

Rational Statemate
Quick Reference Guide

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF file available from Help > List of Books.

This edition applies to IBM® Rational® Statemate® 4.6 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
ii

Contents
Reserved Words and Expressions . 1
Reserved Words . 1

Expressions . 5
Trigger Expressions . 5

Event Expressions. 6
Condition Expressions. 9

Action Expressions . 13
Compound, Conditional, and Iterative Actions . 15

Using Variables for Look-Up Table Values . 15

Functions, Operators, Switch Cases and Truth Tables 17
Predefined Functions . 17

Arithmetic Functions . 17
Trigonometric Functions . 18
Exponential Functions. 19
Random Functions . 19
Bit-Array Functions . 21
String Functions . 22
Predefined Constants . 22

Combinational Assignments . 23

Constant Operators and Enumerated Types . 24
Operators Related to Enumerated Values . 24
Resolving Enumerated-Types Values. 25

Inline Operator . 26

Switch Cases . 26
C Language. 26

Syntax . 26
Limitations . 27
Translator . 27

Ada Language. 28
Syntax . 28
Limitations . 29
Translator . 29
Rational Statemate iii

Table of Contents
Truth Tables . 30
Truth Table Operators . 31
Special Characters . 31
Input Columns . 31

Valid Input ELEMENTS. 32
Invalid Input Types . 33

Output Columns . 33
Output Elements . 34

Action Column. 34
Default Row. 35
Row Execution . 35

Boolean and Bit-Wise Operations on MVL Types . 36

Resolution Matrices . 37
iv Quick Reference Guide

Reserved Words and Expressions
The section provides the complete list of the Rational Statemate reversed words and the trigger and
action expressions.

Reserved Words
Reserved words are those words that cannot be used as names in Rational Statemate because they
are used by the system. If you erroneously try to use a reserved word, Rational Statemate prevents
its use in most cases. Otherwise, the error is discovered later in the process, such as during code
generation or when you use the Check Model tool.

The following is a list of reserved words in Statemate.

Keyword Description

ac Abbreviation for active.

active Possible condition or status of activity.

all All elements of an array.

and Logical and.

any Any element of an array.

break Exit from loop. Used in switch case statements.

case_ada Case statement for Ada.

case_c Case statement for C.

ch Abbreviation for changed.

changed The value of the element was modified.

dc Abbreviation for deep_clear.
If you erroneously try to use this reserved word, Rational Statemate does
not catch it until later in the process.

deep_clear Clears all history.

default Default case.

delay Delay trigger.
Rational Statemate 1

Reserved Words and Expressions
dly Abbreviation for delay.

downto Loop statement command.

else Loop statement command.

en Abbreviation for entered.

end Loop statement command.

entered Possible status of a state.

entering Event generated when a state is entered; useful as a trigger for an action
based on entering a state.

entering or Used in trigger expressions for actions based on entering a stat.

enum_first Retrieve the first enumerated value.

enum_image String representation of an enumerated value.

enum_last Retrieve the last enumerated value.

enum_ordinal Retrieve the ordinal position of an enumerated value.

enum_pred Retrieve the previous enumerated value.

enum_succ Retrieve the next enumerated value.

enum_value Value of an enumerated element.

ex Abbreviation for exited.

exited Event caused by exiting a state.

exiting Trigger for an action based on leaving a state.

exiting or Used in trigger expressions for actions based on leaving a state.

false Boolean value = 0.

fl Abbreviation for q_flush.
If you erroneously try to use this reserved word, Rational Statemate does
not catch it until later in the process.

for Loop statement.

fs Abbreviation for false.

get Used to have resource wait for condition.

get! Abbreviation for q_get.

gt! Abbreviation for get.

hanging Possible condition/status of an activity.

hc Abbreviation for history_clear.
If you erroneously try to use this reserved word, Rational Statemate does
not catch it until later in the process.

hg Abbreviation for hanging.

Keyword Description
2 Quick Reference Guide

Reserved Words
history_clear Clears the history at the current hierarchical level.

if Loop statement.

in Possible condition of a state; condition statement.

is Used in case statements for Ada.

length_of Length of the specified array.

lindex Left index value of an array.

loop Loop statement.

make_false Sets the given element to false.

make_true Sets the given element to true.

N/A Specifies that a formal parameter is not applicable to the instance.

nand Logical nand [not and].

nor Logical nor [not or].

no Logical not.

ns Abbreviation for entering.

null Null.

nxor Logical nxor [not exclusive or].

or Logical or.

others Used in case statements for Ada.

peek Abbreviation for q_peek.

put Abbreviation for q_put.

q_flush Clear the queue contents.

q_get Remove the value from the front of the queue.

q_length Return the length of the queue.

q_peek Copy a value from the front of the queue.

q_put Put an item on the queue.

q_urgent_put Put an item at the beginning of the queue.

rc Abbreviation for receive.
Note: MicroC specific.

rd Abbreviation for read.

read Element has been read (event).

read_data Action of reading an element.

receive Message was received.
Note: MicroC specific.

Keyword Description
Rational Statemate 3

Reserved Words and Expressions
release Resource was released.
Note: MicroC specific.

reset_element Reset an element to its default value

reset_all_eleme
nts

Reset all elements in the scope to their default values

resume Resume the operation.

return Identifies the output value of a function.

rindex Right index value of an array.

rl Abbreviation for release.
Note: MicroC specific.

rs Abbreviation for resume.

sc Abbreviation for schedule.

schedule Performs an action some time in the future.

sd Abbreviation for suspend.

send Message was sent.
Note: MicroC specific.

sn Abbreviation for send.
Note: MicroC specific.

sp Abbreviation for stop.

st Abbreviation for start/started.

start Action performed to begin activity.

started Event generated when the activity becomes active.

stop Action performed to halt an activity.

stopped Event generated when an activity is ended.

suspend Possible condition of an activity.

switch_c Switch case statement for C.

then Loop statement.

timeout Timeout.

tm Abbreviation for timeout.

tmax Maximum operator.

tmin Minimum operator.

to Loop command statement.

tr Abbreviation for true.

Keyword Description
4 Quick Reference Guide

Expressions
Expressions
Expressions within Rational Statemate take the form Trigger/Action:

� A trigger expression is an event or condition that defines the criteria for a change in
system status. A trigger expression can be an event expression with a guarding condition.
Refer to “Trigger Expressions” for more information.

� An action expression specifies what to do as a consequence of a trigger occurring. Refer to
“Action Expressions” for more information.

Mini-specs and static reactions can contain multiple expressions separated by double semicolons
(;;).

Trigger Expressions

The following sections describe the possible trigger expressions. The topics are as follows:

� Event Expressions

� Condition Expressions

true Boolean value = 1.

uput Abbreviation for q_urgent_put.

when Loop statement.

when_ada Used in case statements for Ada.

while Loop statement.

wr Abbreviation for written/write_data.

write_data Action of writing.

written Element was assigned a value.

xor Logical xor [exclusive or].

xs Abbreviation for exiting.

Keyword Description
Rational Statemate 5

Reserved Words and Expressions
Event Expressions
A primitive event is one of the following:

� Named single (non array) event
� E (K), the K’th component of an event array E; K is any integer expression

An array of events (also referred to as an event array) is one of the following:

� Named event array
� Array slice E (K..L), of an event array E; K and L are integer expressions

Events Related to Other Elements

The following table lists the derived events that can be used as triggers within your model. A
derived event is an event that occurs from a change in the system environment, not from any
external source. Note that Rational Statemate automatically truncates expressions. For example, if
you type in delay, Rational Statemate truncates it to dly. The table lists the truncated version of
the expression.

The following operators, which are related to various types of elements, produce a single (non-
array) event.

Event
Expression Occurs When Notes

all(E) All components of event array E
occurred.

E is an event array.

any(E) At least one component of event array
E occurred.

E is an event array.

ch(X) The value of X is changed. X is data-item or condition expression or
array (including array slice); can be
structured or a queue.

dly(N) N clock units have passed since
entering the state

N is a numeric expression.

en(S) State S is entered. Used only in statecharts.

ex(S) State S is exited. Used only in statecharts.

fs(C) The value of condition C is changed to
false.

C is a condition expression (not an array).

ns Current state is being entered. Used only as a trigger of a reaction in state.

rd(X) X is read by action rd!, or from a
queue by peek! or get!

X is a primitive (not an alias) data-item or
condition; X can be array (not a slice), array
component (not a bit-array component),
structured, or queue.
6 Quick Reference Guide

Expressions
Compound Events

The following table lists the compound events that can be used as triggers. Operations are shown
in descending order of precedence. You can use parentheses to alter the evaluation order. For
example:

((E[C] or E2) and E3)

Predefined Events in Static Reactions and Mini-Specs

The Rational Statemate action language supports the use of “entering” and “exiting” for static
reaction triggers, and “started” for mini-spec triggers.

Examples:

started/ACT1;;

started or EV_1/ACT1;;

sp(A) Activity A is stopped. Used only in statecharts.

st Current activity is started. Used only as a trigger in a reactive activity.

st(A) Activity A is started. Used only in statecharts.

tm(E,N) N clock units passed from the last time
event E occurred.

E is event expression (not an array). N is a
numeric expression.

tr(C) The value of condition C is changed to
true.

C is a condition expression (not an array).

wr(X) X is written by action wr!, by
assignment, or by put! in a queue.

X is a primitive (not an alias) data-item or
condition; X can be array (not a slice),
queue array component (not a bit-array
component), structured, or queue.

xs Current state is being exited. Used only as a trigger of a reaction in state.

Event Occurs When

E[C] E occurred and condition C is true.

E1 and E2 E1 and E2 occurred simultaneously.

E1 or E2 E1 or E2, or both, occurred.

not E and [C] E did not occur and C is true.

Event
Expression Occurs When Notes
Rational Statemate 7

Reserved Words and Expressions
IN_SIM

The event expression “in_sim(ev_exp)” using the “in_sim” operator, is interpreted as “ev_exp” in
simulation, and is replaced with empty_event in all other tools.

Expressions containing “in_sim(ev_exp)” can be used on transition-label, minispec and static
reaction, and must appear as the first operator in trigger side of the expression.

The ELSE Trigger

You can use ELSE as a predefined trigger event in triggers of transitions, reactive mini-specs, and
state-static reactions.

Note

� You cannot use ELSE as a guard on a default transition.
� When ELSE is used in a mini-spec or static reaction, the ELSE trigger is interpreted as an

“else” of all the other triggers that exist, not just the ones that precede it in the mini-spec
or static reaction.

� An ELSE trigger cannot be part of an expression. It must appear alone. For example, the
following statement is illegal:

else or e1

� Using two ELSE triggers exiting from the same source state is illegal and is reported as an
error by Check Model.

� DEFAULT is an alias of ELSE.
Example:

Consider the following statement:

event1/action1;;else/action2;

When this statement is used in a static reaction, action2 runs if none of the other triggers in the
static reaction are activated and the system is in-state (that is, the state is neither in “entering” nor
in “exiting”).

When the statement used in a mini-spec, action2 runs if none of the other triggers in the mini-
spec are activated and the activity is in regular operation mode or has just been started.

When the statement is used in a statechart, the ELSE trigger exiting from a state S1 is activated if
none of the other triggers of the compound transitions exiting S1 are activated.
8 Quick Reference Guide

Expressions
Condition Expressions
The following table lists the operators that are related to various types of elements and represent a
single (non-array) condition.

The following table lists the logical operations that use only single (non-array) conditions and
represent a single condition. The operations are shown in descending order of precedence.

You can use parentheses to alter the evaluation order. For example:

(not((C1 or C2) and C3))

Note
Logical operations have lower precedence than comparison relations.

Data-Items and Data Types Used in Condition Expressions

The following operators are applicable to strings, arrays and bit-array data-items, and to user-
defined types that are defined as string, array or bit-array. The result is a constant integer.

Condition
Expression True When Notes

ac(A) Activity A is active. Used only in statecharts.

all(C) All components of condition C are
true.

C is a condition array.

any(C) At least one component of condition C
is true.

C is a condition array.

hg(A) Activity A is suspended. Used only in statecharts.

in(S) System A is in state S. Used only in statecharts.

X1 R X2 The values of X1 and X2 satisfy the
relation R.
Note: X1 and X2 are data-item or
condition expressions.

When numeric, R can be: ==, /=,
>, <, <=, or >=.

When strings, arrays, structured or
queues, R can be ==,!=.

Condition True When

Cl and C2 Both Cl and C2 are true.

Cl or C2 Cl or C2 or both are true.

not C C is not true.
Rational Statemate 9

Reserved Words and Expressions
The following operator is applicable to queues:

The following operators are applicable to integers and reals, and to user-defined types that are
defined as integer or real.

The tmin and tmax operators accept one parameter, the name of the data-item or data-type, and
return the defined minimum or maximum value. When the value is not defined, the operators
return OUT_OF_RANGE.

Data-Item Expression Meaning

length_of(A) Length of array, bit-array, or string A
(data-item or user-defined type)

lindex(A) Left index of array or bit-array A (data-
item or user-defined type)

rindex(A) Right index of array or bit-array A
(data-item or user-defined type)

Data-Item Expression Meaning

q_length(Q) Current number of elements in queue Q.

Data-Item
Expression Meaning

tmax Maximum value

tmin Minimum value
10 Quick Reference Guide

Expressions
Note the following limitations for tmin and tmax:

� You cannot use these operators on generic activity-chart or generic statechart formal
parameters, or within subroutine implementations (action language, truth table, or
procedural statechart).

� The analysis tools do not support dynamic evaluation of expressions with the these
operators. Specifically, the following functions do not support the operators:

– Simulation interactive expression evaluation
– Simulation micro-step debugger
– Sequence diagram animation
– Generated code debugger

� Because the operators are not considered as “usage” of data, a data-item used only inside
the tmin and tmax operators will not be included in the simulation scope.

Bit-Wise Operations

The following operations are relevant to integer, bit, and bit-array operands; the result is a bit-
array. The list presents the operations in descending order of precedence. Parentheses can be used
to alter the evaluation order. Bit-wise operations, besides the not operation, have lower precedence
than comparison relations and numeric operations. The not operation has higher precedence.

Note
An ampersand (for example, A & B) denotes concatenation

Refer to Bit-Array Functions for more information.

A B
A

AND
B

A
NAND

B

A
OR
B

A
NOR

B

A
XOR

B

A
NXOR

B

false false false true false true false true

false true false true true false true false

true false false true true false true false

true true true false true false false true
Rational Statemate 11

Reserved Words and Expressions
Database Conversion Operations

Database conversion operations have required and optional guidelines:

� Required conversions include the comparison operator = to be written as == and the end-
of-line comment -- to be written as //.

� Optional conversions are defined as synonyms, and therefore enable you to select either
the old or new operator.

Database conversion operations are controlled by the following environment variables:

� STM_CONVERT_EQ—Changes == to .EQ.
� STM_CONVERT_ASSIGNMENT—Changes := to =
� STM_CONVERT_NE—Changes /= to !=

To convert the operator, set the specific variable to ON; otherwise, no change is made.

The following table lists the revised database operators.

Old Operator New
Operator Description Required or

Optional

== .EQ. Comparison operator (for special
cases integer/ba/enum)

Optional

= == Comparison operator Required

:= := or = Assignment operator Optional

/= /= or != Not equal operator Optional

-- // End-of-line comment Required
12 Quick Reference Guide

Expressions
Action Expressions

Action expressions can contain multiple actions separated by semicolons (;).

The following table lists the action statements and how they appear in the language of Rational
Statemate.

Action
Expression Purpose Notes

dc!(S) Clears the history information of the
descendants of state S

Used only in statecharts.

E Generates the event E E is a primitive, single event (not an array).

fl!(Q) Clears queue Q X’s type is compatible with the type of the
queue components.
Conditional return S is optional.

fs!(C) Assigns false to condition C C is a primitive, single condition (not an
array).

get!(Q,X,S) Moves the head of the queue Q into
data-item or condition X; returns
status S

X’s type is compatible with the type of the
queue components.

gt!(c) Waiting for resource. “Wait Semaphore” on the condition.

hc!(S) Clears the history information of state
S

Used only in statecharts.

peek!(Q,X,S
)

Copies the head of the queue Q to
data-item or condition X; returns
status S

X’s type is compatible with type of queue
components.
Conditional return S is optional.

put!(Q,X) Adds data-item or condition X to the
tail of queue Q

X’s type is compatible with the type of the
queue components.

ra! Resets all elements in the scope to
their default values

rc!(DI) Message was received. “Receive Message” API on a data-item.

rd!(X) Reads data-item or condition X X is a primitive (not an alias) data-item or
condition, or array (including slices). Bit-
array components or slices are not
allowed.

re!(EL) Resets element EL to its default value

rl!(C) Resource was released. “Release Semaphore” on a condition.

rs!(A) Resumes activity A Used only in statecharts.

sc!(K,N) Performs action K, delayed by N clock
units

N is a numeric expression.
Rational Statemate 13

Reserved Words and Expressions
sd!(A) Suspends activity A Used only in statecharts.

sn! (DI) Message was sent. Send message API on a data-item.

sp!(A) Stops activity A Used only in statecharts.

st!(A) Activates activity A Used only in statecharts.

stop Stops the current activity Used only in a mini-spec of a reactive
activity.

tr!(C) Assigns true to condition C C is a primitive, single condition (not an
array).

uput!(Q,X) Adds data-item or condition X to the
head of queue Q’s components

X’s type is compatible with the type of the
queue components.

wr!(X) Writes to data-item or condition X X is a primitive (not an alias) data-item or
condition, or array (including slices). Bit-
array components or slices are not
allowed.

X=EXP Assigns the value of EXP to X X is a primitive or alias data-item, array or
bit-array, condition or array condition
(including slices).

X**Y Raises X to the Y power

Action
Expression Purpose Notes
14 Quick Reference Guide

Expressions
Compound, Conditional, and Iterative Actions
Action expressions can contain multiple action statements separated by a semicolon (;). The
following table lists the Rational Statemate action expressions.

Using Variables for Look-Up Table Values

Abscissa, Ordinate, Lower Bound, and Upper Bound values can be defined as expressions using
variables.

Note
Look-up table Abscissa values are not ordered by Rational Statemate during a Save
operation. The expressions are evaluated at run time and used in the user-defined order.
Interpolation results depend on having the values in the correct order.

Action Expression Notes

++ Increment the value of the variable by 1.

-- Decrement the value of the variable by 1.

AN1; AN2; The actions are performed concurrently. The semi-colon is
optional at the end of the list.

break Causes the containing loop action to terminate.

for $I in N to |down to
L loop VAR[$I] = 0; end
loop;

$I is a context variable; N and L are integers.

if C then ANI; else AN2;
end if;

C is a condition expression; the else part is optional. AN1 and
AN2 are action expressions.

when E then AN1; else
AN2; end when;

E is an event expression; the else part is optional. AN1 and AN2
are action expressions

while C loop AN; end
loop;

C is a condition expression; AN is an action expression.
Rational Statemate 15

Reserved Words and Expressions
16 Quick Reference Guide

Functions, Operators, Switch Cases and
Truth Tables
This section provides more detailed information defining functions, syntax, arguments, variables,
and limitations.

Predefined Functions
A predefined function call has the following syntax:

returned-value = function(argl,arg2,...)

Rational Statemate supports the following predefined functions:

� Arithmetic Functions
� Trigonometric Functions
� Exponential Functions

Arithmetic Functions

The following table lists the arithmetic functions supported by Rational Statemate. The table uses
the following abbreviations for the argument type and return value:

� I - Integer
� R - Real
� S - String
� W - Bit-array
� B - Bit
Rational Statemate 17

Functions, Operators, Switch Cases and Truth Tables
Rational Statemate converts the type of the arguments when needed.

Trigonometric Functions

The following table lists the trigonometric functions supported by Rational Statemate.

Function Argument Type Return Type Meaning

ABS(x) R or I Type of input Absolute value

MAX(x,y) Mixed R and I Type of input Maximum value

MIN(x,y) Mixed R and I Type of input Minimum value

MOD(x,y) I1, I2 I I1 modulus I2

ROUND(x) R I Rounded value

TRUNC(x) R I Truncated value

Function Argument
Type

Return
Type Meaning

ACOS(x) R R Arc cosine (in radians).

ACOSD(x) R R Arc cosine (in degrees).

ASIN(x) R R Arc sine (in radians).

ASIND(x) R R Arc sine (in degrees).

ATAN(x) R R Arc tangent (in radians).

ATAN2(x) R R Arc tangent (in radians) with two parameters. For
example, the arc tangent of (a1/a2).

ATAND(x) R R Arc tangent (in degrees).

ATAN2D(x) R R Arc tangent (in degrees) with two parameters. For
example, the arc tangent of (a1/a2).

COS(x) R R Cosine.

COSD(x) R R Cosine (in degrees).

COSH(x) R R Hyperbolic cosine (in radians).

SIN(x) R R Sine.

SIND(x) R R Sine (in degrees).
18 Quick Reference Guide

Predefined Functions
Exponential Functions

The following table lists the exponential functions supported by Rational Statemate.

Random Functions

The following table lists the random functions supported by Rational Statemate
.

SINH(x) R R Hyperbolic sine (in radians).

TAN(x) R R Tangent.

TAND(x) R R Tangent (in degrees).

TANH(x) R R Hyperbolic tangent (in radians).

Function Argument
Type

Return
Type Meaning

EXP(x) R R Exponential

LOG(x) R R log base e

LOG10(x) R R log base 10

LOG2(x) R R log base 2

SQRT(x) R R Square root

Function Argument
Type

Return
Type Meaning

RAND_BINOMIAL(n,p) I, R I Accepts two arguments, where n>0 and
0<p<1. The returned random values are
real numbers distributed according to a
binomial distribution.
Function: X ~ B(n,p)

RAND_EXPONENTIAL(t) R R Returns random real values distributed
exponentially by the value t.
Use the syntax
x=rand_exponential(t) to make x
equal to a randomly generated number.
The syntax x=random_exponential
(t) is accepted, but it makes x equal to
the first value in an array called
random_exponential.
Function: X ~ exp(t)

Function Argument
Type

Return
Type Meaning
Rational Statemate 19

Functions, Operators, Switch Cases and Truth Tables
RAND_IUNIFORM(a,b) I, I I Returns random integer values distributed
according to a uniform distribution in the
interval [a,b].
Function: X ~ U[a,b]

RAND_NORMAL(a,b) R, R R Returns random real values distributed
according to a normal distribution.
Function: X ~ N[a,b]

RAND_POISSON(r) R I Returns random integer values distributed
according to a poisson distribution.
Function: X ~ P(r)

RAND_UNIFORM(a,b) R, R R Returns random real values distributed
according to a uniform distribution in the
interval [a,b].
Function: X ~ U[a,b]

RANDOM(i) I R Returns a random real value distributed
uniformly between 0 and 1.
If the passed argument is not 0, a new
sequence of random values, whose seed
is the parameter, i, is initialized.
Because Rational Statemate initiates a
session with the same seed for random
functions, two consecutive executions will
behave identically. The advantage to this
behavior is that you can reconstruct a
particular execution scenario. New
scenarios are produced by providing
different seeds.

Function Argument
Type

Return
Type Meaning
20 Quick Reference Guide

Predefined Functions
Bit-Array Functions

The following table lists the bit-array functions supported by Rational Statemate.

Function Argument
Type

Return
Type Meaning

ASHL(x,y) W,I W Arithmetic shift left by I, enters 0’s

ASHR(x,y) W,I W Arithmetic shift right by I, preserves sign

BITS_OF(x,y,z) W1,I1, I2 W Slice of bit-array expression; least significant
bit of W1 is 0.
Note: Only supported up to 32 bits.

EXPAND_BIT(x,y) B,I W Expand bit; creates a bit array of I bits, all
equal B

LSHL(x,y) W,I W Logical shift left by I, enters 0’s

LSHR(x,y) W, I W Logical shift right by I, enters 0’s

MUX(x,y,z) W1,W2, B W Returns W1 if B==0, W2 if B==1

SIGNED(x) W I Signed value (most significant bit of W is a
sign bit)
Rational Statemate 21

Functions, Operators, Switch Cases and Truth Tables
String Functions

The following table lists the string functions supported by Rational Statemate.

Note
 The index of the left-most character in a string is 0.

Predefined Constants

You can use the following predefined constants:

� pi

� e

For example:

circumference = pi * diameter;

In addition, you can use the reserved word N/A in the actual binding field in the properties for a
generic instance to note that a specific formal parameter is not applicable to that instance.

Function Argument
Type

Return
Type Meaning

CHAR_TO_ASCII(x) S I ASCII value of Ith character of S

ASCII_TO_CHAR(x) I S Returns S of one character with ASCII
value I

INT_TO_STRING(x) I S Converts I to decimal string; I can be
negative

STRING_CONCAT(x,y) S1, S2 S Concatenates strings

STRING_EXTRACT(x,
y,z)

S, I1, I2 S Extracts a string of length I2 from index
I1 of S

STRING_INDEX (x,y,z) S1, I, S2 I Index of sub-string S2 within S1; –1 if not
found

STRING_LENGTH(x) S I String length

STRING_TO_INT(x) S I Integer value of a decimal string
22 Quick Reference Guide

Combinational Assignments
Combinational Assignments
A combinational assignment has the following syntax:

CE =EXP1 when COND1 else

 EXP2 when COND2 else

 . . .

 EXPN

In this syntax:

� CE (the combinational element) - A primitive data-item or condition, or an alias data-
item

� EXP1 - A data-item or condition expression
� COND1 - A condition expression
� N - A number greater than or equal to 1. If N=1, the assignment is simply

CE = EXPl

Combinational assignments in a sequence are separated by semi-colons, like actions in a sequence.

For example:

DI_CE=DI_expression

DI_CE=DI-expression_1 when CO_expression

 else DI_expression_2

DI_CE=DI_expression when CO_expression_1

 else DI_expression_2 when CO_expression_2

 else DI_expression_3

CO_CE=CO_expression

CO_CE=CO_expression_1 when CO_expression

 else DI_expression_2

CO_CE=CO_expression when CO_expression_1

 else CO_expression_2 when CO_expression_2

 else CO_expression_3
Rational Statemate 23

Functions, Operators, Switch Cases and Truth Tables
Constant Operators and Enumerated Types
The two constant operators are as follows:

� enum_first(T)

First enumerated value of T=> T'FIRST in Ada.

enum_last(T)

Last enumerated value of T=> T'LAST in Ada.

Parameters to these constant operators are user-defined types defined as enumerated types.

Operators Related to Enumerated Values

The following table lists the operators that support operations on enumerated values.

Parameters to these operators are either enumerated values (literals) or variables. The T'VAL
notation is used for non-unique literals. For example:

� A user-defined type DAY is defined as enumerated type with the following values:
{SUN,MON,TUE,WED,THU,FRI,SAT}

� Another UDT VACATION can be defined as of type User-Type DAY with subrange
{FRI,SAT}.

� Another UDT can be defined as {SUN, MON,TUE}.
� The order of enumerated values within the subtype should be defined as a segment of the

original type. For example, MON must always be greater than SUN.
Ordinal values start with 0 (zero). The ordinal of the values of a subtype is defined by the position
in the original type definition. For example:

enum_ordinal(DAY'FRI) == enum_ordinal(VACATION'FRI) == 5

Operator Ada Equivalent Meaning

enum_image([T’] VAL) T’IMAGE String representation of VAL in T.
enum_pred([T'] VAL) T'PRED Predecessor enumerated value of

T.

enum_ordinal([T']VAL) T'ORD Ordinal position of VAL in T.

enum_succ([T']VAL) T'SUCC Successor enumerated value of T.
enum_value(T,I) T'VAL Value of the i’th element in T.
24 Quick Reference Guide

Constant Operators and Enumerated Types
Resolving Enumerated-Types Values

When multiple instances of the same Enumeration value exist in the scope, the value is resolved
according to the variable type it is assigned to.

For example, assume the existence of the following in the scope:

Enumerated Data Types:

COLOR 1 {RED, GREEN, BLUE}

COLOR 2 {RED, GREEN, BLUE}

Data-Item:

MY_COLOR1 of type COLOR1

MY_COLOR2 of type COLOR2

Transition Expression:

[TRUE]/ MY_COLOR1=RED;MY_COLOR2=RED;

In this example, the first RED is resolved to RED in COLOR1, according to the type of MY_COLOR, The
second RED is resolved to RED in COLOR2, according to the type of MY_COLOR2.

Limitation:

User-defined enumerated types that use a non-unique enumeration value should be defined in
Global Definition Set (GDS).
Rational Statemate 25

Functions, Operators, Switch Cases and Truth Tables
Inline Operator
The inline operator can be used in the Rational Statemate action language to insert code into the
MicroC generated code.

Note
The operator is recognized only by the MicroC Code-generator. Rational Statemate
Simulation and other code generators ignore the inline operator.

Example:

On a transitions, you can write:

/inline(‘print(“my text\r\n”)’);

The “printf” is written into the MicroC generated code.

Switch Cases
Switch cases are supported by Rational Statemate for C and Ada.

C Language

The following information describes the C language switch cases in detail.

Syntax
switch_c <expression> { (<expression>) {

case_c <key_value> : <actions>;[break;]
...

case_c <key_value> : <actions>;[break;]
default : <actions>;

}

In this syntax:

� <expression>—The data-item of the expression type. This can be either Integer or
Enumerated.

� <key_value>—The value. This can be either a literal integer or an enumerated value.
� <actions>—The Rational Statemate actions.

Note: break; can be used as one of the actions.
26 Quick Reference Guide

Switch Cases
Limitations

Note

� You can use non-unique, case-constant expressions; however, Rational Statemate runs
only the first one.

� Conditional breaks are not supported.
� The maximum number of case statements inside the switch statement is 256.

Translator
The Translator translates switch/case structures to if/then/else structures for simulation and
code generation needs:

switch/case

if (expression == key_value) actions;

� If the break statement occurs in the action, control is transferred out of the if/then/else
statement by if (expression == key_value) actions.

� If the break statement does not occur in case body, the next if/then/else statement
expression contains the previous expression and the current expression.

� if (expression == key_value1 || expression == key_value2) actions;

All default actions are concatenated as a sequence of actions and run if all the if/
then/else expressions are FALSE.
Rational Statemate 27

Functions, Operators, Switch Cases and Truth Tables
The following table shows the translation of a switch case.

Ada Language

The following information describes the Ada language switch cases in detail.

Syntax
case_ada <expression> is

when_ada <key_value> [| <key_value>] => : <actions>;
...

when_ada <key_value> [| <key_value>] => : <actions>;
when_ada others => <actions>;

end case_ada;

In this syntax:

� <expression> - The data-item (DI) of the expression type. This can be Integer, Bit-
Array, or Enumerated.

� <key_value> - The value. This can be a constant literal, enumerated value, constant
integer DI, or a choice list.

� <actions> - The Rational Statemate actions.
Note: break; cannot be used as one of the actions.

Action Language Translation

switch_c (X)
{
 case_c 1:
 Y++;
 case_c 2:
 Y=Y+2;
 X++;
 break;
 case_c 3:
 FOO1(Y);
 FOO2(Y);
 break;
 default :
 DEF_ACTION(X);
};

if (X==1)
{
 Y = (Y + 1);
}
if ((X==1)||(X==2))
{
 Y = (Y + 2);
 X = (X + 1);
}
else
{
 if (X==3)
 {
 FOO1(Y);
 FOO2(Y);
 }
 else
 {
 DEF_ACTION(X);
 }
 }
28 Quick Reference Guide

Switch Cases
Limitations
Note the following restrictions:

� Ranges (for example, (RED..BLUE)) are not supported.
� The non-standard words case_ada and when_ada are used instead of case and when.
� when_ada others must be the last case.
� The maximum number of case statements inside the switch statement is 256.
� Remote panels are not supported.

Translator
The Translator translates case-ada/when_ada structures to if/then/else structures for
simulation and code generation needs:

� A case_ada statement selects for execution one of a number of alternative
sequences_of_statements; the chosen alternative is defined by the value of an
expression and simply evaluated to an if/then/else statement. For example:

if (expression == key_value1) then actions;
else if(expression == key_value2) then actions;
. . .

� A choice list is translated as sequence of or statements in an if/then/else expression.
For example, when_ada 1| 2| 3 => <actions> translates to:

if (expression == 1 || expression == 2 || expression == 3)
then <actions>

� All default action concatenated as sequence of action and run if none of the when_ada
statements is chosen.
Rational Statemate 29

Functions, Operators, Switch Cases and Truth Tables
The following table shows the translation of a case_ada statement.

Truth Tables
This section describes the format of truth tables and how they are evaluated. The topics are as
follows:

� Truth Table Operators

� Special Characters

� Input Columns

� Output Columns

� Action Column

� Default Row

� Row Execution

Action Language Translation

case_ada X is
 when_ada 1 | 2 => Y++;Y=Y+2;
 when_ada 3 => FOO1(Y);
 when_ada 4 => FOO2(Y);
 when_ada others => DEF_ACTION(X);
end case_ada

if ((X==1) || (X==2))
{
 Y = (Y + 1);
 Y = (Y + 2);
}
else
{
 if (X==3)
 {
 FOO1();
 }
 else
 {
 if (X==4)
 {
 FOO2();
 }
 else
 {
 DEF_ACTION();
 }
 }
}

30 Quick Reference Guide

Truth Tables
Truth Table Operators

A value in a truth-table input column cell can be prefixed with one or more of the following
operators:

<, >, <=, >=, !=, \+, ==

For example, a value of <6 in the X Input column cell causes the cell to be evaluated as TRUE
only when x<6.

Special Characters

The following table lists the characters that have special meanings within truth tables.

Input Columns

The input columns of a truth table are similar to the following:

Each column in the input section of the table is associated with an input. Inputs can be either a
Rational Statemate element or expression. Subroutine parameters and globals can be used as inputs
when the truth table is a subroutine implementation body.

Compound elements can be used as inputs. For example, CO_2 can be defined as D1>5 and in
(STATE_1).

Character Meaning

* Don’t care

+ Event generated (input or output)

- Event not generated (input)

CO_1 CO_2 DI_1 REC_1 ARR_1

True False 1 REC_2 {1,2,3}

False False 2 * *

True False 3 * *

False True 5 * *
Rational Statemate 31

Functions, Operators, Switch Cases and Truth Tables
Entries in the input section can be:

� Literals

� Rational Statemate elements
� Expressions
� Empty
� Don’t care (*)

For example:

Row 1

CO_1 and not CO_2 and DI_1==1 and REC_1==REC_2 and
ARR_1=={1,2,3}

Row 2

not CO_1 and not CO_2 and DATA_1==2

Valid Input ELEMENTS
Conditions and data-items can be used as inputs to truth tables. Data-items include:

� Integers
� Reals
� Bits
� Bit-arrays
� Strings
� Records
� Record fields
� Enumerated types
� Arrays of the previously listed types
� Elements of arrays
� Subroutine calls
� User-defined types built of the previously listed types

Note
There is no literal syntax for the following types: records, unions, and arrays of complex
types. The only legal comparison in the input section for these elements is another element
of the same type.
32 Quick Reference Guide

Truth Tables
Invalid Input Types
The following elements cannot be used as inputs:

� Unions
� Records that contain unions
� Arrays of unions
� Fields of unions
� Slices of arrays or bit-arrays
� Queues
� States
� Activities

Each input section of a row represents a Boolean expression. The Boolean expresses an AND of
equivalence comparisons for each of the inputs that does not have a “Don’t Care” value.

Note
Input cells that are left blank are considered as “Don’t Care” items by the simulation and
code generation tools.

Output Columns

The output columns of a truth table are similar to the following:

Each output column must be a Rational Statemate element. Local elements, subroutine parameters,
and subroutine global elements can be outputs when the truth table is a subroutine implementation
body.

CO_3 DATA_2

True 100

False -1

True 1

False 2
Rational Statemate 33

Functions, Operators, Switch Cases and Truth Tables
Entries in the cells of the output section can be:

� Literals

� Rational Statemate elements
� Rational Statemate expressions
� Empty

Empty entries in the output section indicate outputs that are not changed when the related row
runs. Unchanged items are not “written.”

Output Elements
Primitive conditions and data-item can be used as outputs for truth tables.

The following elements cannot be used as outputs:

� Compounds
� Slices of arrays
� Slices of bit-arrays
� Queues
� Activities
� States
� Actions

Note
The same element can appear in the table as both an input and an output.

Action Column

In the Action column, you can include any action expression that is legal in the context of the truth
table.

The action column is similar to the following:

Action

AN1;AN2

AN3

X:=X+Y
34 Quick Reference Guide

Truth Tables
Default Row

Optionally, you can add a default row to the truth table. This row contains no input values and runs
only if none of the previous rows in the table runs.

Row Execution

Rational Statemate evaluates a truth table as follows:

� When a truth table runs, Rational Statemate evaluates it row-by-row, starting at the top of
the table and proceeding downward to the end.

� The first row whose input expression evaluates to True is “fired.”
� Once the row is fired, all the outputs listed in the output section of that row are generated

and the action section runs.
� If any output columns are blank, the related outputs are not changed. Unchanged items are

not “written.”
� The order of execution is from left to right—first outputs, then actions. This is relevant

only for truth tables that implement procedures.
� If the table contains a default row, and if during the evaluation of the table no other row

has fired, the default row is fired.
� If the table does not contain a default row and no row fires during the evaluation of the

table, a warning message is displayed during simulation and no output elements are
changed.
Rational Statemate 35

Functions, Operators, Switch Cases and Truth Tables
Boolean and Bit-Wise Operations on MVL Types
The following table lists NOT, AND, and OR.

The following table lists XOR, OP1, and OP2.

IN OUT IN1 IN2 OUT IN1 IN2 OUT

0 1 0 0 0 0 0 0

1 0 0 1 0 0 1 1

X X 0 X 0 0 X X

Z X 0 Z 0 0 Z X

1 1 1 1 1 1

1 X X 1 X 1

1 Z X 1 Z 1

X X X X X X

X Z X X Z X

Z Z X Z Z X

IN1 IN2 OUT IN1 IN2 OUT IN1 IN2 OUT

0 0 0 0 0 1 0 0 1

0 1 1 0 1 0 0 1 0

0 X X 0 X 0 0 X 0

0 Z X 0 Z 0 0 Z 0

1 1 0 1 1 0 1 1 1

1 X X 1 X 1 1 X 0

1 Z X 1 Z 0 1 Z 0

X X X X X 0 X X 1

X Z X X Z 0 X Z 0

Z Z X Z Z 0 Z Z 1
36 Quick Reference Guide

Resolution Matrices
Resolution Matrices

Normal 0 1 X Z

0 0 X X 0

1 X 1 X 1

X X X X X

Z 0 1 X Z

Wired
AND 0 1 X Z Wired

OR 0 1 X Z

0 0 0 0 0 0 0 1 X 0

1 0 1 X 1 1 1 1 1 1

X 0 X X X X X 1 X X

Z 0 1 X Z Z 0 1 X Z
Rational Statemate 37

Functions, Operators, Switch Cases and Truth Tables
38 Quick Reference Guide

Index
A
ABS function 18
Abscissa value 15
ac 1, 9
ACOS function 18
ACOSD function 18
ACOSH function 18
Action 5

compound 15
concurrent 15
conditional 15
iterative 15

Action column 34
Action expressions 13
active 1
active condition 9
Ada language 28
all 1, 6, 9
and 1
any 1, 6, 9

derived event 6
Arc cosine 18
Arc sine 18
Arc tangent 18
Arithmetic

functions 17
shift 21

Arithmetic functions
ABS 18
MAX 18
MIN 18
MOD 18
ROUND 18
TRUNC 18

Array
of events 6

ASCII_TO_CHAR function 22
ASHL function 21
ASHR function 21
ASIN function 18
ASIND function 18
ATAN function 18
ATAN2 function 18
ATAN2D function 18
ATAND function 18

B
Bit-array function 21
BITS_OF function 21
Bit-wise operation 11, 36
Boolean operation 36
break 1

conditional action 15

C
C language 26
Case 26
case_ada 1
case_c 1
CE 23
ch 1, 6
changed 1
CHAR_TO_ASCII function 22
Character

special 31
Column

action 34
input 31
output 33

Combinational assignment 23
Compound

action 15
event 7

Concatenation 22
Concurrent action 15
COND1 23
Condition

related to other elements 9
Conditional action 15
Constant

operators 24
predefined 22

COS function 18
COSD function 18

D
Database operators 12
Data-item

operators 9
Rational Statemate 39

Index
related to other elements 9
dc 1, 13
Decrement 15
deep_clear 1

action statement 13
default 1
Default row 35
delay 1, 2
Derived event 6
dly 6
downto 2

E
E

action statement 13
Element

bit-wise operations 11
combinational assignments 23

Elements
reset all 13

ELSE 8
else 2
en 2, 6
end 2

loop 15
entered 2
entering 2
entering_or 2
enum_first 2
enum_image 2
enum_last 2
enum_ordinal 2
enum_pred 2
enum_succ 2
enum_value 2
Enumerated type 24

operators related to 24
Event

array of 6
compound 7
derived 6
operators 6
primitive 6
related to other elements 6

Event expressions 6
ex 2, 6
Execution

of truth tables 35
exited 2
exiting 2
exiting_or 2
EXP function 19
EXP1 23
EXPAND_BIT function 21
Exponential function 19
Expression

action 13
Expressions 5

event 6
trigger 5

Extraction 22

F
false 2
fl 2
for 2
for loop 15
fs 2, 6
Functions

arithmetic 17
bit-array 21
exponential 19
predefined 17
random 19
string 22
trigonometric 18

G
get 2
gt 13

H
hanging 2
hanging condition 9
hc 2, 13
hg 2, 9
history_clear 3

action statement 13
Hyperbolic functions 18

I
if 3
if-then statement 15
in 3, 9
Increment 15
Index 22
Inline operator 26
Input column 31
Input element

for truth tables 32
INT_TO_STRING function 22
is 3
Iterative action 15

L
Length

of queues 10
40 Quick Reference Guide

Index
string 22
length_of 3

operator 10
Limitations

Ada language 29
C language 27
enumerated types 25

lindex 3, 10
LOG function 19
LOG10 function 19
LOG2 function 19
Logical operation 9
Logical shift 21
Look-up table 15
Loop

ending 15
for statement 15
while statement 15

loop 3
Lower Bound value 15
LSHL function 21
LSHR function 21

M
make_false 3

action statement 13
make_true 3

action statement 14
Matrix

resolution 37
MAX function 18
MicroC

inline operator 26
MIN function 18
MOD function 18
MUX function 21

N
N

combinational assignment 23
N/A 3
nand 3
nor 3
not 3
ns 3, 6
null 3
nxor 3

O
Operation

bit-wise 11, 36
Boolean 36
logical 9

Operator

constant 24
related to enumerated types 24

or 3
Ordinate value 15
others 3
Output column 33

P
peek 3
Power symbol 14
Predefined constant 22
Predefined function 17
Primitive event 6
put 3

Q
q_flush 3

action statement 13
q_get 3

action statement 13
q_length 3, 10

operator 10
q_peek 3

action statement 13
q_put 3

action statement 13
q_urgent_plus 3
q_urgent_put

action statement 14
Queue

operator 10

R
Random function 19
Rational Statemate

action expressions 13
arithmetic functions 17, 18
bit-array functions 21
bit-wise operations 11
combinational assignments 23
enumerated types 24
exponential functions 19
expressions 5
predefined constants 22
predefined functions 17
random functions 19
reserved words 1, 17
resolution matrices 37
string functions 22
switch cases 26
trigonometric functions 18

rc 13
rd 3, 6
re 3
Rational Statemate 41

Index
read 3
read_data 3

action statement 13
receive 3
released 4
Reserved words 1, 17
reset all elements

action statement 13
reset element EL

action statement 13
reset_all_elements 4
reset_element 4
Resolution matrix 37
resume 4

action statement 13
return 4
rindex 4, 10
rl 4, 13
ROUND function 18
rs 4

S
sc 4
schedule 4

action statement 13
sd 4
send 4
Shift

arithmetic 21
logical 21

SIGNED function 21
SIN function 18
SIND function 18
SINH function 19
Slice 21
sn 4, 14
sp 4, 7
Special character 31
SQRT function 19
st 4, 7
st(A) 7
start 4

action statement 14
started 4
stop 4

action statement 14
stopped 4
String function 22
STRING_CONCAT function 22
STRING_EXTRACT function 22
STRING_INDEX function 22
STRING_LENGTH function 22
STRING_TO_INT function 22
suspend 4

action statement 14
Switch cases 26

limitations 27
switch_c 4
Syntax

Ada language 28
C language switch cases 26
predefined function 17

T
Table

truth 30
TAN function 19
TAND function 19
TANH function 19
then 4
timeout 4
tm 4, 7
tmax 4, 10

limitations 11
tmin 4, 10

limitations 11
to 4
tr 4, 7
Trigger 5

ELSE 8
Trigger expressions 5
Trigonometric function 18
true 5
TRUNC function 18
Truth table 30

action column 34
default row 35
execution 35
input columns 31
input elements 32
output columns 33
output elements 34
special characters 31

Types
enumerates 25

U
Upper Bound value 15
uput 5

V
Variable

in look-up tables 15

W
when 5

statement 15
when_ada 5
42 Quick Reference Guide

Index
while 5
statement 15

Word
reserved 1, 17

wr 5, 7
write_data 5

action statement 14
written 5

X
X1 9
X2 9
xor 5
xs 5, 7
Rational Statemate 43

Index
44 Quick Reference Guide

	Reserved Words and Expressions
	Reserved Words
	Expressions
	Trigger Expressions
	Event Expressions
	Condition Expressions

	Action Expressions
	Compound, Conditional, and Iterative Actions

	Using Variables for Look-Up Table Values

	Functions, Operators, Switch Cases and Truth Tables
	Predefined Functions
	Arithmetic Functions
	Trigonometric Functions
	Exponential Functions
	Random Functions
	Bit-Array Functions
	String Functions
	Predefined Constants

	Combinational Assignments
	Constant Operators and Enumerated Types
	Operators Related to Enumerated Values
	Resolving Enumerated-Types Values

	Inline Operator
	Switch Cases
	C Language
	Syntax
	Limitations
	Translator

	Ada Language
	Syntax
	Limitations
	Translator

	Truth Tables
	Truth Table Operators
	Special Characters
	Input Columns
	Valid Input ELEMENTS
	Invalid Input Types

	Output Columns
	Output Elements

	Action Column
	Default Row
	Row Execution

	Boolean and Bit-Wise Operations on MVL Types
	Resolution Matrices

	Index

