

Rational Statemate
Software Code Generator Interface
Manual

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF file available from Help > List of Books.

This edition applies to IBM® Rational® Statemate® 4.6 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
ii

Contents
Software Code Generator Overview . 1
Code Architecture and the Generator . 1

User Supplemented Files . 2
C Code . 2
Ada Code . 2
Supplementing the C Code . 3

Stubs: Procedures or Tasks. 4
Make PROCEDURE . 4
Make Task. 5

Hooks and Callbacks . 6
Hooks in Generated Code. 6

Hooks in C. 6
Hooks in Ada . 6
Hooks for Textual Elements . 8

Activities . 8
States . 10

Supplementing Generated C . 11
Implementation of Primitive Activities . 11

User Init and User Quit . 12

Synchronization of Primitive Activities . 14
Procedures . 14
Tasks. 14
Synchronization. 15

Scheduler Package . 16
Status of a Task . 16
Creating a Task. 17
Controlling a Task . 18
Aborting a Task . 18
Special Services . 18
Scheduling Policy . 19
Restrictions . 19
Rational Statemate iii

Table of Contents
Interfacing With the Rational Statemate Model . 20

Referencing Model Elements . 20
Where Elements are Defined . 21
Element Names in the Output Code . 22
Accessing an Element Value . 23
Generating Events . 23
Assigning Values to Rational Statemate Elements . 23

Example . 26
Bit Arrays. 26

Structured Elements . 29
Records. 30
Unions . 30
Enumerated Types . 30

User-Defined Type Functions. 32

Queue Functions . 33

String Functions . 34

READ, WRITTEN, CHANGED, TRUE, and FALSE in Complex Data Types 34

Detecting Changes in Value . 35

Callbacks to Track Model Changes . 36
Data-items. 36
States . 39
Activities . 39
Callbacks for Compound Elements . 39
Callback Example . 40

Supplementing Generated Ada . 45
Implementing Primitive Activities . 45

User Init and User Quit . 46

Synchronization of Primitive Activities . 48
Procedures . 48
Tasks. 48
Synchronization. 49

Tasks in Ada Code Belong to One of the Following Groups: . 50
Creation and Start . 51
Aborting Tasks . 51

Interfacing With the Rational Statemate Model . 52

Referencing Model Elements . 52
Where Elements are Defined . 53
Element Names in the Output Code . 54
iv Software Code Generator Interface Manual

Table of Contents
Accessing an Element Value . 55
Generating Events . 55
Assigning Values to Rational Statemate Elements . 55
Arrays . 56

Arrays of Bit-arrays:. 56
Array of Events:. 56
Array of Queues: . 56
Array of Reals (assigning integer values):. 56
Array of Integers (assigning real values): . 57
Array of Integers:. 57
Array of Reals:. 57
Array of Conditions:. 57
Array of Strings:. 57

Bit Arrays. 58
Bit Array Functions . 59

Structured Elements . 62
Records and Unions . 62
Enumerated Types . 63

User-Defined Type Functions. 64

Queue Functions . 65

String Functions . 66

READ, WRITTEN, CHANGED, TRUE, and FALSE in Complex Data Types 66

Detecting Changes in Value . 67
Implementing a Function to Get External Inputs . 68

Index . 69
Rational Statemate v

Table of Contents
vi Software Code Generator Interface Manual

Software Code Generator Overview
Rational Statemate enables you to extend a Rational Statemate model by adding handwritten code
to the generated code. You may want to use this feature to:

 Describe a particular function programmatically.
 Interface to your own or a third party’s library.
 Use code that already exists.

This manual documents the pre-Rational Statemate 1.2 method for supplementing user code to the
generated code. This method adds code to the generated C or Ada code by modifying the
user_activities files. This manual also explains how to use the callback mechanism to
communicate with external code.

Although Rational Statemate continues to support this method, you should use the new methods
for supplementing code. For information on these methods, refer to “Adding User Written Code”
in the Code Generator Reference Manual.

Code Architecture and the Generator
To obtain a working prototype of the system, you can extend the Rational Statemate-generated
code by implementing those elements and aspects of the system’s behavior that have not been
explicitly defined by the controlling statecharts and mini-specs.

The Code Generator does not implement primitive activities whose behavior is not described by a
statechart or mini-spec. The supplemental code that you write can be interfaced with the Rational
Statemate code. This interface describes when and how these primitive activities “accept”
synchronization actions applied to them (start, stop, suspend, resume). It also describes when and
how they produce and consume items that flow between them and the rest of the system.

Similarly, the user can implement the interface between the prototype components of the system
and its environment since the Code Generator has no information about the structure of the
environment’s activities.
Rational Statemate 1

Software Code Generator Overview
The Code Generator supports several structures that help you extend the model, such as the
following:

 Templates needed to implement the primitive activities
 The callback mechanism - sensing any change in the model
 A set of standard procedures that provide all the necessary flows of events, conditions and

data-items between the environment and primitive activities and the rest of the system
 Routines to synchronize the primitive activities with the rest of the system

User Supplemented Files
The user-activities file includes all the stubs generated for the basic activities according to the
compilation profile.

C Code

Once the user-activities stubs file exists in the output directory, it is not overwritten, and a file
user_activities.c_temp is generated. The stub file includes a corresponding header file, which
is also not overwritten.

user_activities.c (user_activities.c_temp)

user_activities.h (user_activities.h_temp)

Ada Code

Once the user-activities stubs file exists in the output directory, it is not overwritten, and a file
user_activities.a_tmp is generated.

user_activities_.a (user_activities_.a_temp)

user_activities.a (user_activities.a.temp)
2 Software Code Generator Interface Manual

User Supplemented Files
Supplementing the C Code

When supplementing the generated code with user additions, it is important to add the additional
compilation statements to User_Makefile. This file is produced when the code is generated.

The following is an example of the User_Makefile for ANSI C generated code.

objects = user_activities_out.o

CFLAGS = -o -ansi -pedantic -Wstrict-prototypes

-I$STM_ROOT/etc/prt/ansic

-I$STM_ROOT/etc/prt/ansisched

all : out_lib.a

out_lib.a : $(objects)

ar rvu out_lib.a $(objects)

ranlib out_lib.a

Add all objects that require compiling to the elements list. If you add any libraries, add them to the
user_libs file.
Rational Statemate 3

Software Code Generator Overview
Stubs: Procedures or Tasks
Code Generator enables you to create stubs in the generated C or Ada. A stub serves as a
“placeholder” where you can insert handwritten or vendor-supplied code into the profile.

You can define which primitive activities will be stubs, and also choose how the stubs are
modeled, as Procedures or Tasks.

Note
Rational Statemate uses the signal and port assignments that were in place before you made
the element a stub.

Make PROCEDURE

Activities implemented as Procedures are not expected to run in parallel with other activities
(including control activities). Such an activity can be characterized as:

 Short living
 Not interruptible (does not interact with others)
 Not stopped, suspended, or resumed from outside (self-terminating).

A Procedure is similar to a Rational Statemate action and is usually of a transformational nature,
rather than reactive. If started at some step, it finishes at the same step. Activation of such an
activity is very similar to calling a routine—until it stops, others cannot advance or be activated.

To Make a Procedure, complete the following steps:

1. Select View > Show Scope as Tree.

2. Select the Activity-chart that contains the activity box that you want to make a procedure.

3. Select View > Show Boxes.

4. Select the primitive activity you want.

5. Click Procedure or select Edit > Make Procedure.

The Code Generator labels the activity with a P and a graphic as shown in the
VIBRATION activity example in the following figure.
4 Software Code Generator Interface Manual

Stubs: Procedures or Tasks
Make Task

Activities implemented as Tasks are expected to run in parallel with other activities, particularly in
parallel with the advance of the Statecharts. Tasks may interact with other activities and be
synchronized with them. You can also apply action to them i.e., stop, suspend, or resume.

To Make a Task, complete the following steps:

1. Select View > Show Scope as Tree.

2. Select the Activity-chart that contains the activity box that you want to make a task.

3. Select View > Show Boxes.

4. Select the primitive activity you want.

5. Click on the Task icon in the toolbar or select Edit > Make Task.

The Code Generator labels the activity with a T and a graphic as shown in the BEEP
activity example in the following figure.

Note
For information on integrating handwritten C, refer to Supplementing Generated C.

Note
For information on integrating handwritten Ada, refer to Supplementing Generated Ada.
Rational Statemate 5

Software Code Generator Overview
Hooks and Callbacks
The Code Generator also provides a powerful mechanism that allows you to hook user-actions or
procedures to any change in the specification during execution. This mechanism is very useful
when you wish to tie your external environment to the behavior represented by the generated code.

Unlike stubs, which simply serve as placeholders for external code, hooks generate callback
functions and actually communicate with external code. They become activated when there is a
change in the selected element such as an event, condition, or state.

Hooks in Generated Code

To create hooks, select Edit > Hooks and then refer to either the Ada or C section below.

Hooks in C
In C, all Rational Statemate elements can be incorporated into a callback routine. Normally, if you
are using elements in callbacks, it is not necessary to create hooks. However, for states, you need
to tell Rational Statemate in advance which states are going to be used in a callback, so an
appropriate ID can be generated.

For more information on how to use callback routines in the user code to track model changes,
refer to Callbacks for Compound Elements.

Hooks in Ada
In Ada, if you are going to use any Rational Statemate elements in a callback routine, you must
first create hooks for them. This is done through the Hooks Data Editing screen shown in the
following figure.

For more information on how to use callback routines in the user code, refer to Interfacing With the
Rational Statemate Model.

Ada allows you to create hooks for the following:

 Textual elements
 Activities
 StatesTextual Elements
6 Software Code Generator Interface Manual

Hooks and Callbacks
Rational Statemate 7

Software Code Generator Overview
Hooks for Textual Elements
To create hooks for textual elements, complete the following steps:

1. Select Choose in the Textual Elements window as shown in the next figure.

The Element Selection for Textual Hooks dialog box opens.

2. Use the Type, Sub-Type, and other buttons to locate the textual elements you want, and
then click Filter to display them in the Name field.

3. Select one textual element at a time by highlighting it or multiple elements by pressing
Ctrl while selecting. Select all the elements in the current list by clicking Select All.

4. Press OK. The selected elements appear in the list of hooks.

Activities

To create hooks for activities, complete the following steps:

1. Select Choose in the Activities window. The Selection of Activities dialog box opens.

2. Use the Defined in Chart and Name Pattern buttons to locate the activities you want,
and then press Filter to display them in the Name field.

3. Select one activity at a time by highlighting it or multiple activities by pressing Ctrl while
selecting. Select all the activities in the current list by clicking Select All .

4. Click OK. The selected activities appear in the list of hooks
8 Software Code Generator Interface Manual

Hooks and Callbacks
.

Rational Statemate 9

Software Code Generator Overview
States

To create hooks for states, complete the following steps:

1. Select Choose in the States window. The Selection of States dialog box opens.
.

2. Use Defined in Chart and Name Pattern to locate the states you want, and then press
Filter to display them in the Name field.

3. Select one state at a time by highlighting it or multiple states by pressing Ctrl while
selecting. Select all the states in the current list by pressing Select All.

4. Click OK. The selected states appear in the list of hooks.
10 Software Code Generator Interface Manual

Supplementing Generated C
This section explains how to supplement the Rational Statemate-generated code with handwritten
code.

Implementation of Primitive Activities
The file user_activities.c contains templates for every primitive activity that is to be implemented
in the compilation profile’s activity-stub options. Each selected primitive activity contains a stub with the
following format:

void user_code_for_<activity_name>()
{
/* Parameters :

Output <output data-elements>;
Input <input data-elements>;

Input/Output <Inout data-elements>;
*/
}

The parameters list describes the interface of the activity to the rest of the model. Note that these
are not parameters in the programming-language sense. The parameters list is actually a reference
list that shows the context of the activity to be implemented in the model.

void user_code_for_FFT()
{
/* Parameters

-- Input double sonar_datal;
-- Input double sonar_data2;
-- Output double processed_data;
/*
}

The previous example shows a primitive activity that represents an FFT filter. The data-items
sonar_data1, sonar_data2 are flowing into FFT, and the processed_data is flowing outside. This
is actually the interface of the FFT activity with the rest of the model. Mathematical processing functions
such as an FFT filter, are typical cases where something is implemented as a primitive activity, and the
algorithm could be taken from an existing library.
Rational Statemate 11

Supplementing Generated C
Once the user_activities.c file is generated, it is not overwritten when the code is regenerated. In
subsequent generations of the code, a user_activities.c_temp file is generated. If new templates are
generated, they should be merged from user_activities.c_temp into user_activities.c.

Note
Empty stubs stop right after activation and the sp (activity) event is generated in the next
step.

User Init and User Quit
The file user_activities.c contains the following procedure template:

 void user_init ()
{
}

The code calls this procedure before the very first step is taken in the translated model. Therefore,
you can use it for many types of initializations.

For example, you can add an actual piece of code to initialize various global structures in the code
supplied for primitive activities, to open windows, etc.

 Another important option is to initialize specification elements. Recall that all events,
conditions and data-items used in the specification have the following default values:

 events - not active
 conditions - false
 integer, real and bit-array - zero
 textual data-items - blank string

The default value is used when there is no explicit initialization of an element before it is
referenced in an expression. However, you might wish to intentionally leave an element
uninitialized in the specification because you do not know the precise initial value. In such a case,
you want to be able to run the same prototype code with different initial values of the element and
to choose an appropriate one in a “trial and error” process.
12 Software Code Generator Interface Manual

User Init and User Quit
Once you choose an initial value, you can add it to the specification. In other words, you tune the
system specification by working with the prototype derived from it. For example, if you want to
assign an initial value of true to the condition FAULT, and a value of 50 to the integer data-item
LOW_BOUND which both belong to a chart, you transform the template into the following procedure:

void user_init()
{

setc(&FAULT,true);
seti(&LOW_BOUND,50);

}

Execution of the code may come to a point where all activities of the prototyped system become
non-active and thus the system must finish its work. This may be caused by various reasons: self-
termination of activities, explicit or implied actions stop or the command quit entered when running
the Code Generator Debugger.

In all cases where the system stops, the code performs a call to the procedure user_quit, intended
to support a graceful termination of the user extensions. The template of this procedure resides in the
user_activity.c file:

void user_quit()
{
 ..
}

Consider an example in which the prototype code is connected to a graphical mock-up of the
operator display. Suppose that among the user’s extensions there is a task responsible for I/O
interface between the code and the display. When a soft button is “pushed” on the display, the task
accepts an interrupt from the mouse and translates it into generation of an event sent to the
prototype code. When the system stops, this task must terminate. To achieve this goal, place an
abort statement for this task in the template user_quit.
Rational Statemate 13

Supplementing Generated C
Synchronization of Primitive Activities
This section discusses how primitive activities are integrated into the generated code.

User-written procedures are called when the system starts the corresponding activity (for example,
st!(<activity>)). In general, the user code and the generated code share the CPU time. That is, when
the user code is executed, the statechart’s code (or other user activities) are suspended. Therefore, the
Code Generator provides two types of user activities: simple procedures and tasks.

Procedures

A procedure-activity is executed in a one-shot - it is not preempted until it returns. Therefore, you
should use this mechanism for instantaneous activities (activities that execute for a short period of time).
Typically, these activities perform short calculations or non-blocking I/O operations, like displaying data
or drawing graphics. If the procedure mechanism is used for continuous calculations or delayed I/O, it
blocks the rest of the prototype from reacting properly to incoming events. Since a procedure-activity is
not being preempted, the suspend, stop and resume actions do not have any effect on them. When a
procedure-activity returns, the sp!() event is sent to the controlling code.

Tasks

The task mechanism allows you to integrate continuous or synchronized code into the primitive
activity. For this purpose, the Code Generator provides a special library that extends the C
language to support tasking or multi-threading. (Refer to the Scheduler Package for more details).

The scheduler package allows you to define C functions as concurrent routines or co-routines. An
activity which you choose to implement as a task is invoked by the control code as a co-routine
which is executed concurrently with the rest of the prototype. Since we are dealing with serial
machines, concurrency means that the control is switched between these co-routines without
interrupting their thread of control. That is, when the co-routine gets the control back, it resumes
executing with the exact context it was before. This mechanism allows the activity to use delay
statements, wait for events and perform continuous calculations without blocking the rest of the
code from continuing execution. When a task is executed, however, the rest of the code is frozen.
Thus, synchronization points are introduced. They allow the rescheduling of other tasks (or the
control code) to proceed and actions (stop, suspend) to take effect.
14 Software Code Generator Interface Manual

Synchronization of Primitive Activities
Synchronization

There are three types of synchronization calls:

 sched_wait_for_event(event)

 sched_delay(delay_time)

 scheduler()

Each of these calls suspends the calling task and reschedule another task or the main_task
(statechart) on a round-robin basis.

The sched_wait_for_event call suspends the activity until the specified event is generated. It is a way
to synchronize the activity with other activities either user-implemented or statechart-controlled. When
the event is generated, the code resumes execution after the wait call.

Example:

 void sense_start()
 {
 while (1) {
 sched_wait_for_event(&gevSENSE);
 /* here you are supposed to check status.*/
 printf(“Time generated\n”);
 }
 } /* end sense_start */

The sched_delay statement delays the activity for the time specified in the call. It is useful to
implement polling processes that periodically perform checks on a time basis.

Example:

void poll_input()
{

 while (1) {
 mouse_input = read_input_from_mouse();
 if (mouse_input) {
 . . Do Something . . .
 }
 sched_delay(0.1); /* delay 0.1 seconds */
 }

}

The scheduler() call is used when you have a calculation which is too long to be executed non-
preemptively. For example, if you have to multiply two 10000x10000 matrices, you do not want the rest
of the system to be blocked all that time. The scheduler() call allows other activities to proceed and the
calling activity resumes execution in the next available time slot unless a stop or suspend command was
issued. The call should be placed in a loop in which one cycle can be executed without preemption but an
outer loop may take too long.
Rational Statemate 15

Supplementing Generated C
Note
No synchronization call should be used by a procedure implemented activity.

Example:

 void multiply()
 {
 for (i = 1; i<=10000; i++) {
 for (j = 1; j<=10000; j++) {
 /* internal loop is short
 enough to complete */
 }
 scheduler();
 }
 }

Scheduler Package
The user can specify that some of the primitive activities are to be implemented as tasks in the
Profile Editor. The tasks are actually C functions invoked as co-routines. The statechart code itself
is a task, which runs concurrently with the other invoked tasks.

Controlling all those tasks is the responsibility of statecharts which issue different actions to the
different activities (for example, start, stop, suspend, resume). All this is handled by a scheduler
package which is supplied with the Code Generator and is available on Rational Statemate
platforms only. This package supports multi-tasking programming within the context of a single
process.

Below we describe how the user may add his own tasks, apart from those created for each task-like
primitive activity, and how to use the scheduler for controlling them.

Status of a Task

Each task may be in one of four states:

 Current—the task is executing
 Ready—the task is ready for execution
 Delayed—the task is waiting for some event to occur
 Stopped—the task is not active

The calls that change the status of a task are described in the following sections.
16 Software Code Generator Interface Manual

Scheduler Package
Creating a Task

In order to create a new task, call

task_entry *sched_create_task(proc, param, stoproc, stoparam, model_context,
inst_context)

void_funcp proc;/* proc(param) is activated as task*/

unsigned long param;

void_funcp stoproc;/* stoproc(&stoparam) is called
 when the task terminates*/

char *stoparam;

void *model_context;
/* when several separately generated models are integrated with user-written
main(), this parameter identifies the model to which the task belongs*/

void *inst_context;
/* when task is connected to activity in a generic activity-chart, this
parameter identifies the currently executed instance*/

This routine initializes a task and returns to its caller a descriptor, which is to be used in further
references to this task.

The task is initialized with a 40 KB stack. In case of stack overflow, a message is printed and the
task is aborted.
Rational Statemate 17

Supplementing Generated C
Controlling a Task

Calling sched_create_task puts the new task in stopped status. To make it ready, call:

sched_start(te)

where te is a pointer to the descriptor returned by sched_create_task for this task. In a similar
manner, there are routines which take the other Rational Statemate actions on such tasks:

sched_stop(te)

sched_suspend(te)

sched_resume(te)

Aborting a Task

The following routine aborts the task identified by the descriptor te. It de-allocates its stack and its
control blocks:

sched_abort_task(te)

int te;

The sched_abort_task function should be called only if the task is not invoked again. If this is not the
case, use the sched_stop function.

Special Services

The following routine causes the calling task to be delayed for the specified number of seconds. It
also causes rescheduling so that other tasks may advance while this task is delayed.

sched_delay(time_amount)

double time_amount ;

Each task can request a time slice which is the maximal time period for which the task may hold
the CPU without rescheduling another task. The request is made by calling the following routine:

sched_slice(time_slice)

double time_slice ;

To disable the time-slicing for some task, it should call this routine with a time slice of 0.0. This is
also the default with which each task is initialized.
18 Software Code Generator Interface Manual

Scheduler Package
To disable and enable the time slicing mechanism for all the tasks, the following routines may be
called:

sched_enable()

sched_disable()

Note that when time slicing is disabled, delays, timeouts and scheduled actions initialized by the
scheduler (either before or after sched_disable has been called) cannot end until sched_enable is
called. We recommend disabling the time slicing when performing print statements. Unexpected results
may occur.

Scheduling Policy

The context switch between tasks is done only in the following synchronization points:

 When a task explicitly calls the scheduler. This is done by calling the following routine:

 scheduler(

If there are other ready tasks - one of them (chosen in a round-robin manner) becomes
current, while the calling task becomes ready. If there is no other task ready, the calling
task continues its execution.

 When a task issues a delay request by calling sched_delay. The calling task then becomes
delayed.

 When a task calls a wait_for_event service. The calling task then becomes delayed.
sched_wait_for_event(EVENT)

event *EVENT;

 If a task enables the time slice option, which invokes the scheduler implicitly after a time
period.

 After the task function performs a return, it stops.
Operations like sched_create_task, sched_start, sched_stop, sched_suspend and
sched_resume do not cause rescheduling.

Restrictions

Any call to process blocking functions (e.g., sleep, scanf) of the operating system from a task
hibernates not only the calling task, but the whole process. Using fork() and signals is also not
allowed, since it might confuse the scheduler.
Rational Statemate 19

Supplementing Generated C
Interfacing With the Rational Statemate Model

The model elements are abstract data types that can be accessed by procedures produced by the
Code Generator.

There are two ways to interface with the Rational Statemate model:

 Procedures to modify values of events, conditions and data-items. You have to call them
in your code whenever you wish to perform the manipulations on these elements. These
procedures are discussed in the following subsections.

 Set callback functions to respond to changes in the system. The code guarantees that such
a callback is called whenever the corresponding change occurs. This can be, for example,
displaying a message on the screen or assignment of an appropriate value to a variable
used in the user code.

Referencing Model Elements
Communication between the user-defined code and the generated code is accomplished through
the semantics of the following information elements:

 Events
 Conditions
 Data-items
 User-defined types

It is important to understand how to access the values of these elements and how to modify them.
Each element has the following representation in the C target language:

 Events and conditions are represented as bytes
 Data-items are represented as integers, reals, strings or unsigned
 User-defined types are derived from basic data-types
20 Software Code Generator Interface Manual

Referencing Model Elements
The following table shows the mapping between the Rational Statemate basic types and the
corresponding C types:

Where Elements are Defined

An element can be local to a module or global to a profile. The element is globally defined when it
is referenced by more than one module, i.e., defined in the top-level module. Each module
“exports” all its local elements as externals in its header file.

This allows other user modules to access them. If you want to reference an element you must refer
to its scope by including the appropriate header file. An example is shown below.

Example:

If you want to reference an element BAUD_RATE in module display, you should include the
header file “display.h” to make the element visible.

/* my module */
#include “display.h”
.
.
br = BAUD_RATE ;
.
.

Rational Statemate
Types C Type

Conditions char (byte 0-false, 1-true)

Integer int

Real double

String char[]

Event char

Bit bit_array[1]

Bit array unsigned int

User Type struct

Record struct

Union struct

Enumerated Types typedef
Rational Statemate 21

Supplementing Generated C
Element Names in the Output Code

The element name in the object code is the same as in the Rational Statemate model. If a user-
defined element name is not unique, or if it conflicts with a reserved word in the target language, it
is changed in the code to contain a prefix that denotes its type and scope. Since the Rational
Statemate scopes are different from the modules in the output code, the names are not identical.
This avoids any ambiguities that might result from name duplications. The naming convention is
shown below:

prefix<STATEMATE_NAME>

Where prefix is determined as follows:

1. The type:

ev - event

co - condition

di - data-item

For activities the notation is:

acy_<ACTIVITY_NAME>.

2. To resolve ambiguities:

If two elements have the same name in a module, a number is added to the prefix to
resolve the ambiguity. If an ambiguity occurs, refer to the cross-reference table in the
info-file to determine which is the correct element.

Example of two data-items with the same Rational Statemate name (Z):

 di1Z, di2Z

In this case, you should look in the cross reference table to identify which one belongs to
which Rational Statemate scope.
22 Software Code Generator Interface Manual

Referencing Model Elements
Accessing an Element Value

Since the element is a simple language element, it can be easily accessed by referring to its name.

Example:

my_data = XXX + YYY ;

Generating Events

Events are primitive elements and are special in the sense that software languages do not support
them directly. An event is active, or “high,” for only one step unless it is regenerated. The
intrinsics library supports this behavior via the “gen” function.

Once an event is generated via “gen,” the intrinsics runtime module is set and resets the event at
the right time. An active event signifies a value of “1” in the byte that represents that event.

Example:

gen (&event1);

Note
The function expects an address of an event element. Direct setting of an event, i.e., event1
= true, causes the code to behave incorrectly since the intrinsics module does not handle this
situation.

Assigning Values to Rational Statemate Elements

Since model elements follow Rational Statemate semantics, their assignments should be
synchronized to the beginning of the next step (cycle). A direct assignment such as:

X = Y + 1;

might result in racing condition especially when the data/condition element is shared between two
concurrent activities. The synchronized assignments are implemented via a set of service calls
supported by the intrinsics library. The following is the synchronized assignment call for the above
assignments

seti(&X, Y + 1);

There are cases where using direct or deferred assignments do not make a difference, however, it is
always recommended that you avoid using direct assignments.
Rational Statemate 23

Supplementing Generated C
The intrinsics library offers a set of procedures that apply deferred assignments to the different
types of Rational Statemate data-items. The assignment interface calls for each Rational Statemate
type are listed below:

1. Bit:

void setbit(ba, val)
bit *ba;
bit val;

Example: set?(&FAULT,true);

2. Condition:

void setc(c_p, val)
boolean *c_p;
boolean val;

Example: setc(&FAULT,true);

3. Real data-item:

void setd(d_p, val)
real *d_p;
real val;

Example: set?(&FAULT,true);

4. Integer Data-item:

void seti(i_p, val)
int *i_p;
int val;

Example: seti(&LOW_BOUND,50);
24 Software Code Generator Interface Manual

Referencing Model Elements
5. String Data-item:

void sets(s_p, val)
char *s_p;
char *val;

Example: sets(&FAULT,true);

The following APIs can be used to set arrays or slices of arrays. They all take source and
destination arrays, and length. For example, in case of a slice assignment such as
a1(3..5):=a2(1..3), the following call does:

set_array_<type>(&a1[3], &a2[1], 3);

Arrays:

void gen_array (ev_p, len)
event *ev_p;
int len;

void set_array_condition(trg, src, l)
condition *trg;
condition *src;
int l;

void set_array_int(trg, src, l)
int *trg;
int *src;
int l;

void set_array_real(trg, src, l)
real *trg;
real *scr;
int l;

void set_array_string(trg, src, l,l_trg_str,l_scr_str)
 char *trg;

char *src;
int l; /* length */
int l_trg_str;
/* string length of target */
int l_src_str;
/* string length of source */

void set_array_ba(trg, len, trg_ba_l, src, len_src,
 src_ba_l)

bit_array *trg;
int len;
/* length of target */
int trg_ba_l;
/* bitarray length of target */
bit_array *src;
int len_src;
/* length of source */
int src_ba_l;
/* bitarray length of source */
Rational Statemate 25

Supplementing Generated C
Example
The following is a supplemented basic activity that processes X,Y and generates two events
according to the result: PROCESS_OK and PROCESS_ERROR.

void user_code_for_filter()
{

/* Parameters :
Input int X ;
Input int Y ;
Output event PROCESS_OK ;
Output event PROCESS_ERROR ;
*/

 }

The supplemented procedure is shown below:

 void user_code_for_filter()
 {

/* Parameters :
Input int X ;
Input int Y ;
Output event PROCESS_OK ;
Output event PROCESS_ERROR ;
*/
apply_filter(X, Y, Z);
if (in_range(Z))
gen(&PROCESS_OK);
else
gen(&PROCESS_ERROR);

}

Bit Arrays
Bit-arrays are stored in unsigned ints. Since unsigned ints can hold a maximum of 32 bits, bit-
arrays larger than 32 bits are stored in arrays of unsigned ints. Arrays of bit-arrays are stored in
two dimensional arrays of unsigned ints; The following table lists the available structures. Notice
that multiple bit-arrays smaller than 32 bits are NOT packed into the unsigned int.

Note
In $STM_ROOT/etc/prt/c/types.h you find the statement: type def unsigned int bit_array.

Data-Items Results in these Structures

BA1 is array 1 to 10 of Bit-array 31 to 0 bit_array BA1[10][1]

BA2 is array 1 to 10 of Bit-array 48 to 0 bit_array BA2[10][2]

BA3 is array 1 to 10 of Bit-array 3 to 0 bit_array BA3[10][1]
26 Software Code Generator Interface Manual

Referencing Model Elements
Bit Array Functions

bit_array *AND(ba1, l_ba1, from1, to1, ba2, l_ba2,
from2, to2)

bit_array *ba1;
int l_ba1;
int from1;
int to1;
bit_array *ba2;
int l_ba2;
int from2;
int to2;

bit_array *NOT (ba1, l_ba1, from1, to1)
bit_array *ba1;
int l_ba1;
int from1;
int to1;

bit_array *OR(ba1, l_ba1, from1, to1, ba2, l_ba2,
from2, to2)

bit_array *ba1;
int l_ba1;
int from1;
int to1;
bit_array *ba2;
int l_ba2;
int from2;
int to2;

bit_array *XOR(ba1, l_ba1, from1, to1, ba2, l_ba2,
from2, to2)

bit_array *ba1;
int l_ba1;
int from1;
int to1;
bit_array *ba2;
int l_ba2;
int from2;
int to2;

The following bit array function names are mapped through macros to their internal names,
because these names are used by Ada runtime libraries, therefore they cannot be defined as
functions in the intrinsics. (These same intrinsics are used by C and Ada environment.) It is
important to include the types.h header containing these macros.

#define ASHR ashr
#define LSHL lshl
#define LSHR lshr
#define BITS_OF bits_of
#define CONCAT_BA concat_ba
#define EXPAND_BIT expand_bit
#define SIGNED signed_b
#define MINUS minus_b
#define NAND nand_b
#define NOR nor_b
#define NXOR nxor
Rational Statemate 27

Supplementing Generated C
The functions are:

bit_array *concat_ba(ba1,l_ba1, from1, to1, ba2,
l_ba2, from2,to2)

bit_array *ba1;
int l_ba1;
int from1;
int to1;
bit_array *ba2;
int l_ba2;
int from2;
int to2;

bit_array *lshr(ba, len_ba, from, to, shift)
bit_array *ba;
int len_ba;
int from;
int to;
int shift;

bit_array *lshl(ba, len_ba, from, to, shift)
bit_array *ba;
int len_ba;
int from;
int to;
int shift;

int signed_b(ba_val, len, from, to)
bit_array *ba_val;
int len;
int from;
int to;

bit_array *ashr(ba, len_ba, from, to, shift)
bit_array *ba;
int len_ba;
int from;
int to;
int shift;

bit_array *nand_b(ba1, l_ba1, from1, to1, ba2, l_ba2,
 from2, to2)

bit_array *ba1;
int l_ba1;
int from1;
int to1;
bit_array *ba2;
int l_ba2;
int from2;
int to2;

bit_array *nor_b(ba1, l_ba1, from1, to1, ba2, l_ba2,
 from2, to2)

bit_array *ba1;
int l_ba1;
int from1;
int to1;
bit_array *ba2;
int l_ba2;
int from2;
int to2;
28 Software Code Generator Interface Manual

Structured Elements
bit_array *nxor(ba1, l_ba1, from1, to1, ba2, l_ba2,
 from2, to2)

bit_array *ba1;
int l_ba1;
int from1;
int to1;
bit_array *ba2;
int l_ba2;
int from2;
int to2;

Use the following functions to convert between integer and bit-array types:

bit_array *int2ba(int_val)
int int_val;

int ba2int(ba, len, from, to)
bit_array *ba;
int len;
int from;
int to;

Structured Elements
For complex Data-Items in the Rational Statemate model (e.g., a Data-Item record) a type is defined for
the Data-Item. This happens even if the Data-Item is not defined as a user type. The type declaration
(typedef statement) is placed in the same .h file as the external declaration for the Data-Item. These
implicitly defined types are treated the same way as ordinary User-Defined Types.

Rational Statemate defines structured elements and user-defined types in a file called <profile
name>_type_utils.c, and assigns names to the types based on the name of the Data-Item and the
characters ty as a suffix. For example,

 RECORDty RECA;
 UNIONty UNIONA;
 USER-DEFINEDUSER[1];
Rational Statemate 29

Supplementing Generated C
Records

Records become C constructs. For example, a record INVOICE_TYPE might become a structure
defined as:

typedef struct INVOICE_TYPE {
char NAME[80+1];
char ITEM[80+1];
real AMOUNT;
} INVOICE_TYPE;

Note that the name INVOICE_TYPE is normally named the same as the User-Defined Type name. If,
however, the Rational Statemate model contains multiple textual elements with the same name, the
C code names are modified to make all the names unique. This name mapping information is listed
in the .info file.

Unions

Unions become C unions, with a declaration that is similar to the construct definition for records.

Enumerated Types

An Enumerated Type is a user-defined type with a finite number of values.You cannot directly
define a data item as an enumerated type. First, define the data item as a user-defined type, and
then define the user-defined type as an enumerated type. You define the values for the
enumeration in the “Definition” field of the Properties by listing the values in brackets separated
by commas. For example,

{SUN,MON,TUE,WED}

Enumerated values and other textual items cannot have the same name within the same scope. For
example, data-item SUN cannot be declared in the same chart where an enumerated value SUN is
declared.

Note
Enumerated range and indices of arrays are not supported in C. The C code generator shall
approximate this capability in the generated code.
30 Software Code Generator Interface Manual

Structured Elements
There are two constant operators and five general operators for enumerated types. These are
summarized in the Constant Operators Table and the General Operators Table.

Constant Operators Notes*

en_first(T) First enumerated value of T

en_last(T) First enumerated value of T

* Parameters to these constant operators are user-defined
types that were defined as enumerated types.

General Operators Notes*

en_succ([T’]VAL) Successor enumerated value of T

en_pred([T’]VAL) Predecessor enumerated value of T

en_ordinal([T’]VAL) Ordinal position of VAL in T

en_value(T,I) Value of the i’th element in T

en_image([T’]VAL) String representation of VAL in T

* Parameters to these operators are either enumerated values
(literals) or variables. The T’VAL notation is used for non-unique
literals.
Rational Statemate 31

Supplementing Generated C
User-Defined Type Functions
There are a number of functions provided for manipulating Rational Statemate model variables
that should be used when augmenting the Rational Statemate generated code.

Note
Rational Statemate variable values may be read by checking the correct variable name.
Value changes, however, should not be made directly to the same variable. All value
changes are made through a list of variables to be updated. This list is affected through a
variety of functions created by the code generator.

The call

seti (&variable_name, value);

is used for setting any (primitive) integer variable to a desired value. Other similar calls provide
the ability to set conditions, strings, real numbers, etc.

In addition to these general functions, the Code Generator creates similar functions which are
specific to each UDT.

Every User-Defined Type has the following functions defined for it:

 void set_<type>(A,B)
 <type> *A,*B;

It uses the update list to assign A:=B. The user-code should not make direct assignments to
Rational Statemate variables. Use the following functions to test for equality:

 boolean eq_<type>(A,B)
 <type> A,B;

Returns TRUE if the elements A and B are equal.

For every type that has a corresponding_event declaration, the following functions are defined:

 boolean all_<type>(A)
 <type>_event A;

These functions test to see if all the events that form A are currently generated. This example only
applies to RD<element> and WR<element>.

 void gen_<type>(A)
 <type>_event *A;

These functions generate all the events in A. This only applies to RD<element> and
WR<element>.These functions create and initialize complex functions.

 void init_<type>(A)
32 Software Code Generator Interface Manual

Queue Functions
Queue Functions
Queues are implemented as linked lists in the generated code. Each node in the linked list contains
a pointer to an element. Access the lists by using the access functions described in the following
table.

All the queue manipulation is done using memory allocation for elements added to the queue and
freeing the memory when the elements are removed or deleted from the queue. The memory
allocation and freeing is done automatically so there is no need to preserve the value of element
after the q_put() or q_uput() function is called.

The queue manipulation functions work through the update list, so if some elements are put into a
queue, they are not in the queue until the end of the step.

Queue
Function Description

q_length This function returns the length of the queue Q.

int q_length((QUEUE) Q)

q_get This function removes an element from the head of the queue and puts it into
element. The status is TRUE if there was an element to get. If the status is
passed as NULL, no status value is returned.

q_get((QUEUE *) Q, (<type> *) element,(boolean *) STATUS)

q_peek This function is the same as q_get, except the TOP queue element is not
removed from the queue it is only copied.

q_peek((QUEUE *) Q, (<type> *) ELEMENT, (boolean *) STATUS)

q_initialize If you want to create your own queues the queue should be initialized before
use. The queue starts empty.

q_initialize((QUEUE *) Q, (int) sizeof(ELEMENT))

q_put This function puts element at the end of Q.

q_put((QUEUE*)Q,(<type>*)ELEMENT,(int)sizeof(ELEMENT))

q_uput This function puts element at the head of Q.

q_uput((QUEUE*)Q,(<type>*)ELEMENT,(int)sizeof(ELEMENT))

q_flush This function deletes all the elements in Q.

q_flush((QUEUE*) Q)
Rational Statemate 33

Supplementing Generated C
String Functions
char *string_extract(str,index,length)

char *str;
int index;
int length;

int string_index(str,offset,sub_string)
char *str;
int offset;
char *sub_string;

char *string_concat(str_dest, str_src)
char *str_dest;
char *str_src;

int char_to_ascii(str)
char *str;

char *ascii_to_char(int_val)
int int_val;

char *int_to_string(int_val)
int int_val;

int string_to_int(str)
char *str;

int string_length(str)
char *str;

READ, WRITTEN, CHANGED, TRUE, and FALSE in
Complex Data Types

Sensing how the rd() , wr() , and ch() events, as well as tr() and fs(), are related to complex Data-Types
requires the Code Generator to create some additional C Data-Types and variables. These type
declarations are put in the same header file as the type declaration for the complex type itself. (Remember
that the names and number of header files varies, based on whether the Separate File per Statechart
option was selected in the profile under Options > Module Settings.)

Additional types are required for wr() and rd() as well as additional variable declarations. These
additional types have similar structures to the complex types themselves. The type have fields with the
same name but the types of the fields are EVENTS. These are used to store the event of WRITTEN or
READ for each of the fields of the complex type.

A separate variable is defined for rd() and wr(). Each is defined as a type
COMPLEX_VARIABLE_NAME_event. The name of the variables is the same as the complex type
itself, with either wr or rd prefixed, as appropriate. One or more fields in the wr or rd variable is set when
these fields are READ or WRITTEN. This is found in the procedure for the action that sets or uses the
referenced field values.
34 Software Code Generator Interface Manual

Detecting Changes in Value
Detecting Changes in Value
If the event expression ch(), tr() or fs() is applied to an expression that uses a Data-Item or condition, it
is necessary to preserve the previous value of the element. This is done by maintaining a duplicate copy
of the element that is updated at the end of every step. (This makes detecting ch() on a large array or
complex record a very slow process, because it takes time on every step.) The duplicate copy of the
variable is named prev_<element>.The following table lists the affected element types.

Element Type Variable Name Purpose

User-Defined Type <type> Define base Data-Item

User-Defined Type <type>_event Define rd() and wr()

Data-Item <element> Holds value of Data-Item

Data-Item WR<element> Holds wr() event for Data-Item

Data-Item RD<element> Holds rd() event for Data-Item

Data-Item prev_<element> Holds old value of the Data-Item

Element—is the name of the element as listed in the .info file. This is normally the
same as the Element Name in the Properties, unless there are duplicate Element
Names.

Type—is the name of the User-Defined Type. It is also listed in the info file.
Rational Statemate 35

Supplementing Generated C
Callbacks to Track Model Changes
The Code Generator provides a powerful mechanism that allows you to hook user-actions or
procedures to any change in the specification during execution. This mechanism is very useful
when you wish to tie your external environment to the behavior represented by the generated code.

For each type of Rational Statemate element, there is a callback routine. For instance,
set_state_cbk or set_event_cbk.

Callbacks are called when the element changes. In general:

set_<element>_cbk(g_addr,el_p,callback_routine,
 callback_param)

genptr g_addr;
genptr el_p;
void(*callback_routine) ();
int callback_param;

Data-items

Callback functions are available for all primitive types:

 Event
 Condition
 Bit
 Integer
 Real
 String
 Bit-Arrays

With reference to the callback routine:

set_<element>_cbk (g_addr,el_p,callback_routine,callback_param)

where each element is identified by two parameters: g_addr, the instance in which it is defined,
and el_p, the address of the element itself.

For g_addr, set the value to 0 in most cases. However, when referring to elements in generic
charts, set the value to 1. The el_p indicates the address of the element. Make sure you insert the
correct address of the data item.

Note
Check in <module name>.h for the correct reference to element names.
36 Software Code Generator Interface Manual

Callbacks to Track Model Changes
callback_routine is the address of a C function.

callback_param is a parameter used by the callback routine when called.

The callback function has the following interface:

callback_routine void (value, callback_param)

where value holds the new value of the element.

Note
The type of the value parameter depends on the element with which the callback is
associated: for data-items of type string, it returns a pointer to a string (char *), for real data-
items, value is of type double. If the element is an event, the value parameter does not exist.

The callback_param is the same value that was installed when setting the callback.

Note
Use the callback_param when you want to associate one procedure to a number of
elements (instead of writing a separate procedure for each element). The returned value
allows the callback procedure to perform differently on each element.

 For states. the value is 1-entered, 0-exited
 For activities, the value is 0-nonactive, 1-active, 2-hanging

In the following interfaces, these conventions are used:

public void set_event_cbk(g_addr, el_p, func_p, param)
genptr g_addr;
genptr el_p;
funcp func_p;
int param;

public void set_cond_cbk(g_addr, el_p, func_p, param)
genptr g_addr;
genptr el_p;
funcp func_p;
int param;

public void set_int_cbk(g_addr, el_p, func_p, param)
genptr g_addr;
genptr el_p;
funcp func_p;
int param;

public void set_real_cbk(g_addr, el_p, func_p, param)
genptr g_addr;
genptr el_p;
funcp func_p;
int param;

public void set_str_cbk(g_addr, el_p, func_p, param)
genptr g_addr;
genptr el_p;
Rational Statemate 37

Supplementing Generated C
funcp func_p;
int param;

public void set_ba_cbk(g_addr, el_addr, len, func_p,
 param)

genptr g_addr;
genptr el_addr;
int len;
funcp func_p;
int param;

public void set_bit_cbk(g_addr, el_p, func_p, param)
genptr g_addr;
genptr el_p;
funcp func_p;
int param;

Assume that conditions c1, c2 are in your specification and you want to monitor them. The callback
routine looks like:

void show_conditions(c_val, c_num)
int c_val;
int c_num;
{

if (c_num == 1)
printf(“Condition C1 was set to
%s\n”,
(c_val==0) ? “true” :
“false”);

else
printf(Condition C2 was set to

%s\n”,
(c_val==0) ? “true” :
“false”);

}

The callbacks should be set during the initialization. The most logical place is within the
user_init procedure (see user_activities.c).

void user_init()
{

set_cond_cbk(0,&c1, show_conditions, 1);
set_cond_cbk(0,&c2, show_conditions, 2);

}

Note that each element can be associated with a number of callback routines. This is why the
callback setting functions is called prt_add_cbk, since it adds callback functions.
38 Software Code Generator Interface Manual

Callbacks to Track Model Changes
States
public void
set_state_cbk(g_addr,state_id,func_p,instance_name)

genprt g_addr;
int state_id;
funcp func_p;
int param;

Note
If you are using state callbacks, it is necessary to tell Rational Statemate in advance which
states are going to be used in callbacks, i.e., “hook them out” so an appropriate ID can be
assigned. This is not necessary for other element callbacks.

Activities
public void set_act_cbk(g_addr, el_p, func_p, param)

genprt g_addr;
genptr el_p;
funcp func_p;
int param;

Callbacks for Compound Elements
public void set_compevent_cbk(g_addr, el_p, func_p,

 param)
genptr g_addr;
genptr el_p;
funcp func_p;
int param;

public void set_compcond_cbk(g_addr, el_p, func_p,
 param)

genptr g_addr;
genptr el_p;
funcp func_p;
int param;

public void
set_compint_cbk(g_addr, el_p, func_p, param)

genptr g_addr;
genptr el_p;
funcp func_p;
int param;

public void
set_compreal_cbk(g_addr, el_p, func_p, param)

genptr g_addr;
genptr el_p;
funcp func_p;
int param;
Rational Statemate 39

Supplementing Generated C
public void
set_compba_cbk(g_addr, el_addr, len, func_p, param)

genptr g_addr;
genptr el_addr;
int len;
funcp func_p;
int param;

public void set_compbit_cbk(g_addr, el_p, func_p,
 param)

genptr g_addr;
genptr el_p;
funcp func_p;
int param;

public void set_compstr_cbk(g_addr, el_p, func_p,
 param)

genptr g_addr;
genptr el_p;
funcp func_p;
int param;

Callback Example

The following example illustrates the Rational Statemate callback and set commands.

Initially the system time and date are sensed from the operating system and then passed to the
Rational Statemate model by using the seti command.

The use of condition callbacks monitor the SOUND_FLAG conditions inside the Rational Statemate
model and then call their respective function routine to pass a desired sound file to the sound
device driver.

#ifndef m_generic

#include “types.h”

#include “all.h”

#include <time.h>

#include <stdio.h>

void ext_code_task_a(c_val,c_num)

int c_val;

int c_num;

{

40 Software Code Generator Interface Manual

Callbacks to Track Model Changes
if (SOUND_FLAG_A)

 {

 system(“cat sound_a.au > /dev/audio &”);

 }

}

void ext_code_task_b(c_val,c_num)

int c_val;

int c_num;

{

if (SOUND_FLAG_B)

 {

 system(“cat sound_b.au > /dev/audio &”);

 }

}

void ext_code_task_c(c_val,c_num)

int c_val;

int c_num;

{

if (SOUND_FLAG_C)

 {

 system(“cat sound_c.au > /dev/audio &”);

 }

}

void ext_code_task_d(c_val,c_num)

int c_val;

int c_num;

{

Rational Statemate 41

Supplementing Generated C
if (SOUND_FLAG_D)

 {

 system(“cat sound_d.au > /dev/audio &”);

 }

}

void ext_code_task_e(c_val,c_num)

int c_val;

int c_num;

{

if (SOUND_FLAG_E)

 {

 system(“cat sound_e.au > /dev/audio &”);

 }

}

void user_init()

{

 struct tm locTime, UTCtime;

 time_t ltime;

 time(<ime); /* get system time */

 locTime = *localtime(<ime);/* convert to struct
tm in local time */

 UTCtime = *gmtime(<ime);/* convert to struct
tm in UTC/GMT */

/* pass time and date back to statemate model */

seti(&BUR_TIME_MINS,locTime.tm_min);
42 Software Code Generator Interface Manual

Callbacks to Track Model Changes
seti(&BUR_TIME_HRS,locTime.tm_hour);

seti(&BUR_TIME_MTH,locTime.tm_mon);

seti(&BUR_TIME_YR,locTime.tm_year);

seti(&BUR_TIME_DATE,locTime.tm_mday);

/* monitor sound flag conditions in model */

set_cond_cbk(0,&SOUND_FLAG_A,ext_code_task_a,1);

set_cond_cbk(0,&SOUND_FLAG_B,ext_code_task_b,1);

set_cond_cbk(0,&SOUND_FLAG_C,ext_code_task_c,1);

set_cond_cbk(0,&SOUND_FLAG_D,ext_code_task_d,1);

set_cond_cbk(0,&SOUND_FLAG_E,ext_code_task_e,1);

}

void user_quit()

{

}

#endif

#ifdef m_g_enter_pin

static void g_enter_pin_user_init()

{

}

#endif
Rational Statemate 43

Supplementing Generated C
44 Software Code Generator Interface Manual

Supplementing Generated Ada
Implementing Primitive Activities
The file user_activities.a contains templates for every primitive activity that is to be implemented
in the compilation profile’s activity-stub options. Each selected primitive activity contains a stub with the
following format:

procedure user_code_for<activity_name> IS
-- Parameter :

-- Input <input data-elements>;
-- Output <output data-elements>;
-- Input/Output <Inout data-elements>;
--

begin
null ;
end;

The parameters list describes the interface of the activity to the rest of the model. Note that these
are not parameters in the programming-language sense. The parameters list is actually a reference
list that shows the context of the activity to be implemented in the model.

procedure user_code_for FFT IS
-- Input double sonar_datal;
-- Input double sonar_date2;
-- Output double processed_data;
--
begin

null ;
end ;

The previous example shows a primitive activity that represents an FFT filter. The data-items
sonar_data1, sonar_data2 are flowing into FFT, and the processed_data is flowing outside. This
is actually the interface of the FFT activity with the rest of the model. Mathematical processing functions
such as an FFT filter, are typical cases where something is implemented as a primitive activity, and the
algorithm could be taken from an existing library.
Rational Statemate 45

Supplementing Generated Ada
Once the user_activities.a file is generated, it is not overwritten when the code is regenerated. In
subsequent generations of the code, a user_activities.a_temp file is generated. If new templates are
generated, they should be merged from user_activities.a_temp into user_activities.a.

Note
Empty stubs stop right after activation and the sp (activity) event is generated in the next
step.

User Init and User Quit
The file user_activities.a contains USER_INIT procedure templates for the main module and for
every generic module.
For example:

separate (g_ACST_G)
procedure g_acst_g_USER_INIT is
begin

null;
end g_acst_g_USER_INIT;
with ac_mongo; use ac_mongo;
package body user_activities is

procedure USER_INIT is
begin

null;
end USER_INIT;

procedure USER_QUIT is
begin
null;
end USER_QUIT;

end user_activities

You can use the generic USER_INIT function to initialize local variables into generic module.

The code calls this procedure before the very first step is taken in the translated statecharts.
Therefore, you can use it for many types of initializations.

For example, you can add an actual piece of code to initialize various global structures in the code
supplied for primitive activities, to open windows, etc.
46 Software Code Generator Interface Manual

User Init and User Quit
Another important option is to initialize specification elements. Recall that all events, conditions
and data-items used in the specification have the following default values:

 events - not active
 conditions - false
 integer, real and bit-array data-items - zero
 textual data-items - blank string

The default value is used when there is no explicit initialization of an element before it is
referenced in an expression. However, you might wish to intentionally leave an element
uninitialized in the specification because you do not know the precise initial value. In such a case,
you want to be able to run the same prototype code with different initial values of the element and
to choose an appropriate one in a “trial and error” process. Once you choose an initial value, you
can add it to the specification. In other words, you tune the system specification by working with
the prototype derived from it.

For example, if you want to assign an initial value of true to the condition FAULT, and a value of 50
to the integer data-item LOW_BOUND which both belong to the chart EWS, you transform the template
into the following USER_INIT procedure:

procedure USER_INIT is
begin

setc (FAULT’ address, true);
seti (LOW_BOUND’ address,50)

end ;

Execution of the code may come to a point where all activities of the prototyped system become
non-active and thus the system must finish its work. This may be caused by various reasons: self-
termination of activities, explicit or implied actions stop or the command QUIT entered when
running the prototype Debugger.

In all cases where the system stops, the code performs a call to the procedure user_quit, intended
to support a graceful termination of the user extensions. The template of this procedure USER_QUIT
resides in the user_activity.a file:

procedure USER_QUIT is
begin

null ;
end USER_QUIT ;
Rational Statemate 47

Supplementing Generated Ada
Consider an example in which the prototype code is connected to a graphical mock-up of the
operator display. Suppose that among the user’s extensions there is a task responsible for I/O
interface between the code and the display. When a soft button is “pushed” on the display, the task
accepts an interrupt from the mouse and translates it into generation of an event sent to the
prototype code. When the system stops, this task must terminate. To achieve this goal, place an
abort statement for this task in the template USER_QUIT.

Synchronization of Primitive Activities
This portion discusses how primitive activities are integrated into the generated code.

User-written procedures are called when the system starts the corresponding activity (i.e.,
st!(<activity>)). In general, the user code and the generated code share the CPU time. That is, when
the user code is executed, the statechart’s code (or other user activities) are suspended. Therefore, the
Code Generator provides two types of user activities:

 Simple procedures
 Tasks

Procedures

A procedure-activity is executed in a one-shot - it is not preempted until it returns. Therefore, you
should use this mechanism for instantaneous activities (activities that execute for a short period of time).
Typically, these activities perform short calculations or non-blocking I/O operations, like displaying data
or drawing graphics. If the procedure mechanism is used for continuous calculations or delayed I/O, it
blocks the rest of the prototype from reacting properly to incoming events. Since a procedure-activity is
not being preempted, the suspend, stop and resume actions do not have any effect on them. When a
procedure-activity returns, the sp!() event is sent to the controlling code.

Tasks

The task mechanism allows you to integrate continuous or synchronized code into the primitive
activity. You do not have to define the Ada task yourself, it is defined by the Code Generator. You
specify the body of the task within the procedure template, which is generated in the
user_activities file.

A task activity is an Ada task that executes concurrently with the rest of the system. It can delay
itself, wait for events, and perform continuous calculations. When the task is executed, however,
the rest of the code is suspended. To remedy this situation, synchronization points may be defined
to allow the rescheduling of other tasks or the control code (main task) to proceed and the actions
stop and suspend to take effect. If your procedure returns, the stop_activity event is generated.
48 Software Code Generator Interface Manual

Synchronization of Primitive Activities
Synchronization

There are three types of synchronization calls:

 synchronize (activity_address);

The activity address is the address of the activity status variable defined in the package
where the activity is referenced.

 wait_for_event(event)

 Ada DELAY statement
Each one of these calls suspends the activity and reschedule another activity or the main_task
(statechart) on a round-robin policy.

The wait_for_event call suspends the activity until the specified event is generated. It is a way to
synchronize the activity with other activities (either user-implemented or statechart controlled). When the
event is generated, the code resumes execution after the wait call.

For example:

procedure sense_start IS

while true loop

wait_for_event (start’address);

-- check the status here

put_line(“start generated”) ;

end loop ;

end ;

The Ada DELAY statement delays the activity for the time specified in the call. It is useful to
implement polling processes that periodically perform checks on a time basis.

For example:

procedure poll_input IS

begin

while true loop

mouse_input := get_input_from_mouse ;

if mouse_input /= null

DELAY 0.1 ;

end loop ;

end ;
Rational Statemate 49

Supplementing Generated Ada
Note
The DELAY statement allows other activities to run, but stop and suspend do not take
effect. If you wish to stop or suspend the activity by other activities, add a synchronize call
after the DELAY statement.

The activity_synchronize is used when you have a lengthy calculation which is too long to be
executed without interruption. For example, if you have to multiply two 10000x10000 matrices, you do
not want the rest of the system to be blocked all that time. The activity_synchronize call allows
other activities to proceed, and the calling activity resumes execution in the next available time slot
unless a stop or suspend command is issued. The call should be placed in a loop in which one cycle can
be executed without preemption, but an outer loop may take too long.

procedure multiply IS

begin

for i in 1 . . 10000 loop

for s in 1 . . 10000 loop

-- internal loop

-- the internal loop is short enough to -- complete.

end loop

activity_synchronize(
acy_MULTIPLY’address);

end loop ;

end ;

Note
 No synchronization call should be used by a procedure implemented activity.

Tasks in Ada Code Belong to One of the Following Groups:
1. Basic activities that you asked (in the profile) to implement as tasks generated by the tool

2. Tasks that you manually add in the external code (in user_activities.a)

3. Tasks in run-time libraries:

– Intrinsics library:
SEMAPHORE, COLLECTOR, DELAYS_TASK

– Debugger library: TRACE_TASK
– Pge_Interface package: task responsible for accepting inputs from panels:

PANEL_DISPATCH
50 Software Code Generator Interface Manual

Synchronization of Primitive Activities
Creation and Start
All these are usual Ada tasks supported by the Ada language. In particular, the very declaration of
an Ada task does both creation and activation.

Aborting Tasks
Perform abort by using the Ada abort statement. Abort is done as follows:

1. User aborts his user-written tasks: where needed in the code he adds abort statements.

2. In addition, if code is generated with debug facilities, then to enable a proper termination,
command QUIT causes calls to procedures:

 FINISHING (found in file main_dbg__.a) aborts all tasks in Run Time Libraries.
 USER_QUIT (found in file user_activities.a) aborts all extra tasks.

Note
The PANEL_DISPATCH, and basic activities-tasks abort statements are generated
automatically. Abort statements for user written tasks should be added manually. The only
way to stop code generated without the debug facilities is by Ctrl-C. In this case, all
involved tasks also become terminated.
Rational Statemate 51

Supplementing Generated Ada
Interfacing With the Rational Statemate Model
The Code Generator produces procedures that can access model elements, which are abstract data
types.

There are three ways to interface with the Rational Statemate model:

 Procedures to modify values of events, conditions, and data-items. You have to call them
in your code whenever you wish to perform the manipulations of the elements. These
procedures are discussed in the following subsections.

 Set callback functions to respond to changes in the system. The code guarantees that such
a callback is called whenever the corresponding change occurs. This can be, for example,
displaying a message on the screen or assignment of an appropriate value to a variable
used in the user code.

 Ada does not support pointers to functions, so callbacks are supported using a switch/case
command with entries to each of the required elements.

Referencing Model Elements
Communication between the user-defined code and the generated code is accomplished through
the semantics of the following information elements:

 Events
 Conditions
 Data-items
 User-defined types

It is important to understand how to access the values of these elements and how to modify them.
Each element has the following representation in the Ada target language:

 Events and conditions are represented as bytes
 Data-items are represented as integers, reals, strings or unsigned
 User-defined types are derived from basic data-types
52 Software Code Generator Interface Manual

Referencing Model Elements
The following table shows the mapping between the Rational Statemate basic types and the
corresponding Ada types:

Where Elements are Defined

An element can be local or global to a module. The element is globally defined if it is referenced
by more than one module, i.e., defined in the top-level module. Each module “exports’ all its local
elements as externals in its package specification file. This allows other user modules to access
them. If you want to reference an element you must refer to its scope by WITHing the appropriate
package. An example is shown below.

Example:

If you want to reference an element BAUD_RATE defined in module display, you should
WITH the package display to make the element visible.

-- my module
WITH display; USE display;
package body my_package IS
.
br :=diBAUD_RATE ;
.
.

Rational Statemate
Types Ada Type

Conditions char (byte 0-false, 1-true)

Integer int

Real double

String char[]

Event char

Bit bit_array[1]

Bit array unsigned int

User Type struct

Record struct

Union struct

Enumerated Types typedef
Rational Statemate 53

Supplementing Generated Ada
Element Names in the Output Code

The element name in the object code is the same as in the Rational Statemate model. If a user-
defined element name is not unique, or if it conflicts with a reserved word in the target language, it
is changed in the code to contain a prefix that denotes its type and scope. Since the Rational
Statemate scopes are different from the modules in the output code, the names are not identical.
This avoids any ambiguities that might result from name duplications. The naming convention is
shown below:

prefix<STATEMATE_NAME>

Where prefix is determined as follows:

1. The type:

ev - event

co - condition

di - data-item

For activities the notation is:

 acy_<ACTIVITY_NAME>.

2. To resolve ambiguities:

If two elements have the same name in a module, a number is added to the prefix to
resolve the ambiguity. If an ambiguity occurs, refer to the cross-reference table in
the info-file to determine which is the correct element.

Example of two data-items with the same Rational Statemate name (Z):

di1Z, di2Z

In this case, you should look in the cross reference table to identify which one belongs to which
Rational Statemate scope.
54 Software Code Generator Interface Manual

Referencing Model Elements
Accessing an Element Value

Since the element is a simple language element, it can be easily accessed by referring to its name.

Example:

if(my_data = X + Y)then
...

Generating Events

Events are primitive elements and are special in the sense that software languages do not support
them directly. An event is active, or “high’, for only one step unless it is regenerated. The intrinsics
library supports this behavior via the “gen’ function. Once an event is generated via “gen’, the
intrinsics runtime module sets and resets the event at the right time. An active event signifies a
value of “1’ in the byte that represents that event.

gen (event:address);

Example:

gen(E1’address);

Note that the function expects an address of an event element. Direct setting of an event, i.e., e1:
= true causes the code to behave incorrectly since the intrinsics module does not handle this situation.

Assigning Values to Rational Statemate Elements

Since model elements follow Rational Statemate semantics, their assignments should be
synchronized to the beginning of the next step (cycle). A direct assignment such as

X := Y + 1 ;

might result in racing condition especially when the data/condition element
is shared between two concurrent activities. The synchronized assignments are
implemented via a set of service calls supported by the intrinsics library.
The following is the synchronized assignment call for the above assignment.

seti(X’address, Y+1) ;

There are cases where using direct or deferred assignments do not make a difference, however,
you should avoid using direct assignments.
Rational Statemate 55

Supplementing Generated Ada
Arrays

The intrinsics library offers a set of procedures that apply deferred assignments to the different
types of Rational Statemate data-items. The assignment interface calls for each Rational Statemate
type are listed in the following table:

The following APIs can be used to set arrays or slices of arrays. They all take source and
destination arrays, and length. In case of slice assignment such as a1(3..5):=a2(1..3), the following
call does:

set_array_<type>(a1(3..5)’address,a2(1..3)’address,3);

Arrays of Bit-arrays:
For assignments between arrays and bit-arrays

 procedure SET_ARRAY_BA(TRG_ADR : ADDRESS;
LEN_TRG, TRG_BITS: INTEGER32;
SRC_VAL_ADR :ADDRESS;
LEN_SRC, SRC_BITS : INTEGER32)

Array of Events:
procedure GEN_ARRAY(E : ADDRESS;LEN:INTEGER);

Array of Queues:
procedure SET_ARRAY_QUEUE(C:ADDRESS; VAL : QUEUE_ARR);

Array of Reals (assigning integer values):
procedure SET_I2R_ARRAY (C : ADDRESS; VAL : INT_ARR);

Data Item Type Procedures

Bit: procedure seti(i: address; val: integer32);

Condition: procedure setc(cond: address; new_value : boolean);

Real data-item: procedure setf(r: address; val:float);

Integer Data-item: procedure seti(i: address; val: integer32);

String Data-item: procedure sets (s: address; val: string);

Bit-arrays: procedure SETBA (BA_TRG : ADDRESS;
TRG_L,TRG_FROM, TRG_TO ; INTERGER; BA_SRC :
ADDRESS; SRC_L,SRC_FROM, SRC_TO : INTEGER):
56 Software Code Generator Interface Manual

Referencing Model Elements
Array of Integers (assigning real values):
procedure SET_R2I_ARRAY (C : ADDRESS; VAL : REAL_ARR);

Array of Integers:
procedure SET_I_ARRAY (C : ADDRESS; VAL : INT_ARR);

Array of Reals:
procedure SET_R_ARRAY (C : ADDRESS; VAL : REAL_ARR);

Array of Conditions:
procedure SET_C_ARRAY (C : ADDRESS; VAL : COND_ARR)

Array of Strings:
procedure SET_S_ARRAY(C : ADDRESS; VAL_ADR: ADDRESS ; NUM_ELEM,

STR_LEN_SRC, STR_LEN_TRG : INTERGER);

Example:

The following is a supplemented basic activity that processes X,Y and generates two events
according to the result : PROCESS_OK and PROCESS_ERROR.

 procedure user_code_for_filter IS
-- Parameters:
-- Input int X;
-- Input int Y;
-- Output event PROCESS_OK;
-- Output event PROCESS_ERROR;
BEGIN
 NULL;
END;

The supplemented procedure is shown below:

 procedure user_code_for_filter IS --Parameters; --Input int X; --
Input int Y;

-- Output event PROCESS OK;
BEGIN

apply_filter(X,Y,Z);
-- function,operates on X,Y
If in_range(Z)THEN

gen(PROCESS_OK’address);
ELSE

gen(PROCESS_ERROR’address);
 END IF;
END;
Rational Statemate 57

Supplementing Generated Ada
Bit Arrays

Bit-arrays are stored in unsigned ints. Since unsigned ints can hold a maximum of 32 bits, bit-
arrays larger than 32 bits are stored in arrays of unsigned ints. Arrays of bit-arrays are stored in
two dimensional arrays of unsigned ints. Notice that multiple bit-arrays smaller than 32 bits are
NOT packed into the unsigned int.

The examples below are of Rational Statemate elements and the resulting definitions found in the
generated code and in the Rational Statemate Ada libraries.

Rational Statemate Elements:

BA1 is Array 1 to 10 of Bit-array 31 downto 0
BA2 is Array 1 to 10 of Bit-array 48 downto 0
BA3 is Array 1 to 10 of Bit-array 3 down to 0

In the Generated Code:

BA1 : u_ba32_arr(1..10) ;
BA2 : u_ba49_arr(1..10) ;
BA3 : u_ba4_arr(1..10) ;

type u_ba32_arr is array(natural rand <>) of u_ba32;
subtype u_ba32 is BITS_ARRAYS (1..1);
type u_ba49_arr is array (natural range <>) of u_ba49;
subtype u_ba49 is BIT_ARRAY (1..2);
type u_ba4 is array(natural range<>) of u_ba4;
subtype u_ba4 is BITS_ARRAY (1..1);

BITS_ARRAY is defined in the intrinsics package as follows:

type BITS_ARRAY is array(NATURAL range<>) of
INTERGER32;
58 Software Code Generator Interface Manual

Referencing Model Elements
Bit Array Functions
function AND_B(BA1 : ADDRESS;

L_BA1, FROM1, TO1 : INTEGER32;

BA2 : ADDRESS;
L_BA2, FROM2, TO2 : INTEGER32)
return ADDRESS;

function NAND(BA1 : ADDRESS;
 L_BA1, FROM1, TO1 : INTEGER32;
BA2 : ADDRESS;
 L_BA2, FROM2, TO2 : INTEGER32)
 return ADDRESS;

function NOT_B(BA : ADDRESS;
L_BA, FROM, TO : INTEGER32)
 return ADDRESS;

function OR_B(BA1 : ADDRESS;
L_BA1, FROM1, TO1 : INTEGER32;
 BA2 : ADDRESS;
 L_BA2, FROM2, TO2 : INTEGER32)
 return ADDRESS;

function XOR_B(BA1 : ADDRESS;
L_BA1, FROM1, TO1 : INTEGER32;
 BA2 : ADDRESS;
 LBA2, FROM2, TO2 : INTEGER32)
 return ADDRESS;

function NOR(BA1 : ADDRESS;
L_BA1, FROM1, TO1 : INTEGER32;
 BA2 : ADDRESS;
 L_BA2, FROM2, TO2 : INTEGER32)
 return ADDRESS;

function NXOR(BA1 : ADDRESS;
 L_BA1, FROM1, TO1 : INTEGER32;
 BA2 : ADDRESS;
 L_BA2, FROM2, TO2 : INTEGER32)
 return ADDRESS;

function LSHL(BA : ADDRESS;
 LEN_BA,FROM,TO,SHIFT : INTEGER32)
 return ADDRESS;
Rational Statemate 59

Supplementing Generated Ada
function LSHR(BA : ADDRESS;
 LEN_BA,FROM,TO,SHIFT : INTEGER32)

 return ADDRESS;

function ASHL(BA : ADDRESS;
LEN_BA,FROM,TO,SHIFT : INTEGER32)
return ADDRESS;

function ASHR(BA : ADDRESS;
LEN_BA,FROM, TO, SHIFT : INTEGER32)
 return ADDRESS;

function CONCAT_BA(BA1 : ADDRESS;
LEN_BA1, FROM1, TO1 : INTEGER32;

 BA2 : ADDRESS;
LEN_BA2, FROM2, TO2 : INTEGER32)
return ADDRESS;

function SIGNED_B(BA : ADDRESS;
LEN_BA, FROM, TO : INTEGER32)
return INTEGER;

function BITS_OF(I_VAL : INTEGER32;
FROM, TO : INTEGER32)
 return ADDRESS;

function MUX(BA1 : ADDRESS;
 L_BA1, FROM1, TO1 : INTEGER32;
 BA2 : ADDRESS;
 L_BA2,FROM2,TO2,SEL : INTEGER32)

return ADDRESS;

function EQBA(BA1: ADDRESS;
AR1_LENGTH, FROM1, TO1 : INTEGER32;
 BA2 : ADDRESS;
 AR2_LENGTH, FROM2, TO2 : INTEGER32)

 return BOOLEAN;

function EQ_ARRAY_BA(BA1 : ADDRESS;
AR_LENGTH : INTEGER32;
L_BITS1 : INTEGER32;
BA2 : ADDRESS;
L_BITS2 : INTEGER32) return BOOLEAN;

function I2BA(VALUE : INTEGER32)
return BITS_ARRAY;
60 Software Code Generator Interface Manual

Referencing Model Elements
function I2BA(VALUE : INTEGER32) return ADDRESS;

function BA2INT(BA : ADDRESS;
LEN_BA, FROM, TO : INTEGER32)
return INTEGER32;

function EXPAND_BIT(BIT_VAL : INTEGER32;
 LEN_BA : INTEGER32) return ADDRESS;

function MINUS(BA : ADDRESS;
 LEN_BA, FROM, TO : INTEGER32)

 return ADDRESS;

Procedure ASSIGN_BA(TRG_BA : ADDRESS;
TRG_LEN_BA: INTEGER32;
BA : ADDRESS;
LEN_BA, FROM, TO : INTEGER32) ;

function GET_SLICE(BA : ADDRESS;
LEN_BA, FROM, TO : INTEGER32)
return ADDRESS;
Rational Statemate 61

Supplementing Generated Ada
Structured Elements
For complex Data-Items in the Rational Statemate model (e.g. , a Data-Item record) a type is defined for
the Data-Item. This happens even if the Data-Item is not defined as a user type. The type declaration is
placed in the same package specification as the declaration for the Data-Item. These implicitly defined
types are treated the same way as ordinary User-Defined Types.

Rational Statemate defines structured elements and user-defined types in a file called <profile
name>_type_utils.a, and assigns names to the types based on the name of the Data-Item and the
characters ty as a suffix. For example,

 RECORDty RECA;
 UNIONty UNIONA;
 USER-DEFINED USER[1];

Records and Unions

Rational Statemate records and unions are translated into Ada records. For example, a record
INVOICE_TYPE is translated into:

type INVOICE_TYPE is record
 NAME : string(1..81);
 ITEM : string(1..81);
 AMOUNT : float64;

 end record;

Note that the name INVOICE_TYPE is normally named the same as the User-Defined Type name. If,
however, the Rational Statemate model contains multiple textual elements with the same name, the
Ada code names is modified to make all the names unique. This name mapping information is
listed in the .info file.
62 Software Code Generator Interface Manual

Structured Elements
Enumerated Types

An Enumerated Type is a user-defined type with a finite number of values.

You cannot directly define a data item as an enumerated type. First, define the data item as a user-
defined type, and then define the user-defined type as an enumerated type. You define the values
for the enumeration in the “Definition’ field of the Properties by listing the values in brackets
separated by commas. For example, {SUN,MON,TUE,WED}

Enumerated values and other textual items cannot have the same name within the same scope. For
example, data-item SUN cannot be declared in the same chart where an enumerated value SUN is
declared.

Note
Ada provides a way to define a subtype of an enumerated type. This subtype element
usually can hold a subrange of enumeration values of the enumerated type. These types and
subtypes can be related and used together in expressions. Run-time errors are issued when
“out of range’ values are assigned to a subtype.

The definition of a subtype is only allowed for user-defined types, not for data-items.

There are two constant operators and five general operators for enumerated types:

Parameters to these constant operators are user-defined types that were defined as enumerated
types.

Parameters to these operators are either enumerated values (literals) or variables. The T’VAL
notation is used for non-unique literals.

Constant Operators Description

T’FIRST First enumerated value of T

T’LAST Last enumerated value of T

General Operators Description

T’SUCC Successor enumerated value of T

T’PRED Predecessor enumerated value of T

T’ORD Ordinal position of VAL in T

T’VAL Value of the i’th element in T

T’IMAGE String representation of VAL in T
Rational Statemate 63

Supplementing Generated Ada
User-Defined Type Functions
There are a number of functions provided for manipulating Rational Statemate model variables
that should be used when augmenting the Rational Statemate generated code.

Note
Rational Statemate variable values may be read by checking the correct variable name.
Value changes, however, should not be made directly to the same variable. All value
changes are made through a list of variables to be updated. This list is affected through a
variety of functions created by the code generator.

Use the call seti(variable_name’address, value); to set any (primitive) integer variable to a
desired value. Other similar calls provide the ability to set conditions, strings, real numbers, etc. In
addition to these general functions, the Code Generator creates similar functions that are specific to each
User-Defined Type (UDT).

Every UDT has the following functions defined for it:

procedure SET_<type> (A : address ; B : address);

It uses the update list to assign A:=B. The user-code should not make direct assignments to
Rational Statemate variables. Use the following set functions to test for equality:

function EQ_<type> (A : address ; B : address):

Returns TRUE if the elements A and B are equal.

For every type that has a corresponding _event declaration, the following functions are defined:

function ALL_<type>
(A : <type>_event) return boolean;

These functions test to see if all the events that form A are currently generated. This example only
applies to RD<element> and WR<element>.

procedure GEN_<type>
(A : <type> (A : <type>_event);

These functions generate all the events in A. This only applies to RD<element> and WR<element>.

These functions create and initialize complex data-types.

procedure INIT_<type> (A : address);
64 Software Code Generator Interface Manual

Queue Functions
Queue Functions
Queues are implemented as linked lists in the generated code. Each node in the linked list contains
a pointer to an element. Access the lists using the access functions described in the following table:

All queue manipulation is done using memory allocation for elements added to the queue and
freeing the memory when the elements are removed or deleted from the queue. The memory
allocation and freeing is done automatically so there is no need to preserve the value of element
after the Q_PUT() or Q_UPUT() procedure is called.

The queue manipulation functions work through the update list, so if some elements are put into a
queue, they are not in the queue until the end of the step.

Function Description

SETQ To return the length of the queue Q, use the following function.

procedure SETQ(Q : ADDRESS; ELEMENT : ADDRESS; Q_EL_SIZE :
INTEGER);

Q_GET To remove an element from the head of the queue and put it into an element,
use the following function. (The status is TRUE if there was an element to get. If
the status is passed as NULL, no status value is returned.)

procedure Q_GET(Q : ADDRESS; ELEMENT :ADDRESS; STATUS :
ADDRESS);

Q_PEEK To copy an element from the Q, use the following function. This is the same as
Q_GET, except the TOP queue element is not removed from the queue it is only
copied.

procedure Q_PEEK(Q: ADDRESS; ELEMENT : ADDRESS; STATUS :
ADDRESS);

Q_INITIALIZE To create your own queues, use the following function to initialize the queue
before use. The queue starts empty.

procedure Q_INITIALIZE(Q:ADDRESS ; Q_EL_SIZE :INTEGER);

Q_PUT To put an element at the end of Q, use the following function.

procedure Q_PUT(Q:ADDRESS; ELEMENT : ADDRESS; Q_EL_SIZE :
INTEGER):

Q_UPUT To put an element at the head of Q, use the following function.

procedure Q_UPUT(Q:ADDRESS; ELELMENT : ADDRESS; Q_EL_SIZE :
INTEGER);

Q_FLUSH To delete all the elements in Q, use the following function.

procedure Q_FLUSH(Q : ADDRESS);
Rational Statemate 65

Supplementing Generated Ada
String Functions
function CHAR_TO_ASCII(STR: string) return integer;

function ASCII_TO_CHAR(INT_VAL:integer) return string;

function STRING_EXTRACT(STR:string ;
INDEX : integer; LENGTH : integer) return string;

function STRING_INDEX (STR:string ;
 OFFSET: integer;SUBSTR : string) return integer;

function INT_TO_STRING(INT_VAL:integer) return string;

function STRING_TO_INT(STR : string) return integer;

function STRING_LENGTH(STR :string) return integer;

function STRING_CONCAT(STR_DEST : string;
 STR_SRC : string) return string ;

READ, WRITTEN, CHANGED, TRUE, and FALSE in
Complex Data Types

Sensing how the rd() , wr() , and ch() events, as well as tr() and fs(), are related to complex Data-Types
requires the Code Generator to create some additional Data-Types and variables. These type
declarations are put in the same header file as the type declaration for the complex type itself. Remember
that the names and number of header files varies, based on whether the Separate File per Statechart
option was selected in the profile under Options > Module Settings.

Additional types are required for wr() and rd() as well as additional variable declarations. These
additional types have similar structures to the complex types themselves. The type have fields with the
same name but the types of the fields are EVENTS. These are used to store the event of WRITTEN or
READ for each of the fields of the complex type.

A separate variable is defined for rd() and wr(). Each is defined as a type
COMPLEX_VARIABLE_NAME_event. The name of the variables is the same as the complex type itself,
with either wr or rd prefixed, as appropriate. One or more fields in the wr or rd variable is set when these
fields are READ or WRITTEN. This is found in the procedure for the action that sets or uses the
referenced field values.
66 Software Code Generator Interface Manual

Detecting Changes in Value
If one or more of statements ch() , tr() , or fs() are used in the model, an additional variable is needed
that saves the previous value of the referenced model variable. This variable has the same type as the
complex variable, and the same name as the complex variable with the letters prev_ prefixed.

This is the same scheme that is used for primitive variables in the code generator. It has been
extended to work with complex variables as well.

Note
The prev_ variable is updated every step and using wr and rd has an impact on the
performance of the generated code. You should use it discriminatively. Sometimes, it may
be more efficient to create your own X_CHANGED flag that is set only when needed.

Detecting Changes in Value
If the event expression ch(), tr() or fs() is applied to an expression that uses a Data-Item or condition, it
is necessary to preserve the previous value of the element. This is done by maintaining a duplicate copy
of the element that is updated at the end of every step. (This makes detecting ch() on a large array or
complex record a very slow process, because it takes time on every step.) The duplicate copy of the
variable is named prev_<element>.

The following table lists the affected element types:

Note

 Element—is the name of the element as listed in the .info file. This is normally
the same as the Element Name in the Properties, unless there are duplicate
Element Names.

 Type—is the name of the User-Defined Type. It is also listed in the info file.

Element Type Variable Name Purpose

User-Defined Type <type> define base Data-Item

User-Defined Type <type>_event define rd() and wr()

Data-Item <element> holds value of Data-Item

Data-Item WR<element> holds wr() event for Data-Item

Data-Item RD<element> holds rd() event for Data-Item

Data-Item prev_<element> holds old value of the Data-Item
Rational Statemate 67

Supplementing Generated Ada
Implementing a Function to Get External Inputs

You should create a separate task, using the tasking functions described in “Synchronization of
Primitive Activities” of this section. The task can be initiated in the user_init() function in the
user_activities.a module.

Use the input task to read inputs from the environment (possibly from the keyboard or an input
file), and use the value setting functions to insert the changes into the Rational Statemate model. In
order to simulate the passage of time, the delay function should be used between inputs.

The outputs can be captured using the event callback mechanism, or they can be polled using a
separate task.
68 Software Code Generator Interface Manual

Index
A
activities 8, 39
Ada

accessing an element value 55
assigning values 55
bit 56
bit arrays 58
callbacks 6
condition 56
defining elements 53
element names in output code 54
generating events 55
hooks 6
implementing primitive activities 45
integer data-item 56
output code 54
primitive activities 48
procedure-activity 48
procedures 48
real data-item 56
referencing model elements 52
string data-item 56
supplemented procedure 57
synchronization types 49
tasks 48
user init and user quit 46
value elements 55

auto-generated code
communication with user-defined 20, 52

B
bit-array functions 27, 59

C
C code

aborting tasks 18
accessing an element value 23
activities 39
assigning values 23
bit 24
bit arrays 26
callbacks for compound elements 39
condition 24

controlling tasks 18
creating tasks 17
data-items 36
defining elements 21
element names in output code 22
generating events 23
hooks 6
implementing primitive activities 11
integer data-item 24
interfacing with model 20
output code 22
procedure-activity 14
procedures 14
real data-item 24
referencing model elements 20
restrictions 19
scheduler package 16
scheduling policy 19
states 39
string data-item 25
supplemented files 2
supplemented procedure 26
synchronizing calls 15
synchronizing primitive activities 14
task status 16
tasks 14
tracking model changes 36
user init and user quit 12
value elements 23

callbacks 6–10, 39, 52
defining 35

callbacks for compound elements 39
case command 52
context switch 19

E
Element Selection for Textual Hooks dialog 8
elements 35, 67

type 35, 67
events 34, 66

COMPLEX_VARIABLE_NAME 34, 66

F
function calls
Rational Statemate 69

Index
&variable_name 32

H
hooks 6–10

activities 8
in Ada 6
in C 6
states 10
textual elements 8

I
interface calls 24, 56
intrinsics library 24, 56

M
main_task 15
make 4
model elements

modifying values 20, 52

P
primitive activities

synchronizing 14, 48
procedure

make 4
procedures 4, 14

Q
queues

functions 33, 65

R
Rational Statemate

interfacing with Model 20
referencing model elements 20, 52

Rational Statemate elements
assigning values 23, 55

Rational Statemate type
interface calls 24

S
sched_delay 15
sched_wait_for_event 15
scheduler 15
scheduler package 16, 18

special services 18
scheduling

C code 19
Selection of Activities dialog 8
Selection of States dialog 10
states 10
string functions 34
stubs 4
supplementing Ada 1
switch command 52

T
task

aborting 18
creating 16
make 5

task mechanism 48
tasks 5, 14
textual elements 8
type 35, 67
typedef statement 29

U
unions 30
user defined type functions 32, 64
user init 12, 46
user quit 12, 46
user_activities.a file 46
user_activities_.c file 12
user-defined code

communication 20, 52

V
variable names 35, 67
variables 34, 66

creating 34, 66
70 Software Code Generator Interface Manual

	Contents
	Software Code Generator Overview
	Code Architecture and the Generator
	User Supplemented Files
	C Code
	Ada Code
	Supplementing the C Code

	Stubs: Procedures or Tasks
	Make PROCEDURE
	Make Task

	Hooks and Callbacks
	Hooks in Generated Code
	Hooks in C
	Hooks in Ada
	Hooks for Textual Elements

	Activities
	States

	Supplementing Generated C
	Implementation of Primitive Activities
	User Init and User Quit
	Synchronization of Primitive Activities
	Procedures
	Tasks
	Synchronization

	Scheduler Package
	Status of a Task
	Creating a Task
	Controlling a Task
	Aborting a Task
	Special Services
	Scheduling Policy
	Restrictions
	Interfacing With the Rational Statemate Model

	Referencing Model Elements
	Where Elements are Defined
	Element Names in the Output Code
	Accessing an Element Value
	Generating Events
	Assigning Values to Rational Statemate Elements
	Example
	Bit Arrays

	Structured Elements
	Records
	Unions
	Enumerated Types

	User-Defined Type Functions
	Queue Functions
	String Functions
	READ, WRITTEN, CHANGED, TRUE, and FALSE in Complex Data Types
	Detecting Changes in Value
	Callbacks to Track Model Changes
	Data-items
	States
	Activities
	Callbacks for Compound Elements
	Callback Example

	Supplementing Generated Ada
	Implementing Primitive Activities
	User Init and User Quit
	Synchronization of Primitive Activities
	Procedures
	Tasks
	Synchronization
	Tasks in Ada Code Belong to One of the Following Groups:
	Creation and Start
	Aborting Tasks

	Interfacing With the Rational Statemate Model
	Referencing Model Elements
	Where Elements are Defined
	Element Names in the Output Code
	Accessing an Element Value
	Generating Events
	Assigning Values to Rational Statemate Elements
	Arrays
	Arrays of Bit-arrays:
	Array of Events:
	Array of Queues:
	Array of Reals (assigning integer values):
	Array of Integers (assigning real values):
	Array of Integers:
	Array of Reals:
	Array of Conditions:
	Array of Strings:

	Bit Arrays
	Bit Array Functions

	Structured Elements
	Records and Unions
	Enumerated Types

	User-Defined Type Functions
	Queue Functions
	String Functions
	READ, WRITTEN, CHANGED, TRUE, and FALSE in Complex Data Types
	Detecting Changes in Value
	Implementing a Function to Get External Inputs

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

