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MicroC Overview

MicroC is a graphical software design and implementation tool that supports the development of
embedded real-time software for micro-controllers. The focus of the tool is to support the process
of developing software pieces while targeting small micro-controllers. The support to design-level
debugging, testing — both interactively and in batch mode and analysis of runs is implemented
through various instrumentation of the generated code. The output of the tool is a compact,
readable ANSI C code, with support to local extensions of the standard C, as well as automatically
generated design documentation. MicroC uses an Operating System Implementation (OSlI)
definition to describe the implementation of the software and hardware target environment for a
given design. Any one OSI might support only a subset of the design concepts referred to above.
As a general rule, the tool tries to make use of any such design aspect/concept it encounters in the
model. If the given OSI has no support for that design aspect/concept, an error message is
produced.

Code is generated directly within MicroC based on a graphical model that represents the full
functionality of the application being designed. There are four basic graphical tools used to define
the application. These include:

S Statecharts
Activity Charts
S Flowcharts

S Truth Tables

Each graphical tool has an associated graphical design language that allows the designer to be very
precise in defining the functional role of each graphical element. The graphical elements can be
supplemented by linking in user supplied C and/or Assembly Language code.

(0p

All of the graphical elements are stored in an internal database that contains associated data about
each element. The Data Dictionary tool is used to define and manage the various data elements as
well as various other properties of both the textual and the graphical entities in the model.

Rational Statemate 1



MicroC Overview

Properties can be applied to data or to tasks. Data properties are typically defined as Exact Type,
although integer types can be BYTE-defined for as appropriate for specific system architectures.
Task properties are defined with a Task Priority in the model.

MicroC also includes a Check Model utility that serves as a model checker (somewhat like a
precompiler) to detect and warn of incomplete definitions as well as common design pitfalls to
help reduce development time and increase the quality of the generated code.

Scope of this Guide

Before the inherent aspects/concepts supported by the tool are described, it is important that you
understand the scope and limitations of this material. The recommendations given throughout this
document are intended to serve as design guidelines for advanced programmers concerned with
details of OSI definition and use. By no mean do they guarantee the safety, correctness or any
other property of the application developed using MicroC. This is the sole responsibility of the
designer.

The functional details presented here do not imply, by any means, any limitation on the developed
features of the Languages Supported by MicroC application code. Because C and Assembly
language functions are a part of a Micro model, as well as any existing (i.e. legacy) libraries and
sources, everything that can be done in those languages can be done within the MicroC model.

2 MicroC Programming Syle Guide



Languages Supported by MicroC

Languages Supported by MicroC

The languages used in MicroC can be both graphical and/or non-graphical (i.e. textual).

Graphical Languages

Structuring Language: Activity chart

The software structure is defined in the top-level Activity chart. In this graphical view of the
application, the architecture of the software being developed is determined. TASKSs and Interrupt
Service Routines (ISRs) are defined as well as the functional content of them.

Another design level definition is done here. The bindings of signals to physical hardware ports
and addresses is done using the flow lines to and from the various TASKs and ISRs in the chart.
The generated application architecture is defined, by the user, in this view. TASK and ISR code
frames are generated, according to the specific properties of the TASK/ISR. A TASK/ISR code
frame invokes the Activities mapped underneath the TASK/ISR.

Decomposition Language: Activity Chart

This is a data-flow oriented graphical language. Functionality, in here referred to as “Activity
behavior” is defined using the, well known, decomposition method. Each required functionality,
i.e., “Activity” is sub-divided into functions, i.e., “Sub-Activities” that might be further divided
into even smaller “Sub-Activities,” until no further decomposition is needed.

When no further decomposition is needed, the “Basic Activities” are defined — those that
implement certain functionality. The implementation might be defined using the various languages
described below.

The code generated for an Activity is a function (or a C Preprocessor macro). For a non-basic
Activity, the function calls each of the Activity’s sub-Activity functions. For a basic Activity, the
function contains the implementation code.

Rational Statemate 3
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Activity Behavior: Graphical Implementation Languages

Statecharts

Statecharts are hierarchical state transition diagrams. That language is best in describing
application modes and transitions between the modes, as well as application reaction to various
events in each of the modes. This discrete behavioral language is very much powerful in
describing such application modes and transitions between those modes. When other calculations
needs to be defined, that are not mode-based, other languages, those that are described below,
should be considered.

The implementation of Statecharts in MicroC is compact and efficient. The application uses a
State Variable per each of the Activities implemented by a Statechart. States are encoded to reuse
RAM bits. Several synthesis algorithms are used to reduce both the RAM and the ROM required
to implement a Statechart on a base of “Pay for what is used”. The user should be aware that as the
application maintains the State Variable, certain code (i.e., RAM and ROM) is required.
Therefore, it is recommended to use that language whenever that information, i.e., the application
state, is required.

Flowcharts

Here we refer to regular Flowcharts. Iterative algorithms, if-then-else constructs, switch
statements and direct calculations should normally be defined as a flowchart. That graphical
language enables the user to graphically debug the algorithm, and it recommended to be used
whenever the calculation is not mode-based and the specific calculation can not enjoy the benefits
of the other textual languages, listed below.

The code of a Flowchart runs from beginning to end, without stopping. If the Flowchart is ever run
again, it starts from the beginning. The code generator tries to minimize the number of goto
statements that are needed. This makes the code readable and structured.

Examples that benefit from flowcharts: tuning a radio via incremental frequency adjustment... is it
tuned? y/n, stop or increment frequency.

4 MicroC Programming Syle Guide



Languages Supported by MicroC

Textual Languages

Textual, Non-Graphical, Implementation Languages are used to define Activity behavior.

Truth Table

The functionality of Activity might be directly defined using Truth Table. Truth Table is a table
describing the inputs, the resulting outputs and the actions performed. Truth Tables are
recommended to be used when the Activity has many inputs to consider and few states/modes to
be in.

When the Truth Table is defined in a reduced form, it will be reflected in the generated code. This
enables the user to build highly efficient implementations. For example: Radios are prime
examples, once on they respond to button presses, perform an action and return to the on state.
Another such function could be a climate control controller, once on and in control mode, button
presses are generally responded to and the control state returned to.

Mini-Spec, using the Rational Statemate Action Language
Two modes of Activities may use the Activity’s Mini-Spec as implementation:

S Reactive Activities

When the functionality is best defined as pairs of triggers and actions, that language is the
most suitable to define that behavior. The syntax is exactly trigger and action: E/A thus
directly expresses the required behavior.

This textual language allows most clear, straight forward and compact implementation
when the required functionality might be defined as a set of triggers and resulting actions.

For example: On/Off Behavior like the following:
Button1Press/turn_on(); tri(Lampl);;
Button2Press/fs!(Lamp1l); shutdown();;

~

S Procedural Activities

When the functionality is a pure calculation, defined as a sequence of “if then else,”
iterations and numerical calculations that language might be used. It is similar in its
expressiveness to the Flowchart graphical language, however it does not requires any
graphics, thus might be faster to complete when the algorithm is already proved to be
correct.

This textual language is the Rational Statemate Action Language. .

Rational Statemate 5



MicroC Overview

Time Model and Related Time Operators

MicroC has three model constructs that have a notion of time:

S Timeout and delay operators; referring to Software Counter(s)

S Schedule operator; referring to Timer

S Periodic Task; referring to Timer
Keep in mind that the concept of a Timer might not be supported on all targets. For example, in the
mainloop_sc  OSI supplied with MicroC there is no direct support for a Timer.

The tool assumes the existence of a primary single Software Counter. It is determined within the
compilation profile whether this defaults to SYS_TIMER and possibly Timer(s). Applications
might use humerous software counters and timers.

Timeout and delay operators, referring to “Software Counter”(s):

delay(delaytime) (dly) Related to the Primary Software
Counter .
timeout (anevent, Relatg_d to the Software_ Counter
delaytime [, counterid) specified by theounter_id
(tm)
Delay() expires delay_time after entering the state connected to the transition with the delay

trigger/reaction.

Timeout() ~ expires delay time  after an_event occurs, while the application is staying in the
current state waiting for the timeout.

Related to the Software Counter specified by the counter_id

Note
When the 3rd argument is omitted in timeout(), the primary “Software Counter” is used.

Delay is actually tm(en(S), d-time) where S is the state name. Delaysand Timeoutsare
“Soft” and “Passive.” This means that they are relatively cheap to implement internally, using 1 or
less Timeout Variable Typeariables and 1 or less bits of memory (i.e. RAM).

The actual delay might be greater than or equal to (i.e. >=) the specified delay, depends on the
cycle used to schedule the task where the timeout is specified. It is conceivable that this might
never occur. The actual implementation of the software counters is defined in the OSI.
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Time Model and Related Time Operators

The Schedule Operator refers to a hardware timer, Timer:
schedule(an_event, sc_time [, sc_cycle]) (sc)
schedule(an_action, sc_time [, sc_cycle]) (sc)
schedule(an_expression, sc_time [, sc_cycle]) (sc)

Note the optional cycle expressed as the 3 rd parameter to sc!(exp, delay, cycle ). The timer
might be defined in the data dictionary of the scheduled operand (e.g. event or action), or
automatically by the tool. Note that this type of timer is potentially more expensive than the delay
operator. Actual invocation time accuracy and cost depends upon the Timer implementation.
Hardware timers are very accurate and Active however they are typically a scarce and expensive
resource.

The actual implementation of the timers is defined in the OSI.

Asynchronous Aspects of MicroC
In a MicroC model we identify two basic forms of asynchronicity:

S Interrupt Service Routine (ISR)
S Task

Interrupt Service Routine

MicroC ISR - A Reactive Component that Models Interrupt Service Routine, with associated data
and functionality, defined as an Activity sub-type. Might run at any time, regardless of the internal
application® state. In some environments, when having interrupt levels, an ISR run might be
interrupted and preempt by a higher priority interrupt.

TASK

MicroC Task: Reactive Component with associated interface, data and functionality, defined as an
Activity sub-type. A “MicroC TASK” might be defined as a TASK in the environment, thus
running on its own, like in OSEK, or might be plugged into existing time slice (also called TASK),
using the OSI “Link with Scheduler” mechanism. MicroC Tasks run independent of each other.
According to the environment, a TASK run might be interrupted and preempt by a higher priority
TASK, or an interrupt.

Rational Statemate 7



MicroC Overview

MicroC recognizes two Task running modes 2,3:

1. RUN_TO_TERMINATE: That MicroC Task will run, once entered the function frame,
until it has stabilized, and then will leave the function frame (return, terminate, etc.)

2. RUN_TO_WAIT_EVENT: That MicroC Task will run, once entered the function frame,
and will never leave 2 the function frame. It will be active until it has stabilized, i.e., it
finished its calculation, and then it will enter a rescheduling call defined as “Wait for
Event”/”Wait for Multiple Events”.

Note: Use the Data Dictionary->Design Attributes-> Use Active Bitflag.

Actual implementation details of TASK/ISR is defined in the OSI.

Note

S Some of the OSIs (for example, the mainloop_sc) might support only a subset of
those.

S Thereisa mode, named “Use Active Bit” that allows further control and actually
enables even such Tasks to sometimes return/terminate.

Synchronization

Synchronization can be implemented using Semaphoreand Signal (TASK Event).

Synchronization: Semaphore

Used to co-ordinate accesses to shared resources such as memory or hardware by asynchronous
entities, modeled as CONDITION sub type. Supported with special operators:

get(SEM1) (gth)
release(SEM1) (rl!)

The actual implementation of those operators is defined in the OSI.

Note
Once defined as Semaphore, the condition can no longer be used as a regular condition.
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Time Model and Related Time Operators

Synchronization: Signal (TASK Event)
Used to signal to a TASK on some occurrence like timer expiration, message arrival etc., modeled
using EVENT sub typed as TASK Event. Used like regular events:
S As Trigger, to wait on the event
S As Action, to set (generate) the Event
The actual implementation is defined in the OSI.

Serial Communication / Messages

Messages are modeled using DATA ITEM sub typed as message. Supported with special
operators:

send(MESS_DI1) (sn!)
receive(MESS_DI2) (rc!)

The actual implementation of those operators is defined in the OSI.

Timers
Means to schedule TASK invocation, or a Signal (TASK Event) generation. Modeled indirectly:

S Using schedule operator (sc!)
S Using periodic TASK

The actual implementation and capabilities of those operators is defined in the OSI and intended to
refer to Hardware Timers.

Rational Statemate 9



MicroC Overview

Activity Behavior: User-Defined Functions

User-defined functions might be implemented in any of the following languages:

S ANSIC
S Assembly Language Code

Use the old safe way to link with legacy code, i.e. call OS/ environment special services and utilize
otherwise inaccessible functionality as inline assembly calls. This should be use like a glue, for
reuse of legacy code and to implement tricky algorithms.

For example: Debouncing and filtering algorithms; continuous controllers like Pl loops within
HVAC and Cruise ECUs could also be implemented in this way.

Truth Tables

Very much as described earlier, this language is available for defining user functions, describing
defined actions and directly defining Activity content.

Lookup Tables

This language’s purpose is to support non-linear functions, such as Y=F(X), so common in the
world of micros. Such functions are typically used to represent characteristic curves of valves.

For example: A speed dependent intermittent wiper system will want to use a look-up table to
define the time between wipes. Cut-out currents on electric motors can be accurately set using a
look-up table to define the typical current at different positions.

Rational Statemate Action Language

This kind of programming language can be used where a function is needed in an application. It is
the preferred language of choice, rather then plain C code, as all of the expressions are parsed.
Thus, it is possible to define in the Data Dictionary tool relevant properties of the elements used.
As such, compatibility between different targets can be achieved easier as the tool will generate

the right expressions in each target environment. This can not be done if the function is already
defined in C code.

For example: An automotive interior light ramping function that can be triggered from the doors,
ignition key and switch.

10
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Exact Case Usage

Exact Case Usage

MicroC supports “exact case” naming of textual elements across the product. For each textual
element (including data types, data items, subroutines, events, actions, and conditions), MicroC
holds two names:

S Case-sensitive name

S Uppercase name

The case-sensitive name is a regular field in the database. Throughout MicroC (including the
Dictionary, static reactions, mini-specs and so on), the exact-case name is used. The Code
Generator uses the exact-case name when generating full expressions—when preprocessor macros
(for data items, user-defined types, and subroutines) are not used. Preprocessor macros remain
uppercase only.

Note

You cannot use different cases of the same name for different variables because they resolve
to the same name. For example, both Ab and aB resolve to AB.

The first time you specify an element, MicroC records its exact case, and converts any subsequent
references to it to the same convention. For example, if you first enter “aB,” MicroC converts any
case combination of it (“AB,” “Ab,” “ab,” or “aB”) to aB. Use the Renameption in the dictionary
to respecify the name or case of the element.

Note that the check model tool will warn you when two strings (the case-sensitive name and the
uppercase name) do not match. This might happen if you change the setting of the Case Sensitive
Name attribute. By default, MicroC uses case-sensitive hames.

The following aspects of MicroC require exact-case handling:

(Va3

Generated code

(Va3

Expressions (going through the parser).Overview

(Va3

Dictionary-Editor/ Dictionary-Browser selection matrix

(Va3

Element information
UDT Dictionary
S Action definitions

(Va3

Exact-case usage is not supported in local parameters of subroutines, nor context variables.
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Structuring Language: Activity Chart
Implementation

A top-level Activity might be defined as a TASK or as an Interrupt Service Routine (ISR). Note
that a TASK or ISR will have special meaning in OSEK 2.0 applications.

TASK Activities

In OSEK 2.0 OS - we identify two TASK types:

S Basic Task
S Extended Task

Various other properties might be related to a TASK, some depend on the TASK type and some
common to both types, as described below.

Both types of TASKSs might be scheduled to be activated at system startup, if desired, and to run
periodically, with a user define period. Each TASK body contain calls to the functions it is running
as well as some code, according to the TASK specific properties, as described in the examples
below.

In general, BASIC TASK is less expensive to use regarding run time RAM usage, as after it
complete its run it terminate and the OS free all the RAM associated with them, thus enabling
reuse of this memory.

An EXTENDED TASK can never terminate after it has been activated, thus the RAM associated
with it will never be freed.

However, it takes more time to activate a BASIC TASK. This is true because, once a request to
activate the task has been received, it is required to initialize the RAM associated with it. On the
other hand, an EXTENDED TASK is faster to react because, after it has been activated, the
associated RAM will be kept and does not need to be initialized again for subsequent use.

As a general rule, use an EXTENDED TASK when the reaction time to some external event needs
to be as short as possible, or when using the TASK EVENT inter-task communication mechanism.
Otherwise, use a BASIC TASK. Refer to the discussion below, as well as to the OSEK/OS
documentation for further details.
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BASIC TASK

A BASIC TASK runs once, upon activation, and then terminates.

The code frame for a BASIC TASK (for example: TASK1 containing Activities A1l and Al12),
without controller, will resemble the following:

TASK (TASK1)

{

cgActivity Al11();

cgActivity _Al12();

TerminateTask();

}

If the TASK is periodic, with a period of 10 ticks, the code will change to look like this:

TASK (TASK1)

{

if ((cgGlobalFlags & ALARM_SET_TASK1) == 0){
cgGlobalFlags |= ALARM_SET_TASK1,;
SetRelAlarm(TASK1_ALARM, 10, 10);

I3

cgActivity _Al11();

cgActivity_A12();

TerminateTask();

}

Note

Use the Data Dictionary->Design Attributes->Schedule Periodidlag to define a periodic
Task.
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If the TASK is periodic, containing Activities A1l and A12 with CTRLL1 as controller, the code
will change to look like this:

TASK (TASK1)

{

if ((cgGlobalFlags & ALARM_SET_TASK1) == 0}
cgGlobalFlags |[= ALARM_SET_TASK1;
SetAbsAlarm(TASK1_ALARM, 10, 10);

I3

do {

cgGlobalFlags &= ~BITSUPERSTEP_TASKS3;
cgActivity_A11();

cgActivity Al12();

cgActivity CTRL1cntl1();

} while ( (cgGlobalFlags & BITSUPERSTEP_TASK1) != 0);

TerminateTask();

}
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EXTENDED TASK

An EXTENDED TASK runs once, upon activation, and then suspends itself, calling the
“WaitEvent ” API function. A specific modification to this EXTENDED TASK behavior will be

described below, at the end of that section.

The code frame for an EXTENDED TASK (for example: TASK2 containing Activities A21 and

A22), without controller, will look like the following:

TASK (TASK2)

{

cgSingleBuffer_TASK2.eventMask = Oxff;
start_activity_A21,;

start_activity_A22;

while(1) {

cgActivity A21();

cgActivity_A22();

WaitEvent(cgSingleBuffer_TASK2.eventMask);
ClearEvent(cgSingleBuffer_TASK2.eventMask);

}

/* TerminateTask(); */

}

Note

With regard to lines 3, 9, 10 in the last example: This has been changed from earlier
implementations of MicroC. In newer versions of MicroC, the eventMask data variable is
no longer allocated. The defined mask, in the example above Oxff is directly inlined in the
call to WaitEvent and ClearEvent calls. This note is applicable to the rest of the examples in

this document.

Note

Further Optimization: In certain implementations it is possible to call the WaitEvent and
ClearEvent API functions with constants, thus avoiding the need for allocating RAM for the

eventMask.

What can be seen is that upon invocation, the call to start_activity A2Jand to start_activity A22
is done. The call is done only once, the first time the TASK is run. This will drive the event started
of those sub-activities as well as the event startedfor the task itself. This is supported only for that

task type.

16
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After that call, the code enters an infinite loop running all of the TASK’ sub-activities, and
entering the suspension mode through call to “WaitEvent”.

If somewhere underneath the TASK, not as direct descendant, we will add a Statechart, the code
will change to be like:

TASK (TASK2)

{

cgSingleBuffer_TASK2.eventMask = Oxff;
start_activity_A21;

start_activity_A22;

while(1) {

do {

cgGlobalFlags &= ~BITSUPERSTEP_TASK?2;
cgActivity_A21();

cgActivity A22();
if(cgDoubleBufferNew_TASK2.cg_Events)

cgGlobalFlags |= BITSUPERSTEP_TASK?2;
cgDoubleBufferOld_TASK2 = cgDoubleBufferNew_TASK2;
cgDoubleBufferNew_TASK2.cg_Events = 0;

} while ( (cgGlobalFlags & BITSUPERSTEP_TASK?2) != 0);
WaitEvent(cgSingleBuffer_TASK2.eventMask);
GetEvent(TASK2, &cgSingleBuffer_TASK2.eventsBuff);
ClearEvent(cgSingleBuffer_TASK2.eventMask);

}

/* TerminateTask(); */

I3
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TASK (TASK2)

{

SetRelAlarm(TASK2_ALARM, 1, 10);
cgSingleBuffer_TASK2.eventMask = Oxff;
start_activity_A21;

start_activity_A22;

while(1) {

do {

cgGlobalFlags &= ~BITSUPERSTEP_TASKZ2;
cgActivity A21();

cgActivity _A22();
if(cgDoubleBufferNew_TASK2.cg_Events)
cgGlobalFlags |= BITSUPERSTEP_TASK2;

cgDoubleBufferOld_TASK2 = cgDoubleBufferNew_TASK2;

cgDoubleBufferNew_TASK2.cg_Events = 0;

} while ( (cgGlobalFlags & BITSUPERSTEP_TASK?2) = 0);
WaitEvent(cgSingleBuffer_TASK2.eventMask);
GetEvent(TASK2, &cgSingleBuffer_TASK2.eventsBuff);
ClearEvent(cgSingleBuffer_TASK2.eventMask);
if(cgSingleBuffer_TASK2.eventsBuff & 0x01)
GEN_IN_CURRENT(TASK2_EV);

}

/* TerminateTask(); */

}

If the TASK is periodic, with a period of 10 ticks, the code will change to look like this:

18
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Another setting option, available in MicroC for an EXTENDED TASKs Guarded Activation

mode. In this mode the TASK will be active only while its control bit is set. The sample code will

change to look like:

TASK (TASK2)

{

if ((cgGlobalFlags & ALARM_SET_TASK2) == 0){
cgGlobalFlags |= ALARM_SET_TASK2;
SetRelAlarm(TASK2_ALARM, 1, 10);

2

cgSingleBuffer_TASK2.eventMask = Oxff;

whil e((cgGlobalFlags& BITAC_TASK2) !=0) {
do {

cgGlobalFlags &= ~BITSUPERSTEP_TASK?2;

cgActivity A21();

cgActivity _A22();
if(cgDoubleBufferNew_TASK2.cg_Events)
cgGlobalFlags |= BITSUPERSTEP_TASK2;
cgDoubleBufferOld_TASK2 = cgDoubleBufferNew_TASK2;
cgDoubleBufferNew_TASK2.cg_Events = 0;

} while ( (cgGlobalFlags & BITSUPERSTEP_TASK?2) =0
&& (cgGlobalFlags& BITAC_TASK2));
WaitEvent(cgSingleBuffer_TASK2.eventMask);
GetEvent(TASK2, &cgSingleBuffer_TASK2.eventsBuff);
ClearEvent(cgSingleBuffer_TASK2.eventMask);
if(cgSingleBuffer_TASK2.eventsBuff & 0x01)
GEN_IN_CURRENT(TASK2_EV);

}

TerminateTask();

}

Rational Statemate
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In order to make that task run, it must explicitly call the startoperation for it. The definition of the
start(TASK2) function, in that case, is:

#define start_activity TASK2 { cgGlobalFlags|=
BITAC_TASK2; start_activity CTRL2cnt1;
ActivateTask(TASK2); }

Note that now it is possible to terminate that TASK, by calling stopfor it. Thus, it is possible to
combine the benefits of an EXTENDED TASKregarding reaction time while it is alive, as well as
having the advantage of reusing RAM while running. Stopping those tasks that are not required in
certain application configurations, and activating other tasks in the new configuration; all in run-
time!

For an EXTENDED TASKgertain intertask communication/ synchronization mechanisms are
available, using the TASK EVENTperator.

EXTENDED TASHKnay enter the WaitEventtate waiting for some of its TASK EVENT(so be
set. The EVENTsthe task is waiting for are marked using the event mask given to the WaitEvent
API. Only the task that “owns” the TASK EVENTmay wait for it to be set. However, the TASK
EVENTmight be set from any place in the code. MicroC links TASK EVENTo MicroC events.
For example: consider the EXTENDED TASK, TASKwith 2 associated TASK EVENTs: EV/1
with mask 0x02, and EV2 with mask 0x04. The following code will be generated in order to link
TASK EVENT to MicroC events:

...EXTENDED TASK BODY
WaitEvent(cgSingleBuffer_TASK2.eventMask);
GetEvent(TASK4, &cgSingleBuffer_TASK2.eventsBuff);
ClearEvent(cgSingleBuffer_TASK2.eventMask);
if(cgSingleBuffer_TASK2.eventsBuff & 0x02)
GEN_IN_CURRENT(EV1);
if(cgSingleBuffer_TASK2.eventsBuff & 0x04)
GEN_IN_CURRENT(EV2);

...EXTENDED TASK BODY (continued)

Note

The “GEN_IN_CURRENT?” call sets the internal event passed to it as an argument in the
next iteration of the task, which is in the “current” step of it.
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Thus, if any reaction in the content of TASK4 is waiting for example to EV1 to be set, i.e., reaction
like “EV1/ACTL1(),” which will be translated, as explained later, into: “if (EV1) {ACT1();}” will
be executed once the associated TASK EVENT 0x02 was set.

On the other hand, when certain action set a TASK EVENT: “[C1])/EV1,” which will be translated,
as explained later, into: “if (C1) {GENERATE_EVENT(EV1);};” the following code will be
generated for the GENERATE_EVENT(EV1) call:

cgEventMsgMask = 0x02;SetEvent(TASK2, cgEventMsgMask);

In addition, the following definitions will be made to link the TASK EVENT 0x02 (EV1) with the
internal event EV1:

#define BIT_EV1 0x01

#define GEN_IN_CURRENT_EV1

(cgDoubleBufferOld_TASK2.cg_Events |= BIT_EV1)

#define EV1 ((cgDoubleBufferOld_TASK2.cg_Events &

BIT_EV1) = 0)

Such that the line in the above TASK body code:

if(cgSingleBuffer_TASK2.eventsBuff & 0x02)
GEN_IN_CURRENT(EV1);

Will set the internal event EV1 bit (BIT_EV1) thus linking the TASK EVENT mask 0x02 of EV1
to its internal bit 0x01 (BIT_EV1).
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Interrupt Service Routine Activities

An Interrupt Service Routine (ISR) runs once, upon activation, and then ends. For OSEK 2.0,
MicroC identifies three ISR categories: 1, 2, and 3.

ISR Categories

The decision of which ISR category to use depends on the content of the functions it runs.
According to the OSEK/OS specification, it is not allowed to call any OS API function from ISR
category 1. For ISR categories 2 and 3, it is allowed to call some of the OS API functions only
within the code section marked by EnterlISR()/LeavelSR¢alls.

The form of the generated code frame for an ISR depends on the.Structuring Language: Activity
chart Implementation category and content. Some examples are shown below.

Example 1:

The code for an ISR category 1 or 2, named ISRO, containing Activities 101 and 102 without
controller will be as follows:

ISR (ISRO0)

{

cgActivity 101();
cgActivity 102();
}

Example 2:

The code for an ISR category 3 function named ISRO, containing Activities 101 and 102
without controller will be as follows:

ISR (ISR0)

{

EnterISR();
cgActivity 101();
cgActivity 102();
LeavelSR();

}
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Example 3:

The code for an ISR category 3 function named ISR1, containing Activities 111 and 112 and a
controller named CTRL1 will be as follows:

ISR (ISR1)

{

EnterISR();

do {

cgGlobalFlags &= ~BITSUPERSTEP_ISR1; MicroC 41
TASK/ISR Run Modes

cgActivity 111();

cgActivity 112();

cgActivity CTRL1cntl1();

} while ( (cgGlobalFlags & BITSUPERSTEP_ISR1) != 0);
LeavelSR();

}
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TASK/ISR Run Modes

A TASKI/ISR can have one of the following run modes:

S Single Step— The TASK/ISR always runs a single step, then returns handling to the
operating system.

S Super Step— The TASK/ISR runs the necessary number of tasks before returning
handling to the operating system.

When you define a run mode, make the following checks:
1. Check the internal value once before executing the logic.

In Single Stepmode, check the internal value before calling any “logic” code, such as
mini-spec, Activity, ControlAct, and so on.

In Super Stepmode, check the internal value before calling the loop that handles the
logic, and the test for the need of another step. Note that choosing this run mode might
result in an infinite loop for the TASK/ISR.

2. Check the internal value after logic execution.
In Single Stepmode, check the internal value after the call to any logic code.

In Super Stepmode, check the value inside the loop that handles the logic, and recheck
the value after the calls to any logic code.

3. In Super Stepmode, check the value after each logic execution. Check the value inside
the loop that handles the logic, and recheck the value after calls to any logic code. This
check is not relevant for Single Stepmode.
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Super Step Example

For example, if you select Super Stepmode:
1. Check for internal value changes before logic execution.

2. The code for testing derived events and generating them is moved from the do...while
loop of the Task and after the functional code. All the calls to the Activities and Controls
in the Task are moved to be before the do..while loop of the Task (just like the test for
buffered access elements and derived events on them).

Consider the following code:

void TASK_SINGLE_STEP(void)

{
do

{

cgGlobalFlags &=~BITSUPERSTEP_TASK_SINGLE_STEP;
cgActivity SINGLE_STEP_CTRLY();

if(llval_COND && COND !=Ival_COND)

{

GENERATE_EVENT(BECAME_FALSE_COND);

h

if(lval_COND && COND != lval_COND)

{

GENERATE_EVENT(BECAME_TRUE_COND);

I3

if(COND !=Ival_COND)
GENERATE_EVENT(CHANGED_COND);

2
if(cgDoubleBufferNew_TASK_SINGLE_STEP.cg_Events)
cgGlobalFlags |= BITSUPERSTEP_TASK_SINGLE_STEP;
cgDoubleBufferOld_TASK_SINGLE_STEP =
cgDoubleBufferNew_TASK_SINGLE_STEP;
cgDoubleBufferNew_TASK_SINGLE_STEP.cg_Events = 0;
}

while ((cgGlobalFlags & BITSUPERSTEP_TASK_SINGLE_STEP)
1=0);}
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The resultant MicroC code is as follows:

void TASK_SINGLE_STEP(void)

{
if(llval_COND && COND != lval_COND)

{

GENERATE_EVENT(BECAME_FALSE_COND);

I3

if(lval_COND && COND != lval_COND)

{

GENERATE_EVENT(BECAME_TRUE_COND);

I3

if(COND !=Ival_COND)

{

GENERATE_EVENT(CHANGED_COND);

h

do

{

cgGlobalFlags &=~BITSUPERSTEP_TASK_SINGLE_STEP;
cgActivity SINGLE_STEP_CTRLY();
if(cgDoubleBufferNew_TASK_SINGLE_STEP.cg_Events)
cgGlobalFlags |= BITSUPERSTEP_TASK_SINGLE_STEP;
cgDoubleBufferOld_TASK_SINGLE_STEP =
cgDoubleBufferNew_TASK_SINGLE_STEP;
cgDoubleBufferNew_TASK_SINGLE_STEP.cg_Events = 0;
}

while ((cgGlobalFlags &
BITSUPERSTEP_TASK_SINGLE_STEP)!= 0);

}
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Single Step Example

If you select Single Stepmode, the code generated for the Task will not include the do..while
structure— this creates a single-step Task. In this case, there is no need for the NeedAnotherStep
bit named BITSUPERSTEP_<TASK-NAME>to be allocated, so all references to it are removed.

There are references to BITSUPERSTEP_<TASK-NAME>in:

(Va3

The do...while of a Task.

(Va3

In the non-Inline of NeedAnotherStepode— at the end of the cgDo_ function, there is a
check if any nextSteps different than the currentSteplf it is, the BITSUPERSTEP is
set.

(Va3

In the Task Code frame, there is a check if there are any events pending. If there are, the
BITSUPERSTEP is set.

S When using an SCH in a generic, the BITSUPERSTEP of its task is passed via its structure.
In this case, these references should not exist.

Consider the original code:

void TASK_SINGLE_STEP(void)

{

do

{

cgGlobalFlags &=~BITSUPERSTEP_TASK_SINGLE_STEP;
cgActivity SINGLE_STEP_CTRL();. MicroC 45

Single Step Example
if(cgDoubleBufferNew_TASK_SINGLE_STEP.cg_Events)
cgGlobalFlags |= BITSUPERSTEP_TASK_SINGLE_STEP;
cgDoubleBufferOld_TASK_SINGLE_STEP =
cgDoubleBufferNew_TASK_SINGLE_STEP;
cgDoubleBufferNew_TASK_SINGLE_STEP.cg_Events = 0;
} while ((cgGlobalFlags &
BITSUPERSTEP_TASK_SINGLE_STEP) = 0);

}
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The resultant code is as follows:

void TASK_SINGLE_STEP(void)

{

cgActivity SINGLE_STEP_CTRL();
cgDoubleBufferOld_TASK_SINGLE_STEP =
cgDoubleBufferNew_TASK_SINGLE_STEP;
cgDoubleBufferNew_TASK_SINGLE_STEP.cg_Events = 0;
}
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Implementation

The Activity Chart is the focus of the graphical language used to decompose functionality into
realizable sub-functions.

The classic illustration of Functional Decomposition is shown the following figure:

With regard to decomposition in MicroC, each non-basic Activity is being composed out of its
sub-activities. We distinguish between 2 cases. The first case is when that non-basic Activity does
not contain immediate descendant that is a control activity. In that case, all of the sub-activities are
considered activewhen that Activity is active The code for such a non-basic Activity (e.g. A1l
with sub-activities A111 and A112 and with no immediate descendant controller) will look like:

void
cgActivity_Allacyl(void)
{

cgActivity A111();
cgActivity_A112();

}
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The order in which the sub-activities are called within the A11 Activity body is determined by the
sub-activities attribute “Execution Order,” as defined in the Dictionary of A111, A112 and A113.
In the example above, the “Execution Order” of sub-activity A111 is 1 and of A112 is 2. When
that attribute is not set, the calling order is not defined.

If it is desired to save function calls overhead, it is possible to set (in the Compilation Profile-
>Options->Settings->General Taldialog) the field to true. The resulting code will be:

#define cgActivity_Allacyl()\
Q

cgActivity Al111() N\
cgActivity A112() A\

}

This setting is always applicable for non-TASK and non-ISR, and will not be repeated as the result
might be derived from the examples given adding the “ \” at the end of each line, and defining
instead of function a C Preprocessor macro.

Sub-Activities Code

Assuming both A111 and A112 are basic Activities, the basic activity can be defined in one of
three activation modes:

S «Reactive controlled

S Reactive self

S Procedure like

For Reactive controlledand Reactive selimodes, the code body of the Activity will look like the
following code frame:

void

cgActivity_All1l(void)

{

... Body implementation

}

While for the Procedure like mode, the code body of the Activity will look like the following
code frame:
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void

cgActivity_Al112(void)

{

if ((cgActiveActivitiesl & BITAC_A112) I=0) {
... Body implementation

stop_activity(A112);

}

}

The differences between the three will be found in the activation rules for each mode. Reactive
controlled and Reactive selfimodes will perform a step, while they are active, each time the
TASK containing them is running. Usually, a TASK will perform a run to stablerun (also called a
super step, that might require few steps (also called micro steps). Those using Reactive
controlled and Reactive selfimodes will participate in each of the steps.

Procedure like mode performs only a single step each time the TASK containing it is running. At
the beginning of the TASK, the relevant Activity active bit will be set. Then the Activity body will
unset that bit after it ran, calling stop_activity

Another difference, between Reactive controlled Reactive selfand Procedure like, is in the
allowed syntax of the Mini-Spec which is described later.

Adding the controller A11_CTRL to A11 will make the code look like:

void

cgActivity Allacyl(void)

{

cgActivity_A111();

cgActivity A112();
cgActivity A1l CTRLcntl();
}

Rational Statemate 31



Decomposition Language: Actityi Chart Implementation

The implementation of cgDo_A11_CTRLent1()

With the controller function, cgActivity A11_CTRLcntl()

void
cgActivity All CTRLcntl(void)
{

cgDo_A11_CTRLcntl();

}

For a Statechart implementation:

void

cgDo_A11_CTRLcntl(void)

{

Statelnfo_A11l_CTRLcntl nextState_All_CTRLcntl = O;
if (currentState_A11_CTRLcntl == 0) {
nextState_All_CTRLcntl = FS_A11_CTRLst2;

}

else

{
... Rest of the Statechart logic

}

if (nextState_A11 CTRLcntl = 0) {

if (currentState_A11_CTRLcntl I=
nextState_A11_CTRLcntl)

cgGlobalFlags |= BITSUPERSTEP_TASK1,;
currentState_A11 CTRLcntl = nextState_ A11_CTRLcntl;

}
}

, like:

depends on whether A11_CTRL is implemented
as a Statechart or as a Flowchart. In this discussion we will only show a brief descriptions of each;
a more detailed description is given later in the appropriate sections.

32

MicroC

Programming

Style Guide



Sub—Activities Code

For a Flowchart implementation:

void
cgDo_A11_CTRLcntl(void)
{

... The Flowchart logic

}

Activities within a certain TASK can communicate with each other using various method. Within
a single TASK/ISR boundary, the Activity Chart Graphical Language of MicroC shares most of
the semantics used in the Activity Chart Graphical Language of Rational Statemate. However,
there are few discrepancies between those languages that should be noticed, and will be mentioned
shortly below. The interaction between TASK/ISR and communication between Activities not
residing in the same TASK/ISR has nothing equivalent in the language of Rational Statemate, and
should only use the services provided by the run time OS, also described below. Activities defined
to be TASK/ISR have already been discussed, but it must be remembered that such Activities are
not fully compatible with the Activities that can be defined in Rational Statemate.

Discrepancies between MicroC Regular (i.e., not a TASK nor ISR) Activities running under the
same TASK/ISR and Rational Statemate Activities that should be noticed include the following:

(Va3

Stable state criteria

(Va3

Implicit termination of Activity as result of termination of all its sub-activities

(Va3

Suspend, resume modes

(Va3

Status sensing — stopped/started

(Va3

Implementation as CA (Not supported at all in MicroC)

Note

We do not include here those language features that are only temporarily not supported, but
will be supported in coming release of the product. Instead, we are focusing our discussions
on those aspects that are not expected to change.
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Communication and Synchronization Services

Communication and synchronization services between Activities, possibly not residing in the
same TASK/ISR, include the following:

U

Messages (for OSEK 2.0: non-queued and queued Messages)
Signals (for OSEK 2.0:TASK EVENT)

Semaphores (for OSEK 2.0: resources)

S Global data

e Ux

Messages

The first communication mechanisms use the OSEK Messages support capabilities provided by
MicroC.

The first of those, Non-Queued messagesses a message identifier (i.e. the message name) to
share data between various tasks in the application. The sender and or receiver TASK of such a
message might be running in the same ECU, sharing the same memory address space, or running
across an ECU network on some remote MCU. The user of the message need not be aware of the

concrete implementation. Thus, using that mechanism ensures that the resulting design is correct,
flexible and efficient.

Queued Messages

Queued messageasse a very similar implementation mechanism to that for Non-Queued
messages. The difference being in that those types of messages do not contain valuebut rather

signals the occurrence of some event. Again, using these in a design makes the design easier to
modify.

Note

Examples and discussion regarding each of those two methods is given in Rational
Statemate Action Language Implementation.
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Signals

The third method (i.e. those of TASK EVENT) is somewhat different from the first two. Similar to
the Queued messagadgscribed above, they signal the occurrence of some event. However, as
they are not queued, there is no information regarding how many such events occurred until being
processed. An additional difference is that a TASK EVENT must address a specific TASK with a
specific EVENT, thus requiring knowledge of the application structure. A TASK EVENT
implementation is much more efficient than the previously mentioned communication methods,
however it requires the TASK to be of type EXTENDED), which is not always possible or
efficient. The downside of requiring knowledge of the application structure is balanced by the
improved performance. Those are design decisions that should be made regarding a specific
problem at hand. Examples and further discussion can be found in Structuring Language: Activity
Chart Implementation.

Global Data Usage

Global data usage is the fourth method of communication. As always in real time applications,
caution should be made regarding the validity of the data when running in preemptive environment
with multiple tasks and ISRs. The protection mechanism supported is the OSEK RESOURCE
mechanism, which is similar to a binary semaphore Similar added, meant to help in protecting data
and access to common resources.

Semaphores

Examples and discussion of using OSEK RESOURCE is given in Rational Statemate Action
Language Implementation.

All the above said, it is a common situation that data is arriving through the bus or board ports, in
some predefined messages and addresses, and is needed to be produces, again, to the bus or board,
in some maybe other predefined messages and addresses.

In this situation the decision is rather easy, as it already has being taking, and the designer simply
uses the defined interface for his application. However, the discussion above is relevant when one
tries to build up implementation that will obviously use the appropriate interfaces, however will
also be easy to maintain, modify and ported to various other environments, usually unknown at
design time.
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Statecharts are used to define the behavior of a Control Activity. For the purposes of code
generation in MicroC and our discussion here, a single Statechart is considered to be the Statechart
directly connected to a Control Activity, all of its sub-charts, and the generics instantiated within
them. In short, all the states under the root are represented by the control Activity.

For example, for the control Activity A11_CTRI_the following two functions will be generated:

void cgActivity_All_CTRLcntl(void)
void cgDo_Al11_CTRLcntl(void)

The bodies of the generated code for these functions resembles the following:

void

cgDo_A11_CTRLcntl(void)

{

StateIlnfo_ A11 CTRLcntl nextState. A11 CTRLcntl = 0;
if (currentState_A11_CTRLcntl == 0) {
nextState_A11_CTRLcntl = FS_A11_CTRLst2;

}

else

{

... The rest of the Statechart logic

}

if (nextState_A11 CTRLcntl !'=0) {

if (currentState_A11_CTRLcntl I=
nextState_All_CTRLcntl)

cgGlobalFlags |= BITSUPERSTEP_TASK1,;
currentState_ A11 CTRLcntl = nextState_ A11 CTRLcntl;
}

}
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void
cgActivity All CTRLcntl(void)

{
cgDo_A11_CTRLcntl();

}

Note that the function cgActivity A1l_CTRLcnt1§mply calls cgDo_A11_CTRLcnt1(A more
detailed discussion of the cgDo__...function is found below.

Note

S Further Optimization: This might be changed, as the wrapping function,
“cgActivity_A11_CTRLcntl1” in the above example, could be dropped.

S Use the Compilation Profile >Setting >General >Use Macroglag to control function
generation vs. pre-processor macro.

Statechart Implementation: Data Usage

A Statelnfodata type will be defined, and a few variables of that type will be declared, when a
statechart is created.

For the previous example, the Statelnfodata type would be named Statelnfo_A11_CTRLcntl
and will be defined as an unsigned type of either 8, 16 or 32 bits; like “ typedef int8

Statelnfo_ A1l CTRLcritlThe size depends on the topology of the Statechart which is described
later in this document.

The Statelnfovariables will be currentState, nextState, staySafm.the example of A1l _CTRL

Statelnfo_ A11_CTRLcntl currentState_ A11 CTRLcntl;
(global variable)

Statelnfo_A11 CTRLcntl nextState_ A11_CTRLcntl;
(automatic variable)

Statelnfo_Al11 CTRLcntl staySame_Al11l_CTRLcntl;

(automatic variable)
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The currentStateand nextStatevariables will always be allocated. The staySameariable will be
allocated only if either of the entering or exiting reaction functions is required, as discussed below.

currentStatas allocated as global variable, while nextStatend staySamare allocated as local,
automatic, variables to the statechart function cgDo_....

Note

Further Optimization: In specific topologies it is possible to use only a single Statelnfo
variable, i.e. the currentState.

Statechart Implementation: Generated Functions

Statechart Code Frame

Consider the following example of code generated from a Statechart (Note: line numbers are
included in this code sample for discussion purposes):

1 void

2 cgbo_Al11_CTRLcntl(void)

3{

4 Statelnfo_A11_CTRLcntl nextState_ A11_CTRLcntl = 0;
5 if (currentState_A11l_CTRLcntl == 0) {

6 nextState_Al1l CTRLcntl = FS_A11_CTRLstZ,;
7}

8

9 else

104

11 ... The rest of the Statechart logic

12}

13 if (nextState_Al11l CTRLcntl !'=0) {

14 if (currentState_A11 CTRLcntl !=

nextState_ A11_CTRLcntl)

15 cgGlobalFlags |= BITSUPERSTEP_TASK1,;
16 currentState_ A11_CTRLcntl =
nextState_ A11 _CTRLcntl;

17}

18}
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In general, the overall code frame of a Statechart looks like the cgDo_A11 CTRLcntfunction
shown above. However, you will discover in the following discussions that code frame is not
fixed.

Line 4 resets the nextStatevariable. This variable will be set only if a transition has been made, and
will hold the new state configuration of the Statechart.

Lines 13 and 14 check the nextStatevariable, to determine if a transition was taken and whether to
enforce another step in the TASK holding the Statechart...

Line 15: cgGlobalFlags | = BITSUPERSTEP_TASK1
Line 16:  currentState_Al11l CTRLcntl = nextState_ A1l _CTRLcntl
advances the Statechart configuration a step, to hold the configuration of the next step.

Lines 5 to 12 will be replaced with specific code resulting from the specified Statechart logic. For
example, two additional functions might be commonly generated here: entry actionsand exit
actions.If the Statechart logic requires entering/exiting reactions, the functions will resemble the
following:

void
cgEnterActions_A11_CTRLcntl(void)
{

... entering reactions code

}

void
cgExitActions_A11_CTRLcnt1(void)
{

... exiting reactions code

}
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When either of these function are needed, the following changes to cgDo_...will also be made:

void

cgDo_A11_CTRLcntl(void)

{

StateIlnfo_ A11 CTRLcntl nextState. A11 CTRLcntl = 0;
staySame_Al11l_CTRLcntl =0;

if (currentState_A11_CTRLcntl == 0) {
nextState_ A11 CTRLcntl =

FS_DefaultOf_Chart_ A11_CTRL;

}

else

{

... The rest of the Statechart logic

}

if (nextState_A11 CTRLcntl !'=0) {
cgExitActions_Al11l_CTRLcntl1();
cgEnterActions_A11_CTRLcnt1();

if (currentState_A11_CTRLcntl I=
nextState_A11_CTRLcntl)

cgGlobalFlags |= BITSUPERSTEP_TASK1,;
currentState_A11 CTRLcntl = nextState_ A11_CTRLcntl;

}
}

Of course, the function calls to cgExitActions_ A1l CTRLcntl()

required. See Optimization

Algorithms for information on the MicroC algorithms that create more efficient code.

Rational Statemate
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Order of Function Execution

The order of doing exiting actions, entering actions, transition actions and static reactions for a
state is as follows:

1. Static reactions are done, as the generated code reveals, in descending order down the state
hierarchy, where the state has not changed.

2. When a transition is detected, then the transition action is done immediately.

3. Exiting actions are then done, in which all the states that are exited are given an
opportunity to do exiting static reactions. Exiting reactions are done from the innermost
state to the outermost state.

4. Entering actions are then done, in which all the states that are entered are given an
opportunity to do entering static reactions. Entering reactions are done from the outermost
state to the innermost state.

Note

In specific topologies it is possible, and more efficient, to put the entering/exiting reactions
inline, while taking the transition. Use the Compilation Profile->Setting->Optimization
flags.

In the balance of this section we will discuss the implementation of the following language
features:

(0p)

Default state implementation

(0p)

AndState implementation

(0p)

Timeout implementation

(0p)

History and Deep History implementation

(0p)

Short list of guide lines to get the most efficient code
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Default State Implementation

The Default connector is treated as a state. This means that when a state is entered, we spend one
stepgoing into the Default.Statechart Implementation and then on the following step, we actually
enter the desired state. Note that this is a slight change to the classic Language of Rational
Statemate semantics. The motivation behind this change is that, as it is allowed to put a guard on
the default transition, it might be that no transition could be taken. This means that the code might
otherwise get stuckin a default connector.

In a practical sense, however, this does not represent a significant difference and should be
negligible in any practical example.
Note

In specific topologies — when there is no guard on the default transition it is possible to
directly enter the default state.Use the Compilation Profile->Setting->Optimization flags.
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AndState Implementation

The implementation of AndState compresses a few otherwise different Statelnfo variables into a
single one, thus using potentially less RAM. However, in order to relate to each of the different
parallel state hierarchies, some ROM is required to implement bit-masking. As a general rule, it is
preferable (from a code size perspective) to use AndState when having few independent very small
statecharts. The difference in the generated code will be that instead of few control activities, each
having related cgDo_... functions as is the case with a few Statecharts, here only one such control
activity is required with one related cgDo_ ... function. This code for such a function will only
appear once. The function’s code frame would resemble the following:

Statelnfo_A11 CTRLcntl nextState_All_CTRLcntl = 0;
if (currentState_A11_CTRLcntl == 0) {

nextState_A11 CTRLcntl = FS_A11 CTRLst2;

}. MicroC 65
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else

{
... The rest of the Statechart logic

}

if (nextState_A11 CTRLcntl !'=0) {

if (currentState_A11_CTRLcntl I=
nextState_All_CTRLcntl)

cgGlobalFlags |= BITSUPERSTEP_TASKI,;
currentState_ A11 CTRLcntl = nextState_ A11 CTRLcntl;

}

On the other hand, the test for being in leaf-state will be done using the inStatetest and not
inLeafStateest. The inStatetest requires one more integer comparison then the inLeafStateest.
Thus, it is recommend for each particular case that the developer test both options and compare the
results to choose the optimum implementation.
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Timeout Implementation

Software Counter(s) are used as the basis for the implementation of timeouts. When a timeout or
delay is set, the current value of the relevant Software Counter will be added to the requested delay
time, and stored in a variable, using a defined macro: INSTALL_TIMEOUT. By default, MicroC
relates to the primary Software Counter defined in the compilation profile.

Note

Use Compilation Profile >Setting >OS >System Counter Timetto define the primary
Software Counter.

Other Software Counter(s) might be referenced using an optional third argument in the timeout
operator. The name of the counter is as written in the model using the syntax:

tm(en(S1), 12, myCounter)

In this example, the name of the counter is: myCounter . Each counter receives an index value
defined as <counter_name>_INDEXThat index value identifies that specific counter in the
application.

Note

The counter definition is found in the “macro_def.h file.

The INSTALL_TIMEQOUT macro has three arguments:

S The name of the event

(Va3

The requested delay

S The index of the Counter that it is pending on

This allows the code to reuse the same Timeout variable with different counters. The first
argument is concatenated to the INSTALL macro, as shown here. In the code, a call like the
following will be used:

INSTALL_TM(tm_999999962, 10, SYS_TIMER)

This call will set a timeout to expire 10 ticks from the current time of SYS_TIMER. The macro
itself will be defined as follows:

#define INSTALL_TM_tm_999999962(D, C) \
cgTimeoutsMask |=tm_999999962_TM_MASK;\
tm_999999962_TIME = currentTick + (D);
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That call will assign to tm_999999962_ TIME which is a variable of type Timeout Variable Type
the current counter value, help in currentTick plus the requested delay time help in D. In addition,
the bit tm_999999962 TM_MASK is set to flag that this timeout is pending.

A test for Timeout expiration is done in the function:

genTmEvent_<CTRL_CHART_NAME>(<Timeout Variable Type>

currentTickVar, <Buffer> * buff, uint8 counterindex)

The third parameter uint8 counterindex,  holds the index of the Counter that is referred to in
the current call to this function. Before each call to this function, the correct counter would be read
into the currentTickglobal variable.

For each Timeout Variable there are three options for code generation inside the genTmEvent_ ...
function:

1. When there is only one Counter in the model no check will be made for the counter.

2. When there is only one counter that the timeout.variable can be installed for, then the code
will look.like:
if(counterindex == <ITS_COUNTER_NAME>_INDEX &&
cgTimeoutsMask & tm_999999993 TM_MASK &&
currentTickVar >=tm_999999993_TIME) {
GEN_IN_BUFF(tm_999999993, buff);
cgTimeoutsMask &= ~tm_999999993 TM_MASK;
}

3. If there is more than one counter that the Timeout Variable can be installed for, then the
code will include the following provisions:

In the glob_dat.c ~ file an uint8  variable is generated: tm_999999993_counterjthat
holds the index of the current relevant counter.

In macro_def.h  file along with the previous code that was generated for the
INSTALL_TIMEOUT macro, there is one more statement that keep the INDEX of the
counter that the timeout was installed for.

The index that is passed to the function is compared with the index of the counter that was used
when the timeout was installed. This enables the application to identify the counter that the
timeout is pending on.
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When the option Generate Timer Overflow Tagkselected, in the compilation profile setting, then
the following code elements are generated:

OSEK 2.0 Implementations
OSEK-targeted applications have special requirements:

1. Foreach Counter, an overflow Task named <counter_name>_OVERFLOW is generated.
This includes the task declaration (found in os_decl.h ) and body code (found in
glob_func.c ).

2. Ineach Task there is overflow management provided only for the Timeouts variables that
are referring to the specific counter.

3. Foreach Counter, an Alarm named <counter_name>_ALARM is generated. This includes
the alarm declaration (found in os_decl.h ) and installation (found in macro_def.h ). In
the macro_def.h  file, a new macro is generated:

#define SET_ADDITIONAL_OVERFLOW_ALARMS() {\
SetAbsAlarm(<counte_name>_ALARM, O,
OSMAXALLOWEDVALUE);\

}

This macro installs all the overflow alarms that activates the overflow tasks. A call to this macro is

in the file <profile>.c after the installation of the sYs_TIMER_ALARM(formerly known as
SYS_TIME_OVERFLOW

Compare that to non-OSEK implementations:

1. For each counter, an overflow function named on<counter_name> OVERFLOW iS
generated. In each Task, overflow management is provided only for the Timeouts
variables that refer to that specific counter.

2. IMPORTANT - there is no call to these functions in the generated code. Therefore, in

order to use them, additional code should be added by the developer that decides when to
call these functions (on overflow), possibly in usercode.c

Note

Set from within the Code Generation Profile Editor. Use Options->Settings->General-
>Timeout Variable Type.

The goal is to have a variable that is bigger then the counter, thus avoiding the “value overflow”
problem.
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Note

(OSEK only) When a TASK/ISR has related timeouts, MicroC calls
GetResource(RES_SCHEDULER)/ ReleaseResource(RES_SCHEDULER) around the
code section that swaps the TASK/ISR event buffer, and both before and after the call to
genTmEvent(...) in on<TIMER>OVERFLOW Tasks (in the file glob_func.c) . This
resource usage can be avoided. Within the Code Generation Profile Editor, select Options >
OS TAB > Allow "GetResource(RES_SCHEDULER) UsageUncheck this option.

History and Deep History Implementation

History and Deep History implementation requires a Statelnfovariable per each state holding a

History Connector(sand a Statelnfovariable per each state holding a Deep History Connector(s)

The state configuration is stored in that Statelnfovariable, such that when taking a transition into
the History/Deep History that configuration is assigned to the nextStatevariable, causing an
entrance to the stored state configuration.

When used, the operators history_clear and deep_clear  assign to the corresponding Statelnfo
variable the corresponding default state configuration.

Optimization Algorithms

MicroC includes several algorithms to generate the most efficient code, including:

N e e e e e

Inline Default Test

Inline Setting of the “Need Another Step” Bit

Inline Entering and Exiting Reactions

Merge State Sequences With No Guard on Transitions

Timeout Optimization

Clutch Entrance to a State Hierarchy

In addition to these algorithms, use the following guidelines to get the most efficient code:

W< U

(0)p]

Avoid redundant intermediate states (i.e., not persistent states).

Avoid duplication of code segments— use functions or defined actions instead of
hardcoded duplicates.

For a simple, single state with self-transition scheduling some operation, use static
reaction or an ISR.

Use the state hierarchy to represent priorities.
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Inline Default Test

MicroC can inline the initial and default test. Consider the following code:

if(currentState_S1 == 0){
currentState_S1 = FS_DefaultOfS1;

}else {...

The inlined code generated by MicroC is as follows:

if(currentState_S1 == 0 || inState(DefaultOf_S1)){...

Inline Setting of the “Need Another Step” Bit

To improve code efficiency, you can specify No. of Transition <= QThis criteria determines
whether the optimization is performed. When you apply this optimization, MicroC makes the
following changes to the generated code:

S The declaration of Statelnfo_<CTRL Activity
Name > nextState_ <CTRL ActivityName = 0O;

is removed— there is no need for this local variable after the optimization.

U

All the assignments to nextState_<CTRL Activity Name> are replaced with
assignments to currentState_<CTRL Activity Name>

After every transition, MicroC makes the following assignment:

U

cgGlobalFlags |= BITSUPERSTEP_<Task Name>;
S The code at the end of the cgDo...() is removed. This is the code that was inlined:
if (nextState_<CTRL Activity Name> != 0) {
if (currentState_<CTRL Activity Name> I=
nextState_<CTRL Activity Name>)
cgGlobalFlags |= BITSUPERSTEP_<Task Name>;
currentState_<CTRL Activity Name> =
nextState_ <CTRLActivity Name>;

}
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S If atransition is inside an AndState component, the assignment to currentStatdncludes a
reset of the bits that represent the component that is the LCA of the transition. For
example:

nextState_ OPT_NEXT_STATE_CTRL =
(nextState_ OPT_NEXT_STATE_CTR &~
(FM2_<ComponentLCA of Transition>)) |[FS_<Next State>;

Note

The optimization will not take place if there is an entering or exiting reaction that could not
be optimized out.

Inline Entering and Exiting Reactions

Inlining entering or exiting reactions is based on the following criteria:

No. of Statements <=5

No. of Instances <= 999

Note that this criteria is based on the averagenumber of inlined statements for the number of
reaction statements. For example, if the number of reactive statements is 5 and the number of
transitions is 10, the average is 5 statements.

An exit reaction is inlined when none of the following scenarios are encountered:

(0p)

An AndState exists with the exit reaction, or with a descendant that has an exit reaction.

(0p)

The operator stop_activity is used for any ancestor of the control activity with
which the statechart is connected, at least one state has more than a single descendant, and
at least one of its descendants has an exiting reaction.

(0p)

A transition exiting from a state exists and has more than a single descendant, and at least
one of its descendants has an exiting reaction.
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When inlining take place, the exit reaction code is added to the transition code segment after the
transition action itself, but before the entering action code. If an inlining scenario is encountered
but inlining cannot be performed, MicroC does one of the following:

S

If there are entering reactions, MicroC adds a call to the exiting reaction function
(cgEXxit.. .) to the transition code segment. The cgEXxit... function will not be
called at the end of the statechart code.

In the absence of an entering reaction, MicroC does not add a call to the transition code
segment. The call to cgExit... is done at the end of the statechart code, as occurs
when optimization is not used.

Merge State Sequences With No Guard on Transitions

MicroC can merge sibling Or-States when there is a single transition between them that has no
guard on it. Consider the following topology:

...[S11])-t12->[S12]...(states S11, S12 transition t12)

The goal of the optimization is to merge S11 and S12, as well as the static reactions of the two
states and the transition action (referred to as “merged actions”). The merge is allowed (considered
correct) when the following conditions are met:

N Ux w0 N Ux

(0p

The transition (t12) is the only transition that exits S11 or enters S12.
The transition (t12) has no guard.

There is no conflict in double-buffered element assignments and usage in the actions to be
merged.

There is no conflict in event generation and usage in the actions to be merged.
When the merged states are inside an AndState:

S There is no conflict in element assignment and usage between merged actions and
actions/ reactions in the other AndState components.

S There is no conflict in event generation and usage between merged actions and
actions/reactions in the other AndState components.

In user function calls:

S When the usage is Out/Inout, the call is regarded as “assignment/events
generation” of the actual function parameters.

(0p

When the usage is In/Inout, the call is regarded as “usage/events test” of the actual
function

(0p

parameters.

S Function “Global Usage” elements are ignored.
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Note the following:

S No check is done regarding sibling activities.

S When using GBA, no painting is done for the states that have been merged to another
state; only the remaining state is painted.

S A-reference to/usage of an element of an array is considered as a reference to/usage of the
entire array. For example, if you use MY_ARR[2]=3; there will be a conflict for the
whole array or any member of it, such as DI=MY_ARR[4] ;.

S A reference to/usage of a record field is considered example, if you use MY_REC.F1=3;,
there will be a conflict for the whole record or any of its fields, such as
DI=MY_REC.F2;.

Note

This optimization, when used with the optimizations inline entering/exiting reactions and
clutch of state hierarchy might result in an action sequence that is not identical to the action
sequence performed without those optimizations. Make sure the difference is acceptable.

Timeout Optimization

The Code Generator performs optimization of data allocated for timeouts. Data allocated for a

timeout is reused for another timeout if these timeouts trigger transitions outgoing from exclusive
states.

Note

Use the menu selections Options->Settings->Optimization ->Reuse Timeout Variableéo
set that optimization.

Note the following:

S The optimization reuses the same Timeout/Delayariable for other timeouts/delays.
S A variable can be reused only if the states waiting for the timeouts are exclusive states.

To reduce the number of data allocations for the timeout operation, the algorithm has been
changed. The description of the algorithm uses the following terms:
S Source state of a timeout— The source state of the transition that the timeout is on, or the
state in which its static reaction contains the timeout.

S Clutch a timeout— Add the clutched timeout to the list of timeouts for the timeout that
represents the data allocation. Tagging the clutched timeout as NOT requires data
allocation. In the clutched timeout, the Code Generator keeps a reference to the timeout
that represents its data allocation.

S Parent— State 1 (S1) is a parent of state 2 (S2) if S1 is an ancestor of S2.
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The algorithm merges data allocation for two timeouts if their sources are mutually exclusive. The
steps of the algorithm are as follows:

1. Prepare the list of timeouts.

2. For each timeout in the list (in no particular order), look through the other timeouts for a
candidate to be clutched to it.

3. For atimeout to be clutched, the following conditions must be met:

U

The timeout being tested requires data allocation.

The source state and every timeout in the list are not parents of the source state of
the tested timeout, or of any of the source states of the timeouts in the list.

The source state of the tested timeouts and the source state of every timeout in its
list are not parents of the source state, or the source state of any timeout in the list.

U

U

None of the following are an AndState:

The first common parent of the source state
The source state of each of timeout in the list
The source state of the tested timeout

Any of the timeouts in tested timeout’s list

If all four conditions are satisfied, the tested timeout is clutched. The following code sample
represents the algorithm:

LIST TimeoutsList = CREATE TimeoutsList.

FOR EACH Timeout (TM) in (TimeoutList) DO

{

State TMSourceState = FIND SOURCE STATE OF (State).

LIST SiblingsStatesList = CREATE SIBLINGS LIST OF (TMSourceState)
FOR EACH State (S) in (SiblingsStatesList) DO

{

LIST CurrSiblingTimeoutsLists = CREATE LIST OF TIMEOUTS UNDER (S)
FOR EACH Timeout (T1) in (CurrSiblingTimeoutsLists) DO

{

if (T1) NOT (