
Telelogic Synergy

Build Manager’s Guide

Release 6.6a
Part Number: MN-SCM-IV-BMG66a-08-01

Before using this information, be sure to read the general information under
“Notices” on page 131.

This edition applies to Version 6.6a, Telelogic Synergy (product number 5724V66)
and to all subsequent releases and modifications until otherwise indicated in new
editions.
© Copyright IBM Corporation 1992, 2008
US Government Users Restricted Rights—Use, duplication or disclosure restricted
by GSA ADP Schedule Contract with IBM Corp.
ii Build Manager’s Guide

Table of contents

Chapter 1: Overview 1
Locating build management information. 2
Changes to operations . 2
Build management road map . 3

Preparation . 3
Ongoing integration test cycle. 3
System test cycle. 3
Software release . 3
Special considerations . 3

Conventions . 4
Command line interface . 5

Option delimiter. 5
Standards . 6
Terminology and name changes in Telelogic Synergy 6.6a . 7

Name changes . 7
Terminology changes . 7
Changes to operations . 8

Telelogic Synergy Help systems . 9
Telelogic documentation . 9

Where to obtain additional information . 10
Readme . 10

Contacting IBM Rational Software Support . 11
Product support . 11
Other information . 11

Chapter 2: Prepare for build management 13
Before you start... . 14

UNIX build managers . 14
All build managers . 14

How to set up your environment . 17
Build Manager’s Guide iii

About the platform file. 17
How to set up platforms . 19
About releases. 19
How to modify release values . 21
About purposes and process rules . 21
Use process rules for a new release . 23
Insulated and collaborative development . 24
About parallel releases and platforms . 24
About baselines. 25
Control the released project hierarchy. 25
About build management projects. 25
Create the integration testing projects . 26
Create the system testing projects . 29

Chapter 3: Build management basics 31
Before you start.... 32
About builds. 33

Build guidelines. 33
Automate the build management process . 35

How to provide the application for testing . 36
What is the build workflow? . 37
Integration test cycle . 38

Update . 39
Show and resolve conflicts . 39
Build and test . 39
Create a baseline . 40
Working with a bad baseline . 40

System test cycle . 41
Update . 42
Show and resolve conflicts . 42
Build and test . 42
Build using specific tasks . 42
Release the software . 45
iv Build Manager’s Guide

Prepare for a new release . 46
Mark a baseline for deletion . 49

Chapter 4: Update and conflicts 51
How update operates . 51

Update with process rules . 51
Update manually. 52
Update guidelines . 53

How to update . 54
Selection rules. 54
Update and baselines . 55
Update with platform values . 55
Review update results . 56

Diagnose selection problems . 60
Verify the update properties . 61

How conflict detection operates . 63
How conflicts arise. 63
How to detect conflicts . 64
Categories of conflicts . 65
Conflicts and dependencies . 65

Conflict terminology . 66
Conflict message definitions. 66

Resolve conflicts . 67

Chapter 5: How baselines work 69
What’s a baseline? . 69
How is a baseline used? . 70
Which projects should be in a baseline? . 71
Create a baseline . 74
Publish a baseline to developers. 77
Baselines and the update process . 80
Create an incremental baseline . 81
Remove unnecessary baselines . 83
Build Manager’s Guide v

Chapter 6: How to share products 87
Share external projects. 88
External projects . 89
Create an external project . 90
The modified build process for multi-phased builds . 93

Chapter 7: How to package an application 95
About installation areas and projects . 96
Create an installation project. 97
The modified build process for installation projects . 99

Chapter 8: Parallel releases 101
Create a patch for a release . 102

Set the patch release . 102
Projects to include . 102
Obtain fixes from developers. 103
Create a release for a patch. 103
Create a patch . 103

Create a parallel development environment . 105
About parallel platforms. 105
How to set up a parallel platform . 106
Set up parallel releases . 107

Chapter 9: Project restructuring 109
Add an existing project to your hierarchy . 111
Cut a project from your hierarchy . 111
Delete a project from your hierarchy . 112
Convert a directory to a subproject . 113
Add a new project to an existing hierarchy . 114

Chapter 10: Build management variations 119
Build management for UNIX and PC together . 120
vi Build Manager’s Guide

UNIX work areas with local files . 121
Grouping projects . 122

About the grouping project to be created. 122
Grouping projects versus project groupings. 122
Create a grouping project . 123
Create a release for a patch . 123
Create a patch. 124
Custom folder template query . 125
Add additional test phases . 126

Appendix A: Convert to process rules 127
Are process rules required?. 127
Converting projects. 128

Build manager conversion procedure . 128
Developer conversion procedure . 129

Appendix B: Notices 131
Copyright license. 133
Trademarks . 133

Terms and concepts 135

Index 145
Build Manager’s Guide vii

1 Overview
The Telelogic® Synergy™ Build Manager’s Guide® is intended for build managers.
Build managers are the people who know how a company’s software fits together
and how it is built. This document describes how to prepare for, perform,
administer, and troubleshoot build management operations.
This document assumes that you are familiar with Telelogic Synergy. The terms
and concepts used, the methodology discussed, and the scenarios given in this
document all assume that you have both a conceptual (task-based CM
methodology) and practical (how to perform developer-level task-based CM
operations) understanding of Telelogic Synergy. Additionally, this document
describes how to perform build management tasks using a task-based CM
methodology.
All steps in this document show how to complete an operation using the Telelogic
Synergy GUI.
If you are new to Telelogic Synergy, the following Telelogic documents are
prerequisites to this document:

• For terms, concepts, and methodology refer to the Introduction to Telelogic
Synergy.

• To complete a short tutorial in a pre-populated tutorial database, refer to the
Telelogic Synergy Tutorial.

• For a description of commands and default settings, refer to Telelogic
Synergy CLI Help.

• For a description of step procedures, refer to Telelogic Synergy Help.

If you are new to build management, but are already familiar with Telelogic
Synergy, this is the right document for you.
Build Manager’s Guide 1

https://support.telelogic.com/en/synergy/info/docs/docs.cfm?vid=192" TARGET = "new page
https://support.telelogic.com/en/synergy/info/docs/docs.cfm?vid=192" TARGET = "new page
https://support.telelogic.com/en/synergy/info/docs/docs.cfm?vid=192" TARGET = "new page
https://support.telelogic.com/en/synergy/info/docs/docs.cfm?vid=192" TARGET = "new page
https://support.telelogic.com/en/synergy/info/docs/docs.cfm?vid=192" TARGET = "new page
https://support.telelogic.com/en/synergy/info/docs/docs.cfm?vid=192" TARGET = "new page
https://support.telelogic.com/en/synergy/info/docs/docs.cfm?vid=192" TARGET = "new page
https://support.telelogic.com/en/synergy/info/docs/docs.cfm?vid=192" TARGET = "new page
https://support.telelogic.com/en/synergy/info/docs/docs.cfm?vid=192" TARGET = "new page
https://support.telelogic.com/en/synergy/info/docs/docs.cfm?vid=192" TARGET = "new page
https://support.telelogic.com/en/synergy/info/docs/docs.cfm?vid=192" TARGET = "new page
https://support.telelogic.com/en/synergy/info/docs/docs.cfm?vid=192" TARGET = "new page

Locating build management information
Locating build management information
All build management information is located in this document. Although this
document is in HTML format, and HTML is a format that lends itself to random
patterns of information access, read Prepare for build management (page 13) and
Build management basics (page 31) in the order presented before reading other
chapters and topics.
The topics in this document are ordered hierarchically, from the most basic
information (Prepare for build management (page 13)) to the more complex
(Build management variations (page 119)). The first time you read this
document, do so in the order shown in the Table of Contents. After you are
familiar with the document, you will most likely want to save often-used topics in
your Favorites folder. This will make it easier for you to find the information you
need quickly.
Additionally, if your site uses Telelogic® Change™, you can run predefined
queries to gather information about the contents of Telelogic Synergy builds. For
more information regarding Telelogic Change predefined build management
queries, see "Query for CM Build Information" in Telelogic Change User Help.

Changes to operations
Operations supported in Telelogic Synergy Classic Release 6.4 are still supported
and available in Release 6.6a. Additionally, the Telelogic Synergy CLI was
enhanced to support the features added to Telelogic Synergy for Release 6.6a.
For a list of operations no longer supported, see the Readme.
Note that information in the Readme takes precedence over information in the
documentation or in any of the Telelogic Synergy Help systems. The most up-to-
date version of the Readme is available to Telelogic Synergy users on the IBM
Rational Software Support Web site.
Build Manager’s Guide 2

https://support.telelogic.com/synergy
https://support.telelogic.com/en/synergy/info/docs/docs.cfm?vid=217" TARGET = "new page
https://support.telelogic.com/en/synergy/info/docs/docs.cfm?vid=217" TARGET = "new page

Chapter 1: Overview
Build management road map
The following items briefly describe the different operations you will need to
complete to prepare for, then implement build management operations for your
team. Each time you start a new project, you will complete these tasks.

Preparation
• How to set up your environment (page 17)

• Create the integration testing projects (page 26)

• Create the system testing projects (page 29)

Ongoing integration test cycle

• How to update (page 54)

• How to detect conflicts (page 64)

• Build and test (page 39)

• Publish a baseline to developers (page 77)

System test cycle

• Build using specific tasks (page 42)

• How to update (page 54)

• How to detect conflicts (page 64)

• Build and test (page 39)

Software release
• Release the software (page 45)

• Prepare for a new release (page 46)

Special considerations

Several special topics are covered in later chapters. These topics go beyond the
basics. Your site might or might not require them, but you should read about
them so that you are aware of how to deal with special situations, if they occur at
your site.
3 Build Manager’s Guide

Conventions
Conventions
The following describes the conventions used in this document.

Note A note contains important information about your
Telelogic Synergy software.

Caution A caution indicates potential danger to the database,
the database server, or some other integral piece of the
Telelogic Synergy software or your system.

Convention Items Examples

Bold — dialog box names and
options
— commands on menus and
buttons
— emphasis
— icon names
— registry keys (and
uppercase)
— toolbar button names

— Start dialog box, Object field
— Task box, Apply button
— Do not change the path.
— Query icon
— HKEY_LOCAL_MACHINE

— Current Task button

Italic — book titles
— placeholders
— roles and states
— user input

— Build Manager’s Guide
— Add your picture.gif file.
— build_mgr and shared
— Type Yes.

Courier — commands and options
— code samples
— file names
— paths

— ccm start -h lego
— void main ()
— The foo.c file.
— /user/local/ccm_docs

UPPERCASE — environment variables and
macros
— registry keys (and bold)

— CCM_ADDR, CCM_SUBPROJ

— HKEY_LOCAL_MACHINE
Build Manager’s Guide 4

Chapter 1: Overview
Command line interface
Telelogic Synergy supports the CLI under all supported platforms. You can
execute any Telelogic Synergy command from the UNIX shell or from the
Windows command prompt.

Option delimiter
By default, the Windows client supports the slash (/) option delimiter and the
UNIX client supports the dash (-) option delimiter. Examples in this document
are shown using both delimiters.
5 Build Manager’s Guide

Standards
Standards
Instructions for editing text files are given using Notepad (Windows) or vi
(UNIX) commands. Notepad and vi are the Telelogic Synergy default text
editors. If you use a different text editor, substitute the appropriate commands.
Build Manager’s Guide 6

Chapter 1: Overview
Terminology and name changes in Telelogic Synergy 6.6a
The following sections describe important changes made to the Telelogic
Synergy family of products in this release.

Name changes

Effective in the 6.6a release, the interface previously named SYNERGY/CM has
been enhanced to include build management operations and is now referred to as
Telelogic Synergy. The other graphical interface is now referred to as Telelogic
Synergy Classic.
SYNERGY/Change now is referred to as Telelogic Change.

Terminology changes
Some terminology was changed to be more consistent between interfaces. This
document refers you to operations that are described in the Telelogic Synergy
CLI Help; the terminology changes listed here affect the CLI.
Additionally, the Help for Telelogic Synergy uses the new terminology. The
following table shows the terms used in prior releases and the current terms used
in this document and in Telelogic Synergy CLI Help:

Prior releases 6.6a term

Check Out (Project) Copy Project
Default Task Current Task
prep project build management project
Reconfigure Update
Reconfigure Properties Update Properties
Reconfigure Template/Update
Template

Process Rule

Refresh Baseline & Tasks Update Baseline & Tasks
Refresh Tasks Update Tasks
Undo Reconfigure Undo Update
Update Members Update
Work Area Snapshot Copy to File System
7 Build Manager’s Guide

Terminology and name changes in Telelogic Synergy 6.6a
Commands were also changed for consistency between interfaces. For example,
the 6.6a ccm update command also exists as the ccm reconfigure
command. Links in Telelogic Synergy CLI Help take you to commands renamed
with the new terminology. Aliases have been written so that you can use 6.5
commands in your build management scripts. References to the terms used in
prior releases have been placed in the Help for your convenience.

Changes to operations
Operations supported in SYNERGY/CM Classic Release 6.4 are still supported
and available in Release 6.6a. Additionally, the Telelogic Synergy CLI was
enhanced to support the features added to Telelogic Synergy Release 6.6a.
Build Manager’s Guide 8

Chapter 1: Overview
Telelogic Synergy Help systems
The topics in this document have been updated for the current release. However,
if a topic exists in another published document or Help system, you’re given a
link to that document. The following describes which Help system you’ll view for
a given topic.

• Topics using the GUI

You can perform build management operations using Telelogic Synergy;
those operations are included in this document. For a few other operations,
you’ll work in the Telelogic Synergy CLI.

• Topics using the CLI

When you perform operations using the CLI, you’ll be working in the
Telelogic Synergy CLI. The most current Help for Telelogic Synergy CLI is
for Release 6.6a. Always check the Readme for the latest changes to the
information contained here.

The CLI Help system is available from the command line, by typing
ccm help in the window where you started the Telelogic Synergy CLI.

If you are not sure which Help system you are viewing, check the footer at the
bottom of each Help page to view the release.

Telelogic documentation

The Telelogic documentation is available in HTML and PDF on the
documentation DVD and on the IBM Rational Software Web site. The
documentation can be available to all users by mounting the DVD on a shared
drive.
9 Build Manager’s Guide

http://www.ibm.com/software/rational/

Where to obtain additional information
Where to obtain additional information

Readme
The Telelogic Synergy Readme describes the new features in Telelogic Synergy,
provides updates to the documentation, and contains sections on
troubleshooting, contacting IBM Customer Support, and known errors. Look in
the Readme for the latest updates to the installation documentation.
The Readme is an HTML document available on the product DVD and on the
Synergy Support Web site.
Information in the Readme takes precedence over information in the
documentation or in the Help.
Build Manager’s Guide 10

https://support.telelogic.com/synergy

Chapter 1: Overview
Contacting IBM Rational Software Support
Support and information for Telelogic products is currently being transitioned
from the Telelogic Support site to the IBM Rational Software Support site.
During this transition phase, your product support location depends on your
customer history.

Product support

• If you are a heritage customer, meaning you were a Telelogic customer prior
to November 1, 2008, visit the Synergy Support Web site.

Telelogic customers will be redirected automatically to the IBM Rational
Software Support site after the product information has been migrated.

• If you are a new Rational customer, meaning you did not have Telelogic-
licensed products prior to November 1, 2008, visit the IBM Rational
Software Support site.

Before you contact Support, gather the background information that you will
need to describe your problem. When describing a problem to an IBM software
support specialist, be as specific as possible and include all relevant background
information so that the specialist can help you solve the problem efficiently. To
save time, know the answers to these questions:

• What software versions were you running when the problem occurred?

• Do you have logs, traces, or messages that are related to the problem?

• Can you reproduce the problem? If so, what steps do you take to reproduce
it?

• Is there a workaround for the problem? If so, be prepared to describe the
workaround.

Other information
• For Rational software product news, events, and other information, visit the

IBM Rational Software Web site.
11 Build Manager’s Guide

https://support.telelogic.com/synergy
http://www.ibm.com/software/rational/support/
http://www.ibm.com/software/rational/support/
http://www.ibm.com/software/rational/

Contacting IBM Rational Software Support
Build Manager’s Guide 12

2 Prepare for build management
Build management is the process by which a company’s software product is built
and managed.
When a company controls its code by using Telelogic Synergy, it gives the job of
building and managing the software product to the build manager.
The build manager is the person responsible for managing the following
processes:

• Create baselines from the initial version of software.

• Organize and refine your software’s structure.

• Set up build management projects for testing and staging.

• Set up and maintain process rules and folder templates.

• Collect software changes from developers, then build test areas.

• Run reports in Telelogic Change to find out features and tasks that are in or
not in a build.

• Freeze software at important milestones, such as a customer release.

• Set up configuration information for the team (e.g., platform and release
values).

• Make the latest changes available to developers.

• Delete baselines that are no longer needed.

• Recreate old software releases to identify problems and create fixes.

This list is a short summary of build management responsibilities. Each bulleted
item carries with it specific operations, all of which are discussed in detail in this
book.
Build Manager’s Guide 13

Before you start...
Before you start...
Perform the following preparatory operations before moving on to the next
section.

UNIX build managers
• Become a member of the ccm_root group.

All build managers and user ccm_root must be members of the ccm_root group
on your UNIX network. Verify with your system administrator that this is
the case.

• Set the group of the build_workarea directory to ccm_root. The build_workarea
is the directory where you place all of your build management work areas.
Set the permissions of the build_workarea directory so that they are readable
and writable by the group.
su ccm_root
cd /shared_directory
mkdir build_workarea
chgrp ccm_root build_workarea
chmod 775 build_workarea
chmod g+s build_workarea

All build managers
• Select parallel notifications during update.

If you build from the Telelogic Synergy CLI, set up your environment so
that you can see parallel notifications in your log file. This helps you to
determine whether parallel versions from developers are being merged at
check in, and alerts you to any possible configuration problems. Regardless
of whether you build from the GUI or the CLI, use the Detect
Membership Conflicts operation to detect parallel conflicts (as well as
other conflicts).

In the [Options] section of your Telelogic Synergy Classic initialization
file, set the following reconfigure_parallel_check option, then
restart your session:
reconfigure_parallel_check = TRUE

When you set reconfigure_parallel_check, if a given set of update
candidates have equal scoring and are parallel, you will receive a warning
message in your ccm_ui.log similar to the following:
Build Manager’s Guide 14

Chapter 2: Prepare for build management
Warning: Parallel versions selected by selection
rules, latest create time will be used:
save.c-3
save.c-2.1.1

• Set your release properties to dictate how a team working on this release will
use parallel versions to either allow both parallel check out and check in;
allow parallel check out, but disallow parallel check in; or disallow both
parallel check out and check in.

• Set up the build management work area

Set up a directory to be used for the build management work area. The
directory should be on a shared drive or NFS-mounted partition where all
users can access it.

Windows build managers: Be sure that all build managers have full control of
the shared drive and mount the drive using the same drive letter.
Additionally, you will need to set up the work area path template to create the
build management project work areas in a shared location so that other build
managers can access them.
The work area path defaults to C:\Documents and
Settings\username\My Documents\Synergy\ccm_wa (Windows users)
or home/ccm_wa (UNIX users), where home is your home directory.
In the Options dialog box, set the default path where you want the build
management projects to reside. For example:
Windows users:
Base directory =
drive:\network_disk\Synergy\shared\ccm_wa

UNIX users:
wa_path_template = /user/local/shared/ccm_wa

Both Windows and UNIX users should keep the +Database name check box
set. This will cause the database name to be appended to the base directory.
You might need to reset the work area paths for existing build management
projects to the shared location.
Optionally, you can divide your work area into release-specific or platform-
specific work areas. This is useful to build managers to organize many projects
into their own custom structure.
For example, say you have a toolkit project in each of two platforms that you
build: vista and winxp. By setting a work area template to
N:\network_disk\Synergy\shared\ccm_wa\%release\%platform
15 Build Manager’s Guide

Before you start...
(Windows users) or home/ccm_wa/%release/%platform (UNIX users),
you would see the following work areas:
Windows users:
N:\network_disk\Synergy\ccm_wa\shared\2.8\vista\toolkit
N:\network_disk\Synergy\ccm_wa\shared\2.5\winxp\toolkit

UNIX users:
/user/local/shared/ccm_wa/2.8/solaris/toolkit
/user/local/shared/ccm_wa/2.5/linux/toolkit

Changing work area templates is described in Set the default work area path in
Telelogic Synergy Help.
Build Manager’s Guide 16

Chapter 2: Prepare for build management
How to set up your environment
Your environment needs to reflect the type of application you will build. The
following sections describe how to set your environment:

• For a standard release

• To develop your application on more than one platform

• To develop your application for more than one release

About the platform file
Note If you need to develop your application on more than
one platform, be sure to read this section and About parallel
releases and platforms (page 24).

The platform file defines the list of platforms that can be used for the platform
property of a project or an object.
This is important information for distributed builds. The platform file contains
lines of the following type of information:
platform_name hostname ... ;

platform_name is a name you set for a hardware platform. Spaces are not
allowed.
hostname is the name of a host for that platform.
For example:

Platforms and hosts for distributed builds
HP-HP-UX11i jupiter mars;
SPARC_Solaris 9 neptune;
AIX_5.x saturn mercury;
x86-WIN32 pluto venus;

You can define the values in the platform file to reflect the platforms on which
your application needs to be built.

Note Using ccm_make_local_machine as the host name
will not send the build to a different machine. It will only cause
the build to occur on your local machine.

The platform file you will change is called om_hosts.cfg, and is located in
CCM_HOME\etc (Windows server) or $CCM_HOME/etc (UNIX). This file
applies to every session that uses that Telelogic Synergy installation.
Alternatively, you can use a different platform list for every database in the
installation. To do so, copy the om_hosts.cfg file from CCM_HOME\etc
17 Build Manager’s Guide

How to set up your environment
(Windows server) or $CCM_HOME/etc (UNIX) to the etc directory under your
database, then edit it to set up the platforms and hosts specific to that database.
Windows client users: Define a platform file for each database because
developers typically will have their own Telelogic Synergy installation areas.
After you make the changes, you and all users of the database will need to restart
your sessions if you want to view the new values. Use the Properties dialog box
Platform list to view the new values.
Another situation that might arise is when build managers need to override the
host definitions by using an environment variable. For example, this occurs when
a build manager needs to perform a build on a 2.8 Solaris™ machine, but
everyone else on the team is building on a 2.9 Solaris machine. The build
manager would not want to change the host definitions because then everyone
would build on the 2.8 Solaris machine, which would be incorrect, and possibly
harmful. The build manager could do the following:

1. Exit the Telelogic Synergy session.

2. Set the CCM_MAKE_OM_HOST environment variable in a terminal
window.

UNIX users:
CCM_MAKE_OM_HOST=om_hosts.cfg_sol28
export CCM_MAKE_OM_HOST

Windows users:
set CCM_MAKE_OM_HOST=om_hosts.cfg_WIN

3. Start a Telelogic Synergy session from the same terminal window in which
you set the environment variable.

Using platform values is optional. You only need to use platform values if you
build different versions of your software on or for different hardware platforms
or operating systems.

Note Platforms are also used by the update operation.
Update uses the platform value to update a project with the
most appropriate objects.

If you do not intend to perform distributed builds, but you
still want to add platforms for use with update, you will need
to specify platform names, followed by at least two spaces or
tabs and a semicolon: IBM-AIX ;
Build Manager’s Guide 18

Chapter 2: Prepare for build management
How to set up platforms
1. Log on as the Telelogic Synergy administrative user (Windows users) or as

ccm_root (UNIX users).

2. Edit the om_hosts.cfg file, located in CCM_HOME\etc (Windows server)
or $CCM_HOME/etc (UNIX) or in the database.

3. Save and exit from the file.

4. Exit from the Telelogic Synergy administrative user (Windows users) or as
ccm_root (UNIX users).

About releases

Note If you need to have more than one release, be sure to
read this section and About parallel releases and platforms
(page 24).

Note Set the release value for all projects and tasks in
Telelogic Synergy.

Telelogic Synergy stores releases for your software application. A release enables
you to mark projects, tasks, and folders for particular releases. It also helps you to
keep track of which object versions were developed for each release.
Only build managers can create or modify releases. You can view releases in the
Release Properties dialog box. Each Telelogic Synergy database has its own set
of releases, although you can transfer them between databases by using Telelogic
Synergy Distributed (DCM).
Releases contain settings that impact the team’s process, for example:

• You can define whether or not parallel development will be allowed in a
release.

• The release defines the team’s process by identifying a set of process rules
available for use for that release.

For example, a typical release can be any of the following. This example shows
the release, which is created by the build manager. It’s made up of the component
name (page 138) and the component release (page 138). The release is what the
users see.

Release Component name Component release

1.0 1.0
19 Build Manager’s Guide

How to set up your environment
A release consists of an optional component name and release delimiter (slash,
by default), and a component release. The component name might represent the
name of an application or component, such as Synergy or editor. The
component release identifies the specific release of that application or
component.
Note that the component name is not a mandatory part of the release. In the first
row in the table above, the 1.0 component name doesn’t have a component, and
Telelogic Synergy leaves it blank
When you create a new release, you can create it based on an existing release, and
the new release inherits properties of that release automatically.
The release can be any text string up to 117-characters long. (The component
name can contain a maximum of 85 characters; the component release can
contain a maximum of 32 characters.) For example, a release could be
Integrations/telecom_patch

Component names and component releases must not start with the following
characters:
/ \ ' " : * ? [] @ % - + ~ space, tab

Second and subsequent characters cannot include the following:
/ \ ' " : * ? [] @ %

Note that the component name and component release can contain the version
delimiter character (by default -) if it is not one of the restricted characters.
Whenever an object is checked out, Telelogic Synergy automatically will copy the
release from the current task to the new object.

2.0 2.0

2.0_patch 2.0_patch

Synergy/6.5 Synergy 6.5

editor/2.0 editor 2.0

editor/2.1 editor 2.1

Release Component name Component release
Build Manager’s Guide 20

Chapter 2: Prepare for build management
How to modify release values
Telelogic Synergy provides several ways to modify release values. The following
procedures are described in Telelogic Synergy Help.

• Create or copy a release

Create a release when you want to define a release that is not based on an
existing release. Copy a release when you want to base your new release on an
existing release.

• Delete an object

This general delete topic includes information specific to deleting a release
from your database.

• Modify the properties of a release

Use this procedure when you want to make changes to an existing release.

About purposes and process rules
Use purposes to set up multiple prep, shared, working, or visible versions of the same
project for different uses, such as different levels of testing. Each project has a
purpose. A project's purpose defines the project's state and ensures that it will
select the right members when you update.
Typically, you do not need to modify the purposes. If you need to create
purposes, see Create a purpose in Telelogic Synergy Help.
Each release contains a list of process rules that are valid for that release. This lets
you control the team’s process for a particular release, and lets teams working on
different releases use different process (page 141)es.
21 Build Manager’s Guide

How to set up your environment
A process rule specifies how a project will update. To use a process rule, a
project must have a release and purpose set. The project's release and purpose
combination determines which process rule the project will use. There is one
active process rule for each purpose for a release.

This figure shows the
Release Properties
dialog box displaying the
process rules for release
hello/1.0.
This is a purpose.
This is a process rule.

ann66a - Tel...
Build Manager’s Guide 22

Chapter 2: Prepare for build management
If your site is new to Telelogic Synergy use, your database is set to use process
rules by default.
If your site uses manual projects with Telelogic Synergy Classic, some existing
templates may be set for projects to use manual update properties. If your team is
converting to process rules during a release, follow the conversion process in
Converting projects (page 128). After you finish the conversion, continue
preparations by reading About parallel releases and platforms (page 24).

Use process rules for a new release
When your database was upgraded to 6.6a, the standard purposes were created or
renamed. If your database contained any modified standard purposes, the
modified copy was renamed, starting with a prefix of Saved. (This is significant
because you’ll see the name of the purpose when you view its corresponding
process rule.)

This figure shows a
project grouping in the
Project Grouping
Properties dialog box
called All hello/1.0
Integration Testing
Projects from Database
ccm65.
The project grouping’s
release is set to hello/1.0.
The project grouping’s
purpose is set to
Integration Testing.
This process rule defines
how the baseline and
tasks are selected.
23 Build Manager’s Guide

How to set up your environment
Insulated and collaborative development
Insulated development occurs when developers do not want to receive changes
made by other developers until after those changes have passed integration
testing. Insulated development is a stable environment where the developer is
insulated from other developers' ongoing changes.
Collaborative development occurs when developers want to receive the latest
changes completed by other developers, rather than waiting until those changes
have passed integration testing. Collaborative development enables developers to
collaborate and share each others' changes as soon as the changes are completed.
When a developer checks out a project, he can choose the project's purpose
(Insulated Development or Collaborative Development). A project's
purpose can be changed in the Properties dialog box. The project's purpose will
determine which tasks are added to the project when he updates it: Insulated
Development indicates that the project selects the developer’s tasks plus the
most recent tested tasks, while Collaborative Development indicates that the
project will select the developer’s tasks plus all completed tasks, whether or not
they have been tested.
Teams can choose to get each others’ changes after they are tested or after they
are checked in. The level of insulation is determined by which objects are
selected when they update their projects. A process rule is a pattern that defines
how projects created for a certain purpose will be updated, by automatically
setting up the project’s update properties. For example, by default, Telelogic
Synergy provides process rules for Insulated Development and Collaborative
Development.
These process rules correspond to the purposes for Insulated Development
and Collaborative Development.

About parallel releases and platforms
A parallel release occurs when your company needs to develop more than one
release of an application concurrently. For example, one team might be working
on new features for release toolkit/3.0 of the toolkit application while another
team works on bug fixes for release toolkit/2.1. Likewise, you might be
developing one release on multiple platforms.
To support parallel platforms or releases, you will create one integration build
management project hierarchy and one system test build management project
hierarchy for each unique release and platform combination you will build.
If you have not yet read About the platform file (page 17) and About releases
(page 19), do so before going on.
Build Manager’s Guide 24

Chapter 2: Prepare for build management
About baselines
A baseline is a set of projects and tasks used to represent your data at a specific
point in time. A baseline has many uses. When you perform an update, Telelogic
Synergy uses a baseline as a starting point to look for new changes.
Creating a baseline for each Integration Testing and System Testing build
enables testers and developers to refer back to the set of changes that were used
to create the build. Typically, you’ll create a baseline for all projects in the same
release and purpose. For example, you would create a baseline for each
Integration Testing build using all Integration Testing projects for that
release.
See How baselines work (page 69) for a thorough discussion.

Control the released project hierarchy
Before you can perform build management project activities, you’ll need to
control the project hierarchy to be used as the starting point. Most sites use the
last released version of their application. If your site already uses Telelogic
Synergy, then you’ll want to create a baseline from the last project hierarchy
released to your customers.
If you are a new user and have not migrated your source code into Telelogic
Synergy yet, be sure to read the CM Live! book. This book discusses project
structure and makes suggestions about different ways in which source code can
be migrated.

Note Be sure to create a baseline for your new project.

About build management projects
A build management project is a staging project used to build and test a test area
or release. By default, build management projects support two levels of testing:
integration testing and system testing. Therefore, when you create the build
management projects for your application, you will usually create at least two
versions of each project.

Note Your application probably will comprise many projects
organized into a project hierarchy. When this document
discusses a build management project (that is, the integration
build management project), it refers to the entire project
hierarchy, if you have one.

You can add more testing levels by adding a purpose and process rule for build
management projects. For example, to add a performance testing level, create a
25 Build Manager’s Guide

How to set up your environment
purpose named Performance Testing for build management projects, create a
process rule for the new purpose, then create a version of a build management
project for it.
The first build management project, called the integration testing project,
enables you to collect, build, and test the latest completed tasks checked in by
developers. The members of this project are brought in through a query of all
completed tasks.
You will need to Create the integration testing projects (page 26) to set up the
integration testing projects.
The second build management project, called the system testing project,
enables you to collect, build, and test the application in more detail, to reach an
agreed-upon quality standard. The members of this project are brought in
through a carefully controlled process.
You will need to Create the system testing projects (page 29) to set up the system
testing project.
You might want to set build arguments for the integration testing projects or the
system testing project. For example, you might want to build the integration test
area with the debug flag or build the system test area with the optimize flag. For
information on building, see Build guidelines (page 33).

Note If you do not perform integration testing on all
platforms, you do not need an integration build management
project hierarchy for every platform.

Create the integration testing projects
Copy a new project hierarchy from your baseline to build the integration testing
area.

1. Find the baseline by using the Query dialog box.

2. Right-click over the baseline and select Copy Projects.

The Copy Project dialog box appears.

3. Set the For Release value to the appropriate release.

If an appropriate release is not in the For Release list, use Refresh
Choices. If necessary, you can Create or copy a release (described in
Telelogic Synergy Help).

4. Set the For Purpose choice to Integration Testing.
Build Manager’s Guide 26

Chapter 2: Prepare for build management
5. In the Copy Subprojects list, you’ll see the projects for the baseline.

If all of the locations you’ll use for build management work areas for these
projects are not visible from the system you’re running Telelogic Synergy on,
copy the projects that will have visible work areas here.

For example if you develop your application on more than one platform,
such as on Windows and UNIX, be sure to copy Windows projects
separately from UNIX projects, using the appropriate Windows or UNIX
machine. Additionally, if you develop your application for more than one
release, be sure to create an integration testing project hierarchy for each
release.

6. Change the new project version to a meaningful name by typing a new name
in the Versions field. If the projects you’re copying should have different
versions, click to see each unique version of the projects being copied.

Click Use Default and then type the new version for each entry.

The version should indicate the project hierarchy’s release and platform, and
that it will be used for integration testing. For example, a version of
winxp_3.0_int would be appropriate for an integration project on a
Windows XP platform with a release of 3.0.

7. Check the work area path and change it, if necessary.

8. By default, Telelogic Synergy updates all new projects after it copies the
projects. If you don’t want the new projects to be updated, clear the Update
new projects check box.

9. Copy the projects by clicking OK.

The integration testing project hierarchy will be created.

Because you are using process rules, the update properties are
already set up properly. Your project's release and purpose
determine which process rule a project uses. As long as you
have set your project’s release and purpose correctly, you do
not need to do anything else to set the update properties.

From the CLI

1. Set your role to build_mgr.

> ccm set role build_mgr

2. Copy the project hierarchy’s top-level project to any integration prep project
hierarchy.
27 Build Manager’s Guide

How to set up your environment
The following command shows you how to copy a new hierarchy from a
top-level project called toolkit-4.8.

> ccm copy_project toolkit-4.8 -subprojects -purpose integrate -to
4.9_int release 4.9 -reconf tasks

The following options need to be a part of the command:

• Set the Purpose option to integrate (-purpose integrate). This
indicates that you will create a prep project for integration testing.

• Set the Release value to the appropriate release name, such as 4.9
(-release 4.9).

If you set the release value to a name that does not exist as a release value,
you will receive a warning message, and the copy will fail. Refer to How to
modify release values (page 21) to add the appropriate release value.

• Copy the subprojects in the project hierarchy (-subprojects).
• Leave the default Platform value set to its current value (no change

required).
• Give the version a meaningful name (-to 4.9_int).

The version should indicate the project hierarchy’s release and platform, and
that it will be used for integration testing. For example, a version of
hp_3.0_int would be appropriate for an integration project on a HP-UX
platform with a release name of 3.0.

Note If you will release your application on more than one
platform or for more than one release, repeat the
preceding steps, creating an integration prep project
hierarchy for each platform or release. Additionally, be
sure to set the release or platform to the appropriate
value.

3. If you forgot to set the release, platform, or version, you can do so now.

Modify the top-level project’s release, platform, or version attributes.

> ccm attr -modify attribute -value value -project top-level_project

4. Copy the values (-copy version) to subprojects (-subproj) in the hierarchy.

> ccm attr -copy version:release:platform -project top-level_project -subproj top-
level_project

Caution If your hierarchy contains projects with different platform
settings, you will need to set different versions for each
project with a unique version.
Build Manager’s Guide 28

Chapter 2: Prepare for build management
Create the system testing projects
Copy a new project hierarchy from your baseline. This project will be used to
build the system testing area.

1. Find the baseline by using the Query dialog box.

2. Right-click over the baseline and select Copy Projects.

The Copy Project dialog box appears.

3. Set the For Release value to the appropriate release.

If an appropriate release is not in the For Release list, use Refresh Choices.
If necessary, you can Create or copy a release (described in Telelogic Synergy
Help).

4. Set the For Purpose choice to System Testing.

5. In the Copy Subprojects list, you’ll see the projects for the baseline.

For example if you develop your application on more than one platform,
such as on Windows and UNIX, be sure to copy Windows projects
separately from UNIX projects, using the appropriate Windows or UNIX
machine. Additionally, if you develop your application for more than one
release, be sure to create a system testing project hierarchy for each release.

6. Change the new project version to a meaningful name by typing a new name
in the Versions field. If the projects you’re copying should have different
versions, click to see each unique version of the projects being copied.

Click Use Default and then type the new version for each entry.

The version should indicate the project hierarchy’s release and platform, and
that it will be used for system testing. For example, a version of
winxp_3.0_sys would be appropriate for a system testing project on a
Windows XP platform with a release of 3.0.

7. By default, Telelogic Synergy updates all new projects after it copies the
projects. If you don’t want the new projects to be updated, clear the Update
new projects check box.

8. Check the work area path and change it, if necessary.

9. Copy the projects by clicking OK.

The system testing project hierarchy will be created.

From the CLI

1. Set your role to build_mgr.
29 Build Manager’s Guide

How to set up your environment
> ccm set role build_mgr

2. Copy a system test prep project hierarchy from the top-level project. (The
following command shows you how to copy a new hierarchy from a top-
level project called toolkit-4.8.)

> ccm co -project toolkit-4.8 -subprojects -purpose sqa -to 4.9_sqa -release
4.9

• The following options need to be a part of the command:
• Set the Purpose option to sqa (-purpose sqa).
• Set the Release value to the new release name (-release X).

Note If your project hierarchy contains multiple platforms,
you’ll need to set an option to define the platforms to be
checked out, as follows:

Note > ccm co -project tool_top-1.0 -subprojects -release 2.0 -
purpose sqa -versions
"1.0:sqa_2.0,win_1.0:win_sqa_2.0,hp_1.0:hp_sqa_2.0"

If you set the release value to a name that does not exist as a release value,
you will receive an error message and the copy will fail. Refer to How to
modify release values (page 21) to add the appropriate release value.

• Leave the default Platform value set as it currently is (no change
required).

• Give the version a meaningful name (-to 4.9_sqa). The version should
indicate the project hierarchy’s release and platform, and that it will be
used for system testing. For example, a version of hp_3.0_sqa would be
appropriate for an sqa project on a HP-UX platform with a release name
of 3.0.

• Copy the subprojects in the project hierarchy (-subprojects).

Note If you will release your application on more than one
platform or for more than one release, repeat the
preceding steps, creating a system test prep project
hierarchy for each platform or release. Additionally, be
sure to set the release or platform to the appropriate
value.
Build Manager’s Guide 30

3 Build management basics
The build process for a site is the process that the site undergoes to build test
areas, find problems, and build a quality product. The build process is similar for
all sites, no matter how large or small.
The build process consists of the following operations. You will perform these
operations many times during the course of a product release. Each of the
operations contains several steps. As you work through the steps for each
operation, the build management process will take shape.

• Update the build management project hierarchy to collect the set of software
to be built.

When you update a project hierarchy, you update the members of the
hierarchy with the object versions associated with the tasks in the build
management folders.

Information on update is in Update guidelines (page 53).

• Show and resolve conflicts to identify and correct potential configuration
problems.

A conflict is a potential problem with a project. Keep in mind, however, that
not every conflict is necessarily a bad thing. When you resolve a conflict, you
correct the problem with your project’s configuration.

• Build your application with the latest completed tasks, using a third-party
make tool.

Information on builds is in Build guidelines (page 33).

• Provide the application to be tested in a format such as a CD or an
installation area from which users can run the application.

Information on providing applications is in How to provide the application
for testing (page 36).
Build Manager’s Guide 31

Before you start...
Before you start...
Before you move on to the next sections, ensure that you have done the
following:

• Set your project to use process rules (described in Use process rules for a
new release (page 23)).

• Prepared an integration build management project hierarchy (described in
Create the integration testing projects (page 26)), which contains all the
software to be built and tested, including all platforms and releases.

• Prepared a system test build management project hierarchy (described in
Create the system testing projects (page 29)), which contains all of the
system test software to be built and tested, including all platforms and
releases.

• Verified that your build mechanism works for these build management
project hierarchies (described in Build guidelines (page 33)).
Build Manager’s Guide 32

Chapter 3: Build management basics
About builds
The following two sections describe what you need to know when building with a
third-party make tool, and the advantages of automating builds.

Build guidelines

• Review the build output.

When you build the products, capture the output of the build process in a log
file, then review the log carefully for errors or indications of problems in the
build. (If your builds are automated through a batch file or script, you can
direct the output into a log file.)

• Review new versions of makefiles.

Be sure to control the build environment carefully. Because the build
environment is partially defined in your makefiles, you will need to review
makefiles that are checked in by developers to verify that they will not
adversely affect the build environment.

For example, a developer could check out a makefile and customize it to
reference his personal test version of a library file, then accidentally check in
the makefile. (That would cause the build manager’s build to reference the
developer’s test library, and is likely to cause problems at some point.)

• Do not control Java™ class files.

When compiled, a Java source file can produce many class files, some of
whose names are not fixed and known in advance. A class file for an
anonymous inner class will have a name with a sequentially numbered suffix.
If you attempt to control Java class files, the history of an object with such a
name will not be meaningful because it could refer to different anonymous
inner classes at different times. Furthermore, if a class is removed, the Java
compiler will not delete a previously existing class file for that class, so you
will have to remove the corresponding object from the project manually. If
you attempt to work around this by deleting all class files before compiling,
then all your controlled class file products will appear to change in every
build.

Instead of controlling the class files, build a jar file (or ear or war file, as
appropriate for your application) and control that.

• Control scripts and tools in Telelogic Synergy.

If you have scripts and tools to build your product, you should consider
controlling these scripts and tools themselves in Telelogic Synergy. Keeping
controlled copies of the right versions of the tools used to build each release
33 Build Manager’s Guide

About builds
of your software makes it easier for you to rebuild older releases, and to build
patches to older releases. Remember that you might also need to keep access
to older machines and operating systems.

• UNIX Users:

Ensure that uncontrolled product files are writable by multiple build
managers.

Most teams do not control all of their products within Telelogic Synergy. It
is common to control top-level products, such as libraries and executables,
but not to control intermediate products such as .obj files, since these files
can be very big. If you control them, your database will grow quickly because
many different copies of the product files will be created by different users.
Uncontrolled products exist only in your work area.

Because products are uncontrolled, Telelogic Synergy does not set their
owner or access permissions. Therefore, you need to take some extra steps
to ensure that multiple build managers can update the uncontrolled products
in the work area. If uncontrolled products are created with permissions that
only the build manager who created the file can modify, another build
manager will not be able to rebuild the project without first deleting the
uncontrolled products.

To ensure that uncontrolled products are writable by multiple build
managers, perform the following steps:

• Set each build manager's primary group to ccm_root so that new files are
created in the ccm_root group.

• Set each build manager's umask so that new products are created with
permissions that are writable by owner and group.

• Some platforms and shells will not set the file permissions correctly,
even if you have set your umask. You might consider updating your
makefiles to use the Korn shell (ksh), which does support the umask.

Alternatively, you can update your build scripts or makefiles either to
delete intermediate products before building them, or to change the
permissions of those files to set the group and allow group write access
after building them.
Build Manager’s Guide 34

Chapter 3: Build management basics
Automate the build management process
batch files or scripts are great ways to automate the update and build process.
The advantages of automation include:

• Your build process will be reproducible because it will be done the same way
every time.

• Your build will be less error-prone because you will not have to remember all
the details every time you build.

• You can schedule the process to run at times when you are not around or
when the system is not being used heavily, such as at night.

• Others can take over the build process when you are away.

• You can write a batch file or script program to check the update and build
logs automatically, and to notify you of words or patterns that indicate failure
or possible problems. (Even if you automate this, you should still skim the
logs.)

When you automate a build, be sure to log the output so you can diagnose any
problems that occur.

Note Throughout this book, each operation is presented from
the GUI and from the CLI. Use the commands in the CLI
section to help build your batch files (Windows) or scripts
(UNIX).

When you automate builds, you will not be able to resolve
conflicts before the build. If conflicts are found, you may need
to run the build cycle (or parts of it) again.
35 Build Manager’s Guide

How to provide the application for testing
How to provide the application for testing
Some of the common ways to provide your application to customers include:
DVD, CD-ROM, or an installation area from which users can run the
application.
An installation area is a location in your file system where you can install a
version of your software application so that users can run the application.
Installation areas are used for testing, reproducing problems, or using your own
application within your company. This area usually consists of the executables,
libraries, batch files or scripts, and data and configuration files needed to run the
application.
As a build manager, you probably will set up many installation areas for different
uses. For example, you might have an installation area for a general release your
team is working on, called rel_int/3.2. You might have another installation area
for your SQE team to test the general release, and that area might be called
rel_sqe/3.2. You might have another installation area for a service pack called
rel_sp/3.1.
You can provide an application for testing in a variety of ways. See Create an
installation project (page 97) for a description of one common way to do this.
Build Manager’s Guide 36

Chapter 3: Build management basics
What is the build workflow?
The build workflow is the process that a site undergoes to build test areas, find
problems, and build a quality product. The build manager will need to do the
following:

• Complete frequent integration test cycles

Each integration test cycle includes a cycle of the build process (update,
show conflicts, resolve conflicts, build, and baseline).

• Complete several system test cycles

Each system test cycle includes a cycle of the build process (update, show
conflicts, resolve conflicts, build, and baseline).

• Release the software

• Prepare for a new release

Each site will need to determine the frequency of the test cycles and the level of
testing done based on answers to the following questions:

• What are the quality requirements of the product?

• How frequently is the product changing?

• How close to release is the product?

• How long does it take to test the product?

The answer to these questions will determine how frequently you complete
integration and system test cycles. If the product is changing frequently, you will
want to perform integration testing frequently. If you are near a release, you will
probably be concentrating on system testing.
Note that you might choose to modify this workflow to work better for your
organization.
37 Build Manager’s Guide

Integration test cycle
Integration test cycle
The integration test cycle includes the following:

• Update (page 39)

• Show and resolve conflicts (page 39)

• Build and test (page 39)

• Create a baseline (page 40)

During the integration builds, all of the newly completed tasks from developers
are gathered and built. They are gathered based on the integration testing
process rule used by the integration testing project hierarchy.
The software is likely to have problems at this point, and may not even build
successfully. The goal is to find problems right away, not to get a high quality
installation area. This is because of the unstable nature of the software at this
point in development.
The kinds of problems you might see during integration-level builds include:

• Parallel branches that have not been merged (you get one developer’s
changes but not the other developer’s changes)

• A developer checked in only part of his changes, for example, a developer
forgot to associate all necessary objects to complete a particular task.

• Two developers made incompatible changes, for example, they both added
defines with the same name.

• A program fails to compile because of syntax errors, for example, the
developer forgot to unit test.

Remember that the integration build area is not a stable environment because it
contains the most recently completed tasks. Another reason is that the
candidates change frequently as developers complete their tasks. (This is
normal.)
Ensure that the integration test cycle is short and frequent; this will help you to
find problems as early in the development cycle as possible. Additionally,
developers with insulated development projects do not bring in each others’
changes until the tasks have passed integration testing.
The integration cycle works best if you can build and test every day, and make
the newly tested tasks available to developers immediately after they pass testing.
Build Manager’s Guide 38

Chapter 3: Build management basics
Typically, the integration-level build cycle includes the following:

1. Developers continuously make changes and check them in by completing
their tasks, without regard to the cycle. (The advantage is that the team is not
interrupted or distracted by testing efforts.)

2. The build manager updates, shows conflicts, resolves conflicts, builds the
hierarchy, and creates a new installation area or media to be tested. (Part of
this can be automated and done as a nightly job.)

3. The build manager tests the resulting products with a short set of tests that
verify that the product builds correctly and is usable. If defects are found, a
member of the team creates tasks to fix the problems.

4. If no severe defects are found, the application is ready for use, for example,
as a development test area. Note that this may not happen every day; some
days severe defects will be found, and some days the build may not even
succeed.

5. If the build manager finds no severe defects, he can Create a baseline (page
74). This makes the objects associated with the tasks in the baseline available
to developers the next time they update their projects.

Now that you understand what you will be doing during the integration test cycle
and why you need to complete these operations, you are ready to perform the
operations.

Update
You are ready to update the build management project hierarchy. This is
described in How to update (page 54).

Show and resolve conflicts
You now have updated your build management project hierarchy. You are ready
to identify and resolve potential configuration problems before you build your
application. This is described in How to detect conflicts (page 64).

Build and test
You have updated, dealt with conflicts, and are ready to build your application.
Builds will vary greatly from site to site; use the following general guidelines
when you build:

1. After your build completes, review the build logs.

2. Create an installation area or test media.
39 Build Manager’s Guide

Integration test cycle
3. Run a short series of tests to perform testing.

4. If the build fails, you can either add selected tasks and rebuild, or add fix
tasks and begin the build process from update. See Build using specific tasks
(page 42) for detailed instructions.

Create a baseline
You have now updated the integration testing projects, dealt with conflicts, built
your products, and tested the application. You are ready to make the changes
available to developers. You are now ready to Create a baseline (page 74).
For detailed baseline information, see How baselines work (page 69).

Working with a bad baseline
Sometimes a baseline has problems and developers shouldn’t use it. If this
occurs, do one of the following:

• Create a new baseline that contains the fix, if there is one.

OR

• Roll back to the previous baseline.

See Mark a baseline for deletion (page 49), which gives the steps for marking
a baseline for deletion and deleting a baseline using the Save Offline and
Delete command. Marking a baseline for deletion will make it unavailable for
developers. (After all developers have updated their projects, you can delete
the bad baseline.)
Build Manager’s Guide 40

Chapter 3: Build management basics
System test cycle
The system test cycle includes the following:

• Update (page 42)

• Show and resolve conflicts (page 42)

• Build and test (page 42)

• Build using specific tasks (page 42)

• Create a baseline (page 74)

• Release the software (page 45) (optional)

• Prepare for a new release (page 46) (optional)

The system test cycle enables you to do more in-depth testing on a specific set of
tasks, insulated from ongoing changes by developers. The goal is to produce an
installation area or to produce release media that meets a quality standard.
Because you can select which tasks to add to the system testing project, they are
insulated from ongoing changes. This gives you the ability to build, fix, and test
the software apart from ongoing changes until it meets an agreed-upon quality
standard.
The system test area is more stable and easier to build because most of the
integration problems will be resolved before the software is at the system test
level.
The system test cycle usually is used in preparation for a milestone, such as a
release. The frequency of the system test cycle and the level of testing will depend
on several situations, such as:

• At the beginning of a release cycle, when many new features are being added,
system testing may happen only infrequently because it takes longer and is
harder to test, usually requiring the development of new test cases.

Also, since software development is still underway, the goal is to find defects
and develop new tests, not to create a stable installation or release.

• After the development phase is over and the team is stabilizing the software
and fixing defects, you may want to do system testing more frequently,
perhaps once or twice per week.

• At the end of the development cycle, you will want to test every change, in
anticipation that each iteration of the software may be the one that is
released.
41 Build Manager’s Guide

System test cycle
The following overview should give you an idea of what the system test build
cycle includes:

1. Update the system test build management project hierarchy, show conflicts,
resolve conflicts, then build. Because you are trying to obtain a very clean
system test area, be sure to show and resolve conflicts carefully. You then
will need to create a new system test installation area or media to be tested.

2. Test the resulting products. If defects are found, create tasks.

3. To fix the defects necessary to meet the quality standard for the system test
area, do the following:

• The project team decides which problems to fix.
• Developers are assigned tasks to fix the problems.
• Developers will set the new task as their current task and fix the

problem.
• Developers complete their current task. They might notify you when

they complete their tasks.
• The build manager adds the completed tasks to the system test folder

(back to step 1).

4. When the system test area meets the agreed-upon quality standard, make it
available for general use or release it to customers. Create a baseline (page
74) containing the projects at that point in the release.

Update
You are ready to update the build management project hierarchy. This is
described in How to update (page 54).

Show and resolve conflicts
You now have updated your build management project hierarchy. You are ready
to identify and resolve potential configuration problems before you build your
application. This is described in How to detect conflicts (page 64).

Build and test
This topic is discussed in Build and test (page 39).

Build using specific tasks
After testing is complete and if the quality of the software is approved, you are
ready to Release the software (page 45).
Build Manager’s Guide 42

Chapter 3: Build management basics
If defects were found and your project team has determined the specific tasks
they want you to build into the hierarchy, you need to add the approved tasks to
the appropriate project grouping.

1. Right-click over the appropriate project grouping, and clear Automatically
Update Baseline & Tasks.

This keeps the baseline and tasks from changing during an update operation.
The baseline and tasks are a part of the project grouping; therefore, if you
don’t want a new baseline chosen and new tasks to come in automatically
when you update a project, you must turn off the this option in the project
grouping that the project is in.

2. Add approved tasks to the project grouping in any of the following ways:

• Drag and drop the approved tasks onto the project grouping.
• Right-click over the approved task and add it to the project grouping.
• Use the Tasks tab in the Project Grouping Properties dialog box. See

"Add a Task to a Change" in Perform a Rebuild in Telelogic Synergy
Help for instructions.

3. Right-click over the appropriate project grouping, point to Update, and
select All Projects.

The update operation will bring in the changes from the new task(s).

4. Show and resolve conflicts. (See Resolve conflicts (page 67) for details.)

5. Rebuild your product.

6. Create a baseline (page 74).

Once you’re satisfied with the build quality, you can create a test baseline,
which saves a copy of the build made available to SQE and enables
developers to view the changes in the build, but doesn’t publish or release the
baseline for everyone’s use.

Note that Update is still disabled for the appropriate project grouping. You
can enable it when you’re ready to accept tasks as specified in the process
rule.

All the tasks that you want included in your next release or milestone are now in
the project grouping. You can begin another build cycle with the approved fixes.

From the CLI

1. Be sure your role is set to build_mgr.
43 Build Manager’s Guide

System test cycle
2. Add the approved completed tasks to your System Testing project
grouping (for example, All CM/6.4 System Testing Projects from
Database M).

3. Use the following command to add tasks (503, 505 and 601) to the System
Testing project grouping:

> ccm project_grouping -add_tasks 503, 505,601 "All CM/6.4 System
Testing Projects from Database M"

All the tasks that you want included in your next build are now in the All CM/
6.4 System Testing Projects from Database M project grouping. You can
begin another build cycle with the approved fixes.
Build Manager’s Guide 44

Chapter 3: Build management basics
Release the software
As soon as your application has passed system testing, you’re ready to release the
baseline and all objects.
If you’ve already created a baseline, you can release it. If you need to Create a
baseline (page 74), do so now. The following step shows you how to release a
baseline.

• Select the system testing baseline(s), right-click over the baseline(s), and
choose Release.

At this point, you might be ready to prepare your product for delivery to
customers.

Additionally, you can rename the baseline or change the versions of the projects
and products in the baseline, as you did when you published the baseline. You
can perform these operations together from the CLI only.

1. Start Telelogic Synergy from the command prompt.

ccm start -h engine_host -d database_path -nogui

After the session starts, the Telelogic Synergy address (CCM_ADDR) is
printed in your command window (Windows) or in the shell where you
started the session (UNIX).

2. Set your role to build_mgr.
ccm set role build_mgr

3. Optionally change the name of the baseline or the versions on its projects.

Changing the version to a meaningful name is a good visual cue to reflect the
purpose of the project. (See the discussion of version templates in step 2 in
Publish a baseline to developers (page 77).)

Additionally, you can use the baseline name to reflect the purpose of a
release. Note that you can modify the baseline name after you create it.
ccm baseline -modify "6.5 Turn 10" -name "6.5 General
Release" -versions
-vt "%{platform:-}%{platform:+_}%{release}_GR"

4. Release the baseline.
ccm baseline -release_baseline "6.5 General Release"
45 Build Manager’s Guide

System test cycle
Prepare for a new release
After you have released your application, you will be ready to start on the next
release. You will need to complete the following operations:

• Add new releases. (page 46)

• Update the release for all incomplete tasks. (page 46)

• Reuse the integration testing projects, if you haven’t created new ones
already. (page 47)

• Create the system testing projects (page 29)

• Tell developers to reuse their development projects. (page 47)

1. Add new releases.

Add a new release (see How to modify release values (page 21)), select the
process that will be used for the new release, and select the baseline release
for the new release.

2. Check that the process rules are set up correctly for the new release.

3. Update the release for all incomplete tasks.

During the development cycle, some tasks are not included for the current
release. One way of doing this is by not completing the task. To be able to
bring in the task when it is completed during your new release, you will need
to update the task’s release value so that update sees the task as a candidate
to be included in your project configuration.

4. Update the release for all completed tasks not included in the release you just
released. (Additionally, be sure to update the release values for change
requests. You must use Telelogic Change to do this.)

Telelogic Change Users:

• Choose a query called What is not in this build? to run a query in
Telelogic Change that shows change requests that are set to the current
release, but are not in the build. This query prompts you for specific
release information before performing the query.

OR

Telelogic Synergy Users:

a. Start the Query dialog box.

Click Find > Tasks

b. In the Query dialog box, enter the following custom query. The
following query returns all completed tasks for the given release
Build Manager’s Guide 46

Chapter 3: Build management basics
(task_release) that are not in the latest baseline with the given
release (baseline_release) and purpose (baseline_purpose).

is_available_task_of_release(task_release,
baseline_release, baseline_purpose)

Further, the latest baseline is selected from all baselines in the
test_baseline, published_baseline or released state. For a task to be considered
to be in a baseline, it must be included in the update properties of all
projects making up that baseline.

The results of the query shows tasks that were completed after the final
build for the release, and were incorrectly left tagged for the release. (Tag
these tasks for the new release.)

c. If you need to add tasks that should be in the release to the appropriate
project grouping, see Add tasks to a project grouping in Telelogic
Synergy Help for instructions.

> ccm task -modify -release new_release task_number (5-12, 18, 23, 33-
105)

5. Reuse the integration testing projects, if you haven’t created new ones
already.

a. Right-click on the top-level integration testing project and select
Properties.

The Properties dialog box appears.

b. If you put the release in the version, be sure to change the version.

c. Save the changes by clicking OK.

If the project contains subprojects, the release will be copied
automatically to the subprojects.

6. Reuse the system testing project, if you haven’t created new ones already.

7. Tell developers to reuse their development projects.

Developers will need to change the project hierarchy’s release value.

From the CLI

1. Be sure your role is set to build_mgr.

2. Add a new release value (see How to modify release values (page 21)), select
the purposes that will be used for the new release, and select the baseline
release for the new release. (This determines how the process rules will be set
up.)
47 Build Manager’s Guide

System test cycle
3. Update the release values for all incomplete tasks.

During the development cycle, some tasks are not included for the current
release. One way of doing this is by not completing the task. To be able to
bring in the task when it is completed during your new release, you will need
to update the task’s release value so that update sees the task as a candidate
to be included in your project configuration.

4. Query for the incomplete tasks with a release value that matches the one you
just released and with a state of task_assigned.

> ccm task -query -release old_release -custom "status=’task_assigned’"

Your output should look similar to the following:
1) Task 42: Add fonts to guilib
2) Task 56: Fix rounding error in calculator

5. Modify the release value for all incomplete tasks you queried for in step 4 by
using the selection set reference form.

> ccm task -modify -release new_release @

6. Update the release values for all completed tasks not included in the current
release.

a. Find all tasks that are marked for the release, but that were not included
in the release.

> ccm task -query -not_in_release project

where project is the top-level project for the release that was just released.

The results of this query show the following kinds of tasks:

* Tasks that were completed after the final build for the release, and
were incorrectly left tagged for the release. (Tag these tasks for the new
release.)

* Tasks that were completed for the release, whose associated objects
were obsoleted, and don’t need to be a part of the final release. (Ignore
these tasks.)

b. Examine each task in the first group of tasks and update the release.

> ccm task -modify -release release

7. Reuse the integration prep project.

a. Query for all projects in the integration prep project hierarchy.

> ccm query "hierarchy_project_members('project_name-version', '')"
Build Manager’s Guide 48

Chapter 3: Build management basics
b. Update the release values for all projects in the integration prep project
hierarchy by using the selection set reference form.

> ccm attr -modify release -value new_release @

Note If the integration prep projects have release-specific versions,
such as 4.9_int, you also should update the version values to
reflect the new release.

8. Create the system test prep projects.

This operation is described in Create the system testing projects (page 29).

9. Tell developers to reuse their working projects by doing the following:

a. Query for all their working projects for the current release.

> ccm query -type project -owner owner -state working
"release=’current_release’"

b. Update the release values for all their working projects by using the
selection set reference form.

> ccm attr -modify release -value new_release @

Mark a baseline for deletion
Once you’re ready to prepare for a new release, you’ll want to clean up baselines
that are no longer needed. During the course of a release, you will have created
several baselines, especially during the integration testing phase, and will want to
clear those that are no longer necessary to avoid cluttering the database.
See Remove unnecessary baselines (page 83) for steps.
49 Build Manager’s Guide

System test cycle
Build Manager’s Guide 50

4 Update and conflicts

How update operates
The update operation updates your project with the latest set of changes that
satisfy the update properties. The update properties resolve to a baseline project
and a set of tasks. Update computes the baseline project and the set of tasks
differently, depending on whether you update projects manually or by using a
process rule. These are distinct processes and will be discussed separately.
In both cases, once update computes the baseline project and tasks, it performs
the following steps:

1. Builds a list of candidates based on the baseline project and tasks.

a. Each member of the baseline project is a candidate.

b. Each object version associated with each task is a candidate.

This step is performed once for each project.

2. After the candidates have been collected, a simple set of selection rules is
used to select the best object version for each directory entry (page 139).

This step is performed once for each directory entry in the project.

3. Update uses the selected object version in that directory entry.

This step is performed once for each directory entry in the project, if the
selection has changed.

Update with process rules
If the project uses a process rule, the baseline project and tasks are computed
from the baseline and tasks on the project's project grouping. A project
grouping's baseline consists of a collection of baseline projects. The tasks on the
project grouping are exactly the set of tasks used by update. The baseline project
used by update is the project in the project grouping's baseline that matches the
project being updated. A baseline project is considered matching if it has the same
name and instance as the project being updated, and the same platform, if the
project has a platform.
The project grouping's baseline and tasks are computed as follows:

1. If the project grouping has auto-update off, the baseline and tasks that were
previously computed and saved on the project grouping are used.
Build Manager’s Guide 51

But, if the process rule specifies that baseline projects are selected using the
Latest projects method, then the project grouping will not have a baseline,
and the baseline projects will be recomputed in the same way as if auto-
update were on.

2. If the project grouping has auto-update on, the baseline and tasks are
computed as follows:

a. The baseline is computed according to the process rule for the project
grouping. The process rule specifies rules that are used to determine
which baseline to use: Latest baseline, Baseline specified on process
rule, Latest projects, or Baseline specified on project grouping.
When you update a project, update identifies a baseline project from the
baseline selected from the process rule's baseline selection rules.

If the process rule specifies that baseline projects are selected using the
Latest projects method, then the project grouping will not have a
baseline, and each project will have a baseline project that is the latest
matching static project for the release and purpose specified in the
process rule.

b. The tasks are computed from the folders and tasks specified on the
instantiated process rule for the project grouping.

* For each query-based folder, update re-evaluates the query to update
the tasks in the folder, and then makes a list of the tasks in all of the
folders.

* If the project grouping has a baseline, the tasks in the baseline are
subtracted from this computed set of tasks.

* If any tasks have been manually added or removed from the project
grouping, those tasks are added or removed from the computed set of
tasks.

Update manually

Use the custom purpose if you need to select your baseline and tasks manually.
When you use the custom purpose, you can choose a baseline directly on the
project grouping. You can then add tasks manually by selecting the appropriate
tasks, right-clicking, and choosing Add to Project Grouping.
Build Manager’s Guide 52

Chapter 4: Update and conflicts
Update guidelines
The following are guidelines for build managers to consider during update
operations:

• Update all projects to be built.

You will need to update the entire build management project hierarchy in one
operation. This ensures that you build consistent versions into your
application. If one project is not updated, the products built for it may not be
compatible with the rest of the products you build.

If building the project hierarchy in one operation is not feasible, see The
modified build process for multi-phased builds (page 93) for a multi-phased
approach.

Note The Use Version operation is not a substitute for
update. Sometimes you might need to use a particular version
for a quick test; however, only a full update enables you to
receive a complete, consistent project configuration, reducing
the probability of getting partial changes.
53 Build Manager’s Guide

How to update
How to update
At this point in your application development, you are ready to update the build
management project hierarchy.

1. Right-click over the appropriate project, and point to Update and choose
Members and Subprojects.

2. When the update is complete, be sure to review the results.

If you had any problems during the update operation, you might need to
read more extensive output. See Diagnose selection problems (page 60).

From the CLI

1. Be sure your role is set to build_mgr.

2. Update all projects for this release and purpose.

The following command shows you how to update the integration prep
projects:

> ccm update -project_grouping "All X/1.0 Integration Testing
Projects"

3. When the update is complete, be sure to review the results.

If you had any problems during the update operation, you might need to
read more extensive output. See Diagnose selection problems (page 60).

Selection rules
When you update a project or directory, the update operation considers the
candidates available for each object in the project, and compares their properties
with the properties of the project, such as the platform, to select the most
qualified candidate.
The selection rules analyze each candidate object version.

• If the object version’s properties are incompatible with the project, it is
considered ineligible and will never be selected.

For example, if user joe has an object version in the working state, and user bob
performs an update, user joe’s working state object version will never be
included in user bob’s project configuration.

• The object version receives scores, based on points, for its characteristics.
The points are cumulative. For example:

A working object version receives five points for its status.
Build Manager’s Guide 54

Chapter 4: Update and conflicts
An object version whose platform matches the project’s platform receives
eight points.

After all candidate object versions have been analyzed, update selects the one
with the highest score. (The ineligible candidates are not considered.)

If multiple candidates are tied for the highest score, update selects the one with
the latest creation time.

Note Regardless of whether you build from the Telelogic
Synergy GUI or CLI, use the Detect Membership Conflicts
operation to detect parallel conflicts (as well as other
conflicts). The Membership Conflicts dialog box will display
parallel messages whenever multiple candidates are parallel.

This generally means that a developer forgot to merge his
changes, or a selection property was not set to the right value
on one of the parallel branches.

For help with conflict detection, see How to detect conflicts
(page 64).

Update and baselines
When a project is updated based on process rules, update re-evaluates which
baseline project (page 137) it should use. For more information on baselines and
updating, see Baselines and the update process (page 80).
Sometimes, it’s not possible or practical for you to create full baselines that
include all projects for a given release and prep purpose. In these situations, you
can Create an incremental baseline (page 81).

Update with platform values
When you update a project that has a platform value set, update prefers
candidates with matching platform values. It will never select a candidate with a
platform value that does not match, but it could select a candidate that does not
have a platform value set.
During update, the candidates’ properties are compared with the project’s
properties. The platform values are compared as follows:

• If both the project and the candidates have platform values set and the
platform values do not match, update never selects the candidate.
55 Build Manager’s Guide

How to update
• If the platform values match, the candidate is preferred; that candidate
receives eight points.

• If neither the project nor the candidate have a platform, the candidate is
preferred; that candidate receives eight points.

The platform property is used primarily on projects and products. Source
code usually is written so the same file can be built on different platforms
(for example, using #ifdef ’s); therefore, individual source files typically do
not need platform properties set.

Review update results

• Review the update results to be aware of problems.

During an update, the output is written to the session log file and the
Messages dialog box. However, reading the update results in this log file
can be cumbersome because all other messages also are written to this file.

You can redirect the ccm_client.log (user interface log) file so that it
points to a location other than your Windows profile directory (Windows
users) or home directory (UNIX users). This is done by setting the
user.default.logfile key in your ccm.user.properties file as
follows:

1. Open your properties file.

For Windows users, the file is called ccm.user.properties and is
located in your Windows profile directory.

For UNIX users, the file is called .ccm.user.properties and is
located in your home directory.

2. To redirect a log file to C:\cmsynergy\synint\joe, do the
following:
user.default.logfile=C:\\cmsynergy\\synint\\joe\\
ccm_client.log

3. To rename a log file (typically when working in multiple databases), for a
database named int, do the following:
user.default.logfile=C:\\cmsynergy\\joe\\
ccm_client_int.log

4. Save and exit the file.

Note that when using the user.default.logfile key, you must use
the complete path and file name, as in the example above.
Build Manager’s Guide 56

Chapter 4: Update and conflicts
Additionally, users must enter Windows paths using double backslashes.

Read the update results after every update/build cycle to look for problems.
At the end of the update messages, Telelogic Synergy writes a summary in
the Messages dialog box or output log describing the success or failure of
an update; however, make a habit of reviewing the logs to read detailed
reports of update failures.

Additionally, a successful build does not always mean that the software is
configured correctly. Reviewing the update results is a good way to find
errors in the configuration: the wrong version of an object or project,
changes that were not merged, incorrect selection property settings, and so
on. Here are some things to look for.

• Check for parallel versions.

If you build from the Telelogic Synergy CLI and you set the
reconfigure_parallel_check option, if a given set of update
candidates contains parallel scoring, you will receive a warning message
similar to the following in your Telelogic Synergy Classic ccm_ui.log:
Warning: Parallel versions selected by selection
rules, latest create time will be used:
save.c-3
save.c-2.1.1

Check the history of the object called out in the warning message to see if
parallel versions that should have been merged were not. If so, your build is
missing part of a change, and you should notify the developers involved that
they need to merge the parallel versions.

For information on how to check for parallel versions when building from
Telelogic Synergy or the Telelogic Synergy CLI, see Select parallel
notifications during update. (page 14)

• Check for replaced subprojects.

Your build management project hierarchy must stay together as a unit. If
update properties (release, platform, etc.) are set incorrectly, update could
select a different version of a subproject. Check for messages such as:
Subproject editor-int_3.0 replaces editor-int_2.1
under toolkit-2:dir:1

If you find any messages about replaced projects, investigate the project
versions; check their update properties to verify that they are correct.

• Check for empty directory entries.
57 Build Manager’s Guide

How to update
By default, Telelogic Synergy leaves a directory entry empty if there are no
candidates for it. If you find any, you might need to look for reasons for the
occurrence, such as a task with a wrong release value. Look for messages,
such as the following:
2 directory entries were left empty because they had
no candidates.

Empty directory entries are not always an error. For example, directory
entries might be left empty if you build products on multiple platforms
within a single directory. A shared library might be named mylibrary.so
on Solaris and mylibrary.dll on Windows. If you control both products
in the same directory, but use that directory in two parallel projects for the
two platforms, you will get an empty directory entry for the Solaris library in
the Windows project, and vice versa.

• Check for replaced makefiles.

A developer could customize a makefile with settings specific to his
environment, then accidentally check in the custom makefile. If any
makefiles are replaced during the update process, review the new versions of
the makefiles to ensure that the changes are appropriate for your build
environment. Look for messages, such as the following:
'makefile-6:makefile:3' replaces 'makefile-
5:makefile:3' under 'editor-2:dir:1'

• Check for work area conflicts.

If your project has conflicts, you will need to use Sync Work Area to resolve
work area conflicts, then update again. Look for messages, such as the
following:
Unable to update membership of project
ccm_client,td_6.5sp1 with
InteractiveProcessCreator.java,21:java:J#1 due to work
area conflicts.

• Check for older object versions that replaced newer object versions.

If an older object version replaces a newer one during the update process,
perform a show conflicts operation to help pare down possible problems.
Look for messages, such as the following:
'foo.c-2:csrc:3' replaces 'foo.c-3:csrc:3' under
'toolkit-4:dir:1'

Additionally, look at the task that the newer object version is associated with
and look at the process rules for the project. Comparing these might tell why
Build Manager’s Guide 58

Chapter 4: Update and conflicts
the older version replaced the newer version; it should show you some
difference in the process rules that is causing the task to add the older object
version.

If you see any of these problems and cannot figure out what happened,
perform another update with verbose messages set to receive more detailed
update results in your output log. (Set Show verbose messages in the
Options dialog box’s Actions tab, in the Update option.)

The following sections describe update in greater detail:

• How to update (page 54)

• Selection rules (page 54)

• Update with platform values (page 55)

• Diagnose selection problems (page 60)

• Verify the update properties (page 61)
59 Build Manager’s Guide

Diagnose selection problems
Diagnose selection problems
Sometimes you need to figure out why a certain object version was or was not
selected during an update. Sometimes an occurrence in the build management
project hierarchies makes this necessary; other times you might need to help a
developer with a problem in his development project.
Check the following items in the order given:

1. Check the project’s process rules to be sure that:

• the task queries are correct on the folder template.
• the correct folders or folder templates are a part of the process rule.

(You might need to update the process rule if the project’s folders or
folder templates are incorrect.)

• the baseline is set.

2. Run the update operation, using the verbose option. The verbose option
generates extra information about the candidates that are analyzed. It shows
the scores for each candidate, and why they received the scores.
Troubleshoot using the given information.

Note You can perform a verbose update on just the directory
with the questionable object version. This is faster than
running the verbose update from the top-level project.

3. Check the project grouping properties.

• If you turned off Auto Update, be sure that you turned it back on.
• If you removed a task temporarily, check to be sure you added it back.
• If you manually added a task, be sure you want to keep it.
• Check that the baseline project is set.

4. Compare process rules to ensure they’re set correctly.

a. Right-click over the project or project grouping and choose Process
Rule Properties.

b. In the Process Rule Properties dialog box, click the object menu
(located in the upper left corner) and choose Compare with Process
Rule from Process.

5. Right-click over the project you’re having problems with and choose
Properties. Verify that the baseline project is appropriate.

6. If you were using a generic process rule (page 139) that uses the Baseline
specified on process rule setting, then you added it to a release, you must
specify a baseline for the process rule. If you don’t, the project grouping
Build Manager’s Guide 60

Chapter 4: Update and conflicts
using that process rule will not get a baseline and won’t update correctly. You
can specify a baseline in the Process Rules Properties dialog box. (See
Modify the properties of a process rule in Telelogic Synergy Help.)

If you have tried the suggestions above, but still have selection problems, try the
following:

• Compare process rules for two releases.

If your projects updated correctly in the last release, but they are not
updating properly in your new release, compare the process rules between
the two releases.

See Compare two like objects in Telelogic Synergy Help.

• Compare the process rule for the current release to the process rule from the
process.

• Compare update properties for two projects.

If two projects for the same purpose and release update differently, you can
compare their update properties. This is useful for a developer who is setting
his update properties manually. He can see if the folders in his update
properties differ from those based on templates.

See Change the update properties for a project in Telelogic Synergy Help.

• Compare two folder templates or two folders.

Compare folder templates or folders to ensure your query is correct or to
find out which members differ between two folders.

See Compare two like objects in Telelogic Synergy Help.

Verify the update properties
If you have performed a verbose update and can find no problems in the
messages, but your project is not configured correctly, use the following list to
check that the update properties are set correctly for your software release:

1. Start the appropriate Project Grouping Properties dialog box.

• Verify that the release is set correctly.
• Verify that the purpose is correct.
• Verify that the process rule is set correctly.
• Verify that the correct baseline project (page 137) is set. (Be sure that the

baseline contains a version of the project you are updating.)

This is very important! If you don’t have a baseline project and the
project you have is not new, your project will be incomplete.
61 Build Manager’s Guide

Diagnose selection problems
2. Look at the tasks in the project grouping properties. Be sure the tasks you
expect are there.

• Look at the folder properties by double-clicking the folder template. In
the Folder Template Properties dialog box, click the Folder
Properties tab.

• Verify that the release is set correctly on the folder’s query, if it is a
query-based folder.

3. If the update properties are correct, look at the folder templates. (Right-click
over the project grouping and choose Process Rules Properties, then click
the Tasks tab.)

• Look at the folder properties by double-clicking the folder template. In
the Folder Template Properties dialog box, click the Folder
Properties tab.

• Verify that the release is set correctly on the folder’s query, if it is a
query-based folder.

Alternatively, you can Compare two like objects to find out information
about folders, folder templates, process rules, and project groupings.
Build Manager’s Guide 62

Chapter 4: Update and conflicts
How conflict detection operates
A conflict is a potential issue with your configuration. Conflict detection is a way
to check that your project contains the configuration you requested. Conflict
detection identifies when only part of a change is included in your configuration.
It helps ensure that if you include a particular change (as defined by a task), it
includes all of the change.

Note Remember, these are potential issues. Not every
conflict is a bad thing. Whether you want to be notified about
certain conflicts will depend on how your software
development team works.

For example, after you update your project, then perform a show conflicts
operation, you will receive a conflict warning if you have an object that is
associated with multiple tasks. If your team often rewrites a program to fix
multiple problems in that program, then an object that is associated with multiple
tasks will not be a problem to your organization. You can turn off such conflict
notifications so that you are informed of only those that you will want to resolve.
Telelogic Synergy’s conflict detection enables you to perform an operation that
will tell you if your configuration is missing part of a change or includes an
unexpected change.
The next several sections will show you how to find some of these conflicts, what
causes these potential issues, how to resolve them, if necessary, and how to tell
Telelogic Synergy what type of conflicts you want to be notified about.

How conflicts arise
A conflict arises when there is a difference between the project’s update
properties and the project’s members. The relationships Telelogic Synergy uses to
detect conflicts include:

• Changes that belong together (because they are associated with a task).

• Changes that include other changes (because they are predecessors).

• Tasks you have specified to be in your project in the update properties.

For example, Telelogic Synergy detects a conflict when an object is a member
of your project, but is not associated with any tasks in the project’s update
properties. Alternatively, Telelogic Synergy detects a conflict when an object
is associated with a task specified in your project’s update properties, but the
object is not in your project (directly or as a predecessor of another object).
63 Build Manager’s Guide

How conflict detection operates
Update your projects immediately before showing the conflicts for a project or
projects. If a project’s update properties change after you update it or you
manually update its members, conflicts will be shown for discrepancies between
the project’s update properties and the project’s members. Therefore, showing a
project’s conflicts immediately after updating the project minimizes the chance
of additional conflicts.

How to detect conflicts
Telelogic Synergy’s conflict detection operation shows you the conflicts for a
project hierarchy. Additionally, you can perform deep conflict detection, which is
a deep analysis of project members that considers tasks and objects that are in or
came before the baseline. (See Perform deep conflict detection in Telelogic
Synergy Help.)

• Right-click over the project for which you want to show conflicts, select
Detect Membership Conflicts, and choose Projects and Subprojects.

A progress indicator appears while Telelogic Synergy analyzes your project.
When the analysis is complete, the Membership Conflicts dialog box
displays your project’s conflicts. If no conflicts are found, a message displays
in the main window status bar indicating that no conflicts were detected.

Now you are ready to resolve conflicts. If you are not sure what the conflicts
and dependencies mean, read the next two sections, Categories of conflicts
(page 65) and Conflicts and dependencies (page 65). If you already know
about conflicts and dependencies, you are ready to resolve the conflicts in
your project, which is described in Resolve conflicts (page 67).

Many options in the Membership Conflicts dialog box can help you sift
through conflicts. For a discussion of those options, see Resolve
membership conflicts in a project or project grouping. in Telelogic Synergy
Help.

From the CLI

• Show conflicts for the top-level project and all subprojects in your prep
project hierarchy.

> ccm conflicts -r project_spec

The -r option specifies that conflicts will be shown recursively for all
subprojects and the top-level project. If you do not want to show conflicts
for the hierarchy, do not include the recursive option.

Now you are ready to resolve conflicts. If you are not sure what the conflicts
and dependencies mean, read the next two sections, Categories of conflicts
Build Manager’s Guide 64

Chapter 4: Update and conflicts
(page 65) and Conflicts and dependencies (page 65). If you already know
about conflicts and dependencies, you are ready to resolve the conflicts in
your project, which is described in Resolve conflicts (page 67).

Categories of conflicts
Two primary categories of conflicts exist. These categories include:

• Changes that are in your project, but not in your update properties.

For example, if you use a new object version without adding its task to your
update properties, the object will show as a conflict.

• Changes that are in your update properties, but not in your project.

For example, if your project’s update properties contain two tasks that are
associated with parallel versions of the same object, the version that is not a
member of your project will show as a conflict.

Because of the association between a task and selected object versions,
Telelogic Synergy shows conflicts as a task or an individual object.

Conflicts and dependencies
In Telelogic Synergy, an object version does not stand alone. It includes all of its
predecessor’s changes; each successive version is checked out from the earlier
version and is based on the contents of the earlier version.
Dependency relationships is a key concept in understanding conflicts. Let's take
a look at a dependency relationship: Suppose that bar.c-1 is associated with task
12, bar.c-2 is associated with task 25, bar.c-3 is associated with task 37, and
bar.c-4 is associated with task 48. Therefore, bar.c-4 contains not just the change
from task 48, but also the changes from tasks 37, 25, and 12.
Now let's see how dependencies affect your project's configuration. If your
project contains bar.c-3, does it contain task-37? Yes. But it also contains tasks
25 and 12 because bar.c-3 includes its predecessors' changes. What if task 37 is in
your project's update properties, but task 25 is not? Then it meets the definition
of a conflict: a change that is in your project, but not in your update properties.
So far, the example of bar.c is one-dimensional. When you consider that each
task can be associated with other object versions, dependencies become much
more complex. For example, say task 37 (associated with bar.c-3) is also
associated with foo.c-6. If bar.c-3 or one of its successors is included in your
project, then foo.c-6 or one of its successors should also be included in your
project. Furthermore, it means that the tasks associated with the predecessors of
foo.c-6 are included in your project, so their other associated objects will be
65 Build Manager’s Guide

How conflict detection operates
included, too. Telelogic Synergy analyzes all of the history and task relationships
to determine which changes are included, and which should be included based
on dependencies.
Your project is based on another project, called its baseline project (page 137).
The baseline project contains all the changes to earlier versions of its member
objects. Telelogic Synergy needs to look for conflicts in only the differences
between the current project and the baseline project. Therefore, conflict analysis
looks at each of the project's members only as far back as the version that is in
the baseline project.

Conflict terminology

When Telelogic Synergy shows conflicts in your project, each type of conflict has
a name. This section describes the terminology for each type of conflict.
Changes that are directly included in your project are called explicit changes.
Changes that are indirectly included are called implicit changes.
Let's build on that. Changes that are in your update properties are known as
explicitly specified because you have explicitly specified those tasks to be
included in your project. Changes that are not explicitly specified in your update
properties but are required because other changes depend on or include them are
known as implicitly required.
Changes whose source code is in your project are known as included. If an
included change is not explicitly specified, it is implicitly included. Implicitly
included changes are included in your project because other changes in your
project depend on or include them.

Conflict message definitions

The conflict message definitions are the conflict messages you might see when
you run conflict detection. Note that some display by default, while others do
not. The messages are described in Telelogic Synergy Help, in Resolve
membership conflicts in a project or project grouping.
If your team requires different default display settings, users in the ccm_admin role
can change them. This is described in conflict_parameters in Telelogic Synergy
CLI Help.
Build Manager’s Guide 66

Chapter 4: Update and conflicts
Resolve conflicts
When you are ready to resolve conflicts, keep the following in mind:

• Update to bring project members in sync with the update properties. If you
do not understand why an object version was selected, perform a verbose
update.

• Gather information about the conflict:

— Look at the project to see which version of the object is being used.

— Look at the object’s history to see the relationship between the object in
conflict and the object that is being used.

— Look at which tasks are associated with the objects you are interested in.

• For each implicitly included or required object:

— Consider whether its task should be added to the project’s update
properties. If it should be, find out why it is not being included already: Is the
task’s release value incorrect?

— If this object’s task should not be added to the project’s update properties,
look at its successors, and consider whether their tasks should be removed
from the project’s update properties. If they should be, find out why they
were included: Are the release values set incorrectly?

• If you update the project’s update properties or task release values, remember
to update again.

• For each parallel version, consider whether it needs to be merged. (If so, you
can create and assign a new task.)

• After resolving as many conflicts as possible, run conflict detection again.
Often, clearing up one conflict resolves many others, since a conflict can
have a cascading effect because of dependency relationships.

Remember that each team has its own unique process and method for
keeping track of changes. This will impact what your team considers to be a
conflict. One team might consider a specific conflict as part of their
methodology, and that team would turn off that particular conflict. Another
team might view that same conflict as a problem to be corrected
immediately. Be sure that your team agrees on the kind of conflicts that
should be addressed as early in your development process as possible.
67 Build Manager’s Guide

Resolve conflicts
Build Manager’s Guide 68

5 How baselines work

What’s a baseline?
A baseline is a set of projects and tasks used to represent your data at a specific
point in time. A baseline has many uses. When you perform an update, Telelogic
Synergy uses a baseline as a starting point to look for new changes. You can also
compare two baselines to see what changes have been made relative to a particular
build. If you use Telelogic Change, you can use baselines to generate change
request reports.
Typically, a build manager creates a baseline; a developer doesn’t need to create a
baseline because he doesn’t make his builds available to other users.
You might find it useful to create a baseline as soon as you perform a build. You
can create a baseline and make it available to the test group without making it
available to all developers. This is called a test baseline. Making a test baseline as
soon as you build saves a representation of the build in Telelogic Synergy in case
it’s needed later to create a fix for that particular build.
Creating a baseline for each Integration Testing and System Testing build
enables testers and developers to refer back to the set of changes that were used
to create the build. Typically, you’ll create a baseline for all projects in the same
release and purpose. For example, you would create a baseline for each
Integration Testing build using all Integration Testing projects for that
release.
Baselines also improve performance for update operations. An update that uses
baselines only needs to analyze the tasks that were added since the last baseline,
rather than all tasks for the entire release.
Telelogic Build Manager’s Guide 69

How is a baseline used?
How is a baseline used?
When you create a baseline, you choose a list of projects to be included in the
baseline. Be sure to include all related projects in your baseline so that you have a
complete set for reference.
Any projects that are already in a static state are included without further change.
For each project that is not static (for example, a build management project), the
following actions occur when the baseline is created:

• A new version of the project is copied. This version has no work area, which
makes the operation as fast as possible.

• If multiple projects are copied within a hierarchy, they are used in a single
hierarchy that is a copy of the original hierarchy.

• The project history is updated to show the baseline inserted before the build
management project that it was copied from.

• The new projects are checked into a static state.

The original build management projects and their work areas are left unchanged.
The benefit is that they will continue to be rebuilt incrementally. If the build
management projects were checked in and new prep versions checked out from
them, they would be entirely rebuilt because uncontrolled intermediate products
would not be in the newly checked out projects’ work areas.
After creating a baseline, you can make work areas available for other users by
turning on work area maintenance for selected projects in the baseline project,
which will write it out to the work area. Typically, you will want to do this for
absolute subprojects if developers reuse the static subprojects rather than
checking out their own versions. The following commands are examples of how
to query the database, then turn on work areas:
ccm query "is_project_in_baseline_of
(baseline(’20070203’)) and name match ’*_ext_x’ and
platform=’UNIX’"

ccm wa -wa @
Telelogic Build Manager’s Guide 70

Chapter 5: How baselines work
Which projects should be in a baseline?
Synergy uses a baseline as a snapshot of projects and tasks at a particular point.
Before you create a baseline, you’ll need to consider how it will be used. The
update operation uses the baseline as a way of saying “start from here.”
Therefore, if you set up the baseline to contain projects from multiple
components or not to contain all the projects for a release, then Synergy will not
be able to use your baseline to update properly.
The next two examples show how to set up a baseline correctly, while the last
example shows a baseline that was set up incorrectly. Using baselines correctly
can improve performance when you update your projects.
The baseline is selected by its release; therefore, it is important to have projects
with a consistent release in the baseline. The projects in the baseline are used as
baseline projects for the projects in a project grouping. In the following table,
notice that every project in the project grouping maps to a project in the baseline.
This example shows a complete baseline.

In the following table, notice that two separate baselines are needed for a
hierarchy with mixed components. This example shows correct baselines.

Baseline for CM/6.4
build 1234

<Baseline Project Grouping for CM/
6.5 Integration Testing

cm_top-CM/6.4 < Baseline project cm_top-CM/6.5
cm_gui-CM/6.4 < Baseline project cm_gui-CM/6.5
cm_api-CM/6.4 < Baseline project cm_api-CM/6.5
cm_platform-CM/6.4 < Baseline project cm_platform-CM/6.5

Baseline for CM/6.4
build 1234

< Baseline Project Grouping for CM/
6.5 Integration Testing

cm_top-CM/6.4 < Baseline project cm_top-CM/6.5
cm_gui-CM/6.4 < Baseline project cm_gui-CM/6.5
cm_api-CM/6.4 < Baseline project cm_api-CM/6.5
cm_platform-CM/6.4 < Baseline project cm_platform-CM/6.5

Baseline for TC/4.6
build 5678

< Baseline Project Grouping for TC
4.6.1 Integration Testing

change_api-TC/4.6 < Baseline project change_api-TC/4.6.1
71 Telelogic Build Manager’s Guide

Which projects should be in a baseline?
If you create a single baseline for projects with mixed components, the projects
will probably not be able to find a baseline project correctly. In the following
example, notice that a subproject from the TC/4.4 release (in Italics in the table
below) is included in a baseline for the CM/6.4 release.
Synergy will not be able to use this project as a baseline project because the
baseline it’s a member of (for example, Baseline for CM/6.4 build 1234) won’t
be selected by any project grouping (for example, Project Grouping for TC
4.6.1 Integration Testing) that would use this as a baseline project. It will also
result in tasks for both releases being included in the baseline.
If all of the tasks in the baseline are not used by all of the projects in the baseline,
the tasks will not be subtracted by the project grouping during the update.
Optimally, new project members selected by the update operation are gathered in
this way:

• Synergy gathers all tasks specified by your process rules.

• Synergy subtracts all tasks from your baseline.

If you have a task in your baseline that wasn’t used by one or more projects
in your baseline, Synergy realizes this and won’t subtract it when calculating
tasks to use for update.

In the following table, change_api-TC/4.4 in the first column is from
another component and shouldn’t be in the CM/6.4 baseline. Because it is
there, all the tasks associated with it are also part of the baseline and none of
the tasks from either CM/6.4 or TC/4.4 are used by all of the projects in the
baseline; therefore, none of the tasks are subtracted. This will hamper
performance.

• Update selects candidates for each member of a project based on the
corresponding object in the baseline project and the tasks in the project
grouping properties. The candidates considered are the object in the baseline
project plus any new versions of that object associated with the tasks
collected, as explained above.

In the following table, missing in the first column shows that a baseline for
Project Grouping for TC 4.6.1 Integration Testing can’t be found.
Because there’s no baseline, there will not be a baseline project for
change_api-TC/4.6.1. This means that you won’t get the members that
you expect when you update the project.
Telelogic Build Manager’s Guide 72

Chapter 5: How baselines work
This example shows a bad baseline.

Baseline for CM/6.4
build 1234

< Baseline Project Grouping for
CM/6.5

cm_top-CM/6.4 < Baseline project cm_top-CM/6.5
cm_gui-CM/6.4 < Baseline project cm_gui-CM/6.5
cm_api-CM/6.4 < Baseline project cm_api-CM/6.5
cm_platform-CM/6.4 < Baseline project cm_platform-CM/6.5
change_api-TC/4.4

missing < Baseline Project Grouping for TC
4.6.1 Integration Testing

none < Baseline project change_api-TC/4.6.1
73 Telelogic Build Manager’s Guide

Create a baseline
Create a baseline
At this point, you’ve typically updated the integration or system testing projects,
dealt with conflicts, and built your products. You’re now ready to create a
baseline to save a copy of this build for future reference. When you create the
baseline, you can choose to publish it and make changes available to developers
immediately or wait to publish the baseline until the build has had more testing.

1. Right-click over a project hierarchy or project grouping and select Create
Baseline.

You can create a baseline from a build management project grouping or
from a project that’s static or is a build management project.

The Create Baseline dialog box appears.

Note When you create a baseline, you’ll choose a list of
projects to be included in the baseline. Be sure to include all
related projects in your baseline so that you have a complete
set for reference.

2. Modify the properties of the baseline, as required.

a. Type a name in the Name field.

This is a baseline’s name. It uniquely identifies this baseline within this
database. By default, Telelogic Synergy names baselines with the
creation date; for example, 20070309 stands for March 9 2007.
However, you can modify it. The following are restricted characters and
shouldn’t be used in the name: / \ ' " : ? * [] @ - #

Note that if you’re creating baselines in more than one database and
you’re using Telelogic Change to generate reports on these builds, use
the same baseline name in each of the databases. This allows you to
generate a build report that has a related baseline in more than one
database.

b. Confirm that your release is correct.

A release is a property that identifies a baseline that is specific to a
particular release.

c. Confirm that your purpose is correct.

A project’s purpose specifies which projects were used to create it, for
example, Integration Testing. The process rules use the baseline’s
purpose to select the appropriate baseline during an update operation.
Telelogic Build Manager’s Guide 74

Chapter 5: How baselines work
d. Optionally, you can set the build identifier by typing it in the Build field.

The build property shows the build identifier (letters, numbers, or
combination) associated with a baseline. The build identifier can contain
a maximum of 64 characters.

Note that if you’re creating baselines in more than one database and
you’re using Telelogic Change to generate reports on these builds, use
the same baseline build identifier in each of the databases. This allows
you to generate a build report that has a related baseline in more than
one database.

e. Type a description in the Description field to describe the baseline you
are creating.

3. Change the projects included in the baseline.

a. To add individual projects, click the Add Project button.

The Select Project dialog box appears, which works the same as the
Query dialog box. By default, projects display in the selection set field
based on the project’s release and purpose, for example, toolkit/2.0 and
System Testing. Additionally, you can define a query to find the project
that you want to add to the baseline.

b. To add all projects from a project grouping, click the Add Project
Grouping button.

The Select Project Grouping dialog box appears, which works the
same as the Query dialog box. Adding a project grouping enables you to
add projects associated with a project grouping, which is helpful if you’re
creating an incremental baseline (page 140). Additionally, you can define
a query to find the project grouping that you want to add to the baseline.

c. To add all projects from an existing baseline, click the Add Baseline
button.

The Select Baseline dialog box appears, which works the same as the
Query dialog box. Adding a baseline enables you to add the projects
associated with a baseline, which is helpful if you’re creating an
incremental baseline (page 140). Additionally, you can define a query to
find the baseline that you want to add.

d. Click OK.

4. Publish the baseline to developers upon creation.

If you’re creating a test baseline (page 143) for limited availability, skip this
step and proceed to step 5.
75 Telelogic Build Manager’s Guide

Create a baseline
This option is cleared by default, but you’ll want to set it. As soon as you
publish the baseline, developers will be able to update their projects to bring
in the most recent changes from the baseline.

5. Create the baseline by clicking OK.

From the CLI

1. Be sure your role is set to build_mgr.

2. Find the project grouping that you want to create the baseline from.

> ccm pg -l -r CM/6.4 -purpose "System Testing"

1) All CM/6.4 System Testing Projects from Database M

Use the results to specify the project(s) that you want to include in your new
baseline in the next step.

3. Add all projects and subprojects to your new baseline, and make any other
changes to the baseline (-release, -purpose, and so forth).

Note Be sure to include all projects that make up your
application in the baseline.

> ccm baseline -create baseline_name -pg @1 -state test_baseline

where baseline_name is the name you want to assign to the baseline.

You have now created a new baseline, which saves a snapshot of the build that
went to SQE for testing. Additionally, developers can see what’s been included in
this latest build.
Telelogic Build Manager’s Guide 76

Chapter 5: How baselines work
Publish a baseline to developers
You have now updated the system testing projects, dealt with conflicts, built your
products, and tested the application. You are ready to make the changes available
to others. You will do this by publishing the test baseline.
As soon as you publish the baseline, it will be available as a baseline for selection
during an update. The process rules ensure that projects will use the latest
baseline.

1. Select the test baseline(s) that you want to transition to system testing, right-
click over the baseline(s), and choose Publish.

2. Create work areas for your baseline projects, if necessary.

If you’re creating an external project, for example, for product sharing, be
sure to create a work area that’s visible to everyone. For a discussion of
baseline projects, see How is a baseline used? (page 70), bottom paragraph.

a. Right-click over the system testing project(s) whose work area settings
you want to modify, and choose Properties.

The Properties dialog box appears.

b. Click the Work Area tab.

c. Select the On/Off option.

Selecting this option causes Telelogic Synergy to maintain a copy of the
project in your work area and the project to sync automatically when you
click the Apply button.

d. Click Apply to save the changes.

3. Inform developers that they can update their projects to bring in changes.

You have now published a baseline for the system testing projects. The published
baseline makes the build available to others. As soon as users update their
projects, they can start using the new baseline.

From the CLI

1. Be sure your role is set to build_mgr.

2. Display a list of baselines for the appropriate release and purpose of the
baseline that you want to transition.

> ccm baseline -list -release release -purpose "purpose spec"

Find the test baseline that you want to transition. Note the complete baseline
name. You’ll use this in the next command for the baseline_spec.
77 Telelogic Build Manager’s Guide

Publish a baseline to developers
Before you publish your baseline, you might want to rename it or change the
versions on the baseline projects or products. For example, if this is the
baseline for Release CM/6.4 Turn 10, you might want to change the name
of the baseline to 6.4 Turn 10, or you might want to change the versions on
the baseline projects and products to 6.4_T10. You can also add a build
number to the baseline, if it doesn't already have one.

Rename your baseline from 20050502 to 6.4 Turn 10, change its build
number to 1234, and change the versions of its projects and products to
6.4_T10, use the following command:

> ccm baseline -modify 20050502 -n "6.4 Turn 10" -build 1234 -
versions
-vt "6.4_T10"

If you have multiple projects with the same name, for example, for multiple
platforms, you'll need to use a version template with variables. For example,
the following version template will cause all projects that have a platform
attribute to have their version changed to platform_release_T10, and any
projects that don’t have a platform attribute to have their version changed to
release_T10:

> ccm baseline -modify 20050502 -versions -vt
"%{platform:-}%{platform:+_}%{release}_T10"

Alternatively, you can use a version template that uses the variable,
%version, if you want to prepend or append a string to the project and
product versions that you're already using in your baseline projects:

> ccm baseline -modify 20050205 -versions -vt
"%{version}_%{release}_T10"

Caution If you use variables in your version template, be sure to
enclose the version template string in quotes, as in the
above examples. If you don’t, your shell might try to
expand it, thinking it’s an environment variable.

Note If any of the projects in your baseline have work areas that
are not visible, you will need to execute this command
separately on each computer where the work areas are visible.
You will also need to use the
-skip_nonvisible_projects option to skip those projects
whose work areas are not visible on the current computers.
This might happen, for example, if you have a baseline that
includes both Windows and UNIX projects.
Telelogic Build Manager’s Guide 78

Chapter 5: How baselines work
3. Publish the baseline.

> ccm baseline -publish baseline_spec

where
baseline_spec is the name of the baseline you noted in step 2.

You have now published a baseline for the system testing projects. The published
baseline makes the build available to others. As soon as users update their
projects, they can start using the new baseline.
Remember to create work areas, if needed, for your baseline projects. This is
easiest to do from the CLI.

1. Find the projects in your baseline:

> ccm baseline -show projects '6.4 Turn 10'’

2. Create the work areas.

> ccm work_area -wa @

If you only need work areas for a subset of the projects in your baseline, or if you
have both UNIX and Windows projects and need to create the work areas on
separate computers, use a more specific query to get just those projects you need,
before executing the command to create the work areas.
For example, to get just those projects that you've labeled as external, by putting
_ext in their names, use the following query:

> ccm query "is_project_in_baseline_of(baseline('6.4 Turn 10')) and
name match '*_ext'"

To get just those projects that have a platform of windows, use the following
query:

> ccm query "is_project_in_baseline_of(baseline('6.4 Turn 10')) and
platform='windows'"
79 Telelogic Build Manager’s Guide

Baselines and the update process
Baselines and the update process
When a project is updated based on process rules, update re-evaluates which
baseline project (page 137) it should use. It checks the process rule to find the
baseline, then checks the baseline to identify a version of the project. If multiple
versions of that project exist in the baseline, update compares the platform
values to select the project that has a matching or compatible platform value.
For example, when the editor-john project is updated, update checks the
process rule and finds that the latest baseline is selected. It then identifies the
latest baseline matching the template’s criteria, for example, 20070115. It then
checks baseline 20070115 for a version of the editor project to use as a baseline
project.
If no version of a project is found in the baseline, that project is updated without
a baseline project. This means that object versions that aren’t associated with any
tasks for the current release are not considered candidates, and aren’t selected
when you update the project. Some direct
Telelogic Build Manager’s Guide 80

Chapter 5: How baselines work
Create an incremental baseline
If it is not possible or practical for you to make a copy of a project in the baseline
for build management, you can use the incremental baseline approach.
For example, if you have projects proj1 through proj100, and you want to create
a new baseline with just proj1-int and proj2-int (for example, because proj3
through proj100 haven't changed), then you can create your new baseline from
your most recent baseline, plus these two projects.

1. Select the two projects you want to include in the incremental baseline, right-
click over one, and select Create Baseline.

You can create a baseline from a build management project grouping or from
a project that’s static or is a build management project.

The Create Baseline dialog box appears.

2. Modify the properties of the baseline, as required.

a. Type a name in the Name field.

This is a baseline’s name. It uniquely identifies this baseline within this
database. By default, Telelogic Synergy names baselines with the creation
date; for example, 20070309 stands for March 9 2007. However, you can
modify it. The following are restricted characters and shouldn’t be used
in the name: / \ ' " : ? * [] @ - #

Note that if you’re creating baselines in more than one database and
you’re using Telelogic Change to generate reports on these builds, use
the same baseline name in each of the databases. This allows you to
generate a build report that has a related baseline in more than one
database.

b. Confirm that your release is correct.

A release is a property that identifies a baseline that is specific to a
particular release.

c. Confirm that your purpose is correct.

A project’s purpose defines what it is used for, for example, Integration
Testing. When you change your baseline’s purpose, Telelogic Synergy
uses different selection criteria when you update the project or project
grouping.
81 Telelogic Build Manager’s Guide

Create an incremental baseline
d. Optionally, you can set the build identifier by typing it in the Build field.

The build property shows the build identifier (letters, numbers, or
combination) associated with a baseline. The build identifier can contain
a maximum of 64 characters.

Note that if you’re creating baselines in more than one database and
you’re using Telelogic Change to generate reports on these builds, use
the same baseline build identifier in each of the databases. This allows
you to generate a build report that has a related baseline in more than
one database.

e. Type a description in the Description field to describe the baseline you
are creating.

3. Change the projects included in the baseline.

Add the most recent baseline by clicking the Add Baseline button.

You don’t have to remove the older versions of the build management
projects you just added, but doing so will give you a more accurate
representation of the members of your baseline.

The Select Baseline dialog box appears, which works the same as the
Query dialog box. By default, projects display in the Included Projects
field based on the project’s release and purpose, for example, toolkit/2.0
and System Testing. Additionally, you can define a query to find the project
that you want to add to the baseline.

4. Publish the baseline to developers upon creation.

This option is cleared by default, but you’ll need to set it. As soon as you
create the baseline, developers will be able to update their projects to bring
in the most recent changes that have passed integration testing.

5. Create the baseline by clicking OK.

From the CLI
You can create an incremental baseline from the CLI with a command similar to
the following:
 > ccm baseline -create new_baseline_name -baseline existing_baseline_name -p proj1-
int -p proj2-int

However, note that Telelogic still recommends creating full baselines from your
prep project grouping, whenever possible.
Telelogic Build Manager’s Guide 82

Chapter 5: How baselines work
Remove unnecessary baselines
To remove an unnecessary baseline, you’ll first mark it for deletion. Once
marked, you can set up the Save Offline and Delete command to automatically
delete baselines that are marked for deletion when they are no longer used.
The following steps show you how to mark a baseline for deletion. (The soad
Command, described in Telelogic Synergy CLI Help, enables you or the CM
administrator to delete the baselines you’ve marked.)

1. Find the baselines that you want to remove.

Find > Baselines

The Query dialog box appears.

2. Set the query criteria and then run the query.

a. Set For Release to the appropriate release.

b. Click the plus sign to add another property to the query.

c. Set With Purpose to Integration Testing.

d. Run the query by clicking .

3. Mark the unnecessary baseline for deletion.

Choose all baselines that you want deleted, then right-click and select Delete.

The Delete dialog box displays the selected baselines. Click Delete. The
selected baselines are now marked for deletion.

Note that an update operation will not select a baseline that is marked for
deletion. If your team uses project groupings, and any of the project
groupings are using marked baselines, they will choose different baselines
during the update operation.

The CM administrator can set up the Save Offline and Delete command to
automatically delete baselines that are marked for deletion when they are no
longer used. For details, see the soad Command in Telelogic Synergy CLI
Help.

Additionally at this point, your site might decide to inactivate the release
you’ve just finished. You’ll also want to use the ccm clean_up command,
described in Telelogic Synergy CLI Help, to clean out that release’s process
rules and any old releases.

There is not much overhead associated with retaining these extra releases and
process rules; clean up is for convenience. Cleaning out the releases and the
83 Telelogic Build Manager’s Guide

Remove unnecessary baselines
process rules makes it easier to find the information you need in the
corresponding dialog boxes.

Additionally, you cannot delete a baseline if a project grouping uses that
baseline, or if a process rule uses the baseline. If you try to delete a baseline
and its checked-in projects and products, and one or more of its associated
projects or products is a member of a project that is not part of the baseline,
the delete baseline operation will succeed; however, those projects or
products will not be deleted. Furthermore, if one or more projects that are in
the baseline are members of another baseline, or are baseline projects, the
delete operation will be successful, but those projects will not be deleted.

Note that you’ll need to remove obsolete project hierarchies, and then empty
project groupings, before you can delete old baselines. However, empty
project groupings may still carry important information about tasks the
owner explicitly added to or removed from that grouping.

To find and remove empty project groupings that also have no explicitly
added or removed tasks, use the following commands:
ccm set role ccm_admin

ccm query –t project_grouping
"is_no_project_grouping() and
has_no_added_task_in_pg() and
has_no_removed_task_in_pg()"

ccm delete @

Mark a baseline for deletion

A baseline marked for deletion can be deleted later with save offline and delete
(SOAD), or manually.

1. Be sure you are in the build_mgr role.

2. Display a list of baselines for the release you’ve just finished, with a purpose
of Integration Testing.

> ccm baseline -list -release release -purpose "Integration Testing"
1) ccmintdb#20070104_1 bob 1.0 Integration Testing
published_baseline Thu Jan 04 16:55:39 2007

2) ccmintdb#20070120 sue 1.0 Integration Testing
published_baseline Sat Jan 20 20:09:00 2007

3) ccmintdb#20070203 joe 1.0 Integration Testing
published_baseline Sat Feb 03 16:09:16 2007

4) ccmintdb#20070214_1 john 1.0 Integration Testing
test_baseline Wed Feb 14 13:17:40 2007
Telelogic Build Manager’s Guide 84

Chapter 5: How baselines work
3. Mark the test baseline (in the test_baseline state) for deletion.

> ccm baseline -mark_for_deletion ccmintdb#2007214_1
85 Telelogic Build Manager’s Guide

Remove unnecessary baselines
Telelogic Build Manager’s Guide 86

6 How to share products
Product sharing is the practice of letting developers share products that were built
by the build manager. For example, Joe is working on the toolkit.exe executable.
He has a working version of toolkit.exe because he is making changes to it. In the
office next door, Sue is making changes to the guilib.lib library. Although the
toolkit.exe executable is linking with the guilib.lib library, Joe is not making
changes to guilib.lib and does not need a working version of it.
Joe can use the version of guilib.lib built by the build manager. After the
integration testing project is built and passes testing, the build manager will create
a baseline, which checks in copies of the prep products to make them available to
developers. When Joe is ready to get Sue’s latest changes to guilib.lib, he will
update his development project to bring in the latest tested product file.
Why is this something your site might want to use?
This process cuts the amount of extra work developers need to complete because
they do not need to build products that they do not modify.
You can share products by packaging them into external projects (Share external
projects (page 88)) that can be shared.
Build Manager’s Guide 87

Share external projects
Share external projects
The following section describes one way to share external projects. Although
there are many ways in which to share external projects, the following is how
Telelogic Synergy developers do this.
External projects save time for developers because a developer does not need to
copy and update the projects that he does not change. External projects also help
to promote modular code and information hiding, both considered best
practices for software development.
However, the build manager must do some extra work to manage external
projects, including restructuring projects, updating makefiles, and updating build
scripts that automate the build process. Also, developers who work on both the
lower-level project (e.g., the library) and the project that depends on it (e.g., the
executable) must manage their own working versions of the external project and
both source projects.
If you want to use external projects, read the following sections:

• External projects (page 89)

• Create an external project (page 90)

• The modified build process for multi-phased builds (page 93)
Build Manager’s Guide 88

Chapter 6: How to share products
External projects
External projects make products and associated objects developed in one project
(such as a library and the header files for the functions in it) available to another
project. Normally you would add the project as a subproject so that you could get
the header file. An external project is one way to set up your project structure to
minimize the number and size of development projects needed by developers.
For example, Joe’s working version of his toolkit.exe executable is linked with the
guilib.lib library. Joe is not making changes to guilib.lib and does not need a
working version of it, but his executable is linked to the library, so he needs it to
do his work. When Joe is ready to get the latest changes to guilib.lib, he will
ensure that the guilib project is a member of his development project, then
update it to bring in the newly built product file.
Based on this example, imagine if Joe was using products from ten or fifteen
different projects, none of which needed to change. He would need development
projects for each project and this could mean extra time when he updates to
bring in the objects he needs. An external project can remedy this situation.
An external project contains only the products and header files needed to use
those products. (It is called an "external project" because it makes those files
available to other projects, but it is external to the project where those files are
actually developed.)
Because external projects are counterparts to other projects, it is useful to give
them similar names. For example, the external project corresponding to the
guilib project might be named guilib_ext. (It is also useful to keep the same
structure so that makefiles can be modified easily to reference the external
project rather than the original project.) Note that adding a subproject is not
necessary with some programs, such as Java, where you don’t need the header
files and can add the library alone.
Now the build manager can create a baseline to check in the external projects and
the products after they pass integration testing, and developers whose code
references those products can share the external projects. They don’t need
working versions of any projects that they don’t personally need to modify.
Developers will share the products most recently checked in by the build
manager when they update. If your site doesn’t use baselines, then you should
check in the products and external tasks after they pass integration testing. If you
do use external projects, you’ll need to create work areas that are visible to
everyone for the external baseline projects.

Note The use of external projects is optional. Consider the
product sharing needs of your team.
89 Build Manager’s Guide

Create an external project
Create an external project
Be sure that you already have build management project hierarchies. Creating an
integration testing project is described in Create the integration testing projects
(page 26). Creating a system testing project is described in Create the system
testing projects (page 29).

1. Create a task to create an external project, leave yourself as the resolver.

The newly created task is set as the current task.

2. Copy a project to be the external project.

a. Create the new project.

b. Set the properties for the new project.

c. Click OK.

3. Add the product object(s) (and any other objects) to your external project by
using drag and drop or copy and paste.

4. Add the new external project to your original project.

a. View the appropriate build management project in the Work pane.

b. Cut the original subprojects from your original project. (You will need to
do this if you’re creating an external project from an existing
subproject.)

If you have a guilib project, and you created a guilib_ext external
project, you will need to replace each occurrence of the guilib project
with guilib_ext. You will need to do this for each external project.

For example, Joe would add guilib_ext to his toolkit project, and
remove the guilib project from his toolkit project. Moreover, he could
delete his copy of the guilib project if he never needed to build that
subproject.

c. Add your new external project to your original project. (If the new
external project is a subproject, you can skip this step.)

Refer to step 3 above.

5. Repeat step 4 for each project that should include the external project.

Note Modify your build scripts and makefiles to properly
reference the new external project(s), using the
CCM_SUBPROJ macro.

6. Complete the current task.
Build Manager’s Guide 90

Chapter 6: How to share products
7. Perform an integration test cycle on your integration testing projects.

8. Create a baseline from the project hierarchy.

9. Copy a system test build management project from the external baseline
project.

10. Perform a system testing build and test cycle on your system testing project.

From the CLI

1. Change to the build_mgr role.

2. Create a task to create an external project, then assign it to yourself.

3. Set the new task as the current task.

4. Create an external project. You will need to set its name, version, purpose,
and release.

5. Add the product object(s) (and any other objects) to your external project.

a. Change directory to your new project’s work area.

b. Use the ccm query command to query to find the objects you want to
add to your external project.

c. Use the ccm use command to add the object(s) to the external project.

6. Add the new external project to your original project.

a. Change directory to the appropriate prep project.

b. Unuse the projects from your original project.

For example, if you have a guilib project, and you created a guilib_x
external project, you will need to replace each occurrence of the guilib
project with guilib_x. You will need to do this for each external project.

c. Add your new external project to your original project.

Refer to step 5 above.

7. Update each integration prep project that should include the external project.

Note You will now have to modify your build scripts and
makefiles to properly accommodate the new external
project(s).

8. Complete the current task.

9. Perform an integration test cycle on your integration prep projects.

10. Create a baseline from the project hierarchy.
91 Build Manager’s Guide

Create an external project
11. Copy a system test prep project from the external baseline project.

12. Perform a system testing build and test cycle on your system test prep
projects.
Build Manager’s Guide 92

Chapter 6: How to share products
The modified build process for multi-phased builds
The regular build process is described in Build management basics (page 31).
The modified build process for external projects is a multi-phase build. > ccm
project_grouping -thaw "All X/1.0 Integration Testing Projects"

Project hierarchies that contain external projects cannot be completely updated
right away because the new products you want to select may not exist until the
hierarchy is partially built. (If the products are in a non-writable state before the
build, new versions will be checked out. Those new versions need to be selected
into the external project after the build is complete.) Portions of the hierarchy
need to be updated and built in phases.
To prevent selecting new tasks, clear auto-update on the project grouping after
the first update, then set auto-update in the middle of this multi-phase build on
the project grouping after the last update. The following example shows you how
to do this:

1. Refresh and freeze your project grouping.

a. Update the query folder by refreshing the project grouping.

Right-click over the project grouping and point to Update, then select
Baseline & Tasks.

b. Disable auto-update for the project grouping.

Right-click over the project grouping and clear Automatically Update
Baseline & Tasks.

• From the CLI, refresh and freeze your project grouping.

a. Set your role to build_mgr.

> ccm set role build_mgr

b. Update the query folder by refreshing the project grouping.

> ccm project_grouping -refresh "All X/1.0 Integration Testing
Projects"

c. Disable auto-refresh for the project grouping.

> ccm project_grouping -freeze "All X/1.0 Integration Testing
Projects"

2. Update all low-level projects (such as library projects) whose products will be
used in external projects.

3. Show and resolve conflicts.
93 Build Manager’s Guide

The modified build process for multi-phased builds
4. Build all products to be used in external projects (i.e., all the projects updated
in step 2).

5. Update all projects not updated in step 2, including external projects.

If you’re building installation projects, exclude those now. You’ll update them
later in The modified build process for installation projects (page 99).

Note All the products that were built in step 4 should be
selected in the external projects by this update.

6. Show and resolve conflicts.

7. Build all remaining products (i.e., the projects updated in step 5).

8. Prepare an installation area or a CD.

9. Test the software.

10. Create a baseline to check in products and external projects.

11. After the last update, right-click over the project grouping and set
Automatically Update Baseline & Tasks.

First the low-level projects, such as libraries, are updated and built. Next the
external projects and the high-level projects that use them, such as
executables, are updated, then the high-level projects can be built.
Build Manager’s Guide 94

7 How to package an application
Application packaging is a way to release your application to any customer,
whether they are internal customers (e.g., SQE) or external customers (e.g., CIA).
Each site packages their application according to what makes the most sense for
their software. Some typical ways to deliver software include:

• On DVD

• On CD-ROM

• On your company’s Web site

A company will usually opt to deliver its product on CD-ROM or from the
company Web site. One way to set up the data to be packaged is to create an
installation area from an installation project.
Build Manager’s Guide 95

About installation areas and projects
About installation areas and projects
If you control your product files in Telelogic Synergy, you can create a project
that has the structure of an installation area, called an installation project.
You can create an installation project whose structure matches that of your
installation area. You then can use the installation project’s work area to create an
installation image (Windows) or a set of tar files (UNIX) and place it on a CD for
testing or for the release of your software.
For example, if you needed to release software internally for testing, you would
start with an integration testing project, then create an installation project with all
of the products and objects that need to be available to testers. Last, you would
add the installation project to the integration testing project hierarchy. When
your team’s development is at a point where it needs testing by an SQE group,
you would build your system testing project, update your installation project,
then create an installation image (Windows) or a set of tar files (UNIX) and place
it on a CD.
The next section, Create an installation project (page 97), shows you how to
create an installation project.
Build Manager’s Guide 96

Chapter 7: How to package an application
Create an installation project
Be sure that you already have the appropriate build management project
hierarchies. Creating an integration testing project is described in Create the
integration testing projects (page 26). Creating a system testing project is
described in Create the system testing projects (page 29).

Note The use of installation projects is optional. Consider the
needs of your team before creating them.

1. Create a task to create an installation project, and leave yourself as the
resolver.

The newly created task is set as the current task.

2. Copy a project to be the installation project.

a. Create the new project.

b. Set the properties for the new project.

c. Click OK.

3. Create directories in the new project to match your installation area.

4. Add the product objects (and any other objects that are part of your
deliverable) to your installation project using drag and drop or copy and
paste.

5. View the appropriate build management project in the Work pane.

6. Add your new installation project to the build management project hierarchy.

Refer to step 4 above.

7. Extend your build scripts and makefiles to construct the installation image.

8. Complete the current task.

9. Perform an integration test cycle on your integration testing projects.

10. Copy a system testing project from the baseline installation project.

11. Perform a system testing test cycle on your system testing project.

Note Complete this process for each platform, checking out
integration and system testing project for each platform.

From the CLI

1. Create a task to create an installation project, then assign it to yourself.

2. Set the new task as the current task.
97 Build Manager’s Guide

Create an installation project
3. Create an installation project. You will need to set its name, version, purpose,
platform, and release.

4. Change directory to your new project’s work area.

5. Create directories in the new project to match your installation project.

6. Query for the files you want to add to your installation project. The
following is an example of a query:
> ccm query "is_member_of(’project_name’) and
is_product=TRUE"

This is just one example. You will probably create queries to gather other
products, such as help files, etc.

7. Add the files to the installation project.

8. Change directory to the appropriate prep project.

9. Add your new installation project to the prep project hierarchy.

Note Modify your build scripts and makefiles to properly
accommodate the new installation project(s).

10. Complete the current task.

11. Perform an integration test cycle on your integration prep projects.

12. Copy a system test prep project from the installation project.

13. Perform a system testing test cycle on your system test prep projects.

Note Complete this process for each platform, checking out
integration and system test prep projects for each
platform.
Build Manager’s Guide 98

Chapter 7: How to package an application
The modified build process for installation projects
The regular build process is described in Build management basics (page 31).
This is another phase in the multi-phase build approach.
> ccm project_grouping -thaw "All X/1.0 Integration
Testing Projects"

Project hierarchies that contain installation projects cannot be completely
updated right away because the new products you want to select may not exist
until the hierarchy is partially built. (If the products are in a non-writable state
before the build, new versions will be checked out. Those new versions need to
be selected into the installation project after the build is complete.) Portions of
the hierarchy need to be updated and built in phases.
To prevent selecting new tasks, clear auto-refresh on the project grouping after
the first update, then set auto-refresh again on the project grouping after the last
update.

1. Update each installation project to select the newly built products.

2. Show and resolve conflicts.

3. Prepare an installation area or a CD from the work area of each installation
project.

First the projects that produce products are updated and built. Then the
installation projects are updated to get the products that were built.
99 Build Manager’s Guide

The modified build process for installation projects
Build Manager’s Guide 100

8 Parallel releases
The following parallel releases are discussed in this chapter:

• Create a patch for a release (page 102)

• Create a parallel development environment (page 105)
Build Manager’s Guide 101

Create a patch for a release
Create a patch for a release
Telelogic defines a patch to be any release in which you rebuild portions of your
application with one or more fixes.
To create a patch, you’ll need to be able to reproduce and rebuild the released
software version. This underlines the importance of creating baselines for the
projects used to build your application. Baselines create a snapshot of what was
built. When you need to reproduce or rebuild that released project, as you will in
the case of a patch, it will be available for your use.

Set the patch release
A patch release can be small-scale (a single patch) or large-scale (a service pack
including several patches). Regardless of size, you will need to set a release for
the patch.
A single patch might have a name like toolkit/3.0patch, while a service pack-
size release might have a name like toolkit/2.0sp1.
Identify which purposes will be used for the patch release. Typically you’ll need
only Collaborative Development and System Testing.

Projects to include

When you create a patch, you need to include new versions of the projects to be
rebuilt. The following paragraphs describe what to include in your patch project:

• If a developer is fixing a defect in an executable, the developer would change
the code in the project that rebuilds the executable; therefore, your patch
would include only a version of the projects that contain changed code used
to build the executable.

• If the defect was in a library, the developer would change the code, you
would rebuild the library, then rebuild every executable that links with it.
Therefore, you would need projects for the library and all of the executables
that link with it, and external projects, if you use them.

Often, the developer assigned to fix the bug can tell you which projects need
to be rebuilt.

Note You can set up grouping project (page 139)s to organize
your patches in the Telelogic Synergy database. See Grouping
projects (page 122) for more information.

If you’re using the installation image to build your patch, you’ll need the
installation project.
Build Manager’s Guide 102

Chapter 8: Parallel releases
Obtain fixes from developers
You can obtain fixes from developers in the following way:

1. The developer creates the patch projects, fixes the bug, unit-tests the fix,
then completes the task.

2. The build manager then copies those projects. He updates his copies to get
the developer’s tasks.

Create a release for a patch
The following process shows you high-level steps for creating a release for a
patch. Many of the low-level operations you need to perform are discussed in
earlier sections of this book, and you can use the links provided here or your own
bookmarks to go to those sections.
This process assumes that you have set release values consistently on all of your
projects. If you have not, this process will not work.

1. Create a release for the patch. (For steps, see Create or copy a release in the
Telelogic Synergy Help.)

Typically, you’ll copy the release you’re patching.

2. Set the process rule you will use for the patch in the Create Release dialog
box.

Typically, you’ll need the Collaborative Development and System Testing
process rules.

Create a patch

The following process shows you high-level steps for creating a patch.

1. Create a task (or several tasks) and assign it to the appropriate developer(s)
for the patch release.

2. Give the project information and new release values to the developers.

Developers will need to copy a new development project from the baseline
release, set their current task, diagnose and fix the problem, unit test, then
complete the current task.

Note Developers who are fixing problems must set the release
value on their projects before checking out files. They’ll also
need to set the current task so that objects they check out will
be associated with the correct task automatically. If they forget
these steps, they will have to perform several manual steps to
ensure that the patch includes the correct objects.
103 Build Manager’s Guide

Create a patch for a release
Also, developers should not complete any other work in the
patch projects. This is so that other checked out versions are
not tagged with the patch release value and included in the
patch accidentally.

3. Create a system testing project for each project being patched.

You can follow the same steps to create the system testing project with the
following exception:

Copy only the projects to be included in the patch.

Creating a system testing project is discussed in Create the system testing
projects (page 29).

Note You do not need an integration prep patch project.

4. Build using specific tasks (page 42).

5. Set up a test area.

To set up a test area for the patch, you can install a copy of the released
software to an installation area (e.g., patch_test_1.2), then copy the
products built for the patch into the area. (Ideally, you should install the
patch the same way your customers will install it.)

If you have a special utility for installing patches, use it instead.

6. System testing proceeds; if defects are found, start the cycle again at step 1
(however, do not repeat step 2 and step 3).

7. When the patch passes your quality standards, make it available to customers.
Build Manager’s Guide 104

Chapter 8: Parallel releases
Create a parallel development environment
A parallel development environment occurs when your company decides to ship
a product on more than one platform (e.g., one for Windows and one for UNIX)
or when your company needs to ship more than one release of a product (e.g., a
main product release and a patch release).
A discussion on the parallel platform environment is in About parallel platforms
(page 105); how to set up this environment is in How to set up a parallel platform
(page 106).
A discussion on the parallel release environment is in Set up parallel releases
(page 107).

About parallel platforms

If you need to build your software for different platforms, use the platform
property to create a version of each project for each platform. These projects are
called variant projects. The variant projects share most of the same source
members, but you can set different build arguments and save different resultant
products in each variant project. However, it isn’t necessary to mark individual
tasks for specific platforms, or to set up folders by platform. A single task can
contain files changed for all platforms. When parallel versions occur, each project
will select the object versions matching its platform.
For example, to build the toolkit project for Windows and HP-UX, you would
copy two different versions of the project hierarchies, but set each of their
platform properties to the appropriate value. (Note that you must already have
set the platform values in the om_hosts.cfg file, which is discussed in How to
set up platforms (page 19).)
You can give these projects meaningful versions, such as sp1_win32_2.0 or
hp_2.0. This is a great way to name your projects to identify them at a glance.

Caution If you’ve added a platform attribute to an object, be
careful before removing it from future versions. For example,
in release 1 of your product you have two parallel versions of a
file, version win_1 with the platform value x86 and version
sol_1 with platform value sparc. In release 2, you decide to
merge these two parallel files to form the cross-platform
version 2, and you clear the platform attribute on version 2.
Because Telelogic Synergy prefers matching platform values, a
project with platform value x86 will still pick up the version
win_1, and not your merged version 2.
To fix this, you could remove the platform attributes from the
105 Build Manager’s Guide

Create a parallel development environment
old win_1 and sol_1 versions, but then you might be unable
to build patches to that older release. A better fix would be to
change the name of the merged object, so the older versions
would no longer be candidates.

Products are also platform-specific. You will need to check out parallel branches
of each product for each platform, then set the platform values appropriately.

Note Users could build the same product for different
platforms by using the same project and changing the
platform property, make macros, and work area for that
platform before building.

This is not a good way for users to perform builds.

Build managers need to be able to reproduce the products
they build. If you are constantly changing the configuration
back and forth to build different platforms, you will not be
able to see how the product was built. This will make it very
hard for you to track down problems, test fixes, or preserve
the software when it reaches a milestone.

Also, this method requires you to force a rebuild every time
you change the platform.

For more information on how update for parallel platform works, see Selection
rules (page 54).

How to set up a parallel platform
This operation shows how to copy a new project hierarchy for a parallel
platform, from an existing project hierarchy.

1. Set up the new platform values you will need in the om_hosts.cfg file.

This operation is described in How to set up platforms (page 19).

2. Copy a new project hierarchy from the existing project hierarchy.

Remember to set the platform value and to give the project version a
meaningful name. Ensure that the version and platform are used in the work
area path to make work areas for parallel projects distinct.

3. Verify that your new project hierarchy builds successfully.

You may need to change the makefiles and project macros.
Build Manager’s Guide 106

Chapter 8: Parallel releases
4. Baseline your new project hierarchy.

This operation is described in Publish a baseline to developers (page 77).

Now you can copy the build management projects from this baseline.

Set up parallel releases
Sometimes companies develop parallel releases of an application concurrently.
For example, one team might be working on new features for release toolkit/3.0
of the toolkit application while another team works on bug fixes for release
toolkit/2.1.
Since you will need to build your application for more than one release, you will
need to create a different project version for each developing release.
For example, your team is working on a new feature release called toolkit/3.0,
and is concurrently working on a bug fix release called toolkit/2.1; you want the
toolkit/3.0 release to include the bug fixes from release toolkit/2.1 but you do
not want the toolkit/2.1 release to include the features from toolkit/3.0.
In this case, you would modify the process rule for release toolkit/3.0 by adding
the All Completed Tasks for Release toolkit/2.1 folder (not the folder
template) to the toolkit/3.0 integration testing process rule so that the toolkit/
3.0 integration testing projects pick up tasks from both releases. You would need
to make similar changes for the other process rules in the toolkit/3.0 release.
Note that this does not remove the need for developers to merge parallel
changes. If Joe makes a change to a file in toolkit/3.0, then Sue makes a change
to the same file for toolkit/2.1, those changes will be parallel. (Sue’s change will
be chosen for toolkit/3.0 because it is newer.) The two versions must be merged
into a new version for toolkit/3.0.
107 Build Manager’s Guide

Create a parallel development environment
Build Manager’s Guide 108

9 Project restructuring
Project restructuring is the act of rearranging your integration or system testing
project’s members by turning existing directories into projects, or adding or
removing projects from the hierarchy.
Many reasons exist for why sites decide to restructure projects; the following are a
few:

• The direction of your product has changed and you need to remove
subprojects from the hierarchy.

• A project has grown too large, and you want to split it into smaller parts.

• Your team added lots of new functionality to your product, and you need to
add subprojects to the hierarchy.

• A different team now is responsible for part of the software, and you want to
move it into a separate project.

• Your team decided to wait and include an invasive, disruptive change to your
product in the next release, and you need to unuse a subproject from the
hierarchy.

• You want to add an external project.

• You want to add an installation project.

Whenever you restructure a project, you will need to change the makefiles, the
build process, and all automated jobs to reflect the changes you have made.
You will need to apply the changes to both the integration testing project
hierarchy and the system testing project hierarchy. Update the integration testing
project hierarchy first, then apply the change to your system testing project
hierarchy by checking out any new projects, then updating to bring in the changes.
Additionally, when you restructure a project, you will need to perform an update
and also rebuild the project hierarchy to ensure the integrity of your application.
For the integration testing project, your usual short test suite should suffice. For
the system testing project, your SQE team will probably need to retest your
application.
The operations in this chapter include:

• Add an existing project to your hierarchy (page 111)

• Cut a project from your hierarchy (page 111)

• Delete a project from your hierarchy (page 112)
Build Manager’s Guide 109

• Convert a directory to a subproject (page 113)

• Add a new project to an existing hierarchy (page 114)

Note When you restructure projects, update the integration
testing projects and perform an integration test cycle first to
find and fix any problems. Your changes will be selected into
your system test projects automatically during the system test
cycle.
Build Manager’s Guide 110

Chapter 9: Project restructuring
Add an existing project to your hierarchy
1. Create a task and leave yourself as the resolver.

The new task is set as the current task.

2. View the project where you want to add the existing project.

3. Use drag and drop or copy and paste to add the existing project to the
current project.

If you do not remember the name of the project you want to add, use the
Query dialog box to find the project.

4. Complete the current task.

From the CLI

1. Create a task to restructure the integration prep project, and assign it to
yourself.

2. Set the new task as the default.

3. Change directory to the project’s work area where you want to add the
existing project.

4. Add the existing project to the top-level project.

> ccm use -p project_name-version

5. Complete the current task.

Cut a project from your hierarchy
1. Create a task and leave yourself as the resolver.

The new task is set as the current task.

2. View the parent project that contains the subproject you want to cut.

3. Right-click over the subproject and select Cut.

This cuts the subproject from the project, but doesn’t remove it from the
database.

4. Complete the current task.

From the CLI

1. Create a task to unuse the project, then assign it to yourself.

2. Set the new task to be the current task.
111 Build Manager’s Guide

Delete a project from your hierarchy
3. Change directory to the parent project that contains the subproject you want
to unuse.

4. Unuse the project.
> ccm unuse -p project_name-version

5. Complete the current task.

Delete a project from your hierarchy
Note The delete operation permanently deletes the project
from the database.

If you do not want the project in your hierarchy, but you still want it in your
database, see Cut a project from your hierarchy (page 111).

1. View the project you want to delete.

2. Right-click over the project to be deleted, and select Delete.

Be sure to select the appropriate scope for the deletion (project, project and
members, etc.).

From the CLI

1. Unuse the project to be deleted from your hierarchy.
> ccm unuse -p project_name-version

2. Remove the project from the database.
> ccm delete -p project_name-version
Build Manager’s Guide 112

Chapter 9: Project restructuring
Convert a directory to a subproject
You can perform this operation from the CLI only.

1. Start Telelogic Synergy from the command prompt.
ccm start -h engine_hostname -d database_path -nogui

After the session starts, the Telelogic Synergy address (CCM_ADDR) is
printed in your command window (Windows) or in the shell where you
started the session (UNIX).

2. Set your role to build_mgr.
ccm set role build_mgr

3. Create a task, assign it to yourself, and set it as the default.

ccm task -create -synopsis "string" -default

4. Change to the directory in your work area above the directory you want to
convert to a project.

5. Create a project, specifying the directory as its root.

ccm create -type project -root existing_dir -version int
-release release -purpose "Integration Testing"

6. Create the subproject’s platform, if necessary.

ccm attr -create platform -type string -value platform
-project project_spec

7. Use the ccm unuse command to unuse the directory.

8. Add the new integration testing project to your integration testing project
hierarchy.
ccm use -p project_name delimiter version

9. Windows users: If you use absolute subprojects, change the makefiles, the
build process, and all automated jobs to reflect the changes you have made.

If you use relative subprojects, no changes are necessary.

10. Complete the current task.
ccm task -complete default

11. Perform an integration test cycle, then Create a baseline (page 74).

12. Copy a system testing project from the new project.

This operation is discussed in Create the system testing projects (page 29).
113 Build Manager’s Guide

Add a new project to an existing hierarchy
13. Update your top-level system testing project, rebuild your application, then
run through your test suite.

Note Repeat this process for each platform, checking out
integration and system testing project for each platform.

14. Exit from the Telelogic Synergy CLI.
ccm stop

Add a new project to an existing hierarchy
Steps a and b below need to occur if a developer creates the new project to be
added to your existing hierarchy. Developers performing this operation need to
have the component_developer role set in Telelogic Synergy Classic.

1. Be sure that the developer does the following:

a. The developer must complete his current task.

b. The developer must check in his new project.

2. Copy an integration testing project from the project you just checked in.

Be sure to set the version, purpose, platform and release.

3. Add the new integration testing project to the integration testing project
hierarchy.

If the developer already added the project to a directory in the hierarchy and
checked in that directory, update the integration testing project hierarchy to
ensure that Telelogic Synergy selects the new directory and includes the new
project. Update is described in How to update (page 54).

Alternatively, if the developer did not add the new project to the hierarchy,
you will need to add the project to the integration testing project hierarchy.
(This operation is described in Add an existing project to your hierarchy
(page 111).) Additionally, you will need to create a task, then complete the
task when the change is complete.

If you get empty directory entries in your new project, it could be because
some objects are not associated with a task for this release.

4. Create an external project, if needed. Note that you need to add one build
management project for integration and one for system testing project.

This operation is discussed in Create an external project (page 90).
Build Manager’s Guide 114

Chapter 9: Project restructuring
5. Create versions for parallel platforms, if needed. Note that you need to add
one for integration and one for system testing project.

This operation is discussed in How to set up platforms (page 19).

6. If the new project applies to multiple releases, create parallel release versions
of it. Note that you need to add one for integration and one for system
testing project.

This operation is discussed in Set up parallel releases (page 107).

7. Change the makefiles, the build process, and all automated jobs to reflect the
changes you have made.

8. Complete any tasks you have used for restructuring.

9. Publish a baseline to developers (page 77).

10. Update your integration testing project hierarchy, rebuild your application,
then run through your test suite.

11. Create another baseline.

12. Create a corresponding system testing project for each new integration
testing project.

This operation is discussed in Create the system testing projects (page 29).

13. Update your system testing project hierarchy, rebuild your application, then
run through your test suite.

14. Perform system testing.

Note Complete this process for each platform, checking out
integration and system testing project for each platform.

From the CLI

The following two bulleted items need to occur if a developer creates a new
project to be added to your existing hierarchy.

1. Be sure that the developer does the following:

a. The developer must complete his current task.

b. The developer must check in his new project to the shared state.

2. Change the work area path by turning off work area maintenance (because
you cannot write to a developer’s personal work area).
ccm work_area -nwa -project project_name-version

3. Select the project’s work area and set the path to a build management work
area location.
115 Build Manager’s Guide

Add a new project to an existing hierarchy
ccm work_area -wa -setpath new_path -project
project_name-version -r

4. Check in the shared project to the integrate state.

ccm checkin -c "comment" -state integrate -project
project_name-version

5. Copy an integration testing project from the project you just checked in.

You will need to set the version and release. The purpose is set correctly by
default.

ccm co -to version -release release -project
project_name-version

6. Turn on work area maintenance again.
ccm work_area -wa -project project_name-version

7. Add the new integration testing project to the integration testing project
hierarchy.

If the developer already added the project to a directory in the hierarchy and
checked in that directory, update the integration testing project hierarchy to
ensure that Telelogic Synergy selects the new directory and includes the new
project. Update is described in How to update (page 54).

Alternatively, if the developer did not add the new project to the hierarchy,
you will need to add the project to the integration testing project hierarchy.
(This operation is described in Add an existing project to your hierarchy
(page 111).) Additionally, you will need to create a task, then complete the
task when the change is complete.

8. Create an external project, if needed. Note that you need to add one for
integration and one for system testing project.

This operation is discussed in Create an external project (page 90).

9. Create versions for parallel platforms, if needed. Note that you need to add
one for integration and one for system testing project.

This operation is discussed in About parallel platforms (page 105).

10. If the new project applies to multiple releases, create parallel release versions
of it. Note that you need to add one for integration and one for system
testing project.

This operation is discussed in Set up parallel releases (page 107).

11. Change the makefiles, the build process, and all automated jobs to reflect the
changes you have made.
Build Manager’s Guide 116

Chapter 9: Project restructuring
12. Complete any tasks you have used for restructuring.

13. Publish a baseline to developers (page 77).

14. Update your integration testing project hierarchy, rebuild your application,
then run through your test suite.

15. Create another baseline.

16. Create a corresponding system testing project for each new integration
testing project.

This operation is discussed in Create the system testing projects (page 29).

17. Update your system testing project hierarchy, rebuild your application, then
run through your test suite.

Note Complete this process for each platform, checking out
integration and system testing project for each platform.
117 Build Manager’s Guide

Add a new project to an existing hierarchy
Build Manager’s Guide 118

10 Build management variations
All companies do not build their applications in exactly the same way. Each
company has its own special needs. Company Q might be very new and small
with one product offering, while Company V might be very large, offering several
products on different platforms.
The Telelogic Synergy task-based methodology includes the use of different
features in Telelogic Synergy. Some of the features build managers will use are not
included in detail in this book because they are not required. The features do,
however, make the build manager’s job much easier by automating operations and
by keeping developers from performing operations that are complex.
The following information is intended to give direction to those companies for
whom the standard methodology, given in the previous chapters, does not apply
completely. If your company falls into this category, you will use a variant of the
methodology to perform your build management duties. The following variants
are discussed:

• Build management for UNIX and PC together (page 120)

• UNIX work areas with local files (page 121)

• Grouping projects (page 122)

• Custom folder template query (page 125)
Build Manager’s Guide 119

Build management for UNIX and PC together
Build management for UNIX and PC together
If your application runs on both UNIX and the PC, be sure to consider the
following before you attempt to build:

• Work area visibility

A Telelogic Synergy session on UNIX probably cannot see your work areas
on the PC, and a session on the PC cannot see your work areas on UNIX.

• Makefile formats

You probably already have parallel makefiles for building on UNIX and the
PC; if so, you can continue using your existing makefiles on both platforms.
If not, do the following:

a. Set up parallel versions of the project, one for each platform.

b. Set up parallel versions of the makefile, setting each makefile’s platform
property to the appropriate value.

When you update the parallel versions of the project, each will bring in the
appropriate makefile for its platform.

• Automation

When you automate your update/build process, you will need to automate
the Windows and UNIX jobs separately with shell scripts or batch files, or
use a cross-platform scripting solution, such as Pearl or Cygwin.
Build Manager’s Guide 120

Chapter 10: Build management variations
UNIX work areas with local files
By default, UNIX work areas contain symbolic links into a secure directory
structure that contains the controlled files. However, you can set up your UNIX
work areas with local file copies, if necessary. Consider the following advantages
and disadvantages before changing the default:
Advantages

• You can disconnect your local machine and use your work areas.

This option is most useful to developers.

• Build times may be faster if all files are local rather than accessed through a
file server such as NFS.

For large software teams, the performance associated with building across a
file server can make this type of build prohibitive. This feature enables you to
have your files on the local disk when you build, bypassing the expense of
accessing files through a file server.

Disadvantages

• Regular operations will be a little slower.

You can use local copies to speed local builds, but other daily operations,
such as check out, check in, and update, will be a little slower. This is because
they need to copy the file back and forth across the network between your
database and work area.

• Multiple copies of shared files can present problems if accessed outside of
Telelogic Synergy.

With local copies, if a developer has the same working object version in two
projects, there are two copies of that file; each work area has its own copy.
The copies of the file have no knowledge of each other.

During Telelogic Synergy operations, Telelogic Synergy keeps all copies of
the file up-to-date in all visible work areas. (A visible work area is one in
which the Telelogic Synergy client performing the operation can see the
work area’s file system location. As long as the Telelogic Synergy client can
see all of the work areas that a file is in, it will update each of the work areas
with any changes during Telelogic Synergy operations.) However, if you work
directly in your work area (for example, in FrameMaker), your change is
made to the one file in which you are working.

Note If you make changes to multiple file copies from
multiple work areas without synchronizing or accessing the
files through Telelogic Synergy between the changes, you will
121 Build Manager’s Guide

Grouping projects
create work area conflicts that will not be resolved without
your interaction (i.e., by using the Sync option to detect work
area conflicts for projects and subprojects).

Grouping projects
A grouping project specifically groups projects. For example, a good use for a
grouping project is to contain a software application’s different platforms. If you
have all of your projects structured into one big hierarchy, you can check out new
versions of all projects by using the Copy Project dialog box Subprojects list
box options.

Note Grouping projects are optional. They are useful because
they make it much easier to check in a set of projects or check
out a new set of projects when they are all grouped in a
hierarchy.

About the grouping project to be created
As an example, assume you want to group different platforms of a project called
toolkit_top-3.0. It will group toolkit-win and toolkit-unix together.
To set up the toolkit_top-3.0 grouping project, you need to set up uniquely
named projects.
Two projects with the same name cannot be subprojects within the same parent
project. For example, toolkit-win and toolkit-unix cannot be grouped together
in the same project.
To group projects with the same name, create an extra level of projects with
unique names. A single project with a work area can’t contain subprojects whose
work areas aren’t visible to the parent project. Therefore, you need to turn off
work areas, which is described in Create a grouping project (page 123) in step 3.

Grouping projects versus project groupings
Grouping projects are not the same as project groupings. Project groupings are
created automatically by Telelogic Synergy to organize all projects belonging to
the same release and purpose. Once a project is checked in, however, it’s no
longer a member of any project grouping.
Grouping projects are created by you and are completely under your control.
Build Manager’s Guide 122

Chapter 10: Build management variations
Create a grouping project
This example creates a project called toolkit_top-3.0 to represent all of the
toolkit projects for different platforms. Be sure to read About the grouping
project to be created (page 122) before you start this operation.

1. Create new projects with unique names for each platform.

Be sure to set each project’s platform value, if it will contain projects for a
specific platform.

2. For each of the new platform projects, add the existing projects for that
platform as subprojects. (Use drag and drop to do this.)

If you do not remember the name of the project you want to add, use the
Query dialog box to find the project, then use drag and drop to add it.

3. Create the top-level grouping project and turn off work area maintenance for
the new grouping project.

a. Create a new project.

Task> New > Project

b. Right-click over the project you just created and choose Properties. In
the Work Area tab, turn off work area maintenance. Save the change by
clicking OK.

Note Do not set a platform value. This project will contain subprojects
with different platform values. If you set a platform value for the top-
level grouping project, only the subprojects with the same platform value
will be included after you update the top-level grouping project.

c. Add each of the new platform projects as members of the top-level
grouping project.

Right-click over the root directory, point to Create Member, then
choose Subproject. Type the new subproject name in the Create
Subproject dialog box. If the subproject exists, drag and drop it under
the top-level grouping project.

Create a release for a patch
The following process shows you high-level steps for creating a release for a
patch. Many of the low-level operations you need to perform are discussed in
earlier sections of this book, and you can use the links provided here or your own
bookmarks to go to those sections.
This process assumes that you have set release values consistently on all of your
projects. If you have not, this process will not work.
123 Build Manager’s Guide

Grouping projects
1. Create a release for the patch. (For steps, see Create or copy a release in the
Telelogic Synergy Help.)

Typically, you’ll copy the release you’re patching.

2. Set the process rule you will use for the patch in the Create Release dialog
box.

Typically, you’ll need the Collaborative Development and System Testing
process rules.

Create a patch

The following process shows you high-level steps for creating a patch.

1. Create a task (or several tasks) and assign it to the appropriate developer(s)
for the patch release.

2. Give the project information and new release values to the developers.

Developers will need to copy a new development project from the baseline
release, set their current task, diagnose and fix the problem, unit test, then
complete the current task.

Note Be sure that developers who are fixing problems set the
release value on their projects before checking out files. They
also will need to set the current task so that objects they check
out will be associated with the correct task automatically. If
they forget these steps, they will have to perform several
manual steps to ensure that the correct objects are included in
the patch.

Also, developers should not complete any other work in the
patch projects. This is so that other checked out versions are
not tagged with the patch release value and included in the
patch accidentally.

3. Create a system testing project for each project being patched.

You can follow the same steps to create the system testing project with the
following exception:

Copy only the projects to be included in the patch.

Creating a system testing project is discussed in Create the system testing
projects (page 29).

Note You do not need an integration prep patch project.
Build Manager’s Guide 124

Chapter 10: Build management variations
4. Build using specific tasks (page 42).

5. Set up a test area.

To set up a test area for the patch, you can install a copy of the released
software to an installation area (e.g., patch_test_1.2), then copy the products
built for the patch into the area. (Ideally, you should install the patch the
same way your customers will install it.)

If you have a special utility for installing patches, use it instead.

6. System testing proceeds; if defects are found, start the cycle again at step 1
(however, do not repeat step 2 and step 3).

7. When the patch passes your quality standards, make it available to customers.

8. Check in your new projects and create a baseline that contains the new
projects as well as the other projects in the hierarchy.

Custom folder template query
A build manager might need to create a folder template whose folders gather
tasks with a particular property.
In this scenario, your team is developing two parallel releases at the same time.
You want to set up a completed tasks folder to collect changes from both releases
(in this scenario, release toolkit/2.1 and release toolkit/3.0).

1. Start the Query dialog box to find a folder template you want to copy.

Find > Folder Templates

The Query dialog box appears.

2. Select the folder template you want to customize, then click Copy Folder
Template.

The Copy Folder Template dialog box appears.

3. Set the following custom query:

a. Set the first list to In State and set the state to completed.

b. Set the For Release list to the appropriate release.

c. Add another query clause for another release, if necessary.

d. Set the Modifiable in Database list to the appropriate database name.

4. Save the settings by clicking OK.

Telelogic Synergy’s built in folder templates cannot be customized.
125 Build Manager’s Guide

Grouping projects
Add additional test phases
To add additional test phases, you will need to create a process rule and purpose
to represent the phase.
You can add test phases at any point in a release.

1. Create a process rule. (Set up a process rule is described in Telelogic Synergy
Help.)

2. If you need to create a purpose, see Create a purpose in Telelogic Synergy
Help.

3. Edit the release that will use the new process rule.

Right-click over the release and choose Properties.

In the Process Rules tab, click Add Process Rule, select the new process
rule, then click OK.

Now you are ready to copy projects for your new purpose.
Build Manager’s Guide 126

Appendix A: Convert to process rules
Existing customers will find this chapter useful. Additionally, if your site is new,
but started out not using process rules and now wants to transition to them, this is
the right chapter for you.
New customers can skip this chapter and follow the instructions in Prepare for
build management (page 13) and Build management basics (page 31). Process rule
usage is described for new users in those chapters.

Are process rules required?
The build management methodology uses purposes, process rules, and folder
templates. All documented methodology discussions are centered around these
features.
Support for updating projects manually is an obsolete feature. If your site
currently uses manual update, switch your releases in active development to use
process rules before manual projects are completely discontinued in the next
release.
Build Manager’s Guide 127

Converting projects
Converting projects
A site can convert to process rule use at any time. Converting at the start of a
release is easiest because you can ensure that the team is using process rules
consistently.
The following sections describe the conversion process for build managers and
developers.

Build manager conversion procedure

Before users convert their projects to use process rules, the build manager
should do the following. This operation can be done from the Telelogic Synergy
CLI.

1. Start Telelogic Synergy from the command prompt.

ccm start -h engine_host -d database_path -nogui

After the session starts, the Telelogic Synergy address (CCM_ADDR) is
printed in your command window (Windows) or in the shell where you
started the session (UNIX).

2. Set your role to build_mgr.
ccm set role build_mgr

3. Query for all process rules for the new release.

You will run a command on the selection set (query output).
ccm query -type process_rule "release=’new_release’"

where ’new_release’ is the new release name.

4. Specify that you want new projects to use process rules by default.
ccm process_rule -modify -default @

If your site is converting from manual updating, you’ll need to set processes
and process rules for active projects. Telelogic Synergy contains default
processes and process rules that might fit your needs, or you might need to
create custom processes and process rules.

5. Inform developers that they can convert their projects to use process rules,
as described in Developer conversion procedure (page 129).

6. Exit from the Telelogic Synergy CLI.
ccm stop
Build Manager’s Guide 128

Developer conversion procedure
When developers are ready to start using process rules, they will need to convert
their existing projects. If you are starting a new release, developers can copy new
projects instead of converting their old ones.
To convert existing projects to use process rules, perform the following steps.
(Note that before anyone can use this procedure, the build manager must have
set up process rules for the current release. Refer to Build manager conversion
procedure (page 128).)

1. Use the Project Properties dialog box to change each project's release
setting. To change the release value for all projects in a hierarchy, perform the
following:

a. Right-click on the top-level project and select Properties.

The Project Properties dialog box appears.

b. Select the new release value in the Release list.

If the project has subprojects, the release will be changed on all
subprojects automatically.

c. Be sure the Purpose is set to Insulated Development, Collaborative
Development, or Custom Development. If you use Custom
Development, you’ll need to select your baseline. (See Select a new
baseline in Telelogic Synergy Help for instructions.)

d. Save the changes.

2. Start Telelogic Synergy from the command prompt.

ccm start -h engine_host -d database_path -nogui

After the session starts, the Telelogic Synergy address (CCM_ADDR) is
printed in your command window (Windows) or in the shell where you
started the session (UNIX).

3. Query for all process rules for the new release.

You will run a command on the selection set (query output).
ccm query -type process_rule "release=’new_release’"

where ’new_release’ is the new release name.

4. Specify that you want new projects to use process rules by default.
ccm process_rule -modify -default @

5. Exit from the Telelogic Synergy CLI.
ccm stop
129 Build Manager’s Guide

Converting projects
If you linked to this chapter from the "Prepare for Build Management" chapter,
and you want to pick up the flow of operations again, the next section for you to
read is About parallel releases and platforms (page 24).
Build Manager’s Guide 130

Appendix B: Notices
This information was developed for products and services offered in the U.S.A.
IBM® may not offer the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for
information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service may be used. Any
functionally equivalent product, program, or service that does not infringe any
IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.
IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send written license inquiries to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
written inquiries to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any
other country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Some states do not allow disclaimer of express or implied warranties in certain
transactions. Therefore, this statement may not apply to you.
Upgrade Instructions 131

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.
Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.
IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.
Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual use
of the information which has been exchanged, should contact:

Intellectual Property Dept. for Rational® Software
IBM Corporation
1 Rogers Street
Cambridge, Massachusetts 02142
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.
The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer
Agreement, IBM International Program License Agreement or any equivalent
agreement between us.
Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments
may vary significantly. Some measurements may have been made on
development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some
measurements may have been estimated through extrapolation. Actual results
may vary. Users of this document should verify the applicable data for their
specific environment.
Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available
sources. IBM has not tested those products and cannot confirm the accuracy of
Upgrade Instructions 132

performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.
This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.
If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Copyright license
This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written.
These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs.
Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:
© (your company name) (year). Portions of this code are derived from IBM
Corp. (Sample Programs.) © Copyright IBM Corp. 1992 - 2008.

Trademarks
See copyright notices on the Web at http://www.ibm.com/legal/
copytrade.html.
IBM, the IBM logo, ibm.com, AIX, Rational, Telelogic, Telelogic Synergy,
Telelogic Change, SYNERGY/CM, SYNERGY/Change, Telelogic Lifecycle
Solution Tools, Telelogic License Server, Distributed CM, DCM, and Telelogic
Synergy Distributed are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both.
These and other IBM trademarked terms are marked on their first occurrence in
this information with the appropriate symbol (® or ™), indicating US registered
or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in
133 Upgrade Instructions

Trademarks
other countries. A current list of IBM trademarks is available on the Web at
http://www.ibm.com/legal/copytrade.html.
HP and HP-UX are registered trademarks of Hewlett-Packard Corporation.
Microsoft, Windows, Windows Explorer, Windows 2003, Windows XP,
Windows Vista and/or other Microsoft products referenced herein are either
trademarks or registered trademarks of Microsoft Corporation.
Sun, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and
other countries.
Other company, product or service names may be trademarks or service marks
of others.
Upgrade Instructions 134

Terms and concepts
• baseline (page 137)

• baseline project (page 137)

• breadcrumbs (page 137)

• build (page 137)

• build manager (page 137)

• change request (page 137)

• check in (page 138)

• check out (page 138)

• common ancestor (page 138)

• compare (page 138)

• complete a task (page 138)

• component name (page 138)

• component release (page 138)

• conflict (page 138)

• controlled product (page 138)

• copy project (page 138)

• current task (page 138)

• database (page 139)

• DCM (page 139)

• default task, see current task (page 138)

• delete (page 139)

• difference (page 139)

• directory (page 139)

• directory entry (page 139)

• file (page 139)

• folder (page 139)

• generic process rule (page 139)

• grouping project (page 139)
135 Build Manager’s Guide

• history (page 140)

• incremental baseline (page 140)

• inline differences (page 140)

• instance (page 140)

• merge (page 140)

• merge conflict (page 140)

• object (page 140)

• process (page 141)

• process rule (page 141)

• parallel conflicts (page 140)

• parallel version (page 140)

• product (page 141)

• product task (page 141)

• project (page 141)

• project’s update properties (page 141)

• project task (page 141)

• project grouping (page 141)

• properties (page 142)

• purpose (page 142)

• reconcile, see sync (page 142)

• reconfigure, see update (page 143)

• process rule (page 141)

• regular expressions (page 142)

• release (page 142)

• release (page 142)

• remove (page 142)

• sync (page 142)

• Telelogic Change (page 143)

• task (page 143)

• task-based methodology (page 143)
Build Manager’s Guide 136

• test baseline (page 143)

• type (page 143)

• update (page 143)

• update properties (page 144)

• process rule (page 141)

• use a version (page 144)

• version (page 144)

• work area (page 144)

• work area conflict (page 144)

baseline This is a snapshot of a set of projects and tasks at a
point in time. May be used as the starting point for
further development; may be compared to other
baselines for reference.

baseline project The project version on which you base your project is
called its baseline project. For example, the baseline
project for the editor-2.0 project would be editor-
1.0. When you check out a new version of a project,
its baseline project is set automatically. A baseline is
made up of baseline projects.

breadcrumbs Breadcrumbs are a navigation technique that give
users a way of tracking where they are in a document.
Breadcrumbs typically appear horizontally across the
top of a web page, usually below any title bars or
headers. They provide a trail for the user to follow
back to the entry point of a document.

build A build is the execution of commands for a target in a
makefile. A build creates a product, such as a library,
executable, or relocatable object.

build manager The build manager is a user who gathers and builds
changes for a development team.

change request A change request is a request for a change created in
Telelogic Change.
137 Build Manager’s Guide

check in The check in operation preserves one or more files
and makes them available to other users.

check out The check out operation creates a new version of a
file that can be modified by the user who checked it
out.

common ancestor The common ancestor is the most recent predecessor
of the files being merged.

compare The compare operation shows the differences
between the contents of two objects.

complete a task You can complete a task when all work on the task is
finished. This causes all objects associated with the
task to be checked in and available to the build
manager to build the product.

component name The component name is an optional part of a release.
It might represent the name of an application or
component, such as Synergy or editor.

component release The component release is a part of a release. It
identifies the specific release of that application or
component.

conflict A conflict signifies that your work area is out of sync
or an object has parallel versions.

controlled product A controlled product is a file that is built or
generated. A controlled product can be any type of
object except a project or directory, but the most
common controlled products are executables and
libraries.

copy project The copy project operation copies a project for your
use. You will need to make a copy of a project to
modify its content.

current task The current task is the task that you are currently
working on.
Build Manager’s Guide 138

database The Telelogic Synergy database is a data repository
that stores all of your controlled data, including
source and data files, their properties, and their
relationships to one another.

DCM Using Telelogic Synergy Distributed, you can transfer
data between multiple databases, enabling multi-site
development.

delete The delete operation removes an object from the
Telelogic Synergy database.

difference A difference is one variance between two files that
have been compared or merged. Two files may have
more than one difference.

directory A Telelogic Synergy directory keeps track of which
files belong in it.

directory entry For each file that belongs in a directory, the directory
has a place holder, called a directory entry. The
directory entry identifies the file that belongs there,
but not the version of the file.

file A file is a collection of data or information.

folder A named grouping of tasks.

generic process rule A process rule specifies how projects for a particular
purpose will choose new members during an update.
It does this by specifying how the system will find a
baseline to use as a starting point and which tasks the
system should use to find new members. A generic
process rule is a process rule that isn’t part of a
release.

grouping project A project used to create logical groups of projects
where a work area is not necessary or possible.
139 Build Manager’s Guide

history The history operation displays all the versions of a
file, directory, or project, and the relationships
between versions.

incremental baseline A baseline that differs from a previous baseline by a
subset of the projects. For example, if you have
projects proj1 through proj100, and you want to
create a new baseline with just proj1-int and proj2-
int (because proj3 through proj100 haven't changed),
then you can create your new baseline from your
most recent baseline, plus these two projects.

inline differences Inline differences show the individual modified line
and character differences of two compared files.

instance An instance is a property of an object. It is used to
distinguish between multiple objects with the same
name and type, but that are not versions of each
other.

merge The merge feature enables you to combine
information from two parallel versions of a file.
When you merge two files, a third file is created. The
third file contains the blended information from both
files.

merge conflict A merge conflict is an inconsistency between two
modified files, where both were modified on the
same line but in different ways.

object Object is a general term that describes different types
of data you can store in a Telelogic database,
including files, directories, projects, tasks, and change
requests.

parallel conflicts A parallel conflict occurs when one or more parallel
versions are checked out, but have not been merged.

parallel version Parallel versions occur when two or more versions
are checked out from a single file.
Build Manager’s Guide 140

process A process is a collection of process rules that define
how the projects for a release are updated. For
example, a release might contain a purpose called
Integration Testing. Within the Integration Testing
purpose, the build manager might have three process
rules: Hotlist Testing, Integration Testing, and
Resolved CRs. The Integration Testing purpose is
flexible; it can be used to build an Integration Testing
area or to perform testing in hotlist mode, depending
on which process rule the build manager sets the
purpose to have. Developers don’t set processes or
process rules; they only set purposes on projects.

process rule A process rule contains patterns that define how
projects will be updated; they specify rules for
determining the baseline plus a set of tasks and
folders to be used when someone updates a project.
(In previous releases, "update" was called
"reconfigure," "update template" was called
"reconfigure template," and "process rule" was called
"update template.")

product A product is a file that is built by processing other
files. Some examples of products include a .class file,
.jar file, and .exe file.

product task A task automatically created by Telelogic Synergy to
manage a product.

project A project is a logical grouping of selected versions of
files and directories, arranged in a specific structure.

project task A task automatically created by Telelogic Synergy to
manage a project.

project’s update
properties The project’s update properties are the baseline and

tasks on the project’s project grouping.

project grouping Telelogic Synergy groups projects by purpose and
release, for example, My 3.0 Collaborative Projects.
141 Build Manager’s Guide

This is called a project grouping. A project grouping
holds the tasks and baseline used when you update a
project, keeping the update properties consistent for
all projects in a project grouping.

properties The properties of an object, also known as its
properties, enable you to track a variety of
information. Examples of properties are name,
version, and release.

purpose A project’s purpose defines what it is used for, for
example, Insulated Development, Integration
Testing, System Testing. When you change your
project’s purpose, Telelogic Synergy uses different
selection criteria when you update the project.

reconcile See sync

regular expressions Regular expressions are strings of characters that
define patterns used to search for matching text.

release A release is a property that identifies a project or task
that is specific to a particular release of your
application.

release A release consists of an optional component name
and release delimiter, and a component release. The
component name might represent the name of an
application or component, such as Synergy or
editor. The component release identifies the specific
release of that application or component. Synergy/
6.4 is an example of a release.

remove The remove operation takes an object out of a
directory or project, but does not delete it from the
database.

sync The sync operation creates a work area for one or
more projects, compares the files in the work area to
Build Manager’s Guide 142

the database, and enables you to reconcile differences
between the work area and the database.

task A task is a to-do list item that is assigned to a user. A
task also tracks the files that were modified to
complete it.

task-based methodologyTask-based methodology enables a development
organization to track changes to a software
application using tasks, rather than individual files, as
the basic unit of work.

Telelogic Change Telelogic Change is a change request management
system that is web-based and integrated with
Telelogic Synergy. This document describes its usage
with Telelogic Synergy, which is relevant only if you
use Telelogic Change.

test baseline A test baseline is one that’s not yet ready to be made
available to everyone. Typically, after the test baseline
has passed SQE testing, then it’s ready to be
published for developers to use.

type A type is the class of data contained in the object. The
type defines the behavior or characteristics of an
object. Examples of types are java, library, executable,
and HTML.

update You can perform an update operation to update your
project or directory with recent versions checked in
by other users. (In previous releases, "update" was
called "reconfigure.")
143 Build Manager’s Guide

update properties These are properties that a project uses to decide
which object versions to select when someone
updates a project. (In previous releases, "update" was
called "reconfigure," and "update properties" was
called "reconfigure properties.)

use a version You can use a different version of a file or directory
in your project. You may perform the use operation
during unit testing, when you want to go back to a
previous version of a file in your project.

version A version is a specific variation of a file, directory, or
project.

work area The work area is a location in the file system that
contains your copies of files, organized by projects.

work area conflict A work area conflict is an inconsistency between the
contents of your work area and the database.
Build Manager’s Guide 144

Index

A
application packaging

defined, 95
typical mediums, 95

applications on UNIX, PC (build mngmt
for), 120

automation in builds, 35

B
baselines

and update process, 80
bad, example, 72
changes to developers, 74
changes unavailable to developers, 40
complete, example, 71
correct, example, 71
create, 74
defined, 69
delete, 83
how they work, 69
included in baseline, change, 75
incremental, how to create, 81
list, 77
mark for deletion, 83
marked for deletion, and update, 83
methodology, 74
partial, how to create, 81
problems when not set, 61
project, problems when not set, 61
publish, 77
query database for, 70
roll back to previous version, 40
Save Offline and Delete, 83
test, create, 76
test, described, 74
test, methodology, 74
turn on work area maintenance, 70

build management

road map, 3
work area set up, 15

build management project
defined, 25
steps to set up, 26
system testing

project, create, 29
build property, 75
builds

arguments, for int test, 26
automation, 35
make available to others, 77

C
ccm_root group, when to become

member, 14
cleanup, releases and process rules, 83
collaborative development, defined, 24
compare, defined, 138
component

name, defined, 19
release, defined, 19

config, project (troubleshooting problems
in), 61

conflicts
and dependencies, 65
categories of, 65
defined, 31, 138
detection, discussed, 63
how detected, 63
messages, defined, 66
show, CLI, 64
show, GUI, 64

convert to process rule use
developer procedure, 129
when to, 128

copies, multiple (and shared files), 121
custom folder template query, 125

D
default text editor used in this document, 6
145 Telelogic Build Manager’s Guide

delete, defined, 139
deleting

baselines, 83
baselines, mark, 83
project groupings, empty, 84
project hierarchies, obsolete, 84

dependency relationships
defined, 65
example, 65

development
collaborative, defined, 24
insulated, defined, 24

directory entries, empty, 57
documentation, available, 9

E
editor, text (used in this document), 6
empty directory entries, 57
external project

contents, 89
create, 90
defined, 89
example, 89
why to use, 88

F
files

platform, discussed, 17
shared, and multiple copies, 121

folder
add test phases (why and how to), 126
external projects, freeze (CLI), 93
external projects, thaw (CLI), 94
system test, add tasks (CLI), 43

folder template
query, custom, 125

freeze
external projects folder, CLI, 93

G
grouping project

create, 123
defined, 122
discussed, 122
unique project names, 122

guidelines
update, 53

H
hierarchies, project, remove, 84
history, defined, 140

I
IBM Customer Support, 11
inactivate a release, cleanup, 83
incremental baselines, how to create, 81
installation area, defined, 36
installation project

create (CLI), 98
create (GUI), 97
defined, 96
query for files to add (CLI), 98

insulated development, defined, 24
integration prep project

create (CLI), 27
reuse (CLI), 48

integration testing project
build cycle activities, 39
create, 26
reuse, 47

L
local files and UNIX work areas, 121
log, update, 56

M
merge, defined, 140
messages, conflicts (defined), 66
methodology

baselines, 74
test baselines, 74
Telelogic Build Manager’s Guide 146

variant, defined, 119
multiple copies of shared files, 121

N
name property, 74
new release, what to do, 46
NT Servers and platform file, 18

O
om_hosts.cfg, platform file location, 17

P
packaging applications

defined, 95
typical mediums, 95

parallel
environment, platforms, 105
notifications, when to turn on, 14
release, defined, 24
releases and platforms, defined, 24
versions, not merged, 57

partial baselines, how to create, 81
patch

and release values, 103, 123
defined, 102
fixes, obtain from developers, 103
release, 102
release, create, 103, 123
what to include in, 102

PC, UNIX applications (build mgmnt for),
120

platform file
and NT Servers, 18
and update, 18
discussed, 17
example, 17
location, 17

platform values, when to use, 18
platforms

parallel releases, defined, 24
set up, 19

ship multiple, 105
prep project

integration, create (CLI), 27
integration, reuse (CLI), 48

process rule
and purposes, defined, 21
convert, developer procedure, 129
delete, when and how to, 83
use for new release, 128
when to convert to use, 128

process rules
cleanup, 83

product sharing
defined, 87
example, 87

project config problems, troubleshooting,
61

project grouping, defined, 122
project groupings

empty, remove, 84
included in baseline, change, 75

project hierarchy
add existing proj to (CLI), 111
add existing proj to (GUI), 111
add new proj (CLI), 115
create subproj from dir (CLI), 113
delete existing proj from (CLI), 112
delete existing proj from (GUI), 112
unuse existing proj from (CLI), 112

projects
build management, defined, 25
build management, steps to set up, 26
defined, 141
external, contents, 89
external, create, 90
external, defined, 89
external, example, 89
external, why to use, 88
hierarchies, remove, 84
included in baseline, change, 75, 82
installation, create (CLI), 98
147 Telelogic Build Manager’s Guide

installation, create (GUI), 97
installation, defined, 96
installation, query for files to add

(CLI), 98
integration prep, create (CLI), 27
integration prep, defined, 26
integration testing, create, 26
restructuring, discussed, 109
system test prep, defined, 26
system testing, create, 29
variant, 105

properties
build, 75
name, 74

properties, defined, 142
publish

baselines, 77
purpose

and process rules, defined, 21

Q
query, create for custom folder template,

125

R
release

characters allowed, 20
defined, 19
discussed, 19
example, 19
for patch, 102
name creation, 20
name, character restrictions, 20
name, text string length, 20
names, examples, 19
new release, 46
new, what to do, 46
parallel (defined), 24
patch name, 102
patch, create, 103, 123
release software, 45

ship multiple, 105
software, 45
values, important for patches, 103, 123
values, modify, 21

release value
update for incomplete tasks (CLI), 48
update for incomplete tasks (GUI), 46

releases
inactivate, cleanup, 83

removing, see also delete
replaced subprojects, 57
resolve conflicts,conflicts

resolve, 67
restructure a project, discussed, 109
road map, build management, 3
rule, process

convert (developer procedure), 129
delete, when and how to, 83
when to convert to use, 128

S
Save Offline and Delete, and baselines, 83
shared files in multiple copies, 121
shared location for build mngmt work

areas, 15
sharing products

discussion, 87
example, 87

ship
multiple platforms, 105
multiple releases, 105

show conflicts
CLI, 64
GUI, 64

subprojects, replaced, 57
Synergy documentation, 9
system test

area, fix defects in, 42
cycle, discussed, 41
cycle, example, 42
cycle, test levels, 41
Telelogic Build Manager’s Guide 148

system testing
project, create, 29

T
tasks, defined, 143
template

folder, custom query, 125
test level, for system test cycle, 41
testing project

integration, create, 26
integration, reuse, 47

text editor used in this document, 6
thaw external projects folder, CLI, 94
trademarks, 133
troubleshooting

conflict resolution, 67
proj config problems, 61
selection problems, 60
update properties, 60

U
UNIX work areas and local files, 121
UNIX, PC applications (build mgmnt for),

120
update

and baselines, 80
and baselines marked for deletion, 83
guidelines, 53
int prep proj hierarchy, 54
steps during operation, 51
verbose, 59
verbose, dir level vs proj level, 60

update log
and verbose option, 59
empty directory entries, 57
parallel versions not merged, 56
replaced subprojects, 57

update template
use for new release, CLI, 128, 129

use a version, defined, 144

V
values, platform (when to use), 18
values, release

important for patches, 103, 123
update for incomplete tasks (CLI), 48
update for incomplete tasks (GUI), 46

variant
methodology defined, 119
projects, 105

verbose update
dir level vs proj level, 60
option, 59

versions
parallel, not merged, 57

W
wa_path_template, set for shared work

area location, 15
work areas

build management, set up, 15
defined, 144
set for specific release or platform, 15
set to shared location, 15
UNIX and local files, 121

workflow, defined, 37
149 Telelogic Build Manager’s Guide

Telelogic Build Manager’s Guide 150

	Telelogic Synergy
	Build Manager’s Guide
	Release 6.6a
	Overview
	Locating build management information
	Changes to operations
	Build management road map
	Preparation
	Ongoing integration test cycle
	System test cycle
	Software release
	Special considerations

	Conventions
	Command line interface
	Option delimiter

	Standards
	Terminology and name changes in Telelogic Synergy 6.6a
	Name changes
	Terminology changes
	Changes to operations

	Telelogic Synergy Help systems
	Telelogic documentation

	Where to obtain additional information
	Readme

	Contacting IBM Rational Software Support
	Product support
	Other information

	Prepare for build management
	Before you start...
	UNIX build managers
	All build managers

	How to set up your environment
	About the platform file
	How to set up platforms
	About releases
	How to modify release values
	About purposes and process rules
	Use process rules for a new release
	Insulated and collaborative development
	About parallel releases and platforms
	About baselines
	Control the released project hierarchy
	About build management projects
	Create the integration testing projects
	Create the system testing projects

	Build management basics
	Before you start...
	About builds
	Build guidelines
	Automate the build management process

	How to provide the application for testing
	What is the build workflow?
	Integration test cycle
	Update
	Show and resolve conflicts
	Build and test
	Create a baseline
	Working with a bad baseline

	System test cycle
	Update
	Show and resolve conflicts
	Build and test
	Build using specific tasks
	Release the software
	Prepare for a new release
	Mark a baseline for deletion

	Update and conflicts
	How update operates
	Update with process rules
	Update manually
	Update guidelines

	How to update
	Selection rules
	Update and baselines
	Update with platform values
	Review update results

	Diagnose selection problems
	Verify the update properties

	How conflict detection operates
	How conflicts arise
	How to detect conflicts
	Categories of conflicts
	Conflicts and dependencies

	Resolve conflicts

	How baselines work
	What’s a baseline?
	How is a baseline used?
	Which projects should be in a baseline?
	Create a baseline
	Publish a baseline to developers
	Baselines and the update process
	Create an incremental baseline
	Remove unnecessary baselines

	How to share products
	Share external projects
	External projects
	Create an external project
	The modified build process for multi-phased builds

	How to package an application
	About installation areas and projects
	Create an installation project
	The modified build process for installation projects

	Parallel releases
	Create a patch for a release
	Set the patch release
	Projects to include
	Obtain fixes from developers
	Create a release for a patch
	Create a patch

	Create a parallel development environment
	About parallel platforms
	How to set up a parallel platform
	Set up parallel releases

	Project restructuring
	Add an existing project to your hierarchy
	Cut a project from your hierarchy
	Delete a project from your hierarchy
	Convert a directory to a subproject
	Add a new project to an existing hierarchy

	Build management variations
	Build management for UNIX and PC together
	UNIX work areas with local files
	Grouping projects
	About the grouping project to be created
	Grouping projects versus project groupings
	Create a grouping project
	Create a release for a patch
	Create a patch
	Custom folder template query
	Add additional test phases

	Are process rules required?
	Converting projects
	Build manager conversion procedure
	Developer conversion procedure

	Copyright license
	Trademarks

	Terms and concepts
	Index

