keep something in the cache. Default
is never.

codestation.noCache Control over agent Codestation caching.

codestation.secondaryCache.dir Location of secondary cache. Default is not enabled.

codestation.suppress.bom Control over whether .bom bill of materials files should
be created when artifacts are resolved. Default is true.

lab.manager.<configuration> Identifies an agent as the agent installed in the
<configuration> on VMware Lab Manager.

Build Life Properties Description

anthill3.baseline.info Set by ClearCase UCM Get ChangeLog and Rebase
steps.

maven.lastUpdated Identifies when a Codestation Build Life was down-
loaded from a external Maven 2 repository.

maven.proxiedRepository Identifies which external Maven 2 repository a Codesta-
tion Build Life was downloaded from.

maven.version Identifies an AnthillPro Build Life as a version to Maven
2.

Build Request Property Description

anthill.buildlife.label Value applied by a SCM Label step.

Job Properties Description

anthill.job.iteration Number of the job iteration being executed. Only avail-
able to iterated jobs.

anthill.job.iteration.name User-defined name of the job iteration being executed.
Only available to iterated jobs.

git-revision Revision retrieved during the Git Populate Workspace
step.

mercurial-revision Revision retrieved during the Mercurial Populate Work-
space step.

synergySessionToken Synergy session token set by all Synergy steps.

work.dir.path Set/updated to the current working directory of the job
on the agent.

workspace.date Set to the actual workspace date of the Build Life (which
is the date of the source used). Formatted 'yyyy-MM-dd
hh:mm:ss.S a z'.

workspace.version Latest Build Life stamp applied during the job

Maven Properties Description

maven.artifactId Identifies a Codestation project, AnthillPro project or
AnthillPro workflow with the Maven 2 artifactId.

maven.groupId Identifies a Codestation project, AnthillPro project or

Properties

199



AnthillPro workflow with the Maven 2 groupId.

Properties

200



Chapter 40. Build Life Links
Use Build Life Links to pass the URL of resources outside of AnthillPro to the Build Life. Once configured as a job
step, the Link is available on the Reports tab for every Build Life that is associated with the job. See Add Build Life
Link to Job and View Build Life Link.

For example, Build Life Links can be used to link to the different environments a project is deployed to (such as
stage or production); to a third-party system that requested the build or deployment; or to detailed testing reports.

Before you begin make sure:

• You have administrative permissions. See Manage Security.

• A Life-Cycle Based Project is active. Build Life Links cannot be used with Operational Projects.

• The URL of the resource to be linked to is available.

Add Build Life Links as a step to any job that generates a Build Life. Once configured, the link will be passed to
every Build Life associated with the job (see View Build Life Link). This section only covers the steps necessary to
adding a Build Life Link step to a job. For detailed job configuration instructions.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

4. Add Build Life Link. Select the Insert After icon of the step prior to the point where the Build Life Link step is
to be included (the step can be placed anywhere in the job). Expand the Publishers folder, select the Add Build
Life Link step, and click Select.

• Name the link.

• Link Name. Give the name to be used in the Build Life Reports Tab.

• Link Description. Provide the optional description.

• URL Script. Give the script that determines the link URL. The script, using the standard AnthillPro script
helpers, should return the value of the URL. (The example returns the URL for all environments the project is
deployed to.) See Scripting.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Continuation Condition. Select the condition which must be met for the process to continue (all steps pass;
previous step passed; any step failed; always; or never).

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed

201



out and abort it.

5. Click Save.

Once the job is configured with a Build Life Link step (see Add Build Life Link to Job), the link is available under
the Build Life Reports tab when the job has been run.

1. Build the project.

2. Go to Dashboard and select the appropriate workflow.

3. On the workflow Main page, select the new Build Life.

4. Select the Reports tab.

5. Follow the link under the Published Links menu.

Build Life Links

202



Part VIII. Advanced Usage
Advanced usage tools provide you in-depth views and fine-grained control for Build Lives, workflows and jobs. In
addition, you can change your profile to personalize the Dashboard:

• Build Life Tools. There are a number of advanced tools available through the UI to help you diagnose problems
and manage Build Lives.

• Workflow Tools. Workflow priorities allow you to determine the order in which workflows run. Priorities are set
as part of the configuration process. Workflow Requests tools allow you to create request plans and view the con-
text of a workflow's request.

• Job Tools. Provide an opportunity to abort, suspend, or prioritize jobs under the Actions menu.

• User Views. Each AnthillPro user has some control over what is displayed on the Dashboard. You can add/
change your password; user-repository alias; first and last name; e-mail and IM addresses; time zone; and the
number of dashboard rows displayed. See Change User Profile.

• System Tray Monitor. The System Tray Monitor provides feedback directly to the desktop, without having to
open or refresh a browser.



Chapter 41. Build Life Tools
There are a number of advanced tools available through the UI to help you diagnose problems and manage Build
Lives. All of the tools listed below pertain to individual Build Lives, and any actions you take will only effect or ap-
ply to the Build Life you are on.

Some of the Build Life tools can also be configured as part of the project's Life-Cycle Model. For example, delet-
ing a Build Life and archiving a Build Life can be automated as part of the Life-Cycle Model's Cleanup Schedule.
If you consistently use the manual versions of this feature, consider modifying the project's Life-Cycle Model.

Audit a Build Life
The Build Life page provides an overview of a Build Life history, showing the history of workflows executed for
the Build Life, as well as what agents jobs ran on and when they ran.

1. To audit a Build Life, start from the Dashboard and select the project for which you want to audit a Build Life.

2. Select the Build Life number you are interested in.

3. Determine who triggered the workflow and how. Go to the Build Life page and click on the Build Request num-
ber.

• In the example below, the user etm manually requested a build on December 2, 2007.

4. View similar logs to see who made the request to deploy a build to the QA environment If this build was
triggered by a schedule, that would be reflected here as well.

204



5. View dependencies by selecting the Dependencies tab The Dependency tab details what Build Lives a particu-
lar Build Life is using. It also details uses of this Build Life by other projects.

6. Check status history and stamp Status and stamp history displays the history of when the project attained each
status or stamp. If it attained a certain status or stamp more than once, each time that happened it would show up
here.

• Select the job number on the Status History or Stamp history to view the job trace.

Inactivate a Build Life
Inactivating a Build Life removes the artifacts and permanently disables a Build Life. Once inactivated, a Build Life
can never be enabled nor used in dependency relationships. (To temporarily deactivate a Build Life, see Archive and
Unarchive Build Life.)

AnthillPro keeps a detailed record of all inactive Build Lives; however, they will not be visible on the normal
project Dashboard pages. Inactive Build Lives are identified with a tombstone icon next to the Build Life number
when a Search is run, and on the individual Build Life page. See Finding Inactive Build Lives.

Build Life Tools

205



AnthillPro will not allow a Build Life to be inactivated until all the dependency relationships, etc., have been re-
solved. If you attempt to inactivate a Build Life that is in use, the warning "This BuildLife could not be deactivated.
It is in use by active Build Lives: XXXX" will appear.

1. Go to Dashboard and select the Workflow associated with the Build Life to be inactivated.

2. On the Main Workflow page, select the appropriate Build Life.

3. On the Main Build Life page, select the Inactivate link.

4. Click OK in the dialogue box.

Inactive Build Lives do not appear on the regular Dashboard pages, but can be accessed using the Search page.

1. Go to Search > Workflow.

2. Select a Project from the drop-down menu.

3. Determine how many workflows will be displayed per page.

4. Click Search.

Inactivated Build Lives have a tombstone icon next to the number. Selecting the Build Life number links to the
Main Build Life page.

Build Life Tools

206



Archive and Unarchive Build Life
Archiving a Build Life stores the build properties (time of build, labels, build number, etc.) and removes the binary
artifacts from AnthillPro's data warehouse. Once archived, any dependencies in the Build Life will be locked (see
Archive Build Life). Archived Build Lives are automatically assigned the Archived status, and can be identified un-
der the Status History menu on the Build Life Main page.

Unarchiving a Build Life runs a build based on the stored information, reproduces the binary artifacts, and makes
the Build Life available to normal AnthillPro processes. See Unarchive Build Life.

In order to archive a Build Life, the SCM/Repository must be labeled during the originating workflow build process.
Otherwise, the warning "Unable to archive the build life because the originating workflow did not label the reposit-
ory" will appear.

1. Go to Dashboard and select the Workflow associated with the Build Life to be archived.

2. On the Main Workflow page, select the appropriate Build Life.

3. On the Main Build Life page, select the Archive link.

Build Life Tools

207



4. Click OK in the dialogue box.

When unarchiving a Build Life, the stored properties are used to reproduce the binary artifacts and restore the Build
Life to its original condition. Because dependencies generally do not need to be rebuilt, AnthillPro does not assume
they were built against the same label. If you need to rebuild dependencies for an unarchived Build Life, force the
dependencies to build when building the master project.

1. Go to Dashboard and select the Workflow associated with the Build Life to be unarchived.

2. On the Main Workflow page, select the appropriate Build Life.

3. On the Main Build Life page, select the Unarchive link.

4. Click OK in the dialogue box.

Delete a Build Life
Deleting a Build Life permanently removes all traces of the Build Life from AnthillPro, and cannot be reversed. To

Build Life Tools

208



temporarily deactivate a Build Life, see Archive and Unarchive Build Life. To permanently remove the artifacts
from the Build Life but still keep a record of its existence, see Inactivate Build Life.

• You must have permissions to delete a Build Life. See Manage Security.

1. Go to Dashboard and select the Workflow associated with the Build Life to be deleted.

2. On the Main Workflow page, select the appropriate Build Life.

3. On the Main Build Life page, select the Delete link.

4. Click OK in the dialogue box.

Lookup Builds by Status
Typically, when promoting a Build Life it is assigned a new status to reflect that change. Reviewing which Build
Lives have been promoted, deployed, or released is pretty easy.

1. Go to Search > Status History tab.

2. From the drop-down menu, select the project to be searched.

3. Select the Life-Cycle Model status you are interested in. Only statuses associated with the selected project will
appear in the drop-down menu.

4. Click the Search button to get a list of Build Lives.

Build Life Tools

209



5. To view a Project, Build Life, or Job, follow the appropriate link.

Trace a Build Life to Source
In order to be fully traceable and auditable, looking up the sources that a build originated from is important. There
are two basic sources of information. The first is to examine the command used to check out the sources. Because
checkout commands always uses an exact checkout like a date or baseline, determining what was checked out is
straightforward. To do that from the Dashboard, go to the Build Life Main page.

AnthillPro uses an AJAX log viewer, which makes the log available in 1,000-line increments, so you don't have to
scroll through the entire log to find what you are looking for. The viewer allows you to jump to a specific line or
view the log in 1,000-line increments by clicking the navigation links.

1. Go to Dashboard > Build Life to be traced.

2. On the Main Build Life page, click the View Job icon.

3. To view the output log of the Populate Workspace Step, Click the Output icon.

Build Life Tools

210



• The checkout command is listed at the top of the log, and should read something like:

Subversion command line: svn checkout --non-interactive --username anthill3
--password *****
http://192.168.1.155/urbancode/xpetstore/trunk .

Subversion command working Directory: C:\anthill4\agent\var\jobs\projects
\XPetStore__SVN_

Subversion command environment:
U xpetstore-servlet\web\jsp\decorators\default.jsp
Checked out revision 243.
command exit code: 0

4. Alternately, lookup the label that has been applied to the source code. This is usually a modification of the
stamp that was applied, but to be absolutely certain, view the output of the Label Source step. With the baseline
label, check out the source tree used and review the source code.

Trace Build Life Dependencies to Source
It's well and good to know the sources used when building the project, but if you can't trace the library another team
provided back to its source, there may be a problem. Fortunately, AnthillPro makes it easy to trace dependencies to
source.

The Dependency tab on the Build Life page lists the projects your project is dependent on. It also details which
Build Life was used, when the dependency was built, as well as the Build Life id and the latest status and stamp at-
tained by the dependency's.

• To view the project dependencies, select the Dependencies tab of the Build Life in question.

• Clicking the dependency's Build Life id, traces its sources the same way sources were looked up in the first sec-
tion.

Build Life Tools

211



Chapter 42. Workflow Tools
There are two major categories of workflow tools: priorities and requests. Workflow priorities allow you to determ-
ine the order in which workflows run -- this is especially helpful in busy build farms for top-level projects (e.g., a
project used to deploy to production) need to build as quickly as possible. Priorities are set as part of the configura-
tion process.

Workflow requests, on the other hand, are not part of the normal configuration process (see Workflow Requests for
more). Rather, they can be controlled using a request plan set up separate from workflow configuration. Once a
build has begun, it is possible to see all the requests spawned by a particular build (e.g., requests for builds of de-
pendent projects).

Workflow Priorities
Use workflow priorities to determine which workflow will run first. AnthillPro has three priority levels: High, Nor-
mal, and Low. All workflows with a priority of High will run before any other queued workflows with Normal or
Low priorities, and workflows set with a Normal priority will run before those with a Low priority. However, once a
workflow begins, it will not be suspended or stopped when a higher priority workflow is requested.

It is also possible to set a dynamic workflow-priority based on the Build Life (if applicable), environment, project,
request, user, and/or workflow by creating a workflow priority script. See Workflow Priority Scripts.

Workflow Priorities are set during workflow configuration by selecting the priority from the drop-down menu. Ad-
ditionally, the priority of an existing workflow may be edited on the workflow configuration page. To do so, go to
Administration, select the workflow, and click the Edit Workflow icon on the Main page. Select the new priority
from the drop-down and click Save. The next time the workflow runs, the new priority will be used.

Workflow Priorities and Dependencies
The workflow priority will cascade down the dependency graph for either pushed or pulled builds. If a workflow
with a higher priority is requested as part of a dependency build (see Workflow Priorities with Pulled Builds and
Workflow Priorities with Pushed Builds), all subsequent requests will be assigned the highest priority for the re-
mainder of the process. This holds for all dependency-based requests, including running any secondary workflows.
However, the hard-coded workflow priority will not be changed. See also Use Workflow Request Contexts.

Workflow Priorities with Pulled Builds

If a request for a workflow within a pulled dependency relationship is made, the highest priority within the work-
flow context will be assigned to all subsequent workflows requested by the dependency build. For example: Project
A depends on Project B; and Project B depends Project C. Project A has a High priority; Project B has a Normal pri-
ority; and Project C has a Low priority.

With a request to build Project A -- which has a High priority -- the dependency builds of Projects B and C will be
assigned a High priority, inherited from the parent project. Likewise, if a build of Project B is requested (i.e., the
build is due to a source change in Project B and not a dependency request), the dependency build of Project C will
inherit Project B's Normal priority for the duration of the build. See also Use Workflow Request Contexts.

Workflow Priorities with Pushed Builds

If a request for a workflow within a pushed dependency relationship is made, the highest priority within the work-
flow context will be assigned to all subsequent workflows requested by the dependency build. For example: Project
A depends on Project B; and Project B depends Project C. Project A has a Low priority; Project B has a Normal pri-
ority; and Project C has a High priority.

212



With a request to build Project C -- which has a High priority -- the dependency builds of Projects B and A will be
assigned a High priority, inherited from Project C. Likewise, if a build of Project B is requested (i.e., the build is due
to a source change in Project B and not a dependency request), the dependency build of Project A will inherit Project
B's Normal priority for the duration of the build. See also Use Workflow Request Contexts.

Workflow Properties and Build Life Notes
When performing deployments, AnthillPro automatically tracks who performed the deployment and when the de-
ployment was executed, but not "why" (e.g., a deployment may have been performed to send the artifacts to a sta-
ging server, to a specific testing machine, etc.). To track "why" a deployment was performed, use a Text Workflow
Property to add an input to the deployment workflow that records why the deployment took place. See Create Work-
flow Property Note.

In order to make the note easily available as a Build Life Note, also use a simple BeanShell script (that includes the
reason) in an Evaluate Script step as part of the deploy job. See Add Script to Workflow Property Note.

When the workflow is run, the property will appear on the Run Secondary Process page, and require the user to in-
put a value. See Run Deployment with Workflow Property Note.

Prerequisites: Creating Workflow Property Notes

• You must have administrative permissions. See Security.

• An active AnthillPro project must have at least one Build Life.

• A deployment workflow must already be created.

• Familiarity with AnthillPro Scripting. See Scripting Basics.

Create Workflow Property Note

To create a workflow property for a Build Life Note:

1. Go to Administration and select the deployment workflow to add properties to.

2. On the workflow page, select the Properties tab.

3. Click New Property, select Text form the drop-down menu, and click Select.

4. Set property:

• Name. The name can be something like "Reason" or "Why". The property <name> will be accessed as
${property:<name>}. When adding the script, the name given here will be used. See Add Script to Workflow
Property Note.

• Description. Enter the question you want to ask. For example, "Why have you decided to deploy this applica-
tion to this environment?"

• Default Value. This can be left blank when using workflow properties for Notes.

• User May Override. Check the box to allow users to override the property. If checked, the user will be able to
specify a new value. If the user may override the property, give the following:

• Label. Give a label for this Property to be shown when prompting users for value (leave blank to use the
Name as the Label).

Workflow Tools

213



• Is Required. Check to require the user to answer the question.

5. Click Save.

6. See Add Script to Workflow Property Note.

Add Script to Workflow Property Note

Add the property to the deployment by using an Evaluate Script step in the deploy job. The script should look up the
current Build Life, the current workflow, the user, the environment, and the property. Additionally, the script must
also tell AnthillPro to automatically create a Build Life Note. See Build Life Note Scripts.

1. Go to Administration and select the job associated with the deployment workflow.

2. On the job configuration page, select the Insert Before or Insert After icon of the step before or after where the
script is to be included.

3. Open the Miscellaneous folder, select the Evaluate Script step, and click Select.

4. Name the script. For example, "Note".

5. Description. Give a description such as "Requires person running a deployment to give a reason."

6. Script. Create the BeanShell script that looks up the user requesting the deployment, the environment the deploy-
ment is targeting, and then combines that with the reason given by the user. The script also includes a short string
that creates the Build Life Note.

• Note that the property "Reason" is requested by the script. Make sure this matches the name given in Create
Workflow Property Note.

See Build Life Note Scripts.

7. Click Save.

8. See Run Deployment with Workflow Property Note.

Run Deployment with Workflow Property Note

1. To view the note, the deployment must first be run.

2. Once the deployment has completed, go to the Dashboard and select the newly created Build Life.

3. On the Build Life page, select the Notes tab.

4. The note, including the reason given, is displayed.

Workflow Requests
In AnthillPro, the request is the first action taken by the server when executing an originating (i.e., build) or second-
ary (e.g., deployment) workflow. It does not matter if a person clicks the Build or Run a Secondary Process button
or if a schedule or repository trigger kicks off a workflow: All these actions first generate a request before Ant-

Workflow Tools

214



hillPro builds a projects or deploys the artifacts. Even if a workflow fails or does not run, a request is generated and
recorded.

In AnthillPro, there are two basic tools available for managing/using requests:

• Request Plan. Allows you to save the configuration for running one or more originating workflows and then run
the build configuration at will. This can come in handy if you have to build many projects that have no depend-
ency relationship but must be delivered as part of the same context. See Use Workflow Request Plans.

• Request Context. Available once a request has been completed and the server has begun a build (deployment,
etc.), the context lists all the requests spawned by a single workflow. This can come in handy when you need to
know which Build Lives were created by a dependency trigger or need to manage the build order. See Use Work-
flow Request Contexts.

In addition, AnthillPro provides a specialized request search (go to Search > Request) for Build Life requests. You
can search by a combination of project and workflow requests. The results of a search will tell you if a new Build
Life was created or not, or if the request itself failed. You can drill down into each request to investigate requests,
etc.

Use Workflow Request Plans
Request Plans are a way to save the configuration for running one or more originating workflows. For example, if
you have multiple projects that must be delivered together -- but have no dependency relationships -- you can in-
clude all the build workflows into a single request plan. When the request plan is run, it will build (depending on
your workflow configurations) your projects. When complete, you can then use the request context to see which
projects were build.

There is no restriction on which originating workflows are included in a request plan: the same workflow can be part
of multiple request plans and a single request plan can contain workflows from any AnthillPro project. Once con-
figured (go to Dashboard > Saved Requests), the request plan can be run whenever you need to. When you create a
request plan, it will save the properties that may need to be set when each workflow in the plan runs. The requests
created by the request plan will run in the same request context and will take precedence in dependency resolution.
To create a request plan:

1. Go to Dashboard > Saved Requests and click Create Request Plan.

2. Configure the request plan:

• Name the request plan. This name will be displayed on the Saved Request main page.

• Description. Give a short description. You can include the workflow name(s), project name(s), etc.

3. Click Save.

4. On the main Saved Requests page, click the Run icon under the Actions menu.

If you need to modify an existing request plan, select the View icon (the magnifying glass) under the Actions menu.
You can then delete or add workflows.

Use Workflow Request Contexts
A workflow request context is a collection of requests for workflows that are processed together. If a request triggers
the creation of another request due to dependencies, the requests will be in the same context. For example, all re-
quests that are created by the occurrence of a schedule are created in the same context; and any requests created by a

Workflow Tools

215



Run Another Workflow or Run Dependency Workflow step are created in the same context. The request context is
most helpful if dependencies are configured in AnthillPro (see Configuring Dependencies): the Request Context
shows all the requests for a build spawned by a single action.

By viewing the request context, administrators can easily determine how AnthillPro manages build order and con-
sistency along a dependency hierarchy by using the request context page. The request context page displays the
project, workflow, environment, status, priority, and date of each request within the context.

• The request being investigated will be highlighted with an orange frame.

• To view the request for any workflow within the context, click the View Request icon.

• To view the Build Life that was created by the request, follow the link at the Status item.

Workflow Tools

216



• To prioritize every request within a running context, click the Prioritize Context link in the Request Context in-
formation box. This will automatically assign a High priority to every request within the context.

To access the workflow request context:

1. Go to the Dashboard and select the appropriate Build Life.

2. Click the Request Number under the Request menu.

3. On the Request page, click the View All Requests in Context icon in the Build Request menu.

Workflow Tools

217



Chapter 43. Job Tools
The Activity tab shows all the current actions the AnthillPro server is performing, as well as provides an opportunity
to abort, suspend, or prioritize jobs under the Actions menu. Following the ID, Project, Workflow, or Build Life/
Stamp.

Clicking the plus (+) sign in the upper left hand corner will expand/collapse all workflows, or an individual work-
flow may be expanded/collapsed. Additionally, current activity may be aborted, prioritized or suspended by using
the icons under the Action menu.

Selecting the NOT NEEDED JOBS link for any Build Life allows you to view jobs that did not run as part of the
build (determined by their pre-condition). If the link is not visible, then all jobs were needed as part of the workflow.

218



Chapter 44. User Views
Each AnthillPro user has some control over what is displayed on the Dashboard; however, what is available is de-
termined by the AnthillPro administrator. In the User Profile, you can add/change your password; user-repository
alias; first and last name; e-mail and IM addresses; time zone; and the number of dashboard rows displayed. Any
changes made in the Profile will be updated in the AnthillPro security system. See Change User Profile.

Additionally, if the system administrator has elected to have the Dashboard Graphs visible (see Configure Server-
wide User Views), you can disable them by selecting the Views tab. See Change User Views.

Change User Profile
On the User Profile General tab, update contact information, update password, and/or set up a user alias. Note that
the Name filed (denoted by a red asterisk) cannot be changed here. If you need to change the name, contact your
AnthillPro administrator.

To change your profile settings:

1. Select the profile link from the menu at the top of the browser window.

2. Update Password. On the General tab, select the Update Password button to change your AnthillPro password.
In the pop-up window, give:

• Your current password.

• The new password you want to use when accessing AnthillPro.

• A confirmation of your new password.

• Click Update.

Once reset, the new password will be required at your next login.

3. To change name and other user information, click the Edit button. You can then edit your contact information as
well as the date and time formats. Note that any changes made here will be reflected in the AnthillPro security
system.

4. Number of Dashboard Rows. To change the number of builds displayed on the Dashboard Workflow page, in-
put it here. For example, if you input 5, only the five most recent builds will appear under the Recent Activity
menu on the Main tab.

5. Add User-Repository Alias. To add a new alias, click the User-Repository Alias button. Select the appropriate
repository from the drop-down menu and give the alias used in that repository. Click the Add User-Repository
Alias button to finish.

Once created, a User-Repository Alias may not be edited. If your user alias for a repository has changed, delete
the current alias (click the Remove icon under the Operations menu) and create a new one.

6. Click Save. If not changing Views, click Done. Otherwise, see Change User Views.

219



Change User Views
If your system administrator has elected to have the Dashboard Graphs visible (see Configure Server-wide User
Views), you can disable them on the Views tab. However, if the administrator has already disabled the graphs, you
will not be able to display them.

To enable/didable Dashboard Graphs:

1. Select the profile link from the menu at the top of the browser window.

2. Select the Views tab and click Edit.

3. Configure settings:

• Main Dashboard Graphs. Select Yes to have the Total Source Activity, Build Activity, and Average Test
Success graphs displayed on the Main page; or No to disable them.

• Project Dashboard Graphs. Select Yes to have the Source Activity, Build Activity, and Average Test Suc-
cess graphs displayed on the Project page; or No to disable them.

• Workflow Dashboard Graphs. Select Yes to have the Source Activity, Build Activity, and Average Test
Success graphs displayed on the Workflow page; or No to disable them.

4. Click Save. If not changing General settings, click Done. Otherwise, see Change User Views.

Use Enable Refresh
To get the most up-to-date information about your projects, use ENABLE REFRESH. When activated, ENABLE
REFRESH will reload the Dashboard every 30 seconds. Any change in project, workflow, or Build Life status will
be updated automatically.

1. Go to the Dashboard.

2. Select the ENABLE REFRESH link.

3. Once enabled, you can either DISABLE or PAUSE refresh by selecting the appropriate link.

If refresh has been paused, it may be restarted by selecting the RESUME link. If refresh has been disabled, it
may be restarted by selecting the ENABLE REFRESH link again.

User Views

220



User Views

221



Chapter 45. System Tray Monitor
The System Tray Monitor provides feedback directly to the desktop, without having to open or refresh a browser. If
there is a problem with a selected action, the Monitor will display an error telling you to check the configurations for
that task. Once configured, the Monitor will save your settings, so if you exit and restart, it will continue to monitor
your selections.

The System Tray Monitor, including complete documentation, is available from the AnthillPro UI at Tools > Sys-
tem Tray Monitor.

222



Part IX. Developer Tools
AnthillPro provides a number of user and developer tools in addition to the UI. The tools allow any user to install a
system tray monitor and provide developers -- via the Dev-kit -- access to the API and Codestation. In addition,
there are Visual Studio and Eclipse plugins and preflight builds for developer productivity.

Current AnthillPro tools:

• Dev-kit. The Dev-kit provides comprehensive documentation on AnthillPro scripting, remoting, using SOAP-
based web services with AnthillPro, the AHPTool (command-line tool) and creating your own Plugin for Ant-
hillPro.

• IDE Plugins. AnthillPro provides IDE Plugins for both Eclipse and Visual Studio. The Plugins enables de-
velopers to view the current activity and state of projects, start new builds, map their projects to projects in Ant-
hillPro, and resolve the project's dependency artifacts.

• Preflight Builds. Allows developers to run a test build in the authoritative build environment before committing
their changes to source control.

• Codestation (Developers). Provides documentation for advanced usage of Codestation, including Ant tasks, the
command-line interface, and Codestation properties.

Complete documentation and tools are available by following the tools link:



Chapter 46. Dev-kit
The Dev-kit provides comprehensive documentation on AnthillPro scripting, including the full API and the Ant-
hillPro script library; remoting, which provides full access to the AnthillPro object model; using SOAP-based web
services with AnthillPro; as well as instruction on creating your own Plugin for AnthillPro.

To view the Dev-kit, follow the tools link in the upper right corner of the UI and download the Development Kit
Bundle.

Scripting
The scripts in AnthillPro are written in BeanShell, which is a JSR-approved Java scripting language. Other scripting
languages are also supported for select activities. The Scripting section of the Developer Tools provides a basic in-
troduction to scripting and AnthillPro.

Urbancode also maintains a public Script Database [ht-
tps://bugs.urbancode.com/secure/IssueNavigator.jspa?reset=true&pid=10110&status=5] that includes sample
scripts for custom reports, steps, reusable snippets, and more.

Detailed instruction, available at Tools > Development Kit Bundle > scripting, includes documentation on the
AnthillPro:

• Script Library. Use the script library to create, organize, and provide security around often-used AnthillPro
scripts. The Script Library is most helpful for large organizations, allowing them to ensure that only the appropri-
ate team members can modify a script.

Remoting
Remote scripting provides full access to the AnthillPro object model via a remote interface. This provides access to
all of the administration features of AnthillPro, as well as the information that is available via the Dashboard. Of
course, security (authentication and authorization) are fully enforced when using the remote scripting API.

Detailed documentation is available at Tools > Development Kit Bundle > remoting.

Integrating Using SOAP
Anthill Pro provides a SOAP-based, web services facade to enable third-party and user-created applications to
cleanly integrate. The SOAP interface, available at launch, will provide a number of lookup utilities to provide in-
formation on system state, project progress, and current activity. Also, as standard build and deploy web services
vocabularies evolve in the Eclipse Application Life-Cycle Framework project, this SOAP interface will provide
whatever functionality is specified.

Detailed documentation is available at Tools > Development Kit Bundle > soap.

224

https://bugs.urbancode.com/secure/IssueNavigator.jspa?reset=true&pid=10110&status=5
https://bugs.urbancode.com/secure/IssueNavigator.jspa?reset=true&pid=10110&status=5
https://bugs.urbancode.com/secure/IssueNavigator.jspa?reset=true&pid=10110&status=5


Developing Plugins
You can write your own integration with third-party tools (such as testing, SCM, source-code analytic, etc., tools)
and then add them to your AnthillPro workflows.

For an introduction to the Plugin system, see also Using AnthillPro Plugins.

Detailed documentation is available at Tools > Development Kit Bundle > plugin.

AHPTool
AHPTool is a command-line interface for AnthillPro that provides communication between agent-side commands,
scripting and the AnthillPro central server. AHPTool is focused on setting and retrieving information from the Ant-
hillPro server in the context of a running workflow: It can be used to look up or set properties at the system, step, re-
quest, job, Build Life and agent levels. AHPTool can upload and retrieve Test, Coverage, Analytics, or Issue data in
the form of an XML document to AnthillPro -- making it an excellent integration point for writing your own Plugin
or script.

Detailed documentation is available at Tools > Development Kit Bundle > ahptool.

AnthillPro API
The API is available under the server installation through the web UI. The majority of the API is available at the
tools page, including a copy of the AnthillPro API documentation (JavaDoc). The objects in the API strongly reflect
what is seen in the user interface.

In addition, AnthillPro also has a REST API that allows you to access AnthillPro's web services as resources, via
their URLs, using standard HTTP protocol. The responses to most of the GET methods (except property values,
which are simple text) are in XML, and may be consumed by any application, etc., that is able to consume XML
files.

Detailed documentation is available at the Tools page.

Dev-kit

225



Chapter 47. IDE Plugins
AnthillPro provides IDE Plugins for both Eclipse and Visual Studio. The Plugins enables developers to view the
current activity and state of projects, start new builds, map their projects to projects in AnthillPro, and resolve the
project's dependency artifacts. The Plugins are available from the AnthillPro UI at Tools > Eclipse Plugins or Visu-
al Studio Plugins.

226



Chapter 48. Preflight Builds
Preflight builds are created on the Administration tab by selecting the Create Preflight Workflow icon of the appro-
priate originating workflow. Once created, the preflight-build workflow is displayed on the Administration page in
blue and identified with the (preflight) suffix. Both the preflight workflow and job may be edited after creation;
however, making changes to either the preflight workflow or job may result in a failed preflight-build.

While the preflight workflow and job are virtually identical to the originals, the preflight job includes an additional
step (Preflight Build - File Retrieval) which is inserted after the first populate workspace step encountered in the ori-
ginal job. When the job is run, the original populate workspace steps are disabled (but not removed), and the Pre-
flight Build -File Retrieval job step instructs AnthillPro to retrieve source files for a developer machine, instead of
using the SCM configured for the originating workflow. Any additional populate workspace step can be enabled for
the preflight build, if needed; however it should not interfere with the one actually replaced. Any assign stamp, la-
bel, change log and integration step is disabled permanently for preflight jobs.

Complete documentation is available from the AnthillPro UI at Tools > Anthill Preflight Client.

227



Chapter 49. Codestation for Developers
Codestation is the name of AnthillPro's artifact repository management and access tool set. It provides support for
dependencies of third-party tool kits and software libraries. Codestation is also responsible for bringing the depend-
ency management lookup and retrieval utilities to the individual developer.

AnthillPro provides a number of Ant tasks and a command-line interface for developers. The tools, and full docu-
mentation, are available by following the tools link:

There are also a number of advanced settings and features, outlined below, to change Codestation's behaviour. For
most users, the default settings should suffice.

Codestation, Artifact Sets, and Exclusive
Locks
When uploading artifacts to a Build Life, Codestation exclusively locks the Build Life for the duration of the pro-
cess. Once the upload begins, all other requests (from other workflows, etc.) to upload artifacts to the locked Build
Life must wait for the lock to release before the subsequent upload begins.

Under certain conditions Codestation may throw the following error: Server Error: HTTP Code 500:
Could not acquire exclusive access to the buildlife. If you see this error when Codestation
is attempting to upload multiple artifacts to the same Build Life, the first upload most likely exceeds the 15-second
default time-out. To address this issue, increase the time-out setting. For example, if the longest upload takes 30
seconds, the time-out setting must be greater than 30 seconds, otherwise Codestation will throw an error. To reset
the Codestation time-out:

1. Shut down the AnthillPro server.

2. Open the server's bin/ah3server (UNIX) or bin/ah3server.cmd (Windows) file in a text editor.

3. Add the following to JAVA_OPTS (under BEGIN INSTALL MODIFICATIONS):

-DCodestationRepositoryFileHelperServer.tryLockTimeoutSeconds=

After the equals sign (=), give the time, in seconds, that Codestation should wait before timing out. For example,
input =60 to have Codestation wait one minute before timing out.

4. If AnthillPro is running as a Windows service, repeat Item 3 in the bin/service/ah3server.cmd file.

Once modified, the Server must be re-installed as a Windows Service. See Manually Install the AnthillPro Server
as Windows Service.

5. Restart the AnthillPro server.

Codestation Artifact Time-to-live
Use the Codestation Time-to-live feature to determine how long unused artifacts remain in the cache. By default,

228



every time the cache is accessed, artifacts that have been unused for 3 days will be automatically removed.

The Time-to-live option can be configured either in the codestation.properties file, or as an agent property. For
both configurations, the value equals the number of days unused artifacts are to be stored in the cache. For example,
in the codestation.properties file, codestation.cache.timeToLive=10 will delete unused artifacts after 10
days.

For the codestation.properties file:

1. Open the codestation.properties file (located in the user home directory).

2. Configure with the property codestation.cache.timeToLive.

If the property is not set (or is set to zero), unused artifacts will be removed after 3 days. To never delete the arti-
facts, set the property to a negative number.

Example properties file:

codestation.server=https://anthillserver.company.com
codestation.user=build
codestation.password=buildpass
codestation.noCheckCertificate=false

For the Agent (you must have administrative permissions to the agent):

1. Go to AnthillPro UI > Agents > Agent and select the appropriate agent from the list.

2. Select the Agent Properties tab and create a new property.

3. Give the property name and value in the name=value format (e.g.,
codestation.cache.timeToLive=10).

If the property is not set (or is set to zero), unused artifacts will be removed after 3 days. To never delete the arti-
facts, set the property to a negative number.

4. Name. Same name as the property (codestation.cache.timeToLive).

5. Value. The path of the cache directory.

Codestation BOM Suppression
Normally a Codestation resolve creates BOM files that describe what artifacts were part of the resolve so that they
can be cleaned up for the next resolve. In scenarios where the cleanup is never performed, the BOM files are unne-
cessary. If using the BOM suppression feature (e.g., to clean up previous deployments, etc.), the agent must be set to
look for the codestation.suppress.boms variable.

The Codestation BOM suppression feature can be configured either in the codestation.properties file, as an Ant
task, or on the command-line tool:

• codestation.properties file. Open the codestation.properties file (located in the user home directory) and con-
figure property.

Example properties file:

Codestation for Developers

229



codestation.server=https://anthillserver.company.com
codestation.user=build
codestation.password=buildpass
codestation.noCheckCertificate=false

• Ant task. Configure on Ant tasks with a boolean suppressBoms property. See Tools > Codestation Client.

• Command-line tool. Configured on the command line tool with the suppressBoms option. See Tools >
Codestation Client.

Set the agent to look for a boolean variable called codestation.suppress.boms. Once this has been set, the
agent will ignore the codestation.properties file.

1. Go to AnthillPro UI > Agents > Agent and select the appropriate agent from the list. You must have Adminis-
trative permissions to add an agent property. See Manage Security.

2. Select the Agent Properties tab and create a new property.

3. Give the property name, which is the same name as the property: codestation.suppress.boms.

Codestation Fallback to Offline
Use the Fallback-to-offline option to automatically switch Codestation offline if an error occurs while contacting the
AnthillPro server. With this option, Codestation will only switch offline for the duration of a given Codestation
command. Once the command completes, future commands will attempt to communicate with the server as normal.

The Fallback-to-offline option can be configured either in the codestation.properties file, as an Ant task, or on the
command-line tool. Set the value for this option as "true" or "false".

• codestation.properties file. Open the codestation.properties file (located in the user home directory). Configure
with the property codestation.fallbackToOffline.

Example properties file:

codestation.server=https://anthillserver.company.com
codestation.user=build
codestation.password=buildpass
codestation.noCheckCertificate=false

• Ant task. Configure on Ant tasks with the fallbackToOffline attribute. See Tools > Codestation Client.

• Command-line tool. Configure on the command line tool with the -fallbackToOffline option. See Tools
> Codestation Client.

Codestation Secondary Cache
If remote teams have slow connection speeds, add the Codestation Secondary Cache on top of the currently suppor-
ted local cache to improve performance. Once the secondary cache is set up on a network share (on the LAN), arti-
facts are pulled from AnthillPro once, and then shared among all the developers at the remote location. (Without the
Secondary Cache, each developer must pull his/her own copy.)

Codestation for Developers

230



For the codestation.properties file:

1. Open the codestation.properties file (located in the user home directory).

2. Configure with the property codestation.secondaryCache.dir.

Example of properties file:

codestation.server=https://anthillserver.company.com
codestation.user=build
codestation.password=buildpass
codestation.noCheckCertificate=false

For the Agent (you must have administrative permissions to the agent):

1. Go to AnthillPro UI > Agents > Agent and select the appropriate agent from the list.

2. Select the Agent Properties tab and create a new property.

3. Give the property name and value in the name=value format.

4. Name. Same name as the property (codestation.secondaryCache.dir).

5. Value. The path of the cache directory.

Codestation File-defined Dependency Config-
urations
You can use a Codestation method to set the dependencies of a Build Life from a file-defined resolve and then add it
to the client and CLI. File-defined dependencies, using an XML file, is supported for both historical resolves and
transitive dependencies. Once your file is configured, you can have Codestation pull down the dependencies.

For more, go to Tools > Developer Tools > Codestation Client.

Codestation for Developers

231



Part X. Server Management
Once the server is started (by running start_ah3server.cmd in the \bin directory), configure there are a number of
system-level network settings, the security settings, miscellaneous settings, and user views you can configure.

The installation process also created default values that enable the server and agents to communicate. However, ad-
ditional network configuration may be required depending on your existing systems, or if the values (especially for
server-agent communication) conflict with your existing networks. When changing settings, it may be necessary to
restart the server for the new configurations to take effect, as well as changing agent settings (especially with SSL).

In addition, it is possible to view the server log on the Log tab. Depending on the logging level, the server log may
be used for debugging, gathering general server information, etc.



Chapter 50. Server Settings
Before you begin changing any server settings, make sure you have full access to the System > Server menu. If you
are changing any communication settings, make sure you already have an agent installed, configured, and online --
this will make troubleshooting any problems easier if an agent has already been able to successfully connect to the
server. Server settings are broken-up into a few categories as follows:

• Network. The system-level network settings used to configure communication between the AnthillPro server and
agents. See Server Network Settings.

• Security. The system-level security settings used to configure access to the Anthill server settings for configura-
tion and artifact management. See Server Security.

• Misc. The system-level miscellaneous settings include options for repository cache, dependency conflicts, and
server logging. See Server Miscellaneous Settings and Server Logging Options.

• Views. Disable or enable the views for all AnthillPro users. See Server-wide User Views.

In addition, you can set system (formerly server) properties. See System Properties.

Server Network Settings
Configure the system-level network settings used to configure communication between the AnthillPro server and
agents.

1. Go to System > Server Settings under the Server menu and click Edit.

2. Select the Network tab and click Edit.

3. Configure settings:

• Bind to IP. During the installation process, the External IP address where the agent can be reached was set.
If no specific IP address was specified, then AnthillPro will use 0.0.0.0 and bind to all available addresses (this
is recommended).

If a specific IP was designated during agent installation, select it. Server-agent communication will then only
occur on the bound IP, and any agent with a different IP will not communicate with the server.

Restart the server if a new IP is chosen.

• Server IP. Give the IP address used to connect to the AnthillPro server for remoting (if using remote scripts)
and/or the Distributed web (if using Distributed Servers).

• External URL. Enter the URL used to access AnthillPro (e.g., http://anthillserver/). The external URL is used
for notifications and to access AnthillPro from remote sites, and may include http(s):// or any non-standard
ports.

• Agent External URL. Enter the URL agents use to access the web application to return log files and upload
reports to the server. This includes http(s):// and any non-standard ports (e.g., http://myserver/ or ht-
tp://myserver:8080/). The same external URL may be used for both agents and other external access. If Ant-
hillPro is running behind a web server or a firewall, using a different external URL for the agents will provide
greater security, etc.

• Keystore Password. Reset the keystore password.

233



• Use SSL Between Server and Agents. See Server-Agent SSL before changing this option.

Restart the server if SSL is changed.

• Enforce Mutual Authentication. See Server-Agent SSL before changing this option.

Restart the server if Mutual Authentication is changed.

4. Click Save. Click Done if not configuring other server settings.

Server Security
Set the system-level security settings used to determine access to the AnthillPro server settings for configuration and
artifact management.

1. Go to System > Server Settings under the Server menu.

2. Select the Security tab and click Edit.

3. Configure settings:

• Digest Algorithm. Choose a digest algorithm from the drop-down menu. AnthillPro uses either an SHA or
MD cryptographic hash function to protect the build and deployment artifacts. If none is chosen, no digest al-
gorithm will be used.

If you are using the Transfer Only Changed Files option for your Resolve Artifact step, a digest algorithm must
be selected. AnthillPro will use the generated file checksums for the resolve, and skip the Codestation caching on
the agent. See also Create a Deployment Job.

• Audit User Transactions. Check the box to log all user transactions and changes in the database. When en-
abled, the log is accessible by going to System > Audit. See Perform Audits.

• Allow Multiple Sessions Per User. Check the box to allow any AnthillPro user to be concurrently logged in
from multiple computers and/or browsers. If left blank, when a user logs on to AnthillPro using a different
browser or machine, the current session will automatically expire.

• Allow Use of Login Cookie. Check the box allow users to login via a cookie based on prior login with the
same computer and browser.

• Allow Auto-Complete Feature in Web Browsers. Check the box to allow web browsers to use their auto-
complete feature in forms. Auto complete is disabled where higher security is considered.

• Allow Anonymous Guest Access. See Set Up and Manage Guest Users.

• Show Error Trace in UI. Check the box to show server errors in the UI. To hide error traces in the UI, leave
this field blank.

• Secure Artifact Sets. By default, any user with access to a workflow can download/resolve the artifacts. If you
want to change this functionality, please see Securing Artifact Sets and Configuring Default Permissions if you
have not already done so.

Before you change this setting, ensure the Default Permissions are correctly setup for artifact sets. Once you
enable this setting, every existing artifact set will inherit the Default Permissions. In addition, each newly cre-
ated artifact set will also inherit the default permissions.

Server Settings

234



See also Artifact Set Security for information on securing individual artifact sets at the Life-Cycle-Model
level.

4. Click Save.

5. Click Done if not configuring other server settings. To configure other settings, see Server Settings.

Server Miscellaneous Settings
Set system-level miscellaneous settings include options for repository cache, dependencies, server logging, etc.

1. Go to System > Server Settings under the Server menu.

2. Select the Misc tab and click Edit.

3. Configure settings:

• Repository Event Cache Time. Set the length of time in minutes between the oldest and latest repository
events that AnthillPro caches. The set-time must be greater than any quiet period plus the longest time required
to obtain a revision log.

For example, if the longest quiet period for any project is set to 5 minutes and the longest time it takes to ob-
tain the necessary revision logs for any project is 3 minutes, the Repository Event Cache Time must be greater
than 8 minutes (i.e., at least 9 minutes). Otherwise, AnthillPro will not accurately detect changes when build-
ing dependent projects.

The time it takes AnthillPro to get the revision logs can vary significantly, depending on server load and the
complexity of the dependency relationships. Unless experiencing performance issues because the Repository
Event Cache Time is too long, it is advisable to use the default.

• Preserve Artifact Time Stamps. Check the box to preserve file time stamps when transferring artifacts
between the server and agents when using the resolve and deliver artifact steps.

• Include Artifact Directories and Symlinks. Select this option to include empty directories and symbolic links
(and soft links for Unix) when publishing or resolving artifacts. This allows you to publish a link, and not the
actual artifacts if desired. Symlinks can only be published or resolved on Unix agents.

Including a symlink in your working directory that points to your root directory may result in the deletion of your
root directory when AnthillPro's cleanup process executes.

To use this feature, add the link/directory as part of your include pattern. See Capture and Deliver Build Arti-
facts and Edit the Dependency Workflow.

• Include Permissions. Select this option to include permissions when publishing or resolving artifacts. Note
that permissions can only be published or resolved on Unix agents.

• Dependency Conflicts. Select either to detect all dependency conflicts even if the dependencies remain unre-
solved or to only detect resolved conflicts.

DETECT ALL allows AnthillPro to detect all dependency conflicts that are not resolved by AnthillPro, in addi-
tion to those AnthillPro resolves. For example, if using a separate tool to resolve dependencies, this option al-
lows you to view those dependencies.

Server Settings

235



DETECT RESOLVED only detects dependency conflicts that are resolved by AnthillPro.

• Cascade Properties to Dependencies. By default, AnthillPro does not cascade properties to any requests
made because of a dependency relationship. If you need AnthillPro to cascade properties from a request to a
created dependency request, check the box. This only applies to requests created from pull and push dependen-
cies. This sets the default value, and may be overridden when configuring dependencies.

• Explicit Dependency Artifact Resolve and Verify. Select here if you want AnthillPro to download and verify
dependencies in separate commands with a command for each artifact set download and each verify. The de-
fault is to not check this and do the download and verify in one command on the agent. Checking this can
cause dependency resolution to take longer.

• Default Dependency Type. Select the default dependency relationship for newly configured dependencies.
The user creating the dependency will be able to change the dependency type, but if they forget, this will be
the default setting.

• Default Quiet-period Type. Select the default project quiet period type for newly configured projects. The
user creating the project will be able to change the quiet period type, but if they forget, this will be the default
setting. Before changing the defaults, see Use Agent Filters and Quiet Periods and Workflow Triggers and
Scheduled Builds if you are unfamiliar with quiet periods and triggers. You can choose:

• Changelog.

• Repository.

• None.

• Logging Level. Check the logging level for the server. The log is available at System > Server Settings >
Log and System > Server Settings > Error. See Server Logging Options.

ALL Logs all server events. Because this option produces a
large log file, it is recommend for use only when tracing
errors.

DEBUG Used temporarily for debugging server events. Because
this option produces a large log file, it is recommend for
use only when tracing errors.

INFO Provides basic information regarding server activity. Re-
commended for day-to-day use.

WARN Logs any warnings that are thrown by the server. Recom-
mended for day-to-day use.

ERROR Logs any errors that are thrown by the server.

FATAL Logs all fatal errors that may occur.

OFF Never logs server events.

4. Click Save.

5. Click Done if not configuring other server settings. To configure other settings, see Server Settings and Server
Logging Options.

Server-wide User Views

Server Settings

236



Disable or enable the views for all AnthillPro users. By default, the Source Activity, Build Activity, and Average
Test Success graphs are enabled. You may elect to disable all graphs (on the Main, Project, and Workflow pages), or
a combination of the three. Once disabled, no AnthillPro user will be able to view the graph.

If the graphs are enabled, individual users may elect to turn them off (see Configure User Profile); however, once a
graph has been disabled at the System level, no AnthillPro user will be able to view the graph until it is enabled
here.

1. Go to System > Server Settings under the Server menu.

2. Select the Views tab and click Edit.

3. Configure settings:

• Main Dashboard Graphs. Select Yes to have the Total Source Activity, Build Activity, and Average Test
Success graphs displayed on the Main page; or No to disable them.

• Project Dashboard Graphs. Select Yes to have the Source Activity, Build Activity, and Average Test Suc-
cess graphs displayed on the Project page; or No to disable them.

• Workflow Dashboard Graphs. Select Yes to have the Source Activity, Build Activity, and Average Test
Success graphs displayed on the Workflow page; or No to disable them.

4. Click Save.

5. Click Done if not configuring other server settings. To configure other settings, see Server Settings.

Server Settings

237



Chapter 51. Backups of AnthillPro
Regular backups of AnthillPro is advisable to protect your data. While AnthillPro supports automated backups with
the Derby database (see Backups with Derby), other databases must be backed up using the backup tool that came
with the particular database (see Backups with Other Databases).

The var\db directory should never be backed up with a file system backup (it is the location of the database files) be-
cause this will almost always result in file corruption.

• Because the Agent does not store critical data (other than agent configurations), Agent upgrade is unnecessary.

Backups with Derby
AnthillPro supports scheduled backups of the Derby database through the UI, using a backup schedule. The backup
interval will vary depending on the size of your organization, number of artifacts, etc. Backup schedules may be de-
activated or changed on the Server Settings page. See Deactivate or Change Backup Schedule.

The var\db directory should never be backed up with a file system backup (it is the location of the Derby database
files) because this will almost always result in file corruption.

Backups are saved in the var\db\backup directory (e.g., C:\AnthillPro\server\var\db\backup\).
Every update will be named according to the date and time of the backup (in the format year-
month-day_hour-minute-second; i.e., similar to 2008-10-08_10-59-48).

To restore AnthillPro to a clean state from backup files, overlay the installation with the backup files. See Restore
AnthillPro to a Clean State.

• Because the Agent does not store critical data (other than agent configurations), Agent upgrade is unnecessary.

Backup Prerequisites (Derby)

• You must have read and write permissions to the System page. See Manage Security.

• Before editing a backup setting, create a special schedule or use an existing schedule. See Create a Backup Sched-
ule.

• The var\db directory should never be backed up with a file system backup (it is the location of the Derby database
files) because this will almost always result in file corruption.

Create a Backup Schedule (Derby)

1. Go to System > Schedules under the Project Support menu.

2. Click the Create Schedule button to create a new schedule.

3. For backups, creating a basic schedule with a rather long interval works well. Select the Interval Schedule op-
tion and click Set.

238



4. Configure the Schedule.

• Name. the schedule.

• Provide a description (optional).

• Set the interval in minutes. An interval of 1,440 minutes will trigger a backup once a day.

• Give the start time. Set the backup to start while system loads are low. A start time of 23:30 will trigger a
backup to start at 11:30 p.m.

Setting a start time is most useful for infrequent schedules, such as one that triggers twice a day, where the first
daily execution dictates the second.

5. Click Set.

Backups of AnthillPro

239



Select Backup Schedule (Derby)

1. Go to System > Backup Settings link under the Server menu.

2. To manually backup AnthillPro, click the Backup Now button.

3. To choose a schedule or change the number of stored backups, on the Main tab click the Edit button.

• Backup Schedule. Select an existing schedule from the drop-down menu. See Create a Backup Schedule.

• Max Backups. Enter the maximum number of backups that will be stored. Use -1 to keep all backups. If Max
Backups is set to 25, AnthillPro will save the first 25 backups. When the 26th backup is created, AnthillPro
will automatically delete the oldest backup.

If reducing the number of backups stored, AnthillPro will delete all backups in excess of the new setting. For
example, if changing backup storage from 25 to 20, the next time a backup runs AnthillPro will automatically
remove the 6 (six) oldest backups and add the new backup.

• Click Save.

4. Select the Backups tab to view stored backups that can be restored or deleted. Backups are saved in the var\db
directory (e.g., C:\AnthillPro\server\var\db\backup\). Every update will be named according to
the date and time of the backup (in the format year-month-day_hour-minute-second; i.e., similar to
2008-10-08_10-59-48).

5. Select the History tab for a list of database changes.

Backups of AnthillPro

240



Deactivate or Change Backup Schedule (Derby)
When deactivating or changing a backup schedule, make sure that the schedule (created in Create a Backup Sched-
ule) is not inadvertently deactivated or deleted. Because different AnthillPro activities may rely on a single schedule,
deleting or deactivating the actual schedule (at System > Schedules) may effect other activities.

To deactivate or change the backup schedule:

1. Go to System > Backup Settings link under the Server menu.

2. Click Edit on the Backup Setting Main tab.

3. To deactivate backups: Select None from the Backup Schedule drop-down menu to deactivate backups. When
none is selected, no further backups will occur.

4. To change to a different schedule: Select it from the drop-down menu. This may require creating a new sched-
ule (see Create a Backup Schedule). One complete, a backup will occur when the new schedule fires.

5. Click Save then Done.

Restore AnthillPro to a Clean State (Derby)
Restoring AnthillPro to a clean state requires overlaying the installation with backed-up data files. The directions
outlined below are for backups of the embedded Derby database (see Backups with Derby). If using another data-
base type, you must follow the procedures listed in the Backups with Other Databases section. Typically, restoring
AnthillPro to a backed-up version is an option of last resort, and should only be used if there is no other way to cor-
rect an issue.

Note that restoration requires shutting down the server and agent(s).

1. Shutdown the server and the agent(s).

2. Go to the AnthillPro instance.

3. In the var\db\ directory, rename the data folder. In Item 7, a copy of the backed-up data folder will be added
(renaming the existing data folder reduces the chances of corruption).

4. Go to the var\db\backup\ directory and open the appropriate backup folder. Every backup is identified in
the format year-month-date_hour-minute-second (e.g., 2008-10-08_10-59-48).

5. Open the backup you want to restore AnthillPro to, and copy the data folder located within the directory (e.g.,
the data folder is located in the var\db\backup\2008-10-08_10-59-48\ directory of a backup that was
performed on October 8, 2008 at 10:59:48 a.m.).

6. Go back to the var\db\ directory.

Backups of AnthillPro

241



7. Paste the backup's data folder into the var\db\ directory. Do not delete the old (renamed) data folder until you
have verified that the restoration was successful.

8. Restart the server and agent(s). Ensure that the restoration was successful. If there is a problem, please contact the
AnthillPro support team with details.

Backups with Other Databases
If using AnthillPro with Oracle, MySQL, or Microsoft SQL Server database, backups are not performed through the
AnthillPro UI. Each database has its own backup tool that should be used for backups (see documentation for your
particular tool). The var/db directory should never be backed up with a file system backup (it is the location of the
database files) because this will almost always result in corrupted files.

The following directories also need to be backed up using a file system backup tool:

Additional Directories to Backup (Non-derby)

File Contents

conf/ah3.keystore Server keys for secure server/agent communication.

opt/tomcat/conf/tomcat.keystore Server key for using HTTPS.

var/artifacts Artifacts published on Build Lives.

var/changelog Change logs published.

var/codestation Codestation project artifacts.

var/log All logs for requests, workflows, jobs, steps and com-
mands.

var/mavencache Required only if using the Maven integration.

var/published Published reports on Build Lives

var/reports Raw data reports used to create published reports.

• Because the Agent does not store critical data (other than agent configurations), Agent upgrade is unnecessary.

To use a backed up database, see Using a Backed Up Non-derby Database.

Using a Backed Up Non-derby Database

1. Perform a clean install of the AnthillPro server. See Installing AnthillPro.

2. If the server is running, stop the server. Go to the \bin directory and run stop_ah3server.cmd for Win-
dows; or ./ah3server stop for Linux/Unix.

3. Open the installed.properties file located in the \conf\server directory.

• The install.db.url=jdbc\: property must be changed to point to the backed up database. For ex-
ample, install.db.url=jdbc\:yourdatabasetype\://localhost\:11366/data.

• Save change.

4. Open the base.xml file located in the \conf\spring-server directory. Modify two properties to point to
the backed up database:

Backups of AnthillPro

242



• Under <!-- DataSource used for persistence -->, modify the 'url' property:

<property name="url">
<value>jdbc:yourdatabase://localhost:11366/data</value>

</property>

• Under <!-- DataSource used for identity generation so it does not create
deadlocks -->, modify the 'url' property:

<property name="url">
<value>jdbc:yourdatabase://localhost:11366/data</value>

</property>

• Depending on how the new installation was completed, the 'username' and 'password' properties may
also need to be changed in both locations:

<property name="username">
<value>anthill3</value>

</property>

<property name="password">
<value>abc{}</value>

</property>

• Save changes.

5. Copy over the directories that were backed up using the file system backup tool. See Additional Directories to
Backup (Non-derby).

6. Start the Server.

Backups of AnthillPro

243



Chapter 52. Optimizing Server
Performance
For advanced users experienced with web applications, there are a number things you can do to increase perform-
ance of the AnthillPro server. Much of what is included in this section is based on current users have successfully
employed to improve performance.

Caching and AnthillPro
To improve server performance, it is possible to set up a caching proxy (such as Squid
[http://www.squid-cache.org/]) to reduce bandwidth and improve AnthillPro's response times. This is especially
helpful in distributed development environments: the proxy can improve performance for users at off-site locations
because commonly used pages are loaded from the locally stored cache. Configure the caching proxy with Ant-
hillPro just like any other web application. However, if the AnthillPro server was set up to use SSL, see Caching and
SSL before attempting to use a caching proxy.

Caching and SSL
To improve server performance, it is possible to set up a caching proxy (such as Squid
[http://www.squid-cache.org/]) to reduce bandwidth and improve AnthillPro's response times. This is especially
helpful in distributed development environments: the proxy can improve performance for users at off-site locations
because commonly used pages are loaded from the locally stored cache. Unless the server uses SSL, configuring the
caching proxy with AnthillPro is the same as any other web application. See Caching and AnthillPro.

However, if AnthillPro was set up to use SSL (see Installing AnthillPro), Tomcat prevents web pages from being
cached. By default, Tomcat includes "pragma:no-cache" as an HTTP header whenever SSL is enabled. To remove
this header, the security-constraints section of the web.xml file (located in the \opt\tomcat\conf directory)
must be modified. See Item 3 below.

Once completed, this will enable use of the proxy, as well as allow Tomcat to use both HTTP and HTTPS connec-
tions. If communication must always use SSL, the server.xml file (located in the \opt\tomcat\conf directory)
must also be modified. There are numerous approaches to control how SSL is used-- each dependent on the desired
behavior, the tools used, the network architecture, etc. Check with the system administrator to decide how to handle
SSL.

To configure a caching proxy with SSL:

1. Shut down the AnthillPro server and agent(s).

2. Open the web.xml file, located in the \opt\tomcat\conf directory, in a text editor.

3. Remove the security-constraint section (that includes the "pragma:no-cache" HTTP header) from the web.xml
file. Typically, the header will be included under the <!-- security-constraints --> heading, and should be similar
to:

<security-constraint>
<web-resource-collection>
<web-resource-name>
Automatic SSL Forwarding

</web-resource-name>
url-pattern>/*</url-pattern>

</web-resource-collection>
<user-data-constraint>

244

http://www.squid-cache.org/
http://www.squid-cache.org/
http://www.squid-cache.org/
http://www.squid-cache.org/


<transport-guarantee>
CONFIDENTIAL

</transport-guarantee>
</user-data-constraint>

</security-constraint>

4. Save changes to the web.xml file.

5. Restart the AnthillPro server and agent(s). AnthillPro can now use the proxy, with Tomcat using both HTTP and
HTTPS connections.

If communication must always use SSL, the server.xml file (located in the \opt\tomcat\conf directory)
must be modified. For example, you can disable the HTTP connector, enable an AJP connector, and set up a HT-
TPD server that handles SSL connection. However, there are numerous approaches to control how SSL is used,
so check with the system administrator to decide how to handle SSL.

Uploading Artifacts to a Build Life
Under certain conditions the server (Codestation) may throw the following error: Server Error: HTTP Code
500: Could not acquire exclusive access to the buildlife. If you see this error when
Codestation is attempting to upload multiple artifacts to the same Build Life, the first upload most likely exceeds the
15-second default time-out. To address this issue, see Codestation, Artifact Sets, and Exclusive Locks.

Overriding Server and Agent File Storage Set-
tings
The AnthillPro server and agent allow you to override the default location for the storage of a number of things (see
Item Two below). If it is necessary to override the default locations, the startup script must be modified to pass a
system property (see Item One below). Before overriding the default location(s), keep the following in mind:

• Storage Directory. If you change a storage directory, you are responsible for moving existing files in the direct-
ory to the new storage location.

• Upgrading. A server upgrade will overwrite the startup script and the setting will need to be added again.

• Windows Service. If running the server as a Windows service, the JAVA_OPTS (see below) in the service in-
staller in the bin/service directory will need to be modified. Once modified, the service will need to be removed
and reinstalled.

• Windows Mapped Drive. If running the server on Windows and using a mapped drive as a storage location,
Windows has been known the remove the mapping almost at random due to inactivity. See Microsoft Support [ht-
tp://support.microsoft.com/kb/297684].

To override the default storage location for the AnthillPro server and/or agent, modify the startup script to pass a
system property:

1. Go to the AnthillPro bin directory and open the ah3server.cmd or ah3server file (the file name depends on what
platform the server is installed on) in a text editor.

2. Find the JAVA_OPTS definition of the property you want to modify. See the appropriate property to be overrid-

Optimizing Server Performance

245

http://support.microsoft.com/kb/297684
http://support.microsoft.com/kb/297684
http://support.microsoft.com/kb/297684


den:

• Server or Agent Properties

• Server Properties

• Agent Properties

3. Set a new system property. The property needs to be prefixed with -D and a = (equals sign) should separate the
property name from its value. For example, the default: ../myvar for anthill3.var.dir would become: -
Danthill3.var.dir=../myvar.

A relative path can be given as the value and the relative path is calculated from the server's bin directory. A ab-
solute path is also an option.

Override Server or Agent Properties
Before making any changes, see Overriding Server and Agent File Storage Settings.

• anthill3.var.dir (defaults to ../var). Not used to store files directly (see Overriding Agent Properties).

• anthill3.logs.dir (defaults to ../var/log). Storage for logging files using the default logging configuration.

• anthill3.temp.dir (defaults to ../var/temp). Storage for temporary files that created for short-term temporary use.

Override Server Properties
Before making any changes, see Overriding Server and Agent File Storage Settings.

• anthill3.artifacts.dir (defaults to ../var/artifacts). Storage for files published to Codestation.

• anthill3.codestation.dir (defaults to ../var/codestation). Storage for file in Codestation project Build Lives.

• anthill3.publish.dir (defaults to ../var/published). Storage for published files that are accessible under the Reports
tab of the Build Life.

• anthill3.reports.dir (defaults to ../var/reports). Storage for published data files that are not accessible but used by
the server.

• anthill3.mavencache.dir (defaults to ../var/mavencache). Storage for files used with the Maven dependency in-
tegration.

• anthill3.changelog.dir (defaults to ../var/changelog). Storage for data files used internally by AnthillPro for
change log processing.

Override Agent Properties
Before making any changes, see Overriding Server and Agent File Storage Settings.

• anthill3.work.dir (defaults to ../work/jobs). The base directory for agent working directories.

Optimizing Server Performance

246



Server Logging Options
AnthillPro creates two log files: ah3server.out (which contains all logging messages) and ah3server.err
(containing stack traces). Both logs are viewable through the UI at: System > Server Settings > Log/Error, or in
the server's \var\log directory.

By default, the ah3server.out log has a maximum size of 50 MB, and the ah3server.err log has a maximum size of
5 MB. For either log, when the maximum file size is reached, the log will automatically roll over. To either increase
or decrease the log size:

1. Shut down the AnthillPro server (run: stop_ah3server.cmd located in the server's \bin directory).

2. Go to the server's \conf\server directory and open the log4j.properties file in a text editor.

3. To change the main server log file size, find the file appender section and modify the following setting (usually
on line 9):

• log4j.appender.file.MaxFileSize=50MB

4. To change the main error log file size, find the error file appender section and modify the following setting
(usually on line 17):

• log4j.appender.errfile.MaxFileSize=5MB

5. Save changes when done.

6. Restart the server (run: start_ah3server.cmd or run_ah3server.cmd located in the server's \bin directory).

To change/set the logging level, see Configure Server Miscellaneous Settings.

Server Diagnostics
The Diagnostics tab (at System > Server Settings > Diagnostics) provides useful information when debugging the
system. For those with permissions to the System page (typically AnthillPro administrators), you can run reports on
the active request contexts; thread CPU usage; the system properties; and any scheduled items while troubleshooting
the system.

Optimizing Server Performance

247



Chapter 53. Create Server Proxy
If you need to access servers/repositories (such as Maven, ibiblio, Apache/Jakarta, etc.) that are on external net-
works, do so by going to the System page and creating a new proxy. To help secure the connection, set a password-
protected user name on the proxy. To get started, make sure:

• You must have AnthillPro administrative privileges to the System page. See Manage Security.

• The proxy host and port must be available.

To configure the proxy:

1. Go to System > Proxy Settings under the Server menu.

2. On the Proxy Settings page, click Create Proxy.

3. Set up Proxy:

• Proxy Name. Give the name AnthillPro will use for the proxy.

• Description. Give a description of the proxy (e.g., Maven proxy).

• Host. Provide the host for the proxy.

• Port. Give the port AnthillPro will use to communicate with the proxy.

• Username. Provide the name to be used for proxy authentication. This is the name AnthillPro will use when
connecting to the proxied server/repository (e.g., anthill3mavenproxy).

• Password. Give the password (if password protected). This is the password used to authenticate the AnthillPro
user name set above.

4. Click Save then Done.

248



Chapter 54. Clone AnthillPro Instance
Cloning an instance of your AnthillPro server will allow you to change scripts, optimize processes, improve build
performance, move the server, etc., without having to experiment on the production server. The process involves in-
stalling a clean version of AnthillPro in a new location, cloning the production database, and copying over the
cloned database to the new instance. If necessary, you can move the artifacts, logs, and reports to the new server.

If you plan on changing the database type, see Migrate Server Database.

Before you begin, make sure:

• The anthill3 distributable either anthill3-[version].zip or anthill3-[version].tar.gz for the
version of AnthillPro which is currently installed as the production instance. For example, if your production
server is Version 3.7.0_52506, you will need to install Version 3.7.0_52506 in the new instance. Otherwise, you
may not be able to copy over the database to the new instance. If you can't find the correct distributable, please
contact support [http://support.urbancode.com/].

• Your evaluation license (different from the production server). To obtain a copy of the evaluation license, login to
the AnthillPro Supportal [http://support.urbancode.com/].

• The ability to start and stop the production AnthillPro instance.

• Access to the AnthillPro production database.

Once the prerequisites are met, you can clone then move the database:

1. Install the new AnthillPro server and instruct it to connect to a new empty database created specifically for the in-
stance.

2. Modify the production server to ensure that it is configured to bind to the address: 0.0.0.0 on startup. Go to Sys-
tem > Server Settings, and set the Bind to IP setting to 0.0.0.0.

3. Shutdown the AnthillPro production server.

4. Clone the AnthillPro database. The procedure varies depending on the underlying database. Your database
vendor should have documentation on cloning.

5. Start the production AnthillPro server. If need be, reset the Bind to IP setting. This may require you to restart the
server to take effect.

6. Copy the cloned database over the top of the clean database schema which was created in Item 1.

7. Cleanup the cloned database before installing it in the new instance.

The first two statements (see below) remove the production license from the new server to prevent license con-
flicts. If you do not run these statements, starting the new server may disable your production server.

The third statement instructs the new instance to ignore all production agents, preventing accidental upgrades.

Connect to the new database using a tool such as DBVisualizer (or the console) and issue the following SQL
statements:

• DELETE FROM ANTHILL_LICENSE;

249

http://support.urbancode.com/
http://support.urbancode.com/
http://support.urbancode.com/
http://support.urbancode.com/
http://support.urbancode.com/


• DELETE FROM REPOSITORY_USERS;

• UPDATE AGENT SET ISIGNORED = 1;

8. Moving SSL certificates. If your production server is using SSL, you will need to copy over all the
*.keystore files into the new instance. Do not remove the files from the production server.

9. Start the new AnthillPro instance and enter your evaluation license. In order to use the server, you will have to
connect it to at least one agent. There are a number of options you can choose: the simplest is to install some new
agents and bind them to the new server.

Note that if you have any production agents come online (e.g., you restart an agent) while the new instance is
running and still set to bind to 0.0.0.0, that agent may bind to the new instance and not the production instance.
To prevent accidental binding and/or upgrade, you can give the AnthillPro new instance a unique IP address and
then tell its agents only to bind to that IP.

Move Artifacts, Logs, and Reports
If you need to move the artifacts, logs, reports, etc., stored on the server, you will need to copy the /var directory
from the old server to the new instance. When moving, you must ensure that you exactly copy over the directory --
otherwise AnthillPro will not be able to properly retrieve artifacts, etc. To move the artifacts, etc.:

1. Ensure the new AnthillPro instance has been installed correctly and stop the server if it is running.

2. Go to the old AnthillPro instance and copy the entire /var directory. It is important to match the file system ex-
actly!

3. Once copied, overwrite the /var directory of the new instance. This may take a while, depending on how many
artifacts are stored on the machine.

4. When done, restart the new AnthillPro instance.

Clone AnthillPro Instance

250



Chapter 55. Moving the AnthillPro
Database
Before you begin, make sure you back up your existing database. Once that is done, you can then clone the database
to the new location (it is recommended to retain the original database until you are sure the move was successful).

Before you begin, make sure you have:

• The ability to start and stop the production AnthillPro instance.

• Access to the AnthillPro server \conf directory.

• Access to the AnthillPro production database.

To move the AnthillPro database:

1. Shutdown the AnthillPro production server.

2. Clone the AnthillPro database and install the clone in the desired location. The procedure varies depending on
the underlying database. Your database vendor should have documentation on cloning.

3. Go to the AnthillPro server and open the installed.properties file located in the \conf\server dir-
ectory.

• The install.db.url=jdbc\: property must be changed to point to the new database location. For ex-
ample, install.db.url=jdbc\:yourdatabasetype\://localhost\:11366/data.

Note that the property for each database type is different and may have a different pattern. If need be, check
with your database administrator.

• Save change.

4. Open the base.xml file located in the \conf\spring-server directory. Modify two properties to point to
the new database location:

• Under <!-- DataSource used for persistence -->, modify the 'url' property:

<property name="url">
<value>jdbc:yourdatabase://localhost:11366/data</value>

</property>

• Under <!-- DataSource used for identity generation so it does not create
deadlocks -->, modify the 'url' property:

<property name="url">
<value>jdbc:yourdatabase://localhost:11366/data</value>

</property>

• Save changes.

5. Start the Server.

251



Chapter 56. Distributed Servers
Distributed Servers is a complimentary product to AnthillPro designed to reduce the reliance on WAN connections
by performing all the heavy lifting (builds, etc.) on local networks. There are three main components to Distributed
Servers:

• Distributed Web Interface. The interface mirrors the AnthillPro server, providing the same information and
functionality as the main server, for AnthillPro users.

• Codestation 2.0. Allows off-site instances of the AnthillPro Distributed Server to locally store artifacts and other
large data files. Codestation is included as part of the Distributed Web Interface installation.

• Agent Relay (optional). The new communication relay acts as a proxy for agents (which perform work on behalf
of the AnthillPro server) that are located behind a firewall or in another network location. Available under separ-
ate download.

When using Distributed Servers, the main AnthillPro server is first installed at the central location; the Distributed
Web UI is installed at the off-site locations (i.e., if the main server is installed in New York, the Distributed Web UI
could be installed in Boston, etc.); and then the Agent Relay (if being used) is installed at off-site locations. Finally,
agents are installed. See Installing Distributed Servers.

Once installed, Distributed Servers are managed from within the AnthillPro UI on the System page. See Managing
Distributed Servers.

While there are numerous ways to use Distributed Servers, there are a few recommended best practices. See Best
Practices for using Distributed Servers.

Upgrading Distributed Servers
Beginning with version 3.6.3, AnthillPro provides an upgrade path for Distributed Servers. If you are using an older
version (i.e., 3.6.2 or older), you will need to install version 3.6.3 in order to perform future upgrades.

Upgrade Distributed Web Interface

1. Before performing the upgrade, stop the Distributed Servers and backup the Distributed Servers directory.

2. Run the install script in the Distributed Servers installation package.

3. When asked for the directory, give the directory the old version is installed in.

4. The installer will ask you if you want to upgrade. Answer Y.

5. Follow the instructions for an installation.

Upgrade Agent Relay

1. Before performing the upgrade, stop the Agent Relay and backup the Agent Relay directory.

2. Run the install script in the Agent Relay installation package.

252



3. When asked for the directory, give the directory the old version is installed in.

4. The installer will ask you if you want to upgrade. Answer Y.

5. Follow the instructions for an installation.

Managing Distributed Servers
Management of Distributed Servers is performed on the System > Distributed Servers link under the Server menu.

On the Distributed Servers List page, the main AnthillPro server and any Distributed Servers are listed. The Active
column indicates what servers are active. To activate an instance of Distributed Servers, or to edit settings, select the
Edit under the Operations column. See Activate Distributed Servers and Edit Distributed Servers Settings.

Prerequisites: Managing Distributed Servers

• The AnthillPro server, Distributed Web Interface, and Agent Relay (if in use) must already be installed. See In-
stalling AnthillPro and Installing Distributed Servers.

• You must have access to the main AnthillPro server, including permissions to manage Distributed Servers.

Activate Distributed Servers
Once the Distributed Web Interface has been installed (see Installing Distributed Servers), it will appear on the Dis-
tributed Server List page (go to System > Distributed Servers to view). If you can't access the System page, that
means you do not have the appropriate permissions. Please contact your AnthillPro administration if you need to ac-
tivate a Distributed Server.

By default, only the user with System Administration role may activate a Distributed Web Interface.

To activate an instance of Distributed Servers:

1. Go to the main AnthillPro server.

2. On the System page, select the Distributed Servers link under the Server menu.

3. Select the Edit icon under the Operations menu of the Distributed Server to be activated. Inactive Distributed
Servers are indicated by a brown icon under the Active menu.

4. When the Edit dialog opens, check the Active box. If you are unable to check the box, that means you do not
have the appropriate permissions to activate the Distributed Server. Please contact your AnthillPro administrator.

5. By default, the Accessible by All box is checked. This allows all AnthillPro users to log into the distributed serv-
er, regardless of the access permissions (see Edit Distributed Server Settings).

Distributed Servers

253



6. Click Save if not setting permissions. Otherwise, see Edit Distributed Servers Settings.

Edit Distributed Servers Settings

1. Go to the main AnthillPro server.

2. On the System page, select the Distributed Servers link under the Server menu.

3. Select the edit icon under the Operations menu of the Distributed Server that permissions are being set for.

If the Distributed Server is inactive, see Activate Distributed Servers.

4. When the Edit dialog opens, assign permission to the appropriate Roles (see Distributed Servers: Best Practices
for Setting Up Users).

Note that the Accessible by All option overrides any permissions set below. See Activate Distributed Servers.

• Manage. Determine which roles are able to manage this Distributed Server instance and set security.

• View. Select the roles than can view this Distributed Server instance on the list page.

• Access. Determine which roles can log into this Distributed Server instance.

5. Click Save.

Best Practices for Using Distributed Servers
While Distributed Servers can be used in a number of ways, the following best practices will help guide you when
setting up and using AnthillPro in a distributed environment:

• Installation. There are a number of options for installation. This allows AnthillPro to fit into your organizational
structures. See Distributed Servers: Best Practices for Installation.

• Projects. Model projects to geographic location. Set up projects to build, deploy, etc., within the same LAN, or
geographic location. See Distributed Servers: Best Practices for Project Set Up.

• Source Control. To get the most out of Distributed Servers, the source should be stored within the same network
as the Distributed Web Interface. See Distributed Servers: Best Practices for Source Management.

• Users. Typically, users are restricted to perform builds, deployments, etc., from within the same LAN as the Dis-
tributed Web Interface they use. See Distributed Servers: Best Practices for Setting Up Users.

Distributed Servers: Best Practices for Installation
While there is no particular order to installing Distributed Servers, the following sequence is typically followed:

1. Install the AnthillPro main server. See Installing AnthillPro.

2. Install the Distributed Web Interface. The interface is typically installed on a different LAN than the server.
This enables administrative personnel to isolate the work performed by teams using the Distributed Web Inter-
face, and restrict the actions users perform (such as builds, deployments, etc.) to the LAN they are assigned to.

Distributed Servers

254



The interface may be installed on either a Windows or Linux/Unix machine, regardless of the OS used when in-
stalling the main server (e.g., the AnthillPro server may be installed on a Windows machine and the Distributed
Web Interface may be installed on a Linux/Unix machine and vice versa). See either Install Distributed Web In-
terface (Windows) or Install Distributed Web Interface (Linux/Unix).

3. Install the Agent Relay. The relay is typically used when agents are to be installed behind a firewall or in another
network location. If an instance of the Distributed Web Interface requires special hardware or software housed
outside of the LAN, the relay allows agents to connect to the main server using a single port. So, any agent in-
stalled anywhere in the AnthillPro system (no matter of location) will use a single port (the relay) when contact-
ing the central server. This makes it easier when dealing with firewalls and connecting between networks.

The Relay may be installed on either a Windows or Linux/Unix machine, regardless of the OS used when in-
stalling the main server and Distributed Web Interface (e.g., the AnthillPro server may be installed on a Windows
machine; the Distributed Web Interface may be installed on a Linux/Unix machine; and the Relay may be in-
stalled on a Windows machine, etc.). See either Install Agent Relay (Windows) or Install Agent Relay
(Linux/Unix).

4. Install Agents. Typically, install the Agents on the same network as the Distributed Web Interface, and configure
them to receive work only from that server. This will result in AnthillPro running builds, etc., within the same
LAN. Any number of agents may be installed along with the Distributed Web Interface, creating a "virtual" serv-
er that works "independently" from the main server. However, depending on your organizations distributed net-
work, some agents on other networks may be necessary to complete a process (e.g., to build a project that re-
quires special hardware, etc.). See Distributed Servers: Best Practices for Project Set Up.

The Agent(s) may be installed on either a Windows or Linux/Unix machine, regardless of the OS used when in-
stalling the main server; Distributed Web Interface, or Agent Relay (e.g., the AnthillPro server may be installed
on a Windows machine; the Distributed Web Interface may be installed on a Linux/Unix machine; the Relay may
be installed on a Windows machine; and the Agent may be installed on a Unix machine, etc.).

Once an agent is installed, it must be configured with the appropriate Distributed Server, which is a simple pro-
cess. See Distributed Servers and Agent Configuration.

Distributed Servers: Best Practices for Project Set Up
With Distributed Servers, AnthillPro projects are set up in the same way as before; however, to maximize the use of
Distributed Servers, there are some helpful tips to keep in mind:

• Source Code. Whenever possible, create a project that pulls source code from a repository located on the same
LAN as the Distributed Web Interface. See Distributed Servers: Best Practices for Source Management.

• Builders and other tools. As with Source Code, install all the builders, testing tools, and other software used to
build, test and deploy a project within the same LAN as the Distributed Web Interface. This will help isolate the
project within one LAN.

• Users. Restrict users to use an instance of the Distributed Web Interface installed on the LAN they are a part of.
This will ensure that users can only perform actions within their LAN, and reduce reliance on WAN connections.
See Distributed Servers: Best Practices for Setting Up Users.

• Agent Selection. When setting up a project to use agents, select agents that are installed on the same LAN as the
Distributed Web Interface, and then ensure that users that can access the agent are also on the same LAN.
However, if there is a situation where an agent outside of the local network is necessary (e.g., if special hardware
is needed) to perform the process), try decomposing the job so that as few steps as possible are run on the remote
agent. This will minimize WAN usage.

• Agent Relay. For projects that must be built on an agent located behind a firewall or on a different LAN, use the

Distributed Servers

255



Agent Relay. With the relay, only one port is used for all communication between agents and the central server.

Distributed Servers: Best Practices for Source Manage-
ment
It is recommended that the source code used for builds be stored in the same LAN as the Distributed Web Interface.
When this is done, builds will be isolated to the LAN in which the Distributed Web Interface is installed. All work
will then be performed within the same LAN, without having to open a WAN connection to the central server.

In order to accomplish this, it may be necessary to install another version of your SCM at the off-site location (i.e.,
within the same LAN as the Distributed Web Interface) that contains the appropriate source. The source stored at the
off-site location should mirror the projects that team members use when accessing the Distributed Web Interface.
For example, if a team in Boston works on Project A, set up a repository in Boston that contains Project A. When
team members call for a build, the source will be taken from the local repository and work will be performed using
LAN connections.

Dependency management is automated when using Distributed Servers, so if a dependency is required -- say a
project located in a different LAN -- AnthillPro will automatically open a WAN connection to resolve the depend-
ency as part of the build, etc. Once the dependency is satisfied, the build, etc., will take place within the LAN that
the request originated. For example, if a build of Project A, with its source in Boston, is dependent on a project with
source located in New York, AnthillPro will automatically open a WAN connection to the New York server to re-
solve the dependency. Then, the build will be performed on the Boston instance of AnthillPro.

Distributed Servers: Best Practices for Setting Up Users
Once the roles have been assigned for the Distributed Server (see Edit Distributed Servers Settings), assign users to
roles using the AnthillPro security system (see Add Users). As a best practice, restrict users to perform work within
the same LAN as the Distributed Web Interface they use.

This may be accomplished by either creating a specific role for users (see Define Roles), based on their geographic
location, or my determining permissions on the Distributed Servers list page (see Edit Distributed Servers Settings).

Distributed Servers

256



Chapter 57. Using Externally Signed
Certificate with Tomcat
If you have a third-party certificate (e.g., signed by Equifax, etc.) you would like to use, you can include it in the
AnthillPro tomcat.keystore. This will allow you to use the signed certificate without HTTPD. To use a third-party
signed key:

1. Get the CA public certificate from your vendor (this is the public portion of the key that they used for signing. It
should be a ca.crt file).

2. Generate a key which will be signed with the "ca.key" file. The output of this step is the "server.key" file which is
the private portion of your SSL key and the "server.crt" file which is the signed certificate.

3. Export the CA public key, the server private key, and signed certificate into a single PKCS12 keystore.

4. Edit the $AH3_SERVER/opt/tomcat/conf/server.xml file. Copy the generated tomcat.keystore from the last step
into the '$AH3_SERVER/opt/tomcat/conf' directory. Then edit the $AH3_SERVER/opt/tomcat/conf/server.xml
file. The XML element <Connector port="8443" ...> needs to contain the attribute keystorePass="password asso-
ciated with your exported keystore" keystoreType="PKCS12".

5. Restart the server. AnthillPro should be using your signed certificate.

257



Part XI. Agent Management
AnthillPro agents are light-weight Java processes that are installed on machines throughout your networks. Once in-
stalled on a machine, the agent allows AnthillPro to run commands on the machine, move files to and from the ma-
chine, and work with other tools installed on the machine.

In general, an agent is responsible for running builds, deploying projects, and/or driving third-party tools. When in-
stalling agents, keeping in mind what processes you want AnthillPro to perform, and where you want those pro-
cesses to take place, can be a helpful guide. Following is a quick synopsis of the most common agent-usage scenari-
os and where agents are typically installed:

• For builds. Agents are typically installed on every build machine. This allows you to maximize resources and en-
ables simultaneous builds on different agents. If you have a project that requires a specific tool or platform to
build, you can use, for example, an agent filter to specify which machine or set of machines to use.

• For deployments. Many users install an agent on the deployment target machines -- particularly when a deploy-
ment requires running commands on a specific machine. Where a remote deployment is run, an agent is often
placed on a machine that has access to the various target machines. In either case, the agent acts as a gateway for
deployments.

• For driving third-party tools. AnthillPro integrates with numerous tools and normally communicates with those
tools through its agents. AnthillPro agents are responsible for triggering automated testing, creating an issue in
your tracking tool, etc., on behalf of the server. In some instances, the agent must be installed on the same ma-
chine as the tool it is driving (where necessary, this is noted in the user documentation). Most third-party tools can
be driven remotely through web services or API calls. The agent calling those tools would simply need to have
access to those web services or APIs.

Once an installed agent has been started, the agent opens a socket connection to the server (securable by configuring
SSL for server-agent communication) based on the information you gave during installation. The agent also utilizes
AnthillPro's web services. For agents on a different network than the server, it may be necessary to punch some
holes in a firewall to establish the connection. If the number of agents needing firewall exceptions grows inconveni-
ently large, the Agent Relay can help. Once agent communication is established, the agent will be visible through
the web UI (Agents > Agent), where it will need to be configured.

If you are unfamiliar with AnthillPro Environments, it may be helpful to review that material to gain a better un-
derstanding of how AnthillPro Agents are managed and used. In short, Agents are pooled into environments. In
AnthillPro, environments denote similar, high-level purposes of machines, often corresponding to groupings like
"Shared Build Farm" or "My Department QA Lab." In turn, environments are pooled into groups usually corres-
ponding to the different applications under development that use different sets of machines. Understanding how
AnthillPro approaches environment management is necessary when configuring an agent.

Agent configuration consists of assigning an agent to at least one environment (as well as adding properties and en-
tering the load-balancing rules when appropriate). An agent not part of an environment will have few, if any, jobs
assigned to it. AnthillPro also allows you to assign an agent to multiple environments. During agent configuration,
the system administrator defines which environments are legal for an agent. For example, if an agent is assigned to
both the DEV and QA environments, the agent can perform work on behalf of projects in either environment -- this
allows you to better distribute workloads throughout the system. When performing work, AnthillPro uses the admin-
istrator configured agent filters in conjunction with load balancing to assign jobs to appropriate agents within the en-
vironment.

In addition to system-created meta-data, every AnthillPro Agent may include properties assigned by an administrat-
or. These properties are typically used to denote capabilities. Many users set a property that denotes if and where a
particular tool is installed (say Visual Studio); or, the dedicated purpose of the machine (web server or database



server). This meta-information can be used to help determine what work is performed on which agent. For example,
if a deployment to the QA lab involves both web servers and database servers with different processes run on each,
the user-defined agent properties are used to ensure that the deployment is run successfully.

For those with a large number of agents, you can use the Filter and Status fields to make searching for agents easi-
er. Once the search is complete, you can then perform an Action on the returned list by selecting the appropriate
agent(s).

About Agent Filters
Agent filters are used to select the appropriate agent(s) that will execute a job. Agent filters are scoped by environ-
ments, so they can only select an agent within the environments available to a workflow. For example, if you want a
build to run on an agent within the "DEV" environment, you would use the Any Agent Filter. When the job is per-
formed, AnthillPro will assign the build to the least busy agent in that environment. See Configure and Edit Agent
Filters.

There are three different types of agent filters in AnthillPro:

• Any Agent Filter returns all online agents in the environment. The agents returned are ordered by a combination
of their current load and throughput metric, and then the server selects the agent(s) to use based on their loads.

• Fixed Agent Filter returns a specified agent. Use of this agent filter is discouraged because the job will fail if the
agent is not available in the selected environment. However, for new users, the fixed agent filter can help with
getting started if it takes the place of a more elegant, but more time consuming and difficult to create, Scripted
Agent Filter.

• Scripted Agent Filter programmatically selects the agent(s) appropriate for a job. Usually this is used to check
variables on agents. For example, to find agents with a specific tool installed or used for a special purpose. When
executed, the filter receives a collection of agents and is responsible for trimming that list to only appropriate
agents. An example of Scripted Agent Filter usage can be seen in the Iterate a Job section.

About Agent Properties and Environment Vari-
ables
Agent properties allow the user to configure a build or other process using parameters with values dependent on the
agent on which the build (or process) is actually executed. For example, an agent property can be used to specify
that an agent's local settings be used during a build, etc. One thing to keep in mind is that agent properties are re-
solved at run time (i.e., when the build is actually run), and on the Agent on which the build is running. See Agent
Properties for more.

Implicit and User Properties
Implicit properties have a designation indicating where they come from. All environment properties as well as all
Java system properties on an agent are automatically loaded and made available as agent properties. You can add
new agent properties through the user interface on the central server. These properties are immediately usable, just
like the implicit environment and system properties.

Using Agent Properties
Consider the situation where you are configuring a build and need to use a specific version of Ant. You have a
Linux machine and a Windows machine, both with AnthillPro agents, that could end up running the build. Further,
Ant is installed in different locations on the Linux and Windows machines. You need to use an agent property to



configure the build.

Using agent properties, you can define a variable named user/ANT_HOME_1_6_5 on both agents. On the Win-
dows agent, the value of the property would be user/ANT_HOME_1_6_5 =
C:\apache\apache-ant-1.6.5. On the Linux agent, the value of the property would be user/
ANT_HOME_1_6_5 = /opt/apache/apache-ant-1.6.5.

By configuring the AnthillPro agent property as above, either agent would be able to perform the job. The job itself
would use a special syntax instruct AnthillPro to run the Ant located at property: ${user/ANT_HOME_1_6_5}.

Agent Environment Variables
Agent Environment Variables (not to be confused with AnthillPro Environment Properties) are set at the time of
agent installation, and are stored on the central server. The agent-installation reads the environment variables of the
machine the agent is being installed on and then sets the variables. Once set, AnthillPro will not check to see if any
of the environment variables have changed. If you change one of the environment variables that the agent uses, it
may cause the agent to fail. For example, if you change the env/Path variable on the machine, the agent will con-
tinue to use the original setting. In this case, you may need to modify the agent's environment variable to reflect the
changes you made in order for the agent to work. This can be done on the Agent's Environment tab by clicking the
Edit icon of the variable and making changes.

About Agent Throughput Metric
When configuring the central server to use an agent, you can assign a throughput metric. The throughput metric is an
arbitrary integer indicating the relative throughput of one agent relative to another. For example, if one agent is run-
ning on a four CPU machine and a second is running on a single CPU machine, then the throughput metric of the
first agent may be four and the throughput metric of the second agent may be one. AnthillPro considers current job
loads and throughput when delegating jobs to agents.

Administrators configuring Agents can also set an absolute maximum number of jobs a particular agent can execute.
If all agents selected by a filter are at their maximum, the next job will enter a priority queue waiting for ability.

Consider two agents. The first, "Quad" has a throughput of 9 and a max jobs setting of 6. The second, "Dual" has a
throughput of 5 and a max of 4. If eleven jobs are generated quickly, they will be assigned something like:

Job 01 Quad

Job 02 Dual

Job 03 Quad

Job 04 Quad

Job 05 Dual

Job 06 Quad

Job 07 Quad

Job 08 Dual

Job 09 Quad

Job 10 Dual: (Quad is maxed)

Job 11 Queued (Quad and Dual are maxed)

About Agent Security
User access to an agent is managed on the Security tab, as well as assigning permissions using AnthillPro's security



system. Administrators can define what roles have access to read, write, or determine security for agents. You need
administrative permissions to set agent security.



Chapter 58. Agent Configuration
To configure an agent, click on the name of that agent or the View link in any of the tables on the Agent Overview
page. Most of the information shown will be configured at installation time, but you can edit the agent any time after
installation. The Properties tab on the agent configuration screen allows you to view or set custom variables on the
agent. The custom properties can indicate where build or testing tools are installed. In the Locked Properties section,
you can review the system and environment variables (often used in agent filters).

Once configured, access to the agent can be restricted using the AnthillPro security features. Once security is set,
only users with the appropriate roles and permissions will be able to use the agent for running builds, deployments,
etc. See Setting Up Security.

See also About AnthillPro Agents.

Agent Configuration Prerequisites

• You must have administrative permissions. See Setting Up Security.

• If an AnthillPro Agent has not been installed, see Installing AnthillPro before continuing.

• Go to Agents > Agent. Once the agents are installed, ensure that they all are online.

• If the agent to be configured is offline (see Agent Settings), run start_ah3agent.cmd found in the agent's \bin
directory to start the agent.

• At least one Environment must be active in order to configure the agent. By default, each agent is available to the
Build-Farm; however, the agent does not have to participate in this environment.

Configuring an Agent

1. Go to Agents > Agent.

2. Select the View icon of agent to be configured under the Available Agents menu.

3. Most of the information on this tab was given during agent installation (See Installing AnthillPro); however, you
will need to select the environment(s) this agent is going to participate in, as well as the preferred server if using
distributed servers.

• Name. Give the Agent a descriptive name. The current name of the agent was given during the installation
process. AnthillPro will automatically update the agent if it's name is changed.

• Throughput Metric. The throughput metric provides a hint to AnthillPro's load balancer. In a busy build farm,
it may be that several machines could handle a request, but each is already running builds.

To determine which machine is best equipped to handle the additional build, the load balancer compares the
machine's throughput metric number to the number of jobs that are running on it. So an agent with a metric of
10 will likely get a third job assigned to it before an agent with a metric of 1 gets its second job.

• Maximum Number of Jobs. Agents can also be given a maximum number of jobs that they may run. If an
agent is running at full capacity, additional job requests are queued until the agent frees up.

• Preferred Server. If utilizing distributed servers, select the appropriate server. In most cases, the agent should
be connected to the preferred server via a LAN. Otherwise, select "none". See Distributed Servers and Agent

262



Configuration.

• Environments. Check the box for the environment or environments this agent is to be in. If the environment
you want to add this agent to is not shown, that means the environment has not yet been created. See Environ-
ment Management.

An agent can participate in one or more environment. Generally an agent belongs to a single environment, such
as Build-Farm or Development Test or QA. But often a single agent is used as a staging sever for several en-
vironments, and so it should participant within those environments.

4. Click Set if setting properties and/or security. Otherwise, click Set then Done.

5. Select the Properties tab and click Add Property or Add Secure Property button. Either property type may be
used, with the only difference being that a Secure Property will obfuscate the property in logs, etc. The process
for creating either property type is the same:

• Property Name. Give the name of the property to be used. This will be visible to anyone who can access this
property.

• Property Value. Give the value of the property. If using a secure property, verify the value which will be ob-
fuscated throughout the system.

Custom properties typically indicate where build or testing tools are installed.

6. Click Add then Save. Click Done twice if not setting security. Otherwise, click the Security tab.

7. Click Edit and check the appropriate Permissions and User Roles available to this agent. See Setting Up Secur-
ity.

8. Click Done twice.

Agent Configuration

263



Chapter 59. Environment Management
In AnthillPro, an environment is a partition grid of agents that is specific for different stages of a project life-cycle
(QA, PROD, etc.). Environments may also be configured to a specific technology (Java, .NET, etc.).

Workflows within AnthillPro execute on a specified environment. This allows the definition of a single deployment
workflow that can then be used to deploy the application to numerous environments.

For example, common environments are development (DEV), quality assurance (QA), and production (PROD). The
DEV environment should include the set of AnthillPro agents that are specific to development. Once the DEV envir-
onment is created, it is added to an environment group (see Using Environment Groups) and then the AnthillPro
Agents are added to the groups (see also Agent Settings).

AnthillPro has a default environment, the Build Farm, that contains all agents used in conjunction with originating
workflows. Each build will be assigned to an agent in the Build Farm unless the project is configured to build in a
specific environment. The Build Farm may also contain any other agent you choose (e.g., a deployment agent). In
AnthillPro, the build farm is an implied environment and can't be deleted. Because there are no restrictions on how
the Build-Farm is used, it may be used for deployments as well.

See also About AnthillPro Agents.

Environment Prerequisites

• You must have administrative permissions. See Setting Up Security.

• If an AnthillPro agent has not been installed, see Installing AnthillPro before continuing.

• Go to Agents > Agent. Once the agents are installed, ensure that they all are online. See Agent Settings.

Configuring an Environment
AnthillPro environments are typically modeled after the different stages of the application life-cycle (or technolo-
gies) your organization uses.

1. Go to Agents > Environment.

2. Click Create Environment.

3. Configure Environment:

• Name the environment.

• Short Name. Give the name to be used as a key in property files. For example, the "development" environ-
ment will be identified by the short name PROD in property files and on the Dashboard.

• Description. Give an optional description of the environment.

4. Click Save.

5. Set Environment Property (optional). The property set here will be used unless it is overridden by other prop-
erties. It is also possible to set a property in the environment for specific projects.

• Select the Add Property link in the Environment Properties header.

264



• Secure. To make the property secure, check the box.

• To add an additional property, select the Add Property link again.

• Click Save.

6. Select the environment's Security tab and click Edit.

7. Check the Roles and permissions for this environment. See Define Roles and Using Permissions.

8. Click Save then click Done twice.

Editing an Environment
Once created, the name, short name and/or description of an environment may be edited. Editing an environment
will only effect future usage of the environment.

1. Go to Agents > Environment.

2. Select the environment to be edited from the Environment List.

3. Click Edit on the Main tab.

4. Edit the name, short name and/or description.

5. To remove an agent from the environment, select the Remove from Environment icon under the Operations
menu. If the tool tip says Remove from Environment (disabled) the agent may not be removed from the environ-
ment in this manner. To remove an agent from an environment, see Agent Settings.

6. Click Save then Done.

7. Click Done.

Removing an Environment
To remove an environment, ensure that it is not in use by any project. If the environment is in use, it must first be re-
moved from every environment group that uses it. Removing an environment that is currently in use may require
you to reconfigure other environment groups, projects, and workflows that depend on the environment.

1. Go to Agents > Environment.

2. If the Delete icon (under the Operations menu) of the environment to be removed is red, click the icon.

If the Delete icon is gray, the environment must be removed from all environment groups it has been added to
(see Using Environment Groups). Once the environment has been removed and the Delete icon is red, click the
icon.

3. Click OK in the dialog box.

4. Click Done.

Environment Management

265



Modifying Agent Settings (Environments)
Once an agent has been configured (see Agent Configuration), you can access/edit its settings from the Environ-
ments page. Using the Operations icons, you can either change settings or remove an agent from any environment
(in addition to performing the same actions on the Agents page).

1. Go to Agents > Environment, and select an environment from the list.

2. On the Environment page, find the agent you wish to modify/remove from this environment (you may have to
scroll down).

3. To remove the agent from this environment, select the Remove from Environment icon under the Operations
menu.

Note that removing an agent from an environment will effect all projects that participate within that environment.
For example, if multiple projects are configured to use a particular agent (e.g., one on a Linux machine) and that
agent is removed, the workflows will fail unless another suitable agent is configured within the environment.

4. To edit an agent's settings, select the agent's Name or the View icon under the Operations menu.

Note that changing agent settings will effect all projects that use the agent. For example, if multiple projects are
configured to use a particular agent (e.g., one on a Linux machine) based on a property, and the property is modi-
fied, the workflows will fail unless another suitable agent is configured.

• To change agent settings, see Agent Configuration.

5. After modifying agent settings, click Done to return to the Environment page.

Environment Security
User access to an environment is managed on the Security tab. Administrators can define what roles have access to
read, write, or determine security for environments. You need administrative permissions to set environment secur-
ity.

Using Environment Groups
Environment groups determine the set of environments that project workflows may be executed on. Each environ-
ment group must contain at least one environment, and is set at the Project level. For example, common environ-
ments are development (DEV), quality assurance (QA), and production (PROD). Once the environments for the
stages of the life-cycle are created (see Environment Management), they are grouped together. AnthillPro will then
use the environment group when determining which agent to send work to.

AnthillPro's Default Environment Group (the name may be different depending on what version of AnthillPro you
use) contains all the default environments. Environments may be added to or deleted from this group.

Generally, different applications are likely to use different sets of machines for their build, deploy, test activity, and
will likely use different environment groups. When you create a deployment workflow for instance, it is best prac-
tice to present the user with the environments that are actually relevant to the project (maybe 5 or 10) rather than all
the ones in the system (potentially hundreds). Environment groups help a project administrator by restricting what
other users can see. Environment groups may be formed per project, per team or per department depending on where
hardware is shared. An environment may exist in multiple groups which would allow a shared build cluster to be in
environment groups for projects that do not share test hardware.

Consider the following: An organization that develops software using two different technologies. The first is J2EE.
Our hypothetical organization has a development, a QA, and a production J2EE environment, with each containing

Environment Management

266



application servers configured to the corporate standard. The second technology used is C++, with development,
QA, and production environments for all C++ projects. The C++ environments use different physical servers than
the corresponding J2EE environments. In this scenario, J2EE projects and C++ projects are configured into two en-
vironment groups: one called 'J2EE Env Group', and the other called 'C++ Env Group'. The 'J2EE Env Group' con-
tains the J2EE development, QA, and production environment groups, and the 'C++ Env Group' contains the C++
environment groups. With these environment groups, the organization derailed any confusion about what set of serv-
ers a J2EE or C++ project should be deployed to.

See also About AnthillPro Agents.

Environment Groups Prerequisites

• You must have administrative permissions. See Setting Up Security.

• If an AnthillPro agent has not been installed, see Installing AnthillPro before continuing.

• Go to Agents > Agent. Once the agents are installed, ensure that they all are online. See Agent Settings.

• The appropriate Environments must be created. See Environment Management.

Configuring an Environment Group

1. Go to Agents > Environment Group.

2. Click the Create Environment Group button.

3. Configure environment group:

• Name the environment group.

• Description. Give an optional description of the environment.

• Click Save.

4. Click the Add an Environment button, select an environment from the drop-down menu. See Environment
Management.

5. Click Add Environment and then Save.

6. Repeat Items 2 through 5 for every environment to be added to the group.

7. Select the environment group's Security tab and click Edit.

8. Check the Roles and permissions for this environment group. See Define Roles and Using Permissions.

9. Click Save then click Done twice.

Editing an Environment Group
Once created, the name of, description of, and/or environments within an environment group may be edited. Editing
an environment group will only effect future usage of the environment groups.

1. Go to Agents > Environment Group.

Environment Management

267



2. Select the environment group to be edited from the Environment Group List.

3. Click Edit on the Main tab.

4. Edit the name and/or description.

5. To remove an environment from the group, select the Remove from Group icon under the Operations menu.

6. Click OK in the dialog box.

7. To edit security, see Configuring an Environment, Items 6 through 8.

8. Click Done twice.

Removing an Environment Group
To remove an environment group, ensure that it is not in use by any project. If the environment group is in use, it
must first be removed from any projects using it (listed under the Used in Projects menu). Removing an environ-
ment group that is currently in use may require you to reconfigure other environment groups, projects, and work-
flows that depend on the environment group.

1. Go to Agents > Environment Group.

2. If the Delete icon (under the Operations menu) of the environment group to be removed is red, click the icon.

If the Delete icon is gray, the environment group must be removed from any project using it. Once the environ-
ment has been removed and the Delete icon is red, click the icon.

3. Click OK in the dialog box.

4. Click Done.

Environment Management

268



Chapter 60. Configure and Edit Agent
Filters
Agent filters are used to select one or more agent(s) at run time and to monitor the quiet period (see Using Agent
Filters and Quiet Periods). Agent filters are scoped by environments, and select from the agents allocated to the en-
vironment. When an agent filter is asked to select one or more agent(s), it selects from the agents available in the en-
vironment within which the filter is executing.

Only scripted agent filters are capable of targeting multiple agents. See Agent Settings and Agent Filter (Selection)
Scripts.

AnthillPro uses three types of agent filters:

• Any Agent Filter. Selects the first available agent. Returns all online agents in the environment, ordered by a
combination of current load and throughput metric.

• Fixed Agent Filter. Always selects a specific agent within the environment. If the requested agent is locked or
can't receive more work, the request will be queued until the agent frees up.

• Scripted Agent Filter. Selects agent based on an agent filter script. See Agent Filter (Selection) Scripts.

See also About AnthillPro Agents.

Using Agent Filters and Quiet Periods
Quiet periods are configured on the project (Administration page), and play an integral part in ensuring that the
source code AnthillPro obtains from the SCM contains a consistent set of changes. The quiet period is a measure of
time that must pass without anyone committing changes to the source. When the specified time has passed without
commits, AnthillPro triggers a build.

Any agent-filter type may be used to monitor the quiet period. Unless a fixed agent filter is used, the selection will
be from within the requested environment for the build.

1. Go to Administration > Edit Project.

2. Select the Quiet Period tab on the Project Main page.

• Quite Period. Input the desired quite period in seconds. For CI, it is usually best practice to set the quiet peri-
od at 60 seconds. This usually allows a developer enough time to make all their related commits. If you find
that you are seeing broken builds because related commits are not within the same build, try lengthening the
quiet period.

• Quiet Period Type. Select the quiet period type.

• Changelog Triggered Quiet Period. Periodically polls the repository for changes since the last build; typic-
ally used with a scheduled trigger. The changelog quiet period should be used for any project that has at
least one workflow using a scheduled trigger. For example, if your project has one workflow that uses a re-
pository trigger (that builds every time a commit is made) and one workflow that uses a scheduled trigger
for a nightly build, use the changelog quiet period. This will ensure that AnthillPro builds when you want it
to. See also Workflow Triggers and Scheduled Builds.

• Repository Triggered Quite Period. Listens to notifications sent from the repository and builds the project

269



based on the changes found in the commit; used with repo triggers. This should only be used if every work-
flow in your project uses a repository trigger and you want AnthillPro to build every time a commit is made.
See also Workflow Triggers and Scheduled Builds.

• No Quiet Period. Will not enforce a quiet period. While there are some instances where a quiet period is not
necessary, it is best practice to always use a quiet period. If you elect not to use a quiet period, it is possible
to end up with a substantial number of unnecessary builds -- many of which will be broken.

• Should Cleanup. If 'Yes' is selected, a cleanup will be performed prior to checking out source for a build. If
'No' is selected, no cleanup will be performed prior to source check out. With some SCM systems, it is possible
to only check out changed source for a build, making the process quicker.

3. Select agent filter type and click Set.

• Any Agent. Selects available agent.

• Fixed Agent. Always selects a specific agent.

• Scripted Agent. Selects available agent based upon agent filter script. See Agent Filter (Selection) Scripts.

4. Click Save.

5. To edit an existing Agent Filter and/or Quiet Period, repeat Items One through Four.

Agent Security
User access to an agent is managed on the Security tab. Administrators can define what roles have access to read,
write, or determine security for agents. You need administrative permissions to set agent security. See Setting Up
Security.

1. Go to the Agents > Agent page and select the appropriate agent from the list.

2. Select the agent's Security tab and click Edit.

3. Check the Roles and permissions for this agent. See Define Roles and Using Permissions.

4. Click Save then Done.

Configure and Edit Agent Filters

270



Chapter 61. Agent Settings
Agents allow the distribution of tasks for performance and multi-platform support. To make better use of available
resources and allow for higher build throughput, simultaneous builds can be performed on different agents. Agents
can participate in multiple environments. This allows the use of an agent that communicates with a network deploy-
ment manager capable of deploying applications to multiple environments.

AnthillPro agents are light-weight Java processes that run on the agent machine. The agent contacts the server
whenever the agent process is started. Since the agent communicates with the central server, it need not be on the
same network as the central server. However, the agent must be able to open a socket connection to the server. By
default, all communication between the central server and the agent is not secure. Communication may be secured
using SSL. See Configure Server-Agent SSL.

• Configured Agents. Ready to use when online.

• Available Agents. Installed but are not yet configured, and cannot be used until configured. See Agent Configur-
ation.

• Ignored Agents. Temporarily removed from service. To use an ignored agent, select it, click Edit, check settings,
click Set then Done.

To view the Agents overview screen, go to the Agents page, and select the Agent from the menu. Agents can be or-
ganized in either ascending or descending order by selecting the Menu headings. For example, select the Name
heading to list all agents in either alphabetical or reverse alphabetical order; or select the Host heading to similarly
organize all agents by host name.

For organizations with a large number of agents, the agent list page provides navigated pagination. Choose to dis-
play 5, 25, 50, or 100 agents per page, and use the navigation tool bar (directly above the Operations menu) to view
other pages.

The agent properties (go to Agents > Agent > select an agent > Property type) are also stored on the server, mak-
ing searching for a property easier. When the agent starts up, it passes all of its properties to the server, which then
stores it. If a property is added or changed, or the agent is upgraded, etc., the properties will be automatically up-
dated on the server.

If an agent is not responding, it may be restarted in one of two ways:

• Restart All Agents will restart every online agent, even agents currently performing work. Once restart has com-
pleted, any work being performed by the agents will resume.

• Test Communication ensures that the server and agent are communicating properly. Once selected from the Op-
erations menu, a dialog box will pop up describing the action. Please note that checking the communication may
take a minute or longer, depending on agent load and locks.

• Restart, under the Operations menu, will restart an individual agent. If, at the time of restart, the agent was cur-
rently performing work, the work will resume once restart has completed.

See also About AnthillPro Agents.

Using Agent Proxies
Use an agent proxy for any agents where the direct agent-sever communication is prohibited. Once enabled, the

271



proxy allows the agent to send logs, reports and other artifacts to the server. To use an agent proxy for server-agent
communication, modify the following propertied in the agent.property file:

• locked/agent.http.proxy.host=

• locked/agent.http.proxy.port=

Creating an Agent Proxy
Note that only previously installed agents can be set up to use a proxy. If the agent has not already been installed,
see Installing AnthillPro.

1. Shut down the agent.

2. With a text editor, open the agent.properties file located in the \conf\agent directory (for example,
C:\%AGENT_HOME%\conf\agent\agent.properties).

3. Modify the locked/agent.http.proxy.host= property. Give the host name for the agent proxy. For ex-
ample, locked/agent.http.proxy.host=www.proxy.yourcompany.com.

4. Modify the locked/agent.http.proxy.port= property. Give the port on which the agent proxy is to
communicate. It should look something like locked/agent.http.proxy.port=8900.

5. Save changes and restart agent.

Agent Settings

272



Chapter 62. Dynamically Set Agent's
Environment Variables
Agent Environment Variables (not to be confused with AnthillPro Environment Properties) are set at the time of
agent installation, and are stored on the central server. The agent-installation reads the environment variables of the
machine the agent is being installed on and then sets the variables. Once set, AnthillPro does not check for changes
in the machine's environment variables. However, you can configure the agent to dynamically set the environment
variables every time the agent restarts.

When dynamically setting the variables, the agent needs two files in the /bin directory: one named
env.properties and one named either setenv.bat (for Windows) or setenv.sh (for UNIX-like systems).
The setenv shell script is responsible for dynamically generating the environment variables in a format that Ant-
hillPro can use, as well as writing out the env.properties file. The env.properties file includes all the
variables in a pattern similar to DYNAMIC_ENV_VAR=value.

When the agent is restarted, it will first look for the setenv script. If the script is found, it will be executed to up-
date (or write out) the env.properties file. Then, the new variables in the env.properties file will be de-
livered to the AnthillPro server.

Prerequisites

• Access the agent's /bin directory.

• Ability to write a shell script that can generate the environment variables in the proper format.

Add Files to Agent's /bin Directory

1. Stop the agent.

2. Create setenv file. In a text editor, create the setenv.bat file if the agent is running on Windows or
setenv.sh file if the agent is running on a UNIX-like system. Save it to the agent's /bin directory.

You will need to have the shell script read the environment variables and then writes them out to the
env.properties file. The script should be similar to the example below:

echo DYNAMIC_ENV_VAR=value > env.properites

Note that the env.properties cannot reference other environment variables such as PATH=%PATH%;...,
etc.

AnthillPro requires the variables to be set using this exact pattern.

3. Restart the agent. Upon restart, the variables will be updated. To update the environment variables in the future,
simply restart the agent again.

273



Part XII. Tool Integrations
AnthillPro ships with a number of built-in integrations with many of the tools used throughout the project's lifecycle.
The integrations, which are implemented at the job and step levels, enable AnthillPro to distribute process execution
and invoke third-party tools. For example, AnthillPro can perform work such as checking out code, running a build,
or firing up a virtual machine.

In addition to driving other tools, AnthillPro acts as an information hub: the integrations enable AnthillPro to ex-
change information with other tools, and then perform actions based on the information. For example, when Ant-
hillPro gets the changelog from an SCM, that information is stored in the AnthillPro data warehouse and then made
available through the UI. For integrations with issue trackers, AnthillPro can add a comment to an existing issue, or
even create an issue in the other tool. And for testing integrations, AnthillPro collects test results and can then
provide you with metrics for both a single build and for many builds over time.

AnthillPro currently supports integrations with the following tool types:

Build Source-code Analysis Testing

Issue Tracking Test Coverage Virtualization

Source Code Management

If AnthillPro does not currently integrate with a tool you use, you can either contact us at
<sales@urbancode.com> or you try writing your own integration using the Plugins feature.



Chapter 63. SCM Tools
The SCM integrations enable AnthillPro to check out code, access the changelog, and label the repository (where
supported). To do this, AnthillPro is first configured with your repository type at the System level, and then each
workflow is associated with the source to be build.

The SCM integrations are implemented as job steps for a build job. Once you have completed source configuration,
you can use the Job Wizard to automatically add steps to your build job -- this ensures that AnthillPro will consist-
ently checkout and build the correct code.

Each SCM integration typically performs the following for any repository:

• Checkout. This step enables you to define which version of code to check out from the SCM. For example, you
can configure this step to checkout the latest source code; or perform a checkout based on a branch, label, date,
etc. (depending on what your SCM supports).

• Get-changelog. The retrieved changelog is usually based on the changes made since the previous build. This step
enables AnthillPro to extract data from the SCM and then store it in the AnthillPro data warehouse. Since Ant-
hillPro stores the changelogs, it can parse the data, allowing you to override the default behavior. For example,
you can select a starting point for the changelog based on criteria such as the latest production build.

• Label. AnthillPro can also apply a label to the source code used in the build (e.g., snapshot, baseline). This
unique identifier for a build can be used to recreate a build if necessary.

• SCM-specific commands. For most repository types, AnthillPro can also perform tasks only supported by that
particular SCM.

AccuRev
The first step in using an AccuRev repository with AnthillPro is to create a repository configuration by following the
Repositories link on the System page. The configuration will allow basic information regarding AccuRev to be re-
used by several projects. Once configured, the repository will be listed on the Repositories main page.

In AnthillPro, there are two ways to use an AccuRev repository:

• Pooling streams. AnthillPro creates and manages a pool of AccuRev streams to be used for the project, and does
not require creation of AccuRev workspaces. Any streams included in the pool are automatically locked and
should not be edited (locked streams may be viewed at System > Lockable Resources for those with Adminis-
trative permissions). This option is simpler than the alternative, and requires less configuration and management.
See AccuRev Source Configuration with Pooling Streams.

• Non-pooling streams. AnthillPro does not create and maintain a pool of children streams for the project. Man-
agement of streams and workspaces must be done through AccuRev. See AccuRev Source Configuration with
Non-pooling Streams.

Once the main repository has been identified, your projects can then use the AccuRev repository during workflow
source configuration. During project creation, the workflow is associated with a specific AccuRev repository.

AnthillPro also provides an integration with AccuWork. The integration enables AnthillPro to utilize AccuWork's
bridge between third-party issue trackers (such as Bugzilla and JIRA) and AccuRev to publish the generated issue
report to AnthillPro Build Life. Once the report is published to AnthillPro, it is then be made available on the Build
Life Issues tab. See AccuWork.

275



AccuRev Prerequisites

• AccuRev must already be installed. See AccuRev documentation [http://www.accurev.com/documentation.html].

• You must have administrative permissions. See Manage Security.

• The AccuRev command path must be available to complete the configuration.

• AccuRev Login. For versions 4.5.1 and above, the new AccuRev authentication scheme now requires a manual lo-
gin (usually daily) in order for an AnthillPro agent to access the repository. To override this behavior, you can
automate login by using the -n option with the AccuRev login command. This will cache the credentials so that
AccuRev no longer asks for a password for that account. If you want to automate login for the AnthillPro
agent(s):

• Login to AccuRev with the account that the AnthillPro agent uses to access the repository.

• Run the AccuRev login command with the -n flag: accurev login -n.

• If you have AnthillPro agents that login to AccuRev as different users, you will need to repeat this operation for
those agents as well.

Set Up AccuRev Repository

1. Go to System > Repositories from the Project Support menu.

2. On the Repositories page, click the Create New button.

3. Select AccuRev from the drop-down menu and click Set.

4. Configure repository:

• Name the repository. This is the name AnthillPro will use to identify this repository. This name does not cor-
respond to the actual repository, and is simply an identifying label used by the AnthillPro system.

• Description. Give an optional description.

• Command Path. Provide the location of the AccuRev executable if it is not in the system path.

• Pool Streams. If not using an AnthillPro pool of streams, do not check the box and proceed to Item 5 (see Ac-
cuRev Source Configuration with Non-pooling Streams).

To use an AnthillPro-created pool of AccuRev streams across projects using this repository, check the box (see
AccuRev Source Configuration with Pooling Streams).

• Max Number in Pool. Give the maximum number of AccuRev streams AnthillPro will create in the pool (if
using the Pool Streams option).

5. Click Set.

6. Select the Security tab and click the Edit button. Determine permissions, click Save, and then click Done.

7. Click Done.

AccuRev Source Configuration with Pooling Streams

SCM Tools

276

http://www.accurev.com/documentation.html
http://www.accurev.com/documentation.html


Once the main AccuRev repository is identified (see Set Up AccuRev Repository), configure the specific repository
a workflow uses. During project creation, the originating workflow is first associated with the AccuRev repository.
Once this is done, the Source Configuration page will automatically pop up. (However, if you choose not to config-
ure the project source at initial creation, you can return to it by selecting the Configure, or Edit Source, link under
the Source Config menu on the Workflow Main page.)

1. Once AccuRev is set up with AnthillPro (see Set Up AccuRev Repository), create a project.

2. Go to the originating workflow that was created as part of the project creation process. If you have not created an
originating workflow yet, see Create a New Workflow before continuing. Configure the source on the workflow:

• Repository. Select the appropriate AccuRev repository from the drop-down menu. All AccuRev repositories
configured with AnthillPro (see Set Up AccuRev Repository) will appear in the drop-down menu. Make sure
to select the correct repository for this project.

• Working Directory Script. Select the Working Directory Script from the drop-down menu. The working dir-
ectory is the location where the agent is going to run its commands. For example, if the working directory is
C:\projects\Project_A\ every command AnthillPro issues will be from that specific directory.

If no Working Directory Script is configured in the job, the script selected here will be used. See Working Dir-
ectory Scripts.

• Directory Offset. Give the relative directory path from the working directory where this stream should be
pulled. Leave blank for the root of the working directory.

This option is especially useful when using multiple Sources (see Add Additional Source with Pooling
Streams).

• Stream Name. Provide the name of the parent stream to back the pooled stream with. This field accepts small
scripts for including properties, etc.

• Users to exclude from changelog. To exclude any users from the changelog, input them here. Each excluded
user must be input on a separate line. Note that user names are case sensitive.

• File paths to exclude from changelog. If you need to exclude file paths from the changelog, list them here,
each on a separate line. Each path must be proceeded by + or - to include/exclude it from the changelog.

The following wild cards may be used:

• for any subdirectory: **/ -

• for any number of any characters except \ and /: * -

• for any single character / including \ and / Changelog file paths containing drive letter or any prefixes: ? -

Make sure to include the * at the beginning of the path.

Example exclude paths: -**/abc/**/* Except for: +**/abc/*.html. This will exclude everything un-
der the abc directory except for the HTML files in it.

3. Click Save.

Add Additional AccuRev Source with Pooling Streams

If adding additional sources to the workflow is necessary, set up is similar to that of the initial source configuration
(see AccuRev Source Configuration with Pooling Streams). When adding additional sources, it is advisable (though
not required) to create a new directory offset for each additional source.

SCM Tools

277



Once an additional source has been added to the workflow, it will appear on the workflow Main tab under the
Source Config menu, and may be edited or deleted using the icons under the Actions menu.

To add an additional source to an existing workflow:

1. Go to Administration and select the workflow that an additional source is to be added to.

2. On the workflow Main page, select the Add Additional Source link under the Source Config menu.

3. Configure source:

• Directory Offset. Give the relative directory path from the working directory where this stream should be
pulled. Leave blank for the root of the working directory. For example, enter Test to create the offset named
"Test".

This option is especially useful when using multiple Sources. Each source may use a different offset, making it
easier to pull different streams down at the same time.

• Stream Name. Provide the name of the parent stream to back the pooled stream with. This field accepts small
scripts for including properties, etc.

4. Click Save.

AccuRev Source Configuration with Non-pooling
Streams
Once the main AccuRev repository is identified (see Set Up AccuRev Repository), configure the specific repository
a workflow uses. During project creation, the originating workflow is first associated with the AccuRev repository.
Once this is done, the Source Configuration page will automatically pop up. (However, if you choose not to config-
ure the project source at initial creation, you can return to it by selecting the Configure, or Edit Source, link under
the Source Config menu on the Workflow Main page.)

1. Once AccuRev is set up with AnthillPro (see Set Up AccuRev Repository), create a project.

2. Go to the originating workflow that was created as part of the project creation process. If you have not created an
originating workflow yet, see Create a New Workflow before continuing. Configure the source on the workflow:

• Repository. Select the appropriate AccuRev repository from the drop-down menu. All AccuRev repositories
configured with AnthillPro (see Set Up AccuRev Repository) will appear in the drop-down menu. Make sure
to select the correct repository for this project.

• Working Directory Script. Select the Working Directory Script from the drop-down menu. The working dir-
ectory is the location where the agent is going to run its commands. For example, if the working directory is
C:\projects\Project_A\ every command AnthillPro issues will be from that specific directory.

If no Working Directory Script is configured in the job, the script selected here will be used. See Working Dir-
ectory Scripts.

• Directory Offset. Give the relative directory path from the working directory where this stream should be
pulled. Leave blank for the root of the working directory. For example, enter Test to create the offset named
"Test".

This option is especially useful when using multiple sources. Each source may use a different offset, making it
easier to pull different streams down at the same time. See Add Additional Source with Non-pooling Streams.

SCM Tools

278



• Stream Name. Provide the name of the stream to build from. This field accepts small scripts for including
properties, etc. This may not be a pass-through stream. Only use a child stream off of the development stream
where the changes are committed.

• Workspace Name. Give the name of the AccuRev workspace to use. This field accepts small scripts for in-
cluding properties, etc. Do not include the _user-name at the end of the workspace name, this will be determ-
ined by the credentials in the AccuRev Repository Configuration.

• History Stream Name. Give the name of the AccuRev parent stream from which the history of changes will
be collected. Use the Stream Name option only if this stream is different from the stream name listed above
(see Stream Name). This option is helpful when labeling a history stream, to ensure that the proper snapshot is
used for labeling. See Label On History Stream below.

• Disable Time Locking. Check the box to override the automatic time lock that AnthillPro sets on the backing
stream. Note that without the time lock, there is no guarantee that a build can be reproduced.

• Label On History Stream. Check the box create a snapshot of the parent/history stream. If a child stream as
used as the backing stream, any labelling of that child stream may produce inconsistent results. The only way
to ensure proper labeling results is to create a snapshot on the parent/history stream.

When using this option, make sure that the AccuRev parent stream is defined in the History Stream Name. See
History Stream Name above.

• Users to exclude from changelog. To exclude any users from the changelog, input them here. Each excluded
user must be input on a separate line. Note that user names are case sensitive.

• File paths to exclude from changelog. If you need to exclude file paths from the changelog, list them here,
each on a separate line. Each path must be proceeded by + or - to include/exclude it from the changelog.

The following wild cards may be used:

• for any subdirectory: **/ -

• for any number of any characters except \ and /: * -

• for any single character / including \ and / Changelog file paths containing drive letter or any prefixes: ? -

Make sure to include the * at the beginning of the path.

Example exclude paths: -**/abc/**/* Except for: +**/abc/*.html. This will exclude everything un-
der the abc directory except for the HTML files in it.

3. Click Save.

Add Additional AccuRev Source with Non-pooling Streams

If adding additional sources to the workflow is necessary, set up is similar to that of the initial source configuration
(see AccuRev Source Configuration with Non-pooling Streams). When adding additional sources, it is advisable
(though not required) to create a new directory offset for each additional source.

Once an additional source has been added to the workflow, it will appear on the workflow Main tab under the
Source Config menu, and may be edited or deleted using the icons under the Actions menu.

To add an additional source to an existing workflow:

1. Go to Administration and select the workflow that an additional source is to be added to.

SCM Tools

279



2. On the workflow Main page, select the Add Additional Source link under the Source Config menu.

3. Go to the originating workflow that was created as part of the project creation process. If you have not created an
originating workflow yet, see Create a New Workflow before continuing. Configure the source on the workflow:

• Directory Offset. Give the relative directory path from the working directory where this stream should be
pulled. Leave blank for the root of the working directory. For example, enter Test to create the offset named
"Test".

This option is especially useful when using multiple sources. Each source may use a different offset, making it
easier to pull different streams down at the same time.

• Stream Name. Provide the name of the stream to build from. This field accepts small scripts for including
properties, etc. This may not be a pass-through stream. Only use a child stream off of the development stream
where the changes are committed.

• Workspace Name. Give the name of the AccuRev workspace to use. This field accepts small scripts for in-
cluding properties, etc. Do not include the _user-name at the end of the workspace name, this will be determ-
ined by the credentials in the AccuRev Repository Configuration.

• History Stream Name. Give the name of the AccuRev parent stream from which the history of changes will
be collected. Use the Stream Name option only if this stream is different from the stream name listed above
(see Stream Name). This option is helpful when labeling a history stream, to ensure that the proper snapshot is
used for labeling. See Label On History Stream below.

• Disable Time Locking. Check the box to override the automatic time lock that AnthillPro sets on the backing
stream. Note that without the time lock, there is no guarantee that a build can be reproduced.

• Label On History Stream. Check the box create a snapshot of the parent/history stream. If a child stream as
used as the backing stream, any labelling of that child stream may produce inconsistent results. The only way
to ensure proper labeling results is to create a snapshot on the parent/history stream.

When using this option, make sure that the AccuRev parent stream is defined in the History Stream Name. See
History Stream Name above.

4. Click Save.

ClearCase
AnthillPro provides a number of integrations with ClearCase, each based on different ClearCase usage scenarios.
Which integration you use will depend on your particular needs and your organizational/team ClearCase set up.
Generally, the integrations fall into one of two categories:

• ClearCase Base. AnthillPro supports both dynamic and snapshot views. In addition to the legacy integrations
(ClearCase Base Dynamic View and ClearCase Base Snapshot View), AnthillPro also offers newer plugin integ-
rations (see ClearCase Base Dynamic [Plugin] and ClearCase Base Snapshot [Plugin]). While the plugin versions
are similar to the legacy integrations, they do offer additional functionality. Notably, the ability to add multiple
source configurations to an originating (build) workflow and additional configuration options.

• ClearCase UCM. If you use UCM, you can configure the ClearCase UCM Dynamic View and/or the ClearCase
UCM Snapshot View integration. It's worth noting that a single originating (build) workflow can have only one
view-type set up during source configuration. If you use multiple views within the same project, you will need to
configure a separate workflow for each view. UCM versions of ClearCase are not supported by the plugin integra-
tions.

SCM Tools

280



In addition, AnthillPro also provides an integration with ClearQuest that can be used in conjunction with any of the
ClearCase integrations.

ClearCase Base Dynamic (Plugin)
The first step in using a ClearCase Base Dynamic Plugin repository with AnthillPro is to configure it by following
the Repositories link on the System page. The configuration will allow basic information regarding ClearCase to be
reused by several project workflows. Once configured, the repository will be listed on the Repositories main page.

Once the main repository has been identified, your projects can then use the ClearCase repository. During project
creation, associate the workflow with a specific ClearCase repository and specify the Load Rules. See ClearCase
Base Dynamic (Plugin) Source Configuration.

See also ClearQuest.

ClearCase Base Dynamic (Plugin) Prerequisites

• ClearCase must already be installed. See ClearCase documentation [ht-
tp://www-01.ibm.com/support/docview.wss?rs=984&uid=swg21239261].

• You must have administrative permissions. See Manage Security.

• The cleartool executable and the Load Rules must be available to complete the configuration.

• If you are not familiar with ClearCase, it is recommended to consult with your ClearCase administrator while
configuring the integration.

Set Up ClearCase Base Dynamic (Plugin) Repository

The integration is available as an AnthillPro plugin for version 3.7 and above. For some AnthillPro 3.7 versions, you
will need to download the integration (called ClearCase Base Dynamic Plugin) from Supportal [ht-
tps://support.urbancode.com/tasks/login/LoginTasks/login] and then upload it to your server. Once uploaded, ensure
the Plugin is active. From there, configure the repository. The information you give here is system wide, and will be
used by your ClearCase projects. If you have multiple ClearCase repositories, you will need to configure the integra-
tion for each one ... ensuring each has a unique name.

1. If not already done so, ensure the ClearCase Base Dynamic Plugin has been uploaded to the server. See Using
AnthillPro Plugins.

2. Go to System > Repositories from the Project Support menu.

3. On the Repositories page, click the Create New button.

4. Select ClearCase Base Dynamic from the drop-down menu and click Set.

5. Configure repository:

• Name the repository. This is the name AnthillPro will use to identify this repository. This name does not cor-
respond to the actual repository, and is simply an identifying label used by the AnthillPro system. If you are
configuring multiple repositories, ensure the name you give is unique. This name will be used as part of source
configuration.

• Description. Give an optional description.

• Command Path. Provide the location of the ClearCase executable if it is not in the system path on the ma-

SCM Tools

281

http://www-01.ibm.com/support/docview.wss?rs=984&uid=swg21239261
http://www-01.ibm.com/support/docview.wss?rs=984&uid=swg21239261
http://www-01.ibm.com/support/docview.wss?rs=984&uid=swg21239261
https://support.urbancode.com/tasks/login/LoginTasks/login
https://support.urbancode.com/tasks/login/LoginTasks/login
https://support.urbancode.com/tasks/login/LoginTasks/login


chine that will run the build.

6. Click Set then Done.

ClearCase Base Dynamic (Plugin) Source Configuration

Once the main ClearCase repository is identified (see Set Up ClearCase Base Dynamic (Plugin) Repository), config-
ure the specific repository a workflow uses. During project creation, the originating workflow is first associated with
the ClearCase repository. Once this is done, the Source Configuration page will automatically pop up. (However, if
you choose not to configure the project source at initial creation, you can return to it by selecting the Configure, or
Edit Source, link under the Source Config menu on the Workflow Main page.)

In addition, the plugin integration allows you to add multiple source configurations to the originating (build) work-
flow. It's worth noting that this feature also allows you to configure multiple views (Snapshot and Dynamic) for a
build workflow as well as different project locations. How, when and why you use this feature depends on your indi-
vidual processes. Generally, you will only need one source configuration per build workflow.

1. Once ClearCase is set up with AnthillPro (see Set Up ClearCase Base Dynamic (Plugin) Repository), create a
project.

2. When prompted, select the integration you configured in the previous section. If necessary, you can exit the con-
figuration process and return to it later.

3. Go to the originating workflow that was created as part of the project creation process (if you chose not to contin-
ue in the previous step) and configure the source on the workflow:

• Working Directory Script. Select the Working Directory to be used for this source configuration. The work-
ing directory is where the checked-out source will be placed in and where the build occurs. Under most cir-
cumstances, the Default Project Working Directory should suffice. For more Working Directory Scripts, see
the Dev Kit (via the tools link in the upper right-hand corner of the UI).

• Name. Give a name for this source configuration. The name given here is used to identify the configuration.
This can come in handy if you plan on adding multiple configurations to the same workflow.

• View Storage Directory. Give the location of the view on the local machine. This is the volume that views are
mounted on (e.g.,. M:\ ) On Windows this will usually be of the form //host/share/view_storage.

• Load Rules. Give the Load Rules configured in the View Configuration Specifications to tell AnthillPro what
projects, branches, and labels to use. AnthillPro requires the specs to be in the form
<vob-name><path>:<branch>:<label>. Each Load Rule must be input on a separate line.

The Load Rules also support AnthillPro properties. E.g., ${property:vob.tag}:/:int_dc_10.02.

If the View Load Rules are configured with the value BaseModeTest:Anthill-Example::, then they
are input as vob-name BaseModeTest (following the form
<vob-name><path>:<branch>:<label>) in the Load Rules field. Note that the Source Config deals
with the vob-name BaseModeTest and that the project is located in the Anthill-Example directory
under our VOB.

To build from the branch named test, the Load Rule line would be BaseMode-
Test:Anthill-Example:test: (all builds performed on the test branch).

To perform a build on label 1.0.3 the Load Rule would be
BaseModeTest:Anthill-Example::1.0.3.

SCM Tools

282



To build from label 1.0.3 of branch test the Load Rule would be BaseMode-
Test:Anthill-Example:test:1.0.3.

Example Load Rule Configuration

For the load rules below, AnthillPro needs to know the path and optional branch and label the configspec is check-
ing out in order to find the changes and then apply any needed labels. For example, the branch and label would
come from lines starting with element, paths come from the lines starting with load, etc.

element* CHECKEDOUT

element/elementName/... .../elementNameApplication/LATEST
element/elementName/... .../iter2_elementNameApplication/LATEST -mkbranch elementNameApplication
element/mmisPortal/... /main/LATEST -mkbranch iter2_portal
element* .../element_customization/LATEST
element* .../main/LATEST
load /elementNamePortal
load /elementNameCommon
load /elementNameFramework

For example, if you look at the first line in the load rules:

element/elementName/... .../elementNameApplication/LATEST

means that for path /elementName you need to get the code from the elementNameApplication branch
(LATEST is the default label so you can ignore it when configuring AnthillPro). This translates in the following
load rule (using the pattern VOB:/path_in_vob:branch:label):

elementName:/:elementNameApplication:

In the same manner, the second line translates into

elementName:/:iter2_elementNameApplication:

However, the -mkbranch in the line is ignored when configuring AnthillPro since -mkbranch says it's not
about getting code but committing code back.

For the line element* .../element_customization/LATEST means that for every load rule we need to
get the code from the element_customization branch. This requires one load rule be configured in Ant-
hillPro per load rule in ClearCase. Thus, you would have something like:

elementName:/:element_customization:

elementNameCommon:/:element_customization:

elementNameFramework:/:element_customization:

Note that element* .../main/LATEST also needs to be addressed. In the example, you will need to get code
from the main branch. This should look something like:

elementNamePortal:/::

elementNameCommon:/::

elementNameFramework:/::

SCM Tools

283



• VOB Tag Root. Only use this setting if you are running cross-platform builds including Windows and UNIX
and using multi-component vobs. When specifying the vob tag root do not use any starting or trailing slashes.
The value is usually vobs.

• Create global labels. Check the box to create global labels. You can also specify in which VOBs those labels
will be created (see below). If you do not specify any VOBs (below), the Load Rules will be used to determine
all the VOBs that are used, and labels will be created in those VOBs.

• Create label in VOBs. Please list the names of the VOBs (one per line) where the global labels should be cre-
ated. If you are not creating global labels (option above is not selected) you can list all the VOBs used in your
config spec or leave the field empty and the Load Rules will be used to determine where the labels need to be
created.

• Delete view-private files during cleanup. Select here if you would like AnthillPro to detect and delete any
view-private files in the local view. This is highly recommended unless your build script handles cleanup of
the view. Only the paths specified in the Load Rules above will be checked for view-private files.

• No-checkout. Check the box to pass the -nco flag to the quietperiod lshistory call. Typically, this option is
used when you do not want non-checkouts in the history to trigger builds.

• Lock Objects. Please list the names of the objects (one per line) that you would like locked/unlocked during
the build process. Use the following format: type:Name@VOB (or refer to the lock/unlock ClearCase com-
mand reference for more details). Be advised that if you leave this field empty, there is nothing to prevent an
update of the dynamic view while there is a build in progress.

• Users to exclude from changelog. To exclude any users from the changelog, input them here. Each excluded
user must be input on a separate line. Note that user names are case sensitive.

• File Filters. If you need to exclude file paths from the changelog, list them here, each on a separate line. Each
path must be proceeded by + or - to include/exclude it from the changelog.

The following wild cards may be used:

• for any subdirectory: **/ -

• for any number of any characters except \ and /: * -

• for any single character / including \ and / Changelog file paths containing drive letter or any prefixes: ? -

Make sure to include the * at the beginning of the path.

Example exclude paths: -**/abc/**/* Except for: +**/abc/*.html. This will exclude everything un-
der the abc directory except for the HTML files in it.

• Repository. Select the repository configured in the previous section. If more than one configuration is present,
ensure the correct repository configuration is chosen.

4. Click Save.

ClearCase Base Dynamic View
The first step in using a ClearCase Base Dynamic View repository with AnthillPro is to configure it by following
the Repositories link on the System page. The configuration will allow basic information regarding ClearCase to be
reused by several project workflows. Once configured, the repository will be listed on the Repositories main page.

Once the main repository has been identified, your projects can then use the ClearCase repository. During project

SCM Tools

284



creation, associate the workflow with a specific ClearCase repository and determine the mode, view, and specify the
Load Rules. See ClearCase Base Dynamic View Source Configuration.

See also ClearQuest.

ClearCase Base Dynamic View Prerequisites

• ClearCase must already be installed. See ClearCase documentation [ht-
tp://www-01.ibm.com/support/docview.wss?rs=984&uid=swg21239261].

• You must have administrative permissions. See Manage Security.

• The cleartool executable and the Load Rules must be available to complete the configuration.

• If you are not familiar with ClearCase, it is recommended to consult with your ClearCase administrator while
configuring the integration.

Set Up ClearCase Base Dynamic View Repository

1. Go to System > Repositories from the Project Support menu.

2. On the Repositories page, click the Create New button.

3. Select ClearCase from the drop-down menu and click Set.

4. Configure repository:

• Name the repository. This is the name AnthillPro will use to identify this repository. This name does not cor-
respond to the actual repository, and is simply an identifying label used by the AnthillPro system.

• Description. Give an optional description.

• Command Path. Provide the location of the ClearCase executable if it is not in the system path.

5. Click Set.

6. Select the Security tab and click the Edit button. Determine permissions, click Save, and then click Done.

7. Click Done.

ClearCase Base Dynamic View Source Configuration

Once the main ClearCase repository is identified (see Set Up ClearCase Base Dynamic View Repository), configure
the specific repository a workflow uses. During project creation, the originating workflow is first associated with the
ClearCase repository. Once this is done, the Source Configuration page will automatically pop up. (However, if you
choose not to configure the project source at initial creation, you can return to it by selecting the Configure, or Edit
Source, link under the Source Config menu on the Workflow Main page.)

1. Once ClearCase is set up with AnthillPro (see Set Up ClearCase Base Dynamic View Repository), create a
project.

2. Select the Mode and View Type once ClearCase has been selected as the repository type.

SCM Tools

285

http://www-01.ibm.com/support/docview.wss?rs=984&uid=swg21239261
http://www-01.ibm.com/support/docview.wss?rs=984&uid=swg21239261
http://www-01.ibm.com/support/docview.wss?rs=984&uid=swg21239261


• Mode. Choose Base.

• View Type. Choose Use Dynamic.

• Click Select.

3. Go to the originating workflow that was created as part of the project creation process. If you have not created an
originating workflow yet, see Create a New Workflow before continuing. Configure the source on the workflow:

• View Storage Directory. Give the location of the view on the local machine. On Windows this will be of the
form //host/share/view_storage.

• Load Rules. Give the Load Rules configured in the View Configuration Specifications to tell AnthillPro what
projects, branches, and labels to use. AnthillPro requires the specs to be in the form
<vob-name><path>:<branch>:<label>. Each Load Rule must be input on a separate line.

The Load Rules also support AnthillPro properties. E.g., ${property:vob.tag}:/:int_dc_10.02.

If the View Load Rules are configured with the value BaseModeTest:Anthill-Example::, then they
are input as vob-name BaseModeTest (following the form
<vob-name><path>:<branch>:<label>) in the Load Rules field. Note that the Source Config deals
with the vob-name BaseModeTest and that the project is located in the Anthill-Example directory
under our VOB.

To build from the branch named test, the Load Rule line would be BaseMode-
Test:Anthill-Example:test: (all builds performed on the test branch).

To perform a build on label 1.0.3 the Load Rule would be
BaseModeTest:Anthill-Example::1.0.3.

To build from label 1.0.3 of branch test the Load Rule would be BaseMode-
Test:Anthill-Example:test:1.0.3.

Example Load Rule Configuration

For the load rules below, AnthillPro needs to know the path and optional branch and label the configspec is check-
ing out in order to find the changes and then apply any needed labels. For example, the branch and label would
come from lines starting with element, paths come from the lines starting with load, etc.

element* CHECKEDOUT

element/elementName/... .../elementNameApplication/LATEST
element/elementName/... .../iter2_elementNameApplication/LATEST -mkbranch elementNameApplication
element/mmisPortal/... /main/LATEST -mkbranch iter2_portal
element* .../element_customization/LATEST
element* .../main/LATEST
load /elementNamePortal
load /elementNameCommon
load /elementNameFramework

For example, if you look at the first line in the load rules:

element/elementName/... .../elementNameApplication/LATEST

means that for path /elementName you need to get the code from the elementNameApplication branch

SCM Tools

286



LATEST is the default label so you can ignore it when configuring AnthillPro). This translates in the following
load rule (using the pattern VOB:/path_in_vob:branch:label):

elementName:/:elementNameApplication:

In the same manner, the second line translates into

elementName:/:iter2_elementNameApplication:

However, the -mkbranch in the line is ignored when configuring AnthillPro since -mkbranch says it's not
about getting code but committing code back.

For the line element* .../element_customization/LATEST means that for every load rule we need to
get the code from the element_customization branch. This requires one load rule be configured in Ant-
hillPro per load rule in ClearCase. Thus, you would have something like:

elementName:/:element_customization:

elementNameCommon:/:element_customization:

elementNameFramework:/:element_customization:

Note that element* .../main/LATEST also needs to be addressed. In the example, you will need to get code
from the main branch. This should look something like:

elementNamePortal:/::

elementNameCommon:/::

elementNameFramework:/::

• Create global labels. Check the box to create global labels. You can also specify in which VOBs those labels
(see below). If you do not specify any VOBs (below), the Load Rules will be used to determine all the VOBs
that are used, and labels will be created in those VOBs.

• Create labels in VOBs. Please list the names of the VOBs (one per line) where the global labels should be
created. If you are not creating global labels (option above is not selected) you can list all the VOBs used in
your config spec or leave the field empty and the Load Rules will be used to determine where the labels need
to be created.

• Delete view-private files during cleanup. Select here if you would like AnthillPro to detect and delete any
view-private files in the local view. This is highly recommended unless your build script handles cleanup of
the view. Only the paths specified in the Load Rules above will be checked for view-private files.

• Lock Objects. Please list the names of the objects (one per line) that you would like locked/unlocked during
the build process. Use the following format: type:Name@VOB (or refer to the lock/unlock ClearCase com-
mand reference for more details). Be advised that if you leave this field empty, there is nothing to prevent an
update of the dynamic view while there is a build in progress.

• Users to exclude from changelog. To exclude any users from the changelog, input them here. Each excluded
user must be input on a separate line. Note that user names are case sensitive.

• File paths to exclude from changelog. If you need to exclude file paths from the changelog, list them here,
each on a separate line. Each path must be proceeded by + or - to include/exclude it from the changelog.

The following wild cards may be used:

SCM Tools

287



• for any subdirectory: **/ -

• for any number of any characters except \ and /: * -

• for any single character / including \ and / Changelog file paths containing drive letter or any prefixes: ? -

Make sure to include the * at the beginning of the path.

Example exclude paths: -**/abc/**/* Except for: +**/abc/*.html. This will exclude everything un-
der the abc directory except for the HTML files in it.

4. Click Save.

ClearCase Base Snapshot (Plugin)
The first step in using a ClearCase Base Snapshot Plugin repository with AnthillPro is to configure it by following
the Repositories link on the System page. The configuration will allow basic information regarding ClearCase to be
reused by several project workflows. Once configured, the repository will be listed on the Repositories main page.

Once the main repository has been identified, your projects can then use the ClearCase repository. During project
creation, associate the workflow with a specific ClearCase repository and specify the ChangeLog Rules. See Clear-
Case Base Snapshot (Plugin) Source Configuration.

During source configuration, you must select a View Strategy. The strategy will determine how AnthillPro interacts
with existing views and determine when AnthillPro should create a new view. Select a strategy that either (a.) cre-
ates a new view with every build; (b.) create a new view if and only if a view does not exist; or (c.) does not create a
new view and uses an existing view. Only one view may be configured on an individual workflow; however, if a
project has multiple workflows, a separate View Strategy may be used for each workflow.

See also ClearQuest.

ClearCase Base Snapshot (Plugin) Prerequisites

• ClearCase must already be installed. See ClearCase documentation [ht-
tp://www-01.ibm.com/support/docview.wss?rs=984&uid=swg21239261].

• You must have administrative permissions. See Manage Security.

• The cleartool executable and the ChangeLog Rules must be available to complete the configuration.

• If you are not familiar with ClearCase, it is recommended to consult with your ClearCase administrator while
configuring the integration.

Set Up ClearCase Base Snapshot (Plugin) Repository

The integration is available as an AnthillPro plugin for version 3.7 and above. For some AnthillPro 3.7 versions, you
will need to download the integration (called ClearCase Base Snapshot Plugin) from Supportal [ht-
tps://support.urbancode.com/tasks/login/LoginTasks/login] and then upload it to your server. Once uploaded, ensure
the Plugin is active. From there, configure the repository. The information you give here is system wide, and will be
used by your ClearCase projects. If you have multiple ClearCase repositories, you will need to configure the integra-
tion for each one ... ensuring each has a unique name.

SCM Tools

288

http://www-01.ibm.com/support/docview.wss?rs=984&uid=swg21239261
http://www-01.ibm.com/support/docview.wss?rs=984&uid=swg21239261
http://www-01.ibm.com/support/docview.wss?rs=984&uid=swg21239261
https://support.urbancode.com/tasks/login/LoginTasks/login
https://support.urbancode.com/tasks/login/LoginTasks/login
https://support.urbancode.com/tasks/login/LoginTasks/login


1. If not already done so, ensure the ClearCase Base Snapshot Plugin has been uploaded to the server. See Using
AnthillPro Plugins.

2. Go to System > Repositories from the Project Support menu.

3. On the Repositories page, click the Create New button.

4. Select ClearCase Base Snapshot from the drop-down menu and click Set.

5. Configure repository:

• Name the repository. This is the name AnthillPro will use to identify this repository. This name does not cor-
respond to the actual repository, and is simply an identifying label used by the AnthillPro system. If you are
configuring multiple repositories, ensure the name you give is unique. This name will be used as part of source
configuration.

• Description. Give an optional description.

• Command Path. Provide the location of the ClearCase executable if it is not in the system path on the ma-
chine that will run the build.

6. Click Set then Done.

ClearCase Base Snapshot (Plugin) Source Configuration

Once the main ClearCase repository is identified (see Set Up ClearCase Base Snapshot (Plugin) Repository), config-
ure the specific repository a workflow uses. During project creation, the originating workflow is first associated with
the ClearCase repository. Once this is done, the Source Configuration page will automatically pop up. (However, if
you choose not to configure the project source at initial creation, you can return to it by selecting the Configure, or
Edit Source, link under the Source Config menu on the Workflow Main page.)

During configuration, you will need to ensure that the appropriate fields are configured for the view strategy you se-
lect. Any fields identified as "required for all views" or "optional for all views" are used regardless of the view
strategy you use. Any filed that is view-specific is identified as such.

In addition, the plugin integration allows you to add multiple source configurations to the originating (build) work-
flow. It's worth noting that this feature also allows you to configure multiple views (Snapshot and Dynamic) for a
build workflow as well as different project locations. How, when and why you use this feature depends on your indi-
vidual processes. Generally, you will only need one source configuration per build workflow.

1. Once ClearCase is set up with AnthillPro (see Set Up ClearCase Base Snapshot (Plugin) Repository), create a
project.

2. When prompted, select the integration you configured in the previous section. If necessary, you can exit the con-
figuration process and return to it later.

3. Go to the originating workflow that was created as part of the project creation process (if you chose not to contin-
ue in the previous step) and configure the source on the workflow:

• Name (required for all views). Give a name for this source configuration. The name given here is used to
identify the configuration. This can come in handy if you plan on adding multiple configurations to the same
workflow.

• ChangeLog Rules (required for all views). Give the ChangeLog Rules configured in the View Configuration
Specifications to tell AnthillPro what projects, branches, and labels to use. AnthillPro requires the specs to be
in the form <vob-name><path>:<branch>:<label>. Each Rule must be input on a separate line.

SCM Tools

289



The Rules also support AnthillPro properties. E.g., ${property:vob.tag}:/:int_dc_10.02.

If the Rules are configured with the value BaseModeTest:Anthill-Example::, then they are input as
vob-name BaseModeTest (following the form <vob-name><path>:<branch>:<label>) in the
Rules field. Note that the Source Config deals with the vob-name BaseModeTest and that the project is
located in the Anthill-Example directory under our VOB.

To build from the branch named test, the Rule would be BaseModeTest:Anthill-Example:test: (all
builds performed on the test branch).

To perform a build on label 1.0.3 the Rule would be BaseModeTest:Anthill-Example::1.0.3.

To build from label 1.0.3 of the branch named test, the Rule would be BaseMode-
Test:Anthill-Example:test:1.0.3.

Example ChangeLog Rule Configuration

For the Rules below, AnthillPro needs to know the path and optional branch and label the configspec is checking
out in order to find the changes and then apply any needed labels. For example, the branch and label would come
from lines starting with element, paths come from the lines starting with load, etc.

element* CHECKEDOUT

element/elementName/... .../elementNameApplication/LATEST
element/elementName/... .../iter2_elementNameApplication/LATEST -mkbranch elementNameApplication
element/mmisPortal/... /main/LATEST -mkbranch iter2_portal
element* .../element_customization/LATEST
element* .../main/LATEST
load /elementNamePortal
load /elementNameCommon
load /elementNameFramework

For example, if you look at the first line in the Rules:

element/elementName/... .../elementNameApplication/LATEST

means that for path /elementName you need to get the code from the elementNameApplication branch
(LATEST is the default label so you can ignore it when configuring AnthillPro). This translates in the following
Rule (using the pattern VOB:/path_in_vob:branch:label):

elementName:/:elementNameApplication:

In the same manner, the second line translates into

elementName:/:iter2_elementNameApplication:

However, the -mkbranch in the line is ignored when configuring AnthillPro since -mkbranch says it's not
about getting code but committing code back.

For the line element* .../element_customization/LATEST means that for every Rule we need to get
the code from the element_customization branch. This requires one Rule be configured in AnthillPro per
Rule in ClearCase. Thus, you would have something like:

elementName:/:element_customization:

SCM Tools

290



elementNameCommon:/:element_customization:

elementNameFramework:/:element_customization:

Note that element* .../main/LATEST also needs to be addressed. In the example, you will need to get code
from the main branch. This should look something like:

elementNamePortal:/::

elementNameCommon:/::

elementNameFramework:/::

• VOB Tag Root (optional for all views). Only use this setting if you are running cross-platform builds includ-
ing Windows and UNIX and using multi-component vobs. When specifying the vob tag root do not use any
starting or trailing slashes. The value is usually vobs.

• Create global labels (optional for all views). Check the box to create global labels. You can also specify in
which VOBs those labels will be created (see below). If you do not specify any VOBs (below), the Load Rules
will be used to determine all the VOBs that are used, and the labels will be created in those VOBs.

• Create labels in VOBs (optional for all views). Please list the names of the VOBs (one per line) where the
global labels should be created. If you are not creating global labels (option above is not selected) you can list
all the VOBs used in your config spec or leave the field empty, and the Load Rules will be used to determine
where the labels need to be created.

• Delete view-private files during cleanup (optional for Already Exists and Doesn't Exist views). Select
here if you would like AnthillPro to detect and delete any view-private files in the local view. This is highly re-
commended unless your build script handles cleanup of the view. Only the paths specified in the Rules above
will be checked for view-private files.

• Host name (optional for Everytime and Doesn't Exist views). Provides the value for the -host parameter
to be used in the mkview command. Use this filed only if the view and storage are in different locations.

• Global storage path [gpath] (optional for Everytime and Doesn't Exist views). Provides the value for the
-gpath parameter to be used in the mkview command. Use this filed only if the view and storage are in dif-
ferent locations.

• Host storage path [hpath] (optional for Everytime and Doesn't Exist views). Provides the value for the -
hpath parameter to be used in the mkview command. Use this filed only if the view and storage are in dif-
ferent locations.

• View Strategy. Select a view strategy. Which fields you configure depends on the view you select:

• Everytime. Create a new view every time we build. If this option is chosen, AnthillPro will check for an ex-
isting snapshot view and remove it before creating a new view with every build. This option will ensure that
the view always represents the state of the current build.

• Doesn't Exist. Create a new view only if one does not exist already. AnthillPro will check for an existing
snapshot view. If one is found, a new view will not be created. If no existing view is found, AnthillPro will
create a new one. This option allows you to use an existing view; however, that view may not represent the
state of the latest build.

• Already Exists. The view already exists and will be used every time. AnthillPro will not create a new view
and use the existing view. This option will always use the view that previously exists. If no view exists, one

SCM Tools

291



must be created prior to using this option.

• View Location (required for all views). If strategy is Already Exists, the location of the view on the local ma-
chine. Otherwise, The location of the view storage directory on the ClearCase server where the views are
stored. For Windows operating systems this should always be a UNC path of the form /
/host/share/view_location.

• View Name (required for all views). Give the name to use for the view when creating and deleting. Ensure
that the name given here is unique. Note the agent that will be running the job also needs to have a unique view
name. To accomplish this, scripts can be used. For example, using the following script will ensure the name is
unique (you can copy the script into the text box as is):

${bsh:ProjectLookup.getCurrent().getName()}_view_${bsh:AgentHelper.getCurr
ent().getName()}

• Config Spec (optional for Everytime and Doesn't Exist views). Provide the config spec to be used for the
new view. Please replace any labels used in the config spec with a token.

For example: /main/LATEST should become /main/${LATEST} and /main/test/1.0.3 should be-
come /main/test/${1.0.3}.

Place a time token after any element rules that do not load from a particular label: element * /
main/LATEST should become element * /main/LATEST $[time.token] and element * /
main/test/LATEST should become element * /main/test/LATEST $[time.token].

Do not assign the element * /main/test/1.0.3 a time token.

• Check New Config Spec (optional for Everytime and Doesn't Exist views). Select here if you want to com-
pare the newly set configspec against the user-specified configspec. This option allows you to determine suc-
cess based on the new configspec set on the view rather than the outcome of the setcs command.

• Label to check out from (optional for Everytime and Doesn't Exist views). Give the label to check out
source from (if any). Leave blank if not checking out via a label.

• Tmode (optional for Everytime and Doesn't Exist views). Select the correct text mode to use -- the standard
ClearCase options are available. See About text modes for view [ht-
tp://publib.boulder.ibm.com/infocenter/cchelp/v7r0m0/index.jsp?topic=/com.ibm.rational.clearcase.hlp.doc/cc
_main/about_view_text_mode.htm] at the IBM Software information center for more.

• Use VOB Time (optional for Everytime and Doesn't Exist views). Check to box if you want to use the time
stamp from when the file was checked in. If you leave this blank, the time the file was checked out will be
used.

• Use Tags (optional for all views). Select here if you want your view to be globally created. Having this option
checked can cause problems with creating and dropping snapshots if you wish to have the same snapshot on
multiple agents.

• No-checkout (optional for all views). Check the box to pass the -nco flag to the quietperiod lshistory call.
Typically, this option is used when you do not want non-checkouts in the history to trigger builds.

• Users to exclude from changelog (optional for all views). To exclude any users from the changelog, input
them here. Each excluded user must be input on a separate line. Note that user names are case sensitive.

• File Filters (optional for all views). If you need to exclude file paths from the changelog, list them here, each
on a separate line. Each path must be proceeded by + or - to include/exclude it from the changelog.

The following wild cards may be used:

SCM Tools

292

http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m0/index.jsp?topic=/com.ibm.rational.clearcase.hlp.doc/cc_main/about_view_text_mode.htm
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m0/index.jsp?topic=/com.ibm.rational.clearcase.hlp.doc/cc_main/about_view_text_mode.htm
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m0/index.jsp?topic=/com.ibm.rational.clearcase.hlp.doc/cc_main/about_view_text_mode.htm
http://publib.boulder.ibm.com/infocenter/cchelp/v7r0m0/index.jsp?topic=/com.ibm.rational.clearcase.hlp.doc/cc_main/about_view_text_mode.htm


• for any subdirectory: **/ -

• for any number of any characters except \ and /: * -

• for any single character / including \ and / Changelog file paths containing drive letter or any prefixes: ? -

Make sure to include the * at the beginning of the path.

Example exclude paths: -**/abc/**/* Except for: +**/abc/*.html. This will exclude everything un-
der the abc directory except for the HTML files in it.

• Repository (required for all views). Select the repository configured in the previous section. If more than one
configuration is present, ensure the correct repository configuration is chosen.

4. Click Save.

ClearCase Base Snapshot View
The first step in using a ClearCase Base Snapshot View repository with AnthillPro is to configure it by following
the Repositories link on the System page. The configuration will allow basic information regarding ClearCase to be
reused by several project workflows. Once configured, the repository will be listed on the Repositories main page.

Once the main repository has been identified, your projects can then use the ClearCase repository. During project
creation, associate the workflow with a specific ClearCase repository and determine the mode, view, and specify the
Load Rules. See ClearCase Base Snapshot View Source Configuration.

During source configuration, you must select a View Strategy. The strategy will determine how AnthillPro interacts
with existing views and determine when AnthillPro should create a new view. Select a strategy that either (a.) cre-
ates a new view with every build; (b.) create a new view if and only if a view does not exist; or (c.) does not create a
new view and uses an existing view. Only one view may be configured on an individual workflow; however, if a
project has multiple workflows, a separate View Strategy may be used for each workflow. See View Strategy.

See also ClearQuest.

ClearCase Base Snapshot View Prerequisites

• ClearCase must already be installed. See ClearCase documentation [ht-
tp://www-01.ibm.com/support/docview.wss?rs=984&uid=swg21239261].

• You must have administrative permissions. See Manage Security.

• The cleartool executable and the Load Rules must be available to complete the configuration.

• If you are not familiar with ClearCase, it is recommended to consult with your ClearCase administrator while
configuring the integration.

Set Up ClearCase Base Snapshot View Repository

1. Go to System > Repositories from the Project Support menu.

2. On the Repositories page, click the Create New button.

SCM Tools

293

http://www-01.ibm.com/support/docview.wss?rs=984&uid=swg21239261
http://www-01.ibm.com/support/docview.wss?rs=984&uid=swg21239261
http://www-01.ibm.com/support/docview.wss?rs=984&uid=swg21239261


3. Select ClearCase from the drop-down menu and click Set.

4. Configure repository:

• Name the repository. This is the name AnthillPro will use to identify this repository. This name does not cor-
respond to the actual repository, and is simply an identifying label used by the AnthillPro system.

• Description. Give an optional description.

• Command Path. Provide the location of the ClearCase executable if it is not in the system path.

5. Click Set.

6. Select the Security tab and click the Edit button. Determine permissions, click Save, and then click Done.

7. Click Done.

ClearCase Base Snapshot View Source Configuration

Once the main ClearCase repository is identified (see Set Up ClearCase Base Snapshot View Repository), configure
the specific repository a workflow uses. During project creation, the originating workflow is first associated with the
ClearCase repository. Once this is done, the Source Configuration page will automatically pop up. (However, if you
choose not to configure the project source at initial creation, you can return to it by selecting the Configure, or Edit
Source, link under the Source Config menu on the Workflow Main page.)

1. Once ClearCase is set up with AnthillPro (see Set Up ClearCase Base Snapshot View Repository), create a
project.

2. Select the Mode and View Type once ClearCase has been selected as the repository type.

• Mode. Choose Base.

• View Type. Choose Snapshot.

• Click Select.

3. Go to the originating workflow that was created as part of the project creation process. If you have not created an
originating workflow yet, see Create a New Workflow before continuing. Configure the source on the workflow:

• Load Rules. Give the Load Rules configured in the View Configuration Specifications to tell AnthillPro what
projects, branches, and labels to use. AnthillPro requires the specs to be in the form
<vob-name><path>:<branch>:<label>. Each Load Rule must be input on a separate line.

The Load Rules also support AnthillPro properties. E.g., ${property:vob.tag}:/:int_dc_10.02.

If the View Load Rules are configured with the value BaseModeTest:Anthill-Example::, then they
are input as vob-name BaseModeTest (following the form
<vob-name><path>:<branch>:<label>) in the Load Rules field. Note that the Source Config deals
with the vob-name BaseModeTest and that the project is located in the Anthill-Example directory
under our VOB.

To build from the branch named test, the Load Rule would be BaseMode-
Test:Anthill-Example:test: (all builds performed on the test branch).

To perform a build on label 1.0.3 the Load Rule would be
BaseModeTest:Anthill-Example::1.0.3.

SCM Tools

294



To build from label 1.0.3 of the branch named test, the Load Rule would be BaseMode-
Test:Anthill-Example:test:1.0.3.

Example Load Rule Configuration

For the load rules below, AnthillPro needs to know the path and optional branch and label the configspec is check-
ing out in order to find the changes and then apply any needed labels. For example, the branch and label would
come from lines starting with element, paths come from the lines starting with load, etc.

element* CHECKEDOUT

element/elementName/... .../elementNameApplication/LATEST
element/elementName/... .../iter2_elementNameApplication/LATEST -mkbranch elementNameApplication
element/mmisPortal/... /main/LATEST -mkbranch iter2_portal
element* .../element_customization/LATEST
element* .../main/LATEST
load /elementNamePortal
load /elementNameCommon
load /elementNameFramework

For example, if you look at the first line in the load rules:

element/elementName/... .../elementNameApplication/LATEST

means that for path /elementName you need to get the code from the elementNameApplication branch
(LATEST is the default label so you can ignore it when configuring AnthillPro). This translates in the following
load rule (using the pattern VOB:/path_in_vob:branch:label):

elementName:/:elementNameApplication:

In the same manner, the second line translates into

elementName:/:iter2_elementNameApplication:

However, the -mkbranch in the line is ignored when configuring AnthillPro since -mkbranch says it's not
about getting code but committing code back.

For the line element* .../element_customization/LATEST means that for every load rule we need to
get the code from the element_customization branch. This requires one load rule be configured in Ant-
hillPro per load rule in ClearCase. Thus, you would have something like:

elementName:/:element_customization:

elementNameCommon:/:element_customization:

elementNameFramework:/:element_customization:

Note that element* .../main/LATEST also needs to be addressed. In the example, you will need to get code
from the main branch. This should look something like:

elementNamePortal:/::

elementNameCommon:/::

elementNameFramework:/::

SCM Tools

295



• Create global labels. Check the box to create global labels. You can also specify in which VOBs those labels
will be created (see below). If you do not specify any VOBs (below), the Load Rules will be used to determine
all the VOBs that are used, and the labels will be created in those VOBs.

• Create labels in VOBs. Please list the names of the VOBs (one per line) where the global labels should be
created. If you are not creating global labels (option above is not selected) you can list all the VOBs used in
your config spec or leave the field empty, and the Load Rules will be used to determine where the labels need
to be created.

• Host name. Provides the value for the -host parameter to be used in the mkview command. Use this filed
only if the view and storage are in different locations.

• Global storage path (gpath). Provides the value for the -gpath parameter to be used in the mkview com-
mand. Use this filed only if the view and storage are in different locations.

• Host storage path (hpath). Provides the value for the -hpath parameter to be used in the mkview com-
mand. Use this filed only if the view and storage are in different locations.

• View Strategy. Select a view strategy:

• Create a new view every time we build. If this option is chosen, AnthillPro will check for an existing snap-
shot view and remove it before creating a new view with every build. This option will ensure that the view
always represents the state of the current build. Proceed to Item 4.

• Create a new view only if one does not exist already. AnthillPro will check for an existing snapshot view. If
one is found, a new view will not be created. If no existing view is found, AnthillPro will create a new one.
This option allows you to use an existing view; however, that view may not represent the state of the latest
build. Proceed to Item 5.

• The view already exists and will be used every time. AnthillPro will not create a new view and use the exist-
ing view. This option will always use the view that previously exists. If no view exists, one must be created
prior to using this option. Proceed to Item 6.

4. Create a new view every time we build View Strategy. Configure:

• Working Directory Script. Select the Working Directory Script from the drop-down menu. The working dir-
ectory is the location where the agent is going to run its commands. For example, if the working directory is
C:\projects\Project_A\ every command AnthillPro issues will be from that specific directory.

If no Working Directory Script is configured in the job, the script selected here will be used. See Working Dir-
ectory Scripts.

• View Storage Directory. Give the location of the view on the local machine. On Windows this will be a of the
form //host/share/view_storage.

• Project Name. Give the name to be used in creating the view name.

• Config Spec. Provide the config spec to be used for the new view. Please replace any labels used in the config
spec with a token.

For example: /main/LATEST should become /main/${LATEST} and /main/test/1.0.3 should be-
come /main/test/${1.0.3}.

Place a time token after any element rules that do not load from a particular label: element * /
main/LATEST should become element * /main/LATEST $[time.token] and element * /
main/test/LATEST should become element * /main/test/LATEST $[time.token].

Do not assign the element * /main/test/1.0.3 a time token.

SCM Tools

296



• Check New Configspec. Select here if you want to compare the newly set config spec against the user spe-
cified config spec. This option allows you to determine success based on the new config spec set on the view
rather than the outcome of the command.

• Label Script. Give the label to check out source from (if any).

• Use Tags. Select here if you want your view to be globally created. Having this option checked can cause
problems with creating and dropping snapshots if you wish to have the same snapshot on multiple agents.

• Proceed to Item 7.

5. Create a new view only if one does not exist already View Strategy. Configure:

• Working Directory Script. Select the Working Directory Script from the drop-down menu. The working dir-
ectory is the location where the agent is going to run its commands. For example, if the working directory is
C:\projects\Project_A\ every command AnthillPro issues will be from that specific directory.

If no Working Directory Script is configured in the job, the script selected here will be used. See Working Dir-
ectory Scripts.

• View Storage Directory. Give the location of the view on the local machine. On Windows this will be a UNC
path of the form //host/share/view_storage.

• Project Name. Give the name to be used in creating the view name.

• Config Spec. Provide the config spec to be used for the new view. Please replace any labels used in the config
spec with a token.

For example: /main/LATEST should become /main/${LATEST} and /main/test/1.0.3 should be-
come /main/test/${1.0.3}.

Place a time token after any element rules that do not load from a particular label: element * /
main/LATEST should become element * /main/LATEST $[time.token] and element * /
main/test/LATEST should become element * /main/test/LATEST $[time.token].

Do not assign the element * /main/test/1.0.3 a time token.

• Check New Configspec. Select here if you want to compare the newly set config spec against the user spe-
cified config spec. This option allows you to determine if success was based on the new config spec set on the
view rather than the outcome of the command.

• Label Script. Give the label to check out source from (if any).

• Use Tags. Select here if you want your view to be globally created. Having this option checked can cause
problems with creating and dropping snapshots if you wish to have the same snapshot on multiple agents.

• Delete view-private files during cleanup. Select here if you would like AnthillPro to detect and delete any
view-private files in the local view. This is highly recommended unless your build script handles cleanup of
the view. Only the paths specified in the Load Rules above will be checked for view-private files.

• Users to exclude from changelog. To exclude any users from the changelog, input them here. Each excluded
user must be input on a separate line. Note that user names are case sensitive.

• File paths to exclude from changelog. If you need to exclude file paths from the changelog, list them here,
each on a separate line. Each path must be proceeded by + or - to include/exclude it from the changelog.

The following wild cards may be used:

SCM Tools

297



• for any subdirectory: **/ -

• for any number of any characters except \ and /: * -

• for any single character / including \ and / Changelog file paths containing drive letter or any prefixes: ? -

Make sure to include the * at the beginning of the path.

Example exclude paths: -**/abc/**/* Except for: +**/abc/*.html. This will exclude everything un-
der the abc directory except for the HTML files in it.

• Proceed to Item 7.

6. The view already exists and will be used every time View Strategy. Configure:

• View Storage Directory. Give the location of the view on the local machine. On Windows this will be a UNC
path of the form //host/share/view_storage.

• Delete view-private files during cleanup. Select here if you would like AnthillPro to detect and delete any
view-private files in the local view. This is highly recommended unless your build script handles cleanup of
the view. Only the paths specified in the Load Rules above will be checked for view-private files.

• Users to exclude from changelog. To exclude any users from the changelog, input them here. Each excluded
user must be input on a separate line. Note that user names are case sensitive.

• File paths to exclude from changelog. If you need to exclude file paths from the changelog, list them here,
each on a separate line. Each path must be proceeded by + or - to include/exclude it from the changelog.

The following wild cards may be used:

• for any subdirectory: **/ -

• for any number of any characters except \ and /: * -

• for any single character / including \ and / Changelog file paths containing drive letter or any prefixes: ? -

Make sure to include the * at the beginning of the path.

Example exclude paths: -**/abc/**/* Except for: +**/abc/*.html. This will exclude everything un-
der the abc directory except for the HTML files in it.

• Proceed to Item 7.

7. Click Save.

ClearCase UCM Dynamic View
The first step in using a ClearCase UCM Dynamic View repository with AnthillPro is to configure it by following
the Repositories link on the System page. The configuration will allow basic information regarding ClearCase to be
reused by several project workflows. Once configured, the repository will be listed on the Repositories main page.

Once the main repository has been identified, your projects can then use the ClearCase repository. During project
creation, associate the workflow with a specific ClearCase repository and determine the mode, view, and specify the
Load Rules. See ClearCase UCM Dynamic View Source Configuration.

See also ClearQuest.

SCM Tools

298



ClearCase UCM Dynamic View Prerequisites

• ClearCase must already be installed. See ClearCase documentation [ht-
tp://www-01.ibm.com/support/docview.wss?rs=984&uid=swg21239261].

• You must have administrative permissions. See Manage Security.

• The cleartool executable and the Load Rules must be available to complete the configuration.

• If you are not familiar with ClearCase, it is recommended to consult with your ClearCase administrator while
configuring the integration.

Set Up ClearCase UCM Dynamic View Repository

1. Go to System > Repositories from the Project Support menu.

2. On the Repositories page, click the Create New button.

3. Select ClearCase from the drop-down menu and click Set.

4. Configure:

• Name the repository. This is the name AnthillPro will use to identify this repository. This name does not cor-
respond to the actual repository, and is simply an identifying label used by the AnthillPro system.

• Description. Give an optional description.

• Command Path. Provide the location of the ClearCase executable if it is not in the system path.

5. Click Save.

6. If not setting a Repository Trigger or Security, click Set then Done to complete. Otherwise proceed to item 7 to
set a trigger or item 9 to set security.

7. Select the Trigger tab. To either deactivate or delete the repo trigger, click the appropriate button. If the repo
trigger is deactivated/deleted, you will need to configure a workflow trigger for every project.

8. If not setting Security, click Activate then Done to complete. Otherwise click Activate and proceed to item 9.

9. Select the Security tab and click the Edit button. Check the appropriate boxes to determine user-role access (See
Manage Security), and click Save.

10
.

Click Done.

ClearCase UCM Dynamic View Source Configuration

Once the main ClearCase repository is identified (see Set Up ClearCase UCM Dynamic View Repository), config-
ure the specific repository a workflow uses. During project creation, the originating workflow is first associated with
the ClearCase repository. Once this is done, the Source Configuration page will automatically pop up. (However, if
you choose not to configure the project source at initial creation, you can return to it by selecting the Configure, or
Edit Source, link under the Source Config menu on the Workflow Main page.)

1. Once ClearCase is set up with AnthillPro (see Set Up ClearCase UCM Dynamic View Repository), create a

SCM Tools

299

http://www-01.ibm.com/support/docview.wss?rs=984&uid=swg21239261
http://www-01.ibm.com/support/docview.wss?rs=984&uid=swg21239261
http://www-01.ibm.com/support/docview.wss?rs=984&uid=swg21239261


project.

2. Select the Mode and View Type once ClearCase has been selected as the repository type.

• Mode. Choose UCM.

• View Type. Choose Use Dynamic.

• Click Select.

3. Go to the originating workflow that was created as part of the project creation process. If you have not created an
originating workflow yet, see Create a New Workflow before continuing. Configure the source on the workflow:

• View Location. Give the location of the view on the local machine (AnthillPro Agent). For Windows this will
be a UNC path of the form //host/share/view_storage.

• View Name. If the rebase step is used, you must give the view name here. Otherwise, leave this field blank.

• Stream Name. Give the ClearCase stream name that is used by this view.

Check the box if AnthillPro is to build the child stream. If the field is inactive, you cannot build child streams.

• Project VOB Name. Give the project VOB name.

• Paths. Give the paths to tell AnthillPro what projects, branches, and labels to use. A view in ClearCase can
contain code from any number of VOBs. By giving the paths (each on its own line) you are telling AnthillPro
which directories in which VOBs you want AnthillPro to use when checking for changes and when creating a
baseline. AnthillPro requires the specs to be in the form vob/path/to/files. For example, to perform a
build on label 1.0.3, the Load Rule would be VOB/BaseModeTest/Anthill-Example/1.0.3.

To build from label 1.0.3 of the branch named test, the Load Rule would be VOB/BaseMode-
Test/Anthill-Example/test/1.0.3.

• Create global labels. Check the box to create global labels. You can also specify in which VOBs those labels
will be created (see below). If you do not specify any VOBs (below), the Load Rules will be used to determine
all the VOBs that are used and the labels will be created in those VOBs.

• Create labels in VOBs. Please list the names of the VOBs (one per line) where the global labels should be
created. If you are not creating global labels (option above is not selected) you can list all the VOBs used in
your config spec or leave the field empty and the Load Rules from above will be used to determine where the
labels need to be created in order to complete the labeling process successfully.

• Delete view-private files during cleanup. Select here if you would like AnthillPro to detect and delete any
view-private files in the local view. This is highly recommended unless your build script handles cleanup of
the view. Only the paths specified in the Load Rules will be checked for view-private files.

• Lock Objects. Please list the names of the objects (one per line) that you would like locked/unlocked during
the build process. Use the following format: type:Name@VOB (or refer to the lock/unlock ClearCase com-
mand reference for more details). Be advised that if you leave this field empty, there is nothing to prevent an
update of the dynamic view while a build is in progress.

• Users to exclude from changelog. To exclude any users from the changelog, input them here. Each excluded
user must be input on a separate line. Note that user names are case sensitive.

• File paths to exclude from changelog. If you need to exclude file paths from the changelog, list them here,
each on a separate line. Each path must be proceeded by + or - to include/exclude it from the changelog.

The following wild cards may be used:

SCM Tools

300



• for any subdirectory: **/ -

• for any number of any characters except \ and /: * -

• for any single character / including \ and / Changelog file paths containing drive letter or any prefixes: ? -

Make sure to include the * at the beginning of the path.

Example exclude paths: -**/abc/**/* Except for: +**/abc/*.html. This will exclude everything un-
der the abc directory except for the HTML files in it.

4. Click Save.

Using Triggers with ClearCase UCM Dynamic View

ClearCase UCM repository triggers allow you to create a single hook in the repository that is capable of triggering
every workflow using this repository. For deliver events in your ClearCase repository, use Perl or a utility like wget
or curl to generate an HTTP post to the URL specified in the trigger. The examples below are for shell scripts. The
'xxxx' values for pvob-name and stream-name should be replaced with the project VOB name and stream name that
was delivered to.

By default, AnthillPro activates the repository trigger when the repository is configured. When configuring an Ant-
hillPro project, the repo trigger is automatically generated for every workflow.

Using wget in a Unix/Linux shell script:

#!/bin/bash

TRIGGER_URL="http://localhost:8080/trigger"
CODE=f3b5110446797dbce6579d01fe55f5854ee370a2

wget --tries 1 --no-check-certificate "$TRIGGER_URL" \
--post-data="code=$CODE&pvob-name=xxxx&stream-name=xxxx" -O /dev/null

Using wget in a Windows shell script:

@echo off
setlocal

set TRIGGER_URL=http://localhost:8080/trigger
set CODE=f3b5110446797dbce6579d01fe55f5854ee370a2

wget --tries 1 --no-check-certificate "http://localhost:8080/trigger"
--post-data="code=%CODE%&pvob-name=xxxx&stream-name=xxxx"

Using curl in a Unix/Linux shell script:

#!/bin/bash

TRIGGER_URL="http://localhost:8080/trigger"
CODE=f3b5110446797dbce6579d01fe55f5854ee370a2

curl --retry 1 -k -d "code=$CODE&pvob-name=xxxx&stream-name=xxxx" -o /dev/null "$TRIGGER_URL"

Using curl in a Windows shell script:

SCM Tools

301



@echo off
setlocal

set TRIGGER_URL=http://localhost:8080/trigger
set CODE=f3b5110446797dbce6579d01fe55f5854ee370a2

curl --retry 1 -k -d "code=%CODE%&pvob-name=xxxx&stream-name=xxxx" -o /dev/null "%TRIGGER_URL%"

ClearCase UCM Snapshot View
The first step in using a ClearCase UCM Snapshot View repository with AnthillPro is to configure it by following
the Repositories link on the System page. The configuration will allow basic information regarding ClearCase to be
reused by several projects. Once configured, the repository will be listed on the Repositories main page.

Once the main repository has been identified, your workflows can then use the ClearCase repository. During project
creation, associate the project workflow with a specific ClearCase repository and determine the mode, view, and
specify the Load Rules. See ClearCase UCM Snapshot View Source Configuration.

See also ClearQuest.

ClearCase UCM Snapshot View Prerequisites

• ClearCase must already be installed. See ClearCase documentation [ht-
tp://www-01.ibm.com/support/docview.wss?rs=984&uid=swg21239261].

• You must have administrative permissions. See Manage Security.

• The cleartool executable and the Load Rules must be available to complete the configuration.

• If you are not familiar with ClearCase, it is recommended to consult with your ClearCase administrator while
configuring the integration.

Set Up ClearCase UCM Snapshot View Repository

1. Go to System > Repositories from the Project Support menu.

2. On the Repositories page, click the Create New button.

3. Select ClearCase from the drop-down menu and click Set.

4. Configure:

• Name the repository. This is the name AnthillPro will use to identify this repository. This name does not cor-
respond to the actual repository, and is simply an identifying label used by the AnthillPro system.

• Description. Give an optional description.

• Command Path. Provide the location of the ClearCase executable if it is not in the system path.

5. Click Save.

6. If not setting a Repository Trigger or Security, click Set then Done to complete. Otherwise proceed to item 7 to
set a trigger or item 9 to set security.

7. Select the Trigger tab. To either deactivate or delete the repo trigger, click the appropriate button. If the repo

SCM Tools

302

http://www-01.ibm.com/support/docview.wss?rs=984&uid=swg21239261
http://www-01.ibm.com/support/docview.wss?rs=984&uid=swg21239261
http://www-01.ibm.com/support/docview.wss?rs=984&uid=swg21239261


trigger is deactivated/deleted, you will need to configure a workflow trigger for every project.

8. If not setting Security, click Activate then Done to complete. Otherwise click Activate and proceed to item 9.

9. Select the Security tab and click the Edit button. Check the appropriate boxes to determine user-role access (See
Manage Security), and click Save.

10
.

Click Done.

ClearCase UCM Snapshot View Source Configuration

Once the main ClearCase repository is identified (see Set Up ClearCase UCM Snapshot View Repository), config-
ure the specific repository a workflow uses. During project creation, the originating workflow is first associated with
the ClearCase repository. Once this is done, the Source Configuration page will automatically pop up. (However, if
you choose not to configure the project source at initial creation, you can return to it by selecting the Configure, or
Edit Source, link under the Source Config menu on the Workflow Main page.)

During source configuration, you must select a View Strategy. The strategy will determine how AnthillPro interacts
with existing views and determine when AnthillPro should create a new view. Select a strategy that either (a.) cre-
ates a new view with every build; (b.) create a new view if and only if a view does not exist; or (c.) does not create a
new view and uses an existing view. Only one view may be configured on an individual workflow; however, if a
project has multiple workflows, a separate View Strategy may be used for each workflow. See View Strategy.

1. Once ClearCase is set up with AnthillPro (see Set Up ClearCase UCM Snapshot View Repository), create a new
project.

2. Select the Mode and View Type once ClearCase has been selected as the repository type.

• Mode. Choose UCM.

• View Type. Choose Snapshot.

• Click Select.

3. Go to the originating workflow that was created as part of the project creation process. If you have not created an
originating workflow yet, see Create a New Workflow before continuing. Configure the source on the workflow:

• View Location. Give the location of the view on the local (Agent) machine. On Windows this will be a UNC
path of the form //host/share/view_storage.

• View Name. If the rebase step is used, you must give the view name here. Otherwise, leave this field blank.

• Stream Name. Give the ClearCase stream name that is used by this view.

• Project VOB Name. Give the project VOB name.

• Paths. Give the paths to tell AnthillPro what projects, branches, and labels to use. A view in ClearCase can
contain code from any number of VOBs. By giving the paths (each on its own line) you are telling AnthillPro
which directories in which VOBs you want AnthillPro to use when checking for changes and when creating a
baseline. AnthillPro requires the specs to be in the form vob/path/to/files. For example, to perform a
build on label 1.0.3, the Load Rule would be VOB/BaseModeTest/Anthill-Example/1.0.3.

To build from label 1.0.3 of the branch named test, the Load Rule would be VOB/BaseMode-
Test/Anthill-Example/test/1.0.3.

• Is building in child stream. Check the box if AnthillPro is to build the child stream. If the field is inactive,
you cannot build child streams. Only select this option if you are using a child stream off of the main develop-

SCM Tools

303



ment stream and nothing is delivered to this stream. This option tells AnthillPro to look for changes using the
baseline activity set rather than looking for changes on the stream itself.

• View Strategy. Select a view strategy:

• Create a new view every time we build. If this option is chosen, AnthillPro will check for an existing snap-
shot view and remove it before creating a new view with every build. This option will ensure that the view
always represents the state of the current build. Proceed to Item 4.

• Create a new view only if one does not exist already. AnthillPro will check for an existing snapshot view. If
one is found, a new view will not be created. If no existing view is found, AnthillPro will create a new one.
This option allows you to use an existing view; however, that view may not represent the state of the latest
build. Proceed to Item 5.

• The view already exists and will be used every time. AnthillPro will not create a new view and use the exist-
ing view. This option will always use the view that previously exists. If no view exists, one must be created
prior to using this option. Proceed to Item 6.

4. Create a new view every time we build View Strategy. Configure:

• View Storage Directory. Give the location of the view on the local machine. On Windows this will be a of the
form //host/share/view_storage.

• Host name. Provides the value for the -host parameter to be used in the mkview command. Use this filed
only if the view and storage are in different locations.

• Global storage path (gpath). Provides the value for the -gpath parameter to be used in the mkview com-
mand. Use this filed only if the view and storage are in different locations.

• Host storage path (hpath). Provides the value for the -hpath parameter to be used in the mkview com-
mand. Use this filed only if the view and storage are in different locations.

• Use Tags. Select here if you want your view to be globally created. Having this option checked can cause
problems with creating and dropping snapshots if you wish to have the same snapshot on multiple agents.

• Users to exclude from changelog. To exclude any users from the changelog, input them here. Each excluded
user must be input on a separate line. Note that user names are case sensitive.

• File paths to exclude from changelog. If you need to exclude file paths from the changelog, list them here,
each on a separate line. Each path must be proceeded by + or - to include/exclude it from the changelog.

The following wild cards may be used:

• for any subdirectory: **/ -

• for any number of any characters except \ and /: * -

• for any single character / including \ and / Changelog file paths containing drive letter or any prefixes: ? -

Make sure to include the * at the beginning of the path.

Example exclude paths: -**/abc/**/* Except for: +**/abc/*.html. This will exclude everything un-
der the abc directory except for the HTML files in it.

• Proceed to Item 7.

5. Create a new view only if one does not exist already View Strategy. Configure:

SCM Tools

304



• View Storage Directory. Give the location of the view on the local machine. On Windows this will be a UNC
path of the form //host/share/view_storage.

• Host name. Provides the value for the -host parameter to be used in the mkview command. Use this filed
only if the view and storage are in different locations.

• Global storage path (gpath). Provides the value for the -gpath parameter to be used in the mkview com-
mand. Use this filed only if the view and storage are in different locations.

• Host storage path (hpath). Provides the value for the -hpath parameter to be used in the mkview com-
mand. Use this filed only if the view and storage are in different locations.

• Use Tags. Select here if you want your view to be globally created. Having this option checked can cause
problems with creating and dropping snapshots if you wish to have the same snapshot on multiple agents.

• Users to exclude from changelog. To exclude any users from the changelog, input them here. Each excluded
user must be input on a separate line. Note that user names are case sensitive.

• File paths to exclude from changelog. If you need to exclude file paths from the changelog, list them here,
each on a separate line. Each path must be proceeded by + or - to include/exclude it from the changelog.

The following wild cards may be used:

• for any subdirectory: **/ -

• for any number of any characters except \ and /: * -

• for any single character / including \ and / Changelog file paths containing drive letter or any prefixes: ? -

Make sure to include the * at the beginning of the path.

Example exclude paths: -**/abc/**/* Except for: +**/abc/*.html. This will exclude everything un-
der the abc directory except for the HTML files in it.

• Proceed to Item 7.

6. The view already exists and will be used every time View Strategy. Configure:

• Users to exclude from changelog. To exclude any users from the changelog, input them here. Each excluded
user must be input on a separate line. Note that user names are case sensitive.

• File paths to exclude from changelog. If you need to exclude file paths from the changelog, list them here,
each on a separate line. Each path must be proceeded by + or - to include/exclude it from the changelog.

The following wild cards may be used:

• for any subdirectory: **/ -

• for any number of any characters except \ and /: * -

• for any single character / including \ and / Changelog file paths containing drive letter or any prefixes: ? -

Make sure to include the * at the beginning of the path.

Example exclude paths: -**/abc/**/* Except for: +**/abc/*.html. This will exclude everything un-
der the abc directory except for the HTML files in it.

• Proceed to Item 7.

SCM Tools

305



7. Click Save.

Using Triggers with ClearCase UCM Snapshot View

ClearCase UCM repository triggers allow you to create a single hook in the repository that is capable of triggering
every workflow using this repository. For deliver events in your ClearCase repository, use Perl or a utility like wget
or curl to generate an HTTP post to the URL specified in the trigger. The examples below are for shell scripts. The
'xxxx' values for pvob-name and stream-name should be replaced with the project VOB name and stream name that
was delivered to.

By default, AnthillPro activates the repository trigger when the repository is configured. When configuring an Ant-
hillPro project, the repo trigger is automatically generated for every workflow.

Using wget in a Unix/Linux shell script:

#!/bin/bash

TRIGGER_URL="http://localhost:8080/trigger"
CODE=f3b5110446797dbce6579d01fe55f5854ee370a2

wget --tries 1 --no-check-certificate "$TRIGGER_URL" \
--post-data="code=$CODE&pvob-name=xxxx&stream-name=xxxx" -O /dev/null

Using wget in a Windows shell script:

@echo off
setlocal

set TRIGGER_URL=http://localhost:8080/trigger
set CODE=f3b5110446797dbce6579d01fe55f5854ee370a2

wget --tries 1 --no-check-certificate "http://localhost:8080/trigger"
--post-data="code=%CODE%&pvob-name=xxxx&stream-name=xxxx"

Using curl in a Unix/Linux shell script:

#!/bin/bash

TRIGGER_URL="http://localhost:8080/trigger"
CODE=f3b5110446797dbce6579d01fe55f5854ee370a2

curl --retry 1 -k -d "code=$CODE&pvob-name=xxxx&stream-name=xxxx" -o /dev/null "$TRIGGER_URL"

Using curl in a Windows shell script:

@echo off
setlocal

set TRIGGER_URL=http://localhost:8080/trigger
set CODE=f3b5110446797dbce6579d01fe55f5854ee370a2

curl --retry 1 -k -d "code=%CODE%&pvob-name=xxxx&stream-name=xxxx" -o /dev/null "%TRIGGER_URL%"

ClearCase Builds
If you use the Job Wizard to create a build job, only the generic job steps are used -- which should suffice for most

SCM Tools

306



builds. However, the integration also includes ClearCase-specific steps (commands, etc.) that you can add to your
build job. While these steps are not required for a basic build, they may be helpful as you design more complicated
build jobs.

When setting up a build and not using the Wizard, most jobs will contain the following steps:

1. Cleanup Step. Cleans up the workspace prior to populating it. This ensures that any files you might pick up from
the build actually belong to the build and not a previous build.

2. Populate Workspace. Places the checked-out code (defined in the workflow's source configuration) in the work-
space.

3. Get Changelog. The retrieved changelog is usually based on the changes made since the previous build. This
step enables AnthillPro to extract data from the SCM and then store it in the AnthillPro data warehouse. Since
AnthillPro stores the changelogs, it can parse the data, allowing you to override the default behavior. For ex-
ample, you can select a starting point for the changelog based on criteria such as the latest production build.

4. Stamp. Applies a stamp to the build, which is used to identify the build within AnthillPro.

5. Get Dependency Artifacts. If your project depends on any other project, you need to specify it here. Otherwise,
this step will just be skipped if no dependencies are defined.

6. Builder. Usually points to the location of tool or script used for the build.

7. Label Source. AnthillPro can also apply a label to the source code used in the build (e.g., snapshot, baseline).
This unique identifier for a build can be used to recreate a build if necessary.

8. Assign Status - Success. Applies the status when the build completes successfully.

9. Assign Status - Failure. Applies the status when the build fails.

In addition, the ClearCase integration includes tool-specific job steps that may be added to the generic build job or
used to replace one of the generic steps where appropriate. When configuring, the steps are available under the SCM
folder:

• ClearCase Changelog. Performs a ClearCase changelog.

• ClearCase Cleanup. Perform a cleanup of the current ClearCase working directory.

• ClearCase Label. ClearCase-specific label step.

• Lock (ClearCase Base Dynamic Plugin only). Locks ClearCase resources.

• Unlock (ClearCase Base Dynamic Plugin only). Unlocks ClearCase resources.

• ClearCase Populate Workspace (Legacy integration only). Populates the workspace With source from Clear-
Case.

CVS
The first step in using a CVS repository with AnthillPro is to configure it by following the Repositories link on the
System page. The configuration will allow basic information regarding CVS to be reused by several project work-
flows. Once configured, the repository will be listed on the Repositories main page.

Once the main repository has been identified, your workflows can then use the CVS repository. During project cre-

SCM Tools

307



ation, associate the originating workflow with a specific CVS repository. See CVS Source Configuration.

CVS Prerequisites

• You must have read and write permissions to the System page. See Manage Security.

• A CVS repository must already be created. See CVS documentation [http://ximbiot.com/cvs/manual/].

• In order to use ViewVC integration, the Source Configuration Repository Name field must be the actual name. It
is not possible to use ViewVC if properties are set for the Repository Name field. See ViewVC.

Set Up CVS Repository
Configure AnthillPro with an existing CVS repository. This example covers the configuration of a CVS repository
for the Anthill Example project, as well as covering some of the variations needed to complete a configuration.

1. Go to System > Repositories from the Project Support menu.

2. Click the Create New button on the Repositories page.

3. Select CVS from the drop-down menu and click Set.

4. Configure the repository.

• Name. This is the name AnthillPro will use to identify this repository. This name does not correspond to the
actual repository, and is simply an identifying label used by the AnthillPro system.

• Description. Provide description (optional).

• CVSROOT. The CVSROOT tells AnthillPro the authentication method, the user name, the domain name, and
the repository location. An example CVSROOT would be:
:pserver:anthill-example@cvs2.urbancode.com:/usr/local/anthill-test:

• :pserver is the authentication method you are using to connect to the repository, and specifies that you
are using a password server. If you omit this from the CVSROOT, CVS will use the RSH default.

• :anthill-example is the user name we want connected.

• @cvs2.urbancode.com is the machine host (domain) name.

• :/usr/local/anthill-test is the CVS repository location on the server.

If using an external protocol for authentication, specify :ext. By specifying :ext, you can login with any
authentication protocol for which a client can respond to the same command options/api as RSH.

If you are using a fork or local server, you need to specify :local or :fork in the CVSROOT.

• CVS_RSH. Specify the remote shell used to connect to the repository. Enter a value in this field to set the
CVS_RSH environment variable. Use this field to also tell the CVS client which protocol to use when logging
into the repository.

• CVS Password. Provide the password corresponding to the account specified in the CVSROOT. (You will
need to specify a password if you are using Kerberos or :pserver for the Anthill-Example project. You can
use a pub_key/priv_key to handle authentication with RSH and SS. This means that you do not need to enter a
password when authenticating in this fashion. It is also possible to perform a login with :sspi, Windows’

SCM Tools

308

http://ximbiot.com/cvs/manual/
http://ximbiot.com/cvs/manual/


single sign-on, which does not require a password [because authentication is handled with Active Directory
when logging into Windows]).

Select either: No Password, Use Password, or Use Script.

• No Password. If no password is associated with AnthillPro's CVS account, use this option.

• Use Password. If a password is associate with AnthillPro's CVS account, select this potion. Give the pass-
word in the Password field and confirm the password.

Check the Use in CVSROOT box to add the password in the CVSROOT. The password will be hidden in
all logs files. This is a workaround if CVS is unable to read the .cvspass file in certain scenarios.

• Use Script (advanced). Give a parameterizable value that will resolve to the password. Use this instead of
the Password field if the password will be stored in a secure property resolved at runtime. See Scripting.

Check the Use in CVSROOT box to add the password in the CVSROOT. The password will be hidden in
all logs files. This is a workaround if CVS is unable to read the .cvspass file in certain scenarios.

• Command Path. The location of the CVS executable, if not in the system path. If the CVS executable was not
on the command path (as it was in the example), you would type it in the Command Path text field. If you do
not want to ensure the executable is on the path of every agent, then you must set an agent property for every
agent (in AnthillPro) with the path to the executable, and then reference that property in the Command Path
field.

• In a distributed environment, it becomes very difficult to put the executable on every agent path.

• Repository Name. Give the name of the repository.

If using the ViewVC integration, the Repository Name field must be the ViewVC repository name. It is not pos-
sible to use ViewVC if properties are set for the Repository Name field. See ViewVC.

• Source Viewer. Select the Source Viewer Type from the drop-down menu (if using the ViewVC integration).
Otherwise select None. See ViewVC.

• Is CvsNT. Select here if you are using a CvsNT repository. CvsNT cannot authenticate using AnthillPro’s nor-
mal means of password specification (writing the password and encrypting it to a .cvspass file in the user home
directory). For example, on Windows, using CvsNT with :pserver will not work. By checking ‘Is CvsNT’,
AnthillPro will run a CVS login command during every step. See CvsNT documentation [ht-
tp://www.cvsnt.org/manual/html/].

• Place Password in CVSROOT. By selecting this option, you require the password to be added into the CVS-
ROOT and to be hidden in the logs files. This is a workaround because CVS is unable to read the .cvspass
file in certain scenarios. When printed out, the ENV_VARIABLES hide the password.

• Date Format. Give the date format to use when parsing change logs. The default is yyyy/MM/dd HH:mm:ss,
which should work with older versions of CVS. If using a newer versions of CVS use: yyyy-MM-dd
HH:mm:ss. See CVS documentation [http://ximbiot.com/cvs/manual/].

• Click Set.

5. Select the Security tab and click the Edit button. Determine permissions and click Save. Click Done. See Man-
age Security.

6. Click Done.

CVS Repository Trigger

SCM Tools

309

http://www.cvsnt.org/manual/html/
http://www.cvsnt.org/manual/html/
http://www.cvsnt.org/manual/html/
http://ximbiot.com/cvs/manual/
http://ximbiot.com/cvs/manual/


CVS configuration is contained in a special module called CVSROOT. You must first configure a CVS repository
and then checkout this module before you can continue.

The file you are interested in is called loginfo. It has a special format that must be followed. Each line contains a
regular expression that matches the module repository path, a space, and a shell command. The default file CVS
provides contains comments that explains this in more detail.

In the command, you use a utility like Wget to generate an HTTP request to the URL specified in the trigger:

^MyProject (wget -t 0 https://server/trigger
--post-data='triggerId=31&code=95cde532437151c551cf062bf93c0d12de9209c7'
-O - &>/dev/null)

A nested module would be handled like this:

^MyProject/SubProject (wget -t 0 https://server/trigger
--post-data='triggerId=31&code=95cde532437151c551cf062bf93c0d12de9209c7'
-O - &>/dev/null)

CVS Source Configuration
Once the main CVS repository is identified (see Set Up CVS Repository), configure the specific repository a work-
flow uses. During project creation the originating workflow is first associated with the CVS repository. Once this is
done, the Source Configuration page will automatically pop up. (However, if you choose not to configure the project
source at initial creation, you can return to it by selecting the Configure, or Edit Source, link under the Source Con-
fig menu on the Workflow Main page.)

1. Once CVS is set up with AnthillPro (see Set Up CVS Repository), create a new project.

2. Go to the originating workflow that was created as part of the project creation process. If you have not created an
originating workflow yet, see Create a New Workflow before continuing. Configure the source on the workflow:

• Working Directory Script. Select the Working Directory Script from the drop-down menu. The working dir-
ectory is the location where the agent is going to run its commands. For example, if the working directory is
C:\projects\Project_A\ every command AnthillPro issues will be from that specific directory.

If no Working Directory Script is configured in the job, the script selected here will be used. See Working Dir-
ectory Scripts.

• Module Name. Give the CVS module name to be retrieved by this workflow. See CVS documentation [ht-
tp://ximbiot.com/cvs/manual/].

• Branch. Give the CVS branch name to be retrieved by this workflow. See CVS documentation [ht-
tp://ximbiot.com/cvs/manual/].

• Tag. If using tags, give the tag to use for checkout. This may include variables passed to the workflow via
${property:Name} format. See Scripting.

• Directory Offset. Give the sub-directory where this module is to be placed within the working directory. If the
root of the working directory is to be used, leave this item blank.

• Local Folder Only. Check the box to only retrieve files from the specified folder (for non-recursive checkout).

• Prune Empty Directories. Check the box to clean up empty directories. If selected, the Prune Empty Direct-
ories option will delete any empty directories during checkout.

SCM Tools

310

http://ximbiot.com/cvs/manual/
http://ximbiot.com/cvs/manual/
http://ximbiot.com/cvs/manual/
http://ximbiot.com/cvs/manual/
http://ximbiot.com/cvs/manual/
http://ximbiot.com/cvs/manual/


• Users to exclude from changelog. To exclude any users from the changelog, input them here. Each excluded
user must be input on a separate line. Note that user names are case sensitive.

• File paths to exclude from changelog. If you need to exclude file paths from the changelog, list them here,
each on a separate line. Each path must be proceeded by + or - to include/exclude it from the changelog.

The following wild cards may be used:

• for any subdirectory: **/ -

• for any number of any characters except \ and /: * -

• for any single character / including \ and / Changelog file paths containing drive letter or any prefixes: ? -

Make sure to include the * at the beginning of the path.

Example exclude paths: -**/abc/**/* Except for: +**/abc/*.html. This will exclude everything un-
der the abc directory except for the HTML files in it.

3. Click Save.

Dimensions
The first step in using a Serena Dimensions repository with AnthillPro is to configure it from the Repositories item
on the Administration page (see Set Up Dimensions Repository). This configuration will allow basic information
about where the Dimensions repository is, and how to connect to it to be reused by several project workflows. Once
the main repository has been identified, your projects can then use the Dimensions repository during workflow
source configuration (see Dimensions Source Configuration). During project creation, the workflow is associated
with a specific Dimensions repository.

Dimensions Prerequisites

• Dimensions must already be installed.

• You must have administrative permissions. See Manage Security.

Set Up Dimensions Repository

1. Go to System > Repositories from the Project Support menu.

2. On the Repositories page, click the Create New button.

3. Select Dimensions from the drop-down menu and click Set.

4. Configure repository:

• Name the repository. This name is used throughout AnthillPro. For example, the name given here will be used
during Source Configuration.

• Description. Give an optional description.

• DMCLI Command Path. Give the usual command path to the dimensions command line utility. This field is

SCM Tools

311



only necessary if the location of the dmcli executable, if not in system path.

• Download Command Path. Give the location of the download executable, if not in system path. In order to
make the populate command sane, you can use another Dimensions package, -- the Dimensions Make Package
-- which provides the client with subsequent commands for download and upload. In order to use the Dimen-
sions driver, have the Dimensions Make Package installed and on the path, or provide the path to it here.

• User Name. Provide a Dimensions user name for accessing Dimensions database. We recommend creating a
user exclusively for AnthillPro. This allows for clear traceability, security management, and easier transition as
the team changes.

• Password. Give the user’s password. Use either Set Password, or Use Script:

• Set Password. Select this option to use the password associated with the AnthillPro user account. Input the
password and confirm.

• Use Script (advanced). Give a parameterizable value that will resolve to the password. Use this instead of
the Password field if the password will be stored in a secure property (which is resolved at runtime). See
Scripting.

• Host Address. Give the location of the Dimensions host.

• Database Name. Provide the name of the dimensions database.

• Database Schema Name. Give the database schema to connect to for the given database configured above.

5. Click Set.

6. Select the Security tab and click the Edit button. Determine permissions, click Save, and then click Done.

7. Click Done.

8. See Dimensions Source Configuration.

Dimensions Source Configuration
Once the main Dimensions repository is identified (see Set Up Dimensions Repository), configure the specific re-
pository a workflow uses. During project creation, the originating workflow is first associated with the Dimensions
repository. Once this is done, the Source Configuration page will automatically pop up. (However, if you choose not
to configure the project source at initial creation, you can return to it by selecting the Edit Source link on the Work-
flow Main page.)

1. Once Dimensions is set up with AnthillPro (see Set Up Dimensions Repository), create a project.

2. Go to the originating workflow that was created as part of the project creation process. If you have not created an
originating workflow yet, see Create a New Workflow before continuing. Configure the source on the workflow:

• Workset Name. Give the name of the workset to use. You may need to create a workset that frames the proper
items to be built.

Note that if you do not provide a Workset, you must provide a Baseline. However, you cannot provide both.

• Baseline Name. Give the name of the baseline to build from. This could be a dynamic label like
${property:baseline} passed in at build time.

Note that if you do not provide a Baseline, you must provide a Workset. However, you cannot provide both.

SCM Tools

312



• Part Name. Provide the name of the Part to use when labeling. This is the part name created by Dimensions.

• Template Id. Optional setting to use a Dimensions base-lining template when applying a baseline. If left
empty, the ALL_ITEMS_LATEST is used which will apply the baseline to the most recent version of every
item in the baseline.

• Product Id. Give the Dimensions project id (project name) for the project to be built.

• Users to exclude from changelog. To exclude any users from the changelog, input them here. Each excluded
user must be input on a separate line. Note that user names are case sensitive.

• File paths to exclude from changelog. If you need to exclude file paths from the changelog, list them here,
each on a separate line. Each path must be proceeded by + or - to include/exclude it from the changelog.

The following wild cards may be used:

• for any subdirectory: **/ -

• for any number of any characters except \ and /: * -

• for any single character / including \ and / Changelog file paths containing drive letter or any prefixes: ? -

Make sure to include the * at the beginning of the path.

Example exclude paths: -**/abc/**/* Except for: +**/abc/*.html. This will exclude everything un-
der the abc directory except for the HTML files in it.

3. Click Save.

File System
The first step in using a File System repository with AnthillPro is to configure it by following the Repositories link
on the System page. The configuration will allow basic information regarding the File System to be reused by sever-
al project workflows. Once configured, the repository will be listed on the Repositories main page.

Once the main repository has been identified, your workflows can then use the File System repository. During
project creation, associate the workflow with a specific File System repository. See File System Source Configura-
tion.

File System Prerequisites

• You must have administrative permissions. See Manage Security.

• The directory (file system) location must be available.

Configure File System Repository

1. Go to System > Repositories from the Project Support menu.

2. On the Repositories page, click the Create New button.

3. Select File System from the drop-down menu and click Set.

SCM Tools

313



4. Configure repository:

• Name the file system repository.

• Description. Give an optional description.

5. Click Set.

6. Select the Security tab. See Manage Security.

7. Click Edit, determine permissions, click Save, and then click Done.

8. Click Done.

File System Source Configuration
Once the main File System repository is identified (see Configure File System Repository), configure the specific re-
pository a workflow uses. During project creation, the originating workflow is first associated with the File System
repository. Once this is done, the Source Configuration page will automatically pop up. (However, if you choose not
to configure the project source at initial creation, you can return to it by selecting the Configure, or Edit Source, link
under the Source Config menu on the Workflow Main page.)

1. Once the File System is set up with AnthillPro (see Configure File System Repository), create a project.

2. Go to the originating workflow that was created as part of the project creation process. If you have not created an
originating workflow yet, see Create a New Workflow before continuing. Configure the source on the workflow:

• Working Directory Script. Select the Working Directory Script from the drop-down menu. The working dir-
ectory is the location where the agent is going to run its commands. For example, if the working directory is
C:\projects\Project_A\ every command AnthillPro issues will be from that specific directory.

If no Working Directory Script is configured in the job, the script selected here will be used. See Working Dir-
ectory Scripts.

• Users to exclude from changelog. To exclude any users from the changelog, input them here. Each excluded
user must be input on a separate line. Note that user names are case sensitive.

• File paths to exclude from changelog. If you need to exclude file paths from the changelog, list them here,
each on a separate line. Each path must be proceeded by + or - to include/exclude it from the changelog.

The following wild cards may be used:

• for any subdirectory: **/ -

• for any number of any characters except \ and /: * -

• for any single character / including \ and / Changelog file paths containing drive letter or any prefixes: ? -

Make sure to include the * at the beginning of the path.

Example exclude paths: -**/abc/**/* Except for: +**/abc/*.html. This will exclude everything un-
der the abc directory except for the HTML files in it.

3. Click Save.

SCM Tools

314



Use File System Repository
Because it is simple to set up, the File System Repository is typically used to perform builds on a local machine.
Once configured (see Configure File System Repository), the File System is usually identified in the Set Working
Directory step of the build job.

This section only covers the most common steps necessary to use a File System Repository.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

4. Set Working Directory. Click Create Step. Expand the Miscellaneous folder, select the Set Working Direct-
ory step, and click Select.

5. Select New Script.

• Name the script.

• Description. Provide a description.

• Script. Give the working directory path. This can be hard coded (e.g., C:\directoryname) or include variables
and scriptlets. See Scripting.

If a Set Working Directory job step is used, it will always override the Working Directory Script selected dur-
ing Source Configuration (see File System Source Configuration). For example, adding a job step that sets the
Working Directory to C:\Project_A\Subproject_01 will override the Working Directory (of
C:\Project_A\) selected during Source Configuration. The job will always be run in the
C:\Project_A\Subproject_01 directory. Before changing the Working Directory, see Working Dir-
ectory Scripts.

• Click Save.

6. Select the newly created script from the drop-down menu.

7. Clean Working Directory. Check the box to erases all files and subdirectories in the Working Directory when
this step runs.

If selecting this option, ensure that the Working Directory is not set to something like C: or C:\ because the en-
tire contents of the C drive will be permanently removed.

Also note that if the Working Directory of C:\Project_A\ is set to clean up the workspace, the contents of
C:\Project_A\Subproject_01 will be removed as well. This may have an adverse effect on jobs that use
the C:\Project_A\Subproject_01 directory.

8. Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Continuation Condition. Select the condition which must be met for the process to continue (all steps pass;
previous step passed; any step failed; always; or never).

• Ignore Failures. Select Yes if this step should not affect the determination for step continuation or the status
determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed.

SCM Tools

315



• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

9. Click Save.

Git
The first step in using a Git repository with AnthillPro is to configure it by following the Repositories link on the
System page. The configuration will allow basic information regarding Git to be reused by several project work-
flows. Once configured, the repository will be listed on the Repositories main page.

After the main repository has been identified, your workflows can then use the Git repository. During project cre-
ation, associate the project workflow with a specific Git repository and create a build job that includes the Git job
steps. AnthillPro has four Git-specific steps that are used during job creation: cleanup, populate workspace, get
changelog, and label. If you use the Job Wizard, AnthillPro will automatically add these steps during job configura-
tion; however, if you create your own job, you will need to add these steps yourself (usually in the order given
above).

AnthillPro and Cloned Git Repositories. When the configured workflow is run, AnthillPro will create a clone of
the repository on the agent that is going to perform the build and check out a particular revision and then perform a
build based on that revision. Because cloning a repository can be resource heavy, AnthillPro can store the cloned re-
pository on the agent, so only the changes are updated on the cloned repository when the workflow is run again. To
keep a cloned repository on the agent, (a.) do not add the Git Cleanup (remove it if you used the Job Wizard); and
(b.) do not check the Clean Workspace box when configuring the Git Populate Workspace step. Otherwise, Ant-
hillPro will clone the repository every time a build is run.

See Git Source Configuration.

Git Prerequisites

• Git must already be installed. See Git Documentation [http://git-scm.com/documentation].

• You must have administrative permissions. See Manage Security.

• The location of the git executable, if not in the system path, must be configured under the System > Repositor-
ies.

Set Up Git Repository

1. Go to System > Repositories from the Project Support menu.

2. On the Repositories page, click the Create New button.

3. Select Git from the drop-down menu and click Set.

4. Configure repository:

• Name the repository. This is the name AnthillPro will use to identify this repository.

• Description. Give an optional description.

• Command Path. Provide the location of the git executable, if not in the system path. See Git Documentation

SCM Tools

316

http://git-scm.com/documentation
http://git-scm.com/documentation
http://git-scm.com/documentation


[http://git-scm.com/documentation] for information on identifying the Git executable.

5. Click Set.

6. Click Done.

7. See Git Source Configuration.

Git Source Configuration
Once the main Git repository is identified (see Set Up Git Repository), configure the specific repository a workflow
uses. During project creation, the originating workflow is first associated with the Git repository. Once this is done,
the Source Configuration page will automatically pop up. (However, if you choose not to configure the project
source at initial creation, you can return to it by selecting the Edit Source link on the Workflow Main page.)

1. Once Git is set up with AnthillPro (see Set Up Git Repository), create a project.

2. Go to the originating workflow that was created as part of the project creation process. If you have not created an
originating workflow yet, see Create a New Workflow before continuing. Configure the source on the workflow:

• Working Directory Script. Select the Working Directory Script from the drop-down menu. The working dir-
ectory is the location where the agent is going to run its commands. For example, if the working directory is
C:\projects\Project_A\ every command AnthillPro issues will be from that specific directory.

If no Working Directory Script is configured in the job, the script selected here will be used. See Working Dir-
ectory Scripts.

• Repository URL. Give the location of the repository the workflow is to use. By default, AnthillPro clones this
repository on the agent, and then uses the clone to build from. If, during job configuration, you add the Git
Cleanup step (or check the Clean Workspace box when configuring the Git Populate Workspace step), the
cloned repository will be removed every time a build is run. If you want to keep the cloned repository on the
agent, see AnthillPro and Cloned Git Repositories.

• Repository Name. Give the name used to identify the repository in AnthillPro. This name does not correspond
to the actual Git repository, and is simply an identifying label used by the AnthillPro system.

• Revision. Optionally, give the revision or tag name to use when cloning and/or updating the repository.

• Users to exclude from changelog. To exclude any users from the changelog, input them here. Each excluded
user must be input on a separate line. Note that user names are case sensitive.

• File paths to exclude from changelog. If you need to exclude file paths from the changelog, list them here,
each on a separate line. Each path must be proceeded by + or - to include/exclude it from the changelog.

The following wild cards may be used:

• for any subdirectory: **/ -

• for any number of any characters except \ and /: * -

• for any single character / including \ and / Changelog file paths containing drive letter or any prefixes: ? -

Make sure to include the * at the beginning of the path.

Example exclude paths: -**/abc/**/* Except for: +**/abc/*.html. This will exclude everything un-
der the abc directory except for the HTML files in it.

SCM Tools

317

http://git-scm.com/documentation


3. Click Save.

Harvest
Information for connecting to a Harvest Repository can be shared by many projects. A new Harvest repository can
be registered with AnthillPro in the Repositories section on the Administration page.

Harvest Prerequisites

• Harvest must already be installed.

• You must have administrative permissions. See Manage Security.

Set Up a Harvest Repository
To configure the repository:

1. Go to System > Repositories from the Project Support menu.

2. On the Repositories page, click the Create New button.

3. Select Harvest from the drop-down menu and click Set.

4. Configure repository:

• Name the repository. This is the name AnthillPro will use to identify this repository.

• Description. Give an optional description.

• Broker. Enter the Harvest broker to connect through.

• User Name. Give the user name used to connect to AnthillPro. For test purposes, this could be the Harvest
user name of a developer or Administrator on the project. In production, we recommend creating a user exclus-
ively for AnthillPro for clear traceability, security management and easier transition as the team changes.

• Password. Provide the password corresponding to the account specified in the Username field. Select either:
No Password, Use Password, or Use Script.

• No Password. If no password is associated with AnthillPro's Harvest account, use this option.

• Use Password. If a password is associate with AnthillPro's Harvest account, select this potion. Give the
password in the Password field and confirm the password.

• Use Script (advanced). Give a parameterizable value that will resolve to the password. Use this instead of
the Password field if the password will be stored in a secure property resolved at runtime. See Scripting.

• Revision Date Format. Specify the format. AnthillPro retrieves revision histories for you project. Depending
on your locale, it may format dates in different ways. If the default value fails for you, adjust this value to
match the dates logged by the get changelog step of a build.

• Command Location. If the Harvest command line client is not on the path, tell AnthillPro where it is installed
on the agent(s).

SCM Tools

318



5. Click Set.

6. Select the Security tab and click the Edit button. Determine permissions, click Save, and then click Done.

7. Click Done.

Harvest Source Configuration
The Repository configuration above declares how projects can connect to a Harvest Repository. A project needs to
specify some rules for what source control should be retrieved to build from. Commonly, as a project matures, there
will be a handful of source configurations created for the single project. Perhaps one for an old maintenance branch
and another for the current development.

Go to the originating workflow that was created as part of the project creation process. If you have not created an
originating workflow yet, see Create a New Workflow before continuing. Configure the source on the workflow:

1. Configuration Name and Description. These are used exclusively as identifies within AnthillPro. Typical
source configuration names would be ‘Work State’ to indicate the rules used. The description is optional and may
go into more depth.

2. Work Directory Script. This determines where on the agent the project will be checked out and built from. The
default value works well. It works from the a directory named after the project under the Agent’s AnthillPro jobs
directory.

3. User Exclusions. This feature is usually not used and can be ignored safely. To use it, list users whose changes
should be ignored by the system. This is most commonly used when there is a special user that automatically up-
dates the project on a regular basis whose changes are outside the scope of what AnthillPro should be interested
in. Less frequently this feature is used to ignore users with access to the source who are not part of the core devel-
opment team (documentation writers).

4. File Exclusions. This feature is usually not used and can be ignored safely. To use it, list file paths which Ant-
hillPro should not track changes for. Most commonly this is used to exclude a ‘docs’ directory or some similar
set or resource which the development team chooses to ignore from a process stand point.

5. Project Name. Enter the Harvest project name the sources should be retrieved from.

6. State. Enter the state from which to retrieve sources. If this source configuration is here to enable builds from a
snapshot, the Snapshot state would be appropriate. Otherwise, a Work state is more likely.

7. View Path. Enter the view path to retrieve the sources from.

8. Package. Enter a package name here only if you want to restrict the retrieval of files to a particular package. To
require a user to specify the package at build time, enter a scripted package name like
${property:PACKAGE}and add a required PACKAGE property to the build from package workflow.

9. File Pattern. Enter the file pattern used to retrieve files from the view path. To retrieve every file on that path,
use " * ".

10
.

Package. Enter a name here only if you want to restrict the retrieval of files to a particular package. To require a
user to specify the snapshot at build time, enter a scripted snapshot name like ${property:Snapshot}and
add a required ‘Snapshot’ property to the build from snapshot workflow.

Harvest Steps
Every source control system has some similar actions that are used in the generic build jobs. But custom jobs can ex-

SCM Tools

319



pose special behavior unique to the SCM tool. Steps are available to checkout source; to get a change log; to ap-
prove a package; to promote the code used in the build; to demote that code; and to create a new snapshot. Most of
the steps (available under the Source Steps folder during job configuration) have minimal configuration but provide
the option to specify the name of the Harvest process to use. For instance, if the ‘checkout for browsing’ process
should be used instead of the default checkout process, that can be specified.

(Integrity) MKS Source Integrity
The first step in using an MKS Integrity repository with AnthillPro is to configure it from the Repositories item on
the System page. This configuration will allow basic information about where the Integrity server is, and how to
connect to it to be reused by several projects.

• Name the repository. This is the name AnthillPro will use to identify this repository.

• Description. Give an optional description.

• Hostname. The host name or IP address of the MKS Source Integrity server.

• Port. The port the Source Integrity server is listening on.

• Username. The MKS Source Integrity user name that will be used to connect to the server.

• Password. Provide the password corresponding to the account specified in the Username field. Select either: Set
Password or Use Script.

• Set Password. If a password is associate with AnthillPro's Integrity account, select this potion. Give the pass-
word in the Password field and confirm the password.

• Use Script (advanced). Give a parameterizable value that will resolve to the password. Use this instead of the
Password field if the password will be stored in a secure property resolved at runtime. See Scripting.

• Command Path. The location of the si executable. This value can take on a value that changes depending on the
agent like, ${env\MKS_HOME}\bin.

• Date Format. Give the date format to use when parsing change logs if other than the default MMM dd, yyyy -
hh:mm a.

MKS Source Integrity Source Configuration
Each project will have on or more source configurations. These provide a template for a set of code to checkout.
Typically, a source configuration is set up for each major concurrent line of development (branch). There may also
be a template for building from a specific label.

Go to the originating workflow that was created as part of the project creation process. If you have not created an
originating workflow yet, see Create a New Workflow before continuing. Configure the source on the workflow:

• Project File Name. The project file AnthillPro should reference when communicating with MKS. By default that
project file is named project.pj and that what AnthillPro assumes if left blank.

• Project Directory. The path to the project file on the MKS integrity server based on its directory structure.

• Label Name. Build from a specific label. This could be a hard-coded floating label. Or a dynamic label like
${property:label} passed in at build time.

• Branch Name. Build from a branch. Like label, a dynamic property is allowed.

SCM Tools

320



Mercurial
The first step in using a Mercurial repository with AnthillPro is to configure it by following the Repositories link on
the System page. The configuration will allow basic information regarding Mercurial to be reused by several project
workflows. Once configured, the repository will be listed on the Repositories main page.

Once the main repository has been identified, your workflows can then use the Mercurial repository. During project
creation, associate the project workflow with a specific Mercurial repository. See Mercurial Source Configuration.

Mercurial Prerequisites

• Mercurial must already be installed. See Mercurial Documentation [ht-
tp://www.selenic.com/mercurial/wiki/index.cgi/Mercurial].

• You must have administrative permissions. See Manage Security.

• The location of the hg executable, if not in system path, must be available.

Set Up Mercurial Repository

1. Go to System > Repositories from the Project Support menu.

2. On the Repositories page, click the Create New button.

3. Select Mercurial from the drop-down menu and click Set.

4. Configure repository:

• Name the repository.

• Description. Give an optional description.

• Command Path. Provide the location of the hg executable, if not in the system path. See Mercurial Docu-
mentation [http://www.selenic.com/mercurial/wiki/index.cgi/Mercurial] for information on identifying the
Mercurial executable.

5. Click Set.

6. Click Done.

Mercurial Source Configuration
Once the main Mercurial repository is identified (see Set Up Mercurial Repository), configure the specific reposit-
ory a workflow uses. During project creation, the originating workflow is first associated with the Mercurial reposit-
ory. Once this is done, the Source Configuration page will automatically pop up. (However, if you choose not to
configure the project source at initial creation, you can return to it by selecting the Edit Source link on the Workflow
Main page.)

1. Once Mercurial is set up with AnthillPro (see Set Up Mercurial Repository), create a project.

2. Go to the originating workflow that was created as part of the project creation process. If you have not created an
originating workflow yet, see Create a New Workflow before continuing. Configure the source on the workflow:

SCM Tools

321

http://www.selenic.com/mercurial/wiki/index.cgi/Mercurial
http://www.selenic.com/mercurial/wiki/index.cgi/Mercurial
http://www.selenic.com/mercurial/wiki/index.cgi/Mercurial
http://www.selenic.com/mercurial/wiki/index.cgi/Mercurial
http://www.selenic.com/mercurial/wiki/index.cgi/Mercurial
http://www.selenic.com/mercurial/wiki/index.cgi/Mercurial


• Working Directory Script. Select the Working Directory Script from the drop-down menu. The working dir-
ectory is the location where the agent is going to run its commands. For example, if the working directory is
C:\projects\Project_A\ every command AnthillPro issues will be from that specific directory.

If no Working Directory Script is configured in the job, the script selected here will be used. See Working Dir-
ectory Scripts.

• Repository URL. Give the location of the repository the project is to use.

• Repository Name. Give the name of the existing repository. If one does not already exist, provide a name to
create a new repository. This is the name AnthillPro will use to identify this repository.

• Revision. Optionally, give the revision or tag name to use when cloning and/or updating the repository.

• Users to exclude from changelog. To exclude any users from the changelog, input them here. Each excluded
user must be input on a separate line. Note that user names are case sensitive.

• File paths to exclude from changelog. If you need to exclude file paths from the changelog, list them here,
each on a separate line. Each path must be proceeded by + or - to include/exclude it from the changelog.

The following wild cards may be used:

• for any subdirectory: **/ -

• for any number of any characters except \ and /: * -

• for any single character / including \ and / Changelog file paths containing drive letter or any prefixes: ? -

Make sure to include the * at the beginning of the path.

Example exclude paths: -**/abc/**/* Except for: +**/abc/*.html. This will exclude everything un-
der the abc directory except for the HTML files in it.

3. Click Save.

Perforce
The first step in using a Perforce repository for your AnthillPro projects is to let AnthillPro know where your repos-
itory is, and how to connect to it. This is done on the System page, so you will need administrative permissions to
configure a repository. Once the repository configuration is set up, each workflow will need to be configured with
the project's specific source configuration. To get started:

1. Go to System > Repositories > Create New.

2. Select Perforce from the drop-down menu and click Set.

Depending on how AnthillPro was installed, you may see Perforce-Plugin in the menu. While the Plugin integra-
tion differs, the general configuration process is the same.

• The Perforce Plugin allows you to past a copy of the Perforce client spec during source configuration if you set
AnthillPro to create a new client spec -- this option is not available in the standard integration.

The integration is written as an AnthillPro Plugin, included in the normal distribution. For older AnthillPro 3.7 ver-
sions, you will need to download the integration from Supportal [http://support.urbancode.com/] and then upload it
to the server. Once uploaded, ensure the Plugin is active.

SCM Tools

322

http://support.urbancode.com/
http://support.urbancode.com/


The remainder of this section assumes you are using the standard integration.

3. Configure the repository:

• Name. Give a name for this configuration. What you give here will be used throughout AnthillPro. For ex-
ample, when performing source configuration on a workflow, the name given here will be displayed to the
user.

• Description. You can give a short description, if desired. Often, users will put the repo's URL in the descrip-
tion, especially if they have multiple repositories configured.

• Port. This is the server name and port used to connect to the Perforce server. Perforce defaults to the 1666
port.

• Username. The user name that AnthillPro will use to connect to the server. You can either create a new Per-
force user (e.g., Anthill) or have AnthillPro connect to Perforce via an existing user.

• Password. Provide the password corresponding to the account specified in the Username field. Select either:
No Password, Use Password, or Use Script.

• No Password. If no password is associated with AnthillPro's Perforce account, use this option.

• Use Password. If a password is associate with AnthillPro's Perforce account, select this potion. Give the
password in the Password field and confirm the password.

• Use Script (advanced). Give a parameterizable value that will resolve to the password. Use this instead of
the Password field if the password will be stored in a secure property resolved at runtime. See Scripting.

• Command Path. Provide the location of the Perforce executable (p4) if it is not in the system path. This value
can take on a value that changes depending on the agent, for example ${env\P4_HOME}.

• Character Set. The optional client character set.

• Command Character Set. The optional client command-line character set.

4. Click Save. To use Perforce with an AnthillPro project, see Perforce Source Configuration.

Perforce Source Configuration
To configure the source for a project, make sure you have already configured your Perforce repository in AnthillPro.
Each project may have one or more source configurations that provide a template for a set of code AnthillPro will
checkout. Typically, a source configuration is set up for each major concurrent line of development (branch or
view). There may also be a template for building from a label.

If you are using the Perforce Plugin, you can past a copy of the Perforce client spec during source configuration if
you set AnthillPro to create a new client spec.

Once you have created a project, you will need to select the add workflow icon under the Actions menu. Give the
workflow's basic configuration and then configure the source as follows:

1. Select the Perforce repository configuration you created earlier and click Set. See Perforce if you have not con-
figured the repository yet.

2. Go to the originating workflow that was created as part of the project creation process. If you have not created an

SCM Tools

323



originating workflow yet, see Create a New Workflow before continuing. Configure the source on the workflow:

• Client. There are two options for setting up the Perforce client. Use either an existing Perforce client con-
figured on the build machine(s) or create a new client spec at runtime.

• Use existing client spec. Give the name of the Perforce client that should be used. If you only have a single
build machine, this option should be fine. However, when multiple machines (i.e., agents) are used to run a
build, this approach can introduce risk as the configuration of the clients may not be done at the same time.
If you have multiple build machines, it is best to use the Create new client spec option.

• Create new client spec. Give a template for a new client, and have AnthillPro set up the clients on the fly
with each build. The Working Directory Script dictates where the client will be put on the host machine.

Name. This name corresponds with Perforce client names. For the name of the new client spec, you can use
a script that would ensure a unique name for each agent in order to avoid problems with concurrent builds.
You can use something similar to myproject-${agent:locked/agent.name} and replace 'mypro-
ject' with the correct project name.

Template Name. Give the name of the Perforce template you want AnthillPro to use to create the client.

Working Directory Script. Select the Working Directory Script from the drop-down menu. The working dir-
ectory is the location where the agent is going to run its commands. For example, if the working directory is
C:\projects\Project_A\ every command AnthillPro issues will be from that specific directory. If no
Working Directory Script is configured in the job, the script selected here will be used. See Working Direct-
ory Scripts.

• Label Script. Build from a specific label. This could be a hard-coded floating label. Or a dynamic label like
${property:label} passed in at build time.

• Delete Workspace Files. Select to do clean builds (deletes all the files in the workspace before repopulating
the workspace).

• Do Not Update the Perforce Have List. Enable this to pass the '-p' option on the p4 sync command that will
not update the Perforce have list. This option is only available to later versions of Perforce. Using this at the
source config level will prevent you from being able to label the source checked out. You can also set this on
the individual populate workspace step.

• Preserve Unlabeled Files. This is used for patch builds. If you are checking out from a label (see above) and
want to check the label out over the top of an existing workspace.

• Do Not Limit Labels to Client Spec. This is used to apply the same label to multiple projects. This means that
a label will be applied cumulatively.

• Login Before Each Step. If Perforce authentication is done through LDAP, commands must be run after do-
ing a full login, not just passing the credentials at the command line. This check box will use that approach.

• Users to exclude from changelog. To exclude any users from the changelog, input them here. Each excluded
user must be input on a separate line. Note that user names are case sensitive.

• File paths to exclude from changelog. If you need to exclude file paths from the changelog, list them here,
each on a separate line. Each path must be proceeded by + or - to include/exclude it from the changelog.

The following wild cards may be used:

• for any subdirectory: **/ -

• for any number of any characters except \ and /: * -

• for any single character / including \ and / Changelog file paths containing drive letter or any prefixes: ? -

SCM Tools

324



Make sure to include the * at the beginning of the path.

Example exclude paths: -**/abc/**/* Except for: +**/abc/*.html. This will exclude everything un-
der the abc directory except for the HTML files in it.

3. Click Save.

PVCS Source Control
To use a PVCS repository with AnthillPro, configure it from the Repositories item on the System page. The config-
uration will allow basic information regarding the PVCS server to be reused by several project workflows. Once
configured, the repository will be listed on the Repositories main page.

See also PVCS Tracker.

PVCS Prerequisites

• You must have administrative permissions. See Manage Security.

• The PVCS Project Database path must be available to complete the configuration.

Set Up PVCS Repository

1. Go to System > Repositories from the Project Support menu.

2. On the Repositories page, click the Create New button.

3. Select PVCS from the drop-down menu and click Set.

4. Configure repository:

• Name the repository.

• Description. Give an optional description.

• Username. Give the name AnthillPro should use to connect to the repository.

• Password. Provide the password corresponding to the account specified in the Username field. Select either:
No Password, Use Password, or Use Script.

• No Password. If no password is associated with AnthillPro's PVCS account, use this option.

• Use Password. If a password is associate with AnthillPro's PVCS account, select this potion. Give the pass-
word in the Password field and confirm the password.

• Use Script (advanced). Give a parameterizable value that will resolve to the password. Use this instead of
the Password field if the password will be stored in a secure property resolved at runtime. See Scripting.

• Project Database. Provide the path to the project database (variables may be used).

• Command Line Date Format. Give the date format to use with vlog command.

SCM Tools

325



• Changelog Date Format. Provide the date format used in reports that were created using the vlog command.

• Command Path. Provide the path to the pcli, vcs, and vlog executables if they are not in the system path.

5. Click Set.

6. Select the Security tab. See Manage Security.

7. Click Edit, determine permissions, click Save, and then click Done.

8. Click Done.

Rational Team Concert (SCM)
The first step in using a Rational Team Concert (RTC) repository with AnthillPro is to configure it by following the
Repositories link on the System page. The configuration will allow basic information regarding RTC to be reused by
several project workflows. Once configured, the repository will be listed on the Repositories main page.

The integration is written as an AnthillPro Plugin, included in the normal distribution. For older AnthillPro 3.7 ver-
sions, you will need to download the integration from Supportal [http://support.urbancode.com/] and then upload it
to the server. Once uploaded, ensure the Plugin is active.

After the main repository has been identified, your workflows can then use the RTC repository. During project cre-
ation, associate the project workflow with a specific RTC repository (see Rational Team Concert (SCM) Source
Configuration) and create a build job that includes the RTC job steps.

Rational Team Concert (SCM) Prerequisites

• You must have administrative permissions. See Manage Security.

• The RTC client must be installed on your AnthillPro agents in the build environment. See Environments for more.

• The RTC server URL is required to configure the integration.

• The RTC user name and password AnthillPro will use to contact the server must be created in RTC prior to con-
figuring the integration.

Set Up Rational Team Concert (SCM) Repository
The RTC integration must be configured before you can run any builds. The information given here will be reused
by all of your projects that use the RTC repository. If you have multiple instances of RTC (i.e., they are completely
different URLs), configure an integration for each one.

1. Go to System > Repositories under the Project Support menu.

2. On the Repositories page, click the Create New button.

3. Select RTC-SCM-Plugin from the drop-down menu and click Set.

4. On the Main tab, configure repository:

SCM Tools

326

http://support.urbancode.com/
http://support.urbancode.com/


• Name the repository.

• Description. Give an optional description.

• Command Path. Provide the full path of the SCM executable, including the file name. If the executable is
already on the path, leave this filed blank.

• RTC server URL. Enter the URL of the RTC server. For example: https://myserver:9443/jazz.

• Repository Username. Give the user name to use when accessing the repository.

• Repository Password. Provide the password corresponding to the account specified in the Repository User-
name field.

• Confirm password.

5. Click Done and see Rational Team Concert (SCM) Source Configuration.

Rational Team Concert (SCM) Source Configuration
Once the main RTC repository is identified (see Set Up Rational Team Concert (SCM) Repository), configure the
specific repository a workflow uses. During project creation, the originating workflow is first associated with the
RTC repository type. Once this is done, the Source Configuration page will automatically pop up. (However, if you
choose not to configure the project source at initial creation, you can return to it by selecting the Edit Source link on
the Workflow Main page.)

1. Once RTC is set up with AnthillPro, create a project. If you are unfamiliar with AnthillPro, see Setting Up a
Build for help.

2. Go to the originating workflow. If you have not created an originating workflow yet, see Create a New Workflow
before continuing. Configure the source on the workflow:

• Working Directory Script. Select the Working Directory Script from the drop-down menu. The working dir-
ectory is the location where the agent is going to run its commands. For example, if the working directory is
C:\projects\Project_A\ every command AnthillPro issues will be from that specific directory.

If no Working Directory Script is configured in the job, the script selected here will be used. See Working Dir-
ectory Scripts.

• Name. Give a name for this configuration to be displayed on the Main tab.

• Workspace Name. Enter the name of the workspace that is going to be used. If the workspace does not exist
one will be created based on the name you give here. You can use an alias as well but only for existing work-
spaces.

• Stream. Provide the name or alias of the default flow target stream for the workspace above.

• Directory Offset. Give the offset from the current working directory where the local workspace is created. If
there is no offset, leave this field blank.

• Build Snapshot Name. Specify the name of the snapshot AnthillPro should create for every build. For ex-
ample, if you use the default of "anthill-${bsh:BuildLifeLookup.getCurrent().getId()}," the
shapshot created will append "anthill-" with the current Build Life.

• Build Snapshot Description. Provide the description of the snapshot AnthillPro should create for every build.
This is the description of the snapshot given above. For example, if you use the default of "Created by Ant-

SCM Tools

327



hillPro for Buildlife: ${bsh:BuildLifeLookup.getCurrent().getId()}," the description created
will append "Created by AnthillPro for Buildlife:" with the current Build Life.

• Component List. Give a comma-separated list of components (name or alias) to load in the local workspace.
Leave blank to load all components.

• Include Root. Select here to load component roots as directories on the file system.

• Force. Select here to overwrite existing files when loading.

• Baseline. If you want to build from a baseline, enter the baseline name or alias here. If you specify a snapshot
below, leave this field blank.

• Snapshot. If you want to build from a snapshot, enter the snapshot name or alias here. If you specify a snap-
shot here, do not define the baseline above.

• Exclude Users. To exclude any users from the changelog, input them here. Each excluded user must be input
on a separate line. Note that user names are case sensitive.

• File Filters. If you need to exclude file paths from the changelog, list them here, each on a separate line. Each
path must be proceeded by + or - to include/exclude it from the changelog.

The following wild cards may be used:

• for any subdirectory: **/ -

• for any number of any characters except \ and /: * -

• for any single character / including \ and / Changelog file paths containing drive letter or any prefixes: ? -

Make sure to include the * at the beginning of the path.

Example exclude paths: -**/abc/**/* Except for: +**/abc/*.html. This will exclude everything un-
der the abc directory except for the HTML files in it.

• Repository. Select the correct integration from the drop-down menu (this is the integration configured in the
Set Up Rational Team Concert (SCM) Repository section). If you configured multiple RTC repositories on the
AnthillPro System page, make sure you select the correct one.

3. Click Save and see Rational Team Concert (SCM) Build Jobs.

Rational Team Concert (SCM) Build Jobs
Typically, your RTC build job will include the following steps, in the order presented (the Job Wizard can be a help-
ful tool when configuring the job):

1. Cleanup Workspace. This steps cleans up the workspace used for previous builds.

2. Populate Workspace. Populates the workspace with the files necessary to run the build.

3. Get Changelog. This step works by locating a prior Build Life and getting the source changes since the prior
Build Life up to the current source. The prior Build Life is located by using status and/or stamp requirements.

4. Create Stamp. Applies a unique stamp to the build.

5. Resolve Dependency Artifacts. Retrieves all artifacts generated this Build Life's dependencies.

SCM Tools

328



6. Build. This step will execute your build script (e.g., Ant, Groovy, Make) or invoke another builder.

7. Label Source. Allows you to specify a particular label that you would like to apply to the source.

8. Publisher. The publisher steps typically send information and files associated with the build to other parts of the
AnthillPro system or AnthillPro users via notifications. For example, the Artifact Deliver step that sends the build
artifacts to Codestation, AnthillPro's artifact-management system.

• There are a number of other publishers you can include. You can view them on the Steps page in the Publish-
ers folder.

9. Assign Status - Success. Assigns the status of Success if the job completes.

10
.

Assign Status - Failure. Assigns the status of Failure if the job does not complete.

In addition, AnthillPro has four RTC-specific steps you can use. Typically, these steps will not be used; however,
depending on your processes, it may be necessary to use one of the RTC-specific steps. It is recommended to con-
figure your build job as outlined above. This will allow you to easily switch source, etc.:

• RTC-SCM Cleanup. Perform a cleanup of the current working directory.

• RTC Changelog. Perform a RTC changelog. By default the retrieved changelog will be between the previous
and current Build Life.

• RTC Create Snapshot. Snapshots are created as part of the Populate Workspace/Get Source step, this step
should not be used.

• RTC Get Source. Perform the necessary steps to acquire source from RTC as indicated by source configuration.

StarTeam
The first step in using an StarTeam repository with AnthillPro is to configure it from the Repositories item on the
System page. This configuration will allow basic information about where the StarTeam server is, and how to con-
nect to it to be reused by several projects.

• Server. The host name or IP address of the StarTeam server. You can find this on the server settings dialog in the
StarTeam Client.

• Port. The port the StarTeam server is listening on. You can find this on the server settings dialog in the StarTeam
Client.

• Username. The StarTeam user name that will be used to connect to the server.

• Password. Provide the password corresponding to the account specified in the Username field. Select either: No
Password, Use Password, Use Script, or Use File.

• No Password. If no password is associated with AnthillPro's StarTeam account, use this option.

• Use Password. If a password is associate with AnthillPro's StarTeam account, select this potion. Give the pass-
word in the Password field and confirm the password.

• Use Script (advanced). Give a parameterizable value that will resolve to the password. Use this instead of the
Password field if the password will be stored in a secure property resolved at runtime. See Scripting.

SCM Tools

329



• Use File. Instead of using the password field above, if this is set it will use the password found in the specified
file.

• Date Format. StarTeam dates that must be parsed by AnthillPro can change based on Locale. If you are not using
US/English date format, change this value.

• Jar File Location. This is the full path to the StarTeam jar library AnthillPro uses to retrieve change logs. The
full path including the starteamXX.jar file name is required. This is usually found in a StarTeam SDK folder.

• Command Path. The location of the stcmd executable. This value can take on a value that changes depending on
the agent like ${env\STAR_HOME}\bin.

StarTeam Source Configuration
Each project will have on or more source configurations. These provide a template for a set of code to checkout.
Typically, a source configuration is set up for each major concurrent line of development (branch or view). There
may also be a template for building from a specific label.

Go to the originating workflow that was created as part of the project creation process. If you have not created an
originating workflow yet, see Create a New Workflow before continuing. Configure the source on the workflow:

• Project Name. The name of the StarTeam project. A project is the container for one or more views.

• View. If AnthillPro is building from a view other than the default, name that view here.

• Path. If only a subset of the view should be retrieved and built from, provide that path.

• Label Script. Build from a specific label. This could be a hard-coded floating label. Or a dynamic label like
${property:label} passed in at build time.

Subversion (SVN)
The first step in using a Subversion repository with AnthillPro is to configure it by following the Repositories link
on the System page. The configuration will allow basic information regarding Subversion to be reused by several
project workflows. Once configured, the repository will be listed on the Repositories main page.

Once the main repository has been identified, your workflows can then use the Subversion repository. During
project creation, associate the project with a specific Subversion repository. See Subversion Source Configuration.

Subversion Prerequisites

• You must have administrative permissions. See Manage Security.

• The Subversion Root URL must be available to complete the configuration.

• If using the ViewVC integration, see ViewVC.

Set Up Subversion Repository

SCM Tools

330



1. Go to System > Repositories under the Project Support menu.

2. On the Repositories page, click the Create New button.

3. Select Subversion from the drop-down menu and click Set.

4. On the Main tab, configure repository:

• Name the repository.

• Description. Give an optional description.

• Root URL. Provide the base URL of the repository.

• Username. Give the user name to use when accessing the repository.

If using the ViewVC integration, the Username field must be the ViewVC repository name. It is not possible to
use ViewVC if properties are set for the Username field. See ViewVC.

• Password. Provide the password corresponding to the account specified in the Username field. Select either:
No Password, Use Password, or Use Script.

• No Password. If no password is associated with AnthillPro's Subversion account, use this option.

• Use Password. If a password is associate with AnthillPro's Subversion account, select this potion. Give the
password in the Password field and confirm the password.

• Use Script (advanced). Give a parameterizable value that will resolve to the password. Use this instead of
the Password field if the password will be stored in a secure property resolved at runtime. See Scripting.

• Command Path. Provide the location of the svn executable, if not in system path.

• Source Viewer. Select the Source Viewer Type from the drop-down menu (if using the ViewVC integration).
Otherwise select None. See ViewVC.

5. If not setting a Repository Trigger or Security, click Set then Done to complete. Otherwise proceed to item 6 to
set a trigger or item 8 to set security.

6. Select the Trigger tab. To either deactivate or delete the repo trigger, click the appropriate button. If the repo
trigger is deactivated/deleted, you will need to configure a workflow trigger for every project. See Using Triggers
with Subversion.

7. If not setting Security, click Activate then Done to complete. Otherwise click Activate and proceed to item 8.

8. Select the Security tab and click the Edit button. Check the appropriate boxes to determine user-role access (See
Manage Security), and click Save.

9. Click Done.

Subversion Source Configuration
Once the main Subversion repository is identified (see Set Up Subversion Repository), configure the specific repos-
itory a workflow uses. During project creation, the originating workflow is first associated with the Subversion re-
pository. Once this is done, the Source Configuration page will automatically pop up. (However, if you choose not
to configure the project source at initial creation, you can return to it by selecting the Edit Source link on the Work-
flow Main page.)

See also Using Triggers with Subversion.

SCM Tools

331



1. Once Subversion is set up with AnthillPro (see Set Up Subversion Repository), create a project. See Setting Up a
Build.

2. Go to the originating workflow that was created as part of the project creation process. If you have not created an
originating workflow yet, see Create a New Workflow before continuing. Configure the source on the workflow:

• Working Directory Script. Select the Working Directory Script from the drop-down menu. The working dir-
ectory is the location where the agent is going to run its commands. For example, if the working directory is
C:\projects\Project_A\ every command AnthillPro issues will be from that specific directory.

If no Working Directory Script is configured in the job, the script selected here will be used. See Working Dir-
ectory Scripts.

• Directory Offset. Give the sub-directory where this module is to be placed within the working directory. If the
root of the working directory is to be used, leave this item blank.

• Source URL. Provide the URL of the project source. Note that the Source URL is relative to the selected re-
pository root URL.

• Tag. If using tags, give the tag to use for checkout. This may include variables passed to the workflow via
${property:Name} format. See Scripting.

• Revision. Give the Revision to use for checkout (if any). This may include variables passed to the workflow
via ${property:Name} format. See Scripting and Using Triggers with Subversion.

• Users to exclude from changelog. To exclude any users from the changelog, input them here. Each excluded
user must be input on a separate line. Note that user names are case sensitive.

• File paths to exclude from changelog. If you need to exclude file paths from the changelog, list them here,
each on a separate line. Each path must be proceeded by + or - to include/exclude it from the changelog.

The following wild cards may be used:

• for any subdirectory: **/ -

• for any number of any characters except \ and /: * -

• for any single character / including \ and / Changelog file paths containing drive letter or any prefixes: ? -

Make sure to include the * at the beginning of the path.

Example exclude paths: -**/abc/**/* Except for: +**/abc/*.html. This will exclude everything un-
der the abc directory except for the HTML files in it.

3. Click Save.

See also Using Triggers with Subversion.

Using Triggers with Subversion
Subversion (SVN) repository triggers allow you to create a single hook in the Subversion repository that is capable
of triggering every workflow using this repository. In the post-commit hook script in your SVN repository, add a
check to see that the changed information is on the path to the project. Then use a utility like Wget to generate an
HTTP request to the URL specified in the trigger.

By default, AnthillPro activates the Subversion repository trigger when the repository is configured. When configur-
ing an AnthillPro project, the repo trigger is automatically generated for every workflow. Under some conditions, it
may be necessary to deactivate the repository trigger for individual workflows. See Ignoring Subversion Repository

SCM Tools

332



Trigger.

If using Windows, see also Subversion Post-commit Hook and Windows.

Using Wget to Generate HTTP Request

Use a utility such as Wget to generate an HTTP request to the URL specified in the trigger. To build from trunk, it
should look something like the following:

if [ -n "$(svnlook changed /data/svn/mycompany/myproject -r $2 | grep
trunk)" ]
then

wget -t 0 https://server/trigger --post-data='triggerId=31&code
=95cde532437151c551cf062bf93c0d12de9209c7'

fi

If building from a branch, change the script to something like:

if [ -n "$(svnlook changed /data/svn/mycompany/myproject -r $2 | grep
branches/june_release)" ]
then

wget -t 0 https://server/trigger --post-data='triggerId=31&code
=cf062bf93c0d12d95cde532437151c551e123456'

fi

To build based on the Subversion revision ID, change the script to:

post-data="code=$CODE&dirs-changed=$DIRSCHANGED&revision-date=$REVISION_DATE&revision-id=$REV"

• Additionally, on the workflow source configuration, you will also need to change the Revision field to something
similar to the following:

${bsh:PropertyLookup.get("revision-id") == null ? "" :
PropertyLookup.get("revision-id")}

Subversion Post-commit Hook and Windows

In a Windows environment, configuration of the Subversion post-commit hook requires a Wget Windows port [ht-
tp://users.ugent.be/~bpuype/wget/] (due to Windows shell command restrictions). Subversion hook scripts use the
absolute path to the programs because they call the clean Windows PATH variable for the entire environment.

In order to complete the configuration:

1. Download the Wget Windows port [http://users.ugent.be/~bpuype/wget/].

2. Place the Wget Windows port in the hooks directory.

3. Name the script script.vbs (it can be written as VBScript) and place it in the hooks directory.

Example Subversion Post-commit Hooks Script for Windows:

TRIGGER_URL = "https://localhost:8443/trigger"
REPOS = WScript.Arguments.Item(0)
REV = WScript.Arguments.Item(1)
CODE = "c6ae3e9eeaebb6830aca6e7fb51247b39d410ab3"

SCM Tools

333

http://users.ugent.be/~bpuype/wget/
http://users.ugent.be/~bpuype/wget/
http://users.ugent.be/~bpuype/wget/
http://users.ugent.be/~bpuype/wget/
http://users.ugent.be/~bpuype/wget/


dq = chr(34)

Set oWSH = CreateObject( "WScript.Shell" )
Set nRet = oWSH.Exec( "C:\your\path\to\Subversion\bin\svnlook.exe _

dirs-changed " & REPOS & " -r " & REV)
DIRSCHANGED = nRet.StdOut.ReadAll

Set nRet2 = oWSH.Exec( "C:\your\path\to\hooks\wget.exe --tries 1 _
--no-check-certificate " & dq & TRIGGER_URL & dq & " --post-data=" & dq & _
"code=" & CODE & "&dirs-changed=" & DIRSCHANGED & dq )

4. Place a post-commit.bat in the hooks directory.

• Because Subversion is unable to natively call the VBScript, the post-commit hook must be invoked from either
a .bat or .exe file.

Example post-commit.bat script:

C:\your\path\to\repository\hooks\script.vbs %1 %2

Ignoring Subversion Repository Trigger

By default, AnthillPro activates the Subversion repository trigger when the repository is configured. When configur-
ing an AnthillPro project, the repo trigger is automatically created and added to every workflow. Under some condi-
tions, it may be necessary to deactivate the repository trigger for individual workflows: It is common for a project to
have multiple workflows that must build independently of each other, and in this case the repository trigger may
kick off a workflow unnecessarily. For example, a project might have 3 workflows that need to build independently
of each other: Workflow A just compiles code; workflow B performs nightly build; and workflow C builds a release
candidate. To keep the workflows, which all use the same repository, independently building (i.e., build when you
want them to) disable the repository trigger on the workflow and create a workflow trigger (see Use Triggers and
Scheduled Builds).

1. Go to Administration, select the appropriate workflow, and select the Triggers tab. If you can't access this page,
that means you don't have the appropriate permissions. Contact your AnthillPro administrator.

2. Click the Ignore Repository Trigger icon under the Actions menu.

Once the trigger is disabled, the icon will change from green to brown. To enable the trigger for this workflow,
simply click the icon again.

3. Create a workflow trigger. See Use Triggers and Scheduled Builds.

4. Repeat Items 1 thru 3 for every workflow that will not use the repository trigger.

Building Multiple Branches of Source with the SVN Repository Trig-
ger

If you need to build multiple branches of source within the same workflow, you will need to modify SVN Get
Changelog step in your build job. This will allow any properties that are passed on the trigger to determine what is
built based on the Start Stamp Pattern. Your Stamp should contain the source branch in it. In the example below, the
property is named "source":

build-${property:source}-${bsh:BuildLifeLookup.getCurrent().getId()}

SCM Tools

334



Synergy
To use a Synergy repository with AnthillPro, configure it from the Repositories item on the Administration page.
The configuration will allow basic information regarding the Synergy repo to be reused by several project work-
flows. Once configured, the repository will be listed on the Repositories main page and available during source con-
figuration when creating a project.

Synergy Prerequisites

• You must have administrative permissions for the System page. See Manage Security.

• The Synergy database path must be available to complete the configuration.

• AnthillPro must be set up as a Synergy user.

Set Up Synergy Repository

1. Go to System > Repositories from the Project Support menu.

2. On the Repositories page, click the Create New button.

3. Select Synergy from the drop-down menu and click Set.

4. Configure repository.

• Name the repository.

• Description (optional). Provide a description

• Username. Enter the user name to use when accessing the repository.

• Password. Provide the password corresponding to the account specified in the Username field. Select either:
No Password, Use Password, or Use Script.

• No Password. If no password is associated with AnthillPro's Synergy account, use this option.

• Use Password. If a password is associate with AnthillPro's Synergy account, select this potion. Give the
password in the Password field and confirm the password.

• Use Script (advanced). Give a parameterizable value that will resolve to the password. Use this instead of
the Password field if the password will be stored in a secure property resolved at runtime. See Scripting.

• Database path. Enter the path to the Synergy Database (may be a UNC path).

• Home Directory. When starting a session, Synergy writes information to the home directory of the user the
command is running as. If the user (the AnthillPro agent is running as) has no home directory, you can specify
another directory for this information to be written to.

• Database Info Directory. This option is only used when using the remote client: i.e., if you check the Use Re-
mote Client box below. If you enter a directory here but do not use the remote client, AnthillPro will ignore
this setting, and use the default /tmp/cmm directory.

When starting a session with a remote client, Synergy writes out certain database connection information to the
file system. The default directory is /tmp/ccm. If you need it to write to a different directory, specify the direct-
ory here.

SCM Tools

335



• Role (optional). Enter the role to login with for the provided user name. If no role is specified, AnthillPro will
use "build_mgr". Only those with a "build_mgr" role can label and/or create a baseline.

• Host (optional). Enter the host name of the machine Synergy is running on.

• Maintain Session. Check the box to maintain a single Synergy Session per job. If a Synergy session is slow to
establish, checking the box will ensure the job runs correctly.

• Use Remote Client. Check the box to remove the client option when starting a Synergy session. If checked,
AnthillPro will pass the -rc flag and remove the client when starting a Synergy session. If you check this box,
you will need specify the Database Info Directory above.

• Command path. Enter the location of the ccm executable (if not in the system path).

• Date Format. Determine the date format to use when parsing change logs. The default (EEE, MMM dd, yyyy
hh:mm:ss a) corresponds to the Java SimpleDateFormat that is output by the Synergy get-changelog com-
mand.

5. Click Set.

6. Select the Security tab. See Manage Security.

7. Click Edit, determine permissions, click Save, and then click Done.

8. Click Done.

Synergy Source Configuration
Once the main Synergy repository is identified (see Set Up Synergy Repository), configure the specific repository a
workflow uses. During project creation, the originating workflow is first associated with the Synergy repository.
Once this is done, the Source Configuration page will automatically pop up. (However, if you choose not to config-
ure the project source at initial creation, you can return to it by selecting the Configure, or Edit Source, link under
the Source Config menu on the Workflow Main page.)

1. Once Synergy is set up with AnthillPro (see Set Up Synergy Repository), create a project.

2. Select the appropriate Synergy repository from the drop-down menu and click Set.

3. Go to the originating workflow that was created as part of the project creation process. If you have not created an
originating workflow yet, see Create a New Workflow before continuing. Configure the source on the workflow:

• Project Spec. Give the Project Spec for the Synergy Project. The Project Spec is defined in Synergy, and is re-
quired here.

• Release. Enter the Synergy Release to use when creating a baseline. If you want to perform a label step, you
must give a release here.

• Purpose. Enter the synergy purpose to use when creating a baseline. If nothing is given, default is: Integration
Testing.

• Checkout Strategy. Select a strategy. Either perform a checkout if one does not exist or use an existing check-
out when dealing with Synergy Project Specs.

• Work Area. Give the Work Area of the Synergy Project Spec to be used.

• Working Directory Script. Select the Working Directory Script from the drop-down menu. The working dir-

SCM Tools

336



ectory is the location where the agent is going to run its commands. For example, if the working directory is
C:\projects\Project_A\ every command AnthillPro issues will be from that specific directory.

If no Working Directory Script is configured in the job, the script selected here will be used. See Working Dir-
ectory Scripts.

• Reconf. Enter the value to use for a checkout.

• Baseline. Give the baseline to checkout from.

• Versions. Give the value to use for a checkout.

• Checkout Purpose. Enter the purpose for the checkout. For example, Collaborative Development and Insu-
lated Development may be used.

• Users to exclude from changelog. To exclude any users from the changelog, input them here. Each excluded
user must be input on a separate line. Note that user names are case sensitive.

• File paths to exclude from changelog. If you need to exclude file paths from the changelog, list them here,
each on a separate line. Each path must be proceeded by + or - to include/exclude it from the changelog.

The following wild cards may be used:

• for any subdirectory: **/ -

• for any number of any characters except \ and /: * -

• for any single character / including \ and / Changelog file paths containing drive letter or any prefixes: ? -

Make sure to include the * at the beginning of the path.

Example exclude paths: -**/abc/**/* Except for: +**/abc/*.html. This will exclude everything un-
der the abc directory except for the HTML files in it.

4. Click Save.

Team Foundation Server (TFS) Source Control
The first step in using a TFS repository with AnthillPro is to configure it by following the Repositories link on the
System page. The configuration will allow basic information regarding TFS to be reused by several project work-
flows. Once configured, the repository will be listed on the Repositories main page.

AnthillPro supports both the 2005 and 2008 versions of TFS. Repository set up and source configuration are the
same for both.

Once the main repository has been identified, your workflows can then use the TFS repository during workflow
source configuration. During project creation, the workflow is associated with a specific TFS repository.

AnthillPro may also be configured to create a TFS WorkItem, add comments, publish a WorkItem report, and Re-
solve WorkItems. See Team Foundation Server (TFS) Project Tracking.

TFS Prerequisites

• You must have administrative permissions. See Manage Security.

SCM Tools

337



• The TFS URL must be available to complete the configuration.

• The TFS client must be installed on the same build machine as the agent so that AnthillPro can run TFS com-
mands.

Set Up TFS Repository

1. Go to System > Repositories from the Project Support menu.

2. On the Repositories page, click the Create New button.

3. Select TFS from the drop-down menu and click Set.

4. Configure repository:

• Name the repository. This is the name AnthillPro will use to identify this repository.

• Description. Give an optional description.

• TFS Server URL. Provide the repository URL.

• TFS Version. From the drop-down menu, select the version of TFS you are using.

• Command Path. Provide the absolute path to the tf executables if not in the system path.

5. Click Set.

6. Select the Security tab. See Manage Security.

7. Click Edit, determine permissions, click Save, and then click Done.

8. Click Done.

9. To set up a repository trigger, see Using Triggers with TFS.

TFS Source Configuration
Once the main TFS repository is identified (see Set Up TFS Repository), configure the specific repository a work-
flow uses. During project creation, the originating workflow is first associated with the TFS repository. Once this is
done, the Source Configuration page will automatically pop up. (However, if you choose not to configure the project
source at initial creation, you can return to it by selecting the Configure, or Edit Source, link under the Source Con-
fig menu on the Workflow Main page.)

1. Once TFS is set up with AnthillPro (see Set Up TFS Repository), create a project.

2. Select the appropriate TFS repository from the drop-down menu and click Set.

3. Go to the originating workflow that was created as part of the project creation process. If you have not created an
originating workflow yet, see Create a New Workflow before continuing. Configure the source on the workflow:

• Repository. Select the repository from the drop-down menu. By default, AnthillPro will use the repository se-
lected in the previous step. To change TFS repositories, select a different repository from the drop-down menu.
If only one repo is listed, then only one TFS repository is configured. If changing repositories, make sure to re-
configure all remaining fields.

SCM Tools

338



• Working Directory Script. Select the Working Directory Script from the drop-down menu. The working dir-
ectory is the location where the agent is going to run its commands. For example, if the working directory is
C:\projects\Project_A\ every command AnthillPro issues will be from that specific directory.

If no Working Directory Script is configured in the job, the script selected here will be used. See Working Dir-
ectory Scripts.

• Workspace Name. Give the name of the TFS workspace to use. A property (via ${property:Name}
format) or short script may be used here.

• Source URL. Give the project-source URL, relative to the selected repository root URL. A property (via
${property:Name} format) or short script may be used here. For example, you can script the SourcePath
Module.

• Tag. If checking out from a tag, give it here. This may include variables passed to the workflow via
${property:Name} format, or may be hard coded.

• Revision. Give the Revision to use for checkout. This may include variables passed to the workflow via
${property:Name} format, or may be hard coded.

• Directory Offset. Give the directory to retrieve files to (i.e., checkout destination), if the TFS default directory
structure is not desired. This may include variables passed to the workflow via ${property:Name} format.

• Users to exclude from changelog. To exclude any users from the changelog, input them here. Each excluded
user must be input on a separate line. Note that user names are case sensitive.

• File paths to exclude from changelog. If you need to exclude file paths from the changelog, list them here,
each on a separate line. Each path must be proceeded by + or - to include/exclude it from the changelog.

The following wild cards may be used:

• for any subdirectory: **/ -

• for any number of any characters except \ and /: * -

• for any single character / including \ and / Changelog file paths containing drive letter or any prefixes: ? -

Make sure to include the * at the beginning of the path.

Example exclude paths: -**/abc/**/* Except for: +**/abc/*.html. This will exclude everything un-
der the abc directory except for the HTML files in it.

4. Click Save.

Add Additional Source with TFS

If adding additional sources to the workflow is necessary, set up is similar to that of the initial source configuration
(see TFS Source Configuration). When adding additional sources, all URLs are relative to the root URL.

Once an additional source has been added to the workflow, it will appear on the workflow Main tab under the
Source Config menu, and may be edited or deleted using the icons under the Actions menu.

To add an additional source to an existing workflow:

1. Go to Administration and select the workflow that an additional source is to be added to.

SCM Tools

339



2. On the workflow Main page, select the Add Additional Source link under the Source Config menu.

3. Configure source:

• Source URL. Give the project-source URL, relative to the selected repository root URL.

• Tag. If checking out from a tag, give it here. This may include variables passed to the workflow via
${property:Name} format, or may be hard coded.

• Revision. Give the Revision to use for checkout. This may include variables passed to the workflow via
${property:Name} format, or may be hard coded.

4. Click Save.

Using Triggers with TFS
TFS repository triggers allow you to create a single hook in the repository that is capable of triggering every work-
flow using this repository. By default, AnthillPro activates the TFS repository trigger when the repository is con-
figured. When configuring an AnthillPro project, the repo trigger is automatically generated for every workflow.
Under some conditions, it may be necessary to deactivate the repository trigger for individual workflows. See Ignor-
ing TFS Repository Trigger.

1. Once the TFS repository is set up, click the Trigger tab.

2. Copy the TFS command that AnthillPro automatically generated.

3. Replace the <serverName> with the name of your TFS Server.

4. Go to your TFS Setup directory and execute the command. This will setup a SOAP notification to AnthillPro on
check-in that contains information about changes.

5. You can either deactivate of delete the trigger. Only one repository trigger may be active at any one time. If you
deactivate a trigger, you can return to it and reactivate it; if you delete a trigger, you can create a new one by re-
peating the previous steps.

6. See also Ignoring TFS Repository Trigger.

Ignoring TFS Repository Trigger

By default, AnthillPro activates the TFS repository trigger when the repository is configured. When configuring an
AnthillPro project, the repo trigger is automatically created and added to every workflow. Under some conditions, it
may be necessary to deactivate the repository trigger for individual workflows: It is common for a project to have
multiple workflows that must build independently of each other, and in this case the repository trigger may kick off
a workflow unnecessarily. For example, a project might have 3 workflows that need to build independently of each
other: Workflow A just compiles code; workflow B performs nightly build; and workflow C builds a release candid-
ate. To keep the workflows, which all use the same repository, independently building (i.e., build when you want
them to) disable the repository trigger on the workflow and create a workflow trigger (see Use Triggers and Sched-
uled Builds).

1. Go to Administration, select the appropriate workflow, and select the Triggers tab. If you can't access this page,
that means you don't have the appropriate permissions. Contact your AnthillPro administrator.

2. Click the Ignore Repository Trigger icon under the Actions menu.

SCM Tools

340



Once the trigger is disabled, the icon will change from green to brown. To enable the trigger for this workflow,
simply click the icon again.

3. Create a workflow trigger. See Use Triggers and Scheduled Builds.

4. Repeat Items 1 thru 3 for every workflow that will not use the repository trigger.

Vault (SourceGear)
To use a SourceGear Vault repository with AnthillPro, configure it from the Repositories item on the Administration
page. The configuration will allow basic information regarding the Vault server to be reused by several project
workflows. Once configured, the repository will be listed on the Repositories main page.

Vault Prerequisites

• You must have administrative permissions. See Manage Security.

• AnthillPro must be set up as a Vault user.

• The command path of the executable and the host name must be available.

Vault Configuration

1. Go to System > Repositories from the Project Support menu.

2. On the Repositories page, click the Create New button.

3. Select Vault from the drop-down menu and click Set.

4. Configure repository:

• Name the repository.

• Description. Give an optional description.

• Host. Provide the name of the host machine.

• Repository. Provide the name of the Vault repository.

• Username. Give the user name AnthillPro will use to access the repository.

• Password. Provide the password corresponding to the account specified in the Username field. Select either:
Set Password or Use Script.

• Set Password. If a password is associate with AnthillPro's Vault account, select this potion. Give the pass-
word in the Password field and confirm the password.

• Use Script (advanced). Give a parameterizable value that will resolve to the password. Use this instead of
the Password field if the password will be stored in a secure property resolved at runtime. See Scripting.

• Use SSL. Check the box to use SSL when AnthillPro connects to the repository.

SCM Tools

341



• Command Path. Provide the absolute path to the executable if not in the system path.

5. Click Set.

6. Select the Security tab. See Manage Security.

7. Click Edit, determine permissions, click Save, and then click Done.

8. Click Done.

ViewVC
The ViewVC integrations provides CVS and Subversion users access to the ViewVC browser interface from within
the AnthillPro UI. Once configured, the integration allows users to view the ViewVC navigable directory, revision,
and change log listings, including specific versions of files. See ViewVC and CVS or ViewVC and Subversion.

ViewVC and CVS
The ViewVC integrations provides CVS (and CVSNT) users access to the ViewVC browser interface from within
the AnthillPro UI. Once configured, the integration allows users to view the ViewVC navigable directory, revision,
and change log listings, including specific versions of files.

ViewVC and CVS Prerequisites

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• The CVS repository must be correctly configured. See CVS.

• The ViewVC URL and repository name must be available.

• A project must be active in AnthillPro.

Set up ViewVC and CVS

Configure AnthillPro to integrate with ViewVC. Links to ViewVC will appear when this is configured.

• Historic information is not available due to the nature of the AnthillPro 3.4 integration. However, the integration
will allow you to view all changes, etc., made after AnthillPro 3.5 is installed.

1. Go to System > ViewVC under the Integration menu.

2. On the ViewVC page, click Edit.

3. Give the ViewVC Server URL, click Set then Done.

4. Go to System > Repositories from the Project Support menu.

5. Select the CVS repository (from Item Four) from the Repositories list. This item requires that the CVS reposit-
ory is already configured. See CVS.

SCM Tools

342



6. On the Main tab, click Edit and select ViewVC from the drop-down menu (of the Source Viewer item).

• To view the repository, follow the Repository URL link (of the Source Viewer item).

7. Click Set then Done.

Using ViewVC with CVS

Once ViewVC has been set up (see Set up ViewVC and CVS), AnthillPro makes Source URL and Tags URL in-
dexes available via ViewVC. Revision information, including detailed information on each file changed, is available
on the Dashboard Changes tab.

To view Source URL and Tags URL via ViewVC:

1. Go to Administration and select the appropriate workflow.

2. On the workflow Main tab, follow the Edit Source link in the Source Configuration menu.

3. For the Module Name item, click the Source URL link and ViewVC will open in a new window.

To view revision and file changes via ViewVC:

1. Go to Dashboard > Changes tab.

2. Select the change number link and ViewVC will open the revision in a new window.

3. Expand the Change number and select the View Files link. Select an individual change and ViewVC will open a
view of the actual change.

ViewVC and Subversion

SCM Tools

343



The ViewVC integrations provides Subversion users access to the ViewVC browser interface from within the Ant-
hillPro UI. Once configured, the integration allows users to view the ViewVC navigable directory, revision, and
change log listings, including specific versions of files.

ViewVC and Subversion Prerequisites

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• The Subversion repository must be correctly configured. See Subversion.

• The ViewVC URL and repository name must be available.

• A project must be active in AnthillPro.

Set up ViewVC and Subversion

Configure AnthillPro to integrate with ViewVC. Links to ViewVC will appear when this is configured. In order to
use ViewVC integration, the Source Configuration Username field (see Subversion) must be the ViewVC reposit-
ory name. It is not possible to use ViewVC if properties are set for the Username field.

1. Go to System > ViewVC under the Integration menu.

2. On the ViewVC page, click Edit.

3. Give the ViewVC Server URL, click Set then Done.

4. Go to System > Repositories from the Project Support menu.

5. Select the Subversion repository (from Item Four) from the Repositories list. This item requires that the Sub-
version repository is already configured. See Subversion.

6. On the Main tab, click Edit and select ViewVC from the drop-down menu (of the Source Viewer item).

• To view the repository, follow the Repository URL link (of the Source Viewer item).

7. Click Set then Done.

Using ViewVC with Subversion

Once ViewVC has been set up (see Set up ViewVC and Subversion), AnthillPro makes Source URL and Tags URL
indexes available via ViewVC. Revision information, including detailed information on each file changed, is avail-
able on the Dashboard Changes tab.

To view Source URL and Tags URL via ViewVC:

1. Go to Administration and select the appropriate workflow.

SCM Tools

344



2. On the workflow Main tab, follow the Edit Source link on the Source Configuration menu.

3. For the Source URL item, click the Source URL link and ViewVC will open in a new window.

4. For the Tags URL item, click the Tags URL link and ViewVC will open in a new window.

To view revision and file changes via ViewVC:

1. Go to Dashboard and select the Changes tab.

2. Select the change number link and ViewVC will open the revision in a new window.

3. Expand the Change number and select the View Files link. Select an individual change and ViewVC will open a
view of the actual change.

Visual SourceSafe (VSS)
To use a Microsoft Visual SourceSafe (VSS) repository with AnthillPro, configure it by following the Repositories
link on the System page. The configuration will allow basic information regarding VSS to be reused by several
project workflows. Once configured, the repository will be listed on the Repositories main page.

After the main repository has been identified, your workflows can then use the VSS repository. During project cre-
ation, associate the project workflow with a specific VSS repository and create a build job that includes the VSS job
steps (see VSS Source Configuration). If you use the Job Wizard, AnthillPro will automatically add these steps dur-
ing job configuration; however, if you create your own job, you will need to add these steps yourself.

SCM Tools

345



VSS Prerequisites

• You must have administrative permissions. See Manage Security.

• The VSS root must be available to complete the configuration. The root must include the path to the repository
(where the srcsafe.ini file resides). This can be either a local path or a UNC path to a shared drive and must end
with a \ to signify a directory.

Set Up VSS Repository

1. Go to System > Repositories from the Project Support menu.

2. On the Repositories page, click the Create New button.

3. Select VSS from the drop-down menu and click Set.

4. Configure repository:

• Name the repository.

• Description. Give an optional description.

• Root. Provide the path to the repository (where the srcsafe.ini file resides). This could be either a local path or
a UNC path to a shared drive and must end with a \ to signify a directory.

• Username. Give the user name to use for AnthillPro to access the repository.

• Password. Provide the password corresponding to the account specified in the Username field. Select either:
No Password, Use Password, or Use Script.

• No Password. If no password is associated with AnthillPro's VSS account, use this option.

• Use Password. If a password is associate with AnthillPro's VSS account, select this potion. Give the pass-
word in the Password field and confirm the password.

• Use Script (advanced). Give a parameterizable value that will resolve to the password. Use this instead of
the Password field if the password will be stored in a secure property resolved at runtime. See Scripting.

• Command Path. Provide the absolute path to the ss executables if not in the system path.

5. Click Set.

6. Select the Security tab. See Manage Security.

7. Click Edit, determine permissions, click Save, and then click Done.

8. Click Done.

9. See VSS Source Configuration.

VSS Source Configuration
Once the main VSS repository is identified (see Set Up VSS Repository), configure the specific source a workflow
uses. During project creation, the originating workflow is first associated with the VSS repository. Once this is done,

SCM Tools

346



the Source Configuration page will automatically pop up. (However, if you choose not to configure the project
source at initial creation, you can return to it by selecting the Edit Source link on the Workflow Main page.)

1. Once Git is set up with AnthillPro (see Set Up Git Repository), create a project.

2. Go to the originating workflow that was created as part of the project creation process. If you have not created an
originating workflow yet, see Create a New Workflow before continuing. Configure the source on the workflow:

• Repository. This field is automatically populated by AnthillPro.

• Working Directory Script. Select the Working Directory Script from the drop-down menu. The working dir-
ectory is the location where the agent is going to run its commands. For example, if the working directory is
C:\projects\Project_A\ every command AnthillPro issues will be from that specific directory.

If no Working Directory Script is configured in the job, the script selected here will be used. See Working Dir-
ectory Scripts.

• Project/Branch. Give the name of the project to use in the form of $/project. If you want to use a branch
or module, use something like $/project/path/to/branch.

• Label Script. Give the label to use, if using labels.

• Users to exclude from changelog. To exclude any users from the changelog, input them here. Each excluded
user must be input on a separate line. Note that user names are case sensitive.

• File paths to exclude from changelog. If you need to exclude file paths from the changelog, list them here,
each on a separate line. Each path must be proceeded by + or - to include/exclude it from the changelog.

The following wild cards may be used:

• for any subdirectory: **/ -

• for any number of any characters except \ and /: * -

• for any single character / including \ and / Changelog file paths containing drive letter or any prefixes: ? -

Make sure to include the * at the beginning of the path.

Example exclude paths: -**/abc/**/* Except for: +**/abc/*.html. This will exclude everything un-
der the abc directory except for the HTML files in it.

3. Click Save.

SCM Tools

347



Chapter 64. Build Tools
AnthillPro integrates with many build tools to support building and deploying. The integrations are implemented as
job steps that allow you to execute a script written in any scripting language. For most tools, you can write your
scripts within the AnthillPro UI.

When you set up your build process, the integration is added as a single step that executes your build script. For your
deployment process, you use the tool to execute your deploy script that moves the artifacts to their destination.

Ant
The builder is added to your AnthillPro project as a job step. Typically, the Build step is added after a Cleanup, Pop-
ulate Workspace, Stamp, and Get Dependency Artifacts step of a build job; however, your job configuration may
vary (see Create a New Job). The builder is also used to perform deployments, and is added to the deployment work-
flow as a job step (see Create a Deployment Job).

You can write the build/deploy script within the AnthillPro UI on the Script Content tab. Or, you can write the script
outside of AnthillPro and then have the server run that file.

To use Ant as part of your build or deployment process:

1. Follow the instructions for project creation given in Setting Up a Build Process if you are building a project.

Or:

Follow the instructions for Setting Up a Deployment Process if you are deploying the artifacts.

2. When you get to the Builder step, configure the Builder:

• Name the builder. This name will be used by the AnthillPro system.

• Working Directory Offset. Enter the working directory to use when executing this command. This is relative
to current working directory (blank for the current). For some build systems, there will be a subdirectory
named after the project or module.

• Ant Script File. Give the name of the Ant script file.

• Target Name. Enter the name of the target to run in the Ant script file.

• Ant Properties. Give the Ant-specific arguments, such as using -v for verbose output.

• Ant Configuration. Enter the path to the version of Ant that will be used to run the build script. If every agent
that might run a build has this configured in the same location, a simple path can be entered here. More com-
monly, the location will vary between agents, so AnthillPro supports using a simple expression language to
lookup environment variables on the agent. You may need to create an environment variable on each agent
(either at those agents, or in the Agent sections under the Environment menu) with the path.

• JVM Configuration. Give the path to the Java version used to compile the code. If every agent that might run
a build has this configured in the same location, a simple path can be entered here. More commonly, the loca-
tion will vary between agents, so AnthillPro supports using a simple expression language to lookup environ-
ment variables on the agent. You may need to create an environment variable on each agent (either at those
agents, or in the Agent sections under the Environment menu) with the path.

• JVM Properties. Enter the properties passed to the JVM.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

348



• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

3. Ant Properties (optional). Select the Properties tab and provide any additional properties that should be in place
when the build runs. These properties are passed to the executable. It is not necessary to escape spaces or use
quoted strings. Enter each property on a separate line in the following format: name=value.

4. Ant Environment Variables (optional). Select the Environment Variables tab to provide any additional vari-
ables that should be in place when the build runs. Environment variable values may contain references to existing
values in the following format: name=${env/<NAME>};value. If the value of the <NAME> variable is
value2 in the current environment, then the above example will be expanded to: name=value2;value. Us-
ing this technique, it is possible add an entry to PATH in the following manner: PATH=my/path/entry;0.
Case is significant even on Windows systems.

5. Ant Script Content. Here, you can write the build/deploy script directly in the AnthillPro UI. Click the Script
Content tab to define the content of the Ant script in this step. The content will be written to file when executed.

6. Click Save.

Groovy (Builder)
The builder is added to your AnthillPro project as a job step. Typically, the Build step is added after a Cleanup, Pop-
ulate Workspace, Stamp, and Get Dependency Artifacts step of a build job; however, your job configuration may
vary (see Create a New Job). The builder is also used to perform deployments, and is added to the deployment work-
flow as a job step (see Create a Deployment Job).

You can write the build/deploy script within the AnthillPro UI on the Script Content tab. Or, you can write the script
outside of AnthillPro and then have the server run that file.

To use Groovy as part of your build or deployment process:

1. Follow the instructions for project creation given in Setting Up a Build Process if you are building a project.

Or:

Follow the instructions for Setting Up a Deployment Process if you are deploying the artifacts.

2. When you get to the Builder step, configure the Builder:

• Name the builder. This name will be used by the AnthillPro system.

• Working Directory Offset. Enter the working directory to use when executing this command. This is relative
to current working directory (blank for the current).

Build Tools

349



• Groovy Script File. Give the name of the Groovy script file.

• Groovy Location. Enter the path to the version of Groovy that will be used to run the build script.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

3. Groovy Properties (optional). Select the Properties tab and provide any additional properties that should be in
place when the build runs. These properties are used as if they were passed to the Groovy executable on the com-
mand line. Enter each property on a separate line.

4. Groovy Environment Variables (optional). Select the Environment Variables tab to provide any additional
variables that should be in place when the build runs. Environment variable values may contain references to ex-
isting values in the following format: name=${env/<NAME>};value. If the value of the <NAME> variable is
value2 in the current environment, then the above example will be expanded to: name=value2;value. Us-
ing this technique, it is possible add an entry to PATH in the following manner: PATH=my/path/entry;0.
Case is significant even on Windows systems.

5. Groovy Script Content. Here, you can write the build/deploy script directly in the AnthillPro UI. Click the
Script Content tab to define the content of the Groovy script in this step. The content will be written to file when
executed.

6. Click Save.

Make
The builder is added to your AnthillPro project as a job step. Typically, the Build step is added after a Cleanup, Pop-
ulate Workspace, Stamp, and Get Dependency Artifacts step of a build job; however, your job configuration may
vary (see Create a New Job). The builder is also used to perform deployments, and is added to the deployment work-
flow as a job step (see Create a Deployment Job).

To use Make as part of your build or deployment process:

1. Follow the instructions for project creation given in Setting Up a Build Process if you are building a project.

Or:

Follow the instructions for Setting Up a Deployment Process if you are deploying the artifacts.

2. When you get to the Builder step, configure the Builder:

• Name the builder. This name will be used by the AnthillPro system.

Build Tools

350



• Working Directory Offset. Enter the working directory to use when executing this command. This is relative
to current working directory (blank for the current).

• Make File Name. Give the name of the Make file in the source repository. This only needs to be set if you use
a non-standard Make file name.

• Make Targets. Enter the target(s) to execute in the Make file. The default target will be executed if you do not
specify any here. If entering multiple targets, separate each target with a space just as you would on the com-
mand line. (optional).

• Command-line Arguments. Specify any additional command line arguments to pass to Make. Enter them ex-
actly as they would appear on the command line.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

3. Make Environment Variables (optional). Select the Environment Variables tab to provide any additional vari-
ables that should be in place when the build runs. Environment variable values may contain references to existing
values in the following format: name=${env/<NAME>};value. If the value of the <NAME> variable is
value2 in the current environment, then the above example will be expanded to: name=value2;value. Us-
ing this technique, it is possible add an entry to PATH in the following manner: PATH=my/path/entry;0.
Case is significant even on Windows systems.

4. Click Save.

Maven (Builder)
The builder is added to your AnthillPro project as a job step. Typically, the Build step is added after a Cleanup, Pop-
ulate Workspace, Stamp, and Get Dependency Artifacts step of a build job; however, your job configuration may
vary (see Create a New Job). The builder is also used to perform deployments, and is added to the deployment work-
flow as a job step (see Create a Deployment Job).

If you are a Maven 2 user, you can configure AnthillPro to act as a Maven repository. This enables AnthillPro to
provide extended visibility into Maven's dependency-management capabilities. See Maven 2.

To use the Maven builder as part of your build or deployment process:

1. Follow the instructions for project creation given in Setting Up a Build Process if you are building a project.

Or:

Build Tools

351



Follow the instructions for Setting Up a Deployment Process if you are deploying the artifacts.

2. When you get to the Builder step, configure the Builder:

• Name the builder. This name will be used by the AnthillPro system.

• Working Directory Offset. Enter the working directory to use when executing this command. This is relative
to current working directory (blank for the current).

• Maven File Path. Location of the project.xml or pom.xml file relative to the project root. If your .xml file is in
the root of the project, then leave this blank.

• Maven Goal. The name of the goal/target to run. If there are multiple goals enter them in order separated by a
space

• Maven Properties. The name of the goal/target to run. If there are multiple goals enter them in order separated
by a space

• Maven Home. The path to the installation of Maven that will be used.

• Maven Version. The version of maven that will be used. Select either 1.x or 2.x.

If you are using the Maven 2 integration to allow AnthillPro to manage dependencies, you must select Maven 2
from the drop-down menu. See Maven 2 for more about the integration.

• Java Home. The path to the installation of Java for Maven to use.

• JVM Properties. Properties passed to the JVM.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

3. Maven Properties (optional). Select the Properties tab and provide any additional properties that should be in
place when the build runs. These properties are used as if they were passed to the maven executable on the com-
mand line. Enter each properties on a separate line in the following format: -Dname=value.

4. Maven Environment Variables (optional). Select the Environment Variables tab to provide any additional vari-
ables that should be in place when the build runs. Environment variable values may contain references to existing
values in the following format: name=${env/<NAME>};value. If the value of the <NAME> variable is
value2 in the current environment, then the above example will be expanded to: name=value2;value. Us-
ing this technique, it is possible add an entry to PATH in the following manner: PATH=my/path/entry;0.
Case is significant even on Windows systems.

5. Click Save.

Build Tools

352



Maven 2
Use the Maven 2 integration to have AnthillPro act as a Maven repository for projects built in AnthillPro, as well as
a caching proxy for external Maven repositories. Once the external Maven repository is configured on the System
page, AnthillPro will get the artifacts from the Maven and cache them, in the form of Codestation projects, for future
use. The integration allows AnthillPro to provide complete visibility into the project dependencies you manage us-
ing Maven 2.

The integration allows you to either have the artifacts retrieved from Codestation (AnthillPro's artifact repository)
or directly from your Maven repositories. If pulling the artifacts directly from Maven, the system will check for
AnthillPro projects first, and then check Maven. When the projects are found in Maven, AnthillPro will replicate
the Maven repository in Codestation (AnthillPro's artifact management system) for future use.

When using an external Maven repository, your AnthillPro projects need to be associated with a Life-Cycle Model
that contains an artifact set named "maven" (see Using a Maven-specific Life-Cycle Model), and must contain
Maven-specific project properties. To use the Maven 2 integration you will need to:

1. Modify the Maven POM file. To use AnthillPro as a Maven repository, the POM file will need to point to the
AnthillPro server.

2. Modify build agent settings.xml file. The agent must supply the user name and password used to connect
to AnthillPro.

3. Create Maven 2 Repository. Under the Integrations menu on the System page, tell AnthillPro about the reposit-
ory you want to create. To have AnthillPro act as more than one Maven repository, complete multiple configura-
tions.

4. Configure Maven 2 Projects. The integration allows you to create both Codestation and Life-Cycle-based
projects.

5. Modify Settings on Developer Machines. Each developer will need change their POM file to point to the cor-
rect URL and provide the correct password and username.

When a build is needed, AnthillPro will use it's local cache to fulfill dependencies -- using the most recent version.
If the appropriate dependency is not found, it will then retrieve the dependency from your other Maven repositories.

Maven 2 Prerequisites

• The build agent must be on the same machine as Maven (or Maven must be downloaded with the project).

• You must have administrative permissions to configure projects and to the System page.

• You must be able to edit the build agent's settings.xml file.

• You must be able to edit Maven POM file.

Modify Maven POM File
The POM file must reference what repository AnthillPro should use. To use AnthillPro as a Maven repository, the
POM should be similar to the following example:

<project>

Build Tools

353



<distributionManagement>
<repository>
<id>anthill</id>
<name>Anthill3 Repo</name>
<url>${env.AH_WEB_URL}rest/maven2dist/${env.AH_BUILD_LIFE_ID}</url>

</repository>
<snapshotRepository>
<uniqueVersion>false</uniqueVersion>
<id>anthill</id>
<name>Anthill3 Repo</name>
<url>${env.AH_WEB_URL}rest/maven2dist/${env.AH_BUILD_LIFE_ID}</url>

</snapshotRepository>
</distributionManagement>

</project>

Because AnthillPro will always favor it's local cache, you may need to add a setting in your POM file to clear the
cache before the build occurs. This will ensure AnthillPro retrieves the artifacts from your other Maven repositories
for the build.

Modify Build Agent Settings
The build agent settings.xml file must be modified to supply the user name and password (it will be will even-
tually be obfuscated) for basic authentication with Maven.

The integration allows AnthillPro to also act as a Maven repository for developer dependency resolves, as well as
collect the deployed artifacts through AnthillPro builds and for storing dependencies. Your developers will have to
make a similar change in their individual setting file or overwrite the URL. See Modify Settings on Developer Ma-
chines.

The settings.xml file should be similar to the following:

<settings>
<servers>
<server>
<id>anthill</id>
<username>username</username>
<password>password</password>

</server>
</servers>

</settings>

Create Maven 2 Repository
The information given here will be used by your AnthillPro projects. If you have more than one Maven repository,
create a new repository for each.

1. Go to System > Maven under the Integrations menu.

On the Maven Repositories page, determine the dependency trigger type and create new repositories.

2. Dependency Trigger Type. When AnthillPro detects dependencies between AnthillPro projects through Maven,
the type of build trigger that will be automatically created is configured globally, and is based on your current
practices defined in your POM file. To set a dependency-trigger strategy, click Edit and choose either No Trig-
ger, Push or Pull.

Build Tools

354



• No Trigger. AnthillPro will not use a dependency trigger.

• Push. See Pushing Builds for more on AnthillPro pushing dependency triggers.

• Pull. See Pulling Builds for more on AnthillPro pulling dependency triggers.

3. Maven Repositories. Click Create Repository and configure the repository:

• Repository Name. Give the name of the repository AnthillPro should retrieve the artifacts from. This is the
name set in Maven.

• Description (optional). Provide a unique description of this repository.

• URL. Give the exact URL of the Maven repository AnthillPro will retrieve the artifacts from.

• Proxy. If you need to use a proxy, select it from the drop-down menu.

If AnthillPro must connect to a Maven 2 repository via a proxy (e.g., it is public or behind a firewall), set up a
proxy server before continuing. Once the AnthillPro proxy is set up, associate all the Maven 2 repositories with the
AnthillPro proxy that will connect to them. If you have multiple Maven repositories that must be connected via a
proxy, configure a separate proxy for each. To configure a proxy:

a. Select the Maven link under the Integration menu on the System page. Follow the Proxies link on the Maven
Settings page.

b. See Create Server Proxy.

4. Click Save.

5. To add another repository, repeat Items 3 and 4 then click Done.

6. See Configure Maven 2 Projects.

Configure Maven 2 Projects
Basic project configuration is the same as outlined in the Setting Up a Build Process and Using Codestation Projects
sections. The instructions below assume you are using the Maven Builder integration for builds and the "Maven
Projects" Life-Cycle Model.

Setting project properties. The Maven 2 integration requires you to set specific AnthillPro project properties and
use a specialized Life-Cycle Model.

• Life-Cycle-based projects (for builds). Create a maven.groupId property containing the project's Maven
groupId and a maven.artifactId property containing the project's Maven artifactId.

When Maven publishes artifacts to AnthillPro and parses the published POM file for dependencies, the system will
automatically set the correct maven.version property on the Build Life.

• Codestation projects. Create a maven.groupId property containing the project's Maven groupId and a
maven.artifactId property containing the project's Maven artifactId.

Make sure that the Codestation project includes a POM file if you manually create one. Otherwise, the integration
may fail during the resolve or build.

Build Tools

355



Using a Maven-specific Life-Cycle Model. Any project using the Maven 2 integration must include an artifact set
called "maven". The artifacts will then be stored in a folder named 'Maven Projects' when using an external Maven
repository. You can either use the "Maven Projects" Life-Cycle Model that ships with AnthillPro (go to System >
Project Support > Life-Cycle Models > Maven Projects for an example), or add the "maven" artifact set to an ex-
isting Life-Cycle Model.

Modify Settings on Developer Machines
The integration allows AnthillPro to act as a Maven repository for developer dependency resolves, as well as collect
the deployed artifacts through AnthillPro builds and for storing dependencies. Each developer will need to change
their POM file to point to their local repository URL. It should look something like this:

<project>
<repositories>
<repository>

<id>anthill</id>
<name>Anthill3 Repo</name>
<url>http://anthillpro.yourcompany.com:8080/rest/maven2</url>

</repository>
</repositories>

</project>

In addition, each developer will need to modify their settings.xml file (similar to what was outlined in the
Modify Build Agent Settings section) to provide the correct username and password. It should look something like
this:

<settings>
<servers>
<server>
<id>anthill</id>
<username>username</username>
<password>password</password>

</server>
</servers>

</settings>

MSBuild
The builder is added to your AnthillPro project as a job step. Typically, the Build step is added after a Cleanup, Pop-
ulate Workspace, Stamp, and Get Dependency Artifacts step of a build job; however, your job configuration may
vary (see Create a New Job). The builder is also used to perform deployments, and is added to the deployment work-
flow as a job step (see Create a Deployment Job).

You can write the build/deploy script within the AnthillPro UI on the Script Content tab. Or, you can write the script
outside of AnthillPro and then have the server run that file.

To use MSBuild as part of your build or deployment process:

1. Follow the instructions for project creation given in Setting Up a Build Process if you are building a project.

Or:

Follow the instructions for Setting Up a Deployment Process if you are deploying the artifacts.

2. When you get to the Builder step, configure the Builder:

Build Tools

356



• Name the builder. This name will be used by the AnthillPro system.

• Working Directory Offset. Enter the working directory to use when executing this command. This is relative
to current working directory (blank for the current).

• Command Path. The full path to msbuild.exe including msbuild.exe (blank if it is on the path).

• Build File. The name of the build file to execute.

• Targets. The name of the targets to run. Multiple targets can be separated with semi-colons or commas.

• Verbosity Level. The verbosity level.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

3. MSBuild Properties (optional). Select the Properties tab and provide any additional properties that should be in
place when the build runs.

• Properties. These properties are passed to the MSBuild executable. It is not necessary to escape spaces or use
quoted strings. Enter each property on a separate line in the following format: name=value (e.g.,
WarningLevel=2 will become /p:WarningLevel=2 on the command line).

• Parameters. These parameters are directly passed to the MSBuild executable. It is not necessary to escape
spaces or use quoted strings. Enter each parameter on a separate line (e.g., /clp:PerformanceSummary).

4. MSBuild Environment Variables (optional). Select the Environment Variables tab to provide any additional
variables that should be in place when the build runs. Environment variable values may contain references to ex-
isting values in the following format: name=${env/<NAME>};value. If the value of the <NAME> variable is
value2 in the current environment, then the above example will be expanded to: name=value2;value. Us-
ing this technique, it is possible add an entry to PATH in the following manner: PATH=my/path/entry;0.
Case is significant even on Windows systems.

5. MSBuild Script Content. Here, you can write the build/deploy script directly in the AnthillPro UI. Click the
Script Content tab to define the content of the Groovy script in this step. The content will be written to file when
executed.

6. Click Save.

Nant
The builder is added to your AnthillPro project as a job step. Typically, the Build step is added after a Cleanup, Pop-
ulate Workspace, Stamp, and Get Dependency Artifacts step of a build job; however, your job configuration may

Build Tools

357



vary (see Create a New Job). The builder is also used to perform deployments, and is added to the deployment work-
flow as a job step (see Create a Deployment Job).

You can write the build/deploy script within the AnthillPro UI on the Script Content tab. Or, you can write the script
outside of AnthillPro and then have the server run that file.

To use Nant as part of your build or deployment process:

1. Follow the instructions for project creation given in Setting Up a Build Process if you are building a project.

Or:

Follow the instructions for Setting Up a Deployment Process if you are deploying the artifacts.

2. When you get to the Builder step, configure the Builder:

• Name the builder. This name will be used by the AnthillPro system.

• Working Directory Offset. Enter the working directory to use when executing this command. This is relative
to current working directory (blank for the current).

• Nant Script File. The name of the Nant script file.

• Target Name. The name of the target(s) to run in the Nant script file.

• Nant Properties. Nant-specific arguments, such as -ext.

• Nant Location. The path to the version of Nant that will be used to run the build script.

• Mono Location. The path to the version of mono to run Nant to run with. If this is empty or evaluates to noth-
ing on the agent, mono will not be used.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

3. Nant Properties (optional). Select the Properties tab and provide any additional properties that should be in
place when the build runs. These properties are used as if they were passed to the Nant executable on the com-
mand line. Enter each properties on a separate line in the following format: -D:name=value.

4. Nant Environment Variables (optional). Select the Environment Variables tab to provide any additional vari-
ables that should be in place when the build runs. Environment variable values may contain references to existing
values in the following format: name=${env/<NAME>};value. If the value of the <NAME> variable is
value2 in the current environment, then the above example will be expanded to: name=value2;value. Us-
ing this technique, it is possible add an entry to PATH in the following manner: PATH=my/path/entry;0.
Case is significant even on Windows systems.

Build Tools

358



5. Nant Script Content. Here, you can write the build/deploy script directly in the AnthillPro UI. Click the Script
Content tab to define the content of the Groovy script in this step. The content will be written to file when ex-
ecuted.

6. Click Save.

Shell Builder
The builder is added to your AnthillPro project as a job step. Typically, the Build step is added after a Cleanup, Pop-
ulate Workspace, Stamp, and Get Dependency Artifacts step of a build job; however, your job configuration may
vary (see Create a New Job). The builder is also used to perform deployments, and is added to the deployment work-
flow as a job step (see Create a Deployment Job).

To use the Shell builder as part of your build or deployment process:

1. Follow the instructions for project creation given in Setting Up a Build Process if you are building a project.

Or:

Follow the instructions for Setting Up a Deployment Process if you are deploying the artifacts.

2. When you get to the Builder step, configure the Builder:

• Name the builder. This name will be used by the AnthillPro system.

• Working Directory Offset. Enter the working directory to use when executing this command. This is relative
to current working directory (blank for the current).

• Interpreter (optional). By default, the following platform-specific command-line behavior will be used when
this filed is left blank:

• Windows: .bat file interpreter.

• VMS: .com file interpreter.

• Other systems: the shell specified by 'anthill3/shell' agent variable if present (see Agent Properties). *nix
systems may override this by having the Command Line starts with a #! sequence.

If you need AnthillPro to use a different interpreter to evaluate the command, specify it here.

• Shell Script. Enter the script to be executed. The script is going to be passed to and run on the native shell of
the selected agent.

• Daemon. Check this option to run the command in the background while permitting the step to complete im-
mediately. AnthillPro does not capture of the output of a daemon command.

• Output File. Enter the path of the file to which the command output is directed. Leave blank to discard the
output. Setting a value for this option does not cause AnthillPro to capture the output as part of the step.

• Impersonation. Check the box to run the builder as an impersonated user. This option requires the agent run
as root on Unix or Local System on Windows. Note that any commands available to the superuser will be avail-
able to the agent when impersonation is used.

Impersonation is only necessary when a user may have permission to do one part of a process but does not
have permission to execute another part of the process. For example, take the common application-specific IDs
"oracle" and "websphere." In order to run a database update script, the user needs to be the "oracle" user;

Build Tools

359



however, to update the application the user needs to be "websphere." Using impersonation, the same user can
run the update script as the "oracle" user and also update the application as the impersonated "websphere" user.
This will allow you to combine these steps into a single process.

• User. Give the user name for the impersonated user.

• Password. Give the password for the impersonated user.

• Confirm. Give the password again.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

3. Shell Builder Environment Variables (optional). Select the Environment Variables tab to provide any addi-
tional variables that should be in place when the build runs. Environment variable values may contain references
to existing values in the following format: name=${env/<NAME>};value. If the value of the <NAME> vari-
able is value2 in the current environment, then the above example will be expanded to:
name=value2;value. Using this technique, it is possible add an entry to PATH in the following manner:
PATH=my/path/entry;0. Case is significant even on Windows systems.

4. Click Save.

Visual Studio (headless mode)
The builder is added to your AnthillPro project as a job step. Typically, the Build step is added after a Cleanup, Pop-
ulate Workspace, Stamp, and Get Dependency Artifacts step of a build job; however, your job configuration may
vary (see Create a New Job). The builder is also used to perform deployments, and is added to the deployment work-
flow as a job step (see Create a Deployment Job).

To use the Visual Studio builder as part of your build or deployment process:

1. Follow the instructions for project creation given in Setting Up a Build Process if you are building a project.

Or:

Follow the instructions for Setting Up a Deployment Process if you are deploying the artifacts.

2. When you get to the Builder step, configure the Builder:

• Name the builder. This name will be used by the AnthillPro system.

Build Tools

360



• Working Directory Offset. Give the working directory to use when executing this command. This is relative
to current working directory (blank for the current).

• Solution File. The location of the solution file.

• Command Path. The path to the devenv executable file in the Visual Studio Installation.

• Build Command. The Visual Studio Command to Run.

• Mode. Whether you are building in Debug or Release mode.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

3. Visual Studio Properties (optional). Select the Properties tab and provide any additional properties that should
be in place when the build runs. These properties are used as if they were passed to the devenv executable on
the command line. Enter each property on a separate line.

4. Visual Studio Environment Variables (optional). Select the Environment Variables tab to provide any addi-
tional variables that should be in place when the build runs. Environment variable values may contain references
to existing values in the following format: name=${env/<NAME>};value. If the value of the <NAME> vari-
able is value2 in the current environment, then the above example will be expanded to:
name=value2;value. Using this technique, it is possible add an entry to PATH in the following manner:
PATH=my/path/entry;0. Case is significant even on Windows systems.

5. Click Save.

Build Tools

361



Chapter 65. Testing Tools
The testing tool integrations allow you to run a suite of automated tests either on you build workflow or as a second-
ary process -- in addition to gathering data from tests that are invoked with your build script. Most testing integra-
tions captures the data generated by the tests, and make that information available through the UI. This allows you to
perform trending over time, to see which tests are failing, track new tests, etc.

The integrations, implemented as job steps, generally enable AnthillPro to:

• Run tests. This step allows AnthillPro to run a test or suite of tests. If your tests are invoked from your build
scripts (e.g., using JUnit), the integration will allow AnthillPro to gather the data and store it in the AnthillPro
data warehouse.

• Capture data and publish a report. This step collects the test results and other information and then stores it in
the AnthillPro data warehouse. This allows you to generated reports and make them available through the Ant-
hillPro UI.

• Tool-specific commands. For most testing tools, AnthillPro can also perform tasks only supported by that partic-
ular tool.

Agitar
Run Agitate and generate the Dashboard Report with the Agitar integration. AnthillPro users can also add informa-
tion about JUnit test results to a data warehouse.

In order to use the integration, the Agitar .arx project-file name and the Eclipse directory path must be available. If
using the JUnit option and running JUnit tests separate from the Agitation process, the directory with JUnit results
(XML format) must also be available.

The integration is implemented as AnthillPro job steps configured on the Job Configuration page. When using the
integration, click the Create Step button (or select the Insert After/Before icon) to add steps to a job. Once the job is
configured, it is then added to a workflow (under the Definition tab) as either a standalone workflow or as part of a
build job.

Agitar steps:

• Agitate. Runs the agitate process against code. See Configure Agitate Step.

• Publish Dashboard Report. Publishes the results of the Agitar Dashboard report under the Reports tab. Option-
ally, this step can be used to automatically generate the report. See Configure Agitar Publish Dashboard Report
Step.

This tutorial will follow a simple project configuration that uses the Agitar Agitate and Publish Dashboard Report
steps as part of a build workflow. The example in this tutorial uses Subversion, but the basic configuration is similar
for any repository type. Your jobs will vary, but the Agitar integration is added as a job step similar to what is de-
scribed below.

Though the example goes through the manual creation of a build job, it is possible to use the Job Wizard to create a
build job and then manually configure a second job to run as part of the same workflow. Optionally, the Agitar in-
tegration may also be configured to run as a standalone workflow, typically requiring only a Set Working Directory
step; however, depending on the repository used, additional steps may be required.

362



Agitar Prerequisites

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• A project with at least one Build Life must be active in AnthillPro.

• A Life-Cycle Model must be configured with the appropriate Status and Artifact Sets. See Using Life-Cycle Mod-
els.

• The Agitar .arx project file name and the Eclipse directory path must be available. If using the JUnit option and
running JUnit tests separate from the Agitation process, the directory with JUnit results (XML format) must also
be available.

Configure Agitate Step
The Agitate step is included after the Populate Workspace, Changelog, Stamp, Dependency, Build, Publish
Changelog, and Artifact Delivery steps of the typical Build job. Though the example below runs the Agitate as part
of a build workflow, it is possible to use the Agitar integration as part of a standalone workflow. If using this option,
typically only a Set Working Directory step is required; however, depending on the repository used and your partic-
ular development environment, additional steps may also be required.

1. Go to Administration page, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

4. Agitate. Select the Insert After icon of the step prior to the point where the Agitar step is to be included
(Artifact Delivery step in this example). Go to Test > Agitar, select the Agitate step, and click Select.

• Name the step (required).

• Description. Provide a short description.

• Project File Name (required). Give the Agitar .arx project-file name. Must be the same for both the Agitate
and Publish Report steps.

• Eclipse Home (required). Provide the path where Eclipse is installed. Must be the same for both the Agitate
and Publish Report steps.

• Command Path. Give the path to the Agitar Command Line Interface. Must be the same for both the Agitate
and Publish Report steps.

• Base Checkpoint. Provide the checkpoint to base the Agitation off of.

• Class Regex. Give one or more regular expressions to defining the classes to be processed. If more than one
expression is used, separate them with spaces.

• Class List. Provide the path to the file containing a list of classes to process. Each class name must be on a
separate line (a regular expression may be used).

• Agitate Timeout. Give the Agitate timeout limit in Seconds.

• Log Level. Select the Agitate logging level (Fine, Info, Status, Warning, or Severe) from the drop-down menu.
If none is selected, "Info" will be used by default.

Testing Tools

363



• Solving Level. Select the Agitate solving level (Normal, Extended, or Aggressive) from the drop-down menu.

• Has Config. Check the box to only include classes with defined assertions, factory assignments, or object
properties.

• Merge Coverage Info. Check the box to merge the coverage information for this run with existing coverage
values for the project.

• Reach Time Limit. Check the box to continue exercising the methods in each class until the time limit for that
class has been reached.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

• Click Save.

Configure Agitar Publish Dashboard Report Step
Include the Publish Dashboard Report step after the Agitate step (see Configure Agitate Step). Though the example
below runs the Agitar steps as part of a build workflow, it is possible to use the Agitar integration as part of a stan-
dalone workflow. If using this option, typically only a Set Working Directory step is required; however, depending
on the repository used and your particular development environment, additional steps may also be required.

• Checking the Generate Dashboard option allows AnthillPro to invoke the Agitar Dashboard command from the
command line. Once selected, additional options appear on the screen. If the Dashboard Report is already gener-
ated in an Ant build, not checking the box will result in those results being published.

1. Select the Insert After icon of the Agitate step. Go to Test > Agitar, select the Publish Dashboard Report step,
and click Select.

• Name the step.

• Description. Provide a short description.

• Report Name. Give the name for this report. If no name is given, the Step Name will be used as default.

Testing Tools

364



• Reports Output Directory. Enter the location of the Agitar Dashboard management reports.

• Test Results Directory. Provide the directory with JUnit results (they must be in XML format). This option is
only required if you JUnit tests are run separately from Agitation.

• Generate Dashboard. Check the box to invoke the Agitar Dashboard command from the command line. If us-
ing this option, proceed to Item Two.

Do not check the box if the Agitar Dashboard report has already been generated during the Ant build and those
results are to be published. If not using the Generate Dashboard option, proceed to Item Seven.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.
See Show Additional Options.

• If the Generate Dashboard option was not checked, Click Save.

2. If the Generate Dashboard option is used, provide the following information (all the fields below should be fa-
miliar to regular Agitar users):

• Project. Give the name of the Agitation .arx project file (e.g., MyProject.arx). Must be the same for both the
Agitate and Publish Report steps.

• Eclipse Home (required). Provide the path where Eclipse is installed. Must be the same for both the Agitate
and Publish Report steps.

• Command Path. Give the path to the Agitar Command Line Interface. Must be the same for both the Agitate
and Publish Report steps.

• Project Name. Enter the project name to place at the top of generated reports.

• Checkpoint. Provide the checkpoint file (with the extension .ddf) to compare the most recent test results
with. If the value does not point to a specific checkpoint, the closest checkpoint to the date specified is used.

• Log Level. Select the Agitate logging level (Fine, Info, Status, Warning, or Severe) from the drop-down menu.
If none is selected, "Info" will be used by default.

• Server Root URL. Enter the root URL where generated reports can be accessed.

• Test Assignments File. Provide the XML file that maps test classes to project classes.

• Trend Window. Determine the period of time the Management Dashboard reports will cover. Specify a
checkpoint for the starting point of the window (current time is the ending point).

3. Show Class Path Options. Select the Show Class Path Options link to configure more options.

• Target Classpath. Give the search path for target (project) classes.

• Test Classpath. Provide the search path for test classes.

• Exclude Classes. Enter a regular expression specifying the classes to exclude from the Dashboard.

• Class List. Give the file that contains a list of classes to be processed, with each class name on a separate line.
Regular expressions may be used to specify classes.

• Class Regex. Provide a list of one or more regular expressions, separated by spaces, defining the classes to
process.

4. Show Directory Options. Select the Show Directory Options link to configure more options.

Testing Tools

365



• Agitar Path (for virtual Dashboards only). Give the search path for Agitar directories of projects for a virtu-
al project Dashboard, separated with semicolons.

• Config Path. Provide the checkpoint file (with the extension .ddf) to compare the most recent test results
with. If the value does not point to a specific checkpoint, the closest checkpoint to the date specified will be
used.

• Coverage Results Directory (required if running JUnit separate from Agitation). Enter the directory with
coverage results in .acov or .aout files, generated either by AgitarOne or by the instrument Ant task.

• Data Directory. Give the directory to save checkpoint files (extension .ddf) in.

• Lib Path. Provide the search path for required library files of the project.

• Source Path (JUnit-only projects). Provide the location of source code for generation of class coverage de-
tails. This option is ignored if an agitation project (.arx) file is specified.

5. Show Target Options. Select the Show Target Options link to configure more options.

• Method Risk Threshold. Determine the acceptable threshold value for method level.

• Target High Risk Classes. Set the target percentage classes with risky methods for the project.

• Target Classes With Testpoints. Enter the percentage of project classes that must have at least one test point.

• Target Coverage. give the target coverage percentage for this project.

• Target Methods With Test Points. Set the percentage of methods that must have at least one test point.

• Target Test Points. Give the target number of test points for this project.

6. Show Args Options. Select the Show Args Options link to configure more options.

• Has Config. Check the box to only includes classes that have any assertions, factory assignments, or object
properties defined.

• Override Has Config. Check the box to includes all classes (in an Agitation project) in the generated Manage-
ment Dashboard reports, whether the classes contain configuration information or not. This option takes pre-
cedence over the Has Config option. See above.

• Coverage Details. Check the box to includes all classes (in an Agitation project) in the generated Management
Dashboard reports, whether the classes contain configuration information or not. This option takes precedence
over the Has Config option. See above.

• No Coverage Details. Check the box to overrides the inclusion of detailed coverage statistics in generated
Management Dashboard reports. This option takes precedence over the Coverage Details option. See above.

• Generate XML Dashboard. Check the box to create an XML file in the directory specified for the Reports
Output Directory option (containing the Dashboard results). See Reports Output Directory.

• Rollup. Check the box to specify the Dashboard is for a virtual project. If Rollup is specified, Agitar Path is
required. See Show Directory Options.

• Use Dashboard Config. Check the box to use the Dashboard configuration.

7. Show Additional Options (advanced). Select the Show Additional Options link to configure more options. See
Show Additional Options.

8. Click Save.

Testing Tools

366



Add Agitar Job to Workflow
The Job created (see Configure Agitate Step) must be executed as part of a workflow. This section will assume that
an originating workflow has already been configured, and will cover the process of adding the Agitar Build job to
the appropriate workflow. Complete workflow configuration is beyond the scope of this tutorial. The topics covered
in detail below are specific to using the Agitar integration.

1. Go to Administration, select the project, and select the build workflow.

2. On the workflow Main page, select the Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

5. Select the Build job created in the Configure Agitate Step section, a job pre-condition script, and click Insert
Job.

Run Agitar Workflow and View Reports

1. Go to the Dashboard and select the workflow created in the Add Agitar Job to Workflow section.

2. On the workflow Main page, click the Build button for the workflow.

3. Once the workflow has completed, select the appropriate Build Life and click the Reports tab.

4. Select a link to view either the agitateReport or the agitateReport_junit.

• Selecting the agitateReport link to open the Agitar Dashboard.

• Selecting the agitateReport_junit link to open the Agitar/Junit report.

5. Click the Tests tab for metrics on all the agitateReport_junit reports. Selecting the Show Test Suites link
provides detailed information regarding all the Agitar/Junit tests run on the Build Life.

6. To drill down on each Agitar step on the Build Life Summary page, see Trace a Build Life to Source.

Testing Tools

367



CppUnit
In order to integrate with CppUnit, your build scripts must run CppUnit and have it generate the test output XML
files in the format *.xml. AnthillPro takes the information from the output file and makes it available through the
UI and (optionally) via e-mail.

Add CppUnit Report Publisher to Build Job
Identify the CppUnit output files by adding a CppUnit Report step to the build job. This allows AnthillPro to store
the data and make it available to users.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

Before proceeding to Item Four, ensure CppUnit is associated with the build script. See CppUnit documentation
[http://cppunit.sourceforge.net/doc/1.8.0/index.html].

4. CppUnit Report. Select the Insert After icon of the step prior to the point where the CppUnit step is to be in-
cluded. Go to Test > CppUnit, select the CppUnit Report step, and click Select.

• Name the step.

• Description. Provide a short description.

• Report Name. Give the name for this report (default is same as step name) to appear on the Dashboard.

• Source Directory. Provide the directory where the CppUnit data files will be retrieved from.

• Include Patterns. Give the file name patterns that describe the files to be retrieved. Each include pattern must
be entered on a separate line.

You can also use the following wild cards to tell AnthillPro what to include:

• ** Indicates include every directory within the base directory.

• * Used to include every file. So, if you use *.zip, the files matching this pattern will be included.

• **/* Tells AnthillPro to retrieve the entire file tree underneath the base directory.

• Exclude Patterns. Provide the file name patterns identifying the files that will NOT be retrieved. This field is
set in the same way as the Include Patterns field, only you are telling AnthillPro what NOT to include.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

Testing Tools

368

http://cppunit.sourceforge.net/doc/1.8.0/index.html
http://cppunit.sourceforge.net/doc/1.8.0/index.html


• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

5. Click Save.

View CppUnit Reports
Once a build has completed, go to the new Build Life and select the Reports and Tests tabs for information on the
tests run.

E-mailing CppUnit Results
Since AnthillPro is aware of CppUnit, the results can be included in build notifications, just like any other piece of
information. For example, you may want to automatically take action depending on CppUnit results. Some common
examples are to e-mail the team if a failure occurs; e-mail the QA team leader if there are no errors; or e-mail
someone if the tests-per-second metric goes below a target amount.

To edit a notification template, go to the System page and choose the Notification Templates link from the Notific-
ation menu. See Managing Notifications.

1. Lookup the CppUnit report(s) and put them in the Velocity context.

2. Once the CppUnitReports are available to the Velocity template, you can do whatever you like with them.

3. Included in an HTML-friendly e-mail template, this will produce a nice little report.

JUnit
In order to integrate with JUnit (or TestNG), your build scripts must run JUnit and have it generate the test output
XML files in the format of TEST-*.xml.

In Ant, the example project is configured to generate these files during the Ant JUnit task:

<junit printsummary="on" haltonfailure="false" fork="true">
<classpath refid="tests.classpath"/>
<formatter type="xml"/>
<batchtest todir="">

<fileset dir="" includes="**/*Test*.class"/>
</batchtest>

</junit>

• The Ant JUnit report task will delete the report files as part of its transformation. If you use that task, make a copy
of the TEST-*.xml file for AnthillPro to use.

AnthillPro reads the output XML files to understand what happened during the JUnit tests. To tell AnthillPro about
those files, you need to: (a.) identify where the files are generated in the project; and (b.) add a JUnit Report step
on the project build-job configuration.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

Testing Tools

369



2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

Before proceeding to Item Four, ensure JUnit is associated with the build script. See JUnit documentation [ht-
tp://junit.sourceforge.net/].

4. JUnit Report. Select the Insert After icon of the step prior to the point where the JUnit step is to be included.
Go to Test > JUnit, select the JUnit Report step, and click Select.

• Name the step.

• Description. Provide a short description.

• Report Name. Give the name for this report (default is same as step name).

• Source Directory. Give the directory where the JUnit data files will be retrieved from. This is relative to the
working directory. For example, give ..\..\directoryname\.

• Include Patterns. Give the file name patterns that describe the files to be retrieved. Each include pattern must
be entered on a separate line.

You can also use the following wild cards to tell AnthillPro what to include:

• ** Indicates include every directory within the base directory.

• * Used to include every file. So, if you use *.zip, the files matching this pattern will be included.

• **/* Tells AnthillPro to retrieve the entire file tree underneath the base directory.

• Exclude Patterns. Provide the file name patterns identifying the files that will NOT be retrieved. This field is
set in the same way as the Include Patterns field, only you are telling AnthillPro what NOT to include.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

5. Click Save.

Once the new settings are saved, running the build reveals there is a new report stored in the Tests and Reports tabs
of the Build Life (Build Life 127 in the example below). This is a basic report checking the JUnit results. More im-
portantly, the JUnit results are now exposed in a meaningful way.

Testing Tools

370

http://junit.sourceforge.net/
http://junit.sourceforge.net/
http://junit.sourceforge.net/


E-mailing JUnit Results
Since AnthillPro is now aware of the JUnit results, they can be included in build notifications, just like any other
piece of information. To edit a notification template, go to the System page and choose the Notification Templates
link from the Notification menu. See Managing Notifications.

1. Lookup the JUnit report(s) and put them in the Velocity context by adding the following to the context script:

WorkflowCase workflow = (WorkflowCase)context.get("workflow");
junitReportArray = JUnitReportHelper.getJUnitReportArray(workflow);
context.put("junitReportArray", junitReportArray);

2. Once the JUnitReports are available to the Velocity template, you can do whatever you like with them. As an
example, enter a template that prints out some summary information, as well as a list of every JUnit test that did
not pass.

#foreach($junitReport in $junitReportArray)
<h1>JUnit Test Results</h1>
<H2>Test Summary:</H2>
<div class="data-table-container">
<table class="data-table" cellpadding="4" cellspacing="1" width="100%">
<tr class="data-table-head">
<th>Total:</th>
<th>Pass:</th>
<th>Fail:</th>
<th>Errors:</th>
<th>Success Rate:</th>
<th>Time:</th>

</tr>
<tr bgcolor="#ffffff">
<td align="center" style="font-weight: bold;font-size: 14px;">
$junitReport.testSummary.tests
</td>

Testing Tools

371



<td align="center" style="color: green;font-weight: bold;font-size:
14px;">

$junitReport.testSummary.passingTests
</td>
<td align="center" style="color: red;font-weight: bold;font-size:

14px;">
$junitReport.testSummary.failures

</td>
<td align="center" style="color: red;font-weight: bold;font-size:

14px;">
$junitReport.testSummary.errors</B>

</td>
<td align="center" style="font-weight: bold;font-size: 14px;">
$fn.formatNumber($junitReport.testSummary.successPercentage ,

'##.#%')
</td>
<td align="center" style="font-weight: bold;font-size: 14px;">
$fn.formatNumber($fn.duration($junitReport.testSummary.time),

'##0.0’) secs
</td>

</tr>
</table>
</div>

#foreach( $suite in $junitReport.suiteResultArray)
#if( $suite.passingTestCount < $suite.tests )

<div class="data-table-container">
<h3> Failed tests in $suite.name </h3>

<table class="data-table" cellpadding="4" cellspacing="1" width="100%">
#foreach( $case in $suite.testCaseResults )
#if( $case.errorCount > 0 )
#foreach( $error in $case.errorArray )
<tr bgcolor="#ffffff">
<td valign="top" style="color: red;font-weight: bold;" width="275">

$case.name<br>
(error)</td>

<td valign="top" style="color: red;"><B>$error.type</b><br>
$error.content

</td>
</tr>
#end
#end
#if( $case.failureCount > 0 )
#foreach( $error in $case.failureArray )
<tr bgcolor="#ffffff">
<td valign="top" style="color: red;font-weight: bold;" width="275">

$case.name<br>
(failure)</td>

<td valign="top" style="color: red;"><B>$error.type</b><br>
<b>$error.message</b><br/> $error.content

</td>
</tr>
#end
#end
#end
</table>
</div>
#end
#end

#end

Testing Tools

372



3. Included in an HTML-friendly e-mail template, this will produce a nice little report. The example project has one
failing test and one passing test. That produces the following in an e-mail.

Making Decisions Based On JUnit Results
You may want to automatically take action depending on JUnit results. Some common examples are to e-mail the
team if a failure occurs; e-mail the QA team leader if there are no errors; or e-mail someone if the tests-per-second
metric goes below a target amount.

Testing Tools

373



• Below is a notification event-selector script to notify when JUnit tests fail:

import com.urbancode.anthill3.domain.workflow.*;

result = false;
if (event instanceof WorkflowEvent &&

event.getCase().isComplete() &&
JUnitReportHelper.getJUnitReportArray(event.getCase())
!=null) {

workflow = event.getCase();
junitReports =

JUnitReportHelper.getJUnitReportArray(workflow);
for (int i = 0; i < junitReports.length; i++) {

summary = junitReports[i].getTestSummary();
if(summary.getPassingTests() != summary.getTests()) {
result = true;

}
}

}
return result;

• Script that e-mails when some tests take too long:

import com.urbancode.anthill3.domain.workflow.*;

double testPerSecondNeeded = 100;
result = false;
if (event instanceof WorkflowEvent &&

event.getCase().isComplete() &&
JUnitReportHelper.getJUnitReportArray(event.getCase())
!=null) {

workflow = event.getCase();
junitReports =

JUnitReportHelper.getJUnitReportArray(workflow);
for (int i = 0; i < junitReports.length; i++) {

summary = junitReports[i].getTestSummary();
if(summary.getTestsPerSecond() < testPerSecondNeeded){
result = true;

}
}

}
return result;

Next Steps (JUnit)
The JUnit report generated by some build scripts can be valuable as well. Since its creation tends to delete the re-
quired XML files, copy those files to another location in the script and generate that report. Then add an AnthillPro
publisher to publish the resulting JUnit HTML report for review by the team.

• The number of tests that should run per second may differ by project. A different case selector could be made for
every project, but it would make more sense to add to each project a project property with the number of tests that
should run each second, and reference that property in the case selection script.

• Another option would be to create a report tracking the number of passing and failed tests over time.

Testing Tools

374



MSTest
The MSTest integration, written as a Plugin, is added to your AnthillPro job as a Report Publisher job step. Once ad-
ded to your build job, the MSTest integration enables AnthillPro to collect the unit-test report and make the findings
available on the Dashboard. See View Reports (MSTest).

The integration is written as an AnthillPro Plugin, included in the normal distribution. For older AnthillPro 3.7 ver-
sions, you will need to download the integration from Supportal [http://support.urbancode.com/] and then upload it
to the server. Once uploaded, ensure the Plugin is active.

MSTest Prerequisites

• You should already have MSTest running (and producing a report on) your unit tests.

• You will need to know the location of the reports.

• You will need administrative permissions for the project.

Configure MSTestJob Step
The step should be included in your build job after MSTest has been run and the report generated. Typically, this is
will be after the build step.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

4. Select the Insert After icon of the step that will run before the MSTest Report Publisher step.

5. Go to Test > MSTest, select the MSTest Report Publisher step, and click Select.

• Name the step.

• Description. Provide a short description.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• Report Name. Give the name for this report to appear on the AnthillPro Dashboard.

• Base Directory. Provide the directory for resolving MSTest XML files. Unless absolute, this is relative to the
job working directory.

• Include Patterns. Give the file name patterns that describe the files to be retrieved. Each include pattern must
be entered on a separate line.

You can also use the following wild cards to tell AnthillPro what to include:

• ** Indicates include every directory within the base directory.

• * Used to include every file. So, if you use *.zip, the files matching this pattern will be included.

Testing Tools

375

http://support.urbancode.com/
http://support.urbancode.com/


• **/* Tells AnthillPro to retrieve the entire file tree underneath the base directory.

• Exclude Patterns. Provide the file name patterns identifying the files that will NOT be retrieved. This field is
set in the same way as the Include Patterns field, only you are telling AnthillPro what NOT to include.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

• Show Environment Variables (optional; advanced). Give any optional environment variables in
"name=value" format.

Environment variables values may contain references to existing values in the following format:
name=${env/<NAME>};value. If the value of the <NAME> variable is "value2" in the current environ-
ment, then the above example will be expanded to: name=value2;value.

Using this technique, it is possible add an entry to PATH in the following manner:
PATH=my/path/entry;0. Case is significant even on Windows systems.

6. Click Save.

View Reports (MSTest)
Once a build has completed, go to the new Build Life and select the Tests tab for information on the unit tests run.
There, you can view the results and perform trending to see how your unit tests are doing over time.

E-mailing MSTest Results
Since AnthillPro is aware of MSTest, the results can be included in build notifications, just like any other piece of
information. For example, you may want to automatically take action depending on results. Some common ex-
amples are to e-mail the team if a failure occurs; e-mail the QA team leader if there are no errors; or e-mail someone
if the tests-per-second metric goes below a target amount.

To edit a notification template, go to the System page and choose the Notification Templates link from the Notific-
ation menu. See Managing Notifications.

1. Lookup the MSTest report(s) and put them in the Velocity context.

2. Once the MSTest Reports are available to the Velocity template, you can do whatever you like with them.

3. Included in an HTML-friendly e-mail template, this will produce a nice little report.

Testing Tools

376



NUnit
In order to integrate with NUnit, your build scripts must run NUnit and locate the test output XML files (typically
named TestResults-*.xml). AnthillPro takes the information from the output file and makes it available
through the UI and (optionally) via e-mail.

Add NUnit Report Publisher to Build Job
Identify the NUnit output files by adding a NUnit Report step to the build job. This allows AnthillPro to store the
data and make it available to users.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

Before proceeding to Item Four, ensure NUnit is associated with the build script. See NUnit documentation [ht-
tp://www.nunit.org/index.php].

4. NUnit Report. Select the Insert After icon of the step prior to the point where the NUnit step is to be included.
Go to Test > NUnit, select the NUnit Report step, and click Select.

• Name the step.

• Description. Provide a short description.

• Report Name. Give the name for this report (default is same as step name) to appear on the Dashboard.

• Source Directory. Provide the directory where the NUnit data files will be retrieved from.

• Include Patterns. Give the file name patterns that describe the files to be retrieved. Each include pattern must
be entered on a separate line.

You can also use the following wild cards to tell AnthillPro what to include:

• ** Indicates include every directory within the base directory.

• * Used to include every file. So, if you use *.zip, the files matching this pattern will be included.

• **/* Tells AnthillPro to retrieve the entire file tree underneath the base directory.

• Exclude Patterns. Provide the file name patterns identifying the files that will NOT be retrieved. This field is
set in the same way as the Include Patterns field, only you are telling AnthillPro what NOT to include.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

Testing Tools

377

http://www.nunit.org/index.php
http://www.nunit.org/index.php
http://www.nunit.org/index.php


• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

5. Click Save.

View Reports (NUnit)
Once a build has completed, go to the new Build Life and select the Reports and Tests tabs for information on the
tests run.

E-mailing NUnit Results
Since AnthillPro is aware of NUnit, the results can be included in build notifications, just like any other piece of in-
formation. For example, you may want to automatically take action depending on NUnit results. Some common ex-
amples are to e-mail the team if a failure occurs; e-mail the QA team leader if there are no errors; or e-mail someone
if the tests-per-second metric goes below a target amount.

To edit a notification template, go to the System page and choose the Notification Templates link from the Notific-
ation menu. See Managing Notifications.

1. Lookup the NUnit report(s) and put them in the Velocity context.

2. Once the NUnit Reports are available to the Velocity template, you can do whatever you like with them.

3. Included in an HTML-friendly e-mail template, this will produce a nice little report.

Quality Center (Testing)
The Quality Center integration allows Windows users (through the COM interface) of AnthillPro to run test sets and
then publish a report to the AnthillPro UI. The report is published to the Reports tab of the Build Life, and provides
metrics, such as performance trends, on the tests that have been run.

The integration will only work if the agent(s) running the Quality Center steps uses the 32-bit JVM. If the agent(s)
use a 64-bit JVM, the steps will fail. However, the AnthillPro server, which does not run the steps, can run on the
64-bit JVM.

The Quality Center integration is implemented as AnthillPro job steps configured on the Job Configuration page.
When using the integration, click the Create Step button (or select the Insert After/Before icon) to add steps to a job.
Once the job is configured, it is then added to the workflow under the Definition tab.

Quality Center Testing Steps:

• Run Test Set. Runs a Test Set (QTP, LoadRunner, WinRunner) using Mercury Quality Center either directly on
the server or on the Quality Center remote agent(s). Creating a separate testing workflow with the Run Test Sets
and Test Set Report is advisable.

• Publish Test Set Report. Publishes a Quality Center TestSet Report for (QTP, LoadRunner, WinRunner). Creat-
ing a separate testing workflow with the run test sets and test set report is advisable.

Testing Tools

378



The Quality Center integration also allows you to track issues with Quality Center and run QTP tests. If you want
to use the QTP integration, you must configure Quality Center integration on the System page. See Quality Center
Issue Tracking and QuickTest Pro.

Quality Center Prerequisites (Testing)

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• The Mercury Quality Center URL must be available.

• AnthillPro must be able to access Quality Center as a user with permissions to run tests.

• An AnthillPro agent must be installed on a Windows machine (XP, 2003, Vista, Windows 7) with the Quality
Center API installed. For example, the Quality Center server. This may require configuring a Fixed Agent Filter
to ensure the job runs on the appropriate machine. Alternately, the agent with the Quality Center API can be ad-
ded to the Build Farm. This requires the use of a scripted filter to look for the presence of a variable/property
(e.g., qc.agent=true) which must be added to the agent. If this option is chosen, it is advisable to include a filter on
every build job that excludes the Quality Center agent.

The integration will only work if the agent(s) running the Quality Center steps uses the 32-bit JVM. If the
agent(s) use a 64-bit JVM, the steps will fail. However, the AnthillPro server, which does not run the steps, can
run on the 64-bit JVM. See Configure and Edit Agent Filters.

• The AnthillPro agent that will perform the QualityCenter steps must be installed on the same machine as the
QualityCenter client. You can download the client from the QualityCenter server, typically located here: ht-
tp://<qc_server>:8080/qcbin/ClientSide_index.html. Follow the instructions on that page to
install.

Configure Quality Center (Testing)

1. Go to System > Quality Center under the Integration menu.

2. On the Mercury Quality Center Integration page, click Edit.

3. Configure the integration:

• Enter the Quality Center server URL.

• Issue URL. You can have AnthillPro automatically generate a link to all of the issues it associates with a Build
Life if you give the Issue URL here. If you are also using the Quality Center Issue Tracking integration, you
will need to complete this field.

Once you give the URL pattern, the issues that appear on the Issues Tab of a Build Life will be linked to the is-
sue in your issue tracker tool for reviewing the issue, adding additional comments, making edits, etc. For ex-
ample, provide a URL template such as http://bugs.company.com/browse/${issueId}. The
value ${issueId} will be replaced in the template with the issue id of the associated issue. This field
provides a template which is used throughout AnthillPro to generate links from issues directly to an issue de-
scription page within your issue tracker.

• User Name. Enter the user name to be used to connect to the Quality Center server. Make sure that Quality
Center user AnthillPro will use to connect to the server has the appropriate permissions.

• Password. Enter the password to be used to connect to the Quality Center server.

Testing Tools

379



• Password Script (optional). To use a script or property lookups for the password, leave the Password field
blank and enter it here. See Scripting.

4. Click Set and click Done.

Create Quality Center Job (Testing)
Configure the job to automatically run a Quality Center test set and publish the report by setting up the job to run on
the agent with the QC COM API installed. While each job is different, every job should run a get changelog step;
run steps to interact with the changelog and Quality Center; and generate reports and make comments.

The Run Test Set and Publish Report steps are included after the Populate Workspace, Changelog, Stamp, Depend-
ency, Build, Publish Changelog, and Artifact Delivery steps of the typical job.

1. Go to Administration, select the appropriate project, and follow the steps for creating a build job.

2. Quality Center - Run Test Set. Select the Insert After icon of the step prior to where the step is to be included.
Go to Tests > Mercury, select Quality Center - Run Test Set, and click Select.

If you are publishing the Test Set Report, make sure Test Set, Folder, Domain, and Project fields correspond to the
Publish Test Set Report step configured below. See Quality Center - Publish Test Set Report.

• Name. Provide a name that will be used by AnthillPro if the default name is not used.

• Description (optional). Give a short description.

• Test Set. Give the name of the Quality Center Test Set AnthillPro will execute.

• Folder. Give the full folder path to the test set above.

• Remote Agent. If you want this step to run on a remote agent, give the location here. Otherwise, AnthillPro
will use the local agent.

• Domain Name. Give the name of the Quality Center Domain where your projects are located.

• Project Name. Give the name of the Quality Center Project where your issues are located.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

3. Click Save.

Testing Tools

380



4. Quality Center - Publish Test Set Report. Select the Insert After icon of the Quality Center - Run Test Set
step. Go to Test > Mercury, select the Quality Center - Publish Test Set Report step, and click Select. This
step retrieves the Report.xml files generated by the tests. Once they are retrieved from the build, AnthillPro will
be able to make them available to the Build Life Tests tab.

When configuring this step, make sure Test Set, Folder, Domain, and Project corresponds to the Run Test Set step
configured above. See Quality Center - Run Test Set.

• Name the step.

• Description (optional). Provide a brief description.

• Report Name. Provide a name for the report (if left blank, it will be the step name).

• Test Set. Give the name of the Quality Center Test Set AnthillPro executed in the Run Test Set step con-
figured above.

• Folder. Give the full folder path to the test set configured in the Run Test Set step.

• Domain Name. Give the name of the Quality Center Domain identified in the Run Test Set step above.

• Project Name. Give the name of the Quality Center Project you configured in the Run Test Set step above.

• Show Additional Options (advanced). See Show Additional Options.

5. Click Save.

Add Job to Quality Center Workflow (Testing)
Complete workflow configuration is beyond the scope of this entry. The topics covered in detail below are specific
to using the Quality Center integration.

1. Go Administration and select the appropriate workflow. You can add the job to either your build workflow or as
part of a secondary (i.e., testing) workflow.

2. Go to workflow Main > Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

5. Select the job you just created, a job pre-condition script, and click Insert Job.

6. Select the Properties tab and add a workflow property. This will ensure that the job runs on the appropriate agent
when using a scripted agent filter. Make sure that the property you set here is also configured on the agent.

• Name. Give the name of the Property (the property <name> will be accessed as ${property:<name>}).

• Description. Provide a description for this Property shown when prompting users for value.

• Default Value. Input the value for this property.

• User May Override. Check if users are able to specify a new value when running this workflow.

• Label. Provide a label for this Property shown when prompting users for value (leave blank to use the Name as
the Label).

Testing Tools

381



• Is Required. Check if a non-empty value for this property is required to run workflow.

• Allowed Values. Give the values users are allowed to select for this property (blank for no restriction of
value). Separate each value by entering it on its own line.

• Click Save.

7. Click Save.

Run Build and View Report (Quality Center Testing)

1. Go to Dashboard and select the appropriate workflow.

2. On the workflow Main page, click the Build button.

3. Once the workflow is complete, select the Tests tab to view the report.

Quality Center Function Calls
Following is a list of the function calls used in the Quality Center integration:

TDApi-
Ole80.TDConnection

TestSet.StartExecution TestSet.TSTestFactory Step.Field

TDConnection.BugFactory TSSched-
uler.RunAllLocally

TSTestFactory.NewList BugFactory.Filter

TDConnec-
tion.InitConnectionEx

TSScheduler.TdHostName TSTest.Name BugFactory.Item

TDConnection.Login TSScheduler.Run TSTest.Type BugFactory.AddItem

TDConnection.Connect TSSched-
uler.ExecutionStatus

TSTest.Status Filter.Filter

TDConnection.Disconnect Execution-
Status.RefreshExecStatusIn
fo

TSTest.HostName Filter.NewList

TDConnection.Logout ExecutionStatus.Finished TSTest.TestId Bug.ID

TDConnec-
tion.ReleaseConnection

ExecutionStatus.EventsList TSTest.TestName Bug.Summary

TDConnec-
tion.TestSetTreeManager

ExecEventInfo.EventType TSTest.LastRun Bug.Field

TestSetTreeMan-
ager.NodeByPath

ExecEventInfo.EventDate Run.Name Bug.AssignedTo

TestSetFolder.FindTestSets ExecEventInfo.EventTime Run.Status Bug.DetectedBy

TestSet.Id TestExecStatus.TestId Run.Field Bug.Priority

TestSet.Item TestExec-
Status.TestInstance

Run.StepFactory Bug.Project

TestSet.Name TestExecStatus.TsTestId StepFactory.NewList Bug.Status

TestSet.TestSetFolder TestExecStatus.Message Step.Name Bug.Post

TestSet.Status TestExecStatus.Status Step.Status

Testing Tools

382



Quality Center Plugin (Testing)
The Quality Center integration allows Windows users (through the COM interface) of AnthillPro to run test sets and
then publish a report to the AnthillPro UI. The report is published to the Reports tab of the Build Life, and provides
metrics, such as performance trends, on the tests that have been run.

The integration is written as an AnthillPro Plugin, and expands upon the existing Quality Center (Testing) integra-
tion. The integration is included in the normal distribution. For older AnthillPro 3.7 versions, you will need to
download the integration from Supportal [http://support.urbancode.com/] and then upload it to the server. Once up-
loaded, ensure the Plugin is active.

The Quality Center integration is implemented as AnthillPro job steps configured on the Job Configuration page.
When using the integration, click the Create Step button (or select the Insert After/Before icon) to add steps to a job.

The integration will only work if the agent(s) running the Quality Center steps uses the 32-bit JVM. If the agent(s)
use a 64-bit JVM, the steps will fail. However, the AnthillPro server, which does not run the steps, can run on the
64-bit JVM.

Once the job is configured, it is then added to the workflow under the Definition tab.

Quality Center Testing Steps:

• Run Quality Center Test Set. Runs a Test Set (QTP, LoadRunner, WinRunner) using Mercury Quality Center
either directly on the server or on the Quality Center remote agent(s). Creating a separate testing workflow with
the Run Test Sets and Test Set Report is advisable.

• Publish Quality Center Test Report. Publishes a Quality Center TestSet Report for (QTP, LoadRunner, Win-
Runner). Creating a separate testing workflow with the run test sets and test set report is advisable.

• The AnthillPro agent that will perform the QualityCenter steps must be installed on the same machine as the
QualityCenter client. You can download the client from the QualityCenter server, typically located here: ht-
tp://<qc_server>:8080/qcbin/ClientSide_index.html. Follow the instructions on that page to
install.

The Quality Center integration also allows you to track issues with Quality Center and run QTP tests. If you want
to use the QTP integration, you must configure Quality Center integration on the System page. See Quality Center
Plugin (Issue Tracking) and QuickTest Pro.

Quality Center Plugin Prerequisites (Testing)

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• The Mercury Quality Center URL must be available.

• AnthillPro must be able to access Quality Center as a user with permissions to run tests.

• An AnthillPro agent must be installed on a Windows machine (XP, 2003, Vista, Windows 7) with the Quality
Center API installed. For example, the Quality Center server. This may require configuring a Fixed Agent Filter
to ensure the job runs on the appropriate machine. Alternately, the agent with the Quality Center API can be ad-
ded to the Build Farm. This requires the use of a scripted filter to look for the presence of a variable/property
(e.g., qc.agent=true) which must be added to the agent. If this option is chosen, it is advisable to include a filter on

Testing Tools

383

http://support.urbancode.com/
http://support.urbancode.com/


every build job that excludes the Quality Center agent. See Configure and Edit Agent Filters.

The integration will only work if the agent(s) running the Quality Center steps uses the 32-bit JVM. If the agent(s)
use a 64-bit JVM, the steps will fail. However, the AnthillPro server, which does not run the steps, can run on the
64-bit JVM.

Configure Quality Center Plugin (Testing)
The information given here will be used by your AnthillPro projects. If you are using both the Quality Center
(Testing) and Quality Center (Issue Tracking) Plugins, you need only configure the integration once (assuming you
have only one Quality Center server) -- both integrations use the same System configuration.

If you are configuring integrations with multiple Quality Center servers, create a new integration for each one.

1. Go to System > Quality Center Plugin under the Integration menu.

2. On the Quality Center Plugin page, click Create New.

3. Configure the integration:

• Name. Give a unique name for this integration. The name given here will be used throughout the AnthillPro
system -- specifically during job creation. If you are configuring integrations with multiple Quality Center
servers, ensure that each name is unique.

• Server URL. Enter the base URL to the TeamForge installation base URL: ht-
tp://qualitycenter.company.com.

• User Name. Enter the user name to be used to connect to the Quality Center server. Make sure that Quality
Center user AnthillPro will use to connect to the server has the appropriate permissions.

• Password. Enter the password to be used to connect to the Quality Center server. If using a password script
below, leave this filed blank.

• Confirm password.

• Password Script. To use a script or property lookups for the password, leave the Password field blank and
enter it here. See Scripting.

4. Click Set and click Done.

Create Quality Center Plugin Job (Testing)
Configure the job to automatically run a Quality Center test set and publish the report by setting up the job to run on
the agent with the QC COM API installed. While each job is different, every job should run a get changelog step;
run steps to interact with the changelog and Quality Center; and generate reports and make comments.

The Run Test Set and Publish Report steps are included after the Populate Workspace, Changelog, Stamp, Depend-
ency, Build, Publish Changelog, and Artifact Delivery steps of the typical job.

1. Go to Administration, select the appropriate project, and follow the steps for creating a build job.

Testing Tools

384



2. Run Quality Center Test Set. Select the Insert After icon of the step prior to where the step is to be included.
Go to Test > Quality Center Plugin, select Run Quality Center Test Set, and click Select.

If you are publishing the Test Set Report, make sure Test Set, Folder, Domain, and Project fields correspond to the
Publish Test Set Report step configured below.

• Name. Provide a name that will be used by AnthillPro if the default name is not used.

• Description (optional). Give a short description.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• QC Server. Select the correct integration from the drop-down menu (this is the integration set up in the Con-
figure Quality Center Plugin (Testing) section). If you configured multiple integrations on the AnthillPro Sys-
tem page, make sure you select the correct one. Note that it is possible for a single job -- but not a step -- to use
different AnthillPro/Quality-Center-server configurations.

• Domain Name. Give the name of the Quality Center Domain where your projects are located.

• Project Name. Give the name of the Quality Center Project where your issues are located.

• Folder. Give the full folder path to the test set above.

• Test Set. Give the name of the Quality Center Test Set AnthillPro will execute.

• Remote Host. If you want this step to run on a remote host (i.e., a remote agent), give the location here. Other-
wise, AnthillPro will use the agent on the local host.

• Show Environment Variables (optional; advanced). Give any optional environment variables in
"name=value" format.

Environment variables values may contain references to existing values in the following format:
name=${env/<NAME>};value. If the value of the <NAME> variable is "value2" in the current environ-
ment, then the above example will be expanded to: name=value2;value.

Using this technique, it is possible add an entry to PATH in the following manner:
PATH=my/path/entry;0. Case is significant even on Windows systems.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

3. Click Save.

4. Publish Quality Center Test Report. Select the Insert After icon of the previous step. Go to Test > Quality

Testing Tools

385



Center Plugin, select the Publish Quality Center Test Report step, and click Select. This step retrieves the Re-
port.xml files generated by the tests. Once they are retrieved from the build, AnthillPro will be able to make them
available to the Build Life Tests tab.

When configuring this step, make sure Test Set, Folder, Domain, and Project corresponds to the Run Test Set step
configured above.

• Name the step.

• Description (optional). Provide a brief description.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• QC Server. Select the correct integration from the drop-down menu (this is the integration set up in the Con-
figure Quality Center Plugin (Testing) section). If you configured multiple integrations on the AnthillPro Sys-
tem page, make sure you select the correct one. Note that it is possible for a single job -- but not a step -- to use
different AnthillPro/Quality-Center-server configurations.

• Domain Name. Give the name of the Quality Center Domain identified in the Run Test Set step above.

• Project Name. Give the name of the Quality Center Project you configured in the Run Test Set step above.

• Folder. Give the full folder path to the test set configured in the Run Test Set step.

• Test Set. Give the name of the Quality Center Test Set AnthillPro executed in the Run Test Set step con-
figured above.

• Show Environment Variables (optional; advanced). See Show Environment Variables above.

• Show Additional Options (advanced). See Show Additional Options.

5. Click Save.

Add Job to Quality Center Plugin Workflow (Testing)
Complete workflow configuration is beyond the scope of this entry. The topics covered in detail below are specific
to using the Quality Center integration.

1. Go Administration and select the appropriate workflow. You can add the job to either your build workflow or as
part of a secondary (i.e., testing) workflow.

2. Go to workflow Main > Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

5. Select the job you just created, a job pre-condition script, and click Insert Job.

6. Select the Properties tab and add a workflow property. This will ensure that the job runs on the appropriate agent
when using a scripted agent filter. Make sure that the property you set here is also configured on the agent.

• Name. Give the name of the Property (the property <name> will be accessed as ${property:<name>}).

Testing Tools

386



• Description. Provide a description for this Property shown when prompting users for value.

• Default Value. Input the value for this property.

• User May Override. Check if users are able to specify a new value when running this workflow.

• Label. Provide a label for this Property shown when prompting users for value (leave blank to use the Name as
the Label).

• Is Required. Check if a non-empty value for this property is required to run workflow.

• Allowed Values. Give the values users are allowed to select for this property (blank for no restriction of
value). Separate each value by entering it on its own line.

• Click Save.

7. Click Save.

Run Build and View Report (Quality Center Plugin Test-
ing)

1. Go to Dashboard and select the appropriate workflow.

2. On the workflow Main page, click the Build button.

3. Once the workflow is complete, select the Tests tab to view the report.

Quality Center Plugin Function Calls
Following is a list of the function calls used in the Quality Center integration:

TDApi-
Ole80.TDConnection

TestSet.StartExecution TestSet.TSTestFactory Step.Field

TDConnection.BugFactory TSSched-
uler.RunAllLocally

TSTestFactory.NewList BugFactory.Filter

TDConnec-
tion.InitConnectionEx

TSScheduler.TdHostName TSTest.Name BugFactory.Item

TDConnection.Login TSScheduler.Run TSTest.Type BugFactory.AddItem

TDConnection.Connect TSSched-
uler.ExecutionStatus

TSTest.Status Filter.Filter

TDConnection.Disconnect Execution-
Status.RefreshExecStatusIn
fo

TSTest.HostName Filter.NewList

TDConnection.Logout ExecutionStatus.Finished TSTest.TestId Bug.ID

TDConnec-
tion.ReleaseConnection

ExecutionStatus.EventsList TSTest.TestName Bug.Summary

TDConnec-
tion.TestSetTreeManager

ExecEventInfo.EventType TSTest.LastRun Bug.Field

TestSetTreeMan- ExecEventInfo.EventDate Run.Name Bug.AssignedTo

Testing Tools

387



ager.NodeByPath

TestSetFolder.FindTestSets ExecEventInfo.EventTime Run.Status Bug.DetectedBy

TestSet.Id TestExecStatus.TestId Run.Field Bug.Priority

TestSet.Item TestExec-
Status.TestInstance

Run.StepFactory Bug.Project

TestSet.Name TestExecStatus.TsTestId StepFactory.NewList Bug.Status

TestSet.TestSetFolder TestExecStatus.Message Step.Name Bug.Post

TestSet.Status TestExecStatus.Status Step.Status

QuickTest Pro
Running tests with the QTP integration, it is possible to publish the Test Directory to store the tests in the SCM;
publish the tests to AnthillPro during the build; then resolve the tests during the deployment to be run (on a machine
with QTP) after an instance of the application has been deployed/setup/installed.

The integration will only work if the agent(s) running the QuickTest Pro steps uses the 32-bit JVM. If the agent(s)
use a 64-bit JVM, the steps will fail. However, the AnthillPro server, which does not run the steps, can run on the
64-bit JVM.

The QuickTest Pro integration is implemented as AnthillPro job steps configured on the Job Configuration page.
When using the integration, click the Create Step button (or select the Insert After/Before icon) to add steps to a job.
Once the job is configured, it is then added to the workflow under the Definition tab.

QTP Steps:

• QuickTest Pro - Run Tests. Runs a set of tests in the Mercury QuickTest Pro tool.

• QuickTest Pro - Publish Report. Publishes a QuickTest Pro Report.

The QuickTest Pro integration can be used in conjunction with Quality Center. You must configure the Quality
Center integration on the System page. See Quality Center Testing and Quality Center Issue Tracking.

QTP Prerequisites

• The Quality Center integration must be configured on the system page.

• You must have administrative privileges to create workflows. See Manage Security.

• A Fixed Agent Filter that runs on the agent with the QC COM API installed.

Alternately, the agent with the Quality Center API can be added to the Build Farm. This requires the use of a
scripted filter to look for the presence of a variable/property (e.g., qc.agent=true) which must be added to the
agent. If this option is chosen, it is advisable to include a filter on every build job that excludes the Quality Center
agent. See Configure and Edit Agent Filters.

The integration will only work if the agent(s) running the QuickTest Pro steps uses the 32-bit JVM. If the
agent(s) use a 64-bit JVM, the steps will fail. However, the AnthillPro server, which does not run the steps, can
run on the 64-bit JVM.

Testing Tools

388



Configure Run QTP Test Job

1. Go to Administration, select the project that is to be tested, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. On the next page, name the job, give a description (optional) and click Set.

4. On the job configuration page, click Create Step.

5. QuickTest Pro - Run Tests. Select the Insert After icon of the step prior to where the QuickTest Pro - Run
Tests step is to be included (typically after the Set Working Directory step). Go to Tests > Mercury, select
QuickTest Pro - Run Tests step, and click Select.

• Name. Provide a name.

• Description (optional). Give a short description.

• Base Test Path. Provide the directory containing all QuickTest Pro tests to be run.

• Web Application URL. If testing a web application, this field will override the application URL.

• Result Base Path. To override the default result output location for the tests, give the new path. A new direct-
ory will be created for each test under the specified path.

• Browser. Give the browser being used during testing. In some cases, the browser must be specified in order
for the test to run successfully.

• Fail On Error. Check the box to fail the step if any errors occur during the test.

• Fail On Warning. Check the box to fail the step if any warnings occur during the test.

• Show Additional Options (advanced). See Show Additional Options.

6. Click Save.

7. QuickTest Pro - Publish Report. Select the Insert After icon of the QuickTest Pro - Run Tests step. Go to Test
> Mercury, select the QuickTest Pro - Publish Report step, and click Select. This step retrieves the Report.xml
files generated by QuickTest Pro. Once they are retrieved from the build, AnthillPro will be able to access the
results in a meaningful way.

• Name the step.

• Description (optional). Provide a brief description.

• Report Name. Provide a name for the report (if left blank, it will be the step name).

• Source Directory. The directory where the QuickTest Pro data files will be retrieved from.

• Include Patterns. File name patterns that describe the files that will be retrieved.

• Excluded Patterns. File name patterns identifying the files that will NOT be retrieved.

• Show Additional Options (advanced). See Show Additional Options.

8. Click Save.

Testing Tools

389



Configure the Run QTP Tests Workflow
Complete workflow configuration is beyond the scope of this tutorial. The topics covered in detail below are specif-
ic to using the QuickTest Pro integration.

1. Go Administration and select the appropriate workflow. You can add the job to either your build workflow or as
part of a secondary (i.e., testing) workflow.

2. Go to workflow Main > Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

5. Select the job created in Configure Run QTP Test Job of this tutorial, a job pre-condition script, and click In-
sert Job.

6. The Job will appear on the workflow definition page.

Run QTP Workflow and Get Reports

1. Go to Dashboard > Build Life to be tested.

2. On the Build Life page, click the Run Secondary Process button.

3. From the drop-down box, choose the workflow to be run, and click Next.

4. Select the environment and click the Run button.

5. Once the workflow is complete, go to the Build Life page and select the Reports tab.

In addition to publishing the test results on the Build Life page, AnthillPro also stores the results in its data ware-
house, thus enabling you to compare your test runs over time (trending).

6. Select the Publish_QTP_Results link to view the QuickTest Pro report.

7. To drill down on each Quality Center step on the Build Life Summary page, see Trace a Build Life to Source.

QuickTest Pro Function Calls
Following is a list of the function calls used in the Quality Center integration:

QuickTest.Application Test.Run

Application.Open Test.IsRunning

Application.Quit Settings.Launchers

Application.Test Launchers.Item

Test.Settings Launchers.Item("Web").Address

Selenium

Testing Tools

390



Use the Selenium integration to run any Selenium test suite. Selenium may be integrated as part of the build job or
used as part of a non-originating workflow (secondary process) on any Build Life. Once the tests have been run,
metrics are available on the Build Life Reports and Tests tabs.

How the integration is used will typically be determined by (a.) the duration of the test suite to be run; and (b.) when
the test suite is to be run. For most users, running Selenium as part of a non-originating workflow (secondary pro-
cess) is advisable. For example, to automatically run the test suite every time a build is performed, add a 'Run An-
other Workflow' job to the build (make sure the second job does not start until the build is complete). This will tell
AnthillPro to run the secondary workflow that kicks off the test suite. Or, you can set up a manual task that runs the
Selenium workflow (see Execute Workflow via Task). It is also possible to create a schedule that runs the test suite
by creating a scheduled trigger on the workflow (see Use Triggers and Scheduled Builds).

The integration is implemented as an AnthillPro job step configured on the Job Configuration page. When using the
integration, click the Create Step button (or select the Insert After/Before icon) to add the step to a job. Once the job
is configured, it is then added to the workflow under the Definition tab.

Selenium Step:

Run Tests. Runs a Selenium test suite. May be used as part of an originating and/or non-originating workflow. See
Using the Selenium Integration.

Selenium Prerequisites

• Selenium must be active, and access available to AnthillPro. See Selenium documentation [ht-
tp://seleniumhq.org/documentation/].

• You must have access to the Administration page. See Manage Security.

• At least one Build Life must be active.

Using the Selenium Integration
The Selenium integration allows AnthillPro users to run a Selenium test suite by configuring a non-originating
workflow (secondary process) to be run on any successful Build Life. This section only covers the steps necessary
for creating a job that uses Selenium and a secondary workflow that kicks off the test suite. While your job configur-
ation will vary, the Selenium integration will most likely use a Set Working Directory and Run Selenium Test step
in the secondary workflow (for other options, see Selenium).

1. Create a secondary workflow that will run the test suite.

2. Create a job to be added to the newly created workflow.

3. On the job page, click the Create Step button to add a Set Working Directory step to the job.

4. Select the Insert After icon of the Set Working Directory step. Go to Test > Selenium, select Run Tests, and
click Select.

5. Configure Step:

• Name the step.

• Description. Provide a description.

• Test Suite Path. Give the path to the Selenium test suite to be run. This is relative to the working directory.

Testing Tools

391

http://seleniumhq.org/documentation/
http://seleniumhq.org/documentation/
http://seleniumhq.org/documentation/


• Web Application URL. If you need to override the application's base URL, give it here.

• Browser. Give the Selenium browser designation. Tests can only be run in one browser at a time. To run tests
in multiple browsers, create a new step for each browser type.

• Results file. Give the name of the file that contains the Selenium test results.

• Port. If Selenium is using a port other than the default (4444), give it here. Otherwise, leave this filed blank.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

6. Click Save.

7. See Get Selenium Reports.

Get Selenium Reports

1. Go to the Dashboard and select the originating workflow to be tested.

2. On the Main page, select the appropriate Build Life.

3. On the Build Life Main page, click the Run Secondary Process button.

4. From the drop-down box, choose the workflow created in the Using the Selenium Integration section, and click
Next.

5. Select the environment and click the Run button.

6. Select the test from the Publish Reports or Tests menu.

SilkCentral
Use the SilkCentral integration to run any test suite managed by Borland's SilkCentral Test Manager (see Using the
SilkCentral Integration). SilkCentral may be integrated as part of the build job or used as part of a non-originating
workflow (secondary process) on any Build Life. Once the tests have been run, metrics are available on the Build
Life Reports and Tests tabs (see also Run SilkCentral Build Workflow and Run SilkCentral Secondary Workflow).

How the integration is used will typically be determined by (a.) the type and duration of the test suite to be run; and
(b.) when the test suite is to be run. For example, to run Unit (or other short duration) tests as part of a Continuous
Integration build, the Run Tests step must be included as part of the build process. See Use SilkCentral as Part of a

Testing Tools

392



Build.

The integration may also be used to run long tests, such as functional tests, as part of a secondary workflow that
does not require any other job steps. See Use SilkCentral as Part of a Secondary Workflow.

In order to use the integration, AnthillPro must first be configured with SilkCentral (see Set Up SilkCentral). The in-
tegration is implemented as an AnthillPro job step configured on the Job Configuration page. When using the integ-
ration, click the Create Step button (or select the Insert After/Before icon) to add the step to a job. Once the job is
configured, it is then added to the workflow under the Definition tab.

SilkCentral Step:

Run Tests. Runs a test suite using Borland SilkCentral Test Manager. May be used as part of an originating and/or
non-originating workflow.

This tutorial will follow a simple project configuration that first uses the SilkCentral Run Tests step as part of an ori-
ginating workflow (i.e., a Continuous Integration build job) to run Unit tests, and as a secondary workflow to run
functional tests, etc. The example in this tutorial uses Subversion, but the basic configuration is similar for any re-
pository type. Your jobs will vary, but the SilkCentral integration is added as a job step similar to what is described
below.

Set Up SilkCentral
Once set up as a SilkCentral user, AnthillPro must be able to access the server in order for the integration to work.
Any steps relying on the SilkCentral integration will not work until the configuration is complete.

All fields may contain scripts and/or property lookups. See Scripting.

SilkCentral Prerequisites

• You must have AnthillPro administrative privileges. See Manage Security.

• A project must be active in AnthillPro.

• The SilkCentral URL must be available.

• AnthillPro must be set up as a SilkCentral user. See SilkCentral documentation.

Configure SilkCentral

1. Go to System > SilkCentral Test Manager from the Integrations menu.

2. On the Borland SilkCentral Test Manager Integration page, click Edit.

3. Configure the integration:

• Borland SilkCentral Server URL. Provide the SilkCentral server URL.

• User Name. Give the SilkCentral user name assigned to AnthillPro.

• Password. Provide the password AnthillPro will to connect to the SilkCentral server.

• Password Script. To use a script or property lookups for the password, leave the Password field blank and
enter the script here. See Scripting.

4. Click Set then Done.

Testing Tools

393



Using the SilkCentral Integration
The SilkCentral integration allows AnthillPro users to automate the test orchestration process by configuring a build
(originating) workflow to run SilkCentral-managed tests during the build, or as a non-originating workflow
(secondary process) to be run on any successful Build Life. This section only covers the steps necessary for creating
a build job that uses SilkCentral and a secondary workflow that kicks off the test manager. While your job configur-
ation will vary, the SilkCentral integration is used similar to what is described below.

Using the SilkCentral Integration Prerequisites

• The Set Up SilkCentral section of this tutorial must be complete.

• You must have administrative privileges. See Manage Security.

• A project with at least one Build Life must be active in AnthillPro (if using the integration as part of a secondary
workflow).

Use SilkCentral as Part of a Build

To run Unit (or other short duration) tests as part of a Continuous Integration build, the Run Tests step must be in-
cluded as part of the build process that typically includes a set working directory, get changelog, and publish
changelog step. Once the SilkCentral Run Tests step is added to the build job, AnthillPro will kick off the tests asso-
ciated with the step as part of the build, and provide feedback on the Dashboard Build Life page.

The items below only cover the steps necessary to using the SilkCentral integration as part of a build workflow.

Configure SilkCentral Build Job

Each build job is different; however the SilkCentral step is configured similar to what is below. It is also possible to
configure AnthillPro to make decisions to pass or fail the build based on the results of the tests run during the build.

1. Go to Administration, select the project that is to be tested, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. On the next page, name the job, give a description (optional) and click Set.

4. Follow the steps for creating a job.

5. Run Tests. Click the Insert After button of the step prior to the point where the Run Tests step is to be included
(e.g., typically after the set working directory, build, get changelog steps). Go to Test > Silk Central Test Man-
ager, select Run Tests step, and click Select.

• Name the step.

• Description. Provide an optional description.

• Project Name. Give the name of the SilkCentral project.

• Tests. Provide the path, relative to the SilkCentral project, of all the tests to be run by this job. If the tests are
to be identified by scripts, separate them by a comma; if the path is hard coded, each test can be input on a sep-
arate line.

• Ignore Missing Tests. Check the box to have AnthillPro ignore any missing tests. If a test is defined in the
Tests field above and is missing, AnthillPro will fail the job unless the box is checked.

Testing Tools

394



• Execution Server Host. To restrict the host on which the tests can run, give the location of the SilkCentral Ex-
ecution Host. If left blank, AnthillPro will run the tests on any of the available hosts.

• Execution Server Port. If the execution server is restricted to a particular port, give it here. Inputting a value
of -1 (negative one) will allow the tests to run on any available port.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

6. Click Save.

Configure SilkCentral Build Workflow

The SilkCentral job must be executed as part of a build workflow in order to run Unit tests as part of the Continuous
Integration build. This section assumes familiarity with the originating workflow creation process, and only covers
the topics necessary to adding the job (see Configure SilkCentral Build Job) to the workflow.

1. Go to Administration and select the Add Workflow icon of the appropriate project.

2. Check Originating Workflow and click Select.

3. Configure the workflow.

4. On the workflow Main page, select the Definition tab.

5. From the drop-down menu, choose Embedded Definition and click Select.

6. Left-click the Start icon and select Insert Job After.

7. Select the Build job created in the Configure SilkCentral Build Job section, a job pre-condition script, and click
Insert Job.

Run Build Workflow and Get Reports (SilkCentral)

1. Go to Dashboard and select the workflow created in the Configure SilkCentral Build Workflow section.

2. On the workflow Main page, click the Build button.

3. Once the workflow is complete, go to the Build Life page and select the Reports tab.

4. Select the test from the Publish Reports menu. A detail of each test run (not shown) is also available.

Testing Tools

395



5. Once the workflow is complete, go to the Build Life page and select the Tests tab.

6. To drill down on each step on the Build Life Summary page, see Trace a Build Life to Source.

Use SilkCentral as Part of a Secondary Workflow

To automatically kick off long tests (e.g., functional tests), the SilkCentral Run Tests step is typically configured as
part of a secondary workflow which is run on an existing Build Life. The integration does not require any other job
steps to be run as part of the workflow, and, for example, can be scheduled to kick off the test suite using a schedule
or trigger (see Triggers and Scheduled Builds).

The items below only cover the steps necessary to using the SilkCentral integration as part of a secondary
(non-originating) workflow.

Configure SilkCentral Secondary Job

The Run Test step may be used on its own; however, depending on the needs of each project, the job may require
other steps to start a virtual machine, pass links, evaluate scripts, etc.

1. Go to Administration, select the project that is to be tested, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. On the next page, name the job, give a description (optional) and click Set.

Testing Tools

396



4. Follow the steps for creating a job.

5. Run Tests. Click the Create Step button. Go to Test > Silk Central Test Manager, select Run Tests step, and
click Select.

• Name the step.

• Description. Provide an optional description.

• Project Name. Give the name of the SilkCentral project.

• Tests. Provide the path, relative to the SilkCentral project, of all the tests to be run by this job. If the tests are
to be identified by scripts, separate them by a comma; if the path is hard coded, each test can be input on a sep-
arate line.

• Ignore Missing Tests. Check the box to have AnthillPro ignore any missing tests. If a test is defined in the
Tests field above and is missing, AnthillPro will fail the job unless the box is checked.

• Execution Server Host. To restrict the host on which the tests can run, give the location of the SilkCentral Ex-
ecution Host. If left blank, AnthillPro will run the tests on any of the available hosts.

• Execution Server Port. If the execution server is restricted to a particular port, give it here. Inputting a value
of -1 (negative one) will allow the tests to run on any available port.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

6. Click Save.

Configure SilkCentral Secondary Workflow

The SilkCentral job can be executed as part of a secondary (non-originating) workflow in order to run functional (or
other) tests on an existing Build Life. While there are numerous ways to use the SilkCentral integration to automat-
ically run testing suites, your particular workflow will be similar to what is presented here. For example, you can set
up the workflow to run on a scheduled trigger (see Triggers and Scheduled Builds) that kicks off the testing suite, or
can even include functional and other long running testing as part of the build process (see also Use SilkCentral as
Part of a Build).

1. Go to Administration and select the Add Workflow icon of the appropriate project.

2. Check Non-originating Workflow and click Select.

3. Configure workflow.

Testing Tools

397



4. On the workflow Main page, select the Definition tab.

5. From the drop-down menu, choose Embedded Definition and click Select.

6. Left-click the Start icon and select Insert Job After.

7. Select the Build job created in the Configure SilkCentral Secondary Job section, a job pre-condition script, and
click Insert Job.

8. If setting a trigger, see Triggers and Scheduled Builds.

Run Secondary Workflows and Get Reports (SilkCentral)

1. Go to Dashboard and select the originating workflow to be tested.

2. On the Main page, select the appropriate Build Life.

3. On the Build Life Main page, click the Run Secondary Process button.

4. From the drop-down box, choose the workflow created in the Configure SilkCentral Secondary Workflow sec-
tion, and click Next.

5. Select the environment and click the Run button.

6. Once the workflow is complete, go to the Build Life page and select the Reports tab.

7. Select the test from the Publish Reports menu. A detail of each test run (not shown) is also available.

8. Once the workflow is complete, go to the Build Life page and select the Tests tab.

Testing Tools

398



9. To drill down on each step on the Build Life Summary page, see Trace a Build Life to Source.

TestNG
To use TestNG with AnthillPro, publish the results in the JUnit format (See TestNG documentation [ht-
tp://testng.org/doc/documentation-main.html]) and configure the JUnit Integration. Once TestNG conforms to the
JUnit output AnthillPro expects, the reports can then be made available in AnthillPro or sent in a notification -- ex-
actly like any other JUnit report (see the JUnit integration for more information).

AnthillPro has an integration with TestNG that publishes the test data to the Build Life Test tab. The integration
consists of a single job step that is added near the end of your job.

The integration is written as an AnthillPro Plugin, included in the normal distribution. For older AnthillPro 3.7 ver-
sions, you will need to download the integration from Supportal [http://support.urbancode.com/] and then upload it
to the server. Once uploaded, ensure the Plugin is active.

Once you have AnthillPro running your TestNG tests, you can add the TestNG Publish Test Report step near the
end of your job:

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a job that runs your tests.

4. Select the Insert After icon of the step that will run before the TestNG Report Publisher step.

5. Go to Test > TestNG, select the TestNG Report Publisher step, and click Select.

• Name the step.

• Description. Provide a short description.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• Report Name. Give the name for this report to appear on the AnthillPro Dashboard. If none is given, TestNG
will be used.

• Base Directory. Provide the directory for resolving TestNG XML files. Unless absolute, this is relative to the
job working directory.

Testing Tools

399

http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html
http://support.urbancode.com/
http://support.urbancode.com/


• Include Patterns. Give the file name patterns that describe the files to be retrieved. Each include pattern must
be entered on a separate line.

You can also use the following wild cards to tell AnthillPro what to include:

• ** Indicates include every directory within the base directory.

• * Used to include every file. So, if you use *.zip, the files matching this pattern will be included.

• **/* Tells AnthillPro to retrieve the entire file tree underneath the base directory.

• Exclude Patterns. Provide the file name patterns identifying the files that will NOT be retrieved. This field is
set in the same way as the Include Patterns field, only you are telling AnthillPro what NOT to include.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

• Show Environment Variables (optional; advanced). Give any optional environment variables in
"name=value" format.

Environment variables values may contain references to existing values in the following format:
name=${env/<NAME>};value. If the value of the <NAME> variable is "value2" in the current environ-
ment, then the above example will be expanded to: name=value2;value.

Using this technique, it is possible add an entry to PATH in the following manner:
PATH=my/path/entry;0. Case is significant even on Windows systems.

6. Click Save.

7. Once the build is run, go to the new Build Life and select the Test tab. There, you can investigate the findings.

Testing Tools

400



Chapter 66. Coverage Tools
The coverage integrations, implemented as job steps, allow AnthillPro to collect information on the coverage tests
that you invoke with your build script. Once configured, AnthillPro will collect the output and store it in the Ant-
hillPro data warehouse. This makes it possible for you to perform trending over time, see which tests are failing,
track coverage, and even fail a build based on the captured results.

Each integration allows you to add the following job steps as part of your build process:

• Retrieve the coverage report. AnthillPro gets any reports generated by the coverage tool and publishes them on
the build's Dashboard.

• Fail a build based on coverage. Using a script, you can have AnthillPro fail a build if the percentage of test cov-
erage falls below a preset value.

Clover
Run Clover and publish coverage reports with the Clover 1.x integration. Users can also fail a workflow based on
percentage of code coverage (see Configure Evaluate Script Step [Clover]).

To use the integration, Clover is added to the builder either through the command line, as an Ant task, or as a Plugin
within the Maven environment (see Codestation [Developers] and Clover documentation [ht-
tp://confluence.atlassian.com/display/CLOVER/Clover+Documentation+Home]). Once Clover has been added to
the builder, configure the report publisher as a step during job configuration.

Clover steps:

• Clover Coverage Report. Retrieves the report generated by Clover for the individual build.

• Evaluate Script. Reads the information in the database and then fails a workflow if the percentage of test cover-
age is less than the minimum limit.

Your jobs will vary, but the Clover integration is added as a job step similar to what is described below. When using
the integration, click the Create Step button (or select the Insert After/Before icon) to add steps to a job. Once the
job is configured, it is then added to a workflow (under the Definition tab).

The Clover job will be typically configured to make the coverage report available to the AnthillPro UI via the Build
Life Reports tab. Once Clover is configured with the builder, the Clover Report step is included after the Populate
Workspace, Changelog, Stamp, Dependency, Build, Publish Changelog, and Artifact Delivery steps of the typical
Build job.

Clover Prerequisites

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• A project with at least one Build Life must be active in AnthillPro.

• A Life-Cycle Model must be configured with the appropriate Status and Artifact Sets. See Using Life-Cycle Mod-
els.

• Clover must be added to your command-line build script, as an Ant task, or as part of the Maven environment.

401

http://confluence.atlassian.com/display/CLOVER/Clover+Documentation+Home
http://confluence.atlassian.com/display/CLOVER/Clover+Documentation+Home
http://confluence.atlassian.com/display/CLOVER/Clover+Documentation+Home


See Codestation (Developers) and Clover documentation [ht-
tp://confluence.atlassian.com/display/CLOVER/Clover+Documentation+Home].

• The source directory where the Clover report file is located must be available.

Configure Clover Report Step
Configure the Clover Report step in this section. This step is tasked with retrieving the report generated by Clover.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

Before proceeding to Item Four, add Clover to your build script, as an Ant task, or as part of the Maven environ-
ment. See Clover documentation [ht-
tp://confluence.atlassian.com/display/CLOVER/Clover+Documentation+Home].

4. Clover Coverage Report. Select the Insert After icon of the step prior to the point where the Clover step is to
be included (e.g., the Artifact Delivery step). Go to Coverage > Clover, select the Clover Coverage Report
step, and click Select.

• Name the step (required).

• Description. Provide a short description.

• Report Name (required). Give the name for this report (default is same as step name).

• Performing Digest. Check yes to perform a digest on the published files integrity. The digest algorithm is set
by the administrator in the Server Settings. The digest will not occur if no algorithm is selected. See Configure
Server Security.

• Source Directory. Provide the directory where the Clover report files are retrieved from.

• Include Patterns. Give the file name patterns that describe the files to be retrieved. Each include pattern must
be entered on a separate line.

You can also use the following wild cards to tell AnthillPro what to include:

• ** Indicates include every directory within the base directory.

• * Used to include every file. So, if you use *.zip, the files matching this pattern will be included.

• **/* Tells AnthillPro to retrieve the entire file tree underneath the base directory.

• Exclude Patterns. Provide the file name patterns identifying the files that will NOT be retrieved. This field is
set in the same way as the Include Patterns field, only you are telling AnthillPro what NOT to include.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the

Coverage Tools

402

http://confluence.atlassian.com/display/CLOVER/Clover+Documentation+Home
http://confluence.atlassian.com/display/CLOVER/Clover+Documentation+Home
http://confluence.atlassian.com/display/CLOVER/Clover+Documentation+Home
http://confluence.atlassian.com/display/CLOVER/Clover+Documentation+Home
http://confluence.atlassian.com/display/CLOVER/Clover+Documentation+Home
http://confluence.atlassian.com/display/CLOVER/Clover+Documentation+Home


status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

5. Click Save.

6. If configuring the Evaluate Script step to fail the workflow based on coverage percentage, see Configure Evalu-
ate Script Step (Clover). Otherwise, proceed to Add Clover Job to Workflow.

Configure Evaluate Script Step (Clover)
To have AnthillPro fail a workflow based on the Clover report, add an Evaluate Script step to the Build job. The
Evaluate Script step, added after the Clover Report step, will read the information in the database and then fail a
workflow if the percentage of test coverage is less than the minimum limit. See Tools > Developer Tools > Script-
ing API > CoverageHelper.

Example Coverage Report Script:

import com.urbancode.anthill3.domain.coverage.CoverageReport;
import org.apache.log4j.Logger;

static private final Logger log = Logger.getLogger("Stuff");
CoverageReport[] reports = null;
try {
reports = CoverageHelper.getForCurrentBuildLife();

}
catch (Exception e) {
log.warn(e);

}

if (reports != null) {
log.warn("Coverage getForCurrentBuildLife " + reports.length);
log.warn("Coverage " + reports[0].getLinePercentage());
log.warn("Coverage " + reports[0].getBranchPercentage());
log.warn("Coverage " + reports[0].getCoverageType());
log.warn("Coverage " + reports[0].getName());

}

CoverageReport[] reports = CoverageHelper.getForBuildLife(BuildLifeLookup.getCurrent());
if (reports != null) {
log.warn("Coverage getForBuildLife " + reports.length);
log.warn("Coverage " + reports[0].getLinePercentage());
log.warn("Coverage " + reports[0].getBranchPercentage());
log.warn("Coverage " + reports[0].getCoverageType());
log.warn("Coverage " + reports[0].getName());

}

CoverageReport[] reports = CoverageHelper.getForCurrentJobTrace();
if (reports != null) {
log.warn("Coverage getForCurrentJobTrace " + reports.length);
log.warn("Coverage " + reports[0].getLinePercentage());
log.warn("Coverage " + reports[0].getBranchPercentage());
log.warn("Coverage " + reports[0].getCoverageType());

Coverage Tools

403



log.warn("Coverage " + reports[0].getName());
}

CoverageReport[] reports = CoverageHelper.getForJobTrace(JobTraceLookup.getCurrent());
if (reports != null) {
log.warn("Coverage getForJobTrace " + reports.length);
log.warn("Coverage " + reports[0].getLinePercentage());
log.warn("Coverage " + reports[0].getBranchPercentage());
log.warn("Coverage " + reports[0].getCoverageType());
log.warn("Coverage " + reports[0].getName());

}

CoverageReport[] reports = CoverageHelper.getRecentForCurrentWorkflow();
if (reports != null) {
log.warn("Coverage getRecentForCurrentWorkflow " + reports.length);
log.warn("Coverage " + reports[0].getLinePercentage());
log.warn("Coverage " + reports[0].getBranchPercentage());
log.warn("Coverage " + reports[0].getCoverageType());
log.warn("Coverage " + reports[0].getName());

}

CoverageReport[] reports = CoverageHelper.getRecentForWorkflow(WorkflowLookup.getCurrent());
if (reports != null) {
log.warn("Coverage getRecentForWorkflow " + reports.length);
log.warn("Coverage " + reports[0].getLinePercentage());
log.warn("Coverage " + reports[0].getBranchPercentage());
log.warn("Coverage " + reports[0].getCoverageType());
log.warn("Coverage " + reports[0].getName());

}

To configure the Evaluate Script step:

1. Select the Insert After icon of the Clover Report step. Expand the Miscellaneous folder, select the Evaluate
Script step, and click Select.

2. Name the step (required).

3. Description. Provide a short description.

4. Script. Give the BeanShell script to evaluate. See Scripting.

5. Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to con-
tinue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the status
determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

6. Click Save.

Coverage Tools

404



Add Clover Job to Workflow
The Job with the Clover step(s) must be executed as part of a workflow (see Configure Clover Report Step). This
section will assume that an originating workflow has already been configured, and will cover the process of adding
the Clover build job to the appropriate workflow. Complete workflow configuration is beyond the scope of this tu-
torial. The topics covered in detail below are specific to using the Clover integration.

1. Go to Administration, select the project, and select the build workflow.

2. On the workflow Main page, select the Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

5. Select the Build job created in the Configure Clover Report section, choose a job pre-condition script, and click
Insert Job.

Run Workflow and View Report (Clover)

1. Go to Dashboard and select the workflow created in the Add Clover Job to Workflow section.

2. On the workflow Main page, click the Build button for the workflow.

3. Once the workflow has completed, select the appropriate Build Life and click the Reports tab.

4. Select the Clover link to view the Clover coverage report for this build.

Cobertura
Run Cobertura and publish coverage reports with the Cobertura 1.9 integration. In addition, AnthillPro users can
generate a coverage report for every project that uses Cobertura. Users can also fail a workflow based on percentage

Coverage Tools

405



of code coverage (see Configure Evaluate Script Step [Cobertura]).

To use the integration, Cobertura is added to the builder either through the command line, as an Ant task, or as a
Plugin within the Maven environment (see Codestation [Developers] and Cobertura documentation [ht-
tp://cobertura.sourceforge.net/]). Once Cobertura has been added to the builder, configure the report publisher as a
step during job configuration.

Cobertura steps:

• Cobertura Coverage Report. Retrieves the report generated by Cobertura for the individual build.

• Evaluate Script. Reads the information in the database and then fails a workflow if the percentage of test cover-
age is less than the minimum limit.

Your jobs will vary, but the Cobertura integration is added as a job step similar to what is described below. When
using the integration, click the Create Step button (or select the Insert After/Before icon) to add steps to a job. Once
the job is configured, it is then added to a workflow (under the Definition tab).

The Cobertura job will typically be configured to make the coverage report available to the AnthillPro UI via the
Build Life Reports tab. If the coverage.xml file is stored in AnthillPro's data warehouse, metrics and trending are
available on the Coverage tab. Once Cobertura is configured with the builder, the Report Publish step is included
after the Populate Workspace, Changelog, Stamp, Dependency, Build, Publish Changelog, and Artifact Delivery
steps of the typical Build job.

Cobertura Prerequisites

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• A project with at least one Build Life must be active in AnthillPro.

• A Life-Cycle Model must be configured with the appropriate Status and Artifact Sets. See Using Life-Cycle Mod-
els.

• Cobertura must be added to your command-line build script, as an Ant task, or as part of the Maven environment.
See Codestation (Developers) and Cobertura documentation [http://cobertura.sourceforge.net/].

• The source directory where the Cobertura report file is located must be available.

• To have AnthillPro generate a report of all the projects that use Cobertura, an AnthillPro report must first be cre-
ated.

Configure Cobertura Report Publisher Step
Configure the Cobertura Report Publisher in this section. This step is tasked with retrieving the report generated by
Cobertura. You may also choose to publish the data that AnthillPro adds to its database.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

Before proceeding to Item Four, add Cobertura to your build script, as an Ant task, or as part of the Maven en-

Coverage Tools

406

http://cobertura.sourceforge.net/
http://cobertura.sourceforge.net/
http://cobertura.sourceforge.net/
http://cobertura.sourceforge.net/
http://cobertura.sourceforge.net/


vironment. See Cobertura documentation [http://cobertura.sourceforge.net/].

4. Cobertura Coverage Report. Select the Insert After icon of the step prior to the point where the Cobertura step
is to be included (e.g., the Artifact Delivery step). Go to Coverage > Cobertura, select the Cobertura Coverage
Report step, and click Select.

• Name the step (required).

• Description. Provide a short description.

• Report Name (required). Give the name for this report (default is same as step name).

• Report Directory. Give the directory where the Cobertura HTML report files will be retrieved from.

• Include Patterns. Give the file name patterns that describe the files to be retrieved. Each include pattern must
be entered on a separate line.

You can also use the following wild cards to tell AnthillPro what to include:

• ** Indicates include every directory within the base directory.

• * Used to include every file. So, if you use *.zip, the files matching this pattern will be included.

• **/* Tells AnthillPro to retrieve the entire file tree underneath the base directory.

• Exclude Patterns. Provide the file name patterns identifying the files that will NOT be retrieved. This field is
set in the same way as the Include Patterns field, only you are telling AnthillPro what NOT to include.

• Store Data. Check the box to store the coverage.xml results in the AnthillPro database for trending and met-
rics usage.

If the box is checked, give the base directory where the Cobertura coverage.xml files will be retrieved from if
different than the report directory. All files matching the pattern **/coverage.xml in the directory will be used.

• Data Directory. Give the base directory where the Cobertura coverage.xml files will be retrieved from. De-
fault is the same as Source Directory. All files matching the pattern **/coverage.xml in the directory will be
used.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

5. Click Save.

6. If configuring the Evaluate Script step to fail the workflow based on coverage percentage, see Configure Evalu-
ate Script Step (Cobertura). Otherwise, proceed to Add Cobertura Job to Workflow.

Coverage Tools

407

http://cobertura.sourceforge.net/
http://cobertura.sourceforge.net/


Configure Evaluate Script Step (Cobertura)
To have AnthillPro fail a workflow based on the Cobertura report, add an Evaluate Script step to the Build job. The
Evaluate Script step, added after the Configure Cobertura Report Publish Step, will read the information in the data-
base and then fail a workflow if the percentage of test coverage is less than the minimum limit. See Tools > De-
veloper Tools > Scripting API > CoverageHelper.

Example Coverage Report Script:

import com.urbancode.anthill3.domain.coverage.CoverageReport;
import org.apache.log4j.Logger;

static private final Logger log = Logger.getLogger("Stuff");
CoverageReport[] reports = null;
try {
reports = CoverageHelper.getForCurrentBuildLife();

}
catch (Exception e) {
log.warn(e);

}

if (reports != null) {
log.warn("Coverage getForCurrentBuildLife " + reports.length);
log.warn("Coverage " + reports[0].getLinePercentage());
log.warn("Coverage " + reports[0].getBranchPercentage());
log.warn("Coverage " + reports[0].getCoverageType());
log.warn("Coverage " + reports[0].getName());

}

CoverageReport[] reports = CoverageHelper.getForBuildLife(BuildLifeLookup.getCurrent());
if (reports != null) {
log.warn("Coverage getForBuildLife " + reports.length);
log.warn("Coverage " + reports[0].getLinePercentage());
log.warn("Coverage " + reports[0].getBranchPercentage());
log.warn("Coverage " + reports[0].getCoverageType());
log.warn("Coverage " + reports[0].getName());

}

CoverageReport[] reports = CoverageHelper.getForCurrentJobTrace();
if (reports != null) {
log.warn("Coverage getForCurrentJobTrace " + reports.length);
log.warn("Coverage " + reports[0].getLinePercentage());
log.warn("Coverage " + reports[0].getBranchPercentage());
log.warn("Coverage " + reports[0].getCoverageType());
log.warn("Coverage " + reports[0].getName());

}

CoverageReport[] reports = CoverageHelper.getForJobTrace(JobTraceLookup.getCurrent());
if (reports != null) {
log.warn("Coverage getForJobTrace " + reports.length);
log.warn("Coverage " + reports[0].getLinePercentage());
log.warn("Coverage " + reports[0].getBranchPercentage());
log.warn("Coverage " + reports[0].getCoverageType());
log.warn("Coverage " + reports[0].getName());

}

CoverageReport[] reports = CoverageHelper.getRecentForCurrentWorkflow();
if (reports != null) {
log.warn("Coverage getRecentForCurrentWorkflow " + reports.length);
log.warn("Coverage " + reports[0].getLinePercentage());
log.warn("Coverage " + reports[0].getBranchPercentage());
log.warn("Coverage " + reports[0].getCoverageType());

Coverage Tools

408



log.warn("Coverage " + reports[0].getName());
}

CoverageReport[] reports = CoverageHelper.getRecentForWorkflow(WorkflowLookup.getCurrent());
if (reports != null) {
log.warn("Coverage getRecentForWorkflow " + reports.length);
log.warn("Coverage " + reports[0].getLinePercentage());
log.warn("Coverage " + reports[0].getBranchPercentage());
log.warn("Coverage " + reports[0].getCoverageType());
log.warn("Coverage " + reports[0].getName());

}

To configure the Evaluate Script step:

1. Select the Insert After icon of the Cobertura Report Publisher step. Expand the Miscellaneous folder, select the
Evaluate Script step, and click Select.

2. Name the step (required).

3. Description. Provide a short description.

4. Script. Give the BeanShell script to evaluate. See Scripting.

5. Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to con-
tinue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the status
determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

6. Click Save.

Add Cobertura Job to Workflow
The Job with the Cobertura step(s) must be executed as part of a workflow (see Configure Cobertura Report Publish
Step). This section will assume that an originating workflow has already been configured, and will cover the process
of adding the Cobertura build job to the appropriate workflow. Complete workflow configuration is beyond the
scope of this tutorial. The topics covered in detail below are specific to using the Cobertura integration.

1. Go to Administration, select the project, and select the build workflow.

2. On the workflow Main page, select the Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

Coverage Tools

409



5. Select the Build job created in the Configure Cobertura Report Publish Step section, choose a job pre-condition
script, and click Insert Job.

Run Workflow and View Report (Cobertura)

1. Go to Dashboard and select the workflow created in the Add Cobertura Job to Workflow section.

2. On the workflow Main page, click the Build button for the workflow.

3. Once the workflow has completed, select the appropriate Build Life and click the Reports tab.

4. Select the Cobertura link to view the Cobertura coverage report for this build.

5. If the coverage.xml has been made available for report generation, go to the Reports page and select the Run
Report icon to view the coverage report for all AnthillPro projects using Cobertura.

EMMA
Run EMMA and publish coverage reports with the EMMA integration. In addition, AnthillPro users can also fail a
workflow based on percentage of code coverage. To use the integration, EMMA must first be added as part of the
build, most commonly as an Ant task (see EMMA documentation [http://emma.sourceforge.net/docs.html]). Once
EMMA has been added, configure the report publisher as a step during job configuration.

EMMA steps:

• EMMA Coverage Report. Retrieves the HTML reports generated by EMMA and publishes them on the Build
Life. Additionally, AnthillPro can also retrieve the XML reports and store the results in the database for metrics
and trending. See Configure EMMA Coverage Report Publisher.

• Evaluate Script. Reads the information in the database and then fails a workflow if the percentage of test cover-
age is less than the minimum limit. See Configure Evaluate Script (EMMA).

Your jobs will vary, but the EMMA integration is added as a job step similar to what is described below. When us-
ing the integration, click the Create Step button (or select the Insert After/Before icon) to add steps to an existing
job. Once the job is configured, it is then added to a workflow (under the Definition tab). Typically, the EMMA
Coverage Report step is included after any unit testing suites, etc.

Coverage Tools

410

http://emma.sourceforge.net/docs.html
http://emma.sourceforge.net/docs.html


EMMA Prerequisites

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• EMMA must already be installed and running. See EMMA documentation [ht-
tp://emma.sourceforge.net/docs.html].

• The directory where the EMMA report file is located must be available.

• To have AnthillPro generate a report of all the projects that use EMMA, an AnthillPro report must first be created.

Configure EMMA Coverage Report Publisher
Configure the EMMA Coverage Report publisher step, which is tasked with retrieving the HTML report generated
by EMMA. Once EMMA is configured with the builder, the EMMA Coverage Report step is included after the Pop-
ulate Workspace, Changelog, Stamp, Dependency, Build, and Run Unit Test steps of the typical Build job.

1. Go to Administration, select the appropriate project, and click the Add Job icon. If adding EMMA to an exist-
ing job, select the appropriate job and proceed to Item Three below.

2. Follow the steps for creating a build job.

Before proceeding to Item Three, add EMMA to your build script, typically as an Ant task. See EMMA document-
ation [http://emma.sourceforge.net/docs.html].

3. EMMA Coverage Report. Select the Insert After icon of the step prior to the point where the EMMA step is to
be included (e.g., the run Unit Tests step). Go to Coverage > EMMA, select the EMMA Coverage Report step,
and click Select.

• Name the step (required).

• Description. Provide a short description.

• Report Name. Give the name for this report (default is same as step name).

• Report Directory. Give the directory where the EMMA HTML report files will be retrieved from.

• Include Patterns. Give the file name patterns that describe the files to be retrieved. Each include pattern must
be entered on a separate line.

You can also use the following wild cards to tell AnthillPro what to include:

• ** Indicates include every directory within the base directory.

• * Used to include every file. So, if you use *.zip, the files matching this pattern will be included.

• **/* Tells AnthillPro to retrieve the entire file tree underneath the base directory.

• Exclude Patterns. Provide the file name patterns identifying the files that will NOT be retrieved. This field is
set in the same way as the Include Patterns field, only you are telling AnthillPro what NOT to include.

• Store Data. Check the box to store the coverage.xml results in the AnthillPro database for metrics usage.

• Data Directory. If the Store Data option is used, give the base directory where the EMMA coverage.xml
files will be retrieved from -- if different than the report directory. Default is the same as Source Directory.
All files matching the pattern **/coverage.xml in the directory will be used.

Coverage Tools

411

http://emma.sourceforge.net/docs.html
http://emma.sourceforge.net/docs.html
http://emma.sourceforge.net/docs.html
http://emma.sourceforge.net/docs.html
http://emma.sourceforge.net/docs.html
http://emma.sourceforge.net/docs.html


• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

4. Click Save.

5. If configuring the Evaluate Script step to fail the workflow based on coverage percentage, see Configure Evalu-
ate Script Step (EMMA). Otherwise, proceed to Add EMMA Job to Workflow.

Configure Evaluate Script (EMMA)
To have AnthillPro fail a workflow based on the EMMA report, add an Evaluate Script step to the Build job. The
Evaluate Script step, added after the EMMA Coverage Report Publish step, will read the information in the database
and then fail a workflow if the percentage of test coverage is less than the minimum limit. See Tools > Developer
Tools > Scripting API > CoverageHelper.

Example Coverage Report Script:

import com.urbancode.anthill3.domain.coverage.CoverageReport;
import org.apache.log4j.Logger;

static private final Logger log = Logger.getLogger("Stuff");
CoverageReport[] reports = null;
try {
reports = CoverageHelper.getForCurrentBuildLife();

}
catch (Exception e) {
log.warn(e);

}

if (reports != null) {
log.warn("Coverage getForCurrentBuildLife " + reports.length);
log.warn("Coverage " + reports[0].getLinePercentage());
log.warn("Coverage " + reports[0].getBranchPercentage());
log.warn("Coverage " + reports[0].getCoverageType());
log.warn("Coverage " + reports[0].getName());

}

CoverageReport[] reports = CoverageHelper.getForBuildLife(BuildLifeLookup.getCurrent());
if (reports != null) {
log.warn("Coverage getForBuildLife " + reports.length);
log.warn("Coverage " + reports[0].getLinePercentage());
log.warn("Coverage " + reports[0].getBranchPercentage());
log.warn("Coverage " + reports[0].getCoverageType());
log.warn("Coverage " + reports[0].getName());

}

Coverage Tools

412



CoverageReport[] reports = CoverageHelper.getForCurrentJobTrace();
if (reports != null) {
log.warn("Coverage getForCurrentJobTrace " + reports.length);
log.warn("Coverage " + reports[0].getLinePercentage());
log.warn("Coverage " + reports[0].getBranchPercentage());
log.warn("Coverage " + reports[0].getCoverageType());
log.warn("Coverage " + reports[0].getName());

}

CoverageReport[] reports = CoverageHelper.getForJobTrace(JobTraceLookup.getCurrent());
if (reports != null) {
log.warn("Coverage getForJobTrace " + reports.length);
log.warn("Coverage " + reports[0].getLinePercentage());
log.warn("Coverage " + reports[0].getBranchPercentage());
log.warn("Coverage " + reports[0].getCoverageType());
log.warn("Coverage " + reports[0].getName());

}

CoverageReport[] reports = CoverageHelper.getRecentForCurrentWorkflow();
if (reports != null) {
log.warn("Coverage getRecentForCurrentWorkflow " + reports.length);
log.warn("Coverage " + reports[0].getLinePercentage());
log.warn("Coverage " + reports[0].getBranchPercentage());
log.warn("Coverage " + reports[0].getCoverageType());
log.warn("Coverage " + reports[0].getName());

}

CoverageReport[] reports = CoverageHelper.getRecentForWorkflow(WorkflowLookup.getCurrent());
if (reports != null) {
log.warn("Coverage getRecentForWorkflow " + reports.length);
log.warn("Coverage " + reports[0].getLinePercentage());
log.warn("Coverage " + reports[0].getBranchPercentage());
log.warn("Coverage " + reports[0].getCoverageType());
log.warn("Coverage " + reports[0].getName());

}

To configure the Evaluate Script step:

1. Select the Insert After icon of the EMMA Coverage Report step. Expand the Miscellaneous folder, select the
Evaluate Script step, and click Select.

2. Name the step (required).

3. Description. Provide a short description.

4. Script. Give the BeanShell script to evaluate. See Scripting.

5. Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to con-
tinue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the status
determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

Coverage Tools

413



• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

6. Click Save.

Add EMMA Job to Workflow
The Job with the EMMA step(s) must be executed as part of a workflow (see Configure EMMA Coverage Report
Publisher). This section will assume that an originating workflow has already been configured, and will cover the
process of adding the build job that includes EMMA to the appropriate workflow. Complete workflow configuration
is beyond the scope of this tutorial. The topics covered in detail below are specific to using the EMMA integration.

1. Go to Administration, select the project, and select the build workflow.

2. On the workflow Main page, select the Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

5. Select the Build job created in the Configure EMMA Coverage Report Publisher section, choose a job pre-
condition script, and click Insert Job.

Run Workflow and View Report (EMMA)

1. Go to Dashboard and select the workflow created in the Add EMMA Job to Workflow section.

2. On the workflow Main page, click the Build button for the workflow.

3. Once the workflow has completed, select the appropriate Build Life and click the Reports tab.

4. Select the EMMA link to view the EMMA coverage report for this build.

5. If the coverage.xml has been made available for report generation (see Store Data in the Configure EMMA Cov-
erage Report Publisher Step section), go to the Reports page and select the Run Report icon to view the cover-
age report for all AnthillPro projects using EMMA.

Coverage Tools

414



Chapter 67. Source-code Analysis
Tools
You can have AnthillPro run your source-code analysis tool and then collect the results. Implemented as job steps,
the integrations allow AnthillPro to collect the test output and store it in the AnthillPro data warehouse.

Once set up, the integrations will make the test results available on the Analytics tab, where you can perform trend-
ing over time, see which tests are failing, track coverage, and even fail a build based on the captured results.

Checkstyle
Use the Checkstyle integration to integrate source-code analysis into your existing AnthillPro release lifecycle. The
integration exposes Checkstyle's findings, tracks changes between builds, references the change log, and makes that
information available on the AnthillPro dashboard.

The Checkstyle [http://checkstyle.sourceforge.net/] integration is available as an AnthillPro Plugin for version 3.7
and above. To use the integration, it must be added to a job. Once Checkstyle has been added to a job, the Check-
style report is available on the Dashboard under the Build Life Analytics tab when its workflow run. There, you can
view results, track trends, and more.

The integration is written as an AnthillPro Plugin, included in the normal distribution. For older AnthillPro 3.7 ver-
sions, you will need to download the integration from Supportal [http://support.urbancode.com/] and then upload it
to the server. Once uploaded, ensure the Plugin is active.

Checkstyle Prerequisites

• You must have permissions to the System and Administration pages.

• The Checkstyle results must be generated with a formatter type of xml.

• The path to the output file must be available to complete the configuration.

Add Checkstyle to Job
The Checkstyle integration is added to AnthillPro jobs as a step. The Job with the Checkstyle step must be executed
as part of a workflow. This section will assume that an originating workflow has already been configured, and will
cover the process of adding the Checkstyle build job to the appropriate workflow. Complete workflow configuration
is beyond the scope of this entry. The topics covered in detail below are specific to using the Checkstyle integration.

Typically, the Checkstyle step is included after the Populate Workspace, Changelog, Stamp, Dependency, Build,
Publish Changelog, and Artifact Delivery steps of the Build job. However, each job will vary, and it is possible to
set up AnthillPro to run Checkstyle as part of a secondary workflow.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

415

http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/
http://support.urbancode.com/
http://support.urbancode.com/


4. Select the Insert After icon of the step that will run before the Publish Checkstyle Results step.

5. Go to Source Analytics > Checkstyle, select Publish Checkstyle Results, and click Select.

6. Configure step:

• Name the step. This name will be used by the AnthillPro system.

• Description. Give an optional description of this step.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• Report Name. Give the name of the report to be published on the AnthillPro dashboard.

• Output File. Give the path to the Checkstyle XML output file from the working directory.

• Include Description. Check the box to include a description on the AnthillPro dashboard for each finding.
Please note that if this option is selected, large amounts of space in the database may be required.

• Show Environment Variables (optional; advanced). Give any optional environment variables in
"name=value" format.

Environment variables values may contain references to existing values in the following format:
name=${env/<NAME>};value. If the value of the <NAME> variable is "value2" in the current environ-
ment, then the above example will be expanded to: name=value2;value.

Using this technique, it is possible add an entry to PATH in the following manner:
PATH=my/path/entry;0. Case is significant even on Windows systems.

• Show Additional Options (optional; advanced). Select the Show Additional Options link to configure more
options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

7. Click Save.

8. See View Checkstyle Results and Trending.

View Checkstyle Results and Trending
Once the job with the Checkstyle step has been configured, run a build. The completed build will publish the report
on the Dashboard. To view the results:

• Go to the Dashboard, and select the completed Build Life.

Source-code Analysis Tools

416



• On the Build Life page, select the Analytics tab.

On the Analytics tab, you can explore the number and type of findings, track changes between builds, and find out
which defects are new. From the page, it is also possible to reference the change log for more information.

CodeSonar
Use the CodeSonar integration to integrate source-code analysis into your existing AnthillPro release lifecycle. The
integration runs CodeSonar, exposes findings, tracks changes between builds, references the change log, and makes
that information available on the AnthillPro dashboard.

The CodeSonar integration is available as an AnthillPro Plugin for version 3.7 and above. To use the integration, it
must be configured on the AnthillPro System page, and then added to a job. Once the integration has been con-
figured and added to a job, the CodeSonar report is available on the Dashboard under the Build Life Analytics tab.
There, you can view results, track trends, and more.

The integration is written as an AnthillPro Plugin, included in the normal distribution. For older AnthillPro 3.7 ver-
sions, you will need to download the integration from Supportal [http://support.urbancode.com/] and then upload it
to the server. Once uploaded, ensure the Plugin is active.

CodeSonar Prerequisites

• You must have permissions to the System and Administration pages.

• CodeSonar must be installed on the AnthillPro Agent machine which will perform the build, scan, etc.

• The CodeSonar hub host name and hub port must be available to complete the configuration.

Configure CodeSonar
The CodeSonar integration must be configured on the System page before it is added to any jobs.

1. On the System page, select CodeSonar from the Integration menu.

2. Click Create New on the CodeSonar configuration page.

3. Configure integration:

• Name. Give a name for this integration. This name will be used by the AnthillPro system.

• Hub Host. Give the Hub host name. The hub host name is required in order to use the integration.

• Hub Port. Specify the HTTP port on the Hub host given above. The port is required in order to use the integ-
ration.

• Hub Username (optional). When AnthillPro runs CodeSonar, it will automatically log into the hub. Depend-
ing on how your CodeSonar is configured, a user name (e.g., AnthillPro) may be required.

• Hub Password (optional). Depending on how CodeSonar is configured, a password may be required for Ant-
hillPro to log into the server. If a password is required, give it here. Leave this field blank if a password is not
required for AnthillPro to log into the server.

Source-code Analysis Tools

417

http://support.urbancode.com/
http://support.urbancode.com/


• Confirm Password. Retype the password in the field if one is in use.

• Command Path (optional). Give the path to the CodeSonar executables if they are not in the default location
(i.e., already on the path). This should only be the path to the directory containing them.

• Severity Threshold. Set the severity threshold that will be used to mark a finding as Critical or not. Since
CodeSonar produces a severity number for each finding, any number CodeSonar finding with a number equal
to or greater than the threshold set here will be marked as an Error in the results; an finding assigned a number
less than the threshold you set here will be marked as Critical. For example, if you use the default value of
10.0, a finding that CodeSonar assigns a severity number of 9 to will be marked as Critical in the results; and
one assigned a vale of 10.1 will be marked as Error in the results.

4. Click Save.

5. See Add CodeSonar to Job.

Add CodeSonar to Job
The CodeSonar integration is added to AnthillPro jobs as a step. The Job with the CodeSonar step must be executed
as part of a workflow. This section will assume that an originating workflow has already been configured, and will
cover the process of adding the CodeSonar build job to the appropriate workflow.

Once the job has been created, you will need to ensure that the job runs on the agent machine that has CodeSonar in-
stalled on it. This is done by selecting the appropriate agent when configuring the workflow definition. See Com-
plete Build Process Configuration and Agent Management for information on agent selection.

Complete workflow configuration is beyond the scope of this entry. The topics covered in detail below are specific
to using the CodeSonar integration.

Typically, the CodeSonar step is included after the Populate Workspace, Changelog, Stamp, Dependency, Build,
Publish Changelog, and Artifact Delivery steps of the Build job. However, each job will vary, and it is possible to
set up AnthillPro to run CodeSonar as part of a secondary workflow (if you do, it may be necessary to run a cleanup
step prior to running the CodeSonar step).

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

When configuring the workflow definition, make sure that the job runs on the machine that has both CodeSonar
and the AnthillPro Agent installed. See Complete Build Process Configuration and Agent Management for in-
formation on agent selection.

4. Run CodeSonar step. Select the Insert After icon of the step that will run before the Run CodeSonar step.

5. Go to Source Analytics > CodeSonar, select Run CodeSonar, and click Select.

6. Configure step:

• Name the step. This name will be used by the AnthillPro system.

• Description. Give an optional description of this step.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This

Source-code Analysis Tools

418



is relative to current working directory. To use the current directory, leave this field blank.

• Report Name. Give the name of the CodeSonar report. The report name is used to publish results to the Ant-
hillPro Dashboard. See View CodeSonar Results and Trending.

• Project Name. Give the name of the project as set in CodeSonar.

• No Services. If CodeSonar is not running as a Windows service, check the box to pass the -no-services
flag so CodeSonar does not run as a service.

• Command. Enter the current command(s) used to build the project. If multiple commands are used, each one
must begin on a new line.

• CodeSonar. Select the correct CodeSonar configuration. AnthillPro supports multiple configurations as part of
its CodeSonar integration. For example, it is possible to configure two servers that run different test suites, etc.
The names appearing in this drop-down menu were set during the configuration process. If you don't see the
correct configuration, see Configure CodeSonar to add the appropriate configuration before continuing.

• Show Environment Variables (optional; advanced). Give any optional environment variables in
"name=value" format.

Environment variables values may contain references to existing values in the following format:
name=${env/<NAME>};value. If the value of the <NAME> variable is "value2" in the current environ-
ment, then the above example will be expanded to: name=value2;value.

Using this technique, it is possible add an entry to PATH in the following manner:
PATH=my/path/entry;0. Case is significant even on Windows systems.

• Show Additional Options (optional; advanced). Select the Show Additional Options link to configure more
options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

7. Click Save.

8. See View CodeSonar Results and Trending.

View CodeSonar Results and Trending
Once the job with the CodeSonar step has been configured, run a build. The build will kick off CodeSonar, run the
tests, and publish the reports on the Dashboard. To view the results:

• Go to the Dashboard, and select the completed Build Life.

Source-code Analysis Tools

419



• On the Build Life page, select the Analytics tab.

On the Analytics tab, you can explore the number and type of findings, track changes between builds, and find out
which defects are new. From the page, it is also possible to reference the change log for more information.

Coverity Prevent
Use the Coverity Prevent integration to integrate source-code analysis into your existing AnthillPro release lifecycle.
The integration runs Coverity Prevent, exposes findings, tracks changes between builds, references the change log,
and makes that information available on the AnthillPro dashboard.

The Coverity Prevent integration is available as an AnthillPro Plugin for version 3.7 and above. To use the integra-
tion, it must be configured on the AnthillPro System page, and then added to a job. Once the integration has been
configured and added to a job, the Coverity Prevent report is available on the Dashboard under the Build Life Ana-
lytics tab. There, you can view results, track trends, and more.

The integration is written as an AnthillPro Plugin, included in the normal distribution. For older AnthillPro 3.7 ver-
sions, you will need to download the integration from Supportal [http://support.urbancode.com/] and then upload it
to the server. Once uploaded, ensure the Plugin is active.

Coverity Prevent Prerequisites

• You must have permissions to the System and Administration pages.

• The Coverity Prevent server remote host name and remote port must be available to complete the configura-
tion.

• Coverity Prevent must be installed and configured on the same physical machine as the AnthillPro agent, other-
wise the integration will not work.

Configure Coverity Prevent
The Coverity Prevent integration must be configured before it is added to any jobs.

1. On the System page, select Coverity Prevent from the Integration menu.

2. Click Create New on the Coverity Prevent configuration page.

3. Configure integration:

• Name. Give a name for this integration. This name will be used by the AnthillPro system.

• Remote Host. Give the Defect Manager remote host name of the server that results are published to. The serv-
er remote host name is required in order to use the integration.

• Remote Port. Specify the HTTP port on the remote Defect Manager host given above. The port is required in
order to use the integration.

• Username (optional). When AnthillPro runs Coverity Prevent, it will automatically commit the test results.
Depending on how your Defect Manager is configured, a user name (e.g., AnthillPro) may be required.

• Password (optional). Depending on how Coverity Prevent is configured, a password may be required for Ant-

Source-code Analysis Tools

420

http://support.urbancode.com/
http://support.urbancode.com/


hillPro to log into the server. If a password is required, give it here. Leave this field blank if a password is not
required for AnthillPro to log into the server.

• Confirm Password. Retype the password in the field if one is in use.

• Command Path (optional). Give the path to the Coverity Prevent executables if they are not in the default
location (i.e., already on the path). This should only be the path to the directory containing them.

4. Click Save.

5. See Add Coverity Prevent to Job.

Add Coverity Prevent to Job
The Coverity Prevent integration is added to AnthillPro jobs as a step. The Job with the Coverity Prevent step must
be executed as part of a workflow. This section will assume that an originating workflow has already been con-
figured, and will cover the process of adding the Coverity Prevent job to the appropriate workflow.

Once the job has been created, you will need to ensure that the job runs on the agent machine that has Coverity Pre-
vent installed on it. This is done by selecting the appropriate agent when configuring the workflow definition. See
Complete Build Process Configuration and Agent Management for information on agent selection.

Complete workflow configuration is beyond the scope of this entry. The topics covered in detail below are specific
to using the Coverity Prevent integration.

Typically, the Coverity Prevent step is included after the Populate Workspace, Changelog, Stamp, Dependency,
Build, Publish Changelog, and Artifact Delivery steps of the Build job. However, each job will vary, and it is pos-
sible to set up AnthillPro to run Coverity Prevent as part of a secondary workflow (if you do, it may be necessary to
run a cleanup step prior to running the Coverity Prevent step).

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

When configuring the workflow definition, make sure that the job runs on the machine that has both Coverity
Prevent and the AnthillPro Agent installed. See Complete Build Process Configuration and Agent Management
for information on agent selection.

4. Run Coverity Prevent Step. Select the Insert After icon of the step that will run before the Run Coverity Pre-
vent step.

Please note that Coverity Prevent must be installed and configured on the same physical machine as the Ant-
hillPro agent, otherwise the integration will not work when the job is run. There are a number of ways to ensure
that the job runs on the correct agent. For example, you can use a fixed agent filter (see Configure and Edit
Agent Filters) or an agent filter script to select the appropriate agent.

5. Go to Source Analytics > Coverity Prevent, select Run Coverity Prevent, and click Select.

6. Configure step:

• Name the step. This name will be used by the AnthillPro system.

• Description. Give an optional description of this step.

Source-code Analysis Tools

421



• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• Report Name. Give the name of the Coverity Prevent report. The report name is used to publish results to the
AnthillPro Dashboard. See View Coverity Prevent Results and Trending.

• Product Name. Give the name of the product to which AnthillPro will commit the defects.

• Source Type. Select the source-code type that will be analyzed. Currently, you can choose C/C++, C#, or Java
from the drop-down menu.

• Command. Enter the current command(s) used to build the project. If multiple commands are used, each one
must begin on a new line.

• Coverity Prevent. Select the correct Coverity Prevent configuration. AnthillPro supports multiple configura-
tions as part of its Coverity Prevent integration. For example, it is possible to configure two servers that run
different test suites, etc. The names appearing in this drop-down menu were set during the configuration pro-
cess. If you don't see the correct configuration, see Configure Coverity Prevent to add the appropriate configur-
ation before continuing.

• Show Environment Variables (optional; advanced). Give any optional environment variables in
"name=value" format.

Environment variables values may contain references to existing values in the following format:
name=${env/<NAME>};value. If the value of the <NAME> variable is "value2" in the current environ-
ment, then the above example will be expanded to: name=value2;value.

Using this technique, it is possible add an entry to PATH in the following manner:
PATH=my/path/entry;0. Case is significant even on Windows systems.

• Show Additional Options (optional; advanced). Select the Show Additional Options link to configure more
options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

7. Click Save.

8. See View Coverity Prevent Results and Trending.

View Coverity Prevent Results and Trending
Once the job with the Coverity Prevent step has been configured, run a build. The build will kick off Coverity Pre-
vent, run the tests, and publish the reports on the Dashboard. To view the results:

Source-code Analysis Tools

422



• Go to the Dashboard, and select the completed Build Life.

• On the Build Life page, select the Analytics tab.

On the Analytics tab, you can explore the number and type of findings, track changes between builds, and find out
which defects are new. From the page, it is also possible to reference the change log for more information.

FindBugs
Use the FindBugs [http://findbugs.sourceforge.net/] integration to integrate source-code analysis into your existing
AnthillPro release lifecycle. The integration exposes FindBugs' findings, tracks changes between builds, references
the change log, and makes that information available on the AnthillPro dashboard.

The FindBugs integration is available as an AnthillPro Plugin for version 3.7 and above. To use the integration, it
must be added to a job. Once FindBugs has been added to a job, the FindBugs report is available on the Dashboard
under the Build Life Analytics tab when its workflow run. There, you can view results, track trends, and more.

The integration is written as an AnthillPro Plugin, included in the normal distribution. For older AnthillPro 3.7 ver-
sions, you will need to download the integration from Supportal [http://support.urbancode.com/] and then upload it
to the server. Once uploaded, ensure the Plugin is active.

FindBugs Prerequisites

• You must have permissions to the System and Administration pages.

• The FindBugs results must be generated with a formatter type of xml.

• The path to the output file must be available to complete the configuration.

Add FindBugs to Job
The FindBugs integration is added to AnthillPro jobs as a step. The Job with the FindBugs step must be executed as
part of a workflow. This section will assume that an originating workflow has already been configured, and will
cover the process of adding the FindBugs build job to the appropriate workflow. Complete workflow configuration
is beyond the scope of this entry. The topics covered in detail below are specific to using the FindBugs integration.

Typically, the FindBugs step is included after the Populate Workspace, Changelog, Stamp, Dependency, Build, Pub-
lish Changelog, and Artifact Delivery steps of the Build job. However, each job will vary, and it is possible to set up
AnthillPro to run FindBugs as part of a secondary workflow.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

4. Select the Insert After icon of the step that will run before the Publish FindBugs Results step.

5. Go to Source Analytics > FindBugs, select Publish FindBugs Results, and click Select.

6. Configure step:

Source-code Analysis Tools

423

http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
http://support.urbancode.com/
http://support.urbancode.com/


• Name the step. This name will be used by the AnthillPro system.

• Description. Give an optional description of this step.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• Report Name. Give the name of the report to be published on the AnthillPro dashboard.

• Output File. Give the path to the FindBugs XML output file from the working directory.

• Include Description. Check the box to include a description on the AnthillPro dashboard for each finding.
Please note that if this option is selected, large amounts of space in the database may be required.

• Show Environment Variables (optional; advanced). Give any optional environment variables in
"name=value" format.

Environment variables values may contain references to existing values in the following format:
name=${env/<NAME>};value. If the value of the <NAME> variable is "value2" in the current environ-
ment, then the above example will be expanded to: name=value2;value.

Using this technique, it is possible add an entry to PATH in the following manner:
PATH=my/path/entry;0. Case is significant even on Windows systems.

• Show Additional Options (optional; advanced). Select the Show Additional Options link to configure more
options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

7. Click Save.

8. See View Find Bugs Results and Trending.

View FindBugs Results and Trending
Once the job with the FindBugs step has been configured, run a build. When the build is complete, the report will be
visible on the Dashboard. To view the results:

• Go to the Dashboard, and select the completed Build Life.

• On the Build Life page, select the Analytics tab.

On the Analytics tab, you can explore the number and type of findings, track changes between builds, and find out

Source-code Analysis Tools

424



which defects are new. From the page, it is also possible to reference the change log for more information.

Fortify 360
Use the Fortify 360 integration to integrate source-code analysis into your existing AnthillPro release lifecycle. The
integration exposes Fortify 360's findings, tracks changes between builds, references the change log, and makes that
information available on the AnthillPro dashboard.

The Fortify 360 integration is available as an AnthillPro Plugin for version 3.7 and above. To use the integration, it
must be configured on the AnthillPro System page, and then added to a job. Once the integration has been con-
figured and added to a job, the Fortify 360 report is available on the Dashboard under the Build Life Analytics tab.
There, you can view results, track trends, and more.

The integration is written as an AnthillPro Plugin, included in the normal distribution. For older AnthillPro 3.7 ver-
sions, you will need to download the integration from Supportal [http://support.urbancode.com/] and then upload it
to the server. Once uploaded, ensure the Plugin is active.

Fortify 360 Prerequisites

• Fortify must be installed on the AnthillPro Agent machine which will perform the build, scan, etc.

• You must have permissions to the System and Administration pages.

• The Fortify 360 Server URL must be available to complete the configuration. The server URL is only required if
you are using the "upload" step.

If you are using Fortify without the 360 server, you will need the Fortify sourceanalyzer installed on the target ma-
chine. In addition, you need to ensure that you are not using any "upload" options. Used in this way, AnthillPro will
run the scan, parse the results and display the data on its own.

• A user name and password that AnthillPro can use to log into the Fortify 360 server, if required.

Configure Fortify 360
The Fortify 360 integration must be configured before it is added to any jobs.

1. On the System page, select Fortify 360 from the Integration menu.

2. Click Create New on the Fortify 360 configuration page.

3. Configure integration:

• Name. Give a name for this integration. This name will be used by the AnthillPro system. For example, the
name you give here will be chosen when configuring the Fortify 360 job step.

• Server URL. Give the URL to the Fortify 360 server web interface. This should include protocol and port if
needed. The server URL is only required if you are using the "upload" step.

If you are using Fortify without the 360 server, leave this field blank. Note that you will need the Fortify sourceana-
lyzer installed on the target machine. In addition, you need to ensure that you are not using any "upload" options.
Used in this way, AnthillPro will run the scan, parse the results and display the data on its own.

Source-code Analysis Tools

425

http://support.urbancode.com/
http://support.urbancode.com/


• Username. Give the user name to login to the Fortify 360 server. Leave this blank if no user name or password
is required.

• Password. Give the password associated with the user name above, if your Fortify 360 server requires a pass-
word.

• Confirm password, if one is used.

• Access Token. Optionally, you can also use an access token to use instead of user name and password to login
to the Fortify 360 server. Note that it is possible to use both a username/password and an access token.

• Confirm access token, if one is used.

• Command Path (optional). Give the path to the sourceanalyzer and fortify client executables if they are not
on the path. This should only be the path to the directory containing them. If the executables are not in the de-
fault location, you may have to specify the path here.

4. Click Save.

5. See Add Fortify 360 to Job.

Add Fortify 360 to Job
The Fortify 360 integration is added to AnthillPro jobs as a step. The Job with the Fortify 360 step must be executed
as part of a workflow. The Fortify 360 integration step enables AnthillPro to build and scan the project, and then up-
load the results to the Fortify server. If a scan or upload is performed, the scan results are also loaded into AnthillPro
on the Build Life as a source analytics report.

Once the job has been created, you will need to ensure that the job runs on the agent machine that has Fortify in-
stalled on it. This is done by selecting the appropriate agent when configuring the workflow definition. See Com-
plete Build Process Configuration and Agent Management for information on agent selection.

This section will assume that an originating workflow has already been configured, and will cover the process of
adding the Fortify 360 build job to the appropriate workflow. Complete workflow configuration is beyond the scope
of this entry. The topics covered in detail below are specific to using the Fortify 360 integration.

Typically, the Fortify 360 steps are included after the Populate Workspace, Changelog, Stamp, Dependency, Build,
Publish Changelog, and Artifact Delivery steps of the Build job. However, each job will vary, and it is possible to
set up AnthillPro to run Fortify 360 as part of a secondary workflow.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

When configuring the workflow definition, make sure that the job runs on the machine that has both Fortify and
the AnthillPro Agent installed. See Complete Build Process Configuration and Agent Management for informa-
tion on agent selection.

4. Fortify Build/Scan/Upload Step. Select the Insert After icon of the step that will run before the Run Fortify 360
step.

If you are using Fortify without the 360 server, do not use any of the "upload" options.

Source-code Analysis Tools

426



• Expand the Source Analytics folder. Then expand the Fortify 360 folder.

• Select Fortify Build/Scan/Upload and click Select.

5. Configure step:

• Name the step. This name will be used by the AnthillPro system.

• Description. Give an optional description of this step.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• Fortify. Select the correct Fortify 360 configuration. AnthillPro supports multiple configurations as part of its
Fortify 360 integration. For example, it is possible to configure two servers that run different test suites, etc.
The names appearing in this drop-down menu were set during the configuration process. If you don't see the
correct configuration, see Configure Fortify 360 to add the appropriate configuration before continuing.

• Report Name. Give the name of the Fortify 360 report. The report name is used to publish results to the Ant-
hillPro Dashboard. See View Fortify 360 Results and Trending.

• Build ID. Give the build ID for Fortify 360.

• Clean. By default, AnthillPro will perform a cleanup. If you don't want to run a cleanup, de-select this option.

• Build. Perform the build. This requires the Build Options (below) to be entered if the default is used.

• Build Options. If the build field is checked above, you must give the build options that will be passed to the
sourceanalyzer when the build runs. Each argument should be started on a new line.

• Scan. By default, a scan is performed. If you don't want AnthillPro to run a scan, de-select this option. If you
have AnthillPro run a scan, you will need to give the scan's output file below.

• Scan File.The output file of the scan. This is required if performing a scan or uploading. The file name should
be in fvdl format. For example: anthill-fortify-scan.fvdl.

• Upload. By default, AnthillPro will perform the upload to the Fortify server. To perform an upload, you will
need give the Project and Version below, as well as give the Scan File above.

If you are using Fortify without the 360 server, leave this field blank. Note that you will need the Fortify sourceana-
lyzer installed on the target machine. In addition, you need to ensure that you are not using any "upload" options.
Used in this way, AnthillPro will run the scan, parse the results and display the data on its own.

• Project. Give the name of the project as set in Fortify 360. This is only necessary if the Upload option is selec-
ted above.

• Version. Give the Project Version name in the Fortify server to upload results to. This is only necessary if the
Upload option is selected above.

• Show Environment Variables (optional; advanced). Give any optional environment variables in
"name=value" format.

Environment variables values may contain references to existing values in the following format:
name=${env/<NAME>};value. If the value of the <NAME> variable is "value2" in the current environ-
ment, then the above example will be expanded to: name=value2;value.

Using this technique, it is possible add an entry to PATH in the following manner:

Source-code Analysis Tools

427



PATH=my/path/entry;0. Case is significant even on Windows systems.

• Show Additional Options (optional; advanced). Select the Show Additional Options link to configure more
options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

6. See View Fortify 360 Results and Trending.

View Fortify 360 Results and Trending
Once the job with the Fortify 360 step has been configured, run a build. The build will kick off Fortify 360, run the
tests, and publish the reports on the Dashboard. To view the results:

• Go to the Dashboard, and select the completed Build Life.

• On the Build Life page, select the Analytics tab.

On the Analytics tab, you can explore the number and type of findings, track changes between builds, and find out
which defects are new. From the page, it is also possible to reference the change log for more information.

Klocwork Insight
Use the Klocwork Insight integration to integrate source-code analysis into your existing AnthillPro release life-
cycle. The integration exposes Insight's findings, tracks changes between builds, references the change log, and
makes that information available on the AnthillPro dashboard.

The Klocwork Insight integration is available as an AnthillPro Plugin for version 3.7 and above. To use the integra-
tion, it must be configured on the AnthillPro System page, and then added to a job. Once the integration has been
configured and added to a job, the Klocwork Insight report is available on the Dashboard under the Build Life Ana-
lytics tab. There, you can view results, track trends, and more.

The integration is written as an AnthillPro Plugin, included in the normal distribution. For older AnthillPro 3.7 ver-
sions, you will need to download the integration from Supportal [http://support.urbancode.com/] and then upload it
to the server. Once uploaded, ensure the Plugin is active.

Klocwork Insight Prerequisites

• You must have permissions to the System and Administration pages.

Source-code Analysis Tools

428

http://support.urbancode.com/
http://support.urbancode.com/


• The AnthillPro Agent that will run the Klocwork step must be installed on the same machine as Klocwork Insight.

• The Klocwork Insight Server URL must be available to complete the configuration.

Configure Klocwork Insight
The Klocwork Insight integration must be configured before it is added to any jobs.

1. On the System page, select Klocwork Insight from the Integration menu.

2. Click Create New on the Klocwork Insight configuration page.

3. Configure integration:

• Name. Give a name for this integration. This name will be used by the AnthillPro system.

• Server URL. Give the URL to the Klocwork Insight server web interface. This should include protocol and
port if needed. The server URL is required in order to use the integration.

• Command Path (optional). Give the path to the kwcheck and kwadmin executables. This should only be
the path to the directory containing them. If the executables are not in the default location, you may have to
specify the path here.

4. Click Save.

5. See Add Klocwork Insight to Job.

Add Klocwork Insight to Job
The Klocwork Insight integration is added to AnthillPro jobs as a step. The Job with the Klocwork Insight step must
be executed as part of a workflow. The Klocwork Insight step can be configured to build, analyze and upload the
results of any project (C, C++, Java Ant, MS Visual Studio) already configured in Klocwork.

This section will assume that an originating workflow has already been configured, and will cover the process of
adding the Klocwork Insight build job to the appropriate workflow.

Once the job has been created, you will need to ensure that the job runs on the machine that has both Klocwork and
the AnthillPro Agent (which will run the job) installed on it. This is done by selecting the appropriate agent when
configuring the workflow definition. See Complete Build Process Configuration and Agent Management for inform-
ation on agent selection.

Complete workflow configuration is beyond the scope of this entry. The topics covered in detail below are specific
to using the Klocwork Insight integration.

Typically, the Klocwork Insight step is included after the Populate Workspace, Changelog, Stamp, Dependency,
Build, Publish Changelog, and Artifact Delivery steps of the Build job. However, each job will vary, and it is pos-
sible to set up AnthillPro to run Klocwork Insight as part of a secondary workflow.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

Source-code Analysis Tools

429



When configuring the workflow definition, make sure that the job runs on the machine that has both Klocwork
Insight and the AnthillPro Agent installed. See Complete Build Process Configuration and Agent Management
for information on agent selection.

4. Run Klocwork Step. Select the Insert After icon of the step that will run before the Run Klocwork Insight step.

• Expand the Source Analytics folder. Then expand the Klocwork Insight folder.

• Select Run Klocwork and click Select.

5. Configure step:

• Name the step. This name will be used by the AnthillPro system.

• Description. Give an optional description of this step.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• Report Name. Give the name of the Klocwork Insight report. The report name is used to publish results to the
AnthillPro Dashboard. See View Klocwork Insight Results and Trending.

• Project Name. Give the name of the project as set in Klocwork Insight.

Note that in order for the integration to work, the project name must start with a letter (i.e., a, b, c, etc.). In ad-
dition, only digits (0 through 9), Latin letters (A through Z, a through z) and the underscore character are al-
lowed in a project name. A project name must not be no more than 54 characters.

• Build. Perform the build. This requires the Build Options to be entered below.

• Build Type. Select the type of project that is being built and analyzed.

• Build Options. If the build field is checked above, you must give the build options that will be passed to the
sourceanalyzer when the build runs. Each argument should be started on a new line.

• Build Specification. Give the path to the Klocwork build specification file, if different than the default kwin-
ject.out location.

• Run. By default, the integration will perform the analysis. If this box is checked, you must give the Build Spe-
cification above.

• Include Description (optional). Check the box to include a description with each Klocwork Insight finding.
Note that if this option is selected, it may consume large amounts of space in the database. If you experience
problems when including descriptions, change this setting back to the default.

• Upload. By default, AnthillPro will perform the upload to the Fortify server. To perform an upload, you will
need give the Project and Version below, as well as give the Scan File above.

• Build Name. Give the name of the build to load the results as. Typically, the following AnthillPro stamp value
is most often used: ${bsh:StampLookup.getLatestStampValue()}.

Note that only digits (0 through 9), Latin letters (A through Z, a through z) and the underscore character are al-
lowed in a project or build name.

In addition, the AnthillPro Build Life ID can be used for the build name:
${bsh:BuildLifeLookup.getCurrent().getId()}. As well as the AnthillPro Stamp Value:
${bsh:StampLookup.getLatestStampValue()}.

Source-code Analysis Tools

430



• Klocwork. Select the correct Klocwork configuration. AnthillPro supports multiple configurations as part of
its Klocwork integration. For example, it is possible to configure two servers that run different test suites, etc.
The names appearing in this drop-down menu were set during the configuration process. If you don't see the
correct configuration, see Configure Klocwork Insight to add the appropriate configuration before continuing.

• Show Environment Variables (optional; advanced). Give any optional environment variables in
"name=value" format.

Environment variables values may contain references to existing values in the following format:
name=${env/<NAME>};value. If the value of the <NAME> variable is "value2" in the current environ-
ment, then the above example will be expanded to: name=value2;value.

Using this technique, it is possible add an entry to PATH in the following manner:
PATH=my/path/entry;0. Case is significant even on Windows systems.

• Show Additional Options (optional; advanced). Select the Show Additional Options link to configure more
options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

6. See View Klocwork Insight Results and Trending.

View Klocwork Insight Results and Trending
Once the job with the Klocwork step has been configured, run a build. The build will kick off Klocwork, run the
tests, and publish the reports on the Dashboard. To view the results:

• Go to the Dashboard, and select the completed Build Life.

• On the Build Life page, select the Analytics tab.

Source-code Analysis Tools

431



On the Analytics tab, you can explore the number and type of findings, track changes between builds, and find out
which defects are new. From the page, it is also possible to reference the change log for more information.

PMD
Use the PMD [http://pmd.sourceforge.net/] integration to integrate source-code analysis into your existing Ant-
hillPro release lifecycle. The integration exposes PMD's findings, tracks changes between builds, references the
change log, and makes that information available on the AnthillPro dashboard.

The PMD integration is available as an AnthillPro Plugin for version 3.7 and above. To use the integration, it must
be added to a job. Once PMD has been added to a job, the PMD report is available on the Dashboard under the Build
Life Analytics tab when its workflow run. There, you can view results, track trends, and more.

The integration is written as an AnthillPro Plugin, included in the normal distribution. For older AnthillPro 3.7 ver-
sions, you will need to download the integration from Supportal [http://support.urbancode.com/] and then upload it
to the server. Once uploaded, ensure the Plugin is active.

Source-code Analysis Tools

432

http://pmd.sourceforge.net/
http://pmd.sourceforge.net/
http://support.urbancode.com/
http://support.urbancode.com/


PMD Prerequisites

• You must have permissions to the System and Administration pages.

• The PMD results must be generated with a formatter type of xml.

• The path to the output file must be available to complete the configuration.

Add PMD to Job
The PMD integration is added to AnthillPro jobs as a step. The Job with the PMD step must be executed as part of a
workflow. This section will assume that an originating workflow has already been configured, and will cover the
process of adding the PMD build job to the appropriate workflow. Complete workflow configuration is beyond the
scope of this entry. The topics covered in detail below are specific to using the PMD integration.

Typically, the PMD step is included after the Populate Workspace, Changelog, Stamp, Dependency, Build, Publish
Changelog, and Artifact Delivery steps of the Build job. However, each job will vary, and it is possible to set up
AnthillPro to run PMD as part of a secondary workflow.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

4. Select the Insert After icon of the step that will run before the Publish PMD Results step.

5. Go to Source Analytics > PMD, select Publish PMD Results, and click Select.

6. Configure step:

• Name the step. This name will be used by the AnthillPro system.

• Description. Give an optional description of this step.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• Report Name. Give the name of the report to be published on the AnthillPro dashboard.

• Output File. Give the path to the PMD XML output file from the working directory.

• Show Environment Variables (optional; advanced). Give any optional environment variables in
"name=value" format.

Environment variables values may contain references to existing values in the following format:
name=${env/<NAME>};value. If the value of the <NAME> variable is "value2" in the current environ-
ment, then the above example will be expanded to: name=value2;value.

Using this technique, it is possible add an entry to PATH in the following manner:
PATH=my/path/entry;0. Case is significant even on Windows systems.

• Show Additional Options (optional; advanced). Select the Show Additional Options link to configure more
options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

Source-code Analysis Tools

433



• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

7. Click Save.

8. See View PMD Results and Trending.

View PMD Results and Trending
Once the job with the PMD step has been configured, run a build. The build will publish the report on the Dashboard
when complete. To view the results:

• Go to the Dashboard, and select the completed Build Life.

• On the Build Life page, select the Analytics tab.

On the Analytics tab, you can explore the number and type of findings, track changes between builds, and find out
which defects are new. From the page, it is also possible to reference the change log for more information.

Sonar
You can use the Sonar integration to have AnthillPro publish your test results (for the most recent build) to the Son-
ar Dashboard. If you are already using AnthillPro to run the testing tools Sonar supports, you can add the Run Sonar
step to your build job, and the test results will be published to the Sonar Dashboard.

The Sonar integration is available as a Plugin for AnthillPro 3.7 and above. To use the integration, it must be con-
figured on the AnthillPro System page, and then added to a job. Once the integration has been configured and added
to a job, you can then run it within the context of a workflow.

The integration is written as an AnthillPro Plugin, included in the normal distribution. For older AnthillPro 3.7 ver-
sions, you will need to download the integration from Supportal [http://support.urbancode.com/] and then upload it
to the server. Once uploaded, ensure the Plugin is active.

Sonar Prerequisites

• You must have permissions to the System and Administration pages, including the ability to configure workflows
and jobs.

• The Sonar URL must be available to complete the configuration.

• If you are running Sonar with other than the default database, you will also need to know the:

Source-code Analysis Tools

434

http://support.urbancode.com/
http://support.urbancode.com/


• name and password Sonar uses to access the database;

• URL to access the database; and

• driver you are using for the Sonar database.

Additionally, if this information is not included in your POM file (or if the project is not configured in Maven),
you will need to provide it during configuration.

Configure Sonar
The Sonar integration must be configured on the System page before it is added to any jobs. The information given
here will be reused by all of your jobs that include the Run Sonar step. If you have multiple Sonar servers, you will
need to create a unique configuration for each one. Then, during job creation, you will select the appropriate config-
uration.

The integration is written as an AnthillPro Plugin, included in the normal distribution. For older AnthillPro 3.7 ver-
sions, you will need to download the integration from Supportal [http://support.urbancode.com/] and then upload it
to the server. Once uploaded, ensure the Plugin is active.

If you are using Sonar with Derby and the connection is defined in your POM file, you need only provide a name
and Sonar URL here. However, if you are using a different database and the connection information is not defined in
your POM file, you will need to add some additional configuration.

1. On the System page, select Sonar from the Integration menu.

If you do not see Sonar in the menu, go to Server > Plugins (scroll down on the System page). Make sure that
Sonar is active (if the icon in the Active menu is red, click on it). If you do not see the Sonar Plugin, download it
[http://support.urbancode.com/] from Supportal and then upload the Plugin to your AnthillPro server.

2. Click Create New on the Sonar configuration page.

3. Configure the integration:

• Name. Give a name for this integration. This name will be used by the AnthillPro system. For example, when
configuring the Sonar step, the name given here will be populated in the Sonar drop-down.

• Sonar URL. Give the URL AnthillPro will use to connect to Sonar. The URL name is required in order to use
the integration. For example: http://www.mysonar.com:9000.

If you are running Sonar with a database other than Derby and your database connection is not defined in your
Maven POM file (for example, if you are running Sonar in "Light" mode), you will have to give the following
(see Add Sonar to Job for more):

• Database Driver. Specify the JDBC driver Sonar uses to connect to its database. For example:
com.mysql.jdbc.driver.

• Database Username. Give the name Sonar uses to connect to its database. For example: Sonar1, Sonar2, etc.
This should correspond to the sonar.jdbc.username setting.

• Database Password. Give the password Sonar uses when connecting to the database. This should correspond
to the sonar.jdbc.password setting.

• Confirm Password. Retype the password in the field.

Source-code Analysis Tools

435

http://support.urbancode.com/
http://support.urbancode.com/
http://support.urbancode.com/
http://support.urbancode.com/


• Database URL. Give the location of the Sonar database. This should correspond to the sonar.jdbc.url
setting. For example: jdbc:mysql:www.mysonar.com:9000.

4. Click Save.

5. See Add Sonar to Job.

Add Sonar to Job
The Sonar integration is added to AnthillPro jobs as a step, and must be executed as part of a workflow. In general,
the Sonar step is included after the Populate Workspace, Changelog, Stamp, Dependency, Build, Publish Changelog,
Artifact Delivery steps, as well as any testing-tool steps that may be required. For example, add the Run Sonar step
to you build job after your other "publishing" steps.

Actual job configuration will vary; depend on the requirements of your testing tools; and depend on the projects' re-
pository types.

This section assumes an originating workflow has been configured in AnthillPro; that Sonar is already collecting
data from your testing tools and publishing the results to the Sonar Dashboard; and that AnthillPro has been con-
figured with Sonar (see Configure Sonar). Complete workflow/job configuration is beyond the scope of this entry.
The topics covered in detail below are specific to using the Sonar integration.

Typically, Sonar is not used as part of a Continuous Integration build because the Dashboard only shows data for
one build/test run at a time. Running the Sonar job as part of a daily build (i.e., nightly) is recommended unless your
specific needs dictate otherwise.

Because Sonar depends on Maven, it may be necessary to configure two different jobs so Sonar will capture the data
from all your tests (it may also be necessary to modify how you run your tests). For example, the integration allows
you to run Sonar in both regular and "Light" modes, but not during the same job step (see the Sonar documentation
for more information):

• The regular mode is used when all the projects being tested are in a Maven repository (i.e., already have a POM
file).

• The "Light" mode is used when your projects do not use a Maven repository. During job configuration, you will
have to check "Create POM File" and specify the Source and Artifact Directories and a Project Name (see Create
POM File below).

If you want to run Sonar for both Maven and non-Maven projects, you will have to configure two job steps (possibly
two jobs) and then group your tests accordingly.

Once the job has been created, ensure that any agent the Job runs on can establish a connection to Sonar. AnthillPro
allows you to do this in many different ways: see Complete Build Process Configuration and Agent Management for
information on agent selection.

1. Go to Administration, select the appropriate project, and click the Add Job icon. If you are adding the Sonar
step to an existing job, select that job and proceed to Item 4.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

Source-code Analysis Tools

436



When configuring the workflow definition (i.e., adding the job to a workflow), make sure that the job runs on a
machine that has access to the Sonar server. See Complete Build Process Configuration and Agent Management
for information on agent selection.

4. Run Sonar step. Select the Insert After icon of the step that will run before the Run Sonar step. If you are run-
ning tests as part of the same job, make sure the Sonar step is add after the tests have run -- usually near the end
of the job when AnthillPro is performing publishing tasks.

5. Go to Source Analytics > Sonar, select Run Sonar, and click Select.

6. Configure step:

• Name the step. This name will be used by the AnthillPro system.

• Description. Give an optional description of this step.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• Maven Home. Give the path to the installation of Maven that will be used. For example:
${MAVEN_2.0_HOME}.If the Maven home is on the path, leave this field blank.

• JVM Properties. If you have any properties that need to be passed to the JVM, give them here. For example,
you can add a property to add memory, etc.

• Sonar. Select the correct Sonar configuration. AnthillPro supports multiple configurations as part of its Sonar
integration. For example, it is possible to configure two servers that run different test suites, etc. The names ap-
pearing in this drop-down menu were set during the configuration process. If you don't see the correct config-
uration, see Configure Sonar to add the appropriate configuration before continuing.

• Create POM file. Check the box if your projects are not configured in Maven. This will allow AnthillPro to
run Sonar in "Light" mode. If you check this box, AnthillPro will create a POM file at runtime. In order to run
Sonar in this manner, you will need to give the following:

• Source Directory. Give the relative path to the directory where the source resides if Create POM File is
checked above. Otherwise, leave this field blank. This is required if you are running Sonar in "Light" mode:
i.e., the projects you are testing are not in a Maven repository.

• Artifact Directory. Give the relative path to the directory where artifacts are stored if Create POM File is
checked above. Otherwise, leave this field blank. This is required if you are running Sonar in "Light" mode:
i.e., the projects you are testing are not in a Maven repository.

• Project Name. Give the name to be displayed by Sonar if Create POM File is checked above. Otherwise,
leave this field blank. This is required if you are running Sonar in "Light" mode: i.e., the projects you are
testing are not in a Maven repository.

• Show Environment Variables (optional; advanced). Give any optional environment variables in
"name=value" format.

Environment variables values may contain references to existing values in the following format:
name=${env/<NAME>};value. If the value of the <NAME> variable is "value2" in the current environ-
ment, then the above example will be expanded to: name=value2;value.

Using this technique, it is possible add an entry to PATH in the following manner:
PATH=my/path/entry;0. Case is significant even on Windows systems.

• Show Additional Options (optional; advanced). Select the Show Additional Options link to configure more
options.

Source-code Analysis Tools

437



• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

7. Click Save.

8. Run the Sonar workflow. Go to the AnthillPro Dashboard and select the appropriate workflow. Click Build.
When the build completes, you can view the results on the Sonar Dashboard.

Source-code Analysis Tools

438



Chapter 68. Issue Tracking Tools
The issue tracking integrations, implemented as job steps, enable you to associate an issue with a particular build,
link to that issue in your issue tracker, and view the status of the issue. The integrations also allow AnthillPro to per-
form tasks within the issue tracking tool. For example, if your SCM allows you to submit issue tracking information,
AnthillPro will extract that information and create a new issue when necessary. (If your SCM does not support this
feature, AnthillPro can create an issue based on a regular expression pattern in the commit comment.)

In addition, AnthillPro will collect the output of your issue tracking tool and store it in the AnthillPro data ware-
house. This makes it possible for you to publish reports generated by the tool.

For most issue tracking integrations, AnthillPro performs the following tasks:

• Create a new issue. You can have AnthillPro automatically create a new issue in you issue tracking system based
on conditions you define (e.g., if a failure occurs).

• Add comments to an issue. AnthillPro can be configured to parse the current changelog and then add your com-
ment to any issues that it finds.

• Resolve or update an issue. When AnthillPro runs a build and finds that an issue status has change, it can change
the status to resolved or another status (depending on the system) based on the issue ID you set.

• Publish reports. You can have AnthillPro collect reports from your issue tracking system and then publish that
information in the UI.

AccuWork
The AccuWork integration enables AnthillPro to utilize AccuWork's bridge between third-party issue trackers (such
as Bugzilla and JIRA) and AccuRev to publish the generated issue report to AnthillPro Build Life. Once the report is
published to AnthillPro, it is then be made available on the Build Life Issues tab.

AccuWork Step:

• Publish Issue Report. Creates a report of AccuWork issues from the current changelog. The step parses the Ac-
cuRev change package for any commit comments.

To start using the integration, configure AccuWork integration on the System page. Once that is done, you will typ-
ically include the job step near the end of your build job, before the assign status step(s), etc.

AccuWork Prerequisites

• You will need administrative permissions to the System and Administration pages to configure the integration.

• The AccuWork integration must be used in conjunction with your AccuRev projects.

• The agent running the AccuWork job step must be installed on the same machine as the AccuRev client and be
able to contact AccuRev.

• The AccuWork issue DB (AccuRev depot) must be available.

• The user name and password AnthillPro will use to connect to AccuWork must already be configured in Accu-

439



Work.

Configure AccuWork
Before you can start using the integration, you need to tell AnthillPro about AccuWork. This is done on the System
page, under the Integration menu. Any steps within AnthillPro relying on AccuWork will not work until the integra-
tion is configured.

The AccuWork integration requires an issue DB where AccuWork will look for issues as well a user name and pass-
word for accessing it.

1. Go to System > AccuWork from the Integration menu.

2. On the AccuWork page, click Create New.

3. Give the following (all fields may contain scripts and/or property lookups):

• Issue DB (AccuRev depot). Give the AccuWork issue DB that AccuWork will use to find issues.

• Issue URL. Give the AccuWork issue URL. For example, if you provide a URL template such as: ht-
tp://accuwork.company.com/browse/${issueId}, the value ${issueId} will be replaced in
the template with the issue id of the associated issue. This will allow the AnthillPro UI to generate links dir-
ectly to the AccuWork issue page.

• User Name. Give user name AnthillPro will use to be used to connect to AccuWork. This name must be con-
figured in AccuWork in order for the integration to work.

• Password. The password used to connect to AccuWork. This password must correspond to the AccuWork user
name and must be configured in AccuWork.

• Password Script (optional). To use a script or property lookups for the password, leave the Password field
blank and enter it here. See Scripting.

4. Click Save then Done.

5. See Add AccuWork Step to Job.

Add AccuWork Step to Job
Once the integration is configured, you can add the Publish Issue Report step to your build job. Typically, this will
be included near the end of the job. Once the step is added to your job, the next time the build is run and a defect is
found, AnthillPro will generate a report and make it available on the Build Life's Issues tab. To configure the job:

1. Go to Administration and select the job you want to add the step to.

2. Add Publish Issue Report step. Add the step to create a report of AccuWork issues from the build's changelog.
The step parses the AccuRev change package to retrieve the commit comments. Insert the step near the end of
job, typically before the assign status step(s).

On the Steps page, go to Issue Tracking > AccuWork, select the step, and click Select.

3. Configure step:

• Name. Give this step a name. For example, Publish AccuWork Issues.

Issue Tracking Tools

440



• Description (optional). Provide a description of this step.

• Issue Id Pattern. Give a regular expression to locate AccuWork-issue ids within the changelog comments.
You may add "()"'s around the portion of the pattern which identifies the actual Issue ID. The pattern "TST-
[0-9]+" would match (returning the same string as issue ids) "TST-1" and "TST-932415", but not match "TST-
a", "TST-", or "TST.1" The pattern "Bug:\[(TST-[0-9]+)\]" would match "Bug:[TST-1]" using bug id TST-1.

In the example, the pattern includes TST, identifies the issues as belonging to AccuWork. Whenever Ant-
hillPro comes across this regular expression, it will automatically generate an issue report for the Build Life.

• Include Dependencies. Check the box if you want AnthillPro to include any issues associated with a depend-
ent project. By checking the box, AnthillPro will pars the dependency changelogs when looking for issues.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

4. Click Save then Done.

5. Run workflow and view report. The next time the build runs and an issue is detected, AnthillPro will make the
report available on the Build Life Issues tab. From there, you can click on the issue link to go to the AccuWork
page.

Bugzilla
Create a new bug, add comments to a bug, and resolve bugs with the Bugzilla 2.22.2 integration. AnthillPro users
can also create a report of Bugzilla bugs from the changelog.

In order to use the integration, AnthillPro must first be configured with Bugzilla. The integration is implemented as
AnthillPro job steps configured on the Job Configuration page. When using the integration, click the Create Step
button (or select the Insert After/Before icon) to add steps to a job. Once the job is configured, it is then added to the
workflow under the Definition tab.

Bugzilla Steps:

• Create Bug. Create a new bug in Bugzilla. Typically used during a build job.

• Add Comments. Add Comments from the current changelog to matching Bugzilla Bugs. In order to use this step,
a set working directory, get changelog, and publish changelog step is necessary.

• Resolve Bug. Resolve or Close a Bugzilla Issue. In order to use this step, a set working directory, get changelog,
and publish changelog step is necessary. Can be used as a post-deployment step added to a deploy workflow to
update the state of a Bugzilla bug.

Issue Tracking Tools

441



• Publish Bug Report. Create a Report of Bugzilla Bugs from the current changelog. In order to use this step, a set
working directory, get changelog, and publish changelog step is necessary.

This tutorial will follow a simple project configuration that uses the Create Bug, Add Comment, and Publish Bug
Report steps as part of a build workflow. The Resolve Bug step is used as a post-deployment step as part of a deploy
workflow. The example in this tutorial uses Subversion, but the basic configuration is similar for any repository
type. Your jobs will vary, but the Bugzilla integration is added as a job step similar to what is described below.
Though the example goes through the manual creation of a build job, it is possible to use the Job Wizard to create a
build job and then manually configure a second job to run as part of the same workflow.

Bugzilla Prerequisites

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• A project must be active in AnthillPro.

• A Life-Cycle Model must be configured with the appropriate Status and Artifact Sets. See Using Life-Cycle Mod-
els.

Configure Bugzilla
Let AnthillPro know about Bugzilla. Any steps within AnthillPro relying on Bugzilla will not work until this integ-
ration is configured. These fields may all contain scripts and/or property lookups. See Scripting.

1. Go to System > Bugzilla from the Integrations menu.

2. On the Bugzilla Integration page, click Edit.

3. Configure the integration:

• Bugzilla Server URL. Input the Bugzilla server URL.

• Bugzilla Issue URL. You can have AnthillPro automatically generate a link to all of the issues it associates
with a Build Life if you give the Issue URL here. Once you give the URL pattern, the issues that appear on the
Issues Tab of a Build Life will be linked to the issue in your issue tracker tool for reviewing the issue, adding
additional comments, making edits, etc.

Please provide a URL template such as http://bugs.company.com/browse/${issueId}. The
value ${issueId} will be replaced in the template with the issue id of the associated issue. This field
provides a template which is used throughout AnthillPro to generate links from issues directly to an issue de-
scription page within your issue tracker.

• User Name. Give the user name to be used to connect to the Bugzilla server.

• Password. Provide the password to be used to connect to the Bugzilla server.

• Password Script. To use a script or property lookups for the password, leave the Password field blank and
enter it here. See Scripting.

• Ignore Certificate. In some instances, the a security certificate error may interfere with the integration (e.g.,
when using https). If this is the case, check the box.

4. Click Set then Done.

Issue Tracking Tools

442



Configure Bugzilla Jobs
This step will follow a job configuration that adds a comment, publishes a report, creates a bug, and resolves a bug
in Bugzilla as part of a AnthillPro workflows. Before configuring jobs, see Configure Bugzilla.

Build Job with Bugzilla Steps

The Add Comments, Publish Bug Report, and Create Bug steps are included after the Populate Workspace,
Changelog, Stamp, Dependency, Build, Publish Changelog, and Artifact Delivery steps of the Build job.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

4. Add Comments. Select the Insert After icon of the step prior to the point where the Bugzilla step is to be in-
cluded (Artifact Delivery step in this example). Go to Issue Tracking > Bugzilla, select the Add Comments
step, and click Select.

• Name the step.

• Description. Provide a short description.

• Bug Id Pattern. Give a regular expression to locate a Bugzilla bug Id within changelog comments. Add "()"
around the portion of the pattern which identifies the actual Issue Id. The pattern "TST-[0-9]+" would match
(returning the same string as Issue Id) "TST-1" and "TST-932415", but not match "TST-a", "TST-", or
"TST.1". The pattern "Issue:\[(TST-[0-9]+)\]" would match "Issue:[TST-1]" using issue Id TST-1.

In the example, the pattern includes TST which identifies the issue as belonging to a Bugzilla project. Whenev-
er AnthillPro comes across this regular expression, it will automatically add the appropriate comment in Bug-
zilla.

• Additional Comment. Give any information to be added to the JIRA comment (in addition to the commit
comment).

• Additional Form Fields. Provide the enabled Bugzilla preferences which have required attributes. They must
be specified in order for the integration to work. For example, target_milestone. See Bugzilla Documentation
[http://www.bugzilla.org/docs/].

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

5. Click Save.

Issue Tracking Tools

443

http://www.bugzilla.org/docs/
http://www.bugzilla.org/docs/


6. Publish Bug Report. Select the Insert After icon of the Add Comments step. Go to Issue Tracking >
Bugzilla, select the Publish Bug Report step, and click Select.

• Name the step.

• Description. Provide a short description.

• Issue Id Pattern. Give a regular expression to locate a Bugzilla bug Id within changelog comments. Add "()"
around the portion of the pattern which identifies the actual Issue Id. The pattern "TST-[0-9]+" would match
(returning the same string as Issue Id) "TST-1" and "TST-932415", but not match "TST-a", "TST-", or
"TST.1". The pattern "Bug:\[(TST-[0-9]+)\]" would match "Bug:[TST-1]" using Bug Id TST-1.

In the example, the pattern includes TST, which identifies the issue as belonging to a Bugzilla project.
Whenever AnthillPro comes across this regular expression, it will automatically add the appropriate comment
in Bugzilla.

• Include Dependencies. Check the box to include change logs from dependencies when searching for bug ref-
erences.

• Show Additional Options. See Show Additional Options.

7. Click Save.

8. Create Bug. Select the Insert After icon of the Publish Bug Report step. Go to Issue Tracking > Bugzilla, se-
lect the Create Bug step, and click Select.

• Name the step.

• Description. Provide a short description.

• Product. Enter the Bugzilla product name.

• Component. Give the summary for the bug.

• Version. Provide the product version to use for the bug (e.g., AnthillPro 3.4). If left blank this will defaults to
Other.

• Short Description. Give a short description of the bug. If left blank, this will default to Anthill3 Bug within
Bugzilla.

• Assigned To. Provide the assignee for the new bug. If left blank this will default to the Bugzilla User Ant-
hillPro logs in as.

• Bug File Location. Enter the environment of this issue.

• Initial Comment. Give the initial comment to add upon bug creation.

• Priority. Provide the Bugzilla priority.

• Severity. Enter the Bugzilla severity.

• Show Additional Options. See Show Additional Options.

9. Click Save.

Deploy Job with Bugzilla Post-deploy Step

The Resolve Bug step is typically used as part of a post-deployment job. Once the artifacts have been deployed (in

Issue Tracking Tools

444



the example there are two artifact sets: Database and Webapp), the Resolve Bug step is run as a separate job in order
to ensure that all Bugzilla bugs are resolved.

• While each job is different, every job will typically run an Assign Status step; the Resolve Bug step; a Get
Changelog step; a Publish Changelog step; and a Create Stamp Step.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

4. Select the Insert After icon of the step prior to the point where the Bugzilla step is to be included (Artifact De-
livery step in this example). Go to Issue Tracking > Bugzilla, select the Resolve Bug step, and click Select.

• Name the step.

• Description. Provide a short description.

• Bug Key. Enter the bug key to be resolved in Bugzilla.

• Resolution. Provide the resolution method to use when resolving the bug.

• Form Name. Specify the form names of any Bugzilla preferences that require attributes (e.g., tar-
get_milestone). If not specified here, the Bugzilla integration may not work properly.

• Show Additional Options. See Show Additional Options.

5. Click Save.

Add Bugzilla Jobs to Workflows
The Jobs created in the Configure Bugzilla Jobs section must be executed as part of a workflow. This section will
assume that an originating workflow has already been configured, and will cover the process of adding the Bugzilla
job to the appropriate workflows. Complete workflow configuration is beyond the scope of this tutorial. The topics
covered in detail below are specific to using the Bugzilla integration.

Build Workflow with Bugzilla Steps

1. Go to Administration, select the project, and select the build workflow.

2. On the workflow Main page, select the Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

5. Select the Build job created in Configure Bugzilla Jobs, a job pre-condition script, and click Insert Job.

Deploy Workflow with Bugzilla Post-deploy Step

Issue Tracking Tools

445



1. Go to Administration, select the project, and select the deploy workflow.

2. On the workflow Main page, select the Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

5. Select the Post Deployment Steps job created in the Configure Bugzilla Jobs steps, a job pre-condition script,
and click Insert Job.

• Note the jobs deploy two artifact sets and that the Post Deploy Steps job will change the Bugzilla bug status
for both artifact sets.

Run Bugzilla Workflows and View Reports

1. Go to Dashboard and select the workflow created in the Add Bugzilla Jobs to Workflows section.

2. On the workflow Main page, click the Build button for the workflow.

• This procedure is the same for the build and deploy workflows.

3. Once the workflow has completed, select the appropriate Build Life and click the Reports tab.

4. Select a link to view a report. To go to the issue that was generated in Bugzilla, follow the Bug Id link.

Issue Tracking Tools

446



5. Click the Issues tab to view the issues AnthillPro created in Bugzilla.

6. To drill down on each Bugzilla step on the Build Life Summary page, see Trace a Build Life to Source.

ClearQuest
Create a new defect, add comments to a defect, and resolve issues with the IBM Rational ClearQuest integration.
AnthillPro users can also create a report of ClearQuest defects from the changelog.

In order to use the integration, AnthillPro must first be configured with ClearQuest. The integration is implemented
as AnthillPro job steps configured on the Job Configuration page. When using the integration, click the Create Step
button (or select the Insert After/Before icon) to add steps to a job. Once the job is configured, it is then added to the
workflow under the Definition tab. See Using the ClearQuest Integration.

ClearQuest Steps:

• Create Defect. Create a new defect in a ClearQuest defect tracker. Typically used during a build job.

• Add Comments. Add Comments from the current changelog to matching ClearQuest defects. In order to use this
step, a set working directory, get changelog, and publish changelog step is necessary.

• Resolve Issue. Resolve a ClearQuest defect. In order to use this step, a set working directory, get changelog, and
publish changelog step is necessary. Can be used as a post-deployment step added to a deploy workflow to update
the state of a ClearQuest defect.

Issue Tracking Tools

447



• Publish Defect Report. Create a Report of ClearQuest defects from the current changelog. In order to use this
step, a set working directory, get changelog, and publish changelog step is necessary.

This tutorial will follow a simple project configuration that uses the Create Defect, Add Comments, and Publish De-
fect Report steps as part of a build workflow. The Resolve Issue step is used as a post-deployment step as part of a
deploy workflow. The example in this tutorial uses Subversion, but the basic configuration is similar for any reposit-
ory type. Your jobs will vary, but the ClearQuest integration is added as a job step similar to what is described be-
low. Though the example goes through the manual creation of a build job, it is possible to use the Job Wizard to cre-
ate a build job and then manually configure a second job to run as part of the same workflow.

See also ClearCase.

ClearQuest Prerequisites

• The agent running any ClearQuest jobs must be installed on the same Windows machine as the cqperl client.

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• A project must be active in AnthillPro.

• A Life-Cycle Model must be configured with the appropriate Status and Artifact Sets. See Using Life-Cycle Mod-
els.

Configure ClearQuest
Let AnthillPro know about ClearQuest. Any steps within AnthillPro relying on ClearQuest will not work until this
integration is configured. These fields may all contain scripts and/or property lookups. See Scripting.

1. Go to System > ClearQuest from the Integrations menu.

2. On the ClearQuest Integration page, click Edit.

3. Configure the integration:

• User Name. Give the user name to be used to connect to the ClearQuest server.

• Password. Provide the password to be used to connect to the ClearQuest server.

• Password Script. To use a script or property lookups for the password, leave the Password field blank and
enter it here. See Scripting.

• Database Name. Give the ClearQuest database name.

• Database Schema. Provide the ClearQuest database schema name.

• Issue URL. You can have AnthillPro automatically generate a link to all of the issues it associates with a Build
Life if you give the Issue URL here. Once you give the URL pattern, the issues that appear on the Issues Tab
of a Build Life will be linked to the issue in your issue tracker tool for reviewing the issue, adding additional
comments, making edits, etc.

Please provide a URL template such as http://bugs.company.com/browse/${issueId}. The
value ${issueId} will be replaced in the template with the issue id of the associated issue. This field
provides a template which is used throughout AnthillPro to generate links from issues directly to an issue de-
scription page within your issue tracker.

Issue Tracking Tools

448



4. Select the Add Mapping button. Tell AnthillPro about the ClearQuest Schema that will be used. AnthillPro must
know the correct Record Type(s) and the corresponding fields for the Name, Status, and Description that will
be used when AnthillPro executes the ClearQuest job steps. See Using the ClearQuest Integration.

• Record Type. Enter the ClearQuest Record Type to be used in AnthillPro. For example, if the Record Type
"Defect" is to be used by the AnthillPro server when executing ClearQuest job steps, enter it in the filed.

• Name Mapping. Give the ClearQuest field name that will be used by AnthillPro as the name. For example, if
the "Defect" Record Type has a field called "Headline" which you want to use as the name, enter it in the field.

Issue Tracking Tools

449



• Status Mapping. Give the ClearQuest filed name to be used as the status in AnthillPro. For example, if the
"Defect" Record Type has a field named "State" you would like to use as the status, enter it in the field.

• Description Mapping. Give the ClearQuest field name to be used as the description in AnthillPro. For ex-
ample, if the "Defect" Record Type has a field named "Description" you would like to use, enter it in the field.

5. Click Save.

6. To have AnthillPro use multiple Record Types, repeat Items 4 and 5. For example, add a ClearQuest Record
Type "Task" and/or "Story" (along with its corresponding fields) in addition to the "Defect" record type men-
tioned above.

Issue Tracking Tools

450



7. Click Set then Done.

Using the ClearQuest Integration
This tutorial adds a ClearQuest comment, publishes a ClearQuest report, and creates a defect as part of the build
workflow. Complete job configuration is beyond the scope of this tutorial. The topics covered in detail below are
specific to using the ClearQuest integration.

Using the ClearQuest Integration Prerequisites

• The Configure ClearQuest section of this tutorial must be complete.

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• A project with at least one Build Life must be active in AnthillPro.

• A Life-Cycle Model must be configured with the appropriate Status and Artifact Sets. See Using Life-Cycle Mod-
els.

Configure ClearQuest Jobs

This step will follow a job configuration that adds a comment, publishes a report, creates a bug, and resolves a bug
in ClearQuest as part of AnthillPro workflows.

Build Job with ClearQuest Steps

The Add Comments, Publish Defect Report, and Create Defect steps are included after the Populate Workspace,
Changelog, Stamp, Dependency, Build, Publish Changelog, and Artifact Delivery steps of the Build job.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

4. Add Comments. Select the Insert After icon of the step prior to the point where the ClearQuest step is to be in-
cluded (Artifact Delivery step in this example). Go to Issue Tracking > ClearQuest, select the Add Comments
step, and click Select.

• Name the step.

• Description. Provide a short description.

• Defect Id Pattern. Give a regular expression to locate a ClearQuest defect Id within changelog comments.
Add "()" around the portion of the pattern which identifies the actual Issue Id. The pattern "TST-[0-9]+" would
match (returning the same string as Issue Id) "TST-1" and "TST-932415", but not match "TST-a", "TST-", or
"TST.1". The pattern "Issue:\[(TST-[0-9]+)\]" would match "Issue:[TST-1]" using issue Id TST-1.

In the example, the pattern includes CQDE which identifies the issue as belonging to a ClearQuest project.
Whenever AnthillPro comes across this regular expression, it will automatically add the appropriate comment
in ClearQuest.

• Additional Comment. Give any information to be added to the JIRA comment (in addition to the commit
comment).

Issue Tracking Tools

451



• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

5. Click Save.

6. Publish Defect Report. Select the Insert After icon of the Add Comments step. Go to Issue Tracking >
ClearQuest, select the Publish Defect Report step, and click Select.

• Name the step.

• Description. Provide a short description.

• Defect Id Pattern. Give a regular expression to locate a ClearQuest defect Id within changelog comments.
Add "()" around the portion of the pattern which identifies the actual Issue Id. The pattern "TST-[0-9]+" would
match (returning the same string as Issue Id) "TST-1" and "TST-932415", but not match "TST-a", "TST-", or
"TST.1". The pattern "Bug:\[(TST-[0-9]+)\]" would match "Bug:[TST-1]" using Bug Id TST-1.

In the example, the pattern includes CQDE which identifies the issue as belonging to a ClearQuest project.
Whenever AnthillPro comes across this regular expression, it will automatically add the appropriate comment
in ClearQuest.

• Show Additional Options. See Show Additional Options.

7. Click Save.

8. Create Defect. Select the Insert After icon of the Publish Defect Report step. Go to Issue Tracking > Clear-
Quest, select the Create Defect step, and click Select.

• Name the step.

• Description. Provide a short description.

• Headline. Enter the ClearQuest headline.

• Severity. Enter the ClearQuest severity.

• Project Name. Provide the ClearQuest product name.

• Priority. Provide the ClearQuest priority.

• Owner. Provide the owner of the defect.

• Defect Description. Enter the description to be sent to ClearQuest.

• Show Additional Options. See Show Additional Options.

Issue Tracking Tools

452



9. Click Save.

Deploy Job with ClearQuest Post-deploy Step

The Resolve Issue step is typically used as part of a post-deployment job. Once the artifacts have been deployed (in
the example there are two artifact sets: Database and Webapp), the Resolve Issue step is run as a separate job in or-
der to ensure that all ClearQuest bugs are resolved.

• While each job is different, every job will typically run an Assign Status step; the Resolve issue step; a Get
Changelog step; a Publish Changelog step; and a Create Stamp Step.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard).

3. Click Select.

4. Follow the steps for creating a build job.

5. Select the Insert After icon of the step prior to the point where the ClearQuest step is to be included (Artifact
Delivery step in this example). Go to Issue Tracking > ClearQuest, select the Resolve Issue step, and click Se-
lect.

• Name the step.

• Description. Provide a short description.

• Defect Id. Enter the defect Id to be resolved in ClearQuest.

• Resolution. Provide the resolution that resolved the issue.

• Show Additional Options. See Show Additional Options.

6. Click Save.

Add ClearQuest Jobs to Workflows

The Jobs created in the Configure Jobs section must be executed as part of a workflow. This section will assume that
an originating workflow has already been configured, and will cover the process of adding the ClearQuest job to the
appropriate workflows. Complete workflow configuration is beyond the scope of this tutorial. The topics covered in
detail below are specific to using the ClearQuest integration.

Build Workflow with ClearQuest Steps

1. Go to Administration, select the project, and select the build workflow.

2. On the workflow Main page, select the Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

5. Select the Build job created in the Configure Jobs section, a job pre-condition script, and click Insert Job.

Issue Tracking Tools

453



Deploy Workflow with ClearQuest Post-deploy Step

1. Go to Administration, select the project, and select the deploy workflow.

2. On the workflow Main page, select the Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

5. Select the Post Deployment Steps job created in the Configure Jobs section, a job pre-condition script, and
click Insert Job.

• Note that this jobs deploy two artifact sets and that the Post Deploy Steps job will change the ClearQuest bug
status for both artifact sets.

Run ClearQuest Workflows and View Reports

1. Go to Dashboard and select the workflow created in the Add Jobs to Workflow section.

2. On the workflow Main page, click the Build button for the workflow.

• This procedure is the same for the build and deploy workflows.

3. Once the workflow has completed, select the appropriate Build Life and click the Reports tab.

4. Select a link to view a report. To go to the issue that was generated in ClearQuest, follow the link.

Issue Tracking Tools

454



5. Click the Issues tab to view the issues AnthillPro created in ClearQuest.

6. To drill down on each ClearQuest step on the Build Life Summary page, see Trace a Build Life to Source.

CollabNet TeamForge
The CollabNet TeamForge integration allows AnthillPro to automatically create a list of TeamForge artifacts related
to source changes; comment on those artifacts; provide a link from an artifact (defect, task, story) to a build; and file
new artifacts. The integration also takes advantage of TeamForge's release management features, enabling Ant-
hillPro to: create new TeamForge Releases; upload Codestation files (AP artifacts) to the TeamForge File Release
System; and upload a file to the FRS that links back to AnthillPro.

The integration is written as an AnthillPro Plugin, included in the normal distribution. For older AnthillPro 3.7 ver-
sions, you will need to download the integration from Supportal [http://support.urbancode.com/] and then upload it
to the server. Once uploaded, ensure the Plugin is active.

The integration is implemented as AnthillPro job steps configured on the Job Configuration page. When using the
integration, click the Create Step button (or select the Insert After/Before icon) to add steps to a job. Once the job is
configured, it is then added to the workflow under the Definition tab. Currently, you can add the following steps to
your job:

• Comment on Tracker Artifacts. Add comments to the TeamForge Tracker artifacts that are associated with the
Build Life. This step is typically used on the originating workflow, as part of your build job.

This requires a Tracker Artifact Report step that sets the artifacts on the Build Life prior to the comment step.

• Create Release. Create a TeamForge release within a project. This step is typically used on the secondary work-
flow, as part of your release job.

• Create Tracker Artifact. Create a new TeamForge Tracker artifact. This step is typically used on the originating
workflow, as part of your build job, if you plan on deploying and running tests as part of the job.

• Tracker Artifact Report. Parses the TeamForge Tracker artifact identifiers from the Build Life change com-
ments (source changes) and retrieves information on the artifacts. This step is typically used on the originating
workflow, as part of your build job. If you are using a Comment on Tracker Artifacts step, include this step in you
job before the comment step.

• Upload Release Files. Upload files to a TeamForge release. This step is typically used on the secondary work-
flow, as part of your release job.

TeamForge Prerequisites

• The TeamForge base URL is needed to complete the integration.

• The user name and password AnthillPro will use must be created in TeamForge prior to using the integration.

• The AnthillPro agent performing the work must be able to communicate with the TeamForge server.

Configure TeamForge

Issue Tracking Tools

455

http://support.urbancode.com/
http://support.urbancode.com/


Let AnthillPro know about TeamForge. The information given here will be used by multiple jobs: any steps within
AnthillPro relying on TeamForge will not work until this integration is configured.

The integration is written as an AnthillPro Plugin, included in the normal distribution. For older AnthillPro 3.7 ver-
sions, you will need to download the integration from Supportal [http://support.urbancode.com/] and then upload it
to the server. Once uploaded, ensure the Plugin is active.

If you have multiple installations of TeamForge that AnthillPro must integrate with, configure a separate integration
for each. Then, when configuring jobs, select the correct installation.

1. Go to System > TeamForge from the Integrations menu.

2. On the TeamForge page, click Create New.

3. Configure the integration:

• Name. Give a unique name for this integration. The name given here will be used throughout the AnthillPro
system -- specifically during job creation. If you are configuring integrations with multiple TeamForge install-
ations, ensure that each name is unique.

• TeamForge URL. Enter the base URL to the TeamForge installation base URL: e.g. ht-
tp://teamforge.company.com.

• Username. Give the user name to be used to connect to TeamForge. This must be configured in TeamForge
prior to running any jobs using this integration.

• Password. Provide the password associated with the user given above. This must be configured in TeamForge
prior to running any jobs using this integration.

• Confirm password.

4. Click Save then Done.

5. See Add TeamForge to Project.

Add TeamForge to Project
Once the integration is configured, you can add build and release jobs (that use TeamForge integration) to your
project. How you configure the jobs will depend on how your TeamForge platform is set up, as well as on your Ant-
hillPro processes.

If you are unfamiliar with setting up projects and workflows, please see the Getting Started section before continu-
ing. Specifically, the Setting Up a Build and Setting Up a Deployment sections.

There are two basic usage scenarios, one for build workflows and one for release workflows:

• Steps used with your build job. In general, you add the following steps to your build job after the actual build
steps, near the end of your job, and as part of your originating workflow. In order for the Tracker Artifact Report
step to work, it must parse the source changes associated with the build. If AnthillPro finds any appropriate
Tracker artifacts, it will then comment on them. The steps may be included in the following order:

1. Tracker Artifact Report. Parses the TeamForge Tracker artifact identifiers from the Build Life change com-
ments (source changes) and retrieves information on the artifacts. This step is typically used on the originating

Issue Tracking Tools

456

http://support.urbancode.com/
http://support.urbancode.com/


workflow, as part of your build job. If you are using a Comment on Tracker Artifacts step, include this step in
you job before the comment step.

2. Comment on Tracker Artifacts. Add comments to the TeamForge Tracker artifacts that are associated with
the Build Life. This step is typically used on the originating workflow, as part of your build job, and requires a
Tracker Artifact Report step that sets the artifacts on the Build Life prior to the comment step.

3. Create Tracker Artifact (optional). Create a new TeamForge Tracker artifact. This step is typically used on
the originating workflow, as part of your build job, if you plan on deploying and running tests as part of the
job.

See Add TeamForge to Build Job (Build Workflow) for more.

• Steps used with your release job. In general, you add the following steps to your release job, as part of a second-
ary workflow. The steps may be included in the following order:

1. Create Release. Create a TeamForge release within a project. This step is typically used on the secondary
workflow, as part of your release job.

2. Upload Release Files. Upload files to a TeamForge release. This step is typically used on the secondary work-
flow, as part of your release job.

See Add TeamForge to Release Job (Secondary Workflow) for more.

Add TeamForge to Build Job (Build Workflow)

Either add the following steps to an existing build job or create a new build job that uses the steps. What follows as-
sumes you are already familiar with basic AnthillPro job configuration (if not, please see Setting Up a Build before
continuing). The TeamForge steps, specifically the Tracker Artifact Report step, rely on any Tracker comments
found in the source being built, so the steps need to be placed after the actual build steps. Typically, you should in-
clude the steps near the end of the job, prior to any assign status steps. To configure a build job:

1. Go to Administration, and select the appropriate project and either select an existing build job or create a new
one. If you are creating a new job, the use the Create Step button to add the first job step. Add the following job
steps:

2. Add the Tracker Artifact Report step. Parses the TeamForge Tracker artifact identifiers from the Build Life
change comments (source changes) and retrieves information on the artifacts. This step is typically used on the
originating workflow, as part of your build job.

If you are using a Comment on Tracker Artifacts step, include this step in you job before the comment step.

• Name the step. This name will be used by the AnthillPro system: e.g., Get TeamForge Tracker Artifacts.

• Description. Give an optional description of this step.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• Artifact Pattern. Give the pattern to parse the TeamForge Tracker artifact identifier from the change com-
ments: e.g., artf[0-9]+.

• TeamForge. Select the correct integration from the drop-down menu (this is the integration set up in the Con-
figure TeamForge section). If you configured multiple integrations on the AnthillPro System page, make sure
you select the correct one. Note that it is possible for a single job -- but not a step -- to use different AnthillPro/
TeamForge-server configurations.

Issue Tracking Tools

457



• Show Environment Variables (optional; advanced). Give any optional environment variables in
"name=value" format.

Environment variables values may contain references to existing values in the following format:
name=${env/<NAME>};value. If the value of the <NAME> variable is "value2" in the current environ-
ment, then the above example will be expanded to: name=value2;value.

Using this technique, it is possible add an entry to PATH in the following manner:
PATH=my/path/entry;0. Case is significant even on Windows systems.

• Show Additional Options (optional; advanced). Select the Show Additional Options link to configure more
options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts in the User
Documentation.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts in the User Documentation.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

• Click Save.

3. Add the Comment on Tracker Artifacts step. Add comments to the TeamForge Tracker artifacts that are asso-
ciated with the Build Life. This step is typically used on the originating workflow, as part of your build job.

This requires a Tracker Artifact Report step that sets the artifacts on the Build Life prior to the comment step.

• Name the step. This name will be used by the AnthillPro system.

• Description. Give an optional description of this step.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• Comment. Give the template to use for adding a comment to TeamForge Tracker artifacts. For example:

AnthillPro found this artifact referenced in a build of ${bsh:
ProjectLookup.getCurrent().getName()}
- ${bsh:WorkflowLookup.getCurrent().getName()}
Build Life: ${bsh:
BuildLifeLookup.getCurrent().getId()} - ${bsh:
UrlHelper.getBuildLifeUrl(BuildLifeLookup.getCurrent())}

Source Revisions: ${bsh:
import com.urbancode.anthill3.domain.repository.*;
StringBuilder changeIds = new StringBuilder();
for (RepositoryChangeSet changeSet : ChangeSetHelper.getChangeSetArray()) {
changeIds.append(changeSet.getChangeId()).append(" ");

\}
return changeIds;

}

Issue Tracking Tools

458



• TeamForge. Select the correct integration from the drop-down menu (this is the integration set up in the Con-
figure TeamForge section). If you configured multiple integrations on the AnthillPro System page, make sure
you select the correct one. Note that it is possible for a single job -- but not a step -- to use different AnthillPro/
TeamForge-server configurations.

• Show Environment Variables (optional; advanced). See Show Environment Variables above.

• Show Additional Options (optional; advanced). See Show Additional Options above.

• Click Save.

4. Add the Create Tracker Artifact step (optional). Create a new TeamForge Tracker artifact. This step is typic-
ally used on the originating workflow, as part of your build job, if you plan on deploying and running tests as part
of the job.

• Name the step. This name will be used by the AnthillPro system.

• Description. Give an optional description of this step.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• Project. Give the name of the TeamForge project to add the artifact to.

• Tracker. Enter the name of the TeamForge Tracker to add the artifact to: e.g., Defects, Epics, Stories, Tasks,
Tests, etc.

• Artifact Title. Provide the title of the artifact.

• Artifact Description. Give a brief description of the artifact.

• Artifact Group. Give the group of the artifact.

• Artifact Category. Enter the category of the artifact.

• Artifact Customer. Give the customer of the artifact.

• Artifact Priority. Select the priority of the artifact.

• Artifact Est. Hours. Give the estimated hours of the artifact.

• Artifact Assignee. Enter the assigned user name of the artifact.

• TeamForge. Select the correct integration from the drop-down menu (this is the integration set up in the Con-
figure TeamForge section). If you configured multiple integrations on the AnthillPro System page, make sure
you select the correct one. Note that it is possible for a single job -- but not a step -- to use different AnthillPro/
TeamForge-server configurations.

• Show Environment Variables (optional; advanced). See Show Environment Variables above.

• Show Additional Options (optional; advanced). See Show Additional Options above.

• Click Save.

5. Add job to workflow. If you are configuring a new build job, you will need to add the job to your build work-
flow. Complete documentation is outlined in the Setting Up a Build section.

Issue Tracking Tools

459



Add TeamForge to Release Job (Secondary Workflow)

Either add the following steps to an existing release job or create a new release job that uses the steps. What follows
assumes you are already familiar with basic AnthillPro job configuration. The process for running a TeamForge re-
lease is the same as outlined in the Setting Up a Deployment section -- it is run as a secondary process. Typically,
the Create Release step should be included prior to the Upload Release File step -- before any of your assign status
steps. To configure a release job:

1. Go to Administration, and select the appropriate project and either select an existing release job or create a new
one. When adding steps, you select either the Insert After or Insert Before icons of existing steps. If you are
creating a new job, the use the Create Step button to add the first job step. Add the following job steps:

2. Add the Create Release step. Create a TeamForge release within a project.

• Name the step. This name will be used by the AnthillPro system.

• Description. Give an optional description of this step.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• Project. Give the name of the TeamForge project to create in the release: e.g., Brokerage System.

• Package. Provide the name of the TeamForge package to create the release in: e.g., Product 1.

• Release. Enter the name of the TeamForge release to create: e.g., Release
${bsh:StampLookup.getLatestStampValue()}. The example, using a simple BeanShell lookup,
will append the "Release" with the latest stamp value of the Build Life. If you stamp value is 1.2.3, then the re-
lease name passed to TeamForge will be "Release 1.2.3".

• Status. Select the status of the TeamForge release to create.

• TeamForge. Select the correct integration from the drop-down menu (this is the integration set up in the Con-
figure TeamForge section). If you configured multiple integrations on the AnthillPro System page, make sure
you select the correct one. Note that it is possible for a single job -- but not a step -- to use different AnthillPro/
TeamForge-server configurations.

• Show Environment Variables (optional; advanced). See Show Environment Variables above.

• Show Additional Options (optional; advanced). See Show Additional Options above.

• Click Save.

3. Add the Upload Release Files step. Upload files to a TeamForge release.

• Name the step. This name will be used by the AnthillPro system.

• Description. Give an optional description of this step.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• Project. Give the name of the TeamForge project to create in the release: e.g., Brokerage System.

• Package. Provide the name of the TeamForge package to create the release in: e.g., Product 1.

• Release. Enter the name of the TeamForge release to create: e.g., Release
${bsh:StampLookup.getLatestStampValue()}. The example, using a simple BeanShell lookup,

Issue Tracking Tools

460



will append the "Release" with the latest stamp value of the Build Life. If you stamp value is 1.2.3, then the re-
lease name passed to TeamForge will be "Release 1.2.3".

• Base Directory. Here, you need to give the relative base directory path from the current working directory to
use the Includes and Excludes patterns within. If your files are in a "uploadrelease" directory, you would spe-
cify uploadrelease/ here.

• Includes. List the files to be retrieved from within the base directory. You can specify the names of files that
reside in the base directory: e.g., AnthillBuildLife.html. Or, if the files are located in a sub directory,
you specify something like html/AnthillBuildLife.html. Each include pattern must be entered on a
separate line.

You can also use the following wild cards to tell AnthillPro what to include:

• ** Indicates include every directory within the base directory.

• * Used to include every file. So, if you use *.html, the files matching this pattern will be included.

• **/* Tells AnthillPro to retrieve the entire file tree underneath the base directory.

• Excludes. Give the patterns of the files that should be skipped from the include. This field is set in the same
way as the Include Artifacts field, only you are telling AnthillPro what NOT to include. If you leave this filed
blank, AnthillPro will exclude no files.

• TeamForge. Select the correct integration from the drop-down menu (this is the integration set up in the Con-
figure TeamForge section). If you configured multiple integrations on the AnthillPro System page, make sure
you select the correct one. Note that it is possible for a single job -- but not a step -- to use different AnthillPro/
TeamForge-server configurations.

• Show Environment Variables (optional; advanced). See Show Environment Variables above.

• Show Additional Options (optional; advanced). See Show Additional Options above.

• Click Save.

4. Add job to workflow. If you are configuring a new release job, you will need to add the job to your release
(secondary) workflow. Complete documentation is outlined in the Setting Up a Deployment section.

JIRA
Create a new issue, add comments to an issue, and update issues with the JIRA integration. AnthillPro users can also
create a report of JIRA issues from the changelog. Additionally, you can have AnthillPro publish a link to any JIRA
issue page by configuring the Issue URL field. When configured, the data on the Build Life's Issue page becomes a
link.

In order to use the JIRA integration, AnthillPro must first be configured to run the appropriate steps within JIRA.
The JIRA integration is implemented as AnthillPro job steps configured on the Job Configuration page. When using
the integration, click the Create Step button (or select the Insert After/Before icon) to add steps to a job. Once the
job is configured, it is then added to the workflow under the Definition tab.

JIRA Steps:

• Create Issue. Create a new issue in a JIRA. Typically used during a build job.

• Add Comments. Add comments from the current changelog to matching JIRA issues. In order to use this step, a

Issue Tracking Tools

461



set working directory, get changelog, and publish changelog step is necessary.

• Update Issue. Used to resolve or close a JIRA issue. In order to use this step, a set working directory, get
changelog, and publish changelog step is necessary. You can also have AnthillPro pass a comment at the time the
issue is updated. Can be used as a post-deployment step added to a deploy workflow to update the state of a JIRA
issue.

• Publish Issue Report. Create a Report of JIRA issues from the current changelog. In order to use this step, a set
working directory, get changelog, and publish changelog step is necessary.

This tutorial will follow a simple project configuration using the JIRA integration steps. The example in this tutorial
uses Subversion, but the basic configuration is similar for any repository type. Your jobs will vary, but the JIRA in-
tegration is added similar to what is described below. The example goes through the manual creation of a build job;
however, it is possible to use the Job Wizard to create a build job and then manually configure a second job to run as
part of the same workflow.

Configure JIRA
Let AnthillPro know about JIRA. Any steps within AnthillPro relying on JIRA will not work until this integration is
configured. The JIRA integration requires a base URL where the JIRA server is located as well a user name and
password for accessing it. These fields may all contain scripts and/or property lookups. See Scripting.

JIRA Prerequisites

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• A project must be active in AnthillPro.

• A Life-Cycle Model must be configured with the appropriate Status and Artifact Sets. See Using Life-Cycle Mod-
els.

Configure JIRA

1. Go to System > JIRA from the Integrations menu.

2. On the JIRA Integration page, click Edit.

3. Configure the integration:

• JIRA Base URL. Input the JIRA server URL.

• Issue URL. You can have AnthillPro automatically generate a link to all of the issues it associates with a Build
Life if you give the Issue URL here. Once you give the URL pattern, the issues that appear on the Issues Tab
of a Build Life will be linked to the issue in your issue tracker tool for reviewing the issue, adding additional
comments, making edits, etc.

Please provide a URL template such as http://bugs.company.com/browse/${issueId}. The
value ${issueId} will be replaced in the template with the issue id of the associated issue. This field
provides a template which is used throughout AnthillPro to generate links from issues directly to an issue de-
scription page within your issue tracker.

• User Name. Give the user name to be used to connect to the JIRA server.

• Password. Provide the password to be used to connect to the JIRA server.

Issue Tracking Tools

462



• Password Script. To use a script or property lookups for the password, leave the Password field blank and
enter it here. See Scripting.

• Server Version. Specify the JIRA server version (e.g., version 3.6.5 to 3.10.x, select 3.6.5).

4. Click Set then Done.

Using the JIRA Integration
This tutorial will follow a job configuration that adds a JIRA comment, publishes a JIRA report, and creates an issue
as part of a build workflow. The update issue step is added as a post-deployment step to a deploy workflow.

Using the JIRA Integration Prerequisites

• The Configure JIRA section of this tutorial must be complete.

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• A project with at least one Build Life must be active in AnthillPro.

• A Life-Cycle Model must be configured with the appropriate Status and Artifact Sets. See Using Life-Cycle Mod-
els.

Configure JIRA Jobs

Two jobs need to be created to use all the JIRA integration steps. (a.) A build job is created with the JIRA comment,
publishes a JIRA report, and creates an issue steps. (b.) The update issue step is added as a post-deployment job.

Build Job with JIRA Steps

The Add Comments, Create Issue, and Publish Issue Report steps are included after the Populate Workspace,
Changelog, Stamp, Dependency, Build, Publish Changelog, and Artifact Delivery steps of the typical Build job.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

4. Add Comments. Select the Insert After icon of the step prior to the point where the JIRA step is to be included
(Artifact Delivery step in this example). Go to Issue Tracking > JIRA, select the Add Comments step, and
click Select.

• Name the step.

• Description. Provide a short description.

• Issue Id Pattern. Give a regular expression to locate a JIRA defect Id within changelog comments. Add "()"
around the portion of the pattern which identifies the actual Issue Id. The pattern "TST-[0-9]+" would match
(returning the same string as Issue Id) "TST-1" and "TST-932415", but not match "TST-a", "TST-", or
"TST.1". The pattern "Issue:\[(TST-[0-9]+)\]" would match "Issue:[TST-1]" using issue Id TST-1.

In the example below, the pattern identifies the issue as belonging to a specific JIRA project. Whenever Ant-

Issue Tracking Tools

463



hillPro comes across this regular expression, it will automatically add the appropriate comment in JIRA.

• Additional Comment. Give any information to be added to the JIRA comment (in addition to the commit
comment).

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

• Click Save.

5. Create Issue. Select the Insert After icon of the Add Comments step. Go to Issue Tracking > JIRA, select the
Create Issue step, and click Select. This step will create an issue if a failure occurs.

• Name the step.

• Description. Provide a short description.

• Project Key. Enter the JIRA project key.

• Assignee. Provide the assignee for the new issue. An assignee of -1 will use JIRA's automatic assignment.

• Summary. Enter the issue summary.

• Environment. Give the environment for the issue.

• Issue Description. Enter the description.

• Show Additional Options. See Show Additional Options.

• Click Save.

6. Publish Issue Report. Select the Insert After icon of the Create Issue step. Go to Issue Tracking > JIRA, se-
lect the Publish Issue Report step, and click Select.

• Name the step.

• Description. Provide a short description.

• Report Name. If a new name is not given, the step name will be used.

• Issue Id Pattern. Give a regular expression to locate a JIRA defect Id within changelog comments. Add "()"
around the portion of the pattern which identifies the actual Issue Id. The pattern "TST-[0-9]+" would match
(returning the same string as Issue Id) "TST-1" and "TST-932415", but not match "TST-a", "TST-", or
"TST.1". The pattern "Issue:\[(TST-[0-9]+)\]" would match "Issue:[TST-1]" using issue Id TST-1.

Issue Tracking Tools

464



• Include Dependencies. Check to include change logs from dependencies when searching for issues.

• Show Additional Options. See Show Additional Options.

7. Click Save.

Deploy Job with JIRA Update Issue Step

The Update Issue step is typically used as part of a post-deployment job. Once the artifacts have been deployed (in
the example there are two artifact sets: Database and Webapp), the Update Issue step can be run as a separate job to
ensure that all JIRA issues are resolved.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

4. Select the Insert After icon of the step prior to the point where the JIRA step is to be included (Artifact Delivery
step in this example). Go to Issue Tracking > JIRA, select the Update Issue step, and click Select.

• Name the step.

• Description. Provide a short description.

• Action Name. Give the JIRA action which should be performed on the issues (e.g. Resolve Issue or Close Is-
sue).

• Issue Key. Enter the issue key to be resolved in JIRA.

• Issue Id Pattern in Changelog. Give a regular expression to locate a JIRA defect Id within changelog com-
ments. Add "()" around the portion of the pattern which identifies the actual Issue Id. The pattern "TST-[0-9]+"
would match (returning the same string as Issue Id) "TST-1" and "TST-932415", but not match "TST-a", "TST-
", or "TST.1". The pattern "Issue:\[(TST-[0-9]+)\]" would match "Issue:[TST-1]" using issue Id TST-1.

• Additional Comment. Give any comments to accompany the updated issue; for example, include the Build
Life that the issue was resolved in. To use scripts with this field, see Scripting.

• Show Additional Options. See Show Additional Options.

• Click Save.

Add JIRA Jobs to Workflows

The Jobs created in the Configure Jobs section must be executed as part of a workflow. This section will assume that
an originating workflow has already been configured, and will cover the process of adding the JIRA jobs to the ap-
propriate workflows. Complete workflow configuration is beyond the scope of this tutorial. The topics covered in
detail below are specific to using the JIRA integration.

Build Workflow with JIRA Steps

1. Go to Administration, select the project, and select the build workflow.

2. On the workflow Main page, select the Definition tab.

Issue Tracking Tools

465



3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

5. Select the Build job created in the Configure Jobs section, a job pre-condition script, and click Insert Job.

Deploy Workflow with JIRA Post-deploy Step

1. Go to Administration, select the project, and select the deploy workflow.

2. On the workflow Main page, select the Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

5. Select the Post Deployment Steps job created in the Configure Jobs section, a job pre-condition script, and
click Insert Job.

• Note that this jobs deploy two artifact sets and that the Post Deploy Steps job will change the JIRA issue status
for both artifact sets.

Run Workflows and View Reports (JIRA)

1. Go to Dashboard and select the workflow created in the Create Workflow section.

2. On the workflow Main page, click the Build button for the workflow.

Issue Tracking Tools

466



• This procedure is the same for the build and deploy workflows.

3. Once the workflow has completed, select the appropriate Build Life and click the Reports tab.

4. Select a link to view a report. To go to the issue that was generated in JIRA, follow the Issue Id link.

5. Click the Issues tab to view the issues AnthillPro created in JIRA.

6. To drill down on each JIRA step on the Build Life Summary page, see Trace a Build Life to Source.

PVCS Tracker
With the PVCS Tracker integration, AnthillPro users add comments to, resolve, or create a report of PVCS Tracker
issues from the changelog.

In order to use the PVCS Tracker integration, AnthillPro must first be configured with an existing PVCS repository.
Once the PVCS repository is configured, AnthillPro must then be configured with PVCS Tracker to run the appro-
priate steps. The PVCS Tracker integration is implemented as AnthillPro job steps configured on the Job Configura-
tion page. When using the integration, click the Create Step button (or select the Insert After/Before icon) to add
steps to a job. Once the job is configured, it is then added to the workflow under the Definition tab. See

PVCS Tracker Steps:

• Add Comments. Add comments from the current changelog to matching PVCS Tracker issues. In order to use
this step, a set working directory, get changelog, and publish changelog step is necessary.

• Resolve Issue. Resolve PVCS Tracker issue. In order to use this step, a set working directory, get changelog, and
publish changelog step is necessary. Can be used as a post-deployment step added to a deploy workflow to update
the state of a PVCS Tracker issue.

• Publish Issue Report. Create a Report of PVCS Tracker issues from the current changelog. In order to use this
step, a set working directory, get changelog, and publish changelog step is necessary.

Issue Tracking Tools

467



This tutorial will follow a simple project configuration using the PVCS Tracker integration steps. The example in
this tutorial uses Subversion, but the basic configuration is similar for any repository type. Your jobs will vary, but
the PVCS Tracker integration is added as a job step similar to what is described below. The example goes through
the manual creation of a build job; however, it is possible to use the Job Wizard to create a build job and then manu-
ally configure a second job to run as part of the same workflow.

Configure PVCS Tracker
Let AnthillPro know about PVCS Tracker. Any steps within AnthillPro relying on PVCS Tracker will not work until
a PVCS repository and this integration is configured. The PVCS Tracker integration requires the PVCS Tracker
server name, a user name, and a password. These fields may all contain scripts and/or property lookups. See Script-
ing.

PVCS Tracker Prerequisites

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• A PVCS repository must be configured with AnthillPro. See PVCS Source Control.

• A project must be active in AnthillPro.

• A Life-Cycle Model must be configured with the appropriate Status and Artifact Sets. See Using Life-Cycle Mod-
els.

Configure PVCS Tracker

1. Go to System > PVCS Tracker from the Integrations menu.

2. On the PVCS Tracker Integration page, click Edit.

3. Configure the integration:

• Server Name. Input the PVCS Tracker server URL.

• Issue URL. You can have AnthillPro automatically generate a link to all of the issues it associates with a Build
Life if you give the Issue URL here. Once you give the URL pattern, the issues that appear on the Issues Tab
of a Build Life will be linked to the issue in your issue tracker tool for reviewing the issue, adding additional
comments, making edits, etc.

Please provide a URL template such as http://bugs.company.com/browse/${issueId}. The
value ${issueId} will be replaced in the template with the issue id of the associated issue. This field
provides a template which is used throughout AnthillPro to generate links from issues directly to an issue de-
scription page within your issue tracker.

• User Name. Give the user name to be used to connect to the PVCS Tracker server.

• Password. Provide and confirm the password to be used to connect to the PVCS Tracker server.

• Password Script. To use a script or property lookups for the password, leave the Password field blank and
enter it here. See Scripting.

4. Click Set then Done.

Issue Tracking Tools

468



Using the PVCS Tracker Integration
This tutorial will follow a job configuration that adds a PVCS Tracker comment and publishes a PVCS Tracker re-
port as part of a build workflow. The resolve defect step is added as a post-deployment step to a deploy workflow.

Using the PVCS Tracker Integration Prerequisites

• The Configure PVCS Tracker of this tutorial must be complete.

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• A project with at least one Build Life must be active in AnthillPro.

• A Life-Cycle Model must be configured with the appropriate Status and Artifact Sets. See Using Life-Cycle Mod-
els.

Configure PVCS Tracker Jobs

Two jobs need to be created to use all the PVCS Tracker integration steps. (a.) A build job is created with the Add
Comments and Publish Issue Report steps. (b.) The Resolve Issue step is added as a post-deployment job.

Build Job with PVCS Tracker Steps

The Add Comments and Publish Issue Report steps are included after the Populate Workspace, Changelog, Stamp,
Dependency, Build, Publish Changelog, and Artifact Delivery steps of the Build job.

1. Go to Administration page, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

4. Add Comments. Select the Insert After icon of the step prior to the point where the PVCS Tracker step is to be
included (Artifact Delivery step in this example). Go to Issue Tracking > PVCS Tracker, select the Add Com-
ments step, and click Select.

• Name the step.

• Description. Provide a short description.

• Issue Id Pattern. Give a regular expression to locate a PVCS Tracker defect Id within changelog comments.
Add "()" around the portion of the pattern which identifies the actual Issue Id. The pattern "TST-[0-9]+" would
match (returning the same string as Issue Id) "TST-1" and "TST-932415", but not match "TST-a", "TST-", or
"TST.1". The pattern "Issue:\[(TST-[0-9]+)\]" would match "Issue:[TST-1]" using issue Id TST-1.

In the example below, the pattern identifies the issue as belonging to a specific PVCS Tracker project.
Whenever AnthillPro comes across this regular expression, it will automatically add the appropriate comment
in PVCS Tracker.

• Additional Comment. Use this field to add any additional information to the PVCS Tracker commit com-
ment.

• Project Name. Enter the name of the PVCS Tracker project where the issues are to be located.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

Issue Tracking Tools

469



• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

5. Click Save.

6. Publisher Issue Report. Select the Insert After icon of the Add Comments step. Go to Issue Tracking >
PVCS Tracker, select the Publisher Issue Report step, and click Select.

• Name the step.

• Description. Provide a short description.

• Report Name. If a new name is not given, the step name will be used.

• Defect Id Pattern. Give a regular expression to locate a PVCS Tracker defect Id within changelog comments.
Add "()" around the portion of the pattern which identifies the actual Issue Id. The pattern "TST-[0-9]+" would
match (returning the same string as Issue Id) "TST-1" and "TST-932415", but not match "TST-a", "TST-", or
"TST.1". The pattern "Issue:\[(TST-[0-9]+)\]" would match "Issue:[TST-1]" using issue Id TST-1.

• Project Name. Enter the name of the PVCS Tracker project where the issues are to be located.

• Show Additional Options. See Show Additional Options.

7. Click Save.

Deploy Job with PVCS Tracker Post-deploy Step

The Resolve Issue step is typically used as part of a post-deployment job. Once the artifacts have been deployed (in
the example there are two artifact sets: Database and Webapp), the Resolve Issue step is run as a separate job in or-
der to ensure that all PVCS Tracker issues are resolved.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

4. Select the Insert After icon of the step prior to the point where the PVCS Tracker step is to be included (Artifact
Delivery step in this example). Go to Issue Tracking > PVCS Tracker, select the Resolve Issue step, and click
Select.

• Name the step.

• Description. Provide a short description.

Issue Tracking Tools

470



• Defect Id. Enter the Defect Id to be resolved in PVCS Tracker.

• State. Give the PVCS Tracker state the issue is to be moved into.

• Project Name. Enter the name of the PVCS Tracker project where the issues are to be located.

• Show Additional Options. See Show Additional Options.

5. Click Save.

Add PVCS Tracker Jobs to Workflows

The Jobs created in the Configure Jobs section must be executed as part of a workflow. This section will assume that
an originating workflow has already been configured, and will cover the process of adding the PVCS Tracker jobs to
the appropriate workflows. Complete workflow configuration is beyond the scope of this tutorial. The topics
covered in detail below are specific to using the PVCS Tracker integration.

Build Workflow with PVCS Tracker Steps

1. Go to Administration, select the project, and select the build workflow.

2. On the workflow Main page, select the Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

5. Select the Build job created in the Configure Jobs section, a job pre-condition script, and click Insert Job.

Deploy Workflow with PVCS Tracker Post-deploy Step

1. Go to Administration, select the project, and select the deploy workflow.

2. On the workflow Main page, select the Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

5. Select the Post Deployment Steps job created in the Configure Jobs section, a job pre-condition script, and
click Insert Job.

• Note that this jobs deploy two artifact sets and that the Post Deploy Steps job will change the PVCS Tracker
issue status for both artifact sets.

Issue Tracking Tools

471



Run Workflows and View Reports (PVCS Tracker)

1. Go to Dashboard and select the workflow created in the Create Workflow section.

2. On the workflow Main page, click the Build button for the workflow.

• This procedure is the same for the build and deploy workflows.

3. Once the workflow has completed, select the appropriate Build Life and click the Reports tab.

4. Select a link to view a report. To go to the issue that was generated in PVCS Tracker, follow the Issue Id link.

5. Click the Issues tab to view the issues AnthillPro created in PVCS Tracker.

6. To drill down on each PVCS Tracker step on the Build Life Summary page, see Trace a Build Life to Source.

Quality Center (Issue Tracking)
The Quality Center integration allows Windows users (through the COM interface) of AnthillPro to add comments,
resolve issues, create issues, and publish reports to the AnthillPro UI.

The integration will only work if the agent(s) running the Quality Center steps uses the 32-bit JVM. If the agent(s)
use a 64-bit JVM, the steps will fail. However, the AnthillPro server, which does not run the steps, can run on the
64-bit JVM.

Issue Tracking Tools

472



The Quality Center integration is implemented as AnthillPro job steps configured on the Job Configuration page.
When using the integration, click the Create Step button (or select the Insert After/Before icon) to add steps to a job.
Once the job is configured, it is then added to the workflow under the Definition tab.

Quality Center Issue Tracking Steps:

• Create Issue. Creates a new issue in a Quality Center. This step can be included as part of the job (if run on Win-
dows) without any additional steps.

• Add Comments. Adds comments from the current changelog to matching Quality Center Issues. In order to use
this step, a set working directory, get changelog, and publish changelog step is necessary.

• Resolve Issue. Resolves or closes an issue. This step can be used as a workflow property to specify which defect
gets resolved with the action the workflow takes. For example, if deploying to QA resolves an issue, use this step
and have the Id be a workflow property. Step can be included as part of the job (if run on Windows) without any
additional steps. Can be used as a post-deployment step added to a deploy workflow to update the state of an is-
sue.

• Publish Issue Report. Creates a report of issues from the current changelog. In order to use this step, a set work-
ing directory, get changelog, and publish changelog step is necessary.

The Quality Center integration also allows you to run Quality Center and QTP tests. If you using the QTP integra-
tion, you must configure the Quality Center integration on the System page. See Quality Center Testing and
QuickTest Pro.

Quality Center Prerequisites (Issue Tracking)

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• The Mercury Quality Center URL must be available.

• AnthillPro must be able to access Quality Center as a user with permissions to run tests.

• An AnthillPro agent must be installed on a Windows machine (XP, 2003, Vista, Windows 7) with the Quality
Center API installed. For example, the Quality Center server. This may require configuring a Fixed Agent Filter
to ensure the job runs on the appropriate machine. Alternately, the agent with the Quality Center API can be ad-
ded to the Build Farm. This requires the use of a scripted filter to look for the presence of a variable/property
(e.g., qc.agent=true) which must be added to the agent. If this option is chosen, it is advisable to include a filter on
every build job that excludes the Quality Center agent. See Configure and Edit Agent Filters.

The integration will only work if the agent(s) running the Quality Center steps uses the 32-bit JVM. If the
agent(s) use a 64-bit JVM, the steps will fail. However, the AnthillPro server, which does not run the steps, can
run on the 64-bit JVM.

• The AnthillPro agent that will perform the QualityCenter steps must be installed on the same machine as the
QualityCenter client. You can download the client from the QualityCenter server, typically located here: ht-
tp://<qc_server>:8080/qcbin/ClientSide_index.html. Follow the instructions on that page to
install.

Configure Quality Center (Issue Tracking)

Issue Tracking Tools

473



1. Go to System > Quality Center under the Integration menu.

2. On the Mercury Quality Center Integration page, click Edit.

3. Configure the integration:

• Enter the Quality Center server URL.

• Issue URL. You can have AnthillPro automatically generate a link to all of the issues it associates with a Build
Life if you give the Issue URL here. Once you give the URL pattern, the issues that appear on the Issues Tab
of a Build Life will be linked to the issue in your issue tracker tool for reviewing the issue, adding additional
comments, making edits, etc.

For example, provide a URL template such as http://bugs.company.com/browse/${issueId}.
The value ${issueId} will be replaced in the template with the issue id of the associated issue. This field
provides a template which is used throughout AnthillPro to generate links from issues directly to an issue de-
scription page within your issue tracker.

• User Name. Enter the user name to be used to connect to the Quality Center server. Make sure that Quality
Center user AnthillPro will use to connect to the server has the appropriate permissions.

• Password. Enter the password to be used to connect to the Quality Center server.

• Password Script (optional). To use a script or property lookups for the password, leave the Password field
blank and enter it here. See Scripting.

4. Click Set and click Done.

Create Quality Center Jobs (Issue Tracking)
Configure the job to automatically add comments, create and resolve issues, and deliver Quality Center bug reports
to AnthillPro by setting up the job to run on the agent with the QC COM API installed. While each job is different,
most jobs typically run a get changelog step; run steps to interact with the changelog and Quality Center; and gener-
ate reports and make issue comments.

For example, the Add Comments, Create Issue, and Publish Issue Report steps are included after the Populate Work-
space, Changelog, Stamp, Dependency, Build, Publish Changelog, and Artifact Delivery steps of the typical job.

1. Go to Administration, select the appropriate project, and configure the job.

2. Add Comments. Select the Insert After icon of the step prior to the point where the Quality Center step is to be
included (Artifact Delivery step in this example). Go to Issue Tracking > Mercury Quality Center, select the
Add Comments step, and click Select.

• Name. Provide a short name.

• Description (optional). Give a short description.

• Issue Id Pattern. Input a regular expression to locate Quality Center Issue Id within changelog comments.
Add "()" around the portion of the pattern identifying the Quality Center Issue Id (which is simply a number).
The pattern "TST-[0-9]+" would match (returning the same string as issue Ids) "TST-1" and "TST-932415",
but not match "TST-a", "TST-", or "TST.1". The pattern "Issue:\[(TST-[0-9]+)\]" would match "Is-
sue:[TST-1]" using issue id TST-1.

In the example, the pattern includes XPSSVNQC which identifies the issues as belonging to the Xpetstore
project (XPS) that uses Subversion (SVN), and is a Quality Center issue (QC). Whenever AnthillPro comes

Issue Tracking Tools

474



across this regular expression, it will automatically add the appropriate comment in Quality Center.

• Additional Comment. Add any information to be added to the Quality Center comment (in addition to the
commit comment).

• Domain Name. Provide the name of the Quality Center Domain where projects are located.

• Project Name. Give the name of the Quality Center Project where issues are located.

• Fail Mode. Select the action you wish AnthillPro to take when an unknown issue ID is encountered.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

• Click Save.

3. Publish Issue Report. Select the Insert After icon of the Add Comments step. Go to Issue Tracking > Mer-
cury Quality Center, select the Publish Issue Report step, and click Select.

• Name. Provide a short name.

• Description (optional). Give a short description.

• Report Name. Input the name for this report (default is same as step name).

• Issue Id Pattern. Input a regular expression to locate Quality Center Issue Id within changelog comments.
Add "()" around the portion of the pattern identifying the Quality Center Issue Id (which is simply a number).
The pattern "TST-[0-9]+" would match (returning the same string as issue Ids) "TST-1" and "TST-932415",
but not match "TST-a", "TST-", or "TST.1". The pattern "Issue:\[(TST-[0-9]+)\]" would match "Is-
sue:[TST-1]" using issue id TST-1.

In the example, the pattern includes XPSSVNQC which identifies any the issues as belonging to the Xpetstore
project (XPS) that uses Subversion (SVN), and is a Quality Center issue (QC). Whenever AnthillPro comes
across this regular expression, it will automatically add the appropriate comment in Quality Center.

• Include Dependencies. Check to include change logs from dependencies when searching for Issue References.

• Domain Name. Provide the name of the Quality Center Domain where projects are located. Make sure this
corresponds to the settings in the previous step.

• Project Name. Give the name of the Quality Center Project where issues are located. Make sure this corres-
ponds to the settings in the previous step.

• Show Additional Options (advanced). See Show Additional Options.

• Click Save.

Issue Tracking Tools

475



4. Create Issue. Select the Insert After icon of the step prior to the point where the Quality Center step is to be in-
cluded (e.g., it may be included after an Artifact Delivery step). Go to Issue Tracking > Mercury Quality Cen-
ter, select the Add Comments step, and click Select.

• Name. Provide a short name.

• Description (optional). Give a short description.

• Project Key. You must include the Quality Center project key for the project being tested.

• Assignee. You must include the Quality Center user this issue must be assigned to. This can be any user with
appropriate permissions set in Quality Center.

• Summary. Give the Quality Center summary for this issue.

• Issue Description. Optionally, you can include any information identifying this issue when it is created. For
example, you can include a description that identifies the issue was created by AnthillPro, etc.

• Detected By. If you want to use a different name than the default Anthill3, give it here. The name you provide
will be displayed in the logs.

• Priority. Optionally, you can have AnthillPro set a priority when the issue is created. Make sure that the prior-
ity matches those set in Quality Center.

• Severity. Optionally, you can have AnthillPro set a severity when the issue is created. Make sure that the
severity matches those set in Quality Center.

• Status. If you want to use a different status than the default of new, give it here. Make sure that the status
matches those set in Quality Center.

• Domain Name. Provide the name of the Quality Center Domain where projects are located. Make sure this
corresponds to the settings in the previous step.

• Project Name. Give the name of the Quality Center Project where issues are located. Make sure this corres-
ponds to the settings in the previous step.

• Additional Parameters. Optionally, you can set custom Parameters for the issue. This is entered as a listing of
name=value pairs. Each pair must be included on a separate line.

• Show Additional Options (advanced). See Show Additional Options.

• Click Save.

Deploy Job with Quality Center (Issue Tracking) Post-deploy Step

The Resolve Issue step is typically used as part of a post-deployment job that is run after the deploy job, but part of
the same workflow. Once the artifacts have been deployed, the Resolve Issue step is run as a separate job in order to
ensure that all issues are resolved.

• While each job is different, every job will typically run an Assign Status step; the Resolve Issue step; a Get
Changelog step; a Publish Changelog step; and a Create Stamp Step.

1. Go to Administration, select the appropriate project, and configure the job if not already done.

2. Select the Insert After icon of the step prior to the point where the ClearQuest step is to be included. Go to Issue

Issue Tracking Tools

476



Tracking > Quality Center, select the Resolve Issue step, and click Select.

• Name the step.

• Description. Provide a short description.

• Issue ID. Give the issue key to be resolved in Quality Center. You must specify either this or the Issue ID Pat-
tern below.

• Issue ID Pattern. If you did not specify the Issue ID, input a regular expression to locate Quality Center Issue
ID within changelog comments. Add "()" around the portion of the pattern identifying the Quality Center Issue
ID (which is simply a number). The pattern "TST-[0-9]+" would match (returning the same string as issue Ids)
"TST-1" and "TST-932415", but not match "TST-a", "TST-", or "TST.1". The pattern "Issue:\[(TST-[0-9]+)\]"
would match "Issue:[TST-1]" using issue id TST-1.

In the example, the pattern includes XPSSVNQC which identifies any the issues as belonging to the Xpetstore
project (XPS) that uses Subversion (SVN), and is a Quality Center issue (QC). Whenever AnthillPro comes
across this regular expression, it will automatically add the appropriate comment in Quality Center.

• Status. If you want to use a different status than the default of new, give it here. Make sure that this matches
those set for the Quality Center testing step.

• Domain Name. Provide the name of the Quality Center Domain where projects are located. Make sure that
this matches those set for the Quality Center testing step.

• Project Name. Give the name of the Quality Center Project where issues are located. Make sure that this
matches those set for the Quality Center testing step.

• Show Additional Options. See Show Additional Options.

3. Click Save.

Create Quality Center Workflow (Issue Tracking)
Complete workflow configuration is beyond the scope of this tutorial. The topics covered in detail below are specif-
ic to using the Quality Center integration. The process is the same for both jobs that include the Quality Center
steps.

1. Go Administration and select the appropriate workflow. You can add the job to either your build workflow or as
part of a secondary (i.e., testing) workflow.

2. Go to workflow Main > Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

5. Select the job created in the Create Job section, a job pre-condition script, and click Insert Job.

6. Select the Properties tab and add a workflow property. This will ensure that the job runs on the appropriate agent
when using a scripted agent filter. Make sure that the property you set here is also configured on the agent.

• Name. Give the name of the Property (the property <name> will be accessed as ${property:<name>}).

• Description. Provide a description for this Property shown when prompting users for value.

• Default Value. Input the value for this property.

Issue Tracking Tools

477



• User May Override. Check if users are able to specify a new value when running this workflow.

• Label. Provide a label for this Property shown when prompting users for value (leave blank to use the Name as
the Label).

• Is Required. Check if a non-empty value for this property is required to run workflow.

• Allowed Values. Give the values users are allowed to select for this property (blank for no restriction of
value). Separate each value by entering it on its own line.

7. If you created a post-deploy job with the Resolve step, add it after the original job.

8. Click Save.

Run Build and View Reports (Quality Center Issue Track-
ing)

1. Go to Dashboard and select the appropriate workflow.

2. On the workflow Main page, click the Build button.

3. Once the workflow is complete, select the Reports tab.

4. Select a link to view a report.

5. To drill down on each Quality Center step on the Build Life Summary page, see Trace a Build Life to Source.

Quality Center Function Calls
Following is a list of the function calls used in the Quality Center integration:

TDApi-
Ole80.TDConnection

TestSet.StartExecution TestSet.TSTestFactory Step.Field

Issue Tracking Tools

478



TDConnection.BugFactory TSSched-
uler.RunAllLocally

TSTestFactory.NewList BugFactory.Filter

TDConnec-
tion.InitConnectionEx

TSScheduler.TdHostName TSTest.Name BugFactory.Item

TDConnection.Login TSScheduler.Run TSTest.Type BugFactory.AddItem

TDConnection.Connect TSSched-
uler.ExecutionStatus

TSTest.Status Filter.Filter

TDConnection.Disconnect Execution-
Status.RefreshExecStatusIn
fo

TSTest.HostName Filter.NewList

TDConnection.Logout ExecutionStatus.Finished TSTest.TestId Bug.ID

TDConnec-
tion.ReleaseConnection

ExecutionStatus.EventsList TSTest.TestName Bug.Summary

TDConnec-
tion.TestSetTreeManager

ExecEventInfo.EventType TSTest.LastRun Bug.Field

TestSetTreeMan-
ager.NodeByPath

ExecEventInfo.EventDate Run.Name Bug.AssignedTo

TestSetFolder.FindTestSets ExecEventInfo.EventTime Run.Status Bug.DetectedBy

TestSet.Id TestExecStatus.TestId Run.Field Bug.Priority

TestSet.Item TestExec-
Status.TestInstance

Run.StepFactory Bug.Project

TestSet.Name TestExecStatus.TsTestId StepFactory.NewList Bug.Status

TestSet.TestSetFolder TestExecStatus.Message Step.Name Bug.Post

TestSet.Status TestExecStatus.Status Step.Status

Quality Center Plugin (Issue Tracking)
The Quality Center integration allows Windows users (through the COM interface) of AnthillPro to add comments,
resolve issues, create issues, and publish reports to the AnthillPro UI.

The integration is written as an AnthillPro Plugin, and expands upon the existing Quality Center (Issue Tracking)
integration. The integration is included in the normal distribution. For older AnthillPro 3.7 versions, you will need
to download the integration from Supportal [http://support.urbancode.com/] and then upload it to the server. Once
uploaded, ensure the Plugin is active.

The Quality Center integration is implemented as AnthillPro job steps configured on the Job Configuration page.
When using the integration, click the Create Step button (or select the Insert After/Before icon) to add steps to a job.

The integration will only work if the agent(s) running the Quality Center steps uses the 32-bit JVM. If the agent(s)
use a 64-bit JVM, the steps will fail. However, the AnthillPro server, which does not run the steps, can run on the
64-bit JVM.

Once the job is configured, it is then added to the workflow under the Definition tab.

Quality Center Issue Tracking Steps:

• Create Quality Center Issue. Creates a new issue in a Quality Center. This step can be included as part of the

Issue Tracking Tools

479

http://support.urbancode.com/
http://support.urbancode.com/


job (if run on Windows) without any additional steps.

• Add Comments to Quality Center Issue. Adds comments from the current changelog to matching Quality Cen-
ter Issues. In order to use this step, a set working directory, get changelog, and publish changelog step is neces-
sary.

• Update Quality Center Issue. Resolves or closes an issue. This step can be used as a workflow property to spe-
cify which defect gets resolved with the action the workflow takes. For example, if deploying to QA resolves an
issue, use this step and have the Id be a workflow property. Step can be included as part of the job (if run on Win-
dows) without any additional steps. Can be used as a post-deployment step added to a deploy workflow to update
the state of an issue.

• Publish Quality Center Issue Report. Creates a report of issues from the current changelog. In order to use this
step, a set working directory, get changelog, and publish changelog step is necessary.

The Quality Center integration also allows you to run Quality Center and QTP tests. If you using the QTP integra-
tion, you must configure the Quality Center integration on the System page. See Quality Center Plugin (Testing)
and QuickTest Pro.

Quality Center Plugin Prerequisites (Issue Tracking)

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• The Mercury Quality Center URL must be available.

• AnthillPro must be able to access Quality Center as a user with permissions to run tests.

• An AnthillPro agent must be installed on a Windows machine (XP, 2003, Vista, Windows 7) with the Quality
Center API installed. For example, the Quality Center server. This may require configuring a Fixed Agent Filter
to ensure the job runs on the appropriate machine. Alternately, the agent with the Quality Center API can be ad-
ded to the Build Farm. This requires the use of a scripted filter to look for the presence of a variable/property
(e.g., qc.agent=true) which must be added to the agent. If this option is chosen, it is advisable to include a filter on
every build job that excludes the Quality Center agent. See Configure and Edit Agent Filters.

The integration will only work if the agent(s) running the Quality Center steps uses the 32-bit JVM. If the agent(s)
use a 64-bit JVM, the steps will fail. However, the AnthillPro server, which does not run the steps, can run on the
64-bit JVM.

• The AnthillPro agent that will perform the QualityCenter steps must be installed on the same machine as the
QualityCenter client. You can download the client from the QualityCenter server, typically located here: ht-
tp://<qc_server>:8080/qcbin/ClientSide_index.html. Follow the instructions on that page to
install.

Configure Quality Center Plugin (Issue Tracking)
The information given here will be used by your AnthillPro projects. If you are using both the Quality Center
(Testing) and Quality Center (Issue Tracking) Plugins, you need only configure the integration once (assuming you
have only one Quality Center server) -- both integrations use the same System configuration.

If you are configuring integrations with multiple Quality Center servers, create a new integration for each one.

Issue Tracking Tools

480



1. Go to System > Quality Center Plugin under the Integration menu.

2. On the Quality Center Plugin page, click Create New.

3. Configure the integration:

• Name. Give a unique name for this integration. The name given here will be used throughout the AnthillPro
system -- specifically during job creation. If you are configuring integrations with multiple Quality Center
servers, ensure that each name is unique.

• Server URL. Enter the base URL to the TeamForge installation base URL: e.g. ht-
tp://qualitycenter.company.com.

• User Name. Enter the user name to be used to connect to the Quality Center server. Make sure that Quality
Center user AnthillPro will use to connect to the server has the appropriate permissions.

• Password. Enter the password to be used to connect to the Quality Center server. If using a password script
below, leave this filed blank.

• Confirm password.

• Password Script. To use a script or property lookups for the password, leave the Password field blank and
enter it here. See Scripting.

4. Click Set and click Done.

Create Quality Center Plugin Jobs (Issue Tracking)
Configure the job to automatically add comments, create and resolve issues, and deliver Quality Center bug reports
to AnthillPro by setting up the job to run on the agent with the QC COM API installed. While each job is different,
most jobs typically run a get changelog step; run steps to interact with the changelog and Quality Center; and gener-
ate reports and make issue comments.

For example, the Add Comments, Create Issue, and Publish Issue Report steps are included after the Populate Work-
space, Changelog, Stamp, Dependency, Build, Publish Changelog, and Artifact Delivery steps of the typical job.

1. Go to Administration, select the appropriate project, and configure the job.

2. Add Comments to Quality Center Issue. Select the Insert After icon of the step prior to the point where the
Quality Center step is to be included (Artifact Delivery step in this example). Go to Issue Tracking > Quality
Center Plugin, select the Add Comments to Quality Center Issue step, and click Select.

• Name. Provide a short name.

• Description (optional). Give a short description.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• QC Server. Select the correct integration from the drop-down menu (this is the integration set up in the Con-
figure Quality Center Plugin (Issue Tracking) section). If you configured multiple integrations on the Ant-
hillPro System page, make sure you select the correct one. Note that it is possible for a single job -- but not a
step -- to use different AnthillPro/Quality-Center-server configurations.

• Domain Name. Provide the name of the Quality Center Domain where projects are located.

• Project Name. Give the name of the Quality Center Project where issues are located.

Issue Tracking Tools

481



• Issue Id Pattern. Input a regular expression to locate Quality Center Issue Id within changelog comments.
Add "()" around the portion of the pattern identifying the Quality Center Issue Id (which is simply a number).

The default value, QC-([0-9]+) is a regex that parses the change log and applies the attributes of the step to
matching issues. For example, if QC-52 was located in the comment of a change, this step would act on issue
52 in the Quality Center database.

• Additional Comment. Add any information to be added to the Quality Center comment (in addition to the
commit comment).

• Fail Mode. Select the action you wish AnthillPro to take when an unknown issue ID is encountered.

• Show Environment Variables (optional; advanced). Give any optional environment variables in
"name=value" format.

Environment variables values may contain references to existing values in the following format:
name=${env/<NAME>};value. If the value of the <NAME> variable is "value2" in the current environ-
ment, then the above example will be expanded to: name=value2;value.

Using this technique, it is possible add an entry to PATH in the following manner:
PATH=my/path/entry;0. Case is significant even on Windows systems.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

• Click Save.

3. Publish Quality Center Issue Report. Select the Insert After icon of the Add Comments step. Go to Issue
Tracking > Quality Center Plugin, select the Publish Quality Center Issue Report step, and click Select.

• Name. Provide a short name.

• Description (optional). Give a short description.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• QC Server. Select the correct integration from the drop-down menu (this is the integration set up in the Con-
figure Quality Center Plugin (Issue Tracking) section). If you configured multiple integrations on the Ant-
hillPro System page, make sure you select the correct one. Note that it is possible for a single job -- but not a
step -- to use different AnthillPro/Quality-Center-server configurations.

• Domain Name. Provide the name of the Quality Center Domain where projects are located. Make sure this
corresponds to the settings in the previous step.

Issue Tracking Tools

482



• Project Name. Give the name of the Quality Center Project where issues are located. Make sure this corres-
ponds to the settings in the previous step.

• Issue Id Pattern. Input a regular expression to locate Quality Center Issue Id within changelog comments.
Add "()" around the portion of the pattern identifying the Quality Center Issue Id (which is simply a number).

The default value, QC-([0-9]+) is a regex that parses the change log and applies the attributes of the step to
matching issues. For example, if QC-52 was located in the comment of a change, this step would act on issue
52 in the Quality Center database.

• Fail Mode. Select the action you wish AnthillPro to take when an unknown issue ID is encountered.

• Show Environment Variables (optional; advanced). See Show Environment Variables above.

• Show Additional Options (advanced). See Show Additional Options.

• Click Save.

4. Create Quality Center Issue. Select the Insert After icon of the step prior to the point where the Quality Center
step is to be included (e.g., it may be included after an Artifact Delivery step). Go to Issue Tracking > Quality
Center Plugin, select the step, and click Select.

• Name. Provide a short name.

• Description (optional). Give a short description.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• QC Server. Select the correct integration from the drop-down menu (this is the integration set up in the Con-
figure Quality Center Plugin (Issue Tracking) section). If you configured multiple integrations on the Ant-
hillPro System page, make sure you select the correct one. Note that it is possible for a single job -- but not a
step -- to use different AnthillPro/Quality-Center-server configurations.

• Domain Name. Provide the name of the Quality Center Domain where projects are located. Make sure this
corresponds to the settings in the previous step.

• Project Name. Give the name of the Quality Center Project where issues are located. Make sure this corres-
ponds to the settings in the previous step.

• Project Key. You must include the Quality Center project key for the project being tested.

• Assignee. You must include the Quality Center user this issue must be assigned to. This can be any user with
appropriate permissions set in Quality Center.

• Summary. Give the Quality Center summary for this issue.

• Detected By. If you want to use a different name than the default Anthill3, give it here. The name you provide
will be displayed in the logs.

• Priority. Optionally, you can have AnthillPro set a priority when the issue is created. Make sure that the prior-
ity matches those set in Quality Center.

• Severity. Optionally, you can have AnthillPro set a severity when the issue is created. Make sure that the
severity matches those set in Quality Center.

• Status. If you want to use a different status than the default of new, give it here. Make sure that the status
matches those set in Quality Center.

Issue Tracking Tools

483



• Additional Parameters. Optionally, you can set custom Parameters for the issue. This is entered as a listing of
name=value pairs (adheres specifically to the java.util.Properties format). Each pair must be in-
cluded on a separate line. For example:

BG_USER_03=SPANIS
ENGLISH
FRENCH
ITALIAN

• Show Environment Variables (optional; advanced). See Show Environment Variables above.

• Show Additional Options (advanced). See Show Additional Options.

• Click Save.

Deploy Job with Quality Center Plugin (Issue Tracking) Post-deploy
Step

The Resolve Issue step is typically used as part of a post-deployment job that is run after the deploy job, but part of
the same workflow. Once the artifacts have been deployed, the Resolve Issue step is run as a separate job in order to
ensure that all issues are resolved.

• While each job is different, every job will typically run an Assign Status step; the Resolve Issue step; a Get
Changelog step; a Publish Changelog step; and a Create Stamp Step.

1. Go to Administration, select the appropriate project, and configure the job if not already done.

2. Select the Insert After icon of the step prior to the point where the ClearQuest step is to be included. Go to Issue
Tracking > Quality Center Plugin, select the Update Quality Center Issue step, and click Select.

• Name the step.

• Description. Provide a short description.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• QC Server. Select the correct integration from the drop-down menu (this is the integration set up in the Con-
figure Quality Center Plugin (Issue Tracking) section). If you configured multiple integrations on the Ant-
hillPro System page, make sure you select the correct one. Note that it is possible for a single job -- but not a
step -- to use different AnthillPro/Quality-Center-server configurations.

• Domain Name. Provide the name of the Quality Center Domain where projects are located. Make sure that
this matches those set for the Quality Center testing step.

• Project Name. Give the name of the Quality Center Project where issues are located. Make sure that this
matches those set for the Quality Center testing step.

• Capture mode. Choose how to locate bugs to update. If you will list the bug id's, comma separated, such as '4,
24, 13', choose list. If you will match a regex, such as 'QC-([0-9]+)', choose regex.

• Issue Id Pattern. Input a regular expression to locate Quality Center Issue Id within changelog comments.

Issue Tracking Tools

484



Add "()" around the portion of the pattern identifying the Quality Center Issue Id (which is simply a number).

The default value, QC-([0-9]+) is a regex that parses the change log and applies the attributes of the step to
matching issues. For example, if QC-52 was located in the comment of a change, this step would act on issue
52 in the Quality Center database.

• Assignee. You must include the Quality Center user this issue must be assigned to. This can be any user with
appropriate permissions set in Quality Center.

• Summary. Give the Quality Center summary for this issue.

• Priority. Optionally, you can have AnthillPro set a priority when the issue is created. Make sure that the prior-
ity matches those set in Quality Center.

• Severity. Optionally, you can have AnthillPro set a severity when the issue is created. Make sure that the
severity matches those set in Quality Center.

• Status. If you want to use a different status than the default of new, give it here. Make sure that this matches
those set for the Quality Center testing step.

• Fail Mode. Select the action you wish AnthillPro to take when an unknown issue ID is encountered.

• Additional Parameters. Optionally, you can set custom Parameters for the issue. This is entered as a listing of
name=value pairs (adheres specifically to the java.util.Properties format). Each pair must be in-
cluded on a separate line. For example:

BG_USER_03=SPANIS
ENGLISH
FRENCH
ITALIAN

• Show Environment Variables (optional; advanced). See Show Environment Variables above.

• Show Additional Options (advanced). See Show Additional Options.

3. Click Save.

Create Quality Center Plugin Workflow (Issue Tracking)
Complete workflow configuration is beyond the scope of this tutorial. The topics covered in detail below are specif-
ic to using the Quality Center integration. The process is the same for both jobs that include the Quality Center
steps.

1. Go Administration and select the appropriate workflow. You can add the job to either your build workflow or as
part of a secondary (i.e., testing) workflow.

2. Go to workflow Main > Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

5. Select the job created in the Create Job section, a job pre-condition script, and click Insert Job.

Issue Tracking Tools

485



6. Select the Properties tab and add a workflow property. This will ensure that the job runs on the appropriate agent
when using a scripted agent filter. Make sure that the property you set here is also configured on the agent.

• Name. Give the name of the Property (the property <name> will be accessed as ${property:<name>}).

• Description. Provide a description for this Property shown when prompting users for value.

• Default Value. Input the value for this property.

• User May Override. Check if users are able to specify a new value when running this workflow.

• Label. Provide a label for this Property shown when prompting users for value (leave blank to use the Name as
the Label).

• Is Required. Check if a non-empty value for this property is required to run workflow.

• Allowed Values. Give the values users are allowed to select for this property (blank for no restriction of
value). Separate each value by entering it on its own line.

7. If you created a post-deploy job with the Resolve step, add it after the original job.

8. Click Save.

Run Build and View Reports (Quality Center Plugin Issue
Tracking)

1. Go to Dashboard and select the appropriate workflow.

2. On the workflow Main page, click the Build button.

3. Once the workflow is complete, select the Reports tab.

4. Select a link to view a report.

5. To drill down on each Quality Center step on the Build Life Summary page, see Trace a Build Life to Source.

Issue Tracking Tools

486



Quality Center Plugin Function Calls
Following is a list of the function calls used in the Quality Center integration:

TDApi-
Ole80.TDConnection

TestSet.StartExecution TestSet.TSTestFactory Step.Field

TDConnection.BugFactory TSSched-
uler.RunAllLocally

TSTestFactory.NewList BugFactory.Filter

TDConnec-
tion.InitConnectionEx

TSScheduler.TdHostName TSTest.Name BugFactory.Item

TDConnection.Login TSScheduler.Run TSTest.Type BugFactory.AddItem

TDConnection.Connect TSSched-
uler.ExecutionStatus

TSTest.Status Filter.Filter

TDConnection.Disconnect Execution-
Status.RefreshExecStatusIn
fo

TSTest.HostName Filter.NewList

TDConnection.Logout ExecutionStatus.Finished TSTest.TestId Bug.ID

TDConnec-
tion.ReleaseConnection

ExecutionStatus.EventsList TSTest.TestName Bug.Summary

TDConnec-
tion.TestSetTreeManager

ExecEventInfo.EventType TSTest.LastRun Bug.Field

TestSetTreeMan-
ager.NodeByPath

ExecEventInfo.EventDate Run.Name Bug.AssignedTo

TestSetFolder.FindTestSets ExecEventInfo.EventTime Run.Status Bug.DetectedBy

TestSet.Id TestExecStatus.TestId Run.Field Bug.Priority

TestSet.Item TestExec-
Status.TestInstance

Run.StepFactory Bug.Project

TestSet.Name TestExecStatus.TsTestId StepFactory.NewList Bug.Status

TestSet.TestSetFolder TestExecStatus.Message Step.Name Bug.Post

TestSet.Status TestExecStatus.Status Step.Status

Rally
Create defects, add comments to a defect, update the status of a defect, and report the build success with the Rally
1.05 (backwards compatible) integration. AnthillPro users can also create a report of Rally defects from the
changelog.

In order to use the Rally integration, AnthillPro must first be configured with Rally user permissions to create de-
fects, add comments to a defect, update the status of a defect, and report the build success, etc.

The Rally integration is implemented as AnthillPro job steps configured on the Job Configuration page. When using
the integration, click the Create Step button (or select the Insert After/Before icon) to add steps to a job. Once the
job is configured, it is then added to the workflow under the Definition tab.

Rally Steps:

• Create Defect. Creates a new issue in Rally. Typically used during a build job.

• Add Comments. Adds Comments from the current changelog to matching Rally defects in the user story. Typic-

Issue Tracking Tools

487



ally used during a build job.

• Change Defect Status. Updates the status of a Rally defect. Can be used as a post-deployment step added to a de-
ploy workflow to update the state of a Rally defect.

• Publish Defect Report. Creates A Report of Rally defects from the current changelog. Typically used during a
build job.

• Report Build Status. Reports the build status to Rally. Typically used during a build job.

This tutorial will follow a simple project configuration that (a.) uses the add comments, publish defect report, create
defect, and report build status steps as part of the build process; (b.) uses the change defect step as part of a post-
deployment process; and (c.) makes the Rally defect report and issues available to the AnthillPro UI.

Configuring the Rally Integration
The Rally integration requires a base URL where the Rally server is located as well a user name and password for
accessing it.

Rally Prerequisites

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• A project must be active in AnthillPro.

• A Life-Cycle Model must be configured with the appropriate Status and Artifact Sets. See Using Life-Cycle Mod-
els.

Configure Rally

All the fields on the Rally Integration page may contain scripts and/or property lookups. See Scripting.

1. Go to System > Rally from the Integration menu.

2. On the Rally Integration page, click Edit.

3. Enter:

• Rally Base URL.

• Issue URL. You can have AnthillPro automatically generate a link to all of the issues it associates with a Build
Life if you give the Issue URL here. Once you give the URL pattern, the issues that appear on the Issues Tab
of a Build Life will be linked to the issue in your issue tracker tool for reviewing the issue, adding additional
comments, making edits, etc.

Please provide a URL template such as http://bugs.company.com/browse/${issueId}. The
value ${issueId} will be replaced in the template with the issue id of the associated issue. This field
provides a template which is used throughout AnthillPro to generate links from issues directly to an issue de-
scription page within your issue tracker.

• User Name. The user name to be used to connect to the Rally server. This name must be configured in Rally in
order for the integration to work.

• Password. The password used to connect to the Rally server. This password must correspond to the Rally user

Issue Tracking Tools

488



name and must be configured in Rally.

• Password Script (optional). To use a script or property lookups for the password, leave the Password field
blank and enter it here. See Scripting.

4. Click Set then Done.

Using the Rally Integration
The Rally integration allows AnthillPro users to create defects, add comments to a defect, update the status of a de-
fect, and report the build success in Rally. The integration also allows AnthillPro users to create a report of Rally de-
fects from the changelog.

The example in this tutorial uses Subversion, but the basic configuration is the same for any repository type. Your
build job will vary, but the Rally integration is added as a job step similar to what is described below. Though the
example goes through the manual creation of a build job, it is possible to use the Job Wizard to create a build job
and then manually configure a second job to run as part of the build workflow. For simplicity, the Rally integration
steps have been included as part of the build job and part of the post-deployment job in the example. The change de-
fect status is included as part of the post-deployment steps run as part of a deploy workflow.

Using the Rally Integration Prerequisites

• Configuring the Rally Integration must be complete.

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• A project with at least one Build Life must be active in AnthillPro.

• A Life-Cycle Model must be configured with the appropriate Status and Artifact Sets. See Using Life-Cycle Mod-
els.

Configure Rally Jobs

Complete job configuration is beyond the scope of this tutorial. The topics covered in detail below are specific to us-
ing the Rally integration.

Build Job with Rally Steps

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

For this tutorial, the Rally steps are included after the Populate Workspace, Changelog, Stamp, Dependency,
Build, Publish Changelog, and Artifact Delivery step.

4. Add Comments. Select the Insert After icon of the step prior to the point where the Rally step is to be included
(Artifact Delivery step in this example). Go to Issue Tracking > Rally, select the Add Comments step, and
click Select.

• Name. Provide a name.

Issue Tracking Tools

489



• Description (optional). Give a description of the step.

• Issue Id Pattern. Give a regular expression to locate a Rally defect Id within changelog comments. Add "()"
around the portion of the pattern which identifies the actual Issue Id. The pattern "DE[0-9]+" would match
(returning the same string as Issue Id) "DE1" and "DE932415", but not match "DEa", "DE", or "DE.1". The
pattern "Issue:\[(DE[0-9]+)\]" would match "Issue:[DE1]" using Issue Id DE1.

In the example, the pattern includes DE which identifies the issues as belonging to Rally. Whenever AnthillPro
comes across this regular expression, it will automatically add the appropriate defect comment in Rally.

• Additional Comment (optional). Use this field to add any additional information to the Rally defect.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

• Click Save.

5. Publish Defect Report. Select the Insert After icon of the Add Comments step. Go to Issue Tracking > Rally,
select the Publish Defect Report step, and click Select.

• Name. Provide a name.

• Description (optional). Give a description of the step.

• Report Name. Provide a name for the report in AnthillPro (default is the step name).

• Issue Id Pattern. Give a regular expression to locate a Rally defect Id within changelog comments. Add "()"
around the portion of the pattern which identifies the actual Issue Id. The pattern "DE[0-9]+" would match
(returning the same string as Issue Id) "DE1" and "DE932415", but not match "DEa", "DE", or "DE.1". The
pattern "Issue:\[(DE[0-9]+)\]" would match "Issue:[DE1]" using Issue Id DE1.

In the example, the pattern includes DE identifies the issues as belonging to Rally. Whenever AnthillPro
comes across this regular expression, it will automatically add the appropriate defect comment in Rally.

• Include Dependencies. Check this field to include change logs from dependencies when searching for issue
references.

• Show Additional Options (advanced). See Show Additional Options.

• Click Save.

6. Create Defect. Select the Insert After icon of the Publish Defect Report step. Go to Issue Tracking > Rally,
select the Create Defect step, and click Select. This step will create a defect in Rally on if one of the steps fail.

• Name. Provide a name.

Issue Tracking Tools

490



• Description (optional). Give a description of the step.

• Project Key. Enter the Rally project key to create a general project but not for a specific requirement. Either
use this field or the Requirement Key field below.

• Requirement Key. Enter the Rally requirement key to create a defect under a specific Rally requirement.
Either use this field or the Project Key field above.

• Defect Name. Give a name for the defect to be created in Rally.

• Defect Description. Give a brief description of the defect. A URL may be included in this field.

• Severity. Select the Rally severity (from the drop-down menu) to be assigned to this step.

• Priority. Select the Rally priority (from the drop-down menu) to be assigned to this step.

• Environment. Select the Rally environment (from the drop-down menu) to be assigned to this step.

• State. Select the Rally state (from the drop-down menu) to be assigned to this step.

• Submitted By. Input the name of the person that submitted the defect. This field must match the AnthillPro
Rally user name.

• Found in Build. Identify what build the defect was found in.

• Show Additional Options (advanced). See Show Additional Options.

• Click Save.

7. Report Build Status. Select the Insert After icon of the step prior to where the Report Build Status is to be in-
cluded (typically after the Assign Status step). Go to Issue Tracking > Rally, select the Report Build Status
step, and click Select.

To have AnthillPro notify Rally of a successful build, an Assign Status (with the success option selected) step
must run prior to adding the Rally-Report Build Status (success) step.

• Name. Provide a name.

• Description (optional). Give a description of the step.

• Build Definition Id. Give the Rally Build Definition Id associated with the project status is being assigned to.

• Status. Select the status from the drop-down menu.

• Duration (optional). Identify the duration of the build in milliseconds.

• Label. Provide the Label applied to the build.

• Message (optional). Provide any messages to be sent to Rally.

• Show Additional Options (advanced). See Show Additional Options.

• Click Save.

8. Report Build Status. Select the Insert After icon of the Report Build Status (success) step. Go to Issue
Tracking > Rally, select the Report Build Status step, and click Select. To have AnthillPro notify Rally of a
failed build, an Assign Status (with the failure option selected) step must run prior to adding the Rally-Report
Build Status (failure) step. The Status-Failure step is typically included in the job just after the Status-Success
step.

Issue Tracking Tools

491



• Configure the Step as in Step 7 (previous), but select Failed from the drop-down menu.

Deploy Job with Rally Post-deploy Steps

The Rally-Change Defect Status step is typically used as part of a post-deployment job. Once the artifacts have been
deployed (in the example there are two artifact sets: Database and Webapp), the Rally-Change Defect Status step is
run as a separate job in order to ensure that all Rally user-story defects are resolved.

• While each job is different, every job will typically run an Assign Status step; the Rally-Change Defect Status
step; a Get Changelog step; a Publish Changelog step; and a Create Stamp Step.

1. Go to Administration, select the appropriate project, and click the Add Job Icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

• For this tutorial, the Rally-Change Defect Status is included after the Assign Status Step and prior to the other
steps.

4. Change Defect Status. Select the Insert After icon of the step prior to where the Change Defect Step is to be in-
serted (typically after the Assign Status Step). Go to Issue Tracking > Rally, select the Change Defect Status
step, and click Select.

• Name. Provide a name.

• Description (optional). Give a description.

• Defect Key. The Rally defect key for the state that should be updated.

• New State. Select the Rally state from the drop-down menu.

• Show Additional Options (advanced). See Show Additional Options.

• Click Save.

Configure Rally Workflows

The Jobs created in the Configure Jobs section must be executed as part of a workflow. This section will assume that
an originating workflow and a deploy workflow have already been configured, and will cover the process of adding
the jobs to the appropriate workflows. Complete workflow configuration is beyond the scope of this tutorial. The
topics covered in detail below are specific to using the Rally integration.

Build Workflow with Rally Steps

1. Go to Administration, select the project, and select the build workflow.

2. On the workflow Main page, select the Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

Issue Tracking Tools

492



5. Select the Build Job created in Configure Jobs, a job pre-condition script, and click Insert Job.

Deploy Workflow with Rally Post-deploy Steps

1. Go to Administration, select the project, and select the deploy workflow.

2. On the workflow Main page, select the Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Stop icon and select Insert Job After.

5. Select the Post Deployment Steps Job created in the Configure Jobs section, a job pre-condition script, and
click Insert Job.

• Note that this jobs deploy two artifact sets and that the Post Deploy Steps job will change the Rally defect
status for both artifact sets.

Run Workflows and View Reports (Rally)

1. Go to Dashboard and select the workflows created in the Create Workflows section.

2. On the Workflow Main page, click the Build button for each workflow.

3. Once the workflows have completed, select the appropriate Build Life and click the Reports tab.

4. Select a link to view a report. To go to the defect that was generated in Rally, follow the Defect Id link.

Issue Tracking Tools

493



5. Click the Issues tab to view the issues AnthillPro created in Rally.

6. To drill down on each Rally step on the Build Life Summary page, see Trace a Build Life to Source.

Rally Plugin
Create defects, add comments to a defect, update the status of a defect, and report the build success with the Rally
Plugin integration. AnthillPro users can also create a report of Rally defects from the changelog.

In order to use the Rally Plugin integration, AnthillPro must first be configured with Rally user permissions to create
defects, add comments to a defect, update the status of a defect, and report the build success, etc.

The integration is written as an AnthillPro Plugin, and expands upon the existing Rally integration to allow for
multiple workspaces and tasks. For older AnthillPro 3.7 versions, you will need to download the integration from
Supportal [http://support.urbancode.com/] and then upload it to the server. Once uploaded, ensure the Plugin is act-
ive.

The Rally Plugin integration is implemented as AnthillPro job steps configured on the Job Configuration page.
When using the integration, click the Create Step button (or select the Insert After/Before icon) to add steps to a job.
Once the job is configured, it is then added to the workflow under the Definition tab.

Rally Plugin Steps:

• Create Defect. Creates a new issue in Rally. Typically used during a build job.

Issue Tracking Tools

494

http://support.urbancode.com/
http://support.urbancode.com/
http://support.urbancode.com/


• Add Comments. Adds Comments from the current changelog to matching Rally defects in the user story. Typic-
ally used during a build job.

• Change Status. Updates the status of a Rally defect. Can be used as a post-deployment step added to a deploy
workflow to update the state of a Rally defect.

• Publish Defect Report. Creates A Report of Rally defects from the current changelog. Typically used during a
build job.

• Report Build Status. Reports the build status to Rally. Typically used during a build job.

Typical configuration: (a.) uses the add comments, publish defect report, create defect, and report build status steps
as part of the build process; (b.) uses the change defect step as part of a post-deployment process; and (c.) makes the
Rally defect report and issues available to the AnthillPro UI.

Configuring the Rally Plugin Integration
The Rally Plugin integration requires a base URL where the Rally server is located as well a user name and pass-
word for accessing it.

Rally Plugin Prerequisites

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• A project must be active in AnthillPro.

• A Life-Cycle Model must be configured with the appropriate Status and Artifact Sets. See Using Life-Cycle Mod-
els.

Configure Rally Plugin

All the fields on the Rally Plugin Integration page may contain scripts and/or property lookups. See Scripting.

The integration is written as an AnthillPro Plugin, and expands upon the existing Rally integration to allow for
multiple workspaces and tasks. For older AnthillPro 3.7 versions, you will need to download the integration from
Supportal [http://support.urbancode.com/] and then upload it to the server. Once uploaded, ensure the Plugin is act-
ive.

1. Go to System > Rally Plugin from the Integration menu.

2. On the Rally Plugin page, click Create New.

3. Enter:

• Name. Give a name to this integration. This name will be used by the AnthillPro system. If you configure
more than one integration, make sure to select the correct configuration during job creation.

• Rally Base URL. Provide the Rally server URL. Example: https://trial.rallydev.com (do not use a trailing
slash).

• Rally Version. Give the Rally server Webservices Version your Rally server supports. Example: 1.16 (the ver-
sion must be an exact match for the integration to work). If you have multiple versions of Rally, you will need
to configure a new integration for each version.

Issue Tracking Tools

495

http://support.urbancode.com/
http://support.urbancode.com/
http://support.urbancode.com/


• Rally Workspace Name. Provide the Rally workspace to use for this integration. Each configured integration
supports only one workspace. If you want AnthillPro to participate in multiple workspaces, configure a separ-
ate integration for each.

• User Name. The user name to be used to connect to the Rally server. This name must be configured in Rally in
order for the integration to work.

• Password. The password used to connect to the Rally server. This password must correspond to the Rally user
name and must be configured in Rally.

• Confirm password.

• Password Script (optional). To use a script or property lookups for the password, leave the Password field
blank and enter it here. See Scripting.

4. Click Set then Done.

Using the Rally Plugin Integration
The Rally Plugin integration allows AnthillPro users to create defects, add comments to a defect, update the status of
a defect, and report the build success in Rally. The integration also allows AnthillPro users to create a report of
Rally defects from the changelog.

Your build job will vary, but the Rally integration is added as a job step similar to what is described below. Though
the example goes through the manual creation of a build job, it is possible to use the Job Wizard to create a build job
and then manually configure a second job to run as part of the build workflow. For simplicity, the Rally integration
steps have been included as part of the build job and part of the post-deployment job in the example. The change de-
fect status is included as part of the post-deployment steps run as part of a deploy workflow.

Using the Rally Plugin Integration Prerequisites

• Configuring the Rally Plugin Integration must be complete.

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• A project with at least one Build Life must be active in AnthillPro.

• A Life-Cycle Model must be configured with the appropriate Status and Artifact Sets. See Using Life-Cycle Mod-
els.

Configure Rally Plugin Jobs

Complete job configuration is beyond the scope of this tutorial. The topics covered in detail below are specific to us-
ing the Rally Plugin integration.

Build Job with Rally Plugin Steps

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

Issue Tracking Tools

496



The Rally steps are typically included after the Populate Workspace, Changelog, Stamp, Dependency, Build,
Publish Changelog, and Artifact Delivery step.

4. Add Comments. Select the Insert After icon of the step prior to the point where the Rally step is to be included
(Artifact Delivery step in this example). Go to Issue Tracking > Rally Plugin, select the Add Comments step,
and click Select.

• Name. Provide a name.

• Description (optional). Give a description of the step.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• Defect Id Pattern. Give a regular expression to locate a Rally defect Id within changelog comments. Add "()"
around the portion of the pattern which identifies the actual Issue Id. The pattern "DE[0-9]+" would match
(returning the same string as Issue Id) "DE1" and "DE932415", but not match "DEa", "DE", or "DE.1". The
pattern "Issue:\[(DE[0-9]+)\]" would match "Issue:[DE1]" using Issue Id DE1.

In the example, the pattern includes DE which identifies the issues as belonging to Rally. Whenever AnthillPro
comes across this regular expression, it will automatically add the appropriate defect comment in Rally.

• Task Id Pattern. Give a regular expression to locate a Rally defect Id within changelog comments. Add "()"
around the portion of the pattern which identifies the actual task Id. The pattern 'TA[0-9]+' would match
(returning the same string as task ids) 'TA1' and 'TA932415', but not match 'TAa', 'TA', or 'TA.1' The pattern
'Issue:\[(TA[0-9]+)\]' would match 'Issue:[TA1]' using task ID TA1.

In the example, the pattern includes TA which identifies the issues as belonging to Rally. Whenever AnthillPro
comes across this regular expression, it will automatically add the comment to the appropriate task in Rally.

• User Story Id Pattern. Give a regular expression to locate a Rally defect Id within changelog comments. Add
"()" around the portion of the pattern which identifies the actual user story Id. The pattern 'US[0-9]+' would
match (returning the same string as user story ids) 'US1' and 'US932415', but not match 'USa', 'US', or 'US.1'
The pattern 'Issue:\[(US[0-9]+)\]' would match 'Issue:[US1]' using user story ID US1.

In the example, the pattern includes US which identifies the issues as belonging to Rally. Whenever AnthillPro
comes across this regular expression, it will automatically add the comment to the appropriate user story in
Rally.

• Additional Comment (optional). Use this field to add any additional information to the Rally defect.

• Rally Workspace. Select the workspace you configured in the previous section.

• Show Environment Variables (optional; advanced). Give any optional environment variables in
"name=value" format.

Environment variables values may contain references to existing values in the following format:
name=${env/<NAME>};value. If the value of the <NAME> variable is "value2" in the current environ-
ment, then the above example will be expanded to: name=value2;value.

Using this technique, it is possible add an entry to PATH in the following manner:
PATH=my/path/entry;0. Case is significant even on Windows systems.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to

Issue Tracking Tools

497



continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

• Click Save.

5. Publish Defect Report. Select the Insert After icon of the Add Comments step. Go to Issue Tracking > Rally
Plugin, select the Publish Defect Report step, and click Select.

• Name. Provide a name.

• Description (optional). Give a description of the step.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• Report Name. Provide a name for the report in AnthillPro (default is the step name).

• Defect Id Pattern. Give a regular expression to locate a Rally defect Id within changelog comments. Add "()"
around the portion of the pattern which identifies the actual Issue Id. The pattern "DE[0-9]+" would match
(returning the same string as Issue Id) "DE1" and "DE932415", but not match "DEa", "DE", or "DE.1". The
pattern "Issue:\[(DE[0-9]+)\]" would match "Issue:[DE1]" using Issue Id DE1.

In the example, the pattern includes DE which identifies the issues as belonging to Rally. Whenever AnthillPro
comes across this regular expression, it will automatically add the appropriate defect comment in Rally.

• Task Id Pattern. Give a regular expression to locate a Rally defect Id within changelog comments. Add "()"
around the portion of the pattern which identifies the actual task Id. The pattern 'TA[0-9]+' would match
(returning the same string as task ids) 'TA1' and 'TA932415', but not match 'TAa', 'TA', or 'TA.1' The pattern
'Issue:\[(TA[0-9]+)\]' would match 'Issue:[TA1]' using task ID TA1.

In the example, the pattern includes TA, which identifies the issues as belonging to Rally. Whenever Ant-
hillPro comes across this regular expression, it will automatically add the comment to the appropriate task in
Rally.

• User Story Id Pattern. Give a regular expression to locate a Rally defect Id within changelog comments. Add
"()" around the portion of the pattern which identifies the actual user story Id. The pattern 'US[0-9]+' would
match (returning the same string as user story ids) 'US1' and 'US932415', but not match 'USa', 'US', or 'US.1'
The pattern 'Issue:\[(US[0-9]+)\]' would match 'Issue:[US1]' using user story ID US1.

In the example, the pattern includes US which identifies the issues as belonging to Rally. Whenever AnthillPro
comes across this regular expression, it will automatically add the comment to the appropriate user story in
Rally.

• Rally Workspace. Select the workspace you configured in the previous section.

• Show Environment Variables (advanced). See Show Environment Variables above.

• Show Additional Options (advanced). See Show Additional Options above.

Issue Tracking Tools

498



• Click Save.

6. Create Defect. Select the Insert After icon of the Publish Defect Report step. Go to Issue Tracking > Rally
Plugin, select the Create Defect step, and click Select. This step will create a defect in Rally on if one of the
steps fail.

• Name. Provide a name.

• Description (optional). Give a description of the step.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• Project Name. Enter the Rally project key to create a general project but not for a specific requirement. Either
use this field or the Requirement Key field below.

If you do note specify a project name, you must give the user story Id below -- but not both.

• User Story Id Pattern. Give a regular expression to locate a Rally defect Id within changelog comments.

If you do not specify a user story Id, you must give a project name above -- but not both.

Add "()" around the portion of the pattern which identifies the actual user story Id. The pattern 'US[0-9]+'
would match (returning the same string as user story ids) 'US1' and 'US932415', but not match 'USa', 'US', or
'US.1' The pattern 'Issue:\[(US[0-9]+)\]' would match 'Issue:[US1]' using user story ID US1.

In the example, the pattern includes US which identifies the issues as belonging to Rally. Whenever AnthillPro
comes across this regular expression, it will automatically add the comment to the appropriate user story in
Rally.

• Defect Name. Give a name for the defect to be created in Rally.

• Defect Description. Give a brief description of the defect. A URL may be included in this field.

• Severity. Provide the severity, if desired, that this defect should be reported as. What is input here must match
exactly the severity as defined in Rally.

• Priority. Give the priority, if desired, that this defect should be reported as. What is input here must match ex-
actly the priority as defined in Rally.

• Environment. Give the environment, if desired, that this defect should be reported as. What is input here must
match exactly the environment as defined in Rally.

• State. Give the state, if desired, that this defect should be reported as. What is input here must match exactly
the state as defined in Rally.

• Submitted By. Input the name of the person that submitted the defect. This field must match a Rally user
name (e.g., AnthillPro).

• Rally Workspace. Select the workspace you configured in the previous section.

• Show Environment Variables (advanced). See Show Environment Variables above.

• Show Additional Options (advanced). See Show Additional Options above.

• Click Save.

7. Report Build Status. Select the Insert After icon of the step prior to where the Report Build Status is to be in-
cluded (typically after the Assign Status step). Go to Issue Tracking > Rally Plugin, select the Report Build

Issue Tracking Tools

499



Status step, and click Select.

To have AnthillPro notify Rally of a successful build, an Assign Status (with the success option selected) step
must run prior to adding the Rally-Report Build Status (success) step.

• Name. Provide a name.

• Description (optional). Give a description of the step.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• Build Definition Id. Give the Rally Build Definition Id associated with the project status is being assigned to.

• Status. Select the status from the drop-down menu. Select "success" from the drop-down. To have AnthillPro
also report on failed builds, see Item 8 below.

• Duration (optional). Identify the duration of the build in milliseconds.

• Label. Provide the Label applied to the build.

• Message (optional). Provide any messages to be sent to Rally.

• Rally Workspace. Select the workspace you configured in the previous section.

• Show Environment Variables (advanced). See Show Environment Variables above.

• Show Additional Options (advanced). See Show Additional Options above.

• Click Save.

8. Report Build Status (failure). Select the Insert After icon of the Report Build Status step. Go to Issue Track-
ing > Rally Plugin, select the Report Build Status step, and click Select. To have AnthillPro notify Rally of a
failed build, an Assign Status (with the failure option selected) step must run prior to adding the Rally-Report
Build Status (failure) step. The Status-Failure step is typically included in the job just after the Status-Success
step.

• Configure the Step as in Step 7 (previous), but select Failed from the drop-down menu.

Rally Plugin Post-deploy Steps

The Rally-Change Defect Status step is typically used as part of a post-deployment job. Once the artifacts have been
deployed (in the example there are two artifact sets: Database and Webapp), the Rally-Change Defect Status step is
run as a separate job in order to ensure that all Rally user-story defects are resolved.

• While each job is different, every job will typically run an Assign Status step; the Rally-Change Defect Status
step; a Get Changelog step; a Publish Changelog step; and a Create Stamp Step.

1. Go to Administration, select the appropriate project, and click the Add Job Icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

• For this tutorial, the Rally-Change Defect Status is included after the Assign Status Step and prior to the other
steps.

Issue Tracking Tools

500



4. Change Defect Status. Select the Insert After icon of the step prior to where the Change Defect Step is to be in-
serted (typically after the Assign Status Step). Go to Issue Tracking > Rally Plugin, select the Change Defect
Status step, and click Select.

• Name. Provide a name.

• Description (optional). Give a description.

• Working Directory Offset (optional). Give the working directory to use when executing this command. This
is relative to current working directory. To use the current directory, leave this field blank.

• Defect Id. Give a comma-separated list of IDs of the defects or tasks for which the state should be updated.
For example: Use ${gvy:def result='';IssueHelper.getIssueArray().each{it ->
result += it.issueId + ","\}; return result} to update all issues in the current Build Life.

• Object Type. Select the correct object type you want this step to apply in Rally. Choose either Defect or Task.

• New State. Provide the Rally state. What is given here must exactly match the state as defined in Rally.

• Rally Workspace. Select the workspace you configured in the previous section.

• Show Environment Variables (advanced). See Show Environment Variables above.

• Show Additional Options (advanced). See Show Additional Options above.

• Click Save.

Configure Rally Plugin Workflows

The Jobs created in the Configure Jobs section must be executed as part of a workflow. This section will assume that
an originating workflow and a deploy workflow have already been configured, and will cover the process of adding
the jobs to the appropriate workflows. Complete workflow configuration is beyond the scope of this tutorial. The
topics covered in detail below are specific to using the Rally integration.

Build Workflow with Rally Plugin Steps

1. Go to Administration, select the project, and select the build workflow.

2. On the workflow Main page, select the Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

5. Select the Build Job created in Configure Jobs, a job pre-condition script, and click Insert Job.

Deploy Workflow with Rally Plugin Post-deploy Steps

1. Go to Administration, select the project, and select the deploy workflow.

2. On the workflow Main page, select the Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Stop icon and select Insert Job After.

Issue Tracking Tools

501



5. Select the Post Deployment Steps Job created in the Configure Jobs section, a job pre-condition script, and
click Insert Job.

• Note that this jobs deploy two artifact sets and that the Post Deploy Steps job will change the Rally defect
status for both artifact sets.

Run Workflows and View Reports (Rally Plugin)

1. Go to Dashboard and select the workflows created in the Create Workflows section.

2. On the Workflow Main page, click the Build button for each workflow.

3. Once the workflows have completed, select the appropriate Build Life and click the Reports tab.

4. Select a link to view a report. To go to the defect that was generated in Rally, follow the Defect Id link.

5. Click the Issues tab to view the issues AnthillPro created in Rally.

6. To drill down on each Rally step on the Build Life Summary page, see Trace a Build Life to Source.

TeamTrack
Create a new defect, add comments to a defect, and transition a defect with the TeamTrack integration. AnthillPro
users can also create a report of TeamTrack defects from the changelog.

In order to use the integration, AnthillPro must first be configured with TeamTrack. The integration is implemented
as AnthillPro job steps configured on the Job Configuration page. When using the integration, click the Create Step
button (or select the Insert After/Before icon) to add steps to a job. Once the job is configured, it is then added to the
workflow under the Definition tab. See Using the TeamTrack Integration.

TeamTrack Steps:

• Add Comments. Add Comments from the current changelog to matching TeamTrack defects. In order to use this
step, a set working directory, get changelog, and publish changelog step is necessary.

• Create Defect. Create a new defect in a TeamTrack. Typically used during a secondary process in combination
with the Transition Defect step.

• Publish Defect Report. Create a Report of TeamTrack defects from the current changelog. In order to use this
step, a set working directory, get changelog, and publish changelog step is necessary. Typically used in combina-
tion with the Add Comments step.

• Transition Defect. Transition a defect in a TeamTrack. Typically used during a secondary process in combina-
tion with the Create Defect step. The Issue Key field of this step should include at least one property specified on
the corresponding workflow. See Defects Workflow with TeamTrack Steps.

This tutorial will follow a simple project configuration that uses the Add Comments and Publish Defect Report steps
as part of a build workflow. The Create Defect and Transition Defect steps are used as part of a secondary
(non-originating) workflow. The example in this tutorial uses Maven, but the basic configuration is similar for any
repository type. Your jobs will vary, but the TeamTrack integration is added as job steps similar to what is described
below. Though the example goes through the manual creation of a build job, it is possible to use the Job Wizard to
create a build job and then manually configure a second job to run as part of the same workflow.

Issue Tracking Tools

502



Configure TeamTrack
Let AnthillPro know about TeamTrack. Any steps within AnthillPro relying on TeamTrack will not work until this
integration is configured. These fields may all contain scripts and/or property lookups. See Scripting.

TeamTrack Prerequisites

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• A project must be active in AnthillPro.

• A Life-Cycle Model must be configured with the appropriate Status and Artifact Sets. See Using Life-Cycle Mod-
els.

• AnthillPro must be set up as a TeamTrack user. See TeamTrack documentation.

TeamTrack Configuration

1. Go to System > TeamTrack from the Integrations menu.

2. On the TeamTrack Integration page, click Edit.

3. Configure the integration:

• TeamTrack Server URL. Provide the TeamTrack server URL.

• Issue URL. You can have AnthillPro automatically generate a link to all of the issues it associates with a Build
Life if you give the Issue URL here. Once you give the URL pattern, the issues that appear on the Issues Tab
of a Build Life will be linked to the issue in your issue tracker tool for reviewing the issue, adding additional
comments, making edits, etc.

Please provide a URL template such as http://bugs.company.com/browse/${issueId}. The
value ${issueId} will be replaced in the template with the issue id of the associated issue. This field
provides a template which is used throughout AnthillPro to generate links from issues directly to an issue de-
scription page within your issue tracker.

• User Name. Give the user name to be used to connect to the TeamTrack server.

• Password. Provide the password to be used to connect to the TeamTrack server.

• Password Script. To use a script or property lookups for the password, leave the Password field blank and
enter it here. See Scripting.

• Use Basic Authentication. Check the box to enable basic authentication. By Default, AnthillPro passes the
user name password as an argument on the SOAP request.

4. Click Set then Done.

Using the TeamTrack Integration
This tutorial adds a TeamTrack comment and publishes a TeamTrack report as part of the build workflow. Complete
job configuration is beyond the scope of this tutorial. The topics covered in detail below are specific to using the
TeamTrack integration.

Issue Tracking Tools

503



Using the TeamTrack Integration Prerequisites

• The Configure TeamTrack section of this tutorial must be complete.

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• A project with at least one Build Life must be active in AnthillPro.

• A Life-Cycle Model must be configured with the appropriate Status and Artifact Sets. See Using Life-Cycle Mod-
els.

Configure TeamTrack Jobs

This step will follow a job configuration that adds a comment, publishes a report, creates a defect, and transitions a
defect in TeamTrack.

Build Job with TeamTrack Steps

The Add Comments and Publish Defect Report steps are included after the Populate Workspace, Changelog, Stamp,
Dependency, Build, Publish Changelog, and Artifact Delivery steps of the typical build job.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

4. Add Comments. Select the Insert After icon of the step prior to the point where the TeamTrack step is to be in-
cluded (Artifact Delivery step in this example). Go to Issue Tracking > TeamTrack, select the Add Comments
step, and click Select.

• Name the step.

• Description. Provide a short description.

• Issue Id Pattern. Give a regular expression to locate a TeamTrack defect Id within changelog comments. Add
"()" around the portion of the pattern which identifies the actual Issue Id. The pattern "TST-[0-9]+" would
match (returning the same string as Issue Id) "TST-1" and "TST-932415", but not match "TST-a", "TST-", or
"TST.1". The pattern "Issue:\[(TST-[0-9]+)\]" would match "Issue:[TST-1]" using issue Id TST-1.

In the example below, the pattern (?:BUG|CHG|ENH|PRB|TSK)([0-9]+) identifies the issue as belonging to a
TeamTrack project. Whenever AnthillPro comes across this regular expression, it will automatically add the
appropriate comment in TeamTrack.

• Title. Provide the TeamTrack title.

• Additional Comment. Give any information to be added to the comment (in addition to the commit com-
ment).

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

Issue Tracking Tools

504



• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

5. Click Save.

6. Publish Defect Report. Select the Insert After icon of the Add Comments step. Go to Issue Tracking >
TeamTrack, select the Publish Defect Report step, and click Select.

• Name the step.

• Description. Provide a short description.

• Report Name. Give the name for this report (default is same as step name).

• Issue Id Pattern. Give a regular expression to locate a TeamTrack defect Id within changelog comments. Add
"()" around the portion of the pattern which identifies the actual Issue Id. The pattern "TST-[0-9]+" would
match (returning the same string as Issue Id) "TST-1" and "TST-932415", but not match "TST-a", "TST-", or
"TST.1". The pattern "Bug:\[(TST-[0-9]+)\]" would match "Bug:[TST-1]" using Bug Id TST-1.

In the example below, the pattern (?:BUG|CHG|ENH|ORB|TSK)([0-9]+) identifies the issue as belonging to a
TeamTrack project. Whenever AnthillPro comes across this regular expression, it will automatically add the
appropriate comment in TeamTrack.

• Include Dependencies. Check the box to include the change logs from dependencies when searching for issue
references.

• Show Additional Options. See Show Additional Options.

7. Click Save.

Defects Job with TeamTrack Steps

The Create Defect and Transition Defect steps are typically added to a job that run as part of a secondary, or non-
originating, workflow. To ensure that the proper defects are transitioned, the Issue Key field of the Transition De-
fect step should include at least one property.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

4. Select the Insert After icon of the step prior to the point where the TeamTrack step is to be included. Go to Issue
Tracking > TeamTrack, select the Create Defect step, and click Select.

• Name the step.

• Description. Provide a short description.

Issue Tracking Tools

505



• Project Name. Give the TeamTrack project name that the defect belongs to. If not specified, the Fully Quali-
fied Project Name must be specified.

• Fully Qualified Project Name. Provide the Fully Qualified Project Name which includes the Folder Path sep-
arated by "||". If not specified, the Project Name must be specified.

• Issue Type. Select the TeamTrack issue type from the drop-down menu. Choose Bug Report, Change Request,
Enhancement Request, Problem Report, or Task. See TeamTrack documentation for more on issue types.

• Title. Give the title for this defect.

• Issue Description. Provide a description for this defect.

• Functional Area. Give the Functional Area the defect appears in. Default value is Administrator.

• How Found. Tell how the defect was found in the code base. Default value is Automated Test.

• Severity. Provide the Severity of the defect. Default value is Low.

• Detected By. Give the user the defect was detected by. Default is the user set up in the TeamTrack server con-
figuration.

• State. Provide the State for the defect. Default value is New.

• Show Additional Options. See Show Additional Options.

5. Click Save.

6. Transition Defect. Select the Insert After icon of the Create Defect step. Go to Issue Tracking > TeamTrack,
select the Transition Defect step, and click Select.

• Name the step.

• Description. Provide a short description.

• Issue Key. Give the issue key to be transitioned in TeamTrack. This will typically be a property to ensure that
the correct issue is transitioned. See also Defects Workflow with TeamTrack Steps.

• Transition Name. Provide the name of the Transition to perform in TeamTrack.

• Additional Options. Give any additional fields that are required to perform a transition. These fields can be
entered on per line in name=value format, where name is the name of the property and value is the value that
will be passed to TeamTrack.

• Show Additional Options. See Show Additional Options.

7. Click Save.

Add TeamTrack Jobs to Workflows

The Jobs created in the Configure Jobs section must be executed as part of a workflow. This section will assume that
both an originating workflow and non-originating (secondary) workflow have already been configured. The topics
covered in detail below are specific to using the TeamTrack integration. Complete workflow configuration is bey-
ond the scope of this tutorial.

Build Workflow with TeamTrack Steps

Issue Tracking Tools

506



1. Go to Administration, select the project, and select the build workflow.

2. On the workflow Main page, select the Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

5. Select the Build job created in the Configure Jobs section, a job pre-condition script, and click Insert Job.

Defects Workflow with TeamTrack Steps

To ensure that the proper defects are transitioned, the Defects workflow will typically include a property to ensure
that the correct issue is transitioned. The property specified on the workflow must correspond to the Issue Key field
of the Transition Defect job step. See also Defects Job with TeamTrack Steps.

1. Go to Administration, select the project, and select the Defects workflow.

2. On the workflow Main page, select the Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

5. Select the Defects Job created in the Configure Jobs section, a job pre-condition script, and click Insert Job.

6. Go to Properties > New Property to create a workflow property. A property must be set to ensure that the cor-
rect issue is transitioned, and must correspond to the Issue Key field of the Transition Defect job step. See also
Defects Job with TeamTrack Steps.

• Name the property.

• Description. Give a description of the property.

• Default Value. Provide the value of the property.

• User May Override. Check the box to allow users to specify a new value when running the workflow.

• Label. Give the label for the property that will be shown when a user is prompted for a value. If no Label is
specified, the property name will be used.

• Is Required. Check the box if a non-empty value for this property is required to run the workflow.

• Allowed Values. Provide the values users are allowed to select for this property.

• Click Save.

Run Workflows and View Reports (TeamTrack)

1. Go to Dashboard and select the workflow created in the Add Jobs to Workflow section.

2. On the workflow Main page, click the Build button for the workflow.

• This procedure is the same for both workflows.

Issue Tracking Tools

507



3. Once the workflow has completed, select the appropriate Build Life and click the Reports tab.

4. Select a link to view a report.

5. Click the Issues tab to view the issues AnthillPro created in TeamTrack.

6. To drill down on each TeamTrack step on the Build Life Summary page, see Trace a Build Life to Source.

Team Foundation Server (TFS) Project Track-
ing
The TFS integration is implemented as AnthillPro job steps configured on the Job Configuration page. Currently,

Issue Tracking Tools

508



AnthillPro enables users to create a new WorkItem, add comments to a WorkItem, publish a WorkItem report, and
resolve WorkItems with the TFS integration. To use the TFS integration, AnthillPro must first be configured to run
the appropriate job steps as well as configured with TFS source control (see Team Foundation Server (TFS) Source
Control).

TFS Steps:

• Create WorkItem. Create a new TFS WorkItem when this job runs. Typically used during a build job. See Build
Job with TFS Steps.

• Add Comments. Add comments from the current changelog to matching TFS issues. In order to use this step, a
set working directory, get changelog, and publish changelog step is necessary. When used, the step will automat-
ically look for WorkItems referenced in source changes. You may additionally configure it to search source
change comments. See Build Job with TFS Steps.

• Publish WorkItem Report. Create a Report of TFS WorkItems from the current changelog. In order to use this
step, a set working directory, get changelog, and publish changelog step is necessary (as part of the job). The step
will automatically look for WorkItems referenced in source changes, and may be configure to search source
change comments. See Build Job with TFS Steps.

• Resolve WorkItem. Used to resolve or close a TFS item. In order to use this step, a set working directory, get
changelog, and publish changelog step is necessary. You can also have AnthillPro pass a comment at the time the
issue is updated. Can be used as a post-deployment step added to a deploy workflow to update the state of a TFS
item. See Deploy Job with TFS Resolve WorkItem Step.

When using the integration, click the Create Step button (or select the Insert After/Before icon) to add steps to a job.
Once the job is configured, it is then added to the workflow under the Definition tab (see Add TFS Jobs to Work-
flows). Your jobs will vary, but the TFS integration is used similar to what is described below.

TFS Prerequisites

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• The TFS repository must first be configured with AnthillPro. A project must be active in AnthillPro that user TFS
for source control. See Team Foundation Server (TFS) Source Control.

• The TFS client must be installed on the same machine as the AnthillPro agent that will be responsible for running
the TFS job steps (commands).

• A Life-Cycle Model must be configured with the appropriate Status and Artifact Sets. See Using Life-Cycle Mod-
els.

Configure TFS Integration
Let AnthillPro know about the TFS integration. Any job steps within AnthillPro relying on TFS will not work until
this integration is configured.

1. Go to System > TFS from the Integrations menu.

2. On the TFS Integration page, click Edit.

3. Give the TFS server URL provided during source configuration. See Team Foundation Server (TFS) Source Con-
trol.

Issue Tracking Tools

509



• Issue URL. You can have AnthillPro automatically generate a link to all of the issues it associates with a Build
Life if you give the Issue URL here. Once you give the URL pattern, the issues that appear on the Issues Tab
of a Build Life will be linked to the issue in your issue tracker tool for reviewing the issue, adding additional
comments, making edits, etc.

Please provide a URL template such as http://bugs.company.com/browse/${issueId}. The
value ${issueId} will be replaced in the template with the issue id of the associated issue. This field
provides a template which is used throughout AnthillPro to generate links from issues directly to an issue de-
scription page within your issue tracker.

4. Click Set then Done.

5. Proceed to Using the TFS Integration to add TFS steps to a job.

Using the TFS Integration
Two jobs need to be created to use all the TFS integration steps: (a.) A build job with the TFS Add Comment, Pub-
lish WorkItem Report, and Create WorkItem steps. (b.) A post-deployment job that includes the Resolve WorkItem
step. See Build Job with TFS Steps and Deploy Job with TFS Resolve WorkItem Step.

Before continuing, make sure the TFS repository has been configured with AnthillPro, and that the TFS integration
has been configured. See Team Foundation Server (TFS) Source Control and Configure TFS Integration.

Build Job with TFS Steps

The Add Comments, Create Issue, and Publish Issue Report steps are included after the Populate Workspace,
Changelog, Stamp, Dependency, Build, Publish Changelog, and Artifact Delivery steps of the typical Build job.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. Follow the steps for creating a build job.

3. Add Comments. Select the Insert After icon of the step prior to the point where the TFS step is to be included
(typically the Artifact Delivery step). Go to Issue Tracking > Team Foundation Server, select the Add Com-
ments step, and click Select.

• Name the step.

• Description. Provide a short description.

• WorkItem Id Pattern. Give a regular expression to locate a TFS defect Id within changelog comments. Add
"()" around the portion of the pattern which identifies the actual WorkItem Id. The pattern "TST-[0-9]+" would
match (returning the same string as WorkItem Id) "TST-1" and "TST-932415", but not match "TST-a", "TST-
", or "TST.1". The pattern "Issue:\[(TST-[0-9]+)\]" would match "Issue:[TST-1]" using WorkItem Id TST-1.

Whenever AnthillPro comes across this regular expression, it will automatically add the appropriate comment
in TFS.

• Additional Comment. Give any information to be added to the TFS comment (in addition to the commit com-
ment).

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

Issue Tracking Tools

510



• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

• Click Save.

4. Create WorkItem. Select the Insert After icon of the Add Comments step. Go to Issue Tracking > Team
Foundation Server, select the Create WorkItem step, and click Select. This step will create an issue if a failure
occurs.

• Name the step.

• Description. Provide a short description.

• Project Key. Enter the TFS project key to create the WorkItem under.

• Summary. Enter the WorkItem summary.

• Type. From the drop-down menu, select the type of WorkItem AnthillPro is to create. Currently, AnthillPro
can automatically create either a Bug or Task Work Item.

• Environment. Give the environment for the issue.

• Issue Description. Enter the description.

• Assignee. Provide the assignee for the new issue. An assignee of -1 will use TFS's automatic assignment.

• Show Additional Options. See Show Additional Options.

• Click Save.

5. Publish WorkItem Report. Select the Insert After icon of the Create Issue step. Go to Issue Tracking >
Team Foundation Server, select the Publish WorkItem Report step, and click Select.

• Name the step.

• Description. Provide a short description.

• Report Name. If a new name is not given, the step name will be used.

• WorkItem Id Pattern. Give a regular expression to locate a TFS defect Id within changelog comments. Add
"()" around the portion of the pattern which identifies the actual WorkItem Id. The pattern "TST-[0-9]+" would
match (returning the same string as WorkItem Id) "TST-1" and "TST-932415", but not match "TST-a", "TST-
", or "TST.1". The pattern "Issue:\[(TST-[0-9]+)\]" would match "Issue:[TST-1]" using WorkItem Id TST-1.

Whenever AnthillPro comes across this regular expression, it will automatically add the appropriate comment
in TFS.

• Include Dependencies. Check to include change logs from dependencies when searching for issues.

Issue Tracking Tools

511



• Show Additional Options. See Show Additional Options.

6. Click Save.

7. To have AnthillPro automatically resolve Work Items, Proceed to Deploy Job with TFS Resolve WorkItem Step.
If not using the resolve step, see Add TFS Jobs to Workflows.

Deploy Job with TFS Resolve WorkItem Step

The Resolve WorkItem step is typically used as part of a post-deployment job. Once the artifacts have been de-
ployed, the Resolve WorkItem step can be run as a separate job to ensure that all TFS WorkItems are resolved.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. Follow the steps for creating a build job.

3. Select the Insert After icon of the step prior to the point where the TFS step is to be included. Go to Issue
Tracking > Team Foundation Server, select the Resolve WorkItem step, and click Select.

• Name the step.

• Description. Provide a short description.

• WorkItem ID. Give the name of the WorkItem to be resolved.

• State. Give the state to set the WorkItem to.

• Reason. Give the reason for the WorkItem state change.

• Show Additional Options. See Show Additional Options.

• Click Save.

Add TFS Jobs to Workflows
The Jobs created in the Using the TFS Integration section must be executed as part of a workflow. This section will
assume that an originating workflow has already been configured, and will cover the process of adding the TFS
job(s) to the appropriate workflow(s). The topics covered in detail below are specific to using the TFS integration.

Build Workflow with TFS Steps

1. Go to Administration, select the project, and select the build workflow.

2. On the workflow Main page, select the Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

5. Select the Build job created in the Using the TFS Integration section, a job pre-condition script, and click Insert
Job.

Issue Tracking Tools

512



Deploy Workflow with TFS Post-deploy Step

1. Go to Administration, select the project, and select the deploy workflow.

2. On the workflow Main page, select the Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

5. Select the Post Deployment Steps job created in the Using the TFS Integration section, a job pre-condition
script, and click Insert Job.

Run TFS Workflows and View Reports

1. Go to Dashboard and select the appropriate workflow.

2. On the workflow Main page, click the Build button for the workflow.

• This procedure is the same for the build and deploy workflows.

3. Once the workflow has completed, select the appropriate Build Life and click the Reports tab.

4. Select a link to view a report. To go to the WorkItem that was generated in TFS, follow the link.

5. Click the Issues tab to view the WorkItems AnthillPro created in TFS.

6. To drill down on each TFS step on the Build Life Summary page, see Trace a Build Life to Source.

VersionOne
Create a new defect, add comments to an defect, and resolve defects with the VersionOne integration. AnthillPro
users can also create a report of VersionOne defects from the changelog.

In order to use the VersionOne integration, AnthillPro must first be configured to run the appropriate steps within
VersionOne. The VersionOne integration is implemented as AnthillPro job steps configured on the Job Configura-
tion page. When using the integration, click the Create Step button (or select the Insert After/Before icon) to add
steps to a job. Once the job is configured, it is then added to the workflow under the Definition tab.

VersionOne Steps:

• Create Defect. Create a new defect in a VersionOne. Typically used during a build job.

• Add Comments. Add comments from the current changelog to matching VersionOne defects. In order to use this
step, a set working directory, get changelog, and publish changelog step is necessary.

• Resolve Defect. Resolve VersionOne defect. In order to use this step, a set working directory, get changelog, and
publish changelog step is necessary. Can be used as a post-deployment step added to a deploy workflow to update
the state of a VersionOne defect.

• Publisher Defect Report. Create a Report of VersionOne defects from the current changelog. In order to use this
step, a set working directory, get changelog, and publish changelog step is necessary.

Issue Tracking Tools

513



This tutorial will follow a simple project configuration using the VersionOne integration steps. The example in this
tutorial uses Subversion, but the basic configuration is similar for any repository type. Your jobs will vary, but the
VersionOne integration is added as a job step similar to what is described below. The example goes through the
manual creation of a build job; however, it is possible to use the Job Wizard to create a build job and then manually
configure a second job to run as part of the same workflow.

Configure VersionOne
Let AnthillPro know about VersionOne. Any steps within AnthillPro relying on VersionOne will not work until this
integration is configured. The VersionOne integration requires the URL where the VersionOne server is located as
well a user name and password for accessing it. These fields may all contain scripts and/or property lookups. See
Scripting.

VersionOne Prerequisites

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• A project must be active in AnthillPro.

• A Life-Cycle Model must be configured with the appropriate Status and Artifact Sets. See Using Life-Cycle Mod-
els.

Configure VersionOne

1. Go to System > VersionOne from the Integrations menu.

2. On the VersionOne Integration page, click Edit.

3. Configure the integration:

• VersionOne Server URL. Input the VersionOne server URL.

• Issue URL. You can have AnthillPro automatically generate a link to all of the issues it associates with a Build
Life if you give the Issue URL here. Once you give the URL pattern, the issues that appear on the Issues Tab
of a Build Life will be linked to the issue in your issue tracker tool for reviewing the issue, adding additional
comments, making edits, etc.

Please provide a URL template such as http://bugs.company.com/browse/${issueId}. The
value ${issueId} will be replaced in the template with the issue id of the associated issue. This field
provides a template which is used throughout AnthillPro to generate links from issues directly to an issue de-
scription page within your issue tracker.

• User Name. Give the user name to be used to connect to the VersionOne server.

• Password. Provide and confirm the password to be used to connect to the VersionOne server.

• Password Script. To use a script or property lookups for the password, leave the Password field blank and
enter it here. See Scripting.

4. Click Set then Done.

Using the VersionOne Integration

Issue Tracking Tools

514



This tutorial will follow a job configuration that adds a VersionOne comment, publishes a VersionOne report, and
creates a defect as part of a build workflow. The resolve defect step is added as a post-deployment step to a deploy
workflow.

Using the VersionOne Integration Prerequisites

• Configure VersionOne must be complete.

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

• A project with at least one Build Life must be active in AnthillPro.

• A Life-Cycle Model must be configured with the appropriate Status and Artifact Sets. See Using Life-Cycle Mod-
els.

Configure VersionOne Jobs

Two jobs need to be created to use all the VersionOne integration steps. (a.) A build job is created with the Add
Comment, Publish Defect Report, and Creates Defect steps. (b.) The Resolve Defect step is added as a post-
deployment job.

Build Job with VersionOne Steps

The Add Comments, Create Defect, and Publish Defect Report steps are included after the Populate Workspace,
Changelog, Stamp, Dependency, Build, Publish Changelog, and Artifact Delivery steps of the Build job.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

4. Add Comments. Select the Insert After icon of the step prior to the point where the VersionOne step is to be in-
cluded (Artifact Delivery step in this example). Go to Issue Tracking > VersionOne, select the Add Comments
step, and click Select.

• Name the step.

• Description. Provide a short description.

• Issue Id Pattern. Give a regular expression to locate a VersionOne defect Id within changelog comments. Add
"()" around the portion of the pattern which identifies the actual Issue Id. The pattern "TST-[0-9]+" would
match (returning the same string as Issue Id) "TST-1" and "TST-932415", but not match "TST-a", "TST-", or
"TST.1". The pattern "Issue:\[(TST-[0-9]+)\]" would match "Issue:[TST-1]" using issue Id TST-1.

In the example below, the pattern identifies the issue as belonging to a specific VersionOne project. Whenever
AnthillPro comes across this regular expression, it will automatically add the appropriate comment in Ver-
sionOne.

• Title. Give the note title that VersionOne will use to identify this comment.

• Additional Comment. Use this field to add any additional information to the VersionOne commit comment.

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

Issue Tracking Tools

515



• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it.

5. Click Save.

6. Create Defect. Select the Insert After icon of the Add Comments step. Go to Issue Tracking > VersionOne,
select the Create Defect step, and click Select. This step will create a defect if a failure occurs.

• Name the step.

• Description. Provide a short description.

• Project Key. Enter the VersionOne project key.

• Summary. Enter the issue summary.

• Issue Description. Enter the description.

• Team. Give the VersionOne defect team.

• Theme. Give the VersionOne defect theme.

• Iteration. give the VersionOne defect iteration.

• Show Additional Options. See Show Additional Options.

7. Click Save.

8. Publisher Defect Report. Select the Insert After icon of the Create Defect step. Go to Issue Tracking > Ver-
sionOne, select the Publisher Defect Report step, and click Select.

• Name the step.

• Description. Provide a short description.

• Report Name. If a new name is not given, the step name will be used.

• Issue Id Pattern. Give a regular expression to locate a VersionOne defect Id within changelog comments. Add
"()" around the portion of the pattern which identifies the actual Issue Id. The pattern "TST-[0-9]+" would
match (returning the same string as Issue Id) "TST-1" and "TST-932415", but not match "TST-a", "TST-", or
"TST.1". The pattern "Issue:\[(TST-[0-9]+)\]" would match "Issue:[TST-1]" using issue Id TST-1.

• Include Dependencies. Check to include change logs from dependencies when searching for issues.

• Show Additional Options. See Show Additional Options.

9. Click Save.

Issue Tracking Tools

516



Deploy Job with VersionOne Post-deploy Step

The Resolve Defect step is typically used as part of a post-deployment job. Once the artifacts have been deployed
(in the example there are two artifact sets: Database and Webapp), the Resolve Defect step is run as a separate job in
order to ensure that all VersionOne defects are resolved.

1. Go to Administration, select the appropriate project, and click the Add Job icon.

2. On the New Job Configuration page, choose No (do not use the Job Wizard). Click Select.

3. Follow the steps for creating a build job.

4. Select the Insert After icon of the step prior to the point where the VersionOne step is to be included (Artifact
Delivery step in this example). Go to Issue Tracking > VersionOne, select the Resolve Defect step, and click
Select.

• Name the step.

• Description. Provide a short description.

• Issue Key. Enter the issue key to be resolved in VersionOne.

• Status. Give the VersionOne status to set the defect to. If none is provided, it will be marked as Resolved.

• Resolution Reason. Provide a reason for resolving a defect.

• Resolution Details. Input additional information regarding the resolution of this defect.

• Close Issue. Check the box to automatically mark the issue as closed. If the box is not checked, the issue will
be marked as resolved.

• Show Additional Options. See Show Additional Options.

• Click Save.

Add VersionOne Jobs to Workflows

The Jobs created in the Configure Jobs section must be executed as part of a workflow. This section will assume that
an originating workflow has already been configured, and will cover the process of adding the VersionOne jobs to
the appropriate workflows. Complete workflow configuration is beyond the scope of this tutorial. The topics
covered in detail below are specific to using the VersionOne integration.

Build Workflow with VersionOne Steps

1. Go to Administration, select the project, and select the build workflow.

2. On the workflow Main page, select the Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

5. Select the Build job created in the Configure Jobs section, a job pre-condition script, and click Insert Job.

Deploy Workflow with VersionOne Post-deploy Step

Issue Tracking Tools

517



1. Go to Administration, select the project, and select the deploy workflow.

2. On the workflow Main page, select the Definition tab.

3. From the drop-down menu, choose Embedded Definition and click Select.

4. Left-click the Start icon and select Insert Job After.

5. Select the Post Deployment Steps job created in the Configure Jobs section, a job pre-condition script, and
click Insert Job.

• Note that this jobs deploys two artifact sets and that the Post Deploy Steps job will change the VersionOne is-
sue status for both artifact sets.

Run Workflows and View Reports (VersionOne)

1. Go to Dashboard and select the workflow created in the Create Workflow section.

2. On the workflow Main page, click the Build button for the workflow.

• This procedure is the same for the build and deploy workflows.

3. Once the workflow has completed, select the appropriate Build Life and click the Reports tab.

Issue Tracking Tools

518



4. Select a link to view a report. To go to the issue that was generated in VersionOne, follow the Issue Id link.

5. Click the Issues tab to view the issues AnthillPro created in VersionOne.

6. To drill down on each VersionOne step on the Build Life Summary page, see Trace a Build Life to Source.

Issue Tracking Tools

519



Chapter 69. Virtualization Tools
The Virtualization integration allows AnthillPro to clone, deploy, and undeploy configurations. Implemented as job
steps, the integration can be used as part of your build workflows or as a secondary process.

VMware Lab Manager
The VMware Lab Manager (2.5.x and above) integration provides control environments used by AnthillPro, as well
as those not directly related to AnthillPro. The integration allows AnthillPro users to ensure that specific sets of ma-
chines (e.g., DEV, QA, PROD, etc.) are available for use by the AnthillPro server; as well as the use of Lab Man-
ager load management capabilities to maximize server resources.

The Lab Manager integration is implemented as AnthillPro job steps, and is configured on the Job Configuration
page. When using the integration, click the Create Step button (or select the Insert After/Before icon) to add steps to
a job. Once the job is configured, it is then added to the workflow under the Definition tab.

When configuring the Lab Manager integration, it is possible to include scripts and/or property lookups in all the
fields. For example, specify ${bsh:...} or ${property:...} type strings that will be resolved to values at
runtime (see Scripting). Any steps within AnthillPro relying on VMware Lab Manager will not work until the integ-
ration is configured. The Lab Manager integration includes the following AnthillPro job steps (in the VMware
folder):

• Lab Manager - Deploy Configuration. Deploys a Lab Manager configuration. This step will locate a configura-
tion by name and start it if the configuration is deployed. If the configuration is not deployed, this step will deploy
the configuration first.

• Lab Manager - Undeploy Configuration. Undeploys a Lab Manager configuration. This step will locate the
configuration by name and undeploy the configuration. If the configuration is undeployed the step will do noth-
ing.

• Lab Manager - Clone Configuration. Clones a Lab Manager configuration. This step will create a clone of any
specified configuration and then identify the clone with a user specified name.

Lab Manager Prerequisites

• You must have AnthillPro administrative privileges to configure the integration. See Manage Security.

520



• VMware Lab Manager 2.5.x or greater.

• Lab Manager base URL, user name, and password.

• Necessary permissions set in Lab Manager that allow the specified AnthillPro user to access the web-service in-
terface. If this is not done, Lab Manager may display an alert saying only the administrator has permission to use
the web service.

Configure Lab Manager

1. Go to System > VMware Lab Manager under the Integration menu.

2. On the VMware Lab Manager Integration page, click Edit.

3. Configure:

• Give the Lab Manager Base URL.

• User Name. Enter the user name to be used to connect to the Lab Manager server. This name needs to be pre-
configured in Lab Manager and is used for authentication, allowing AnthillPro to perform Lab Manager tasks.

• Password. Provide the password to be used to connect to the Lab Manager.

• Password Script. To use a script or property lookups for the password, leave the Password field blank and
enter it here. The password script is used to retrieve the password from external source. Essentially, this is a
BeanShell script that reads the password from a file (or contacts an external service to retrieve the password)
and populates the password field at runtime. This feature is most useful when passwords are changed often.
See Scripting.

• HTTP Connection Timeout. Enter the time (in minutes) it takes for the slowest Lab Manager configuration to
deploy to a server.

4. Click Set then Done.

Adding Lab Manager Steps to an Existing Job
Any Lab Manager step can be used as part of an existing job. Where the step is placed within the job depends on
what the job does. The example in this section will copy and save a Lab Manager configuration to be reproduced
later. When using the integration, click the Create Step button (or select the Insert After/Before icon) to add steps to
a job. Once the job is configured, it is then added to the workflow under the Definition tab.

Though the example embeds a single job within a workflow, it is possible to use the Lab Manager integration in a
number of ways. The integration can be used with originating or non-originating workflows, and can be run sequen-
tially or in parallel with other jobs within the same workflow. For simplicity, the Lab Manager steps have been in-
cluded as part of a single build job in the example.

1. Go to Administration, select the appropriate project, and then select the job that the Lab Manager steps are to
be added to.

2. Lab Manager - Deploy Configuration. Select the Insert After icon of the step prior to where the Deploy Con-
figuration step is to be included (the Set Working Directory step for example). Expand the VMware folder, select
the Lab Manager - Deploy Configuration step, and click Select.

• Name the step.

Virtualization Tools

521



• Description. Provide an optional description.

• Configuration Name. Give the Lab Manager configuration name (a script may be used).

If using the Wait for Agents option below, the configuration name must be an exact match to the property set
on the agent, or the deploy configuration step will fail. Any punctuation, capitalization, and/or spaces must be
identical. For example, if the configuration name is test.config, the property on the agent must be named
lab.manager.test.config (not lab.manager.test-config, lab.manager.test config, etc.). If a script is used to de-
termine the configuration name, it must return a name that exactly matches the agent property set below.

• Fence Mode. Select the Lab Manager options to fence; to block traffic in and out; to allow traffic out only; or
to allow traffic in and out.

• Wait for Agents. Select this option to have AnthillPro wait for agents within the configuration to come online.
The default timeout value for this step is set to 10 minutes to prevent unsuccessful deploys from blocking the
workflow execution. If your deploys run longer, you may need to adjust this setting (see Show Additional Op-
tions below).

For an agent to be considered a member of a configuration, it must contain an agent property of the form
lab.manager.<configurationName>, where configurationName is the name of the configuration being de-
ployed. For example, if the configuration name is test.config, the property set on the agent must be
lab.manager.test.config (only the agent property name is used, so there are no requirements for the property
value). Once the agents in the configuration have this property, AnthillPro will wait until the number of agents
defined below are online.

When setting the agent property, first make sure the agent is installed (see Installing AnthillPro) within the
configuration to be deployed and has been added to the correct AnthillPro environment(s) (see also Configure
Agents). With the agent online, add the property. See here in the Configure Agents section.

• Number of Agents to Wait For. If the Wait for Agents option is selected, specify the minimum number of
agents to come online before the step completes. With the default value, 0 (zero), AnthillPro will wait for 1
agent from each machine in the configuration (a value of 1 is equivalent).

While waiting for agents to come online, AnthillPro will look for the agent property set above, so the number
of agents set here may not exceed the number of agents that contain the property set in the previous step -- oth-
erwise the step will timeout. For example, if the lab.manager.test.config property is set on 3 agents within the
configuration test.config, and the number of agents to wait for is set at 4, the step will fail. However, if the
lab.manager.test.config property is set on 3 agents within the configuration test.config, and the number of
agents to wait for is set at 1, the step will complete (i.e., AnthillPro will not wait for all 3 agents to come online
before completing the deploy configuration step).

The default timeout value for this step is set to 10 minutes to prevent unsuccessful deploys from blocking the
workflow execution. If your deploys run longer, you may need to adjust this setting (see Show Additional Op-
tions below).

• Show Additional Options (advanced). Select the Show Additional Options link to configure more options.

• Is Active. Select No to temporarily deactivate the step without deleting it; otherwise select Yes.

• Pre-Condition Script. From the drop down menu, select the condition which must be met for the step to
continue. Before editing an existing script or creating a new one, see Step Pre-Condition Scripts.

• Ignore Failures. Select Yes if this step should not effect the determination for step continuation or the
status determination of the job.

• PostProcessingScript. Select a script for determining when commands should count as fail or succeed. See
Post Processing Scripts.

Virtualization Tools

522



• Timeout. Enter the time in minutes after the start of the step when AnthillPro will consider the step as timed
out and abort it. The default wait time is set to 10 minutes. If it takes longer to deploy, increase this default
value. This value will be used to determine how long AnthillPro will wait for the agents specified above.

3. Click Save.

4. Lab Manager - Clone Configuration. Select the Insert After icon of the step prior to where the Clone Config-
uration step is to be included (the Run QTP Test step for example). Expand the VMware folder, select the Lab
Manager - Clone Configuration step, and click Select.

• Name the step.

• Description. Give a description.

• Configuration Name. Provide the name of the Lab Manager configuration to be closed.

• Cloned Configuration Name. Give a name for the cloned configuration. This should be different from the ori-
ginal.

• Show Additional Options (advanced). See Show Additional Options.

5. Click Save.

6. Lab Manager - Undeploy Configuration. Select the Insert After icon of the Lab Manager - Clone Configura-
tion step, expand the VMware folder, select Lab Manager - Undeploy Configuration, and click Select.

• Name the step.

• Description. Give a description.

• Configuration Name. Provide the name of the Lab Manager configuration to be closed.

• Show Additional Options (advanced). See Show Additional Options.

7. Click Save.

Adding Lab Manager Job to Workflow
This example adds a job to an existing workflow. Complete workflow configuration is beyond the scope of this tu-
torial. The topics covered in detail below are specific to using the Lab Manager integration.

1. Go to Administration, select the workflow the Lab Manager job is to be added to.

2. Select the Definition tab, choose Embedded Definition from the drop-down menu, and click Select.

3. Left-click the START icon and select Insert Job After.

4. Select the Job from the drop-down menu, choose a pro-condition script, and click Insert Job.

Virtualization Tools

523



Chapter 70. Using AnthillPro Plugins
With the AnthillPro Plugin system, you can write your own integration with third-party tools (e.g., home-grown,
testing, SCM, source-code analytic, etc.) and then add them to your AnthillPro processes. In addition, most new in-
tegrations written by Urbancode will be Plugins and included when you install a new server (see Activating and De-
activating Plugins).

It is possible to add a Plugin without having to upgrade the server. For example, if Urbancode writes a new Plugin,
you can download it from Supportal [http://support.urbancode.com/] and then follow the steps below to add it to
your AnthillPro server.

Once a Plugin has been written (to write your own Plugin, see Developing Plugins), upload it to the AnthillPro serv-
er on the System page. A copy of the zipped Plugin will then be stored in the server's /plugin directory. Upon suc-
cessful upload, configure most Plugins on the System page (e.g., if you are using an SCM Plugin, it will need to be
configured by going to the Repositories page; or if the Plugin is a testing tool, configure it on the Integration page,
etc.). Then, add the integration (Plugin) to your projects (see Adding a Plugin to a Project).

To begin using an existing Plugin, see Uploading a Plugin.

Plugin Prerequisites

• You must have permissions to the System page to upload and configure the Plugin.

• To add the Plugin to existing projects, you will need permissions to the Administration page.

Uploading a Plugin
Once a Plugin has been written (to write your own Plugin, see Developing Plugins), upload it to the AnthillPro serv-
er on the System page. A copy of the zipped Plugin will then be stored in the server's /plugin directory.

1. Go to System > Plugins under the Server menu.

2. Load a Plugin. Select the Browse button and upload the Plugin. The Plugin must be contained in a .zip file.
Click Load.

3. When the upload is complete, you can view the details of the Plugin be either selecting the magnifying glass un-
der the Operations menu or selecting the Plugin's name.

4. To delete an existing Plugin, click the Delete icon under the Operations menu. If you get a warning when at-
tempting to delete a Plugin, that means it is in use by at least one project. To delete a Plugin that is in use, you
must remove it from all existing job configurations.

5. Click Done. See Configuring a Plugin.

Configuring a Plugin
Once the Plugin has been successfully uploaded (see Uploading a Plugin), you will need to configure it on the Sys-
tem page before it is available to your AnthillPro projects (see Adding a Plugin to a Project). Typically, once the
Plugin upload is complete, it will appear under either the Integration or Repositories menu on the System page. To

524

http://support.urbancode.com/
http://support.urbancode.com/


configure the Plugin integration, select it from the menu and then give the necessary information.

If you are familiar with existing AnthillPro integrations, most of the information required to complete the configura-
tion will be similar. However, because each Plugin is different, complete configuration instructions are not possible.
If you are having trouble configuring the Plugin, please contact the author for assistance.

Once the configuration is complete, see Adding a Plugin to a Project to begin using the new integration.

Adding a Plugin to a Project
Typically, a Plugin is added to a project as a job step, similar to traditional AnthillPro job configuration. If you are
moving from a current integration to a Plugin version, you may need to reconfigure jobs.

Activating and Deactivating Plugins
AnthillPro ships with pre-configured integrations that are written as Plugins. During installation, the user was asked
which Plugins (i.e., integrations) to deactivate. If you want to use a deactivated Plugin, you will need to activate it
first. Assuming you have administrative permissions, simply click the brown icon.

You can deactivate a Plugin by clicking on the green active icon. Once you confirm that you want to deactivate it,
the Plugin will not be available. If the Plugin is in use by any project, AnthillPro will notify you. If you elect to de-
activate a Plugin that is in use, the steps that use the Plugin will be disabled.

If you reactivate a Plugin that is in use, you will need to manually enable any job steps that use the Plugin.

Using AnthillPro Plugins

525



Part XIII. Security
In AnthillPro, you have detailed control over what a user can see and do. The system enables you to map your or-
ganizational structure by teams, activities, etc. For example, you can set up AnthillPro so that a dev team only see
the projects they work on, or the QA team can only access the build artifacts. Security management begins with
Roles. In turn, each Role has corresponding Permissions to either restrict or allow a user to perform tasks, view
pages, etc. Once the Roles and Permissions have been configured, Authorization Realms realms and then Authentic-
ation Realms are configured. Once security is configured, Audits may be performed for the who-when changes Ad-
ministrative users make to the system.



Chapter 71. Setting Up Security
When setting up security, you will need to follow a specific series of steps to configure the security system. The
steps are as follows:

1. Roles. If not using the default Roles, create new roles. See Define Roles.

2. Permissions. Determine which Roles have what permissions by Resource and Resource Type, if you are not us-
ing the Default Permissions. See Set and Manage Permissions.

3. Authorization Realms. If not using the default Authorization Realms, one must be created. See Configure Au-
thorization Realms.

4. Authentication Realms. If not using the default Authentication Realms, one must be created. See Configure Au-
thentication Realms.

5. Users. Add users (which are associated with Roles) to the appropriate Authentication Realm. See Add Users. If
using LDAP, see also Configure Authorization Realms.

In addition, if you use LDAP or other similar tools, you can import users into AnthillPro, and then map them to the
security system. To do this, you'll need the appropriate permissions to that tool that allow AnthillPro to access it.

Define Roles
AnthillPro uses a flexible, role-based security model. Roles created and edited in this section as the building block to
create security schemes. The default Roles that ship with AnthillPro can be edited to meet specific needs. If addi-
tional Roles are necessary, new ones may be created. You will need access to the System page in order to manage
security.

1. Go to System > Roles under the Security menu.

2. On the Roles tab, click the Create Role button.

3. Configure Role:

• Name the Role.

• Require Secondary Authentication. Check the box to require Secondary Authentication.

Once a primary Authentication Realm is configured, the Secondary Authentication Realm adds a second layer
of security. If this item is checked, every Authentication Realm that this Role belongs to will require that Sec-
ondary Authentication be configured. See Configure Authentication Realms.

4. Click Save then Done.

Using Permissions
Permissions associate the role, resource, and an action that may be performed on the resource. Typical actions in-
clude the ability to read or view the resource (i.e., a project, workflow, agent, etc.); the ability to write to or modify
the resource (e.g., add an agent property); the ability to modify the security settings for a resource; or the ability to
execute (in the case of workflows) the resource. Generally, permissions fall within one of these groups:

527



• Read or View, depending on the resource. Users assigned this permission can read (view), a resource, but will not
be able to create or change a configuration. For example, a user with "read" permissions to an agent will be able
to see that agent within the user interface, but will not have access to configure that agent.

• Write permission includes the "read" permission, with the additional ability to perform a task using a specific re-
source. For example, a user with "write" permissions to an originating workflow can modify the workflow.

• Execute (workflow only). Allows a user to run a particular workflow. Anyone with access to execute a build
workflow must have at least read permissions. If the user must run a secondary workflow in a different environ-
ment, that user must also be assigned "use" permissions to the target environment(s).

• Task Execute (workflow only). Allows the user to perform the same actions as the execute permission, but only
through the Task interface. Note that the "task execute" permission does not allow users to manually run a sec-
ondary process, etc., and gives them no system permissions. This is useful in situations where AnthillPro users are
only tasked with deploying, but not building, a project or workflow.

• Security permission allows users to change the security settings for a specific resource. For example, a user with
"security" permissions to an agent can determine which users can view, configure, and set security for that agent.

By modifying the Default Permissions and/or manually configuring additional permissions, you can fine tune what
users are able to access which resource. Permissions are available for the following resource types (for workflows,
see Setting Workflow Permissions):

• General Resources. Users may be assigned Read, Write, Use, and/or Security permissions for the most com-
monly accessed resources:

Agent Distributed Server Library Job (Configuration) Project

Agent Relay Environment Library Workflow Defini-
tion

Repository

Artifact Set (see Securing
Artifact Sets)

Environment Group Life-Cycle Model Script Group

Codestation Project Folder

• System Resources. AnthillPro provides security around System resources that only select groups of users need
access to. The following resources typically require Read and Security permissions for administrators in order to
configure/edit settings:

Integration Project Support Script Library Server

Notification Reporting Security

• System Functions. A user must have system permissions to act as administrator of the system-level functions lis-
ted below. Read or Security permissions provides a user access to the System page. A user may be assigned per-
missions to the following System Function resources:

Administration Integration Administration Report Administration Script Administration

Agent Administration Life-Cycle Model Adminis-
tration

Reporting Security Administration

Auditing Notification Administration Repository Administration Server Administration

Delete Runtime History Prioritize Workflows Restart Workflows Stamp Administration

Environment Administra-
tion

Project Administration Schedule Administration System Administration

Setting Up Security

528



Configure Default Permissions
When a new resource is created, it is automatically assigned Default Permissions by the AnthillPro system. You can
modify these default permissions by following the procedures outlined in the Assign Additional Permissions section
(i.e., editing the Default Permissions section of the resource). As a rule, the Default Permissions should allow most
users within a role to perform their work. If you are frequently assigning additional permissions to a role, consider
changing the default permissions for newly created resources.

• Please note that changes made to the default permissions will only effect new, and not existing, settings.

Assign Additional Permissions
When a new resource type is created, it is automatically assigned the predefined Default Permissions (see Configure
Default Permissions). For most users, the Default Permissions should be adequate. But there are circumstances in
which a small subset of users will need different/additional permissions to a resource. If this is the case, manually
setting permissions by resource type is necessary. For example, the default permissions for the "User" role does not
allow people to perform "write" tasks for a Codestation project. However, these users must occasionally update a
third-party library. In this case, you can simply select Codestation Project from the Resource Type menu, find the
project in the list, and add the write permission to the appropriate role.

1. Go to System > Permissions under the Security menu.

2. Select a Resource Type from the drop-down menu and click Set.

3. Select the Role from the Add Permission drop-down menu to add the read, write, and/or security actions that role
can perform on the resource.

If you are changing the Default Permissions, please see Configure Default Permissions for more.

4. To remove a role from performing an action click the delete icon under the Roles menu.

5. Click Add the Done.

Setting Workflow Permissions
Workflows have their own permissions, different from other resources, but are configured like the other permission
types (see Assign Additional Permissions). Users tasked with running either an originating, operational, and/or sec-
ondary workflow must have at least execute permissions to the workflow(s). In addition, that user must have access
to the environment(s) and/or agent(s) used by they project(s) they execute workflow for.

Workflows have the following permissions you can assign to them:

• Execute. Allows a user to run a particular workflow. Anyone with access to execute a build workflow must have
at least read permissions. If the user must run a secondary workflow in a different environment, that user must
also be assigned at least "use" permissions to the target environment(s).

• Task Execute. Allows the user to perform the same actions as the execute permission, but only through the Task
interface. Note that the "task execute" permission does not allow users to manually run a secondary process, etc.,
and gives them no system permissions. This is useful in situations where AnthillPro users are only tasked with de-
ploying, but not building, a project or workflow.

• Security. Allows a user to change the resource’s security settings.

Setting Up Security

529



For most users, the Default Permissions (see Configure Default Permissions) should be adequate. But there are cir-
cumstances when a small subset of users will need different permissions to a workflow. In this case, you can manu-
ally assign additional permissions. For example, the default permissions for the "User" role do not allow people to
execute a deployment (secondary) workflow. However, you have one project in which you want these people to run
a deployment using the Task interface. In this case, you can simply select workflow from the Resource Type menu,
find the deployment workflow in the list, and add the Task Execute permission to the appropriate role.

Configure Authorization Realms
Authorization Realms are used by Authentication Realms to associate Users with Roles and to determine user access
to AnthillPro. Authorization Realms can be deactivated by clicking the Mark as Inactive icon (see below).

There are three Authorization Realm options:

• Anthill. Uses internal Anthill role management. See Anthill Authorization Realm.

• LDAP. Uses external LDAP role management. See LDAP Authorization Realm.

• Single Sign-On. Uses external Single Sign-On role management. See Single Sign-On Authorization Realm.

Anthill Authorization Realm
The Anthill Authorization Realm uses AnthillPro to manage Users. You will need access to the System page in or-
der to manage security.

1. Go to System > Authorization under the Security menu.

2. On the Authorization tab, click the Create Authorization Realm button.

3. Check Anthill, click Set, and configure Realm.

• Name the Authorization Realm.

• Description. Provide a description of the Authorization Realm.

4. If not adding an initial User Role, Click Save then Done to complete. Otherwise proceed to item 5.

5. Click the Add Initial User Role button (optional).

New users created within an Authentication Realm governed by the Authorization Realm you are configuring
will automatically become members of the Roles configured here. For example, if a user is added to the Kerberos
Authentication Realm that is managed by the Anthill Authorization Realm, the new user will be automatically as-
signed the Roles chosen here.

This item requires that the appropriate Roles have already been created. See Define Roles.

6. Select the Role from the drop-down menu and click Add Role.

7. To add more User Roles, repeat items 5 and 6.

8. Click Save then Done.

LDAP Authorization Realm

Setting Up Security

530



The LDAP Authorization Realm uses an external LDAP server for authorization. If User Roles are defined in LDAP
as an attribute of the User, the LDAP Role Attribute configuration must be used. If User Roles are defined elsewhere
in LDAP and reference the Users that belong to them, a LDAP Role Search needs to be performed. You will need
access to the System page in order to manage security.

1. Go to System > Authorization under the Security menu.

2. On the Authorization tab, click the Create Authorization Realm button.

3. Check LDAP and click Set.

4. On the Main tab, configure Realm:

• Name the Authorization Realm.

• Description. Provide a description of the Authorization Realm.

• Role Attribute. Give the name of the attribute that contains role names in the user directory entry.

If User Roles are defined in LDAP as an attribute of the User, the Role Attribute configuration must be used.

• Role Name. Provide the name of the entry that contains the user's role names in the directory entries returned
by the role search. If this is not specified, no role search will take place.

If User Roles are defined elsewhere in LDAP and reference the Users that belong to them, a Role Search
needs to be performed.

• Role Base. Give the base directory to execute role searches in (e.g., ou=groups,dc=anthill3,dc=com).

• Role Search. Provide the LDAP filter expression to use when searching for user role entries. The user name
will be put in place of {1} in the search pattern and the full user DN will be put in place of {0} (e.g., mem-
ber={0}).

• Search Role Subtree. Check True to search the subtree for the roles or False to not search.

5. If not mapping LDAP roles to Anthill Security Roles, click Save then Done to complete. Otherwise proceed to
item 6.

6. Select the Role Mapping tab (optional) and follow the Map LDAP Role link.

This item requires that the appropriate Roles have already been created. See Define Roles.

• LDAP Role Name. Give the LDAP role to map.

• Anthill Role. Select the Anthill role to map the LDAP role to.

7. Click Save then Done.

Single Sign-On Authorization Realm
The Single Sign-On Authorization Realm uses an external Single Sign-On server for authorization. You will need
access to the System page in order to manage security.

For authorization to complete, you will need to add the AnthillPro ROOT URL to your Single Sign-On authoriza-
tion server.

Setting Up Security

531



1. Go to System > Authorization under the Security menu.

2. On the Authorization tab, click the Create Authorization Realm button.

3. Check Single Sign-On and click Set.

4. On the Main tab, configure Realm:

• Name the Authorization Realm.

• Description. Provide a description of the Authorization Realm.

• Roles Header Name. Enter the name of the HTTP header that contains a comma delimited list of Single Sign-
On roles.

5. Click Save.

6. If not mapping Single Sign-On roles to Anthill Security Roles, click Done to complete. Otherwise proceed to
item 7.

7. Select the Role Mapping tab and follow the Map Single Sign-On Role link.

This item requires that the appropriate AnthillPro Roles have already been created. See Define Roles.

• Give the Single Sign-On role to map.

• Select the AnthillPro role to map the Single Sign-On role to.

8. Click Save then Done.

Configure Authentication Realms
Create and edit Authentication Realms to determine a users identity within an Authorization Realm. The User au-
thentication is determined following the hierarchy of realms displayed on the Authentication tab. In the example be-
low, authentication will first be determined in the System Realm, followed by LDAP and Anthill Realms, so a user
listed in the LDAP realm may have different authorizations from those in the other realms.

If you have a number of authentication realms, you can reorder them using the drag-and-drop tool so that the ones
you are most interested in appear at the top of the list. Realms (except for the default Anthill realm) can also be ac-
tivated or deactivated using the Operations menu.

There are six Authentication Realm options:

• Anthill. Uses AnthillPro to manage user authentication. See Anthill Authentication Realm.

• Custom. Use this option to create your own authentication LoginModule. See Custom Authentication Realm.

• Kerberos. External Kerberos user authentication using GSS-API. See Kerberos Authentication Realm.

• LDAP. External LDAP integrated user authentication. See LDAP Authentication Realm.

• RSA SecurID. External Single Sign-On user authentication. See RSA SecurID Authentication Realm.

• Single Sign-On. External Single Sign-On user authentication. See Single Sign-On Authentication Realm.

Setting Up Security

532



You can add a second layer of security on the Secondary Authentication tab. Upon authentication in the primary
Realms, Users are forwarded to this secondary Realm if they are a member of any Role requiring secondary authen-
tication. See the Secondary Authentication item for the Authentication Realms you are using.

Anthill Authentication Realm
The Anthill Authentication Realm uses AnthillPro to internally manage users. You will need access to the System
page in order to manage security.

1. Go to System > Authentication under the Security menu.

2. On the Authentication tab, click the Create Authentication Realm button.

3. Check Anthill and click Set.

4. On the Authentication tab, configure Realm:

• Name the Authorization Realm.

• Description. Provide a description of the Authorization Realm.

• Authorization Realm. Select the Authorization Realm this Authentication Realm will use.

This item requires that the appropriate Authorization Realm has already been created. See Configure Author-
ization Realms.

5. If not setting a Secondary Authentication Realm, click Save then Done to complete. Otherwise proceed to item
6.

6. Select the Secondary Authentication tab (optional) and click the Create Secondary Authentication Realm
button.

Upon authentication in the primary Realms, Users are forwarded to this secondary Realm if they are a member of
any Roles which require it. The Secondary Authentication Realm adds a second layer of security.

This item requires that the appropriate Roles and Authorization Realms have already been created. See Define
Roles and Configure Authorization Realms.

7. Check one of the available Authentication Realms and click Set.

8. Configure Secondary Authentication.

Authentication Settings will only take effect if the test login is successful (if test fails, a warning will appear).

• Name the Secondary Authentication Realm.

• Description. Provide a description of the Secondary Authentication Realm.

• Test User Name. Give the user name to test the configuration with.

• Test Passcode. Provide the passcode to test the configuration with.

9. Click Save then Done.

Custom Authentication Realm

Setting Up Security

533



The Custom Authentication Realm uses a specified Java LoginModule to authenticate users. You will need access to
the System page in order to manage security.

1. Go to System > Authentication under the Security menu.

2. On the Authentication tab, click the Create Authentication Realm button.

3. Check Custom, click Set.

4. On the Authentication tab, configure Realm:

• Name the Authorization Realm.

• Description. Provide a description of the Authorization Realm.

• LoginModule Class. Give the class name of the Java LoginModule class to use (e.g.,
com.mycompany.security.loginmodule).

• Authorization Realm. Select the Authorization Realm this Authentication Realm will use.

This item requires that the appropriate Authorization Realm has already been created. See Configure Author-
ization Realms.

5. If not setting a Secondary Authentication Realm, click Save then Done to complete. Otherwise proceed to item
6.

6. Select the Secondary Authentication tab (optional) and click the Create Secondary Authentication Realm
button.

Upon authentication in the primary Realms, Users are forwarded to this secondary Realm if they are a member of
any Roles which require it. The Secondary Authentication Realm adds a second layer of security.

This item requires that the appropriate Roles and Authorization Realms have already been created. See Define
Roles and Configure Authorization Realms.

7. Check one of the available Authentication Realms and click Set.

8. Configure Secondary Authentication. Authentication Settings will only take effect if the test login is successful (if
test fails, a warning will appear).

• Name the Secondary Authentication Realm.

• Description. Provide a description of the Secondary Authentication Realm.

• Test User Name. Give the user name to test the configuration with.

• Test Passcode. Provide the passcode to test the configuration with.

9. Click Save then Done.

Kerberos Authentication Realm
The Kerberos Authentication Realm uses Kerberos to authenticate users. You will need access to the System page in
order to manage security.

1. Go to System > Authentication under the Security menu.

Setting Up Security

534



2. On the Authentication tab, click the Create Authentication Realm button.

3. Check Kerberos and click Set.

4. On the Authentication tab, configure Realm:

• Name the Authorization Realm.

• Description. Provide a description of the Authorization Realm.

• Conf File. Give the path to the Kerberos configuration file. On Unix and Linux, it is usually /etc/krb5.conf.

• Authorization Realm. Select the Authorization Realm this Authentication Realm will use.

This item requires that the appropriate Authorization Realm has already been created. See Configure Author-
ization Realms.

5. If not setting a Secondary Authentication Realm, click Save then Done to complete. Otherwise proceed to item
6.

6. Select the Secondary Authentication tab (optional) and click the Create Secondary Authentication Realm
button. The Secondary Authentication Realm adds a second layer of security.

Upon authentication in the primary Realms, Users are forwarded to this secondary Realm if they are a member of
any Roles which require it.

This item requires that the appropriate Roles and Authorization Realms have already been created. See Define
Roles and Configure Authorization Realms.

7. Check one of the available Authentication Realms and click Set.

8. Configure Secondary Authentication. Authentication Settings will only take effect if the test login is successful (if
test fails, a warning will appear).

• Name the Secondary Authentication Realm.

• Description. Provide a description of the Secondary Authentication Realm.

• Test User Name. Give the user name to test the configuration with.

• Test Passcode. Provide the passcode to test the configuration with.

9. Click Save then Done.

LDAP Authentication Realm
The LDAP Authentication Realm uses an external LDAP server for authentication. You will need access to the Sys-
tem page in order to manage security.

If you plan on using SSL, please see Using LDAP over SSL with Self-signed Certificate below before continuing.

1. Go to System > Authentication under the Security menu.

2. On the Authentication tab, click the Create Authentication Realm button.

3. Check LDAP and click Set.

Setting Up Security

535



4. On the Authentication page, configure the following:

• Name the Authorization Realm.

• Description. Provide a description of the Authorization Realm.

• Authorization Realm. Select the Authorization Realm this Authentication Realm will use.

This item requires that the appropriate Authorization Realm has already been created. See Configure Author-
ization Realms.

• Context Factory. Give the context factory class used to connect. This may vary depending upon your specific
Java implementation. The default for Sun Java implementations: com.sun.jndi.ldap.LdapCtxFactory.

• LDAP URL. Provide the full URL to the LDAP server, beginning with ldap:// (e.g.,
ldap://ldap.mydomain.com:389). If using SSL, please see Using LDAP over SSL with Self-signed Certificate.

5. If your LDAP users exist in a single directory, select the button and give the following (otherwise, go to the
next step):

• User Pattern. Give the user directory entry pattern. The user name will be put in place of {0} in the pattern
(e.g., cn={0},ou=employees,dc=anthill3,dc=com).

6. If your LDAP Users exist in many directories AnthillPro will have to perform a User search with the user-
name. To enalbe this, give the following:

• User Base. Give the user base directory to search for users in (e.g., ou=employees,dc=anthill3,dc=com).

• User Search. Provide the LDAP filter expression to use when searching for a user's directory entry. The user
name will be put in place of {0} in the search pattern (e.g., uid={0}).

• Search User Subtree. If the LDAP User Names are case sensitive, check True to have AnthillPro treat differ-
ent-case User Names as different Users or False to ignore.

• Check the box if no anonymous access is allowed. If you are unable to access the LDAP server anonym-
ously, you can use the Connection Name and Connection Password. Give the following (as above):

• Connection Name. Give the directory name to use when binding to the LDAP for searches (e.g.,
cn=Manager,dc=anthill3,dc=com). If not specified, an anonymous connection will be made. Connection
Name is required if the LDAP server cannot be anonymously accessed.

• Connection Password. Provide the password to use when binding to the LDAP for searches. Required if
Connection Name is specified. Connection Password is required if the LDAP server cannot be anonymously
accessed.

7. Complete basic configuration:

• Case Sensitive User Names. If you have case-sensitive user names (e.g., the user Bob is different than the use
bob), select true. Otherwise, select false.

• First Name. To read information from the LDAP entry, give the name of the user's LDAP entry attribute that
contains the first name.

• Last Name. To read information from the LDAP entry, provide the name of the user's LDAP entry attribute
that contains the last name.

• Email. To read information from the LDAP entry, give the name of the user's LDAP entry attribute that con-
tains the email address.

Setting Up Security

536



• XMPP ID. To read information from the LDAP entry, give he name of the user's LDAP entry attribute that
contains the XMPP / Jabber IM ID.

• MSN ID. To read information from the LDAP entry, give he name of the user's LDAP entry attribute that con-
tains the MSN IM ID.

8. If not setting User Filters, click Save then Done to complete. Otherwise configure the User Filters to allow or
block LDAP user from access to AnthillPro:

• Allowed Patterns. Enter line-separated regular expressions of LDAP user names that will explicitly be al-
lowed to log in to Anthill. Leave empty to not allow all users.

• Blocked Patterns. Enter line-separated regular expressions of LDAP user names that will explicitly be
blocked from logging in to Anthill. Leave empty to not block user explicitly. Blocked Patterns will override
Allowed Patterns.

9. Test the configuration (required).

• Test User Name. Give the user name to test the configuration with. When you click "Save" AnthillPro will
verify the configuration. You will be unable to use the integration until this test passes. This can be any user in
LDAP.

• Test Password. Give the password for user (given above) to test the configuration with. When you click
"Save" AnthillPro will verify the configuration. You will be unable to use the integration until this test passes.
This can be for any user in LDAP.

10
.

Click Save then Done if the test passes.

Using LDAP over SSL with Self-signed Certificate

If you are using LDAP over SSL with a self-signed certificate you will need to import the LDAP certificate to the
Java Virtual Machine that AnthillPro runs on. Typically, you can do this in one of two ways:

• Use a Java KeyStore. This relies on the Java key manager to supply keys to others as needed, e.g., for use in au-
thenticating the user to others. If you are unfamiliar with Java KeyStores, please see the Java documentation [ht-
tp://download.oracle.com/javase/6/docs/].

Ensure the certificate version can be imported to the JavaVM KeyStore. If the certificate does not import cor-
rectly, the integration will fail.

You can verify that the import was successful using other Java-based applications. For example, JXPlorer [ht-
tp://jxplorer.org] can be helpful.

• Use a Java TrustStore. Relies on the trust manager to makes decisions about who to trust based on information
in the TrustStore. If you are unfamiliar with Java TrustStores, please see the Java documentation [ht-
tp://download.oracle.com/javase/6/docs/].

Ensure the certificate version can be imported to the JavaVM TrustStore. If the certificate does not import cor-
rectly, the integration will fail.

The certificate must be placed in a directory that AnthillPro can access. Once this is done, the location needs to be
added to the ah3server start script as follows:

JAVA_OPTS parameter. Use the following parameter with the absolute path to certificate location: -
Djavax.net.ssl.trustStore=/point/to/your/certificate/file.

Setting Up Security

537

http://download.oracle.com/javase/6/docs/
http://download.oracle.com/javase/6/docs/
http://download.oracle.com/javase/6/docs/
http://jxplorer.org
http://jxplorer.org
http://jxplorer.org
http://download.oracle.com/javase/6/docs/
http://download.oracle.com/javase/6/docs/
http://download.oracle.com/javase/6/docs/


You will need to restart AnthillPro for the changes to take effect.

You will also need to use the appropriate LDAP URL syntax (e.g., ldaps://myldap.server.com:636)
when configuring the LDAP Authentication Realm integration.

RSA SecurID Authentication Realm
The RSA SecurID Realm uses the RSA SecurID token-based system to manage users. You will need access to the
System page in order to manage security.

1. Go to System > Authentication under the Security menu.

2. On the Authentication tab, click the Create Authentication Realm button.

3. Check RSA SecurID and click Set.

4. On the Authentication tab, configure Realm:

• Name the Authorization Realm.

• Description. Provide a description of the Authorization Realm.

• Authorization Realm. Select the Authorization Realm this Authentication Realm will use.

This item requires that the appropriate Authorization Realm has already been created. See Configure Author-
ization Realms.

5. If not setting a Secondary Authentication Realm, click Save then Done to complete. Otherwise proceed to item
6.

6. Select the Secondary Authentication tab (optional) and click the Create Secondary Authentication Realm
button.

Upon authentication in the primary Realms, Users are forwarded to this secondary Realm if they are a member of
any Roles which require it. The Secondary Authentication Realm adds a second layer of security.

This item requires that the appropriate Roles and Authorization Realms have already been created. See Define
Roles and Configure Authorization Realms.

7. Check one of the available Authentication Realms and click Set.

8. Configure Secondary Authentication. Authentication Settings will only take effect if the test login is successful (if
test fails, a warning will appear).

• Name the Secondary Authentication Realm.

• Description. Provide a description of the Secondary Authentication Realm.

• Test User Name. Give the user name to test the configuration with.

• Test Passcode. Provide the passcode to test the configuration with.

9. Click Save then Done.

Setting Up Security

538



Single Sign-On Authentication Realm
The Single Sign-On Authentication Realm relies on a external single sign-on server to handle authentication. Before
you can configure authentication, ensure that the appropriate Authorization Realm has been created.

You will need access to the System page in order to manage security.

1. Go to System > Authentication under the Security menu.

2. On the Authentication tab, click the Create Authentication Realm button.

3. Check Single Sign-On and click Set.

4. On the Authentication tab, configure Realm:

• Name the Authorization Realm.

• Description. Provide a description of the Authorization Realm.

• User Header Name. Give the name of the HTTP header that contains the Single Sign-On user name.

• Logout URL. Enter the URL a user is redirected to when they logout of AnthillPro.

• Authorization Realm. Select the Authorization Realm this Authentication Realm will use. If you configured
the Single Sign-On Authorization Realm, select from the drop-down. Or, you can use a different tool for Au-
thorization: e.g., the built-in AnthillPro authorization system.

5. Click Save then Done.

For Single Sign-On Authentication Realm, there is no need to configure a secondary realm.

Add Users
Users are added to the Authentication Realm. Once a user account is activated, AnthillPro users may edit some of
the settings configured below (by following the profile link at the top of their browser window). If a user changes
his/her contact information or password, AnthillPro will automatically update the changes. See Configure User Pro-
file.

You will need access to the System page in order to manage security.

1. Go to System > Users under the Security menu. On the Users tab, choose the Authentication Realm from the
drop-down menu. Click Set.

• If integrating AnthillPro with LDAP, see Configure Authentication Realms. Once configured with LDAP, Ant-
hillPro will utilize users from the LDAP Authentication Realm.

2. Click the Create User button. Give the user a name, set and confirm a password, and check which roles the user
will have. Click Save.

3. Identify the individual user.

• Name. Give the name the user will use for log in. Once this is set, individual users will not be able to change
the Name. See Configure User Profile.

Setting Up Security

539



• Roles. Check the roles this user is assigned to. A user's role determines which Anthill features and projects will
be available to them. A new user is automatically given the "user" role. See Defining Roles.

• First Name. Provide the user's first name.

• Last Name. Give the user's last name.

• Email Address. Provide the user's e-mail address.

• XMPP ID. If using Jabber, Google Talk, etc., enter the ID where the user will receive notifications from Ant-
hill3. See Configure Instant Messaging.

• MSN ID. If using MSN IM, enter the ID where the user will receive notifications from Anthill3. See Config-
ure Instant Messaging.

• Time Zone. Select the time zone the user is in.

• Number of Dashboard Rows. Give the number of recent build to include on the user's dashboard.

4. Click Save.

5. To add a new alias, click the User-Repository Alias button. Select the appropriate repository from the drop-
down menu and give the user’s alias used in that repository. Click the Add User-Repository Alias button to fin-
ish.

Any source-control user names belonging to this user (i.e., New User) can be mapped in the User-Repository Ali-
as section. If this is done, AnthillPro will then map the changes this user makes. For example, this allows you to
only send notifications to those who committed on a certain build, or to those tracking changes and users over
time. A mapping is not needed if the source control name is identical to the AnthillPro user name.

Once created, a User-Repository Alias may not be edited. If a user name for a repository has changed, delete the
current alias (click the Remove icon under the Operations menu) and create a new one.

6. Click Done.

Setting Up Security

540



Chapter 72. Securing Artifact Sets
Once an artifact set has been created, it is possible to lock down who can access the artifacts within the set. Typic-
ally, an artifact set is secured if it contains sensitive information such as production passwords, source code, etc.,
that only a few people are allowed to access. Once an artifact set has been secured, only the users with the appropri-
ate permissions will be able to resolve/download the artifacts within the set. Users without read permission will gen-
erally be able to see the artifact set and the files contained within it, but not perform any actions on the artifacts
themselves.

There are two permissions used to secure an artifact set:

• Read permission. Allows a user to reslove/download the artifacts associated with a Build Life.

• Security permission. For users that also have security permissions to the project, the artifact security permission
allows users to determine who can set security for the artifact set. For example, users that have been assigned the
"admin" role can restrict other roles (i.e., users) from granting security rights.

To secure an artifact set you will need to first ensure that the artifact set default settings are correct, enable artifact
security on the server settings and then configure security permissions on the individual artifact set(s).

Securing Artifact Sets Prerequisites

• The artifact set you want to secure must already exist, and you should know which Life-Cycle Model is associated
with that Artifact Set. See Managing Life-Cycle Models.

• You must have permissions to modify the Server Settings and Life-Cycle Model configuration on the System
page. See Setting Up Security.

Set Default Permissions for Artifact Sets
Before you enable and configure artifact security, you need to verify that the Default Permissions for Artifact Sets
are correct. This will ensure that the correct permissions are applied to all existing artifact sets when you enable the
system setting.

1. Go to System > Permissions from the Security menu.

2. Select ArtifactSet from the drop-down menu and click Set.

3. On the Artifact Set Permission page, verify that the Default Permissions are correct. The default settings set here
will be automatically applied to every existing artifact set -- an action that can't be reversed, even if you disable
the server setting.

If you need to change these settings, see Configure Default Permissions before continuing.

4. Once the Artifact Set Default Permissions are correct, click Done and see Enable Artifact Security.

Enable Artifact Security
Once you are satisfied with the Artifact-Set Default Permissions, you can then enable artifact security on the System

541



page.

1. Go to System > Server Settings and select the Security tab.

2. Click Edit and see Configure Server Security > Secure Artifact Sets before continuing.

3. Once enabled, see Secure Individual Artifact Sets to manually secure individual artifact sets.

Secure Individual Artifact Sets
Once every artifact set has been assigned the appropriate default permissions and the server setting enabled, you
must manually secure select artifact sets at the Life-Cycle-Model level:

1. Go to System > Life-Cycle Models from the Project Support menu.

2. Select the Life-Cycle Model which contains the artifact set you want to secure.

3. On the Life-Cycle Model page, select the Artifact Sets link.

4. Locate the Artifact Set you wish to secure and select the View Security icon (a yellow badge) under the Opera-
tions menu.

5. Modify the permissions and click Save.

6. Repeat the previous steps for every Artifact Set you wish to secure.

Securing Artifact Sets

542



Chapter 73. Set Up and Manage Guest
Users
The Guest User account gives anonymous access to AnthillPro, and does not require a user name or password at lo-
gin. Guest users simply open AnthillPro in a browser and the Dashboard page appears. Or, if guest users are sharing
workstations with registered users, they follow the 'click here to login as guest' link on the main login page.

Management of guest users is similar to that of other AnthillPro users. However, permissions are not automatically
assigned (with LDAP, etc.), and must be manually configured for every instance of AnthillPro. Once the account is
activated, guest users are assigned any available role or combination of roles. For example, a User, Build Master,
etc., role may be assigned to guest users; or a role created specifically for guest users (named 'guest role' for ex-
ample) may be assigned. To determine how guest users interact with AnthillPro, each role is then assigned different
read and/or write permissions based on a combination of resources and resource types. See Manage Security.

• You must have AnthillPro administrative privileges to configure the Guest User account. See Manage Security.

To activate Guest User Account:

1. Go to System > Server Settings under the Server menu.

2. Click the Security tab and click Edit.

3. Check the Allow Anonymous Guest Access box and click Save.

4. Assign Role to Guest User Account. To use a special 'guest user' role, it must be created prior to completing
subsequent items.

• Go to System > Users under the Security menu.

• Select System from the Authentication Realm drop-down box and click Set.

• On the Users tab, select guest from the Active Users list.

• Scroll down and click Edit. Assign a role for the Guest User account. (The example below assigns a role
[named guest role] created specifically for guest users.)

5. Click Save when done.

543



Chapter 74. Perform Security Audits
The who-when changes made by Administrative users is recorded and made available on the Audit page (System >
Audit under the Security menu). When running an Audit, search using a combination of user(s) and date(s).

The audit will return information regarding changes that:

• Created a new field, including the date, time, user name, and description (in blue).

• Modified an existing field, including the date, time, user name, and description (in salmon).

• Deleted an existing field, including the date, time, user name, and description (in pink).

Results are returned from oldest to newest, and are searchable using the navigation menu. Selecting a cell in the ta-
ble expands the item and provides details regarding the change.

1. Go to System > Audit under the Security menu.

2. On the Audit page, give the criteria.

• User. Select a user from the drop-down menu. If no user is selected, the Audit will return results for all users
with Administrative permissions.

• Start Time. Give the beginning start data in the format: 2008-02-31 (e.g., February 31, 2008). If no start date
is set, the Audit will return results for all dates unless an end date is set.

• End Time. Give the ending start date in the format: 2008-05-09 (e.g., May 9, 2008). If no end date is set, the
Audit will return results for all dates unless a start date is set.

• Click Search.

3. To view the details of a particular item, click the appropriate cell. To collapse an expanded item, click the colored
cell again. (Deleted items cannot be expanded.)

4. Select Expand All to view details for every item. To collapse all expanded items, select Collapse All. To view
other pages: use Previous Button and Next Button, select a page from the navigation menu, or click First to go
back to the beginning and Last to go to the final page.

5. Click Done.

544


