

Rational Statemate User Guide

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF file available from Help > List of Books.

This edition applies to IBM® Rational® Statemate® 4.6 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2009.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
ii

Contents
Rational Statemate Overview . 1
The Rational Statemate Development Environment . 1

Rational Statemate Interface Features . 1
The Rational Statemate Main Window . 2
Tabs . 4

Charts Tab. 4
Files Tab . 5
Databank Tab . 5
Search Tab . 10
Messages Tab. 11
Log Tab . 11
Right-click Menus . 12

Toolbars . 15
Edit Toolbar . 15
Change Tracking Toolbar . 15
Information Toolbar . 16
Properties Toolbar. 16
Tools Toolbar . 17

Menus . 18
File Menu. 18
Edit Menu . 19
View Menu. 21
List Menu. 21
Project Menu . 22
Configuration Menu . 22
Tools Menu . 24
Utilities Menu. 25
Windows Menu . 25
Help Menu . 25

Activity Interface Browser . 26
Menus . 27
Tool Bar. 27

Working Environment . 29
Rational Statemate iii

Table of Contents
Projects . 29
Creating a Project . 30
Modifying a Project . 32
Displaying Project Settings . 34
Opening a Project . 35
Deleting a Project . 36
Closing a Project . 36

Workareas . 37
Creating a Workarea . 37
Opening a Workarea . 39
Moving a Workarea . 39
Copying a Workarea . 40
Reducing the Workarea . 40
Deleting a Workarea . 41
Sharing the Workarea . 41
Sharing and Locking . 42
Temporary Workarea Directory . 42

Output Devices . 43
Setting Up Output Devices . 43
Modifying Output Devices . 45
Deleting Output Devices . 46

Preferences . 46
Setting General Rational Statemate Preferences . 46

Specifying Where Preferences are Applied. 47
Specifying Access to Preferences. 47

Preferences Descriptions . 48
General Preferences . 49
Preferences Management . 52

Statechart Graphic Editor Preferences . 52
Activity-Chart Graphic Editor Preferences. 54
Module-chart Preferences . 57
Flowchart Graphic Editor Preferences . 58
Sequence Diagram Graphic Editor Preferences . 59
Use-Case Diagram Graphic Editor Preferences . 60
Panel Graphic Editor Preferences. 61
Graphic Editors Preferences . 62
Databank Browser Preferences . 63
Simulation Preferences . 64
Properties Preferences . 66
Check Model Preferences . 68
Prototype C Code Generator Preferences . 69
MicroC Code Generator . 71
Embedded Rapid Prototyper Preferences. 72
iv User Guide

Table of Contents
RT Interface Preferences . 73
Panel Builder Preferences. 74
 . 84
Activity Interface Browser and Reports Preferences. 85
Loading Predefined Preferences. 86
Setting Parameter Preferences . 87

Setting Preferences for Editors and Utilities . 89

Configuration Management . 90
Databank. 90
Elements . 91
Working with the Databank . 92

Automatic Databank Refresh . 93
Checking Out Databank Items . 93
Creating a New Configuration . 94
Locking Databank Items . 95
Exporting Charts and Files . 96
Error Handling when Loading Charts . 96

Checking In and Out Elements . 97
Tracking Changes . 98

Automatic Change Tracking . 98
Track Changes Preferences . 99
Types of Changes Tracked . 99
Track Changes Limitations . 99

Database Diagnostics . 100
Error Report . 100
View and Resolve Errors. 101

Plugins . 102

Using the Graphic Editors . 105
Overview of the Rational Statemate Graphic Editors . 106

Graphic Editor Icons . 107
Graphic Editor Menus . 109

File Menu . 110
Edit Menu . 112
View Menu . 113
Layout Menu . 116
Tools Menu . 118
Options Menu . 121

Working with Graphic Editors . 123
Starting a Graphic Editor . 123
Creating a New Chart or Diagram. 123

Creating a New Chart or Diagram from the Open Chart Window . 124
Rational Statemate v

Table of Contents
Creating a New Chart or Diagram with a Graphic Editor. 126
Drawing Operations in Graphic Editors . 127

Drawing Boxes . 127
Drawing Lines . 128
Drawing Connectors . 128
Editing Text . 128
Selecting Elements . 128
Labeling Elements. 129
Moving Elements. 130
Copying Elements . 130
Resizing Elements. 130
Deleting Elements . 131
Constraining Graphic Operations . 131

General Operations in Graphic Editors . 132
Opening the Properties Window for Elements . 132
Displaying Element Properties . 132
Opening the Properties Window for an Entire Chart . 132
Displaying Chart Properties. 132
Displaying Subroutine Properties . 133
Opening a Simulation Execution Window . 133
Invoking the Check Model Tool . 133
Invoking the RT Interface . 133
Closing a Chart . 133
Saving a Chart. 134
Opening a Parent Chart . 134
Opening a Sub-Chart . 134
Inserting a Chart . 135
Creating a Sub-Chart . 135
Exiting the Graphic Editor . 135

Working with Charts and Diagrams. 136
Activity Charts . 136

Accessing an Activity Chart . 136
Activity Chart Icons . 138

Module Charts . 142
Accessing a Module Chart . 142

Statecharts . 146
Accessing a Statechart . 147
Statechart Icons . 148
Associating a Statechart with an Activity. 151
“Only Once” Test Benches . 151

Use Case Diagrams . 152
Accessing a Use Case Diagram . 152
Use Case Diagram Icons . 154
Use Case Diagram Properties. 155
vi User Guide

Table of Contents
Linking Use Cases to Scenarios . 157
Sequence Diagrams . 159

Accessing a Sequence Diagram . 161
Sequence Diagram Icons . 162
Sequence Diagram Drawing Notes . 163
Lifeline Decomposition . 163
Integrating Sequence Diagrams with the Rational Statemate Model . 164
Generating a Sequence Diagram from an Activity Chart . 164
Using Properties with Sequence Diagrams . 166
Auto-Numbering in Sequence Diagrams . 167
Print Pagination . 167

Flowcharts . 168
Accessing a Flowchart . 168
Flowchart Icons . 168
Flowchart as Subroutine Implementation . 170

Panels . 173
Using the Panel Editor . 175

Accessing the Panel Editor . 175
Panel Editor Menus. 177

File Menu . 177
Edit Menu . 178
View Menu . 179
Layout Menu . 181
Transform Menu . 183
Group Menu . 184
Tools Menu . 184
Options Menu . 185

Panel Editor Icons . 186
Interactor Icons . 186
Drawing and Naming Icons . 187

Binding Interactors . 188
Individual Bindings . 191
Group Bindings . 191

Using the Panel Builder . 192

Element Properties . 195
Understanding Elements . 196

Textual Elements . 196
Textual Types, Sub-types, and Structures . 200
Default Values for Textual Elements . 201

Graphical Elements . 202
Rational Statemate vii

Table of Contents
Chart Elements . 204

Creating and Modifying Elements . 207
Quick-Edit Mode . 207

Elements in the Chart Hierarchy . 207
Quick-Edit Mode Limitations . 207

Invoking the Properties Dialog Box . 208
Subroutine Properties . 209
Editing Multiple Elements . 209

Record/Union Field Properties . 209
Cut, Copy and Paste Operations on Record/Union Fields . 209
Properties Preference “Mass edit overwrite values” . 209

Properties Window . 210
Individual Property Fields Display . 210
Toolbar Operations . 210
Searching Charts. 210
Property Information Displayed in Tabs . 211
Creating and Modifying Elements . 218
Resetting Default Values for Elements . 243

Searching for Elements . 244
Starting the Search Tool . 244
Creating a List of Elements . 246
Saving a List . 247
Accessing a Stored List . 248
Filtering a List of Elements . 249
Appending to a List of Elements . 249
Running an Advanced Query . 250
Finding Where Elements are Referenced and Used. 256

Finding Where Elements are Referenced . 256
Finding Where Elements are Used . 258

Libraries and Components . 259
Working with Components . 261

Creating a Component . 261
Inserting a Component . 263
Copying a Component . 265
Previewing a Component . 266
Deleting a Component . 267
Managing Components . 267

Working with Libraries . 268
Adding Libraries to a Project . 269

The Router Element . 271
viii User Guide

Table of Contents
Router Element for the Activity Charts . 271

Working with the Router . 272
Drawing Router Blocks . 273
Using Routers to Reduce Flow Lines . 275

Router Rules . 275
Compound Flow Lines through Routers . 276

Defining Router Properties. 277

Interface Reporting . 279
Local Interface Report . 279
Global Interface Report . 280

Using Check Model with Router Blocks . 282

Exporting Router Blocks to Rational DOORS. 282

Setting Router Preferences . 283
Internal Router Preferences . 284
External Router Preferences. 285

Global Definition Set Editor . 287
Creating a New GDS . 288

Editing an Existing GDS . 291

GDS Properties . 292
GDS Usage Property . 292
GDS Visibility Mode Property . 292
Reduced GDS . 293

MicroC Code Generator . 295
Scope Definition . 295

Module Structure. 295
Testbenches . 296
Creating a Sample Profile . 296

Invoking the Profile Editor . 296
Defining Code Modules . 298
Assigning Behavior to the Module. 299
Splitting Activity Chart Hierarchy . 300

Code Options . 301
RESET_Data as Function . 301
Ignore External Binding. 301
Code Generation for Control Activities . 301
Enhanced Generated Code-Level Readability and Documentation . 301
Support Selective GBA . 302
Rational Statemate ix

Table of Contents
Byte Orientation Instrumentations. 302
Single-Bit Elements. 302
User-Code Generation . 302
Setting the Time Scale . 303

Setting the Time Expression Scale Preference. 303
Working with Multiple Counters. 304
Setting the Time Expression Scale . 304
Defining Counters in a cfg file . 305

Generation of Constant Elements with “const” Modifier . 306
Default Data Types . 306
Generating Code with Extended Documentation . 306
Dynamic Data Initialization . 307
OSEK GetResource Usage. 307

Rational Statemate Block in a Rational Rhapsody Model . 308
Required Rational Statemate Model Characteristics. 308
Preparing the Rational Statemate Model . 308
Synchronizing Rational Statemate and Rational Rhapsody . 309
Troubleshooting Rational Statemate with Rational Rhapsody . 309

Code Optimizations. 311
Empty Overlapping Tests of State Hierarchy . 311
Generate All and Generate Only Used . 311
Optimization Algorithms . 311
Inline Setting of the “Need Another Step” Bit . 311
Inline Entering and Exiting Reactions . 312
Reuse of Timeout Variables . 313
Clutching Entrance to a State Hierarchy . 313
Additional Optimization Options for Code Generation. 313

OS Definition Tool . 314
Design Attributes. 314

Design Attribute Notation . 314
Inheritable Design Attributes . 315
Special Design Attributes . 315

Element Attributes. 316
Task Execution Mode API and Design Attributes . 316
Get-Set Functions for Buffered Access Data-Items . 316
OS Static Configuration. 317
Defining the Location of the CTD Directory. 317
APIs. 317

Customizable Timeouts using OSDT . 320
Support for Queues . 321
Task/ISR APIs . 321
Statecharts Functions . 323
APIs for Function-Declare-Style . 324
x User Guide

Table of Contents
Customizable OSEK APIs . 324
API Modification Rules . 325
Upgrading an OSI . 325
List Support in OSDT . 326
Generated Data Declaration . 328

Supported Targets. 330

Utilities . 330
Remote Panel Server Support . 330

Using the Remote Panel Server . 331
Invoking the Remote Panel . 331

MicroC Design-Level Debugger . 332

Rational DOORS RT Interface . 333
How the RT Interface Works. 334

Exporting Data . 334
Re-Exporting and Synchronizing Data . 335

Methodology Guidelines . 336

Configuring the RT Interface . 337
Preliminary Requirements . 337
Configuring the RT Interface on Windows. 338

Edit run_stmm.bat . 339
Edit doorss.bat . 340
Edit GetDoorsVer.bat file. 340
Edit run_doors.bat . 341

Working with the RT Interface . 341
Associating a Rational Statemate Project with a Rational DOORS Project . 342
Setting Preferences . 343

Setting Preferences for Chart Plots . 343
Setting Preferences for External Use-Case Files . 346
Setting Preferences for Log Files . 347
Setting Up a Default Configuration File . 348

Exporting Rational Statemate Data to Rational DOORS . 350
Preparing Rational Statemate Elements for Export to Rational DOORS 350
Configuring Attributes for Export . 353
Configuring Filtering by Attribute . 355
Configuring Linksets for Export . 358
Creating Multiple Linksets in a Single Link Module . 362
Exporting . 363

Re-Exporting Rational Statemate Data to Rational DOORS . 364
Using a Saved Configuration File . 364

Rational DOORS Interface Support for Transitions. 365
Rational Statemate xi

Table of Contents
Truth Tables . 367
Format and Content of Truth Tables . 368

Special Characters . 368
Input Columns . 368

Valid Input Elements . 369
Input Column Header Operators . 370
Invalid Input Elements . 370

Output Columns . 371
Output Elements . 371

Action Column. 372

Executing Truth Tables. 372
Default Row. 372
Row Execution . 373
Truth Table Contents for Activities and Actions . 373
Truth Table Contents for Subroutines . 374
Micro-step Execution of Procedure Truth Tables . 374
Execution of Action Truth Tables . 375
Factorization of Cells . 375

Factorizing Inputs . 375
Factorizing Outputs and Actions . 377

Defining a Truth Table. 378

Lookup Tables . 381
Defining a Lookup Table. 381

Example of a Lookup Table . 383

Example Components . 385
Overview. 385

Example Component Library . 386
STM_BRANCH_2 . 388
STM_BRANCH_3 . 391
STM_FORK_2 . 395
STM_FORK_3 . 397
STM_JOIN_2 . 399
STM_JOIN_3 . 402
STM_FIFO_ACTIVE . 406
STM_FIFO_PASSIVE . 410
STM_LIFO_ACTIVE . 414
STM_LIFO_PASSIVE . 418
STM_PMPT_ACTIVE . 422
STM_PRTY_PASSIVE . 426
xii User Guide

Table of Contents
STM_SINK . 430
STM_SOURCE . 432

AUTOSAR Generator . 435
Overview of the AUTOSAR Interface . 436

AUTOSAR Menus . 436
AUTOSAR Toolbar Options . 437
Scope Definition Area . 437

Generating Code and XML Description. 445

Timeouts. 445

In-Out Elements . 446

SAG Implementation of AUTOSAR Features . 447
 .Exclusive Areas447
Timing Events . 447
Data Types . 448

Example 1:Default behavior: . 448
Example 2- Using a UDT: . 449
Example 3 - Using an externally defined type: . 450

Services . 450
Data Send Points, Data Receive Points, Data Read Access, Data Write Access 451
Inter Runnable Variables. 454
Mode Declaration Groups . 455

The AUTOSAR RTE OS ImplementationsI . 456

Important Notes . 456

Creating an AUTOSAR Project. 456

Technical Support . 457
Contacting IBM Rational Software Support . 457

Prerequisites . 457

Contacting Support . 458

Reporting Rational Statemate Problems from the Software . 460

Glossary of Rational Statemate Terminology . 461

Index 505
Rational Statemate xiii

Table of Contents
xiv User Guide

Rational Statemate Overview
IBM® Rational® Statemate® is a high-level graphical development environment that enables
systems engineers to design, validate, and simulate models that clearly and precisely represent the
intended functions and behavior of the system they are developing.

The Rational Statemate Development Environment
Rational Statemate encapsulates the design and simulation of simple or complex reactive systems,
enabling systems engineers to flesh out problems and firm up their specifications during the design
stage, rather than during implementation – or worse, after the system is in production or has
shipped to customers.

Although problems discovered beyond the requirements-gathering and design stages cost roughly
100 times more to fix, almost half the work done on systems projects is devoted to reworking just
these sorts of problems.

Rational Statemate is designed to eliminate this sort of costly re-engineering by increasing project
and system clarity (which fosters cooperation and reduces misunderstandings between
collaborating groups and suppliers), identifying ambiguous or conflicting requirements, targeting
modules and sub-systems for reuse, and providing accurate simulation and rigorous validation -
all of which translates into increased productivity, faster time-to-market, and an overall increase in
enterprise Return On Investment (ROI).

Rational Statemate Interface Features
This section provides a description of these primary features of the Rational Statemate interface:

� The Rational Statemate Main Window

� Tabs

� Toolbars

� Menus
Rational Statemate 1

Rational Statemate Overview
The Rational Statemate Main Window

Rational Statemate consists of a set of tools that interact with one another to provide a complete
system design environment. From the Rational Statemate main window, Rational Statemate
provides various browser views, windows and drawing areas, menus and toolbars to access and
use its collection of system design, validation, simulation, and requirements-gathering utilities.

The Rational Statemate main window displays a hierarchy of your project, and provides easy
access to the elements and diagrams it contains. The following figure shows the different areas of
the Rational Statemate main window.

Tools
Toolbar

Menu Bar Edit Toolbar
Properties ToolbarInfo Toolbar

Change Tracking
Toolbar

Model
Diagrams

Element
Matrices

Error and
Informational
Messages
2 User Guide

Rational Statemate Interface Features
The Rational Statemate main window displays the current project name in the top status bar and
includes tabs, toolbars, and menus to help you use Rational Statemate.

In the Rational Statemate main window, tabs at the bottom provide four views for looking at
Rational Statemate project elements. The Rational Statemate main window provides the following
views:

� Charts Tab

� Files Tab

� Search Tab

Below each of the four main tabs are a Messages Tab and a Log Tab, that display the status of your
Rational Statemate operations in linear or searchable form.

A menu bar at the top of the window provides access to many Rational Statemate tools and
features. In addition to the menu bar, the main window provides several toolbars:

� Edit Toolbar

� Change Tracking Toolbar

� Information Toolbar

� Properties Toolbar

� Tools Toolbar

Note
The graphic editors have additional toolbars and menus, which are described in Using the
Graphic Editors and Graphic Editor Menus.

Note
All Statement windows allow standard multiple row selection operations using the CTRL
and SHIFT keys as well as cut, copy and paste operations between windows.

The following matrix operations are available for elements on the right pane:

� Sort by column
� Scroll list on key-press
� Cut/Copy/Paste

The following sections describe the tabs, toolbars, and menus on the main window.
Rational Statemate 3

Rational Statemate Overview
Tabs

The Rational Statemate main window contains four tabs that provide different views of Rational
Statemate files, elements, and status.At the bottom of the window, there are two tabs that display
error and informational messages.

Charts Tab
The Charts tab divides the Rational Statemate window into the left hand tree, which displays
project charts and diagrams in their hierarchical tree structure, and the right hand matrix, which
displays details of all charts and diagrams, sorted by name, definition location, type, and status.

For more information about working with charts, see Using the Graphic Editors.
4 User Guide

Rational Statemate Interface Features
Files Tab
The Files tab displays details of all the files in a project sorted by the file name, type, mode,
version number, modification status, and date modified.

Databank Tab

The DataBank tab displays details of all the data elements in a project sorted by name, type, access
status, current lock ownership, version number, and selected versions.
Rational Statemate 5

Rational Statemate Overview
6 User Guide

Rational Statemate Interface Features
To enable the search feature, click . The following figure displays the DataBank with the
Search feature enabled:

These tabs allow you to enter a Name Pattern using alpha-numeric characters, the underscore,
and wildcards.There are two search options, New List and Append to List. Click Search Now to
begin the search. Click Stop Search to end the search.

Note
Wildcards in the Name Pattern field are not allowed in the Textual tab.
Rational Statemate 7

Rational Statemate Overview
The following table lists the features of each Databank search tab.

Tab Options

Charts Select the type of chart you want to search for:
• Statecharts
• Activity-charts
• Use-Case Diagrams
• Sequence Diagrams
• Flowcharts
• Module-charts
• Global Definition Sets
• All Charts

Files Select the files from the following options:
• Analysis Profiles
• Monitor Files
• SCL & Test Files
• Waveform Profiles
• Status Files
• Check Model Profiles Panels
• Component Configuration Files
• Plugin Files
• DGL Templates
• Include Files
• Configuration Files
• All Files

Code-Gen Files Select the Code-Gen files from the following options:
• Target Files
• Card Files
• Makefiles
• OIL Files
• CFG Files
• Source(c) Files
• Source(h) Files
• Rational Statemate Prototype Comp. Profiles
• Rapid Prototype Comp. Files
• Rational Statemate MicroC Comp. Profiles
8 User Guide

Rational Statemate Interface Features
Textual Select the type of elements to search for in the databank:
• General Type - Select from the pull-down list. Options are All,

Textual, or Graphical
• Type - Select the Type from the pull-down list. Note that this

option is disabled if All is selected for the General Type.

Options for Textual Type are All, Data-Item, UserDefType,
Condition, Event, Action, Info-flow, Subroutine, Field.

Options for Graphical Type are All, State, Activity, Module, Actor,
Use-Case, Boundary Box, Charts instance.

• Search In - Options are All charts, Selected Charts, Included In
Configuration Files.

• Match - Options are Complete or Partial (complete or partial
match to the “Name Pattern”)

Tab Options
Rational Statemate 9

Rational Statemate Overview
Search Tab
The Search tab enables you to perform a variety of search operations on project elements.

For more information on searching for element properties, see Searching for Elements.
10 User Guide

Rational Statemate Interface Features
Messages Tab
Rational Statemate 11

Rational Statemate Overview
Right-click Menus
Two right-click menus are defined for items in the main window tabs. Right-click an item to
display the menu. The following figures and tables describe these menus.

Note
The left pane menu is available for the Charts and Files tab only. Not all functions are
available for both tabs. The Charts tab version is shown.

Left Pane Menu

Menu Item Description

New/Open Opens a new or existing Chart, GDS, Profile or Panel.

Edit Opens the selected item for editing.

Show in Activity
Interface Browser

Enables you to browse the model and navigate through the information
flows across the hierarchy of the chart. For more information, see Activity
Interface Browser.

Rename Opens the Rename <xx> dialog box, enabling you to rename the selected
item.

Copy Places a copy of the selected items on the clipboard.

Paste Copies from the clipboard to the selected item.
12 User Guide

Activity Interface Browser
Menus

Tool Bar

Menu Options

File Menu • New Window - Opens another Activity Interface Browser.
• Close - Closes the Activity Interface Browser

View Menu • Refresh - Refreshes the Activity Interface Browser information.
• Expand All/Collapse All - Expands or collapses the tree structure.

Tools Menu • Show Interface - Show interface of selected activity
• Show in Model - Opens the Graphical Editor.
• Properties - Opens the Properties dialog box.
• Properties with Content - Opens the properties dialog for the selected activity

and it's interface elements
• Info - displays version informations, date, mode, created by, and created on

information.
• Textual Reports->Local Interface Report - Show the selected activity's input/

output signals and their source/target activities inside current chart.
• Textual Reports->Global Interface Report (Activities) - Show the selected

activity's input/output signals and their source/target activities throughout model
hierarchy, sorted by the source/target activities names.

• Textual Reports->Global Interface Report (Elements) - Show the selected
activity's input/output signals and their source/target activities throughout model
hierarchy, sorted by signal name.

• Options - Select Graphical Interface or Functional Interface.
• Options->Show Source/Target in LCA chart - Setting to display the basic

source/target activity or its ancestor instance in the Least Common
Ancestor chart

Icon Function

Displays interface of selected activity

Opens the Graphical Editor.

 Opens the Properties dialog box.

Displays version informations, date, mode, created by, and
created on information.

Displays previous/next interface list.
Rational Statemate 27

Rational Statemate Overview
28 User Guide

Working Environment
This section describes the Rational Statemate working environment. The topics are as follows:

� Projects

� Workareas

� Output Devices

� Preferences

� Configuration Management

� Database Diagnostics

� Plugins

Projects contain workareas for each member of the project and each project (and its various charts
and components) can be directed to a variety of output devices for distribution.

Additionally, users and project managers can set preferences for Rational Statemate and the
various tools and utilities, and store elements in a databank.

Projects
A project is the main unit for organizing work in Rational Statemate. A project consists of data and
users who can access that data. In general, project members have access to all data in a project, but
any (or all) specific elements can be protected from write or read access.

A project includes the following:

� Name
� Manager
� Databank
� CM Tool
� RT project (optional)
� Libraries containing components (optional)
� Members
Rational Statemate 29

Working Environment
Note
A project is intended to be accessed by multiple users. A workarea is intended to be
accessed by a single user.

Creating a Project

To create a project:

1. From the Rational Statemate main window, select File > New Project or Project >
Project Management, and then click New.

The Create New Project dialog box displays.

Note: Check Expand to view Libraries and Project Members fields.
30 User Guide

Projects
2. Specify the following values:

� Name - Enter a name for the project.

Project names must be unique at your site. Project names must begin with a letter,
and can only consist of letters, numbers, and underscores (_). Lowercase letters
are automatically converted to uppercase. Names in Rational Statemate, including
project names, are not case sensitive and cannot contain spaces. A Rational
Statemate project name can be up to 64 characters.

� Do not use Caps Lock.
� Manager - Enter the name of the project manager. You can select a name from the

pull-down list.

Each project can only have one project manager associated with it. By default, the
project manager is also a project member. The project manager does not need to
be an Rational Statemate administrator.

� Databank - Select an area on a shared drive to hold the project files. Click ... to
browse for a directory.

� CM Tool - Select a configuration management utility. Rational Statemate is
selected by default though several widely-used, third-party CM tools are also
supported. If you prefer a different tool, templates are available so that you can
create your own script-based interface to your tool of choice. For more
information, contact your sales representative.

� RT Project (optional) - Enter the name of the Rational DOORS project, if the
project uses Rational DOORS. For more information on Rational DOORS, see
Rational DOORS RT Interface.

� OS Implementation - Select the Operating System implementation from the pull-
down list.

� Description - Provide a brief description of the project for future reference. The
description is intended primarily for libraries.

� Defined As Library (optional) - If this option is selected, the project will be
defined as a library, enabling its contents to be shared by other projects.

� Insert Libraries (optional) - To include libraries in the project, click Insert to the
right of the Libraries area and browse for libraries to include.

� Insert Project Members (optional) - To add members to the project, click Insert
to the right of the Project Members area. The Select member dialog box displays.
Select the members to add. The application lists all the user accounts on the
current system.

Note: To view Defined as Library, Insert Libraries, and Insert Project Members, you
must check the Extend box.

3. Click OK to create the project.
Rational Statemate 31

Working Environment
Modifying a Project

To modify a project:

1. From the Rational Statemate main window, select Project > Project Management. The
Project Management dialog box displays a list of all projects and their corresponding
managers.

2. Select the project to be modified.
32 User Guide

Projects
3. Click Modify. The Modify Project dialog box displays. The Modify Project dialog box
displays (shown expanded).

4. Make the necessary modifications (described in the table in Creating a Project, Step 2).

5. Click OK.
Rational Statemate 33

Working Environment
Displaying Project Settings

To display the settings for a project:

1. From the Rational Statemate main window, select Project > Project Management. The
Project Management dialog box displays.

2. Select the project to display and click Show. The Show Project dialog box displays.

Note: Check Expand to view the Libraries and Project Members fields.
34 User Guide

Projects
Opening a Project

To open a project:

1. From the Rational Statemate main window, select File > Open Project. The Open
Project dialog box displays.

Note: You can only open one project at a time.

2. Select the project to open in the Projects panel.

Note: A list of workareas is displayed for the selected project in the Workareas panel.
More than one workarea can be associated with a project.

3. Double-click the workarea you want to use or create a new workarea.

4. Click OK. The Open Project dialog box closes and the main window is redisplayed with
the selected project.
Rational Statemate 35

Working Environment
Deleting a Project

Note

� To delete a project, you must be the project manager and the project must be closed.
� When you delete a project, only the reference to the project is deleted. The databank, files,

and workareas connected to the project are not deleted.
To delete a project:

1. From the Rational Statemate main window, select Project > Project Management.

2. Select the project to delete in the Project Management dialog box.

3. Click Delete. Rational Statemate prompts you to confirm the deletion.

4. Click Yes to confirm your choice.

Closing a Project

To close a project, from Rational Statemate main window, select File > Close Project.
36 User Guide

Workareas
Workareas
A workarea is private directory structure associated with a user and a project. This workarea
enables each project member to work independently. You can design and redesign, without making
irrevocable changes to the current working or released design. As you rework your charts,
modifications are made within your workarea.

Creating a Workarea

To create a new workarea:

1. From the Rational Statemate main window, select Project > Workarea Management.
The Workareas Management dialog box displays.
Rational Statemate 37

Working Environment
2. Click New. The New Workarea dialog box displays. A list of projects and their
corresponding workareas displays.

Note: If another workarea is already active, this option is disabled.

3. In the Projects list, select a project with which to associate a new workarea.

4. In the Workarea box, enter the name and absolute path of the new workarea, or click
to browse to a directory.

Note: The absolute path to the directory where you want the workarea to reside must
already exist; Rational Statemate does not create the absolute path.

5. Click OK.
38 User Guide

Workareas
Opening a Workarea

To open a workarea:

1. From the Rational Statemate main window, select Project > Workarea Management.

2. In the Workareas Management dialog box, select the project and workarea to be opened.

3. Click Open.

Note: If another workarea is already active, this option is disabled.

The Workarea Management dialog box closes and the main window is redisplayed
with the new workarea.

When the Open Last Wa Used preference is set to yes, the tool is opened at the last
visited project and workarea.

Moving a Workarea

To move a workarea:

1. From the Rational Statemate main window, select Project > Workarea Management.

2. In the Workareas Management dialog box, select the project and workarea to be moved.

3. Click Move.

Note: If another workarea is already active, the Move button is disabled.

The Workarea Name dialog box displays. It displays the existing directory
structure. The current location of the workarea displays in the Save In box.
Rational Statemate 39

Working Environment
4. Select a new location to move the workarea, if appropriate.

Note: The name of the workarea displays in the File Name box.

5. Modify the file name, as needed.

6. Click Save.

Copying a Workarea

To copy a workarea:

1. From the Rational Statemate main window, select Project > Workarea Management.

2. In the Workareas Management dialog box, select the project and workarea to be copied.

3. Click Copy. The Workarea Name dialog box displays. It displays the existing directory
structure. The current location of the workarea displays in the Save In text box.

Note: If another workarea is already active, the Copy button is disabled.

4. Select a new location to copy the workarea, if appropriate.

Note: The name of the workarea displays in the File Name box.

5. Modify the file name, as needed.

6. Click Save.

Reducing the Workarea

To improve the workflow when dealing with reduce charts and filtered check outs, you may
quickly eliminate unnecessary items and, thus, reduce the size of the workarea with the Reduce
Workarea feature. This feature supports interactive work by allowing the users to work with only
the minimal necessary definitions.

The Reduce Workarea operation performs this clean-up with one selection and eliminates the time-
consuming process of deleting unused elements manually. To reduce the definitions in the
workarea automatically, in the Charts view, select the Configuration > Reduce Workarea.

This operation then collects and automatically deletes the following from the workarea:

� All unused elements set as read only
� Reduced GDS elements (read-only)
� Activity charts
40 User Guide

Workareas
Deleting a Workarea

To delete a workarea:

1. Close the workarea, if it is open.

2. From the Rational Statemate main window, select Project > Workarea Management.

3. From the list of projects, select the project that is associated with the workarea you want to
delete.

4. Select the workarea to be deleted.

5. Click Delete. A Question dialog box displays. Click Yes to confirm the deletion.

Note: If the workarea is used to store files that are not Rational Statemate-
configurable items (for example, user-written code), make sure these files are
moved to a safe place before you delete a workarea.

Sharing the Workarea

If a team wants to view the complete model, without each user having to check-out all charts and
files into his own personal workarea, they should use a shared workarea. A shared workarea is a
workarea that is available for all team members to examine in read-only mode.

To create a shared workarea:

1. One of the project members creates a new workarea, and checks-out the full model in
read-only mode.

2. The owner of the new workarea clicks the Share/UnShare toggle button to make the
workarea shared (the text on the button changes according to the toggle selection).

Note
When no workarea is selected, the Share/UnShare toggle button is dimmed, so be certain to
select a workarea before clicking the toggle.
Rational Statemate 41

Working Environment
The owner of a shared workarea sees it displayed as a regular workarea while the other team
members view it as a shared workarea and in read-only mode. The other team members see it
listed in the Project Workareas list, but, of course, they cannot modify it.

When working in a shared workarea, the following operations are not allowed (for users other than
the owner):

� Check out files
� Execute configuration.
� Modify charts or files

Sharing and Locking

To store your changes permanently and to enable others to share them, save the modified charts to
the databank. Through a locking mechanism, you are ensured that your work will not conflict with
that of the other project members.

A user can have multiple workareas associated with any project, but any one workarea can only be
associated with one project.

To share or stop sharing a Workarea, select Project > Workarea Management and then select
Share or UnShare.

Temporary Workarea Directory

Users can set temporary workarea directories for their Rational Statemate work. Edit the
STM_TMP_DIR environment variable for the location of the temporary directory.
42 User Guide

Output Devices
Output Devices
Output devices, printers and plotters, for example, are used to obtain hardcopy legacy documents
for projects and their components. The following sections explain how to configure and use output
devices in Rational Statemate.

Setting Up Output Devices

To set up output devices:

1. From the Rational Statemate main window, select Utilities > Output Devices. The
Output Devices dialog box displays.

The Output Devices dialog box displays a list of all current plotters and printers on your
system with their corresponding formats.

2. Click New. The New Output Device dialog box displays.
Rational Statemate 43

Working Environment
3. Specify the following values:

4. Click OK.

Field Description

Name Enter a name for the output device.

Format Select the format for the output device. The default is PostScript.

Device Name Select a name for the output device.

Paper Size Select the correct paper size for the output device.

Command Line Enter any special commands that need to be sent to the output
device.

Encapsulated and Color
PostScript

Select to enable (default) or clear to disable.

Leading Lines of
Postscript file

Enter any leading lines that the PostScript may require. Click

 to use a text editor
44 User Guide

Output Devices
Modifying Output Devices

To modify output devices:

1. From the Rational Statemate main window, select Utilities > Output Devices.

2. In the Output Devices dialog box, select an output device from the list of devices in the
left frame.

3. Click Modify. The Modify Devices dialog box displays.

4. Modify the settings for the output device (for more information, see the table in Setting Up
Output Devices, Step 3).

5. Click OK.
Rational Statemate 45

Working Environment
Deleting Output Devices

To delete output devices:

1. From the Rational Statemate main window select Utilities > Output Devices.

2. In the Output Devices window, select an output device from the list of devices in the left
frame.

3. Click Delete to delete the selected output device. Click Yes to confirm your selections.

Preferences
You can set preferences for Rational Statemate, as well as all editors and utilities that Rational
Statemate supports. You can set preferences individually or by loading pre-established settings.

Project managers and system managers can set preferences that are enforced for users at your site.
When you set your own preferences in a specific area, you can obtain information on which
preferences have been enforced at your site.

Setting General Rational Statemate Preferences

To set general preferences for Rational Statemate:

1. From the Rational Statemate main window, select Project > General Preferences. The
General Preferences dialog box displays.
46 User Guide

Preferences
2. Using this window, you can do the following:

� Use the Choose option to specify where you want the preferences applied.
� Use the User option to specify who can have access to these preferences. This

option is the Group option if you are an administrator.
� Use the Load Values option to load predefined preferences.
� Set preferences for individual parameters.

Specifying Where Preferences are Applied
To determine where you want the preferences applied, select from the following options on the
Preferences of pull-down menu:

� System - System-wide preferences. Only the system manager can set preferences
applicable to all users at a site. Users, including project managers, cannot override these
settings.

� Project - Preferences for a specific project, which you select from a list. Only the project
manager can set preferences applicable to all members of a project. Other project
members cannot override these settings.

� User - Preferences for a specific user, which you select from a list.
� Default - Rational Statemate default preferences.
� Current - Currently selected preferences.

Note: You might not have access to all the preference options. For example, the
system administrator can reserve the right to change the System preferences.

Specifying Access to Preferences
If you are the project manager, you can use the Group button to determine who can have access to
these preferences. (The Group button is available only if you are the project manager who set up
this project in the databank.)
Rational Statemate 47

Working Environment
Preferences Descriptions

Note
This section does not provide in-depth details of all available preferences. Some preferences
have a pull-down list in the value field. Some preference values are defaults. Other values
can be entered by the user by clicking in the value field and entering applicable text.

Parameter Description

Preferences Of: • System - Tool-wide preferences
• Project - Set by project manager
• User - Personal options
• Default - Software defaults
• Current - What is set in current chart

Enforced Indicates which Preference is enforced.

Parameter Preference

Value Value of Preference

Load Values Allows you to upload values from other preferences

Choose Allows you to select a value
48 User Guide

Preferences
General Preferences

This section provides an overview of the General Preferences dialog box.

Parameter Value Description

Editor Command Line <command line> Editor for properties editing

Pager Command Line <command line> Editor for properties viewing

Open Window Command Line <command line> Command to open window

Open Window & Execute Com-
mand Line

<command line> Command line to open window and execute
command

Use Case Description Command
Line

<command line> Command line to open use-case description edi-
tor

Linked External File Type <file extension> Extension of linked External Files and use-case
description files

Confirm On Exit Always / Only on loss of
information

Confirm exit when closing tool without save

Postscript Viewer Command
Line

<command line> Command line to open postscript editor

Dominant Variety of C Code K&R C / ANSI C Define selection order of subroutine implementa-
tion

Open Code Editor on Entering a
Subroutine

Yes / No Open code editor when opening subroutine
properties

Initial Library List <Component library list> Initial Component libraries included (comma
separated list)

Additional Library List <Component library list> Additional Component libraries included (comma
separated list)

Truth Table Execution Mode Upon Change / Every
Step

Execute truth-tables every step or only when
upon input change

Show long description of compo-
nents

Yes / No Display component long-description in Info view

Icon Editor <command line> Command line to open component icon editor

Produce WORD format for Word7.0 / Word97 Word version to support in generated reports

Default Documentor Template <documentor template> Default documentor template
Rational Statemate 49

Working Environment
Default ASCII Device <Device name> Default device for ASCII printout

Default Postscript Device <Device name> Default device for Postscript printout

Plot Title and Header Font Name Plot title and header font

Plot Title and Header Font Size Plot title and header font Size

Plot Orientation Landscape / Portrait Plot Orientation

Plot Labels Presentation Yes / No Present labels in chart plots

Plot Names Presentation Yes / No Present names in chart plots

Plot Notes Presentation Yes / No Present notes in chart plots

Plot Headers Presentation Top / Bottom / None Header presentation in chart plots

Plot Chart Name and Date Pre-
sentation

Top / Bottom / None Chart name and date presentation in plots

Configuration Management Tool <CM tool name> Default Configuration Management tool

External Tool Script <command line> Command line to invoke external tool script

Generate Template for External
Tool Implementation

Yes / No Generate template for External Tool implemen-
tation of Subroutine

Data Bank Default Directory <directory path> Default directory for new Databank

Workarea Default Directory <directory path> Default directory for new workarea

Export/Backup Default Directory <directory path> Default directory for Export/Backup operations

User Plugins Directory <directory path> Plugin files directory

Script to pack <command line> Script to pack exported files

Script to unpack <command line> Script to unpack file during import

Exact Case Mode off / on Support exact case for textual element names

Strict External-Activity Resolu-
tion

Yes / No Resolve External Activities only to parent chart

Track Changes While Editing Yes / No Add track comment while modifying model

Add Change Description when
Check-In Chart

Yes / No Add track comment when checking-in charts

Open Last Wa Used Yes / No Open last used workarea on startup

Last Wa Used <directory path> Path of last used workarea (automatically saved)
50 User Guide

Preferences
Confirm before Open Last WA
Used

Yes / No Confirm before opening last used workarea on
startup

Exiting Reactions Upon Activity
Stop

Executed in Code only /
Not Executed

exiting' triggered static-reactions execution upon
'stop' of parent Activity

View Info Using External Pager Yes / No View Info using external pager

Beautify Indent Size <integer value> Indentation size of 'Beautify' operation

Quick Edit Startup Mode disable / off / on State of Quick Edit mode upon startup

Allow Flow-line Loopbacks
through Routers

Yes / No Allows flowlines from a basic activity back to
itself through a Router

DiffMerge tool Command Line <command line> Command to invoke DiffMerge tool

Display Data-flows in 'Where
Referenced' results

Yes / No Include data-flows in elements 'Where Refer-
enced' results
Rational Statemate 51

Working Environment
Preferences Management

This section provides a brief overview of the Preferences Management dialog boxes.

Statechart Graphic Editor Preferences

Parameter Value Description

SGE / Procedural Statechart
Color

<color> Chart default color

And States / Or States <color> States default color

<XXX> Line Width <integer value> Line type default width

Names <color> Names default color

<XXX> Font Element type default font

Transitions Style Splines / Straight
Lines

Transitions line style

Transitions / Default Transi-
tions

<color> Transitions / Default Transitions color

Labels <color> Labels default color

And Lines <color> And lines default color

<XXX> Connectors <color> Connector type default color

Connector / Diagram Connec-
tors Text

<color> Connectors / Diagram Connectors text
default color

Notes <color> Notes default color

Combinational Assign. <color> Combinational Assign. default color

<XXX> Highlight Line <color> Element type Highlight Line default color

<XXX> Fill <color> Box type Fill default color

Filled Boxes On / Off Boxes filled by default

Auto Box Height <Numerical value> Auto box default Height

Auto Box Width <Numerical value> Auto box default width
52 User Guide

Preferences
Auto Box Name Prefix <Alphanumerical
value>

Auto box default name prefix
Rational Statemate 53

Working Environment
Activity-Chart Graphic Editor Preferences

Age Specific Preferences

Parameter Value Description

AGE Color <color> Chart default color

<XXX> Activities <color> Activity type's default color

<XXX> Line Width <integer value> Line type default width

Data Stores <color> Data Stores default color

Names <color> Names default color

<XXX> Font Element type default font

Flow-Lines Style Splines / Straight
Lines

Flow-Lines style

Data / Control Flow-Lines <color> Flow-Lines color

Labels <color> Labels default color

<XXX> Connectors <color> Connector type's default color

Connector / Diagram Connec-
tors Text

<color> Connectors / Diagram Connectors text
default color

Notes <color> Notes default color

Combinational Assign. <color> Combinational Assign. default color

Active / Suspended Activity
Highlight Line

<color> Activity Highlight Line default color

Active / Suspended Activity
Highlight Fill

<color> Activity Highlight fill default color

Filled Boxes On / Off Boxes filled by default

<XXX> Fill <color> Box type Fill default color

Auto Box Height <Numerical value> Auto box default Height

Auto Box Width <Numerical value> Auto box default width
54 User Guide

Preferences
Auto <XXX> Name Prefix <Alphanumerical
value>

Auto box type's default name prefix

Allow editing of Instance
Component

Yes / No Allow resize of component instance box

Routers / External Routers <color> Router type's default color

Routers / External Routers
Fill Style

Solid / No Fill Router type's fill style

Routers / External Routers
<XXX> Line Style

Solid / Dashed Router type's line style

Routers / External Routers
Name Orientation

Vertical / Horizontal Router type's default name orientation
Rational Statemate 55

Working Environment
Component Preferences

Parameter Value Description

Distance between stubs <Numerical value> Default distance between stubs

Minimal Component Height <Numerical value> Minimal component Height

Minimal Component Width <Numerical value> Minimal component width

Keep proportions of top level
activity

Yes / No Keep proportions of top level activity

Component <color> Component default color

Component Line Width <integer value> Component line default width

Name <color> Names default color

Name Font Names default font

In/Out Stubs <color> Stubs default color

In/Out Stubs Font Stubs default font

Information Flow In/Out
Stubs

<color> In/Out stubs information-flow color

Information Flow In/Out
Stubs Font

 In/Out stubs information-flow font

Notes <color> Notes default color

Notes Font Notes default font
56 User Guide

Preferences
Module-chart Preferences

Parameter Value Description

MGE Color <color> Chart default color

Subsystem Modules <color> Subsystem Modules default color

<XXX> Line Width <integer value> Line type default width

Storage Modules <color> Storage Modules default color

Environment Modules <color> Environment Modules default color

Names <color> Names default color

<XXX> Font Element type's default font

Flow-Lines Style Rectilinear Lines,
Straight Lines

Flow-Lines style

Flow-Lines <color> Flow-Lines default color

Labels <color> Labels default color

<XXX> Connectors <color> Connector type's default color

Connector / Diagram Connec-
tors Text

<color> Connector type's default text color

Notes <color> Notes default color

Filled Boxes On / Off Boxes filled by default

Level <n> Fill <color> Level n default fill color

Auto Box Height <Numerical value> Auto box default Height

Auto Box Width <Numerical value> Auto box default width

Auto Box Name Prefix <Alphanumerical
value>

Auto box default name prefix
Rational Statemate 57

Working Environment
Flowchart Graphic Editor Preferences

Parameter Value Description

LGE Color <color> Chart default color

<XXX> Boxes <color> Box type's default color

<XXX> Line Width <integer value> Line type default width

Actions <color> Actions default color

<XXX> Font Element type's default font

Names <color> Names default color

Decisions <color> Decisions default color

Switch Expression <color> Switch Expression default color

Arrows Style Splines / Straight
Lines

Arrows line style

Arrows <color> Arrows default color

Labels <color> Labels default color

Start Arrows <color> Start Arrows default color

<XXX> Connectors <color> Connector type's default color

Connector / Diagram Connec-
tors Text

<color> Connectors text default color

Notes <color> Notes default color

<XXX> Highlight Line <color> Element type's highlight line default color

<XXX> Highlight Fill <color> Element type's highlight fill default color

Filled Boxes On / Off Boxes filled by default

Level <n> Fill <color> Level n default fill color

Auto Box Height <Numerical value> Auto box default Height

Auto Box Width <Numerical value> Auto box default width

Auto <XXX> Prefix <Alphanumerical
value>

Auto box default name prefix
58 User Guide

Preferences
Sequence Diagram Graphic Editor Preferences

Parameter Value Description

QGE Color <color> Chart default color

Names <color> Names default color

<XXX> Font Element type's default font

<XXX> Line <color> Line type default color

<XXX> Line Width <integer value> Line type default width

Reference SD <color> Reference SD default color

Simple Message <color> Simple Message default color

Timing Constraint <color> Timing Constraint default color

Timing Constraint Text <color> Timing Constraint text default color

Labels <color> Labels default color

Notes <color> Notes default color

Pagination Overview Yes / No Display pagination lines on chart

Show Header Lines Yes / No Display Lifeline names on every page of a
scrolled down Sequence diagram

Scenario Numbering Postfix <Alphanumerical
value>

Scenario numbering postfix

Scenario Numbering Style A / a / 1 Scenario numbering style

Start Scenario Numbering
From

<integer value> Start scenario numbering from

Show Scenario Numbering Yes / No Show scenario numbering

Pagination Orientation Landscape / Portrait Pagination orientation

Pagination Overlap Ratio <integer percentage> Pagination overlap area to be printed twice
Rational Statemate 59

Working Environment
Use-Case Diagram Graphic Editor Preferences

Parameter Value Description

UGE Color <color> Chart default color

Names <color> Names default color

<XXX> Font Element type's default font

Use-Case <color> Use-Case default color

<XXX> Line Width <integer value> Line type default width

Actor <color> Actor default color

Boundary <color> Boundary default color

Association <color> Association default color

Relation <color> Relation default color

Labels <color> Labels default color

Notes <color> Notes default color

Auto Use-Case Box Height <Numerical value> Auto Use-Case box default Height

Auto Use-Case Box Width <Numerical value> Auto Use-Case box default width

<XXX> Name Prefix <Alphanumerical
value>

Auto element default name prefix
60 User Guide

Preferences
Panel Graphic Editor Preferences

Parameter Value Description

PGE Color <color> Panel default color

Push Buttons <color> Push Buttons default color

<XXX> Fill <color> Element type's default fill color

<XXX> Line Width <integer value> Element type's line default width

Lamps <color> Lamps default color

Choice Buttons <color> Choice Buttons default color

Radio Buttons <color> Radio Buttons default color

Meters <color> Meters default color

<XXX> Text <color> Element type's text default color

<XXX> Localizer <color> Element type's Localizer default color

Knobs <color> Knobs default color

Slides <color> Slides default color

Displays <color> Displays default color

Labels <color> Labels default color

<XXX> Font Element type's default font

Textual Notes <color> Textual Notes default color

Polygons <color> Polygons default color

Circles <color> Circles default color

Arcs <color> Arcs default color

Polylines <color> Polylines default color
Rational Statemate 61

Working Environment
Graphic Editors Preferences

Parameter Value Description

Grid Display On / Off Display grid

Grid Spacing <Numerical value> Spacing between grid lines

Grid Every Nth Point <integer value> Display every nth grid line

Grid Color <color> Grid color

Grid Alignment Aligned on grid / Not
aligned on grid

Align drawing to grid

Grid in Read-Only Chart Yes / No Display grid in read-only chart

Trap Radius <integer value> Cursor distance to select element

Display Names Full / Hidden Display or hide names

Display Labels Full / Hidden Display or hide labels

Carriage Return is New Line Yes / No Interpret carriage return as new-line

Allow Cut & Paste Between
GEs

Yes / No Support copy&paste between graphic edi-
tors

Single-Button Mouse Yes / No Using Single-Button mouse

Enable Scale Text Yes / No Scale font size when resizing chart

Enable Reshaping Yes / No Reshape drawings when resizing chart

Double Click Box Default
Action

Properties / Info Default action for double-clicking a box

Double Click Instance/Off-
page Default Action

Open/Create Sub
Chart / Properties /
Info

Default action for double-clicking an
instance box

Double Click Arrow Default
Action

Properties / Info Default action for double-clicking an arrow

Double Click Chart Default
Action

Chart Properties /
Chart Info / Open Par-
ent

Default action for double-clicking chart
background
62 User Guide

Preferences
Databank Browser Preferences

Parameter Value Description

Purge to Version <integer value> Number of revisions to save during purge
operation

Group Permission Read/Write / Read
only / None

Group permissions in Databank

Others Permission Read/Write / Read
only / None

Others permissions in Databank

Save Unmodified Items Yes / No Force checkin of un-modified items

Save external file to Databank Yes / No Save external file to Databank

Automatic Databank Refresh Yes / No Automatically refresh displayed information
when selecting databank tab

Check Out in single transac-
tion

Yes / No Perform check-out operation in single data-
base transaction

Display Search filter in Data-
bank Tab

Yes / No Include the Search pane in Databank tab

Preserve elements Ids in
chart-file

Yes / No Save element Id's in checked-in charts
Rational Statemate 63

Working Environment
Simulation Preferences

Parameter Value Description

Scope View Tree view / Creation
rules view

View profile scope as tree or as list

Steps per Go <integer value> Limit to the number of steps taken during a
long Go command

Infinite Loop <integer value> Limit for the number of interactions of For or
While loops

Goback Limit <integer value> Maximum number of times a go back can
be executed

Racing Read/Write Yes / No Report Read/Write racing during execution

Racing Write/Write Yes / No Report Write/Write racing during execution

Time Model Asynchronous / Syn-
chronous

Set the time model

K&R Compiler <compiler command> Compiler for K&R C user-code

K&R Flags <compiler flags> Flags for K&R C user-code compilation

K&R Dynamic Flags <compiler flags> Flags for K&R C user-code dll link

Ansi-C compiler <compiler command> Compiler for ANSI-C user-code

Ansi-C Flags <compiler flags> Flags for ANSI-C user-code compilation

Ansi-C Dynamic Flags <compiler flags> Flags for ANSI-C user-code dll link

Link Flags <linker flags> Flags for user-code link

Dynamic Link Flags <linker flags> Flags for user-code dll link

Libraries <libraries> Libraries to link user-code with

Leave Animated Truth Table
on Screen

Yes / No Leave animated truth-table on screen after
execution

Have Access to Component
Elements

Yes / No Allow access to library component elements
during Simulation

Test Files Extension <file extension> Extension of generated test-files
64 User Guide

Preferences
Trigger Evaluation Upon Change / Every
Step

Evaluation mode for Subroutines in action
triggers

Max Visible Size Of Element
Name

<integer value> Maximum name length to display in Simula-
tion monitors

Update Monitors During Long
Go's

Yes / No Update monitors every step during long
Go's

Show Element Mode in Moni-
tor

Yes / No Show element mode (in/out/inout/local) in
monitor
Rational Statemate 65

Working Environment
Properties Preferences

Parameter Value Description

Truth Tables, Number of
Inputs

<integer value> Number of input columns in new truth-table

Truth Tables, Number of Out-
puts

<integer value> Number of output columns in new truth-
table

Truth Tables, Color of 'Inputs'
Section

<color> Color of input columns in new truth-table

Truth Tables, Color of 'Out-
puts' Section

<color> Color of output columns in new truth-table

Truth Tables, Color of
'Actions' Section

<color> Color of Actions columns in new truth-table

Truth Tables, Color of Default
Row

<color> Color of default row in new truth-table

Truth Tables, With Default
Row

Yes / No Create default row in new truth-table

Truth Tables, With Action
Section

Yes / No Create Actions section in new truth-table

Open New Editor for Refer-
ences

Yes / No Show elements of 'Open References' in
new properties window

Append elements from GE to
list

Yes / No Display all Open-Properties from GE in sin-
gle properties window

Long Description Editor Com-
mand Line

<command line> Command line to open long-description edi-
tor

Action Language Editor Com-
mand Line

<command line> Command line to open action-language edi-
tor

User Code Editor Command
Line

<command line> Command line to open user-code editor

Attribute Definitions Direc-
tory

<directory path> Location of attribute definition files

Open References' based on
'Selected Implementation'

Yes / No Open References' will regard only the
Selected Implementation's references
66 User Guide

Preferences
Modify Elements Defined in a
Read-Only Chart

Yes / No Modify read-only chart elements without
confirmation

Build Internal Data Structures
On Popup

Yes / No Build internal data-structures for future use
when opening workarea

Use Internal Editor for Mini-
Spec, Long-Description,
Static Reaction, Action,
Expression and Definition

Yes / No Use the tool's internal editor for editing of
Mini-Spec, Long-Description, Static Reac-
tion, Action, Expression and Definition prop-
erty fields

Auto-Binding of Generic
Parameters

Formal Parameter
Name / N/A

For auto-binding of generic parameters use
the formal parameter name or N/A

Mass edit overwrite values Yes / No Overwrite previous property values when
modifying via mass-edit

Mass edit ask on overwrite
values

Yes / No Confirm before overwriting previous prop-
erty values via mass-edit

Update panel bindings upon
element rename

Never / Always / Only
unique

When to update references in panels upon
element rename
Rational Statemate 67

Working Environment
Check Model Preferences

Parameter Value Description

Scope View Tree view / Creation
rules view

View profile scope as tree or as list

Require Box Attributes for
Instance Boxes

Yes / No Check attribute definitions for instance
boxes

Report Errors/Warnings for
Unresolved Elements

Yes / No Apply all tests also to unresolved elements

Apply tests 4075 and 4077 to
offpage instances

Yes / No Apply tests 4075 and 4077 to offpage
instances

Apply tests 4075 and 4077 to
Activities with Selected-
Implementation 'None'

Yes / No Apply tests 4075 and 4077 to Activities with
Selected-Implementation 'None'

Apply test 4061 to External
Activities

Yes / No Apply test 4061 to External Activities

Enhanced Show In Model In
Results Tree

Yes / No Enhance 'Show In Model' to all relevant ele-
ments

Statemate MicroC Compati-
bility Tests (for Statemate)

Yes / No Statemate MicroC Compatibility Tests (for
Statemate)

Design Tests Yes / No Execute design tests

Run Database Diagnostics
before profile execution

Yes / No Run Database-diagnostics before profile
execution

Optimize report of used/
affected test results

Yes / No Optimize report of used/affected test results
68 User Guide

Preferences
Prototype C Code Generator Preferences

Parameter Value Description

Scope View Tree view / Creation
rules view

View profile scope as tree or as list

Modularity Style Balanced Mixture / In-
line Oriented / Proce-
dure Oriented

Policy for generating code in-line vs. as
function

With Debugger Yes / No Generate code with debug support

Target Platform <available target file> Target platform for generated code

Time Model Real Time / Simulated
Asynchronous / Simu-
lated Synchronous

Time Model of generated code

Graphical Back Animation Yes / No Generate code with GBA support

Infinite Loop Limit <integer value> Limit for the number of interactions of For or
While loops

Push-Button delay time on
Event (micro-seconds)

<integer value> Time (in micro-seconds) that panel event
push-buttons remain "pushed" before
released

Memory Allocation for Dou-
ble-Buffered Elements

Dynamic / Static Memory allocation policy for double-buff-
ered elements

Language K&R C / Ada / ANSI C Generated code selected language

K&R Compiler <compiler command> Compiler for K&R C generated-code

K&R Flags <compiler flags> Flags for K&R C generated-code compila-
tion

Ansi-C compiler <compiler command> Compiler for ANSI-C generated-code

Ansi-C Flags <compiler flags> Flags for ANSI-C generated-code compila-
tion

Link Flags <linker flags> Flags for generated-code link

Libraries <libraries> Libraries to link generated-code with

Ada File Spec Extension <file extension> Ada File Spec Extension
Rational Statemate 69

Working Environment
Ada File Body Extension <file extension> Ada File Body Extension

Ada Compiler <compiler command> Compiler for Ada generated-code

Ada Flags <compiler flags> Flags for Ada generated-code compilation

Ada Linker <linker command> Linker for Ada generated-code

Ada Link Flags <linker flags> Flags for Ada generated-code link

Ada Libraries <libraries> Libraries to link Ada generated-code with

Use 'in_sim' Expression in
Code

Yes / No Trigger expressions with 'in_sim' operator
will have effect in generated code
70 User Guide

Preferences
MicroC Code Generator

Parameter Value Description

Scope View Tree view / Creation
rules view

View profile scope as tree or as list

Target Configuration <name of CFG file> CFG file with initial values for Code-genera-
tion options

Pop Up Warning File Yes / No Pop up warning file after code-generation

Time Expression Scale Counters Ticks / Sec-
onds / milli-Seconds

Interpret model time unit as

Enforce Immediate Entry to
State Hierarchy

Yes / No Execute all hierarchical default transitions in
single step

Generate separate test
expression for each Truth
Table Row

Yes / No Ignore joint cells in truth-tables

Install Timeout while in-State Yes / No Install static-reaction timeouts only in inside
state

Stop Parent Activity When
Descendants Stopped

Yes / No Stop Parent Activity When all descendants
Stopped

SAG Configuration File <name of SAG config-
uration file>

CFG file with initial values for SAG options
Rational Statemate 71

Working Environment
Embedded Rapid Prototyper Preferences

Parameter Value Description

Scope View Tree view / Creation
rules view

View profile scope as tree or as list

Modularity Style Balanced Mixture / In-
line Oriented / Proce-
dure Oriented

Policy for generating code in-line vs. as
function

With Debugger Yes / No Generate code with debug support

With Remote Panel Server Yes / No Generate code with remote panel support

Target Platform <available target file> Target platform for generated code

Enable Trace Yes / No Generate code with trace support

Time Model Real Time / Simulated
Asynchronous / Simu-
lated Synchronous

Time Model of generated code

Graphical Back Animation Yes / No Generate code with GBA support

Infinite Loop Limit <integer value> Limit for the number of interactions of For or
While loops

Memory Allocation for Dou-
ble-Buffered Elements

Dynamic / Static Memory allocation policy for double-buff-
ered elements

Language K&R C / Ada / ANSI C Generated code selected language
72 User Guide

Preferences
RT Interface Preferences

Parameter Value Description

DOORS I/F configuration file <configuration file
path>

Doors export configuration filename
Rational Statemate 73

Working Environment
Panel Builder Preferences

Specific Preferences (Auto Panel Specific Preferences)

Parameter Value Description

Used In Chart Yes / No Create panel interactors for elements used
in chart

Defined In Chart Yes / No Create panel interactors for elements
defined in chart

Top Level Inputs Outputs Yes / No Create panel interactors for to-level inputs/
outputs

With Descendants Yes / No Build panel for selected chart and its'
descendants

With Generic Instances Yes / No Build panel for selected chart and instanti-
ated generic charts

Merge To One Panel Yes / No Merge descendants and instantiated
generic charts into selected charts' panel

Invoke PGE On Apply Yes / No Invoke PGE after build

Labels Reserved Height <Numerical value> Reserved Height for labels

Interactors Margin <Numerical value> Size of margin for interactors

Referenced In Info Flow Yes / No Create panel interactors for elements refer-
enced in information-flows

Expand Arrays Yes / No Create panel interactors for array-indices

Expand Records Yes / No Create panel interactors for record-fields
74 User Guide

Preferences
Integer Preferences (Auto Panel Integer Preferences)

Parameter Value Description

Active Field Yes / No Create interactors for Integers

Bind Method Input / Output / Input/
Output

Interactor bind method

Interactor Type Vert. Choice / Horz.
Choice / Display /
Knob / Lamp / Meter /
Push / Slider

Type of interactor

Interactor Width <Numerical value> Width of interactor

Interactor Height <Numerical value> Height of interactor

ForeGround Color <color> Interactor foreground color

Fill Color <color> Interactor fill color

Line Width <integer value> Interactor line width

Font Interactor font

Text Color <color> Interactor text color

Localizer Color <color> Interactor localizer color

Number Of Buttons <integer value> Number of buttons in multi-choice interactor

Units <units name> Units name for Meter interactor

Display Format String / Decimal /
Hexa Decimal / Octal /
Binary

Interactor value display format

Field Length <integer value> Interactor value field length

Maximum Scale <Numerical value> Maximum interactor scale value

Minimum Scale <Numerical value> Minimum interactor scale value

Primary Scale Step <Numerical value> Interactor scale step

Number Of Secondary Parti-
tions

<integer value> Number of partitions between primary scale
steps
Rational Statemate 75

Working Environment
Real Preferences

Parameter Value Description

Active Field Yes / No Create interactors for Real elements

Bind Method Input / Output / Input/
Output

Interactor bind method

Interactor Type Vert. Choice / Horz.
Choice / Display /
Knob / Lamp / Meter /
Push / Slider

Type of interactor

Interactor Width <Numerical value> Width of interactor

Interactor Height <Numerical value> Height of interactor

ForeGround Color <color> Interactor foreground color

Fill Color <color> Interactor fill color

Line Width <integer value> Interactor line width

Font Interactor font

Text Color <color> Interactor text color

Localizer Color <color> Interactor localizer color

Units <units name> Units name for Meter interactor

Display Format String / Decimal /
Hexa Decimal / Octal /
Binary

Interactor value display format

Field Length <integer value> Interactor value field length

Fraction Part <integer value> Number of characters to display after the
decimal point

Maximum Scale <Numerical value> Maximum interactor scale value

Minimum Scale <Numerical value> Minimum interactor scale value

Primary Scale Step <Numerical value> Interactor scale step

Number Of Secondary Parti-
tions

<integer value> Number of partitions between primary scale
steps
76 User Guide

Preferences
String Preferences (Auto Panel String Preferences)

Parameter Value Description

Active Field Yes / No Create interactors for String elements

Bind Method Input / Output / Input/
Output

Interactor bind method

Interactor Type Vert. Choice / Horz.
Choice / Display /
Knob / Lamp / Meter /
Push / Slider

Type of interactor

Interactor Width <Numerical value> Width of interactor

Interactor Height <Numerical value> Height of interactor

ForeGround Color <color> Interactor foreground color

Fill Color <color> Interactor fill color

Line Width <integer value> Interactor line width

Font Interactor font

Text Color <color> Interactor text color

Display Format String / Decimal /
Hexa Decimal / Octal /
Binary

Interactor value display format

Field Length <integer value> Interactor value field length
Rational Statemate 77

Working Environment
Bit Preferences

Parameter Value Description

Active Field Yes / No Create interactors for Bit elements

Bind Method Input / Output / Input/
Output

Interactor bind method

Interactor Type Vert. Choice / Horz.
Choice / Display /
Knob / Lamp / Meter /
Push / Slider

Type of interactor

Interactor Width <Numerical value> Width of interactor

Interactor Height <Numerical value> Height of interactor

ForeGround Color <color> Interactor foreground color

Fill Color <color> Interactor fill color

Line Width <integer value> Interactor line width

Font Interactor font

Text Color <color> Interactor text color

Highlight Color <color> Interactor highlight color

Button Type Flash / Toggle / Push
Release

Push button type

Display Format String / Decimal /
Hexa Decimal / Octal /
Binary

Interactor value display format

Field Length <integer value> Interactor value field length
78 User Guide

Preferences
Bit_Array Preferences (Auto Panel Bit-Array Preferences)

Parameter Value Description

Active Field Yes / No Create interactors for Bit-Array elements

Bind Method Input / Output / Input/
Output

Interactor bind method

Interactor Type Vert. Choice / Horz.
Choice / Display /
Knob / Lamp / Meter /
Push / Slider

Type of interactor

Interactor Width <Numerical value> Width of interactor

Interactor Height <Numerical value> Height of interactor

ForeGround Color <color> Interactor foreground color

Fill Color <color> Interactor fill color

Line Width <integer value> Interactor line width

Font Interactor font

Text Color <color> Interactor text color

Display Format String / Decimal /
Hexa Decimal / Octal /
Binary

Interactor value display format

Field Length <integer value> Interactor value field length
Rational Statemate 79

Working Environment
Enum Preferences (Auto Panel Enum Preferences)

Parameter Value Description

Active Field Yes / No Create interactors for Enum-type elements

Bind Method Input / Output / Input/
Output

Interactor bind method

Interactor Type Vert. Choice / Horz.
Choice / Display /
Knob / Lamp / Meter /
Push / Slider

Type of interactor

Interactor Width <Numerical value> Width of interactor

Interactor Height <Numerical value> Height of interactor

ForeGround Color <color> Interactor foreground color

Fill Color <color> Interactor fill color

Line Width <integer value> Interactor line width

Font Interactor font

Text Color <color> Interactor text color

Number Of Buttons <integer value> Number of buttons in multi-choice interactor

Display Format String / Decimal /
Hexa Decimal / Octal /
Binary

Interactor value display format

Field Length <integer value> Interactor value field length
80 User Guide

Preferences
Event Preferences (Auto Panel Event Preferences)

Parameter Value Description

Active Field Yes / No Create interactors for Events

Bind Method Input / Output / Input/
Output

Interactor bind method

Interactor Type Vert. Choice / Horz.
Choice / Display /
Knob / Lamp / Meter /
Push / Slider

Type of interactor

Interactor Width <Numerical value> Width of interactor

Interactor Height <Numerical value> Height of interactor

ForeGround Color <color> Interactor foreground color

Fill Color <color> Interactor fill color

Line Width <integer value> Interactor line width

Highlight Color <color> Interactor highlight color

Button Type Flash / Toggle / Push
Release

Push button type
Rational Statemate 81

Working Environment
Condition Preferences (Auto Panel Condition Preferences)

Parameter Value Description

Active Field Yes / No Create interactors for Conditions

Bind Method Input / Output / Input/
Output

Interactor bind method

Interactor Type Vert. Choice / Horz.
Choice / Display /
Knob / Lamp / Meter /
Push / Slider

Type of interactor

Interactor Width <Numerical value> Width of interactor

Interactor Height <Numerical value> Height of interactor

ForeGround Color <color> Interactor foreground color

Fill Color <color> Interactor fill color

Line Width <integer value> Interactor line width

Highlight Color <color> Interactor highlight color

Number Of Buttons <integer value> Number of buttons in multi-choice interactor

Button Type Flash / Toggle / Push
Release

Push button type
82 User Guide

Preferences
State Preferences (Auto Panel State Preferences)

Parameter Value Description

Active Field Yes / No Create interactors for States

Bind Method Input / Output / Input/
Output

Interactor bind method

Interactor Type Vert. Choice / Horz.
Choice / Display /
Knob / Lamp / Meter /
Push / Slider

Type of interactor

Interactor Width <Numerical value> Width of interactor

Interactor Height <Numerical value> Height of interactor

ForeGround Color <color> Interactor foreground color

Fill Color <color> Interactor fill color

Line Width <integer value> Interactor line width

Highlight Color <color> Interactor highlight color

Number Of Buttons <integer value> Number of buttons in multi-choice interactor

Button Type Flash / Toggle / Push
Release

Push button type
Rational Statemate 83

Working Environment
Activity Preferences (Auto Panel Activity Preferences)

Parameter Value Description

Active Field Yes / No Create interactors for Activities

Bind Method Input / Output / Input/
Output

Interactor bind method

Interactor Type Vert. Choice / Horz.
Choice / Display /
Knob / Lamp / Meter /
Push / Slider

Type of interactor

Interactor Width <Numerical value> Width of interactor

Interactor Height <Numerical value> Height of interactor

ForeGround Color <color> Interactor foreground color

Fill Color <color> Interactor fill color

Line Width <integer value> Interactor line width

Highlight Color <color> Interactor highlight color

Number Of Buttons <integer value> Number of buttons in multi-choice interactor

Button Type Flash / Toggle / Push
Release

Push button type
84 User Guide

Preferences
Activity Interface Browser and Reports Preferences

Parameter Value Description

Show charts in tree-view Yes / No Display charts in the AIF tree browser

View Interface Info Using
External Pager

Yes / No View Interface reports using external pager

Use full-path in Interface
report

Yes / No Use full-path names in Interface report

Interface Analysis Type Graphical / Functional Control whether interface analysis is based
on data-flows, or usage of data

Show source/target in LCA
chart

Yes / No Display instance box in LCA chart as
source/target activity (vs. basic activity)

Consider Environment Activ-
ity Flow-lines in Functional
mode

Yes / No
Rational Statemate 85

Working Environment
Loading Predefined Preferences
To load predefined preferences:

1. Click Load Values. The Load Preferences Values dialog box displays.

2. Select a preference type from the Load from pull-down menu. The supported types are
System, Project, User, Default, and Current. For a description of these types, see
Specifying Where Preferences are Applied.

3. If you select the preference type Project or User, a Project or User Name pull-down
menu opens. Select the preferences to load from the choices in this pull-down menu.

4. Click OK to exit the Load Preferences Values window.
86 User Guide

Preferences
Setting Parameter Preferences
To set parameter preferences:

1. Doing one of the following:

� Highlight a parameter, then click Choose. The Choose dialog box displays. Select
one of the listed values to set the parameter.

� Select the Value field of a parameter. The supported values are displayed. Select
one of the choices or, if required, replace the text in the box (for example, to
change the text editor you want to use).

2. Click Apply to apply any changes you have made, then click OK to exit the General
Preferences dialog box.
Rational Statemate 87

Working Environment
88 User Guide

Preferences
Setting Preferences for Editors and Utilities

To set preferences for editors and utilities:

1. From the Rational Statemate main window, select Project > Preferences Management.

2. From the Preferences Management menu, select a specific editor or utility for which to set
preferences.

Note: You might not have access to all the preference options. For example, the
system administrator can reserve the right to change the System preferences.

The steps for changing preferences for editors and utilities are the same as changing general
preferences for Rational Statemate. For more information, see Setting General Rational Statemate
Preferences.
Rational Statemate 89

Working Environment
Configuration Management
Configuration management may also be called CM, change management, revision management,
and source control.

Each Rational Statemate project has a common repository called the databank. The databank is
both centralized and permanent. That is, information in the databank belongs to the entire project
and represents the current working design.

Databank

The databank contains several subdirectories that hold different types of Rational Statemate
elements, for example, charts, panels or configuration files. Elements are stored in the databank as
ASCII definition files.

A project databank can be placed in any directory in which you have read and write access. Many
sites designate a special location for project data; check with your system administrator.

As you rework your charts, each modification is made to your workarea. When you want to
permanently store a new version of your changes to enable others to share them, save the modified
charts to the databank. Through a locking mechanism, you are ensured that your work will not
conflict with the interests of the other project members.

While working on a project, you can perform configuration management operations such as
checkins and checkouts using the toolbar from the Rational Statemate main window and the
Databank Browser (the DataBank tab on the Rational Statemate main window). Rational
Statemate provides a built-in CM tool similar to those found in products designed specifically for
the task of configuration management. In addition, Rational Statemate enables you to transparently
substitute a different CM Tool when you create a project.
90 User Guide

Configuration Management
Elements

Elements stored in the databank are called configuration items and stored as ASCII files. Multiple
versions of the same configuration item can exist in the databank. All versions of a configuration
item belong to the same owner and have the same access permissions.

Elements consist of the following:

� Charts (statecharts, activity charts, module charts, use-case diagrams, sequence diagrams,
flowcharts, and global definition sets)

� Analysis profiles
� Simulation Control Language files
� Waveform profiles
� Status files
� Check Model profiles
� Code generation profiles (compilation profiles)
� Documentor (DGL) templates
� Include files
� Configuration files
� Panels
� Components (Every databank can contain components, but only databanks that are defined

as libraries can “export” these components to other projects.)
� Targets and Cards

Note
Truth tables are not separate configuration items. A truth table belongs to the chart in which
it was defined. When the chart containing the truth table is loaded into the workarea, the
truth table is also loaded. It is also saved to the databank when the chart is saved.
Rational Statemate 91

Working Environment
Working with the Databank

To work with the databank:

1. From the Charts, Files, or DataBank tab of the Rational Statemate main window, select a
chart.

2. Open the Configuration menu, by doing one of the following:

� Select the Configuration option.
� From the DataBank tab, right-click to display a menu allowing you to perform any of

these tasks:
� Check Out - copy the selected chart or file into your workarea from the databank.

See Checking Out Databank Items for more information.
� Check Out With Descendants - copy the chart, along with all its descendants,

into your workarea from the databank.
� Lock - Set a lock on the file in the databank and change the mode of the item in

the workarea to update. See Locking Databank Items for more information.
� Release Lock - Release the lock on the file in the databank and change the mode

of the item in the workarea to read-only.
� Delete - delete files and charts (that you own) from the databank.
� Purge - delete older versions of files and charts (that you own) back to and

including the version specified in the Databank Browser preferences.
Note: Always use Purge to delete versions of configuration items. Do not use

operating system commands for this purpose.

� Create Configuration - create a new configuration. Selecting this option opens
the Create Configuration dialog box. See Creating a New Configuration for more
information.

� Execute Configuration - Check out from the databank all files specified in the
selected configuration file.

� Export - Exports files and charts to another directory.
� Properties - Enables you to see the databank properties for the selected elements.
� Properties in New Window - The same as Properties, except that it opens in a

new window if multiple windows are open.
� View Selected Version Changes - Enables you to view any check-in or check-out

comments for the selected version.
� View All Changes - Enables you to view all check-in and check-out comments

for the selected version.
92 User Guide

Configuration Management
Automatic Databank Refresh
You may set the Automatic Databank Refresh preference to control the behavior of the Databank
refresh to one of these values:

� Yes - the Databank view always refreshes automatically
� No - the Databank view only refreshes when the Name and Type columns and the other

columns are refreshed when the line is selected. In this mode, the Databank view can be
fully refreshed upon request using the View > Refresh selections.

Checking Out Databank Items
You may check out databank items using either of these two DataBank tabs right-click menu
options:

� Check Out - copy the selected chart or file into your workarea from the databank.
� Check Out With Descendants - copy the chart, along with all its descendants, into your

workarea from the databank.

You may also use the Filtered Checkout utility for activity charts and Global Definition
Sets (GDS). You may select either of these filtered checkout modes:

� Filtered Check Out Parent from Databank - to checkout the parent chart from the
Databank

� Filtered - loads the graphical elements and only the necessary textual elements of the
parent chart into the workarea.
Rational Statemate 93

Working Environment
Creating a New Configuration
To create a new configuration:

1. From the DataBank tab, right-click and select the Create Configuration to display this
dialog box.

.

2. Enter the name of the new configuration into the Configuration File Name or accept the
displayed default.

3. Choose whether to use all the files in the workarea or just those selected.

4. Determine if you want all files in the configuration checked into the Databank, just the
new configuration file, or both.

5. Choose whether the permissions for the configuration files are All Read (read only), All
Update (all files can be updated), or just the permissions As in Workarea.

6. Click OK to save the new configuration.
94 User Guide

Configuration Management
Locking Databank Items
Locking a configuration item guarantees that other users cannot change the item in the databank
while you are working on it. After your changes are complete, you can check it into the databank
and either release or continue to hold the lock. To lock a configuration:

1. From the DataBank tab, select the file or files in the databank you want to lock.

2. Right-click and select Lock.

To remove the lock:

1. From the DataBank tab, select the file in the databank you want to release.

2. Select the Release Lock option from the right-click menu and change the mode of the
item in the workarea to read-only.

No configuration item can be locked by two or more users simultaneously. When you create a new
configuration item (a chart or file that you have created but not yet stored in the databank), it is
automatically locked by you. You can, therefore, always save such a configuration item into the
databank.
Rational Statemate 95

Working Environment
Exporting Charts and Files
To export charts and files from the databank:

1. From the DataBank tab, right-click and select the Export Charts/Files to display this
dialog box.

2. Select the new directory to receive the exported charts or files.

3. Click OK to perform the export.

Error Handling when Loading Charts
Rational Statemate handles chart load faults during chart load operation as follows:

� When a name or an expression contains an illegal character in the upper character set
(ASCII 128 to 255), the illegal characters is replaced with an underscore (“_”).

� When an illegal expression is found (not just an illegal character), the expression is
converted to a comment

� When attempting to load an already existing chart to the workarea, Rational Statemate
prompts you with suggestions for an alternative chart name.

Note
When either of the first two situations occurs, a change description is created and added to
the chart change log.
96 User Guide

Configuration Management
Checking In and Out Elements

To improve efficiency in your configuration management work, charts can be checked out in read-
only mode as a single transaction. If there is a mixture of read-only and update check outs, the
read-only charts are checked out first in a single transaction, and the other charts are checked out
next.

This feature is controlled by the Check Out in Single Transaction preference with these two
options:

� Yes - Check out using single transaction
� No - Check out as a transaction per chart (Default)

Selecting “No” may result in many transactions if the project contains many charts. This would
adversely affect the tool performance.

Note
An error in a single chart can cause the check-out operation to fail and would require a
rollback of the changes in the databank. Therefore, the single transaction is performed only
when checking out in read-only mode.
Rational Statemate 97

Working Environment
Tracking Changes

The Track Changes feature enables you to enter and log change descriptions, following
modifications to charts in the Rational Statemate model. It also enables you to attach a description
to a specific chart version when checking it into the Databank. You can add and view a change
description from the workarea browser, graphic editor, and properties editor.

To add a change description manually, select Tools > Track Changes > Add-Change
Description. The Change Description dialog displays, as below. Fill in the change description
field and click OK.

To view the change description log for a chart from the workarea browser and the graphic editor
select Tools > Track Changes.

Note
The Track Changes options vary slightly, depending on the selected tab.

Automatic Change Tracking
You can choose to have change descriptions entered automatically whenever Rational Statemate
detects a change to the model. Any changes to the properties of graphical and textual elements are
identified and prompt you with an editable change description.

To enable automatic mode, select Tools > Track Changes > Track Changes While Editing.
98 User Guide

Configuration Management
Note
Changing the automatic mode affects all the tools.

Track Changes Preferences
The following Track Change preferences are included in the General Preferences:

� Track Changes While Editing - sets the default value for the Track Changes automatic
mode flag. This option is not set by default.

� Add Change Description when Check-in Chart - displays a change description window
whenever you check in a chart to the databank. This option is set by default.

Types of Changes Tracked
The following changes in the properties editor entries of activities, states, and subroutines are
tracked:

� Activity (selected Implementation, mini-spec, truth-table, subroutine binding, and
termination type)

� State (static-reactions)
� Subroutine (selected implementation, K&R C code, Ada code, Rational Statemate

language, truth-table, type, returned type, and parameter)

Note
When both the dimension and the content of a truth-table are modified during a single
editing session, only the change in dimension is tracked.

Track Changes Limitations
� Only the first line in each field of the Use Case Scenario list table is checked for changes.
� There is no change detection for changes in the Long description field.
� In the Databank Browser, there is no change detection during the Copy Chart and Rename

Chart operations.
Rational Statemate 99

Working Environment
Database Diagnostics
The Database Diagnostics utility checks correctness of the workarea database (charts.data), and
reports internal database errors, if exist (unlike the Check-model tool, which checks completeness
and correctness of the Statemate user-model).

To examine database error information, use the Utilities > Database Diagnostics option. The
database diagnostics results can be displayed as tree with the results ordered by error number or by
error category.

Error Report

This utility supplies a report and allow quick resolution of the reported errors. The report results
can now be displayed as a tree, suggesting various actions that can be performed on the erroneous
elements shown in the report.
100 User Guide

Database Diagnostics
View and Resolve Errors

When viewing the results in the tree view, right-click to perform the following actions on the
erroneous elements:

� Delete
� Show Properties
� Show In Model
� Rename (Can only be used on a single item (tree leaf))

Each action is associated with the relevant messages. When an error occurred with a reference to a
chart, the “Show in model” option displays the Box from which the chart is referenced.

Note
Not all actions can be performed on every error message.

The default actions might or might not solve the problem depending on any ramifications of the
problem and the change.
Rational Statemate 101

Working Environment
Plugins
Additional configuration management items can be added by using the Plugins capability.

This is done by adding textual file to the plugins directory in the STM_ROOT directory. The text
files have the extension .txt. Each file describes the elements needed for a plugin entry. In addition
a directory will be added under the plugins directory of the Workarea and Databank to hold the
data.

The <plugin>.txt file format:
NAME <name of the tool to be displayed in Rational Statemate Main Window>
ABBREV_NAME <abbreviation of the tool name (for Workarea browser use)>
ICON <path to icon (X-Icon) to be displayed in main window>
ICON_DIMMED <path to icon to be displayed in main window when dimmed>
COMMAND <path to command - See below>
FILE_TYPE <file extension - See below >
SUBDIR <sub directory in the plugins directory>
LICENSE <String. Usage to be defined in future >

<path to command> - to be executed when clicking on the icon or when double clicking on a file
with a matching extension in the Workarea browser. The command will be called with the
following parameters:
1. <project name>
2. <user name>
3. <Databank path>
4. <Workarea path>
5. <STM ROOT>
6. [<The file name in the Workarea>]. Include the directory name, relevant only when executed
from double clicking in the WAB.

<file extension> - of file related to the tool. This type will become a configuration item.

Only the NAME and COMMAND, above, entries are mandatory.
In the case of the ICON entry used, an icon will be displayed in the main window.
In the case of FILE_TYPE entry used, a configurable item will be added to Workarea browser list,
and double clicking on the file will invoke the COMMAND with the file name.
All plugins files will be saved in a new directory in the Workarea, and in the Databank
subdirectory "plugins" or in the case of a SUBDIR entry in the plugin text file, in
The specified sub directory.
102 User Guide

Plugins
Example of a <plugin>.txt file :
NAME ClearCaseExplorer
ICON C:\IBM\Rational\Statemate\4.6\etc\mmi\stm\CCexplorer.xpm
COMMAND C:\IBM\Rational\Statemate\4.6\bin\clear_case_explorer.bat
Rational Statemate 103

Working Environment
104 User Guide

Using the Graphic Editors
This section describes the charts and diagrams that Rational Statemate supports and the graphic
editors associated with them.

The topics are as follows:

� Overview of the Rational Statemate Graphic Editors

� Working with Graphic Editors

� Working with Charts and Diagrams

The graphic editors follow conventions similar to many other diagram drawing tools. For example,
select the element or elements to be acted upon (copied, moved, deleted, etc.) and then select the
action.

Use the graphic editors to:

� Create and edit charts and diagrams.
� Set chart properties, such as line width, font, size, etc.
� Enlarge or shrink the display for ease of viewing.
� Open other features such as the Properties window or the Check Model tool.
Rational Statemate 105

Using the Graphic Editors
Overview of the Rational Statemate Graphic Editors
This sections provides an overview of the Graphic Editors

� Graphic Editor Icons

� Graphic Editor Menus

The following figure uses the Activity Charts graphics editor as an example. Each graphics editor
is described in the detail in Working with Charts and Diagrams.

Note
The Grid feature is enabled.

Standard
Graphics
Editor Icons

Chart-
Specific
Graphics
Editor Icons

Displays
Messages

Chart-
Specific
Graphics
Editor Icons
106 User Guide

Overview of the Rational Statemate Graphic Editors
Graphic Editor Icons

This section described the standard graphic editor icons that are used with most Rational Statemate
graphic editors.

Note
Not all features are available with all graphic editors.

Icon Description

New - Opens a new diagram of the same type of graphics editor. For example, if
you are working with the Use Case editor, it opens a new Use Case diagram.

Open - Opens another existing diagram of the same type of graphics editor. For
example, if you are working with the Use Case editor, it opens another existing Use
Case diagram.

Save - Saves any changes made to the diagram.

Print - Prints the diagram.

Open Parent/Open Related Chart

Open Sub-Chart

Undo - Undoes the last change.

Redo - Repeats last change.

Cut (to Paste Buffer) - deletes selected text/graphic and places in the paste buffer.

Copy (to Paste Buffer) - copies selected text/graphic and places in the paste
buffer.

Paste - Pastes selected text/graphic.

Delete - deletes selected text/graphic.

Full View - displays the full chart.
Rational Statemate 107

Using the Graphic Editors
Zoom Area - Allows you to select an area of the chart to zoom into.

Zoom In, Zoom Out - Allows you to zoom in and out of a selected area of the chart.

Grid - displays/hides the grid.

Refresh - Refreshes the diagram.

Properties - Opens the Properties dialog box.

Long Description - Opens the Properties dialog box. See

Link to External File - Opens the Properties dialog box.

Invoke Check Model - Opens the Check Model tool. See the Check Model
Reference Manual for more information.

Invoke Simulation - Opens the Simulation tool. Reference to the Simulation
Reference Manual for more information.

Icon Description
108 User Guide

Overview of the Rational Statemate Graphic Editors
Graphic Editor Menus

This section lists the menus supported by the graphic editors, and describes the menu options for
each menu.

The following table lists the menus that appear in the menu bar for each graphic editor.

Note
The use case diagram editor has special Copy and Select menus that take the place of the
Edit menu in the other graphic editors.

The following sections describe the main graphic-editor menus (with the exception of the Help
menu). Each section lists the menu items available for each editor and describes the menu options.

Editor Menu

File Edit View Layout Tools Options Help

Activity Chart X X X X X X X

Module-chart X X X X X X X

Statechart X X X X X X X

Sequence Diagram X X X X X X X

Use-case Diagram X X X X X

Flowchart X X X X X X X
Rational Statemate 109

Using the Graphic Editors
File Menu
The following table lists the File menu items and which items each graphic editor supports.

The following table describes the File menu items.

Menu Item Activity Module State Sequence Use Case Flow

New X X X X X X

Open X X X X X X

Close X X X X X X

Save X X X X X X

Open Parent X X X X

Open Sub-chart X X X X X

Open Related charts X

Insert chart X X X X

Create sub-chart X X X X

Create Sequence
Diagram

X

Preview Component X

Print X X X X X X

Exit X X X X X X

Menu Item Description

New Creates a new chart.

Open Opens an existing chart.

Close Closes the current chart.
If the chart includes graphical or textual changes not yet saved, you are
prompted to save these before the chart is exited. The graphic editor
remains open and is now labeled Empty Editor. (You are prompted to name
the chart when you exit.)

Save Saves the current chart.

Open Parent Opens a new graphic editor for the chart immediately above the current
chart in the hierarchy.

Open Sub-chart Opens a new graphic editor for an existing sub-chart (generic or off-page).
Note: This operation is valid only if the selected box name contains an off-
page (@NAME) reference or a generic chart instantiation (I<NAME) and the
chart exists in the workarea.
110 User Guide

Overview of the Rational Statemate Graphic Editors
Open Related charts Opens a chart that a use case diagram element is based on.

Insert chart Inserts the contents of another chart into the current graphic editor window
using the Insert window.
From the Insert window you can do the following:

• In the From Chart textbox, enter or select the chart to be inserted.
• In addition to being able to insert an entire chart, you can insert a single

activity (state or module) for the specified chart.

Click the down arrow to view a list of possible activities (states or
modules) to be inserted. If the selected chart has no sub-activities, the
list is blank.

• Optionally, deselect Copy Element Definitions, if you do not want
textual elements included.

Create sub-chart Creates a sub-chart.

Create Sequence
Diagram

Creates a sequence diagram from an activity chart.

Preview Component Previews a selected component in an activity chart.

Print Prints the current chart.

Exit Exits from the graphic editor and closes any open charts.
If the chart includes graphical or textual changes not yet saved, you are
prompted to save these before the chart is exited. The graphic editor
remains open and is now labeled Empty Editor. (You are prompted to name
the chart when you exit.)

Menu Item Description
Rational Statemate 111

Using the Graphic Editors
Edit Menu
The following table lists the Edit menu items and which items each graphic editor supports.

The following table describes the Edit menu items.

Menu Item Activity Module State Sequence Use Case Flow

Undo X X X X X X

Redo X X X X X X

Cut X X X X X X

Copy X X X X X X

Paste X X X X X X

Insert Component X

Copy Component X

Move X X X X X X

Stretch X X X X X X

Edit Text X X X X X X

Delete X X X X X X

Properties X X X X X X

Select X X X X X X

Menu Item Description

Undo Undoes the last operation.

Redo Redoes the last operation.

Cut Deletes the selected text or elements and places them in the
paste buffer.

Copy Copies selected text or elements into the paste buffer.

Paste Pastes selected text or elements from the paste buffer.

Insert Component Inserts a component.

Copy Component Copies a component.

Move Moves selected text or elements.

Stretch Stretches selected text or elements.

Edit Text Enables text-edit mode.

Delete Deletes selected elements.
112 User Guide

Overview of the Rational Statemate Graphic Editors
View Menu
The following table lists the View menu items and which items each graphic editor supports.

Properties Modifies the following display properties:
• Color
• Font
• Line Width

Select Selects text or elements.

Menu Item Activity Module State Sequence Use Case Flow

Full View X X X X X X

Zoom Area X X X X X X

Zoom In X X X X X X

Zoom Out X X X X X X

Refresh X X X X X X

Hide X X X X X X

Reveal X X X X X X

Grid X X X X X X

Grid Setting X X X X X X

Messages X X X X X X

Drawing Icons X X X X X X

Command Bar X X X X X X

Toolbar X X X X X X

Pagination Preview X

Floating Lifeline Names X

Scenario Auto
Numbering

X

Menu Item Description
Rational Statemate 113

Using the Graphic Editors
The following table describes the View menu items.

Menu Item Description

Full View Expands or reduces the drawing frame to fit into the graphic canvas.
This is the default when a graphic editor is first opened.

Zoom Area
Zoom In
Zoom Out

Enlarges or shrinks the drawing on your screen, without changing the window
dimensions. Choose one of the following:
Note: By default, zoom operations do not affect the text. Select Options > Enable
Scale Text to change the size of both the text and lines when you zoom into and
out of the canvas.

• To zoom in to a particular area of a drawing, select Zoom Area.

Drag a rectangle around the area of the drawing that you want to zoom into.

The area you selected expands to fill the canvas.
• To zoom into a drawing, select Zoom In.

The drawing expands approximately 30%.

Use the scroll bars to pan the window.

To further enlarge the drawing, you can select Zoom In several times.
• To zoom out of a drawing, select Zoom Out.

The drawing contracts approximately 30%.

Use the scroll bars to pan the window.
• Select Full View to return to the original size.

Refresh Redisplays the graphics on the canvas.
Occasionally erroneous graphics can remain on the screen during editing. Use this
operation to clear them from the screen display.

Hide Hides the detail underneath a box. The box is shaded to show that there is missing
detail underneath.
You can use this operation to hide details during printing, for example.

Reveal Redisplays previously hidden elements.

Grid Displays the editing grid. By default, when you open a graphic editor, the grid is not
displayed.
Select Grid again to turn the grid display off.
114 User Guide

Overview of the Rational Statemate Graphic Editors
Grid Setting Displays the Grid Setting dialog box, which allows you to change the grid settings.
The grid consists of a matrix of points the pointer/drawing elements snap to.
The Grid Setting dialog box shows the width and height of the drawing frame, but
this information is only for reference. You cannot change these values.
To expand the drawing area to fill the window, use Layout > Reframe.
To make the grid

• Active and visible, select Active.
• Active and invisible, select Snap to grid.

To specify the spacing of the grid points, set the Grid Spacing number. The up
and down arrows provide a quick way to double or halve the spacing between grid
points.
To specify how many of the grid points to show, use the Every nth grid point field.
(If this value is 1, all the grid points are shown. If this value is 2, only every 2nd grid
point is shown, etc. The other grid points exist; however, you cannot see them.)
Click Apply to apply your changes and continue, and click OK when you are
finished.

Messages Toggles between showing and hiding the Message and Log tabs.

Drawing Icons Toggles between showing and hiding the drawing toolbar.

Command Bar Toggles between showing and hiding the command toolbar.

Toolbar Toggles between showing and hiding the Rational Statemate toolbar and various
parts of the standard toolbar.
You can choose whether to display the Rational Statemate toolbar vertically along
the left side of the window or horizontally across the top of the window. In the
Rational Statemate main window, select View > Toolbars > Tools (Horiz.) or
Tools (Vert.).

Pagination
Preview

Allows you to preview the page.

Floating Lifeline
Names

Toggles between showing and hiding names of floating lifelines.

Scenario Auto
Numbering

Toggles between showing and hiding scenario auto numbering.

Menu Item Description
Rational Statemate 115

Using the Graphic Editors
Layout Menu
The following table lists the Layout menu items and which items each graphic editor supports.

The following table describes the Layout menu items.

View Filter Displays the View Filter dialog box, which allows you to control the information
displayed on the various displays.
The View Filter dialog box has four tabs:

• Main Tree Browser -- controls what displays on the left pane of the Rational
Statemate Main Window

• Elements Matrix -- controls what displays on the right pane of the Rational
Statemate Main Window

• Files -- controls what displays on the Files tab
• DataBank -- controls what displays on the Files tab

Each tab contains a set of items that can be either displayed or suppressed by the
View Filter. Select individual items to display or suppress by clicking the item
button.
Click Apply to apply your changes and continue, and click OK when you are
finished.

 Menu Item Activity Module State Sequence Use Case Flow

Replicate X X X X X

Arrange X X X X X X

Align to Grid X X X X X X

Reframe X X X X X

Vertical Spacing X X

Horizontal Spacing X X

Menu Item Description
116 User Guide

Overview of the Rational Statemate Graphic Editors
 Menu Item Description

Replicate Quickly creates a grid of drawing elements.
• Select the elements to copy.
• Position the selected elements in the corner of the grid of elements

to be created. Select Replicate.

The Replicate dialog box opens.
• Fill in the Number of Rows and Number of Columns text boxes

to set the number of rows and columns to be copied.
• Click OK.
• As you move the pointer in the graphic canvas, you see shadow

images of the drawing elements you are replicating arranged in a
grid. Click when the shadow images are in the correct position.

Arrange Aligns selected elements vertically and horizontally, as well as
arranging the spacing between them.
You can do the following:

• Rearrange elements in relation to each other. This option has no
effect, if only one element is selected.

Note: Be careful not to select both the names and the boxes when
arranging charts, because you can move a name out of its box
using the arrange operations. If you only select the box, the name
moves with it.

• Align elements around a vertical line, based on the system
calculation of the average location of the elements. You can align
elements by their:

* Left edge

* Center

* Right edge
• Align elements around a horizontal line, based on the system

calculation of the average location of the elements. You can align
elements by their:

* Top edge

* Center

* Bottom edge
Rational Statemate 117

Using the Graphic Editors
Tools Menu
The following table lists the Tools menu items and which items each graphic editor supports.

Arrange (continued0 • Move elements so that they are evenly spaced vertically, based on
the system calculation of the average location of the elements. You
can space elements evenly by the:

* Bottom edge

* Center

* Top edge

* Space between elements
• Move elements so they are evenly spaced horizontally, based on

the system calculation of the average location of the elements. You
can space elements evenly by the:

* Left edge

* Center

* Right edge

* Space between elements

Align to Grid Better aligns text and elements to the grid.

Reframe Changes the size and shape of the drawing frame (or page).
• Select View > Full View before this operation.
• Use the window frame resize bars to change the size or shape of

the entire graphic editor window.
• Click Reframe.

The drawing frame is changed so that it fits the new size and
shape of the graphic canvas exactly.

Caution: This operation can change the origin of the grid. If you are
using the grid, be careful in using this operation, because it may be
difficult to make your drawing line up correctly afterwards.

Vertical Spacing Adds vertical spacing for selected elements.

Horizontal Spacing Adds horizontal spacing for selected elements.

 Menu Item Activity Module State Sequence Use Case Flow

Track Changes X X X X X X

Properties X X X X X X

Info X X X X X X

 Menu Item Description
118 User Guide

Overview of the Rational Statemate Graphic Editors
Local Interface Info X

Global Interface
Info (Activities)

X

Global Interface
Info (Elements)

X

Chart Properties X X X X X X

Chart Info X X X X X X

Subroutine
Properties

X

Simulation X X

Check Model X X X X X

 Menu Item Activity Module State Sequence Use Case Flow
Rational Statemate 119

Using the Graphic Editors
The following table describes the Tools menu items.

 Menu Item Description

Track Changes Maintains or reports change history for an element.

Properties Modifies the following display properties:
• Color
• Font
• Line Width

Info Displays a summary of the properties for selected elements.

Local Interface Info Displays a summary of direct inputs and outputs for the element.

Global Interface Info
(Activities)

Displays a summary of the most distant activities the input and output
signals flow to or from, sorted by source/sink activity.

Global Interface Info
(Elements)

Displays a summary of the most distant activities the input and output
signals flow to or from, sorted by the name of the input or output.

Chart Properties Opens the Properties window for the chart.

Chart Info Displays a summary of the properties for the chart.

Subroutine Properties Note: This selection is only available for the activity chart editor.
For an activity that is bound to a subroutine, opens the Properties
window and the dialog box with the subroutine implementation
(body). If there are multiple implementations currently defined for the
subroutine, the implementation that is identified in the Select
Implementation field is opened.
(Select Project > General Preferences > Open Code Editor on
Entering a subroutine to go directly to the subroutine template code
editor.)

Simulation Opens a simulation execution window directly from your open chart.
Note: This selection is not available for the module-chart editor.

Check Model Opens the Check Model tool. For more information on Check Model,
see the Check Model User’s Guide.
120 User Guide

Overview of the Rational Statemate Graphic Editors
Options Menu
The following table lists the Options menu items and which items each graphic editor supports.

The following table describes the Options menu items.

 Menu Item Activity Module State Sequence Use Case Flow

Gravity Setting X X X X X X

PC Mouse (2 Button) X X X X X X

Preserve Selection X X X X X X

Simulation Highlight X X

Enable Scale Text X X X X X X

Advanced: Filled
Boxes

X X X X

Advanced: Fill Colors X X X X

Advanced: Carriage
Return is New Line

X X X X X X

Advanced: Enabled
Reshaping

X X X X X

Preferences
Management

X X X X X X

 Menu Item Description

Gravity Setting Changes the gravity setting. Gravity is the distance you must get
within to attach arrow heads to boxes or to select elements.
To change the gravity setting:

• In the Gravity Setting dialog box, specify the Gravity Distance in
pixels.

• Click Apply to apply your selection and continue, and click OK
when you are finished.

PC Mouse (2 Button) By default, you move a drawing element by dragging it with the middle
mouse button and selecting it using the left mouse button. When you
select PC Mouse, you can drag a drawing element with the left mouse
button, as well as select with it.
This option is available for users who are accustomed to applications
running under Microsoft Windows or on an Apple Macintosh. When
PC Mouse is set, the mouse conventions for editing are similar to the
conventions on these machines.
Note: You can also set the single-button mouse option as a general
graphic editors preference.
Rational Statemate 121

Using the Graphic Editors
Preserve Selection By default, when you create or move an element, the element
becomes selected. This option changes to the opposite state.
Note: The Preserve Selection option is not saved in the chart.

Simulation Highlight Allows you to specify color and style of highlighting states and
activities during simulation.
To make any changes desired to either the transition or state
highlighting defaults, select the [...] next to the appropriate option.
Click OK.
Note: The Simulation Highlight options are not saved in the chart.

Enable Scale Text Causes both the text and lines in a diagram to change size when you
zoom into and out of the canvas. By default, zoom operations do not
affect the text.
Note: The Enable Scale Text option is not saved in the chart.

Advanced: Filled Boxes Temporarily displays boxes filled with five colors to make it easier to
see the box hierarchy in complex charts. (The system automatically
selects the five colors, based on your chart hierarchy. If your chart has
more than five levels, the system repeats this process.)
Note: The Filled Boxes option is not saved in the chart. This option
can cause slower system performance.

Advanced: Fill Colors Allows you to select colors to fill boxes.
Note: The Fill Colors option is not saved in the chart.

Advanced: Carriage
Return is New Line

By default, when you are editing text, each time you press Return, a
new line displays. Pressing Ctrl + Return ends text editing.
This option reverses these settings (that is, you press Ctrl + Return for
a new line and Return to end the edit).
Note: The Carriage Return is New Line option is not saved in the
chart.

Advanced: Enabled
Reshaping

Provides more precise control when stretching polygons.
• When enabled, only particular areas of the polygon are stretched.
• When disabled, the entire polygon is stretched, which may not

give the desired result.
Note: The Enabled Reshaping option is not saved in the chart.

Preferences
Management

Allows you to modify general preferences for all graphic editors or for
only the current graphic editor.

 Menu Item Description
122 User Guide

Working with Graphic Editors
Working with Graphic Editors
The following sections explain how to perform general tasks in all graphic editors:

� Starting a Graphic Editor

� Creating a New Chart or Diagram

� Drawing Operations in Graphic Editors

� General Operations in Graphic Editors

Starting a Graphic Editor

To start a graphic editor:

� From the Charts tab of the Rational Statemate main window, double-click on a chart to
open it.

� From the Rational Statemate main window, click the Graphic Editors icon . If you
have selected a chart, that chart is opened in the appropriate graphic editor. Otherwise, the
Open Chart window opens (see Creating a New Chart or Diagram from the Open Chart
Window).

� From another graphic editor, use the File > Open, File > Open Sub-chart, or File > Open
Parent menu options.

Creating a New Chart or Diagram

A new chart or diagram is created:

� From within a graphic editor.
� From the Open Chart window.
Rational Statemate 123

Using the Graphic Editors
Creating a New Chart or Diagram from the Open Chart Window
To create a new chart or diagram:

1. Click the Graphic Editors icon in the main Rational Statemate main window. The
Open Chart window opens.
124 User Guide

Working with Graphic Editors
2. From the Type section, select the type of chart you want to create. The possible values are
as follows:

� All - Used to open existing charts; specifies that all types of existing charts are to
be displayed.

� Statechart - For information on statecharts, see Statecharts.
� Activity Chart - For information on activity charts, see Activity Charts.
� Use-Case Diagram - For information on use case diagrams, see Use Case

Diagrams.
� Sequence Diagram - For information on Sequence Diagrams, see Sequence

Diagrams.
� Flowchart - For information on flowcharts, see Flowcharts.
� Module-chart - For information on module charts, see Module Charts.

3. In the Usage area, select a particular usage. The possible values are as follows:

� All - Used to open existing charts; specifies that all usages of existing charts are to
be displayed.

� Generic - Generic charts enable reuse of parts of a specification. A generic chart
makes it possible to represent common portions of the model as a single chart that
can be instantiated in many places, and in this it is similar to a procedure in a
conventional programming language.

Generic charts are linked to the rest of the model via parameters; no other
elements (besides the definitions in global definition sets) are recognized by both
generic charts and other portions of the model.
Rational Statemate 125

Using the Graphic Editors
� Regular - A non-generic chart.
� Procedural - A specialized derivative of a statechart. Procedural Statecharts:

– Are executed entirely in one step.
– Must contain a termination connector.
– When called, run from the default to the termination connector (including any

loops) within a single step.
4. In the Name Pattern box, enter a name for the chart or diagram you are creating.

5. When done, click New. The appropriate graphic editor opens.

Creating a New Chart or Diagram with a Graphic Editor
To create a new chart using the current graphic editor:

1. From within the graphic editor, select File > New.

The New Chart window opens with the name of the chart editor you are currently in.

2. Specify Regular, Generic, or Procedural from the Usage area. For more information on
these choices, see Creating a New Chart or Diagram from the Open Chart Window.

3. In the Chart Name textbox, enter the name or use the selection box to select a name. (The
selection list is of the unresolved charts in the workarea.)

4. Select OK to confirm your choices.

The current chart is closed (you are prompted to save changes first) and a new graphic
editor opens.
126 User Guide

Working with Graphic Editors
Drawing Operations in Graphic Editors

When drawing in a graphic editor, place the cursor at the desired location for the upper, left-hand
corner of the activity and click and drag to the desired location of the lower, right-hand corner of
the activity. A ghost image shows the activity outline.

Graphic editors support the following drawing operations:

� Drawing Boxes

� Drawing Lines

� Drawing Connectors

� Editing Text

� Selecting Elements

� Labeling Elements

� Moving Elements

� Copying Elements

� Resizing Elements

� Deleting Elements

� Constraining Graphic Operations

Note
Not all graphic editors support all of the various drawing operations.

Drawing Boxes
To draw a box, select the Box icon.

Use one of the following procedures to draw boxes:

� Double-click to draw a default size box which is auto-named.
� Click and drag to draw a rectangle. When you hold down Shift, the resulting box is square.
� Click to position three corners of the box, then double-click (or use the middle mouse

button) on the first corner to complete the box.
� Click to position one corner, and then double-click (or use the middle mouse button) to

position the opposite corner. A rectangular box is created.
Rational Statemate 127

Using the Graphic Editors
Drawing Lines
To draw a line, select a line icon (Data Flow or Control Flow).

Use one of the following procedures to draw splines and straight-line segments:

� Click and drag the cursor to draw the line. When you hold down the Shift key, the
resulting line is horizontal or vertical.

� Click to position the points on the line, then double-click (or use the middle mouse button)
to complete the line.

� To end a line on an invalid end point, press the middle mouse button. An invalid line is
denoted as such with a line at the end of the arrow head.

Drawing Connectors
To draw a connector:

1. Select a connector icon.

2. Click to place the connector.

Editing Text
To edit text:

1. Select the text to be edited. The text is highlighted.

2. Click on the selected text a second time. Now the text is displayed in a reverse video box
and the pointer changes to an I-beam.

3. Edit the selection.

4. Move the pointer away from the text and click to end the edit.

If the text in a text box is difficult to read, click the Beautify button to reformat the text to improve
readability. You may also adjust the indention of the text with the setting in the Beautify Indent
Size preference.

Selecting Elements
When you select one or more graphic elements, the current selection is marked with filled squares,
called selection handles. If the graphic editor is in selection mode (you are not drawing
something), the current selection is also marked with hollow squares, called stretch handles.
128 User Guide

Working with Graphic Editors
Different kinds of drawing elements are marked with selection handles in the following ways:

� Boxes - Have a marker placed on each corner.
� Arrows and lines - Have a marker placed on each end of the line, and on each control

point on the line. Selecting an arrow automatically selects its label. A label cannot
become disconnected from its arrow, even when moved.

� Connectors - Have a marker placed in the center of the connector. In this case, the marker
color is different than the connector color, so that you can see it more easily.

� Circles - Have four markers, one each side, and one at the top and bottom on the edge of
the circle.

� Text - Has a dotted box surrounding the words.

Note
There are usually eight stretch handles at the corners and edges of an imaginary rectangle
that contains all the selected elements. If the markers are too close to each other, the number
of stretch handles is reduced, which can make it impossible to resize an element without
zooming in to that area of the diagram.

Labeling Elements
To label elements, do one of the following:

� Immediately after you draw an element, type the label and click to move it to the desired
location. The cross-hair pointer must intersect a line or be inside a box.

� Click the label icon and type the label, use the mouse to move it to the desired location,
and click to position it. The tip of the pen pointer must be on the line.

Note: Do not use the Caps Lock option because it might prevent you from making
further selections.
Rational Statemate 129

Using the Graphic Editors
Moving Elements
To move elements:

1. Select one or more elements to move.

2. Position the pointer over the selected elements. To move text, position the pointer over the
square in the lower left-hand corner of the dashed box that delimits the text element (as
shown). The pointer changes to a four-way arrow.

3. Click and drag to position the element where you want it to appear.

Note: If an element becomes erroneous during a move operation, such as overlapping
boxes, the erroneous elements are highlighted (with “Xs) and they will not be
part of the model until they are corrected.

Copying Elements
To copy elements:

1. Select one or more elements to copy. It changes to a four-way arrow.

2. Press Ctrl and click and drag the pointer to position the second image where you want the
copy to appear.

Note: If an element becomes erroneous during a copy operation, such as overlapping
boxes, the erroneous elements are highlighted (with “Xs), and they will not be
part of the model until they are corrected.

Resizing Elements
To resize elements:

1. Select one or more elements to resize. Resize handles surround the element.

2. To resize the element in one dimension, position the pointer on the closest midpoint (so it
displays as a bar). To resize the element in two dimensions at the same time, position the
pointer on the closest corner (so it displays as an angle bracket).

3. Click and drag to resize the element.

Note
If an element becomes erroneous during a stretch operation, such as overlapping boxes, the
erroneous elements are highlighted (with “Xs) and they will not be part of the model until
they are corrected.
130 User Guide

Working with Graphic Editors
Deleting Elements
To delete elements:

1. Select the element to be deleted.

2. Press Delete.

If you delete an element by mistake, select Edit > Undo.

Note
If Delete does not work on your system, try Backspace.

Constraining Graphic Operations
Pressing Shift while drawing, stretching, or moving elements can greatly facilitate the process of
creating professional-looking charts.

Copying, moving, and one-dimensional drawing and stretching operations become constrained to
a horizontal or vertical direction only. For example, to draw perfectly horizontal lines, hold down
Shift.

Two-dimensional drawing and stretching operations become constrained to a diagonal direction
only. For example, to draw a perfectly square box or to stretch an box without changing its shape,
hold down Shift.
Rational Statemate 131

Using the Graphic Editors
General Operations in Graphic Editors

The following sections describe the more common operations performed in graphic editors. For
descriptions of all the menu options for each editor, see Graphic Editor Menus.

Opening the Properties Window for Elements
To open a Properties window for selected elements:

1. Select the elements. For instructions on how to select elements, see Selecting Elements.

2. Select Tools > Properties or, if the element is a basic element (not a sub-chart), double-
click on the element.

Displaying Element Properties
To display a summary of the properties for selected elements:

1. Select the elements. For instructions on how to select elements, see Selecting Elements.

2. Select Tools > Info. An Info window opens. Use the scroll bars to scan the window.

Opening the Properties Window for an Entire Chart
To open the Properties window for an entire chart, select Tools > Chart Properties.

Note
This operation is particularly useful for generic charts, because properties are used to define
the formal parameters for the chart.

Displaying Chart Properties
To display a summary of the properties for a chart, select Tools > Chart Info. A Chart Info
window opens. Use the scroll bars to navigate the window.
132 User Guide

Working with Graphic Editors
Displaying Subroutine Properties

Note
This selection is only available for the activity chart editor.

When an activity that was previously bound to a subroutine is selected, use this option to open the
Properties window and the dialog box with the subroutine implementation (body). If there are
multiple implementations currently defined for the subroutine, the implementation that is
identified in the Select Implementation field is opened.

(Set the General preference Open Code Editor on Entering a subroutine to go directly to the
subroutine template code editor.)

This option is also available from the right-click popup menu, when the activity is selected.

Opening a Simulation Execution Window

Note
This selection is not available for the module-chart editor.

To open a simulation execution window directly from your open chart, select Tools > Simulation.
A Simulation Execution window opens.

For more information on simulation tool, see the Rational Statemate Simulation Reference
Manual.

Invoking the Check Model Tool
To start the Check Model tool to perform a correctness and completeness checks on an open chart,
select Tools > Check Model. The tests are performed and the report on them is displayed on your
screen.

For more information on the Check Model Tool, see the Check Model User’s Guide.

Invoking the RT Interface
To start the Rational Statemate-to-DOORS RT Interface, select Tools > RT Interface-Accessing
Requirements Tracing Tools.

For more information on the RT Interface, see Rational DOORS RT Interfaces.

Closing a Chart
To close a chart, select File > Close.
Rational Statemate 133

Using the Graphic Editors
If the chart includes graphic or textual changes not yet saved, you are prompted to save these
before the chart is exited. The editor remains open and is now labeled Empty Editor. (You will be
prompted to name the chart when you exit.)

Saving a Chart
To save the open chart, select File > Save.

Opening a Parent Chart
To open a new graphic editor for the chart immediately above the current chart hierarchy, select
File > Open Parent.

Opening a Sub-Chart
To open a new graphic editor for an existing sub-chart (generic or off-page):

1. Select the box.

2. Select File > Open Sub-Chart.

Note
This operation is only valid if the selected box name contains an off-page (@NAME)
reference or a generic chart instantiation (I<NAME) and the chart exists in the workarea.
134 User Guide

Working with Graphic Editors
Inserting a Chart
To insert the contents of another chart into the current graphic editor window:

1. Specify File > Insert Chart. The Insert dialog box displays.

2. In the From Chart box, enter or select the chart to be inserted.

3. In addition to being able to insert an entire chart, you can insert a single activity (state or
module) for the specified chart. In the Type Name text box, click the down arrow to see a
list of possible activities (states or modules) to be inserted.

Note: If the selected chart has no sub-activities, the list is blank.

4. Optionally, deselect Copy Element Definitions if you do not want textual elements
included.

Creating a Sub-Chart
To create a new chart from the currently selected box:

1. Select the box.

2. Select File > Create Sub-Chart.

Exiting the Graphic Editor
To close an open chart and exit from the graphic editor, select File > Exit.
Rational Statemate 135

Using the Graphic Editors
Working with Charts and Diagrams
The following sections explain in general terms how to work with charts and diagrams:

� Activity Charts

� Module Charts

� Statecharts

� Use Case Diagrams

� Sequence Diagrams

� Flowcharts

Activity Charts

An activity chart describes the functional view of the system using activities as the primary
building block. This is sometimes referred to as the process-oriented view. A system description
can contain one or more activity charts. Activity charts, which can be connected to module charts,
describe the functionality of individual modules.

Activity charts can also be connected to statecharts, which either define the behavior of individual
activities or control groups of activities as a control-activity.

The following sections describe in more detail how to use activity charts.

Accessing an Activity Chart
To access an activity chart, see Starting a Graphic Editor. The activity chart editor opens, as
illustrated in the following figure.
136 User Guide

Working with Charts and Diagrams
Rational Statemate 137

Using the Graphic Editors
Activity Chart Icons
The following icons support drawing and naming operations in an activity chart. For general
information on drawing and naming operations in Rational Statemate, see Drawing Operations in
Graphic Editors and General Operations in Graphic Editors.

General Activity Icons

An activity is the primary graphic element in activity charts that represent a function in the
functional view of the system. An activity represents something that transforms inputs into
outputs.

There are three types of activities:

� Internal activities (solid rectangle)
� External activities (dashed rectangle)
� Control activities (rounded rectangle)

Activities can be allocated to modules (structure) and can contain statecharts. You can specify the
behavior of an activity by connecting it to a subroutine.

� Procedure-like activities can be connected to procedures in any of the languages
supported.

� Internal primitive activities (reactive-controlled and reactive-self) can be connected to
tasks (no mini-specs or decomposition is allowed).

� External activities can only be connected to tasks.

Create Internal Activity - creates an internal activity.

Name Existing Activity - Names an existing activity.

Create Control Activity - creates a control activity. The control activity senses and
controls the status of sibling activities. If an activity does not contain a control activity, the
children of the activity are active when the parent is active. Control activities cannot be
hierarchically decomposed. Only one control activity is allowed per activity hierarchical
level.
A control activity cannot have any subactivities and is specified by an off-page statechart
or flowchart. An @ symbol precedes the title of control activities.
138 User Guide

Working with Charts and Diagrams
Data Flow Icons

Two types of flow lines are allowed in activity charts: data flow lines, drawn as solid arrows, and
control flow lines, drawn as dashed arrows.

Create External Activity - creates an external activity, which is an activity outside the
scope of the topmost activity in a particular activity chart.
Because activity charts are hierarchical, an external activity is usually resolved to a box in
a chart higher in the chart hierarchy. However, an external activity can be resolved to a
box that is an internal activity at a higher level. In this case it remains simply an external
activity when referenced in the lower chart.
External activities cannot be hierarchically decomposed. There can be more than one
occurrence of the same external activity.

Create Data-Flow - Establishes a data flow between two activities. Data flow lines
carry information that is used in computations and data-processing operations

Create Control Flow - Establishes a control flow between two activities. Control flow
lines carry information or signals that are used in making control decisions, for
example, commands or synchronization messages.

Label Existing Flow Line - Enables you to name a flow line that denotes either a
single information element that flows along the line or a group of such elements.
Flow labels in activity charts, module charts, and information-flow elements can be any
primitive (variable) data element (event, condition, data-item) or information flow. In
addition they can be elements on any level of a primitive data element (array element,
array slice, and record/union field). Array elements can use only literal constants.
Rational Statemate 139

Using the Graphic Editors
Connector Icons

Connector icons are circular or oval graphic elements used in charts to join and divide arrows or to
enable an arrow to exist on multiple pages. Their purpose is to clarify a specification by reducing
the number of arrows.

Router Icons

Router icons enable you to create routers, which conceal multiple flow lines to make an activity
chart more readable. For more information on using routers, see The Router Element.

Create Junction Connector - creates a junction connector, which reduces the
number of lengthy flow lines by connecting different elements together. These
elements then form a single flow line that emanates from or enters a common box or
connector.

Create Composition Connector - creates a composition connector, which can only
be used with a record data-item. The composition connector directs the components
of a record to two different target activities. For example, a data-store called RANGE
has a record type of data-item with two components called LOW_LIMIT and
HIGH_LIMIT. If the flow goes out from the data-store, the composition connector splits
the record into the two components.
The composition connector can also go in the other direction, where multiple flow
lines labelled with the record components enter the connector and the single flow line
denoting the record flow emanates from it.

Create Diagram Connector - creates a diagram connector, which connects a target
and a source that are far from each other. Using this type of connector eliminates the
need for long arrows.

Create To-Control Connector - creates a to-control connector, which connects only
to the control activity. Using this type of connector eliminates the need for long arrows.

Create Router - creates a router block used within the scope of the top-most activity
in a particular activity chart.

Create External Router - creates router blocks used outside the scope of the top-
most activity in a particular activity chart. Because activity charts are hierarchical, an
external router is always resolved to an internal router in a chart higher in the chart
hierarchy.
140 User Guide

Working with Charts and Diagrams
Miscellaneous Icons

Select Mode - places the editor in Select mode, so you can access the editing options the
editor supports.

Create Data-Store - creates a data-store, which contains information on activities for later
use. Data-stores can also be used to total large volumes of data, continuously
accumulating over time.

Create Textual Note - creates free text that you can use to annotate the chart.

Create Combinational Assignment - creates a combinational assignment, which is the
expression used to assign a value to a combinational element, with syntax like the
following:
 X := Y1 when C1 else
 Y2 when C2 else
 ...
 Yn

where X is a variable condition or data-item, Y1 to Yn are expressions, and C1 to Cn are
condition expressions.
Combinational elements represent asynchronous behavior; they are elements whose
value is assigned continuously (rather than evaluated once each step).
Rational Statemate 141

Using the Graphic Editors
Module Charts

A module chart describes the structural view of the system using modules as the primary building
block. A system description can contain one or more module charts. They are located at the top of
the chart hierarchy in a system model. Module charts can be connected to activity charts, which
describe the functionality of individual modules.

The following sections describe in more detail how to use module charts.

Accessing a Module Chart
To access a module chart, see Starting a Graphic Editor. The module-chart editor displays.
142 User Guide

Working with Charts and Diagrams
Module Chart Icons

The following icons support drawing and naming operations in a module chart. For general
information on drawing and naming operations in Rational Statemate, see Drawing Operations in
Graphic Editors and General Operations in Graphic Editors.

General Module Icons

Modules are the primary graphic element used in module charts. Modules are used to represent the
structure of the system. There are two types of modules: internal (solid rectangle) and external
(dashed rectangle). The functionality of a module is shown by an activity chart.

Create Internal Module - creates an internal module.

Name Existing Module - names an existing module.

Create Environment Module - creates an environmental module, which is a
module outside the scope of the topmost module in a particular module chart.
Because module charts are hierarchical, an environmental module is usually
resolved to a box in a chart higher in the chart hierarchy. However, an
environmental module can be resolved to a box that is an internal module at a
higher level. In this case it remains simply an environmental module when
referenced in the lower chart.
Rational Statemate 143

Using the Graphic Editors
Data Flow Icons

Two types of flow lines are allowed in activity charts: data flow lines, drawn as solid arrows, and
control flow lines, drawn as dashed arrows.

Connector Icons

Connector icons are circular or oval graphic elements used in charts to join and divide arrows or to
enable an arrow to exist on multiple pages. Their purpose is to clarify a specification by reducing
the number of arrows.

Create Flow Line - establishes a data flow between two activities. Typically, data flow
lines carry information that is used in computations and data-processing operations

Label Existing Flow Line - enables you to name a flow line that denotes either a single
information element that flows along the line or a group of such elements.
Flow labels in activity charts, module charts, and information-flow elements can be any
primitive (variable) data element (event, condition, data-item) or information flow. In
addition they can be elements on any level of a primitive data element (array element,
array slice, and record/union field). Array elements can use only literal constants.

Create Junction Connector - creates a junction connector which reduces the number
of lengthy flow lines by connecting different elements together. These elements then
form a single flow line that emanates from or enters a common box or connector.

Create Composition Connector - creates a composition connector, which can only be
used with a record data-item. The composition connector directs the components of a
record to two different target activities. For example, a data-store called RANGE has a
record type of data-item with two components called LOW_LIMIT and HIGH_LIMIT. If
the flow goes out from the data-store, the composition connector splits the record into
the two components.
The composition connector can also go in the other direction, where multiple flow lines
labelled with the record’s components enter the connector and the single flow line
denoting the record flow emanates from it.

Create Diagram Connector - creates a diagram connector, which connects a target
and a source that are far from each other. Using this type of connector eliminates the
need for long arrows.
144 User Guide

Working with Charts and Diagrams
Miscellaneous Icons

Select Mode - places the editor in Select mode, so you can access the editing options
the editor supports.

Create Storage Module - creates a data-store, which contains information on module
for later use. Data-stores can also be used to total large volumes of data, continuously
accumulating over time.
Data-stores are always basic; they cannot contain other data-stores or modules. Sibling
data-stores must have unique names.

Create Textual Note - creates free text that you can use to annotate the chart.
Rational Statemate 145

Using the Graphic Editors
Statecharts

Statecharts describe the system's behavior over time, including the dynamics of activities, their
control and timing behavior, the states and modes of the system, and the conditions and events that
cause modes to change and other occurrences to take place. It thus also provides answers to
questions about causality, concurrency, and synchronization.

Statecharts constitute an extensive generalization of state-transition diagrams. They allow for
multi-level states, decomposed in an and/or fashion, and thus support economical specification of
concurrency and encapsulation. They incorporate a broadcast communication mechanism,
timeout, and delay operators for specifying synchronization and timing information, and a means
for specifying transitions that depend on the history of the system's behavior.

You can set transition priority by adding a priority value (positive integer number) and assigning it
to a transition. This creates a graphical notion of the transition priority.

Each element in the statechart has properties, which can contain additional information. For
example, an event element can be used to define a compound event by an expression involving
other events and conditions.

Note
Rational Statemate supports a special type of statechart known as a Procedural Statechart. A
Procedural Statechart is a specialized derivative of a statechart that does the following:

– Is executed entirely in one step.

– Must contain a termination connector.

– When called, runs from the default to the termination connector (including any loops)
within a single step.

The following sections describe in more detail how to use statecharts.
146 User Guide

Working with Charts and Diagrams
Accessing a Statechart
To access a statechart, see Starting a Graphic Editor. The statechart editor displays.
Rational Statemate 147

Using the Graphic Editors
Statechart Icons
The following icons support drawing and naming operations in a statechart. For general
information on drawing and naming operations in Rational Statemate, see Drawing Operations in
Graphic Editors and General Operations in Graphic Editors.

General State Icons

Data Flow Icons

Two types of flow lines are allowed in statecharts: data flow lines, drawn as solid arrows, and
control flow lines, drawn as dashed arrows. Typically, data flow lines carry information that is
used in computations and data-processing operations.

Note
Default transitions do not have a source state and do not support triggers.

Create State - creates an OR state.

Name Existing State - names a state.

Create Transition - creates an event that makes the model leave one state and enter
another. You label each transition with the trigger that causes it to be taken and,
optionally, with an action. Separate the trigger from the action with a slash.

Label Existing Transition - allows you to name a flow line that denotes either a single
information element that flows along the line or a group of such elements.

Create Default Transition - establishes a control flow between two activities. Control
flow lines carry information or signals that are used in making control decisions, for
example, commands or synchronization messages.

Create And-Line - divides a state into orthogonal (or parallel) components.
148 User Guide

Working with Charts and Diagrams
Connector Icons

Connector icons are circular or oval graphic elements used in charts to join and divide arrows or to
enable an arrow to exist on multiple pages. Their purpose is to clarify a specification by reducing
the number of arrows.

Create Condition Connector - creates a condition connector used to create a branch
in a transition, typically labeled with conditions. A condition connector emphasizes a
choice based on a condition (e.g., x>1, x<1, x=1). The triggers must be mutually
exclusive.

Create Switch Connector - creates a switch detector used to create a branch in a
transition, typically labeled with data items or events. A switch connector emphasizes a
choice based on events (e.g., input_1, input_2, input_3). The triggers must be mutually
exclusive.

Create History Connector - creates a history connector used to return to the most
recently visited state on the same level of hierarchy.

Create Deep History Connector - creates a deep history connector, used to return to
the most recently visited state at all levels of hierarchy. A deep history connector has an
asterisk after it (H*).

Create Diagram Connector - creates a diagram connector, which connects a target
and a source that are far from each other. Using this type of connector eliminates the
need for long arrows.

Create Junction Connector - creates a junction connector, which reduces the number
of lengthy flow lines by connecting different elements together. These elements then
form a single flow line that emanates from or enters a common box or connector.

Create Termination Connector - creates a termination connector that terminates the
statechart’s behavior.
Rational Statemate 149

Using the Graphic Editors
Miscellaneous Icons

Select Mode - places the editor in Select mode, so you can access the editing options
the editor supports.

Create Combinational Assignment - creates a combinational assignment, which is
the expression used to assign a value to a combinational element, with syntax like the
following:

X := Y1 when C1 else
Y2 when C2 else
...

Yn
where X is a variable condition or data-item, Y1 to Yn are expressions, and C1 to Cn are
condition expressions.
Combinational elements represent asynchronous behavior; they are elements whose
value is assigned continuously (rather than evaluated once each step).

Create Transition Note - creates free text that you can use to annotate the chart.

Create External Router - creates free text that you can use to annotate the chart.

Set Transitions Priority - creates free text that allows you to write a priority value
(positive integer number) and assign it to a transition.
150 User Guide

Working with Charts and Diagrams
Associating a Statechart with an Activity
Statecharts describe the behavior of an activity that is defined in an activity chart, and the two can
be associated within the scope of the project itself.

To associate a statechart with a corresponding activity:

1. Open the corresponding activity chart.

2. Using the Create Control Activity icon, draw a control activity and label it with the name
of the corresponding statechart preceded by an at (@) sign. You might, for example, label
it like the following:

@CALC_REAR_DEFOG_STATE_BHVR

3. Select File > Save, then File > Exit to write the association and quit the chart.

“Only Once” Test Benches
Two types of test benches are available in statecharts:

� Run Every Step
� Run Only Once

The Every Step Testbenches run the task Testbench. This task executes every step. The Only
Once Testbenches run the task TestBench_run_once. The TestBench_run_once task executes
only once on startup. In the OSI’s (mainloop_sc and mainloop_sc_ext), the call to the generated
function:

� TestBench_run_once is (by default) put in the file user_code.c (<profile>.c), after the
call to the call to TASKINIT().

� The call to the function TestBench_run_once is wrapped with the preprocessor flag
TB_ONLY_ONCE.

� The preprocessor flag is generated in the file cmp_flg.h if there are such Only Once
testbenches.

� Add a new Design-Attribute to Statechart:
� Name: “When used as Testbench, run”
� Possible Values: “Every Step” - runs under the Task TestBench, which runs every

step, used as the default value.
� “Only Once” - runs under the Task “TestBench_run_once,” which runs only once

on system startup.
� The Design-Attributes are available for update from the OSI’s:

MAINLOOP_SC
MAINLOOP_SC_EXT
DEFAULT
Rational Statemate 151

Using the Graphic Editors
Use Case Diagrams

Use case diagrams illustrate, at a very high level, the relationship between “actors” (whoever or
whatever interacts with the system being designed) and the system itself. Each use case describes
the sequence of events of an actor (human or system) using the system to complete some process.
They provide a natural high-level view of the intended external functionality of the system that is
understandable by engineers and non-engineers alike.

A use case is a generic description of an entire transaction involving several elements. It can also
describe the behavior of a set of elements, such as an organization. A use-case model thus presents
a collection of use cases and is typically used to specify or characterize the behavior of a whole
system or a part of a system together with one or more external actors that interact with that
system. An individual use case can have a name (although it is typically not a simple name). Its
meaning is often written as an informal text description of the external actors and the sequences of
events between elements that make up the transaction.

Note that use case diagrams treat the system itself as transparent, because the internals of the
system are not of interest in this type of diagram. Use case diagrams capture key uses of the system
and are therefore an excellent means of illustrating and explaining project requirements at a very
high, non-technical level.

The following sections describe in more detail how to use case diagrams.

Accessing a Use Case Diagram
To access a use case diagram, see Starting a Graphic Editor. The use-case graphic editor opens, as
illustrated in the following figure.

Three actors, represented as stick figures, are shown interacting with one another and with a
particular subsystem of the system. The diagram also depicts possible interactions between
individual subsystems.
152 User Guide

Working with Charts and Diagrams
Rational Statemate 153

Using the Graphic Editors
Use Case Diagram Icons
The following icons support drawing and naming operations in a use case diagram. For general
information on drawing and naming operations in Rational Statemate, see Drawing Operations in
Graphic Editors and General Operations in Graphic Editors.

General Use-Case Icons

Association and Relational Icons

Create Boundary Box - creates a boundary box. A boundary box depicts the limits of the system
and is shown as a rectangle spanning all the use cases in the system.

Create Actor - creates an actor. An actor is any entity (person or system) that performs certain
roles in the system defined by a boundary box. An actor is depicted as a stick figure and only
interacts with a use case.

Create Use Case - creates a use case. A use case is a distinct piece of functionality within a
system and is shown as an oval.

Create Association - creates an association. Associations depict the interaction between an actor
and a use case. This is the only relationship between actors and use cases.
The figure shows all the actors as having an association with use case A.

Create Extend Relation - creates an extended relationship. An extended relationship indicates that
a “child” use case adds to the existing functionality and characteristics of the “parent” use case. An
extended relationship is depicted with a directed arrow having a dotted shaft, similar to the include
relationship. The tip of the arrowhead points to the parent use case and the child use case is
connected at the base of the arrow.
The figure shows an extended relationship between use case B and use case A.

Create Include Relation - creates an include relationship. An include relationship indicates that
one use case uses the functionality of another use case as a part of its process flow. An include
relationship is depicted with a directed arrow having a dotted shaft.
The figure shows an include relationship between use case A and use case C.

Create Generalization Relation - creates a generalization relationship. A generalization
relationship is a parent-child relationship between use cases in which the child use case performs
the same task as the parent but in a different way. A generalization is shown as a directed arrow with
a triangle arrowhead. The child use case is connected at the base of the arrow. The tip of the arrow
is connected to the parent use case.
The figure shows a generalization relationship from use case D to use case A.
154 User Guide

Working with Charts and Diagrams
Miscellaneous Icons

Use Case Diagram Properties
The use cases in a use case diagram can be described and linked with a Rational Statemate model
through the use-case properties.

A use case has the following special properties:

� Use-Case External Description - describes the use case, using a customizable template.
� Scenario List - list of scenarios associated with the use case. Each scenario can be linked

to a sequence diagram, and a set of attributes describing it.
Multiple instances of both actors and use cases are allowed in the same use case diagram. That
means that in the figure, there could be another ellipse (use case) named “USE_CASE_A” that
models the same use case.

An actor and a use case cannot have the same name in the same use case diagram.

Put GE into Select Mode - places the editor in Select mode, so you can access the
editing options the editor supports.

Create Textual Note - creates free text that you can use to annotate the diagram.
Rational Statemate 155

Using the Graphic Editors
You can use full path names for actors and use cases. For example, you can see (and thus reuse)
USE_CASE_A defined in the figure from another use case diagram by using its full-path name
USE_CASE_DIAGRAM:USE_CASE_A.

Attribute fields are available to use case diagram elements, with customizable attribute template-
files.

Note
The template of the use-case description file is found in STM_ROOT/etc/knl, named
“use_case_description_template” and is copied to the workarea, to the directory “config,”
with the addition of an extension taken from the “General” preference: “Use Case
Description File Type,” default to “RTF” on Windows, and to “txt” on Solaris.

The command to open the editor is taken from the “General” preference: “Use Case Description
Command Line”, default to “winword” on Windows, and to “xedit” on Solaris.

The following table lists attributes template files for use case diagram elements.

Element Attributes Template File

Use-case diagram (chart) uch_attributes.def

Use case uc_attributes.def

Scenario, in the Use-Case Scenario
List

scen_attributes.def

Actor at_attributes.def

Association Not supported

Dependency (Extend, Include) Not supported

Generalization relation Not supported

Boundary box bn_attributes.def

Textual note Not supported
156 User Guide

Working with Charts and Diagrams
Linking Use Cases to Scenarios
Rational Statemate enables you to link use cases to scenarios that are defined in sequence
diagrams. For more information on sequence diagrams, see Sequence Diagrams.

To link a use case to a scenario defined in a sequence diagram:

1. Create a sequence diagram that is based on the same system described in the use case
diagram you have created. For more information, see Creating a New Chart or Diagram.

2. Select the Charts tab of the Rational Statemate main window, as shown in the following
figure.

3. Click on the use case diagram that you want to link. The use case diagram opens.

4. Select Tools > Properties. The Properties window opens, as shown in the following
figure.
Rational Statemate 157

Using the Graphic Editors
5. In the Use-Case Description field, enter text that explains the use case, for example:

You can request a change in state of the rear defog control system. Once the system has
been activated, it automatically times out and turns itself off without any user interaction.
The timing function can be modified by vehicle speed and load management.

6. To create the mapping between a use case and one or more scenarios, select “...” next to
the Scenario area. The Scenario List window displays.
158 User Guide

Working with Charts and Diagrams
Sequence Diagrams

A sequence diagram depicts the sequence of actions that occur in a system, visually capturing the
dynamic behavior of a system.

A sequence diagram is two-dimensional. On the horizontal axis, it shows the life of the element
that it represents, while on the vertical axis, it shows the sequence of the creation or invocation of
these elements.

Because it uses class name and element name references, the sequence diagram is very useful in
elaborating and detailing the dynamic design and the sequence and origin of invocation of
elements. Hence, the sequence diagram is one of the most widely used dynamic diagrams in UML.
Rational Statemate 159

Using the Graphic Editors
Sequence diagrams are used to:

� Requirement capturing - You can create a sequence diagram using the sequence-diagram
editor, without an existing activity chart. As such, the sequence diagram is a powerful, yet
intuitive tool for recording project requirements.

The sequence diagram provides a clear expression of the elements and their interactions,
and helps to avoid the ambiguities, difficulties, and errors of a text-only specification.

� Logic checking - An sequence diagram can expedite the confirmation of the existence of
all elements. It also enables you to examine how the elements interact within a time flow.

� Model checking - Safety and liveliness checks can be performed for a model represented
by an sequence diagram. Safety checks confirm that forbidden events are excluded by the
logic, for example, that an elevator door is never opened when the elevator is between
floors. Liveliness checks confirm that required event constraints are specified, for
example, that an elevator door closure is commanded within two seconds of the floor
selection.

A sequence diagram provides a view of a system or subsystem model that graphically displays the
following:

� Message flows between activities of a model, in order of occurrence.
� Source and target activities of each message.
� Time constraints between messages that must occur within specified time limits.
� Descriptive comments.

Because an sequence diagram represents message flow between activities, the dominant symbols
are those representing activities and messages.

� Activities in a sequence diagram are represented by parallel vertical lines (lifelines), with
time flow being from the top down. Lifelines can be as long as necessary to encompass all
the modeled events.

� Messages are displayed as horizontal arrows connecting the source activity lifeline to the
target activity lifeline. Each activity lifeline is labeled with the names of the
corresponding elements in the activity chart.
160 User Guide

Working with Charts and Diagrams
Accessing a Sequence Diagram
For information on how to access a sequence diagram, see Starting a Graphic Editor. The sequence
diagram editor opens, as illustrated in the following figure.
Rational Statemate 161

Using the Graphic Editors
Sequence Diagram Icons
The following icons support drawing and naming operations in a sequence diagram. For general
information on drawing and naming operations in Rational Statemate, see Drawing Operations in
Graphic Editors and General Operations in Graphic Editors.

General Sequence Diagram Icons

Create a Life Line - A vertical line representing an activity in the model. The activity
label displays at the top.

Name a Life Line - Names an existing lifeline.

Create External Life Line - A dashed vertical line, representing an external activity that
may or may not be in the model.

Create a Partition Line and Text - A horizontal line, distinguishing between scenarios.

Create Simple Message - An arrow from one activity (source) to another (target).

Label a Message - A horizontal arrow, representing interaction between activities. A
message label consists of an event expression.

Create Timing Constraint - A vertical line connecting two messages, representing a
timing constraint specification between the two messages. If one of the messages is
moved, the timing constraint line is stretched or compressed accordingly.

Create Timing Constraint Text - A free text note that is attached to a specific timing
constraint.

Create Order Insignificant Line - A vertical line connecting two messages, signifying
that the designated messages can occur in any order.

Create Message Note - A free text note that is associated with a specific timing
constraint. By default the note is displayed on the left side of the sequence diagram,
horizontally aligned with the timing constraint.
The name assigned to a sequence diagram graphic element can be a path name,
designating the exact location in the model represented by the sequence diagram
element. A path name has the following format:

 Chart Name:Activity[.Activity]*

Create a Reference SD - A thick horizontal, shaded line extending the full width across
all lifelines, representing a separate sequence diagram. Execution of activities below the
referenced sequenced diagram line continues only after all the activities above the line
are completed.
162 User Guide

Working with Charts and Diagrams
Miscellaneous Icons

Sequence Diagram Drawing Notes
The following notes apply to drawing in a sequence diagram:

� To draw a partition line, place the cursor at the desired location (off of a lifeline) and click
and drag slightly to the right. The partition line extends infinitely.

� To draw a lifeline, place the cursor at the desired location and click. A lifeline extends
infinitely.

� To draw a simple message, locate the starting lifeline, place the cursor on the lifeline and
either:
� Click on the starting lifeline to set the tail of the message line. Then click on the

destination lifeline to set the head (arrow) of the message line.
� Drag the cursor from the starting lifeline to the destination lifeline.

� Make sure that you enter the tables correctly because they contain code that Rational
Statemate uses when executing the diagram. The syntax is checked when you finish
typing and any errors are displayed in the message box at the bottom of the editor.

� Message notes are free text and are not associated with any lines. You attach a message
note to a line by clicking on the line.

Lifeline Decomposition
Sequence diagrams can include an off-page (decomposed) lifeline, named <name>@<Sequence
diagram name>, representing another sequence diagram in the workarea.

To create an off-page lifeline, create a new lifeline and prefix its name with “@”.

Note
It is illegal to define circular referencing.

Put GE into Select Mode - places the editor in Select mode, so you can access the
editing options the editor supports.

Create Textual Note - creates free text that you can use to annotate the diagram.
Rational Statemate 163

Using the Graphic Editors
Integrating Sequence Diagrams with the Rational Statemate Model
Integration of a sequence diagram with the Rational Statemate model consists of element name
linkages. The sequence diagram contains no actual functionality of the model. When an sequence
diagram template is generated from an activity chart, lifelines are automatically assigned the
corresponding names in the activity chart.

The message elements are linked to the model by means of name resolution rules.

Other notations, such as time constraints, provide essential details of the requirements.

Generating a Sequence Diagram from an Activity Chart
A sequence diagram can be created manually before an activity chart has been created, or
automatically from an activity chart. You can save time by generating a sequence diagram
template from the activity chart. A sequence diagram template generated in this manner contains
all the lifelines for each activity. However, you must enter and label the message lines and other
notations manually.

Note
Generating a sequence diagram from an activity chart creates only an initial template;
subsequent changes in the activity chart are not automatically updated in the sequence
diagram.

To generate a sequence diagram template from an activity chart:

1. Open the activity chart for which you want to create a sequence diagram.

2. Select the main activity. If a subactivity is selected, the generated sequence diagram
contains only activities within the selected sub-activity chart. External lifelines are
created for activities that are connected to (or into) the selected activity.

3. Select File > Create Sequence Diagram.

4. The sequence diagram opens, as shown in the following figure, having all the activities
and external activities of the selected activity chart. The messages, however are not
created.
164 User Guide

Working with Charts and Diagrams
Rational Statemate 165

Using the Graphic Editors
Using Properties with Sequence Diagrams
You can open the Properties window in a sequence diagram as in the other Rational Statemate
editors. Either right-click any element in the sequence diagram and choose Properties from the
popup menu, or select an element and choose Properties from the sequence diagram editor Tools
menu.

When using the properties for a sequence diagram, you can specify the scope either for a specific
activity chart or for the whole model.

Opening the Properties window on an element enables you to resolve the element, that is, to find
where it occurs in an activity chart.

To resolve the definition of a sequence diagram element:

1. Right-click on the element to be resolved, and choose Properties from the popup menu.
The Properties window opens.

2. If the element is unresolved, the message Unresolved Element displays in the editor
window. Choose File > New or click Save. The New Element popup dialog box is
displayed, as shown in the following figure, that enables manual definition of the element.
166 User Guide

Working with Charts and Diagrams
Auto-Numbering in Sequence Diagrams
The Sequence Diagram Editor can perform two types of autonumbering:

� Auto-Numbering of Scenarios
� Auto-Numbering of Message-Notes

Auto-Numbering of Scenarios

The Scenario Auto-Numbering view mode in the Sequence Diagram Graphic Editor causes
Sequence Diagram scenarios (partition lines) to be sequentially numbered according to the format
defined by the three Sequence Diagram Graphic Editor preferences:

� Scenario Numbering Postfix
� Scenario Numbering Style
� Start Scenario Numbering From

The numbering is visible for those Sequence Diagram scenarios (partition lines) that have partition
line text associated with them. When the scenario ordering is changed, the numbering is
automatically refreshed. The mode is enabled and disabled by the Sequence Diagram Graphic
Editor preference “Show Scenario Numbering.” Changing the numbering method defined by the
specified preferences does not cause automatic numbering refresh. To forced a refresh operation,
toggle the preference Show Scenario Numbering.

The scenario numbering does not affect the uniqueness of scenario names (required for sequence
diagram animation).

Auto-Numbering of Message-Notes

The Scenario Auto-Numbering feature, when enabled, also autonumbers message-notes in
addition to the partition line text.

Print Pagination
The Sequence Diagram Editor has a Pagination Preview mode which shows the subdivision of the
sequence diagram into multiple printed pages and also allows you to set the print page orientation
and page overlap.

In a sequence diagram, the Pagination Preview mode is controlled from View > Pagination
Preview.
Rational Statemate 167

Using the Graphic Editors
In the main display, you can set the Pagination Preview mode as well as set page orientation and
page overlap by the following preferences, accessed from the Project > Preferences
Management>Sequence Diagram Graphic Editor:

� Pagination Preview (Yes/No) - Enables Pagination Preview mode
� Pagination Orientation (Portrait/Landscape) - Defines the page orientation to be used

in sequence diagram pagination
� Pagination Overlap Ratio ([%]) - Defines the desired overlapping area, which will be

printed twice

Note
These preferences also affect the Documentor. In order for changes in Preferences values to
take effect in the Documentor, the Documentor should be closed and re-opened.

Flowcharts

A flowchart represents a process graphically. It includes the entire process from start to finish,
showing inputs, pathways and circuits, and action or decision points.

The following sections describe in more detail how to use flowcharts.

Accessing a Flowchart
To access a flowchart, see Starting a Graphic Editor.

Flowchart Icons
The following icons support drawing and naming operations in an flowchart. For general
information on drawing and naming operations in Rational Statemate, see Drawing Operations in
Graphic Editors and General Operations in Graphic Editors.
168 User Guide

Working with Charts and Diagrams
General Flow Icons

An activity is the primary graphic element in flowcharts that represent a function in the functional
view of the system. An activity represents something that transforms inputs into outputs.

Create Box - creates a box representing a stage in a flow.

Write Action in Box - creates an action that describes the meaning of a flowchart box.

Create Instance Box - creates an instance box.

Name Instance Box - creates a name for an instance box.

Create Decision - creates a decision box, which directs a flow depending on the result
of a decision expression.

Write Decision Expression - creates an expression that gives a Yes or No result.

Create Switch - creates a witch box, which directs a flow depending on the result of a
switch expression.

Write Switch Expression - creates an expression whose value is used to control a
switch.

Create Arrow - creates an connection between elements of a flowchart.

Label Existing Arrow - creates a label for a flowchart arrow.

Create Start Arrow - creates the starting point for a connection to a distant flowchart
element.

Create End Connector - creates the end point of a connection from a distant flowchart
element.
Rational Statemate 169

Using the Graphic Editors
Connector Icons

Connector icons are circular or oval graphic elements used in charts to join and divide arrows or to
enable an arrow to exist on multiple pages. Their purpose is to clarify a specification by reducing
the number of arrows.

Miscellaneous Icons

Flowchart as Subroutine Implementation
Flowcharts may be implemented as subroutines in the Rational Statemate model. The following
are the rules for this flowchart implementation:

� To open/create a procedural flowchart automatically, select the “flowchart”
implementation in a subroutine's properties form and click Edit.

� A procedural flowchart must have the name of the subroutine to which it is connected.
� Visually, a procedural flowchart will look exactly the same as regular or generic

flowcharts, except for three toolbar icons which are disabled:
� Create Instance Box
� Name Instance Box
� Create Diagram Connector

� Procedural flowcharts are not displayed in the tree view of the Workarea.
� Icons of procedural flowcharts do not display in the element’s view of the definition chart

of the connected subroutine (as procedural Statecharts are).
� During check-in/checkout of a subroutine with flowchart implementation, the connected

flowchart (if it exists) is also checked-in/out.
� Generic and off page instances are not allowed inside a procedural flowchart.
� All relevant Rational Statemate tools support procedural flowcharts: Check Model,

Simulation, Code-Generators, Documentor, Component libraries and Search tool.

Create Diagram Connector - creates a diagram connector, which connects a target
and a source that are far from each other. Using this type of connector eliminates the
need for long arrows.

Select Mode - places the editor in Select mode, so you can access the editing options
the editor supports.

Create Textual Note - creates free text that you can use to annotate the diagram.
170 User Guide

Working with Charts and Diagrams
� Flowcharts as Subroutine implementation are presented into the anaport-like procedural
Statecharts.

� Each Flowchart creates a separate scope that contains all the boxes and arrows that are
defined in the Flowchart.

� The type of the chart in this scope is: stmm_ch_flowchart.
� Flowchart boxes are handled with the States APIs.
� Flowchart arrows are handled with Transitions APIs.
� The enum type: stmm_st_type (in api_types.h) was extended to include additional types

which represents Flowchart boxes types:
typedef enum {

stmm_st_or, /* Or State */

stmm_st_and, /* And State */

stmm_st_reference,

stmm_st_diagram,

stmm_st_action_box,

stmm_st_decision_box,

stmm_st_switch_box

} stmm_st_type;
Rational Statemate 171

Using the Graphic Editors
172 User Guide

Panels
This section describes panels and how to use them. The following topics are covered:

� Using the Panel Editor

� Binding Interactors

� Using the Panel Builder

Panels provide a visual interface to the simulated model or generated code for debugging and
prototyping purposes. A panel is built using predefined interactors and user-defined shapes. The
dynamic behavior of these interactors and shapes is defined by binding them to elements in the
model.

Typically, panels represent the user interface to a system. However, it is also quite common for
panels to be a logical representation of a system, for example, showing the routing of packets
through a communications network, or the failure states of valves and pumps in an aircraft fuel
system.

There are two methods for creating a panel:

� Panel Editor creates a panel using graphical elements such as lines, circles, and polygons.
Predefined elements (interactors) with built-in animation properties are also available to
represent the inputs and outputs of the model.

� Panel Builder creates a panel from a chart and automatically bind the interactors. The
Panel Editor is then used to edit the panel and refine it.

Unlike charts, there are no formal semantics to the hierarchy in a panel, so operations such as
“Open Parent” and “Edit Sub-chart” are not supported. Also, there is no checking for semantic
correctness of the picture while editing. Therefore, it is important to understand the relationship
between a panel and the rest of the model.
Rational Statemate 173

Panels
The recommended approach is to do the following:

1. Create panels using the Panel Editor (see Using the Panel Editor) or Panel Builder (see
Using the Panel Builder). The default interactor for each element type can be set in the
model.

2. Using the Panel Editor, edit the panels and modify the appearance and operation of the
interactors. To improve the representation of a system, add groups of ordinary drawing
elements. The animation of interactors and groups of drawing elements is controlled by
the bindings to the model.

3. Check the bindings of the graphics to their corresponding elements.

4. Execute the model using simulation and/or code generation.

The following sections explain how to work with the panel editor and Panel Builder. For
information on graphic editors in general (drawing, naming, and so forth), see Working with
Graphic Editors. For descriptions of all the menu options in the panel editor, see Panel Editor
Menus.
174 User Guide

Using the Panel Editor
Using the Panel Editor
The Panel Editor creates a realistic mock-up that represents the system being designed. The panel
is associated with a model and is animated during model execution. Thus, the graphic panels are
used to demonstrate that the system behavior is correct (by using them to enter inputs and monitor
outputs).

Accessing the Panel Editor

To access the Panel Editor:

1. From the Rational Statemate main window, click the Panel Editor icon . The Open
Panel dialog box displays.
Rational Statemate 175

Panels
2. Under Panels, click a panel name and then click OK. The Panel Editor displays
.

176 User Guide

Using the Panel Editor
Panel Editor Menus

This section lists the menus supported by the panel editor, and describes the menu items for each
menu.

The following menus are supported by the panel editor:

� File Menu

� Edit Menu

� View Menu

� Layout Menu

� Transform Menu

� Group Menu

� Tools Menu

� Options Menu

� Help
The following sections describe the menu items available for each of the panel editor menus (with
the exception of the Help menu).

File Menu
The following table describes the File menu items.

Menu Item Description

New Creates a new panel.

Open Opens an existing panel.

Close Closes the current panel.
If the panel includes graphical or textual changes not yet saved, you are prompted
to save these before the panel is exited. The panel editor remains open and is now
labeled Empty Editor. (You are prompted to name the panel when you exit.)

Save Saves the current panel.
Rational Statemate 177

Panels
Edit Menu
The following table describes the Edit menu items.

Insert panel Inserts the contents of another panel into the current Panel Editor window using the
Insert window.
From the Insert window, you can do the following:

• In the From Panel textbox, enter or select the panel to be inserted.
• In addition to inserting an entire panel, you can insert a single activity (state or

module) for the specified panel.

Click the down arrow to view a list of possible activities (states or modules) to
be inserted. If the selected panel has no sub-activities, the list is blank.

• Optionally, deselect Copy Element Definitions, if you do not want textual
elements included.

Print Prints the current panel.

Exit Exits from the panel editor and closes any open panels.
If the panel includes graphical or textual changes not yet saved, you are prompted
to save these before the panel is exited. The panel editor remains open and is now
labeled Empty Editor. (You are prompted to name the panel when you exit.)

Menu Item Description

Undo Undoes the last operation.

Redo Redoes the last operation.

Cut (to Paste Buffer) Deletes the selected text or elements and places them in the paste buffer.

Copy (to Paste Buffer) Copies selected text or elements into the paste buffer.

Paste Pastes selected text or elements from the paste buffer.

Move Moves selected text or elements.

Stretch Stretches selected text or elements.

Edit Text Enables text-edit mode.

Delete Deletes selected elements.

Properties Modifies the following display properties:
• Color
• Fill Color
• Font
• Line Width

Select Selects text or elements.

Menu Item Description
178 User Guide

Using the Panel Editor
View Menu
The following table describes the View menu items.

Menu Item Description

Full View Expands or reduces the drawing frame to fit into the graphic canvas.
This is the default when a graphic editor is first opened.

Zoom Area
Zoom In
Zoom Out

Enlarges or shrinks the drawing on your screen, without changing the window
dimensions. Choose one of the following:
Note: By default, zoom operations do not affect the text. Select Options >
Enable Scale Text to change the size of both the text and lines when you zoom
into and out of the canvas.

• To zoom in to a particular area of a drawing, select Zoom Area.

Drag a rectangle around the area of the drawing that you want to zoom into.

The area you selected expands to fill the canvas.
• To zoom into a drawing, select Zoom In.

The drawing expands approximately 30%.

Use the scroll bars to pan the window.

To further enlarge the drawing, you can select Zoom In several times.
• To zoom out of a drawing, select Zoom Out.

The drawing contracts approximately 30%.

Use the scroll bars to pan the window.
• Select Full View to return to the original size.

Refresh Redisplays the graphics on the canvas.
Occasionally erroneous graphics can remain on the screen during editing. Use
this operation to clear them from the screen display.

Hide Hides the detail underneath a box. The box is shaded to show that there is
missing detail underneath.
You can use this operation to hide details during printing, for example.

Reveal Redisplays previously hidden elements.

Grid Displays the editing grid. By default, when you open a graphic editor, the grid is
not displayed.
Select Grid again to turn the grid display off.
Rational Statemate 179

Panels
Grid Setting Displays the Grid Setting dialog box, which allows you to change the grid
settings. The grid consists of a matrix of points the pointer/drawing elements
snap to.
The Grid Setting dialog box shows the width and height of the drawing frame,
but this information is only for reference. You cannot change these values.
To expand the drawing area to fill the window, use Layout > Reframe.
To make the grid

• Active and visible, select Active.
• Active and invisible, select Snap to grid.

To specify the spacing of the grid points, set the Grid Spacing number. The up
and down arrows provide a quick way to double or halve the spacing between
grid points.
To specify how many of the grid points to show, use the Every nth grid point
field. (If this value is 1, all the grid points are shown. If this value is 2, only every
2nd grid point is shown, etc. The other grid points exist; however, you cannot
see them.)
Click Apply to apply your changes and continue, and click OK when you are
finished.

Messages Toggles between showing and hiding the Message and Log tabs.

Drawing Icons Toggles between showing and hiding the drawing toolbar.

Command Bar Toggles between showing and hiding the command toolbar.

Toolbar Toggles between showing and hiding the Rational Statemate toolbar and
various parts of the standard toolbar.
You can choose whether to display the Rational Statemate toolbar vertically
along the left side of the window or horizontally across the top of the window. In
the Rational Statemate main window, select View > Toolbars > Tools (Horiz.)
or Tools (Vert.).

Menu Item Description
180 User Guide

Using the Panel Editor
Layout Menu
The following table describes the Layout menu items.

 Menu Item Description

Replicate Quickly creates a grid of drawing elements.
• Select the elements to copy.
• Position the selected elements in the corner of the grid of elements to be

created. Select Replicate.

The Replicate dialog box opens.
• Fill in the Number of Rows and Number of Columns text boxes to set the

number of rows and columns to be copied.
• Click OK.
• As you move the pointer in the graphic canvas, you see shadow images of

the drawing elements you are replicating arranged in a grid. Left-click when
the shadow images are in the correct position.

Arrange Aligns selected elements vertically and horizontally, as well as arranging the
spacing between them.
You can do the following:

• Rearrange elements in relation to each other. This option has no effect, if
only one element is selected.

Note: Be careful not to select both the names and the boxes when
arranging panels, because you can move a name out of its box using the
arrange operations. If you only select the box, the name moves with it.

• Align elements around a vertical line, based on the system’s calculation of
the average location of the elements. You can align elements by their:

* Left edge

* Center

* Right edge
• Align elements around a horizontal line, based on the system’s calculation

of the average location of the elements. You can align elements by their:

* Top edge

* Center

* Bottom edge
Rational Statemate 181

Panels
Arrange
(Continued)

• Move elements so that they are evenly spaced vertically, based on the
system’s calculation of the average location of the elements. You can space
elements evenly by the:

* Bottom edge

* Center

* Top edge

* Space between elements
• Move elements so they are evenly spaced horizontally, based on the

system’s calculation of the average location of the elements. You can space
elements evenly by the:

* Left edge

* Center

* Right edge

* Space between elements

Align to Grid Aligns text and elements to the grid.

Reframe Changes the size and shape of the drawing frame (or page).
• Select View > Full View before this operation.
• Use the window frame resize bars to change the size or shape of the entire

panel editor window.
• Click Reframe.

The drawing frame is changed so that it fits the new size and shape of the
graphic canvas exactly.

Caution: This operation can change the origin of the grid. If you are using the
grid, be careful in using this operation, because it may be difficult to make your
drawing line up correctly afterwards.

Back Sets the display priority of elements to be in back of other elements.
• Select the elements or groups that are to be in the back.
• Select Back.

Front Sets the display priority of elements to be in front of other elements.
• Select the elements or groups that are to be in the front.
• Select Front.

 Menu Item Description
182 User Guide

Using the Panel Editor
Transform Menu
The following table describes the Transform menu items.

 Menu Item Description

Scale Scales the selected elements around the pivot point (that is, stretches
them, while preserving their perspective).

Rotate Rotates the selected elements around the pivot point.
Note that textual elements cannot be rotated.
Hold down the Shift key for a constrained rotation (one that will only rotate
the element by multiples of 45 degrees).
Note: To move the pivot point, select it with the middle mouse button (on a
two-button mouse, press both buttons) and drag it to a new location.

Set Pivot Defines a new pivot point.The default pivot point is located at the center of
a graphical element.
You can move the pivot point by selecting and dragging it to a new location
with the middle mouse button (on a two-button mouse, press both buttons).

Reset Pivot Restores the default pivot point. The default pivot point is located at the
center of a graphic element.

Mirror X Axis Redraws the selected elements as if they are reflected around a vertical
line passing through the pivot point.

Mirror Y Axis Redraws the selected elements as if they are reflected around a horizontal
line passing through the pivot point.

Copy Mirror X Axis Copies the selected elements as if they are reflected around a vertical line
passing through the pivot point.

Copy Mirror Y Axis Copies the selected elements as if they are reflected around a horizontal
line passing through the pivot point.
Rational Statemate 183

Panels
Group Menu
The following table describes the Group menu items.

Tools Menu
The following table describes the Tools menu items.

 Menu Item Description

Make Group Establishes a collection of elements as a group.
You can control the appearance of all the elements in the group at the same
time.
To edit a group after it has been created, use the Dive Group operation.

Un-Group Dismantles a top level group or sub-group of elements.
Un-group discards all the binding information associated with the group.

Dive Group Separates a group so you can edit the group members.
The members of the group can be individually selected; elements outside the
group are unselectable.
To remove an element from a group, dive into the group, cut the element,
surface from the group, then paste the element.

Surface Group Regroups the selected elements after a Dive Group operation.

Top Surface
Group

Regroups all the groups at all levels of the group structure. Because you can
have groups within groups, you can dive several layers into the group structure.
Top Group is a short-cut for selecting Surface Group several times.

Menu Item Description

Bind Binds selected interactors or groups to model elements.

Properties Allows you to set or modify properties for selected interactors or groups.

Binding Report Lists the binding parameters for all or selected interactors or groups.

Check Bindings Checks the binding parameters for selected interactors or groups.
The bindings are checked and errors are reported.
184 User Guide

Using the Panel Editor
Options Menu
The following table describes the Options menu items.

 Menu Item Description

Gravity Setting Changes the gravity setting. Gravity is the distance you must get within to
attach arrow heads to boxes or to select elements.
To change the gravity setting, do the following:

• In the Gravity Setting dialog box, specify the Gravity Distance in pixels.
• Click Apply to apply your selection and continue, and click OK when you

are finished.

PC Mouse (2 Button) By default, you move an element by dragging it with the middle mouse
button and selecting it using the left mouse button. When you select PC
Mouse, you can drag an element with the left mouse button, as well as
select with it.
This option is available for users who are accustomed to applications
running under Microsoft Windows or on an Apple Macintosh. When PC
Mouse is set, the mouse conventions for editing are similar to the
conventions on these machines.
Note: You can also set the single-button mouse option as a general graphic
editors preference.

Preserve Selection By default, when you create or move an element, the element becomes
selected. This option changes to the opposite state.
Note: The Preserve Selection option is not saved in the chart.

Enable Scale Text Causes both the text and lines in a diagram to change size when you zoom
into and out of the canvas. By default, zoom operations do not affect the
text.
Note: The Enable Scale Text option is not saved in the chart.

Preferences
Management

Allows you to modify general preferences for the panel editor:
• General GEs Specific Preference
• PGE Specific Preferences
Rational Statemate 185

Panels
Panel Editor Icons

The following icons support interactors and drawing and naming operations in a panel. For general
information on drawing and naming operations in Rational Statemate, see Drawing Operations in
Graphic Editors and General Operations in Graphic Editors.

Interactor Icons
Interactor icons are graphical representations of input/output devices in panels that have a
predefined behavior.

Create Push Button Interactor - When in, makes a condition true/false or generates an event.
When out, displays the value of a condition, event, or state.

Create Lamp Interactor - displays the value of a condition, event, or state.

Create Vertical Multi-Choice Interactor - When in, sets the controlling data-item or condition
to the value of the button. When out, monitors the value of a data-item.

Create Horizontal Multi-Choice Interactor - When in, sets the controlling data-item or
condition to the value of the button. When out, displays the value of a condition or data-item.

Create Meter Interactor - When in, sets the value of a data-item (integer or real). When out,
displays the value of a data-item.

Create Knob Interactor - When in, sets the value of a data-item (integer or real). When out,
displays the value of a data-item.

Create Slider Interactor - When in, sets the value of a data-item (integer or real). When out,
displays the value of a data-item.

Create Textual Display Interactor - When in, sets the value of a data-item through typing a
value. When out, displays the value of a data-item (integer, real, bit-array).
186 User Guide

Using the Panel Editor
Drawing and Naming Icons

Miscellaneous Icon

Label Existing Interactor. Enters a label. After the label is entered, it is associated with an
interactor or a group.

Create Free Text. Enters free text anywhere on the drawing. This text is not associated with
any element on the drawing canvas.

Create Box Graphic. Draws a box.

Create Filled Box Graphic. Draws a filled box.

Create Circle Graphic. Draws a circle.

Create Filled Circle Graphic. Draws a filled circle.

Create Arc Graphic. Draws an arc.

Create Filled Arc Graphic. Draws a filled arc.

Create Multi-Line Graphic. Draws line segments. Click each vertex of the line. Double-click, or
press the middle mouse button to create the end point.

Create Filled Multi-Line Graphic. Draws filled line segments. Click each vertex of the line.
Double-click, or press the middle mouse button to create the end point.

Create Polygon Graphic. Draws a polygon. Click each vertex of the polygon. Double-click, or
press the middle mouse button to create the final vertex.

Create Filled Polygon Graphic. Draws a filled polygon. Click each vertex of the polygon.
Double-click, or press the middle mouse button to create the final vertex.

Create Line Graphic. Draws a line.

Put GE into Select Mode. Places the editor in Select mode to access the editing options
the editor supports.
Rational Statemate 187

Panels
Binding Interactors
In the Panel Editor, interactors are bound one of three ways:

� Accepting input
� Providing output
� Accepting input and providing output

The way an interactor is bound indicates whether the bound element affects, or is affected by, the
element that it is bound to.

To connect interactors (or groups of interactors) to elements in your model:

1. Select the elements to bind.

2. On the Tools menu, click Bind. The Bindings/Properties dialog box displays.
188 User Guide

Binding Interactors
From the Bindings/Properties dialog box, the following properties and actions are
supported:

– Name - displays the name of the interactor.
– Label/I.D. - displays the label associated with the interactor.
– Type - displays the type of interactor.
– Bindings/Properties - a button that toggles between the binding information

and the properties information for the currently selected element.
– Group -
– Auto Save - When the check box is selected, each edit is automatically

applied as it is inputted.
– Bind Method - Choose from Input, Output, or Input/Output.
– Controlled by -
– Element type - Choose from Bit, Condition, Event, State, or Activity.
– Button type - Choose from Flash, Toggle, or Push Release.
– Choose - Defines an element. Select the Controlled By field from the editing

area by clicking on the field name and then click Choose. The Element
Selection for Panel dialog box displays with the selections for the field.
Rational Statemate 189

Panels
� From the Element Selection for Panel window, you can do the following:
� Create a list of elements of the needed type and subtype. If necessary, specify a

chart name and/or a pattern for the name of elements to be filtered.
� Click Filter. A list of elements displays.
� Select the elements you want from the list.
� To confirm your choices, click OK or Apply.

� The Fill Defaults option enables you to fill in the enumerated values automatically when
you are binding an enumerated type to an interactor or group that can be associated with
an enumerated value, for example, the vertical and horizontal choice buttons.

The following sections describe the interactor bindings supported by the panel editor.
190 User Guide

Binding Interactors
Individual Bindings

The following bindings are supported for individual interactors.

� Button Type - This binding is supported by the Push Button interactor, which enables you
to choose from Flash, Toggle, and Push Release.

� Button # - Enables you to associate each button with a unique value.
� Format - Specifies the display format (binary, octal, hexadecimal, or decimal).
� Field Length - Specifies the number of characters to display.
� Fractional Part - Specifies the number of characters after the decimal point to display.

Group Bindings

The following bindings are supported for grouped interactors.

� Group Color - Changes the fill color of the element according to the value of the
controlling element. The choice of colors and values is made using the Add Color button.

� Group Flip - Causes the group to be mirrored according to the value of the controlling
element. The effect is similar to performing a Transform>Mirror X/Y- Axis operation on
the group.

� Group Move - Controls the position of the group within a frame. By default the frame is
the whole panel window. You can make a frame by drawing and naming a rectangular
box.

� Group Rotate - The angle of rotation of the group is controlled by the value of the
controlling element. Rotation is performed around the rotation point of the group.

� Group Scale - Causes the group to change size according to the value of the controlling
element. The scaling is always done evenly in the x- and y-axis.

� Group Visibility - Controls the visibility of the whole group.When the controlling
element is active/true, the group becomes visible. When the controlling element is
inactive / false, the group becomes invisible.

� Sub-element Visibility - Controls the visibility of the individual elements that are
contained in the group. Each of the sub-elements becomes visible when the controlling
model element takes on the value that is associated with the sub-element.
Rational Statemate 191

Panels
Using the Panel Builder
The Panel Builder automatically generates panels from charts and binds the interactors. These
panels can be edited with the panel editor.

To start the Panel Builder from the Charts tab of the Rational Statemate main window, highlight a
chart and select Tools > Panel Builder. The Panel Builder dialog box displays.
192 User Guide

Using the Panel Builder
The Panel Builder window contains the following fields:

� Chart Name - Specifies the name for a chart you want to use as the basis for a panel.
Alternatively, you can browse for a chart.

� Panel Name - Specifies the name for the panel you are creating. Alternatively, you can
browse for a panel name.

� Scope of Elements - Specifies which elements are used in the panel.

The buttons above the horizontal line let you select the charts to include in the scope of
the panel:

– With Descendant - Enables you to include descendant charts. If you select
this button, you can merge the descendant charts into one panel by selecting
Merge to One Panel.

– With Generic Instances - Enables you to include elements inside Generic
Instances. If you select this button, you can merge the generic instances into
one panel by selecting the button Merge to One Panel.

– Merge to One Panel - When this button is pushed all controls from all scopes
are merged into a single panel. When this button is not pushed, the tool will
create a separate panel for each of the descendant charts or generic instances.

The Merge to One Panel flag is enabled when either the With Descendants
or the With Generic Instances buttons are pushed. Otherwise it is disabled.

The buttons below the horizontal line let you select the elements that the panel will
include, for each of the charts defined in the scope:

– Top Level Inputs Outputs - Use only elements with top-level inputs or
outputs.

– Used In Chart - Use all the elements in the chart.
– Defined in Chart - Use only elements defined in the chart.
– Referenced In Info Flow - Uses elements that are part of the information

flow.
– Expand Arrays - Use all elements of an array.
– Expand Records - Use all fields in a record.
Rational Statemate 193

Panels
� Advanced - This optional field opens the Specific Attributes window, as shown in the
following figure. This window enables you to set the default interactor for each element
type in the model.
194 User Guide

Element Properties
This section describes elements and element properties. The topics are as follows:

� Understanding Elements

� Creating and Modifying Elements

� Searching for Elements

Every element in a model has a corresponding set of properties, that is, additional information
about the element, such as descriptions, attributes, and relationships with other elements. Such
additional information can be formal (that is, possessing some semantics that is relevant to the
model and its behavior) or informal.

Some properties are relevant to all types of elements, while others apply only to certain types. The
following table lists the properties and the element types to which they apply.

You can create or modify element properties by using the Properties window.

The following sections discuss properties and the Properties window in more detail.

Property Element Type

All Graphical Textual

Short description (one line) X X X

Description (unlimited text) X X X

Attributes X X X

Link to external file X X X

Behavioral description X X

Design attributes (for Micro C code
generation)

X X

Formally defined (e.g., data type, variable) X
Rational Statemate 195

Element Properties
Understanding Elements
A model is made up of elements whose definitions are stored as properties. In the properties dialog
box, you create or modify element properties and search for elements using the Search tool. see
Creating and Modifying Elements for more information.

Rational Statemate supports the following elements:

� Textual Elements

� Graphical Elements

� Chart Elements

Each kind of element supports a variety of types, sub-types, and structures.

The following sections explain in more detail the kinds of elements that Rational Statemate
supports and the types, sub-types, and structures associated with them.

Textual Elements

Rational Statemate supports the textual elements (types, sub-types, and structures) described in the
following table.

 Element Description

Types
Data-Item A unit of information that can be one of the following:

• Numeric - Integer or Real
• String
• Bit or Bit Array
• User-Defined Type
• Record
• Union

Aliases are supported with the generated code the same as for compounds, a macro with
the alias name and definition.

UserDef Type A data-type that consists of several fields of possibly different types. A user-defined type is
analogous to the typedef statement in C or the type is statement in Ada.
User-defined types are often required to be visible throughout the entire model, so they are
usually defined in a global definition set.

Condition A persistent signal whose value is either TRUE or FALSE. Something occurring over a
span of time, for example, the light is on. All conditions are enclosed in square brackets
(for example, [C]).
In general, the action tr! (C) has the effect of setting the truth value of condition C to
TRUE, and the corresponding action make_false (C) (abbreviated fs! (C) sets it to
FALSE. (Contrast with Event.)
196 User Guide

Understanding Elements
Event An instantaneous signal used for synchronization purposes. An event indicates that
something has happened.
Events occur at a precise instant in time, and if not immediately sensed they are lost.
Events “live” only for the duration of the step immediately following their occurrence.
(Contrast with Condition.)

Action Any “work” done as a result of one of the following:
• Making a transition in a statechart
• Executing a static reaction within a state
• Executing a mini-spec within an activity

A single action can consist of making an assignment, generating an event, invoking a
defined (named) action, or several special types of expressions (starting/stopping/
suspending activities, clearing history, etc.).

Info-Flow Information flows are containers for other elements (such as conditions, events, data
items, and other information flows). They reduce the number of flow lines, which makes
the chart more readable and helps the viewer to better comprehend the specification.

Field In addition to basic types, a data item can be a composite of named components, referred
to as fields, each of which can be a data item of any type or a condition.
Rational Statemate supports two kinds of composites: records and unions. The entire
construct is referenced by its name (e.g., on a flow line), while a particular field is
referenced using the dot notation:
<record/union reference>.<field reference>

Subroutine You can define function, procedure, and task subroutines using:
• K&R C
• ANSI C
• Ada
• Rational Statemate Action Language
• Procedural Statecharts (for procedures only)
• Flowchart

You can use subroutines:
• Within a model as part of triggers and actions
• Connected to activities/blocks to describe their implementation
• Connected to Rational Statemate elements as callbacks

In addition, any C code that has been used to describe subroutines within a model can
automatically be included within the generated code.
Subroutines have textual information like any other Rational Statemate element (for
example, short description, long description, and attributes).

Sub-Types
Integer One of five primitive data types in the Rational Statemate language. (The other four are:

real, bit, bit array, and string.)
The maximum value of integers allowed depends on the architecture of the machine on
which Rational Statemate is running. On a 32-bit machine, it is (2**31)-1.

 Element Description
Rational Statemate 197

Element Properties
Real One of five primitive data types in the Rational Statemate language. (The other four are:
integer, bit, bit array, and string.)
A real is also sometimes called a floating point number. In Rational Statemate, values can
be referred to in either ‘nnn.mmm’ form or ‘n.mmm E+ee’ form. The values allowed depend
on the architecture of the machine on which Rational Statemate is running. This is usually
in the range -1.0 E+38 to 1.0E +38.

Bit One of five primitive data types in the Rational Statemate language. (The other four are:
integer, real, bit array, and string.)
A bit can hold a single binary value. Its literals are 0b1 and 0b0.

Bit-Array One of five primitive data types in the Rational Statemate language. (The other four are:
integer, real, bit, and string.)
A bit array is an array of bits. The length and indices are specified when the element is
defined. The defaults values are: length - 32 bits, right index (most significant bit) - 31, and
left index (least significant bit - 0.
Bit arrays are treated as unsigned numbers by Rational Statemate. The software supports
both implicit and explicit conversion to other Rational Statemate types.

String One of five primitive data types in the Rational Statemate language. (The other four are:
integer, real, bit, and bit array.)
A string can hold any number of characters up to its defined length. The default length for
a string is 80 characters.

Record A data type that consists of several fields of possibly different predefined types or user-
defined types. When a data item is declared to be a record, it is defined to contain all of its
fields. A record is analogous to a structure in C and a record in Ada.
You access a field in a record by using both the record name and field name separated by
a ‘.’ (for example, RECORD_NAME.FIELD_NAME).
Aliases are supported with the generated code the same as for compounds, a macro with
the alias name and definition.

Union A data type that consists of several fields of possibly different predefined types or user-
defined types. When a data item is declared to be a union, it is not defined to contain all of
its fields. Rather, it is defined to contain one of its possible fields at any point in time. A
union is analogous to a union in C and a variant record in Ada.
You access a field in a union by using both the union name and field name separated by a
‘.’ (for example, UNION_NAME.FIELD_NAME).

User-Type A data type that consists of several fields of possibly different types. A user-defined type is
analogous to the typedef statement in C or the type is statement in Ada.
User-defined types are often required to be visible throughout the entire model, so they are
usually defined in a global definition set.

Enum-Type Enumerated values are constants. In Rational Statemate you can define a User-Defined
Type (UDT) to be an enumerated type, and then define enumerated values for this type.
For example, you can define a UDT as enumerated type COLOR, and then define COLOR
as {RED, GREEN, BLUE, YELLOW}. These colors are enumerated values that you can
use in expressions (such as /X:=RED;).

 Element Description
198 User Guide

Understanding Elements
Structures
Single A data item that is neither an array nor a queue.

Array A one-dimensional (vector) grouping of data items, events, and conditions under a single
name whose individual elements are addressed through a reference index.

Queue An ordered, unlimited collection of data items, all of the same data type. This data type can
be any predefined or user-defined type. A queue is essentially a single structure that holds
many elements. These elements can be put in at either the front or the back, but can only
be retrieved at the front.

• put! adds the value of the expression to the queue’s tail.
• uput! adds the value of the expression to the queue’s head.

Note: Put actions are accumulated and performed at the end of the step. This scheme
reduces the chances of race conditions.

• get! actions are performed when they are encountered.
• peek! copies the queue’s head element without removing it.
• fl! totally clears the queue.
• q_length returns the length of the queue.

 Element Description
Rational Statemate 199

Element Properties
Textual Types, Sub-types, and Structures
The relationships among textual types, sub-types, and structures are shown in the following table.

Note
When using structured elements (Arrays, Records, Unions) in a Rational Statemate model,
it is recommended to create a User-defined Type of that structure, and define the data-items
as of this type.

Type Subtype Structure

Data-Item • Integer
• Real
• Bit
• Bit-Array
• String
• Record
• Union
• User-Type

• Single
• Array
• Queue

UserDef Type • Integer
• Real
• Bit
• Bit-Array
• String
• Record
• Union
• User-Type
• Enum-Type

• Single
• Array
• Queue

Condition N/A • Single
• Array

Event N/A • Single
• Array

Action N/A N/A

Info-Flow N/A N/A

Field • Integer
• Real
• Bit
• Bit-Array
• String
• Record
• User-Type

• Single
• Array
• Queue

Subroutine N/A N/A
200 User Guide

Understanding Elements
Default Values for Textual Elements
Textual elements include a default value field. The default value is either a literal value or const.
This default value can be reset at runtime. For more information about resetting the default, see
Resetting Default Values for Elements.

The Default Value field is available in the following textual elements:

� Data Items of basic types
� Conditions
� Record Fields
� User Defined Types of basic types and enumerated type
� User Defined Types of Enums

In the case of Data Items and User Defined Type, the default is available for the following data
types:

� Integer
� Real
� String
� Bit
� Bit array
� Enum-type User Types

Limitation

Default value is NOT available for the following elements:

– Generic parameters
– Subroutine parameters
– Elements with usage alias, compound, and constant
– Unions Fields
– Queues

For the record’s fields, all of the rules of default values apply as for single elements. For
unions, there is no default value for each field. (In runtime, fields are set to the default value
according to the type.) For arrays of basic types, the default value is a single value that is
applied to all elements in the array.
Rational Statemate 201

Element Properties
Graphical Elements

Rational Statemate supports the graphical elements (types, sub-types, and structures) described in
the following table.

 Element Description

Types
State The primary graphical element used in statecharts. States represent behavior of the

system, or part of the system. States in a statechart differ from states shown in more
traditional state diagrams, or finite state machines (FSM), in two ways: they can be
divided into sub-states hierarchically and they represent parallel state behavior. There
are two types of states:

• Or-states are similar to states in traditional FSM. The statechart can be in only one
Or-state at the same level of hierarchy at one time. Or-states are represented with a
rounded rectangle.

• And-states are shown by dividing an Or-state into sub-states with a dashed line. And-
states show concurrent, or parallel, behavior.

Activity The primary graphical element used in activity charts. Activities represent functions in the
functional view of the system. An activity represents something that transforms inputs
into outputs.
There are three types of activities:

• Internal activities (solid rectangle)
• External activities (dashed rectangle)
• Control activities (rounded rectangle)

Activities can be allocated to modules (structure) and can contain statecharts. You can
specify the behavior of an activity by connecting it to a subroutine.

• Procedure-like activities can be connected to procedures within any of the languages
supported.

• Internal primitive activities (reactive-controlled and reactive-self) can be connected to
tasks (no mini-specs or decomposition is allowed).

• External activities can only be connected to tasks.

Module The primary graphical element used in module charts. Modules are used to represent the
structure of the system. There are two types of modules: internal (solid rectangle) and
external (dashed rectangle).
The functionality of a module is shown by describing it by an activity chart.

Actor Any entity (person or system) that performs certain roles in the system defined by a
boundary box. An actor is depicted as a stick figure and only interacts with a use case

Use-Case A distinct piece of functionality within a system.

Boundary-Box Depicts the limits of the system and is shown as a rectangle spanning all the use cases in
the system
202 User Guide

Understanding Elements
Sub-Types
Or One of two types of states that can be used in a statechart. The Or-state enables a user

to represent sequential behavior. The Or-state is similar to the states used in traditional
state diagrams or finite state machines.
The statechart can be in one, and only one, Or-state at any one time (at a particular level
of the state hierarchy). Or-states can be subdivided into smaller states (decomposed).

And And-states (sometimes called concurrent or orthogonal states) enable a user to
represent parallel behavior. When a statechart enters one And-state, it simultaneously
enters all other And-states at that level of the state hierarchy. And-states can be
subdivided into smaller states (decomposed).

Internal Any activity within the scope of the topmost activity in a particular activity chart.

External Any activity outside the scope of the topmost activity in a particular activity chart.
Because activity charts are hierarchical, an external activity is usually resolved to a box in
a chart higher in the chart hierarchy.
However, an external activity can be resolved to a box that is an internal activity at a
higher level. In this case it remains simply an external activity when referenced in the
lower chart.
The General Preference “Strict External-Activity Resolution” allows more flexibility while
resolving External Activity to its definition Activity. Set the preference: “General
Preferences...” -> “Strict External-Activity Resolution” to “No” to allow more flexibility and
to “Yes” to keep the previous behavior.

Control Describes the behavior of the activity in which it resides, and controls activities on the
same hierarchical level. An activity can have only one control activity. An @ symbol
precedes the title of a control activity.

Data-Store Stores information on activities for later use. Data stores can also be used to total large
volumes of data, continuously accumulating over time. Data stores are always basic;
they cannot contain other data stores or activities.

External Router See Working with the Router (External Router).

Router See Working with the Router (Internal Router).

Execution Any module within the scope of the topmost module in a particular module chart.

Storage Analogous to a data store in an activity, except it is used in a module. Stores information
on modules for later use. Data stores can also be used to total large volumes of data,
continuously accumulating over time. Data stores are always basic; they cannot contain
other data stores or modules.

Structures
Basic Specifies charts that have no descendants.

Non-Basic Specifies charts that have descendants.

 Element Description
Rational Statemate 203

Element Properties
The relationships between graphical types, sub-types, and structures are shown in following table.

Chart Elements

Rational Statemate supports the chart elements described in the following table:
.

Type Subtype Structure

State • Or
• And

• Basic
• Non-Basic

Activity • Internal
• External
• Control
• Data-Store
• External Router
• Router

• Basic
• Non-Basic

Module • Execution
• External
• Storage

• Basic
• Non-Basic

Actor • N/A • N/A

Use-Case • N/A • N/A

Boundary-Box • N/A • N/A

Element Description

 Statechart Describes the system's behavior over time, including the dynamics of activities,
their control and timing behavior, the states and modes of the system, and the
conditions and events that cause modes to change and other occurrences to take
place. It thus also provides answers to questions about causality, concurrency and
synchronization.
Statecharts constitute an extensive generalization of state-transition diagrams.
They allow for multi-level states, decomposed in an and/or fashion, and thus
support economical specification of concurrency and encapsulation. They
incorporate a broadcast communication mechanism, timeout and delay operators
for specifying synchronization and timing information, and a means for specifying
transitions that depend on the history of the system's behavior.
Each element in the statechart has properties, which can contain additional
information. For example, an event element can be used to define a compound
event by an expression involving other events and conditions.

Activity Chart Describes the functional view of the system using activities as the primary building
block. This is sometimes referred to as the process-oriented view. A system
description can contain one or more activity charts. Activity charts, which can be
connected to module charts, describe the functionality of individual modules.
Activity charts can be connected to statecharts. Statecharts either define the
behavior of individual activities or control groups of activities as a control activity.
204 User Guide

Understanding Elements
Use-Case Diagram Illustrates – at a very high level – the relationship between “actors” (whoever or
whatever interacts with the system being designed) and the system itself.
They provide a natural high-level view of the intended external functionality of the
system that is understandable by engineers and non-engineers alike.

Sequence Diagram Depicts the sequence of actions that occur in a system, visually capturing the
dynamic behavior of a system.

Flowchart Represents a process graphically. A flowchart represents the entire process from
start to finish, showing inputs, pathways and circuits, and action or decision points.

Module Chart Describes the structural view of the system using modules as the primary building
block. A system description can contain one or more module charts. Module charts
are at the top of the chart hierarchy in a system model.
Module charts can be connected to activity charts. Activity charts describe the
functionality of individual modules.

Global Definition Set
(GDS)

Contains definitions of user-defined types as well as constant data items and
conditions. The elements that appear in a GDS are visible in the entire model. Data
types defined in a chart or inherited from a parent chart take precedence over data
types defined in a GDS.
A GDS is similar to a chart in that both are configuration items of the model. That is,
both charts and GDSs contain parts of the model and can be saved and loaded
separately from other parts. A GDS cannot contain any other graphical or non-
graphical information.
There can be several GDS’s in one model, but there is no hierarchical relationship
between them, or between them and the charts in the model.
The GDS editor enables you to create a new GDS or access an existing GDS and
enter the Properties window for the specified GDS.
The GDS Visibility feature enables you to control the usage of definitions in a
Global Definition Set (GDS) and to restrict their visibility. It allows the integration of
some independent developed models, without having to worry about collisions
between “global” variables and types, defined in each one of the different
subsystems
Rational Statemate 205

Element Properties
The relationships between each supported chart and possible chart uses (generic/regular/
procedural) are shown in following table.

Chart Type Chart Use

 Statechart • Generic - Generic charts enable reuse of parts of a specification. A generic
chart makes it possible to represent common portions of the model as a single
chart that can be instantiated in many places, and in this it is similar to a
procedure in a conventional programming language.

• Regular - A non-generic chart.
• Procedural - A Procedural Statechart is a specialized derivative of a

statechart.

Activity Chart • Generic - Generic charts enable reuse of parts of a specification. A generic
chart makes it possible to represent common portions of the model as a single
chart that can be instantiated in many places, and in this it is similar to a
procedure in a conventional programming language.

• Regular - A non-generic chart.

Use-Case Diagram • Regular - A non-generic chart.

Sequence Diagram • Regular - A non-generic chart.

Flowchart • Generic - Generic charts enable reuse of parts of a specification. A generic
chart makes it possible to represent common portions of the model as a single
chart that can be instantiated in many places, and in this it is similar to a
procedure in a conventional programming language.

• Regular - A non-generic chart.
• Procedural - A Procedural Flowchart is a specialized derivative of a

Flowchart, which is used as a possible implementation of a Subroutine.

Module Chart • Generic - Generic charts enable reuse of parts of a specification. A generic
chart makes it possible to represent common portions of the model as a single
chart that can be instantiated in many places, and in this it is similar to a
procedure in a conventional programming language.

• Regular - A non-generic chart.

Global Definition Set N/A
206 User Guide

Creating and Modifying Elements
Creating and Modifying Elements
You create and modify elements using the Properties dialog box and the Quick-Edit mode.

Quick-Edit Mode

This mode is mainly intended for use when quick intensive editing is required. You may use the
quick-edit mode to change elements when it is not necessary to maintain all of its internal data-
structure caches and thus their associated calculation overhead. Analysis tools, such as Check-
Model, Simulation, Code-Generators, Documentor, always run in regular mode and perform all
required calculations. In the Main window toolbar use the Quick-Edit mode toggle to switch the
mode on and off.

� Pushed - Quick-Edit is “On”
� Not pushed - Quick-Edit is “Off”

The Quick-Edit Startup Mode preference can be manually set to Disable, On, or Off (Default):

Elements in the Chart Hierarchy
When working in Quick-Edit mode, all elements that meet these criteria appear in the Elements-
View (and in their Properties form) as “Textual” (i.e., unresolved):

� Referenced in the chart-hierarchy
� Normally resolved to a defined element higher in the tree

Quick-Edit Mode Limitations
The following operations are not available while in Quick-Edit mode:

� Interface report
� Info
� Filtered check out
� Where referenced
� Advance Query
� Activity Interface Browser
Rational Statemate 207

Element Properties
Invoking the Properties Dialog Box

To open the Properties dialog box, use one of the following methods:

� In the Rational Statemate main window, select Edit > Properties (if you have selected
charts).

� Select an element in the element matrix and click the Properties icon
� From within the element matrix right pane, double-click on an element (The result of this

method is shown in illustration below.)
� Select one or more elements in the element matrix. Select Edit > Properties.

Note
Matrices, that support graphical sorting, display a sorted-by column and direction following
a graphical sort operation (clicking the column header).

You may also display the Properties dialog box from the graphic editors (except the Panel Editor)
using this method:

1. Select Tools > Chart Properties or within the graphic canvas, right-click to display a
popup menu.

2. Click Properties.
208 User Guide

Creating and Modifying Elements
Subroutine Properties

In the Properties dialog box, the Implementation list toolbar contains the Select Implementation
icon to set a subroutine as the selected implementation. Highlight the implementation and click the
Select Implementation icon to make this change.

To assist you, the “Selected Implementation” combination box in the Definition tab also has an
asterisk (“*”) before any non-empty implementation.

Editing Multiple Elements

The properties dialog allows editing of multiple elements in a single operation, when the elements
have the same properties dialog (e.g., all elements are single-variable-integer-data-items).

Record/Union Field Properties
Record/Union field properties can be accessed directly from the Search tab without opening the
Properties of the containing Record/Union. The multiple elements editing feature is also available
for Record/Union fields, when their properties were opened from the Search tab.

Cut, Copy and Paste Operations on Record/Union Fields
The Record/Union field matrix in the Properties dialog can Cut, Copy and Paste using these
methods:

� A pop-menu with the three operations on the matrix
� The copied information from the matrix can be pasted into another Record/Union field

matrix. as well as into a text editor as text
� Text in the format of the matrix (<name> <type>) can be copied from a text editor and

pasted into the matrix (example: “MY_FIELD Integer”)

Properties Preference “Mass edit overwrite values”
The “Mass edit overwrite values” preference controls mass changes when editing elements. When
the preference is set to Yes, the Save operation overrides existing values of edited property fields
with the new entered values in all affected elements. When the preference is set to No (the default
setting), the Save operation does not override existing values of edited property fields. Only
property fields with no previous value are assigned with the new entered value.
Rational Statemate 209

Element Properties
Properties Window

This section describes these Properties dialog box features:

� Individual Property Fields Display

� Toolbar Operations

� Property Information Displayed in Tabs

� Creating and Modifying Elements

� Resetting Default Values for Elements

Individual Property Fields Display
Individual element properties are displayed as rows in the upper pane of the Properties dialog box.
For each property, the following fields are displayed:

� Name Field - This is a read-only field that displays the name of the element(s). To rename
an element, select Edit > Rename.

� Defined In Field - displays the chart or GDS in which the element is resolved, if
applicable.

� Type Field - displays the data type of the element.
� Def Field - displays Yes if the element is defined or No if it is not.
� Mode - Indicates if the element can be updated or is read-only.

Toolbar Operations
The Properties window has the following toolbar operations:

� Open References - displays the references to/for the selected element. The referenced
elements are appended to the listing in the current Properties dialog box unless you
specify Options > Open New Editor For References.

� Save buttons - Enable you to save changes made to elements and move to the previous or
next element.

Searching Charts
The Search dialog box for Charts includes two check boxes:

� Defined - Controls search of real charts
� Undefined - Controls search of referenced charts (which do not exist in the workarea, but

are referenced by instance boxes)
210 User Guide

Creating and Modifying Elements
Property Information Displayed in Tabs
The lower pane of the Properties dialog box contains tabs that provide additional information for
the property you select in the upper pane and is based on the type of element you are modifying.

Note
The fields in the dialog box are resized together when the dialog box is resized.

In this section, the tabs that do not change for each textual element type are described, including:

� General Tab

� Attributes Tab

� Design Attributes Tab

� Description Tab

The tabs that change with each textual element type are shown in the appropriate sections. They
include:

� Description tab
� Implementation tab
Rational Statemate 211

Element Properties
General Tab

The General tab displays basic information about the element:

� Chart - A text box that displays the name of the chart the element is associated with.
� Name - A text box displays the name of the element.
� Synonym - A text box for entering an alternate name for the element. This name may be

used in other expressions to reference the element.
� Description - A text box for adding a brief description of the element (up to 80

characters).
212 User Guide

Creating and Modifying Elements
Attributes Tab

In the Attributes tab, the value of an existing attribute in the matrix can be changed.

To add, remove, or rename attributes, click Edit Attributes . The Attributes dialog box
displays.
Rational Statemate 213

Creating and Modifying Elements
The format of these attriburte definition file is :
First line:
{
Last line:
}

Header section:
 #header:"<description-of-file>"
 #attr description:

Attribute definition section:
{ #name:"<attr-name>"
 #type:<attr-type>
 #value:"<attr-value>"
 #enforced:<yes-or-no>
 }

Enumerated attribute definition:
Attribute definition section:
{ #name:"<attr-name>"
 #type:attr_enumerated
 #legal values:
 "<attr-value-1>"
 ["<attr-value-2>"...]
 #value:"<attr-value>"
 #enforced:<yes-or-no>
 }

Boolean attribute definition:
{ #name:"<attr-name>"
 #type:attr_boolean
 #value:<true-or-false>
 #enforced:<yes-or-no>
 }
Rational Statemate 215

Element Properties
Mapping of Statemate element types to attribute definition files :

Element type Definition file

Module-charts mch_attributes.def
Activity-charts ach_attributes.def
Statecharts sch_attributes.def
Flowcharts fch_attributes.def
Sequence-diagrams qch_attributes.def
Use-case diagrams uch_attributes.def
GDS's gds_attributes.def
Modules md_attributes.def
Activities ac_attributes.def
Data-stores ds_attributes.def
Routers rt_attributes.def
States st_attributes.def
Use-cases uc_attributes.def
Actors at_attributes.def
Boubdary-boxes bn_attributes.def
Components component_attributes.def
Actions an_attributes.def
Conditions co_attributes.def
Data-items di_attributes.def
Data-types dt_attributes.def
Events ev_attributes.def
Fields fd_attributes.def
Information-flows if_attributes.def
Subroutines sb_attributes.def
216 User Guide

Creating and Modifying Elements
Design Attributes Tab

The Design Attributes tab lets you edit the design attributes for the element.

Note
This tab is available only in the non-classic mode.
Rational Statemate 217

Element Properties
Description Tab

The description tab lets you enter a description for each of the element.

Creating and Modifying Elements
The following sections explain how to use the Properties dialog box to create or modify the
following elements and their various types:

� Textual Elements

� Graphical Elements

Textual Elements

The following textual element types can be created or modified in the Properties dialog box:

� Action

� Data-Item

� User Defined Type

� Condition and Event

� Fields

� Information-Flow

� Subroutine
218 User Guide

Creating and Modifying Elements
Action

The Action properties dialog box contains the following fields:

� Selected Implementation - A pull-down menu with the following options:
� Definition - Specifies the action taken is defined in the Description text box.
� Truth Table - Specifies the action taken is defined in a truth table. Actions

defined in a truth table are considered compound actions and follow the same
scoping rules as other textual elements in the model.

For more information on truth tables and for instructions on how to define a truth
table in Rational Statemate, see Truth Tables.

� Best Match - Directs Rational Statemate to select the implementation to use if
more than one has been specified. The order in which the analysis tool selects the
implementation is based on the ordering in this pull-down menu.

� None - No implementation is specified.
� Definition - A text box for the definition, if Definition is chosen as the Selected

Implementation.
� Truth Table Edit/Delete buttons - Used to set up or delete a truth table, if Truth Table is

chosen as the Selected Implementation.

For more information on truth tables and for instructions on how to define a truth table in
Rational Statemate, see Lookup Tables.
Rational Statemate 219

Element Properties
Data-Item

The Data-Item properties dialog box contains the following items:

� Structure - A pull-down menu to select the type of structure associated with the element.
� Data Type - A pull-down menu to select a data type for the element: integer, real, string,

bit, bit-array, user type, record, or union. For more information on sub-types, seeSub-
Types.

Additional values can be set, depending on the data type selected. For example, for an
integer variable, the following values can be set:
� #Bits - Number of bits.
� Min - Minimum value.
� Max - Maximum value.
� Default Value - Default value for variable.

� Usage - A pull-down menu to select the type of usage. A Rational Statemate information
element may have one of four usages: variable, constant, alias, and compound. Certain
usages are restricted based on how the element is referred to in the model and on the type
of the element.

� Definition - A text box for a definition of the element logic.
220 User Guide

Creating and Modifying Elements
User Defined Type

The User Defined Type properties dialog box contains the following items:

� Structure - A pull-down menu to select the type of structure associated with the element.
� Data Type - A pull-down menu to select a data type for the element: integer, real, string,

bit, bit-array, user type, record, or union. For more information on sub-types, see Sub-
Types.

� Usage - A pull-down menu to select the type of usage. A Rational Statemate information
element may have one of four usages: variable, constant, alias, and compound. Certain
usages are restricted based on how the element is referred to in the model and on the type
of the element.

� Definition - A text box for a definition of the element logic.
Rational Statemate 221

Element Properties
Condition and Event

The Condition and Event properties dialog box contains the following items:

� Structure - A pull-down menu to select the type of structure associated with the element.
� Usage - A pull-down menu to select from one of four usages: variable, constant, alias, and

compound. Certain usages are restricted based on how the element is referred to in the
model and on the type of the element.

� Definition - A text box for the definition of the conditions applicable to this element.
222 User Guide

Creating and Modifying Elements
Fields

The Fields properties dialog box contains the following items:

� Structure - A pull-down menu to select the type of structure associated with the element:
single or array.

� Data Type - A pull-down menu to select a data type for the element: integer, real, string,
bit, bit-array, user type, record, or union. For more information on sub-types, see Sub-
Types..

� The Field Name and Field Data Type columns contain the names of the fields and their
associated data types.

� Insert button - inserts the selected field.
� Delete button - deletes the selected field.
� Properties button
� Info button
Rational Statemate 223

Element Properties
Information-Flow

The Information-Flow properties dialog box contains one field: Consists of. It displays a
matrix of elements that make up the information flow. Elements can be added or deleted by
using the Insert and Delete buttons. A popup menu contains the cut, copy, and paste functions
for adding or deleting information flow items from and into the list.
Double-click on an item in the "Consist of" list navigates to the properties of that item. The
Properties preference “Open New Editor for References" determines whether this opens in a
new properties dialog or the current one.
224 User Guide

Creating and Modifying Elements
Subroutine

The Subroutine properties dialog box contains the following items:

� Type - A pull-down menu to select from the following types:
� Procedure - A subroutine that has no return value but can have multiple

parameters. Each parameter can be INPUT, OUTPUT, or INPUT/OUTPUT.
� Function - A subroutine that returns a value and can have multiple parameters.

All function parameters are inputs.
� Task - A special form of procedure connected to activities for C and Ada only.

Task parameters can be INPUTs, OUTPUTs, or INPUT/OUTPUTs.
� Selected Implementation - A pull-down menu to select the implementation to be used for

the subroutine. The following implementations are supported:
� K&R C Code
� ANSI C Code
� ADA Code
� Procedural Statechart - A specialized derivative of a statechart and does the

following:
* Is executed entirely in one step.
* Must contain a termination connector.
* When called, runs from the default to the termination connector (including any
loops) within a single step.
Rational Statemate 225

Element Properties
� Flowchart - A specialized derivative of a flowchart and does the following:
* Is executed entirely in one step.
* When called, runs from the start to the end (including any loops) within a single
step.
* May return a value, if used with subroutine of type “Function.”
* Generic and offpage instances are allowed.

� Rational Statemate Action Language - A subroutine written using the standard
Rational Statemate action statements. Normally, action statements are executed
within the context of Rational Statemate semantics (for multiple action statements
within a single step, all of the assignments occur at the same time). Within an
action language subroutine, all of the assignments occur in the order the
statements were written.

� Truth Table - Specifies that the action to be taken is to be defined in a truth table.
Actions defined in a truth table are considered compound actions and follow the
same scoping rules as other textual elements in the model.

For more information on truth tables and for instructions on how to define a truth
table in Rational Statemate, see Truth Tables.

� Lookup Table - Specifies that the action to be taken is to be defined in a lookup
table. Actions defined in a lookup table are considered compound actions and
follow the same scoping rules as other textual elements in the model.

For more information on lookup tables and for instructions on how to define a
lookup table in Rational Statemate, see Truth Tables.

� External Tool - Enables invoking formatting script on ANSI-C code.
� Best Match - Used when more than one implementation/language has been

specified for the subroutine. Best Match indicates that each analysis tool
(Simulation or Code Generation) uses the first language (for which you have
specified an implementation) that can be used.

For example, Ada code generation does not use a C code definition. The order in
which the analysis tools selects a language implementation is the order in which
the languages appear in the menu listing.

You can override the Best Match by explicitly selecting an implementation/
language to be used. If the explicitly selected language has not been previously
specified or is not appropriate, the analysis tool uses the Best Match selection.

� None - No implementation is used.
� External Code/None - Allows the user to define the interface of the subroutine.

Complete implementation of the subroutine is not provided.
Note: This mode is only available in the Rational Statemate non-classic mode.
226 User Guide

Creating and Modifying Elements
Implementation Tab

The Implementation tab in the Subroutine Properties dialog box lets you access and edit
subroutine implementations. A subroutine can have more than one implementation. The
implementation that is actually used is the one chosen by the Selected Implementation
drop-down menu. The possible implementations are listed in the figure:

� K&R C Code
� ANSI C Code

In the ANSI-C code option, you choose between two options:
Rational Statemate C
Rational Statemate Micro C

Clicking on the Generate Template icon, you get the query:

� ADA Code
Rational Statemate 227

Element Properties
� Procedural Statechart - A specialized derivative of a statechart and does the following:
– Is executed entirely in one step
– Must contain a termination connector
– When called, runs from the default to the termination connector (including

any loops) within a single step
� Flowchart - A specialized derivative of a flowchart and does the following:

– Is executed entirely in one step.
– When called, runs from the start to the end (including any loops) within a

single step.
– May return a value, if used with subroutine of type “Function.”
– Generic and offpage instances are allowed.

� Statement Action Language - A subroutine written using the standard Rational
Statemate action statements. Normally, action statements are executed within the context
of Rational Statemate semantics (for multiple action statements within a single step, all of
the assignments occur at the same time). Within an action language subroutine, all of the
assignments occur in the order the statements were written.

� Truth Table - Specifies that the action to be taken is to be defined in a truth table. Actions
defined in a truth table are considered compound actions and follow the same scoping
rules as other textual elements in the model.

For more information on truth tables and for instructions on how to define a truth table in
Rational Statemate, see Truth Tables.

� Lookup Table - Specifies that the action to be taken is to be defined in a lookup table.
Actions defined in a lookup table are considered compound actions and follow the same
scoping rules as other textual elements in the model.

For more information on lookup tables and for instructions on how to define a lookup
table in Rational Statemate, see Truth Tables.

� External Tool - Enables invoking formatting script on ANSI-C code.

The preference Generate Template for External Tool Implementation controls the
generation of the template for the External Tool subroutine implementation. When the
preference is set to “Yes”, the tool will create template before invoking the External Tool
editor.
228 User Guide

Creating and Modifying Elements
Graphical Elements

The following graphical element types can be created or modified in the Properties dialog box:

� State

� Transition

� Instance State of Generic Chart

� Activity

� Instance Activity

� Module

� Use Case

State
Rational Statemate 229

Element Properties
The State properties dialog box contains the following items:

� Reactions - A text box for defining static reactions.

Static reactions describe the behavior that takes place within a specific state. For
example:

While in (S1) DO

 [POWER_ON]/tr! (LIGHT_ON);

 COUNTER:=0

They also describe actions that occur when there’s a transition to enter or exit the
associated state. For example:

 On entering (S1) DO

 /st! (activity_warm_up)

 On exiting (S1) DO

 /sp! (activity_warm_up)

Separate multiple reactions in the Properties window with a double semicolon (;;).
States that have static reactions are distinguished by a ‘>’ symbol after the chart
name (e.g., ALARM>).

� T/W - Specifies the start/stop correspondence between a state and an activity:
T (Throughout) is equivalent to a static reaction of:

entering/);;

exiting/sp!(A)

For a reactive-controlled activity A, exiting the state stops the activity. For a
reactive-self activity, there is usually an exit transition from the state triggered by
the event stopped (A) This implies that if and when A stops of its own accord, the
state will be exited.

W (Within) indicates that the activity A is activated sometime during the time the
system is in the state and is intended to be used as a temporary specification when
functional decomposition has not yet reached a point at which Throughout can be
used. When the state is exited, A stops (unless, of course, it had stopped earlier
for some other reason). However, A does not necessarily start when the state is
entered.

� Insert - inserts a new line above the selected line.
� Delete - deletes the selected line.
� Choose - Opens the Activities in State dialog box from which you can select

activities to control using the Activities in State list.
230 User Guide

Creating and Modifying Elements
Transition

To open the Transition properties dialog box, in the Statechart Graphical Editor, select Tools
> Extended Properties.

The Transition properties dialog box contains the following items:

� Attributes tab
� Design Attributes tab
� Description tab - A text box for a long description of the transitions.
Rational Statemate 231

Element Properties
Instance State of Generic Chart

The Instance State of Generic Chart properties dialog box contains the following items:

� Parameter area - contains the names of actual parameters. An actual parameter is
an element or constant, defined in the scope of an instance of a generic chart, that
is mapped into a formal parameter of the generic chart during instantiation. The
actual binding of an element must match the type of the formal parameter.

� Insert - adds a new line above the selected line.
� Delete - deletes the selected line.
� Auto Binding - determines whether automatic binding is used.
� Fill Formats - sets the fill color and type.
232 User Guide

Creating and Modifying Elements
Activity

Rational Statemate supports the following activity elements:

� Activity
� Basic activity
� Control activity
� External activity
� Datastore
� Router

Each activity element has its own unique properties, though the operations are essentially the
same and designed to be self-explanatory. For the sake of brevity, this manual uses the Basic
Activity properties dialog box for the example because it is the most inclusive.
Rational Statemate 233

Element Properties
The Activity properties dialog box contains the following items:

� Termination Type - A pull-down menu for selecting a type of termination. A
termination expresses the activation rules for an activity. This should be reflected
in the mini-spec of the activity. The following terminations are supported:

– Reactive-Controlled - This type of activity is started by the control activity at
the next higher level of the activity chart hierarchy. Once started, it will
remain active for one or more steps until it is stopped by the same control
activity. This type of activity can itself contain a control activity or mini-spec.

– Reactive-self - This type of activity is started by the control activity at the
next higher level of the activity chart hierarchy. This type of activity can itself
contain a control activity or mini-spec. Once started, it remains active for one
or more steps, until it ends by entering a termination connector in its control
activity or executing a stop action in its mini-spec.

– Procedure-like - This type of activity is started by the control activity at the
next higher level of activity chart hierarchy. Once started, it runs to
completion in a single step. This type of activity can itself contain a mini-
spec, but can not contain a control activity.

� Selected Implementation - A pull-down menu for selecting an implementation.
The following implementations are supported:

– Mini-Spec - Specifies that the activity is to be described by a mini-spec.
– Subroutine Binding - Specifies that the activity is to be described by a

subroutine.
– Truth Table - Specifies that the activity is to be described by a truth table.

For more information on truth tables and for instructions on how to define a
truth table in Rational Statemate, see Truth Tables.

– Best Match - Directs Rational Statemate to select the implementation to use
where more than one has been previously specified. The order in which the
analysis tool (Simulation or Code Generation) selects an implementation is
the order in which the options appear in the menu listing (as shown here). You
can override the Best Match by explicitly selecting an implementation option.
If the explicitly selected option has not been previously specified, the analysis
tool uses the Best Match selection.

– None - No implementation is to be used.
� Mini-Spec - If a mini-spec implementation is selected, in this text box, define the

fields that contain trigger/action expressions, except for procedure-like activities,
which contain action expressions.

� Is Activity - A text box to link an activity in one part of a module chart/activity
chart hierarchy to another activity in a different activity chart.
234 User Guide

Creating and Modifying Elements
� Implemented by Module - If linking an activity, in this text box, specify the link
from an activity to a lower-level module that implements the functionality of the
activity.

� Subroutine Binding - Associates a subroutine with the current activity. The
subroutine is executed when the activity chart is accessed. The subroutine can be
a procedure or a task.

� Combinational Assignment - A combinational assignment is the expression used
to assign a value to a combinational element with the following syntax:

X := Y1 when C1 else

Y2 when C2 else

...

Ynz

where X is a variable condition or data-item, Y1 to Yn are expressions, and C1 to
Cn are condition expressions.

� Truth Table - If a truth table is selected as an implementation, the truth table is
defined here.

– Edit - a button that brings up the truth table for editing.
– Delete - a button that deletes the truth table.

Note: For more information on truth tables and for instructions on how to define a
truth table in Rational Statemate, see Truth Tables.
Rational Statemate 235

Element Properties
Instance Activity

Rational Statemate supports the following instance-activity elements:

� Component Chart
� Offpage Chart

Each instance-activity element has its own unique properties, though the operations are in
many cases the same and designed to be self-explanatory.

The Instance Activity of Generic Chart properties dialog box contains the following items:

� Parameter - See Description Tab for a description.
� Termination Type - A pull-down menu. See Activity for a description.

Module

Rational Statemate supports the following module elements:

� Module
� Storage module

For the sake of brevity, this manual uses the Module properties dialog box for the example
because it is the most inclusive.
236 User Guide

Creating and Modifying Elements
The Module properties dialog box contains the following items:

� Chart - displays the name of the chart the element is associated with.
� Name - displays the name of the element.
� Synonym - A text box for adding an alternate name for the element. The name

may be used in other expressions to reference the element.
� Description - A text box for adding a brief description of the element (up to 80

characters).
� Module Purpose - A pull-down menu for selecting from the following:

– Regular (default)
– Controller
– Library
– Bus

� Described by Activity Chart - Specifies the activity chart the module is linked
to.
Rational Statemate 237

Element Properties
Use Case

The use cases in a use case diagram can be described and linked with a Rational Statemate
model through the use-case properties.

The Use Case properties dialog box contains the following items:

� Use-Case External Description - Describes the use case, using a customizable
template.

� Scenario - List of scenarios associated with the use case. Each scenario can be
linked to a sequence diagram and a set of attributes describing it.

The Scenario matrix includes full spreadsheet capabilities, including:

� Scalable cell width and height
� Cell dimensions saved with matrix
� Cell text wrapping
238 User Guide

Creating and Modifying Elements
Chart Elements

Rational Statemate supports the following chart elements:

� Statechart
– Basic
– Generic
– Procedural

� Activity chart
– Basic
– Generic

� Module chart
– Basic
– Generic

For the sake of brevity, this manual describes the most representative and inclusive chart
elements.
Rational Statemate 239

Element Properties
Procedural Statechart

The Procedural Statechart properties dialog box contains the following items:

� Local Variables - displays the name and data type of local variables for the chart.
� Insert - a button that inserts a new line above the selected line.
� Delete - a button that deletes the selected line.
� Properties - a button that opens the properties dialog box for a selected variable.
� Choose - a button that opens a window from which to select and add variables.
� Info - a button that displays information on a selected variable.
240 User Guide

Creating and Modifying Elements
Procedural Flowchart

The Procedural Flowchart properties dialog box contains the following items:

� Local Variables - displays the name and data type of local variables for the chart.
� Insert - a button that inserts a new line above the selected line.
� Delete - a button that deletes the selected line.
� Properties - a button that opens the properties dialog box for a selected variable.
� Choose - a button that opens a window from which to select and add variables.
� Info - a button that displays information on a selected variable.
Rational Statemate 241

Element Properties
Generic Activity Chart

The Generic Activity Chart properties dialog box contains the following items:

� Name is a text box that displays the name of the element and consists of
alphanumeric characters. This is a read-only field. To change the name, use the
Edit > Rename operation.

� Version is the Rational Statemate built-in Configuration Management tool tracks
versions using whole numbers (positive integers). When creating a new item and
checking it into the databank, Rational Statemate assigns it a version number of
“1”. Each time someone checks the item in, Rational Statemate increments the
highest existing version number.

Third-party CM tools may use other systems of version numbering, in which case
the version numbers displayed by Rational Statemate conform to the format of the
third-party tool.

� Mode for update or read-only. Determines whether:
– Graphic editor editing features and drawing icons are active.
– Changes made in the Properties window can be saved.
– Read-only is the only available mode when either of the following apply.
– You have read-only access to a chart.
– You have opened a chart on which you do not have a lock.
– You have already opened a chart in the same session.
242 User Guide

Creating and Modifying Elements
� Modified on/Created by/Created on - Text boxes that contain the expected
information and are read-only.

� Description - A text box for adding a brief description of the element (up to 80
characters).

For directions on how to use the Parameters section, see Description Tab.

Resetting Default Values for Elements
You may reset elements to their default values during runtime using these two operators:

� reset_element(<Element>) resets a single element to its default value
� (reset_all_elements()) resets the entire scope to the elements default value during runtime

Note: These operators are reserved words.

Both reset operators can be used in any place where an assignment expression is allowed,
except for combinational assignments.

Both types of execution tools, simulation and the code generators, support these reset
operators.

reset_element(TextualElement)

This operator receives only the parameter indicating which textual element to reset. The
derived events (wr, ch) are generated.

reset_all_elements()

This operator does not use parameters. When it is called within a subroutine, it executes after
exiting the subroutine. The default values are not assigned during the subroutine run.
However, no derived events (wr, ch) are generated.

Elements can be excluded from the reset_all_elements operation by adding an attribute to their
properties. Elements with an attribute named STM_RESET_EXCLUDE and value “Yes” are not
reset to their default value when the reset_all_elements operation is executed. The existence of
the attribute is considered for fields (i.e., a record field cannot be excluded from reset_all, only
the whole record). The STM_RESET_EXCLUDE attribute affects the reset_element operation.
Rational Statemate 243

Element Properties
Searching for Elements
Elements, with specific properties, can be searched for using the Search tool. Use the Search tool
to perform the following tasks:

� Creating a List of Elements

� Saving a List

� Accessing a Stored List

� Filtering a List of Elements

� Appending to a List of Elements

� Running an Advanced Query

Starting the Search Tool

To start the Search tool, do one of the following:

� In the Rational Statemate main window, select the Search icon.

� In the Rational Statemate main window, select the Search tab (shown below).
� In the Rational Statemate main window, select Tools > Search. The Search dialog box

displays.
244 User Guide

Searching for Elements
Rational Statemate 245

Element Properties
Creating a List of Elements

The Search tool can create a list of elements.

To create a list of elements:

1. From the Type pull-down menu, select a primary element type (textual, graphical, or
chart).

Note: Narrow the scope of the search (filter the list) by using additional options.

2. (Optional) From the Sub-Type pull-down menu, narrow the scope of the search by
selecting a sub-type.

3. (Optional) From the Structure pull-down menu, narrow the scope of the search by
selecting a structure.

4. (Optional) From the In Chart/GDS pull-down menu, narrow the scope of the search by
selecting a specific chart or GDS or by selecting All (the default).

5. (Optional) Narrow the scope of the search by enabling or disabling the following buttons
(all the buttons are enabled by default):

– Defined - Elements that are defined in a chart of GDS
– Undefined - Elements that are undefined in a chart or GDS
– Used - Elements that are used in a chart or GDS
– Not used - Elements that are not used in a chart or GDS

6. (Optional) Enter a search pattern in the Name Pattern text box, using alpha-numeric
characters, the underscore, and wildcards.

7. Enable the New List button in the Search Options area.

8. Click Search Now to create the new list.

The list of elements displays in the right pane. The search results display names that are up to
64 characters in length with descriptions that may be up to 250 characters long.

Note
Open the Properties window for an element in the search list by double-clicking on the
element.
246 User Guide

Searching for Elements
Saving a List

Once a list is created, it can be saved.

To save a list:

1. On the Search tab, select List > Save List As. The Save As dialog box displays.

2. Do the following:

a. Enter a name for the list in the List Name text box, or select a current list to overwrite
from the pull-down menu.

Note: If overwriting an existing list, you are prompted to confirm your decision.

b. (Optional) Enter a description for this list for future reference in the Description
textbox.

c. Click OK to confirm your selections and save the list.
Rational Statemate 247

Element Properties
Accessing a Stored List

To access a stored list:

1. From the Search tab, select List > Open Stored List. The Stored Lists dialog box
displays.

2. Select a list to open.

3. Click OK. The stored list is displayed in the right pane of the Search dialog box.
248 User Guide

Searching for Elements
Filtering a List of Elements

After creating a list, you may need to reduce further the number of elements in the list or group
elements by certain categories. This is called filtering.

To filter a list of elements:

1. Open the existing list by following the instructions in Accessing a Stored List.

2. Choose filtering criteria by using the options described in Creating a List of Elements.

3. Select the Filter Existing List button under the Search Options area.

4. Click Search Now to filter the list.

The filtered list displays in the right pane of the Search dialog box.

Note
You can open the Properties window for an element in the search list by double-clicking on
the element.

Appending to a List of Elements

After you create a list, you may need to append additional elements to the list.

To append to a list of elements:

1. Open the existing list by following the instructions in Accessing a Stored List.

2. Choose filtering criteria by using the options described in Creating a List of Elements.

3. Select the Append to List button under the Search Options area.

4. Click Search Now to append the newly selected elements to the list.

The expanded list displays in the right pane of the Search dialog box.

Note
You can open the Properties window for an element in the search list by double-clicking on
the element.
Rational Statemate 249

Element Properties
Running an Advanced Query

Sometimes the search criteria in the Search dialog box are not granular enough for your needs.
When more detailed searches information is needed, used the advanced query. To run an advanced
query:

1. With the Search dialog box displayed, click the Advanced Query icon or select
Tools > Advanced Query. The Advanced Query window opens.

2. Select an element type from the Element Type pull-down menu. Depending on the
element type you select, various query choices appear in the main list of queries.
250 User Guide

Searching for Elements
3. Select a query, then click Apply to execute the query.
The query results appear in the right pane of the Search dialog box.

3.1 Some advanced queries, like Elements whose synonyms match a pattern, require
user input. As a result, when you select these types of advanced queries, a dialog box
displays for input.

3.2 To search for Element by attribute:
Enter Attribute name in the Name field;
In the Value field enter:
 Explicit value - searches for elements with the specified value for the specified
attribute name;
 Asterisk ("*") - searches for elements with any value for the specified attribute
name;
 Empty string ("") - searches for elements with no value for the specified
attribute name.

Leaving the Name field empty searches for elements with no attributes at all.

4. When you are finished executing queries, click OK.
Rational Statemate 251

Element Properties
The following table lists the supported advanced queries by element type.

Element Type Supported Queries User Input
Required

A-flow Line Elements whose synonyms match a pattern Yes

Elements that are targets of a given a-flow line Yes

Elements that are sources of a given a-flow line Yes

Elements flowing through a given a-flow line Yes

Highest level elements flowing through a given a-flow line Yes

Elements labeling a given a-flow line Yes

Action Elements whose synonyms match a pattern Yes

Elements that appear in the definition of a given action Yes

Elements that influence the value of a given action Yes

Elements that see a given action Yes

Elements that see or are influenced by a given action Yes

Activity Elements whose synonyms match a pattern Yes

Elements that see a given activity Yes

Elements that see or are influenced by a given activity Yes

Elements referenced by a given activity Yes

Elements referenced by or that influence a given activity Yes

Elements used by a given activity Yes

Elements affected by a given activity Yes

Elements resolved to a given external activity Yes

Chart/GDS Elements whose synonyms match a pattern Yes

Elements referenced by a given chart

Elements referenced by or influence a given chart Yes

Elements defined in a given chart Yes

Elements unresolved in a given chart Yes

Elements defined or unresolved in a given chart Yes

Textual elements defined in a given chart Yes

Textual elements unresolved in a given chart Yes

Textual elements defined or unresolved in a given chart Yes

Parameters/ports in a given chart Yes

In parameters/ports in a given chart Yes

Out parameters/ports in a given chart Yes

In/Out parameters/ports in a given chart Yes

Analysis Statistics/ports in a given chart Yes
252 User Guide

Searching for Elements
Condition Elements whose synonyms match a pattern Yes

Elements that appear in the definition of a given condition Yes

Elements that influence the definition of a given condition Yes

Elements that see a given condition Yes

Elements that see or are influenced by a given condition Yes

Elements in which a condition is used Yes

Elements in which a given condition is affected [P]

Data-item Elements whose synonyms match a pattern Yes

Elements that appear in the definition of a given data-item Yes

Elements that influence the definition of a given data-item Yes

Elements that see a given data-item Yes

Elements that see or are influenced by a given data-item Yes

Elements in which a given data-item is used Yes

Elements in which a given data-item is affected Yes

Data Type Elements in which a given data-item is used Yes

Elements in which a given data-item is affected Yes

Elements that see or are influenced by a given data-item Yes

Data-store Elements whose synonyms match a pattern Yes

Element that see a given data-store Yes

Event Elements whose synonyms match a pattern Yes

Elements that appear in the definition of a given event Yes

Elements that influence the definition of a given event Yes

Elements that see a given event Yes

Elements that see or influence by a given event Yes

Elements in which a given event is used Yes

Elements in which a given event is affected Yes

Field Elements whose synonyms match a pattern Yes

Elements that appear in the definition of a given field Yes

Elements that influence the definition of a given field Yes

Elements that see a given field Yes

Elements that see or are influenced by a given event Yes

Elements in which a given event is used Yes

Elements in which a given event is affected Yes

Elements containing a given field Yes

Element Type Supported Queries User Input
Required
Rational Statemate 253

Element Properties
Function Elements whose synonyms match a pattern Yes

Elements that see a given function Yes

Elements that see or influenced by a given function Yes

Information-flow Elements whose synonyms match a pattern Yes

Elements that appear in the definition of a given information
flow

Yes

Elements that influence the value of a given information-flow Yes

Elements that see a given information-flow Yes

Elements that see or are influenced by a given information-
flow

Yes

M-flow Line Elements whose synonyms match a pattern Yes

Elements flowing through a given m-flow line Yes

Highest level elements flowing through a given m-flow line Yes

Elements labeling a given m-flow line Yes

Mixed Elements whose synonyms match a pattern Yes

Elements that appear in the definition of a given element Yes

Elements that influence the value of a given element Yes

Elements that see a given element Yes

Elements that see or are influenced by a given element Yes

Elements used by a given element Yes

Elements affected by a given element Yes

Elements in which a given element is used Yes

Elements in which a given element is affected Yes

Unresolved elements

Elements explicitly defined

Elements that are parameters

Elements resolved to an external box

Elements by attribute

Module Elements whose synonyms match a pattern Yes

Elements that see a given module Yes

Elements referenced by a given module Yes

Elements referenced by or that influence a given module Yes

Elements resolve to a given external module Yes

Element Type Supported Queries User Input
Required
254 User Guide

Searching for Elements
State Elements whose synonyms match a pattern Yes

Elements that see a given state Yes

Elements that see or are influenced by a given state Yes

Elements referenced by a given state Yes

Elements referenced by or that influence a given state Yes

Elements used by a given state Yes

Elements affected by a given state Yes

Subroutine Elements whose synonyms match a pattern Yes

Elements that appear in the definition of a given subroutine Yes

Elements that influence the definition of a given subroutine Yes

Elements that see a given subroutine Yes

Elements that see or are influenced by a given subroutine Yes

Transition Elements whose synonyms match a pattern Yes

Elements labeling a given transition Yes

Elements that are targets of a given transition Yes

Elements that are sources of a given transition Yes

Elements used by a given transition Yes

Elements affected by a given transition Yes

Undefined Elements whose synonyms match a pattern Yes

Unresolved elements

Elements explicitly defined

Elements that are parameters.

User-Defined
Type

Elements whose synonyms match a pattern Yes

Elements that appear in the definition of a given User-Defined
Type

Yes

Elements that influence the definition of a given User-Defined
Type

Yes

Elements that see a given User-Defined Type Yes

Elements see or influence by a given User-Defined Type Yes

Element Type Supported Queries User Input
Required
Rational Statemate 255

Element Properties
Finding Where Elements are Referenced and Used

The Search tool enables you to track the location in charts where elements are used (called
referencing an element) and track the various charts in which an element displays (called finding
where an element is used).

The following sections explain in detail how to perform these operations.

Finding Where Elements are Referenced
To find where elements are referenced:

1. Create a list or open a stored list. For instructions on how to perform these tasks, see
Creating a List of Elements and Accessing a Stored List.

2. In the right pane, highlight the list element or elements you want to track.

3. Either from the right-click menu or in the Tools menu, click Where Referenced. The
Search tab then replaces the list with the referenced information.
256 User Guide

Searching for Elements
Rational Statemate 257

Element Properties
Finding Where Elements are Used
To find where elements are used:

1. Create a list or open a saved list. For instructions on how to perform these tasks, see
Creating a List of Elements and Accessing a Stored List.

2. In the right pane, highlight the list element or elements you want to track.

3. Either from the right-click menu or in the Tools menu, select Where Used. The Search
tab is replaced with the Charts tab and the charts where the elements are used are
highlighted.
258 User Guide

Libraries and Components
This section describes the component editor. The topics are as follows:

� Working with Components

� Working with Libraries

A component is an element contained in a library that can be shared across projects, much like a
routine in a code library.

A component is defined in a generic activity chart, which is a special activity chart that enables
you to define global activities that can be shared within a specific project.

The definition of a component includes three parts:

� Top-level name and inputs/outputs - The top-level design contains information on the
component’s name and inputs/outputs. If the top-level design is changed, all charts that
contain instances of that component must be modified by you (as a change here will cause
changes to the charts). Use the Check Model tool to detect instances that are not up to
date.

� Behavior - The behavior of the component is reflected in all the versions of charts that use
the component. If the behavior is changed, you do not have to update the graphic editors
that contain instances of that component. Analysis tools automatically sense the new
behavior, as well.

� Icon - The icon is a pixmap that represents the component in the Component Browser. A
one-line text is attached to the pixmap to enable you to attach a description to the
component. The system then automatically attaches this description of the top-level
activity of the generic chart to be the description of the component.

If the icon is changed, you do not have to update the graphic editors that contain instances
of that icon’s component. Analysis tools (such as Simulation) do not sense the
modification, but the Component Browser is refreshed with the new icon.
Rational Statemate 259

Libraries and Components
Note
Global definition sets (GDSs) can be part of a component. When you create a component,
the related GDSs are automatically added to the component's configuration. (A GDS is
related if it contains user-defined types or constants that are part of a component
definition.).

When you delete a chart from the workarea, GDSs that are no longer relevant (because the
last instance of a specific component was deleted) are automatically deleted from the
workarea, as well.

Note the following behavior relevant to components:

� The Check Model tool tests the legality of an instantiation of a component by comparing
the flows in the activity charts against the component’s specification. Check Model does
not “dive” into the components themselves, however.

� The Reports tool reports on the instances themselves, and like all kernel tools, sees only
the specifications of components. The Reports tool does not “dive” into the components
themselves.

� Dictionary and protocol reports list instances of components with their stubs and their type
definition and the short and long descriptions of the components.

� The Simulator tool can simulate components. The Simulator loads the body of
components into the database. This is transparent to all other Rational Statemate tools,
except the graphic editor in the case that a highlight was explicitly required by you.

When the Simulation preference Have Access to Component Elements is set to Yes
(default is No), access to internal elements in the component is enabled (within Monitors,
Do actions, Highlight GEs etc.)

� The Software Code Generators support components. The Code Generators load the body
of components into the database. This is transparent to all other Rational Statemate tools.
260 User Guide

Working with Components
Working with Components
The following sections discuss components in more detail. For more information on components
and libraries, see Example Components.

Creating a Component

To create a component:

1. Create a generic chart.

Generic charts enable reuse of parts of a specification. A generic chart makes it possible
to represent common portions of the model as a single chart that can be instantiated in
many places, much like a procedure in a conventional programming language.

Generic charts are linked to the rest of the model by parameters; no other elements
(besides the definitions in global definition sets) are recognized by both generic charts
and other portions of the model.

For instructions on creating a generic chart, see Creating a New Chart or Diagram.

Note the following:

� A generic chart can only have one top-level activity.
� Type definitions of all parameters must be complete. (That is, no unresolved data-

items or user-defined types can exist in the chart.)
2. In the Charts, Files, or Databank tab of the Rational Statemate main window, select

Configuration > Create/Modify Component. The Create/Modify Component window
opens.
Rational Statemate 261

Libraries and Components
3. From this window:

a. In the Label text box, enter a name for the component. The limit is 64 alpha-numeric
and underscore characters (_).

b. Multi-Labeling

The Library Component versioning mechanism allows the association of several
labels with a single component version. Association of a new label with an existing
version is done by editing the space delimited label list in the Version Label column
of the Configuration > Components Version table.

Note: The same label cannot be associated with different versions. Associating an
already associated label with a new version results in the removal of the
previous association.

c. The Description text box displays the description of the generic chart from the chart’s
properties and cannot be edited here.
262 User Guide

Working with Components
d. In the Icon Definition area create an icon that will appear in the Component Browser
to represent the component. You can create the icon in the following ways:

– Select Create Default Icon to create a default-size pixmap that contains a
rectangle and pins to represent stubs on its edge. The number of pins is similar
to the number of stubs up to a limit.

– Select the ellipsis (...) beside Import Icon From to navigate to an existing
icon name.

– Select Draw Icon, if the General preference “Icon Editor” has been
previously set to an icon editor available for your use. The ellipsis (...) beside
the Draw Icon button opens this editor on a predefined empty pixmap file.

– Use Existing Icon is available when you are modifying an existing
component, but do not want to change its icon.

4. Select Preview to view the component exactly as it will appear later.

5. Click OK.

Inserting a Component

When you insert a component into a chart or diagram, you essentially create a reference to that
component. The component cannot be edited when it is inserted. If the component should change
you have the choice of updating to the newer version.

Copying a component into a chart is similar to inserting a component, except that there is no
linkage between the instance and the component. For more information, see Copying a Component.

To insert a component:

1. Click on the Rational Statemate main window.

2. Select the component you want to insert.

3. Open the activity chart where you want to use the component.

4. Right-click and drag the component from the Component Browser to the chart or select
Edit > Insert Component.

Note: When a component is inserted into the graphic editor, it is inserted using the
current zoom. That is, if the editor is in Zoom x2, the component is inserted in
Zoom x2. If the editor is in Full View, the component is drawn in its original
size.

5. Connect the I/O pins to flows in the chart.

6. Label the flow line to complete the data binding.
Rational Statemate 263

Libraries and Components
Note

� When inserting a component with global definition sets, the GDSs are loaded in read-only
mode to your workarea. This ensures that all global definitions and declarations exist in
the new model and that there are no conflicts between the model’s definitions and the
inserted component’s definitions.

These GDSs are part of the your model, but you cannot check them into the databank. The
GDSs are automatically deleted when all references to components that need them are
deleted. The imported GDSs are listed in the Chart tab of the Rational Statemate main
window, but have a different icon in the tree section.

� When a component is inserted it is read-only. Stubs are also read-only. You cannot modify
the stub position, stub name, or stub mode. Only the instance name can be modified. By
default, the component name is <COMPONENT_NAME>. You can add an instance
name before the <. This is done using the regular Edit Text operations, but when applying
the change, the application checks that the <COMPONENT_NAME> name was not
changed.

By default, you cannot change the color or text font of a component. An activity chart
Specific Preference Allow editing of Instance Component (default No) blocks editing
operations on component instances. When the preference is set to Yes, you can change the
size, shape, color and font of the component instances, and the color of stubs. However,
you cannot move, delete or change the name of stubs.

Arrows only enter and exit the head of the stubs.
264 User Guide

Working with Components
Copying a Component

Copying a component into a chart is similar to inserting a component, except that there is no
linkage between the instance and the component. For more information, see Inserting a
Component.

Note
When you copy a component to an activity chart, the stubs of the components are removed.
All charts of the components are then loaded into the workarea as “new” charts. Charts with
names that conflict with existing charts are renamed, and a warning message is issued.

To copy a component:

1. Click on the Rational Statemate main window.

2. Select the component you want to use.

3. Open the activity chart where you want to use the component.

4. In the chart editor, select Edit > Copy Component. The component displays within the
chart.

5. Position the component by clicking and dragging it to the desired location.

Note
When a component is copied into the graphic editor, it is copied using the current zoom.
That is, if the editor is in Zoom x2, the component is copied in Zoom x2. If the editor is in
Full View, the component is drawn in its original size.
Rational Statemate 265

Libraries and Components
Previewing a Component

You can control the layout of a component by changing the set of activity chart preferences. As
you make changes, you can preview them in real time by selecting File > Preview Component
from an activity chart editor or from the Create/ Modify Component operation in the toolbar of
the Rational Statemate main window.

Note

� The component and stubs are displayed with the same graphic attributes (shape, size,
color, font, etc.) that will appear when the component is inserted into a chart.

� One activity is displayed using a similar shape as the top-level activity in the generic
activity chart.

� The box size is the minimum size required to map all stubs, but not smaller than a
predefined (preference) size.

� Notes that reside inside the top-level box are mapped into the component.
� The stub placement is based on the intersection point between flow lines and the top-level

activity. The stubs are positioned with equal distance between them. (The distance is a
preference.) These (intersecting) arrows are labeled and the label is used for the synthesis.
Arrows without labels are ignored.

� Stubs are defined as either information or regular stubs.
� Formal parameters that do not appear on external flows are mapped to stubs (inputs at the

left edge, outputs at the right edge of the component).
� If the grid is on (in the generic chart), the synthesis is done according to the above, but also

follows the grid rules. (If the distance between stubs contradicts the grid settings, the
distance between stubs is enlarged to fit into the next grid point.
266 User Guide

Working with Components
Deleting a Component

To delete a component:

1. From the Charts, Files, or Databank tab of the Rational Statemate main window, select
Configuration > Remove Component.

2. Select the component to be deleted.

3. Click OK to confirm your choice.

Managing Components

The Component Browser lists any currently available libraries for your project.

To manage components from the Component Browser, in the Charts, Files, or Databank tab of the
Rational Statemate main window, select Configuration > Create/Modify Component or click

. The Component Browser window opens.
Rational Statemate 267

Libraries and Components
The Component Browser window lists any currently available libraries for the project. From
the Component Browser window you can:

� View the icons representing the components in a library by selecting the library name.
� Read a description of a component and its I/O’s by selecting the component’s icon and

clicking Info. This opens the Info window, which contains version information about the
component.

� Add additional libraries to your workarea (and not the project as a whole) by clicking
Insert.

� Delete a library name from your workarea, by clicking Delete.

Note
Deleting a library name here does not delete the library itself, or the library from the project
(if it had previously been added at the project level).

Working with Libraries
A library is a container for model components. Any Rational Statemate project, new or existing,
can be designated as a library.

Together, libraries and components offer a means to speed the process of design specification and
to help you create more consistent specifications. Reusing previously created Rational Statemate
model elements can save time and allows for more consistent designs.

To define a project as a library, select Defined As Library on the Create New Project window or
the Modify Project window.

You can add other predefined libraries to a library project during the setup. Also, you can set a
general preference to automatically add a predefined list of libraries to any new project (whether or
not it is a library).

If you are the project manager, you can establish and modify a list of libraries to automatically
become available to any of the project members. (In addition, project members can add libraries to
their own workareas. These libraries are only available for the duration of the current Rational
Statemate session, however, and only to the specific workarea.)
268 User Guide

Working with Libraries
Adding Libraries to a Project

Project managers can make a list of libraries automatically available to any of the project’s
members. In addition, project members can add libraries to their own workareas.

To add libraries to a project:

1. From any tab on the Rational Statemate main window, select Project > Project
Management.

2. Click New to create a new project or click Modify to modify an existing one.

3. Check Expand to view the Libraries information.

4. Click Insert next to the Libraries matrix to add a library. The Select Libraries dialog box
displays with all the predefined libraries listed in alphabetic order.

5. From the Select Libraries dialog box, select the libraries to add to the project.

6. Click OK.

Note
Each component in the library is represented by an icon that can be dragged and dropped
into an activity chart. The icons also show the number of inputs and outputs for each
component. In this Component Browser dialog box, the STM_BRANCH_2 icon shows
three inputs and two outputs.
Rational Statemate 269

Libraries and Components
For more information on components and libraries, see Example Components.
270 User Guide

The Router Element
This section describes the Router element. The topics are as follows:

� Router Element for the Activity Charts

� Working with the Router

� Defining Router Properties

� Interface Reporting

� Using Check Model with Router Blocks

� Exporting Router Blocks to Rational DOORS

� Setting Router Preferences

Router Element for the Activity Charts
Activity charts in Rational Statemate offer a drawing element called the Router. The router makes
creating and maintaining activity charts easier by reducing the need to draw many flow lines
between activities.

The router element can be used when you have a large number of flow lines between different
activities in your activity chart. It effectively “routes” the signals from a source to a target within
the diagram or to another part of the system. Rational Statemate check-model checking is
performed on the router blocks to ensure that “what goes in also comes out.” Interface reporting
can be performed on activities as well as the router blocks to analyze where signals go within the
diagram.
Rational Statemate 271

The Router Element
Working with the Router
The router is accessed from an activity chart. For more information on activity charts, see Activity
Charts. The activity chart editor includes two drawing icons for the router element.

Statemate supports the following two types of routers:

� Internal router - The internal router (or simply “router”) represents router blocks used
within the scope of the top-most activity in a particular activity chart.

Internal routers are shown in blue, with a solid line at the top and bottom of the box, and
hashed lines for each side.

� External router - The external router represents router blocks used outside the scope of
the top-most activity in a particular activity chart. Because activity charts are hierarchical,
an external router is always resolved to an internal router in a chart higher in the chart
hierarchy.

External routers are shown in blue, with hashed lines at the top, bottom, and each side.
272 User Guide

Working with the Router
Drawing Router Blocks

The internal and external router blocks are drawn like the other graphical blocks (activities, data
stores, and so on) in the activity chart editor. A default name for the router block is automatically
displayed after you draw the block. The name can be changed. For more information, see Setting
Router Preferences.

Flow Lines can be drawn from a router to an external router, activity, external activity, data store,
control activity, or another router.

This is an activity chart that does not use the router. As a result, the chart has an abundance of flow
lines going to, from, and even crossing one another to reach their various activity destinations.

This chart uses two router blocks to effectively route the signals going between the external
activities and the internal activity blocks.
Rational Statemate 273

The Router Element
This chart illustrates the differences between an internal and external router. In the main diagram,
router_1 and router_2 are both internal. However, in the perform_release_gen activity, router_1
and router_2 are external routers.

Note
To provide a detailed interface description of those signals, and where they are flowing to
and flowing from, use interface reports. For more information, see Interface Reporting.
274 User Guide

Working with the Router
Using Routers to Reduce Flow Lines

Routers can be used to reduce the number of flow lines between different activities in an activity
chart. They effectively “route” the signals from a source to a target within the chart or to another
part of the model.

Router Rules
The following are the rules for both Internal and External routers:

� Within the chart of the basic/control activity, where a data-element is used/affected, that
element must explicitly flow to/from the activity or one of its ancestors.

� In a specific scope, there could be only one Internal Router <XXX>, but there may exist
multiple occurrences of External Routers <XXX>, which all resolve to the Internal one.

� An External occurrence of a Router may also exist within the same chart as the Internal
Router to which it resolves.

� Since multiple occurrences of a single router may exist in one chart (maximum of one
internal, and multiple external occurrences), the flow lines to/from all occurrences in the
chart are considered flowing to/from the router in that chart (similar to the current
behavior of external activities).

� The source and target activities of each element flowing through an Internal Router (or
through an external occurrence in the definition chart of the internal router) must be
identified within the same chart.This rule also applies to signals that are input to a router.

� All data-flows to/from an External Router (in charts lower in the hierarchy than the
router’s definition chart) must have a corresponding data-flow to/from that router in the
closest ancestor chart where an occurrence of the router exists (which is not necessarily
the parent chart).

Note: This restriction means that data elements cannot be transferred through a router
that is defined higher in the hierarchy than the data element’s definition
because then there could not be a “corresponding data flow to/from the router’s
occurrence in the closest ancestor chart where such an occurrence exists.”
Eventually, the “closest ancestor chart where such an occurrence exists” would
be the chart where the internal router is defined.
Rational Statemate 275

The Router Element
Compound Flow Lines through Routers
When building compound flow lines in a model with Routers, the tool will identify source, target
and flowing elements of data-flows which pass through Routers, and will build the appropriate
compound flow lines.

Local flow lines entering an internal router or its external occurrence within the same chart is
intersected with the local flow lines exiting the router, and compound local flow lines are created
accordingly.

Local Compound Flow Lines through External Routers

Local flow lines entering and exiting an external router will be combined together to a local
compound flow line, only when the external router occurrence is within the definition chart of the
internal router it resolves to.

Global Compound Flow Lines through Routers

Global compound A-flow lines, which pass through routers, are created only when the router is
resolved (i.e., all external occurrences of the router resolve to an existing internal router).

For each element flowing to/from an external router, the tool identifies its real source/target by
climbing the hierarchy up to the internal router. On that level, according to the router usage rules,
the source/target must be identified. If the identified source/target is an off-page instance box, the
tool dives into it to find the actual source/target of the flowing element.

Note
The tool does not create compound flow-lines through routers when both the source and the
target of the compound flow-line is a data-store.

When the general preference “Allow Flow-line Loopbacks through Routers” is set to 'No',
Statemate does not create compound flow-line through routers when both source and target
of the compound flow-line is the same basic activity.
276 User Guide

Defining Router Properties
Defining Router Properties
Like other graphical elements in Statemate, internal routers have properties associated with them.
In the Router properties dialog box:

� Textual description, long description, or attributes are entered.

Note
Router blocks, throughout your Statemate model, can be found using the Search tool. In the
Sub-type list, click External-Router or Router (internal). For more information on the
Search tool, see Searching for Elements.
Rational Statemate 277

The Router Element
278 User Guide

Interface Reporting
Interface Reporting
You can obtain interface information for routers and activities within activity charts. The interface
report shows input and output flow information for each block, and their associated sources and
sinks.

Local Interface Report

The local interface report lists the “immediate” activities that the various signals flow to or flow
from, as shown in the following figure.
Rational Statemate 279

The Router Element
Global Interface Report

The global interface report lists the signals flowing to or from the selected activity and their
source/target activities ; these are considered the producers and consumers of the signals.

It also supports the analysis of activity interfaces based on functionality (usage of data). This
interface analysis behavior is controlled by an Activity Interface Browser and Reports preference.
When this “Functional’ interface is selected, the Global Interface Reports are based on
functionality.

By default the tool displays the basic activity, which is the actual consumer/producer of the input/
output signal as source/target. By setting the preference Show source/target in LCA chart to Yes,
the user can choose to display the ancestor instance of the basic source/target activity in the Least
Common Ancestor chart (of the source/target and the selected activity).

Two global interface reports are available.

The first report, called Global Interface Report (Activities), shows the data sorted by the source
and sink activities names. An Activity Interface Browser supplies a graphical view of the Global
Interface Report (Activities) to allow browsing and navigation through the charts hierarchy. To
launch this browser, select Tools > Activity Interface Browser option. Then, you may select any
of these options:

� Properties
� Show in Model for selected charts/elements
� Show Interface for a selected activity
280 User Guide

Interface Reporting
The second report, called Global Interface Report (Elements), shows the data sorted by signal
name, as shown in the following figure.

Note
An Activity Interface Browser Reports preference, named View Interface Info Using
External Pager, controls the dialog box in which the information is shown. When set to No,
the tool shows the reports with the internal Info Viewer, as shown in the figures. When set
to Yes, the tool shows the reports using the pager defined in the general preferences
(Project > General Preferences).
Rational Statemate 281

The Router Element
Using Check Model with Router Blocks
Check model performs checks on router blocks to ensure that information flowing into the block
also flows out of it. Where external routers have been used, the check model ensures that an
original definition of the router exists, based on the chart hierarchy scoping rules. The following
figure shows a sample report.

Exporting Router Blocks to Rational DOORS
The Rational DOORS interface supports router blocks. To export router blocks to Rational
DOORS as elements, select Routers in the graphical tab for formal modules, as shown in the
following figure.
282 User Guide

Setting Router Preferences
Setting Router Preferences
There are a number of router preferences available from within the activity chart preference
settings. These router preferences follow the same User > Project > System hierarchy rules for
settings.

The following figure shows the preference settings for routers.
Rational Statemate 283

The Router Element
Internal Router Preferences

The available preferences for internal routers are as follows:

� Routers - Specifies the color used for router blocks. This can be any color from the pallet.
� Routers Horizontal Line Width - Specifies the horizontal line width for router blocks.

This is a value between 0 and 6.
� Routers Vertical Line Width - Specifies the vertical line width for router blocks. This is

a value between 0 and 6.
� Routers Horizontal Line Style - Specifies the horizontal line style. The possible values

are Dashed and Solid.
� Routers Vertical Line Style - Specifies the vertical line style. The possible values are

Dashed and Solid.
� Routers Fill - Specifies the color used for a “filled” router block. This can be any color

from the pallet.
� Routers Fill Style - If this is set to Fill, the router blocks are filled with the color specified

in the Routers Fill preference. If this is set to No Fill, the fill color is not used.
� Auto Router Name Prefix - Specifies the prefix used when naming router blocks.
� Routers Name Orientation - Specifies the orientation used when drawing the router

name. The possible values are Horizontal and Vertical.
284 User Guide

Setting Router Preferences
External Router Preferences

The preferences for an external router are as follows:

� External Routers - Specifies the color used for external router blocks. This can be any
color from the pallet.

� External Routers Horizontal Line Width - Specifies the horizontal line width for
external router blocks. This is a value between 0 and 6.

� External Routers Vertical Line Width - specifies the vertical line width for external
router blocks. This is a value between 0 and 6.

� External Routers Horizontal Line Style - specifies the horizontal line style. The possible
values are Dashed and Solid.

� External Routers Vertical Line Style - specifies the vertical line style. The possible
values are Dashed and Solid.

� External Routers Fill - specifies the color used for a “filled” external router block. This
can be any color from the pallet.

� External Routers Fill Style - If this is set to Fill, the external router blocks are filled with
the color specified in the External Routers Fill preference. If this is set to No Fill, the fill
color is not used.

� Auto External Router Name Prefix - specifies the prefix used when naming external
router blocks.

� External Routers Name Orientation - specifies the orientation used when drawing the
name of the external router. The possible values are Horizontal and Vertical.
Rational Statemate 285

The Router Element
286 User Guide

Global Definition Set Editor
This section describes the Global Definition Set Editor (GDSE). The topics are as follows:

� Creating a New GDS

� Editing an Existing GDS

� GDS Properties

The global definition set editor (GDSE) enables you to create a new global definition set (GDS) or
modify the definition of an existing GDS.

A GDS is a type of component that contains definitions of user-defined types, as well as constant
data-items and conditions. The elements that appear in a GDS are visible in the entire model. Data-
types defined in a chart or inherited from a parent chart take precedence over data-types defined in
a GDS.

A GDS is similar to a chart in that both are configuration items of the model. That is, both charts
and GDSs contain parts of the model and can be saved and loaded separately from other parts. A
GDS cannot contain any other graphical or non-graphical information.

There can be several GDSs in one model, but there is no hierarchical relationship between them, or
between them and the charts in the model.
Rational Statemate 287

Global Definition Set Editor
Creating a New GDS
When you create a new GDS, note the following:

� Any user-defined type or constant defined in a GDS is visible throughout the entire
workarea.

� You can have multiple GDSs in a workarea.
� A GDS can reference information in another GDS.
� Data types defined in a chart or inherited from a parent chart take precedence over data

types defined in a GDS.
� GDS cannot reference information in other GDS in a circular manner. For example, GDS

A cannot reference GDS B, if B references information in A.
To create a new GDS:

1. In the Statemate main window, click the GDS Editor icon . The Open GDS dialog
box displays.

2. Enter a name for the new GDS in the GDS Name text box.
288 User Guide

Creating a New GDS
3. Click OK to confirm your choice. The GDS Properties dialog box displays.

4. In the GDS Properties dialog box, click . The New Element dialog box displays.
.

5. In the Element Name text box, enter a name for the new element.

6. In the Chart Name pull-down menu, select the GDS name entered in Step 2.

7. Select the appropriate type from the Element Type pull-down menu.
Rational Statemate 289

Global Definition Set Editor
8. Click OK. The GDS Properties dialog box refreshes so that you can define the new GDS
element.

For more information on using the Properties dialog box to define elements, see Element
Properties and Libraries and Components.
290 User Guide

Editing an Existing GDS
Editing an Existing GDS
To edit an existing GDS:

1. In the Statemate main window, click . The Open GDS dialog box displays.

2. Click on a GDS in the Global Definition Sets list.

3. Click OK to confirm your choice. The GDS Properties dialog box displays.

4. Make the necessary edits. For more information, see Element Properties and Libraries and
Components.
Rational Statemate 291

Global Definition Set Editor
GDS Properties
GDS has the following properties:

� GDS Usage Property

� GDS Visibility Mode Property

GDS Usage Property

The GDS Usage property can be defined for statecharts, activity charts, GDSs, and flowcharts. It
cannot be defined for module-charts and sequence diagrams.

This property can be accessed from the chart Properties toolbar .

The GDS Usage form includes two editable lists and one read-only list:

� The Extend GDS Usage list includes the GDSs in the workarea that are currently not
visible.

� The Used GDS(s) list includes the GDSs that are currently visible. It includes a default
value, <All-Public-GDS>, which means that all the Public GDSs are visible, but not the
Explicit Usage ones.

� The Inherited Used GDS list (read-only) is calculated according to the chart hierarchy
and the GDS Usage property of the chart’s ancestors.

To edit the GDS Usage of a chart (or a GDS), select the chart (or GDS) in the workarea browser
and then select Edit > Properties.

GDS Visibility Mode Property

The GDS Visibility Mode property is accessed from the GDS Properties.

When set to Public, the information in the GDS is visible to all charts in the workarea that have
their GDS Usage property set to <All-Public-GDS> (the default). It is also visible to charts that
have the GDS included in the Used GDS(s) list.

When set to Explicit Usage, the information in the GDS is visible only to those charts that have the
GDS explicitly included in the Used GDS(s) list.
292 User Guide

GDS Properties
Reduced GDS

In order to have a workarea that has only necessary data, the user can delete unused GDS elements
in the workarea through the Check Model tool, see the Check Model User’s Guide, or by searching
and deleting unused elements. However, the deleted GDS elements may be required later.
Statemate also supports a “Filtered Check Out” operation which loads only the necessary data only
into the workarea.

A read-only GDS in the workarea is marked as “reduced” when deleting elements from it (“r” for
reduced in the files list, replacing the “m” for modified). A reduced GDS can neither be saved to
the databank nor locked. To improve workflow, the reduced GDSs can be removed automatically
from the workarea using the Configuration > Reduce Workarea option in the Chart view. For
more information, see Reducing the Workarea.

Selecting “Filtered Check Out from Databank” while in the “Charts” tab reloads deleted elements
from all reduced GDSs, which may solve the resolution of currently unresolved elements in the
workarea.

Once marked as reduced, the GDS keeps this status, even after adding elements or modifying
existing elements. Only the “Check out from Databank” (either in update or read only mode),
“Import” or “Delete from Workarea” operation changes this status.

Note

� This operation may add unused elements to the workarea for elements that their resolution
is not conclusive in the filtered check-out calculation.

� In the case of conflicting type definitions, the resolution results of a filtered workarea may
be different from the resolution results of a complete workarea. For example, consider the
following case:

Enum Type OneType {one, two, three}

Enum Type SecondType {one, two, three}

Expression: X := one;

When both OneType and SecondType definitions exist in the workarea, and X is
undefined, the right-hand side “one” is unresolved. However, if only one of the two type
definitions is loaded to the workarea, the tool resolves the right-hand side “one” to the
loaded type.
Rational Statemate 293

Global Definition Set Editor
294 User Guide

MicroC Code Generator
This section describes the MicroC Code Generator in the following topics:

� Scope Definition shows the Module structure of the profile.
� Code Options describes the available options for code generation.
� Rational Statemate Block in a Rational Rhapsody Model explains how a Rational Statemate

model can be integrated into a Rational Rhapsody model.
� Code Optimizations explains how to optimize generated code.
� OS Definition Tool describes customizing the code generator.
� Supported Targets lists the operating systems and machines on which the generated code

runs.
� Utilities describes the code generator utilities.

Scope Definition
The Scope Definition, which is in the Profile Editor main window, shows the Module structure of
the profile in a tree format or as a list. Both views show the charts assigned to each module and
how they were assigned.

Module Structure

A Module is a collection of statecharts and activity charts that comprise a component.

A Module signifies a single source file with its functions.
Rational Statemate 295

MicroC Code Generator
Testbenches

Testbenches are separate Statecharts created outside the specification of the system being
developed.

Testbenches trap a specific behavior to test a design’s inputs and outputs. It‘s a “snapshot of a
scenario.” Testbenches also serve as debuggers and they’re visible to all signals in the design
without having to draw discrete flows.

Note
Testbenches cannot test generics.

Creating a Sample Profile

This section shows how to create a sample profile and generate code for it.

Invoking the Profile Editor
Use the following steps to access the Profile Editor and create a new profile.

1. Select the MicroC code generator from the main window.

MicroC
296 User Guide

Scope Definition
The appropriate Profile Editor displays.

2. Select File > New Profile.

The New Compilation Profile dialog displays.
Rational Statemate 297

MicroC Code Generator
3. Enter the name of the new profile in the Profile Name box and click OK.

The Profile Editor enables all the menu selections and displays the profile name in the title bar.

Defining Code Modules
Code module can be structured as desired to meet the needs of the model being simulated. Use the
following steps to define the structure of modules that reflects the way you want the code
organized. Note that each module may contain one chart, several charts, or a portion of a chart.

1. Click or select Edit > Create Module.

The Create Module dialog box opens.

2. Enter the name of the new module and click on OK.
298 User Guide

Scope Definition
Assigning Behavior to the Module
Use the following steps to select charts from the workarea and assign them to the module you
want.

1. Click or select Edit > Add With Descendants. The Chart Tree opens

2. Select the chart(s) you want to assign to the module by clicking on it. For example, select
the Activity Chart REAR_DEFOG.

Note: To select charts with their descendants in a hierarchy, select only the parent.
The Code Generator adds your selection to the profile with its descendants.

3. Select File > Save item to save the profile in your workarea.
Rational Statemate 299

MicroC Code Generator
Splitting Activity Chart Hierarchy
You can create a module from hierarchy sub-trees. For example, referring to the following chart
hierarchy:

AA

BB

CC

It is possible to include CC and BB in separate modules A1 and A2 as follows:

Module A1:

Scope AA, CC

Module A2:

Scope BB.
300 User Guide

Code Options
Code Options
This section describes options for the Code-Generator.

All the options below are available from Statemate MicroC Code Generator > Options >
Settings...

RESET_Data as Function

General Tab > Use Macro for: Dynamic Reset Data

The General Tab > Use Macro for: Dynamic Reset Data allows RESET_DATA and
RESET_ALL_ELEMENTS to be generated as functions instead of macros. By default, Dynamic
Reset Data is checked and macros are generated.

Ignore External Binding

General Tab > Ignore External Binding

The General Tab > Ignore External Binding option allows generating code while ignoring
external bindings.

It might be used when generating code to run on-host.

Code Generation for Control Activities

General Tab > Use Macros for > Control Activity Implementation

You can generate the code for Control Activities either as a macro or as a function.

To have the code for Control Activities generated as a macro, select the General tab on the Code-
Generator Property Sheet. Then select Use Macros for > Control Activity Implementation. If
not selected, Control Activities are generated as functions.

Enhanced Generated Code-Level Readability and Documentation

General Tab > Use Macro for > Bit Data Items and Conditions

You can generate code for Conditions and Data-items (of type Bits) using the element model-
name. Use the General Tab > Use Macro for > Bit Data Items and Conditions flag to control
the generated mode.
Rational Statemate 301

MicroC Code Generator
Support Selective GBA

In the compilation profile, distinct flags are defined to control highlighting of Activities, and
States/Action Boxes

Byte Orientation Instrumentations

Target Properties Tab > Use Instrumentation

You can control the generation of byte orientation instrumentations (#ifdef LSBYTE_FIRST
directives) in the code.

Use the Check-Box in: Target Properties Tab > Use Instrumentation.

Single-Bit Elements

General Tab > Use Single Bit for

You can control implementation of single-bit elements. You control the code-generation of both
Conditions and Events to either use single-bit with bit-mask, or to use a byte. Use the check-boxes
in Use Single Bit for:

� Condition - Turn On/Off generation of Conditions as a bit or as a byte
� Event - Turn On/Off generation of Events as a bit or as a byte

User-Code Generation

Application Configuration Tab > Generate User-Code in glob_func.c

Rational Statemate MicroC Code-Generator allows generation of user-code (Functions and
Subroutines) code body in the module that the user-code is used in, instead of it being generated
into glob_func.c.

Start this mode using the check box “Generate User-Code in glob_func.c” in the Rational
Statemate MicroC Code-Generator Property-Sheet.

When the check-box is checked (the default setting), the tool generates the body code in
glob_func.c.
302 User Guide

Code Options
When the check box is not selected, the code is generated as follows:

� Regular Subroutine - Body is generated in the Module it belongs to.

� Subroutine defined in a GDS scope - Body is generated in glob_func.c.
� Subroutine defined in a Generic scope:

� As function - Body is generated in the g_<Generic-Name>.c File.
� Inline - Body is generated in glob_func.c.

� Before and after each section of functions in each module/generic file there are:
� Before the section (and only if there is any Sub to generate), the definition of the

API:

USER_FUNCTIONS_BODY_DEFINITION_SECTION_HEADER()

� After the section (and only if there is any Sub to generate), the definition of the
API:

USER_FUNCTIONS_BODY_DEFINITION_SECTION_FOOTER()

� Call-Back functions for Elements like Data-Items - Body is generated in glob_func.c.

Setting the Time Scale

This section contains the following information:

� Setting the Time Expression Scale Preference

� Working with Multiple Counters

� Setting the Time Expression Scale

� Defining Counters in a cfg file

Setting the Time Expression Scale Preference
Time expressions in Rational Statemate model can be scaled, by the MicroC Code Generator. The
Micro C Code Generator Preferences preference: Time Expression Scale, allows the user to set
the time scale for all expressions in the model to one of the following units:

� Counter Ticks (default)
� Seconds
� Milliseconds
Rational Statemate 303

MicroC Code Generator
The scaled time expressions are used with the following operators:

� dly() - Delay

� tm() - Timeout
� sc!() - Schedule

Working with Multiple Counters
Each time expression calculation is based on a counter, which operates at a fixed tick rate, for
example, 1 ms per tick. The units of the expression are translated into ticks according to the Time
Expression Scale.

Rational Statemate MicroC lets you work with multiple counters simultaneously, where each
counter can run at a different tick rate.

The default counter used by the model is defined in the code generator's profile (Options >
Settings... > OS Tab > Primary Software Counter),

You can use a different counter with each of the operators using “Time Expression”:

1. For tm(), the 3rd (optional) parameter can specify the counter to be used with this
operation – “Primary Software Counter” is used if 3rd parameter is omitted.

2. For sc!(), the counter can be specified using the design-attributes of the related event.

3. For dly(), the “Primary Software Counter” is used, so the user cannot select the counter
this operation will use. If such definition is required, use tm() instead. (if the dly()
operation is used on a transition exiting from State “S1”, then: dly(10) is similar to
tm(en(S1),10))

Setting the Time Expression Scale
Once the user has used a counter in the model, and selected “Time Expression Scale” other than
“Counter Ticks”, it is required that the “Time Expression Scale” in the Rational Statemate MicroC
Profile be filled in. Each counter has three fields:

� counter name: The name of the referenced counter
� ticks per second: The number of ticks the counter counts per second
� ticks per milli-second: The number of ticks the counter counts per milli-second.

Note that the fields “ticks per second” and “ticks per milli-second” don’t have to be both defined,
nor does the ratio between their definitions have to be 1000.

If some necessary data is missing from the “Time Expression Scale,” the Code Generator will
issue a warning message.
304 User Guide

Code Options
In the OSI: “MAINLOOP_SC” there are two predefined counters “ms_counter”, and
“sec_counter”. Default values are already filled in the “Time Expression Scale Table” for these
counters.

If the model does not use the seconds/milliseconds as the “Time Expression Scale”, then these
definitions are not required.

When converting to code, the “Time Expression” is automatically scaled to ticks according to the
current “Time Expression Scale”:

� Counter's Ticks: Nothing is changed - Use the time expression as in model.
� Seconds: Multiply the time expression with the following macro:

“<counter>_TICKS_PER_SEC”
� Milli - Seconds: Multiply the time expression with the following macro:

“<counter>_TICKS_PER_MSEC”

Defining Counters in a cfg file
It is possible to define the counter data in a Target-Configuration (.cfg) file (in the OSI).

The table can be saved with the compilation profile, and it can be read from a configuration file.

The content of the “Time Expression Scale” can be predefined in the “.cfg” files in the OSDT.

The following example shows the section that defines this table in the .cfg file:

#Time Expression Scale:

{

 #Counter:"ms_counter"

 #Tick Per Second:"1000"

 #Tick Per Milli Second:"1"

}

{

 #Counter:"sec_counter"

 #Tick Per Second:"1"

 #Tick Per Milli Second:"Error Usage of Counter"

}

Rational Statemate 305

MicroC Code Generator
Generation of Constant Elements with “const” Modifier

When the check-box Use ‘const’ Keyword to define Constant Values in the Target tab of the
Code-Generator Property Sheet is selected, constant elements are generated with a const modifier.

When this option is selected, elements which are defined as Constant are generated with const
modifier to the glob_dat.c and glob_dat.h files, instead of being generated as pre-processor
macros in the macro_def.h file.

Default Data Types

You can define the default data type for the following types:

� Signed Integer
� Unsigned Integer
� Bit-Field
� Floating Point

You define the data types, using the Default Data Types field (from the Code Generator Property
Sheet, select the Target Properties tab). Those default data types will be used when declaring data
and using bit-wise shift operators.

Generating Code with Extended Documentation

In the setting dialog, selecting General > Generate extensive code documentation generates
extensively documented code. The code includes extensive comments on each generated function
and control expression in the following places:

� Activity function body, Statechart/Flowchart implementation function, Transition to a
state, State static reaction, Data declaration, Generated files headers and footers.

� Information from the model, compiled as descriptions:
� Information of the code-generation profile name, date, version, workarea and

project name
� For Statecharts: Before the implementation function, a textual transition table is

added.
� For Truth-Tables: A textual description of the table is added.
� For Timeout setting: The expression triggering the code is in comments.
306 User Guide

Code Options
Dynamic Data Initialization

This feature enables the initialization of all the data in the model through calls to the RESET_DATA
macro in the TASKINIT function.The initialization is enabled by the Memory Initializing check box
in the Target Properties tab.The RESET_DATA macro uses the function memset, which should be
defined in the environment. In the case where the function memset is not defined, you can define
the macro AVOID_MEMSET and use the function rimc_mem_set (defined in the <profile>.c file).

OSEK GetResource Usage

When a TASK/ISR has related timeouts, MicroC calls:

1. GetResource(RES_SCHEDULER) before the code section that swaps the TASK/ISR event
buffer and before the call to genTmEvent(...) in on<TIMER>OVERFLOW Tasks (in
the file glob_func.c).

2. ReleaseResource(RES_SCHEDULER) after the code section that swaps the TASK/ISR
event buffer and after the call to genTmEvent(...) in on<TIMER>OVERFLOW Tasks
(in the file glob_func.c).

This resource usage can be avoided by clearing the Code Generation Profile option:

Options > OS > Allow GetResource(RES_SCHEDULER) Usage

Note
This applies to OSEK only.
Rational Statemate 307

MicroC Code Generator
Rational Statemate Block in a Rational Rhapsody
Model

The code generator supports integration of a Rational Statemate model (block) into a Rhapsody
model with the following prerequisites:

� Rational Rhapsody Developer for C version 7.1.1 or newer
� Rational Statemate 4.2 MR2 or higher on the system and licensed
� License for Rational Statemate MicroC code generator

Required Rational Statemate Model Characteristics

To synchronize a Rational Statemate model with Rational Rhapsody, the Rational Statemate model
must have the following characteristics:

� Only one top-level activity
� MicroC profile with only one module

Preparing the Rational Statemate Model

Follow these steps in Rational Statemate to prepare the Rational Statemate model for integration
with Rational Rhapsody:

1. Open the Rational Statemate model. If you want to show Rational Statemate animation in
Rhapsody, be certain to select the GBA option from the Rational Statemate MicroC
profile options.

2. To set the required properties in Rational Statemate before generating code:

a. Open the Rational Statemate MicroC Code Generator.

b. Select Options > Settings > Application Configuration > Application Files.

c. In the Application Files dialog box, select both of the Generate Code in a Single File
and Generate Code as Statemate Block items.

d. Click OK.

3. Generate the C code using the Rational Statemate MicroC Code Generator.

4. In the Rational Statemate main interface, select the Files tab and follow these steps:

a. Select a Rational Statemate MicroC code generator profile.
308 User Guide

Rational Statemate Block in a Rational Rhapsody Model
b. Select Configuration > Create Statemate Block Configuration for Rhapsody >
Read mode/Update mode.

Synchronizing Rational Statemate and Rational Rhapsody

In the Rhapsody system, you must use the StatemateBlock profile as the container for the
Statemate model. See the Rational Rhapsody documentation for instructions to create the Rational
Rhapsody StatemateBlock and connect the Rational Rhapsody and Rational Statemate models.

The StatemateBlock operates as a black-box for Rational Statemate code within the Rational
Rhapsody architecture once it has been connected and synchronized. The StatemateBlock interface
of the top-level flowing data within the Rational Statemate model is specified in Rhapsody using
flow ports.

The Rational StatemateBlock in Rational Rhapsody automatically synchronizes with the Rational
Statemate model and adds or removes flow ports from the Rational StatemateBlock to reflect any
changes made in the Rational Statemate top-level flowing data. The synchronization operation
uses a Rational Rhapsody Block Configuration containing the following Rational Statemate data:

� Rational Statemate MicroC Profile with a single module
� Rational Statemate charts that are in the scope of the MicroC profile. The top-level chart

must have a single top-level (regular) Activity
� Rational Statemate Panels that are in the scope

Troubleshooting Rational Statemate with Rational Rhapsody

When entering information into the Import/Sync Statemate Block dialog box, you may receive one
of these error messages. The table below shows the possible error messages and their explanations.

Error Message Explanation

“Cannot load libraries. Please make sure
you are using the correct Statemate
installation path.”

Rhapsody was unable to located the
stmBlockInterfaceDll.dll in the bin directory of the
installation path entered into the dialog box. Correct the
Rational Statemate Installation Path so that the DLL
can be located.

“PM Filepath not found. Please specify a
valid PM path.”

The Rational Statemate PM file name entered into the
Rational Statemate PM Location field must contain
“pm.dat” in the name.

“Invalid Statemate Project. Please select a
Statemate Project before pushing OK.”

The Import/Sync process has checked the Rational
Statemate MicroC profile and the Rational Statemate
project was not found or the project name did not match
the one entered in the Rhapsody dialog box.
Rational Statemate 309

MicroC Code Generator
“Invalid Rhapsody Block name. Please
select a Statemate Block before pushing
OK.”

The Import/Sync process has checked the Rational
Statemate MicroC profile and cannot locate the Rational
StatemateBlock that was entered in the Rhapsody dialog
box.

“Invalid Statemate Workarea name. Please
select a Statemate Workarea before
pushing OK.”

The Import/Sync process has checked the Rational
Statemate MicroC profile and the Rational Statemate
Workarea name was not found that matched the name
entered in the Rhapsody dialog box.

“Missing Statemate Block’s charts. Would
you like to perform check-out and generate
code now?”

The Import/Sync process checked for the Rational
Statemate code that should have been generated as
described in the Preparing the Rational Statemate
Model section. If it needs to be generated, click Yes in
this error message box.

“Missing generated code for
StatemateBlock. Would you like to
generate code now?”

The Import/Sync process checked for the Rational
Statemate code that should have been generated as
described in the Preparing the Rational Statemate
Model section. If it needs to be generated, click Yes in
this error message box

“Missing required files. Cannot synchronize
with Statemate model.”

If you selected No when the system offered to generate
the Rational Statemate code (see the two previous error
messages), this error message indicates that the
Rational Statemate model cannot be synchronized with
the Rhapsody until the Rational Statemate code has
been generated.

Error Message Explanation
310 User Guide

Code Optimizations
Code Optimizations
The optimization options below can be found in Statemate MicroC Code Generator > Options
> Settings > Optimization Tab.

Empty Overlapping Tests of State Hierarchy

This feature further optimizes the generated code for Statecharts. The generated code avoids
certain tests that are normally performed before a State hierarchy is entere, resulting in a smaller
object code size.

Note that although this optimization will reduce the object code size, it might increase the scan
time for a transition, because the generated code will be flattened.

Generate All and Generate Only Used

The flag Generate Model Data in the compilation profile can be used to control generation of
data and functions, where you can choose between generating All Elements and generating Only
Used Elements.

Optimization Algorithms

The following algorithms are used to optimize the code generated by Rational Statemate MicroC:

Inline Setting of the “Need Another Step” Bit

To improve code efficiency, you can specify the criterion No. of Transitions (<= 999, by default).
This criterion determines whether the optimization is performed.
Rational Statemate 311

MicroC Code Generator
Inline Entering and Exiting Reactions

Inlining exiting and entering reaction on transitions is performed according to user defined criteria.

Inlining entering or exiting reactions is based on the following criteria:

� No. Of Statements (<= 5 , by default)
� No. Of Instances (<= 999 , by default)

Example

When having single hierarchy, -T0-> S1 –T1-> S1.S11 –T2-> S1.S11.S111 a transition
entering that hierarchy will target directly S111 no having intermediate states S1 and S11.

Behavior definition (semantics): When taking a transition, the transition action is performed,
then exiting reaction, from the inner most state that the transition exit to the outer most, then
entering reaction is performed, from the outer most state the transition is entering to the inner
most.

Without optimization, the following sequence would have been performed as follows:

Consider action Ai on transition Ti, entering reaction Ei for state Si Then:

A0, E1, A1, E11, A2, E111

After “clutching” the sequence will be:

A0, A1, A2, E1, E11, E111

The test models show a 20-30% reduction in ROM size when using those optimization flags.
312 User Guide

Code Optimizations
Reuse of Timeout Variables

To reduce the number of data allocations for the timeout operation, the timeout algorithm merges
data allocation for two timeouts that relate to mutually exclusive states.

The optimizer looks for those timeouts and delays that are pending in exclusive states. For those,
the same variables might be used.

Example

“Train” states might use a single variable

Clutching Entrance to a State Hierarchy

Rational Statemate MicroC can perform a clutch of steps, intermediate states, and default states
when entering state hierarchy. The clutch entrance algorithm steps directly into the lower-most leaf
state in the state hierarchy, eliminating intermediate states. All the entering reactions are
performed appropriately, according to the state hierarchy.

For more information on code optimization, see the MicroC Programming Style Guide.

Additional Optimization Options for Code Generation

� Merge State sequences with no guard on transition.
� Inline default test.
Rational Statemate 313

MicroC Code Generator
OS Definition Tool
This section contains the following information:

� Design Attributes

� Element Attributes

� Task Execution Mode API and Design Attributes

� Get-Set Functions for Buffered Access Data-Items

� OS Static Configuration

� Defining the Location of the CTD Directory

� APIs

� API Modification Rules

� Upgrading an OSI

� List Support in OSDT

� Generated Data Declaration

Design Attributes

This section contains the following information:

� Design Attribute Notation

� Inheritable Design Attributes

� Special Design Attributes

Design Attribute Notation
The Design-Attributes entry fields can use the $<Attribute-Name> and ?<...> (API-like)
notation.The $<> and ?<> notation can be used only for Design-Attributes that belong to the same
Element. For detailed information on this syntax, see the MicroC Programming Style Guide.
314 User Guide

OS Definition Tool
Inheritable Design Attributes
An inheritable attribute is one that can be passed from one graphical element (such as an Activity
or a State) to another one lower in the hierarchy tree. To designate a Design Attribute as
“Inheritable,” add its name to the inheritable_attributes.txt file, which includes a newline
delimited list of “Inheritable Attribute” names. If the file does not exist, create it in the
$STM_ROOT\etc\ctd\<osi-name> directory).

Special Design Attributes

cg_build_ver

The formal-parameter, $<cg_build_ver>, represents the tool version in all APIs.

moduleName, profileName

The following Design Attributes are accessible by every API in the OSDT:

� moduleName (accessible by every API that refers to a model object such as Activity,
Dataitem etc.).

� profileName

CK_predefinedTask

The following predefined Tasks are tagged with the Design-Attribute CK_predefinedTask = yes
(for usage in the OSDT)

� TASKINIT
� Timer Overflow Tasks
� GBA Task
� Panel Dispatch Task
� Test Driver Task

Frequency of Activation of Activity

The following Design Attributes are used to define the frequency in which a certain activity is
executed per task activation [task runs per Activity executions].

� Use Activation Frequency - yes/no.
� Activation Frequency - The default value is 1 (run every Nth task run).
� Activation Shift - The default value is 0 (a shift of 0, or no shift).

Both the Frequency and the Shift values must be either Decimal, Hexadecimal, or any other literal-
named value that starts with a letter.
Rational Statemate 315

MicroC Code Generator
Element Attributes

Element Attributes can be accessed from the OSDT. The access is enabled by setting the following
environment variable: AMC_AUGMENT_ATTRIBUTES=ON.

Note
Limitations:

� Only single-line attributes should be used (for all elements)
� Only standard characters should be used (no special controls).

Task Execution Mode API and Design Attributes

The following Design Attributes, defined in the DEFAULT and MAINLOOP_SC OSI’s, allow
overriding the default Task Run Mode for each Task:

The following API, available in the DEFAULT and MAINLOOP_SC OSIs, is located in: Code Style >
Variables Naming Style:

Get-Set Functions for Buffered Access Data-Items

Enhances the ability to express the value of the Set Value Call and Get Value Call, by allowing the
use of the $<Attribute-Name> and ?<...> (API–like) notation.

The $<> and ?<> notation can use only Design-Attributes that belong to the same Element.

For detailed information on this syntax, see the MicroC Programming Style Guide.

Display Name Attribute Name

Task Run Mode CK_taskRunMode

Define Max Steps per Super Step CK_useMaxStepsPerSuperStep

Max Steps per Super Step CK_maxStepsPerSuperStep

Display Name Attribute Name

Super Step Steps Counter Name activityNameid
316 User Guide

OS Definition Tool
OS Static Configuration

� Each OS element has 12 API entries in the Static-OS-Configuration Page.
� The selection Code Generation Profile > Setting > OS Tab allows a list of input-output

file pairs in the Static Configuration files, delimited with semi-colons.

Defining the Location of the CTD Directory

You can define the path that Rational Statemate MicroC uses for the CTD directory, by setting the
following environment variable:

STM_CTD_DIR = <my path\CTD>

APIs

This section describes the various APIs, according to their location.

Code Style

The Condition Buffer User-Type Name(): API is located under the “Code Style Page -->
Types Naming Style” page. It is available with the ‘default’ OSI and can be loaded to the
existing OSI using the “Update From OSI” under the OSDT File menu.

Description

Defines the name of the User-Defined-Type that is used as the type of the buffer generated for
Conditions in the Code-Generator's mode: 'Use Separate Buffer for: Conditions' (See the
Code-Generator Property-Sheet, General Tab).

The following APIs have a Tab named “Internal Data-Types” in the “API Definitions” page. These
APIs are available with the ‘default’ OSI and can be loaded to the existing OSI using the “Update
From OSI” under the OSDT File menu.

� Condition Buffer User-Type Type():

This API defines the type of the User-Define-Type used when generating the Conditions
in the 'Buffer per Condition' Mode.

� Event Buffer Type():

This API defines the type of the Buffer used when generating the Events in the 'Buffer per
Event' Mode.

� Default Signed Integer Type():

This API defines the default integer signed type. It overrides the definition in the Code-
Generator property-Sheet.
Rational Statemate 317

MicroC Code Generator
� Default Unsigned Integer Type():

This API defines the default integer signed type. It overrides the definition in the Code-
Generator property-Sheet.

� Default Floating Point Type():

This API defines the default Floating Point type. It overrides the definition in the Code-
Generator property-Sheet.

� Bit Field Type():

This API defines the Dada-Type used for Conditions and Bit Data-Items, when generating
Conditions/Bits without macros. It overrides the definition in the Code-Generator
property-Sheet:

The following APIs, located in the Code-Style tab, can use the full syntax of the OS Customization
Tool ($<..> and ?<..>). The parameter activityNameid is passed to some of the APIs and
refers to the owner Activity. The parameter udt_or_activity_nameid is passed to some of
the APIs and refers to the owner of the buffer (an Activity or a User-Defined Type). The syntax
$<...> and ?<...> can be used in the APIs with the element’s Attributes. The Attributes see the
element that owns or requests the corresponding API. The APIs are as follows:

� Single Buffer Type Prefix(activityNameid):
� Double Buffer Type Prefix(activityNameid):
� State Variable Prefix(activityNameid):
� Single Buffer Variable Prefix(activityNameid):
� Double Buffer Typedef Prefix(activityNameid):
� Double Buffer Next Variable Prefix(activityNameid):
� Double Buffer Current Variable Prefix(activityNameid):

The Profile .c File Header(profileName, fileName, genDate,
genTime,profileOptions, Project, Workarea, profileVersion) API is located in the
Default OSI: Code Style Page -> File Header/Footer.

This API controls the header of the <profile name>.c file. When checked, the tool looks for the
related key word (originated from the OSI user_code.c file) and replaces it with the API definition.
The definition of the API is inserted either in the beginning of the file <profile>.c, or in the
location marked by the keyword: /* keywordfor <profile>.c header */.
318 User Guide

OS Definition Tool
The following APIs (Code-Style page) define the timeout naming method.

� Timeout Event Name(nameid)

� Timeout Time Variable Name(nameid)
� Timeout Mask Name(nameid)
� Timeout Counter Index Name(nameid)

The following APIs (defined in the DEFAULT OSI) are accessible from the Get/Set Functions tab
in the API Definitions... page.

� Get function Declare(nameid, returntype, argType, argName)
� Get function Define(nameid, returntype, argType, argName, getElemCode)
� Get function Name(nameid)
� Set function Declare(nameid, returntype, argType, argName)
� Set function Define(nameid, returntype, argType, argName, tstDrvInst,setElemCode)
� Set function Name(nameid)

The following APIs (available in the DEFAULT OSI and located in Code Style -> FileHeader/
Footer) allow customizing of the <profile>.h header and footer:

� Generated Profile H File Header(profileName, fileName, genDate,
genTime,profileOptions, project, workarea, profileVersion)

� Generated Profile H File Footer(profileName, fileName, genDate,
genTime,profileOptions, Project, Workarea, profileVersion)

The following APIs define the generated code naming conventions. They allow control over the
actual names and not only the prefix (as the pre-existing APIs did).

� Check for Timeout Function Name(activityNameid)
� Activity Function Name(activityNameid)
� Statechart Function Name(activityNameid)
� Entering Reaction Function Name(activityNameid)
� Exiting Reaction Function Name(activityNameid)
� Generic Chart Function Name(activityNameid)
Rational Statemate 319

MicroC Code Generator
Customizable Timeouts using OSDT
Allows the user to customize the generated code supporting Timeouts (tm()/dly()) using the OS
Definition Tool with the following APIs:

� Timeout Install Define(nameid, tmMaskName, tmMaskVal, tmVariableName,
tmMaskVarName, tmVariableType, tmCurrentTickName, tmCounterVarName,
tmCounterName)

The definition of the Timeout installation, in the file: “macro_def.h”.
� Timeout Install Call(nameid, time, counterIndex, tmCounterName,

tmCurrentTickName)

The definition of the call to the install of a Timeout, in file: <module>.c
� Timeout Test on Expiration Call(nameid, tmCurrentTickName, tmCounterName,

tmEventBuffer, tmCounterIndex, genContextVar)

The definition of the call to the Timeouts Dispatch function, in the file: <module>.c.
� Timeout Test on Expiration Define(nameid, tmCurrentTickType,

tmCurrentTickName, tmEventBuffType, tmEventBuffName, tmCounterIndexType,
tmCounterIndex, genContextVar, timeoutList)

The definition of the Timeouts Dispatch function, in the file: <module>.c.
� Timeout Test on Expiration Declare(nameid, tmCurrentTickType,

tmCurrentTickName, tmEventBuffType, tmEventBuffName, tmCounterIndexType,
tmCounterIndex, genContextVar)

The forward declaration of the Timeouts Dispatch function, in the file: type_def.h.
� Timeout verflow Code Per Task(tmMasks, tmDispatchFunc,

counterMaxAllowdVal, tmEventBuffName, counterIndex, genContextVar,
timeoutList, timeoutVarType, counterValueType)

The overflow code related to a specific Task with Timeouts, put in the Overflow-Task, in
the file: glob_func.c.

These APIs are available for update from the DEFAULT OSI.
320 User Guide

OS Definition Tool
Support for Queues
The following APIs are located in the DEFAULT OSI in the OSDT:

� Queue Descriptor Data Type(nameid, qType)

Defines the Data Type declaration of a Queue.
� Queue Data Type Static Init(nameid, qType)

Used to Initialize the Queue statically.
� Queue Put(nameid, elName)

� Queue Urgent Put(nameid, elName)

� Queue Get(nameid, elName, statElName)

� Queue Peek(nameid, elName, statElName)

� Queue Flush(nameid)

� Queue Length(nameid)

Note
The Queue Type can only be simple types as integer and real. Otherwise, a UDT should be
used.

Task/ISR APIs

OS APIs

The following API is used for Tasks, in the definition of the macros: stop_activity,
suspend_activity:

Suspend Task(nameid)

Memory Management: Beginning and Ending Code for Task/ISR

APIs in the OSDT (Memory Management Page) for Task/ISR leading and trailing code:

� Task/ISR Beginning Code(nameid, profileName):

Specifies the code added at the beginning of a Task/ISR body.
� Task/ISR Beginning Code Entry 2(nameid, profileName):

Specifies the code added at the beginning of a Task/ISR body. It is added right after the
Task/ISR Beginning Code API definition.

Note
If a Task is using Periodic Activation, the code for this API is generated after the code that
handles the periodic activation.
Rational Statemate 321

MicroC Code Generator
� Task/ISR Ending Code(nameid, profileName):

Specifies the code added at the end of a Task/ISR body.
� Use this API to put code or function-call in the last line of the generated code in a

Task/ISR (before the 'TerminateTask' if defined).
� This API is defined outside the Super-Step Loop, so it can be used to generate a

notification when a given number of steps have been performed.
� The APIs are located in the following OSIs:

– MAINLOOP_SC
– MAINLOOP_SC_EXT
– NATIVE_NT
– DEFAULT

Memory Management:Task/ISR and Related Activities

� The parameter nameid is used in the following APIs on the memory management page,
Code - Task/ISR and Related Activities tab:

– Task/ISR Opening(nameid)
– Task/ISR Closure(nameid)
– Activity Function Opening(nameid)
– Activity Function Closure(nameid)
– Activity Function Call Opening(nameid)
– Activity Function Call Closure(nameid)

� The following API is located in the memory management page, Code - Task/ISR and
Related Activities tab:

Related Function Call(nameid, arglist)

This API controls the call style of functions related to the Task/ISR and related Activities,
such as cgEnterActions_... and cgExitActions_....
322 User Guide

OS Definition Tool
Attribute in Predefined Tasks

All predefined Tasks include the Attribute CK_predefinedTask with the value “yes”. This
Attribute can be used in any API definition that relates to a TASK. The predefined tasks are:

� TASKINIT - Initialization Task.
� PANEL_DISPATCH - Handle Panels, if available.
� BUFFERED_GBA_TASK - Handle GBA Instrumentation in buffered mode.
� TEST_DRIVER_TASK - Handle Test Driver Instrumentation, if used with a separate

task.
� Timer Overflow Tasks - Handle the overflow of the various timers.
� Test Bench Task - Handles the test benches

Statecharts Functions
These are APIs in the Memory Management page that control the beginning and end code of the
Statechart function:

� Statechart Beginning Code(nameid):

Description: This line controls the code at the beginning of the Statechart. It will be
added as the first executable statement in the Statechart function.

� Statechart Ending Code(nameid):

Description: This line controls the code at the end of the Statechart. It will be added as
the last executable statement in the Statechart function. In these APIs, nameid is the name
of the Control-Activity whose Function is implemented.
Rational Statemate 323

MicroC Code Generator
APIs for Function-Declare-Style

'Code - per User Function' Tab

User Function Definition Style(nameid, returntype, arglist, shortdescription)

Description: This line controls the specific function declaration style.

'Code - Task/ISR and Related Activities' Tab

Related Function Declaration Style(nameid, returntype, arglist)

Description: This line controls the declaration style of functions related to theTask/ISR and
related Activities, such as cgEnterActions_... and cgExitActions_...

These APIs are available in the following OSIs:

� MAINLOOP_SC
� MAINLOOP_SC_EXT
� DEFAULT:

Customizable OSEK APIs
You can define the OSEK APIs from the OSDT. When the check box AllowAPI Overriding in
the Use OSEK API frame is checked, the API Definitions button is active and enables the API
modification.
324 User Guide

OS Definition Tool
API Modification Rules

If the API is not checked (selected) in the API Definitions page, the (original) default definition for
the API is used. If the API is checked (selected) in the API Definitions page and the Definition is
not an empty string, the definition is used. Otherwise, the (original) default definition is used.

Upgrading an OSI

The OSDT supports updating the existing OSI, which might have been created using a previous
version of the tool, against a new OSI. The Update OSI operation can be opened by selecting the
new menu entry, Update OSI, in the OSDT file menu.

The Update OSI operation performs the following checks:

� Checks APIs per page and per section against the reference OSI to look for APIs that exist
in the default but are missing in the current OSI. In this case, you will be prompted to
confirm the update.

� Checks for obsolete APIs (those that exist in the current OSI but not in the reference OSI).
In this case, you will be prompted to confirm the update (to remove the API).

� A check for new, modified, or obsolete files is performed for the RelatedFiles.
All the changes done by the Update OSI operation are logged in a log file. The log file is located in
the CTD directory (<OSI NAME>DD/MM/YY.txt). After the operation is completed, the OSI will be
marked as “modified.” The changes will take affect only when the OSI is saved. In addition, when
you open a workarea, the tool will check whether the latest version of the related files is in use. If
not, the tool will prompt you to update the files.:
Rational Statemate 325

MicroC Code Generator
List Support in OSDT

The OSDT syntax supports list operations on Parameters and Attributes. The operators are
available only with the following APIs:

� Timeout Test on Expiration Define
� Timeout Test on Expiration Declare
� Timeout Overflow Code Per Task

The OSDT replaces each element in a list with a template-string and adds it to the definition of the
API.

A list is a string operated upon with list operators, having the character '@' used as delimiter
between elements in the list.

Syntax

@<for> @<list-name> @<begin> $<list-name> @<end>

The definition of a list template-string starts with the @<for> token and ends with the
@<end> token. All the text between these two tokens will be replaced with the definition of
the API after the template-string is processed.

The string @<list-name> between the @<for> and the @<begin> is the name of the formal
argument, being an Attribute or a Parameter, that represent a list of values (a string like:
val_1@val_2@val3).

The string $<list-name> between @<begin> and @<end> is the string-template which will be
used for each one of the list's elements. The $<list-name> in this string will be replaced with
the current list element.
326 User Guide

OS Definition Tool
Example

The Design Attribute CK_workingDay is defined in the Dictionary as

MONDAY@TUESDAY@WEDNESDAY@THURSDAY

The Design Attribute CK_freeDays is defined in the Dictionary as

SUNDAY@FRIDAY@SATURDAY

The definition of the API is:

============ Beginning of API Definition ================

The Working Days are:

@<for> @<CK_workingDays> @<begin> - $<CK_workingDays> is a working day

@<end>

The Free Days are:

@<for> @<CK_freeDays> @<begin> - $<CK_freeDays> is NOT a working day

@<end>

============ End of API Definition ===================

The resulting string output of the API after processing is:

--

The Working Days are:

- MONDAY is a working day

- TUESDAY is a working day

- WEDNESDAY is a working day

- THURSDAY is a working day

The Free Days are:

- SUNDAY is NOT a working day

- FRIDAY is NOT a working day

- SATURDAY is NOT a working day

--
Rational Statemate 327

MicroC Code Generator
Generated Data Declaration

The tool allows generation of user-defined code between the generated data declaration sections in
glob_dat.h and glob_dat.c.

The user code is defined as a set of APIs in the OSDT, relating to keywords placed in the
type_declare_order.txt file, located at:

ROOT\etc\ctd\<OSI>\type_declare_order.txt.

The APIs are available with the ‘default’ or ‘mainloop_sc_ext’ OSI, and can be loaded to existing
OSI using the “Update From OSI” under the OSDT File menu.

The APIs are:

API Key-word

8-bit Declaration Begin Section: '/* Key word: for 8-bit data declaration begin section */'

8-bit Declaration End Section: '/* Key word: for 8-bit data declaration end section */'

16-bit Declaration Begin Section: '/* Key word: for 16-bit data declaration begin section */'

6-bit Declaration end Section: '/* Key word: for 16-bit data declaration end section */'

32-bit Declaration Begin Section: '/* Key word: for 32-bit data declaration begin section */'

32-bit Declaration End Section: '/* Key word: for 32-bit data declaration end section */'

Record Declaration Begin Section: '/* Key word: for record data declaration begin section */'

Record Declaration End Section: '/* Key word: for record data declaration end section */'

Other Types Declaration Begin
Section:

 '/* Key word: for other types declaration begin section */'

Other Types Declaration End
Section:

 '/* Key word: for other types declaration end section */'

8-bit Extern Declaration Begin
Section:

 '/* Key word: for 8-bit data extern declaration begin section */'

8-bit Extern Declaration End
Section:

 '/* Key word: for 8-bit data extern declaration end section */'

16-bit Extern Declaration Begin
Section:

'/* Key word: for 16-bit data extern declaration begin section */'

16-bit Extern Declaration End
Section:

 '/* Key word: for 16-bit data extern declaration end section */'

32-bit Extern Declaration Begin
Section:

 '/* Key word: for 32-bit data extern declaration begin section */'
328 User Guide

OS Definition Tool
Example

If the file: 'type_declare_order.txt' looks like:

uint8

/* Key word: for 16-bit data declaration begin section */

uint16

uint32

The generated glob_dat.c looks like:

...

uint8 uint8_data;

< Definition of the: ‘16-bit Declaration Begin Section’ API>

uint16 uint16_data;

uint32 uint32_data;

...

Limitations

The keywords that are put in the end of the file: 'type_declare_order.txt' are ordered in the
following order, instead of the order between themselves:

1. 8-bit

2. 16-bit

3. 32-bit

4. record

5. other

32-bit Extern Declaration End
Section:

 '/* Key word: for 32-bit data extern declaration end section */'

Record Extern Declaration Begin
Section:

 '/* Key word: for record data extern declaration begin section */'

Record Extern Declaration End
Section:

 '/* Key word: for record data extern declaration end section */'

Other Types Extern Declaration
Begin Section:

 '/* Key word: for other types extern declaration begin section */'

Other Types Extern Declaration
End Section:

 '/* Key word: for other types extern declaration end section */'

API Key-word
Rational Statemate 329

MicroC Code Generator
Supported Targets
The following targets are supported:

� Vector/OSEK on Motorola HC12, Fujitsue FM16LX (MB90V595)
� Turbo/OSEK on Motorola HC12
� Fujitsue FM16LX (MB90V595) support in: Vector/OSEK, mainloop_sc and

mainloop_sc_ext OSIs

Utilities
This section contains the following information:

� Remote Panel Server Support

� MicroC Design-Level Debugger

Remote Panel Server Support

You can configure code generated by Rational Statemate MicroC to use a Remote Panel Server to
display graphical panels. The executable communicates with the Remote Panel Server via TCP/IP
communication protocol.

Upon invocation, the Remote Panel Server communicates the necessary communication
parameters to the executable by writing them to the file rcomm.cfg.

Note the following:

� The Remote Panel Server must have access to the generated code directory to be able to
read the generated panel files.

� In the case where no file system can be shared with the target, you should adapt the
libsvrcom.lib library code to identify the server.

� When no direct TCP/IP link is available to the target, you should adapt the
libsvrcom.lib library and rimc_rpgertl.c file.
330 User Guide

Utilities
Using the Remote Panel Server
To use the Remote Panel Server, in the Code-Generator profile, select Settings > Application
Configuration Tab and enable the Use Remote Panel(s) check box.

If the executable has no access to the Workarea directory:

1. In the Code-Generator profile, select Settings > Application Configuration Tab.

2. Define the Target Directory. The Target Directory is the current directory of the executable
(as “seen” from the viewpoint of the executable).

3. Select Application Files.

4. Add the following line to the Additional Sources field:

<Rational Statemate Installation directory>
\etc\CTD\default\rimc_rpgertl.c

Invoking the Remote Panel
The Remote Panel Server is located in the bin directory and it requires a license.

To set the necessary environment variable definitions, execute the run_amc.bat script file (located
in the bin directory) at a command prompt as follows:

set STM_STAND=ON

set STM_RPANEL_STAND=ON

If the executable can access the Workarea directory, enter the following command:

switch_rpanel -workarea <workarea>

The rcomm.cfg file is written by the Remote Panel Server to the Workarea directory and read
from there by the executable.

If the executable cannot access the Workarea directory and the Target Directory is defined, enter
the following command:

switch_rpanel -gen_code_dir <dir>

The rcomm.cfg file is written by the Remote Panel Server to the <dir> directory. The executable
reads the rcomm.cfg file from the Target Directory.
Rational Statemate 331

MicroC Code Generator
MicroC Design-Level Debugger

A beta version of the Rational Statemate MicroC Design Level Debugger is available. This
debugger can be used with the target-debugger integration package (AMC_COMMUNICATION_DLL) to
control graphical breakpoints, Break on Transition to State, and Break on Activity on target.

Contact your sales representative for more information.
332 User Guide

Rational DOORS RT Interface
This section describes the Rational DOORS RT Interface. The topics are as follows:

� Configuring the RT Interface

� Working with the RT Interface

 Systems engineers typically need to demonstrate that their system design specification and the
models they build from that specification map back to the original customer requirements.

If the customer is using Rational DOORS (Requirements and Traceability Management Dynamic
Object Oriented Requirements System) to manage the project, Rational Statemate provides a
Statemate–to–DOORS interface (RT Interface) that enables the Rational Statemate project
manager to export Rational Statemate elements to the Rational DOORS repository.

The RT Interface enables you to:

� Transfer complete Rational Statemate models or subsets of Rational Statemate models into
Rational DOORS.

� Keep the information about the Rational Statemate model updated in Rational DOORS.
� Represent a Rational Statemate model in a Rational DOORS formal module so that the

Rational Statemate model can be viewed as a special kind of requirements module filled
with design elements.

� Support the automatic creation and population of Rational DOORS link modules. These
provide the means to link certain Rational Statemate elements within the Rational
DOORS module.

The RT Interface is designed to be used in environments where a one-to-one relationship exists
between a Rational Statemate project and a Rational DOORS project.

Although it is possible to relate more than one Rational Statemate model to a Rational DOORS
project, it is recommend that you do NOT do this.

Because the full name of each Rational Statemate chart element (chart:name) must be unique
within the Rational DOORS/Statemate module, it is recommended that you restrict the mapping to
one module, one Rational Statemate project, one Rational DOORS project.
Rational Statemate 333

Rational DOORS RT Interface
The RT Interface attempts to impose as few restrictions on process management as possible. You
determine what elements to export and when they are to be exported, following the guidelines that
are presented in this section.

How the RT Interface Works
Setting up the Interface is very simple: the Rational Statemate project manager specifies the name
of the corresponding Rational DOORS project; sets up default directories to hold chart plots, log
files, and use case description files; and creates a default configuration file.

From the toolbar of the main Rational Statemate window or from the Properties dialog box, you
export charts from the Rational Statemate project to the Rational DOORS project. The first time
you export a set of charts, Rational Statemate automatically creates a formal module in the
Rational DOORS database with a user-defined name, into which shadow copies of the exported
charts and chart elements are placed.

Shadow copies contain the element name, type, and description fields.

Note
In the case of a Rational Statemate transition, which has no explicit name, the shadow copy
is given a pseudonym.

For more information, see Working with the RT Interface.

Exporting Data

Before you export Rational Statemate data to Rational DOORS, determine what modules are
suitable and necessary to export and then configure them for export (see Preparing Rational
Statemate Elements for Export to Rational DOORS).

Once you have configured a project for export, to export the data to Rational DOORS:

Note
The initial export is performed once for each module.

1. Check-out (with locks) the Rational Statemate charts to be exported.

2. Define a Rational DOORS module and select the appropriate charts and elements (using
the main Rational Statemate window and the RT Interface).

3. Export the charts using the RT Interface.

4. Save the configuration of the chart elements and the module as a Rational DOORS
configuration file.
334 User Guide

How the RT Interface Works
5. Check-in the Rational Statemate charts and unlock them if necessary.

For more detailed instructions, see Exporting Rational Statemate Data to Rational DOORS.

Re-Exporting and Synchronizing Data
During Rational Statemate design work, model elements frequently change, and in certain
instances may be deleted altogether. As a result, it is necessary to re-export and synchronize the
data in the Rational Statemate project with the data stored in the Rational DOORS repository.

To re-export and synchronize data:

1. Check-out (with locks) the Rational Statemate charts to be exported.

2. Open the appropriate saved Rational DOORS configuration file.

3. Set up the RT Interface to synchronize the data.

4. Synchronize the data.

Modified elements overwrite existing elements (with user-prompting for confirmation)
and deleted elements are deleted – both from the Rational DOORS repository and from
the corresponding shadow copy.

5. Check in the Rational Statemate charts and unlock them if necessary.

Note
You must re-export Rational Statemate data to Rational DOORS manually. No automatic
mechanism (like a makefile) triggers the re-exporting and synchronization of data when
new Rational Statemate elements are created or when existing ones are changed or deleted.

For more detailed instructions, see Exporting Rational Statemate Data to Rational DOORS.
Rational Statemate 335

Rational DOORS RT Interface
Methodology Guidelines

In a typical Rational Statemate project, there are multiple users and multiple workareas. All of the
workareas in the project can be used with the same Rational DOORS database. However, because
some workareas may contain outdated versions of the model, it may be helpful to:

� Divide the Rational Statemate model into groups of charts, and assign responsibility for
editing and updating the charts to a variety of people working on the project.

� Designate a single workarea as the Rational DOORS update workarea, and do all the
updates from this location.

The amount of data that can be exported to Rational DOORS can be overwhelming. You should
therefore determine beforehand what modules and how much data you will be exporting.

It is recommended that when you configure a module for export, you limit the exported data to a
bare minimum to provide concise linking to the requirements.

For example, in a simple scenario, users typically define three separate element modules and a
links module. The modules are used to contain use cases, sequence diagrams, and activity charts.
The links module contains linksets, which define the explicit relationships (links) between, for
instance, use cases and sequence diagrams, or sequence diagrams and activity charts.
336 User Guide

Configuring the RT Interface
Configuring the RT Interface
This section explains how to configure the RT Interface on your operating system, and consists of
the following:

� Preliminary Requirements

� Configuring the RT Interface on Windows

Note
During the Rational Statemate installation you are prompted to configure the RT Interface.
If you have already configured the RT Interface during a previous Rational Statemate
installation, you can ignore this section.

Preliminary Requirements

Before configuring the RT Interface, you must have all of the following software licensed on your
system:

� Rational Statemate
� Rational DOORS
� The RT Interface
Rational Statemate 337

Rational DOORS RT Interface
Configuring the RT Interface on Windows

To configure the RT Interface on Windows NT, you must define parameters in the following batch
files:

� run_stmm.bat - starts Rational Statemate.
� doors.bat - starts Rational DOORS in batch mode during export operations in Rational

Statemate.
� run_doors.bat - starts Rational DOORS from the icon on the Rational Statemate main

window.

Note
Depending on how Rational Statemate and Rational DOORS are on your system or
network, you may require privileges to configure the RT Interface.

To edit these batch files:

1. Locate the Rational Statemate bin directory by doing the following:

a. Select Start > Programs > IBM Rational > Rational Statemate <version #>
> Statemate <version #>.

b. Right-click on Statemate <version #>.

In the Rational Statemate Properties window, the Target field contains the full path
of the file run_stmm.bat in the Rational Statemate bin directory.

2. Change your working directory to the directory you specified.
338 User Guide

Configuring the RT Interface
Edit run_stmm.bat
1. Copy run_stmm.bat to run_stmm.ORIG.bat.

2. Using the text editor of your choice, open run_stmm.bat and search for the word
“DXLPORTNO.” This brings you to the Rational DOORS section of the file.

3. To enable the RT Interface, remove the @rem prefix from the following SET commands:

@rem SET DXLPORTNO=5093

@rem SET DXLIPHOST=%COMPUTERNAME%

@rem SET STM_RT_TOOL=DOORS

@rem SET RT_MAIN_TOOL=%STM_ROOT%\BIN\RUN_DOORS

@rem SET DOORSHOME=<doors home>

@rem SET DOORSS_BATCH_FILE=doorss.bat

@rem SET STM_DOORS_USE_SYS_LOGIN=ON

@rem SET PATH=%PATH%;%DOORSHOME%\bin

@rem SET DOORSDATA=C:\gbmodels\DOORS 51\data

@rem SET RT_NO_OLE=ON

Note: If you do not want to insert the chart as an OLE object in Rational DOORS, do
not remove the @rem in front of RT_NO_OLE.
Remove the @rem from the STM_DOORS_USE_SYS_LOGIN line if DOORS
is configured to "Use system usernames"

4. After uncommenting the SET commands, specify values for the following parameters:

� DXLPORTNO

Set to DXLPORTNO=5093.

Typically, 5093 is the default TCP-IP port for Rational DOORS. However in
some instances, such as when the database is located on server, the 5093 number
may already be assigned. If necessary, check with the network administrator to
ensure that 5093 is not assigned.

� DXLIPHOST

Set this parameter to the hostname of the system on which Rational DOORS is
running. If Rational DOORS is running locally on your system, you can set this
parameter to DXLIPHOST=localhost.

If Rational DOORS is not available locally, contact your network administrator
for the name of the remote system running Rational DOORS.
Rational Statemate 339

Rational DOORS RT Interface
� DOORSHOME

Set this parameter to the absolute path to the top-level directory where Rational
DOORS is available. If, for example, DOORS is on your C drive in the Program
Files directory, define this parameter as follows:

SET DOORSHOME=C:/Program Files/Doors

5. Save and close the file.

Edit doorss.bat
1. Copy doorss.bat to doorss.ORIG.bat.

2. Using the text editor of your choice, open doorss.bat for writing and set the following
parameters:

� When DOORS is configured to "Use system usernames", remove the "-user %2"
from the doorss.bat command line.

3. When you are satisfied with your changes, save and close the file.

Edit GetDoorsVer.bat file
The GetDoorsVer.bat is located in the bin directory of the Statemate installation path.
When DOORS is configured to “Use system usernames”, remove the “-user %1 -password %2”
from the command line in this file.
340 User Guide

Working with the RT Interface
Edit run_doors.bat
1. Copy rundoors.bat to rundoors.ORIG.bat.

2. Using the text editor of your choice, open rundoors.bat for writing. You will see lines
similar to the following:

@rem This file should contain two lines:

@rem First line sets the environment variable LM_LICENSE_FILE

@rem Second line starts the Doors tool, e.g D:\DOORS\BIN\DOORS.

@rem If DOORS is installed in the program files directory,

@rem the path must be in quotes, "D:\PROGRAM FILES\BIN\DOORS".

@rem Modify these two lines to fit your environment

@echo off

SET LM_LICENSE_FILE=<full-path of your doors license file>

<full path command to start doors>

3. Make the following changes in the file so that the operating system can find the Rational
DOORS license and then start Rational DOORS:

� SET LM_LICENSE_FILE=<full-path of your DOORS license file>

Replace the string <full-path of your DOORS license file> with the absolute path
of the Rational DOORS license file.

� <full path command to start doors>

Replace this string with the absolute path to the Rational DOORS executable and enclose
the line in double quotes(“ ”). If, for example, the Rational DOORS executable is on the C
drive, enter the following line:

 “C:\Program Files\Doors\bin\DOORS.exe”

Working with the RT Interface
This section explains how to perform the following tasks in Rational Statemate using the
RT Interface:
Rational Statemate 341

Rational DOORS RT Interface
� Associating a Rational Statemate Project with a Rational DOORS Project
� Setting Preferences

� Exporting Rational Statemate Data to Rational DOORS

� Configuring Filtering by Attribute

� Configuring Linksets for Export

� Creating Multiple Linksets in a Single Link Module

� Re-Exporting Rational Statemate Data to Rational DOORS

Associating a Rational Statemate Project with a Rational DOORS
Project

This section explains how to associate a Rational Statemate project with a Rational DOORS
project.

To associate a Rational Statemate project with a Rational DOORS project:

1. Ensure that you have a corresponding Rational DOORS project.

The Rational DOORS project must exist in order to export Rational Statemate elements.
For information on how to create a DOORS project, consult your DOORS
documentation.

Additionally, the Rational DOORS Project name must match the RT Project name of the
Rational Statemate project. It is case sensitive and cannot contain white space characters,
because white space characters are not supported by Rational Statemate.

2. Start Rational Statemate.

3. From the Rational Statemate main window, complete one of the following:

� If you are creating a new project, select File > New Project.
� If the project already exists, select Project > Project Management > Modify.

4. Fill in the RT project: field with the name of the corresponding DOORS project.

5. Click OK to confirm your selections.
342 User Guide

Working with the RT Interface
Setting Preferences

This section describes how to set defaults within the RT Interface, so that data is saved to common
areas.

The following sections explain how to perform the following tasks:

� Setting Preferences for Chart Plots

� Setting Preferences for External Use-Case Files

� Setting Preferences for Log Files

� Setting Up a Default Configuration File

Setting Preferences for Chart Plots
To set up preferences for chart plots:

1. From the Rational Statemate main window, select Project > General Preferences >
Preferences of > User. The General Preferences window opens.

.

Rational Statemate 343

Rational DOORS RT Interface
2. Highlight the Default Postscript Device, click on the text in the Value field, and then
select WORD from the pull-down menu that opens.

3. Select Apply.

4. Select OK to confirm your choice.

5. Create a directory to hold the chart plots, such as C:\Doors\DoorsPlots.

Note: Do not use any white spaces in the directory name; otherwise, DOORS is not
able to resolve the link.

6. Set up an RT Interface to point to the chart plots directory, by doing the following:

a. From the Rational Statemate main window, click or select Tools > RT
Interface > DOORS I/F. The Doors Configuration dialog box opens.

Note: When you select DOORS I/F, a warning splash screen displays, which can be
ignored. Click OK to delete the splash screen.

b. Select the Advanced tab.

c. Click Export Chart Plot file path.

d. Select the tab to the right of the blank path window, which opens an Explorer
window.

e. Navigate to the chart plots directory and click OK.

The path to the folder is entered into the blank window.
344 User Guide

Working with the RT Interface
D

Rational Statemate 345

Rational DOORS RT Interface
Setting Preferences for External Use-Case Files
You set preferences for external use-case files if you want to link use-case external description
files in a DOORS module. This enables you to select a link in DOORS and open the external
description file in Microsoft Word.

To set preferences for external use-case files:

1. Create a directory to hold the use-case files, such as C:\Doors\UseCaseFiles.

Note: Do not use any white spaces in the directory name; otherwise, DOORS will not
be able to resolve the link.

2. Set up the RT Interface to point to the use-case files directory by doing the following:

a. From the Rational Statemate main window, click or select Tools > RT
Interface > DOORS I/F.

Note: When you select DOORS I/F, a warning splash screen displays, which can be
ignored. Click OK to delete the splash screen.

b. Select the Advanced tab.

c. Click to the right of the blank path window for the Use-Case external
description file path, which opens an Explorer window.

d. Navigate to the case files directory and click OK.

The path to the folder is entered into the blank window.
346 User Guide

Working with the RT Interface
Setting Preferences for Log Files
Setting preferences for log files enables you to specify a name and directory for a log file that
contains a list all the elements that were exported to the Rational DOORS module, along with the
shadow ID and its status.

To set preferences for a log file:

1. Create a directory to hold the log files, such as C:\Doors\DoorsLogFiles.

Note: Do not use any white spaces in the directory name; otherwise, Rational
DOORS will not be able to resolve the link.

2. Set up an RT Interface to point to the log files directory by doing the following:

a. From the Rational Statemate main window, click or select Tools > RT
Interface > DOORS I/F.

Note: When you select DOORS I/F, a warning splash screen displays, which can be
ignored. Click OK to delete the splash screen.

b. Select the Advanced tab.

c. Click Save export log to file.

d. Select the tab to the right of the blank path window for the Use-Case external
description file path, which opens an Explorer window.

e. Navigate to the log files directory and click OK.

f. Click Save.

The path and name of the file are entered into the blank window.
Rational Statemate 347

Rational DOORS RT Interface
Setting Up a Default Configuration File
It is recommended that once you have configured the necessary export operations, you capture
these settings in a default configuration file. You can use the default configuration file as the basis
for later, customized export configurations. Typically a configuration file is saved once an export
profile has been created.

To set up a default configuration file:

1. Create a directory to hold the configuration file, for example: C:\Doors\ConfigFiles.

Note: Do not use any white spaces in the directory name; otherwise, Rational
DOORS will not be able to resolve the link.

2. Save the current configuration settings that Rational Statemate has saved in its own named
file as a new file with a name you determine, by doing the following:

a. From the Rational Statemate main window, click or select Tools > RT
Interface > DOORS I/F.

Note: When you select DOORS I/F, a warning splash screen displays, which can be
ignored. Click OK to delete the splash screen.

b. Select File > Save As. A browsing window opens.

c. Browse to the configuration file directory you created in Step 1 and enter a name for
the default configuration file, ensuring that it has a
348 User Guide

Rational DOORS RT Interface
To choose which elements to export, set the Operation Scope on the Charts or Files tab to one of
the following:

� All charts/files in the WorkArea (WA)
� WAB Selection Only

This setting requires the user to highlight elements in the Charts or Files tab of the
Rational Statemate main window to limit the files to be exported.

To define how elements are to be exported, select one of the following buttons:

� Synchronize Links - When linkset modules are defined, creates or updates the links
between Rational Statemate elements. For more information, see Configuring Linksets for
Export.

� Synchronize Model-Data - forces the Rational DOORS module to update.
Note: You must set this button when exporting elements to the Rational DOORS

module.

� Dive into Generics - exports instances of any generic chart, if selected; otherwise the
generic chart is seen in the module as a separate element.

� With Descendants - exports only particular branches of a tree in the hierarchy of the
charts on the Charts tab of the Rational Statemate main window. It is used in conjunction
with the WAB Selection Only button.

� Create Missing Modules - creates new modules, if the target modules do not yet exist. It
is generally used only on the first instance of an export to a module.

� Delete elements not in current scope - clears the Rational DOORS module of fully
defined textual elements that are outside the current export scope.

Note: Do not use this button unless you are sure what data elements will be removed
from the DOORS module.
352 User Guide

Working with the RT Interface
� Export Instance Offpage Boxes - The DOORS interface option “Export Instance
Offpage Boxes” controls the export of offpage instance boxes. By default, that option is
set and all offpage instance boxes are exported.

When that option is not set the following behavior occurs:
� Offpage instance boxes are not exported to Rational DOORS.
� Generic instance boxes are exported to Rational DOORS.
� Statecharts that see a Control Activity with siblings have in their “objectInfo”

field the value: “@Controlling Statechart” (instead of the instance).
� Statecharts that see a Control Activity without siblings have in their “objectInfo”

field the value: “@Statechart” (instead of the instance).
� Flowcharts that see a Control Activity with siblings have in their “objectInfo”

field the value: “@Controlling Flowchart.”
� Flowcharts that see a Control Activity without siblings have in their “objectInfo”

field the value: “@Flowchart.”

Configuring Attributes for Export
Attributes are an intrinsic part of systems engineering. They can be used to define many aspects of
an element’s non-functional requirements, such as security classification, standards, quality of
service requirements.

The RT Interface can be configured to export the element attributes.

All elements exported to a Rational DOORS module have the attributes types exported with them,
whether or not an attribute is set in the original Rational Statemate model. If an attribute is not set,
the value field will be empty.

The exported attribute values can be inspected in the DOORS module by selecting an element,
right-clicking on it to open the Properties window, and finally, selecting the Attributes tab.
Rational Statemate 353

Rational DOORS RT Interface
To configure Rational Statemate to export the element attributes:

1. Create a set of attributes for elements in the Rational Statemate model. For more
information, see Creating a List of Elements.

2. From the Statemate main window, click or select Tools > RT Interface > DOORS
I/F.

Note: When you select DOORS I/F, a warning splash screen displays, which can be
ignored. Click OK to delete the splash screen.

3. Select the Advanced tab.

4. Click Select Attributes to export.

5. Click Choose from the Export Attributes dialog box.

6. Select the attributes to export from the Export Attributes dialog box by pressing and
holding CTRL and clicking the attributes.

7. Click OK to confirm and close the window. The Export Attributes dialog box displays,
displaying the list of attributes.

Note: The list can be modified using the Delete and Insert buttons or by manually
typing in attribute types.

8. Click OK to close the window.

Note
To avoid mistakes, do not type in the attribute name because the RT Interface expects the
correct case for the attribute type to export the values.
354 User Guide

Working with the RT Interface
Configuring Filtering by Attribute
Filtering by attribute is extremely useful, if you need to export limited sets of data to a specific
module.

For example, if you need to export a module of elements with an attribute type security
classification and a value of unclassified, you can set up a filter in the RT Interface to export any
element with that particular attribute value to a specific Rational DOORS module.

To configure Statemate to filter by attributes:

1. From the Statemate main window, click or select Tools > RT Interface > DOORS
I/F.

Note: When you select DOORS I/F, a warning splash screen displays, which can be
ignored. Click OK to delete the splash screen.

2. Set up the target module. For information on how to perform this task, see Preparing
Rational Statemate Elements for Export to Rational DOORS.

3. In the Operation Scope area, select Charts or Files. Then, select All in WA or WAB
Selection Only. If you choose WAB Selection Only, select the elements you want to
include in the operation.

4. Select the chart types to export (attribute filters are only active when an element has been
selected).

Note:

� There are a series of buttons in the Chart Type window, to the right of the element
types, with three dots in them. These are the attribute filters.

� The button furthest to the right relates to attributes associated with a chart.
� The buttons inside the Chart Type boxes relate to attributes associated with the

graphical elements on a chart.
5. Click the Attribute Filter button associated with the element you wish to export. The

Attribute Filter window opens.

6. Enter the attribute type into the box on the left side of the window (use the exact case of
the attribute).
Rational Statemate 355

Rational DOORS RT Interface
7. Enter the attribute value associated with the attribute type you wish to filter on the right
side of the window (use the exact case of the attribute value).

Note: If more than one attribute is to be used as the basis for a filter, the Use All
Attributes or the Use Any Attributes button in the Attribute Filter window is
extremely useful.

These buttons do the following:

– Use All Attributes - An element to be exported must have all the attributes
mentioned in the filter set to the values defined (an AND operation).

– Use Any Attributes - An element to be exported can have any of the
attributes mentioned in the filter set to the values defined (an OR operation).

Note: When filtering charts by attribute, it is also worth exporting the relevant
attributes.

The following figure shows how to use a general filter to export only an activity
chart with a Security Classification of Confidential to the DOORS module
Activity_charts.

.

The following figure shows how to use the AND/OR filter to export only activity
charts with a Security Classification of Confidential and a Functional Area of
Three to the DOORS module Activity_charts.

Note: Because the graphical element Activities has been set to export, another filter
can be applied to it. In this instance, all the graphical activity elements with
either a Security Classification of Confidential or Top Secret are exported.
356 User Guide

Working with the RT Interface
8. Click OK to save the settings.
Rational Statemate 357

Rational DOORS RT Interface
Configuring Linksets for Export
Linksets are used to define the traceability between different elements in DOORS. Typically they
define the explicit links between requirements (contained in a requirements module) and model
elements (contained in a separate module). The linksets themselves are contained within a links
module. More than one linkset can be contained in a single links module.

The RT Interface can be configured to export these links to DOORS. Links are supported between
the following:

� Use cases and sequence diagrams.
� Use cases and the statecharts that can be used to define the use-case behavior.
� Sequence diagrams and the activity charts that appear in them as lifelines.
� Definitions of data elements and the sequence diagrams where they are used as messages.
� Use cases and their scenarios.

Note: When exporting links, you must also export the relevant diagrams to their
respective modules.

To configure a linkset for export:

Note
For the sake of brevity, this book explains the steps for configuring a linkset between a use
case and a sequence diagram. The process is almost identical for other linksets, apart from
the selection of the radio buttons controlling which linkset to export and the selection of the
relevant modules to create each linkset type.

1. From the Statemate main window, click or select Tools > RT Interface > DOORS
I/F.

Note: When you select DOORS I/F, a warning splash screen displays, which can be
ignored. Click OK to delete the splash screen.

2. Create a module named Use_Cases in the Modules window.

3. Select Use-Case Diagrams from the Graphics tab.

4. Select Use Cases element from the Graphics tab.

5. Create a module named Sequence_diagrams in the Modules window.

6. Select Sequence Diagram from the Graphics tab.

7. Set the Operation scope to All charts in WA.

8. Set Synchronize model data to be ON.
358 User Guide

Working with the RT Interface
9. Set Synchronize links to be ON (creates the linksets automatically).

10. Set Create missing modules to be ON (creates the links module as well as the data
modules).

The Rational DOORS configuration window should look similar to the following figure:
Rational Statemate 359

Rational DOORS RT Interface
11. Set up the linkset module, define the type of links to be created, and source the target
modules by following these steps:

a. Select the Links tab.

b. Right-click in the Link Modules window.

c. Add a new module named Link_Module.

d. Select the radio button for Link SD to Scenario in UCD.

e. Enter the name of the Source module (for example, Sequence_Diagrams).

f. Enter the name of the Target module (for example, Use_Cases).

Note: Ensure that the case of the module names is correct.

The DOORS configuration window should look similar to the following figure:
360 User Guide

Working with the RT Interface
.

12. Once the configuration is complete, you can export the linksets. For information on
exporting to DOORS, see Exporting Rational Statemate Data to Rational DOORS.

Note: You can check the relevant DOORS module by going into the sequence-
diagram module, then selecting a sequence diagram.

A red right-hand arrow displays. Right-click on the arrow, and the links to the
use case diagram are shown as an unloaded object.

Select an unloaded object and the relevant use case diagram module is opened
at the correct use case. The reverse link is seen as a yellow left-hand arrow.
Rational Statemate 361

Rational DOORS RT Interface
Creating Multiple Linksets in a Single Link Module
It is possible – and relatively easy – to create multiple linksets in one link module. You use the
same module name in the link modules window, but you select a different linkset with the relevant
source and target modules, as illustrated in the following figure:
362 User Guide

Working with the RT Interface
Exporting
To export Statemate elements to Rational DOORS:

1. Ensure that you have completed all of the necessary preliminary work, as outlined in
Setting Preferences and Preparing Rational Statemate Elements for Export to Rational
DOORS.

2. If you are exporting elements to an existing Rational DOORS module, ensure that the
DOORS module is closed.

3. Select Tools > Synchronize data with DOORS or click on the box to right of the Save
icon in the Rational DOORS Configuration window.

The RT Login window opens, as shown in the following figure.

4. To start the export, enter your DOORS User name and Password, then click OK.
Rational Statemate 363

Rational DOORS RT Interface
Re-Exporting Rational Statemate Data to Rational DOORS

In most cases, you need to re-export data at regular intervals as the data changes and model
baselines are set and reset. There are two ways to re-export data to Rational DOORS:

� Use a saved configuration file.
� Reset the profile of elements and modules to be exported manually.

Using a Saved Configuration File
To use a saved configuration file:

1. Access a saved configuration file (see Accessing a Saved Configuration File.)

2. Synchronize the data (see Synchronizing the Data.)

Accessing a Saved Configuration File

To access a saved configuration file:

1. From the Statemate main window, click or select Tools > RT Interface> DOORS
I/F.

Note: When you select DOORS I/F, a warning splash screen displays. Click OK to
delete the splash screen.

2. Select File > Save As. A browsing window displays.

3. Browse to the configuration file directory created in Setting Preferences for External Use-
Case Files.

4. Select a configuration file and click Open. The buttons in the RT Interface are set up.

Note: Once a configuration is retrieved, select the chart scope to be exported from the
workarea browser.

Configuration files do not save the scope of elements to be exported because
the files are available to all users who have access to the folder. The files can be
applied to any project.
364 User Guide

Working with the RT Interface
Rational DOORS Interface Support for Transitions

The Rational DOORS interface supports the inclusion of the following information for
Transitions:

� Attributes
� Design-Attributes
� Long Description

The “Object CreationStamp” attribute helps identify the Statemate element corresponding to a
Rational DOORS object. This attribute has the following characteristics:

� The “Object CreationStamp” attribute is part of all elements in the modules, but it is
updated only when the object is modified and thus updated.

� Any existing Rational DOORS objects (created before Statemate 4.3) in the modules have
an empty value for the “Object CreationStamp” attribute.

� The attribute is available only for elements that were created in Statemate 4.2 and later.
Elements that were created with Statemate before version 4.2, have “0” as their attribute
values.

� This attribute has the value “0” for scenarios.

Synchronizing the Data

To synchronize the data:

1. To begin synchronizing, do one of the following:

� Select Tools > Synchronize data with DOORS.
� Click Save in the DOORS Configuration dialog box.

The RT Login dialog box displays.
2. Enter your Rational DOORS User name and Password and click OK. The RT Interface

Manager dialog box displays and data starts to be resysnchronized.

If an exported data element has changed, the RT Interface overwrites the original version
of the data in the Rational DOORS module. If an element has been deleted from the scope
of the data to be exported, a Question dialog box displays, giving you the option of
deleting the DOORS shadow element.
Rational Statemate 365

Rational DOORS RT Interface
The following options are available:

– Yes - deletes the Rational DOORS shadow element.
– Yes to All - deletes all the Rational DOORS shadow elements.

Note: Select this option to prevent this question from being asked for every shadow
element.

– No or No to All - keeps all versions of the data in the DOORS shadow.
– Rename – renames the chart shadow and its direct descendants in DOORS.

Use this option when the chart was renamed in Statemate after it was
exported.

– Abort Export – aborts the current export of data, stopping the RT Interface
manager.

In order to keep the Statemate data synchronized against its Rational DOORS
Object, the Rational DOORS Object includes the attributes “Object
CreationStamp.” The value of this attribute is a number representing the time
in which the corresponding element was created in the Statemate model.
366 User Guide

Truth Tables
This section provides information on using truth tables in Statemate. The topics are as follows:

� Executing Truth Tables

� Defining a Truth Table

A truth table is a tabular representation of inputs, resulting outputs, and actions. Each table can
contain one or more input or output columns and one action column. In Statemate, you can use
truth tables in the body of actions and activities and as an additional language to describe
procedures.

The following sections describe the format and contents of truth tables. The topics are as follows:

� Special Characters

� Input Columns

� Output Columns

� Action Column
Rational Statemate 367

Truth Tables
Format and Content of Truth Tables
This section contains the following information:

� Special Characters

� Input Columns

� Output Columns

� Action Column

Special Characters

The following table lists the characters that have special meanings in truth tables.

Input Columns

The input columns of a truth table are similar to the following:

Each column in the input section of the table is associated with an input. An input can be either a
Statemate element or expression. Subroutine parameters and globals can be used as inputs when
the truth table is a subroutine implementation body.

Compound elements can be used as inputs. For example, CO_2 can be defined as D1>5 and in
(STATE_1).

Character Meaning

* Don’t care

+ Event generated (input or output)

- Event not generated (input)

CO_1 CO_2 DI_1 REC_1 ARR_1

True False 1 REC_2 {1,2,3}

False False 2 * *

True False 3 * *

False True 5 * *
368 User Guide

Format and Content of Truth Tables
Entries in the input section can be:

� Literals

� Statemate elements
� Expressions
� Empty
� Don’t care (*)

Each input section of a row represents a Boolean expression. The Boolean expresses an AND of
the values for each of the inputs that does not have a “Don’t Care” value.

Note
Input cells that are left blank are considered as “Don’t Care” items by the simulation and
code generation tools.

For example:

Row 1

CO_1 and not CO_2 and DI_1==1 and REC_1==REC_2 and
ARR_1=={1,2,3}

Row 2

not CO_1 and not CO_2 and DATA_1==2

Valid Input Elements
Inputs to truth tables can be conditions or data items. Data items include:

� Integers
� Reals
� Bits
� Bit-arrays
� Strings
� Records
� Record fields
� Enumerated types
� Arrays of the previously listed types
� Elements of arrays
� Subroutine calls
� User-defined types built of the previously listed types
Rational Statemate 369

Truth Tables
Note
There is no literal syntax for the following types: records, unions, and arrays of complex
types. The only legal comparison in the input section for these elements is another element
of the same type.

Input Column Header Operators
A value in a truth-table input column header can be prefixed with one of the following operators:
<, >, <=, >=, !=, \=, == . A column cell is evaluated by comparing its value with the column header
value using the operator. The default operator is ==.

For example, a value of <X in an input column header causes a column cell with value Y to be
evaluated as TRUE only when Y<X.

Invalid Input Elements
The following elements cannot be used as inputs:

� Unions
� Records that contain unions
� Arrays of unions
� Fields of unions
� Slices of arrays or bit-arrays
� Queues
� States
� Activities
370 User Guide

Format and Content of Truth Tables
Output Columns

The output columns of a truth table are similar to the following:

Each output column must be a Statemate element. Local elements, subroutine parameters, and
subroutine global elements can be outputs when the truth table is a subroutine implementation
body.

Entries in the cells of the output section can be:

� Literals
� Statemate elements
� Statemate expressions
� Empty

Empty entries in the output section indicate outputs that are not changed when the related row is
executed. Unchanged items are not “written.”

Output Elements
Primitive conditions and data items can be used as outputs for truth tables.The following elements
cannot be used as outputs:

� Compounds
� Slices of arrays
� Slices of bit-arrays
� Queues
� Activities
� States
� Actions

Note
The same element can appear in the table as both an input and an output.

CO_3 DATA_2

True 100

False -1

True 1

False 2
Rational Statemate 371

Truth Tables
Action Column

In the action column, you can include any action expression that is legal in the context of the truth
table.

The action column is similar to the following:

Executing Truth Tables
The following sections describe how truth tables are executed. The topics are as follows:

� Default Row

� Row Execution

� Truth Table Contents for Activities and Actions

� Truth Table Contents for Subroutines

� Micro-step Execution of Procedure Truth Tables

� Execution of Action Truth Tables

� Factorization of Cells

Default Row

Optionally, you can add a default row to the truth table. This row contains no input values and is
executed only if none of the previous rows in the table have been executed.

Action

AN1;AN2

AN3

X:=X+Y
372 User Guide

Executing Truth Tables
Row Execution

Statemate evaluates a truth table as follows:

� When a truth table is executed, Statemate evaluates it row-by-row, starting at the top of the
table and proceeding downward to the end.

� The first row whose input expression evaluates to TRUE is “fired.”
� Once the row is fired, all the outputs listed in the output section of that row are generated

and the action section is executed.
� If any output columns are blank, the related outputs are not changed. Unchanged items are

not “written.”
� The order of execution is from left to right, first outputs and then actions. This is relevant

only for truth tables that implement procedures.
� If the table contains a default row, and if during the evaluation of the table no other row

has fired, the default row is fired.
� If the table does not contain a default row and no row fires during the evaluation of the

table, a warning message is displayed during simulation and no output elements are
changed.

Truth Table Contents for Activities and Actions

Truth tables associated with actions or activities can include any legal Statemate action
expressions, including, for example:

� References to named actions
� Assignments
� Generation of events
� Operations on activities (within Statecharts)

Note
The semantics of the action section in this context is the “regular” Statemate semantics. A
race condition occurs when the same element is assigned both from the output section and
the action section.
Rational Statemate 373

Truth Tables
Truth Table Contents for Subroutines

Truth tables defined as subroutines can include any Statemate action expression that is legal in a
subroutine body. They cannot contain references to named actions or other actions, such as
scheduled actions or actions on activities and events. They can contain references to local
elements, subroutine parameters and globals.

The semantics of the action section in this context is the subroutine action language semantics, that
is, all assignments are done immediately. Because an element can be assigned more than once in
the output and action sections, order of execution is from left to right to avoid race conditions.

Micro-step Execution of Procedure Truth Tables

Assignments are made within truth tables following the micro-step and immediate update
semantics of all functions and procedures.

This means that as soon as an assignment is made, it is available to be used. This does not affect
the evaluation of the rows, because only one row fires each time the table is executed. It does,
however, affect assigned values, if an output refers to another output that has already been
assigned.

In the following example, both DATA_2 and DATA_3 receive the value “5” when the row fires,
regardless of the previous value of DATA_2.

Inputs Outputs

CO_1 CO_2 DATA_1 DATA_2 DATA_3

* * * 5 DATA_2
374 User Guide

Executing Truth Tables
Execution of Action Truth Tables

The following applies to truth tables that are either

� Bound to activities
� Defined as action bodies

Assignments are made within truth tables following the Statemate step semantics. New values are
sensed only at the next step. Writing twice to the same element flags a write/write race error. This
means that after an assignment is made, it is not available for immediate use.

In the following example, DATA_2 receives the value 5 and DATA_3 receives the previous value
of DATA_2.

Factorization of Cells

You can group vertically adjacent cells together and have the same value applied to the entire
group. This grouping, called factorization, can be applied to all three columns in the truth table
(inputs, outputs, and actions).

Factorizing Inputs
While factorization of inputs is a labor saving device, it also affects the logic of the table and how
it is implemented in code. The table is evaluated from top to bottom, and from left to right. The
generated code, as well as the simulator, matches this behavior.

Here is an example of factorization:

Inputs Outputs

CO_1 CO_2 DATA_1 DATA_2 DATA_3

* * * 5 DATA_2

Inputs Outputs

CO_1 CO_2 DL_1 REC_1 ARR_1 CON_3 DATA_2

True True 1 REC_2 {1,2,3} True 100

2 * * True -1

False 3 * * True 1

5 * * True 2

False * * * * False 0
Rational Statemate 375

Truth Tables
This is the resulting logic, shown as pseudo-code:

if CO_1 then

if CO_2 then

if DI_1=1 and REC_1=REC_2 and ARR_1 = {1,2,3} then

tr!(CON_3); DATA_2:=100;

else

if DI_1=2 then

tr!(CON_3); DATA_2:=-1;

else

if DI_1=3 then

tr!(CON_3); DATA_2:=1;

else

if DI_1=5 then

tr!(CON_3); DATA_2:=2;

else

fs!(CON_3); DATA_2:=0;

Note that factorization of inputs is allowed from left to right only. Reading from left to right, each
subsequent factorization of inputs must be a subset of all those to the left, as this example
illustrates.

The next two examples show incorrect implementations of factorization to further illustrate the
points explained above.

Incorrect factorization - Example 1:

Note that in this example, input column 2 is a subset of input column 1, and this is not allowed.

Inputs Outputs

CO_1 CO_2 CON_3 DATA_2

True True True 100

True True -1
376 User Guide

Executing Truth Tables
Incorrect factorization - Example 2:

Note that in this example, column 2 was not built so that each factorization is a subset of all those
to the left of it.

Factorizing Outputs and Actions
You can also factorize output and action rows to repeat the same pattern. In contrast to
factorization of input rows, this does not affect the code generated from the truth table, and is a
labor-saving device only. Here is an example:

Inputs Outputs

CO_1 CO_2 CON_3 DATA_2

True 1 True 100

2 False -1

False True 1

3 False 2

Inputs Outputs

DATA_1 CON_3 DATA_2 DATA_3 DATA_4

True True 0 1 DATA_5

DATA_6

False DATA_7

DATA_9

DATA_10

DATA_11
Rational Statemate 377

Truth Tables
Defining a Truth Table
In Statemate, you can define truth tables in the Properties window for the following elements:

� Action

Any work done as a result of:
� Making a transition in a statechart.
� Executing a static reaction within a state.
� Executing a mini-spec within an activity.

� A single action can consist of the following:
� Making an assignment
� Generating an event
� Invoking a defined (named) action
� Several special types of expressions (starting/stopping/ suspending activities,

clearing history, and so on.)
� Activity

The primary graphical object in activity charts that represent a function in the functional
view of the system. An activity represents something that transforms inputs into outputs.

� There are three types of activities:
– Internal activities (solid rectangle)
– External activities (dashed rectangle)
– Control activities (rounded rectangle)

� Activities can be allocated to modules (structure) and can contain statecharts. You
can specify the behavior of an activity by connecting it to a subroutine.

– Procedure-like activities can be connected to procedures within any of the
languages supported.

– Internal primitive activities (reactive-controlled and reactive-self) can be
connected to tasks (no mini-specs or decomposition is allowed).

– External activities can only be connected to tasks.
� Procedure

A subroutine that has no return value but can have multiple parameters. Each parameter
can be INPUT, OUTPUT, or INPUT/OUTPUT.
378 User Guide

Defining a Truth Table
To define a truth table:

1. From the Search window or a chart, access the Property window for the element for
which you want to define a truth table.

The following figure shows the Property window for an action element, accessed from the
Search tab.
Rational Statemate 379

Truth Tables
2. Select Truth Table from the Selected Implementation pull-down menu.

3. Click Edit to start the truth-table editor, as shown in the following figure.

4. Using the Worksheet option in the toolbar, you can perform the following tasks:

� Insert Row - adds one row above the selected row.
� Insert Column - adds one column to the left of the selected column.
� Redefine Table - displays the Redefine Table dialog box. Allows you to change

the number of inputs or outputs or the number of rows, or adds or removes the
action section.

� Remove Selected - removes the selected rows or columns.
� Add Default Row - adds a default row. (Because a truth table can only include

one default row, this option is not available if the table already has a default row.)
Note that the Input columns in the default row are read-only, but you can edit both
the output and action columns.

� Join Cells - joins two adjacent cells within the same column.
� Split Cells - splits a previously united cell back into two separate cells.
� Local Variables - This option is available only for truth tables attached to

subroutines. When you select this option, a dialog box opens. In this dialog box,
you can define the name and data type for the local variables.

5. Select File > Save, then File > Exit to confirm your selections and exit the editor.
380 User Guide

Lookup Tables
This section provides information on using a lookup table as an implementation of a subroutine in
Statemate. The topics are as follows:

� Defining a Lookup Table

� Example of a Lookup Table

Lookup tables support non-linear “Y=F(X)” functions that are so common in the world of micros.
Typically, these non-linear functions are used to represent characteristic curves of valves in a table
structure. Such a table may consist of a list of pairs of digitizing points, Xi, and its corresponding
value, Fi. The data might be imported from any ASCII data file. A choice is given whether to
perform (linear) interpolation between points, or to use a histogram like mode. In addition,
saturation values might be defined, for the upper and lower range bounds, as well as a search order
to support performance sensitive scenarios.

Defining a Lookup Table
To define a lookup table:

1. From the Search window or a chart, access the Property window for the element for which
you want to define a lookup table.

The following figure shows the Property window for an action element, accessed from the
Search tab.

2. Select Lookup Table from the Implementation tab.
Rational Statemate 381

Lookup Tables
3. Click Edit to start the lookup table editor, as shown in the following figure.

4. Fill in the Lookup Table values

5. Fill in the Lookup Table parameters according to the following table:
382 User Guide

Example of a Lookup Table
Note
The independent variable X can be either a number or the value of an expression. When X is
the value of an expression, its values must be non-decreasing from the beginning to the end
of the table.

Example of a Lookup Table
For example, consider the following definition of such a function with return value defined to be
“Real” and input defined to be “Integer”: In “Interpolation”, High to Low mode, Lower Bound=0,
Upper Bound =4.

Option Description

Lower Bound
Value

The lowest possible interpolated value.

Upper Bound
Value

The highest possible interpolated value.

Linear
Interpolation

Defines if interpolation is linear or not

Search order Direction that the lookup table is evaluated.

X F(X)

1 1

10 2

100 3

1000 4
Rational Statemate 383

Lookup Tables
384 User Guide

Example Components
This section provides reference information on a set of example components. The topics are as
follows:

� Overview

� Example Component Library

Overview
Libraries and components offer a means to speed up the design process and to help you create
more consistent specifications:

� A library is a container for model components.

� A component is a model element that contains behavior and uses input and output
parameters to communicate information.

You can add a component to a model by selecting it from a library and placing it into an activity
chart. For more information on working with libraries and components, see Libraries and
Components.

The example component library contains a set of components you can use as building blocks for
basic system architecture performance modeling and analysis. You can download the component
library from the product Web site. The download file includes instructions for setting up the
component library on your system.

The component library is provided as a learning aid, and is not a supported product. However, it
can be freely used, modified, and distributed as needed.

Note
The example component library include subroutines with C code implementations, so a C
compiler must be operational on your computer in order for these components to be used in
a simulation.
Rational Statemate 385

Example Components
Example Component Library
Each component in a library is represented by an icon that you can drag and drop into an activity
chart. The icons also show the number of inputs and outputs for each component. For example, in
the following figure, the STM_BRANCH_2 icon shows three inputs and two outputs.

For more information on working with libraries and components, see Libraries and Components.
386 User Guide

Example Component Library
The following section contains reference information for these components:

� STM_BRANCH_2

� STM_BRANCH_3

� STM_FORK_2

� STM_FORK_3

� STM_JOIN_2

� STM_JOIN_3

� STM_FIFO_ACTIVE

� STM_FIFO_PASSIVE

� STM_LIFO_ACTIVE

� STM_LIFO_PASSIVE

� STM_PMPT_ACTIVE

� STM_PRTY_PASSIVE

� STM_SINK

� STM_SOURCE
Rational Statemate 387

Example Components
STM_BRANCH_2

Branches transactions to one of two outputs.

Description

Generates STMM_TRANSACTION_TYPE transactions at the OUTPUT1 or OUTPUT2 port. When
an INPUT arrives, the component generates a uniform real number between 0.0 and 100.0.

If the number is:

� Less than or equal to PROB1, OUTPUT1 is set to INPUT.
� Greater than PROB1, OUTPUT2 is set to INPUT.

When you insert the STM_BRANCH_2 component into an activity chart, the component is
represented by the following graphic image.
388 User Guide

Example Component Library
I/O Stubs

Analysis Statistics

If you set ANALYZE, the following statistics are gathered:

Name Mode Format

INPUT input STMM_TRANSACTION_TYPE

PROB1 input Real

CLEAR input Event

OUTPUT1 output STMM_TRANSACTION_TYPE

OUTPUT2 output STMM_TRANSACTION_TYPE

Formal Parameter Type

ANALYZE Condition

Variable Data Type Description

Local variables for analysis

OUTPUT1_INTERVAL Real array OUTPUT1 arrival
interval

OUTPUT1_INTERVAL_MIN Real array

OUTPUT1_INTERVAL_MAX Real array

OUTPUT1_INTERVAL_MEAN Real array

OUTPUT2_INTERVAL Real array OUTPUT2 arrival
interval

OUTPUT2_INTERVAL_MIN Real array

OUTPUT2_INTERVAL_MAX Real array

OUTPUT2_INTERVAL_MEAN Real array

TRANSACTIONS_OUTPUT1 Integer array Number of OUTPUT1
transactions
Rational Statemate 389

Example Components
To access these values in the panels or in the simulation monitor, use the following naming
convention: <Component_Name>^value_name

For example, you access the T_TRANSACTIONS_OUTPUT1 for component BRANCH as
BRANCH^T_TRANSACTIONS_OUTPUT1.

CLEAR clears the statistics.

Termination Type

Reactive Controlled

TRANSACTIONS_OUTPUT2 Integer array Number of OUTPUT2
transactions

Totals for analysis

T_OUTPUT1_INTERVAL Real

T_OUTPUT1_INTERVAL_MIN Real

T_OUTPUT1_INTERVAL_MAX Real

T_OUTPUT1_INTERVAL_MEAN Real

T_OUTPUT2_INTERVAL Real

T_OUTPUT2_INTERVAL_MIN Real

T_OUTPUT2_INTERVAL_MAX Real

T_OUTPUT2_INTERVAL_MEAN Real

T_TRANSACTIONS_OUTPUT1 Integer

T_TRANSACTIONS_OUTPUT2 Integer

Variable Data Type Description
390 User Guide

Example Component Library
STM_BRANCH_3

Branches transactions to one of three outputs.

Description

Generates STMM_TRANSACTION_TYPE transactions at the OUTPUT1, OUTPUT2, or OUTPUT3 port.
When an INPUT arrives, the component generates a uniform real number between 0.0 and
100.0. If the number is:

� Less than or equal to PROB1, OUTPUT1 is set to INPUT.

� Greater than PROB1, but less than or equal to (PROB1+PROB2), OUTPUT2 is set to
INPUT.

� Greater than (PROB1+PROB2), OUTPUT3 is set to INPUT.
When you insert the STM_BRANCH_3 component into an activity chart, the component is
represented by the following graphic image.
Rational Statemate 391

Example Components
I/O Stubs

Analysis Statistics

If you set ANALYZE, the following statistics are gathered:

Name Mode Format

INPUT input STMM_TRANSACTION_TYPE

PROB1 input Real

PROB2 input Real

CLEAR input Event

OUTPUT1 output STMM_TRANSACTION_TYPE

OUTPUT2 output STMM_TRANSACTION_TYPE

OUTPUT3 output STMM_TRANSACTION_TYPE

Formal Parameter Type

ANALYZE Condition

Variable Data Type Description

Local variables for analysis

OUTPUT1_INTERVAL Real array OUTPUT1 arrival
interval

OUTPUT1_INTERVAL_MIN Real array

OUTPUT1_INTERVAL_MAX Real array

OUTPUT1_INTERVAL_MEAN Real array

OUTPUT2_INTERVAL Real array OUTPUT2 arrival
interval

OUTPUT2_INTERVAL_MIN Real array

OUTPUT2_INTERVAL_MAX Real array
392 User Guide

Example Component Library
OUTPUT2_INTERVAL_MEAN Real array

OUTPUT3_INTERVAL Real array OUTPUT3 arrival
interval

OUTPUT3_INTERVAL_MIN Real array

OUTPUT3_INTERVAL_MAX Real array

OUTPUT3_INTERVAL_MEAN Real array

TRANSACTIONS_OUTPUT1 Integer array Number of output1
transactions

TRANSACTIONS_OUTPUT2 Integer array Number of output2
transactions

TRANSACTIONS_OUTPUT3 Integer array Number of output3
transactions

Totals for analysis

T_OUTPUT1_INTERVAL Real

T_OUTPUT1_INTERVAL_MIN Real

T_OUTPUT1_INTERVAL_MAX Real

T_OUTPUT1_INTERVAL_MEAN Real

T_OUTPUT2_INTERVAL Real

T_OUTPUT2_INTERVAL_MIN Real

T_OUTPUT2_INTERVAL_MAX Real

T_OUTPUT2_INTERVAL_MEAN Real

T_OUTPUT3_INTERVAL Real

T_OUTPUT3_INTERVAL_MIN Real

T_OUTPUT3_INTERVAL_MAX Real

T_OUTPUT3_INTERVAL_MEAN Real

T_TRANSACTIONS_OUTPUT1 Integer

T_TRANSACTIONS_OUTPUT2 Integer

T_TRANSACTIONS_OUTPUT3 Integer

Variable Data Type Description
Rational Statemate 393

Example Components
To access these values in the panels or in the simulation monitor, use the following naming
convention: <Component_Name>^value_name

For example, you access the T_TRANSACTIONS_OUTPUT1 for component BRANCH as
BRANCH^T_TRANSACTIONS_OUTPUT1.

CLEAR clears the statistics.

Termination Type

Reactive Controlled
394 User Guide

Example Component Library
STM_FORK_2

Forks transactions to two outputs.

Description

Generates STMM_TRANSACTION_TYPE transactions at the OUTPUT1 and OUTPUT2 ports. When an
INPUT arrives, the component sets OUTPUT1 and OUTPUT2 to INPUT.

Note
To synchronize the forked transactions, use the STM_JOIN_2 component.

When you insert the STM_FORK_2 component into an activity chart, the component is
represented by the following graphic image.

I/O Stubs

Name Mode Format

INPUT input STMM_TRANSACTION_TYPE

CLEAR input Event

OUTPUT1 output STMM_TRANSACTION_TYPE

OUTPUT2 output STMM_TRANSACTION_TYPE
Rational Statemate 395

Example Components
Analysis Statistics

If you set ANALYZE, the following statistics are gathered:

To access these values in the panels or in the simulation monitor, use the following naming
convention: <Component_Name>^value_name

For example, you access the T_TRANSACTIONS_OUTPUT for component FORK as
FORK^T_TRANSACTIONS_OUTPUT.

CLEAR clears the statistics.

Termination Type

Reactive Controlled

Formal Parameter Type

ANALYZE Condition

Variable Data Type Description

Local variables for analysis

OUTPUT_INTERVAL Real array OUTPUT arrival interval

OUTPUT_INTERVAL_MIN Real array

OUTPUT_INTERVAL_MAX Real array

OUTPUT_INTERVAL_MEAN Real array

T_OUTPUT_INTERVAL_MEAN Real

T_TRANSACTIONS_OUTPUT Integer
396 User Guide

Example Component Library
STM_FORK_3

Forks transactions to three outputs.

Description

Generates STMM_TRANSACTION_TYPE transactions at the OUTPUT1, OUTPUT2, and
OUTPUT3 ports. When an INPUT arrives, the component sets OUTPUT1, OUTPUT2, and
OUTPUT3 to INPUT.

Note
To synchronize the forked transactions, use the STM_JOIN_3 component.

When you insert the STM_FORK_3 component into an activity chart, the component is
represented by the following graphic image.

I/O Stubs

Name Mode Format

INPUT input STMM_TRANSACTION_TYPE

CLEAR input Event

OUTPUT1 output STMM_TRANSACTION_TYPE

OUTPUT2 output STMM_TRANSACTION_TYPE

OUTPUT3 output STMM_TRANSACTION_TYPE
Rational Statemate 397

Example Components
Analysis Statistics

If you set ANALYZE, the following statistics are gathered:

To access these values in the panels or in the simulation monitor, use the following naming
convention: <Component_Name>^value_name

For example, you access the T_TRANSACTIONS_OUTPUT for component FORK as
FORK^T_TRANSACTIONS_OUTPUT.

CLEAR clears the statistics.

Termination Type

Reactive Controlled

Formal Parameter Type

ANALYZE Condition

Variable Data Type Description

Local variables for analysis

OUTPUT_INTERVAL Real array OUTPUT arrival
interval

OUTPUT_INTERVAL_MIN Real array

OUTPUT_INTERVAL_MAX Real array

OUTPUT_INTERVAL_MEAN Real array

TRANSACTIONS_OUTPUT Integer array Number of OUTPUT
transactions

Totals for analysis

T_OUTPUT_INTERVAL Real

T_OUTPUT_INTERVAL_MIN Real

T_OUTPUT_INTERVAL_MAX Real

T_OUTPUT_INTERVAL_MEAN Real

T_TRANSACTIONS_OUTPUT Integer
398 User Guide

Example Component Library
STM_JOIN_2

Joins (synchronizes) two transactions.

Description

Generates STMM_TRANSACTION_TYPE transactions at the INPUT1 and INPUT2 ports.

Note
Use this component in conjunction with the STM_FORK_2 component to synchronize the
forked transactions.

When the INPUT1 and INPUT2 ports receive a transaction, the component generates the OUTPUT
transaction. (The OUTPUT is set to the most recent input, which should be the same as the other
input.).

When you insert the STM_JOIN_2 component into an activity chart, the component is
represented by the following graphic image.
Rational Statemate 399

Example Components
I/O Stubs

Analysis Statistics

If you set ANALYZE, the following statistics are gathered:

Name Mode Format

INPUT1 input STMM_TRANSACTION_TYPE

INPUT2 input STMM_TRANSACTION_TYPE

CLEAR input Event

OUTPUT output STMM_TRANSACTION_TYPE

Formal Parameter Type

ANALYZE Condition

Variable Data Type Description

Local variables for analysis

INPUT1_INTERVAL Real array INPUT1 arrival interval

INPUT1_INTERVAL_MIN Real array

INPUT1_INTERVAL_MAX Real array

INPUT1_INTERVAL_MEAN Real array

INPUT2_INTERVAL Real array INPUT2 arrival interval

INPUT2_INTERVAL_MIN Real array

INPUT2_INTERVAL_MAX Real array

INPUT2_INTERVAL_MEAN Real array

RESPONSE_TIME Real array Time between fork and join

RESPONSE_TIME_MIN Real array

RESPONSE_TIME_MAX Real array

RESPONSE_TIME_MEAN Real array

TRANSACTIONS_OUTPUT Integer array Number of OUTPUT transactions
400 User Guide

Example Component Library
To access these values in the panels or in the simulation monitor, use the following naming
convention: <Component_Name>^value_name

For example, you access the T_TRANSACTIONS_OUTPUT for component FORK as
FORK^T_TRANSACTIONS_OUTPUT.

CLEAR clears the statistics.

Termination Type

Reactive Controlled

Totals for analysis

T_INPUT1_INTERVAL Real

T_INPUT1_INTERVAL_MIN Real

T_INPUT1_INTERVAL_MAX Real

T_INPUT1_INTERVAL_MEAN Real

T_INPUT2_INTERVAL Real

T_INPUT2_INTERVAL_MIN Real

T_INPUT2_INTERVAL_MAX Real

T_INPUT2_INTERVAL_MEAN Real

T_RESPONSE_TIME Real

T_RESPONSE_TIME_MIN Real

T_RESPONSE_TIME_MAX Real

T_RESPONSE_TIME_MEAN Real

T_TRANSACTIONS_OUTPUT Integer

Variable Data Type Description
Rational Statemate 401

Example Components
STM_JOIN_3

Joins (synchronizes) three transactions.

Description

Generates STMM_TRANSACTION_TYPE transactions at the INPUT1, INPUT2, and INPUT3 ports.

Note
Use this component in conjunction with the STM_FORK_3 component to synchronize the
forked transactions.

When the INPUT1, INPUT2, and INPUT3 ports receive a transaction, the component generates
the OUTPUT transaction. (The OUTPUT is set to the most recent input, which should be the
same as the other inputs.).

When you insert the STM_JOIN_3 component into an activity chart, the component is
represented by the following graphic image.
402 User Guide

Example Component Library
I/O Stubs

Analysis Statistics

If you set ANALYZE, the following statistics are gathered:

Name Mode Format

INPUT1 input STMM_TRANSACTION_TYPE

INPUT2 input STMM_TRANSACTION_TYPE

INPUT3 input STMM_TRANSACTION_TYPE

CLEAR input Event

OUTPUT output STMM_TRANSACTION_TYPE

Formal Parameter Type

ANALYZE Condition

Variable Data Type Description

Local variables for analysis

INPUT1_INTERVAL Real array INPUT1 arrival
interval

INPUT1_INTERVAL_MIN Real array

INPUT1_INTERVAL_MAX Real array

INPUT1_INTERVAL_MEAN Real array

INPUT2_INTERVAL Real array INPUT2 arrival
interval

INPUT2_INTERVAL_MIN Real array

INPUT2_INTERVAL_MAX Real array

INPUT2_INTERVAL_MEAN Real array

INPUT3_INTERVAL Real array

INPUT3_INTERVAL_MIN Real array INPUT3 arrival
interval
Rational Statemate 403

Example Components
INPUT3_INTERVAL_MAX Real array

INPUT3_INTERVAL_MEAN Real array

RESPONSE_TIME Real array Time between fork
and join

RESPONSE_TIME_MIN Real array

RESPONSE_TIME_MAX Real array

RESPONSE_TIME_MEAN Real array

TRANSACTIONS_OUTPUT Integer array Number of output
transactions

Totals for analysis

T_INPUT1_INTERVAL Real

T_INPUT1_INTERVAL_MIN Real

T_INPUT1_INTERVAL_MAX Real

T_INPUT1_INTERVAL_MEAN Real

T_INPUT2_INTERVAL Real

T_INPUT2_INTERVAL_MIN Real

T_INPUT2_INTERVAL_MAX Real

T_INPUT2_INTERVAL_MEAN Real

T_INPUT3_INTERVAL Real

T_INPUT3_INTERVAL_MIN Real

T_INPUT3_INTERVAL_MAX Real

T_INPUT3_INTERVAL_MEAN Real

T_RESPONSE_TIME Real

T_RESPONSE_TIME_MIN Real

T_RESPONSE_TIME_MAX Real

T_RESPONSE_TIME_MEAN Real

T_TRANSACTIONS_OUTPUT Integer

Variable Data Type Description
404 User Guide

Example Component Library
To access these values in the panels or in the simulation monitor, use the following naming
convention: <Component_Name>^value_name

For example, you access the T_TRANSACTIONS_OUTPUT for component JOIN as
JOIN^T_TRANSACTIONS_OUTPUT.

CLEAR clears the statistics.

Termination Type

Reactive Controlled
Rational Statemate 405

Example Components
STM_FIFO_ACTIVE

A first-in-first-out active service resource component.

Description

Accepts STMM_TRANSACTION_TYPE transactions on the INPUT port, and processes them in a
first-in-first-out scheme.

� If the service is idle, INPUT is immediately serviced.
� If the service is busy, INPUT is queued and serviced when it is the oldest

transaction in the queue.
� DIST specifies the distribution and parameters used to calculate the service time

for each transaction class.
� If INT occurs while a transaction is in service, the servicing stops, and the

transaction is sent to I_OUTPUT.
� If the transaction completes servicing without interruption, then it is sent to the

S_OUTPUT.
� CLEAR clears (resets) contents of the resource.

When you insert the STM_FIFO_ACTIVE component into an activity chart, the component is
represented by the following graphic image.
406 User Guide

Example Component Library
I/O Stubs

Analysis Statistics

If you set ANALYZE, the following statistics are gathered
:

Name Mode Format

INPUT1 input STMM_TRANSACTION_TYPE

CLEAR input Event

UPDATE input Event

DIST input STMM_TRANS_CLASS_ARRAY_DIST

INT input Event

S_OUTPUT output STMM_TRANSACTION_TYPE

I_OUTPUT output STMM_TRANSACTION_TYPE

Formal Parameter Type

ANALYZE Condition

Variable Data Type Description

Local variables for analysis

QUEUE_LENGTH Integer Length of the queue

QUEUE_LENGTH_MIN Integer

QUEUE_LENGTH_MAX Integer

QUEUE_LENGTH_MEAN Real

RESPONSE_TIME Real array Time between INPUT and
OUTPUT

RESPONSE_TIME_MIN Real array

RESPONSE_TIME_MAX Real array

RESPONSE_TIME_MEAN Real array
Rational Statemate 407

Example Components
SERVICE_UTILIZATION Real-Percent Resource utilization

SERVICE_UTILIZATION_MIN Real-Percent

SERVICE_UTILIZATION_MAX Real-Percent

SERVICE_UTILIZATION_MEAN Real-Percent

TRANSACTIONS_INPUT Integer array Number of INPUT
transactions

TRANSACTIONS_INTERRUPTED Integer array Number of interrupted
transactions

TRANSACTIONS_SERVICED Integer array Number of serviced
transactions

TRANSACTION_INTERVAL Real array INPUT arrival interval

TRANSACTION_INTERVAL_MIN Real array

TRANSACTION_INTERVAL_MAX Real array

TRANSACTION_INTERVAL_MEAN Real array

Variable Data Type Description
408 User Guide

Example Component Library
To access these values in the panels or in the simulation monitor, use the following naming
convention: <Component_Name>^value_name

For example, you access the QUEUE_LENGTH for component ACT_RES1 as
ACT_RES1^QUEUE_LENGTH.

CLEAR clears the statistics.

UPDATE makes sure the statistics values are up-to-date. In some cases, the statistics are only
updated when events are triggered within the resource, so UPDATE ensures the statistics are up-
to-date regardless of the triggering events.

Termination Type

Reactive Controlled

Totals for analysis

T_RESPONSE_TIME Real

T_RESPONSE_TIME_MIN Real

T_RESPONSE_TIME_MAX Real

T_RESPONSE_TIME_MEAN Real

T_TRANSACTIONS_INPUT Integer

T_TRANSACTIONS_INTERRUPTED Integer

T_TRANSACTIONS_SERVICED Integer

T_TRANSACTION_INTERVAL Real

T_TRANSACTION_INTERVAL_MIN Real

T_TRANSACTION_INTERVAL_MAX Real

T_TRANSACTION_INTERVAL_MEAN Real

Variable Data Type Description
Rational Statemate 409

Example Components
STM_FIFO_PASSIVE

A first-in-first-out passive resource component.

Description

Accepts STMM_TRANSACTION_TYPE transactions on the INPUT port, and processes them in a
first-in-first-out scheme.

� RELEASE - The component also accepts STMM_TRANSACTION_TYPE transactions
on the RELEASE_ port and processes them immediately.

� USAGE - This port specifies the amount of resource used by a transaction based
on the class.

– If there is enough of the resource available (AVAIL) to process an input
transaction, the resource is allocated, and ALLOCD is set to the input
transaction.

– If there are insufficient resources, the input transaction is placed in the FIFO
queue until sufficient resources are available.

– When a transaction arrives on the RELEASE_ port, the resources associated
with the transaction are released (based on the value of USAGE), and
FREED is set to the release transaction.

When you insert the STM_FIFO_PASSIVE component into an activity chart, the component is
represented by the following graphic image.
410 User Guide

Example Component Library
I/O Stubs

Analysis Statistics

If you set ANALYZE, the following statistics are gathered:

Name Mode Format

INPUT input STMM_TRANSACTION_TYPE

RELEASE_ input STMM_TRANSACTION_TYPE

USAGE input STMM_TRANSACTION_TYPE

CLEAR input Event

UPDATE input Event

SIZE input/output Real

ALLOCID output STMM_TRANSACTION_TYPE

FREED output STMM_TRANSACTION_TYPE

AVAIL output Real

SIZE input/output Real

Formal Parameter Type

ANALYZE Condition

INITIAL_RESOURCE_SIZE (Data-Item) Real

Variable Data Type Description

Local variables for analysis

AVAIL Real Available resource
units

INPUT_INTERVAL Real array INPUT arrival
interval

INPUT_INTERVAL_MIN Real array
Rational Statemate 411

Example Components
INPUT_INTERVAL_MAX Real array

INPUT_INTERVAL_MEAN Real array

QUEUE_LENGTH Integer Length of the queue

QUEUE_LENGTH_MIN Integer

QUEUE_LENGTH_MAX Integer

QUEUE_LENGTH_MEAN Real

RELEASE_INTERVAL Real array Release arrival
interval

RELEASE_INTERVAL_MIN Real array

RELEASE_INTERVAL_MAX Real array

RELEASE_INTERVAL_MEAN Real array

RESOURCE_IN_USE Real array Resource units in use

RESOURCE_IN_USE_MIN Real array

RESOURCE_IN_USE_MAX Real array

RESOURCE_IN_USE_MEAN Real array

RESPONSE_TIME Real array Time in queue

RESPONSE_TIME_MIN Real array

RESPONSE_TIME_MAX Real array

RESPONSE_TIME_MEAN Real array

SIZE Real Total resource units

TRANSACTIONS_ALLOCD Integer array Number of allocated
inputs

TRANSACTIONS_FREED Integer array Number of freed
releases

USAGE_TIME Real array Time between input
and freed

USAGE_TIME_MIN Real array

USAGE_TIME_MAX Real array

USAGE_TIME_MEAN Real array

Totals for analysis

T_INPUT_INTERVAL Real

T_INPUT_INTERVAL_MIN Real

T_INPUT_INTERVAL_MAX Real

T_INPUT_INTERVAL_MEAN Real

Variable Data Type Description
412 User Guide

Example Component Library
To access these values in the panels or in the simulation monitor, use the following naming
convention: <Component_Name>^value_name

For example, you access the QUEUE_LENGTH for component PASS_RES1 as
PASS_RES1^QUEUE_LENGTH.

CLEAR clears the statistics.

UPDATE makes sure the statistics values are up-to-date. In some cases, the statistics are only
updated when events are triggered within the resource, so UPDATE ensures the statistics are up-
to-date regardless of the triggering events.

Termination Type

Reactive Controlled

T_RELEASE_INTERVAL Real

T_RELEASE_INTERVAL_MIN Real

T_RELEASE_INTERVAL_MAX Real

T_RELEASE_INTERVAL_MEAN Real

T_RESOURCE_IN_USE Real

T_RESOURCE_IN_USE_MIN Real

T_RESOURCE_IN_USE_MAX Real

T_RESOURCE_IN_USE_MEAN Real

T_RESPONSE_TIME Real

T_RESPONSE_TIME_MIN Real

T_RESPONSE_TIME_MAX Real

T_RESPONSE_TIME_MEAN Real

T_TRANSACTIONS_ALLOCD Integer

T_TRANSACTIONS_FREED Integer

T_USAGE_TIME Real

T_USAGE_TIME_MIN Real

T_USAGE_TIME_MAX Real

T_USAGE_TIME_MEAN Real

Variable Data Type Description
Rational Statemate 413

Example Components
STM_LIFO_ACTIVE

A last-in-first-out active resource component.

Description

Accepts STMM_TRANSACTION_TYPE transactions on the INPUT port, and processes them in a
last-in-first-out scheme.

� If the service is idle, INPUT is immediately serviced.
� If the service is busy, INPUT is queued, and serviced when it is the youngest

transaction in the queue.
� DIST specifies the distribution and parameters used to calculate the service time

for each transaction class.
� If INT occurs while a transaction is in service, the servicing stops, and the

transaction is sent to I_OUTPUT.
� If the transaction completes servicing without interruption, it is sent to the

S_OUTPUT.
When you insert the STM_LIFO_ACTIVE component into an activity chart, the component is
represented by the following graphic image.

CLEAR clears (resets) the contents of the resource.
414 User Guide

Example Component Library
I/O Stubs

Analysis Statistics

If you set ANALYZE, the following statistics are gathered:

Name Mode Format

INPUT1 input STMM_TRANSACTION_TYPE

CLEAR input Event

UPDATE input Event

DIST input STMM_TRANS_CLASS_ARRAY_DIST

INT input Event

S_OUTPUT output STMM_TRANSACTION_TYPE

I_OUTPUT output STMM_TRANSACTION_TYPE

Formal Parameter Type

ANALYZE Condition

Variable Data Type Description

Local variables for analysis

QUEUE_LENGTH Integer Length of the queue

QUEUE_LENGTH_MIN Integer

QUEUE_LENGTH_MAX Integer

QUEUE_LENGTH_MEAN Real

RESPONSE_TIME Real array Time between input
and output

RESPONSE_TIME_MIN Real array

RESPONSE_TIME_MAX Real array

RESPONSE_TIME_MEAN Real array
Rational Statemate 415

Example Components
SERVICE_UTILIZATION Real-Percent Resource
utilization

SERVICE_UTILIZATION_MIN Real-Percent

SERVICE_UTILIZATION_MAX Real-Percent

SERVICE_UTILIZATION_MEAN Real-Percent

TRANSACTIONS_INPUT Integer array Number of input
transactions

TRANSACTIONS_INTERRUPTED Integer array Number of
interrupted
transactions

TRANSACTIONS_SERVICED Integer array Number of serviced
transactions

TRANSACTION_INTERVAL Real array INPUT arrival
interval

TRANSACTION_INTERVAL_MIN Real array

TRANSACTION_INTERVAL_MAX Real array

TRANSACTION_INTERVAL_MEAN Real array

Totals for analysis

T_RESPONSE_TIME Real

T_RESPONSE_TIME_MIN Real

T_RESPONSE_TIME_MAX Real

T_RESPONSE_TIME_MEAN Real

T_TRANSACTIONS_INPUT Integer

T_TRANSACTIONS_INTERRUPTED Integer

T_TRANSACTIONS_SERVICED Integer

T_TRANSACTION_INTERVAL Real

T_TRANSACTION_INTERVAL_MIN Real

T_TRANSACTION_INTERVAL_MAX Real

T_TRANSACTION_INTERVAL_MEAN Real

Variable Data Type Description
416 User Guide

Example Component Library
To access these values in the panels or in the simulation monitor, use the following naming
convention: <Component_Name>^value_name

For example, you access the QUEUE_LENGTH for component ACT_RES1 as
ACT_RES1^QUEUE_LENGTH.

CLEAR clears the statistics.

UPDATE makes sure the statistics values are up-to-date. In some cases, the statistics are only
updated when events are triggered within the resource, so UPDATE ensures the statistics are up-
to-date regardless of the triggering events.

Termination Type

Reactive Controlled
Rational Statemate 417

Example Components
STM_LIFO_PASSIVE

A last-in-last-out passive resource component.

Description

Accepts STMM_TRANSACTION_TYPE transactions on the INPUT port, and processes them in a
last-in-first-out scheme.

� RELEASE_ – The component also accepts STMM_TRANSACTION_TYPE
transactions on the RELEASE_ port and processes them immediately.

� USAGE – This port specifies the amount of resource used by a transaction based
on the transaction class.

– If there is enough of the resource available (AVAIL) to process an input
transaction, the resource is allocated, and ALLOCD is set to the input
transaction.

– If there are insufficient resources, the input transaction is placed in the LIFO
queue until sufficient resources are available.

– When a transaction arrives on the RELEASE_ port, the resources associated
with the transaction are released (based on the value of USAGE), and FREED
is set to the release transaction.

When you insert the STM_LIFO_PASSIVE component into an activity chart, the component is
represented by the following graphic image.
418 User Guide

Example Component Library
I/O Stubs

Analysis Statistics

If you set ANALYZE, the following statistics are gathered:

Name Mode Format

INPUT input STMM_TRANSACTION_TYPE

RELEASE_ input STMM_TRANSACTION_TYPE

USAGE input STMM_TRANSACTION_TYPE

CLEAR input Event

UPDATE input Event

SIZE input/output Real

ALLOCID output STMM_TRANSACTION_TYPE

FREED output STMM_TRANSACTION_TYPE

AVAIL output Real

SIZE input/output Real

Formal Parameter Type

ANALYZE Condition

INITIAL_RESOURCE_SIZE (Data-Item) Real

Variable Data Type Description

Local variables for analysis

AVAIL Real Available resource
units

INPUT_INTERVAL Real array INPUT arrival
interval

INPUT_INTERVAL_MIN Real array
Rational Statemate 419

Example Components
INPUT_INTERVAL_MAX Real array

INPUT_INTERVAL_MEAN Real array

QUEUE_LENGTH Integer Length of the queue

QUEUE_LENGTH_MIN Integer

QUEUE_LENGTH_MAX Integer

QUEUE_LENGTH_MEAN Real

RELEASE_INTERVAL Real array Release arrival
interval

RELEASE_INTERVAL_MIN Real array

RELEASE_INTERVAL_MAX Real array

RELEASE_INTERVAL_MEAN Real array

RESOURCE_IN_USE Real array Resource units in use

RESOURCE_IN_USE_MIN Real array

RESOURCE_IN_USE_MAX Real array

RESOURCE_IN_USE_MEAN Real array

RESPONSE_TIME Real array Time in queue

RESPONSE_TIME_MIN Real array

RESPONSE_TIME_MAX Real array

RESPONSE_TIME_MEAN Real array

SIZE Real Total resource units

TRANSACTIONS_ALLOCD Integer array Number of allocated
inputs

TRANSACTIONS_FREED Integer array Number of freed
releases

USAGE_TIME Real array Time between input
and freed

USAGE_TIME_MIN Real array

USAGE_TIME_MAX Real array

USAGE_TIME_MEAN Real array

Totals for analysis

T_INPUT_INTERVAL Real

T_INPUT_INTERVAL_MIN Real

T_INPUT_INTERVAL_MAX Real

T_INPUT_INTERVAL_MEAN Real

Variable Data Type Description
420 User Guide

Example Component Library
To access these values in the panels or in the simulation monitor, use the following naming
convention: <Component_Name>^value_name

For example, you access the QUEUE_LENGTH for component PASS_RES1 as
PASS_RES1^QUEUE_LENGTH.

CLEAR clears the statistics.

UPDATE makes sure the statistics values are up-to-date. In some cases, the statistics are only
updated when events are triggered within the resource, so UPDATE ensures the statistics are up-
to-date regardless of the triggering events.

Termination Type

Reactive Controlled

T_RELEASE_INTERVAL Real

T_RELEASE_INTERVAL_MIN Real

T_RELEASE_INTERVAL_MAX Real

T_RELEASE_INTERVAL_MEAN Real

T_RESOURCE_IN_USE Real

T_RESOURCE_IN_USE_MIN Real

T_RESOURCE_IN_USE_MAX Real

T_RESOURCE_IN_USE_MEAN Real

T_RESPONSE_TIME Real

T_RESPONSE_TIME_MIN Real

T_RESPONSE_TIME_MAX Real

T_RESPONSE_TIME_MEAN Real

T_TRANSACTIONS_ALLOCD Integer

T_TRANSACTIONS_FREED Integer

T_USAGE_TIME Real

T_USAGE_TIME_MIN Real

T_USAGE_TIME_MAX Real

T_USAGE_TIME_MEAN Real

Variable Data Type Description
Rational Statemate 421

Example Components
STM_PMPT_ACTIVE

A preemptive priority-based active resource component.

Description

Accepts STMM_TRANSACTION_TYPE transactions on the INPUT port, and processes them in a
preemptive priority-based scheme.

The transaction’s priority is specified by INPUT_PRIORITY_LEVEL.

� If the service is idle, INPUT is immediately serviced.
� If the service is busy, INPUT is queued, and serviced when it is the highest

priority transaction in the queue.
� DIST specifies the distribution and parameters used to calculate the service time

for each transaction class.
� If INT occurs while a transaction is in service, the servicing stops, and the

transaction is sent to I_OUTPUT.
� If a higher priority transaction arrives while a transaction is in service, the

servicing stops, and the transaction is either:
– Put back into the queue if its EXIT_ON_PREEMPT is FALSE, or
– Sent to the P_OUTPUT if its EXIT_ON_PREEMPT is TRUE.

� If the transaction completes servicing without interruption or preemption, it is sent
to the S_OUTPUT.

When you insert the STM_PMPT_ACTIVE component into an activity chart, the component is
represented by the following graphic image.
422 User Guide

Example Component Library
I/O Stubs

Analysis Statistics

Name Mode Format

INPUT1 input STMM_TRANSACTION_TYPE

CLEAR input Event

UPDATE input Event

DIST input STMM_TRANS_CLASS_ARRAY_DIST

INT input Event

S_OUTPUT output STMM_TRANSACTION_TYPE

I_OUTPUT output STMM_TRANSACTION_TYPE

P_OUTPUT output STMM_TRANSACTION_TYPE

Formal Parameter Type

ANALYZE Condition
Rational Statemate 423

Example Components
If you set ANALYZE, the following statistics are gathered:
:

Variable Data Type Description

Local variables for analysis

QUEUE_LENGTH Integer Length of the queue

QUEUE_LENGTH_MIN Integer

QUEUE_LENGTH_MAX Integer

QUEUE_LENGTH_MEAN Real

SERVICE_UTILIZATION Real-Percent Resource utilization

SERVICE_UTILIZATION_MIN Real-Percent

SERVICE_UTILIZATION_MAX Real-Percent

SERVICE_UTILIZATION_MEAN Real-Percent

RESPONSE_TIME Real array Time between input
and output

RESPONSE_TIME_MIN Real array

RESPONSE_TIME_MAX Real array

RESPONSE_TIME_MEAN Real array

TRANSACTIONS_INPUT Integer array Number of input
transactions

TRANSACTIONS_INTERRUPTED Integer array Number of interrupted
transactions

TRANSACTIONS_PREEMPTED Integer array Number of preempted
transactions

TRANSACTIONS_SERVICED Integer array Number of serviced
transactions

TRANSACTION_INTERVAL Real array INPUT arrival interval

TRANSACTION_INTERVAL_MIN Real array

TRANSACTION_INTERVAL_MAX Real array

TRANSACTION_INTERVAL_MEAN Real array

Totals for analysis

T_RESPONSE_TIME Real

T_RESPONSE_TIME_MIN Real

T_RESPONSE_TIME_MAX Real

T_RESPONSE_TIME_MEAN Real

T_TRANSACTIONS_INPUT Integer
424 User Guide

Example Component Library
To access these values in the panels or in the simulation monitor, use the following naming
convention: <Component_Name>^value_name

For example, you access the QUEUE_LENGTH for component ACT_RES1 as
ACT_RES1^QUEUE_LENGTH.

CLEAR clears the statistics.

UPDATE makes sure the statistics values are up-to-date. In some cases, the statistics are only
updated when events are triggered within the resource, so UPDATE ensures the statistics are
up-to-date regardless of the triggering events.

Termination Type

Reactive Controlled

T_TRANSACTIONS_INTERRUPTED Integer

T_TRANSACTIONS_PREEMPTED Integer

T_TRANSACTIONS_SERVICED Integer

T_TRANSACTION_INTERVAL Real

T_TRANSACTION_INTERVAL_MIN Real

T_TRANSACTION_INTERVAL_MAX Real

T_TRANSACTION_INTERVAL_MEAN Real

Variable Data Type Description
Rational Statemate 425

Example Components
STM_PRTY_PASSIVE

A priority-based passive resource component.

Description

Accepts STMM_TRANSACTION_TYPE transactions on the INPUT port, and processes them in a
priority-based scheme.

� RELEASE_ – The component also accepts STMM_TRANSACTION_TYPE
transactions on the RELEASE_ port and processes them immediately.

� USAGE – This port specifies the amount of resource used by a transaction based
on the class.

– If there is enough of the resource available (AVAIL) to process an input
transaction, the resource is allocated, and ALLOCD is set to the input
transaction.

– If there are insufficient resources, the input transaction is placed in the queue
until sufficient resources are available.

– When a transaction arrives on the RELEASE_ port, the resources associated
with the transaction are released (based on the value of USAGE), and
FREED is set to the release transaction.

� SIZE – INITIAL_RESOURCE_SIZE is the initial size of the resource. A change in
the size of the resource can be requested by modifying SIZE. An increase in size
is always allowed, but a decrease is only allowed when the new size is greater
than or equal to the amount of resource in use.

When you insert the STM_PRTY_PASSIVE component into an activity chart, the component is
represented by the following graphic image.
426 User Guide

Example Component Library
I/O Stubs

Analysis Statistics

If you set ANALYZE, the following statistics are gathered:
:

Name Mode Format

INPUT input STMM_TRANSACTION_TYPE

RELEASE input STMM_TRANSACTION_TYPE

USAGE input STMM_TRANSACTION_TYPE

CLEAR input Event

UPDATE input Event

SIZE input/output Real

ALLOCID output STMM_TRANSACTION_TYPE

FREED output STMM_TRANSACTION_TYPE

AVAIL output Real

SIZE input/output Real

Formal Parameter Type

ANALYZE Condition

INITIAL_RESOURCE_SIZE (Data-Item) Real

Variable Data Type Description

Local variables for analysis

QUEUE_LENGTH Integer Length of the queue

QUEUE_LENGTH_MIN Integer

QUEUE_LENGTH_MAX Integer

QUEUE_LENGTH_MEAN Real

AVAIL Real Available resource
units
Rational Statemate 427

Example Components
SIZE Real Total resource units

INPUT_INTERVAL Real array INPUT arrival interval

INPUT_INTERVAL_MIN Real array

INPUT_INTERVAL_MAX Real array

INPUT_INTERVAL_MEAN Real array

RELEASE_INTERVAL Real array Release arrival
interval

RELEASE_INTERVAL_MIN Real array

RELEASE_INTERVAL_MAX Real array

RELEASE_INTERVAL_MEAN Real array

RESOURCE_IN_USE Real array Resource units in use

RESOURCE_IN_USE_MIN Real array

RESOURCE_IN_USE_MAX Real array

RESOURCE_IN_USE_MEAN Real array

RESPONSE_TIME Real array Time in queue

RESPONSE_TIME_MIN Real array

RESPONSE_TIME_MAX Real array

Totals for analysis

T_INPUT_INTERVAL Real

T_INPUT_INTERVAL_MIN Real

T_INPUT_INTERVAL_MAX Real

T_INPUT_INTERVAL_MEAN Real

T_RELEASE_INTERVAL Real

T_RELEASE_INTERVAL_MIN Real

T_RELEASE_INTERVAL_MAX Real

T_RELEASE_INTERVAL_MEAN Real

T_RESOURCE_IN_USE Real

T_RESOURCE_IN_USE_MIN Real

T_RESOURCE_IN_USE_MAX Real

T_RESOURCE_IN_USE_MEAN Real

T_RESPONSE_TIME Real

T_RESPONSE_TIME_MIN Real

T_RESPONSE_TIME_MAX Real

Variable Data Type Description
428 User Guide

Example Component Library
To access these values in the panels or in the simulation monitor, use the following naming
convention: <Component_Name>^value_name

For example, you access the QUEUE_LENGTH for component PASS_RES1 as
PASS_RES1^QUEUE_LENGTH.

CLEAR clears the statistics.

UPDATE makes sure the statistics values are up-to-date. In some cases, the statistics are only
updated when events are triggered within the resource, so UPDATE ensures the statistics are up-
to-date regardless of the triggering events.

Termination Type

Reactive Controlled

T_RESPONSE_TIME_MEAN Real

T_TRANSACTIONS_ALLOCD Integer

T_TRANSACTIONS_FREED Integer

T_USAGE_TIME Real

T_USAGE_TIME_MIN Real

T_USAGE_TIME_MAX Real

T_USAGE_TIME_MEAN Real

Variable Data Type Description
Rational Statemate 429

Example Components
STM_SINK

Receives transactions.

Description

Receives STMM_TRANSACTION_TYPE transactions at the INPUT port.

When you insert the STM_SINK component into an activity chart, the component is represented
by the following graphic image.

I/O Stubs

Analysis Statistics

If you set ANALYZE, the following statistics are gathered:

Name Mode Format

INPUT input STMM_TRANSACTION_TYPE

CLEAR input Event

Formal Parameter Type

ANALYZE Condition
430 User Guide

Example Component Library
To access these values in the panels or in the simulation monitor, use the following naming
convention: <Component_Name>^value_name

For example, you access the T_TRANSACTIONS_INPUT for component SOURCE1 as
SOURCE1^T_TRANSACTIONS_INPUT.

CLEAR clears the statistics.

Termination Type

Reactive Controlled

Variable Data Type Description

Local variables for analysis

INPUT_INTERVAL Real array INPUT arrival interval

INPUT_INTERVAL_MIN Real array

INPUT_INTERVAL_MAX Real array

INPUT_INTERVAL_MEAN Real array

RESPONSE_TIME Real array Time between source and sink

RESPONSE_TIME_MIN Real array

RESPONSE_TIME_MAX Real array

RESPONSE_TIME_MEAN Real array

TRANSACTIONS_INPUT Integer array Number of input transactions

Totals for analysis

T_INPUT_INTERVAL Real

T_INPUT_INTERVAL_MIN Real

T_INPUT_INTERVAL_MAX Real

T_INPUT_INTERVAL_MEAN Real

T_RESPONSE_TIME Real

T_RESPONSE_TIME_MIN Real

T_RESPONSE_TIME_MAX Real

T_RESPONSE_TIME_MEAN Real

T_TRANSACTIONS_INPUT Integer
Rational Statemate 431

Example Components
STM_SOURCE

Generates transactions.

Description

Generates STMM_TRANSACTION_TYPE transactions at the OUTPUT port.

When you insert the STM_SOURCE component into an activity chart, the component is
represented by the following graphic image.

I/O Stubs

Analysis Statistics

Name Mode Format

OUTPUT output STMM_TRANSACTION_TYPE

CLEAR input Event

Formal Parameter Type

ANALYZE Condition
432 User Guide

Example Component Library
If you set ANALYZE, the following statistics are gathered:

To access these values in the panels or in the simulation monitor, use the following naming
convention: <Component_Name>^value_name

For example, you access the T_TRANSACTIONS_OUTPUT for component SOURCE1 as
SOURCE1^T_TRANSACTIONS_OUTPUT.

CLEAR clears the statistics.

Termination Type

Reactive Controlled

Variable Data Type Description

Local variables for analysis

OUTPUT_INTERVAL Real array OUTPUT arrival
interval

OUTPUT_INTERVAL_MIN Real array

OUTPUT_INTERVAL_MAX Real array

OUTPUT_INTERVAL_MEAN Real array

TRANSACTIONS_OUTPUT Integer array Number of output
transactions

Totals for analysis

T_OUTPUT_INTERVAL Real

T_OUTPUT_INTERVAL_MIN Real

T_OUTPUT_INTERVAL_MAX Real

T_OUTPUT_INTERVAL_MEAN Real

T_TRANSACTIONS_OUTPUT Integer
Rational Statemate 433

Example Components
434 User Guide

AUTOSAR Generator
Rational Statemate AUTOSAR (AUTomotive Open System ARchitecture) Generator (SAG) tool
enables defining an Atomic Software Component implementation using a Rational Statemate
model and generate code accordingly, as well as a Software Component Description XML file.

With SAG, you can view the runnable entities that were defined in the model, design the ports and
interfaces of the software component, control the data exchange method, and set various
definitions regarding AUTOSAR

Note
You must have an AUTOSAR license to access the application.

From the Rational Statemate application, select Tools > Statemate AUTOSAR Generator click
AUTOSAR on the toolbar. The AUTOSAR application opens (see the following figure):
Rational Statemate 435

AUTOSAR Generator
Overview of the AUTOSAR Interface
This section provides an overview of the AUTOSAR interface, including menu and toolbar
options.

AUTOSAR Menus

The following table describes the AUTOSAR menus:

Menu Options Description

File New Profile Opens The New Profile dialog box.

Open Profile Opens an existing profile.

Close Closes the open profile.

Save Saves changes to the profile.

Save as Saves as a new file.

Print Profile Report Prints the profile report.

Profile Management Opens SAG Management dialog box.

Exit Closes AUTOSAR.

Edit Rename Software Component Renames a component.

Rename Internal Behavior Renames an IB.

Add to Scope Adds component to scope.

Remove from Scope Removes a component from scope.

Select

View Messages Allows you to view or hide the messages
displayed at the bottom of the Rational
Statemate AUTOSAR Generator dialog box.

Tool Bar Allows you to view or hide the Rational
Statemate AUTOSAR Generator tool bar.

Compile Generate Code Gnerates AUTOSAR Software Component
Code and XML.

File Management Opens a menu for Showing, Deleting, Copying,
Exporting, and Printing the generated files.

Edit Opens the generated code folder.

Options Set Time Configuration Opens the Timer Configuration dialog box.

Settings Opens the Properties for Code Generation
dialog box.
436 User Guide

Overview of the AUTOSAR Interface
AUTOSAR Toolbar Options

The following table lists the AUTOSAR toolbar options:

Scope Definition Area

The Scope Definition area supports one AUTOSAR Atomic Software Component Type (SWC).
There is always one SWC when opening the profile.

Under a SWC, as part of it, there is one instance of Internal-Behavior (IB). There is always one IB
instance when opening the profile.

Note
The name of the SWC and the IB is case-sensitive and may be renamed accessing the right-
click pop-up menu. By default, the name of the SWC is atomicSoftwareComponent_1 and
the name if the IB is internalBehavior_1.

Help List of Books
Index
Contents
on Help
on Window

Opens the help system.

Toolbar
Icon Description

Add Chart - Click to add an Activity Chart to the scope.

Remove Selected Object - Click to remove selected object from tree
view.

Generate Code - Click to generate code.

Menu Options Description
Rational Statemate 437

AUTOSAR Generator
The following design-attributes for an Internal-Behavior are accessed using the right-click popup
menu):

� Multiple Instantiation - Defines whether the Software Component described by this
Internal Behavior is Multiple Instantiated or not. This determines whether the RTE APIs
should use the instance parameter or not.

� Group I/O Elements to a Single Port - When set to 'yes', a single port is created for all
Input elements of the same R.E. Another port is created for all Output elements of the
same R.E. that the “On Interface” is set to “yes”. When set to 'no', each I/O element (i.e.,
each Input line or Output line) will define a separate port and relating interface.

� Runnables Entities run in Exclusive Area - When set to 'yes', all Runnable Entities in
the scope will be defined as “Run in Exclusive Area”. In this case, an additional Design
Attribute, “Exclusive Area Name”, is opened for setting the Exclusive Area's Name. The
default name is Exclusive_Area.

� Use '&' For Input Array Parameter - Defines an IN parameter of type array shall be
passed using '&' or not.

� Use '&' For Output Array Parameter - Defines an OUT parameter of type array shall be
passed using '&' or not.

You should add to the scope the Charts containing Activities tagged as Runnable Entities.Those
Activities that are Runnable Entities define the implementation of the Internal-Behavior instance
of the regarded SWC. After adding the Charts and Activities (that are defined as Runnable
Entities) to the scope, double-click on any of the Runnable Entities in the Scope Definition area to
display the input and output flowing elements in the lower half of the screen.

The lower half of the screen displays the Inputs (Left hand side) and the Outputs (Right hand side)
handled by each of the Runnable Entities. This is referred to as the “I/O Definition Area”. The I/O
Definition Area contains two tabs: "Main" and "Client/Server"
438 User Guide

Overview of the AUTOSAR Interface
The "Main" tab

There are four columns in the the "Main" tab:

� Source/Target Activities (Read-Only) - displays the selected Activity, representing a
Runnable entity.

� Input/Output Data (Read-Only) - The input/output Flow Line to/from the selected
Activity. From SAG point of view, the Flow Line represents all the Data Elements (Data
Items, Conditions and Events) that it contains, and all the definitions that are set for a the
Flow line will effect its Data Elements also.

SAG uses Flow-Lines for defining a Require-Ports (for input) or Provide-Ports (for
output), with matching Sender-Receiver Interfaces. More specifically, if an Info-Flow
flows on the Flow-Line, the Info-Flow is presented, and a proper interface is defined on a
port carrying the same name. When a Data-Item, Condition or Event flows on the Flow-
Line, it defines the interface of the relating port.
The user may use an external Interface to type a Port, by setting an interface reference to
the design-attribute External Interface Reference, available for Info-Flows (for S-R
Interface) and Subroutines (C-S Interface). In this case, the Interface will not be defined
in the XML, and the port will refer to the provided reference.
The Design-Attribute "Its Port" of Data-Item, Condition or Event may be used to
determine the Port's name. If the value of the Design-Attribute "Its Port" is empty or
"none", the Port name will be determined by the Flow-Line label.

� Data Exchange Method - This field can get one of the following values:
� On SW/C Interface (default) - Notifies that the data is part of the Interface of the

Software Component.
� Internal - Notifies that the data is internal to the model.
� Inter-Runnable Variable - Notifies that the data is used as part of Inter-

Runnable Variables.
� By Design Attribute - Notifies that the Data Exchange Method is specifically set

to each Data-Item, Condition or Event of this port, via the Design-Attribute "Data
Exchange Method".

See the following figure:
Rational Statemate 439

AUTOSAR Generator
� Data Exchange Behavior - This field can get one of the following values:
(When Data Exchange Method is set to On SW/C Interface - see the following figure):
� Data Point (Default) - Notifies that the data is accessed by a Data Receive Point

(for input) or a Data Send Point (for output), and is on a Sender-Receiver
Interface.

� Queued Data Point - Notifies that the data is queued and accessed by a Data
Receive Point or a Data Send Point, and is on a Sender-Receiver Interface.

� Data Access - Notifies that the data is accessed by a Data Read Access (for input)
or a Data Write Access (for output), and is on a Sender-Receiver Interface.

� CalPrm Access - Notifies that the data is accessed by a CalPrm Access , and is on
a CalPrm-Interface. For Input (left-side) elements only.

440 User Guide

Overview of the AUTOSAR Interface
� By Design Attribute - Notifies that the Data Exchange Behavior is specifically
set to each Data-Item, Condition or Event of this port, using the Design-Attribute
"Data Exchange Behavior"

When Data Exchange Method is set to Internal: N/A.

When Data Exchange Method is set to Inter-Runnable Variable (refer to the following figure):

� Explicit Behavior (default) - Notifies that the Inter-Runnable Variable has
explicit behavior.

� Implicit Behavior - Notifies that the Inter-Runnable Variable has implicit
behavior.

� By Design Attribute - Notifies that the Data Exchange Behavior is specifically
set to each Data-Item, Condition or Event of this port, using the Design-Attribute
"Data Exchange Behavior"
Rational Statemate 441

AUTOSAR Generator
The following table lists the RTE APIs that are used in the different cases:

Data Exchange
Method

On SW/C Interface

Data Exchange Behav-
ior

Data Point Queued
Data Point

Data Access CalPrm Access Mode Declaration
Group

Input Rte_Read Rte_Send Rte_IRead Rte_Calprm Rte_Mode

Output Rte_Write Rte_Receive Rte_IWrite - Rte_Switch

Data Exchange
Method

Inter-Runnable Variable

Data Exchange Behav-
ior

Explicit Behavior Implicit Behavior

Input Rte_IrvRead Rte_ IrvIRead

Output Rte_IrvWrite Rte_ IrvIWrite

442 User Guide

Overview of the AUTOSAR Interface
The "Client/Server" tab

The "Client/Server" tab consists of two parts, the upper part is for adding and defining Required
Ports (input, or Client) and the lower part is for Provided-Ports (output, or Server).

Both the Provided Part and the Required Part contain of the following columns:

� Port - Allows the user to create a new Provided/Required Port, to be typed by a
Client-Server Interface.

� External Interrface - Allows the user to select an externally define Client-Server
Interface to type the current Port. If the user selects "none", a new Interface will
be defined in the generated ARXML.

� Operation - Allows the user to select one or more operations from the Statemate
model, to be added to the Client-Server Interface.

The Required part contains of the following additional columns:
� Communication - Specifies the communication model - Synchronous or

Asynchronous (Currently only Synchronous mode is supported by SAG).
� Runnables - Specifies the list of Runnable Entities that access a certain operation.

The Provided part contains of the following additional column:
� Queue Length - Specifies the list of size of the queue to be used for a certain

operation.
Rational Statemate 443

AUTOSAR Generator
444 User Guide

Generating Code and XML Description
Generating Code and XML Description
The tool generates code using MicroC code generator.

� A source file and a header file that are the implementation of the Software Component.
The files are generated in: <WA>/prt/<profile-name>.

� Options on the generated code may be controlled via Options > Setting.
The tool generates an AUTOSAR XML file. This is done using the Static OS configuration APIs
of the OSDT. Some naming conventions are used. For example, Provide/Require Interfaces - Are
yield from the ports' names with the postfix “i”.

Timeouts
Timeouts are a Rational Statemate feature of SAG. In order to handle timeouts, SAG generates an
additional Runnable Entity that functions as a time counter. This Runnable Entity, called
TIME_COUNTER, will be activated periodically by a dedicated Timing Event.
TIME_COUNTER increments an Inter-Runnable-Variable, called CounterTime, on every run.

You can control the creation of the Timer Runnable Entity and set the rate period of its Timing
Event, using the GUI menu Options >Set Timer Configuration. See the following figure:

Rational Statemate 445

AUTOSAR Generator
The timer Runnable Entity is generated under the following conditions:

� The check box “Generate Timer Runnable” is checked.

� The model uses timeouts.
The following example is the Runnable Entity's entry function implementation in usercode.c:

SAG allows the user to define the Defining Minimum and Maximum values for the CounterTime
variable, using the dialog options->Set Timer Configuration.

In-Out Elements
SAG automatically identifies Data Elements that are used both as inputs, i.e. on incoming info-
flow representing an AUTOSAR Required-Port, and as outputs, i.e. on outgoing info-flow
representing an AUTOSAR Provided-Port.

Input access of such Data Elements will be implemented regularly, meaning via a Sender-Receiver
Interface using the appropriate RTE API's. Output Access of such Data Elements will be
implemented using an operation named Write<DataName>, on a Client-Server Interface typing a
dedicated Required-Port.

All such operations will be gathered into a single Port and a single Interface. The Port's name may
be customized using the OSDT API: Code Style->Type Naming Style->Implicit (Generated) R-
Port Name.

 void
TIME_COUNTER(void)
{
 uint16 curTime;

 Rte_Enter_Timer_Exclusive_Area();
 curTime = Rte_IrvRead_TIME_COUNTER_CounterTime();
 Rte_IrvWrite_TIME_COUNTER_CounterTime(curTime++);
 if(curTime == 0){
 onCounterTime_OVERFLOW();
 }
 Rte_Exit_Timer_Exclusive_Area();
}
446 User Guide

SAG Implementation of AUTOSAR Features
SAG Implementation of AUTOSAR Features
The following sections describe the AUTOSAR Features:

� Exclusive Areas

� Timing Events

� Data Types

� Services

� Data Send Points, Data Receive Points, Data Read Access, Data Write Access

� Inter Runnable Variables

� Mode Declaration Groups

Exclusive Areas

SAG uses up to three Exclusive Areas:

� Model_Exclusive_Area - for general usage in the generated code of the model.
� Timer_Exclusive_Area - created when the Timer Runnable Entity is generated and used

only by it (see Timeouts).
� Exclusive_Area (rename-able) - created when Runnable Entities run in Exclusive Area is

set to 'yes' for the Internal-Behavior.

Timing Events

SAG uses two types of Timing Events:

� TIME_COUNTER_TMEV - created when the Timer Runnable Entity is generated and
used only by it (see Timeouts).

� Specific Timing Event - for each Runnable Entity that has its Design-Attribute “Schedule
Periodically” set to yes. You may define the period of the Runnable Entity, using the
Design-Attribute Period. The name of the Timing Event is “<Runnable Entity
Name>_TMEV”.

The following is an example of XML description of Timing Event:

<TIMING-EVENT>
 <SHORT-NAME>RE2_TMEV</SHORT-NAME>
 <START-ON-EVENT-REF DEST="RUNNABLE-ENTITY">/../../RE2</START-ON-EVENT-REF>
 <PERIOD>546</PERIOD>
</TIMING-EVENT>
Rational Statemate 447

AUTOSAR Generator
Data Types

SAG supports only basic Data Types for SW/C Interface items and Inter-Runnable Variables. The
supported Data Types are:

� INTEGER-TYPE
� REAL-TYPE
� CHAR-TYPE
� STRING-TYPE
� BOOLEAN-TYPE
� OPAQUE-TYPE
� ARRAY-TYPE
� RECORD-TYPE

The types will be declared in the SWC description file (XML) according to the following rules:

� By Default, each Data-Element Definition in the XML defines one Data-Type declaration,
named <Data Element Name>_type.

� In order to have more than one Data-Element using the same Data-Type, those Data-
Elements must be typed using a Rational Statemate User-Defined-Type (UDT).

� In order to use an externally defined type, AUTOSAR basic type or other, you can provide
the full path to the external type, using the Design-Attribute AR Type Reference,
available for Data-Items, Conditions, Events, and Subroutine-Parameters.

� A single Boolean type will be defined in the XML for all Conditions and another single
Boolean type will be defined for all Events.

� SAG supports automatic linkage to external type for to Data-Elements that answer the
following requirements:

o Have no specific minimum or maximum values.
o Have the Design Attribute "C Data Type" set to a value.
o In order to map the value of C Data Type to an AUTOSAR type, it must be
written within the body of one of the API's at the OS Definition Tool->API
Definition->AUTOSAR Types API's.

Example 1:Default behavior:

Data Element Prototype Declaration:

<DATA-ELEMENT-PROTOTYPE UUID="DCE:59700696-b7a3-468d-9f76-79e3948493dc">

 <SHORT-NAME>Data1</SHORT-NAME>

 <TYPE-TREF DEST="INTEGER -TYPE">/prof2res/ Data1_type</TYPE-TREF>
448 User Guide

SAG Implementation of AUTOSAR Features
 <IS-QUEUED>false</IS-QUEUED>

</DATA-ELEMENT-PROTOTYPE>

Data Type Declaration:

<INTEGER-TYPE UUID="DCE:98823982-dbbe-4e7d-8f32-830a9fc39719">

 <SHORT-NAME>Data1_type </SHORT-NAME>

 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0</LOWER-LIMIT>

 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">255</UPPER-LIMIT>

</INTEGER-TYPE>

Example 2- Using a UDT:

Data Elements Prototype Declaration:

<DATA-ELEMENT-PROTOTYPE UUID="DCE:59700696-b7a3-468d-9f76-79e3948493dc">

 <SHORT-NAME>Data1</SHORT-NAME>

 <TYPE-TREF DEST="INTEGER -TYPE">/prof2res/ MY_TYPE1</TYPE-TREF>

 <IS-QUEUED>false</IS-QUEUED>

</DATA-ELEMENT-PROTOTYPE>

DATA-ELEMENT-PROTOTYPE UUID="DCE:59700696-b7a3-468d-9f76-79e3948493dc">

 <SHORT-NAME>Data1</SHORT-NAME>

 <TYPE-TREF DEST="INTEGER -TYPE">/prof2res/ MY_TYPE1</TYPE-TREF>

 <IS-QUEUED>false</IS-QUEUED>

</DATA-ELEMENT-PROTOTYPE>

Data Type Declaration:

<INTEGER-TYPE UUID="DCE:98823982-dbbe-4e7d-8f32-830a9fc39719">

 <SHORT-NAME>/ MY_TYPE1</SHORT-NAME>

 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0</LOWER-LIMIT>

 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">255</UPPER-LIMIT>

</INTEGER-TYPE>
Rational Statemate 449

AUTOSAR Generator
Example 3 - Using an externally defined type:

Data Element Prototype declaration:

<DATA-ELEMENT-PROTOTYPE UUID="DCE:43981504-1a29-42bb-8ddc-998a3c4c08d2">

 <SHORT-NAME>DI_IN1</SHORT-NAME>

 <TYPE-TREF DEST="INTEGER-TYPE">/Autosar/UInt8</TYPE-TREF>

 <IS-QUEUED>false</IS-QUEUED>

</DATA-ELEMENT-PROTOTYPE>

Note
The Data Type is not declared in the xml.

Services

SAG supports accessing AUTOSAR Services using Client-Server Interfaces. In order to access
Services, you may define a Rational Statemate Subroutine with the following characteristics:

� External implementation.
� Design Attribute "Is Service" = "yes".
� Design Attribute "Its Port", free text, defining the name of the R-Port.

As a result, in the SWC Description (XML) file SAG generates A Require-Port, named after the
“Its Port” attribute, referring to a Client-Server Interface. And a Client-Server Interface, named
“i<Port Name>”, and tagged as Service. This Interface contains Operations based on the definition
of Rational Statemate Subroutines, which belong to that Port/Interface, including Arguments
definitions.

Example:

<CLIENT-SERVER-INTERFACE UUID="DCE:bec17ae8-ca1a-4048-a11a-3d8b10252a3b">

 <SHORT-NAME>iservice1Port</SHORT-NAME>

 <IS-SERVICE>true</IS-SERVICE>

 <OPERATIONS>

 <OPERATION-PROTOTYPE UUID="DCE:5f150618-6f28-4b7a-97cd-b530c456e465">

 <SHORT-NAME>SERVICE1</SHORT-NAME>

 <ARGUMENTS>

 <ARGUMENT-PROTOTYPE UUID="DCE:2af69675-924f-45fb-b45a-e00b1626e6d7">

 <SHORT-NAME>IN_PAR1</SHORT-NAME>

 <TYPE-TREF DEST="INTEGER-TYPE">/Autosar/UInt16</TYPE-TREF>
450 User Guide

SAG Implementation of AUTOSAR Features
 <DIRECTION>IN</DIRECTION>

 </ARGUMENT-PROTOTYPE>

 <ARGUMENT-PROTOTYPE UUID="DCE:d36f528f-a935-4b82-92c0-6a24b0e7a35d">

 <SHORT-NAME>OUT_PAR2</SHORT-NAME>

 <TYPE-TREF DEST="REAL-TYPE">/prof2res/MY_REAL_TYPE</TYPE-TREF>

 <DIRECTION>OUT</DIRECTION>

 </ARGUMENT-PROTOTYPE>

 <ARGUMENT-PROTOTYPE UUID="DCE:8b89a05d-8559-4f2f-8b61-fd24079863c9">

 <SHORT-NAME>INOUT_PAR3</SHORT-NAME>

 <TYPE-TREF DEST="OPAQUE-TYPE">/prof2res/INOUT_PAR3_type</TYPE-TREF>

 <DIRECTION>INOUT</DIRECTION>

 </ARGUMENT-PROTOTYPE>

 </ARGUMENTS>

 </OPERATION-PROTOTYPE>

 </OPERATIONS>

<POSSIBLE-ERRORS/>

</CLIENT-SERVER-INTERFACE>

Data Send Points, Data Receive Points, Data Read Access, Data Write
Access

As mention in the GUI and common-workflows section, you may select Data to be used on the
Software component Interface as queued or non-queued Data Send Point (Explicit Write) or Data
Receive Point (Explicit Read), or as Data Read Access (Implicit Read) or Data Write Access
(Explicit Write), or as CalPrm Access.

This results in corresponding definitions in the XML and generated code. See the following
examples.

Each of these five Data Exchange Behavior options may be implemented as one of two Statemate
MicroC Access Modes: "Buffered" or "Direct Using Get/Set API's". This is configured with a
corresponding set of Design-Attributes on the Internal-Behavior (Default behavior in braces):

� CalPrm Access Mode (Buffered)
� Explicit Read Access Mode(Buffered)
� Implicit Read Access Mode (Direct Using Get/Set API's)

� Explicit Write Access Mode(Direct Using Get/Set API's)
� Implicit Write Access Mode (Direct Using Get/Set API's)
Rational Statemate 451

AUTOSAR Generator
Each of these Design-Attributes may be set with the following 3 values:

� Buffered Access
� Direct Using Get/Set API's Access
� By Design Attribute - When "By Design Attribute" is selected, SAG will refer the Design-

Attribute "Double Buffered" in the following way:
o When "Double Buffered" is set to "yes", Buffered access will be used.
 o When "Double Buffered" is set to "no", Direct Using Get/Set API's access will
be used.

In case of using Explicit Read/Write, you may want to assign the return value of the RTE API
assign to a variable. This can be achieved by using a Design-Attribute "RTE Status Variable
Name" available for Data-Item, Condition and Event. A non-empty value of this Design-Attribute
specifies the name of a variable that will be assigned with the return value of the Explicit Read/
Write RTE API's. Its default value is empty string. It is the user's responsibility to define such
variable (Data-Item) in the model , with the correct settings, e.g.: Exact Type = Std_ReturnType.

 void
RE1(void)
{
 {
 uint8 tmpCO_IN1;
 Rte_Read_IF_IN1_CO_IN1(&tmpCO_IN1);
 if (tmpCO_IN1 != 0) {
 CO_IN1 = 1;
 } else {
 CO_IN1 = 0;
 }
 }
 Rte_Read_IF_IN1_DI_IN1(&DI_IN1);
 {
 uint8 tmpEV_IN1;
 Rte_Receive_IF_IN1_EV_IN1(&tmpEV_IN1);
 if (tmpEV_IN1 != 0U) {
 GENERATE_EVENT(EV_IN1);
 }
 }
….
}

Condition

Data-Item

Event
452 User Guide

SAG Implementation of AUTOSAR Features
 void
RE2(void)
{
 if (Rte_IRead_RE2_IF_IN2_CO_IN2()) {
 CO_IN2 = 1;
 } else {
 CO_IN2 = 0;
 }
 DI_IN2 = Rte_IRead_RE2_IF_IN2_DI_IN2();
 {
 uint8 tmpEV_IN2;
 Rte_IRead_IF_IN2_EV_IN2(&tmpEV_IN2);
 if (tmpEV_IN2 != 0U) {
 GENERATE_EVENT(EV_IN2);
 }
 }
…
}

Condition

Data-Item

Event
Rational Statemate 453

AUTOSAR Generator
Inter Runnable Variables

You may select Data to be used as Inter Runnable Variables. This results in corresponding
definitions in the XML and generated code. Below is an example displays a Data Exchange in
Statechart code:

Each of Explicit or Implicit IRV behavior options may be implemented as one of two Statemate
MicroC Access Modes: "Buffered" or "Direct Using Get/Set API's". This is configured with a
corresponding set of Design-Attributes on the Internal-Behavior (Default behavior in braces):

� "Explicit IRV Access Mode (Direct Using Get/Set API's)
� "Implicit IRV Access Mode (Direct Using Get/Set API's)

For possible values of these Design-Attributes, see previous sections.

void
cgDo_RE1_CTRL(void)
{
…
 else if ((
 inLeafState(currentState_RE1_CTRL , S2st2, StateInfo_RE1_CTRL)
 && (tm_999999998))) {
 TMP_DI = Rte_IrvIRead_ RE1_DI_RE2_RE1();
 Rte_IrvWrite_RE1_DI_RE1_RE2(TMP_DI * 3);
 Rte_Write_IF_OUT1_DI_OUT1(DI_IN1 * 2);
 currentState_RE1_CTRL = FS_S3st2;
 cgGlobalFlags |= BITSUPERSTEP_RE1;
 }
 else if ((
 inLeafState(currentState_RE1_CTRL , S3st2, StateInfo_RE1_CTRL)
 && ((CO_IN1)))) {
 GENERATE_EVENT(EV_RE1_RE2);
 Rte_IrvWrite_RE1_CO_RE1_RE2(TRUE);
 Rte_Write_IF_OUT1_CO_OUT1(FALSE);
 currentState_RE1_CTRL = FS_S1st2;
 cgGlobalFlags |= BITSUPERSTEP_RE1;
 }
 else if ((
 inLeafState(currentState_RE1_CTRL , S3st2, StateInfo_RE1_CTRL)
 && ((!CO_IN1)))) {
 GENERATE_EVENT(EV_OUT1);
 Rte_Send_IF_OUT1_EV_OUT1(1U);
 Rte_IrvWrite_RE1_CO_RE1_RE2(FALSE);
 Rte_Write_IF_OUT1_CO_OUT1(TRUE);
 currentState_RE1_CTRL = FS_S4st2;
 cgGlobalFlags |= BITSUPERSTEP_RE1;
 }
}

Inter
Runnable
Variables

Data on
SW/C API
454 User Guide

SAG Implementation of AUTOSAR Features
Mode Declaration Groups

� Mode Declaration Group will be implemented by SAG using an enumerated User Defined
Type with Design-Attribute "Mode Declaration Group" set to "yes", and having a data
item of this type flowing on a certain info flow.

� "An input data will be accessed via the RTE API Rte_Mode_...() and output via the API
Rte_Switch_...()

� "The XML will include definitions of ModeDeclarationGroup and ModeDeclaration. In
addition, it will define ModeSwitchPoint and ModeSwitchComSpec for output data.
Rational Statemate 455

AUTOSAR Generator
The AUTOSAR RTE OS ImplementationsI
The OSI’s “autosar_rte_210” and "autosar_rte_310" are used to creating Rational Statemate
AUTOSAR models. These OSI’s include definitions of the various APIs and XML definitions
(using the “API Definitions” and the “Static OS Configuration” capabilities). In addition, the
OSI’s defines the set of design-attributes for the relevant Rational Statemate types (Activities,
Data-Items, Conditions, etc.) for complying with AUTOSAR entities.

Important Notes
� An Atomic Software Component contains one Internal Behavior.
� Client Server Interfaces are not supported.
� Concurrent invoking of Runnable Entities is not supported.
� Allow-NAN for Real Data Types is not supported.

Creating an AUTOSAR Project
To create an AUTOSAR project, complete the following:

1. Select File > New.

2. In the New Project dialog:

a. Specify the project’s name.

b. Specify the databank location for the project.

c. Select an AUTOSAR_RTE_OSI from the OS Implementation list.

d. Click OK.
456 User Guide

Technical Support
All IBM® Rational® Statemate® customers receive support from IBM Rational Software Support
and resources.

Contacting IBM Rational Software Support

If the self-help resources have not provided a resolution to your problem, you can contact IBM

Rational Software Support for assistance in resolving product issues.

Prerequisites
To submit your problem to IBM Rational Software Support, you must have an active Passport
Advantage® software maintenance agreement. Passport Advantage is the IBM comprehensive
software licensing and software maintenance (product upgrades and technical support) offering.
You can enroll online in Passport Advantage from http://www.ibm.com/software/lotus/
passportadvantage/howtoenroll.html.

� To learn more about Passport Advantage, visit the Passport Advantage FAQs at http://
www.ibm.com/software/lotus/passportadvantage/brochures_faqs_quickguides.html.

� For further assistance, contact your IBM representative.
To submit your problem online (from the IBM Web site) to IBM Rational Software Support, you
must additionally:

� Be a registered user on the IBM Rational Software Support Web site. For details about
registering, go to http://www.ibm.com/software/support/.

� Be listed as an authorized caller in the service request tool.
Rational Statemate 457

http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html
http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html
http://www.ibm.com/software/lotus/passportadvantage/howtoenroll.html
http://www.ibm.com/software/lotus/passportadvantage/brochures_faqs_quickguides.html
http://www.ibm.com/software/lotus/passportadvantage/brochures_faqs_quickguides.html
http://www-01.ibm.com/software/support/
http://www-01.ibm.com/software/support/

Technical Support
Contacting Support
To contact IBM Rational Software Support:

1. Locate your ICN (IBM customer number). It is required for support requests.

2. Determine the business impact of your problem. When you report a problem to IBM, you
are asked to supply a severity level. Therefore, you need to understand and assess the
business impact of the problem that you are reporting.

Use the following table to determine the severity level.

3. Describe your problem and gather background information, When describing a problem to
IBM, be as specific as possible. Include all relevant background information so that IBM
Rational Software Support specialists can help you solve the problem efficiently. To save
time, know the answers to these questions:

� What software versions were you running when the problem occurred?

To determine the exact product name and version, use the option applicable to
you:

– Start the IBM Installation Manager and choose File > View Installed
Packages. Expand a package group and select a package to see the package
name and version number.

– Start your product, and choose Help > About to see the offering name and
version number.

� What is your operating system and version number (including any service packs
or patches)?

� Do you have logs, traces, and messages that are related to the problem symptoms?

� Can you recreate the problem? If so, what steps do you perform to recreate the
problem?

Severity Descriptions

1 The problem has a critical business impact: You are unable to
use the program, resulting in a critical impact on operations.
This condition requires an immediate solution.

2 This problem has a significant business impact: The program is
usable, but it is severely limited.

3 The problem has some business impact: The program is
usable, but less significant features (not critical to operations)
are unavailable.

4 The problem has minimal business impact: The problem causes
little impact on operations or a reasonable circumvention to the
problem was implemented.
458 Technical Support

Contacting Support
� Did you make any changes to the system? For example, did you make changes to
the hardware, operating system, networking software, or other system
components?

� Are you currently using a workaround for the problem? If so, be prepared to
describe the workaround when you report the problem.

4. Submit your problem to IBM Rational Software Support. You can submit your problem to
IBM Rational Software Support in the following ways:

� From the Support Web site: Go to the IBM Rational Software Support Web site
at https://www.ibm.com/software/rational/support/ and in the Rational support
task navigator, click Open Service Request. Select the electronic problem
reporting tool, and open a Problem Management Record (PMR), describing the
problem accurately in your own words.

� Request assistance through e-mail: send the e-mail to the support address for
your region:

sw_support_emea@nl.ibm.com

sw_support@us.ibm.com

sw_support_ap@au1.ibm.com

� For more information about opening a service request, go to http://www.ibm.com/
software/support/help.html

� You can also open an online service request using the IBM Support Assistant. For
more information, go to http://www.ibm.com/software/support/isa/faq.html.

� By phone: For the phone number to call in your country or region, go to the IBM
directory of worldwide contacts at http://www.ibm.com/planetwide/ and click the
name of your country or geographic region.

� Through your IBM Representative: If you cannot access IBM Rational
Software Support online or by phone, contact your IBM Representative. If
necessary, your IBM Representative can open a service request for you. You can
find complete contact information for each country at http://www.ibm.com/
planetwide/.

If the problem you submit is for a software defect or for missing or inaccurate documentation,
IBM Rational Software Support creates an Authorized Program Analysis Report (APAR). The
APAR describes the problem in detail. Whenever possible, IBM Rational Software Support
provides a workaround that you can implement until the APAR is resolved and a fix is delivered.
IBM publishes resolved APARs on the IBM Rational Software Support Web site daily, so that
other users who experience the same problem can benefit from the same resolution.
Rational Statemate 459

https://www.ibm.com/software/rational/support/
https://www.ibm.com/software/rational/support/
http://www.ibm.com/software/support/help.html
http://www-01.ibm.com/software/support/isa/faq.html
http://www-01.ibm.com/software/support/isa/faq.html
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/
http://www.ibm.com/planetwide/

Technical Support
Reporting Rational Statemate Problems from the
Software

When Rational Statemate is running, you may want to use the problem reporting facility from the
Statemate Help menu.

To send an automated problem report:

1. In Rational Statemate, choose Help > Generate Support Request to open the Generate
Support Request dialog box.

2. Review the Statemate Information and System Information areas to verify their
accuracy.

3. From the Impact drop-down list box, select the severity of the problem.

4. In the Summary box, summarize the problem.

5. In the Problem box, type a detailed description of the problem.

6. If possible, take a snapshot of the problem and attach it to the problem report. Click the
Statemate Window Snapshot button or Screen Snapshot button, whichever is
applicable, and select the snapshot file from wherever you have it on your machine.

7. If possible, add the model, active component, files, and/or a video capture by using the
buttons in the Attachment Information area.

8. Include an item description for each item in the Attachment Information area, if needed.

9. Click Preview and Send to submit the report.

The problem report is recorded in the Rational Statemate case tracking system and put into a queue
to be assigned to a support representative. This representative works with you to be certain that
your problem is solved.

Note
If your Rational Statemate system crashes, it displays a message asking if you want to send
a problem report to technical support about this crash. If you select to send the report, the
system displays the same online form that is available from Help > Generate Support
Request. However, this form contains information about the crash condition in addition the
information that is usually filled in describing your system. Add any more information that
you can to help the support staff identify the problem and then click Preview and Send to
submit the report.
460 Technical Support

Glossary of Rational Statemate
Terminology
a-flow line

Refers to any flow line found in an activity chart (either control-flow or data-flow).
This term is used by the properties, Documentor, and Dataport.

access level

A mask that protects configuration items within the databank according to your
preferences.

The possible values are as follows:

– None - The item cannot be checked out.
– Read-only - The item can be checked out without a lock and used or modified,

but cannot be checked in.
– Update - The item can be checked out with a lock (which guarantees that

other users cannot change it while you are working on it) and checked in.
You can assign an access level to the following groups:

– Owner - The project member who first created the configuration item in the
databank.

– Group - Project members who belong to the same group as the owner
(according to the definitions set by the operating system).

– Others - All project members.
The databank directory structure is created with “world read/write” access, but
specific items within the structure can be protected according to your preferences.
All versions of a configuration item belong to the same owner and have the same
access level.

See also read-only editing mode.
Rational Statemate 461

Glossary of Rational Statemate Terminology
action

Any task done as a result of one of the following:

– Taking a transition in a statechart

– Executing a static reaction within a state

– Executing a mini-spec within an activity, truth table, or subroutine

A single action can consist of making an assignment, generating an event, invoking a
defined (named) action, or several special types of expressions (starting, stopping, or
suspending activities; clearing history; and so on).

action expression

One or more actions executed on the same transition, static reaction, or mini-spec.
The actions can be listed sequentially, in which case they are separated by
semicolons, or nested, as the required logic dictates. All actions on the same
transition/static reaction/mini-spec occur simultaneously.

In addition, special context variables are available to enable the definition of actions
that are executed sequentially instead of simultaneously. These context variables are
prefaced by a dollar sign ($).

action language

A subroutine written using the standard Statemate action statements. Normally,
action statements are executed within the context of Statemate semantics (for
multiple action statements within a single step, all the assignments occur at the same
time). Within an action language subroutine, all the assignments occur in the order
the statements are written.
462 User Guide

Glossary of Rational Statemate Terminology
activity

The primary graphical object in an activity chart that represent a function in the
functional view of the system. An activity represents something that transforms
input into output.

There are three types of activities:

– Internal activities (shown as a solid rectangle)
– External activities (shown as a dashed rectangle)
– Control activities (shown as a rounded rectangle)

Activities can be allocated to modules (structure) and can contain statecharts. You
can specify the behavior of an activity by connecting it to a subroutine, as follows:

– Procedure-like activities can be connected to procedures within any of the
supported languages.

– Internal primitive activities (reactive-controlled and reactive-self) can be
connected to tasks (no mini-specs or decomposition is allowed).

– External activities can be connected only to tasks.

activity termination type

Applies only when Activity Style is set to Software style. This means that activities
in your model can be started and stopped. The alternative is Hardware style, in
which activities are always active. This affects simulation, code generation, and
Check Model.

There are three possible activity termination types:

– Procedure-like - When started, the activity will run to completion in a single
step. This type can contain only mini-specs.

– Reactive-controlled - The activity will be stopped by the control activity that
started it. This type can contain either mini-specs or control activities.

– Reactive-self - The activity self-terminates at an appropriate time. This type
can contain either mini-specs or control activities.

All three types of activities are started by their respective control activity.
Rational Statemate 463

Glossary of Rational Statemate Terminology
activity chart

Describes the functional view of the system using activities as the primary building
block. A system description can contain one or more activity charts. Activity charts,
which may be connected to module-charts, describe the functionality of individual
modules. Activity charts can be hierarchically connected to other activity charts.

In addition, activity charts can be connected to statecharts. Statecharts either define
the behavior of individual activities or control groups of activities like a control
activity.

See also activity chart graphic editor (AGE).

activity chart graphic editor (AGE)

The graphical editing tool used to create and edit activity charts. Statemate graphic
editors (GEs) are more than simple drawing packages; they are language-sensitive
graphic editors.

actual parameter

The element or constant, defined in the scope of an instance of a generic chart, that is
mapped into a formal parameter of the generic chart during instantiation. The type of
the actual parameter must match the type of the formal parameter.

aggregate element

An array, queue, union, or record.

alias

A named reference to a slice of a bit-array or to a slice of a bit-array that is a member
of an array of bit-arrays. In addition, aliases can be slices of other aliases.

Aliases can be sensed or written. Writing to an alias changes only the bits of the bit-
array that the alias refers to. A bit or a bit-array can be an alias.

Events and conditions cannot be specified as an alias. Integers and reals can be
defined as an alias only if the definition specifies a single bit. (In this case, an
automatic conversion is applied.) Arrays, queues, records, and unions cannot be
aliases.

Examples:

(bit-array) ADDR => WORD(4..15)

(bit-array) DATA1 => PACKET(1)(16..31)

(bit) PARITY => ADDR(5)
464 User Guide

Glossary of Rational Statemate Terminology
And-state

Represent parallel behavior. And-states are sometimes called concurrent or
orthogonal states. When a statechart enters one And-state, it simultaneously enters
all other And-states at that level of the state hierarchy. And-states can be subdivided
into smaller states (decomposition).

array

A one-dimensional (vector) grouping of data-items, events, or conditions under a
single name whose individual elements are addressed through a reference index.

array element

An individual data-item, event, or condition in an array. The element is referenced by
the syntax A(i), where A is the array and i is the index to the array.

array slice

A reference to a consecutive group of individual array elements. The slice is
referenced by the syntax A(i..j), where A is the array and i and j are indices into
the array.

asynchronous

In Statemate models, transitions are made on a step, but the step does not consume
any time. This is typically used with software or system-level design.
Rational Statemate 465

Glossary of Rational Statemate Terminology
attribute

User-defined information stored with an element’s properties entry. Each attribute
has a name and can have a value. For example, an attribute can represent a security
classification level or the name of a requirements document.

You can define attributes using the Attributes dialog box in the property sheet. The
dialog box displays an editable list of attributes and contains a button that loads
attribute definition files.

Note the following:

– You can list the attributes of all the elements in your workarea using the
reports tool. The Property and Attribute reports include information about
attributes.

– Support for attributes is available in the Dataport and the Documentor.
– You can use the Check Model tool to check for inconsistencies between the

attributes defined in an attributes definition file and those stored in the
properties. The checks report enforced attributes that are missing, attributes
without a value, and values that are inconsistent with type definitions.

attribute definition file

A text file containing predefined attributes that you can apply to an element using the
Load Attributes button in the Attributes dialog box in the property sheet. Before
using the Load Attributes button, you must first specify the directory containing
attribute definition files as a preference in Statemate.

basic activity

An activity with no descendants; the most primitive activity.

binding

See interactor binding.

bit

Holds a single, binary value. Its literals are 0b1 and 0b0.

bit-array

An array of bits. The length and indices are specified when the element is defined.
The defaults values are: length 32 bits long, right index (most significant bit) 31, and
left index (least significant bit) 0.

Bit-arrays are treated as unsigned numbers by Statemate. Both implicit and explicit
conversion to other Statemate types is supported.
466 User Guide

Glossary of Rational Statemate Terminology
callback

A mechanism that associates a subroutine with an element.

chart

A general term for one of the graphical editors within Statemate.

Check Model

Tests all or selected charts in the model for violations in syntax and semantics. It also
checks the relation between charts.

– The tool tests for two types of errors:
– Correctness - detects inconsistencies in the model, such as an Or-state

without a default entrance.
– Completeness - detects redundancy and incompleteness in the model, such as

unresolved elements.

CM

See configuration management.

code generation

Statemate can create code from a model via a code profile editor. The resulting code
can be compiled and executed on the development host.

combinational assignment

The expression used to assign a value to a combinational element. The syntax is as
follows:

X = Y1 when C1 else
Y2 when C2 else
...
Yn

In the syntax, X is a variable condition or data-item, Y1 to Yn are expressions, and C1
to Cn are condition expressions.

combinational element

Represents asynchronous behavior, that is, an element whose value is
“continuously” assigned (rather than evaluated once each step).
Rational Statemate 467

Glossary of Rational Statemate Terminology
combinational logic

Enables you to model asynchronous logic in your designs. The flexible syntax for
combinational elements enables you to specify asynchronous functions, from simple
combinational logic gates to multiplexors, transparent latches, and so on.

component

An element contained in a library. A component root is a generic activity-chart. The
definition of a component includes the following parts:

– Top-level name and input/output

The top-level design contains information on the component’s name and
input/output. If you change the top-level design, all charts that contain
instances of that component must be modified by you. Use the Check Model
tool to detect instances that are not up-to-date.

– Behavior

The behavior of the component is reflected in all the versions of charts that
use the component. If the behavior is changed, the graphic editors that contain
instances of that component do not have to be modified by you. Analysis tools
automatically sense the new behavior as well.

Note: Note that this is true for inserted (but not copied) components.

– Icon

The icon is a pixel map used to represent the component in the component
browser. A one-line text label is attached to the pix map to enable you to
attach a description to the component. The system then automatically attaches
this description of the top-level activity of the generic chart as the description
of the component.

If the icon is changed, the graphic editors that contain instances of that icon’s
component do not have to be modified by you. Analysis tools do not sense the
modification, but the component browser is refreshed with the new icon.

Note: Global definition sets can be part of a component. When you create a
component, the related GDSs are automatically added to the component’s
configuration. (A GDS is related if it contains user-defined types or constants
that are part of a component definition.)
468 User Guide

Glossary of Rational Statemate Terminology
composition connector

A connector that can be used only with a record or union data-item. The composition
connector directs the components of a record to two different target activities. For
example, a data-store called RANGE has a record type of data-item with two
components called LOW_LIMIT and HIGH_LIMIT. If the flow is going out from
the data-store, the composition connector splits the record into the two components.

The composition connector can also go in the other direction, where multiple flow
lines labeled with the record’s components enter the connector and the single flow
line denoting the record flow emanates from it.

compound

An element defined as an expression in terms of other elements. The type of the
expression must match the type of the element.

Compounds can only be sensed; they cannot be written or changed directly. To
change a compound, you must change the value of the elements used to define the
compound.

Events, conditions, and simple data-items (integer, real, string, bit, or bit-array) can be
specified to be compounds. Array, queues, records, and unions cannot be
compounds.

The following examples are valid:

(real) VOLUME => (4.0/3.0) * PI * R**2.0
(condition) BOOL1 => CON1 or CON2 and not in(STATE1)

The following example is invalid:

(condition) BOOL2 => 2 * PI * R

compound flow

A mechanism consisting of multiple flows and connectors that transfers information
between activities. This reduces the number of arrows and makes the charts easier to
read and understand.
Rational Statemate 469

Glossary of Rational Statemate Terminology
condition

A persistent signal whose value is either TRUE or FALSE that indicates something
occurring over a span of time. For example, the light is on. All conditions are
enclosed in square brackets (for example, [C]).

The action tr! (C) has the effect of setting the truth value of condition C to true, and
the corresponding action fs! (C) sets it to false.

Compare this with event.

condition connector

Used in statecharts, this emphasizes a choice based on a condition (for example,
x>1, x<1, x=1). The triggers must be mutually exclusive.

condition expression

A compound expression that can contain variables and context variables.

configuration file

A version “snapshot” of the workarea. Typically, configuration files are saved to the
databank where they can be retrieved and executed at a later time to reload the
snapshot of the design to the current workarea.

See also configuration management and configuration item.

configuration item

Elements stored in the databank as ASCII files. Multiple versions of the same
configuration item can exist in the databank. All versions of a configuration item
belong to the same owner and have the same access permissions.

See also configuration file and configuration management.
470 User Guide

Glossary of Rational Statemate Terminology
configuration management

Also called CM, change management, revision management, and source control.
Each Statemate project has a common repository area called the databank. The
databank is both centralized and permanent. That is, information in the databank
belongs to the entire project and represents the current working design.

As you rework your charts, each modification is made to your workarea. When you
want to permanently store a new version of your changes to allow others to share
them, you save the modified charts to the databank. And, through a locking
mechanism, you are ensured that your work will not conflict with the interests of the
other project members.

While working on a project, you can perform configuration management operations
such as check-ins and checkouts using the workarea browser and the databank
browser. Statemate provides a built-in CM tool similar to those found in products
designed specifically for the task of configuration management. In addition,
Statemate allows you to transparently substitute a different CM tool when you create
a project.

See also configuration file, configuration item, and configuration management tool.

configuration management tool

The tool used to perform configuration management. When you create a new project,
you can choose Statemate’s built-in CM tool or one of several widely-used, third-
party CM tools. If you prefer a different tool, templates are available so you can
create your own simple, script-based interface to your tool of choice.

See also configuration file, configuration item, and configuration management.

connector

A circular or oval graphical object used in charts to join and divide arrows or to
allow an arrow to exist on multiple pages. Its purpose is to reduce the number of
arrows in, and to clarify, a specification.

constant

A value that does not change. A constant must be defined in terms of a literal of the
corresponding type or expression of literals. It cannot be defined in terms of an
expression of other elements even if the other elements are constants.

Constants can only be sensed. They cannot be changed or written. Conditions and
simple data-items (integer, real, string, bit, and bit-array) can be specified as
constants. Arrays, queues, records, unions, and events cannot be constants.
Rational Statemate 471

Glossary of Rational Statemate Terminology
constant literal

An alphanumeric expression assigned to a constant element. For example:

X= ’Hello’

Y = 5

context variable

A variable that is evaluated and updated sequentially within an action expression. A
context variable is preceded by a dollar sign ($).

control activity

A reference to a statechart or a flowchart that controls the activities within the same
activity chart. A control activity cannot have any subactivities and is specified by an
off-page statechart. An at-sign symbol (@) precedes the title of control activities.

control-flow

Carry information or signals used in making control decisions (for example,
commands or synchronization messages).Two types of flow lines are allowed in
activity charts: data flow lines (drawn as solid arrows) and control flow lines (drawn
as dashed arrows).

data-flow

Carry information used in computations and data-processing operations. Two types
of flow lines are allowed in activity charts: data flow lines (drawn as solid arrows) and
control flow lines, drawn as dashed arrows.

data-item

A unit of information that can be one of the following:

– Numeric - Integer or real
– String
– Bit or bit-array

– User-defined type (UDT)
– Record
– Union

data-store

Stores information on activities for later use. Data-stores can be used to total large
volumes of data, continuously accumulating over time. Data-stores are always basic;
they cannot contain other data-stores or activities.
472 User Guide

Glossary of Rational Statemate Terminology
data type

Statemate supports the following data types:

– bit

– bit-array

– enumerated type

– field

– integer

– real

– record

– string

– union

– user-defined type (UDT)

databank

The directory structure in which project data is stored. The databank contains several
subdirectories that hold different types of Statemate objects, such as charts, panels,
and configuration files. Objects in the databank are stored as ASCII files.

A project databank can be placed in any directory to which you have read and write
access. Many sites designate a special location for project data; check with your
system administrator.

See also configuration management.

databank browser

Enables you to navigate through your project’s databank. The window displays a
complete or partial list of the configuration items in the databank, along with detailed
information about the selected item (if any). The information includes a list of all
existing versions of the item from which you can choose specific versions on which
to apply configuration menu operations.

Dataport

A Statemate utility that enables you to extract information from the Statemate
database. You can use this information to create plots, generate reports, and analyze
data.

deadlock condition

A set of conditions that remain true forever.
Rational Statemate 473

Glossary of Rational Statemate Terminology
deep history connector

Indicates an entrance to the most recently visited state or configuration at the lowest
level in the hierarchy. This type of history connector has an asterisk after it (H*).

default connector

Specifies the starting point at each hierarchical level within a statechart (assuming
that an explicit transition was not taken).

defined element

Each element in a model belongs to a specific chart and is defined in that chart via
the properties. Elements defined in one chart can be used in another chart. A textual
element is clearly “visible” in the chart where it is defined; it is also visible in all the
descendant charts in the chart hierarchy.

See also unresolved element.

descendant

A chart that has a parent. The terms descendants and ancestors denote subactivities
and parent activities, respectively, on any level of nesting. Activities that have no
descendants are called basic.

diagram connector

Connects a target and a source that are far from each other. Using this type of
connector eliminates the need for long arrows.

Document Generation Language (DGL)

In the Documentor, you use DGL to write a program that designs how your
documents will appear and what information they will contain.

Documentor

A Statemate tool used to design and produce documentation of the system you are
designing. The documents can include textual and graphical information from a
variety of sources, including your project database and information outside your
workarea.

Documentor include file

A statement used to include files from outside the project database within your
documents. Such include files consist of textual information, diagrams, plots, and so
on.
474 User Guide

Glossary of Rational Statemate Terminology
Documentor template

A design program that you write using Document Generation Language (DGL). The
template contains instructions as to what information to include in the report and
how to format it.

DOORS

Provides access to the DOORS requirements tracing tool, if available.

element

A model is made up of elements, which can be:

– Textual - Actions, conditions, data-items, events, fields, information flows,
subroutines, and user-defined types

– Graphical - Activities, modules, and states
– Chart - Activity charts, control activitys, global definition set (GDS), module-

charts, and statecharts
The properties contains information about each element in the model.

enumerated type

A type of constant. You can define a user-defined type (UDT) to be an enumerated
type, then define a set of constant values for this type. For example, you can define
an enumerated type COLOR, then define COLOR as {RED, YELLOW, BLUE, GREEN,
ORANGE}. You can use these enumerated values in expressions. For example:

/X:=RED;

environmental activity

A special type of external activity defined through the DDE to be external to all
levels of the chart hierarchy. This type of external activity is external to the entire
system being developed.

event

Instantaneous signals used for synchronization purposes. They indicate that
something has happened.

Events occur in a precise instant in time, and if not immediately sensed they are lost.
Events “live” for the duration of one step only, and that step is in the one following
in which they occur.

Compare with condition.
Rational Statemate 475

Glossary of Rational Statemate Terminology
external activity

Any activity outside the scope of the top-most activity in a particular activity chart.
Because activity charts are hierarchical, an external activity is usually resolved to a
box in a chart higher in the chart hierarchy.

However, an external activity might be resolved to a box that is an internal activity at
a higher level. In this case, it remains an external activity when referenced in the
lower chart.

field

In addition to basic types, a data-item can be a composition of named components,
referred to as fields, each of which can be a data-item of any type or a condition.

Statemate supports two kinds of compositions: records and unions. The entire
construct is referenced by its name (for example, on a flow line), whereas a particular
field is referenced using dot notation, as follows:

<record/union reference>.<field reference>

flow

Transfers information between activities and modules. They can be single pieces of
information called data-flows, or groups of information called information flows.

See also a-flow line, compound flow, information-flow, and m-flow.

flowchart

A flowchart represents a process graphically. It includes the entire process from start
to finish, showing inputs, pathways and circuits, and action or decision points.

flow line

A labeled arrow that visually represents a flow. The label on a flow line denotes
either a single information element that flows along the line or a group of such
elements (an information-flow).

for loop

An iterative action that makes it possible to access the individual array components
in successive order. The syntax is as follows:

for $I in N1 to N2 loop
A

end loop
476 User Guide

Glossary of Rational Statemate Terminology
fork connector

A type of connector that represents a single information element flowing from one
source to several targets. A joint connector is the opposite type of connector.

formal parameter

An element defined (via the properties) in the generic chart with a type and mode.
The formal parameter is a placeholder for the actual element being mapped to it. It is
used to connect a generic instance to its scope or to define the special characteristics
of the particular instance.

See also actual parameter.

function

A subroutine that returns a value and can have multiple parameters. All function
parameters are inputs.

See also procedure.

GBA

See graphical back animation (GBA).

GDS

See global definition set (GDS).

GDS editor

Enables you to create a new global definition set (GDS) or access an existing one.

generic chart

Enable you to reuse parts of a specification. Using a generic chart, you can represent
common portions of the model as a single chart that can be instantiated in many
places (similar to a procedure in a conventional programming language).

Generic charts are linked to the rest of the model via parameters; no other elements
(besides the definitions in global definition sets) are recognized by both generic
charts and other portions of the model.

generic instance

An instance of a generic chart used for a specific portion of a model. The “<“
notation indicates that a box is an instance of a generic chart. For example, a box
named I<G denotes that the box I is an instance of the generic chart G.
Rational Statemate 477

Glossary of Rational Statemate Terminology
Instances must be basic and truly generic. They cannot contain descendants,
behavioral information, static reactions, or combinational assignments.

global definition set (GDS)

A type of component that contains definitions of user-defined types as well as
constant data-items and conditions. The elements that appear in a GDS are visible in
the entire model. Data types defined in a chart or inherited from a parent chart take
precedence over data types defined in a GDS.

A GDS is similar to a chart in that both are configuration items of the model. That is,
both charts and GDSs contain parts of the model and can be saved and loaded
separately from other parts. A GDS cannot contain any other graphical or non-
graphical information.

There can be several GDSs in one model, but there is no hierarchical relationship
between them, nor between them and the charts in the model.

See also GDS editor.

graphic editor

The graphic editors enable you to create and modify statecharts, procedural
statecharts, module-charts, and activity charts.

graphical back animation (GBA)

The Simulator highlights the charts as they are executed. However, once you
generate code, you lose that graphical feedback. GBA provides graphical
highlighting similar to Simulation, but from generated code.

hardware activation style

A behavior pattern where the activities’ components are always active. In these
cases, the activity does not need a control activity, and all of the subactivities start and
stop when the parent does.

history connector

A connector (H) that indicates an entrance to the last state visited residing at the
same hierarchical level as the connector.

See also deep history connector.

hook

A software code generator mechanism that enables you to “hook” user-actions or
procedures to any change in the specification during execution. This is useful to tie
478 User Guide

Glossary of Rational Statemate Terminology
your external environment to the behavior represented by the generated code. Unlike
stubs, which simply serve as placeholders, hooks generate callback functions and
actually communicate with external code.

Infer device

For combinational elements that model latching behavior, the Infer Transparent
Latches For option can be used to generate code that will cause the synthesis tool to
infer a transparent latch instead of combinational feedback.

information-flow

Represents a container for other elements (conditions, events, data-items, and other
information flows). They reduce the number of flow lines, which makes the chart
more readable and easier to understand.

instance

A repetition of a generic chart. It can be repeated multiple times in a model, but it
must be a primitive box that does not contain static reactions or mini-specs.

instantiation

The act of creating an instance of a generic chart. Each instance has its own actual-
to-formal parameter binding.

integer

Any natural number, 0, or the negative of any natural number. The maximum value
of integers allowed is dependent on the architecture of the machine on which
Statemate is being executed. On a 32-bit machine, it is (2**31)-1.

interactor

Graphical representation of an input/output device in the panel graphic editor that has
a predefined behavior. The following types of interactors are available: push buttons,
menu buttons, radio buttons, sliders, displays, lamps, meters, and knobs.

interactor binding

Establishes a connection between a panel graphical object and elements in the
simulated model. The three possible modes of binding used for interactors are IN,
OUT, and IN/ OUT. For animation of user-defined graphical objects, only the OUT
binding is allowed.
Rational Statemate 479

Glossary of Rational Statemate Terminology
interface report

A report that graphically presents the input and output of a module or state. You can
generate this type of report using the reports tool or Documentor.

internal activity

Any activity within the scope of the top-most activity in a particular activity chart.

See also external activity.

joint connector

A type of connector that represents a single information element flowing from
several sources to one target. A fork connector is the opposite type of connector.

junction connector

A type of connector that reduces the number of lengthy flow lines by connecting
different elements together. These elements then form a single flow line that
emanates from or enters a common box or connector.

label

The name on a flow line that denotes either a single information element that flows
along the line or a group of such elements.

library

A container for model components. Any Statemate project, new or existing, can be
designated as a library.

Together, libraries and components offer a means to speed the process of design
specification and to help you create more consistent specifications. Reusing
previously created Statemate model elements is more efficient and makes for more
consistent designs.

list report

A report that presents either:

– All elements of a particular type
– A table of all names and synonyms for elements in the input list

You can generate this type of report using either the reports tool or the Documentor.

literal

One of the following:
480 User Guide

Glossary of Rational Statemate Terminology
– Character literal - A quoted sequence of characters.
– Numeric literal - A sequence of digits, an optional decimal point, and an

optional negation sign.
For example:

real - 3.1234
integer - 5
string - ‘abcdefg’

Also called a literal constant.

local data

Subroutines that are implemented in the Statemate action language, or a procedural
statechart that uses local data elements. These elements are like local variables in any
programming language, and can have name and type definitions.

lock

Guarantees that other users cannot change the item in the databank while you are
working on it. After your changes are complete, you can check it into the databank
and either release or continue to hold the lock. No configuration item can be locked
by two or more users simultaneously.

When you create a new configuration item (a chart or file that you have created but
not yet stored in the databank), it is implicitly locked by you. You can, therefore,
always save such a configuration item into the databank.

See also configuration management.

m-flow

Refers to a flow line in a module-chart. This term used by the properties, Documentor,
and the Dataport.

mini-spec

A definition of an activity’s behavior entered into the properties. The mini-spec is
activated when the associated activity is active and stops when the associated
activity stops.

You define mini-specs in the property sheet. The syntax is similar to static reactions
(a list of reactions of the form trigger/action, separated by a double semicolon
(;;).

States that have mini-specs are distinguished by a “>” symbol after the chart name
(for example, ALARM>).
Rational Statemate 481

Glossary of Rational Statemate Terminology
model

Represents the system under design.

The heart of the specification stage is the construction of the system model.
Statemate modeling is especially effective for reactive systems, whose behavior can
be very complex, causing the specification problem to be notoriously elusive and
error-prone. Most real-time systems, for example, are reactive in nature.

A system model constitutes a tangible representation of the system’s conceptual and
physical properties, and serves as a vehicle for the specifier and designer to capture
their thoughts. In some ways, it is like the set of plans drawn by an architect to
describe a house. It is used mainly for communication, but should also facilitate
inspection and analysis. The modeling process involves conceiving of the elements
relevant to the system and the relationships between them, and representing them
using specific, well-defined languages. When the model reflects some pre-existing
descriptions (for example, requirements written in natural language), it is useful to
keep track of how the components of the developing model are derived from the
earlier descriptions.
482 User Guide

Glossary of Rational Statemate Terminology
module

The primary graphical object used in module-charts. Modules are used to represent
the structure of the system. There are two types of modules: internal (shown as a
solid rectangle) and external (shown as a dashed rectangle).

The functionality of a module is shown by describing it by an activity chart.

– The primary structural building block of Verilog code. This term also refers to
structural components when defining Verilog Code Generation Profiles in
Statemate.

– The term used to see structural components when defining C or Ada code
generation profiles in Statemate.

module-chart

Describes the structural view of the system using modules as the primary building
block. A system description can contain one or more module-charts. They are
located at the top of the chart hierarchy in a system model.

Module-charts can be connected to activity charts, which describe the functionality
of individual modules.

module-chart graphic editor (MGE)

The graphical editing tool used to create and edit module-charts. Statemate graphical
editors (GEs) are more than simple drawing packages; they are language-sensitive
graphical editors.

monitor

A simulation debugging tool that displays a table of the textual and graphical element
status during a simulation. The monitor can be used as an output device to display
element status and an input device that accepts input stimuli during simulation. The
various characteristics of a monitor window can be saved in a simulation profile,
which enables you to reuse the monitor in other simulation sessions.

multi-value logic

An HDL option that provides the capability to do extensive behavioral simulation.
Using graphical testbenches, along with the multi-value logic constructs, enables
you to test design functionality in a true hardware environment.

Multi-value logic makes it easier to model multiple logic drivers, bus contention,
resolution problems, and many other real-world situations.
Rational Statemate 483

Glossary of Rational Statemate Terminology
N2-chart report

A report that presents the flow of information between activities and modules. You
can generate this type or report using the reports tool or the Documentor.

non-determinism

Occurs when there are multiple, legal exits from a single state. If more than one state
is true, the system does not know which transition to take.

off-page chart

A decluttering mechanism that decomposes a chart into several pages. The contents
of the box element (activity, state, or module) can be drawn in a separate chart. The
box element is called an instance box and the associated chart is called an off-page
chart.

A box refers to its off-page chart by using the @ sign in its name. For example, a box
named P@C denotes that the box P is decomposed into chart C. If you want to use the
same name for the box and the off-page chart, omit the first name. Thus, P@C
becomes @C.

off-page connector

Connects arrows that appear on separate pages. You can use an alphanumeric string
to label these connectors. A useful convention is to label the connector with the
name of the source or target of the arrow in the instance chart.

one hot state vector encoding

Allows a single storage element to represent each state. This option significantly
reduces the amount of decode logic in the resulting circuit, which improves circuit
performance.

optimize state translation

Eliminates unnecessary levels by assigning the minimum number of storage
elements while maintaining the hierarchy. However, this option will not eliminate all
levels in all cases. For example, it cannot eliminate a level that contains a static
reaction.
484 User Guide

Glossary of Rational Statemate Terminology
Or-state

Enables you to represent sequential behavior. The Or-state is similar to the states
used in traditional state diagrams or finite state machines.

The statechart can be in one, and only one, Or-state at any one time (at a particular
level of the state hierarchy). Or-states can be subdivided into smaller states
(decomposition).

overload state vector

Makes the generated HDL code perform faster than when you do not overload, but it
takes up more space. Overload when your design requires more speed; do not
overload when your design requires less area.

panel

Provides a visual interface to the simulated model or generated code for debugging
and prototyping purposes. It is built of predefined interactors and user-defined
shapes. Dynamic behavior of these graphical objects is defined through their binding
to elements of the model.

Typically, panels represent the user interface to a system. However, it is also quite
common for the panels to show a logical representation of a system. For example, a
panel could show the routing of packets through a communications network, or the
failure states of valves and pumps in an aircraft fuel system.

panel graphic editor

Enables you to create a realistic mock-up that represents the system you are
designing. The panel is associated with a model and is animated during model
execution.

parameter

An element that links a generic chart to the rest of the model. No other elements
(besides the definitions in global definition sets) are recognized by both generic
charts and other portions of the model.

parameter binding

The way that an instance of a generic chart is connected to the scope of the instance
during instantiation. It involves the binding of actual parameters to formal parameters
of the generic chart.

See also actual parameter and formal parameter.
Rational Statemate 485

Glossary of Rational Statemate Terminology
parent chart

A chart that has descendants or subactivities. Parent charts are sometimes called
ancestors.

playback

During a simulation, you can record the commands and save them in the form of a
simulation control language (SCL) program, which can be run like a normal SCP.

See also simulation control playback (SCP).

predefined type

Five primitive types of data-items are predefined in the language of Statemate:
integer, real, bit, bit-array, and string.

preferences

Customizations applied to the Statemate work environment. You can set preferences
individually or by loading preestablished settings.

Project managers and system managers can set preferences that are enforced for
users at your site. When you set your own preferences in a specific area, you can
obtain information on which preferences have been enforced at your site.

procedural statechart

A specialized derivative of a statechart. Procedural statecharts:

– Are executed entirely in one step.
– Must contain a termination connector.
– When called, run from the default to the termination connector (including any

loops) within a single step.

procedure

A subroutine that has no return value but can have multiple parameters. Each
parameter can be INPUT, OUTPUT, or INPUT/OUTPUT.

See also function and task.
486 User Guide

Glossary of Rational Statemate Terminology
procedure-like termination type

A type of activity that is started by the contro at the next higher level in the activity
chart hierarchy. Once started, it runs to completion in a single step. This type of
activity can contain a mini-spec, but cannot contain a control-activity.

See also activity termination type and procedure.

project

The main unit of work organization in Statemate. A project consists of data and
users who can access that data. In general, project members have access to all data in
a project, but any objects can be protected from write or read access.

A project includes the following:

– project name

– project manager

– databank

– configuration management tool

– requirements traceability

– project members
– library (optional)

A project is intended to be accessed by multiple users; a workarea is intended to be
accessed by a single user.

project manager

A Statemate user who controls access to a project (can add or remove members from
the project).

Each project can only have one project manager associated with it. By default, the
project manager is also a project member. The project manager does not need to be
an SMAN.

project member

A Statemate user who has access to a particular project. A user can belong to many
projects simultaneously.

Having access to a project means that the project member can view the list of objects
stored in the databank. Read or write access to individual objects within the
databank is granted on a per-object basis, according to user preferences.

Only the project manager can add or remove project members.
Rational Statemate 487

Glossary of Rational Statemate Terminology
project name

The name of the project. Project names must be unique at your site. Project names
must begin with a letter, and can consist of letters, numbers, and underscores.
Lowercase letters are automatically converted to uppercase. Names in Statemate,
including project names, are not case-sensitive and cannot contain spaces.

Leaving the CAPS LOCK key off is the preferred setting.

properties

Store textual information for the Statemate element, such as a description, attributes,
and relationships with other elements. The element information can be formal
(possessing some semantics that is relevant to the model and its behavior) or
informal.

Some kinds of textual information are relevant to all types of elements, such as a
one-line short description and an unlimited, textual, long description. These
narrative additions, especially the long description, can be used to provide
information about the element in an informal language, for the record.

In addition, the general mechanism of an attribute pair, name, and value can be used
to associate special characteristics with the element. The properties can also be used
to associate a synonym with the element, usually a shorter name that is easier to
incorporate into a detailed chart.

property report

A type of report that extracts basic element information from the properties. You can
produce a property report for all element types. The reports tool and the Documentor
can generate this type of report.

property sheet

Provides a mechanism to search the properties to create lists of elements so you can
examine and modify listed elements using the property sheet.

protection level

See access level.
488 User Guide

Glossary of Rational Statemate Terminology
query

The properties includes a set of pre-programmed queries that represent specific
relationships between specification elements or elements with a specific attribute.
The output of the query is a pending list, which can be passed, as input, to
subsequent queries.

You can perform three types of queries:

– Search the entire workarea. These queries search for element names and
synonyms.

– Use the pending list as input. Once used as input, the subsequent query
produces another pending list that replaces the original.

– Operate on either the workarea or the pending list.

queue

An ordered, unlimited collection of data-items, all of the same data type. This data
type can be any predefined or user-defined type (UDT). A queue is essentially a single
structure that holds many elements. You can add elements to either the front or the
back, but can retrieve them only from the front of the queue.

The following actions affect queues:

– fl! - Clears the queue.
– get! - gets information about an element. get actions are performed when

they are encountered.
– peek! - copies the queue’s head element without removing it.
– put! - adds the value of the expression to the end of the queue. put actions are

accumulated and performed at the end of the step. This scheme reduces the
chances of racing.

– q_length - Returns the length of the queue.
– uput! - adds the value of the expression to the front of the queue.

racing

Occurs when a condition or data-item is:

– Modified and used at the same point in time.
– Modified more than once at the same point in time.
Rational Statemate 489

Glossary of Rational Statemate Terminology
reactive system

A typical reactive system exhibits the following distinctive characteristics:

– It continuously interacts with its environment, using inputs and outputs that
are either continuous in time or discrete. The inputs and outputs are often
asynchronous, meaning that they can arrive or change values unpredictably at
any point in time.

– It must be able to respond to interrupts (high-priority events), even when it is
busy doing something else.

– Its operation and reaction to inputs often reflect stringent time requirements.
– It has many possible scenarios of operation, depending on the current mode of

operation and the current values of its data, as well as its past behavior.
– It is often based on interacting processes that operate in parallel.

Examples of reactive systems include on-line interactive systems, such as automatic
teller machines (ATMs) and flight reservation systems; computer embedded
systems, such as avionics, automotive and telecommunication systems; and control
systems, such as chemical and manufacturing systems.

reactive-controlled

A type of activity started by the control at the next higher level in the activity chart
hierarchy. Once started, it remains active for one or more steps until it is stopped by
the same control activity. This type of activity can contain a control activity or mini-
spec.

See also activity termination type.

reactive-self

A type of activity started by the control at the next higher level in the activity chart
hierarchy. Once started, it remains active for one or more steps until it terminates
itself by entering a termination connector in its control activity or executing a stop
action in its mini-spec. This type of activity can contain a control activity or mini-
spec.

See also activity termination type.

read-only access

An access level that allows a configuration item to be checked out without a lock.
The checked out item is automatically placed in read-only editing mode.

See also access level.
490 User Guide

Glossary of Rational Statemate Terminology
read-only editing mode

A mode in which all graphic editor viewing and tool launch features are active, but
editing features and drawing icons are disabled. This is the only available mode
when you are using read-only access and a chart is opened more than once in the
same session.

In the property sheet, you can make changes, but the changes cannot be saved
(unless you lock the item).

See also configuration management.

real

A floating-point number. In Statemate, you can see values using either the form
nnn.mmm or n.mmm E+ee. The values allowed are dependent on the architecture of the
machine on which Statemate is being executed. This is usually in the range -1.0
E+38 to 1.0E +38.

real-time operating system (RTOS)

The low-level operating system that controls basic system functions such as memory
management, interrupt management, and disk access. In an RTOS, the assumption is
that all tasks will be executed in such a way that they are (essentially) happening in
“real time,” with no artificial delay between the initiation and execution of an action.
For example, a real-time control system will appear to process inputs in virtually the
same moment that they are made, so any output action required as a consequence of
the input will happen immediately thereafter with no detectable delay.

In actuality, delays are inescapable in the sequential nature of digital control systems
and software execution. However, the delays are kept to less than a “critical time”
period that is short enough to be imperceptible to the system user. Guaranteeing that
this “virtual real-time execution” occurs in a consistent and predictable manner is the
job of the RTOS. Simulation model code must be compiled specifically to function
in the hardware and software environment provided by the RTOS.

record

A data type that consists of several fields of possibly different predefined or user-
defined types. When a data-item is declared to be a record, it is defined to contain all
of its fields. A record is analogous to a structure in C and a record in Ada. To
access a field in a record, use both the record name and field name separated by a
period. For example:

RECORD_NAME.FIELD_NAME

See also union.
Rational Statemate 491

Glossary of Rational Statemate Terminology
register transfer level (RTL)

A code style that can be both simulated and synthesized.

regular chart

A non-generic chart.

See also generic chart.

requirements traceability

See DOORS and RTM.

RTM

Provides access to the RTM requirements tracing tool, if available.

SCL

See simulation control language (SCL).

SCP

See simulation control playback (SCP).

simulation

Enables you to execute a graphical model. You can verify the behavior of your
design by examining the animation of the graphical elements in your design. You
can also modify and examine the values of the textual elements in your design.

simulation control language (SCL)

An optional file that can be recorded (like a trace file) when you are simulating a
statechart. It is a record of the keystrokes you pressed during a simulation and is
sometimes called a playback.

simulation control playback (SCP)

A program of simulation control language (SCL) commands, created by recording a
simulation. You can then use the SCP to control a simulation in batch mode. An SCP
animates the statecharts and activity charts in the simulation scope in the same
manner as interactive simulation. You can use SCPs to facilitate the entry of large
amounts of data and to automate scenario-based executions.

single

A data-item that is neither an array nor a queue.
492 User Guide

Glossary of Rational Statemate Terminology
SMAN

A Statemate manager, who can:

– Modify or delete any project.
– Define or undefine other SMANs.

A user does not need to have special system capabilities to be a SMAN (that is, they
do not need to be “root”). SMAN activities do not modify system files.

See also project manager.

state

The primary graphical object used in statecharts. States represent behavior of the
system or part of the system. States in a statechart differ from states shown in more
traditional state diagrams or finite state machines (FSM) in two ways:

– They can be divided into substates hierarchically.
– They represent parallel state behavior.

There are two types of states:

– And-states - Shown by dividing an Or-state into substates with a dashed line.
And-states show concurrent, or parallel, behavior.

– Or-states - Similar to states in traditional FSM. The statechart can be in only
one Or-state at the same level of hierarchy at one time. Or-states are
represented by a rounded rectangle.

See also And-state and Or-state.
Rational Statemate 493

Glossary of Rational Statemate Terminology
statechart

Describes the system’s behavior over time, including:

– The dynamics of activities
– Their control and timing behavior
– The states and modes of the system
– The conditions and events that cause modes to change and other occurrences

to take place
In addition, it provides answers to questions about causality, concurrency, and
synchronization.

Statecharts constitute an extensive generalization of state-transition diagrams. They
allow for multi-level states, decomposed in an and/or fashion, and therefore support
economical specification of concurrency and encapsulation. They incorporate a
broadcast communication mechanism, timeout and delay operators for specifying
synchronization and timing information, and a means for specifying transitions that
depend on the history of the system’s behavior.

Each element in the statechart has an entry in the properties, which can contain
additional information. For example, an event entity can be used to define a
compound event by an expression involving other events and conditions.

statechart graphic editor

The graphical editing tool used to create and edit statecharts. Statemate graphical
editors (GEs) are more than simple drawing packages; they are language-sensitive
graphical editors.
494 User Guide

Glossary of Rational Statemate Terminology
static reaction

Describe the behavior that takes place within a specific state. For example:

While in (S1) DO
[POWER_ON]/tr! (LIGHT_ON);
COUNTER:=0

Static reactions also describe actions that occur when there’s a transition to enter or
exit the associated state. For example:

On entering (S1) DO
/st! (activity_warm_up)

On exiting (S1) DO
/sp! (activity_warm_up)

You define static reactions in the Reaction field in the property sheet (DDE).
Separate multiple reactions in the DDE with a double semicolon (;;). States that have
static reactions include a “>” symbol after the chart name (for example, ALARM>).

status

During simulation, the status consists of the following information:

– The status of activities in the scope (active, hanging, or inactive)
– The set of states the system is in (the configuration)
– The values of all conditions and data-items in the scope
– The events generated in the previous simulation step
– The time delays until each scheduled action and timeout event occur
– The history of the states

Context variables (whose names begin with a dollar sign), are not part of the status of
the system. They do not retain their value from one step to another.

When restoring a status, the simulation tool checks the consistency between the
current simulation scope and the one in which the status was saved. When the two
scopes are coincident, all saved values are restored.

The values of compound elements are not saved. In addition, because you might
want to use different global or local clocks during the restoration, the Show Future
command might show different times than when the status was saved.
Rational Statemate 495

Glossary of Rational Statemate Terminology
To effectively use the restore status facility when the stored status is a subset of the
restored status or vice versa, the following points apply:

– Changes in the hierarchies of activities’ and/or states cause the saved status to
become unrestoreable. This includes cases when a state or activity is added,
removed, or when it changes its location in the hierarchy.

– When a textual element is deleted, its saved value is ignored at the time of
restoration. When a new textual element is added, its current value remains
unchanged after the restoration.

status file

Records the status of the simulation in a non-text file for future reference. This is
useful to:

– Backtrack to a certain point in the simulation (for example, nondeterministic
solutions).

– Continue your work later.
– Use the current status in another simulation scope.

step

A change in the system status in response to external stimuli or internal changes. A
step can be triggered by an action (internal or external) or by a timeout event
occurring as a result of incrementing time.

A simulation step is a two-stage process:

– The stimulus to the system occurs via actions or timeout events.
– The system reacts by processing transitions, static reactions, and mini-specs.

When the simulation execution begins, and before the first step is performed, the
default initial status of the system is as follows:

– When using software style activities, the activities in the top-level hierarchy
in the scope are active.

– When using hardware style activities, all activities in the scope are active.
– The system is not in any of its states.
– All primitive conditions are false. All primitive numeric data-items are zero

and string data-items are blank.
– No events are generated.
– No timeout events or actions are scheduled.
– States have no history.
496 User Guide

Glossary of Rational Statemate Terminology
After the first simulation step is taken, the system status is as follows:

– The state configuration includes the default states of the statecharts connected
to any active control activity, or defined to be a testbench.

– All other elements of the system status are modified in accordance with
actions performed on default connectors or by static reactions on entrances
into these states.

storage module

Stores information on modules for later use. It is analogous to a data-store in an
activity except it is used in a module. Data-stores can be used to total large volumes
of data, continuously accumulating over time. Data-stores are always basic; they
cannot contain other data-stores or modules.

string

Holds any number of characters up to its defined length. The default length for a
string is 80 characters.

structure

The structure of a data-item can be one of the following:

– single

– array

– queue

See also data type and usage.

stub

An empty entity where you can place handwritten or vendor-supplied code.
Rational Statemate 497

Glossary of Rational Statemate Terminology
subroutine

You can define function, procedure, and task subroutines using:

– K&R C
– ANSI C
– Ada
– Statemate Action Language
– Procedural statecharts (for procedures only)

You can use subroutines in the following ways:

– Within a model as part of triggers and actions
– Connected to activities to describe their implementation
– Connected to Statemate elements as callbacks

In addition, any C code that has been used to describe subroutines within a model
can automatically be included within the generated code.

Subroutines have textual information like any other Statemate element, including
long descriptions, attributes, short descriptions, and so on.

subroutine parameter

Subroutines can have parameters, which are analogous to formal parameters in any
other programming language. Parameters have a type, name, and mode.

superstep

Sometimes, as a reaction to external changes, the system is able to perform more
than one step without additional external stimuli. Each step in such a series of steps,
except for the initial one, is triggered by changes the system itself produced in the
previous step. This chain of steps continues until the system reaches a status from
which it cannot advance without further external input or without advancing the
clock. Such a status is called a stable status. The progression from one stable status
to another is called a superstep.

switch connector

Emphasizes a choice based on events (for example, input_1, input_2, and
input_3). The triggers must be mutually exclusive.
498 User Guide

Glossary of Rational Statemate Terminology
synchronous

Typically used in conjunction with hardware circuit design. In Statemate models,
transitions are made on a clock. Every transition consumes one clock period and
every step consumes one clock cycle.

task

A special form of procedure connected to activities for C and Ada only. Task
parameters can be inputs, outputs, or I/Os.

See also subroutine.

termination connector

A connector that denotes the termination of a statechart. This connector can appear
anywhere in the statechart, and is considered a final state with no exits. If the
statechart is the definition chart for a control, the activity associated with the control
activity will be stopped.

test file

The simulation tool enables you to record input and output elements into files. The
input file can be used as a test vector for the simulation. In other words, you can
record an input file and then run the simulation again while reading inputs from that
file.

The output file can be used as a benchmark for the simulation. In other words, you
can create (record and edit) an output file that represents some expected or desired
result. That file can then be compared to output files generated during subsequent
simulations, including those that read from a (test vector) input file.

Only textual elements can be recorded.

testbench

A separate statechart created outside the specification of the system being
developed. Testbenches can see any element in the model because the scoping rules
do not apply to them. This enables a testbench to trap a specific behavior to test a
design’s inputs and outputs. It can be thought of as a “snapshot of a scenario.”

Testbenches serve as debuggers and are visible to all signals in the design (discrete
flows are not necessary). However, testbenches cannot test generics.
Rational Statemate 499

Glossary of Rational Statemate Terminology
timeout event

Triggers a transition based on the passage of time since a specified event occurred.
The syntax is as follows:

tm (E,T)

In this syntax, E is an event and T is an integer expression. This expression defines a
new event, which will occur T time units after the latest occurrence of the event E.

to-control connector

A connector that connects only to the control activity. Using this type of connector
eliminates the need for long arrows.

trace file

An optional file that can be recorded when you are simulating a statechart. It
captures the raw data of a simulation, which you can present in the following ways:

– Display on the screen.
– Create reports.
– Generate a waveform.
– Copy the data to another file.

In batch mode, simulation uses the commands set trace and cancel trace to
toggle the tracing facility. The trace file is closed when one of the following
commands is entered: Exit, Restart Simulation, or Rebuild Simulation.

transition

An event that makes the model leave one state and enter another. Label each
transition with the trigger that causes it to be taken and, optionally, with an action.
Separate the trigger from the action with a slash, as follows:

trigger/action

trigger

Causes the movement from one state to another.
500 User Guide

Glossary of Rational Statemate Terminology
tristate

One signal that can be driven by many sources, one source at a time. The syntax for
a tristated signal is as follows:

output:=signal1
when enable1

else signal2
when enable2

else 0bZ

truth table

A tabular representation of inputs, resulting outputs, and actions. A truth table can
also represent the behavior of an activity and the definition of a named action. It is
similar to a mini-spec.

union

A data type that consists of several fields of possibly different predefined types or
user-defined types. When a data-item is declared to be a union, it is not defined to
contain all of its fields. Rather, it is defined to contain one of its possible fields at
any point in time. A union is analogous to a union in C and a variant record in
Ada.

You access a field in a union using both the union name and field name separated by
a period. For example:

UNION_NAME.FIELD_NAME

See also record.

unresolved element

Often, it is useful to be able to see elements that have not yet been defined in the
properties. Such a situation might occur in intermediate stages of the specification
process. A simple example is the use of an external event as a trigger in a statechart
before the activity chart that defines that event is constructed.

When you define an unresolved element, the properties make a preliminary
suggestion, based on the appropriate choices. For textual elements, the type defaults
to textual.

Graphical elements that have unresolved references to them do not have property
entries and cannot be defined.
Rational Statemate 501

Glossary of Rational Statemate Terminology
usage

A Statemate information element can have one of four usages: variable, constant,
alias, and compound. Certain usages are restricted based on how the element is
referred to in the model and on the type of the element.

user-defined type (UDT)

A data-type that consists of several fields of possibly different types. A user-defined
type is analogous to the typedef statement in C or the type is statement in Ada.

User-defined types are often required to be visible throughout the entire model, so
they are usually defined in a global definition set.

variable

Holds a value. A variable is not defined in terms of any other element or expression.
Variables can be both written and sensed. A variable is the default usage for any
Statemate information element. Any Statemate textual element except for
information-flows can be a variable: events, conditions, data-items (integer, real,
string, bit, bit-array, record, union, array, and queue).

Verilog

A tool that provides access to the hardware code generation tool. This tool
automatically generates source code that is optimized for target Electronic Design
Automation (EDA) tools downstream. The generated code reflects the same
behavior as the original model and can be used as input to a Verilog simulator.

version number

The Rational Statemate built-in configuration management (CM) tool tracks versions
using whole numbers (positive integers). When you create a new item and check it
into the databank, Statemate assigns it a version number of 1. Each time someone
checks the item in, Statemate increments the highest existing version number.

Third-party CM tools might use other systems of version numbering, in which case
the version numbers displayed by Statemate conform to the format of the third-party
tool.

See also configuration management.

watchdog

See testbench.
502 User Guide

Glossary of Rational Statemate Terminology
Waveform

A simulation tool that enables you to communicate with a simulation and display
changes as they occur.

while loop

An iterative action that iterates until some condition becomes false. The break action
can be used to “jump out” of the loop without completing the iteration.

workarea

A private directory structure associated with a user and a project that enables each
project member to work independently. You can design and redesign without making
irrevocable changes to the current working or released design. As you rework your
charts, modifications are made to your workarea.

To permanently store your changes and allow others to share them, save the
modified charts to the databank. Through a locking mechanism, you are ensured that
your work will not conflict with that of the other project members.

A user can have multiple workareas associated with any project, but any one
workarea can be associated with only one project.

See also workarea browser.

workarea browser

Displays the charts and other files in the workarea and provides an easy way to open
and edit them. In addition, it provides support for project configuration management.
Rational Statemate 503

Glossary of Rational Statemate Terminology
504 User Guide

Index
A
Access

level 461
read-only 490
saved configuration file 364

Action 197, 462
column 372
expression 462
language 226, 462
properties 219
relationships 200

Action in Box, creating 169
Activities

global interface report 280
Activity 202, 463

basic 466
control 472
environmental 475
external 476
internal 480
naming 138
properties 233
termination type 463

Activity charts 136, 204, 206, 464
accessing 136
editor 464
filtered check out 93
generating from 164
generic 242
hierarchy 300
icons 138
in workarea 40
modules 295
properties 242

Activity preferences 84
Activity-chart

graphic editor preferences 54
Activity-chart graphic editor preferences

age specific preferences 54
component preferences 57

Actors 152, 202
creating 154

Actual parameter 464
Ada language

code generation 17
record 198

selected implementation 225
subroutines 99, 197
task 225
user-defined type 196
variant record 198

Adding
change description 15

Advanced Carriage Return is New Line 122
Advanced Enabled Reshaping 122
Advanced Fill Boxes 122
Advanced Fill Colors 122
Advanced query 250
AGE 464
Age specific preferences 55
Aggregate element 464
Alias 464
Align to Grid 118, 182
And sub-type 203
And-state 465

naming 148
Animation

built-in properties 173
graphical back 478
interactors and drawing elements 174
sequence diagrams 167

Arc
drawing 187
drawing filled 187

Arrange
panel editor 181, 182

Arrays 199, 200, 465
bit 466
element 465
slice 465

Arrows
creating 169
creating start point 169
labeling 169

Assignments 197, 226
combinational 141, 235, 243, 467

Association, creating 154
Asynchronous 465
Attributes 16, 466

definition file 466
design 16, 151, 314
edit 213
Rational Statemate 505

Index
Object CreationStamp 365
tab properties 213

Auto panel specific preferences 74, 77
AUTOSAR 435, 436

creating a project 456
data 451
data types 448
exclusive areas 447
features 447
generating code 445
IB exclusive area 447
implementation 447
implementing STATEMATE 445, 446
inter runnable variables 454, 455
model exclusive area 447
scope definition area 437
services 450
timer exclusive area 447
toolbars 437

autosar_rte_210 OSI 456
AUTOSAT

notes 456
timing events 447

B
Basic

activity 466
structure of graphical elements 203
types 201

Best match 226
Bind 184
Binding 301
Bindings 466

check 184
group 191
individual 191
interactor 479
interactors 188
parameter 485
report 184

Bit 198, 466
Bit preferences 78
Bit_Array preferences 79
Bit-array 198, 466
Boundary box 202, 204

creating 154
Box

boundary 202
creating 169
drawing 187
drawing filled 187
filling 187

Browsers 2
activity interface 280
component 17
databank 473

workarea 503

C
C language

prototype code generator 17
selected implementation 225
task 225

Callback 467
Change permissions 19
Changes

automatic tracking 98
description 15
tracking 98
types to track 99
view all 15

Characters, special 368
Charts 467

activity 204, 464
check out 97
creating 123
element types 204
elements 204, 205, 240
exporting 96
GDS 205
generic 477
hierarchy in quick-edit mode 207
info 120
list of elements 239
load faults 96
module 483
module chart 205
off-page 484
parent 486
properties 120
read-only check out 97
regular 492
searching 210
sequence diagram 205
setting preferences for plots 343
tab 4

Check Model 17, 120, 467
router checks 282

Check model
preferences 68

Check out
charts 97
filtered 93
with descendents 93

Checking
bindings 184

Circle
drawing 187
drawing filled 187

Close 110
Closing a project 36
CM 471
506 User Guide

Index
Code generation 467
Ada 17
MicroC 17, 295
options 301
prototype for C 17
Rational Statemate block in Rational Rhapsody 308
support for reset operator 243
with extended documentation 306

Column
action 372
input 368
output 371

Combinational
assignments 141, 235, 243, 467
element 467
logic 468

Components 259, 468
browser 17
copying 112, 265
creating 261
deleting 267
insert 112
inserting 263
managing 267
previewing 266

Composition connector 140, 469
Compound 469
Compound flow 469
Condition 196, 470

and event properties 222
connector 470
creating connector 149
deadlock 473
expression 470
relationships 200

Condition preferences 82
Conditional assignment, creating 150
Conditions

default value 201
Configuration

create new 94
file 470
item 470
management 89, 471
management tool 471
purging items 92
Rational DOORS 348

Configuration management 90
checking in and out 97
information 16

Connectors 471
composition 469
condition 470
deep history 474
default 474
diagram 170, 474
end 169

fork 477
history 478
joint 480
junction 480
off-page 484
switch 498
termination 499
to-control 500

Constant 471
Constant literal 472
Context variable 472
Control

activity 138, 472
creating flow 139
labeling flow line 148
reactive 490
sub-type 203

Control-flow 472
Copy 15
Copying 209

components 112, 265
mirror X axis 183
mirror Y axis 183
workarea 40

Creating
action in box 169
actors 154
And-line 148
arrows 169
arrows, start point 169
association 154
AUTOSAR project 456
boundary box 154
box 169
chart 123
combinational assignment 141
composition connector 140
composition connector in module charts 144
condition connector 149
conditional assignment 150
control activity 138
decision 169
deep history connector 149
default transition 148
diagram connectors 140, 144, 149, 170
diagrams 123
display interactor 186
end connectors 169
event 148
extended relationship 154
external activity 139
external life-line 162
external module 143
external router block 140
free text 141, 145, 150, 155, 163, 170
generalization relationship 154
history connector 149
Rational Statemate 507

Index
horizontal choice 186
include relationship 154
instance box 169
internal activity 138
internal module 143
internal router block 140
junction connector 140, 144, 149
knob interactor 186
lamp interactor 186
Life-Line 162
message label 162
message note 162
meter 186
OR state 148
Order Insignificant Line 162
Partition Line 162
project 30
push button interactor 186
Referenced Sequence Diagram Line 162
slider interactor 186
sub-chart 135
switch 169
switch connector 149
termination connector 149
timing constraint 162
timing constraint note 162
to-control connector 140
use case diagrams 154
vertical choice 186
workarea 37

Creating elements 207
Cut 15
Cut and paste 209

D
Data

flow 139, 144, 472
initialization of dynamic 307
item 196, 200, 220, 221, 472
local 481
store 141, 145, 203, 472
type 473

Data items 200
default value 201

Data read access 451
Data receive points 451
Data send points 451
Data types

AUTOSAR 448
Data write access 451
Databank 90, 473

automatic refresh preference 93
browser 473
check out items from 93
information 16
locking items 95

tracking changes 98
databank

search feature 7
Databank browser preferences 63
Database

error diagnostics 100, 102
Dataport 473
Deadlock condition 473
Decision

creating 169
writing an expression 169

Deep history connector 149, 474
Default

connector 474
transition 148
truth table row 372

Defined element 474
Definition

file attribute 466
GDS 478

Delete 15
Deleting

components 267
output devices 46
project 36
unused elements from workarea 40
workarea 41

Descendant 474
Description tab properties 218
Descriptions

length in search results 246
long 16, 231

Design attributes 16, 314
Design Attributes tab properties 217
DGL 474
Diagrams

activity charts 164, 206
connector 474
creating 123
creating connector 140
creating connectors 144, 149, 170
flowcharts 205, 206
procedural statecharts 240
sequence 159, 164, 205, 206
statecharts 206
use case 152, 154, 206
use case properties 238

Directories
temporary workarea 42

Displaying, project settings 34
Dive Group 184
Document Generation Language 474
Documentation

code generation with 306
Documentor 17, 474

include file 474
template 475
508 User Guide

Index
DOORS 475
exporting router elements 282

Drawing
arc 187
box 187
filled arc 187
filled line segments 187
filled polygon 187
graphics editor 127
line 187
line segments 187
oval 187
polygon 187
router blocks 273

Drawing areas 2

E
Editing 15

properties 208
quick mode 207
track changes while 15

Editing mode
read-only 491

Editors
activity chart 464
GDS 17, 287, 477
graphic 17, 478
module-chart 483
panel 17, 485
profile 296
setting preferences 89
statechart 494

Elements 91, 196, 475
aggregate 464
appending to lists 249
array 465
chart 204
combinational 467
creating 207
creating lists of 246
data 275
defined 474
filtering lists of 249
finding referenced 256
finding where used 258
graphical 202
mass edit 209
modifying 207
output 371
quick-edit mode 207
Rational DOORS exporting 363
read only in workarea 40
re-exporting Rational DOORS 364
reset to default 243
router 271
saving lists of 247

searching 244
textual 196, 201
unresolved 207, 501

Embedded Rapid Prototyper 17
Embedded rapid prototyper preferences 72, 85
Enable Scale Text 122
Entering

existing label interactor 187
free text 187

Enum preferences 80
Enumerated type 475
Enum-type 171, 198
Environmental activity 475
Errors

chart load faults 96
database 100, 102
report 100

Establishing
control flow 139
data flow 139, 144

Event preferences 81
Events 197, 475

creating 148
relationships 200
timeout 500

Execution
of truth tables 373
sub-type 203

Exporting
charts 96
databank files 96
Rational DOORS elements 363
router blocks to DOORS 282

Expression
action 462
condition 470

Extended relationship
creating 154

External
activity 139, 476
life-line 162
module 143
router 272
router preferences 285
sub-type 203

External router sub-type 203

F
Factorization

actions 377
cells 375
inputs 375
outputs 377

Field 197, 476
relationships 200

Fields properties 223, 224
Rational Statemate 509

Index
Files
configuration 470
exporting 96
in databank 90
include 474
link to external 16
purging 92
saved configuration 364
status 496
tab 5
test 499
trace 500

Filled line
drawing 187

Filtered check out
GDS 293

Floating-point 491
Flow 476

compound 469
control 472
data 472
in 481
information 479

Flow chart 168
Flow lines 461, 476

naming 139, 144
reducing number of 275

Flow ports
for StatemateBlock 309
Rational Statemate 309

Flowchart
accessing 168
icons 168

Flowchart graphic editor preferences 57, 59
Flowcharts 205, 206, 226, 476

procedural 170, 241
subroutine implementation 170

Flow-lines
compound 276
global compound 276
local compound 276

for loop 476
Fork connector 477
formal parameter 477
Free text

creating 141, 145, 150, 155, 163, 170
Function 477

G
GBA 478
GDS 205, 478

component part 260
create new 288
editing 291
editor 17, 287, 477
filtered check out 93, 293

reduced 40, 293
usage property 292
visibility mode property 292

General preferences 49
General tab properties 212
Generalization relationship 154
Generating code

AUTOSAR 445
Generation

code 467
document language 474

Generic chart 477
Generic instance 477
Global definition set 478
Global Definition Set (GDS) 93, 205, 260, 287
Global interface 120
Global interface report 280

browser 280
Graphic editor 478
Graphic editor preferences 62

Activity-chart 54
graphic editor preferences

Statechart 52
Graphical

editors 17
Graphical back animation (GBA) 478
Graphical elements

"and" sub-types 203
Activity 233
activity 202, 204
actor 202, 204
basic structures 203
boundary box 202, 204
control sub-types 203
data-store 203
execution sub-types 203
external router sub-types 203
external sub-types 203
Instance Activity 236
Instance Activity of Generic Charts 236
Instance State of Generic Chart 232
internal sub-types 203
Module 237
module 204
modules 202
non-basic structures 203
OR sub-types 203
router sub-types 203
State 230
state 202, 204
storage sub-types 203
transition 231
use case 202, 238
use case diagrams 204

Graphics editors 105, 110
charts 123
drawing charts 127
510 User Guide

Index
edit 112
layout 116
options 121
starting 123
tools 118
view 113, 179

Gravity Setting 121, 185
Groups

dive 184
surface 184
top 184

H
Hardware activation style 478
Help

generate support request 460
History

deep 474
History connector 478

creating 149
Hook 478
Horizontal Spacing 118

I
I 15
IBM

Passport Advantage 457
Icons

activity chart 138
Edit Attributes 213
flowchart 168
Label Existing Interactor 187
Module chart 142
Panel Builder 192
Select mode 141, 145, 150, 155, 163, 170, 187

Implementation tab 227
Include file

Documentor 474
Include relationship

creating 154
Infer device 479
In-flow 481
Info-flow 197

relationships 200
Information-flow 479
Initialization

dynamic data 307
Input column 368
Input device 479
Input element

for truth tables 369, 370
Instance 479

generic 477
Instance Activity properties 236
Instance Box

creating 169
naming 169

Instantiation 479
Integer 479
Integers 197
Inter runnable variables 454, 455
Interactor 479

binding 479
Interfaces

global 120
global report 280
local info 120
local report 279
report 480
reporting 279

Internal activity 480
creating 138

Internal module
creating 143

Internal router 272
preferences 284

Internal sub-type 203
Invoking RT Interface 133
Item

configuration 470
data 472

J
Joint connector 480
Junction connector 480

creating 140, 144, 149

L
Label 480

existing arrows 169
Language

action 462
document generation 474
simulation control 492

Libraries 31, 259
adding to project 269
working with 268

Library 480
License report 25
Life-Line

creating 162
Limitations

change tracking 99
quick-edit mode 207
textual elements’ default value 201

Line
drawing 187

Line segments
drawing 187

Link to External File 16
Rational Statemate 511

Index
Linksets
exporting 358

List report 480
Literal 480

constant 472
Local data 481
Local interface report 279
Local interfaces 120
Lock 481
Locking

databank items 95
Log tab 11
Logic

combinational 468
multi-value 483

Long description 16
Lookup tables 226
Loop

for 476
while 503

M
Main window

icons 17
Make Group 184
Management

configuration 90
Menus

pop-up 12
Message

label 162
note 162

Messages
error 100, 102
tab 11

Meter
creating 186

MGE 483
MicroC code generator 295

preferences 71
Mini-spec 481
Mirror

X Axis 183
Y Axis 183

Model 482
Models

check 17
Modify chart usage 19
Modifying

chart elements 239
output devices 45
project 32

Modifying elements 207
Module 295, 483

naming 143
storage 497

Module chart 142
accessing 142
icons 142

Module charts 205
composition connector 144

Module properties 237
Module-chart 483

graphic editor 483
Modules 202

assigning behavior 299
defining code 298

Monitor 483
Moving

workarea 39
Multi-value logic 483

N
N2-chart report 484
Name

project 488
Names

length in search results 246
Naming

activity 138
AND state 148
control flow 148
flow line 139, 144
instance box 169
module 143
OR state 148

New 110
Non-determinism 484

O
Off-page chart 484
Off-page connector 484
One hot state vector encoding 484
Open 110

parent 110
sub-chart 110

Open References 16
Opening

project 35
workarea 39

Operations
not support in quick-edit mode 207

Optimize state translation 484
OR state

creating 148
naming 148

OR sub-type 203
Order Insignificant Line

creating 162
Or-state 485
OSEK 307
512 User Guide

Index
Output column 371
Output device 479
Output devices

deleting 46
modifying 45
setting up 43

Oval
drawing 187

Overload state vector 485

P
Panel 485

graphics editor 485
Panel Builder

working with 192
Panel builder preferences 74
Panel editor

accessing 175
binding interactors 188
edit 178
file option 177
group 184
icons 186
layout 181
options 185
tools 184
transform 183
working with 175

Panel graphic editor preferences 61
Parameter 485

actual 464
binding 485
formal 477

Parameters
generic 201
preferences 87
subroutine 201, 498

Parent chart 486
Partition Line

creating 162
Passport Advantage 457
Paste 15
Permission 461
Playback

simulation control 492
Playback SCL 486
Polygon

drawing 187
Polygons

drawing filled 187
Predefined type 486
Preference

router 283
Preference Management 122
Preferences 46, 486

activity 84

Activity-chart graphic editor 54
age specific 55
auto panel specific 74, 77
automatic refresh databank 93
Beautify Indent Size 128
bit_array 79
bits 78
check model 68
component 57
condition 82
databank browser 63
embedded rapid prototyper 72, 85
Enum 80
events 81
external router 285
flowchart graphic editor 57, 59
for tracking changes 99
general 49
graphic editor 62
loading predefined 86
panel builder 74
panel graphic editor 61
properties 66
Rational Statemate MicroC code generator 71
Rational Statemate prototype C Code Generator 70
real 77
RT interface preferences 73
sequence diagram graphic editor 59
setting parameter 87
simulation 64
state 83
Statechart graphic editor 52
string preferences 77
user-case diagram graphic editor 60

Preferences management 52
Preserve Selection 122
Print 110
Procedural statechart 486
Procedure 486
Procedure-like termination type 487
Profiles

editor 295, 296
name a new 298
new 297
sample 296

Project 487
closing 36
creating 30
creating AUTOSAR 456
deleting 36
display settings 34
manager 487
member 487
modifying 32
name 488
opening 35

Projects 29
Rational Statemate 513

Index
members 31
multiple users 30
Rational DOORS 31
select configuration management 31
select shared area 31

Properties 16, 113, 184, 488
action 219
Activity 233
condition and event 222
Data-Item 220
Description tab 218
Design Attributes tab 217
display dialog box 208
editor 222
element types 195
Fields 223, 224
GDS usage 292
GDS visibility mode 292
General tab 212
generic activity chart 242
Instance Activity 236
Instance Activity of Generic Chart 236
Instance State of Generic Chart 232
Module 237
preferences 66
procedural statecharts 240
router 277
router elements 277
State 230
subroutine 225
subroutines 120, 209
transition 231
use case diagrams 238
user-defined type 221

Property
report 488

Property sheet 210, 488
activity graphical elements 233
chart elements 240, 242
graphical elements 229
information flow 224
instance activity 236
instance state of generic chart 232
modifying graphical elements 229
modifying textual elements 218
module graphical elements 237
subroutines 225
textual elements 219, 221
textual elements fields 223

Protection level 461
Prototype C Code Generator 17
Purge 92

Q
Query 489
Queue 199, 489

Queues 201

R
Racing 489
Ratioanl DOORS RT 17
Rational DOORS 333

associating projects to 342
attributes filtering 355
attributes to configure for export 353
configuration file 348
creating multiple linksets 362
exporting data 334, 350
exporting elements 363
exporting linksets 358
log files 347
methodology 336
Object CreationStamp attribute 365
operating system configuration 337
preferences for chart plots 343
preparing elements for export 350
project 31
re-exporting data 335
re-exporting elements 364
requirements 337
setting preferences 343, 347
shadow element 365
support for transitions 365
synchronizing data 335

Rational Rhapsody 308
synchronizing with Rational Statemate 309

Rational Statemate
Action language 226
block in Rational Rhapsody 308
development environment 1
flow ports 309
interface 1
main window 2
preferences 46
Prototype C Code Generator preferences 70
synchronizing with Rational Rhapsody 309
troubleshooting 309

Rational Statemate AUTOSAR generator 435
Rational Statemate MicroC code generator

preferences 71
Reaction

static 495
Reactive system 490
Reactive-controlled 490
Reactive-self 490
Read-only access 490
Read-only editing mode 491
Real 198, 491
Real preferences 77
Real-time operating system 491
Record 198, 209, 491
Record fields
514 User Guide

Index
default value 201
Records 200
Reduce workarea 40
Re-exporting

Rational DOORS elements 364
Referenced Sequence Diagram Line

creating 162
References

open 16
Reframe 118, 182
Refresh

databank 93
Register transfer level 492
Regular chart 492
Rename 15
Replicate 117, 181
Report

global interface 280
interface 480
list 480
local interface 279
N2-chart 484
on interfaces 279
properties 488

Reports 17
binding 184
database errors 100

Requirements traceability 492
Reserved words

reset operators 243
Reset

element default 243
exclude 243
pivot point 183

resizing elements 130
Revision management 90
Rotate 183
Router 271

drawing blocks 273
elements 271
external type 272
interface reporting 279
internal 272, 284
preferences 283
preferences for external 285
properties 277
working with 272, 301, 311

Router blocks
creating external 140
creating internal 140
exporting to DOORS 282

Router sub-type 203
Routers

compound flow-lines 276
external 275
internal 275
reduce flow lines 275

rules 275
RT Interface

invoking 133
RT interface preferences 73
RTL 492
RTOS 491

S
SAG 435
Save 110
Scale 183
Scenarios 365
SCL 492

playback 486
Scope definition area

AUTOSAR 437
SCP 492
Screen snapshot 460
Search 17

accessing stored list 248
advanced query 250
appending lists to 249
filtering lists of elements 249
finding used elements 258
lists of elements 246
locating referenced elements 256
results 246
saving lists of elements 247
starting 244
tab 10

Searching
charts 210

Select mode 141, 145, 150, 155, 163, 170, 187
Self

reactive 490
Sequence diagram 110
Sequence diagram graphic editor preferences 59
Sequence diagrams 159, 164, 205, 206

accessing 161
and properties 166, 167
animation 167
drawing 163
icons 162
integrating with model 164

Services
AUTOSAR 450

Session Status dialog box 25
Setting

pivot point 183
preferences 46
Rational DOORS preferences 343
router preferences 283

Setting preferences
editors 89
utilities 89

Setting up
Rational Statemate 515

Index
output devices 43
Settings

project 34
Shadow copy 334
Simulation 17, 120, 492

control language 492
control playback 492
highlights option 122
support for reset operator 243

Simulation preferences 64
Single 492
Single structures 199
Slice array 465
SMAN 493
Snapshot 460
Source code control 471
Source control 90
Special characters 368
Starting

graphics editor 123
State 493
State preferences 83
State properties 230
Statechart graphic editor preferences 52
Statecharts 146, 148, 204, 206, 494

accessing 147
associating with activity 151
design attributes 151
graphics editor 494
modules 295
procedural 240, 486
test benches 151

States 202
AND 148
OR 148

Static reaction 495
Status 495

file 496
Step 496

superstep 498
STM 492
STM_BRANCH_3 391
STM_FIFO_ACTIVE 406
STM_FIFO_PASSIVE 410
STM_FORK_2 395
STM_FORK_3 397
STM_JOIN_2 399
STM_JOIN_3 402
STM_LIFO_ACTIVE 414
STM_LIFO_PASSIVE 418
STM_PMPT_ACTIVE 422
STM_PRTY_PASSIVE 426
STM_SINK 430
STM_SOURCE 432
STM_TMP_DIR variable 42
Storage module 497
Storage sub-type 203

Store
data 472

Stored list
accessing 248

Stretching elements 130
String 198, 497
String preferences 77
Structure 497
Stub 497
Sub-chart 110

creating 135
opening 110, 123, 134

Subroutines 99, 197, 498
flowcharts implemented as 170
parameter 498
parameters 201
properties 120, 209, 225
relationships 200
truth tables 374

Superstep 498
Surface Group 184
Switch

connector 149, 498
creating 169
expression 169

Synchronization
Rational Statemate and Rational Rhapsody 309

Synchronizing data 365
Synchronous 499

T
Tables

lookup 226
truth 226, 235

Tabs 2, 4
Charts 4
Files 5
Log 11
Messages 11
Search 10

Task 499
Tasks 225
Technical support

new customers 457
Template

Documentor 475
Termination connector 499

creating 149
Termination type

activity 463
procedure-like 487

Test benches
types 151

Test file 499
Testbenches 296, 499
Text
516 User Guide

Index
adjust indention of 128
creating note 141
entering 187
note 155
reformat with Beautify 128
transition note 150
use case description 152

Textual elements
action 197, 219
array structures 199
bit 198
bit-array 198
condition 196
condition and event 222
Data-Item 220
data-item 196
default values 201
enum-type 198
event 197
field 197
Fields 224
fields 223
info-flow 197
integer 197
queue structures 199
real 198
record 198
single structures 199
string 198
subroutines 197, 225
union 198
user defined type 221
user-defined 196
user-defined type 198, 221

Timeout event 500
Timeouts 445, 446
Timing constraint

line 162
note 162

Timing events
AUTOSAR 447

To-control connector 500
creating 140

Toolbar
AUTOSAR 437

Toolbars 2
Tools

external 226
Top Group 184
Trace file 500
Track Changes 120
Tracking

automatic change 98
change types for 99
changes 98
changes preferences 99
changes while editing 15

limitations 99
Transform

copy mirror X axis 183
copy mirror Y axis 183
mirror X axis 183
mirror Y axis 183
reset pivot point 183
rotate 183
scale 183
set pivot point 183

Transition priority 146
Transitions 500

default 148
properties 231
Rational DOORS support for 365

Trigger 500
Tristate 501
Troubleshooting

Rational Statemate with Rational Rhapsody 309
Truth tables 226, 235, 501

action column 372
actions 373
activities 373
default row 372
defining 378
execution 373
factorization of actions 377
factorization of cells 375
factorization of inputs 375
factorization of outputs 377
input columns 368
input elements 369, 370
output columns 371
output elements 371
special characters 368
subroutines 374

Types
data 473
enumerated 475
predefined 486
procedure-like termination 487
user-defined 200
user-defined basic 201
user-defined enum 201

U
UDT 502
Un-Group 184
Union 198, 209, 501
Unions 200, 201
Unresolved element 501
Usage 502
Use case diagrams 152, 202, 205, 206

"and" properties 155
accessing 152
attributes templates 156
Rational Statemate 517

Index
creating 154
graphical elements 204
icons 154
linking to scenarios 157
properties 238

Use-case diagram graphic editor preferences 60
User-defined types 196, 200, 502

basic 201
enum 201
properties 221
Rational Statemate element 198
relationships 200

Utilities
database diagnostics 100, 102
setting preferences 46, 89
setup output devices 43

V
Variables 502

context 472
STM_TMP_DIR 42

Vector
one hot state encoding 484
overload state 485

Verilog 502
Version

changes 15

Version number 502
Vertical Spacing 118
Video capture 460
Viewing

all changes 15
last version-changes 15

W
Watchdog 499
Waveform 503
while loop 503
Workareas 37, 503

browser 503
copying 40
creating 37
deleting 41
moving 39
opening 39
reducing 40
shared 41
sharing & locking 42
temporary directory 42
unused elements 40

Writing
decision expression 169
switch expression 169
518 User Guide

	Rational Statemate Overview
	The Rational Statemate Development Environment
	Rational Statemate Interface Features
	The Rational Statemate Main Window
	Tabs
	Charts Tab
	Files Tab
	Databank Tab
	Search Tab
	Messages Tab
	Log Tab
	Right-click Menus

	Toolbars
	Edit Toolbar
	Change Tracking Toolbar
	Information Toolbar
	Properties Toolbar
	Tools Toolbar

	Menus
	File Menu
	Edit Menu
	View Menu
	List Menu
	Project Menu
	Configuration Menu
	Tools Menu
	Utilities Menu
	Windows Menu
	Help Menu

	Activity Interface Browser
	Menus
	Tool Bar

	Working Environment
	Projects
	Creating a Project
	Modifying a Project
	Displaying Project Settings
	Opening a Project
	Deleting a Project
	Closing a Project

	Workareas
	Creating a Workarea
	Opening a Workarea
	Moving a Workarea
	Copying a Workarea
	Reducing the Workarea
	Deleting a Workarea
	Sharing the Workarea
	Sharing and Locking
	Temporary Workarea Directory

	Output Devices
	Setting Up Output Devices
	Modifying Output Devices
	Deleting Output Devices

	Preferences
	Setting General Rational Statemate Preferences
	Specifying Where Preferences are Applied
	Specifying Access to Preferences

	Preferences Descriptions
	General Preferences
	Preferences Management
	Statechart Graphic Editor Preferences
	Activity-Chart Graphic Editor Preferences
	Module-chart Preferences
	Flowchart Graphic Editor Preferences
	Sequence Diagram Graphic Editor Preferences
	Use-Case Diagram Graphic Editor Preferences
	Panel Graphic Editor Preferences
	Graphic Editors Preferences
	Databank Browser Preferences
	Simulation Preferences
	Properties Preferences
	Check Model Preferences
	Prototype C Code Generator Preferences
	MicroC Code Generator
	Embedded Rapid Prototyper Preferences
	RT Interface Preferences
	Panel Builder Preferences
	Activity Interface Browser and Reports Preferences
	Loading Predefined Preferences
	Setting Parameter Preferences

	Setting Preferences for Editors and Utilities

	Configuration Management
	Databank
	Elements
	Working with the Databank
	Automatic Databank Refresh
	Checking Out Databank Items
	Creating a New Configuration
	Locking Databank Items
	Exporting Charts and Files
	Error Handling when Loading Charts

	Checking In and Out Elements
	Tracking Changes
	Automatic Change Tracking
	Track Changes Preferences
	Types of Changes Tracked
	Track Changes Limitations

	Database Diagnostics
	Error Report
	View and Resolve Errors

	Plugins

	Using the Graphic Editors
	Overview of the Rational Statemate Graphic Editors
	Graphic Editor Icons
	Graphic Editor Menus
	File Menu
	Edit Menu
	View Menu
	Layout Menu
	Tools Menu
	Options Menu

	Working with Graphic Editors
	Starting a Graphic Editor
	Creating a New Chart or Diagram
	Creating a New Chart or Diagram from the Open Chart Window
	Creating a New Chart or Diagram with a Graphic Editor

	Drawing Operations in Graphic Editors
	Drawing Boxes
	Drawing Lines
	Drawing Connectors
	Editing Text
	Selecting Elements
	Labeling Elements
	Moving Elements
	Copying Elements
	Resizing Elements
	Deleting Elements
	Constraining Graphic Operations

	General Operations in Graphic Editors
	Opening the Properties Window for Elements
	Displaying Element Properties
	Opening the Properties Window for an Entire Chart
	Displaying Chart Properties
	Displaying Subroutine Properties
	Opening a Simulation Execution Window
	Invoking the Check Model Tool
	Invoking the RT Interface
	Closing a Chart
	Saving a Chart
	Opening a Parent Chart
	Opening a Sub-Chart
	Inserting a Chart
	Creating a Sub-Chart
	Exiting the Graphic Editor

	Working with Charts and Diagrams
	Activity Charts
	Accessing an Activity Chart
	Activity Chart Icons

	Module Charts
	Accessing a Module Chart

	Statecharts
	Accessing a Statechart
	Statechart Icons
	Associating a Statechart with an Activity
	“Only Once” Test Benches

	Use Case Diagrams
	Accessing a Use Case Diagram
	Use Case Diagram Icons
	Use Case Diagram Properties
	Linking Use Cases to Scenarios

	Sequence Diagrams
	Accessing a Sequence Diagram
	Sequence Diagram Icons
	Sequence Diagram Drawing Notes
	Lifeline Decomposition
	Integrating Sequence Diagrams with the Rational Statemate Model
	Generating a Sequence Diagram from an Activity Chart
	Using Properties with Sequence Diagrams
	Auto-Numbering in Sequence Diagrams
	Print Pagination

	Flowcharts
	Accessing a Flowchart
	Flowchart Icons
	Flowchart as Subroutine Implementation

	Panels
	Using the Panel Editor
	Accessing the Panel Editor
	Panel Editor Menus
	File Menu
	Edit Menu
	View Menu
	Layout Menu
	Transform Menu
	Group Menu
	Tools Menu
	Options Menu

	Panel Editor Icons
	Interactor Icons
	Drawing and Naming Icons

	Binding Interactors
	Individual Bindings
	Group Bindings

	Using the Panel Builder

	Element Properties
	Understanding Elements
	Textual Elements
	Textual Types, Sub-types, and Structures
	Default Values for Textual Elements

	Graphical Elements
	Chart Elements

	Creating and Modifying Elements
	Quick-Edit Mode
	Elements in the Chart Hierarchy
	Quick-Edit Mode Limitations

	Invoking the Properties Dialog Box
	Subroutine Properties
	Editing Multiple Elements
	Record/Union Field Properties
	Cut, Copy and Paste Operations on Record/Union Fields
	Properties Preference “Mass edit overwrite values”

	Properties Window
	Individual Property Fields Display
	Toolbar Operations
	Searching Charts
	Property Information Displayed in Tabs
	Creating and Modifying Elements
	Resetting Default Values for Elements

	Searching for Elements
	Starting the Search Tool
	Creating a List of Elements
	Saving a List
	Accessing a Stored List
	Filtering a List of Elements
	Appending to a List of Elements
	Running an Advanced Query
	Finding Where Elements are Referenced and Used
	Finding Where Elements are Referenced
	Finding Where Elements are Used

	Libraries and Components
	Working with Components
	Creating a Component
	Inserting a Component
	Copying a Component
	Previewing a Component
	Deleting a Component
	Managing Components

	Working with Libraries
	Adding Libraries to a Project

	The Router Element
	Router Element for the Activity Charts
	Working with the Router
	Drawing Router Blocks
	Using Routers to Reduce Flow Lines
	Router Rules
	Compound Flow Lines through Routers

	Defining Router Properties
	Interface Reporting
	Local Interface Report
	Global Interface Report

	Using Check Model with Router Blocks
	Exporting Router Blocks to Rational DOORS
	Setting Router Preferences
	Internal Router Preferences
	External Router Preferences

	Global Definition Set Editor
	Creating a New GDS
	Editing an Existing GDS
	GDS Properties
	GDS Usage Property
	GDS Visibility Mode Property
	Reduced GDS

	MicroC Code Generator
	Scope Definition
	Module Structure
	Testbenches
	Creating a Sample Profile
	Invoking the Profile Editor
	Defining Code Modules
	Assigning Behavior to the Module
	Splitting Activity Chart Hierarchy

	Code Options
	RESET_Data as Function
	Ignore External Binding
	Code Generation for Control Activities
	Enhanced Generated Code-Level Readability and Documentation
	Support Selective GBA
	Byte Orientation Instrumentations
	Single-Bit Elements
	User-Code Generation
	Setting the Time Scale
	Setting the Time Expression Scale Preference
	Working with Multiple Counters
	Setting the Time Expression Scale
	Defining Counters in a cfg file

	Generation of Constant Elements with “const” Modifier
	Default Data Types
	Generating Code with Extended Documentation
	Dynamic Data Initialization
	OSEK GetResource Usage

	Rational Statemate Block in a Rational Rhapsody Model
	Required Rational Statemate Model Characteristics
	Preparing the Rational Statemate Model
	Synchronizing Rational Statemate and Rational Rhapsody
	Troubleshooting Rational Statemate with Rational Rhapsody

	Code Optimizations
	Empty Overlapping Tests of State Hierarchy
	Generate All and Generate Only Used
	Optimization Algorithms
	Inline Setting of the “Need Another Step” Bit
	Inline Entering and Exiting Reactions
	Reuse of Timeout Variables
	Clutching Entrance to a State Hierarchy
	Additional Optimization Options for Code Generation

	OS Definition Tool
	Design Attributes
	Design Attribute Notation
	Inheritable Design Attributes
	Special Design Attributes

	Element Attributes
	Task Execution Mode API and Design Attributes
	Get-Set Functions for Buffered Access Data-Items
	OS Static Configuration
	Defining the Location of the CTD Directory
	APIs
	Customizable Timeouts using OSDT
	Support for Queues
	Task/ISR APIs
	Statecharts Functions
	APIs for Function-Declare-Style
	Customizable OSEK APIs

	API Modification Rules
	Upgrading an OSI
	List Support in OSDT
	Generated Data Declaration

	Supported Targets
	Utilities
	Remote Panel Server Support
	Using the Remote Panel Server
	Invoking the Remote Panel

	MicroC Design-Level Debugger

	Rational DOORS RT Interface
	How the RT Interface Works
	Exporting Data
	Re-Exporting and Synchronizing Data

	Methodology Guidelines

	Configuring the RT Interface
	Preliminary Requirements
	Configuring the RT Interface on Windows
	Edit run_stmm.bat
	Edit doorss.bat
	Edit GetDoorsVer.bat file
	Edit run_doors.bat

	Working with the RT Interface
	Associating a Rational Statemate Project with a Rational DOORS Project
	Setting Preferences
	Setting Preferences for Chart Plots
	Setting Preferences for External Use-Case Files
	Setting Preferences for Log Files
	Setting Up a Default Configuration File

	Exporting Rational Statemate Data to Rational DOORS
	Preparing Rational Statemate Elements for Export to Rational DOORS
	Configuring Attributes for Export
	Configuring Filtering by Attribute
	Configuring Linksets for Export
	Creating Multiple Linksets in a Single Link Module
	Exporting

	Re-Exporting Rational Statemate Data to Rational DOORS
	Using a Saved Configuration File

	Rational DOORS Interface Support for Transitions

	Truth Tables
	Format and Content of Truth Tables
	Special Characters
	Input Columns
	Valid Input Elements
	Input Column Header Operators
	Invalid Input Elements

	Output Columns
	Output Elements

	Action Column

	Executing Truth Tables
	Default Row
	Row Execution
	Truth Table Contents for Activities and Actions
	Truth Table Contents for Subroutines
	Micro-step Execution of Procedure Truth Tables
	Execution of Action Truth Tables
	Factorization of Cells
	Factorizing Inputs
	Factorizing Outputs and Actions

	Defining a Truth Table

	Lookup Tables
	Defining a Lookup Table
	Example of a Lookup Table

	Example Components
	Overview
	Example Component Library
	STM_BRANCH_2
	STM_BRANCH_3
	STM_FORK_2
	STM_FORK_3
	STM_JOIN_2
	STM_JOIN_3
	STM_FIFO_ACTIVE
	STM_FIFO_PASSIVE
	STM_LIFO_ACTIVE
	STM_LIFO_PASSIVE
	STM_PMPT_ACTIVE
	STM_PRTY_PASSIVE
	STM_SINK
	STM_SOURCE

	AUTOSAR Generator
	Overview of the AUTOSAR Interface
	AUTOSAR Menus
	AUTOSAR Toolbar Options
	Scope Definition Area

	Generating Code and XML Description
	Timeouts
	In-Out Elements
	SAG Implementation of AUTOSAR Features
	Exclusive Areas
	Timing Events
	Data Types
	Example 1:Default behavior:
	Example 2- Using a UDT:
	Example 3 - Using an externally defined type:

	Services
	Data Send Points, Data Receive Points, Data Read Access, Data Write Access
	Inter Runnable Variables
	Mode Declaration Groups

	The AUTOSAR RTE OS ImplementationsI
	Important Notes
	Creating an AUTOSAR Project

	Technical Support
	Contacting IBM Rational Software Support
	Prerequisites
	Contacting Support
	Reporting Rational Statemate Problems from the Software

	Glossary of Rational Statemate Terminology
	Index

