1ELD] RN Statemate

MicroC Programming Style Guide

Rational Statemate
MicroC Programming Style Guide

Before using the information in this manual, be sure to read the “Notices’ section of the Help or
the PDF file available from Help > List of Books.

This edition appliesto IBM® Rational® Statemate® 4.6 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2009.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

MIiCIrOC OVeIVIBW . . .ot e e e 1
Scope of this GUIE. 2
Languages Supported by MiCroC 3
Graphical LangUageso e 3
Structuring Language: Activity chart 3
Decomposition Language: Activity Chart e 3

Activity Behavior: Graphical Implementation Languagest 4
SHALECNANS . . . ot 4

FloWCharts 4

Textual LANQUAGES oot ettt e e 5

Truth Table . .. 5

Mini-Spec, using the Rational Statemate Action Language 5

Time Model and Related Time Operators it e e 6
Asynchronous ASpects Of MICTOC ot e e 7
Interrupt Service ROULINE. e e e 7

TASK . o 7
SYNCHIONIZALION. e 8
Synchronization: Semaphore 8
Synchronization: Signal (TASK EVeNt) e 9

Serial Communication / MESSAGES v ottt 9
TIMIIS L o o e 9

Activity Behavior: User-Defined Functions 10
Truth Tables 10
LOOKUPD Tables. . . . 10
Rational Statemate Action Language i e 10

EXACt CaSE USaAQ . . oot ittt 11
Structuring Language: Activity Chart Implementation 13
TASK ACHVILIES . .o 13
BASIC TASK . oot 14
EXTENDED TASK . .ottt e e e e e e e 16
Interrupt Service Routine ACtiVIties. e 22
ISR CalegOriES . o . oottt e 22

Rational Statemate

Table of Contents

TASK/ISR RUN MOAESo e e e 24
Super Step EXampleo 25

Single Step EXample. . ..o e 27
Decomposition Language: Activity Chart Implementation 29
SUD-ACTIVITIES COE. 30
Communication and Synchronization ServiCest e 34
MBS SRS . . o ottt 34
QUEUEA MBSSAGES . . v v v vttt ettt ettt e e 34
SIgNAIS . o 35
Global Data USagettt 35
SBMAPNOIES . . o o 35
Statechart Implementation 37
Statechart Implementation: Data Usaget 38
Statechart Implementation: Generated Functions. 39
Statechart Code Frame. 39

Order of Function EXeCUtiON e 42

Default State Implementation 43
AndState Implementation 44
Timeout Implementation e 45

OSEK 2.0 Implementations.t e 47

History and Deep History Implementation. e 48
Optimization Algorithms. e e 48
Inline Default Test e 49

Inline Setting of the “Need Another Step” Bit 49

Inline Entering and EXiting REACLIONSo 50

Merge State Sequences With No Guard on Transitionst i 51
Timeout OPtiMIZAtiON e 52

Clutch Entrance to a State Hierarchy e 54
Flowchart Implementation 55
Flowchart Implementation e 56
SUpported CONSITUCESot e et e e e e e e e e e e e 57
LabElS . oo 59
DeCiSION EXPreSSIONSottt ettt e e e e e 59
SWILCh EXPreSSIONS o ot e e 59
Forbidden CONSIIUCESot e e 59

GOto MINIMIZAtioN 60
€00 SIIUCTUI . . o ettt e e e e 60

iv MicroC Programming Style Guide

Table of Contents

Begin/ENd PoOiNtS. ... 60
Arrows and Labels 60
Flowchart EXamples e 61
Truth Table Implementation i 67
Mini-Spec Implementation 69
ReaCtiVE ACHIVILIES . . oo 69
Procedural ACtiVItIES. . .. oo 70
ANSIC Code Usageo e e e 71
Lookup Table Implementation 73
Rational Statemate Action Language Implementation 75
Integration with the Target e 77
Instrumentation for Testing and Debugging 79
GBA: Graphical Back Animation e e 80
Direct Mode GBA 80
Indirect Mode GBA 80
PaN IS . . 80
Trace (Time Stam)t e e e 81
TraCE TaSKS . .t 82
Extended Tasks 82
Design Level Debugging: TracCe oottt e e e e 82
TraCE ISR . . 83
Debug Options: Trace State Transitions (reportState function).......................... 83
Debug Options: Trace State Transition (reportState function) 84
TS DIV . . ettt 85
Synchronous Execution MOde 85
AsyNnchronous EXecution MOOE.ot 85
Redirecting the OULPUL e e e e 85
Retargeting the Test Driver.o e 86
Specifics of Statechart Implementation 87
Generated Data Types, Data Usage, and Functions 89

Rational Statemate \Y

Table of Contents

Data Ty P S . oot e e 90
USEI Data e 90
Data Supporting Statechart Generation i 91
Functions Supporting Statechart Generation. i, 91
Data Supporting Activity Chart Generationt 92
Functions Supporting Activity Chart Generation. 92
Data Supporting Timeout/Delay Implementation 93
Functions Supporting Timeout/Delay Implementation 93
Data Supporting Instrumentation Implementation. 94
B A, e 94
PaNEIS . . . 94
TSt DIIVT. e e 94
Functions Supporting Instrumentation Implementation 95
B A, o e 95
PaNEIS . . . 95
TSt DIV T . . ettt e 95
DEUG . . . 96
OSDT Naming Styles.o 97
MOEl NAMESo e 97
Variable Names. 97
New Function Call e 98
EXaMIDIES . .o 98
Linking Generated Code with External Data Types 99
External User-Defined Subroutines. 99
EXternal Data Ty PeS . ..ottt e 100
Fixed-Point Variable Support e 101
Implementation Method 101
SUpPpPOrted OpPeralOrS ... oot 101
Evaluating the wordSize and shiftofan Object i ... 102
Unsupported Functionality. e 104
Specifying Fixed-Point Variables. 104
The Code GENEIAtOrttt e e e e e e e 104
The Generated COOE it e 105
OSI Definition ToolAPI Syntax Definition 107

Vi MicroC Programming Style Guide

Table of Contents

Conditional EXPressions 111
EXAMPIE . 111
31172 111

M ANTICS. .« o oot e 112

Syntax Definition e 112
SUD BXPIESSION L. o e 112
sub expression 2 and SUb eXPresSSION 3. 113

EXaMIplE 2 . . 113

MaiNIoOP _SC_EXt OSl ... e e e 114

NamMING Sty ES . . e e e 115
OSDT Model Naming Style o e e 115
Naming Style of Variables. 115

N EX . o 117

Rational Statemate Vii

Table of Contents

viii MicroC Programming Style Guide

MicroC Overview

MicroC isagraphical software design and implementation tool that supports the development of
embedded real-time software for micro-controllers. The focus of the tool isto support the process
of developing software pieces while targeting small micro-controllers. The support to design-level
debugging, testing — both interactively and in batch mode and analysis of runsisimplemented
through various instrumentation of the generated code. The output of the tool is a compact,
readable ANSI C code, with support to local extensions of the standard C, aswell as automatically
generated design documentation. MicroC uses an Operating System I mplementation (OS)
definition to describe the implementation of the software and hardware target environment for a
given design. Any one OSI might support only a subset of the design concepts referred to above.
Asagenerad rule, the tool triesto make use of any such design aspect/concept it encountersin the
model. If the given OSI has no support for that design aspect/concept, an error messageis
produced.

Code is generated directly within MicroC based on a graphical model that represents the full
functionality of the application being designed. There are four basic graphical tools used to define
the application. These include:

¢ Statecharts
¢ Activity Charts
+ Fowcharts

¢ Truth Tables

Each graphical tool has an associated graphical design language that allows the designer to be very
precise in defining the functional role of each graphical element. The graphical elements can be
supplemented by linking in user supplied C and/or Assembly Language code.

All of the graphical elements are stored in an internal database that contains associated data about
each element. The Data Dictionary tool is used to define and manage the various data elements as
well as various other properties of both the textual and the graphica entitiesin the model.

Rational Statemate 1

MicroC Overview

Properties can be applied to data or to tasks. Data properties are typically defined as Exact Type,
although integer types can be BY TE-defined for as appropriate for specific system architectures.
Task properties are defined with a Task Priority in the model.

MicroC aso includes a Check Model utility that serves as amodel checker (somewhat like a
precompiler) to detect and warn of incomplete definitions as well as common design pitfallsto
help reduce development time and increase the quality of the generated code.

Scope of this Guide

Before the inherent aspects/concepts supported by the tool are described, it isimportant that you
understand the scope and limitations of this material. The recommendations given throughout this
document are intended to serve as design guidelines for advanced programmers concerned with
details of OSI definition and use. By no mean do they guarantee the safety, correctness or any
other property of the application developed using MicroC. Thisisthe sole responsibility of the
designer.

The functional details presented here do not imply, by any means, any limitation on the devel oped
features of the Languages Supported by MicroC application code. Because C and Assembly
language functions are a part of aMicro model, as well as any existing (i.e. legacy) libraries and
sources, everything that can be done in those languages can be done within the MicroC model.

2 MicroC Programming Style Guide

Languages Supported by MicroC

Languages Supported by MicroC

The languages used in MicroC can be both graphical and/or non-graphical (i.e. textual).

Graphical Languages

Structuring Language: Activity chart

The software structure is defined in the top-level Activity chart. In this graphical view of the
application, the architecture of the software being developed is determined. TASK s and Interrupt
Service Routines (ISRs) are defined as well as the functional content of them.

Another design level definition is done here. The bindings of signalsto physical hardware ports
and addresses is done using the flow lines to and from the various TASK s and ISRsin the chart.
The generated application architecture is defined, by the user, in this view. TASK and ISR code
frames are generated, according to the specific properties of the TASK/ISR. A TASK/ISR code
frame invokes the Activities mapped undernesth the TASK/ISR.

Decomposition Language: Activity Chart

Thisis adata-flow oriented graphical language. Functionality, in here referred to as “ Activity
behavior” is defined using the, well known, decomposition method. Each required functionality,
i.e, “Activity” issub-divided into functions, i.e., “ Sub-Activities’ that might be further divided
into even smaller “ Sub-Activities,” until no further decomposition is needed.

When no further decomposition is needed, the “Basic Activities’ are defined — those that
implement certain functionality. The implementation might be defined using the various |anguages
described below.

The code generated for an Activity is afunction (or a C Preprocessor macro). For anon-basic
Activity, the function calls each of the Activity’s sub-Activity functions. For a basic Activity, the
function contains the implementation code.

Rational Statemate 3

MicroC Overview

Activity Behavior: Graphical Implementation Languages

Statecharts

Statecharts are hierarchical state transition diagrams. That language is best in describing
application modes and transitions between the modes, as well as application reaction to various
events in each of the modes. This discrete behavioral language is very much powerful in
describing such application modes and transitions between those modes. When other calculations
needs to be defined, that are not mode-based, other languages, those that are described below,
should be considered.

The implementation of Statechartsin MicroC iscompact and efficient. The application uses a State
Variable per each of the Activitiesimplemented by a Statechart. States are encoded to reuse RAM
bits. Severa synthesis algorithms are used to reduce both the RAM and the ROM required to
implement a Statechart on a base of “Pay for what is used”. The user should be aware that as the
application maintains the State Variable, certain code (i.e.,, RAM and ROM) isrequired. Therefore,
it is recommended to use that language whenever that information, i.e., the application state, is
required.

Flowcharts

Here we refer to regular Flowcharts. Iterative algorithms, if-then-else constructs, switch
statements and direct calculations should normally be defined as a flowchart. That graphical
language enables the user to graphically debug the algorithm, and it recommended to be used
whenever the calculation is not mode-based and the specific cal culation can not enjoy the benefits
of the other textual languages, listed below.

The code of a Flowchart runs from beginning to end, without stopping. If the Flowchart is ever run
again, it starts from the beginning. The code generator tries to minimize the number of goto
statements that are needed. This makes the code readable and structured.

Examples that benefit from flowcharts: tuning aradio viaincremental frequency adjustment... isit
tuned? y/n, stop or increment frequency.

4 MicroC Programming Style Guide

Languages Supported by MicroC

Textual Languages

Textual, Non-Graphical, Implementation Languages are used to define Activity behavior.

Truth Table

The functionality of Activity might be directly defined using Truth Table. Truth Table isatable
describing the inputs, the resulting outputs and the actions performed. Truth Tables are
recommended to be used when the Activity has many inputs to consider and few states/modes to
bein.

When the Truth Tableis defined in areduced form, it will be reflected in the generated code. This
enables the user to build highly efficient implementations. For example: Radios are prime
examples, once on they respond to button presses, perform an action and return to the on state.
Another such function could be a climate control controller, once on and in control mode, button
presses are generally responded to and the control state returned to.

Mini-Spec, using the Rational Statemate Action Language
Two modes of Activities may use the Activity’s Mini-Spec as implementation:

* Reactive Activities

When the functionality is best defined as pairs of triggers and actions, that language is the
most suitable to define that behavior. The syntax is exactly trigger and action: E/A thus
directly expresses the required behavior.

This textual language allows most clear, straight forward and compact implementation
when the required functionality might be defined as a set of triggers and resulting actions.

For example: On/Off Behavior like the following:
Buttoanress/turn_on(); tr! (Lampl) ; ;

Button2Press/fs! (Lampl) ; shutdown () ;;

¢ Procedural Activities

When the functionality is a pure calculation, defined as a sequence of “if then else,”
iterations and numerical calculations that language might be used. It issimilar inits
expressiveness to the Flowchart graphical language, however it does not requires any
graphics, thus might be faster to complete when the algorithm is already proved to be
correct.

Thistextual language is the Rational Statemate Action Language. .

Rational Statemate 5

MicroC Overview

Time Model and Related Time Operators

MicroC has three model constructs that have a notion of time:

¢ Timeout and delay operators; referring to Softwar e Counter(s)

¢ Schedule operator; referring to Timer

¢ Periodic Task; referring to Timer
Keep in mind that the concept of a Timer might not be supported on all targets. For example, in the
mainloop sc OSl supplied with MicroC there is no direct support for a Timer.

Thetool assumes the existence of a primary single Software Counter. It is determined within the
compilation profile whether this defaultsto SYS TIMER and possibly Timer (s). Applications
might use numerous software counters and timers.

Timeout and delay operators, referring to “ Software Counter” (s):

delay(delay_time) (dly) Related to the Primary Software
Counter.

timeout (an_event, Relate_d to the Software Cognter

delay_time [, counter_id]) specified by the count er _i d

(tm)

Delay() expires delay time after entering the state connected to the transition with the delay
trigger/reaction.

Timeout () €XpireSdelay time after an _event occurs, whilethe application isstayinginthe
current state waiting for the timeout.

Related to the Software Counter specified by the counter_id

Note
When the 3rd argument is omitted in timeout(), the primary “ Software Counter” is used.

Delay isactualy tm(en(S), d-time) wheres isthestate name. Delays and Timeoutsare
“Soft” and “Passive.” This meansthat they are relatively cheap to implement internally, using 1 or
less Timeout Variable Type variables and 1 or less bits of memory (i.e. RAM).

The actual delay might be greater than or equal to (i.e. >=) the specified delay, depends on the
cycle used to schedule the task where the timeout is specified. It is conceivable that this might
never occur. The actual implementation of the software counters is defined in the OSl.

6 MicroC Programming Style Guide

Time Model and Related Time Operators

The Schedule Operator refers to a hardware timer, Timer:
schedule(an_event, sc_time [, sc_cycle]) (sc)
schedule(an_action, sc_time|[, sc_cycle]) (sc)
schedule(an_expression, sc_time [, sc_cycle]) (sc)

Note the optional cycle expressed asthe 3 rd parameter t0 sc! (exp, delay, cycle). Thetimer
might be defined in the data dictionary of the scheduled operand (e.g. event or action), or
automatically by the tool. Note that this type of timer is potentially more expensive than the delay
operator. Actual invocation time accuracy and cost depends upon the Timer implementation.
Hardware timers are very accurate and Active, however they are typically a scarce and expensive
resource.

The actual implementation of the timersis defined in the OSl.

Asynchronous Aspects of MicroC
In aMicroC model we identify two basic forms of asynchronicity:

¢ Interrupt Service Routine (ISR)
¢ Task

Interrupt Service Routine

MicroC ISR - A Reactive Component that Models Interrupt Service Routine, with associated data
and functionality, defined as an Activity sub-type. Might run at any time, regardless of the interna
application’ state. In some environments, when having interrupt levels, an ISR run might be
interrupted and preempt by a higher priority interrupt.

TASK

MicroC Task: Reactive Component with associated interface, data and functionality, defined as an
Activity sub-type. A “MicroC TASK” might be defined as a TASK in the environment, thus
running on itsown, likein OSEK, or might be plugged into existing time slice (also called TASK),
using the OSl “Link with Scheduler” mechanism. MicroC Tasks run independent of each other.
According to the environment, a TASK run might be interrupted and preempt by a higher priority
TASK, or aninterrupt.

Rational Statemate 7

MicroC Overview

MicroC recognizes two Task running modes 2,3:

1. RUN_TO_TERMINATE: That MicroC Task will run, once entered the function frame,
until it has stabilized, and then will leave the function frame (return, terminate, etc.)

2. RUN_TO_WAIT_EVENT: That MicroC Task will run, once entered the function frame,
and will never leave 2 the function frame. It will be active until it has stabilized, i.e., it
finished its calculation, and then it will enter a rescheduling call defined as “Wait for

Event”/”Wait for Multiple Events’.
Note: Usethe Data Dictionary->Design Attributes-> Use Active Bit flag.
Actual implementation details of TASK/ISR is defined in the OSI.

Note

+ Some of the OSls (for example, the mainloop_sc) might support only a subset of
those.

¢ Thereisamode, named “Use Active Bit” that alows further control and actually
enables even such Tasks to sometimes return/terminate.

Synchronization
Synchronization can be implemented using Semaphore and Signal (TASK Event).

Synchronization: Semaphore

Used to co-ordinate accesses to shared resources such as memory or hardware by asynchronous
entities, modeled as CONDITION sub type. Supported with special operators:

get(SEM1) (gat!)
release(SEM1) (rl!)

The actual implementation of those operatorsis defined in the OSlI.

Note

Once defined as Semaphore, the condition can no longer be used as a regular condition.

8 MicroC Programming Style Guide

Time Model and Related Time Operators

Synchronization: Signal (TASK Event)
Used to signal to a TASK on some occurrence like timer expiration, message arrival etc., modeled
using EVENT sub typed as TASK Event. Used like regular events:
¢ AsTrigger, to wait on the event
¢ AsAction, to set (generate) the Event
The actual implementation is defined in the OSl.

Serial Communication / Messages

Messages are modeled using DATA ITEM sub typed as message. Supported with special
operators:

send (MESS_DI1) (sn!)

receive (MESS_DI2) (rc!)

The actual implementation of those operators is defined in the OSI.

Timers
Means to schedule TASK invocation, or a Signal (TASK Event) generation. Modeled indirectly:

+ Using schedule operator (sc!)
¢ Using periodic TASK

The actual implementation and capabilities of those operatorsis defined in the OSI and intended to
refer to Hardware Timers.

Rational Statemate 9

MicroC Overview

Activity Behavior: User-Defined Functions

User-defined functions might be implemented in any of the following languages:

¢+ ANSIC
¢ Assembly Language Code

Usethe old safe way to link with legacy code, i.e. call OS/ environment special servicesand utilize
otherwise inaccessible functionality as inline assembly calls. This should be use like aglue, for
reuse of legacy code and to implement tricky algorithms.

For example: Debouncing and filtering algorithms; continuous controllers like Pl loops within
HVAC and Cruise ECUs could a so be implemented in this way.

Truth Tables

Very much as described earlier, this language is available for defining user functions, describing
defined actions and directly defining Activity content.

Lookup Tables

This language's purpose is to support non-linear functions, such as Y=F(X), so common in the
world of micros. Such functions are typically used to represent characteristic curves of valves.

For example: A speed dependent intermittent wiper system will want to use alook-up table to
define the time between wipes. Cut-out currents on electric motors can be accurately set using a
look-up table to define the typical current at different positions.

Rational Statemate Action Language

Thiskind of programming language can be used where afunction is needed in an application. It is
the preferred language of choice, rather then plain C code, as all of the expressions are parsed.
Thus, it is possible to define in the Data Dictionary tool relevant properties of the elements used.
Assuch, compatibility between different targets can be achieved easier asthetool will generate the
right expressions in each target environment. This can not be done if the function is already
defined in C code.

For example: An automotive interior light ramping function that can be triggered from the doors,
ignition key and switch.

10

MicroC Programming Style Guide

Exact Case Usage

Exact Case Usage

MicroC supports “exact case” naming of textual elements across the product. For each textual
element (including data types, dataitems, subroutines, events, actions, and conditions), MicroC
holds two names:

¢ Case-sensitive name
¢ Uppercase name

The case-sensitive name is aregular field in the database. Throughout MicroC (including the
Dictionary, static reactions, mini-specs and so on), the exact-case name is used. The Code
Generator uses the exact-case name when generating full expressions—when preprocessor macros
(for dataitems, user-defined types, and subroutines) are not used. Preprocessor macros remain
uppercase only.

Note

You cannot use different cases of the same name for different variables because they resolve
to the same name. For example, both Ab and aB resolve to AB.

Thefirst time you specify an element, MicroC records its exact case, and converts any subsequent
referencesto it to the same convention. For example, if you first enter “aB,” MicroC converts any
case combination of it (“*AB,” “Ab,” “ab,” or “aB”) to aB. Use the Rename option in the dictionary
to respecify the name or case of the element.

Note that the check model tool will warn you when two strings (the case-sensitive name and the
uppercase name) do not match. This might happen if you change the setting of the Case Sensitive
Name attribute. By default, MicroC uses case-sensitive names.

The following aspects of MicroC require exact-case handling:

+ Generated code
¢ Expressions (going through the parser).Overview
+ Dictionary-Editor/ Dictionary-Browser selection matrix
¢ Element information
¢ UDT Dictionary
+ Action definitions
Exact-case usage is not supported in local parameters of subroutines, nor context variables.

Rational Statemate 11

MicroC Overview

12

MicroC Programming Style Guide

Structuring Language: Activity Chart
Implementation

A top-level Activity might be defined asa TASK or as an Interrupt Service Routine (ISR). Note
that aTASK or ISR will have special meaning in OSEK 2.0 applications.

TASK Activities

In OSEK 2.0 OS —we identify two TASK types:

¢ Basic Task
¢ Extended Task

Various other properties might be related to a TASK, some depend on the TASK type and some
common to both types, as described below.

Both types of TASK s might be scheduled to be activated at system startup, if desired, and to run
periodically, with auser define period. Each TASK body contain calls to the functionsit is running
aswell as some code, according to the TASK specific properties, as described in the examples
below.

In general, BASIC TASK isless expensive to use regarding run time RAM usage, as after it
completeits run it terminate and the OS free all the RAM associated with them, thus enabling
reuse of this memory.

An EXTENDED TASK can never terminate after it has been activated, thus the RAM associated
with it will never be freed.

However, it takes more time to activate a BASIC TASK. Thisis true because, once arequest to
activate the task has been received, it isrequired to initialize the RAM associated with it. On the
other hand, an EXTENDED TASK isfaster to react because, after it has been activated, the
associated RAM will be kept and does not need to be initialized again for subsequent use.

Asageneral rule, use an EXTENDED TASK when the reaction time to some external event needs
to be as short as possible, or when using the TASK EVENT inter-task communication mechanism.
Otherwise, use aBASIC TASK. Refer to the discussion below, as well as to the OSEK/OS
documentation for further details.

Rational Statemate 13

Structuring Language: Activity Chart Implementation

BASIC TASK

A BASIC TASK runs once, upon activation, and then terminates.

The code frame for aBASIC TASK (for example: TASK 1 containing Activities A1l and A12),
without controller, will resemble the following:

TASK (TASK1)

{

cgActivity All();
cgActivity Al12();
TerminateTask () ;

.

If the TASK is periodic, with a period of 10 ticks, the code will changeto look like this:

TASK (TASK1)

{

if ((cgGlobalFlags & ALARM SET TASK1) == 0){
cgGlobalFlags |= ALARM SET TASK1;
SetRelAlarm(TASK1 ALARM, 10, 10);

bi

cgActivity A1l () ;

cgActivity Al2();

TerminateTask () ;

}

Note

Usethe Data Dictionary->Design Attributes->Schedule Periodic flag to define aperiodic
Task.

14 MicroC Programming Style Guide

TASK Activities

If the TASK is periodic, containing Activities A1l and A12 with CTRL1 as controller, the code
will change to look like this:

TASK (TASK1)

{

if ((cgGlobalFlags & ALARM SET_TASK1l) == 0) {
cgGlobalFlags |= ALARM SET TASK1;
SetAbsAlarm(TASK1 ALARM, 10, 10);

}i

do {

cgGlobalFlags &= ~BITSUPERSTEP TASKS3;
cgActivity Al1l();

cgActivity Al2();

cgActivity CTRLlcntl () ;

} while ((cgGlobalFlags & BITSUPERSTEP_ TASK1) != 0);

TerminateTask () ;

}

Rational Statemate 15

Structuring Language: Activity Chart Implementation

EXTENDED TASK

An EXTENDED TASK runs once, upon activation, and then suspendsitself, calling the
“waitEvent” API function. A specific modification to this EXTENDED TASK behavior will be
described below, at the end of that section.

The code frame for an EXTENDED TASK (for example: TASK2 containing Activities A21 and
A22), without controller, will look like the following:

TASK (TASK2)

{

cgSingleBuffer TASK2.eventMask = Oxff;
start _activity A21;

start_activity A22;

while (1) {

cgActivity A21();

cgActivity A22();

WaitEvent (cgSingleBuffer TASK2.eventMask) ;
ClearEvent (cgSingleBuffer TASK2.eventMask) ;

}

/* TerminateTask(); */

}

Note

With regard to lines 3, 9, 10 in the last example: This has been changed from earlier
implementations of MicroC. In newer versions of MicroC, the eventMask data variableis
no longer allocated. The defined mask, in the example above Oxff is directly inlined in the
call to WaitEvent and ClearEvent calls. This note is applicable to the rest of the examplesin
this document.

Note

Further Optimization: In certain implementationsit is possible to call the WaitEvent and
ClearEvent API functions with constants, thus avoiding the need for allocating RAM for the
eventMask.

What can be seen is that upon invocation, the call to start_activity A21 and to start_activity A22
isdone. Thecall isdone only once, thefirst timethe TASK isrun. Thiswill drive the event started
of those sub-activities as well asthe event started for the task itself. Thisis supported only for that
task type.

16

MicroC Programming Style Guide

TASK Activities

After that call, the code enters an infinite loop running all of the TASK’ sub-activities, and
entering the suspension mode through call to “WaitEvent”.

If somewhere underneath the TASK, not as direct descendant, we will add a Statechart, the code
will change to be like:

TASK (TASK2)

{

cgSingleBuffer TASK2.eventMask = 0xff;
start_activity A21;

start _activity A22;

while (1) {

do {

cgGlobalFlags &= ~BITSUPERSTEP TASK2;

cgActivity A21();

cgActivity A22();

if (cgDoubleBufferNew TASK2.cg Events)
cgGlobalFlags |= BITSUPERSTEP TASK2;
cgDoubleBufferOld TASK2 = cgDoubleBufferNew TASK2;
cgDoubleBufferNew TASK2.cg Events = 0;

} while ((cgGlobalFlags & BITSUPERSTEP_ TASK2) != 0);
WaitEvent (cgSingleBuffer TASK2.eventMask) ;
GetEvent (TASK2, &cgSingleBuffer TASK2.eventsBuff) ;
ClearEvent (cgSingleBuffer TASK2.eventMask) ;

}

/* TerminateTask(); */

}.

Rational Statemate 17

Structuring Language: Activity Chart Implementation

If the TASK is periodic, with a period of 10 ticks, the code will changeto look like this:

TASK (TASK2)

{

SetRelAlarm(TASK2 ALARM, 1, 10);

cgSingleBuffer TASK2.eventMask = Oxff;

start _activity A21;

start_activity A22;

while (1) {

do {

cgGlobalFlags &= ~BITSUPERSTEP TASK2;

cgActivity A21();

cgActivity A22();

if (cgDoubleBufferNew TASK2.cg Events)
cgGlobalFlags |: BITSUPERSTEP_ TASK2;
cgboubleBufferOld TASK2 = cgDoubleBufferNew TASK2;
cgDoubleBufferNew TASK2.cg_Events = 0;

} while ((cgGlobalFlags & BITSUPERSTEP TASK2) != 0);
WaitEvent (cgSingleBuffer TASK2.eventMask) ;
GetEvent (TASK2, &cgSingleBuffer TASK2.eventsBuff) ;
ClearEvent (cgSingleBuffer TASK2.eventMask) ;

if (cgSingleBuffer TASK2.eventsBuff & 0x01)

GEN_IN_ CURRENT (TASK2_EV) ;

}

/* TerminateTask(); */

}

18 MicroC Programming Style Guide

TASK Activities

Another setting option, available in MicroC for an EXTENDED TASK is Guarded Activation
mode. In this mode the TASK will be active only whileits control bit is set. The sample code will
changeto look like:

TASK (TASK2)

{

if ((cgGlobalFlags & ALARM SET TASK2) == 0){
cgGlobalFlags |= ALARM SET TASK2;
SetRelAlarm(TASK2 ALARM, 1, 10);

}i

cgSingleBuffer TASK2.eventMask = O0xff;

while ((cgGlobalFlags& BITAC TASK2) != 0)

do {

cgGlobalFlags &= ~BITSUPERSTEP TASK2;

cgActivity A21();

cgActivity A22();

if (cgDoubleBufferNew TASK2.cg Events)
cgGlobalFlags |: BITSUPERSTEP_ TASK2;
cgDoubleBufferOld TASK2 = cgDoubleBufferNew TASK2;
cgbDoubleBufferNew TASK2.cg_Events = 0;

} while ((cgGlobalFlags & BITSUPERSTEP TASK2) != 0
&& (cgGlobalFlags& BITAC _TASK2)) ;

WaitEvent (cgSingleBuffer TASK2.eventMask) ;
GetEvent (TASK2, &cgSingleBuffer TASK2.eventsBuff) ;
ClearEvent (cgSingleBuffer TASK2.eventMask) ;

if (cgSingleBuffer TASK2.eventsBuff & 0x01)

GEN_IN CURRENT (TASK2 EV) ;

}

TerminateTask () ;

}

Rational Statemate 19

Structuring Language: Activity Chart Implementation

In order to make that task run, it must explicitly call the start operation for it. The definition of the
start(TASK?2) function, in that case, is.

#define start activity TASK2 { cgGlobalFlags]|=
BITAC TASK2; start activity CTRL2cntl;

ActivateTask (TASK2) ; }

Note that now it is possible to terminate that TASK, by calling stop for it. Thus, it is possible to
combine the benefits of an EXTENDED TASK, regarding reaction time whileit isalive, aswell as
having the advantage of reusing RAM while running. Stopping those tasks that are not required in
certain application configurations, and activating other tasks in the new configuration; all in run-
time!

For an EXTENDED TASK, certain intertask communication/ synchronization mechanisms are
available, using the TASK EVENT operator.

EXTENDED TASK may enter the WaitEvent state waiting for some of its TASK EVENT(S) to be
set. The EVENTs the task iswaiting for are marked using the event mask given to the WaitEvent
API. Only the task that “owns’ the TASK EVENT may wait for it to be set. However, the TASK
EVENT might be set from any place in the code. MicroC links TASK EVENT to MicroC events.
For example: consider the EXTENDED TASK, TASK4, with 2 associated TASK EVENTs: EV1, with
mask 0x02, and EV2, with mask 0x04. The following code will be generated in order to link TASK
EVENT to MicroC events:

.. .EXTENDED TASK BODY

WaitEvent (cgSingleBuffer TASK2.eventMask) ;
GetEvent (TASK4, &cgSingleBuffer TASK2.eventsBuff) ;
ClearEvent (cgSingleBuffer TASK2.eventMask) ;

if (cgSingleBuffer TASK2.eventsBuff & 0x02)

GEN_IN CURRENT (EV1) ;

if (cgSingleBuffer TASK2.eventsBuff & 0x04)
GEN_IN_CURRENT (EV2) ;

..EXTENDED TASK BODY (continued)

Note

The“GEN_IN_CURRENT” call setstheinternal event passed to it as an argument in the
next iteration of the task, which isin the “current” step of it.

20 MicroC Programming Style Guide

TASK Activities

Thus, if any reaction in the content of TASK4 iswaiting for exampleto EV1to beset, i.e., reaction
like “EVLI/ACTL(),” which will betranslated, as explained later, into: “if (EV1) {ACT1();}” will
be executed once the associated TASK EVENT 0x02 was set.

On the other hand, when certain action set aTASK EVENT: “[C1]/EV1,” which will be trandated,
as explained later, into: “if (C1) { GENERATE_EVENT(EV1);};” the following code will be
generated for the GENERATE_EVENT(EV1) call:

cgEventMsgMask = 0x02;SetEvent (TASK2, cgEventMsgMask) ;

In addition, the following definitions will be madeto link the TASK EVENT 0x02 (EV 1) with the
internal event EV 1:

#define BIT_EV1 0x01

#define GEN IN CURRENT EV1
(cgDoubleBufferOld TASK2.cg Events |= BIT EV1)
#define EV1 ((cgDoubleBufferOld TASK2.cg Events &
BIT EV1) != 0)

Such that the line in the above TASK body code:

if (cgSingleBuffer TASK2.eventsBuff & 0x02)
GEN_IN_ CURRENT (EV1) ;

Will set the internal event EV1 bit (BIT_EV1) thuslinking the TASK EVENT mask 0x02 of EV1
toitsinternal bit 0x01 (BIT_EV1).

Rational Statemate 21

Structuring Language: Activity Chart Implementation

Interrupt Service Routine Activities

An Interrupt Service Routine (ISR) runs once, upon activation, and then ends. For OSEK 2.0,
MicroC identifies three ISR categories: 1, 2, and 3.

ISR Categories

The decision of which ISR category to use depends on the content of the functionsit runs.
According to the OSEK/OS specification, it is not allowed to call any OS API function from ISR
category 1. For ISR categories 2 and 3, it is allowed to call some of the OS API functions only
within the code section marked by Enter| SR()/Leavel SR() calls.

The form of the generated code frame for an I SR depends on the.Structuring Language: Activity
chart Implementation category and content. Some examples are shown below.

Example 1:

The code for an ISR category 1 or 2, named | SRO, containing Activities 101 and 102 without
controller will be asfollows:

ISR (ISRO)

{

cgActivity I01();
cgActivity I02();

}

Example 2:

The code for an I SR category 3 function named | SRO, containing Activities 101 and 102
without controller will be as follows:

ISR (ISRO)

{

EnterISR() ;
cgActivity I01();
cgActivity I02();
LeaveISR() ;

}

22 MicroC Programming Style Guide

Interrupt Service Routine Activities

Example 3:

The code for an ISR category 3 function named ISR1, containing Activities 111 and 112 and a

controller named CTRL1 will be as follows;

ISR (ISR1)

{

EnterISR() ;

do {

cgGlobalFlags &= ~BITSUPERSTEP ISR1; MicroC 41
TASK/ISR Run Modes

cgActivity I11();

cgActivity I12();

cgActivity CTRLlcntl () ;

} while ((cgGlobalFlags & BITSUPERSTEP ISR1)

LeaveISR() ;

}

1= 0);

Rational Statemate

23

Structuring Language: Activity Chart Implementation

TASK/ISR Run Modes

A TASK/ISR can have one of the following run modes:

¢ Single Siep— The TASK/ISR aways runs a single step, then returns handling to the
operating system.

¢ Super Step— The TASK/ISR runs the necessary number of tasks before returning
handling to the operating system.

When you define a run mode, make the following checks:
1. Check theinternal value once before executing the logic.

In Single Sep mode, check the internal value before calling any “logic” code, such as
mini-spec, Activity, Control Act, and so on.

In Super Step mode, check the internal value before calling the loop that handles the
logic, and the test for the need of another step. Note that choosing this run mode might
result in an infinite loop for the TASK/ISR.

2. Check the internal value after logic execution.
In Single Sep mode, check the internal value after the call to any logic code.

In Super Step mode, check the value inside the loop that handles the logic, and recheck
the value after the callsto any logic code.

3. InSuper Sep mode, check the value after each logic execution. Check the value inside
the loop that handles the logic, and recheck the value after callsto any logic code. This
check is not relevant for Single Step mode.

24 MicroC Programming Style Guide

TASK/ISR Run Modes

Super Step Example

For example, if you select Super Step mode:
1. Check for internal value changes before logic execution.

2. Thecodefor testing derived events and generating themismoved fromthedo . . .while
loop of the Task and after the functional code. All the calls to the Activities and Controls
in the Task are moved to be beforethe do. .while loop Of the Task (just like the test for
buffered access elements and derived events on them).

Consider the following code:

void TASK SINGLE_ STEP (void)

{

do

{

cgGlobalFlags &=~BITSUPERSTEP_ TASK SINGLE STEP;
cgActivity SINGLE_ STEP_CTRL() ;

if (!1val COND && COND != lval COND)

{

GENERATE_EVENT (BECAME FALSE COND) ;

yi

if (1val_COND && COND != lval_ COND)

{

GENERATE_ EVENT (BECAME TRUE_COND) ;

}i

if (COND != lval COND)

GENERATE_EVENT (CHANGED_COND) ;

}i

if (cgDoubleBufferNew TASK SINGLE STEP.cg Events)
cgGlobalFlags |= BITSUPERSTEP TASK SINGLE STEP;
cgDoubleBufferOld TASK SINGLE_STEP =
cgDoubleBufferNew TASK SINGLE STEP;
cgDoubleBufferNew TASK SINGLE STEP.cg Events = 0;
}

while ((cgGlobalFlags & BITSUPERSTEP TASK SINGLE_ STEP)
l=0);}

Rational Statemate 25

Structuring Language: Activity Chart Implementation

The resultant MicroC code is as follows:

void TASK SINGLE STEP (void)

{

if (!1val COND && COND != lval COND)

{

GENERATE_ EVENT (BECAME FALSE COND) ;

Vi

if (1val COND && COND != lval COND)

{

GENERATE_EVENT (BECAME_TRUE_COND) ;
bi
if (COND != 1lval_COND)

{

GENERATE_EVENT (CHANGED_COND) ;

}i

do

{

cgGlobalFlags &=~BITSUPERSTEP TASK SINGLE STEP;

cgActivity SINGLE_STEP CTRL() ;

if (cgDoubleBufferNew TASK SINGLE STEP.cg Events)

cgGlobalFlags |= BITSUPERSTEP TASK SINGLE_ STEP;

cgbDoubleBufferOld TASK SINGLE_STEP =

cgDoubleBufferNew TASK SINGLE STEP;

cgDoubleBufferNew TASK SINGLE STEP.cg Events

}

while ((cgGlobalFlags &
BITSUPERSTEP TASK SINGLE STEP) != 0);

}

0;

26

MicroC Programming Style Guide

TASK/ISR Run Modes

Single Step Example

If you select Single Step mode, the code generated for the Task will not includethedo . .while
structure— this creates a single-step Task. In this case, thereis no need for the NeedAnother Sep
bit named BITSUPERSTEP <TASK-NAME> tO be allocated, so all referencesto it are removed.

There are references to BITSUPERSTEP <TASK-NAME> iN:

¢ Thedo...while of aTask.

¢ Inthe non-Inline of NeedAnother Sep mode— at the end of the cgDo_ function, thereisa
check if any nextSep is different than the currentSep. If it is, the BITSUPERSTEP is
Set.

+ Inthe Task Code frame, thereis a check if there are any events pending. If there are, the
BITSUPERSTEP iSSet.

¢ Whenusing an SCH in ageneric, thesiTsurersTEP Of itstask ispassed viaits structure.
In this case, these references should not exist.

Consider the origina code:

void TASK SINGLE_STEP (void)

{

do

{

cgGlobalFlags &=~BITSUPERSTEP TASK SINGLE STEP;
cgActivity SINGLE_ STEP_CTRL();. MicroC 45
Single Step Example

if (cgDoubleBufferNew TASK SINGLE_ STEP.cg Events)
cgGlobalFlags |= BITSUPERSTEP TASK SINGLE STEP;
cgbDoubleBufferOld TASK SINGLE_STEP =
cgDoubleBufferNew TASK SINGLE STEP;
cgDoubleBufferNew TASK SINGLE STEP.cg Events = 0;
} while ((cgGlobalFlags &
BITSUPERSTEP TASK SINGLE STEP) != 0);

}

Rational Statemate 27

Structuring Language: Activity Chart Implementation

The resultant code is as follows:

void TASK SINGLE STEP (void)

{

cgActivity SINGLE STEP CTRL() ;
cgDoubleBufferOld TASK SINGLE STEP =
cgDoubleBufferNew TASK SINGLE STEP;

cgDoubleBufferNew TASK SINGLE_STEP.cg_Events = 0;

}

28 MicroC Programming Style Guide

Decomposition Language: Activity Chart
Implementation

The Activity Chart is the focus of the graphical language used to decompose functionality into
realizable sub-functions.

Theclassic illustration of Functional Decomposition is shown the following figure:

- f"% 3
Eagarecd - .-"'--. n.u'.rm:.'u Lawrl & = Eermol
Dieta Source - C : T Bkt

5@@

Foerarchy Laval)

Fwrorchy Daval 2

Hurarcleeally e d &ebrerhy Chat

With regard to decomposition in MicroC, each non-basic Activity is being composed out of its
sub-activities. We distinguish between 2 cases. The first case is when that non-basic Activity does
not contain immediate descendant that is a control activity. In that case, all of the sub-activities are
considered active when that Activity is active. The code for such anon-basic Activity (e.g. A11
with sub-activities A111 and A112 and with no immediate descendant controller) will look like:

void

cgActivity Allacyl (void)
{

cgActivity Alll();
cgActivity All2();

}

Rational Statemate 29

Decomposition Language: Activity Chart Implementation

The order in which the sub-activities are called within the A11 Activity body is determined by the
sub-activities attribute “ Execution Order,” as defined in the Dictionary of A111, A112 and A113.

In the exampl e above, the “ Execution Order” of sub-activity A111is1and of A112is2. When that
attribute is not set, the calling order is not defined.

If it isdesired to save function calls overhead, it is possible to set (in the Compilation Profile-
>0Options->Settings->Gener al Tab dialog) the field to true. The resulting code will be:

#define cgActivity Allacyl ()\
{\

cgActivity A111();\
cgActivity A112();\

}

This setting is aways applicable for non-TASK and non-1SR, and will not be repeated as the result
might be derived from the examples given adding the * \” at the end of each line, and defining
instead of function a C Preprocessor macro.

Sub-Activities Code

Assuming both A111 and A112 are basic Activities, the basic activity can be defined in one of
three activation modes:

¢ <Reactive controlled

¢ Reactive self

¢ Procedure like

For Reactive controlled and Reactive self modes, the code body of the Activity will look like the
following code frame:

void

cgActivity Alll (void)

{

.. Body implementation

While for the Procedure like mode, the code body of the Activity will look like the following
code frame:

30 MicroC Programming Style Guide

Sub-Activities Code

void

cgActivity Al1l2(void)

{

if ((cgActiveActivitiesl & BITAC All2) != 0) {
.. Body implementation

stop_activity(Al1l2);

}

}

The differences between the three will be found in the activation rules for each mode. Reactive
controlled and Reactive self modes will perform a step, while they are active, each time the
TASK containing them is running. Usually, a TASK will perform arun to stable run (also called a
super step), that might require few steps (also called micro steps). Those using Reactive
controlled and Reactive self modes will participate in each of the steps.

Procedure like mode performs only a single step each time the TASK containing it isrunning. At
the beginning of the TASK, the relevant Activity active bit will be set. Then the Activity body will
unset that bit after it ran, calling stop_activity.

Another difference, between Reactive controlled, Reactive salf and Procedurelike, isin the
allowed syntax of the Mini-Spec which is described later.

Adding the controller A11_CTRL to A11 will make the code look like:

void

cgActivity Allacyl (void)

{

cgActivity A111();
cgActivity All2();
cgActivity All CTRLcntl () ;

}

Rational Statemate 31

Decomposition Language: Activity Chart Implementation

With the controller function, cgactivity A11 CTRLentl (), like:

void
cgActivity All CTRLcntl (void)
{

cgDo_All CTRLcntl () ;

}

The implementation of cgbo_a11_cTrRLent1 () dependson whether A1l CTRL isimplemented
as a Statechart or as a Flowchart. In this discussion we will only show a brief descriptions of each;
amore detailed description is given later in the appropriate sections.

For a Statechart implementation:

void

cgDo_All CTRLcntl (void)

StateInfo All CTRLcntl nextState All CTRLcntl = 0;
if (currentState All CTRLcntl == 0) {
nextState All CTRLcntl = FS _All CTRLst2;

}

else

. Rest of the Statechart logic

}
if (nextState A1l CTRLcntl != 0) {
if (currentState All CTRLcntl !=
nextState All CTRLcntl)
cgGlobalFlags |= BITSUPERSTEP TASKI;
currentState All CTRLcntl = nextState All CTRLcntl;
}
}

32

MicroC Programming Style Guide

Sub-Activities Code

For a Flowchart implementation:

void
cgDo_All CTRLcntl (void)

{

.. The Flowchart logic

}
Activitieswithin acertain TASK can communicate with each other using various method. Within a
single TASK/ISR boundary, the Activity Chart Graphical Language of MicroC shares most of the
semantics used in the Activity Chart Graphical Language of Rational Statemate. However, there
are few discrepancies between those languages that should be noticed, and will be mentioned
shortly below. The interaction between TASK/ISR and communication between Activities not
residing in the same TASK/ISR has nothing equivalent in the language of Rational Statemate, and
should only use the services provided by the run time OS, also described below. Activities defined
to be TASK/ISR have already been discussed, but it must be remembered that such Activities are
not fully compatible with the Activities that can be defined in Rational Statemate.

Discrepancies between MicroC Regular (i.e., not a TASK nor ISR) Activities running under the
same TASK/ISR and Rational Statemate Activities that should be noticed include the following:
+ Stable state criteria
+ Implicit termination of Activity asresult of termination of all its sub-activities
+ Suspend, resume modes
* Status sensing — stopped/started
¢ Implementation as CA (Not supported at al in MicroC)

Note

We do not include here those language features that are only temporarily not supported, but
will be supported in coming release of the product. Instead, we are focusing our discussions
on those aspects that are not expected to change.

Rational Statemate 33

Decomposition Language: Activity Chart Implementation

Communication and Synchronization Services

Communication and synchronization services between Activities, possibly not residing in the
same TASK/ISR, include the following:

¢+ Messages (for OSEK 2.0: non-queued and queued M essages)

¢ Signas (for OSEK 2.0:TASK EVENT)

¢ Semaphores (for OSEK 2.0: resources)

¢ CGlobal data

Messages

The first communication mechanisms use the OSEK M essages support capabilities provided by
MicroC.

Thefirst of those, Non-Queued messages, uses a message identifier (i.e. the message name) to
share data between various tasksin the application. The sender and or receiver TASK of such a
message might be running in the same ECU, sharing the same memory address space, or running
across an ECU network on some remote MCU. The user of the message need not be aware of the
concrete implementation. Thus, using that mechanism ensures that the resulting design is correct,
flexible and efficient.

Queued Messages

Queued messages use avery similar implementation mechanism to that for Non-Queued
messages. The difference being in that those types of messages do not contain value but rather
signals the occurrence of some event. Again, using these in a design makes the design easier to
modify.

Note

Examples and discussion regarding each of those two methods is given in Rational
Statemate Action Language | mplementation.

34

MicroC Programming Style Guide

Communication and Synchronization Services

Signals

The third method (i.e. those of TASK EVENT) is somewhat different from thefirst two. Similar to
the Queued messages, described above, they signal the occurrence of some event. However, as
they are not queued, there is no information regarding how many such events occurred until being
processed. An additional differenceisthat a TASK EVENT must address a specific TASK with a
specific EVENT, thus requiring knowledge of the application structure. A TASK EVENT
implementation is much more efficient than the previously mentioned communication methods,
however it requires the TASK to be of type EXTENDED, which is not always possible or
efficient. The downside of requiring knowledge of the application structure is balanced by the
improved performance. Those are design decisions that should be made regarding a specific
problem at hand. Examples and further discussion can be found in Structuring Language: Activity
Chart Implementation.

Global Data Usage

Global data usage is the fourth method of communication. As always in real time applications,
caution should be made regarding the validity of the datawhen running in preemptive environment
with multiple tasks and | SRs. The protection mechanism supported is the OSEK RESOURCE
mechanism, which issimilar to a binary semaphore Similar added, meant to help in protecting data
and access to common resources.

Semaphores

Examples and discussion of using OSEK RESOURCE is given in Rational Statemate Action
Language Implementation.

All the above said, it isacommon situation that data is arriving through the bus or board ports, in
some predefined messages and addresses, and is needed to be produces, again, to the bus or board,
in some maybe other predefined messages and addresses.

In this situation the decision is rather easy, asit aready has being taking, and the designer simply
uses the defined interface for his application. However, the discussion above is relevant when one
tries to build up implementation that will obvioudy use the appropriate interfaces, however will
also be easy to maintain, modify and ported to various other environments, usually unknown at
design time.

Rational Statemate 35

Decomposition Language: Activity Chart Implementation

36

MicroC Programming Style Guide

Statechart Implementation

Statecharts are used to define the behavior of a Control Activity. For the purposes of code
generation in MicroC and our discussion here, asingle Statechart is considered to be the Statechart
directly connected to a Control Activity, al of its sub-charts, and the generics instantiated within
them. In short, all the states under the root are represented by the control Activity.

For example, for the control Activity A11_CTRL, the following two functions will be generated:

void cgActivity All CTRLcntl (void)

void cgDo All CTRLcntl (void)

The bodies of the generated code for these functions resembles the following:

void

cgDo_All CTRLcntl (void)

StateInfo All CTRLcntl nextState All CTRLcntl = 0;
if (currentState All CTRLcntl == 0) {
nextState All CTRLcntl = FS_All CTRLst2;

}

else

. The rest of the Statechart logic

}

if (nextState All CTRLcntl != 0) {

if (currentState All CTRLcntl !=
nextState All CTRLcntl)

cgGlobalFlags |= BITSUPERSTEP TASKL;
currentState All CTRLcntl = nextState All CTRLecntl;
}

}

Rational Statemate 37

Statechart Implementation

void
cgActivity All CTRLcntl (void)

{

cgDho All CTRLcntl () ;

}

Note that the function cgActivity A1l _CTRLcnt1() smply callscgDo_Al11l_CTRLcnt1(). A more
detailed discussion of the cgDo ... function is found below.

Note

+ Further Optimization: This might be changed, as the wrapping function,
“cgActivity_A11 CTRLcntl” in the above example, could be dropped.

+ Usethe Compilation Profile >Setting >General >Use Macros flag to control function
generation vs. pre-processor macro.

Statechart Implementation: Data Usage

A Satelnfo datatype will be defined, and afew variables of that type will be declared, when a
statechart is created.

For the previous example, the Satel nfo data type would be named Satelnfo_ A11_CTRLcnt1 and
will be defined as an unsigned type of either 8, 16 or 32 bits; like “ typedef int8

Satelnfo_A11l CTRLcntl”. The size depends on the topology of the Statechart which is described
later in this document.

The Satelnfo variables will be currentSate, nextSate, staySame. For the example of A1l CTRL:

StateInfo All CTRLcntl currentState All CTRLcntl;
(global wvariable)

StateInfo_ All CTRLcntl nextState All CTRLcntl;
(automatic variable)

StateInfo All CTRLcntl staySame All CTRLcntl;

(automatic variable)

38 MicroC Programming Style Guide

Statechart Implementation: Generated Functions

The currentSate and nextSate variables will always be alocated. The staySame variable will be
alocated only if either of the entering or exiting reaction functionsis required, as discussed below.

currentSate is allocated as global variable, while nextSate and staySame are allocated as local,
automatic, variables to the statechart function cgDo

Note

Further Optimization: In specific topologiesit is possible to use only asingle Statelnfo
variable, i.e. the currentState.

Statechart Implementation: Generated Functions

Statechart Code Frame

Consider the following example of code generated from a Statechart (Note: line numbers are
included in this code sample for discussion purposes):

void

cgDo_All CTRLcntl (void)

{

StateInfo All CTRLcntl nextState All CTRLcntl = 0;

g s W N R

if (currentState All CTRLcntl == 0) {
6 nextState All CTRLcntl = FS _All CTRLst2;
7}

8

9 else

10 {

11 .. The rest of the Statechart logic
12 }

13 if (nextState All CTRLcntl != 0) {
14 if (currentState All CTRLcntl !=
nextState All CTRLcntl)

15 cgGlobalFlags |= BITSUPERSTEP TASKI1;
16 currentState All CTRLcntl =
nextState All CTRLcntl;

17 }

18 }

Rational Statemate 39

Statechart Implementation

In generdl, the overall code frame of a Statechart looks like the cgDo_A11 CTRLcnt1 function
shown above. However, you will discover in the following discussions that code frameis not
fixed.

Line 4 resetsthe nextSate variable. Thisvariable will be set only if atransition has been made, and
will hold the new state configuration of the Statechart.

Lines 13 and 14 check the nextSate variable, to determineif atransition was taken and whether to
enforce another step in the TASK holding the Statechart...

Line 15: cgGlobalFlags | = BITSUPERSTEP TASK1

Line 16: currentState All CTRLcntl = nextState All CTRLcntl
advances the Statechart configuration a step, to hold the configuration of the next step.

Lines 5 to 12 will be replaced with specific code resulting from the specified Statechart logic. For
example, two additional functions might be commonly generated here: entry actions and exit
actions. If the Statechart logic requires entering/exiting reactions, the functions will resemble the
following:

void

cgEnterActions All CTRLcntl (void)

{

. entering reactions code

void
cgExitActions All CTRLcntl (void)

{

. exiting reactions code

40

MicroC Programming Style Guide

Statechart Implementation: Generated Functions

When either of these function are needed, the following changesto cgDo ... will aso be made:

void

cgDo_All CTRLcntl (void)

{

StateInfo All CTRLcntl nextState All CTRLcntl = 0;
staySame All CTRLcntl = 0;

if (currentState All CTRLcntl == 0) {
nextState All CTRLcntl =

FS DefaultOf Chart A1l CTRL;

}

else

. The rest of the Statechart logic
}

if (nextState A1l CTRLcntl != 0) {
cgExitActions_All CTRLcntl () ;
cgEnterActions All CTRLcntl () ;

if (currentState All CTRLcntl !=
nextState All CTRLcntl)

cgGlobalFlags |= BITSUPERSTEP TASKI;

currentState All CTRLcntl = nextState All CTRLcntl;

}
}

Of course, the function callsto cgExitActions A1l CTRLcnt1 ()

required. See Optimization

Algorithms for information on the MicroC algorithms that create more efficient code.

Rational Statemate

41

Statechart Implementation

Order of Function Execution

The order of doing exiting actions, entering actions, transition actions and static reactions for a
stateis asfollows:

1. Staticreactionsare done, asthe generated code reveals, in descending order down the state
hierarchy, where the state has not changed.

2. When atransition is detected, then the transition action is done immediately.

3. Exiting actions are then done, in which all the states that are exited are given an
opportunity to do exiting static reactions. Exiting reactions are done from the innermost
state to the outermost state.

4. Entering actions are then done, in which al the states that are entered are given an
opportunity to do entering static reactions. Entering reactions are done from the outermost
state to the innermost state.

Note

In specific topologiesit is possible, and more efficient, to put the entering/exiting reactions
inline, while taking the transition. Use the Compilation Profile->Setting->Optimization

flags.

In the balance of this section we will discuss the implementation of the following language
features:

*

*

*

Default state implementation

AndState implementation

Timeout implementation

History and Deep History implementation

Short list of guide lines to get the most efficient code

42

MicroC Programming Style Guide

Statechart Implementation: Generated Functions

Default State Implementation

The Default connector istreated as a state. This means that when a state is entered, we spend one
step going into the Default. Statechart Implementation and then on the following step, we actually
enter the desired state. Note that thisis a slight change to the classic Language of Rational
Statemate semantics. The motivation behind this change is that, asit is allowed to put aguard on
the default transition, it might be that no transition could be taken. This means that the code might
otherwise get stuck in adefault connector.

In apractical sense, however, this does not represent a significant difference and should be
negligible in any practical example.
Note

In specific topologies — when there is no guard on the default transition it is possible to
directly enter the default state.Use the Compilation Profile->Setting->Optimization flags.

Rational Statemate 43

Statechart Implementation

AndState Implementation

The implementation of AndState compresses afew otherwise different Statelnfo variablesinto a
single one, thus using potentially less RAM. However, in order to relate to each of the different
paralel state hierarchies, some ROM isrequired to implement bit-masking. Asageneral rule, itis
preferable (from acode size perspective) to use AndState when having few independent very small
statecharts. The difference in the generated code will be that instead of few control activities, each
having related cgpo_... functions asisthe case with afew Statecharts, here only one such control
activity isreguired with one related cgpo_... function. This code for such afunction will only
appear once. The function’s code frame would resemble the following:

StateInfo_All CTRLcntl nextState All_CTRLcntl = 0;
if (currentState All CTRLcntl == 0) {
nextState All CTRLcntl = FS_All CTRLst2;

}. MicroC 65

Timeout Implementation

else

{

. The rest of the Statechart logic

}

if (nextState All CTRLecntl != 0) {

if (currentState All CTRLcntl !=
nextState All CTRLcntl)

cgGlobalFlags |= BITSUPERSTEP TASKL;
currentState All CTRLcntl = nextState All CTRLecntl;

}

On the other hand, the test for being in leaf-state will be done using the inSate test and not
inLeafSate test. The inSate test requires one more integer comparison then the inLeafSate test.
Thus, it isrecommend for each particular case that the devel oper test both options and compare the
results to choose the optimum implementation.

44 MicroC Programming Style Guide

Statechart Implementation: Generated Functions

Timeout Implementation

Software Counter(s) are used as the basis for the implementation of timeouts. When atimeout or
delay is set, the current value of the relevant Software Counter will be added to the requested delay
time, and stored in avariable, using a defined macro: instaLL_TiMeouT. By default, MicroC
relates to the primary Software Counter defined in the compilation profile.

Note

Use Compilation Profile >Setting >OS >System Counter Timer to define the primary
Software Counter.

Other Software Counter(s) might be referenced using an optional third argument in the timeout
operator. The name of the counter is as written in the model using the syntax:

tm(en(S1l), 12, myCounter)
In this example, the name of the counter is: mycounter. Each counter receives an index value

defined as <counter_name>_ INDEX. That index value identifies that specific counter in the
application.

Note
The counter definition isfound in the “macro_def.h file.

The INSTALL TIMEOUT macro has three arguments:

+ The name of the event
¢ Therequested delay
¢ Theindex of the Counter that it is pending on

This allows the code to reuse the same Timeout variable with different counters. The first
argument is concatenated to the INSTALL macro, as shown here. In the code, acall like the
following will be used:

INSTALL TM(tm 999999962, 10, SYS TIMER)

This call will set atimeout to expire 10 ticks from the current time of SYS TIMER. The macro
itself will be defined as follows:

#define INSTALL TM tm 999999962 (D, C) \
cgTimeoutsMask |= tm 999999962 TM MASK;\

tm 999999962 TIME = currentTick + (D);

Rational Statemate 45

Statechart Implementation

That call will assign to tm_999999962 TIME which isavariable of type Timeout Variable Type
the current counter value, help in currentTick plus the requested delay time help in D. In addition,
the bit tm 999999962 TM_MASK is set to flag that this timeout is pending.

A test for Timeout expiration is done in the function:

genTmEvent <CTRL_CHART NAME> (<Timeout Variable Type>

currentTickVar, <Buffer> * buff, uint8 counterIndex)

Thethird parameter uint8 counterIndex, holdsthe index of the Counter that isreferred toin
the current call to this function. Before each call to thisfunction, the correct counter would be read
into the currentTick global variable.

For each Timeout Variable there are three options for code generation inside the genTmEvent ...
function:

1. When thereisonly one Counter in the model no check will be made for the counter.

2. When thereisonly one counter that the timeout.variable can beinstalled for, then the code
will look.like:
if (counterIndex == <ITS_COUNTER_NAME> INDEX &&
cgTimeoutsMask & tm 999999993 TM MASK &&
currentTickVar >= tm 999999993 TIME) ({
GEN_IN BUFF (tm_ 999999993, buff);

cgTimeoutsMask &= ~tm 999999993 TM MASK;

}

3. If thereis more than one counter that the Timeout Variable can be installed for, then the
code will include the following provisions:

Intheglob dat.c fileanuintsg variableis generated: tm 999999993 counterjthat
holds the index of the current relevant counter.

Inmacro_def.n fileaong with the previous code that was generated for the
INSTALL_TIMEOUT mMmacro, thereisone more statement that keep the INDEX of the
counter that the timeout was installed for.

Theindex that is passed to the function is compared with the index of the counter that was used
when the timeout was installed. This enables the application to identify the counter that the
timeout is pending on.

46

MicroC Programming Style Guide

Statechart Implementation: Generated Functions

When the option Generate Timer Overflow Task is selected, in the compilation profile setting, then
the following code el ements are generated:

OSEK 2.0 Implementations
OSEK -targeted applications have special requirements:

1. For each Counter, an overflow Task named <counter names> OVERFLOW IS generated.
Thisincludes the task declaration (found in os_dec1.n) and body code (found in
glob_func.c)

2. Ineach Task thereis overflow management provided only for the Timeouts variables that
are referring to the specific counter.

3. For each Counter, an Alarm named <counter name> ALARM iSgenerated. Thisincludes
the alarm declaration (found in os_dec1.n) and installation (found in macro def.h). In
themacro def.n file, anew macro is generated:

#define SET ADDITIONAL OVERFLOW ALARMS () {\
SetAbsAlarm(<counte_name> ALARM, O,

OSMAXALLOWEDVALUE) ; \

}

Thismacro installs all the overflow alarms that activates the overflow tasks. A call to thismacrois
inthefile <profiles.c after theinstalation of thesys Timer ararm (formerly known as
SYS_TIME_OVERFLOW).

Compare that to non-OSEK implementations:

1. For each counter, an overflow function named on<counter name> OVERFLOW IS
generated. In each Task, overflow management is provided only for the Timeouts
variables that refer to that specific counter.

2. IMPORTANT - thereisno call to these functions in the generated code. Therefore, in
order to use them, additional code should be added by the developer that decides when to
call these functions (on overflow), possibly in usercode.c.

Note

Set from within the Code Generation Profile Editor. Use Options->Settings->Gener al-
>Timeout Variable Type.

The goal isto have avariable that is bigger then the counter, thus avoiding the “value overflow”
problem.

Rational Statemate 47

Statechart Implementation

Note

(OSEK only) When a TASK/ISR has related timeouts, MicroC calls
GetResource(RES_SCHEDUL ER)/ ReleaseResource(RES_SCHEDULER) around the
code section that swaps the TASK/ISR event buffer, and both before and after the call to
genTmEvent(...) in on<TIMER>OVERFLOW Tasks (in thefile giob_func.c). This
resource usage can be avoided. Within the Code Generation Profile Editor, select Options >
OSTAB > Allow " GetResource(RES_SCHEDUL ER) Usage. Uncheck this option.

History and Deep History Implementation

History and Deep History implementation requires a Satel nfo variable per each state holding a
History Connector (s) and a Satel nfo variable per each state holding a Deep History Connector (s).

The state configuration is stored in that Satel nfo variable, such that when taking a transition into
the History/Deep History that configuration is assigned to the nextSate variable, causing an
entrance to the stored state configuration.

When used, the operatorshistory clear anddeep clear assigntothe corresponding Satelnfo
variable the corresponding default state configuration.

Optimization Algorithms

MicroC includes several agorithmsto generate the most efficient code, including:

*

*

*

*

*

Inline Default Test

Inline Setting of the “Need Another Step” Bit

Inline Entering and Exiting Reactions

Merge State Sequences With No Guard on Transitions

Timeout Optimization

Clutch Entrance to a State Hierarchy

In addition to these algorithms, use the following guidelines to get the most efficient code:

*

*

Avoid redundant intermediate states (i.e., not persistent states).

Avoid duplication of code segments— use functions or defined actionsinstead of
hardcoded duplicates.

For asimple, single state with self-transition scheduling some operation, use static
reaction or an ISR.

Use the state hierarchy to represent priorities.

48

MicroC Programming Style Guide

Optimization Algorithms

Inline Default Test

MicroC caninlinetheinitial and default test. Consider the following code:

if (currentState S1 == 0) {
currentState S1 = FS DefaultOfSi;
} else {...

The inlined code generated by MicroC is as follows:

if (currentState S1 == 0 || inState(DefaultOf S1)){...

Inline Setting of the “Need Another Step” Bit

To improve code efficiency, you can specify No. of Transition <= 0. This criteria determines
whether the optimization is performed. When you apply this optimization, MicroC makes the
following changes to the generated code:

¢ Thedeclaration of stateInfo <CTRL Activity
Name > nextState <CTRL ActivityName = 0;

is removed— there is no need for thislocal variable after the optimization.

¢ All theassignmentsto nextState <CTRL Activity Name> arereplaced with
assignmentsto currentState <CTRL Activity Names.

* After every transition, MicroC makes the following assignment:

cgGlobalFlags |= BITSUPERSTEP <Task Name>;
¢ Thecodeat the end of the cgpo. . . () isremoved. Thisisthe code that wasinlined:
if (nextState <CTRL Activity Name> != 0) ({

if (currentState <CTRL Activity Name> !=
nextState <CTRL Activity Name>)
cgGlobalFlags |= BITSUPERSTEP <Task Names;
currentState <CTRL Activity Name> =

nextState <CTRLActivity Names;

}

Rational Statemate 49

Statechart Implementation

+ If atrangition isinside an AndState component, the assignment to currentSate includes a

reset of the bits that represent the component that isthe LCA of the transition. For
example:

nextState OPT NEXT_ STATE_CTRIL =
(nextState OPT NEXT STATE CTR &~

(FM2_<ComponentLCA of Transitions>)) |FS_<Next States;

Note

The optimization will not take place if thereis an entering or exiting reaction that could not
be optimized out.

Inline Entering and Exiting Reactions

Inlining entering or exiting reactions is based on the following criteria:

No. of Statements <= 5

No. of Instances <= 999

Note that this criteriais based on the average number of inlined statements for the number of
reaction statements. For example, if the number of reactive statementsis 5 and the number of
transitionsis 10, the average is 5 statements.

An exit reaction is inlined when none of the following scenarios are encountered:

* An AndState exists with the exit reaction, or with a descendant that has an exit reaction.

¢ Theoperator stop activity isused for any ancestor of the control activity with
which the statechart is connected, at |east one state has more than a single descendant, and
at least one of its descendants has an exiting reaction.

+ A transition exiting from a state exists and has more than a single descendant, and at least
one of its descendants has an exiting reaction.

50 MicroC Programming Style Guide

Optimization Algorithms

When inlining take place, the exit reaction code is added to the transition code segment after the
transition action itself, but before the entering action code. If an inlining scenario is encountered
but inlining cannot be performed, MicroC does one of the following:

+ |f there are entering reactions, MicroC adds a call to the exiting reaction function
(cgExit...) tothetransition code segment. The cgExit. .. function will not be
called at the end of the statechart code.

+ Inthe absence of an entering reaction, MicroC does not add a call to the transition code
segment. Thecall to cgExit. .. isdone at the end of the statechart code, as occurs
when optimization is not used.

Merge State Sequences With No Guard on Transitions

MicroC can merge sibling Or-States when there is a single transition between them that has no
guard on it. Consider the following topology:

...[S11]1-t12->[S12]...(states S11, S12 transition tl12)

The goal of the optimization isto merge S11 and S12, as well as the static reactions of the two
states and the transition action (referred to as “ merged actions’). The mergeis alowed (considered
correct) when the following conditions are met:

¢ Thetransition (t12) is the only transition that exits S11 or enters S12.

¢ Thetransition (t12) has no guard.

+ Thereisno conflict in double-buffered element assignments and usage in the actionsto be
merged.

¢ Thereisno conflict in event generation and usage in the actions to be merged.
¢ When the merged states are inside an AndState:

¢ Thereisno conflict in element assignment and usage between merged actions and
actiong/ reactions in the other AndState components.

¢ Thereisno conflict in event generation and usage between merged actions and
actiong/reactions in the other AndState components.

¢ |nuser function calls;

* When the usage is Out/Inout, the call is regarded as “ assignment/events
generation” of the actual function parameters.

+ Whenthe usageisIn/Inout, the cal isregarded as* usage/eventstest” of the actual
function

¢ parameters.

¢ Function “Global Usage” elements are ignored.

Rational Statemate 51

Statechart Implementation

Note the following:

¢ No check is done regarding sibling activities.

¢ When using GBA, no painting is done for the states that have been merged to another
state; only the remaining state is painted.

+ A reference to/usage of an element of an array is considered as a reference to/usage of the
entire array. For example, if youuseMY ARR[2]=3; therewill beaconflict for the
whole array or any member of it, suchasDI=MY ARR[4];.

+ A reference to/usage of arecord field is considered example, if youuse MY _REC.F1=3;,
there will be a conflict for the whole record or any of itsfields, such as
DI=MY REC.F2;.

Note

This optimization, when used with the optimizations inline entering/exiting reactions and
clutch of state hierarchy might result in an action sequence that is not identical to the action
sequence performed without those optimizations. Make sure the difference is acceptable.

Timeout Optimization

The Code Generator performs optimization of data allocated for timeouts. Data allocated for a
timeout is reused for another timeout if these timeouts trigger transitions outgoing from exclusive
states.

Note

Use the menu sel ections Options->Settings->Optimization ->Reuse Timeout Variable to
set that optimization.

Note the following:

+ The optimization reuses the same Timeout/Delay variable for other timeouts/del ays.
+ A variable can bereused only if the states waiting for the timeouts are exclusive states.

To reduce the number of data allocations for the timeout operation, the algorithm has been
changed. The description of the algorithm uses the following terms:

¢ Source state of atimeout— The source state of the transition that the timeout is on, or the
state in which its static reaction contains the timeout.

¢ Clutch atimeout— Add the clutched timeout to the list of timeouts for the timeout that
represents the data all ocation. Tagging the clutched timeout asNOT requires data
alocation. In the clutched timeout, the Code Generator keeps a reference to the timeout
that represents its data all ocation.

¢ Parent— State 1 (S1) isaparent of state 2 (S2) if S1isan ancestor of S2.

52 MicroC Programming Style Guide

Optimization Algorithms

The algorithm merges data allocation for two timeouts if their sources are mutually exclusive. The
steps of the algorithm are as follows:

1. Preparethelist of timeouts.

2. For eachtimeout in thelist (in no particular order), look through the other timeouts for a
candidate to be clutched to it.

3. For atimeout to be clutched, the following conditions must be met:

¢ Thetimeout being tested requires data all ocation.

¢ Thesource state and every timeout in the list are not parents of the source state of
the tested timeout, or of any of the source states of the timeoutsin the list.

¢ The source state of the tested timeouts and the source state of every timeout in its
list are not parents of the source state, or the source state of any timeout in thelist.

+ None of the following are an AndState:
— The first common parent of the source state
— The source state of each of timeout in the list
— The source state of the tested timeout
— Any of the timeoutsin tested timeout’s list

If al four conditions are satisfied, the tested timeout is clutched. The following code sample
represents the algorithm:

LIST TimeoutsList = CREATE TimeoutsList.

FOR EACH Timeout (TM) in (TimeoutList) DO

State TMSourceState = FIND SOURCE STATE OF (State).

LIST SiblingsStatesList = CREATE SIBLINGS LIST OF (TMSourceState)
FOR EACH State (S) in (SiblingsStatesList) DO

LIST CurrSiblingTimeoutsLists = CREATE LIST OF TIMEOUTS UNDER (S)
FOR EACH Timeout (T1l) in (CurrSiblingTimeoutsLists) DO

if (T1l) NOT (Requires Data Allocation) then EXIT FOR LOOP

State SiblingTimeoutSourceState = FIND SOURCE STATE OF (T1)

LIST MySourceStatesList = CREATE LIST OF SOURCE STATES OF
(TMSourceState AND ALL THE TIMEOUTS IN ITS LIST)

FOR EACH (S1) in (MySourceStatesList) DO

{

Rational Statemate 53

Statechart Implementation

if (S1) IS PARENT OF (SiblingTimeoutSourceState) OR
(SiblingTimeoutSourceState) IS PARENT OF (S1) then EXIT FOR LOOP
State FirstCommonParentState = FIND FIRST COMMON PARENT OF

(S1, SiblingTimeoutSourceState)

if (FirstCommonParentState) IS AND-STATE then EXIT FOR LOOP

CLUTCH TIMEOUT (T1) TO TIMEOUT (TM) .Statechart Implementation

}

}
}
}

After the algorithm has finished, each timeout is marked with one of the following tags:

¢ Thetimeout requires data allocation, and the list of all the other timeouts that are using its
data.

¢ Thetimeout does not require data allocation, and a reference to the timeout whose data
will be used.

Clutch Entrance to a State Hierarchy

MicroC can perform a clutch of steps, intermediate states, and default states when entering state
hierarchy. The clutch entrance algorithm steps directly into the lower-most leaf state in the state
hierarchy. All the entering reactions are performed appropriately, according to the state hierarchy.

The agorithm stops at the following items:
* A default transition with guard AND/OR action

+ A state with more than a single descendant state and no default
+ A state with a History/Deep History connector

54 MicroC Programming Style Guide

Flowchart Implementation

Flowcharts are another graphical language used in MicroC to define the behavior of a Control
Activity. For the purpose of code generation, including this discussion, asingle Flowchart is
considered to be the Flowchart directly connected to a Control Activity, and all of its sub-charts
and the generics instantiated within them.

Consider the Control Activity A12 CTRL. The following two C functions will be generated for it:

void cgActivity Al2 CTRLcntl (void)

void cgDo Al2 CTRLcntl (void)

The body of these functions look like the following:

void
cgDo_Al2 CTRLcntl (void)

{

.. The flowchart logic

}
void
cgActivity Al2 CTRLcntl (void)

{

cgDo_Al2 CTRLcntl () ;

}

Thefunction cgActivity Al2 CTRLcntl simply calscgDo Al2 CTRLentl.

Rational Statemate 55

Flowchart Implementation

Detailed discussions of the cgpo ... function construct will be found bel ow.

Note

Further Optimization: This example might be optimized by dropping the wrapping function,
cgActivity Al2 CTRLentl, Unlessit serves some additional purpose not considered here.

Usethe Compilation Profile->Setting->Gener al->Use M acr os flag to control the use of function
generation Vs. pre-processor macro.

Flowchart Implementation

The Flowchart Language in MicroC graphically describes a Structured C Program. Itisused as
an alternative approach to the Rational Satemate Language emphasis on Statecharts to describe
control activity logic.

The graphics and semantics used in Flowcharts are very much different from what isused in
Statecharts. This gives the designer the option to choose the language that is best suited to a
specific algorithm implementation.

The code of a Flowchart runs from beginning to end, without stopping and without explicitly
maintaining itsinternal state. Each time the Flowchart isrun, it must start from the beginning. The
Flowchart does not have a notion of Sate or Internal Sate.

While Flowcharts allows the creation of highly visible, graphical algorithms, there is no inherent
overhead in the generated code. The code generator is able to generate optimized structured code
from aflowchart just as readily as from a statechart.

The use of flowcharts is recommended where ever clear and visible (graphical) algorithms are
desired, while preserving maximum performance.

If a Flowchart is properly constructed, it will result in the generation of highly optimized
structured code. However, it is the responsibility of the designer to build appropriate charts with
proper syntax, logic, and association with avalid control activity. Otherwise, the results could be
non-structured code.

56 MicroC Programming Style Guide

Flowchart Implementation

Supported Constructs

When discussing the structuring of a flowchart, we refer to two categories of graphical elements:

¢ Boxes
¢ Arrows

Compound Boxes, that is boxes containing other boxes, represent code blocks. Individual graphic
elements include Those shown in the following figure.

Sart Connectors

End Connectors End

Action Boxes scl(EV,222)

y

DI:=5

Compound Boxes v

Dl:=4

End

Decisions

Rational Statemate 57

Flowchart Implementation

Switches

Instance (off Page) Boxes

Arrows

DI:=5

Black @ Red

DI:99

@FL_CH_TEST 51

58

MicroC Programming Style Guide

Labels

Labels

As with statecharts, the graphical elementsin flowcharts can be assigned |abels for purposes of
identification and describing associated logic or value assignments. Labels on arrows are
considered to beliteral constants and are allowed only for arrows exiting either Decision or
Switch elements.

Decision Expressions
Allowed expressionsin “Decision” are:
+ Event (like: ON_POWERUP)
¢ Condition (like: [POWER_ON])

¢ Expressions (like: [TEMP > 27])
Allowed expressions on Arrows exiting “Decision” are:

¢+ yes
¢+ no

* true
¢ fdse

Switch Expressions
Allowed expressionsin “Switch” are:
¢ Vauetype expressions (like: F1(3) + 5)

Allowed expressions on Arrows exiting “ Switch” are:
¢ Litera constants:
else

default

Forbidden Constructs

There are some uses of graphical elementsthat are not allowed in flowcharts here. These include
the following:

* Arrowsthat cross the boundaries of boxes are not allowed.
+ Arrows may only go between sibling boxes.

Rational Statemate 59

Flowchart Implementation

Goto Minimization

The code generator tries to minimize the number of goto statements that are needed. This tends
to make the code readable and structured. However, thisis not always possible and goto
statements may appear in the generated code.

Restructuring the flowchart or using statecharts instead of flowcharts may eliminate generated
goto code.

Code Structure

The codeis generated in C-Blocks. Compound (non-basic) boxes are translated into blocks. Basic
boxes are interpreted as control positions between executable statements.

Begin/End Points

The“START” point for each block, i.e. the entering point to the non-basic box, is marked using a
Start arrow in that box. The “END” point is marked using an End connector in that box.
Specificaly, the “START” point for the execution of the whole Flowchart is marked using a Start
arrow in the upper most level. The “END” point for the whole Flowchart is marked using End

connector in the upper most level.

The Flowchart execution will stop as soon as it can make ho more progress. This may be dueto
reaching an End connector, or it may be because it reaches some box for which all the outgoing
arrows have triggers that evaluate to false.

Arrows and Labels

In the case of nested boxes, all arrows on the inside boxes are tried first. If none of them can be
taken, then “higher level” arrows are tried. If none of them can be taken then higher level arrows
aretried, etc. If no arrows can be taken, then the code finishes executing, i.e., the function returns.

60 MicroC Programming Style Guide

Flowchart Examples

Flowchart Examples

In the following examples, we give the graphics and then the generated code for the graphics.

Simple Flowchart

v
noyes

void
cgDo_FL_CH_TEST 3 ()
{

DI=FUNC1 () ;
if (DI > 5) {
ACT 2();

}

else {

ACT 1();

}

}

Rational Statemate

61

Flowchart Implementation

Find/Merge Logic

¢ void
cgDo FL_CH FIND MERGE BOX ()
DI:=1 {
DI = 1;
if ((DI == 1)) {
if ((DI == 3)) {
DI = 4;
yes !
DI = 5;
!
else {
no DI = 3;
yes 1
\ 4 DI = 2;
DI:=3 }
no Dl:=4
v Dl:=5
Dl:=2 < ‘
End

62 MicroC Programming Style Guide

Flowchart Examples

true

EV

END

Switch Control

Start

default 3
DI+1
false
5
i no
sc! (SV, 11) DI:=455
END END
Black
Blue
Dl:= =99
DI:=65

DI:=34

END

else

DI:=87

DI:=87

Rational Statemate

63

Flowchart Implementation

void

cgDo USE_SWITCH CTRL()
{

switch (DI + 1) ({

case 3:

if ((DI < 3)) {
switch (DI * 2) ({

case 4:

DI = 43;
break;

default:
DI = 87;

break;

switch (COLOR) {
case BLACK:
DI = 5;
break;

case BLUE:
DI = 65;
break;

case RED:
DI = 99;
break;
default:

break;

64

MicroC Programming Style Guide

Flowchart Examples

}

}

DI = 34;

break;

default:

if (EV) {
GENERATE_EVENT (EV) ;
}

else {
SetRelAlarm(EV_ALARM,
}

break;

}

}

11,

0);

Rational Statemate

65

Flowchart Implementation

66

MicroC Programming Style Guide

Truth Table Implementation

The Truth Table implementation in code is relatively straight-forward from the table itself. The
basic code structure might be seen in the example below. For a Truth Table implementing function
F with C1 and C2 input conditions:

DI1 DI2

The generated code would be:

void F ()

{

if (DI1== 1) {
if (DI2== 1) {
Al;

} else {

if (DI2== 2){
A2;

Vi

Vi

} else {

if (DI1 == 2 && DI2== 3){
A3;

}

Rational Statemate 67

Truth Table Implementation

Note

If the Truth Table is being factorized, as in this example, so isthe generated code. This
resultsin compact and fast code. It is recommended to factorize the table at the end of the
development stage to make modifications easy, while not paying the cost on production.

68 MicroC Programming Style Guide

Mini-Spec Implementation

The implementation of an Activity can be defined using the Rational Statemate Action

L anguage. Thisdefinition iscalled amini-spec. The mini-spec definition of an Activity’s behavior
is entered into the Data Dictionary. The mini-spec is then activated when the associated Activity
is active and stops when the associated Activity stops.

As mentioned, the mini-spec is defined in the Data Dictionary Editor. The syntax is similar to that
used to describe static reactions, i.e. alist of reactions of the form trigger/action, separated by a
double semicolon (;;).

States that have mini-specs are distinguished by a“>" symbol after their chart name (e.g.
ALARM>).

Two modes are supported in MicroC: Reactive (either Self or Controlled) and Procedural. For both
modes, the generated code is arelatively straight-forward implementation of the Mini- Spec itself.
The basic code structure might be seen in the examples below.

Reactive Activities

The syntax for reactive mini-spec is“E[C]/A,” that is on the event E, when the condition C istrue,
do the reaction A. Consider the following example, for a mini-spec defined as.

ALARM ON [WORKING] /SET SIGNAL

With Event - ALARM ON, Condition - WORKING, and Event -
SET SIGNAL

The code would be:

if (ALARM ON && WORKING) {

GENERATE_EVENT (SET_ SIGNAL) ;

bi

Rational Statemate 69

Mini-Spec Implementation

Note

¢ For repeating large actions, it is preferable to use a user-defined function.

For arepeated scenario of activating some action, the preferred styleis:
[Clor C2)/A0

*

rather than

[C1]/AQ;[C2]/A0
Procedural Activities

The syntax for procedural mini-spec is comparable to that of the trigger part, without the action.
Forexanmﬂle(C) then A endif while(something) do anotherthing end and So on.

Consider the following example, for a mini-spec defined as:

if (WORKING) then SET SIGNAL endif
The generated code would be:
if (WORKING) {

GENERATE_ EVENT (SET SIGNAL) ;

Vi

70

MicroC Programming Style Guide

ANSI C Code Usage

Only two programming languages are available in MicroC:

¢ ANSIC

¢+ Assembly Language
ANSI C, includes both C language code (with possible extensions to the ANSII standard) and
Assembly language code.

It is best to use the old safe way to link with legacy code (i.e. call the OS/environment special
services) and to utilize otherwise inaccessible functionality as inline assembly language calls.

Oneway to uselegacy/library codethat is available external to the model, might be done through a
user-defined C function calling them. Another way would be to include the definition within the
model, in either C or ASM languages.

Rational Statemate 71

ANSI C Code Usage

72 MicroC Programming Style Guide

Lookup Table Implementation

The MicroC Style Guide implementation of the Rational Statemate L anguage has been extended to
include Lookup Tables.

The language supports non-linear “Y=F(X)” functions that are so common in the world of micros.
Typically, these non-linear functions are used to represent characteristic curves of valvesin atable
structure. Such atable may consist of alist of pairs of digitizing points, Xi, and its corresponding
value, Fi. The data might be imported from any ASCII datafile. A choiceis given whether to
perform (linear) interpolation between points, or to use a histogram like mode. In addition,
saturation values might be defined, for the upper and lower range bounds, as well as a search order
to support performance sensitive scenarios.

For example, consider the following definition and implementation of such a function with return
value defined to be “Real” and input defined to be “Integer”:

In“Interpolation,” High to Low mode, Lower Bound=0, Upper Bound =4 The following code will
be generated.

X F(X)
1 1
10 2
100 3
1000 4

Rational Statemate 73

Lookup Table Implementation

Note

Define default mapping between Real and either “double” or “float” and Integer vs.
int8/16/32.

double LOOKUP1 (int IN1)

{

/*

Interpolation Function:

if(In < X2 && In >= X1)

Out = (Y2-Y1)/(X2-X1)*(In-X1)+Y1l

*/

double LOOKUP1 retval;

if (IN1 < 1)

LOOKUP1 retval = (0);

else 1if (IN1 >= 1000)

LOOKUP1 retval = (4);

else if (IN1 >= 100)

LOOKUP1 retval = (4 - 3)/((double)1000 - 100)* (IN1 -
100) + 3;

else 1if (IN1 >= 10)

LOOKUP1 retval = (3 - 2)/((double)100 - 10)*(IN1 -
10) + 2;

else 1f(IN1 >= 1)

LOOKUP1 retval = (2 - 1)/ ((double)10 - 1)*(IN1l - 1)
+ 1;

return (LOOKUP1 retval) ;

}

74 MicroC Programming Style Guide

Rational Statemate Action Language
Implementation

Thiskind of programming language can be used where afunction is needed in an application. It is
the preferred language to use, rather then plan C code, as all the expressions are parsed. Thus, by
using the Dictionary tool, it is possible to define relevant properties of the elements used. As such,
compatibility between different targets can be more easily achieved since MicroC generates the
right expressionsin each target environment. This cannot be doneif the function is already defined
in C code.

The available operators and syntax in the Rational Statemate Action Languageis similar to a
programming language. As such, it iseasily learned and readable.

A detailed discussion of the Rational Statemate Action Language is beyond the scope of this
publication.

Rational Statemate 75

Rational Statemate Action Language Implementation

76

MicroC Programming Style Guide

Integration with the Target

In aMicroC model you can have direct access to ports, memory mapped /O and external memory
(i.e. external to the modeled feature). This can be done using Data-Items and Conditions bound to
External Symbols.

Thisfeature is normally used during code generation for H/W (i.e. hardware) properties, using the
symbol mapping definition menu. The binding isdonein 2 stages:

¢ Sagel - Dataltem/Condition tagged as bounded to external symbol, identifying
“Logical” signal name.
¢ Sage?2- Mapping of the “Logical” signal namesto “Physical” signals.
For example:

DI 1 isdefined as bound to PORTA.

¢ Sagel - From the model viathe Data Dictionary, DI 1 istagged as being bound to an
external symbol, identified by the Logical signal name PORTA.

¢ Stage 2: From the compilation profile editor, a mapping of the Logical signal name
PORTA to aphysical location value of 0x03 is accomplished using the data matrix tool.

Result: On thistarget, DI1 is now mapped to physical address 0x03.
Data-Items and Conditions might be bound in two modes:

¢ Direct—The previous description holds.

+ Buffered—In buffered access mode, two additional definitions are used for the e ement:
— “Get Value Call”—A user-defined API function to receive avalue
— “Set Value Call”—A user-defined API function to set avalue

When in buffered mode, the internal value is kept. At the beginning of a step, of the
correspondence TASK, (Defined in the Condition dictionary as*“Its Task”) acal to the “ Get Value
Call” API isdoneto ask for the new value. The “Set Value Call” API is called whenever thereis
assignment to the corresponding element in the model.

Rational Statemate 77

Integration with the Target

78

MicroC Programming Style Guide

Instrumentation for Testing and
Debugging

Design-level debugging is supported through a combination of various instrumentation inserted

into the generated code. This instrumentation typically consists of code that calls external
functions (i.e. APIs) and source-level libraries implementing those functions.

L ocalization of these instrumentations might be done either by predefining the instrumentation
calls or by modifying the provided APl implementations.

Design-level debugging features include:

¢ GBA

¢ Panels (Only available when running on Windows)
+ Trace—time stamps

+ Trace— State transitions (reportState function)

¢ Test Driver

Rational Statemate

79

Instrumentation for Testing and Debugging

GBA: Graphical Back Animation

GBA provides aform of animation to indicate the execution of the application code under test. In
the Activity charts, the active boxes are highlighted to indicate their execution. In the Statecharts,
the current state of the application is highlighted.

Note

Asonly 1 box can be executing at atime with one processor, the designer can seeif al the
code is being serviced.

GBA is supported in two modes:

¢ Direct
¢ |ndirect.

Direct Mode GBA

¢ Asynchronous: Buffers changes, and then uses atask to pass datato MicroC.
¢ Synchronous: Passes data directly as the code runs.

Indirect Mode GBA

Uses callsin the code to communicate to the target debugger. The target debugger talks to the
GBA server to animate the model.

Panels

A task in the code drives the panels. Buffers data and only when active does it drive the panels
(OSEK only). Itisabasic cyclic task with a high priority, it will slow down the execution of the
model. The cyclic rate and priority can be changed to alter this.

80 MicroC Programming Style Guide

Trace (Time Stamp)

Trace (Time Stamp)

Consider the following code:

#ifdef TRACE_TASK
#ifndef TRACE TASK STARTED

extern void traceTask () ;

#define TRACE TASK STARTED (t) traceTask((t),’S’)
#endif

TASK (MAIN LOOP)

{

if ((cgGlobalFlags & ALARM_SET MAIN LOOP) == 0){
cgGlobalFlags |= ALARM SET MAIN LOOP;
SetRelAlarm (ALARM SET MAIN LOOP, 10, 10);

Vi

TRACE TASK STARTED (MAIN_ LOOP) ;

do {

} while ((cgGlobalFlags & BITSUPERSTEP MAIN LOOP) !=

0);
TRACE TASK TERMINATED (MAIN_ LOOP) ;

TerminateTask () ;

Thisisfrom the traceFunc.c file and can be easily modified to send the output anywhere.

#ifdef TRACE_TASK
void

traceTask (TaskRefType t, char indx)

{
TickType sysTime;
GetCounterValue (SYS_TIMER, &sysTime) ;

OSPrintf ("$c Task ID %d %$1d\n", indx, (int)

int) sysTime) ;

}

#endif

t, (long

Rational Statemate

81

Instrumentation for Testing and Debugging

Trace Tasks

When this flag set, the generated code is instrumented to call the task tracing function in the
following places:
+ Just after entering the Task frame

+ Just before calling the” TerminateTask” API, and leaving the Task frame Instrumentation for
Testing and Debugging

Extended Tasks

Appliesto EXTENDED Tasks only:

¢ Just before calling “WaitEvent” API
¢ Just after leaving “WaitEvent” AP

Design Level Debugging: Trace

TASK (MAIN_ LOOP)

{

if ((cgGlobalFlags & ALARM SET MAIN LOOP) == 0) {
cgGlobalFlags |= ALARM SET MAIN LOOP;
SetRelAlarm (ALARM SET MAIN LOOP, 10, 10);

}i

TRACE TASK STARTED (MAIN LOOP) ;

do {

} while ((cgGlobalFlags & BITSUPERSTEP MAIN LOOP) !=
0);
TRACE_TASK TERMINATED (MAIN LOOP) ;

TerminateTask () ;

}

82 MicroC Programming Style Guide

Debug Options: Trace State Transitions (reportState function)

Trace ISR

When this flag set, the generated code is instrumented to call the ISR tracing function in the
following places (For ISR Type 2 and 3):

+ Just after calling the “EnterlSR” API
+ Just before calling the “Leavel SR” API

Example

#ifndef TRACE ISR _ENTER

extern void tracelIsr();

#define TRACE ISR ENTER (i) traceIsr((i), ’'N’)
#endif

Debug Options: Trace State Transitions (reportState
function)

Thisisfrom the traceFunc.c file and can be easily modified to send the output anywhere.

ISR (MY_INTERRUPT)

{

EnterISR() ;

TRACE_ISR_ENTER (1) ;

COUNTERdi = 0;

TRACE_ISR LEAVE (1) ;

LeaveISR() ;

}

#ifdef TRACE ISR

void

tracelIsr (int isrNo, char indx)

{

TickType sysTime;
GetCounterValue (SYS TIMER, &sysTime) ;
OSPrintf ("$c ISR No %d %$1d\n", indx, isrNo, (long
int) sysTime) ;

}

#endif

Rational Statemate 83

Instrumentation for Testing and Debugging

Debug Options: Trace State Transition (reportState function)

The debug option inserts callsto the "reportState" functions. The“reportState”
functions are placed in afile p_state.c and are called according to the defined “ Debug Level”:

Debug Levell

The reportState functions are called when a Task enters a stable state mode.
Debug Level2:

The reportState functions are called after each step in the statecharts.

For example, consider the following file extract from P_STATE.C:

cgReportState (unsigned char whichChart, unsigned char*

baseAddress)

{

if (whichChart == 1) {

OSPrintf ("Statechart %s ", "INIT MODE_SC");

OSPrintf ("In State: ");

if ((((*(StateInfo INIT MODE SC*)baseAddress)) & 0)
== 0) {

OSPrintf ("$s", "Chart INIT MODE_SC");

OSPrintf (".");

if ((((*(StateInfo INIT MODE SC*)baseAddress)) &

3) == 3) {

OSPrintf ("$s", "DefaultOf Chart INIT MODE_SC") ;

}

else if ((((*(StateInfo INIT MODE_SC*)baseAddress))
& 3) == 2) {

OSPrintf ("%s", "VOLT OUT OF RANGEst3");

}

else if ((((*(StateInfo INIT MODE_ SC*)baseAddress))
& 3) == 1) {

OSPrintf ("%s", "STATE 15");

OSPrintf (".");

84 MicroC Programming Style Guide

Test Driver

Note

OSPrintf isused only in OSEK applications, and outputs to the stdout, which can be
redirected. Redefining the OSPrintf function can allow the debug info to be directed
anywhere. For Non-OSEK applications, printf is used.

Test Driver

The test driver supports testing of the application using test vectors. Test vectors can be used to
drive inputs as well as to record outputs. The generated code calls an API that is provided in the
tst_drv.c source-level library.

Two execution modes are supported:

¢ Synchronous
¢ Asynchronous

Synchronous Execution Mode

Thetest driver functions are called directly from the code tasks and the data is then streamed to the
necessary output.

Asynchronous Execution Mode

A task is created to stream all the data, which is buffered, to the relevant place. Thetask hasahigh
priority and can be set as either Basic or Extended (For OSEK Applications only). All the
information regarding how the task calls the test driver codeisin “glob_func.c” file and the test
driver codeisin “tst_drv.c.”

Redirecting the Output

Thetest driver utility isfully automated for Windows. This can be enabled viathe setting menu in
the code profile window. All 10 on the panels can be used as automated |O. Normally the datais
streamed to a DOS box. To redirect the output, set the following environment variablesto thefile
names that the data should be streamed to, or read from:

¢ TESTDRIVER_INPUT_FROM_PNL_FILE

¢ TESTDRIVER_IN_FILE

¢ TESTDRIVER_OUT_FILE
One way to do thisisto create a small batch file to run before running the model.

Rational Statemate 85

Instrumentation for Testing and Debugging

Retargeting the Test Driver

The full API for the test driver is provided. To enable test drivers to operate on atarget, the input
and output needs to be redirected. Thisrequiresthat the tst_davr. c file be modified appropriately
so that, perhaps, the I/O is transmitted via a serial communication link. The actual modification to

tst_dvr.c isafunction of the application environment and whose implementation must be left to
the devel oper to determine

86 MicroC Programming Style Guide

Specifics of Statechart Implementation

The calculation for the size of The Satelnfo data type will be named Satelnfo_<Controller
Name> - for example, might be StateInfo A1l CTRLcntl. Thedatatype will be defined as

an unsigned type of either 8, 16 or 32 bits. The size depends on the topology of the Statechart. A
general method for calculating the required sizeis:

1. Summarize the bits required for each level in the state hierarchy.

2. To calculate the bits required for each level in the state hierarchy, take the maximal
number of statesin that level, add one and calculate how many bits are required to count,
in binary, to that number:

(log 2 (number states))

Note

For And-States, perform the calculation for each of the And-state descendants, and take the
largest.

Rational Statemate 87

Specifics of Statechart Implementation

88

MicroC Programming Style Guide

Generated Data Types, Data Usage, and
Functions

All of the variables, data types and functions that are generated in MicroC are directly derived
from the model.

Some are directly user-defined data (data-items, conditions, events, user-functions) and some
relate to the graphical elements, like states and activities.

Those that the tool generates, and the naming convention used is customizable, through the OSDT
(MicroC OS Definition Tool), are marked with custom.

When having <name> the intention is to replace that sequence with the relevant model element
name.

Datais generated to the (custom) giob dat.c file. The variables which are not in that file are
context variables, that are generated as automatic variables for the activity/statechart/ flowchart
they are used in. Functions resulting from the graphical model are generated in <mMobULE>. ¢ file
(that is the module name, in the compilation profile, containing the chart in scope).

User functions and other functions needed, that are not explicitly in any module scope, are
generated to (custom)

Rational Statemate 89

Generated Data Types, Data Usage, and Functions

Data Types

custom: cgSingleBufferType <NAME>

custom: cgDoubleBufferType <NAME>

Those are type definitions (typedefs) for structures, with the activity name as postfix. The data
assigned to the activity, in the Its Task field will be located in that structure, and instantiate later as
either cgsingleBuffer <NamMEs, for al of the non doublebuffered data elements, or
cgDoubleBufferNew <NAME> and cgDoubleBufferOld <NAME> for al of the doublebuffered
data elements.

custom: StateInfo <NAME>

Thisistype definitions (typedefs) for int8/16/32, to hold the internal state configuration of a
Statechart.

User Data

custom: cg Events

This data (either int8/16/32) holds the events and the derived events (such as ch/fg/tr aswell as tm/
dly) related to a certain activity. When more then a single variable is needed, the tool will add
indexed postfix like “cg_Eventsl,” “cg_Events2,” etc.

custom: cg BitsConditions

This data (either int8/16/32) holds the conditions related to a certain activity. When more then a
single variable is needed, the tool will add indexed postfixes.

90 MicroC Programming Style Guide

Data Supporting Statechart Generation

Data Supporting Statechart Generation

currentState <NAME>

nextState_<NAME>

This data hold the internal (in current step and in the next step) state configuration of a Statechart.
Isrequired per control activity implemented by a statechart.

staySame <NAME>

This data hold the internal state configuration in which no change occurred between current and
next step. Is required only when the Enter State/Exit State functions are required, per control
activity implemented by a statechart.

Functions Supporting Statechart Generation

custom: cgEnterActions_<NAME>

custom: cgExitActions <NAME>
Those void functionswill be generated in case of a control activity, with statechart underneath, that
has (in accordance) entering/exiting reactions.

Note that when the optimizer is enabled, some of the reactions might be placed directly on
transitions code, thus avoiding the need of having those functions.

custom: cgDo_<NAME>

That void function will be generated for each control activity, and contains the code implementing
thelogic.

Rational Statemate 91

Generated Data Types, Data Usage, and Functions

Data Supporting Activity Chart Generation

custom: cgGlobalFlags

For task containing Statechart underneath. Indicates when atask isin non-stable state, i.e., need to
perform another step. Might be 8/16/32 bits, according to the no. of tasks having a Statechart
underneath. And Indicates active/ inactive activities might be 8/16/32 hits, according to the no. of
activities requiring active bit.

Thisisif either the activity is procedural or its parent has a control-activity, or it isflagged as
“Guarded Activation” (="yes’).

custom: cgSingleBuffer <NAME>

When activity has non double-buffered data (user data, conditions) associated with.

custom: cgDoubleBufferNew <NAME>

custom: cgDoubleBufferOld <NAME>

When activity has a double-buffered data type (user data, conditions, events) associated with it.

Functions Supporting Activity Chart Generation

custom: cgActivity <NAME>

That void function contains the implementation for the activity. In case when the implementation
is either statechart or flowchart, that function will call the statechart/flowchart code. In case of
lookup table, truth table, or other textual implementation, the code will be contained in that
function.

92

MicroC Programming Style Guide

Data Supporting Timeout/Delay Implementation

Data Supporting Timeout/Delay Implementation

custom: cgTimeoutsMask

Indicates pending timeouts/delays. Might be 8/16/32 hits, bits. That is less then or equal to the
number of timeout/delay in the model.

custom: currentTick

TickType variable, as defined in the compilation profile. Will be used when having delay or
timeout in the model.

Functions Supporting Timeout/Delay Implementation

custom: genTmEvent_ <NAME>

Thevoid function will be generated for each control activity having a background timeout or
delay. The function checks to seeif the time has expired.

Rational Statemate 93

Generated Data Types, Data Usage, and Functions

Data Supporting Instrumentation Implementation

GBA

There are two important arrays of type “unsigned char,” named “gba_states” and“gba_acts” in
“glob_dat.c”. The“gba_states” array will hold 1 bit per each state in the application. The
“gba_acts” array will hold 2 bits per each activity in the application. Those bits are packed
together into the 8 bits (char) chunks.

Panels

static char *panels table[]

Thisarray of char* holds the panelsin scope.

struct
PanelBindings PreviousValues

panelBindings PreviousValues

Thevariable panelBindings Previousvalues holdsthe previously reported values of elements
that are bound to panels.

Test Driver

struct
TestDriver_ PreviousValues

testDriver PreviousValues

Thevariable testdbriver Previousvalues hold the previously reported values of elements that
are bound to panels, and are reported to the test driver API.

94 MicroC Programming Style Guide

Functions Supporting Instrumentation Implementation

Functions Supporting Instrumentation Implementation

GBA

cgColorState_<NAME>

That void function will be generated for each activity, to build the corresponding data to be used to
highlight states.

<NAME>_ CB

When either of the “Panels’ or “ Test Driver” is enabled, setting functions will be generated. Those
functions will be generated in “g1ob_func.c” file, for each of the model elementsthat isbound in
either “Input” or “ Input/output” Mode.

Panels

void init_panels (void)

void update panels (void)

Each of these void functionswill be generated when having panelsin scope. init_panels iS
called once at startup, to initialize the panels. update panels iscalled periodically to update and
refresh the panels.

Test Driver

void init_ test driver table (void)

void call test driver (void)

Each of those void functions will be generated when having panels in scope and the “ Test Driver”
isenabled. “init test driver table” iscalled once at startup, to initialize the test driver.

“call test driver” iscalled periodically to update the test driver, i.e., to report changes and poll
inputs.

Rational Statemate 95

Generated Data Types, Data Usage, and Functions

Debug

cgReportState

This function will be generated in (custom) p_state.c file when debug is enabled. The function
calculates and reports the current state configuration of an activity chart. Because the functionis
generated to a separate file, and the prototype of it is:

void cgReportState (unsigned char whichChart,

unsigned char* baseAddress)

It is possibleto use that functionality across target-host communications when providing a target
implementation that saves the data to afile and uses that generated file on the host.

cgReportStates <NAME>

Thisfunction will be generated when debug is enabled per control activity, to the <MopurEs . ¢ file.
That function call cgreportstate with the appropriate data and timing.

96 MicroC Programming Style Guide

OSDT Naming Styles

OSDT Naming Styles

The following sections describe the naming styles of OSDT models and variables.

Model Names

The Code Style page includes the page Model Data - Naming Syle, with two API definitions:

¢ Model Data Prefix()
+ Model Data Postfix()

The prefix or postfix strings are added to the name of global model data elements for which the
field 1ts Task iSglobal.They are added just before or after the element’s model namein the
generated code. When in case sensitive mode, the case-correct nameis used as the element
model name (nameid). The definitions can use attributes of the model object.

Variable Names

The Variables Naming Style tab includes three new definitions for customization of the variable
names used for statecharts:

¢ Current State Info Variable Prefix - Specifies the prefix to use for the currentstate
variable.

Stay Same State Info Variable Prefix - Specifiesthe prefix to usefor
the staysame variable.

Next State Info Variable Prefix - Specifiesthe prefix to usefor the
nextState variable.

Rational Statemate 97

Generated Data Types, Data Usage, and Functions

New Function Call

Thefile type_def.n nolonger includesthe cart, . macro. The prototype of the function did not

change, but the call did:

¢ If the parameter is out/1nouT, MicroC adds an ampersand (&) beforeit.

¢ |If the parameter isastring or an array, an ampersand is not added.

+ If thereisan ampersand in the parameter, the parameter is enclosed with parentheses. For

example:

& (PRM)

Examples

Prototype:

void myFunc (int inPrm0,

int * outPrml, int * inOutPrm2) ;
Call:

myFunc (INPRM, & (OUTPRM), & (INOUTPRM)) ;
Prototype:

void myFuncStr (char * inPrmStr,
char * outPrmStr, char * inOutPrmStr) ;

Call: myFuncStr (PRMSTR, PRMSTR, PRMSTR) ;

98

MicroC Programming Style Guide

Linking Generated Code with External
Data Types

This section describes how to link the MicroC generated code with external functions and data
types.

External User-Defined Subroutines

You can have an external user subroutine in your MicroC model. To define a subroutine to be
external, set the Selected Implementation to External Code/None. In this case, MicroC generates
only the call to the subroutine—not the prototype or body.

When a user-defined function is not defined in the model (that is, unresolved text) the code
generator does not generate a prototype for that function. To generate an externa user defined
function prototype in the model, complete the following steps:

1. Savethe user-defined function with the relevant return type and arguments list.

2. Define adummy implementation for that function. The implementation cannot empty;
otherwise, MicroC aborts code generation.

3. Set the design attribute for the user-defined function “ External Function” to “yes.” The
OSl'smainloop sc andmainloop sc_ext hasthat attribute for functions.

Rational Statemate 99

Linking Generated Code with External Data Types

External Data Types

Micro includes a design attributes file for User-defined Data Types (UDTSs), which is hamed
UserDefinedType.dat. A UDT that hasits pata Type attribute defined asck_itsbataType
generatesatypedef statement in the code, which isthen used to define variables of that type.

Exceptions:
¢ Singleton-Record and Singleton-Union

For these types, the name of the UDT (thevalue of the ck_itspataType attribute) isused
to define the variable.

¢ Variablesthat override the value of ck_itspataType.

To use an external datatypein the model, set the Data Typefield in the Design Attribute of a
User-Defined-Type (UDT) to be avalue other than “ Default.” To have design attributesfor aUDT
in an OSI, complete the following steps:

1. Openthe OSl from the OSDTool.
2. 2. Inthe Edit Attributes dialog box, select the list item User DefinedType.
3. 3.Click OK and save the OSlI.

The design attributes for the UDT will be available from the Data Dictionary.

100

MicroC Programming Style Guide

Fixed-Point Variable Support

This section describes fixed-point support for integer arithmetic, which scales integer variables so
they can represent non-integral values (fractions). This functionality enables you to perform
calculations involving fractions without the need of special floating-point support from the target.

MicroC supports fixed-point arithmetic in the model level, through the Dictionary and the Check
Model tools, aswell asin the generated code.

Implementation Method

MicroC usesthe “2 factorials’ implementation method— redefining the least significant bit (L SB)
to represent zero, or the negative power of 2. Thisimplementation method provides reasonable
code size and run-time performance, but is not the most accurate method.

Consider the binary 8-bit value Ob00010001. Usualy, the value represented hereis“ 17" because:

¢ TheLSB (1st bit) correspondsto 20 (1).
¢ The5th bit corresponds to 24 (16). Rescaling that value to begin at 2-3 gives:

2.125 = 1*2-3 (or 0.125) + 1*21 (or 2)

The parameter required hereisthe power (of 2) represented by the LSB. Thisisalso the resolution.

Supported Operators

You can use the following operators with fixed-point variables:

¢ Arithmetic (+,— *,/)
¢ Assignment (=)
¢ Comparison (<, >, <=, >=, ==, =)

¢ Functions (return value, parameters, local variables)

Rational Statemate 101

Fixed-Point Variable Support

Evaluating the wordSize and shift of an Object

Thewordsize and shift of an object are defined by its attributes (specified in the Data
Dictionary Editor). MicroC determinesthe wordsize andshift of an expression made of
objects and operators using the formulas listed in the Fixed-Point Macros Macro Definition
Description table.

The conventions used in the table are as follows:

*

WS—Thewordsize of the abject
SH—The snift of the object

RG—Therange (wordsize - shift)
MAX(A, B)—a>B:A:B

SUM(A, B)—a+B
SUB(A, B)—a-B:

Operator or Object

Formula Used

wordSize and shift of the left operand

WS=SUM (MAX (RG1, RG2), SUM(SH1,
SH2)), SH=SUM(SH1, SH2)

/

WS=SUM(MAX(RG1, RG2), SUB(SH1, SH2)), SH=SUB(SH1, SH2)

funcCall

wordsize and shift oOf the left function

ActualParameter

Converted to the FXP type of the
FormalParameter

All Other Parameters

All other parametersws = SUM (MAX (RG1, RG2), MAX(SHL,
SH2)), SH=MAX(SH1, SH2)

If thewordsize isgreater than 32 bits, MicroC displays the following messages:

*

*

wrn_err.inf - Warning: Fixed-Point Overflow in Expression:<Expression>

generated code- /* Warning - Fixed- Point Overflow in Expression. */

This message is located right after the expression.

102

MicroC Programming Style Guide

Evaluating the wordSize and shift of an Object

When you use fixed-point variables in integer arithmetic, MicroC uses the special functions (or C
macros) provided in the FXP package to perform the calculations. The following table lists these
Macros.

Fixed-Point Macros Macro Definition Description

Macro Definition

Description

FXP2INT (FPvalue, FPshift) (FPvalue >>
FPshift)

Converts afixed-point number with shi ft=FPshift to
an integer.

LS_FXP2FXP8 (FPvalue, fromFPshift,
toFPshift) ((sint8(FPvalue)) << ((toFPshift) -
(fromFPshift)))

Convertsafixed-point number withshift=fromFPshift
to an 8-bit fixed-point number with shift=toFPshift
using left shifting

RS_FXP2FXP8 (FPvalue, fromFPshift,
toFPshift) ((sint8(FPvalue)) >> ((fromFPshift)
- (toFPshift)))

Convertsafixed-point number withshift=fromFPshift
to an 8-bit fixed-point number with shift=toFPshift
using right shifting

LS_FXP2FXP16 (FPvalue, fromFPshift,
toFPshift) ((sintl6(FPvalue)) << ((toFPshift) -
(fromFPshift)))

Convertsafixed-point number withshift=fromFPshift
to a 16-bit fixed-point number with shift=toFPshift
by using left shifting

RS_FXP2FXP16 (FPvalue, fromFPshift,
toFPshift) ((sint16(FPvalue)) >>
((fromFPshift) - (toFPshift)))

Convertsafixed-point number withshift=fromFPshift
to a 16-hit fixed-point number with shift=toFPshift
right shifting

LS_FXP2FXP32 (FPvalue, fromFPshift,
toFPshift) ((sint32(FPvalue)) << ((toFPshift) -
(fromFPshift)))

Convertsafixed-point number withshift=fromFPshift
to a 32-hit fixed-point number with shift=toFPshift
using left shifting

RS_FXP2FXP32 (FPvalue, fromFPshift,
toFPshift) ((sint32(FPvalue)) >>
((fromFPshift) - (toFPshift)))

Convertsafixed-point number withshift=fromFPshift
to a 32-hit fixed-point number with shift=toFPshift
using right shifting

Rational Statemate

103

Fixed-Point Variable Support

Unsupported Functionality

The following functionality is not supported:
¢ FXP parameter passed by reference

MicroC generates the following error message:
Error: Unsupported usage of Fixed-Point parameter used by reference.

In function: <FUNC_NAME> Parameter number: <PARAM_NUM>,
+ MicroC ignores the remainder in division operations that result in remainders.

For example:
FXPL(WS=8, SH=2) =5
FXP2(WS=8, SH=2) = 2
FXPLYFXP2 = 2 (not 2.5)

Specifying Fixed-Point Variables
The following sections describe how to specify fixed-point variablesin MicroC.

The Code Generator

To specify fixed-point variables in the Code Generator, complete the following steps:
1. Select Compilation Profile->Setting-> Target Properties.
2. Click UseFixed Point variablesfor “Real”.
3. Select the default word size (8/[16]/32) and LSB= 2"-([0],1,2,..n).

104 MicroC Programming Style Guide

Specifying Fixed-Point Variables

The Generated Code

Fixed-point variables are implemented using uint variables(sint8, sintle, sint32), with
hardcoded shift values. MicroC allocates data according to the wordsize of the variable.

wordSize Data Type
8 bits sint8
16 bits sint16
32 bits sint32

All callsto functions or expressions requiring integer values are done through an ¥xp-to-int
cast, including the test-driver/ panel driver. Specifically, the operators “ROUND” and “TRUNC”
are called with an Fxp-to-int cast.

For example, given afixed-point variable fxp_var, aninteger variable int_var, and the following

actions:
INT VAR := FXP_VAR + 4;
FXP VAR := INT VAR/5;

The generated code is as follows, if you specify fixed-point mode:

INT VAR = RS_FXP2FXP16 (FXP_VAR + LS _FXP2FXP16 (0x4,
0, FXP_VAR_FXP_SHIFT), FXP_VAR FXP_SHIFT, 0);
FXP_VAR = LS_FXP2FXP16 (INT_VAR / 0x5, 0,

FXP_VAR _FXP SHIFT) ;

Rational Statemate 105

Fixed-Point Variable Support

106 MicroC Programming Style Guide

OSI Definition ToolAPI Syntax Definition

Each OSI (Operating System Implementation) contains a predefined list of API definitions. Each
such API definition is intend to define the structure of the generated code that will result from use
of that API. An API definition is often referred to as an OSI. OSls are managed using the OSDT
(Operating System Definition Tool) utility that is supplied with MicroC.

Each API definition might have predefined values that it would use, similar to the formal
parameters of afunction. To use predefined valuesin the API definition, you must use the
predefined value name wrapped with the “$<” prefix and “>" postfix delimiters. Note that this
notation is standard throughout the OSDT utility.

For example, consider the following API definition:

API Name Terminate Task (nameid),

API definition TerminateThread (t_$<nameid>.hndl, O0);

The resulting generated code, for a Task hamed “T1,” will be:

TerminateThread (t_T1.hndl, 0);

Thisisillustrated in the following figure.

Rational Statemate 107

OSI Definition ToolAPI Syntax Definition

Parameterizing an API Definition, Method 1

Graphic Editar e
- -__ _Ehil:ﬂ:tmnnry
Diesign Atributes
dala
—_— HH Atiriute ™
LN 'T- Ty Task
pe
- Tominats Medd TemiratcTask |
1|

Task

e Gereroted Code

O s rrinaria:

_H|

1] i
" Terrrinat= Thread}_T1 heed,)

Another way to parameterize the API definition isto use the property value of the element itself, as
defined in the Data Dictionary for it. For example, suppose the element has a design attribute
named Create Mode that uses the attribute key word CK_createdMode, which then evaluates to:

CREATE_SUSPENDED

For the following API definition:

API Name Create Task (nameid)

API definition t $<nameid>. hndl = CreateThread (NULL ,
0o, (LPTHREAD_START_ROUTINE) S<nameid> , NULL ,

$<CK createdMode> , &t S$<nameid>.tid);

The resulting generated code, for a Task named “T1,” will be:

t Tl. hndl = CreateThread (NULL , O ,
(LPTHREAD START ROUTINE) T1l, NULL ,
CREATE_SUSPENDED, &t TI1. tid) ;

T1*

108 MicroC Programming Style Guide

Parameterizing an API Definition, Method 2

Graphic Editor Dby Dicticsnary

data || Desion Atibutes

| Atrbuiz Walie

T Tipe [Task
Create Task |[1_S<namsdds. hnd=CraxleThrsad|... |

N

| ™

— _

QS0T ./ Generated Code

\ 1_T4hndl = Crest=Thread|, ..

Task

O T s
rwds Tawbrarme_kD)

e Thisad

A third way to parameterize the API definition isto use the property value of the element itself (as
defined in the DataDictionary for it) asthe API definition itself. For example, suppose the element
has a design attribute, possibly hidden, that uses the attribute key word:

CK_sendMessagesAPI

This evaluates to:

mySendMessage ($S<nameid>, ...)

For the following API definition:;

API Name Send Message (nameid)

API definition $<<CK sendMessagesAPI>>

And design attribute definition:

mySendMessage ($<nameid>, $<CK MessagePrioritys);

The resulting generated code, for adataitem named DI1, will be:

mySendMessage (DI1, 1);

assuming that the CK_MessagePriority property evaluatesto 1.

Rational Statemate 109

OSI Definition ToolAPI Syntax Definition

This third method isillustrated in the following figure.

Parameterizing an API Definition, Method 3

Graphic Editor - T D“ﬂ“’:“ﬂﬂl‘_“_ =
Deslgn Atirbutes
|l data Typs Massage
T* - e I [
— , sancassagas AF| | mySardiasangalf-nameic 2 <0H_MsasagePriontys)
-
e
S Iy
¥ | S f B i
fo / Generabed Cod
=0T / | |'I I —1’_ & L]
Mezzage |]
‘] Z - ‘ % mySendhleszage(DH, 1)
O Teamirasin " | .
- P P
o
Note
A good use for this approach is to modify the API definition just for alocal implementation
requirement.
Note

Browsing of the defined key word, in the data dictionary, is supported in the tool. When in
the definition field of the API, you can enter either of the following sequences, which will
result in alist popping up with the predefined keys. The sequences are:

“$<” and “$<<”. Whilein thislist, pressing space, enter or “>" will closeit.

110 MicroC Programming Style Guide

Conditional Expressions

Conditional Expressions

In addition to the $< and $<< expressions discussed above, other conditional expressions are
supported. These are described bel ow.

The general syntax iS ?<conditional Operator> Where conditional Operator can be one of

the following:

?<begin> Marks beginning of a conditional expression
?<end> Marks end of a conditional expression
2<?>
<>
?<&&> Logical AND
<[> Logical OR
?<==> Equal strings
<l=> Not equal strings

Example 1

?<begin> $<propl> ?<==> proplval ?<?> expression when yes ?<:> expression when no ?<end>
In this conditional expression we mimic the C conditional expression, “?:” with some syntax
modifications.

Syntax

The syntax require that aconditional expression will begin with the operator “ ?<begin>" end with
the operator “ ?<end>" and will contain in between the operators: “?<?>" and then “ ?<:>".

So, a conditional expression looks like:

?<begin> sub expression 1 ?<?> sub

expression 2 ?<:> sub expression 3 ?<end>

All that islegal in an APl definition might appear before the ?<begin> and after the ?<end>
markers.

Rational Statemate 111

OSI Definition ToolAPI Syntax Definition

Semantics

The segment defined between the ?<begin> ?<end> operators will be replaced by “sub expression
2" when “sub expression 1" evaluates to true, and by “sub expression 3" when “sub expression 1”
evaluatesto false.

Take another ook at example 1:

?<begin> $<propls> ?<==> proplval ?<?> expression when

yes ?<:> expression when no ?<end>

The APl linewill be expression when yesif s<prop1> evauatesto proplval and will be expression
when no otherwise.

Syntax Definition

sub expression 1

This sub expression may be composed of the 7<& & >, <||>, ?<==>, ?<!=> binary operators and
operands in between.

Note
New-lines and conditional expressions are forbidden here.

Operators definition, with the highest precedence level at the top of the table:

?<==> Equal strings
?<l=> Not equal strings
?7<&&> Logical And
<||> Logical Or

Expressions that contains neither ?<==> nor ?<!=> are evaluated to false.

112 MicroC Programming Style Guide

Syntax Definition

sub expression 2 and sub expression 3:

These can consist of any legal expression in the API definition, including conditional expressions.

Example 2
Some prefix, fix code ?<begin> $<propl> ?<==> proplval
?<&&> S<propl.ls> ?<==> propl.lval ?<?> ?<begin>
$<prop2> ?<==> prop2val ?<||> $<prop2.l> ?<==>
prop2.1lval ?<?> exp 1.1 when yes ?<:> exp 1.2 when no
?<end> ?<:> exp 2 when no ?<ends> Some postfix code,
then another conditional expression ?<begin> $<prop3>
?<==> prop3val ?<?> exp 3.1 when yes ?<:> exp 3.2 when

no ?<end>

In this example we are trying to illustrate a“full” capability expression. Begin with the inner
expression:

?<begin> $<prop2> ?<==> prop2val ?<||> $<prop2.l> ?<==>

prop2.lval ?<?> exp 1.1 when yes ?<:> exp 1.2 when no

?<end>

That expression will be evaluated to “exp 1.1 when yes’ when either $<prop2> evaluates to
“prop2val” or $<prop2.1> evaluatesto “prop2.1val”. When none of them istrue, it will be
evaluated to “exp 1.2 when no” .

So that expression will be replaced by either “exp 1.1 whenyes’ or “exp 1.2 when no” , let us mark
itas“exp 1”.

Now, substituting for “exp 1", the first conditional expression will look like:

?<begin> $<propls> ?<==> proplval ?<&&> $<propl.l> ?<==>

propl.lval ?<?> exp 1 ?<:> exp 2 when no ?<end>

That expression will be evaluated to exp 1 when $<propl>evaluatesto proplval and $<propl.1>
evaluatesto propl.1lval. Otherwise, the expression will be evaluated to exp 2 when no.

Rational Statemate 113

OSI Definition ToolAPI Syntax Definition

So, assuming that:

S<propl> = proplval

$S<propl.l> = propl.lval
S<prop2> = prop2val DIFFER
$<prop2.1> = prop2.lval DIFFER

$S<prop3> = prop3val DIFFER

The API result will be:

Some prefix, fix code exp 1.2 when no Some postfix code, then another
conditional expression exp 3.2 when no

mainloop_sc_ext OSI

MicroC includesthe OSl mainloop sc_ext, Which isan extension to the simple main-loop
scheduler (mainloop sc). Thisextended OSI supports the following functionality:

* Predefined time slices of 8 and 84 milliseconds.

¢ Segmented memory support—code and data can be mapped.
¢ Conditiona compilation, using #ifdef for Activities.

114 MicroC Programming Style Guide

Naming Styles

Naming Styles

The following sections describe the tabs that enable you to specify the naming styles of models
and variables.

OSDT Model Naming Style

The Code Style tab includes the page Model Data - Naming Syle, with two APl definitions:

+ Model Data Prefix()
+ Model Data Postfix()

The prefix or postfix strings are added to the name of global model data elements for which the
field Its Task is global . They are added just before or after the element’s model name in the
generated code. When in Case Sensitive mode, the case-correct name is used as the el ement model
name (nameid). The definitions can use attributes of the model object.

Naming Style of Variables

The Variables Naming Style tab includes three new definitions for customization of the variable
names used for statecharts:

¢ Current State Info Variable Prefix - Specifiesthe prefix to usefor the

currentSate variable.

Stay Same State Info Variable Prefix - Specifiesthe prefix to usefor
the staySame variable.

Next State Info Variable Prefix - Specifiesthe prefix to usefor the
nextSate variable.

Rational Statemate 115

OSI Definition ToolAPI Syntax Definition

116 MicroC Programming Style Guide

Index

A E
Action language 75 End points 60
Actions 11 Events 11
Activities Execution modes 85
reactive 69 External datatypes 99
TASK 13
Activity charts 1,3
data supporting generation 92 F
decomposition language 3 Fixedpoint variables 101
functions supporting generations 92 Flowcharts 1, 4, 60
implementation 13,29 imp|ementa[i0n 55
ANSIC 71 Functions 89
Arrays supporting activity chart generation 92
unsigned char 94 supporting statechart generation 91
supporting timeout/delay 93
B
Begin points 60 G
GBA 80,94
C direct mode 80
indirect mode 80
C language 71 Generation
Case usage 11 activity charts 92
Code Graphical tools 1
linking generated 99
Conditions 11 |
D Instrumentation
implementation 94
Data Integration
items 11 with target 77
supporting timeout/delay 93 Interrupt service rounties 22
Data Dictionary tool 1 ISR 3
Datatypes 11, 90 ISR categories 22
external 99, 100
Debug 79, 96 L
options 83
Decomposition 3 Languages
Decompsotion 29 action 5, 75
Delay 93 CT71
Diagrams decomposition 3, 29
activity charts 1 graphical 3
statecharts 1 graphical implementation 4
supported by MicroC 3
textual 5

Rational Statemate 117

Index

Linking generated code 99 Specifications
mini 5, 69
OSEK/OS 22
M Statecharts 1, 4
MicroC 1 data supporting generation 91
languages support by 3 datausage 38 _
programming languages supported 71 functions supporting generation 91
Models implementation 37, 87
names 97 Subrountines 11
Subroutines
N external user defined 99
Names
model 97 T
OSDT styles 97 Tables
upper and lowercase 11 lookup 73 _
variables 97 truth implemenetation 67
TASK 7
basic 14
O extended 16
; ISR run mode 24
Otgheiﬁsloz TASK activities 13
wordSize 102 Test 79
Operators 101 Test driver 79, 85, 94, 95
OSDR _retargetlng 86
naming styles 97 Time stamp 81
oSl 1 Timeout 93
definition tool 107 Trace 79,81
Output Truthtables 1,5
redirecting 85 implementation 67
P U
Panels 79, 80, 94, 95 User data 90
Points
begin/end 60 \Vj
Variables
R Datatypes 89
Reactive activities 69 fixed-point 101
Routines 3 names 97
interrupt service 7, 22
service interrupt 13 W
WordSize 102
S
Shift 102

118 MicroC Programming Style Guide

	MicroC Overview
	Scope of this Guide
	Languages Supported by MicroC
	Graphical Languages
	Structuring Language: Activity chart
	Decomposition Language: Activity Chart

	Activity Behavior: Graphical Implementation Languages
	Statecharts
	Flowcharts

	Textual Languages
	Truth Table
	Mini-Spec, using the Rational Statemate Action Language

	Time Model and Related Time Operators
	Asynchronous Aspects of MicroC
	Interrupt Service Routine
	TASK

	Synchronization
	Synchronization: Semaphore
	Synchronization: Signal (TASK Event)

	Serial Communication / Messages
	Timers

	Activity Behavior: User-Defined Functions
	Truth Tables
	Lookup Tables
	Rational Statemate Action Language

	Exact Case Usage

	Structuring Language: Activity Chart Implementation
	TASK Activities
	BASIC TASK
	EXTENDED TASK

	Interrupt Service Routine Activities
	ISR Categories

	TASK/ISR Run Modes
	Super Step Example
	Single Step Example

	Decomposition Language: Activity Chart Implementation
	Sub-Activities Code
	Communication and Synchronization Services
	Messages
	Queued Messages
	Signals
	Global Data Usage
	Semaphores

	Statechart Implementation
	Statechart Implementation: Data Usage
	Statechart Implementation: Generated Functions
	Statechart Code Frame
	Order of Function Execution

	Default State Implementation
	AndState Implementation
	Timeout Implementation
	OSEK 2.0 Implementations

	History and Deep History Implementation

	Optimization Algorithms
	Inline Default Test
	Inline Setting of the “Need Another Step” Bit
	Inline Entering and Exiting Reactions
	Merge State Sequences With No Guard on Transitions
	Timeout Optimization
	Clutch Entrance to a State Hierarchy

	Flowchart Implementation
	Flowchart Implementation
	Supported Constructs

	Labels
	Decision Expressions
	Switch Expressions
	Forbidden Constructs

	Goto Minimization
	Code Structure
	Begin/End Points
	Arrows and Labels
	Flowchart Examples

	Truth Table Implementation
	Mini-Spec Implementation
	Reactive Activities
	Procedural Activities

	ANSI C Code Usage
	Lookup Table Implementation
	Rational Statemate Action Language Implementation
	Integration with the Target
	Instrumentation for Testing and Debugging
	GBA: Graphical Back Animation
	Direct Mode GBA
	Indirect Mode GBA

	Panels
	Trace (Time Stamp)
	Trace Tasks
	Extended Tasks
	Design Level Debugging: Trace
	Trace ISR

	Debug Options: Trace State Transitions (reportState function)
	Debug Options: Trace State Transition (reportState function)

	Test Driver
	Synchronous Execution Mode
	Asynchronous Execution Mode
	Redirecting the Output
	Retargeting the Test Driver

	Specifics of Statechart Implementation
	Generated Data Types, Data Usage, and Functions
	Data Types
	User Data
	Data Supporting Statechart Generation
	Functions Supporting Statechart Generation
	Data Supporting Activity Chart Generation
	Functions Supporting Activity Chart Generation
	Data Supporting Timeout/Delay Implementation
	Functions Supporting Timeout/Delay Implementation
	Data Supporting Instrumentation Implementation
	GBA
	Panels
	Test Driver

	Functions Supporting Instrumentation Implementation
	GBA
	Panels
	Test Driver
	Debug

	OSDT Naming Styles
	Model Names
	Variable Names

	New Function Call
	Examples

	Linking Generated Code with External Data Types
	External User-Defined Subroutines
	External Data Types

	Fixed-Point Variable Support
	Implementation Method
	Supported Operators
	Evaluating the wordSize and shift of an Object
	Unsupported Functionality
	Specifying Fixed-Point Variables
	The Code Generator
	The Generated Code

	OSI Definition ToolAPI Syntax Definition
	Conditional Expressions
	Example 1
	Syntax

	Semantics
	Syntax Definition
	sub expression 1
	sub expression 2 and sub expression 3:
	Example 2

	mainloop_sc_ext OSI
	Naming Styles
	OSDT Model Naming Style
	Naming Style of Variables

	Index

