
Statemate®
From Code to Concept

Automotive Approach to Using Statemate White Paper

by Hans-Peter Hoffmann PHD

Chief Methodologist for Systems Design

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF file available from Help > List of Books.

This edition applies to Telelogic Statemate 4.5 and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2008.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
ii

Contents
Model-based System Development . 1
System Development in the Automotive Industry . 2

Statemate in a Model-Based Software Development Process . 7

Requirements Capture and System Design with Statemate . 9
Functional System Design Methodology Roadmap . 9
Architectural System Approach. 10
Capturing the System Context (“Extended System Context”) . 11

Identifying SUD relevant Data Sources / Sinks . 11
Data Modeling . 11
Modeling Hardwired I/O. 12
Modeling Bus Communication. 12

Generic Top-Level SUD Structure. 13
Application Software Modules. 14

Feature-based System Design Approach . 15
Development of Feature Library Components1 . 15
Building the Conceptual Model . 19
System Partitioning . 20
Adding Hardware Design Aspects. 22

Model Verification and Validation . 23
Model Inspection . 24

Static Model Analysis (“Check Model”) . 25

Dynamic Model Analysis (Simulation). 25

Closed Loop Testing . 28

Prototype Code Generation . 28

Style Guidelines and Best Practices . 29
Activity Chart Conventions . 29

Graphical Settings and Drawing Preferences . 29
External / Environment Activities. 30
Internal Activities . 30
Statemate iii

Control Activities . 30
Data-, Control- and Information-Flows . 30
Data Stores . 31
Page Connectors . 32
Combinational Assignments, Mini-Specs, Subroutines, and Truthtables . 32
Generic Charts, Libraries and Components . 34

Statechart Conventions . 37
Graphical Settings and Drawing Preferences . 37
Describing States . 37
Describing Structure and Priority. 39
Concurrency . 39
State Transitions . 40
Default Entries. 40
In-Page and Off-Page Connectors . 40
iv From Code to Concept

Model-based System Development
This white paper guides Automotive Industry systems engineers and software engineers to use
Statemate for the following:

� Systems design automation tool
� Software design
� Model-based software development process

Besides the methodological aspect of the integrated process, “best practice” advice is given which
enables a seamless transition “from concept to code.”

It should be noted that this document’s purpose is to supplement the existing training courses
offered. It is assumed that the reader has a basic knowledge of the Statemate and an understanding
of the basic elements and syntax of the Statemate “language.” The following are the major topics
covered in the ratepayer:

� The Model-based System Development section describes the model-based system
development process as it is typically applied in the Automotive Industry. It also defines
where in this process the tools Statemate and MicroC should be used. It also addresses the
car manufacturer/supplier trade-off from the process and tools point of view.

� The Requirements Capture and System Design with Statemate section describes details of
the functional analysis and modeling paradigm that should be adopted for requirements
capture and systems design either by means of Statemate or - to a lesser extend - by means
of MicroC. Driven by the need to harmonize and standardize body electronic designs
cross-platform, many car manufacturers follow a “feature-based approach” in their system
designs. The role of Statemate in this process is outlined in detail, especially with respect
to a seamless transition to the S/W development using MicroC.

� The Model Verification and Validation section gives an overview on the model verification
and validation process supported by Statemate and - to a lesser extend - by MicroC. Test
strategies and test vector gene-ration are emphasized for the later use during the software
design stage with MicroC.

� Style Guidelines and Best Practices summarizes the common set of supported language
elements. In addition, formal guidelines and “best practice” advice for the usage of the
language of Statemate are given. These “best practices” are based on many years of
modeling experience in aerospace/defense and automotive projects and have proved to
significantly enhance the readability of specifications developed using Statemate.
Statemate 1

Model-based System Development
System Development in the Automotive Industry
It has long been recognized that ambiguous and inconsistent requirements are the primary cause of
design errors in system designs. This is not helped by the fact that most specifications are still
produced as paper documents and then subject to an inadequate review process. A rigorous review
might catch many of these errors, but all too often the review is cursory due to lack of time or
experience. Written requirement specifications are often completed after the design as a
documentation exercise, often containing errors and ambiguities.

Model-based system development moves away from the written specification approach towards a
dynamic representation of the system, which is constantly being reviewed as it is constructed.

Through the model-based approach, design errors are detected much earlier in the development
process where the cost to fix them is much less. Customer change requests can be more efficiently
assessed and responded, thus providing more timely feedback.

The greatest benefit from a model-based approach is increased communication, not only between
the engineering disciplines but also between the technical and non-technical parties involved in the
system development process; thus supporting Concurrent Engineering. This is possible due to the
inherent ability to produce models at different levels of abstraction thereby avoiding the detailed
overload that often occurs when data is passed between different domains.

But modeling should not be seen as a stand-alone task. It should be embedded within the overall
system development process.

A widely used and accepted process model is the “V” Development Lifecycle illustrated in the
following figure.
2 From Code to Concept

System Development in the Automotive Industry
Classical V-Diagram for Engineering Lifecycles and Model-based Development

The left leg of the V describes the top-down design process over time while the right leg of the V
corresponds to the bottom-up synthesis path over time, where smaller components are integrated
to build the complete product.

It is important to note the creation of test data all along the design path (left leg). With this
approach it is no longer good enough to say that the system shall meet a particular requirement.
Rather, it is necessary to also define how the requirement shall be tested. As can be seen from the
above figure, these test data can be re-used either at the next design level or during the bottom-up
integration.

In a model-based development process test-data are derived directly from the simulation of
respective models. These data are input to or later exported from a Test/Parameter Database, e.g.
an ORACLE database.

To understand the model-based design process further, the left-hand side of the “V” is illustrated in
more detail in the following figure. It describes a specific approach applied in the Automotive
Industry - the so-called “Feature-based Design Process.”

Design
Specification

Document

System
Acceptance

System
Integration & Test

Module
Integration & Test

Requirements
Analysis

Requirements Models

System Modification

T
E
S
T
/
P
A
R
A
M
E
T
E
R
-
D
A
T
A
B
A
S
E

Test Scenarios Test Scenarios

HW / SW
Implementation

& Unit Test

HW / SW
Design

Functional
Requirements
 Document

Systems
 Analysis &

Design

 System- /
Performance- Model

Implementation Model

HW/SW Requirements
 Specification
 Document
Statemate 3

Model-based System Development
In modern body electronics development, functional requirements are captured and analyzed by
means of a special class of models called “feature models.” These models describe either one basic
functionality like window control, mirror control, etc., or an ensemble of basic functionalities
(“feature interaction models”) like seat positioning / seat heating / seat venting. Feature
(interaction) models are purely functional and do not reveal implementation details. They are
designed as re-usable objects (“Feature Library Components”), that allow an easy “plug & play”
design of new body electronics systems.

The results of the Feature Analysis Phase are:

� Validated vehicle-specific feature (interaction) models.
� Test scenarios derived from respective requirements.

Both are re-used in the following System Functional Design Phase.

The integration of all vehicle-specific feature (interaction) models into one common model defines
the Conceptual System Model. It is the basis for the overall Verification & Validation (V&V) of
systems requirements in the System Functional Design Phase. V&V will be performed through
model execution. The respective test scenarios form the basis of the later validation tests of the
synthesized system architecture.

Sometimes a “Soft Prototype”, automatically generated from the Conceptual Model, together with
a graphical user interface is used as a first proof of concept - or for marketing presentations.
4 From Code to Concept

System Development in the Automotive Industry
The Automotive “Feature-based System/Software Design

The results of the Functional System Design Phase are:

� The validated System Requirements Documentation derived from the Conceptual Model.
� High-level test scenarios proving that all requirements were fulfilled.

The Conceptual System Model is the entry point to the System (Architectural) Design Phase. At
this stage of the development, the system is first partitioned into subsystems (i.e. ECUs) and then
the feature (interaction) models or respective sub-functions are distributed among them. Although
the resulting model is still pure functional, the partitioning will be determined almost by
implementation considerations, e.g.:

� Computational resource utilization.
� Hardware requirements of a specific function.
� Optimization of overall system communication in terms of wiring harness and EMI.
� Best fault tolerance or graceful degradation.
� Ability to diagnose system failures.

Requirements
Document

System
Requirements

Document

T
E
S
T
/
P
A
R
A
M
E
T
E
R
-
D
A
T
A
B
A
B
A
S
E

Parse functional Requirements into "Features"

SW Requirements
Specification

Document

Feature
Analysis

System
Functional

Design

System
Design

Subsystem (ECU)
Design

S/W Design

Implementation

Test Scenarios

V&V Cycle incl.
RAPID PROTOTYPING

V&V Cycle

V&V Cycle

V&V Cycle

V&V Cycle

Links providing
Traceability of Specs

 to o riginal Requirements

Feature Library Components

Test Scenarios /
Test Vectors
Statemate 5

Model-based System Development
In some cases, architectural design criteria may also be derived from additional Performance
Models. These models are based on queuing theory and typically used for throughput analysis and
identification of potential communication bottlenecks.

The subsystem partitioning and feature/function parsing is an iterative process. The particular
architectural system design will be verified by means of test scenarios previously used for the
verification of the Conceptual Model. For each ECU the respective I/O will be recorded.

The final step in the System (Architectural) Design Phase will be the definition of the hardware
attributes of the logical interface, i.e. which information will be hardwired and which will be
provided via bus.

The results of the System (Architectural) Design Phase are:

� The Architectural System Model with validated logical subsystem (i.e. ECU) interfaces.
� A definition of the hardware interface attributes (hardwired signals/bus).
� Logical test vectors for each subsystem (i.e. ECU), derived from the high-level test

scenarios of the Conceptual Model verification.
Based on the particular hardware interface definition, additional I/O-functionality has to be added
to each ECU model of the Architectural System Model in the Subsystem Design Phase (e.g. in
case of hardwired input: switch debouncing, low pass filtering, etc.). As the respective
Architectural Subsystem Model is still purely functional, the later ECU Operating System /
Scheduler will be excluded, i.e. all functions will “run in parallel.” If the ECU is to be connected
via the bus, the respective bus protocol will not be modeled. Rather, only the bus-related logical
interface (“Communication Matrix”) will be defined and verified based on test vectors derived in
the previous System (Architectural) Design Phase.

At this stage of the development Rapid Prototyping may be used as an additional means of
validation. A “Soft Prototype” - automatically generated from a particular Architectural ECU
Model - may be rehosted to a Rapid Prototyping Hardware platform for “on-board” and/or “man-
in-the-loop” validation of the design concept prior to the implementation.

In the case of Model-based Software-development the results of the Systems Analysis and Design
Phase (see the figure) are:

� The validated SW Requirements Specification derived from the Architectural System /
Sub-system Design Model.

� Test vectors for each ECU, derived from the high-level test scenarios of the Conceptual
Model validation.
6 From Code to Concept

Statemate in a Model-Based Software Development Process
Normally the Architectural Subsystem Model is the entry point to the Software Design Phase.
Now target specifics, the Operating System/Scheduler, the sequencing and timing of functions,
and the bus protocol have to be considered. The respective Implementation Model essentially
becomes a design model for the code implementation. It is validated by re-using test patterns
generated during the previous development stages.

However, the transition to the Software Design Phase is not distinct. It may also start from the
Architectural System Model, leaving the I/O processing and the verification and validation
through Rapid Prototyping as an implementation task to the Software Design. It should be defined
with close co-operation between those responsible for the implementation, such as sub-contractors
or members of a software department. Nevertheless, wherever the transition within the process
takes place, the deliveries should be model-based with respective test vectors included for cross-
validation.

Statemate in a Model-Based Software Development
Process

To enable Model-based software development in the Automotive Industry, this product provides a
tool that allows a seamless transition from requirements capture to code implementation (“From
Concept to Code”): Statemate. The tool follows a model-based function driven paradigm,
facilitating a seamless “integrated development process.” The following figure shows the model-
based software development process.

Statemate should be used for requirement capture and systems analysis / design, while the
Statemate code generator is a software design tool with the capability of generating automatically
production C-Code from the design. Requirements Capture and Systems Design with Statemate
Statemate 7

Model-based System Development
Statemate in a Model-Based SW Development Process

Rhapsody in MicroC

SW Design
Specification

Document

Mod ule
In tegrat ion & Test

 SW
Imp lem en ta tio n

& Unit Tes t

 SW
D es ig n

Statemate MAGNUM

S ystem
Accep tan ce

S ys tem
Int egrat ion & Test

Requ iremen ts
An alys is

Functi onal
Requirements
 Docum ent

HW/SW Requirement s
 S pecif icat ion
 Docu ment

Test Scenarios Test Scen arios

Sy st ems
 Ana lys is &

Design

T
E
S
T
/
P
A
R
A
M
E
T
E
R
-
D
A
T
A
B
A
S
E

8 From Code to Concept

Requirements Capture and System Design with Statemate
Requirements Capture and System Design with
Statemate

Functional System Design Methodology Roadmap

Functional system design is based upon the principle of Functional Decomposition. Functional
decomposition breaks down complex systems into a hierarchical structure of simpler parts. It
ensures that the role of the identified sub-functions is clear and distinct from the other sub-
functions.

Functional Decomposition

Hierarchy Level 0 is the starting point for a Top-Down system approach. It defines the system
context, i.e. the system boundary, the external data sources and sinks (“External / Environment
Activities”), and the respective information flows.

Hierarchy Level 1 describes the system in terms of high-level functions or subsystems with their
logical interfaces. They should be encapsulated and re-usable entities.

Hierarchy Level 2 is the functional decomposition of the respective functional modules or
subsystems identified at hierarchy level 1. Starting at this level, state-based behavior may be added
through layers of additional decomposition (see the following figure), describing the relationship
between the identified functional blocks and respective system states.

Top-Down

Bottom-Up

External
Data
Source

External
Data
Sink

Hierarchy
Level 1

Hierarchy
Level 2

Hierarchy Level 0
(“Context-Diagram”)

(“Subsystem-Level”)

(“Component-Level”)
Statemate 9

Model-based System Development
Typical Statemate Structure of Hierarchy Level 2 with State-based Behavior Embedded in the
Control Activity

Experience shows that the system functionality should be completely defined at hierarchy level 2.
This does not mean that the system is completely specified at this level. Rather, the structural
outline of the system should be captured in the same way as a table of contents shows the outline
of a document.

Typically after decomposition level 2 - latest after decomposition level 3 - the system design
process (i.e. the definition of the high-level architecture) may be started.

The outlined top-down system approach is the most frequently used in systems design. But there
are also approaches, which start at hierarchy level 2 (“Component-Level”) and then iteratively
design the system bottom-up / top-down. An example for this is the feature-based design approach
described in the Feature-based System Design Approach section.

Architectural System Approach

The classical functional top-down approach, outlined in the previous section, is based on the
assumption that the system is being designed from scratch with no legacy influences and with
complete design control over the partitioning of functionality.

In practice, many applications require the design of additional system or sub-system functions
embedded within an existing architecture. This places constraints on the designer, which need to
be fully understood before the actual design can take place.

In the following sections, an equipment-related generic architectural system approach will be
presented.

FCT_

FCT_

FCT_C

FCT_B

FCT_D
10 From Code to Concept

Requirements Capture and System Design with Statemate
Capturing the System Context (“Extended System Context”)

Like in the classical functional decomposition approach, the generic architectural approach starts
with the definition of the system context. In this case it is called the “Extended System Context”
because it captures the operational interfaces between data sources/sinks and the System Under
Design (SUD) together with the respective hard-ware interface attributes (hardwired signals/bus,
see the following figure). This is needed because I/O data processing will form an essential part of
the SUD top-level functions

Architectural System Approach: Hierarchy Level “0”
(“Extended System Context”)

By starting from the extended system context level, Rapid Prototyping and the later integration of
the different subsystems to the overall system model will also be facilitated.

Identifying SUD relevant Data Sources / Sinks
Experience shows that schematics of the overall physical system architecture should be used for
the identification of the SUD-relevant data sources/sinks and the respective hardware interfaces.

Data Modeling
The extended context diagram should be restricted to the data flow as far as the SUD is concerned.
The communication between the different external data sources and sinks is excluded.

The type of communication - via bus and/or direct lines (Hardwired I/O) - is not only graphically
depicted in the diagram, but also reflected in the labels of the particular information flows.
Statemate 11

Model-based System Development
Modeling Hardwired I/O
Hardwired I/O is represented in the extended context diagram as information flows between the
SUD and its external data sources and data sinks with labels using the syntax:
<source>_2_<sink> (e.g. E_2_SUD, SUD_2_E in the Architectural System Approach: Hierarchy
Level “0” (“Extended System Context”)) figure.

Note
At this stage it is not necessary to define the elements of the respective information flows.
Instead, it is recommended to define them when the system behavior is captured (typically
starting at hierarchy level 2).

Modeling Bus Communication
If bus behavior is neglected (i.e. “Functional Model”), the bus is graphically represented by a data
store.

If bus behavior is needed (e.g. in order to simulate message loss or delays) the data store should be
replaced by an activity with a respective behavior.

In general, the bus communication between data sources and data sinks is captured by two
information flows as illustrated in the following figure:

� A flow between the data source and the bus, labeled <source_2_<bus> and
� A flow between the bus and the respective data sink, labeled <bus_2_<sink>.

Modeling Bus Communication

MSG_<sourceM>_2_<sinkN>

MSG_<sourceM>_2_<sink1>

<sourceM>_2_<bus>

<msg_1>

<msg_2>

<msg_1>

<msg_2>

MSG_<source1>_2_<sinkN>

<bus>_2_<sinkN>

MSG_<sourceM>_2_<sinkN>

<msg_1>

<msg_2>

<msg_1>

<msg_2>

Message TransmitMessage Receive

<sourceM>_2_<bus

BUS

<bus> 2 <sinkN>

 sink
 N

source
 M
12 From Code to Concept

Requirements Capture and System Design with Statemate
Both flows are decomposed into further information flows (“message containers”) which, by their
labels explicitly identify the data source and sink, as well as the fact that this flow contains bus
messages: i.e. MSG_<source>_2_<sink>.

Message containers have the structure of a record, with each field of the record specifying a
particular component of the message. If bus nodes share messages from a specific data source,
these messages have to be defined in the respective message containers.

Note
At this stage it is not necessary to define the elements of the “message containers.” Instead,
it is recommended to define them when the system behavior is captured (typically starting at
hierarchy level 2).

Generic Top-Level SUD Structure

The proposed generic top-level SUD structure depicted in the following figure is the most
frequently used in control unit designs with Statemate.

Generic Top-Level Structure for ECUs

At this level the SUD is partitioned into hardwired/bus I/O-functions and application related main
system functions (Firmware, Diagnostics, Control Algorithm, etc.).

Note
No initialization functions are represented at this level. Such functions are considered to be
an implementation detail

The functionality captured in the input processing block (INPUT_PROC) could be: signal
filtering, switch debouncing, transformation of electrical signals to physical or logical values, etc.

Statemate 13

Model-based System Development
Details of bus protocols are not considered in a functional model. Therefore the receive/transmit
functionality within the bus interface is confined to checking for changes on the bus and mapping
them to internal variables, or formulating the messages for output onto the bus on changes of
respective internal variables; e.g:

� Bus Receive:

ch(MSG_11.AUX) / KL_R := MSG_11.AUX;

� Bus Transmit:

ch(STORE_MEM1_ACTIVE) / MSG_78.STORE_MEM1_ACTIVE;

The data-store (PROCESS_BFFR) in the generic structure may be interpreted either as a data
repository or as an “internal bus.” In the latter case the communication between the functions
connected to the “internal bus” should be modeled as outlined in Modeling Bus Communication.

Note
At this stage it is not necessary to define elements of the internal information flows. Instead,
it is recommended to define them when the system behavior is captured (typically starting at
hierarchy level 2).

Application Software Modules

The following figure shows the typical structure of an application software module at
decomposition level 2 The function blocks depict the algorithm structure, while the related state-
based system behavior is captured in the Control Activity.

Architectural System Approach: Typical Structure of an Application S/W Module at Decomposition
Level 2

14 From Code to Concept

Feature-based System Design Approach
Note
Starting at this level the information flows defined in the higher hierarchies should be
“filled” with the respective details “bottom-up.” This ensures that only data are defined,
which are actually used within the model.

Feature-based System Design Approach
Driven by the need to harmonize and standardize body electronic design cross-platform, many car
manufacturers follow a feature-based approach. In this approach, functional requirements are
mapped to a special class of re-usable objects called features. The integrated ensemble of
respective feature models describes the overall system functionality and forms the basis for the
subsequent bottom-up design process.

In the following paragraphs, the feature-based design process is outlined in detail, especially with
respect to a seamless transition to the software design using in MicroC.

Development of Feature Library Components1

The underlying idea of a feature-based design in body electronic development is that such systems
can be described by means of standardized modules with design-specific interactions. Thus, the
identification of such basic functions and the development of respective feature models are a
prerequisite prior to any feature-based design. Such models typically are archived as re-usable
components in a Feature Library. Examples of feature models in Body Electronic Systems are:

� Power Window
� Power Mirror
� Seat Positioning
� Seat Heating, etc.

The Feature Model: Seat Heating figure depicts the structure of a Seat Heating feature model.
Feature models are functional models, i.e. they do not reveal implementation details. Their top-
level structure corresponds to the hierarchy level 2 structure outlined in Functional System Design
Methodology Roadmap respectively in the Typical Statemate Structure of Hierarchy Level 2 with
State-based Behavior Embedded in the Control Activity figure. Feature models are generic and have
purely logical interfaces.
Statemate 15

Model-based System Development
Feature Model: Seat Heating

started/
SH_S1_CMD:=SH_LVL1_CMD;
SH_S2_CMD:=SH_LVL2_CMD;
SH_LOW_VOLTG:=KL30_LOW_VOLTG;;
--
ch(SH_LVL1_CMD) or ch(SH_LVL2_CMD) or
fs(KL15C or KL15X or
KL30_HIGH_VOLTG or KL30_LOW_VOLTG)/
if not KL15C and not KL15X and
 not KL30_HIGH_VOLTG and
 not KL30_LOW_VOLTG then
 SH_S1_CMD:=SH_LVL1_CMD;
 SH_S2_CMD:=SH_LVL2_CMD;
 SH_LOW_VOLTG:=KL30_LOW_VOLTG
end if;;
--
tr(KL15C or KL15X or
KL30_HIGH_VOLTG or KL30_LOW_VOLTG)/
fs!(SH_S1_CMD);
fs!(SH_S2_CMD);
SH_LOW_VOLTG:=KL30_LOW_VOLTG;;
16 From Code to Concept

Feature-based System Design Approach
An ensemble of basic feature models with specific interactions may be grouped within a macro,
called a feature interaction model. In such a model, the feature interactions are decoupled from the
feature blocks and described in an additional functional block called an arbitrator. Arbitrators may
be interpreted as “intelligent switches.” The Feature Interaction Model: Seat Controller figure shows
a Seat Controller module as an example of a feature interaction model. It combines the following
basic features:

� Seat Positioning
� Seat Heating
� Seat Venting

The Seat Feature Arbitrator describes the specific behavior of the Seat Heating in this
configuration:

� When the Seat Positioning is active, the Arbitrator sets the actual Seat Heating commands
to false.

� Normally, when in SH_LVL1, the Seat Heating is switched OFF after a specified time
Refer to the Feature Model: Seat Heating figure. If the Seat Venting was ON and is switched OFF
during this time, the Seat Heating will also be switched OFF. The Arbitrator then shall generate a
respective RESET event and send it to the Seat Heating module.

Feature/feature interaction models are verified and validated through simulation. Test scenarios are
derived from respective requirements.

Note
Not only the Feature Interaction Model itself but also its top-level functions (feature models
and the arbitrator) shall be generic, thus enabling an easy partitioning to different ECUs
(refer to System Partitioning).
Statemate 17

Model-based System Development
Feature Interaction Model: Seat Controller

18 From Code to Concept

Feature-based System Design Approach
Building the Conceptual Model

The feature-based system design process follows an iterative bottom-up/top-down approach. It
starts at functional decomposition level 2 (Component-Level). See the Functional Decomposition
figure).

As a first step the functional requirements are mapped to features described either by means of
basic feature models or feature interaction models from the feature library. These validated models
then are integrated in a common model - the Conceptual System Model. See Capturing Vehicle-
Specific Features in a Conceptual System Model figure.

Capturing Vehicle-Specific Features in a Conceptual System Model

F

FF

F

F

A
F

F
A

F

F

A
F

F

Vehicle System

B K X L

S H M P

Process Buff er

. . .

. . .

Test Sc enarios
derived from
Requirements

F

Fe ature
M odel

 A
F
F

F eatu re
Interactio n

M odel

Platform independent Feature Library

• Exterior Light (Front/Bac k, Fog, Wiper/Washer)
• Seat Control (Positioning, Heating, Venting)

• Power Window
• Power Mirror
• Seat Heating
• Memory Store/Recall

Functional Requirements

recorded Syste m Behavior
Statemate 19

Model-based System Development
Note
At this stage it is not necessary to visualize in detail the communication between the
individual feature/feature interaction models. The Process Buffer is used symbolically as a
means for the interconnection. The broadcasting mechanism is used for external/internal
communication.

The benefits derived from the Conceptual System Model are:

� Early proof of concept.
� Easy definition of system-level test scenarios through the purely logical external interface.

The Conceptual System Model is verified and validated through simulation. Test scenarios are
derived from the overall system requirements. The recorded test vectors together with the
respective system responses form the basis of the later validation of the synthesized system
architecture, refer to System Partitioning

System Partitioning

The next step in the feature-based design process is the architectural system design. The system is
partitioned into subsystems (i.e. ECUs) and then bottom-up the feature/feature interaction models
or respective sub-functions are distributed among them. See the System Partitioning, Parsing of
Features/Feature Sub-Functions, and Validation of logical Interfaces figure. Although the resulting
model is still purely functional, the partitioning is determined almost by implementation
considerations, e.g.:

� Computational resource utilization
� Hardware requirements of a specific function
� Optimization of overall system communication in terms of wiring harness and EMI
� Best fault tolerance or graceful degradation
� Ability to diagnose system failures

In some cases, architectural design criteria may also be derived from additional Performance
Models. These models are based on queuing theory and typically used for throughput analysis and
identification of potential communication bottlenecks. Statemate should not be used for this kind
of analysis. Rather, dedicated tools like SES Workbench are recommended.
20 From Code to Concept

Feature-based System Design Approach
System Partitioning, Parsing of Features/Feature Sub-Functions, and Validation of logical
Interfaces

Note
At this stage it is not necessary to visualize in detail the communication between the
individual ECUs. The Process Buffer is used symbolically as a means for the inter-
connection. The broadcasting mechanism is used for external/internal communication.

The subsystem partitioning and feature/function parsing is an iterative process. The particular
architectural system design is verified by means of the test scenarios previously used for the
verification / validation of the Conceptual Model. For each ECU the respective I/O is recorded.

F

FF

F

F

A
F

F
A

F

F

A
F

F

Vehicle System

B K X L

S H M P

Process Buffer

. . .

. . .

Vehicle System

ECU_1 Functions

F

B
K

A
F

F
H

A
F
F

ECU_N Functions

F

X
H

A
F
F

F

M

Process Buffer

. . .

Test Sce narios
derived from
Requirements

 EC U Te st Vec tor R ecording
Statemate 21

Model-based System Development
Adding Hardware Design Aspects

The final step in the system architectural design phase is the definition of the hardware attributes
of the logical ECU interfaces, i.e. which information will be hardwired and which will be provided
via data bus. This top-down design process can be achieved in two ways:

� By adding respective attributes to the logical interface variables, or
� By modeling the respective ECU as described in Generic Top-Level SUD Structure (refer to

the Functional ECU Model with H/W Interfaces for Rapid Prototyping in Statemate figure),
thus enabling a validation though Rapid Prototyping.

Principally, both approaches allow a seamless transition to the software design by means of the
tool MicroC. Which of the outlined approaches is appropriate depends on the system design
validation criteria in the OEM / Supplier environment. Either the OEM engineer wants to validate
the hardware design. In this case the engineer uses Statemate’s Rapid Prototyping feature or
transfers the hardware design validation to the supplier. In this case, Rapid Prototyping is
performed directly on the target by means of the MicroC tool based on the logical interface
variable attributes.

Functional ECU Model with H/W Interfaces for Rapid Prototyping in Statemate

Vehicle System

ECU_1 Functions

F

B
K

A
F

F
H

A
F
F

ECU_N Functions

F

X
H

A
F
F

F

M

Process Buffer

. . .

EC U_N Fu ncti ons

F

X
H

A
F
F

F

M

Input
Fi lter

Output
Fi lter

Bus I nte rface

Process Buffer

ECU_N

H/W Test Vectors
deri ved from recorded
logical ECU Test Vec tors

re corded logical ECU Test Vectors

Test Sc enarios
derived from
Requirements
22 From Code to Concept

Model Verification and Validation
In the following, verification is defined as an activity to confirm the fulfillment of requirements.
Validation is defined as an activity to confirm that the specific intended use of the model is
accomplished.

The verification and validation (V&V) process should always follow the same top-down process
as the model design refer to Functional System Design Methodology Roadmap), i.e. the model
should be verified and validated before proceeding to the next level of decomposition.

The following summarizes the steps to follow in the V&V process.

Step 1.

Verification and
Validation on Chart
Level:

• Visually inspect the chart.
• Run Check Model on the chart.
• Interactively simulate the chart.
Statemate 23

Model Verification and Validation
Note
On the system level, the V&V efforts should focus on the communication among the parts
of the system, and not attempt to duplicate all of the chart level testing.

Model Inspection
Several errors in the model can be detected by visual inspection. While this can be done on-line, it
is more convenient to work from a hardcopy produced by printing the chart with the “With
Elements' Dictionary” option enabled.

Common visual checks are:

� Identifying unresolved elements,
� Checking the scope of resolved elements
� Identifying any potential non-determinism when exiting a state with multiple exiting

transitions.
Visual inspection should be done by the creator of the chart or by another engineer familiar with
the chart(s) being inspected.

Step 2.

Verification and
Validation on Module/
Sub-System and
System Level:

• Identify the normal operations of the system from the
requirements.

• Simulate the normal operations of the chart, record
simulation script files, record input and output patterns,
and use trace files to examine state coverage in the
waveform viewer.

• Modify the recorded script files and create additional test
scripts if necessary.

• Playback the newly created script files, record input and
output patterns, and use trace files to examine state
coverage in the waveform viewer.

• Identify the boundary cases and failure conditions to test.
• Simulate the boundary cases and failure conditions, record

simulation script files, record input and output patterns,
and use trace files to examine state coverage in the
waveform viewer.

• Modify the recorded script files and create additional test
scripts if necessary.

• Playback the newly created script files, record input and
output patterns, and use trace files to examine state
coverage in the waveform viewer.

• Generate Prototype code from the model and ensure the
generated code behaves the same as the model by
comparing the output stimulus pattern with the output
pattern from simulation.
24 From Code to Concept

Static Model Analysis (“Check Model”)
Model inspection should also include the “cleanup” of the design. (Refer to the Style Guidelines
and Best Practices section.) It involves e.g. the definition of actions in order to make charts more
readable, redrawing flows and transitions that cross unnecessarily, ensuring that actions are
consistently placed either on transition labels or in static reactions, checking for items that can be
relocated into the Global Definition Set, and compacting the chart hierarchy.

Static Model Analysis (“Check Model”)
The Check Model feature is used to statically check the model for syntax errors, incomplete usage
of language semantics, and inconsistent usage of model elements.

Check Model runs approximately 400 tests against the model, and generates a report of all errors
found. The user can customize the tests as needed to disable some of the tests performed by Check
Model. Disabling tests will be necessary to eliminate the reporting of error messages caused by
model inconsistencies that result when intentional deviations from the standard graphical
representations are taken. If tests beyond those supported by Check Model are desired, they can
often be created using a DGL (Document Generation Language) or a Dataport program. These
custom tests must be run outside of Check Model.

Dynamic Model Analysis (Simulation)
Following the static analysis of the model, it is necessary to dynamically exercise the model to
verify and validate that the system functions correctly. These tests typically start at decomposition
level 2, when behavior (e.g. by means of Statecharts, Mini-Specs, Truth Tables) is captured.

Test vectors and tests scenarios are derived directly from the written requirements. If during
modeling additional requirements (“derived requirements”) are formulated, they have to be
documented and the model has to be checked against them.

The model can be exercised in an interactive mode where the user injects stimuli into the model,
controls the simulation of the system functions, and observes the response from the model. The
code generated from the model in the interactive mode is an interpreter code, thus allowing to
debug the system by stepping through it forward and backwards.

In addition, the model can be executed in a batch mode by means of a script written in the
Simulation Control Language (SCL). It is based on the Statemate Action Language used to
describe the behavior of the model. A simulation script can also be generated from a playback file,
recorded while interactively simulating the model. It may be used as the baseline test that can
easily be modified to quickly create a set of tests that later become part of a suite of regression
tests.
Statemate 25

Model Verification and Validation
Note
SCL scripts are test programs re-usable only in the Statemate environment. For the later re-
use of test scenarios outside the Statemate tool (e.g. in MicroC), test vectors should be
generated from the SCL scripts.

While executing the model in either interactive or batch mode, a waveform display of the model
elements can be used to capture the history of the changes in the model. These changes may also
be captured textually via a trace file. After completion of the simulation, the respective trace file
can be displayed as a waveform for easier analysis. An important use of the trace files and/or
Waveform Viewer is to check for test coverage. In cases where the trace files are very big, a
testbench chart should be used to record only the model information needed for the coverage
analysis.

Additionally, testbench charts and graphical panels are needed for model verification and
validation.

Testbench charts are used to accomplish following tasks:

� Modeling the system's environment in a closed loop (refer to Closed Loop Testing)
� Inducing system disturbances (e.g. for FMEA purposes).
� Monitoring for undesirable hazards and error conditions.
� Providing a translation scheme between a graphical panel and the system.
� Recording the values of model elements in a data file.

Graphical panels are used to visualize the functionality of the model without having to look at the
charts that describe the system's behavior. They should be considered as another view of the SUD,
in order to communicate system understanding at a higher level of abstraction. This is particular
useful when talking with marketing departments, suppliers or managers. Often, panels are used as
a Graphical User Interface (GUI) to the system, but they are also valuable as a graphical testing
interface to the system.

Note
Graphical panels in Statemate should not be viewed as photo-realistic. They are primarily
engineering views. Much time can be wasted trying to produce a GUI with a high degree of
realism. If photo-realism is a requirement, then a dedicated tool should be used.

The dynamic analysis starts with the testing of the normal operation of the system to ensure that
the model functions as expected. Then boundary cases and failure mode operations should be
analyzed. Ideally the designer of the model should do the normal mode tests while another
engineer should be tasked with the verification and validation of boundary cases and failure mode
operations.

It is often helpful to hold a Peer Review in order to ensure the designer that the system
requirements were correctly interpreted.
26 From Code to Concept

Dynamic Model Analysis (Simulation)
In order to perform boundary case and failure mode analysis, the respective boundary cases and
system failures must be identified. A testbench chart should be created to check for incorrect
operation in these modes. While the use of a testbench is not mandatory, it enables the checking of
boundary cases and system failures under all operational aspects. These testbenches can also be re-
used during system integration

Testbench charts may also be used to record the inputs and outputs of each module/sub-system in a
format needed later in the test equipment.

The following figure shows an example from an automotive application:

Test Pattern Generation and Re-Use of Tests (“Unit Tests” Automotive)

In a first step the SUD is executed in playback mode and trace files / waveforms are generated for
coverage analysis. Once a scenario is approved for later re-use, the respective (SCL-) file is re-
played for data recording via the testbench chart for later re-use in the test hardware HP
ECUTEST. The recorded test vectors are part of the model documentation (i.e. SRS).

Operational
Input

Specified
Output

 S/W Requirements
 Specification

Test
Patterns

1. FUNCTIONAL DESCRIPTION
2. BEHAVIORAL DESCRIPTION

Testbench for Unit-Test (i.e. HP ECUTEST)

Actual Output Output
Analysis Seat-Heating

S/W Module

Requirements Scenario SH-005 (Playback File)
Statemate 27

Model Verification and Validation
Closed Loop Testing
For model verification and validation it is not sufficient to analyze the System Under Test (SUT) in
an open-loop mode alone. As most systems interact with their environment closed-loop they also
have to be tested closed-loop. Two approaches are suggested for closed loop testing:

One is, to use testbench charts. As long as the behavior of data sources and sinks identified in the
context diagram (refer to Capturing the System Context (“Extended System Context”) and Building
the Conceptual Model) can be described by state-machines, the loop can be closed through
respective testbench charts applying the mechanism of Broadcasting.

Note
For the validation of the interfaces within the system, the testbench charts should only
generate operational inputs.

Another approach would be to close the loop at the extended context diagram level. Refer to
Capturing the System Context (“Extended System Context”). Each of the identified nodes should be
modeled with respect to its interaction with the SUT:

� If state-based using Statecharts.
� If time-continuous (e.g. capturing sensor / actuator dynamics) using the VisSim tool

within Statemate. In this case, a testbench chart should only be used to monitor and/or
induce system disturbances (e.g. in an FMEA analysis).

As the extended context diagram corresponds to the later system integration layer, this approach
additionally validates the operational interfaces between the SUD and its respective data sources
and sinks.

Prototype Code Generation
A final test of the model is to generate prototype code from the model - including the graphical
user interface - and test the executable prototype using the recorded stimuli and response files from
the interactive simulation. The compiled code may be run on any OS compatible computer. The
process of generating code requires Statemate to perform additional tests on the model that are not
needed for simulation and are not performed by Check Model.

From the V&V process point of view, it is important that code is generated before proceeding to
the next level of decomposition since, as the system becomes more detailed and complex, a point
may be reached where interpreted simulation is no longer viable due to speed and performance
considerations. It is much easier to generate code gradually as the model is built up, when
problems can be more easily identified and fixed rather than leaving the code generation for the
end of the design process where problems are likely to be deep within the model.
28 From Code to Concept

Style Guidelines and Best Practices
In the following formal guidelines and “best practice” advice for the usage of the language of
Statemate will be given. They are based on many years of modeling experience by IBM
consultants in aerospace/defense and automotive projects. They have proved to significantly
enhance the readability of specifications developed using Statemate.

Activity Chart Conventions

Graphical Settings and Drawing Preferences

Whenever the Activity Chart Editor is used, the respective activity chart should fill the full size of
the monitor; also enabling a standardized format of the graphics in the automatically generated
documentation.

General Settings Grid ON with 0.25 spacing and 10 pixel trap
radius:

• Flow Lines: straight lines
• Line Width of Flow Lines: 1

Standard size of Functional Blocks,
Data Stores, External Activities, and
Control Activities

Function Blocks, External Activities and Data
Stores:

• Box Height: 2
• Box Width: 3.5
• Line width: 1

Control Activities should be double the width·

Standard font and font size for
Names and Labels

• Names: Black Courier, 12 point, bold
• Labels: Black Courier, 12 point, bold, italic
Statemate 29

Style Guidelines and Best Practices
External / Environment Activities

All External / Environment Activities should have the same size in height and width. If a bigger
size is needed, the respective size should be a multiple of a pre-defined basic size.

Data sources (Inputs) shall be placed on the left side, data sinks (Outputs) shall be placed on the
right side of the Activity Chart - even if their names are identical.

In addition to the External / Environment Activity name it may be useful to add textual notes next
to the name to indicate their origin from the modeling point of view - e.g. TESTBENCH.

Internal Activities

All Internal Activities should have the same size in height and width. If a bigger size is needed, the
respective size should be a multiple of a pre-defined basic size. There is no magic figure for the
number of functions/chart. The priority is readability and this requires a clear layout of activities
and associated connectivity. Off-page hierarchy (“Create Sub-Chart”) should be used to maintain
readability.

Internal Activities should be placed one below the other thus enabling the reader to reveal the
dynamics of the system by reading the chart “top-to-bottom” and “left-to-right.”

The name of the top-level activity should be identical with the chart name.

Control Activities

A Control Activity should have the same size in height and width as Internal Activities. Contrary
to the guidelines for External/Internal Activities there is no fixed scaling, if a bigger size is needed.

A Control Activity should be located at the top of the internal activity it resides in, and be named
with the activity name appended with '_CTRL'.

Data-, Control- and Information-Flows

Flow lines, which represent either data flows or control flows, shall be drawn as solid lines.
Dashed lines shall be avoided. Within Statemate there is no difference in the handling of those
flows and furthermore, different line styles may lead to confusion.

Principally it is recommended to use information-flows between external and internal activities as
well as between internal activities. Only at the lowest level of decomposition the information flow
from/to external activities should be split into its data/control elements. Flows between external
activities and Control Activities generally should depict the explicit data/control information (see
the following figure).
30 From Code to Concept

Activity Chart Conventions
External and Internal Flow Lines

All internal flow lines shall flow in a clockwise direction, with the respective names on the left-
hand side of the arrow direction. The names of external flows should be written in the external
activity, not on the arrow that defines the data flow.

Junction Connectors should not be used. Direct branching of flows is recommended instead.

Readability hint: When flows cross within a chart, only a “T” is a joint or fork while a “+” is
simply a crossing line with no connection.

Data Stores

In Statemate data stores do not have any impact on code generation. Therefore they can be used as
an additional means of visualization:

� Data stores may represent stored information for later use (e.g. characteristic tables/maps)
or describe a buffer in the computer memory (e.g. “PROCESS_BUFFER” in the Generic
Top-Level Structure for ECUs figure). In these “classical” applications data stores are
named with the data they contain. Unlabeled flows to or from a store carry the whole data
group of the store. Flows carrying subgroups of the stored data are labeled with the
respective subgroup names.

� Data stores may also be used to visualize the different of communication characteristics
within a system e.g. CAN BUS, J1850,… etc. For details on modeling data bus
communication, refer to Modeling Bus Communication.

Statemate 31

Style Guidelines and Best Practices
Page Connectors

In-Page Connectors should only be used when the readability of the activity chart is disturbed by a
direct connection. Off-Page Connectors should be avoided.

Combinational Assignments, Mini-Specs, Subroutines, and
Truthtables

Combinational Assignments should not be used since there is no visible indication in the
Properties window once combinational assignments are defined. Mini-Specs starting with
“started” should be used instead.

For reading and debug purposes, mini-specs are usually no longer than one page. Also for
readability reasons indents and tabs should be added to show nested loops. If the mini-spec code is
longer than a screen page, it may be more suitable to implement the action line with a subroutine,
described by the action language. By this the Micro Step Debugger of the simulator can be used to
debug the single step of behavior. In cases where mini-specs consist of complex netted “if .. then ..
else” constructs, a more suitable approach would be the use of truth tables (refer to the following
figure).
32 From Code to Concept

Activity Chart Conventions
Mini-Spec and Truth Table Description

n

;

if CO_1 then
 if CO_2 then
 if DI_1=1 and REC_1=REC_2 then
 tr!(CON_3);
 DATA_2:=100;
 else
 if DI_1=3 then
 tr!(CON_3);
 else
 if DI_1=5 then
 tr!(CON_3);
 DATA_2:=2;
 else
 fs!(CON_3);
 DATA_2:=0
 end if;
 end if;
 end if,
 end if;
 end if
Statemate 33

Style Guidelines and Best Practices
Sometimes Statecharts are used instead of truth tables because of their graphical debug capabilities
through simulation. From the methodical point of view, this is not recommended, as in most cases
“if .. then else” constructs may not be associated with “real” states (refer to Describing States).

Generic Charts, Libraries and Components

A Generic is a specific type of chart with an explicit interface (“Data Encapsulation”), enabling a
modular development of components. Although both Activity Charts and Statecharts may be
defined as Generics, use only generic Activity Charts in system modeling (exception: Testbench
Charts).

Generics should not be seen from a model reuse perspective alone. They are also a powerful means
in a team-based development. Models of the different team members should always be defined on
the top-level as Generics thus forcing a clear interface definition. This facilitates the later
integration into the overall system significantly. A chart can be changed at any time from regular
to generic and vice versa.

Note
Testbench Charts do not have any scope into generic charts. Therefore, modeling and model
validation should be performed with the regular chart prior to its change to a Generic.

The nesting of Generics (“Generics in Generics”) should be minimized even though Statemate
supports it. Debugging the model may become troublesome due to the difficulty in referencing
parameters. Three levels depth should be sufficient.

The following figure depicts the top-level structure of a Generic Activity. Each generic formal
parameter is shown graphically by a flow making it easy to determine from the diagram whether
the parameter is used as an input, output or both input and output. When using large complex data
structures, only those elements that are really needed should be passed instead of the entire
structure.
34 From Code to Concept

Activity Chart Conventions
Top Level of a Generic Chart (Seat Positioning)

External Activities of a top-level generic chart should not show any details of the origin and
destination of the I/O parameters. Their names should be simply INPUT and OUTPUT.

Once a generic chart is created and validated it can be archived as a component (see the Example of
a Library Component figure) and entered into a model library.

Library Components can be used in other models by simply dragging the component from the
library and dropping it into the respective chart.

Note
If a Library Component is edited in the library, any modeler who has created a dynamic link
to the component, rather than just copying it sees the new change taking effect the next time
the simulation is run.
Statemate 35

Style Guidelines and Best Practices
Example of a Library Component
36 From Code to Concept

Statechart Conventions
Statechart Conventions

Graphical Settings and Drawing Preferences

Whenever the Statechart Editor is used, the respective Statechart should fill the full size of the
monitor; also enabling a standardized format of the graphics in the automatically generated
documentation.

Describing States

Statecharts are used to describe the behavior part of the model. From a methodological point of
view, they should be used to depict system states and transitions between them. As it is quite easy
to translate Statecharts into code, some users apply them as graphical representations of what will
later become their software code. By using Statecharts as a means for graphical programming,
“system state aspects” usually are neglected. Statecharts of this kind are referred to as “Procedural
Statecharts” and are not recommended in functional system modeling.

Statecharts can be simulated. Because of the step-semantic of the Statemate simulation some users
tend to add artificial states either to initialize a step needed to perform an action (see the following
figure) or to synchronize with concurrent processes. Statecharts should be free of such not system-
related “pseudo-states.”

General Settings Grid ON with 0.25 spacing and 10 pixel trap
radius

 Standard Size of States • Box Height: 2
• Box Width: 3.5
• Line Width: 1 (Highlighted: 2)

Standard Font and Font Size for
Names and Labels

• Names: Black Courier, 12 point, bold
• Labels: Black Courier, 12 point, bold, italic
Statemate 37

Style Guidelines and Best Practices
Capturing Simulation Steps in Statecharts

In the following a system state will be referred to as a time consuming mode of operation (e.g.
WAIT_FOR_CMD or FCT_X_ACTIVE), needing a compelling event to initialize a transition to
another mode of operation.

All states within a Statechart should have the same size in height and width. If a larger size is
needed, the respective size should be a multiple of a pre-defined “basic” size.

State Names should describe the respective system mode of operation. Dummy names like IDLE
or WAIT should be avoided. If a state is connected to a function, its name should reflect this (e.g.
INTERPOLATION_ACTIVE in the Capturing Simulation Steps in Statecharts figure). Long names
should be broken into two or more lines.

"Pseudo-State"

a)

b)
38 From Code to Concept

Statechart Conventions
Describing Structure and Priority

States can be decomposed into sub-states using Hierarchy. This is extremely useful for adding a
further level of detail to the behavior.

At the same time hierarchy can be used to represent levels of interrupt and priority to transitions.

When hierarchies are used in order to the visualize interrupt levels, the respective super-states need
not be named, unless a related timeout expression is used. Obviously when hierarchies are used for
state decomposition purpose, it is essential that the respective super-states be named accordingly.

Concurrency

For readability reasons it is recommended not to describe the behavior of concurrent processes by
means of concurrent state machines if these processes need to by synchronized. Instead, each
process should be captured by individual function blocks (Activities). The process synchronization
then should be performed “hardwired.”

Nevertheless, if concurrent state machines are used and the broadcasting mechanism is used for
synchronization, they should be restricted for readability reasons to one chart level.

Functions (Activities), which are always active should be explicitly visualized in the control
activity as concurrent processes (see the Visualization of Concurrent Processes in a Control Activity
and the Feature Model: Seat Heating figures) with a respective Static Reaction (refer to State
Transitions).

Visualization of Concurrent Processes in a Control Activity
Statemate 39

Style Guidelines and Best Practices
State Transitions

Transitions between states shall be drawn as straight lines. Within a Statechart the transitions shall
have a common sense of rotation (either clockwise or counter-clockwise). Transitions should
neither cross each other nor states.

Labels shall be positioned on the left-hand side of the arrow direction and follow the MEALY
Syntax. (Event and/or Condition / Action). The '/' should end the line prior to an action on a
conditional transitions. When conditional statements must be broken to start a new line, the lines
should end after the conditional operator. The actions following the slash should be allocated a
single line for each action.

If the label is too long, the triggering events and/or conditions as well as the associated actions
may be defined separately as Compounds with respective meaningful names.

The use of Static Reactions (MOORE Syntax) should be limited to Statemate or simulation
specific syntax that is unnecessary to the reader for understanding the behavior. An example for
Statemate specific syntax is the starting and stopping of activities. Following the state naming
convention it should be obvious that when entering a state named <activity_name>_ACTIVE the
respective activity is started without seeing the Statemate syntax.

Note
Within / Throughout - syntax should not be used.

Default Entries

It is possible to minimize the number of Default Entries when hierarchies have been used to
describe interrupts by drawing a single default transition from the top-level super-state to the
default-state. In this case each of the nested super-states does not need separate entry transitions.

In-Page and Off-Page Connectors

In-Page Connectors should be used to join the same transition together, without crossing existing
transitions. For readability reasons descriptive names should be chosen.

Off-Page Connectors are necessary when a transition needs to return to a previous higher level off-
page chart. It is essential that the connectors have meaningful names and the two charts that are
connected can be shown side by side, with the connecting transition being easily identifiable Using
similar positions of the connector on each chart may facilitate this.
40 From Code to Concept

	Contents
	Model-based System Development
	System Development in the Automotive Industry
	Statemate in a Model-Based Software Development Process
	Requirements Capture and System Design with Statemate
	Functional System Design Methodology Roadmap
	Architectural System Approach
	Capturing the System Context (“Extended System Context”)
	Generic Top-Level SUD Structure
	Application Software Modules

	Feature-based System Design Approach
	Development of Feature Library Components1
	Building the Conceptual Model
	System Partitioning
	Adding Hardware Design Aspects

	Model Verification and Validation
	Model Inspection
	Static Model Analysis (“Check Model”)
	Dynamic Model Analysis (Simulation)
	Closed Loop Testing
	Prototype Code Generation

	Style Guidelines and Best Practices
	Activity Chart Conventions
	Graphical Settings and Drawing Preferences
	External / Environment Activities
	Internal Activities
	Control Activities
	Data-, Control- and Information-Flows
	Data Stores
	Page Connectors
	Combinational Assignments, Mini-Specs, Subroutines, and Truthtables
	Generic Charts, Libraries and Components

	Statechart Conventions
	Graphical Settings and Drawing Preferences
	Describing States
	Describing Structure and Priority
	Concurrency
	State Transitions
	Default Entries
	In-Page and Off-Page Connectors

