

Rhapsody®
Upgrade Guide

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF available from Help > List of Books.

This edition applies to IBM® Rational® Rhapsody® 7.5 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2008.

US Government Users Restricted Rights—Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
ii

Contents
Upgrade Considerations . 1
Upgrading Rational Rhapsody on Windows 98 Systems . 1

Upgrading from Modeler to Developer Capability . 1

Upgrading Rational Rhapsody Applications . 2

Upgrading Applications that Use Configuration Management . 2

Required User Actions for All Releases . 3
COM API . 3

Documentation . 3

Upgrading to Version 7.5 . 5
Changes in Version 7.5 . 5

Code Generation. 5
Reverse Engineering. 7
Frameworks . 7
Diagrams. 8
Rhapsody API Changes . 10
Other Changes . 10

Upgrading to Version 7.4.0.1 . 13
Changes in Version 7.4.0.1 . 13

Code Generation. 13
Frameworks . 14
AutomotiveC . 14

Upgrading to Version 7.4 . 15
Changes in Version 7.4 . 15

Frameworks . 15
Rhapsody iii

Table of Contents
Code Generation. 15

Upgrading to Version 7.3 MR-1 . 17
Changes in Version 7.3 MR-1 . 17

Frameworks . 17
Code Generation. 17

Upgrading to Version 7.3 . 19
Changes in Version 7.3 . 19

Code Generation. 19
Reverse Engineering. 21
Roundtripping . 21
Tracing . 21
Framework . 21
Other Changes . 23

Upgrading to Version 7.2 MR-1 . 25
Changes in Version 7.2 MR-1 . 25

Code Generation. 25

Upgrading to Version 7.2 . 27
Changes in Version 7.2 . 27

Code Generation. 27
Animation . 30
Check Model . 30
Code Generation - Makefile . 31
Reverse Engineering. 31
Roundtripping . 31
Modeling . 32
GUI . 32
Rhapsody API . 33
Java API . 33
SysML Profile . 33
Support for 64-bit Targets . 34
Framework . 34
ReporterPLUS. 37
iv Upgrade Guide

Table of Contents
Upgrading to Version 7.1.1 MR-3 . 39
Changes in Version 7.1.1 MR-3 . 39

Code Generation. 39

Upgrading to Version 7.1.1 MR-2 . 41
Changes in Version 7.1.1 MR-2 . 41

Code Generation. 41

Upgrading to Version 7.1.1 MR-1 . 43
Changes in Version 7.1.1 MR-1 . 43

Code Generation. 43
Other Changes . 43

Upgrading to Version 7.1.1 . 47
Changes in Version 7.1.1 . 47

Code Generation. 47
Reverse Engineering / Roundtripping . 48
Framework . 48

Upgrading to Version 7.1 . 51
Changes in Version 7.1 . 51

Code Generation. 51
Reverse Engineering / Roundtripping . 52
Framework . 53
Properties . 53
Other Changes . 54

Automatic Upgrade Performed by Rhapsody. 54

Changes that May Necessitate User Action . 54
Code Generation. 54
Reverse Engineering / Roundtripping . 55
Framework . 55
Other Changes . 56

Backward Compatibility Settings. 56
Code Generation. 56
Reverse Engineering / Roundtripping . 57
Rhapsody v

Table of Contents
Upgrading to Version 7.0 MR-3 . 59
Changes in Version 7.0 MR-3 . 59

Code Generation. 59
Framework . 59

Upgrading to Version 7.0 MR-2 . 61
Changes in Version 7.0 MR-2 . 61

Code Generation. 61
Framework . 61
Other Changes . 62

Changes that May Necessitate User Action . 62
Code Generation. 62

Upgrading to Version 7.0 MR-1 . 63
Changes in Version 7.0 MR-1 . 63

Framework - Linux . 63
Properties . 63

Upgrading to Version 7.0 . 65
Changes in Version 7.0 . 65

Code Generation. 65
Reverse Engineering. 66
Framework . 67
Rhapsody API . 69
Other Changes . 69

Automatic Upgrade Performed by Rhapsody. 70

Changes that May Necessitate User Action . 70
Code Generation. 70
Framework . 71
Other Changes . 71

Backward Compatibility Settings. 72
Code Generation. 72
Reverse Engineering. 73

Upgrading to Version 6.2 MR-1 . 75
vi Upgrade Guide

Table of Contents
Upgrading to Version 6.2 . 77
Changes that Require User Action . 77

RiC++ OXF . 77
Adapters . 77

Automatic Upgrade Performed by Rhapsody. 78
RiC++ OXF . 78

Additional Information . 78
Code Generation. 78
RiC IDF . 79
RiC++ OXF . 80

Upgrading to Version 6.1 MR-2 . 83
Changes that Require User Action . 83

COM API . 83
Code Generation. 83

Additional Information . 84
Framework . 84

Upgrading to Version 6.1 MR-1 . 85
General Recommendations . 85

Code Generation. 85

Changes that Require User Action . 86
Code Generation. 86
Framework . 88

Automatic Upgrade Performed by Rhapsody. 89
Code Generation. 89

Changes Disabled for Backward Compatibility . 89
Code Generation. 89

Additional Information . 92
Code Generation. 92
Framework . 93
MULTI Makefile Generator . 95
Properties . 96

Upgrading to Version 6.1 . 97
Rhapsody vii

Table of Contents
Changes that Require User Action . 97
Code Generation. 97
Framework . 97
Properties on Stereotypes. 101

Automatic Upgrade Performed by Rhapsody. 102
Code Generation. 102

Features Disabled for Backward-Compatibility . 104
Property Resolution. 104
Code Generation. 104

Additional Changes. 105
Framework . 105
Code Generation. 111
Changed Properties . 113
COM API . 114
MultiMakefileGenerator . 114

Upgrading to Version 6.0 MR-2 . 117
Changes in Rhapsody 6.0 MR-2 . 117

Framework . 117

Upgrading to Version 6.0 MR-1 . 119
Changes in Rhapsody 6.0 MR-1 . 119

CORBA . 119
C++ OXF . 119

Upgrading to Rhapsody 6.0 . 121
Changes that Require User Action . 121

Framework . 121
DiffMerge of Diagrams . 122
Code Generation. 122
Properties . 123
COM API . 123

Rhapsody in C++ Object eXecution Framework. 123
Backward Compatibility . 124

Automatic Upgrades Performed by Rhapsody. 128
Code Generation. 128
viii Upgrade Guide

Table of Contents
PublicQualifier Property . 129

Features Disabled for Backward-Compatibility . 129
MultiMakefileGenerator . 129
Full Roundtrip . 130

Additional Information . 130
Code Generation. 130
Framework . 131
Linux/MVL Adapters . 132
Properties . 132
MultiMakefileGenerator . 133

Upgrading to Version 5.2 MR-1 . 137
Changes that Require User Action . 137

Code Generation. 137
C++ Properties . 137

Additional Information . 138
Code Generation. 138
C++ Framework . 139

Upgrading to Version 5.2 . 141
Changes that Require User Action . 141

Code Generation. 141

Automatic Upgrades Performed by Rhapsody. 143
Modeling of External Elements . 143
Code Generation. 143

Features Disabled for Backward-Compatibility . 144
Code Generation. 144
Reverse Engineering. 145

Additional Information . 145
Code Generation. 145
Framework . 146

Upgrading to Version 5.0.x . 147
Upgrading to Version 5.0.1 MR2 . 147

Changes that Require User Action . 147
Keyword Behavior Changes . 147
Property Changes . 147
Rhapsody ix

Table of Contents
Upgrading to Version 5.0.1 MR1 . 147

Upgrading to Version 5.0.1 . 148
Changes that Require User Action . 148
Framework Changes. 148

Upgrading to Version 5.0 . 151
Changes that Require User Action . 151

Changes in the Framework Files. 151
COM API . 152
DOORS . 154
C++ Interfaces. 154
HeaderDirectivePattern Property Value . 154
DiffMerge of Pre-Version 5.0 Models . 154
EmbeddedScalar::Set Property. 155
Code Generation. 155
C++ Framework . 155

Automatic Upgrades Performed by Rhapsody. 156
Explicit Initial Instances . 156
Code Generation Format . 156
GenerateWithAggregates Property . 156

Enabling the Rhapsody 5.0 Features. 156
Attribute Modifiers . 156
Typedef Modeling . 157
Cross-Package Links . 157

Additional Changes. 157
Framework Changes. 157
Code Generation. 159
Changes in Default Property Values . 160
Deprecated COM APIs . 162

Upgrading to Version 4.2 . 163
Changes that Require User Action . 163

Static Relations (C++ and Java) . 163
Automatic Glue Generations (Ada) . 164
OSE Support (C++). 164
QNX Adapter Message Queues . 165
Animation Enhancements (C++) . 165

Automatic Upgrades Performed by Rhapsody. 165
Changes in Generated Code . 165
x Upgrade Guide

Table of Contents
Changes in Full Roundtrip (C++). 166

Additional Information . 167
Adapters . 167
Rhapsody in C Framework . 167
Animation Enhancements (C++) . 167
GHS MULTI Build Files Generation (C++) . 168
ESTL Support (C++) . 168

Upgrading to Version 4.1 . 169
Changes that Require User Action . 169

Compiler and RTOS Changes. 169
Framework File Changes . 173
Default Directories for Specification and Implementation Files (C and C++) . 175
Model Checking . 175
Rhapsody COM API Changes . 176
DiffMerge Changes . 177

Features that Are Disabled on Load . 177
Ignore Code in Prolog/Epilog Properties on Roundtrip (C++) . 178
Robust Type Instrumentation (C and C++) . 178
Instance-Based Linking. 178
Reflect Data Members in Reverse Engineering . 179
Advanced Webify Toolkit Settings. 179
Analysis Sequence Diagrams . 180

Property Changes . 180
Renamed Properties . 180
Moved Properties . 181
Superseded Properties . 181
Properties Deleted from the Factory File. 181
Changed Properties . 181

Additional Information . 182
Enhanced C++ Standard Library (STL) Support . 182
Reverse Engineering of #include Statements Not Found by the Parser (C and C++) 182
C++ Framework Changes . 183
Modeling Changes . 183
Configuration Management Changes . 184
Code Generation Changes . 184

Upgrading to Version 4.0.1 MRx . 185
Upgrading to Version 4.0.1 MR1 . 185
Rhapsody xi

Table of Contents
Properties . 185
Rhapsody in C++-Specific Changes . 185
Rhapsody in J-Specific Changes . 186

Upgrading to Version 4.0.1 MR2 . 186
Rhapsody in C-Specific Changes . 187

Upgrading to Version 4.0 . 189
Changes that Require Model Modifications . 189

Generation of Implicit Dependencies . 189
Calling an Overridden initRelations() Operation . 190
Relation Properties . 190
Framework Event Consumption API Changes (C and C++) . 191
Event Handling in Null Transitions (C and C++) . 192
Guarded Class Implementation (C++). 192
Configuration Management of the RPY File in SCC Mode . 193

Automatic Upgrades Done by Rhapsody . 193
Clean Default Values for Attributes (C and C++) . 193
Smart Generation of Package Code . 194
Generation of Filled-Diamond Relations . 194
Relation Properties . 196
Calling an Overridden initRelations() Operation . 196
Generalization (C++). 196
Cleanup of the OXF Namespace (C++) . 197
Generated Class Name for Packages (Java) . 197
Changes in Property Names or Locations. 197
VariableInitializationFile Property . 198

Changes in the Framework API . 198
Rhapsody in C++-Specific OXF Changes. 198
Rhapsody in C-Specific OXF Changes . 207
Rhapsody in J-Specific OXF Changes . 208

Additional Information . 209
Incremental Code Generation . 209
Event IDs. 209
Derived Statecharts (Flat) . 210
Temporary Files . 210
Partial Animation . 210
Generalization . 211
Handling Unconsumed Events and Triggered Operations . 211
User Control over Framework Memory Management (C++) . 211
Generic Handling of Derived Events . 212
xii Upgrade Guide

Table of Contents
Upgrading to Version 3.0.1 . 213
Properties. 213

Modified Properties . 213
New Properties . 213

Code Generation . 215

Framework . 215
Rhapsody in C++ Framework . 216
Rhapsody in J Framework. 222

Upgrading to Version 3.0 MR1 . 225
OMOSMutex Interface Changes . 225

State Interface Changes . 226

Upgrading to Version 3.0 . 227
Code Generation . 227

Framework . 228

Properties. 228
CG. 228
<lang>_CG . 228
ClassImporter . 229
General . 229

Checks . 229

Upgrading Rhapsody in C++ Models. 230
Framework . 230
Code Generation. 232
Properties . 232
Roundtrip. 232
STL Support . 233

Upgrading Rhapsody in C Models . 234

Upgrading Rhapsody in J Models . 234
Framework . 234
Code Generation. 234

Using Rhapsody 2.3 and Rhapsody 3.0 Concurrently . 234
Switching from Version 3.0 to 2.3 . 235
Switching from Version 2.3 to 3.0 . 235
Rhapsody xiii

Table of Contents
Upgrading from 1.x and 2.x . 237
Upgrading from Version 1.x . 237

Upgrading from Version 2.x . 237

Index . 239
xiv Upgrade Guide

Upgrade Considerations
This section describes behavior and functionality changes between versions of Rhapsody that you
must consider when upgrading your installation.

Note
When you install a higher version of Rhapsody, you must use the properties that exist for
that version.

Upgrading Rational Rhapsody on Windows 98
Systems

If you are upgrading to a newer version of Rhapsody and want to keep the previous version as
well, the usual method is to rename the existing installation directory and then install the new
version. However, this might cause a problem as a result of a known bug in Windows 98—on the
DOS level, directory names with eight characters are not renamed. For example, if you rename
your default install directory from Rhapsody to Rhapsody_old and then install the newer
version to Rhapsody, the new version will in fact be installed to the same directory where the old
version resides.

Upgrading from Modeler to Developer Capability
If you have the Modeler version of Rhapsody and want to upgrade to the Developer version, send
e-mail to Rhapsody Customer Support for a software license key that will allow you to open
Modeler models in Developer. You can then save the model in Developer and the translation will
be complete. This is a one-time process. The key will be valid only for a few days.

You must add the Modeler conversion key to your license.dat file, then invoke the product
from a DOS window using the following command:

[c:\<rhapsody_dir>\]rhapsody
[-dev_ed|-modeler|-solo|-validator] -
lang=[Cpp|C|Java|Ada] [-convert]
Rhapsody 1

Upgrade Considerations
This command allows Developer to open the Modeler project. To convert the Modeler project to
Developer format, you must save the project. If you do not save the project, it will remain in the
old format.

Upgrading Rational Rhapsody Applications
In general, whenever you upgrade to a newer version of Rhapsody, it is recommended that you
regenerate and rebuild your code. If you have your own operating system adapter, you should also
rebuild your framework libraries in the new version of Rhapsody before building application code.

As a general rule, models created in any version of Rhapsody cannot be loaded into earlier
versions of Rhapsody. However, a Rhapsody version can have several maintenance releases.
Models can be loaded within any of the maintenance releases for a given Rhapsody version.

All precompiled samples accompanying version 2.2 and higher of Rhapsody were compiled with
Microsoft Visual C++ (MSVC) 6.0. If you use MSVC 5.0, you must recompile the samples with
MSVC 5.0. However, if the sample uses a .dsp file (as for a GUI interface), you cannot load a
.dsp file created in MSVC 6.0 into 5.0. In this case, you must recreate the .dsp file in MSVC 5.0
before recompiling.

Upgrading Applications that Use Configuration
Management

When upgrading a Rhapsody model that uses a configuration management tool, you must do one
of the following:

Option 1

1. Outside of Rhapsody, check out all the units.

2. Open Rhapsody.

3. Save the model.

4. Check in all the units.

Option 2

1. Open the model.

2. Save the model under another name, to a writable directory.
2 Upgrade Guide

Required User Actions for All Releases
This will avoid the possibility of attempting to write to units that are read-only, which could cause
model corruption.

Required User Actions for All Releases
This subsection documents the changes you must perform for all Rhapsody upgrades.

COM API
Applicability: Rhapsody-compiled COM clients

Due to changes in the rhapsody.tlb, you should recompile every compiled COM client (as
opposed to clients that use an interpreter or a VM environment such as Visual Basic) that takes
advantage of the TLB information (not using the IDispatch interface).

Documentation
The Rhapsody product comes with user documentation. To access its help file, with Rhapsody
open, choose Help > Help Topics. In addition, to access the List of Books to access links to the
Rhapsody manuals, which are available as PDF files for easy printing, choose Help >
List Of Books.
Rhapsody 3

Upgrade Considerations
4 Upgrade Guide

Upgrading to Version 7.5
Changes in Version 7.5
The changes in version 7.5 of Rational Rhapsody are listed below.

Code Generation

C You may find changes in statechart code generated by Rational Rhapsody, relative to
that generated with previous releases, due to the correction of bugs that were resulting in
the generation of redundant code.

C In order to support animation of operation calls during object construction, a change has
been made to the way that code is generated for Init functions for classes defined in C.
Now, initialization of attributes is done before the call to the NOTIFY macro, rather than
after. Note that this applies only to attributes initialized using the Initializer field in the
features dialog. Attribute initialization should always be done using this field rather than
on the Implementation tab which is used for the remainder of the function's code. This is
especially important when using animation.0

C++ In previous versions of Rational Rhapsody, there were situations where the generated
code used the package namespace even though it was not necessary since the code was in
the package context. Such superfluous code is no longer generated.

C++ In previous versions of Rational Rhapsody, there were situations where code was
generated for packages even when this was not necessary. This superfluous code is no
longer generated.

C, C++ Generated Main files now contain only a single return statement.

C, C++ For links used to connect to flowports on Simulink blocks, the interface now uses basic
types rather than Simulink types based on these types, for example, double instead of
real_t. As a result of this change, you may find changes in the generated code, relative to
that generated with previous versions of Rational Rhapsody.

Java In previous versions of Rational Rhapsody, Rhapsody-generated Java code always
included an import statement for the java.util package. Now, this is done only when
required by Rhapsody. So you may find cases where your model’s code does not compile
Rhapsody 5

Upgrading to Version 7.5
because the package is not imported. Use the property
JAVA_CG::Class::SpecIncludes for this where required.

To increase MISRA-compliance, the following changes have been made:

C (void) is now added to calls to RiCTask_lock and RiCTask_free.

C RiCReactive_Vtbl definition has been moved into _Init function.

C In previous versions of Rational Rhapsody, a MISRA rule was violated in code
generated by Rhapsody because certain typedef statements used the same string for both
the data type and the alias to use, for example: typedef struct t_Test_Event
t_Test_Event;
To alleviate this problem, a new property, C_CG::Class::TypedefStructSuffix, has
been added to the MISRA98 profile. The property has a default value of "_t". So if you
are generating code with the MISRA98 profile, you may find changes to your code
relative to that generated previously.

C, C++ In previous versions of Rational Rhapsody, if the property MainGenerationScheme was
set to UserInitializationOnly, the operations DefaultComponent_Init and
DefaultComponent_Cleanup were automatically generated by Rhapsody, but the
generated code did not contain calls to these operations. This was a violation of MISRA
Rule 52.
To prevent such violations, two new properties,
CG::Component::GenerateComponentInitialization and
CG::Component::GenerateComponentCleanup, were added, and in the MISRA98
profile these properties have a default value of Never. So if you are generating code with
the MISRA98 profile, you may find changes to your code relative to that generated
previously.
Also, note that if you set the property MainGenerationScheme to Full, you will have to
manually change the values of GenerateComponentInitialization and
GenerateComponentCleanup to Smart in order to generate the necessary initialization
and cleanup code.

MicroC
� In the generated function RiCTimedAction_init, the parameter RiCTRUE has been

changed to TRUE
� The file ExtendedCOxf_cfg.h is now generated differently to provide support for rapid

ports and new features such as target monitoring.
� You will find changes in generated makefiles. These changes are included to support new

features such as target monitoring.
� In version 7.5, the property C_CG::Configuration::AllCategoriesInitializingMode

is set by default to Compile-Time. This means that attributes are no longer initialized in
their class initializer (<class_name>_Init) but instead are initialized upon data allocation.
6 Upgrade Guide

Changes in Version 7.5
As a result, if you generate code for an older model, you will find differences in the
generated code relative to your previous code.

� When you synchronize a StatemateBlock, the name of the block's port is now generated
with the suffix _p. So if you synchronize an existing block where the port was previously
named myPort, it will now be named myPort_p.

Reverse Engineering

� Beginning in version 7.5, when you reverse engineer code, object model diagrams are
created by default. If you do not want these diagrams to be created, change the value of
the property ReverseEngineering::Update::CreateObjectModelDiagrams to False.

Note: Even when the value of this property is set to True, Rational Rhapsody will not
create an object model diagram if it will contain more than 50 elements. To
adjust this limit, modify the value of the property
ReverseEngineering::Update::ObjectModelDiagramMaxElements.

� In the Reverse Engineering dialog box, there are two views that can be used for selecting
files: List view and Tree view. Beginning with version 7.5, the default view is Tree view.
If you would like to use List view as your default view for this dialog box, you can
modify the value of the boolean property
ReverseEngineering::Main::UseTreeViewByDefault.

Frameworks

OXF - C++
� A number of changes were made to support the Port Multicast feature.
� As a result of changes to the way that mutex unlocking is implemented, it is important that

any mutext unlock() calls in your code be preceded by a lock() call. Otherwise, your
application may hang.

� Include to OMReactive.h added to file OMDefaultReactivePort.h.
� The following changes were made to increase MISRA-compliance of the OXF code:

– The MISRAC++ profile was added to the OXF model.
– Typedefs are used instead of basic types.
– “Void” empty argument list is used for functions that don't have arguments.
– Setter/getter used instead of direct reference to the endOfProcess variable.
– Several identifier names were changed to avoid name usage that was too

generic.
– Signed or unsigned constants are used, for example, Rhp_uint32_t
nSocketPort = 0U;

– Single character identifiers are no longer used.
Rhapsody 7

Upgrading to Version 7.5
– Parentheses added for if statements.
– Added new package MISRA_Cpp_Types and new file

OXFMISRA_Cpp_Types.h.
� A multimedia-timer-based implementation of the OXF timer has been added. To allow use

of this timer, compile the framework with the additional parameter
OM_USE_MULTIMEDIA_TIMER, or remove the comments surrounding the
appropriate macro definition in the osconfig/WIN32 header file.

� New set of libraries was added for the MS VC9 (NET.2008) environment. Appropriate
changes were made to the framework libraries makefiles. Properties for the new
environment were added to the files factoryC.prp and factoryC++.prp.

OXF - C
� A number of changes were made to support the Port Multicast feature.
� The following changes were made to increase MISRA-compliance of the OXF code:

– Some identifier names were truncated to stay under the 31-character limit.
– Some identifier names were changed to reduce ambiguity.
– In the initializer of RiCReactive, usage of the offsetof statement was

replaced with evaluation.

Diagrams

Statecharts
The term Statechart Diagram is now used to refer to the graphical portrayal of the state machine
while the term Statechart is now used to refer to all the relevant state-related information such as
code-generation settings for the statechart.

In the browser, you will now see Statechart Diagram elements appear under Statechart elements.

In terms of Rational Rhapsody properties, those that relate to the graphical aspects of the statechart
are now included under the subject StatechartDiagram, while the rest remain under the subject
Statechart.

In terms of scripts that use the Rhapsody API, most should not require any change. However, if
you have generic code that assumes that a Statechart is a diagram (such as storing one in a pointer
to a diagram), you may have to modify your code. You can use IRPStatechart’s
getStatechartDiagram() method to get the diagram itself.

Activity Diagrams
The term Activity Diagram is now used to refer to the graphical portrayal of the activity while the
term Activity is now used to refer to all the information related to the activity.
8 Upgrade Guide

Changes in Version 7.5
In the browser, you will now see Activity Diagram elements appear under Activity elements.

In terms of scripts that use the Rhapsody API, most should not require any change. However, if
you have generic code that assumes that an Activity is a diagram (such as storing one in a pointer
to a diagram), you may have to modify your code. You can use IRPFlowchart’s
getFlowchartDiagram() method to get the diagram itself.

Activity Diagram Element Changes
A number of changes have been made to the tools contained in the Activity Diagram Drawing
toolbar to increase conformity with accepted UML terminology.

These changes include:

� Condition Connector now called Decision Node
� Default Flow now called Initial Flow
� Join/Fork Sync Bar now called Join/Fork Node
� Junction Connector now called Merge Node
� Send Action State now called Send Action
� Termination State now called Activity Final
� Time Event now called Accept Time Event
� Transition Label tool no longer exists
� Loop Transition tool no longer exists
� Activity Flows have been replaced by Control Flows and Object Flows.

In addition, the following changes have been made with regard to activity diagram elements:

� Activity Flows can no longer have triggers or timeouts. Use Accept Event Actions instead
of triggers, and Accept Time Events instead of timeouts.

� Activity Flows can no longer have actions. Action elements should be used instead.
� You can no longer provide labels for Activity Flows.

When loading models from previous versions, the following conversion rules will be used for
activity diagrams:

� Termination States elements will be changed to Activity Final elements.
� Condition Connector elements will be changed to Decision Node elements.

� Junction Connector elements will not be changed to Merge nodes
� Activity Flows will not be converted to Control Flows and Object Flows.
Rhapsody 9

Upgrading to Version 7.5
Common Drawing Tools, Free Shapes
The Common Drawing tools and Free Shapes no longer appear on separate toolbars. Rather, they
are included as part of the Drawing toolbar for each of the diagrams.

Rhapsody API Changes

The IRPGraphEdge attributes source and target are now of type IRPGraphElement rather than
IRPGraphNode. IRPGraphElement is the interface on which IRPGraphNode is based.

Other Changes

Removal of Support for pre-6.0 OXF
When major changes were made to the API in the OXF for Rhapsody 6.0, the old API was retained
for use with older models, and a set of properties was added to ensure backward compatibility.

These backward compatibility arrangements have been removed in the current version of Rational
Rhapsody. This step has the following implications:

� If you generate code for a pre-6.0 model, you will find major changes in the generated
code.

� If your code includes calls to the pre-6.0 API, you will need to modify your code by
replacing these calls with calls to the equivalent functions that were introduced in
Rhapsody 6.0.

� If your code includes calls to the older API and you do not want to modify your code, you
will have to:
� Locate and use the older OXF.
� Set the properties required for backward compatibility by loading the profile

UseRhp5CompatibilityAPI.sbs, which can be found in the
BackwardCompatibility folder.

Saving of Models
The default value of the property General::Model::UseIncrementalSave has been changed to
True. This means that when saving your model, Rational Rhapsody will only save the units that
have been modified rather than saving the entire model each time. If you want the entire model to
be saved each time, set the value of this property to False.

Visual Studio Support
Rational Rhapsody now supports Visual Studio 2008. When selecting a development environment
during installation, Visual Studio 2008 will appear as an option instead of Visual Studio 2005. The
work flow is the same as that used with Visual Studio 2005.
10 Upgrade Guide

Changes in Version 7.5
Cygwin gcc Support
If you are using Cygwin, Rational Rhapsody now assumes you are using gcc version 4.3.2. If you
wish to continue working with older versions of gcc, take the following steps:

1. In the file CygwinMake.bat, remove the parameter OM_GCC_VER="-4".

2. In the file factoryC.prp:

a. change the value of the property C_CG::Cygwin::CompileCommand to gcc.

b. change the value of the property C_CG::Cygwin::LinkCommand to g++.

3. In the file factoryC++.prp:

a. change the value of the property CPP_CG::Cygwin::CompileCommand to g++.

b. change the value of the property CPP_CG::Cygwin::LinkCommand to g++.

4. Build the framework libraries.

5. Ask Rational Rhapsody support to provide you with the webServices library compiled
with the older compiler.

AUTOSAR
Rational Rhapsody no longer supports AUTOSAR 2.0.

Tracing
For statecharts, the initial state entered now appears in the trace output.
Rhapsody 11

Upgrading to Version 7.5
12 Upgrade Guide

Upgrading to Version 7.4.0.1
Changes in Version 7.4.0.1
The changes in version 7.4.0.1 of Rhapsody are listed below.

Code Generation

C, C++ Previously, if you did not specify a value for the property ObjectsDirectory, object
files would be generated in the same directory as the c/cpp files. Now, if you do not
specify a value for ObjectsDirectory, the object files will be generated in the
component directory.

Note: Object files will be generated in the component directory only if you have
provided a value for the property DefaultImplementationDirectory rather
than leaving it blank, which is the default value. If you have left the value of the
property blank (and have not specified a value for ObjectsDirectory),
Rhapsody 7.5 maintains the previous behavior of generating object files to the
directory that contains the c/cpp files.

C++ Previously, if a user manually specified an order for attributes, the generated code
respected this order but only within visibility groups. Beginning in 7.4.0.1, the order of
attributes in the generated code is as specified by the user, regardless of visibility.

MicroC Profile
� You will see differences in the code generated in the doExecute function for the default

“active”.
� Changes have been made to the parameters used for the generated function

RiCTimedAction_init.
� You will see minor differences in the code generated when using the segmented memory

feature.
The following code generation changes were made to increase MISRA-compliance:

� The memory allocator’s macros were inlined into the generated code. Now, instead of
using the macros, such as DYNAMICALLY_ALLOCATED, the code generator
generates their definition inline.
Rhapsody 13

Upgrading to Version 7.4.0.1
� The flowport macro DIRECT_FLOW_DATA_SEND now receives a different set of
parameters.

Frameworks

OXF - C++
� In file linuxos.cpp, minimum stack size was increased.

OXF - C
� Changes made to file RiCEvent.h in order to resolve mismatch between declaration and

definition of RiCTimeout_RiCSetMemoryAllocator in RiCEvent.h and RiCEvent.c.

AutomotiveC

In version 7.4.0.1 of Rhapsody, many of the features of the AutomotiveC profile were moved to a
new profile called MicroC, which is loaded by the AutomotiveC profile. Beginning with this
version of Rhapsody, the AutomotiveC profile contains only features that are designed exclusively
for the automotive industry.

As a result of this change, you must carry out a number of steps when you open, for the first time,
projects that use the AutomotiveC profile.

The steps for upgrading such models are as follows:

1. Using File > Add to Model, add the MicroC profile [installation
directory]\Share\Profiles\MicroC\MicroC.sbs.

2. If your project does not use the OSEK features from the AutomotiveC profile, you can use
the Change to option in the browser’s context menu to change the type of the project to
MicroC and then delete the AutomotiveC profile from the project.

3. Save the model.

Note
As part of the profile renaming, the name of the framework used by the MicroC profile was
changed from ExtendedC_OXF to mxf (MicroC eXecution Framework).
14 Upgrade Guide

Upgrading to Version 7.4
Changes in Version 7.4
The changes in version 7.4 of Rhapsody are listed below.

Frameworks

OXF - C++
� In the class OMThreadManager, the forward declaration class IOxfActive has been

moved to the header file.
� Version 7.4 of Rhapsody includes an option for using a C++ framework that does not use

templates.
To use this option, define OM_NO_TEMPLATES_USAGE in the file
Share\LangCpp\osconfig\<Adapter>\omosconfig.h, and rebuild the framework.
To make this option possible, a number of classes have been modified, and a number of
new classes have been added.

Note: When using the template-less framework, the framework memory manager
cannot be used. To avoid compilation errors, you should define the following
macro:
#ifdef OM_NO_TEMPLATES_USAGE
#define OM_NO_FRAMEWORK_MEMORY_MANAGER
#endif // OM_NO_TEMPLATES_USAGE

Code Generation

C Before version 7.4, if you created a global object with multiplicity greater than 1,
Rhapsody would generate an extern forward declaration in the package header file, for
example, for object a of type A, the following code would be generated: extern struct
A a[3];
Because newer compilers do not accept this code, this forward declaration is no longer
generated. If you want to retain the previous code generation behavior you can add the
boolean property CG::Package::GenerateExternDeclarationForObjectArray and
set the value of the property to True.
If you encounter compilation errors after roundtripping changes made to the code
generated by Rhapsody, it is recommended that you restore the previous code generation
behavior by setting GenerateExternDeclarationForObjectArray to True.
Rhapsody 15

Upgrading to Version 7.4
AutomotiveC Profile
C In the previous version of Rhapsody, mutators were erroneously generated for

framework attributes, resulting in compilation problems. This problem has been fixed in
version 7.4, so you may find differences in the generated code, compared to code
generated with older versions of Rhapsody.
16 Upgrade Guide

Upgrading to Version 7.3 MR-1
Changes in Version 7.3 MR-1
The changes in version 7.3 MR-1 of Rhapsody are listed below.

Frameworks

ExtendedC_OXF
� To allow timeout labels in sequence diagrams to display the state, an RhpString state

parameter was added to the function RiCTimeout_init, when code is instrumented.

The parameter was also added to the RiCTimeout_create function, which calls
RiCTimeout_init.

� In the file RiCTimer.c, changes have been made to the function goNext so that when using
instrumentation, when entering Idle state, the AOM will advance the time to the next
pending Timeout or TimedAction, the earlier between the two.

bo

Code Generation

C, C++ In the previous version of Rhapsody, forward declarations were generated even when the
value of the property CG::Configuration::GenerateForwardDeclarations was set to
False. This problem has been corrected in the current release, so you may find changes in
your generated code relative to code generated with the previous version.

C, C++ Changes have been made to the property MakeFileContent for the various Microsoft
environments in order to allow the Rhapsody framework to continue to catch
asynchronous exceptions when newer versions of Visual Studio (2005 or later) are used
to build the framework. As a result, you may find differences in the generated makefiles,
relative to the previous version of Rhapsody.

C, C++ Changes have been made in the way annotations are used in code generated from
flowcharts. As a result, you may find differences in your generated code relative to code
generated with the previous version of Rhapsody.
Rhapsody 17

Upgrading to Version 7.3 MR-1
AutomotiveC Profile
C For periodic Actives, there is now a call to RiCTaskEM_beginMyTask() at the beginning

of the operation doExecute.

C In instrumented code for models with statecharts, there is now an additional entry in the
statechart’s virtual table for the relevant SerializeStates function.
18 Upgrade Guide

Upgrading to Version 7.3
Changes in Version 7.3
The changes in version 7.3 of Rhapsody are listed below.

Code Generation

C The default value of the property C_CG::Configuration::DescriptionEndLine was
changed. As as result, an additional space now appears before the closing */ in comments
generated for descriptions of model elements.

C When using the AutomotiveC profile, if no Active has been defined, Rhapsody now
provides a default Active. To enable this, the following changes have been made in terms
of code generation:

� package file now contains:
- attribute called ric_timedAction
- operation called Default_doExecute
- call to RiCTimedAction_init function

� file ExtendedCOxf_cfg.h contains additional #defines
C In the MISRA98 profile, the value of the property C_CG::Class::IsInOperation has

been changed to Inline. As a result, you will find that certain functions are now generated
as macros.

C Due to a bug, properties that affect C code generation for operations and attributes were
not affecting code generation when the value was changed at the class level. Now that
this bug has been corrected, you may find differences in your generated code due to the
correct application of these properties to class members.

C++ Comments generated for state titles now use the // notation rather than /* */.

C++ A bug was fixed in the generation of code for classes with multiple inheritance. As a
result, you may see differences in the order of the base classes, relative to the code
generated with the previous version of Rhapsody.
Rhapsody 19

Upgrading to Version 7.3
C, C++ A number of code generation properties that apply to operations no longer affect
autogenerated operations, for example, C/CPP_CG::Operation::Inline. As a result,
you may find changes in the code generated for autogenerated operations.

C, C++ A number of bugs were corrected with regard to the enclosing of instrumentation code
within the appropriate #ifdef directives. As a result, you may find that the
instrumentation code generated with 7.3 includes #ifdef directives that were not
generated previously.

C, C++ Autogenerated comments for groups of code elements, such as "framework operations",
were previously not handled correctly during roundtripping. Roundtripping now handles
these correctly, but if you regenerate code with 7.3 for a model that was previously
roundtripped with an older version of Rhapsody, you may find that these comments are
missing from the generated code.

C, C++ Due to the correction of a bug regarding the location of #define directives required for
animation, you may find that these directives now appear in a different location in the
generated code, relative to code generated with previous versions of Rhapsody.

C, C++ Due to the correction of a bug regarding the relative location of #define directives and
forward declarations in generated code, you may find that the order of these items is
different in the code generated with 7.3, relative to code generated with previous
versions of Rhapsody.

C, C++ The ignore annotations generated by Rhapsody no longer contain a blank line.

C, C++ Beginning with version 7.3, Rhapsody allows you to specify a public global variable as
static in the Features dialog in both RiC and RiC++, and generates the static variable
declaration in the header file and not in the implementation file.
This change applies only to the Advanced code generation mode so it does not affect
older Rhapsody in C++ models, which by default use the Classic code generation mode.

C, C++, Java A number of bugs were corrected with regard to the properties
CG::Class::CreateImplicitDependencies and
CG::Type::GenerateDeclarationDependency. As a result, you may find that
certain #includes that were generated in your code previously no longer appear in
the generated code.

C, C++, Java Prior to version 7.3 of Rhapsody, the transition-handling code generated by
Rhapsody used a switch statement to represent the possible states. Now, this code
uses an if/else structure. To allow older models to use the previous code generation
behavior, a property called [lang]_CG::Statechart::StatechartImplementation
was added to the Pre73 backward compatibility profiles.
The default value of this property is SwitchOnly. It can also take the value Default
which will result in use of an if/else statement.
20 Upgrade Guide

Changes in Version 7.3
Reverse Engineering

C, C++ Beginning with version 7.3, when Rhapsody's reverse engineering encounters static
public global variable declarations in a header file, the declaration is imported into
Rhapsody such that it will later be regenerated in the header file and not in the
implementation file as was done previously.
This change applies only to the Advanced code generation mode so it does not affect
older Rhapsody in C++ models, which by default use the Classic code generation mode.

C, C++ Beginning with version 7.3, when reverse engineering files, if a file references a header
file but the path in the include directive is not clear enough for Rhapsody to find the file,
Rhapsody will search the list of files to be reverse engineered to see if the list contains a
header file with that name. If there is such a file, Rhapsody will use the full path that was
provided for that header file, assuming that this is the header file that was being
referenced in the original file. This behavior is controlled with the property C/
CPP_ReverseEngineering::ImplementationTrait::AutomaticIncludePath.
In the Pre73 backward compatibility profiles, the value of this property is set to False. If
you would like to enable this feature for older models, you will have to change the value
of this property to True.

Roundtripping

C, C++ Starting with version 7.3, Rhapsody's roundtripping feature can handle changes
involving preprocessor directives such as ifdef. A new property called
RoundtripPreprocessorDirectives (under C_Roundtrip::General and
CPP_Roundtrip::General) has been added to allow this ability to be turned off/on. The
default value of this property is True. In the Pre73 backward compatibility profiles, the
value of this property is set to False in order to provide the older roundtripping behavior.

Tracing

� The message Popped method from empty callStack no longer appears in the trace output.

Framework

C

OXF Library

� Since C++ libraries are required for use of tracing with C, the appropriate compilation
commands for these libraries have been added to various make files.

� In a number of files, parentheses have been added where macro arguments are used in
order to meet MISRA requirements.
Rhapsody 21

Upgrading to Version 7.3
� In a number of files, curly brackets have been added for all if structures in order to meet
MISRA requirements.

� In the files RiCCollection.h and RiCCollection.c, the attribute pos has been renamed
position.

� In the file RiCOSVxWorks.c, data struct initialization has been added to the function
RiCOSMessageQueue_isFull.

� In the files RiCOxf.h, RiCOxf.c, and RiCTask.c, the function
RiCOXF_setTheDefaultActiveObject has been renamed
RiCOXF_setDefaultActiveObject in order to meet MISRA requirements.

AOM Library

� In the file osconfig/MultiWin32/ricosconfig.h, the flag ROM_MISRA_COMPLIANT_ADAPTER
has been removed.

� In the files AdaInterface.h and AdaInterface.c, a number of new API functions have been
added to support new features in RiA, such as timeouts and active classes.

� In the files aomcalls.h and aomcalls.c, a new function called
ARCCS_shouldNotifyOpReturn has been added. This function is used in aommacro.h.

ExtendedC_OXF

� The framework now has a Default Active that will be used for elements that do not have a
specific "active" defined to handle their execution.

� "Active" objects that use Asynchronous activation mode can now be used with the
Mainloop Adaptor. TimedAction is used to schedule the execution of such objects.

� The framework now supports Animation and Trace, subject to the following limitations:
– On host (PC) only
– Only when using Mainloop Adaptor

C++

AOM Library

� In the files aomcalls.h and aomcalls.cpp, a new function called shouldNotifyOpReturn
has been added. This function is used in aommacro.h.

TOM Library

� Several virtual destructors have been added to avoid GNU compiler warnings.
22 Upgrade Guide

Changes in Version 7.3
Other Changes

� Changes have been made to the way that Rhapsody tries to locate the rhapsody.ini file.

Prior to 7.3, the order of locations checked was as follows:
– the $USERPROFILE/Application Data/Rhapsody directory (Windows only)
– the directory that contains rhapsody.exe
– the current directory at the time Rhapsody was launched
– the Windows directory

Now, the process used by Rhapsody is:

– look for a file named rhapsody.<major version>.ini (for example,
rhapsody.7.3.ini) in the $USERPROFILE/Application Data/Rhapsody folder
(Windows only).

– look for rhapsody.ini in the $USERPROFILE/Application Data/Rhapsody
directory (Windows only)

– look for rhapsody.ini in the directory that contains rhapsody.exe
– look for rhapsody.ini in the current directory at the time Rhapsody was

launched
– look for rhapsody.ini in the Windows directory

This change allows users without administrator privileges to have a separate .ini file for
each version of Rhapsody installed.

Note: $USERPROFILE refers to the %USERPROFILE% environment variable on
Windows systems, for example, ..\Documents and Settings\billsmith.

� Beginning with 7.3, Rhapsody includes precompiled framework libraries only for the host
environment. If you are using other environments, you will have to build the framework
libraries. This can be done from within Rhapsody by selecting the Code > Build
Framework option from the main menu.

� The Borland environment is no longer supported.
Rhapsody 23

Upgrading to Version 7.3
24 Upgrade Guide

Upgrading to Version 7.2 MR-1
Changes in Version 7.2 MR-1
The changes in version 7.2 MR-1 of Rhapsody are listed below.

Code Generation

C When using the customizable code generation feature, the annotations added by
Rhapsody for state names now include a blank space before the */ that closes the
comment.
Rhapsody 25

Upgrading to Version 7.2 MR-1
26 Upgrade Guide

Upgrading to Version 7.2
Changes in Version 7.2
The changes in version 7.2 of Rhapsody are listed below.

A number of items refer to code respect. In Rhapsody, code respect means that the order of
elements in the original code is preserved during code generation. This means that you can freely
change the order of class members and globals and Rhapsody “respects” those changes. For more
information about code respect, see the Rhapsody User Guide.

Code Generation

C Rhapsody now uses an improved code generator. When you open an existing RiC model
and regenerate code, the new generator will be used. As a result, you may notice changes
in the generated code.

C The me pointer has been added as an additional argument for OM_INSTRUMENT_EVENT.
The only thing you will notice because of this is diff-s.

C There are new macros in Rhapsody for C in order to support animation of the return
value in C. You are now able to use OM_RETURN in the same way as it is used in Rhapsody
C++. The animation return value for a triggered operation is also supported. However,
note that unlike Rhapsody in C++, using OM_RETURN will not update output arguments.

C Code generated for functions with no parameters now appears as functionName(void),
not functionName(). To achieve this, the default value of the EmptyArgumentListName
property has been changed to void.

C (IDF) The object theMainTask now initializes and cleans up its attribute itsRiCTask.

C, C++ If the value of the property [lang]_Roundtrip::General::RoundtripScheme is set to
Respect, then the new Rhapsody code generator will be used even if the value of the
property [lang]_CG::Configuration::CodeGeneratorTool is set to Classic or
Customizable. If you want to use the old code generator or use customized code
generation, the value of RoundtripScheme must be changed to Advanced or Basic.
Rhapsody 27

Upgrading to Version 7.2
C, C++ There are changes in the code generated for flow ports due to the introduction of
animation support for flow ports.

C, C++ The code generated for flow ports now includes different Rhapsody annotations.

C, C++ The behavior of the DefaultSpecificationDirectory and
DefaultImplementationDirectory properties has been changed. Now, the names
specified with these properties are added at the end of the code generation path (before
h/hpp, c/cpp) rather than at the beginning.

C, C++ Now, if a model contains a component file, then the file will be generated even if only
external elements are mapped to the file. In cases where you do not want the file to be
generated at all, set the value of the property Generate to False.

C++ Rhapsody now uses an improved code generator. You may therefore notice changes in
the generated code, compared to code generated with previous versions of Rhapsody.

C++ The description of the implementation dependency now prints only in the specification
file. Previously, it printed in the implementation file as well.

C++ When working in Respect mode, in the code generated following reverse engineering,
the keyword inline will be used only for functions that were explicitly declared inline
in the original code.

C++ When working in Respect mode, there were cases where comments appeared
erroneously for the implementation of model elements rather than the specification.
These issues have now been corrected, so you may find instances where comments
previously appeared next to element implementations but now appear next to the
element specifications.

C++ When working in Respect mode, the generated code now has improved grouping of class
members based on their visibility. This improvement may result in minor code
differences when comparing code to code generated with the previous version of
Rhapsody.

C++ If you open in Rhapsody 7.2 an existing C++ model where the
CPP_Roundtrip::General::RoundtripScheme property was set to Basic at the project
level, the value of the property will automatically be set to Advanced. If you would like
to restore the previous setting, change the value of this property in the referenced copy of
the backward compatibility profile in your model (CGCompatibilityPre72Cpp).
28 Upgrade Guide

Changes in Version 7.2
C, C++, Java
In previous versions of Rhapsody, if you specified a guard and/or action for a junction
connector, there were cases where these would not be included in the code generated for
the statechart. This problem has been corrected. As a result, you may see differences in
the code generated for statecharts with junction connectors.

Java The implementation of cleanUpRelations() has been changed for the following
containers: BoundedOrdered, UnboundedOrdered, BoundedUnordered,
UnboundedUnordered, and Fixed.

The change in the implementation is in the line: iter.next();

which was replaced with the line: iter = $Relation.listIterator(0);

$Relation would be name of the currently cleaned-up relation (for example,
itsClass_2).

Java The default values for the Java(1.5)Containers::Qualified::Remove and
Java(1.2)Containers::Qualified::Remove properties have been changed to:

"$IterCreate;
while(iter.hasNext()) {

Object key = iter.next();
if ($cname.get(key).equals($item)) {

iter.remove();
break;

}
}"

Previously the iter.remove(); line was $cname.remove(key);
Java With the introduction of the ability to send arguments to a Java application, the code that

is now generated for the main method will include a parameter args in all calls to the
framework’s Init method.

All The OM_RETURN(triggerEvent.om_reply); triggered operation now has a semicolon
(;) at the end of it.

All Now, if the <configuration>.cg_info file is missing, Rhapsody displays a dialog box
that informs the user that Rhapsody does not know whether files have been manually
modified since the last code generation and recommends that the user perform a Force
Roundtrip operation. (Previously, Rhapsody ignored the possibility that files may have
been manually modified since the last time code was generated.)
Rhapsody 29

Upgrading to Version 7.2
All Forward declarations of packages, events, and classes were removed from generated
code because they were redundant:

– class OMCloseHandleEvent;
– class OMEndThreadEvent;
– class OMNullEvent;
– class OMReactiveTerminationEvent;
– class OMStartBehaviorEvent;

Animation

� For C: For user-defined types that are based on primitive types, the serialization/
unserialization functions for animation will now be the basic types which these types are
defined on. Previously, this was treated as an unknown type.

� For C++: //## ignore has been replaced with //## auto_generated for port deletes.
� The position of the DECLARE_OPERATION_CLASS macro has changed. The change in

position was made in order to support call invocation for operations that use types
declared inside the class. Now the DECLARE_OPERATION_CLASS macro will appear after
the declaration of the class, and before the declaration of the animated class.

Check Model

� For Web instrumentation, the GetConnectedRuntimeLibraries property (for example,
[lang]_CG::Microsoft::GetConnectedRuntimeLibraries) specifies the list of
libraries that need to be linked with Web-enabled projects. Now there is a check that tests
for the existence of this property and its content to make sure it is not empty. The tested
property is searched under the current environment metaclass that relates to the active
configuration. If the property cannot be found or its value is empty, the following new
check message displays. Note that this is only a warning; code generation will not fail
because of it.

Missing runtime libraries required for Webify Toolkit.
Check the value of GetConnectedRuntimeLibraries property for your
current environment.

Note: This new check message replaced this old check message:

Missing runtime libraries required for Webify Toolkit!
Check the value of CG::Environment::
GetConnectedRuntimeLibraries!

� The Dependency on unresolved element check now only checks <<Usage>> and
<<Friend>> stereotypes (because they are the only relevant stereotypes for code
generation).

� The Composite class without a statechart Composite check has been removed.
When originally introduced to Rhapsody, composite classes had to be derived from
30 Upgrade Guide

Changes in Version 7.2
reactive classes. Therefore, by definition, they had statecharts and this was enforced by a
check. Composite classes no longer have this restriction, so this check has been removed.

Code Generation - Makefile

C To enable support for Visual Studio 2005, changes have been made to the generated
makefiles for MS environments (by changing the value of the property
MakeFileContent).

C++ For the QNXNeutrinoGCC environment, the generated makefile no longer contains the
superfluous libm.so.1 in the path for LINK_FLAGS.

All New items were added to the Clean section of the makefile to remove CORBA derived
sources.

Reverse Engineering

C Rhapsody now, by default, uses the Ordering mode of reverse engineering. If you open
an existing RiC model and reverse engineer source files, Rhapsody will also use the
Ordering mode of reverse engineering. If you would like to temporarily use Rhapsody’s
previous reverse engineering behavior, you can set the value of the property
C_ReverseEngineering::ImplementationTrait::RespectCodeLayout to Mapping.

C++ During reverse engineering, Rhapsody will now create template instantiation classes
where relevant. This behavior is controlled by the CPP_ReverseEngineering::
Promotions::EnableTypeToTemplateInstantiation property, whose default value is
set to Checked (meaning true).

Roundtripping

C Rhapsody now uses the Respect mode of roundtripping by default. If you open an
existing RiC model and roundtrip changes to code, Rhapsody will also use the Respect
mode of roundtripping. If you would like to temporarily use Rhapsody’s previous
roundtripping behavior, you can set the value of the property
C_Roundtrip::General::RoundtripScheme to Advanced.

C, C++ Now, when working in Respect mode, the default value of the property that controls the
roundtripping of deleted items, [lang]_Roundtrip::Update::AcceptChanges, is
Default. This means that roundtripping will allow the deletion of all elements except
classes, provided no parsing errors are encountered as a result.

C++ In Respect mode, the Output window shows add/remove of files or files’ fragments only
when [lang]_Roundtrip::General::ReportChanges is set to All (default is
AddRemove).
Rhapsody 31

Upgrading to Version 7.2
Java The [lang]_Roundtrip::Update::AcceptChanges property now has a Default value,
which is also set as the default. It takes affect when the RoundtripScheme property is set
to Advanced, with the behavior the same as in C, C++, and Java.

C, C++, Java
It is now possible to roundtrip deletion of elements from the code. However, this is
disabled for an element that has a prolog and/or an epilog.

C, C++, Java
In code generated for statecharts, there were cases where Rhapsody annotations would
no longer appear when code was regenerated after roundtripping. This problem has been
corrected.

All The annotation for an event constructor has changed from statechart_method to
auto_generated.

All For samples with ports, port annotations like //## classInstance x was changed to //
ignore. Note that roundtrip will not work on ports.

All Now, roundtripping is triggered only by the relevant menu item or by switching the focus
from the file editor to the browser of other Rhapsody component. It is no longer
triggered when switching from one file to another in the editor.

Modeling

� Blocks are no longer available or used in Rhapsody. When you open a model that was
created in an older version of Rhapsody and it used blocks, Rhapsody 7.2 converts
the blocks to be objects.

� Profiles for backward compatibility now appear in the Settings category of the Rhapsody
browser.

GUI

� When you create a new project, the Type drop-down list in the New Project dialog now
displays only profiles that represent specific domains such as SysML or DoDAF. The
other profiles included with Rhapsody can be added to your project using the File > Add
to Model... option. The technical criterion used by Rhapsody for filtering the project type
list is the existence of a [profile name].txt file (which contains a description of the
profile). Only those profiles with such a text file are included in the list.
32 Upgrade Guide

Changes in Version 7.2
Rhapsody API

� IRPBlock was removed.
� If you have to access an event in a script, the syntax to use now for constructing the full

path is PackageName::EventName (double colon), rather than PackageName.EventName
(single period). The new syntax is the same one used for accessing classes in a package.
To access an operation within an event, you use
PackageName::EventName.OperationName (single period), just as you do when
accessing an operation of a class.

� IRPInterfaceItem is now derived from IRPClassifier rather than IRPModelElement.
You should therefore check if this change will affect the behavior of your scripts. In
addition, it is recommended that COM Rhapsody API clients be recompiled.

� The metaclass for reference activities has been changed from State to
ReferenceActivity.

� In the callback API, additions have been made to the interface IRPApplicationListener.
If you have implemented this interface in your code, make sure to update your code so
that it fully implements the interface.

Java API

The Java API has been upgraded to Java 5.0. Any client applications also need to be upgraded.

SysML Profile

� FlowAttribute has been deprecated. Use FlowProperty instead.
� ValueBinding has been deprecated. Use BindingConnector instead.
� System Blocks are now referred to as Blocks.
� Links are now referred to as Connectors.
� When typing FlowPorts, use a FlowSpecification rather than an Interface.
Rhapsody 33

Upgrading to Version 7.2
Support for 64-bit Targets

If you want to build applications for 64-bit targets, you must first rebuild the Rhapsody framework
libraries. If you are running Rhapsody on a 64-bit system, then if you rebuild the libraries using the
menu option Code > Build Framework, the Rhapsody libraries will be rebuilt such that you will
be able to build applications for 64-bit targets. However, if you are running Rhapsody on a 32-bit
system, you will have to rebuild the Rhapsody framework libraries manually.

C++ Several files in the Rhapsody framework were changed to support 64-bit architecture.

Framework

C
� A new argument called OM_INSTRUMENT_EVENT_NO_UNSERIALIZE was added to RiC oxf

macros OM_INSTRUMENT_EVENT. These macros are being used in animation mode to
instrument events. This change affects the generated C file of packages that contains
events. Old user code that contains this macro needs to be regenerated in order to run it.

� RiCBoolean has been changed from int to unsigned char.
� RiCTRUE and RiCFALSE have been defined as ((RiCBoolean)0/1).
� All assignments to RiCBoolean are with RiCTRUE, RiCFALSE, like

RiCBoolean a = RiCTRUE;

� Previously, RiCReactive_takeTrigger returned a value that was not used. This violated
MISRA rules. This problem has been corrected.

� The RiCOSVxWorks.c file has the following changes:
– The ifdef clause for #include <errno.h> was removed.
– For RiCOSEventFlag_reset function, if the call to semTake fails, it tests if

errno is not S_objLib_OBJ_UNAVAILABLE, meaning that the queue is empty.
In that case, there is no need to report an error, since the semaphore is locked
by the current running thread.

� In order to provide support for MS Visual Studio 2005, changes were made to the files
msoxf.mak and Msdox.mak.

� As part of the changes to code generated for flow ports, changes were made to the file
RiCPortMacros.h.

� In the RiCDefaultReactivePort.h file, the include to RiCReactive has been replaced
with an include to IRiCReactive.
34 Upgrade Guide

Changes in Version 7.2
� In the files RiCOSNT.c and RiCOSVxWorks.c, calls to the macro OM_NOTIFY_ERROR were
added. This macro is called when framework functions encounter operating system-level
errors. By default, the macro is empty, but you can provide content to achieve the error-
handling behavior that you require. See also Error Handling on VxWorks and Microsoft.

� A method called RequestTimeNotification was added to the files RiCTimer.c and
RiCTimer.h.

C++
� The OUT_PORT and OPORT macros have been changed to verify that the ports have been

initialized. As a result, sending messaging through a port of another object via a direct
link (an instance of a direct association) will lead to compilation errors. To resolve this,
either call an operation on the associated class that will relay the message via the port, or
use a link via ports instead of a direct link.

Note that the OPORT macro is equivalent to the OUT_PORT macro.
� If a user creates a new adapter or upgrades his own existing adapter to Rhapsody 7.2, he

must add the following lines to the omosconfig.h file for his adapter:
typedef void * gen_ptr;
typedef void * OMOSHandle;

#define OM_NOTIFY_ERROR(call,func)

For more information about OM_NOTIFY_ERROR, see Error Handling on VxWorks and
Microsoft.

� AnimMessageTranslator.cpp has been removed from framework compilations.
� There are framework modifications to provide better support for ATG. These changes were

done in the C++ oxf model: OMEvent and OMHandleCloser classes. Changes were made
to the following files: OMEvent.cpp and OMHandleCloser.cpp.

� In QNX Neutrino 6.3.2A, animation was hanging in mutex because of its wrong (missing)
initialization. This problem has been corrected. Changes were made to the qnxos.cpp file.

� The vxos.cpp file has the following changes:
– It now has this include line: #include <errno.h>
– For the VxOSMessageQueue::get function, if the call to msgQReceive fails, it

tests if errno is not S_objLib_OBJ_UNAVAILABLE, meaning that the queue is
empty. In that case, there is no need to call OM_NOTIFY_ERROR. For more
information about OM_NOTIFY_ERROR, see Error Handling on VxWorks and
Microsoft.

– For the VxOSEventFlag::reset() function, if the call to semTake fails, it
tests if errno is not S_objLib_OBJ_UNAVAILABLE, meaning that the queue is
empty. In that case, there is no need to report an error, since the semaphore is
locked by the current running thread.
Rhapsody 35

Upgrading to Version 7.2
� In the IOxfEventSender.h file, a virtual destructor was added for IOxfEventSender.
� Changes were made to the following files in order to provide better support for ATG:

omevent.cpp, omevent.h, omhandlecloser.cpp.
� In the linuxos.cpp file, the following changes were made:

– DefaultStackSize set to PTHREAD_STACK_MIN instead of 0
– Compilation warning fixed in the function NotifySyscallFault

� In order to correct problems due to timer heap overflows, changes were made to the
following files: CoreImplementation.sbs, TimeManagement.sbs, omreactive.cpp,
omreactive.h, omtimermanager.cpp, and omtimermanager.h.

� In order to provide support for MS Visual Studio 2005, changes were made to the file
msoxf.mak.

� In order to provide support for VxWorks 6.5, changes were made to the file vxoxf.mak.
� In the ntos.h file, Win Mutexes were replaced with CriticalSection in NTMutex class

implementation
� In the qnxos.cpp file, unused variable was deleted to prevent compilation warning.
� As part of the changes to code generated for flow ports, changes were made to the file

oxfportmacros.h.
� In order to make the timer implementation for the INTEGRITY adapter more efficient, the

function Sleep is now used instead of usleep in IntegrityOSTimer and
IntegrityOSFactory (in the file intos.cpp).

� In the ntos.cpp and vxos.cpp files, calls to the macro OM_NOTIFY_ERROR were added.
This macro is called when framework functions encounter operating system-level errors.
By default, the macro is empty, but you can provide content to achieve the error-handling
behavior that you require. See also Error Handling on VxWorks and Microsoft.

Error Handling on VxWorks and Microsoft

There were cases where VxWorks and Microsoft would return an error but the relevant
Rhapsody framework function would return void, resulting in the loss of this error information.

Now, when these framework functions encounter such an error, they call a macro called
OM_NOTIFY_ERROR. By default, this macro is empty, but you can provide content to achieve the
error-handling behavior that you require.
36 Upgrade Guide

Changes in Version 7.2
Java
� The Java framework domain has changed from com.ilogix to com.telelogic. This

change affects the framework packages name, the animated jar files, and the
user-generated code.

� The path for various Java framework components has been change from ilogix to
telelogic (for example, <Rhapsody installation
path>\Share\LangJava\src\com\telelogic\rhapsody).

� Because there is no way to stop the RiJTimer thread, a new operation has been added
called RiJTimeoutManager::stopTimer. It can be called as follows:

RiJTimeoutManager.instance().stopTimer()

ReporterPLUS

As mentioned in Modeling, blocks are no longer used and blocks in models created in earlier
versions will be available as objects in Rhapsody 7.2. Therefore, you must update all existing
ReporterPLUS templates that refer to blocks to refer to objects instead.
Rhapsody 37

Upgrading to Version 7.2
38 Upgrade Guide

Upgrading to Version 7.1.1 MR-3
Changes in Version 7.1.1 MR-3
The changes in version 7.1.1 MR-3 of Rhapsody are listed below.

Code Generation

C, C++ Inclusion of libraries in LIBS section of makefile—For building executables,
Rhapsody now includes libraries in the LIBS section of a makefile only if the relevant
usage dependency is of type specification or implementation. If the usage type specified
is existence, the library will not be included. As a result of this change, you may find
changes in your makefiles, in terms of which libraries are listed in the LIBS section, after
generating code with the new version of Rhapsody.

C, C++ Link order of library dependencies in makefile—In order to achieve maximum
compiler compatibility, the link order of library dependencies in the makefile is now in
accordance with the rule that a library that uses another library should appear before the
library that it is dependent upon. This information is derived from the component
dependencies defined in the Rhapsody model. As a result of this change, you may find
changes in your makefiles, in terms of the order of libraries in the LIBS section, after
generating code with the new version of Rhapsody.
Rhapsody 39

Upgrading to Version 7.1.1 MR-3
40 Upgrade Guide

Upgrading to Version 7.1.1 MR-2
Changes in Version 7.1.1 MR-2
The changes in version 7.1.1 MR-2 of Rhapsody are listed below.

Code Generation

C When using customized code generation, the value of the property
CG::Operation::Generate now affects code generation as it should. Specifically, when
the value of the property is set to Specification, the implementation of the operation is no
longer generated in the .c file.
Rhapsody 41

Upgrading to Version 7.1.1 MR-2
42 Upgrade Guide

Upgrading to Version 7.1.1 MR-1
Changes in Version 7.1.1 MR-1
The changes in version 7.1.1 MR-1 of Rhapsody are listed below.

Code Generation

C Previously, when using customized code generation, the property
C_CG::Attribute::Inline did not affect code generation, i.e., when set to a value of
in_header, the expected #define was not generated. This problem has been corrected, and
now the property affects generated code as it does in standard code generation.

C, C++ The code for connecting ports now uses the accessor methods named using the format
get_[portName] (for example, get_myPort()) instead of the accessors with names that
follow the value of the property CG:Relation:Get. This is done to avoid possible
compilation errors. The code implementing the port itself remains unchanged as both
types of accessors were also available previously.

Other Changes

Changes to the SysML Profile

Note
The changes described in this subsection are not yet supported in Gateway and
ReporterPLUS.

Note
The changes made to the SysML profile in this release include the addition of a number of
“new terms.” Keep in mind that if you use these new terms in a model and then open the
model in version 7.1.1 of Rhapsody, these terms will appear as Unresolved. To avoid such
problems, you can replace the 7.1.1 version of the SysML profile with the new profile by
copying the directory ..Share\Profiles\SysML.
Rhapsody 43

Upgrading to Version 7.1.1 MR-1
The following changes were made to the SysML profile:

Support for Value Types

� The following new terms were added to the profile:
– ValueType
– Unit
– Dimension

� StandardValueTypes package added for Complex and Real
� BaseSIUnits and DerivedSIUnits added, as specified in Annex C of the SysML

Specifications.
� Header file SIDefinition.h provided for the implementation of the standard SysML

ValueTypes. The header file was added to the property CPP_CG:Framework:HeaderFile
in the SysML stereotype (applied to SysML projects) so that the file would be included
automatically.

� The following changes were made to Rhapsody:
– Tags can by typed by terms. This was done to support the unit and dimension

tag values of ValueType (typed by Unit and Dimension) as well as the
dimension tag of Unit.

– Changes were made to the GUI controls to set the type of tags typed by Terms
so that the term instance can be selected via a mini-browser.

Note
The tag’s value is still a string; renaming the term instance has no effect.

Flow Specification and Flow Properties Support

� The following new terms were added to the profile:
– FlowSpecification
– FlowProperty

� FlowSpecification tool was added for Block Definition Diagrams (including new icon)
� The following changes were made to Rhapsody:

– Flow Port dialog changed to use Flow Properties instead of Flow Attributes
– Flow Properties are created by default via the dialog UI, instead of Flow

Attributes.
– When setting Flow Port types, selecting <New> creates a Flow Specification,

rather than an Interface.
44 Upgrade Guide

Changes in Version 7.1.1 MR-1
Object Flow and Control Flow Support

� The following new terms were added to the SysML profile:
– ObjectFlow
– ControlFlow

� The following limitations apply to object flow and control flow support:
– The browser still lists control flows and object flows as activity flows
– There are no tools in activity diagrams for drawing control and object flows;

you have to draw an activity flow and set the stereotype to control flow or
object flow.

– Target and Source are not yet enforced.

Link Renamed to Connector

� The following new terms were added to the SysML profile:
– Connector

� Now, Block Definition diagrams and internal block diagrams have a connector tool instead
of a link tool.
Rhapsody 45

Upgrading to Version 7.1.1 MR-1
46 Upgrade Guide

Upgrading to Version 7.1.1
Changes in Version 7.1.1
The changes in version 7.1.1 of Rhapsody are listed below.

Code Generation

C For code generated with customized code generation:

� Spacing is now added before #endif.

The changes responsible for this change in behavior can be found in the script
file_guard_end in the file src/Files_Generation/Rhapsody_File.tgs.

� Descriptions provided for operation arguments in Rhapsody now appear as
comments in the generated code.

This change in behavior is due to the following changes:
� New operation, args_description, added in file /src/

Logical_Model_Elements_Generation/Rhapsody_Operation.java
� Call to args_description was added in specification script in file src/

Logical_Model_Elements_Generation/Rhapsody_Operation.tgs.
� New script, argument_description, added in file src/

Logical_Model_Elements_Generation/Rhapsody_Variable.tgs.
� New guard operation, guard_argument_description, added in file /src/

Logical_Model_Elements_Generation/Rhapsody_Variable.java
C++ When generating code in Respect mode, you can expect to see certain differences

compared with your code that was previously generated in Rhapsody, for example, the
order of elements in code.

C++ For the Cygwin and Linux environments, the default value of the property
CPP_CG::<environment>::UseTemplateTypename has been changed from False to True.
This means that generated code will use the typename keyword where necessary to
prevent possible compilation errors.
Rhapsody 47

Upgrading to Version 7.1.1
Java The property JAVA_CG::Class::ComplexityForInlining has been removed, and the
property CG::Class::ComplexityForInlining no longer has any effect on code
generation in Java.

Reverse Engineering / Roundtripping

C++ The default value of the property CPP_Roundtrip::General::CreateFileAsUnit has
been changed from Default to AsModel. This means that a component file created during
reverse engineering will be saved as a unit only if the element that is being reverse
engineered is saved as a unit. (When the value of the property is Default, the component
file is saved as a unit only if the model-level property
General::Model::ComponentFileIsSavedUnit is set to True.)

Framework

C++

IOxfEventSender

A new interface, IOxfEventSender, has been added, containing event sending operations. If you
set the new property CPP_CG::Class::ReactiveInterfaceScheme to Thin, reactive interfaces
will inherit from IOxfEventSender rather than OMReactive. The default value of the property is
Full.

Note that IOxfEventSender includes only operations related to event sending, while OMReactive
includes also attributes and operations related to statechart behavior.

When ReactiveInterfaceScheme is set to Thin, Rhapsody checks another new property,
CPP_CG::Framework::EventSender, for the name of the base class to use for reactive interfaces.
This property can be used if you want to provide your own interface for event-sending behavior.
The default value for this property is IOxfEventSender.

IOxfReactive

IOxfReactive now inherits event sending operations from IOxfEventSender.

OMTimeout

The content of the method OMTimeout::cancel() has been modified to prevent problematic
application behavior that had been reported.

Error Handling on VxWorks

There were cases where VxWorks would return an error but the relevant Rhapsody framework
function would return void, resulting in the loss of this error information.
48 Upgrade Guide

Changes in Version 7.1.1
Now, when these framework functions encounter such an error, they call a macro called
OM_NOTIFY_ERROR. By default, this macro is empty, but you can provide content to achieve the
error-handling behavior that you require.
Rhapsody 49

Upgrading to Version 7.1.1
50 Upgrade Guide

Upgrading to Version 7.1
Changes in Version 7.1
The changes in version 7.1 of Rhapsody are listed below.

Code Generation

C The formatting of code generated when using customizable code generation has been
enhanced in terms of use of whitespace.

C When using customizable code generation, if the model contains flowports, then the file
FlowportInterfaces.h will now contain forward declarations for each flowport interface,
and the file FlowportInterfaces.cpp will now contain include statements for each of the
flowport interfaces.

C Due to a change in the way reactive instances are destroyed, you will notice changes in
the code that handles the destruction of such instances.

C The code generated when using the MISRA98 profile has been modified to be more
MISRA-compliant, for example, int has been replaced with RhpInteger, and break-s used
for leaving for loops have been replaced by an additional condition check.

C In the C framework, a number of fields have been added to RiCReactive_Vtbl. With
some compilers, this may lead to MISRA violation warnings.

C For the INTEGRITY and Multi environments, in file paths in makefiles, backslashes
have been replaced by slashes.

C When using customizable code generation, classInstance annotations for blocks have
been replaced by block annotations.

C, C++ For the INTEGRITY and Multi environments, the default value for the property
QuoteOMROOT has been changed to True in order to facilitate the use of spaces in
paths.

C, C++ Prior to version 7.1, an external VB-based makefile generator was used for the
INTEGRITY and Multi environments. In 7.1, the internal Rhapsody generator is used.
Rhapsody 51

Upgrading to Version 7.1
C, C++ In version 7.1, if a package file contains associations, Rhapsody generates a constructor
that initializes the pointers that are generated to implement the associations.

C, C++ The common annotation previously used for typedefs has been replaced by specific
annotations that relate to the name of the type. These annotations were added to support
roundtripping of modeled types.

C, C++ When destroying a reactive instance inside another instance, Rhapsody now uses a
function called RiCReactive_DelayedDestroy, which was added to the framework,
instead of _Destroy.

C, C++ After reverse engineering, generated code now contains an include to oxf/oxf.h, if a
backward compatibility profile is used.

C, C++ Beginning with Rhapsody 7.0 MR-1, on Linux, variables of type OMBoolean were no
longer mapped to true or false in the trace log. Instead, 0 or 1 were displayed. Now, the
original behavior has been restored - true and false are used once again.

C, C++ In version 7.1, when the property CG::Type::GenerateDeclarationDependency is set
to False, #include is not generated for the type definition for an operation return type.

C++ The prototype for the function getItsWebAdapter() is now generated in a different
location, in the same file.

C, C++, Java In certain cases, for example, where multiple parts are used, the generated code
now checks the return value of the method startBehavior(), something which
was not done previously.

Java New annotations have been added before import statements in Java code. These have
been added to support roundtripping of imports in RiJ.

Ada History connectors now behave like deep history connectors.

Reverse Engineering / Roundtripping

C For C models from versions prior to 5.5, the property
C_Roundtrip:General:RoundtripScheme will be given the value Advanced when
opened for the first time in version 7.1.

C, C++ In 7.1, Rhapsody uses by default the "smart" reverse engineering option (the
SmartPackageAndComponent option in the Dependencies drop-down list on the
Mapping tab). In this mode, each include statement results in only one dependency in the
model. You may therefore find that certain dependencies in your model have
"disappeared" after reverse engineering with version 7.1.
52 Upgrade Guide

Changes in Version 7.1
Framework

Ada
A new behavioral framework is now available. This framework relies on Ada 95 constructs as
opposed to the previous version, which was limited to Ada 83 constructs.

C
Prior to 7.1, before a reactive instance was destroyed, the events addressed to it were removed
from the queue. Now, a delayed destroy mechanism is used, whereby the reactive instance raises a
flag and sends a termination event to the queue. The flag prevents events from being carried out as
they are processed in the queue. When the end of the queue is reached, the termination event is
handled and the instance is destroyed. A number of changes have been made to the C framework
to implement this new delayed destroy mechanism:

RiCReactive

� RiCReactive_Vtbl—two pointers added: cleanupMethod, freeMethod.
� New function added—RiCReactive_DelayedDestroy

� New static function added—handleEventUnderDestruction

� New static boolean variable—globalSupportDirectDeletion (for backward
compatibility), along with RiCReactive_setGlobalSupportDirectDeletion and
RiCReactive_shouldSupportDirectDeletion for setting and testing the value of the
variable.

RiCTask

� RiCTask_execute—modified such that it calls
RiCReactive_shouldSupportDirectDeletion, and if false, calls the new function
RiCReactive_DelayedDestroy. Otherwise, uses its previous behavior.

� RiCTask_cancelEvents—now only deletes events from queue if call to
RiCReactive_shouldSupportDirectDeletion returns true.

C++
For Solaris, timers have been switched to work with nanosleep, instead of the signals mechanism.

Properties

C, C++ The possible values for the properties C_Roundtrip:General:RoundtripScheme and
CPP_Roundtrip:General:RoundtripScheme have been changed.
For C, the new values are Basic and Advanced.
For C++, the new values are Basic, Advanced, and Respect.
For models from versions prior to 7.1, if this property has been overridden, you will see
Rhapsody 53

Upgrading to Version 7.1
the old values. In such cases, if you want to choose Respect, you have to first “un-
override” the property.

C, C++ In the property files, the metaclasses VxWorks6.2diab, VxWorks6.2diab_RTP,
VxWorks6.2gnu_RTP, VxWorks6.2gnu have been renamed to VxWorks62diab,
VxWorks62diab_RTP, VxWorks62gnu_RTP, VxWorks62gnu, respectively.

C, C++ The property [lang]_Roundtrip::Type::Ignore has been removed.

C++ The property CPP_ReverseEngineering::ImplementationTrait::
CreateDependencies can now take the value SmartPackageAndComponent. This
ensures that only once dependency is creates in a model for each include statement.

Java The property CG::Component::InitializationScheme can now take the value
ByComponent to support links across packages in Java.

Java The default value for the property Java_RoundTrip::General::RoundTripScheme is
now Advanced, rather than Basic.

Other Changes

� The name of the metaclass representing object nodes in activity diagrams has been
changed from State to ObjectNode.

� pSOS is no longer available as a target environment.
� OsePPCDiab is no longer available as a target environment.
� The uninstallation process no longer contains a Repair option.

Automatic Upgrade Performed by Rhapsody
When pre-7.1 models are loaded, Rhapsody loads the profile CGCompatibilityPre71. This profile
includes all settings that are required to ensure backward compatibility with older models.
Separate profiles are provided for Ada, C, C++, and Java.

Changes that May Necessitate User Action

Code Generation

C++ For Solaris, timers have been switched to work with nanosleep =, instead of the signals
mechanism.
To use the signals mechanism instead, define the flag
OM_USE_SIGALRM_BASED_TIMER in the file omosconfig.h.
54 Upgrade Guide

Changes that May Necessitate User Action
Ada History connectors now behave like deep history connectors.
To use the previous connector behavior, set the value of the property
Ada_CG.Statechart.HistoryConnectorDepth to Shallow. (For pre-7.1 models, the value
of the property defaults to Shallow.)

Reverse Engineering / Roundtripping

C For C models from versions prior to 5.5, the property
C_Roundtrip:General:RoundtripScheme will be given the value Full when opened
for the first time in version 7.1.
To use Basic roundtripping, set the value of this property back to Basic.

Framework

Ada A new behavioral framework that relies on Ada 95 constructs is available.
To select the version of the framework to use for a given class and/or package
combination, set the values of the properties Ada_CG::Class::UseAda83Framework
and Ada_CG::Package::UseAda83Framework accordingly. (For pre-7.1 models, the
Ada 83 framework is activated by default.)

C For destroying reactive instances, Rhapsody now uses a new delayed mechanism for
new models, and the old direct deletion mechanism for older models.
Each of these mechanisms handles the deletion of the reactive instance in a safe manner.
However, if you try to use the old _Destroy function in new models (where the property
UseDirectReactiveDeletion is set to False), you will encounter problems.
Rhapsody 55

Upgrading to Version 7.1
Other Changes

The name of the metaclass representing object nodes in activity diagrams has been changed from
State to ObjectNode.
If you have used the name of this metaclass, you will have to replace the reference with the new
name of the metaclass.

Backward Compatibility Settings

Note
Backward compatibility profiles are used to set property values in order to maintain
previous behavior in cases where Rhapsody's default behavior has been changed. Keep in
mind that the property values in these compatibility profiles always take precedence over
project-level property value overrides that you may have made in your existing models. If
you have such project-level overrides for properties included in the compatibility profile,
you will have to un-override the property values from the compatibility profile after opening
the model for the first time in the new version of Rhapsody.

The CGCompatibilityPre71 profiles contain the following properties to ensure backward
compatibility with pre-7.1 models. For each property, the relevant languages are indicated.

Code Generation

Ada Ada_CG::Class::UseAda83Framework

In 7.1, a new behavioral framework that relies on Ada 95 constructs was introduced, and
this framework is used by default.
In the compatibility profile, the property Ada_CG::Class::UseAda83Framework is set to
True so that the older framework is used for pre-7.1 models.

Ada Ada_CG::Package::UseAda83Framework
In 7.1, a new behavioral framework that relies on Ada 95 constructs was introduced, and
this framework is used by default.
In the compatibility profile, the property Ada_CG::Package::UseAda83Framework is set
to True so that the older framework is used for pre-7.1 models.

Ada Ada_CG::Statechart::HistoryConnectorDepth
In 7.1, history connectors now behave like deep history connectors.
In the compatibility profile, the property
Ada_CG::Statechart::HistoryConnectorDepth is set to Shallow (rather than Deep)
to restore the old behavior for pre-7.1 models.

C C_CG::Class::InterfaceGenerationSupport
Version 7.1 introduced the ability to realize interfaces in C.
In the compatibility profile, the property
56 Upgrade Guide

Backward Compatibility Settings
C_CG::Class::InterfaceGenerationSupport is set to False to restore the previous
behavior for pre-7.1 models.

C C_CG::Framework::UseDirectReactiveDeletion

In 7.1, a new mechanism was introduced for destroying reactive instances.
In the compatibility profile, the property UseDirectReactiveDeletion is set to True to
restore the previous behavior for pre-7.1 models.

C, C++ [lang]_CG::INTEGRITY5::InvokeMakeGenerator,
[lang]_CG::Integrity5ESTL::InvokeMakeGenerator,
[lang]_CG::Multi4Win32::InvokeMakeGenerator
Prior to 7.1, an external VB-based makefile generator was used for these environments.
In 7.1, the internal Rhapsody generator is used.
In the compatibility profile, these properties have been set to use the external makefile
generator that was used previously, for pre-7.1 models. For INTEGRITY5, the value is
$OMROOT/etc/Integrity5MakefileGenerator.bat. For Integrity5ESTL, the value is
$OMROOT/etc/Integrity5MakefileGenerator.bat. For Multi4Win32, the value is
$OMROOT/etc/MultiMakefileGenerator.exe.

Java JAVA_CG::Dependency::GenerateOriginComment
In 7.1, Rhapsody now generates annotations for dependencies, which explain for each
import statement why it was generated.
In the compatibility profile, the property GenerateOriginComment is set to False to
restore the previous code generation behavior for pre-7.1 models.

C, C++, Java [lang]_CG::flowPort::InvokeRelay
Version 7.0 of Rhapsody included a change to flowport behavior. Previously,
updated data was always sent to the flowport, regardless of whether or not the
data had changed. As of 7.0, by default, the data is sent only if the attribute value
has changed.
In the compatibility profile, the property InvokeRelay is set to Always (rather
than UponAttributeChange) to restore the previous flowport behavior for pre-
7.0 models.

Reverse Engineering / Roundtripping

C++ CPP_ReverseEngineering::ImplementationTrait::
UsePackageForExternals
In 7.1, by default, external elements are imported into a dedicated package.
In the compatibility profile, this property is set to False to restore the previous behavior
for importing external elements.

C++ CPP_ReverseEngineering::ImplementationTrait::CreateDependencies

In version 7.1, the reverse engineering process was refined so that only one model
dependency would be created for each dependency that appears in the code. This is
Rhapsody 57

Upgrading to Version 7.1
represented by the value SmartPackageAndComponent for the property
CreateDependencies.
In the compatibility profile, this value of this property is set to PackageAndComponent to
restore the previous reverse engineering behavior for dependencies for pre-7.1 models.

C, C++ [lang]_ReverseEngineering::ImplementationTrait::
ImportPreprocessorDirectives
In 7.1, the reverse engineering feature can handle all types of C/C++ preprocessor
directives, such as #ifdef.
In the compatibility profile, the property ImportPreprocessorDirectives is set to
False to restore the previous reverse engineering behavior for pre-7.1 models.

C, C++ [lang]_Roundtrip::Type::Ignore
In 7.1, this property has been removed.
In the compatibility profile, this property is included with a default value of True to
restore the previous roundtripping behavior for pre-7.1 models.

C, C++, Java [lang]_ReverseEngineering::ImplementationTrait::
CreateFolderByPath
Version 7.1 introduced an improved folder hierarchy creation approach for
reverse engineering.
In the compatibility profile, the property CreateFolderByPath is set to False to
use the previous folder hierarchy approach for pre-7.1 models.

Java JAVA_Roundtrip::General::RoundtripScheme
In 7.1, the default value of the property RoundtripScheme has been changed to
Advanced.
In the compatibility profile, the value of this property is set to Basic to restore the
previous roundtripping behavior for pre-7.1 models.
58 Upgrade Guide

Upgrading to Version 7.0 MR-3
Changes in Version 7.0 MR-3
The changes in version 7.0 MR-3 of Rhapsody are listed below.

Code Generation

C, C++ Previously, for arguments, if the user set the property CreateImplicitDependencies to
False, implicit dependencies were still generated in the code. Now, this is no longer the
case. If the property is set to False, implicit dependencies will not be generated.

Framework

C++ The operation consumeTime has been restored to the class OMTimerManager.
Rhapsody 59

Upgrading to Version 7.0 MR-3
60 Upgrade Guide

Upgrading to Version 7.0 MR-2
Changes in Version 7.0 MR-2
The changes in version 7.0 MR-2 of Rhapsody are listed below.

Code Generation

C Handling of the property ReusableStatechartSwitches was changed. For the
implications of this change, see Changes that May Necessitate User Action.

C When code is generated using the customizable code generation mechanism,
auto-generated code now appears below user code in Cleanup operations.

C, C++ In code generated for Simulink integration, include statements now enclose file paths in
quotation marks (““) rather than angle brackets (<>). This was done to solve problems
with file paths that included spaces.

C++ Previously, Rhapsody would add empty namespace declarations in implementation files
when the user instantiated a template and had DefineNameSpace=true. Now, these
unnecessary namespace declarations are no longer generated.

C++ If a class contains an association end that is a container, and the multiplicity is not an
absolute number, initialization code is now added to the constructor.

Java The method startBehavior is no longer generated for Java interfaces.

Framework

C++ The following changes were made in the file vxos.cpp for VxWorks RTP support:

� In RTP mode, the operation VxOSMessageQueue::getMessageList is empty.
� In the operation VxOSMessageQueue::isFull, references to fields that don’t exist

in RTP mode have been enclosed in an #ifdef.
� A number of include statements have been excluded for RTP mode.
Rhapsody 61

Upgrading to Version 7.0 MR-2
C++ In the file linuxos.cpp, #include <unistd.h> is always included. (Previously, had
been under _OMINSTRUMENT.)

C++ In the file state.cpp, the inconsistency between generated and supplied source files was
eliminated.

C++ In the file vxoxf.mak, RTP support was added.

Other Changes

� aom library:
– Files aomdisp.h, aomdisp.cpp

A new argument, void* destOrSource, was added to the operation
AOMSchedDispatcher::sendForeignMessage.

– File aomclass.h
Two new virtual functions, notifyGotControl and notifyLostControl, were
added.

� tom library:
– Files tomdisp.h, tomdisp.cpp

A new argument, void* destOrSource, was added to the operation
TOMDispatcher::sendForeignMessage.

Changes that May Necessitate User Action

Code Generation

C The handling of the property ReusableStatechartSwitches was changed such that if
you manually add the -D switch, you could end up with the switch appearing twice.
The new version of the MultiMakefileGenerator script for the Integrity environment was
modified to overcome this problem—if you add the -D switch to the property value, it
will not be added a second time.
If you have customized the MultiMakefileGenerator script, you will have to modify your
version of the script to prevent this problem from occurring or integrate your
customizations into the updated MultiMakefileGenerator script.
62 Upgrade Guide

Upgrading to Version 7.0 MR-1
Changes in Version 7.0 MR-1
The changes in version 7.0 MR-1 of Rhapsody are listed below.

Framework - Linux

C The default value of thread priority has been changed to 0.

Previous value:

const RiC_ThreadPriorityType RiCOSDefaultThreadPriority = PRIO_NORMAL

where

PRIO_NORMAL = 30

New value:

const RiC_ThreadPriorityType RiCOSDefaultThreadPriority = 0

Properties

A property named CG::General::ReportToOutputWindow was added. This property can take the
values Basic or Detailed (default value). When set to Basic, only a subset of the output messages
are shown in the Output window during code generation. This can improve code generation
performance, especially on Linux.

When set to Basic, you can still see all code generation messages by adding
ReportToLogFile=TRUE in the [CodeGen] section of the rhapsody.ini file. This will result in all
messages being written the file Generation.log in the project directory.
Rhapsody 63

Upgrading to Version 7.0 MR-1
64 Upgrade Guide

Upgrading to Version 7.0
Changes in Version 7.0
The changes in version 7.0 of Rhapsody are listed below.

Code Generation

C For a qualified relation, the function getKey now casts the result before returning it.

C For the Integrity environment, the MultiMakefileGenerator script was modified to
support the event across address space feature.

C, C++ Extraneous semicolon after closing brace "}" has been removed.

C, C++ When generating template-based code descriptions, if there is no value for a keyword, an
empty string is now returned rather than the keyword itself, as previously.

C, C++ Where file paths appear in annotations in the code, they are now presented in a more
intuitive manner.

C, C++ Now, for events, default constructors are generated only if the event doesn’t have
parameters or if code is being generated for animation or tracing.

C, C++ Since Rhapsody now allows you to have two operations with the same name and
arguments if one is defined as const, the annotation for const operations now contains the
string const after the operation name and arguments.

C, C++ Now, code is generated for dependencies on component files.

C, C++ In the clean-up code for containers, there is now a null-pointer check to verify that the
container exists.

C++ Clean-up code generated for relations no longer includes unused variables.

C++ Now, files are generated for all component files defined, even if no elements have been
mapped to them.
Rhapsody 65

Upgrading to Version 7.0
C++ Previously, if an external class was included in the scope of code generation, the code
was generated as if a dependency existed between the package and the external class
(forward declarations and #include). Now, this code is no longer generated.

C++ As part of the Simulink integration feature, a variable called SimulinkLibName was
added to the makefile.

C++ Changes have been made in terms of the location of a number of types of code fragments
within a file (comments, package annotations, forward declarations, preprocessor
directives). Also, certain comments appear now only once in a file rather than being
repeated for each element mapped to the file.

C++ If all of the primitive operations of a class/interface are abstract, then the destructor of
the class will be abstract too, by default, provided that the property
CPP_CG::Class::Destructor is set to Auto, which is the default value. To change this
behavior, change the value of this property.

C++ Destructors of interfaces are now virtual by default.

C++ The formatting of code generated for ports has been enhanced in terms of use of
whitespace.

C++ Two empty lines were added to the code generated for COM and CORBA to align the
code generation with that of ordinary .cpp files.

C++ The keyword static is now generated for variables with initial values that are set to be
both Constant and Static. (To avoid generation of the static keyword, unselect the Static
option in the Features dialog box.)

C++ When events are derived from events with arguments, initialization of the base event's
arguments is now done in the constructor of the base event rather than in the constructor
of the derived class.

Java The code generation mechanism now uses containers that take advantage of the new
capabilities included in JDK 1.5.

Java The default value of the property JAVA_CG::JDK::PathDelimiter has been changed
from a backslash (\) to a forward slash (/).

Ada If you have modified the Ada code generator rules, please read Upgrading from the UML
Meta-model to the Rhapsody Meta-model in the RiA documentation.

Reverse Engineering

C, C++ Now, structs that contain nested structs/classes are imported as classes, rather than types.
66 Upgrade Guide

Changes in Version 7.0
C, C++ Now, by default, reverse engineering goes through all "include" files and collects any
macros defined in them.

C++ Now, by default, reverse engineering creates separate specification and implementation
component files, rather than a logical file, as previously.

C++ Now, by default, reverse engineering creates component files in the model.

C++ Now, by default, Rhapsody creates dependencies for elements in component files, rather
than only for elements under packages.

C++ Now, by default, reverse engineering imports global variables as private if they are
declared as static in implementation files.

C++ Now, by default, reverse engineering maps global variables, functions, and types to
component files, reflecting their original file locations.

Framework

C Significant changes were made to the OXF, including code cleanup and additional
documentation.

C In the OXF, RiCSystemTimer is no longer a global variable. Instead, it is accessed via
RiCTimerManager_getSystemTimer.

C In the file RiCQueue.c, the function increaseTail_ was modified to solve problem of
memory overflow when using fixed-size queue.

C In the file RiCTimer.c, the function RiCTimerManager_unschedTm was modified to
solve problem of timeouts not being removed from the heap.

C In the file RiCTask.c, the function RiCTask_execute was modified.

C For support of ports in C, the following classes and interfaces were added to the C
framework: RiCDefaultReactivePort, RiCDefaultReactiveOutbound,
RiCDefaultReactiveInbound, IRiCDefaultReactive.

C For the vx makefiles (vxbuild.mak, vxaom.mak, vxomcom.mak, vxOxf.mak,
vxWebComponents.mak), when you use the CFG parameter, the value you provide
should not include the vx prefix. For example, the value should be oxf and not vxoxf.

C To enable the Events across Address Spaces feature, the following changes were made to
the framework:

� Added file RiCAddressSpace—contains static buffer called AddressSpaceName.
Rhapsody 67

Upgrading to Version 7.0
� In the file RiCReactive.h, a new attribute called registeredId was added to the
struct RiCReactive.

� File RiCTask
Added the functions RiCTask_destroyEvent and NotifyAnimQueueEvent.
Added following functions under the preprocessor flag
RIC_DISTRIBUTED_SYSTEM: RiCTask_initDistributed,
RiCTask_InitDistributed, RiCTask_createDistributed,
RiCTask_CreateDistributed.
Two additional parameters—toDistributeQueue and queuePublishedName—
were added to the init function in RiCTask.

� File RiCOSWrap.h
Added following functions under the preprocessor flag
RIC_DISTRIBUTED_SYSTEM: RiCOSMessageQueue_initDistributed,
RiCOSMessageQueue_createDistributed,
RiCOSMessageQueue_getMessageQueueId,
RiCOSMessageQueue_isMessageQueueIdString,
RiCOSMessageQueue_getRegisteredId

� File RiCONST.h
Under the preprocessor flag RIC_DISTRIBUTED_SYSTEM, the attributes for
RiCIntMessageQueue are: m_hQueueWnd, m_pCopyData, m_ToDistributeQueue,
m_QueuePublishedName, m_RegisteredId.

� File RiCONST.c
Alternative implementations of the RiCOSMessageQueue functions were added
under the preprocessor flag RIC_DISTRIBUTED_SYSTEM.

� File RiCEvent.h
Added the function RiDSendRemoteEvent under the preprocessor flag
RIC_DISTRIBUTED_SYSTEM
Added the macro RiCGENREMOTE under the preprocessor flag
RIC_DISTRIBUTED_SYSTEM

� File RiCOXF.c
Alternative implementation of the init function was added under the preprocessor
flag RIC_DISTRIBUTED_SYSTEM.

� IntegrityBuild.bat—If you use this file to rebuild the INTEGRITY libraries, you
must include the command-line parameter distributed if you want the libraries to
include support for the Events across Address Spaces feature.

C INTEGRITY: To enable the Events across Address Spaces feature for the INTEGRITY
operating system, the following changes were made:

� File RiCOSIntegrity.h
68 Upgrade Guide

Changes in Version 7.0
Under the preprocessor flag RIC_DISTRIBUTED_SYSTEM, the attributes for
RiCIntMessageQueue are: m_MessageQueue, m_MessageQueueBuffer,
m_pMessageQueueBuffer, m_ToDistributeQueue, m_QueuePublishedName,
m_RegisteredId.

� File RiCOSIntegrity.c
Alternative implementations of the RiCOSMessageQueue functions were added
under the preprocessor flag RIC_DISTRIBUTED_SYSTEM.

C++ Following functions defined as inline to improve performance during event processing:

� OMEvent::isTypeOf

� OMEvent::getId

� OMEvent::getlId

� OMEvent::setId

� OMReactive::shouldTerminate

� OXF::getRhp5CompatibleAPI

� OXF::setRhp5CompatibleAPI

C++ Operation OMReactive::send now uses static variable OMOSEventGenerationParams.

C++ Call to function getCurrentEvent was replaced by direct usage of currentEvent.

C++ Checks were moved from OMReactive::processEvent to
OMReactive::handleTrigger.

C++ Copy constructor and operator= function added to class OMProtected.

C++ Function CancelTimeouts was added to class OMReactive.

C++ Change in implementation of function OMReactive::scheduleTimeout. Now, if timeout
heap if full, tries to empty cancelled timeouts.

C++ Function isHeapFull added to class OMTimerManager.

Rhapsody API

� The interface IRPStereotype is now derived from IRPClassifier (instead of
IRPModelElement).

Other Changes

� aom library:
– File aomNotifyUtils was added.
– In class aomItem, operations notifyGotControl and notifyLostControl

were changed to virtual.
Rhapsody 69

Upgrading to Version 7.0
– To increase efficiency of the NOTIFY_OPERATION animation macro, a
utility service was added.

� omcom library:
– Changes were made in the way that elements are serialized/unserialized in

animation/tracing for Linux and Cygwin.
� The name of the Harmony profile has been changed from HarmonyProfile to Harmony.

Also, the location of the profile has been changed from /Share/Profile/ to /Share/Profile/
Harmony/.

Automatic Upgrade Performed by Rhapsody
When pre-7.0 models are loaded, Rhapsody loads the profile CGCompatibilityPre70. This profile
includes all settings that are required to ensure backward compatibility with older models.
Separate profiles are provided for C, C++, and Java.

Changes that May Necessitate User Action

Code Generation

C For the Integrity environment, the MultiMakefileGenerator script was modified to
support the event across address space feature, by generating an integration file and
linking the necessary libraries when the property C_CG::Configuration::Distribution is
set to True.
If you have customized MultiMakefileGenerator, and you are planning to change the
value of C_CG::Configuration::Distribution to True in order to allow usage of the
multiple address space feature, you will need to integrate your customizations into the
updated MultiMakefileGenerator script.

C++ Variable named SimulinkLibName was added to the makefile. This variable gets a value
if a Simulink block exists, otherwise it remains null.
If you have customized the makefile, and you wish to use it with a Simulink block, you
will need to update your makefile template.

C++ Before 7.0, if an external class was included in the scope of code generation, the code
was generated as if a dependency existed between the package and the external class
(forward declarations and #include). This code is no longer generated.
If you require this, you should add the dependency manually.

C++ Destructors of interfaces are now virtual by default.
If you would like to restore the previous code generation behavior, you can customize the
predefined types package as follows:
70 Upgrade Guide

Changes that May Necessitate User Action
Note: Be sure to create a backup copy of the original Predefined Types packages before
attempting this.

1) Add the Predefined types package (for example, <Rhapsody install>\Share\
Properties\PredefinedTypesC++.sbs) to your model by value (as a unit) which replaces
the read-only reference to the predefined package.

2) Make the necessary edits to this unit that you have added and then save it.

3) Replace the unit in the <Rhapsody install>\Share\Properties directory with the unit
that you have created (which is saved in the <model>_rpy directory).

Framework

C In the OXF, RiCSystemTimer is no longer a global variable. Instead, it is accessed via
RiCTimerManager_getSystemTimer.
If you have used RiCSystemTimer in your code, you will have to modify your code.

C For support of ports in C, the following classes and interfaces were added to the C
framework: RiCDefaultReactivePort, RicDefaultReactiveOutbound,
RiCDefaultReactiveInbound, IRiCDefaultReactive.
If you have existing models that specified ports that relay events (rapid ports and ports
that only have event receptions in their contract), and implemented the ports by
specifying attributes and operations on the class, you should disable the automatic code
generation for the ports (set property C_CG::Port::Generate to False for the port) or
revise the implementation.

C++ Call to function getCurrentEvent was replaced by direct usage of currentEvent.
If you overrode this function, your modifications will not have an effect.

C++ Change in implementation of function OMReactive::scheduleTimeout. Now, if timeout
heap if full, tries to remove cancelled timeouts.
If your code included steps to deal with this problem, these steps are no longer
necessary.

Other Changes

The name of the Harmony profile has been changed from HarmonyProfile to Harmony. Also, the
location of the profile has been changed from /Share/Profile/ to /Share/Profile/Harmony/.
If you load a pre-7.0 model that used the Harmony profile, Rhapsody indicates that it cannot find
the profile. To restore the Harmony profile to the model:

1. When Rhapsody displays the Search for file dialog, asking for the location of the profile,
click Ignore.
Rhapsody 71

Upgrading to Version 7.0
2. Right-click your Harmony project in the browser to display the context menu, and select
Change To > Project. (At this point, it is no longer considered a Harmony project.)

3. In the browser, under Profiles, right-click HarmonyProfile (which is now unreferenced),
and from the context menu, select Delete from Model.

4. Add the new Harmony profile as a reference: Select File > Add to Model from the main
menu, find the file Harmony.sbs under /Share/Profile/Harmony/, select the As Reference
option, and click Open.

5. Change the project back to a Harmony project by right-clicking the project in the browser
and selecting Change To > Harmony from the context menu.

Backward Compatibility Settings
The CGCompatibilityPre70 profiles contain the following properties to ensure backward
compatibility with pre-7.0 models. For each property, the relevant languages are indicated.

Code Generation

C RiCContainers::Qualified::GetKey

In 7.0, the function getKey now casts the result before returning it.
In the compatibility profile, this property is set to the value
$(CType)_getKey(&($me$cname), (gen_ptr)$keyName). This restores the old behavior.

C, C++ CG::Dependency::ForwardDeclarationPlacement

In 7.0, code is generated for dependencies on component files.
In the compatibility profile, this property is set to the value BeforeElements, causing the
code generation mechanism to refrain from generating code for such dependencies.

C, C++ CG::Event::ForceDefaultConstructor
In 7.0, for events, default constructors are generated only if the event doesn’t have
parameters or if code is being generated for animation or tracing.
In the compatibility profile, this property is set to True, causing the code generation
mechanism to always generate a default constructor.

Java JAVA _ CG::Configuration::ContainerSet
In 7.0, the default value of this property is Java(1.5)Containers, and this instructs the
Rhapsody code generation mechanism to take advantage of the new capabilities included
in JDK 1.5.
In the compatibility profile, this property is set to its old value of Java(1.2)Containers.
72 Upgrade Guide

Backward Compatibility Settings
Reverse Engineering

C, C++ [lang]_ReverseEngineering::ImplementationTrait::CollectMode
In 7.0, the default value of this property is Once, causing reverse engineering to go
through all "include" files and collects any macros defined in them.
In the compatibility profile, this property is set to the value None so that macros will not
be collected.

C++ CPP_ReverseEngineering::ImplementationTrait::ComponentFileType

In 7.0, the default value of this property is SpecificationOrImplementation, causing
Rhapsody to create separate specification and implementation component files in reverse
engineering.
In the compatibility profile, this property is set to its old value of Logical.

C++ CPP_ReverseEngineering::ImplementationTrait::CreateDependencies

In 7.0, the default value of this property is PackageAndComponent, causing Rhapsody to
create dependencies for both elements in component files and elements under packages.
In the compatibility profile, this property is set to its old value of PackageOnly.

C++ CPP_ReverseEngineering::ImplementationTrait::CreateFilesIn
In 7.0, the default value of this property is Component, causing reverse engineering to
create component files in the model.
In the compatibility profile, this property is set to its old value of None.

C++ CPP_ReverseEngineering::ImplementationTrait::ImportGlobalAsPrivate

In 7.0, the default value of this property is StaticInImplementation, causing reverse
engineering to import global variables as private if they are declared as static in
implementation files.
In the compatibility profile, this property is set to its old value of InImplementation.

C++ CPP_ReverseEngineering::ImplementationTrait::MapGlobalsToComponentFiles

In 7.0, the default value of this property is True, causing reverse engineering to map
global variables, functions, and types to component files, reflecting their original file
locations.
In the compatibility profile, this property is set to the value TypesOnExternal so that only
types will be mapped and only if the user selected the reverse engineering option Import
as External.
Rhapsody 73

Upgrading to Version 7.0
74 Upgrade Guide

Upgrading to Version 6.2 MR-1
There are no upgrade issues for Rhapsody 6.2 MR-1.
Rhapsody 75

Upgrading to Version 6.2 MR-1
76 Upgrade Guide

Upgrading to Version 6.2
Changes that Require User Action

RiC++ OXF

OM_DECLARE_FRAMEWORK_MEMORY_ALLOCATION_OPERATORS
Applicable to users with custom adapters, that use compilers that do not support replacement
delete operators.

Replacement new and delete operators were added to the definition of
OM_DECLARE_FRAMEWORK_MEMORY_ALLOCATION_OPERATORS.

The replacement delete definition is guarded by ifndef
OM_NO_COMPILER_SUPPORT_FOR_REPLACEMENT_DELETE

If you get a compiler error related to the replacement operator delete definition (for example, when
using diab 4.3f), you should add #define OM_NO_COMPILER_SUPPORT_FOR_REPLACEMENT_DELETE to
your adapter omosconfig.h file.

Adapters

VxWorks support
Applicable to RiC/RiC++ VxWorks 6.0 users

The VxWorks 6.0 environments (VxWorks6.0diab, VxWorks6.0gnu) were replaced by VxWorks
6.2 (VxWorks6.2diab, VxWorks6.2gnu).

The change was made in the RiC/RiC++ properties and includes the name change and a change in
the InvokeMake properties.

You should move to the new environment even if you are actually using VxWorks 6.0.
Rhapsody 77

Upgrading to Version 6.2
Automatic Upgrade Performed by Rhapsody

RiC++ OXF

� UseNullBlockContainter (ifdef guard) was replaced by OMUseNullBlockContainer;
full backward compatibility is provided in rawtypes.h

� OM_NEED_THORW_IN_NEW_OPERATOR spelling was fixed to
OM_NEED_THROW_IN_NEW_OPERATOR; full backward compatibility is provided in
rawtypes.h.

� OM_DECLARE_COMPOSITE_OFFSET definition moved from aom/aommacro.h to rawtypes.h
in order to remove the dependency of non-instrumented code on the AOM subsystem.
The declaration is required for non-instrumented code in order to allow the mix of
instrumented and non-instrumented libraries.

Additional Information

Code Generation

� Meaningless package files that were generated in instrumented configurations (Animation
or Tracing) are no longer generated.

� C++, Java: Getters of static attributes are generated as static operations instead of regular
(non-static) operations.

� Activity diagrams for operations (C++): Redundant friend declaration was removed.
� Block added after instrumented code in relation helpers (C):

In instrumented code for relation helpers, the action after the instrumentation code is now
wrapped in braces to prevent errors on declaration of local variables.

For example:
void Bus__addItsSensorSuperClass(Bus* const me, int key, struct
SensorSuperClass * p_SensorSuperClass) {

 if(p_SensorSuperClass != NULL)

 {

 NOTIFY_RELATION_ITEM_ADDED(me, Bus, SensorSuperClass,
"itsSensorSuperClass", p_SensorSuperClass, FALSE, FALSE);

 }

 else

 {

 NOTIFY_RELATION_CLEARED(me, Bus, "itsSensorSuperClass");

 }
78 Upgrade Guide

Additional Information
 {

 int pos;

 for(pos = 0; pos < 360; ++pos) {

 if (!me->itsSensorSuperClass[pos]) {

 me->itsSensorSuperClass[pos] = p_SensorSuperClass;

 break;

 }

 };

 }

}

� Missing initialization now generated (C, C++, Java):

When operation ordering was used, there were some cases where automatically generated
initialization code was missing from the default constructor.

This issue was fixed and the automatic initialization is now fully generated.

For example:

When class_0 has an association to class_1, and the operation order was modified for
class_0, the following code will be generated.

void class_0_Init(class_0* const me) {

 me->itsClass_1 = NULL;

 initRelations(me);

}

Before the issue was fixed, the following code would have been generated:
void class_0_Init(class_0* const me) {

 initRelations(me);

}

RiC IDF

RiCOXFInit(): The initialization calls were modified so that the initRelations()packages (e.g.
Core_initRelations()) are called directly instead of through
<package>_OMInitializer_Init().
Rhapsody 79

Upgrading to Version 6.2
RiC++ OXF

� Linux: Initialization of the pthread_mutexattr_t local variable was added to the
LinuxMutex constructor.

� Nucleus: NULL was replaced by dummy local variables in RTOS calls.
� Handling of canceled timeouts in the timer's heap:

Starting from Rhapsody 6.0, the OXF provided a timeout cancellation scheme that is
based on the reactive instances themselves. This scheme requires less interaction with the
timer manager and is therefore more effective.

However, canceled timeouts are left inside the timer manager timeout OMHeap until their
due time and only then are they destroyed. As a result, the canceled timeouts use a portion
of the timeout heap and may increase the probability of an overflow.

To address this issue, we have made it possible for the user to recognize this situation and
clean up the canceled timeouts from the list.

For this purpose, the following changes were made:
– OMHeap<Node>

The add(Node*) operation return type was changed from void to bool. The
operation returns false if the add failed due to a full heap.
In addition, the message in the event of an error was changed from "Timer
heap overflow" to "Heap overflow".

– OMTimerManager
A new public operation: RP_FRAMEWORK_DLL bool
cleanupCanceledTimeouts()was added.
The operation removes canceled timeouts from the heap. It returns true if
canceled timeouts were removed.

The return type for the set(IOxfTimeout*) operation was changed from void
to bool. The operation returns false if the addition of the timeout to the
timeout heap failed.

– bool operator ==(const IOxfTimeout&, const IOxfTimeout&):
In normal mode (not managed timeout canceling), returns true if both
timeouts are canceled before checking the due time.

– OMReactive
A new protected virtual operation, void
handleTimeoutSetFailure(IOxfTimeout*) was added.
This operation is called when the setting of a timeout failed. This happens
when the timer manager cannot add the timeout to the waiting timeout heap.

The user should override this in derived classes to handle the error. For
example, the user may call
80 Upgrade Guide

Additional Information
OMTimerManager::instance()->cleanupCanceledTimeouts() and then
retry setting the timeout.

scheduleTimeout(OxfTimeUnit, const char* = 0): calls
handleTimeoutSetFailure() if the call to
OMTimerManager::instance()->set() returns false.

(void) cast was added before calling OMTimerManager::set() in OMDelay
constructor and the OMThread::schedTm() pre-6.0 compatibility operation to
avoid LINT warnings.

– OMList<class Concept>::Item::operator =(const Item&):
Added missing return statement.
Rhapsody 81

Upgrading to Version 6.2
82 Upgrade Guide

Upgrading to Version 6.1 MR-2
Changes that Require User Action

COM API

In the interface IRPFileFragment, the type of the property fragmentElement has been
changed to IRPModelElement.

Code Generation

Initialization of C++ Instances Realizing CORBA Interfaces
Applicable to C++ CORBA users

Rhapsody 6.1 MR-1 introduced the ability to initialize instances of common C++ composite
classes that contain parts that realize CORBA interfaces.

This meant that the expansion of the $instance keyword in the
CORBA::<ORB>::InitialInstance/DestroyInitialInstance properties included the
composite instances as well as instances that realize CORBA interfaces directly.

Since the initialization of the parts of the composite was not automatically generated, requiring the
user to handle the completion of the initialization, this behavior was removed in Rhapsody 6.1
MR-2.

If you used this feature, you can enable it by adding the boolean property
CORBA.Class.CppCompositeInitialization and setting its value to true.
Rhapsody 83

Upgrading to Version 6.1 MR-2
Additional Information

Framework

OXF

Addition of Missing Initialization

Applicable to C++.

In OMEventQueue and OMTMMessageQueue, initialization of the queue to 0 was added in the
non-default constructor.
84 Upgrade Guide

Upgrading to Version 6.1 MR-1
General Recommendations

Code Generation

Working with Rhapsody 6.1 and Rhapsody 6.1 MR-1 Simultaneously
Applicable to C, C++, and Java

Rhapsody lets you exchange models between Rhapsody 6.1 and Rhapsody 6.1 M1.

If you plan to work with both versions, you should be aware that Rhapsody 6.1 MR-1 provides
several improvements related to the 6.1 release.

To avoid different results when generating code with the different versions, we recommend that
you add the profile CGCompatibilityPre61M1<lang> (from <Rhapsody>/Share/Profiles) to the
model.

This profile disables the MR-1 specific improvements, thereby ensuring compatible code
generation results.

The CORBA Package
Applicable to RiC++ CORBA developers that are using the CORBA reference package provided
with Rhapsody.

The CORBA package has been updated in Rhapsody 6.1 MR-1.

To ensure that you are using the updated version of the package, we recommend that you carry out
the following steps:

1. Add the CORBA package to the model, by reference, from <Rhapsody>/Share/Properties
(replace the existing package).

2. Select Unit > Edit Unit from the context menu to open the unit dialog, and change the unit
path to "$OMROOT\Properties". This step will ensure that you continue using the
updated version when upgrading to future releases of Rhapsody.
Rhapsody 85

Upgrading to Version 6.1 MR-1
Changes that Require User Action

Code Generation

General

Implicit Dependencies:

Applicable to any model with:

� Two types with the same name, or a type and a class with the same name
� Enabled implicit dependencies (#include) generation

(CG::Class::CreateImplicitDependencies = TRUE,
CG::Type::GenerateDeclarationDependency = TRUE)

Rhapsody’s automatic dependency generation mechanism was enhanced in order to avoid
potential erroneous dependency generation when a potential ambiguity is found.

This means that when using a verbatim declaration for an argument or an attribute type, Rhapsody
will not create an include/import statement if:

� There is more than one potential candidate type/class that matches the name.
As a result of this change, automatically-generated include statements may be removed from your
source code.

Although these include statements are potentially wrong, there may be cases where these
statements were correct and were used to compile the code successfully. In such rare cases, you
will need to add <<Usage>> dependencies to the appropriate element(s) in order to generate the
include statements.

Automatically generated dependencies

Applicable to C, C++ and Java

The automatic generation of dependencies (include/import statements) was improved.

These improvements reduce the number of generated dependencies to better suit the model.

In rare cases, where you took advantage of redundant #include or #import statements, you may
witness compilation problems. In these cases, you'll need to model the appropriate <<Usage>>
dependencies.

Redundant semicolons:

Applicable to C, C++ and Java.
86 Upgrade Guide

Changes that Require User Action
Code generation was improved to avoid the addition of redundant semicolons after user code, such
as transition actions and language type definitions. These redundant semicolons would occur when
the code ended with a preprocessor directive (#endif), comment, or some user block termination
(for (...) {}).

In some rare cases, if the redundant semicolon fixed an error in the user code, this change may lead
to compilation errors.

COM-ATL Support (C++)
Property ATL::Macro::ATLConnectionPointImpl:

The value of this property (which was previously ignored) now affects the generated code for ATL
classes.

If you have modified the value of this property in your model, this change will affect the generated
code.

It is recommended that you review and verify the change.

CORBA Compatibility with Rhapsody 6.0
Applicable to RiC++ CORBA developers who are upgrading from Rhapsody 6.1, and use C++
attributes whose type is a CORBA element (type or class).

Improvements were made to the backward compatibility of Rhapsody code generation with
Rhapsody 6.0.

As a result, there are a few changes in the way Rhapsody generates code for C++ attributes whose
type is a CORBA element:

� The Constant and Reference checkboxes now affect the code as they do with regular C++
attributes. This means that if you have attributes whose type is a CORBA element and
these options were selected, you will need to unselect them in order to get the same code
as you got with Rhapsody 6.1.

� The property CORBA::C++Mapping_<CORBAStereotype>::in no longer affects the
code generation for attributes. This means that if you need to specify the mapping of a
CORBA language type to a C++ attribute, you must use the property
CORBA::Type::CPP_in instead. (It is recommended that you specify the mapping at the
C++ attribute and not on the CORBA type.)
Rhapsody 87

Upgrading to Version 6.1 MR-1
Framework

RiC++

OXF

� OMReactive state getter and setter:
getState() was renamed getReactiveInternalState().

setState() was renamed setReactiveInternalState().

If you have used the state attribute getter/setter (introduced in Rhapsody 6.0) in your
application code, you should update your code.

Note: The getter and setter signatures used in the statechart serialization auto-
generated code were also updated.

� Animation:
– Support for long double types:

Applicable to custom adapters (probably using diab compiler, version 4.X or
earlier).

Explicit support for long double types was added under #ifndef
OM_NO_SPECIAL_SERIALIZE_LONG_DOUBLE

This support is required by some compilers but should be disabled under diab
4.X

If you experience compilation errors related to ambiguous operator calls, you
should add the #define in the adapter omosconfig.h

RiC

OXF and IDF

� Usage of the GEN macro without semicolon:

The GEN macros (RiCGEN, CGEN, CGEN_BY_X, etc.) were modified so that the user
can check whether the event was successfully sent or not.

In order to achieve this, the macros were modified to a single statement and the wrapping
block was removed.

As a result, if one of these macros is used in your code without a terminating semicolon,
you will get compilation errors and will need to add the semicolon(s).
88 Upgrade Guide

Automatic Upgrade Performed by Rhapsody
Automatic Upgrade Performed by Rhapsody

Code Generation

Backward Compatibility Profiles
When loading pre-6.1 MR-1 models, Rhapsody automatically adds a compatibility profile to the
model.

This profile provides property settings that maintain the pre-6.1 MR-1 behavior.

Statechart Serialization
Applicable to C++

The signatures used to access the OMReactive state attribute were updated in accordance with the
framework changes.

Redundant Assignment of Event IDs Removed
Applicable to C

The assignment of the event ID inside the generated event constructor was removed since this is
done in the initialization of the framework base class as well.

Declaring Empty Throw
Applicable to C++

There were changes made to the way Rhapsody interprets the property
CPP_CG::Operation::ThrowExceptions.

Now, if the property contains whitespace, Rhapsody generates an empty throw() as part of the
operation declaration, instead of ignoring the whitespace.

Changes Disabled for Backward Compatibility

Code Generation

General

Initialization of StaticArray Composite Relations

Applicable to C, C++ and Java
Rhapsody 89

Upgrading to Version 6.1 MR-1
Improvements were made to the initialization code generated for parts with bounded multiplicity
implemented as StaticArray (for example, C* itsC[5]).

These improvements avoid the redundant search for free locations in the array inside the
composite create operation (e.g., newItsC()). This is done by passing the index to the create
operation from the external loop in initRelations().

Since this is a change to the create operation signature and behavior (e.g., newItsC() replaced by
newItsC(int i)), the change is disabled when loading pre-6.1 MR-1 models. This is accomplished
by setting the value of the property CG::Relation::CreateComponentUsingIndex to False
in the automatically-loaded profile CGCompatibilityPre61M1<lang>.

Composite Qualified Relations

Applicable to C, C++ and Java

Code generation was modified to ignore the qualifier of a composite (black-diamond) relation.

While this change is not optimal, it prevents compilation errors. A warning is issued to ensure that
the user is aware of this code generation behavior.

This behavior is disabled when loading pre-6.1 MR-1 models in order to support users that worked
around the compilation errors by taking over part of the generated code.

This is accomplished by setting the value of the property
CG::Relation::IgnoreQualifierOnBlackDiamond property to False in the
automatically-loaded profile CGCompatibilityPre61M1<lang>.

Static Attribute Initialization Style

Applicable to C++

Initialization of static attributes is now affected by the property
CPP_CG::Attribute::InitializationStyle.

When the property value is set to ByInitializer, parentheses are used instead of assignment
(e.g., OMString A::className("A") instead of OMString A::className = "A").

Since the default property value is ByInitializer and static attributes were always initialized
by assignment, the behavior is disabled by setting the property
CPP_CG::Attribute::EnableInitializationStyleForStaticAttributes to False
in the automatically-loaded profile CGCompatibilityPre61M1Cpp.

Generation of Package Initialization and Cleanup Operations

Applicable to C, C++ and Java
90 Upgrade Guide

Changes Disabled for Backward Compatibility
The generation of the package initialization and cleanup operations (e.g., the
<package>_OMInitializer constructor and destructor) was improved to reduce the number of cases
where empty operations are generated. In addition, you can prevent the generation of these
operations altogether by setting the value of the properties
CG::Package::GeneratePackageInitialization/GeneratePackageCleanup to
Never.

To avoid compatibility issues, the pre-6.1 M1 behavior is maintained via the
CGCompatibilityPre61M1<lang> profiles by setting these property values to Always. Note that if
either of the properties is set to Always, Rhapsody will maintain the compatibility mode for both
operations.

CORBA

Constant Attributes

Rhapsody 6.1 MR-1 supports generation of read-only attributes for attributes of CORBA
interfaces whose constant modifier is set.

This behavior is disabled when loading pre-6.1 MR-1 models by setting the value of the property
CORBA::Attribute::ConstantAsReadOnly to False in the automatically-loaded profile
CGCompatibilityPre61M1Cpp.

Mapping of Events and Triggered Operations

Applicable to RiC++ CORBA developers who are upgrading from Rhapsody 6.0 or earlier.

Beginning with Rhapsody 6.1, event and triggered operation arguments whose type is a CORBA
element are mapped to code using the property
CORBA::C++Mapping_<CORBAStereotype>::TriggerArgument instead of the property
CORBA::C++Mapping_<CORBAStereotype>::in

For backward compatibility, this is disabled by the automatically-loaded profile
CGCompatibilityPre61Cpp.
Rhapsody 91

Upgrading to Version 6.1 MR-1
Additional Information

Code Generation

Template Instantiation Usage
Applicable to C++

When template instantiation is used by another class (relation to a template instantiation, etc.),
Rhapsody will generate the #include to the template instantiation in the specification file, instead
of forward declaration, to ensure that the template declaration is available for the compiler.

This is done to avoid a situation where the template instance forward declaration results in a
compilation error since the template declaration was unavailable.

Web Instrumentation
Applicable to C++

Missing 'static' qualifier was added to the notifyWebRelationModified() web
instrumentation function.

Namespace Cleanup
Applicable to C++ and Java

Redundant namespace/package usage in generated code attributes and relations, accessors/
mutators was removed. For example, when classes C and D are in the same namespace NS,
OMIterator<NS::C*> D::getCs() const is replaced by OMIterator<C*> D::getCs()
const.

Generation of Empty Packages
Applicable for COM and CORBA developers

Empty C++ package generation is prevented when the property
CG::Package::GeneratePackageCode is set to Smart.

Activity Diagrams for Operations
Applicable to C++

Redundant C++ references (i.e. "&") to the operation arguments were removed (e.g., for operation
f(int i), the functor argument is int i instead of int& i).
92 Upgrade Guide

Additional Information
Framework

Adapters

POSIX Thread Creation Parameters

Applicable to RiC++ Linux adapter and RiC Linux and POSIX (RiCOSPosix) adapters.

PTHREAD_CREATE_JOINABLE was replaced by PTHREAD_CREATE_DETACHED in the p_thread
creation parameters.

This was done because the adapters’ implementation does not follow the join semantics on thread
destruction.

POSIX Mutex Creation

Applicable to RiC++ Linux adapter

Setting of the mutex kind is done by calling the pthread_mutexattr_settype() function,
instead of attempting to set the pthread_mutexattr_t.__mutexkind member directly.

INTEGRITY

� Build

Applicable to C and C++

A new optional switch (-trg) was added to IntegrityBuild.bat.

This switch let you specify the target processor (e.g., PPC, ARM), for example:

IntegrityBuild.bat c:\ghs\int505 rpx-cllf c:\ghs\ppc407 -trg
ppc_integrity.tgt

� Memory leaks in animation

Applicable to C and C++

Memory leaks due to sending of messages to Rhapsody were resolved.
� Memory leaks on task creation

Applicable to C and C++

The missing cleanup of the task name was added to RiCOSTask_init() (RiC) and the
IntegrityOSThread constructor (RiC++).
Rhapsody 93

Upgrading to Version 6.1 MR-1
Nucleus

Applicable to C++

#define OM_NO_SPECIAL_SERIALIZE_LONG_DOUBLE added to omosconfig.h

This was done to disable the explicit animation support in long double since diab 4.4 does not
differentiate between double and long double.

pSOS

Applicable to C++

#define OM_NO_SPECIAL_SERIALIZE_LONG_DOUBLE added to omosconfig.h

This was done to disable the explicit animation support in long double since diab 4.2 does not
differentiate between double and long double.

WinCE

Applicable to C++

Creation of nameless NTSemaphores is now supported.

Solaris

� Timer implementation:

Applicable to C++

usleep() was replaced with nanosleep() since usleep is not thread-safe.

The registration on the SIGALRM moved from the do-while loop to
VoidSigAlrmHandler() and additional registration was added before the do-while
loop.

RiC++

OXF

� template <class Concept> class OMNullValue:

New public static operation void initNullBlock() was added. This operation
ensures that the initialization of the OMContainersNullBlock is defined under #ifdef
UseNullBlockContainer. initNullBlock() is called from get() to ensure the
expected behavior.

� Statically allocated Active-Reactive object behavior termination:
94 Upgrade Guide

Additional Information
OMReactive::setShouldDelete() was modified to ensure that the thread part of the
class is aware that the class should not be deleted.

This is done by calling OMThread::setDeletionAllowed(false).

Note that the change assumes that OMThread is the base class of active-reactive classes.
If you are replacing the CoreImplementation, you will need to modify this code.

� OMTimerManager destruction:

The deletion of the timer manager tick-timer (OMOSTimer) was wrapped by lock() -
unlock() to prevent potential race between the destruction of the timer manager and the
tick callback.

� OMOSFactory:

The name of the createOMOSThread() entry function function-pointer was changed
from "entry" to "entryFunction" to prevent collision with an environment macro.

� OMStartBehaviorEvent:

Redundant friend declaration to the pre-6.1 OMFriendStartBehaviorEvent class was
removed.

RiC

IDF

� RTOS-specific conditional calls were removed from initialization.c, macros.h, ric.h and
ricosnt.c

� Redundant semicolons were removed as a result of the code generation improvements.

RiJ
� Redundant #import statements of java.lang.Object and java.lang.String were removed.

MULTI Makefile Generator

INTEGRITY Target Selection
Applicable to C and C++

A PrimaryTarget property was added to control the INTEGRITY target (PPC, ARM, etc.)

The switch -G was added to the debug settings when using generating GPJ projects.

Resolution of dependencies between components was fixed.

Enumeration of changes:
Rhapsody 95

Upgrading to Version 6.1 MR-1
� New key was added to the Keys table for -G (key 22).
� Constant key was added for the PrimaryTarget value (key 17).
� getDependentComponents(): the provided component (aComponent) is used as the

context of the call to getConfigByDependency() instead of activeComponent.
� InitKeys():

The initialization of the PrimaryTarget key was modified based on the property.

Initialization of key 22 was added.
� AddExeCompileProperties(), AddLibCompileProperties(): key 22 is added in

debug mode if the value is not empty.

Properties

Modified Properties
� The -check flag was removed from the BLDAdditionalOptions,

BLDMainExecutableOptions and BLDMainLibraryOptions properties of the following
RiC and RiC++ environments: Multi4Win32, INTEGRITY5, INTEGRITY5ESTL.

� CORBA::TAO::IDLCompileCommand was modified to support generation of directory
per package.

� RiCContainers: Type cast in the IterCreate properties now uses a new property called
CastRT that holds the cast operator. This change allows code generation to omit the cast
when it is not required.

Renamed Properties
Spelling error in CORBA::Package::DeclareInterfracesInModule was corrected. The property is
now called DeclareInterfacesInModule.
96 Upgrade Guide

Upgrading to Version 6.1
Changes that Require User Action

Code Generation

Attribute Multiplicity field
Applicable to: CORBA Models

The Attribute Multiplicity field that was ignored for CORBA in pre-6.1 models now affects the
code.

If your model contains CORBA attribute where the Multiplicity field value is other than 1, you
will experience changes in the code.

Framework

VxWorks Adapters
Applicable to: C/C++ VxWorks users

A defect in the RTOS message queue adapter that automatically set the priority of an ISR message
to MSG_PRI_URGENT when calling msgQSend() was fixed and by default the priority is now
MSG_PRI_NORMAL.

To maintain the pre-6.1 behavior, compile the framework with the
OM_VX_URGENT_PRIORITY_FOR_ISR flag.
Rhapsody 97

Upgrading to Version 6.1
RiC++ Framework File Changes

IDF (Interrupt Driven Framework)
Applicable to: RiC IDF users

The RiC IDF was integrated into Rhapsody and is part of the Rhapsody distribution.

This version of Rhapsody only contains an adapter for the Microsoft environment. Also, the IDF is
slightly different from the previous IDF versions.

The most significant difference is the adapter definition scheme—the adapter is now defined as a
separate model.

To upgrade an adapter or application, carry out the steps described in Preliminary Steps, and then
carry out the steps described in Upgrading Adapters or Upgrading Applications.

Library File Status Reason

AOM AnimServices,cpp/h Added Animation decoupling from The OXF
CoreImplementation

AOM OMFriendStartBehaviorEvent.
cpp/h

Removed Animation decoupling from The OXF
CoreImplementation

AOM OMFriendTimeout.cpp/h Removed Animation decoupling from The OXF
CoreImplementation

AOM OMTime.cpp/h Removed Animation decoupling from The OXF
CoreImplementation

AOM OXFInstrumentation.cpp/h Removed Animation decoupling from The OXF
CoreImplementation

OXF OXFCogeGen50.h renamed
to OXFCodeGen50.h

Renamed Fix spelling

OXF IOxfAnimReactive.h Added Animation decoupling from The OXF
CoreImplementation

OXF IOxfAnimHelper.h Added Animation decoupling from The OXF
CoreImplementation

OXF IOxfAnimThreadManager.h Added Animation decoupling from The OXF
CoreImplementation

OXF IOxfAnimTimerManager.h Added Animation decoupling from The OXF
CoreImplementation

OXF OMAnimReactive.cpp/h Added Animation decoupling from The OXF
CoreImplementation

OXF OMAnimHelper.cpp/h Added Animation decoupling from The OXF
CoreImplementation
98 Upgrade Guide

Changes that Require User Action
Preliminary Steps

1. Open your IDF_<target>_compiler.prp file, and make the following changes:

a. Add the empty property MakeFileName.

b. Change the property CppCompileSwitches as follows:

Replace $(CIDF_ROOT)/oxf with $(OMROOT)/LangC/idf

Replace $(CIDF_ROOT)/<adapters> with LangC/idf/Adapters/<target name>

c. Change the property MakeFileContent as follows:

For the variable OXF_LIBS, replace
OXF_LIBS=$(CIDF_ROOT)\<target name>\oxf\idf$(LIB_EXT)
with
OXF_LIBS=$(OMROOT)\LangC\lib\<library prefix>idf$(LIB_EXT)

Upgrading Adapters

If you have an IDF adapter and you wish to upgrade to the new version of the IDF, you should
follow the following procedure:

1. Open the existing adapter model.

2. Add, by reference, the profile IDFProfile.sbs to the model. If it was already referenced,
remove it and add it again.

3. In the Configuration dialog, select the IDF stereotype.

4. Change the directory so that the code is generated in $(OMROOT)/LangC/idf

5. Create the OSAL package and drag the following functions, types, and variables to the
package:

– RiCInitTimer—sets up a periodic interrupt that calls the RiCTick operation
every RiC_MS_PER_TICK.

– RiCExitCriticalRegion—enables interrupts.
– RicEnterCriticalRegion—masks interrupts.
– RiCGetSystemTick—returns system tick size.
– RiCSleep—operation is called when there are no events to handle and sleep

can be used until the next timeout or when an interrupt occurs.
– RIC_MEMORY_ALLOCATION—sets up the buffers used for the memory

allocation.
– RIC_MAX_EVENTS—maximum number of simultaneous events.
Rhapsody 99

Upgrading to Version 6.1
– RIC_MAX_TIMEOUTS—maximum number of simultaneous timeouts.
– RIC_MS_PER_TICK—periodic timeout in milliseconds.
– RiCTick—this is the operation that will be called from the periodic interrupt

ISR routine
– RiCTickThread—the root of the timer thread that really just sets the bTick

flag (this is only really needed for running on VxWorks or Windows).
– tRiCCriticalSection—OS-specific type, which is used during critical

section processing.
6. Remove all elements from the Component scope.

7. Define the following two component files:

a. RICOS.h, containing OSAL specification. Its path should point to the Adapters/
<target> directory.

b. <target>OS.c, containing the OSAL implementation. It should be generated in the idf
directory, so its name should be unique.

8. Go to the Configuration properties page, and make the following changes:

a. For the property <target environment>.CppCompileSwitches, replace $(OMROOT)/
LangC/idf with the current directory path (.)

b. In <target environment>.MakeFileContent:

Include idfFiles.list

Add <target>OS$(OBJ_EXT) to the list of objects.

Change the output library location, for example, /out:../lib/msidf.lib

c. Set MakeFilename to <target prefix>idf. This affects the name of the generated
makefile.

Upgrading Applications

1. Open the model.

2. If it contains a reference to another IDFProfile, delete the reference, and add, by reference,
the new IDF profile from the directory $(OMROOT)/Share/Profiles.

3. Set the Configuration stereotype to IDF.

4. Generate and make.
100 Upgrade Guide

Changes that Require User Action
Callback Function Pointers in the RiC++ OSAL
Applicable to RiC++ users with custom adapters

The OSAL function pointers declaration was aligned with ANSI.

As a result, some compilers require you to fix the declaration in the adapters as well.

The changed operations:

OMOSFactory:

virtual OMOSThread* createOMOSThread(void (*entry)(void*),
void * param, const char * const threadName = 0,
const long stackSize = OMOSThread::DefaultStackSize)=0;

virtual OMOSTimer* createOMOSTickTimer(OxfTimeUnit time, void
(*callback)(void*), void * param)=0;

virtual OMOSTimer* createOMOSIdleTimer(void (*callback)(void*), void *
param)=0;

OMOSConnectionPort:

virtual void SetDispatcher(void (*dispfunc)(OMSData*))=0;

Properties on Stereotypes

Applicable to users with stereotypes on components or configurations.

Properties specified on Component and Configuration stereotypes are now visible outside the
component hierarchy for the active component and configuration.

This means that an overridden value on the active component or configuration stereotypes will
affect classes, etc.

In particular, such overridden properties will affect code generation and may create unwanted
modifications in the code.

If you have such stereotypes, review the overridden properties and verify that this is what you
expect.
Rhapsody 101

Upgrading to Version 6.1
Automatic Upgrade Performed by Rhapsody

Code Generation

General
Applicable to: C, C++ and Java

Parentheses were added around expressions that have more than one operator to ascertain the
computation order.

The change focus was RiC in order to comply with additional MISRA-C rules and some of the
changes affect C++ and Java as well.

RiC
A CGCompatibilityPre61C profile is loaded for pre-6.1 models

The profile sets the new Cast and IterReturnType properties of the RiCContainers subject
in order to provide backward compatibility in the signature of the get helpers.

Removing the profile will prevent generation of redundant cast in the get operations and is
required to generate MISRA-C 98 compatible getters.

RiC++

General

A CGCompatibilityPre61Cpp profile is loaded for pre-6.1 models

� The profile sets the new IterReturnType properties of the OMContainers subjects
in order to provide backward compatibility in the signature of the get helpers.

� The profile sets the CORBA::Configuration::Pre61C++TypeNamesResolution property
to true and prevents the new properties resolution scheme described in Property
Resolution

Animation and Tracing Configurations
Additional #include <aom/aom.h> statements are generated to each header file in
instrumented mode in order to support the decoupling of the animation and the OXF.

CORBA – Type Modeling Support
Rhapsody 6.1 supports modeling of structure, enumeration and typedef types in the CORBA
domain.

Union type modeling is not supported by code generation.
102 Upgrade Guide

Automatic Upgrade Performed by Rhapsody
As part of the support, the ability to reference CORBA types and interfaces was improved,
providing a mechanism similar to the referencing done between C++ elements

� New property C++Implementation added under CORBA:Class and CORBA:Type
– The property defaults are set on the CORBA interface/type and can be

overridden locally at the C++ referencing element (as done for C++ In/Out
properties)

– The property provides the Reference, Variable or Fixed mapping
� When referencing a CORBA interface or an enumeration/structure/typedef type Rhapsody

automatically selects the appropriate C++Mapping_<TYPE> metaclass to be used for
the referencing implementation

� The CPP_in, CPP_inout, CPP_inout and CPP_return_value properties (under
CORBA:Type) were removed since they are no longer needed, however overridden
values of these properties are taken into account in code generation

� IDLSequence was added under CORBA:Type to support automatic sequence
generation for types (as done for interfaces)

� The values of the properties under the C++Mapping_<TYPE> metaclass were modified
to take advantage of the automatic mapping provided using the C++Implementation
property

� New mapping metaclasses were added:
– C++Mapping_CORBAFixedSequence : provides mapping to a fixed

sequence declaration
– C++Mapping_CORBAInterfaceVariable: provides mapping to an

interface used as a variable type. Also replaces the obsolete
C++Mapping_CORBAObjectReference metaclass

� The C++Mapping_CORBAObjectReference metaclass was removed from the
factory, it is defined in the CGCompatibilityPre61Cpp profile for backward
compatibility

� The CORBAStereotype enumeration literal was updated to reflect the changes listed
above

� Properties in the CORBA containers definitions (RelationTargetType, CType,
IterType and FullTypeDefinition) were modified to support the automatic
implementation and to support CORBA typedef generation

� Redundant namespace in referencing elements was removed
Rhapsody 103

Upgrading to Version 6.1
Features Disabled for Backward-Compatibility

Property Resolution

Applicable to: CORBA models

The search for overridden CORBA::C++Mapping_CORBA<TYPE> properties has been aligned
with the search of other type referencing properties (such as CG:Class:In). This change let you
override the values specified at the CORBA level in the C++ referencing element (Argument,
Attribute, etc.).

This change is disabled by default for CORBA language types by the
CGCompatibilityPre61Cpp profile (see General)

Code Generation

Generation of Dependencies from Arguments
Rhapsody’s ability to generate dependencies (i.e. include/import statements) from arguments that
exist in the model (type or class that were selected using the drop-down list) has been significantly
enhanced.

You can select the dependency type by setting the argument property CG::Argument::UsageType.

For backward compatibility, the property is set to None by the code generation compatibility
profiles.

Origin of #include
Applicable to C/C++
Rhapsody cannot generate a comment before an include statement, specifying the reason the
include was generated.

This feature is disabled by the GCompatibilityPre61 C/C++ profiles by setting the
<lang>_CG:Dependency:GenerateOriginComment property to False.
104 Upgrade Guide

Additional Changes
CORBA
The CORBA:Operation:C++DefaultThrow property lets you specify a default throw statement for
C++ operations that realize CORBA operations.

For backward compatibility, the CGCompatibilityPre61Cpp profile sets the property to an empty
string.

Additional Changes

Framework

RiC++

Decoupling of animation from the OXF CoreImplementation

The animation libraries and the OXF coupling was reduced and formalized in order to enable users
with customized implementation of the OXF Core (IOxfActive, IOxfReactive, etc.) to provide
animation services based on the customized implementation.

This wide change affects many of the framework files, as well as adding and removing files as
described in RiC++ Framework File Changes.

The OXF model includes the description of the AnimServices API (under the aom external
package) as well as sequences of the main scenarios of the OXF-AOM integration (under the
AnimAPI package)

The change included:

� OXF:
– New packages AnimAPI and AnimImplementation were added under

Design::oxf::Anim (Anim is a new package itself). These packages define an
interfaces and concrete implementation of services that are required by the
AOM.

– Additional component: oxfAnimFiles was added to the model. This
component defined by its scope the services that the AOM requires from the
OXF. The scope includes the CoreAPI, AnimAPI and parts of the Services
package. It does not include the CoreImplementation and the
AnimImplementation packages.

– OMThreadManager now inherits from IOxfAnimThreadManager and
implements the Anim API

– OMTimerManager now inherits from IOxfAnimTimerManager and
implements the Anim API
Rhapsody 105

Upgrading to Version 6.1
– CoreImplementation operations and members that existed only for AOM
support were removed

� OMReactive:

– static bool isValid(const IOxfReactive* const)
(also removed: isValidOMReactive() definition from OMObsolete.h)

– void registerWithOMReactive(const void *, AOMInstance*)
� OMThread:

– AOMEventQueue* getAOMEventQueue() const
– AOMStepper* getStepper() const
– void notifyTimeoutCanceled(IOxfTimeout*)
– void notifyTimeoutSet(IOxfTimeout*)
– AOMThread* getAOMThread() const
– AOMThread* aomthread
– OMThread event queue implementation was simplified and is no longer

dependent on the AOM in the instrumented versions of the framework
– getEventQueue() return type changed from OMEventQueue* to const

OMEventQueue*

– Additional notifications maintain the synchronization of the AOM event
queue representation

– The AOM no longer uses the
OMOSMessageQueue::getMessageList() API.

– New framework event id OMAnimWakeupEventId was added, this id is
used to identify animation wakeup events that are used to wakeup blocking
threads. The id is used in OMThread::execute() instrumentation.

– All the references to the AOM classes/services were replaced with references
to AnimServices. All the references are wrapped with #ifdef
_OMINSTRUMENT.

� Exception to the rule are
– Passing AOMInstance and AOMSState as pointers without access to their

definition.
– Usage on OMSData in the OSAL adapters
– Include to AOM were replaced by include to AnimServices
– Instrumentation macros and direct calls to AOM services were replaced with

calls to AnimServices operations
– Additional instrumentation code was added to support the thin interface

between the AOM and the OXF (wrapped with #ifdef _OMINSTRUMENT).
– OMTMMessageQueue implementation was changes to support by-value

allocation prior to the creation of the underlying OMOSMessageQueue
106 Upgrade Guide

Additional Changes
– Default constructor was added, the constructor maintains the RTOS queue
association empty

– init and cleanup operations were that handles the initialization and
cleanup of the RTOS queue

– isEmpty() and isFull() are now const operations
– cleanupRelations() was removed
– OMEventQueue no longer inherits from OMTMMessageQueue. The class

implements the same API. OMTMMessageQueue is maintained for backward
compatibility.

– ommemorymanager.h : the include to
OMMemoryManagerSwitchHelper.h is now protected with #if
(!defined(OM_NO_FRAMEWORK_MEMORY_MANAGER) &&
!defined(OMOMATE)) in order to minimize the scope of the
oxfAnimFiles component

– OMOSThread: A new public virtual operation
void resetWrapperThreadOsHandle(void*)

– The operation resets the thread OS handle.
– This operation should be used with care and only for wrapper threads.
– The operation has an empty implementation by default, and is implemented in

the VxWorks adapter.
– The operation is called in instrumented mode by OXF::initialize() on the OS

thread of the OMMainThread::instance() singleton, to ensure that the OS
thread ID expected by the animation is set.

� AOM:
– Replacing of references to the OXF CoreImplementation package

(IOxfReactive, OMEvent, etc.) with referenced to the CoreAPI classes and to
the new AnimAPI packages.

– Defining a utility class AnimServices that is used as the gateway of the
OXF to the animation.

IOxfReactive

� New protected operation bool restartBehaviorEnabled() const was added.

The operation checks whether a second call to startBehavior() should cause a restart,
i.e., restart of the statechart.

� startBehavior() If restartBehaviorEnabled() returns true, ignores
isBehaviorStarted() and restarts the statechart.

� Two new public boolean attributes were added: supportRestartBehavior and
globalSupportRestartBehavior (static).
Rhapsody 107

Upgrading to Version 6.1
For each, the default value is false.

For a given reactive instance, if any of these attributes is true,
restartBehaviorEnabled() returns true.

globalSupportRestartBehavior is static and, therefore, enables restart for the entire
system.

supportRestartBehavior is instance-specific.

Both attributes are implemented using private data members and public getters/setters.

OMStack

� The empty destructor was removed.
� An ability to disable the definition of the rcsid and hrcsid variables was added.

You can disable the definition by compiling the framework with the OM_NO_RCS_ID
compiler flag (e.g., -DOM_NO_RCS_ID). This flag is used in the VxWorks adapter to avoid a
compilation warning (unused global variables).

� The Adapters implementation was adjusted to the OSAL signatures (see Callback Function
Pointers in the RiC++ OSAL).

Linux

LinuxOSFactory creation was modified, and the friend declaration to OMOSFactory was removed.

Additional compilation flags

� OM_FORCE_IOSTREAM: Forces usage of iostream by the framework (can be overridden by
the flags below)

� ANIM_USE_IOSTREAM: Adding ANIM_USE_IOSTREAM as a compilation flag (e.g. -
DANIM_USE_IOSTREAM) to the animated makefiles and application will force animation to
be compiled with iostream support.

� ANIM_USE_STDIO: Adding ANIM_USE_STDIO as a compilation flag (e.g. -
DANIM_USE_STDIO) to the animated makefiles and application will force animation to be
compiled without iostream support.

� OM_ENABLE_STRING_SERIALIZATION: Enables OMString iostream serialization operators
� OM_NOTIFY_USE_IOSTREAM: Forces OMNotifier notify operations to use iostream
� OM_NOTIFY_USE_STDIO: Forces OMNotifier notify operations to use stdio
� OM_NOTIFY_SILENT: Disables OMNotifier notify operations
108 Upgrade Guide

Additional Changes
Other changes

� OMThread::dispatch(): added call OMEvent::Delete() instead of destroy() in API
compatibility mode

� OXF (the class): added initialization of the static associations
� timer.h: typedef OMTimerManager OMThreadTimer added for backward compatibility
� omiotypes.h: add include to <iosfwd> when OM_STL is defined
� OPORT_AT() macro definition was fixed

Adapters

GHS MULTI (WIN32/INTEGRITY) Compilation

Applicable to: Ada, C and C++

MULTI build scripts were modified to support both MULTI 3.5 bld format and MULTI 4.0 gpj
format. As a result, the batch files invocation command used to build the framework libraries was
modified.

Invoke the batch file without parameters to get a usage message.

WRS VxWorks Compilation

Applicable to: C/C++ users

The VxWorks framework makefiles were modified to support VxWorks 5.5 (Tornado 2.2) and
VxWorks 6.0 (Workbench 2.2).

The VxWorks 6.0 support also includes in-house support for both diab and gnu tool families.

By default, build of all the framework libraries continue to build the VxWorks 5.5 adapters. To
build the VxWorks 6.0 adapter add VX_VER=6.0 and TOOL=diab to the make invocation
command.

When building each library by itself the default makefile settings are VxWorks 6.0 with diab tool
family.

Win32

Cygwin support was added to the adapter source files.

The support includes the ability to use CreateThread() instead of _beginthreadex() based
on the __USE_CREATE_THREAD__ compilation flag.
Rhapsody 109

Upgrading to Version 6.1
Nucleus
Applicable to: C++

#define OM_NO_TYPENAME_SUPPORT was added to the omosconfig.h and fix compiler warnings.

RiC

RiCReactive

Two new operations were added that provides access to the reactive internal state.

The operations were added as part of the statechart serialization support.

long RiCReactive_getState(const RiCReactive* const me)

void RiCReactive_setState(RiCReactive* const me, long oxfState)

RiCTimerManager and RiCHeap

The initialization (RiCTimerManager_init() and RiCHeap_Init()) was improved to prevent
initialization errors.

RiCTypes:h

typedef of short was added to RhpShort.

RiCReactive.h

RiCGui was defined in non-instrumented (animation/tracing) mode in order to enable the usage of
the GEN_BY_GUI() macro in non-instrumented applications.

An ability to disable the definition of the rcsid and hrcsid variables was added. You can disable
the definition by compiling the framework with the OM_NO_RCS_ID compiler flag (e.g. -
DOM_NO_RCS_ID).

INTEGRITY adapter

The RiCOSEventFlag_wait(), RiCOSMutex_lock() and RiCOSMutex_free() operations
were modified to return 0/1 for fail/success instead of the RTOS return value.
110 Upgrade Guide

Additional Changes
Code Generation

C++

Exceptions throw declaration

The ThrowException property now affects constructors and destructors as well as regular
operations.

C++ CORBA Implementation

The code for the accessors of Associations which are realizing CORBA Association getters has
changed: the length is now stored in a local variable instead of getting it twice.Wrong setting of the
association end was removed.

For example:

void B::setItsIA(IA_ptr p_IA) {

itsIA = IA::_duplicate(p_IA);

itsIA = p_IA;

}

Was replaced by:

void B::setItsIA(IA_ptr p_IA) {

itsIA = IA::_duplicate(p_IA);

}

Types with Identical Names
There has been a change in the way Rhapsody handles situations where there are types with
identical names in user packages and in Rhapsody’s PredefinedTypes package.

Now, when Rhapsody searches for types, it first looks in user packages and only afterwards in
Rhapsody's PredefinedTypes package. Therefore, in cases where the same type name exists in both
a user package and the PredefinedTypes package, the generated code will now contain an
additional include statement for the relevant user package.

Statechart Code
Applicable to C, C++ and Java

Previously there were instances where Rhapsody generated code that called the macro
OMSETPARAMS even though it was redundant. These cases have been eliminated.
Rhapsody 111

Upgrading to Version 6.1
This change may result in other changes in your code. Since the removal of this unnecessary line
reduces the size of certain functions, these functions may now be lower than the defined "inlining"
threshold. Where this occurs, you will see that these functions no longer appear in the code, and
calls to these functions are replaced by use of the body of the relevant function.
112 Upgrade Guide

Additional Changes
Changed Properties

Property Change Reason

General:Model:Extension Removed Unused

CG:Attribute:IsConst Changed from boolean to
enumeration

Adds an option to make the return
type const as well as the getter itself

CG:Operation:Generate Changed from boolean to
enumeration

To support generation of the
operation specification without the
implementation, and vise versa.

CG:Relation:IsConst Changed from boolean to
enumeration

Adds an option to make the return
type const as well as the relation
getters

<Containers>:<Implement
ation>: IterReturnType

Added in the C, C++ and Java
container subjects

Lets the user specify the getters
return type, when empty the
RelationTargetType property is used

CPP_CG:Configuraion:En
vironment

New environments were added Cygwin,
MULTI 4.0 - Win32,
MULTI 4.0 – INTEGRITY 5.0,
MULTI 4.0 – INTEGRITY 5.0 ESTL,
VxWorks 6.0 – diab,
VxWorks 6.0 - gnu

GCC environments (C/
C++) MakeFileContent
property

Added comment that explains the
multiple appearance of the
instrumentation libraries in the link
command

Documentation

CPP_CG:IntegrityESTL:
BLDAdditionalOptions,
EnvironmentVarName

Replaced $INTEGRITY_ROOT
with $MULTI_ROOT

Align with MULTI 4.0 separation
between MULTI and INTEGRITY

<TYPE>Containers:Embe
ddedScalar:Get

TYPE=STL, OM, OMU

The cast is removed Takes advantage of the
IterReturnType property and the
$constRT keyword to add the cast
only when required (see IsConst
changes)

<TYPE>Containers:StaticA
rray:IterTest

TYPE = OMU,
OMCpp2Corba

Add parenthesis around the < test Related to the parenthesis addition
that was made for MISRA
compliance

CORBA:Configuration:OR
B

Orbix3.0.1 replaced by TAO Change of the in-house supported
ORB

CORBA:Class:InstanceNa
meInConstructor

Changed from True to False TAO settings
Rhapsody 113

Upgrading to Version 6.1
COM API

Additional capabilities were added to the API, see the COM API documentation.

MultiMakefileGenerator

Added features
� Both MULTI 3.5 (bld) and MULTI 4.0 (gpj) project files are now supported. This support

affects most of the MultiMakefileGenerator operations
– Hard-coded MULTI keywords are replaced by a reference to a table named

Keys
– The table is initialized in the Main() by calling InitKeys()

CORBA:Type:CPP_* Removed See CORBA – Type Modeling
Support

CORBA:Type:CORBASter
eotype

Updated See CORBA – Type Modeling
Support

CORBA:C++Modeling_<T
YPE>:*

Updated See CORBA – Type Modeling
Support

CORBA:Orbix3.0.1 The metaclass was removed The ORB is no longer supported

CORBA:TAO The metaclass was added New supported ORB

<TYPE>Containers:<Imple
mentation>:
RelationTargetType/
CType/IterType/
FullTypeDefinition

TYPE = OMCpp2Corba,
OMCppOfCorba,
OMCorba2Corba

Value changed See CORBA – Type Modeling
Support

C_CG:Configuraion:Enviro
nment

New environments were added Cygwin,
MULTI 4.0 – Win32,
MULTI 4.0 – INTEGRITY 5.0,
VxWorks 6.0 – diab,
VxWorks 6.0 – gnu

RiCContainers properties Parenthesis were added to
conform with the MISRA standard

MISRA-C support

RiCContainers:StaticArray:
RemoveAll

The value was set to set the array
pointers to NULL.

Fix cleanup.
114 Upgrade Guide

Additional Changes
� Print of version information at the beginning of the generation
� Project file is not generated for components with «ExternalProgram» or

«ExternalLibrary» stereotypes
– Done by calling a new function IsExternalComponent() in the
Main()

� Common keywords (see below) are now supported in various paths (component path,
libraries, etc.)

– The support is done by calling ReplaceCommonStrings() on path
strings

– The keyword format is $<keyword> or $(<keyword>)
– The keywords are case sensitive
– The keywords are
– projectPath, projectpath: the model directory
– configPath: the code generation directory
– INTEGRITY_ROOT, INTEGRITYROOT: the INTEGRITY root directory
– The operation also makes sure that the path separators are legal by replacing

slash to backslash if needed
� Copy of the INTEGRITY.ld file was added by a new operation WriteLDFile() that is

called by the Main(). When using INTEGRITY 5.0, the file is copied as INTEGRITY5.ld
– The copy is done only once, so you can modify the file after it was copied in

order to customize it for the specific application
– The file is copied from <Rhapsody>/Share/MakeTmpl or from the

INTEGRITY root directory. This lets you create a general customization for
Rhapsody-generated applications without affecting the default supplied by
GHS

� AddMainBLDFile(): support was added for
– Adding the kernel project to the application. The kernel project is taken from

the <lang>_CG:<environment>:KernelProject property
– Adding related components to the build dependencies (link and search path)

based on «Usage» dependencies. This is done by calling a new operation
getDependentComponents().

Additional Changes
� A new utility operation addToCollection() adds an element to a collection if the

element is not already inserted.
Rhapsody 115

Upgrading to Version 6.1
116 Upgrade Guide

Upgrading to Version 6.0 MR-2
Changes in Rhapsody 6.0 MR-2

Framework

RiC++

OMEvent

� A new public operation bool isDeleteAfterConsume() was added.
– The operation existed in the pre-6.0 version of the OXF and was reintroduced

for backward compatibility.
– This is an inline operation that calls and returns the value from
shouldDeleteAfterConsume().

Constructor initializer

� The order of the attributes in the initializer was modified to be aligned with the order of
declaration.

� This was done in the constructors of OMIterator, OMQueue, and OMTimeout.

oxf.h

A forward declaration of class OMThread was added for backward compatibility with pre-6.0
applications.

oxfFiles.list, oxfFiles_dll.list

The oxf object dependency line was updated.
Rhapsody 117

Upgrading to Version 6.0 MR-2
118 Upgrade Guide

Upgrading to Version 6.0 MR-1
Changes in Rhapsody 6.0 MR-1

CORBA

The mapping of the CORBA::string (defined in the CORBA package under <Rhapsody>/
Share/Properties) to C++ out argument was modified from char*& to
CORBA::String_out in order to align with the CORBA C++ mapping specification.

C++ OXF

� IOxfReactive::OMTakeEventCompleted and
IOxfReactive::OMTakeEventCompletedEventNotConsumed visibility was changed to
public (as in Rhapsody 5.2) for backward compatibility (the constants are kept in the
framework for backward compatibility).

� OMString << and >> operators that were removed for the modeling of the OXF in
Rhapsody 6.0 were re-introduced.

� The private attribute OXFRefManager::totalReferences was renamed to fix a
spelling error.
Rhapsody 119

Upgrading to Version 6.0 MR-1
120 Upgrade Guide

Upgrading to Rhapsody 6.0
The changes in version 6.0 of Rhapsody are listed below.

For information on changes to Rhapsody in Ada, see the RiA_Changes.pdf document under
<Rhapsody>\Sodius\help.

Changes that Require User Action
This subsection documents the changes that require you to perform some actions when you
upgrade to Rhapsody 6.0.

Framework

See Rhapsody in C++ Object eXecution Framework for C++ framework-specific information.

Rhapsody in C
A new object, AOMMessageSender, was added to <Rhapsody>/Share/LangC/aom
(AomMessageSender.c/h). This object is used to send all animation messages via a single task
(activated based on an environment variable).

If you have a custom adapter that does not take advantage of the aomFiles.list file, you should
add the new files to the aom makefile. For an example of how to use the aomFiles.list, see one
of the adapters supplied on the Rhapsody distribution kit.

Rhapsody in C++
Applicability: Users with custom adapters that do not take advantage of the source files lists (e.g.
aomFiles.list). These users must update the makefiles to reflect the changes.

The following files have changed:

� oxf

See Rhapsody in C++ Object eXecution Framework.
� aom
Rhapsody 121

Upgrading to Rhapsody 6.0
The following files were added, which contain instrumentation classes and functionality
that moved from the oxf:

– OMAnimCommandLineParser.cpp/h
– OMAnimResourceGuardNotifier.cpp/h
– OMFriendStartBehaviorEvent.cpp/h
– OMFriendTimeout.cpp/h

– OMTime.cpp/h
– OXFInstrumentation.cpp/h

� omcom

The following empty source files were removed:
– RiCppAnimMessageTranslator.cpp
– RiCppAnimMessages.cpp

� WebComponents

The following empty source file was removed:
– CppWebAdaptersPkg.cpp

VxWorks Adapter
Applicability: Rhapsody in C and C++

The mutex creation flags of the OS binary semaphore were modified from (SEM_Q_FIFO) to
(SEM_Q_PRIORITY | SEM_INVERSION_SAFE) in order to support priority inversion.

This change might affect the behavior of the application when several tasks block on the same
mutex. You should validate that your application behavior is still as expected.

DiffMerge of Diagrams

As a result of the change in the graphic editor infrastructure, you should upgrade your models to
the Rhapsody 6.0 repository (by loading and saving the model with Rhapsody 6.0) before using
DiffMerge 6.0 to compare the diagrams.

Comparing diagrams that are stored in the pre-6.0 repository will show differences between equal
elements.

Code Generation

Class Specification Epilog and Namespace
Applicability: C++
122 Upgrade Guide

Rhapsody in C++ Object eXecution Framework
The generation of the CPP_CG::Class::SpecificationEpilog property moved to the class
namespace in order to comply with the prolog position.

If you are using the specification epilog and assumed that its content is generated outside the class
namespace, you should modify the epilog content.

For example:

namespace PP {
 //## class A
 <prolog>class A {
 ...
 };
 <6.0 epilog>
}
<5.2 epilog>

Properties

PredefinedMacros
OM_DECLARE_COMPOSITE_OFFSET was added to the
CPP_Roundtrip::General::PredefinedMacros property. If you have overridden this
property, you should add the value to your override.

DescriptionEditorSupportsRTF
The EditorSupportsRTF property (under General::Model) was renamed to
DescriptionEditorSupportsRTF. If you defined this property in your site.prp file, you
must manually rename it.

COM API

Applicability: Users that access statechart or activity diagram information via the COM API

As part of the renaming of the connector between a state and a substatechart or activity from a stub
connector to an entry or exit point, the COM API metaclass name was modified from Stub to
EnterExit.

Clients that used the metaclass information to identify entry and exit points should modify their
code to use the new metaclass name in order for the COM API to continue working.

Rhapsody in C++ Object eXecution Framework
The C++ OXF has changed significantly in Rhapsody 6.0—it is now developed using Rhapsody
itself. The change also includes adjustments in the instrumentation libraries. The framework model
is available as part of the installation under <Rhapsody>/Share/LangCpp/oxf/model.
Rhapsody 123

Upgrading to Rhapsody 6.0
For more information, see the Release Notes.

Backward Compatibility

A special effort has been made to ensure full backward compatibility of the new version of the
framework with the Rhapsody 5.x framework. This means that the new framework features are
disabled by when loading pre-6.0 models.

The backward compatibility provides:

� Full code generation backward compatibility—When loading a pre-6.0 model and
generating code, the same code is generated to interface with the framework.

� Framework customization support—Any customization of the framework (made by
inheriting from the framework classes and overriding virtual operations) continues to
work.

� Adapters—If you used the OXF source files list (oxfFiles.list) in your OXF
makefile, there is no need to update the adapter makefiles.

� Mechanistic optimizations—Full backward compatibility is provided so the framework
works in the same manner as it did in Rhapsody 5.x.

Changes that Require User Action

Usage of the typename Keyword in Templates

The VC++.NET 2003 and GCC 3.2 compilers require that access to a type of a template parameter
is prefixed by the typename keyword (ANSI C++). For example:

template<class T> class X {
typename T::Y; // treat Y as a type
Y m_y;

};

To support these compilers and continue supporting compilers that do not support the typename
keyword, the omtypename macro (added in Version 5.2) is used in the
OMSelfLinkedMemoryAllocator template. The declaration is as follows:

template <class T, int INITNUM> class RP_FRAMEWORK_DLL
 OMSelfLinkedMemoryAllocator : public
 IOxfMemoryAllocator {
 public :
 //#[ignore

 typedef omtypename T* (*AllocationCallback)(int);
 //#]
 ...
 };
124 Upgrade Guide

Rhapsody in C++ Object eXecution Framework
If your compiler issues warnings about the usage of typename in the template, add #define
OM_NO_TYPENAME_SUPPORT to your omosconfig.h file (under Share/LangCpp/osconfig/
<RTOS>) to make omtypename be an empty #define.

Reusable Statechart Implementation

Applicability: Reusable statechart implementation in conjunction with:

� Custom adapters
� Projects where the CPP_CG::<Environment>::MakeFileContent property is

overridden
The #define _OMFLAT_IMPLEMENTATION 1 statement was removed from the generated code.
It was replaced by a compilation switch that is added to the generated makefile of reusable
statechart configurations.

The switch is added based on the
CPP_CG::<Environment>::ReusableStatechartSwitches property and the
$OMReusableStatechartSwitches keyword that was added to the MakeFileContent
property. If you have a custom adapter or overrode the MakeFileContent property, you must
change these values so reusable statechart configurations will compile.

For example:

Property ReusableStatechartSwitches String "-
DOM_REUSABLE_STATECHART_IMPLEMENTATION"

[MakeFileContent]

ConfigurationCPPCompileSwitches=
 $OMReusableStatechartSwitches
 $OMConfigurationCPPCompileSwitches

Compilation of the Framework with Custom Adapters

Applicability: Custom adapters that do not use the oxfFiles.list file to obtain the framework
source files

The list of framework generic files was modified in Rhapsody 6.0. If you are not using the
oxfFiles.list, you should update your OXF makefile based on the list content for your
application to link properly.

Enabling the New Features of the Framework
This subsection describes how feature are disabled when loading pre-6.0 models and how to
enable them.
Rhapsody 125

Upgrading to Rhapsody 6.0
Moving to the 6.0 Framework API

The 6.0 framework introduces a set of interfaces for the core behavioral framework. The interfaces
define a concise API for the framework and enable you to replace the actual implementation of
these interfaces while maintaining the framework behavior.

As a result of the interfaces’ introduction, the framework behavioral classes (IOxfReactive,
OMThread, and OMEvent) use a new set of virtual operations to implement the interfaces and
provide the behavioral infrastructure.

To support existing customizations of these classes (made by inheriting and overriding the virtual
operations), the framework can work in a mode where the pre-6.0 API virtual operations are
called. When loading a pre-6.0 model, Rhapsody sets the project property
CPP_CG::Framework::UseRhp5CompatibilityAPI to True to set the system-compatibility
mode.

If you did not customize the framework behavioral classes, you should be able to move to the new
API immediately (by setting this property to False). If you customized the framework, you
should migrate to the new API before removing the backward compatibility:

� When the property is set to False, the framework calls only the new API and therefore
overrides on the pre-6.0 virtual operations will compile but will not be called.

� The property affects the framework initialization (in the main); therefore, you should
verify that when the change is made in the executable component, all library components
are using the 6.0 API.

� If you set the property to False, you should also remove the overrides at the project level
for the following CPP_CG::Framework properties:

– BooleanType
– TimeoutId
– NullTransitionId
– ReactiveSetTask

Note: If you overrode this property yourself (this property was introduced prior to
Version 6.0), do not remove the override.

– ReactiveCtorActiveArgType
– ReactiveCtorActiveArgName
– ReactiveCtorActiveArgDefaultValue

Graceful Termination of Reactive Instances

The new version of the framework introduces a new destruction mechanism for reactive objects.
The graceful termination of a reactive object is done by calling the destroy() operation instead
of calling the delete operator.
126 Upgrade Guide

Rhapsody in C++ Object eXecution Framework
When using destroy(), the object waits in a zombie mode until all the events that are designated
to it are removed from the active context queue, and then self -destructs. In this scheme, there is no
need to traverse the queue of the active context to cancel pending events, and there is no need to
make the reactive destructor guarded to ensure safe deletion.

A reactive object can be either in a graceful termination or forced deletion (using the delete
operator) state: you cannot use graceful deletion on an object that allows forced deletion, and vice
versa.

You can set a single reactive object in a forced deletion state, or set the entire system (all reactive
instances) in a forced deletion state (as is done for backward compatibility).

Graceful termination should not be used when a reactive part (of a composite class) runs in a
context of an active object that is not part of, and different from, the composite active context.

When loading a pre-6.0 model, Rhapsody sets the project property
CPP_CG::Framework::UseDirectReactiveDeletion to True in order to set the system-
compatibility mode.

If you want to use graceful reactive termination, do the following:

� Replace the usage of the delete operator to destroy reactive objects with calls to the
object destroy() operation (in the forced deletion state, the operation simply calls the
delete operator).

� Set the UseDirectReactiveDeletion property to False.
� Because the property affects the framework initialization (in the main), verify that when

the change is made in the executable component, all library components use graceful
termination.

Timeout Management

In Rhapsody 6.0, the framework moves the responsibility for a timeout cancellation from the timer
manager to the timeout client (the reactive object). This change reduces the timer manager
responsibilities and the overhead in timeout management (thus improving timeout scheduling
performance).

The change also includes changes in the generated code (the user reactive objects hold pointers to
the waiting timeouts in order to enable canceling).

When loading a pre-6.0 model, Rhapsody sets the project
CPP_CG::Framework::UseManagedTimeoutCanceling to True to set the system-
compatibility mode.

If you want to use the improved timeout management, do the following:

� Set the property to False.
Rhapsody 127

Upgrading to Rhapsody 6.0
� Because the property affects the framework initialization (in the main), verify that when
the change is made in the executable component, all library components are regenerated.

Usage of Rhapsody Library Components

If you are using a Rhapsody library component as part of an application where the main is not
generated by Rhapsody (for example, GUI applications), the framework will initialize itself in full
compatibility mode on the call to OXF::init().

If you want to remove part or all of the compatibility features, call OXF::initialize() instead
of OXF::init() (the operation takes the same arguments) and add independent, backward-
compatibility activation calls prior to the initialize() call.

Automatic Upgrades Performed by Rhapsody
This subsection documents the changes that Rhapsody performs automatically when you upgrade
to Rhapsody 6.0.

Code Generation

Data Member Declarations
Applicability: C++

Code generation was improved to omit redundant namespace prefixes in data members
declarations. For example:

[Rhapsody 6.0]
namespace PP {
 class C2;
}

namespace PP {
 //## class C1

Backward
Compatibility

Feature
Call

API compatibility OXF::setRhp5CompatibleAPI(true)

Direct reactive objects
deletion

OXF::supportExplicitReactiveDeletion()

Framework managed
timeout canceling

OXF::setManagedTimeoutCanceling(true)
128 Upgrade Guide

Features Disabled for Backward-Compatibility
 class C1 {
 ...
 C2* itsC2; //## link itsC2
 };

}

[Rhapsody 5.2]

namespace PP {
 class C2;
}

namespace PP {
 //## class C1
 class C1 {
 ...
 PP::C2* itsC2; //## link itsC2
 };
}

PublicQualifier Property

The PublicQualifier property (under C_CG::Operation) specifies the qualifier that is
printed at the beginning of a public operation declaration or definition.

Note that the Static checkmark in the operation dialog UI is disabled in Rhapsody in C because the
checkmark is associated with class-wide semantics that are not supported by Rhapsody in C.

When loading models from previous versions, the Static checkmark is unchecked; if the operation
is public, the C_CG::Operation::PublicQualifier property value is set to Static in order
to generate the same code.

See the Properties Reference Guide for more information on the PublicQualifier and
PrivateQualifier properties.

Features Disabled for Backward-Compatibility
This subsection describes features that are automatically disabled when loading pre-6.0 models.

MultiMakefileGenerator

For backward compatibility, the generator continues to remove spaces from the user-specified file
paths. You can prevent the removal of spaces by setting the
CG::Configuration::RemoveWhiteSpacesInBuildFile property to False. This property
is set to True at the project level when you load a pre-6.0 model.
Rhapsody 129

Upgrading to Rhapsody 6.0
Full Roundtrip

Applicability: C

Rhapsody 6.0 introduces full roundtrip capabilities to Rhapsody in C. This capability is disabled
when loading pre-6.0 models because it requires new code generation annotations.

You can enable full roundtrip by setting the C_Roundtrip::General::RoundtripScheme
property to Full and regenerating the code.

Note
It is not recommended to change the property and roundtripping without regenerating the
code.

Additional Information
This subsection contains information on miscellaneous changes and enhancements in
Rhapsody 6.0.

Code Generation

Instrumentation of Composite Classes
Applicability: C++ animation and tracing

When generating a non-reactive composite class without attributes, an
OM_DECLARE_COMPOSITE_OFFSET macro is added to the class declaration. This macro ensures
proper representation of the composite and the part in animation or tracing mode. You can still mix
instrumented and non-instrumented code.
130 Upgrade Guide

Additional Information
Flat Statechart Macro
Applicability: C++

The #define _OMFLAT_IMPLEMENTATION 1 statement was removed from the generated code.

OMDECLARE_GUARDED
Applicability: C++

A redundant declaration of OMDECLARE_GUARDED in guarded classes that inherit from guarded
classes was removed.The derived classes use the guards declared in the base classes.

Import Statements
Applicability: Rhapsody in J

Java import statements from dependencies with «Usage» stereotypes to a package are generated
regardless of the package’s CG::Package::GeneratePackageCode property value.

This means that you might find additional import <full package name>.* statements in your
code.

Framework

C
The Version 6.0 framework for Rhapsody in C includes the following changes:

� An INTEGRITY adapter was added.
� oxf

– Ric.h—The definition of _OMINSTRUMENTED was refined to avoid multiple
definitions.

– RiCTask—There is a new boolean flag, deletionAllowed, that is used to
prevent deletion of the RTOS task. This is used to prevent early destruction of
the RiCHandleCloser task until all client tasks are done (when terminating
the application).

– RiCOSWrap.h—The functions
RiCOSTask_InitCommunicationLayer() and
RiCOSTask_CleanupCommunicationLayer() were added to the OSAL
definition. The functions were added to support INTEGRITY, which requires
per-task IP initialization. The functions are reduced to empty macros if
RIC_NEED_INIT_COMMUNICATION_LAYER is not defined.

– RiCHandleCloser_Init()—The redundant RiCTask argument was
removed, the task initialization arguments were modified, and the task name
(_omCloseHandler) was specified. In addition, this version of the
Rhapsody 131

Upgrading to Rhapsody 6.0
framework sets the task deletionAllowed flag to False to prevent
premature destruction. A client adapter should set the flag to True at the end
of the RiCOSEndApplication() implementation. See the INTEGRITY
adapter for a sample implementation.

– pSOS adapter—Now the function RiCOSEndApplication() cleans up the
main task (by calling RiCTask_cleanup()) instead of destroying it. The
main task cannot be destroyed because it is statically allocated.

– VxWorks, POSIX adapters—Moved the cleanup of the m_SuspEventFlag
from RiCOSTask_start() to preExecFunc() to prevent a potential race
between the owner thread and the signaling thread.

� WebComponents—RPY_LaunchWebServer() supports INTEGRITY (initialization of
the IP layer).

C++
� In the QNX and VxWorks adapters, the cleanup of the m_SuspEventFlag was moved

from the OMOSThread::start() implementation to preExecFunc() to prevent a
potential race between the owner thread and the signaling thread.\

� The meaning of OM_FROCE_STDIO has been changed. Instead of locally disabling iostreams
just for OMNotifier (was OMOutput) functions, it now disables iostreams throughout the
OXF by acting within OXFSelectiveInclude.h. For example, code in
OXFInstrumentation.cpp will be disabled.

Linux/MVL Adapters

Applicability: C and C++

A time-correction mechanism was added to overcome an accuracy issue in the RTOS.

Properties

VxWorks MakeFileContent
Applicability: C and C++

The property was modified to support compilation on a Linux/Solaris host, as well as on Windows.

C++
� The default value of the CPP_CG::Framework::ReactiveSetTask property was

modified from "setThread($task, $isActive);" to
"setActiveContext($task, $isActive);" to comply with the C++ framework
API change. If you did not override this property, Rhapsody sets the property value back
to the original value when loading pre-6.0 models.
132 Upgrade Guide

Additional Information
� A spelling correction was made in the content of the
CPP_CG::<Environment>::ReusableStatechartSwitches property.

Java
The InvokeExecutable property under the JDK environment was modified to support projects
located in a path that contain spaces in directory names.

Ada
All the code generation properties (Ada_CG) were moved from the factoryAda.prp file to the
sodius.prp file (which the factoryAda.prp includes).

MultiMakefileGenerator

This version of the MultiMakefileGenerator includes the following enhancements:

� Support for Ada and C, as well as C++
� Support for the following properties:

– CG::Configuration::GenerateDirectoryPerComponent

– DefaultSpecificationDirectory and
DefaultImplementationDirectory configuration properties

– CG::File::ImpExtension and SpecExtention
� Avoids removing spaces in include files and library paths
� Better support for external elements (including external component files)
� Support for ports with implicit contracts
� Support for the linker_file option using the environment property LinkerFile
� Support for the integrate_file option using the environment property

IntegrateFile
� Support for the bsp_description option using the environment property BSPFile
� Support for the connections option using the environment property ConnectionFile
� Support for the nobuild option using the environment property ResourceFile
� Support for nested components (as subprograms)
� Supports the new version of the C++ OXF

To support these enhancements, the following modifications were made in the
IntegrityBuildScript.bas file:

� The following operations were modified:
– Main()
Rhapsody 133

Upgrading to Rhapsody 6.0
– AddMainBLDFile()

– AddBuildFileHeader()

– CreateBuildFile()

– WriteBuildOptions()

– AddUserIncludePath()

– AddUserLibraries()

– AddUserHeaders()

– AddEXECompileProperties()

– AddLIBCompileProperties()

– WriteOXFDirs()

– WriteUninstrumentedLibraries()

– WriteTracerLibraries()

– AddFile()

– AddHeaderFile()

– AddCFile()

– AddLIBCompileProperties()

– AddUserSources()

– getImpExtension()

– getSpecExtension()

– PackageFileName()

– WriteClass()

– ClassFileName()

– ElementFilePath()

– WriteActor()

– ActorFileName()

– WritePackage()

– AddBLDIncludeAdditionalLD()

– WriteDefines()

– AddReusableDefine()

– AddWebFiles()

– GeneratePackage()

� The isInSubdirectory() operation was replaced with a new COM API service,
RPComponent.isDirectoryPerModelComponent(), that performs a more accurate
check.

� The following new operations were added:
134 Upgrade Guide

Additional Information
– AddPackageToComponentNestedElements()—Supports the generation
of a separate directory for each package.

– getDefaultSpecDirectory() and getDefaultImpDirectory()—
Support the DefaultSpecificationDirectory and
DefaultImplementationDirectory configuration properties.

– AddImpFile()—For multiple language support.
– ElementInScope()—Checks that the specified element is in the provided

scope.
– CreateParentDirectory()—Creates the specified directory if it does not

already exist.
– removeSpaces()—Removes spaces from the string if the
CG::Configuration::RemoveWhiteSpacesInBuildFile property is
set to True.

– getIntegrityPath()—Gets the integrity root. The operation first checks
for the INTEGRITY_ROOT environment variable, then the IntegrityRoot
environment property.

– WriteSocketLibraries()—Adds language-dependent socket libraries.
– WriteWebLibraries()—Adds language-dependent, Web-enabling

libraries.
Rhapsody 135

Upgrading to Rhapsody 6.0
136 Upgrade Guide

Upgrading to Version 5.2 MR-1
The changes in version 5.2 MR-1 of Rhapsody are listed below.

For information on changes to Rhapsody in Ada, see the RiA_Changes.pdf document under
<Rhapsody>\Sodius\help.

Changes that Require User Action
This subsection documents the changes that require you to perform some actions when you
upgrade to Version 5.2 MR-1.

Code Generation

Template-Based Descriptions
Applicability: C and C++ where template-based descriptions were used

Keywords in the headers or footers generated for the main configuration files (for example,
MainCmp.cpp and MainCmp.h) are resolved based on the active configuration tags instead of the
active component tags.

If you used tags in the component to control the main file’s headers or footers, move the tags to the
configuration to enable resolution of the header or footer keywords according to the tags’ values.

C++ Properties

The following entries were added to the CPP_Roundtrip::General::PredefinedMacros
property:

OM_DECLARE_COMPOSITE_OFFSET
IMPLEMENT_META_T_S_T(tname\\,IsSingleton\\,SuperClass\\
,animSuperClass\\,animTname)
IMPLEMENT_META_T_S_T_N(tname\\,IsSingleton\\,NameSpace\\,
SuperClass\\,animSuperClass\\,animTname)

If you have overridden this property, you must add the value to your override value to guarantee
proper behavior of full roundtrip in instrumented mode.
Rhapsody 137

Upgrading to Version 5.2 MR-1
Additional Information
This subsection contains information on miscellaneous changes and enhancements in Version 5.2
MR-1.

Code Generation

Instrumentation of Composite Classes
Applicability: C++ animation and tracing

When generating a non-reactive composite class without attributes, an
OM_DECLARE_COMPOSITE_OFFSET macro is added to the class declaration. This macro ensures
proper representation of the composite and the part in animation and tracing. You can still mix
instrumented and non-instrumented code.

In addition, the IMPLEMENT_REACTIVE_META_S macro content was modified to reflect the
model structure.
138 Upgrade Guide

Additional Information
C++ Framework

The following table lists the changes to the C++ framework in Version 5.2 MR-1.

Interface Change

OMString constructors Handle cases when an empty string is passed as an
argument.

OMThread • queueEvent()—Handles attempts to queue an
event into an instance that is under destruction.

• stopAllThreads()—Iteration over active
threads was corrected.

• doExecute()—Calls cleanupThread()
instead of destroyThread() if the thread
returns False to the call to
allowDeleteInThreadsCleanup().

OMMainThread • Calls setDeletionAllowed(FALSE) in the
constructor to prevent attempts to dynamically
destroy the statically allocated thread.

• destroyThread()—Handles multiple calls to
the operation.

OMHandleCloser
constructor

• Calls
thread.setDeletionAllowed(FALSE) to
prevent attempts to dynamically destroy the
statically allocated thread.

• The INTEGRITY, Microsoft, and Nucleus adapters
use OMHandleCloser for final cleanup of
destroyed operating system threads.
Rhapsody 139

Upgrading to Version 5.2 MR-1
140 Upgrade Guide

Upgrading to Version 5.2
The changes in version 5.2 of Rhapsody are listed below.

For information on changes to Rhapsody in Ada, see the RiA_Changes.pdf document under
<Rhapsody>\Sodius\help.

Changes that Require User Action
This subsection documents the changes that require you to perform some actions when you
upgrade to Version 5.2.

Code Generation

GenerateDirectoryPerModelComponent Property
Applicability: C and C++

The generation of a separate directory for each package is controlled by the
CG::Configuration::GenerateDirectoryPerModelComponent property. Because of a
defect, it was possible to control the behavior for a specific package by overriding this property at
the package level. However, this defect was fixed in Rhapsody 5.2. This means that the property
now affects code generation only when the override is done at the configuration level or higher.

If you overrode the property at the package level, you can maintain this behavior by defining the
CG::Component::PackageCtrlDPMC property (type: Bool, value: True) in your site.prp
file.

If you set the PackageCtrlDPMC property, note that when Rhapsody calculates file names of
elements mapped to related components (via dependencies between components), overrides on the
GenerateDirectoryPerModelComponent property in the related component or configuration
context are ignored. Therefore, any overrides of the GenerateDirectoryPerModelComponent
property should be made at the property file level or package level.

Generation of Variables
Applicability: C and C++
Rhapsody 141

Upgrading to Version 5.2
Prior to Rhapsody 5.2, variables under a package that were marked as protected or private (often
because they had been attributes of a class and were then moved under the package as variables)
were erroneously generated as public in the header file. In Rhapsody 5.2, such variables are
generated according to their settings. Therefore, compilation errors might occur if the variable was
marked as protected or private (prior to Version 5.2), but other code relied on that variable to be
generated into the header file. In such cases, you should change the variable to be public.

Ports
Applicability: C++ with ports

A defect in code generation for ports ignored the port contract in the case of a single interface
(provided or required), which declared event receptions as fixed. This means that only event
receptions that were part of the contract were processed—all other events were ignored.

If your application took advantage of this defect, you should complete the specification of the port
contract.
142 Upgrade Guide

Automatic Upgrades Performed by Rhapsody
Automatic Upgrades Performed by Rhapsody
This subsection documents the changes that Rhapsody performs automatically when you upgrade
to Version 5.2.

Modeling of External Elements

Applicability: All languages

Rhapsody modeling of external elements was enhanced in both code generation and reverse
engineering.

To provide simpler modeling of external packages, Rhapsody 5.2 introduces the property
CG::Package::UseAsExternal. When this property is set to True, all the package aggregates
are considered external.

If a package in a pre-Version 5.2 model had the CG::Class::UseAsExternal property set to
True, the override moves to the CG::Package::UseAsExternal property when the model is
loaded. This causes all other aggregates of the package (for example, its types) to be external.

Code Generation

Composite Classes
Applicability: C and C++

In previous releases, every composite class was considered a reactive class. In Version 5.2, this
scheme has been refined (and is aligned with Rhapsody in J) so a composite class is reactive only
if it is reactive by itself (for example, it has a statechart) or one of its parts is reactive. As a result,
a non-reactive composite with non-reactive parts is no longer generated as a reactive class.

This change is disabled on load of pre-Version 5.2 models by setting the
CG::Class::ReactiveSimpleComposites property to True at the project level.

Constant Variables as #define
Applicability: C

Starting with Version 5.2 of Rhapsody in C, constant variables (variables with the Constant
modifier checked) are generated as #define statements by default.

When pre-Version 5.2 models with constant variables are loaded in 5.2, the
C_CG::Attribute::ConstantVariableAsDefine property is set to False at the variable
level to avoid changes in the generated code.
Rhapsody 143

Upgrading to Version 5.2
Reverse Engineering
In reverse engineering, if you specify the option to map each directory to a package (the default
behavior starting with Rhapsody 5.2), the
CG::Configuration::GenerateDirectoryPerModelComponent property is automatically
set to True in the context of the active configuration.

Features Disabled for Backward-Compatibility
This subsection documents the 5.2 functionality that Rhapsody disables for models created using
previous versions.

Code Generation

External Elements
Applicability: C, C++ and Java

As part of the enhancements to external element modeling, code generation was modified to take
advantage of information in modeled external elements. This enhancement enables you to specify
how to initialize objects of external classes, create links to external elements, and so on.

Rhapsody automatically disables these enhancements on loading of pre-5.2 models by setting the
following properties at the project level:

� CG::Configuration::StrictExternalElementsGeneration is set to True.
� CG::Configuration::SupportExternalElementsInScope is set to False.

Generating the Makefile Search Path
Applicability: C and C++

Makefile generation was enhanced to add the Include Path field of the related components and
configurations to the makefile search path, in addition to the component path. The include path
information is added when the components are associated with a «Usage» dependency and the
CG::Dependency::UsageType property is set to Specification.

When the UsageType property is set to Implementation or Existence, only the related
component path is added to the makefile search path.

The enhanced search path is disabled on load of pre-Version 5.2 models by setting the
CG::Component::RelatedComponentsIncludePathInMakefile property to False at the
project level.
144 Upgrade Guide

Additional Information
Reverse Engineering

Import of Structures
Applicability: C and C++

A new option was added to reverse engineering that enables you to import structures (struct) as
Structure types.

By default, the property <lang>_ReverseEngineering::ImplementationTrait::
ImportStructAsClass is set to False for models created in Version 5.2. Rhapsody sets this
property to True for a configuration in a pre-Version 5.2 model for which reverse engineering
settings were defined.

Additional Information
This subsection contains information on miscellaneous changes and enhancements in Version 5.2.

Code Generation

Order of Attribute Initialization
Applicability: C, C++ and Java

The order of attribute initialization in the constructor initializer (C++) and body was fixed for the
ordering scheme of default attributes to match the order of the attributes generated in the code.

This change was done primarily to align with common, good practice in C++.
Rhapsody 145

Upgrading to Version 5.2
Template-Based Descriptions
Applicability: C and C++

The replacement of tags in the description was modified to take the default tag values into account.
As a result, if $MyTag appears in a description template of an element and MyTag is not overridden
in the specified element, the default value of MyTag will be used.

Ports
Applicability: C++

The event argument name in the code generated for ports was modified from evt to event to
resolve a compiler warning related to differences between the argument names in overridden
virtual operations (GHS MULTI environment).

New Lines
Applicability: C

The generation of new lines has been modified to increase the readability of the generated code.

Reactive V-Table Initialization
Applicability: C

The ROOT_STATE_SERIALIZE_STATES macro in the v-table initialization has been modified to
ROOT_STATE_SERIALIZE_STATES(<serializeStates name>) to support the naming
pattern of the serializeStates function name for the files modeling feature.

Annotations
Applicability: C++

In full roundtrip, the types’ ignore annotations are now generated as a single ignore block to
increase the readability of the generated code.

Framework

Applicability: C++

Minor changes were made in the framework to comply with GCC 3.2. These changes have no
behavioral effect.
146 Upgrade Guide

Upgrading to Version 5.0.x
The changes in version 5.0.1x of Rhapsody are listed below.

Upgrading to Version 5.0.1 MR2
This subsection describes behavior and functionality changes between versions of Rhapsody that
you must consider when upgrading your installation to Version 5.0.1 MR2.

Changes that Require User Action

The Rhapsody model checker was fixed to check nested objects and blocks. As a result, the model
checker might detect new errors and warnings in your model. Before generating code, you must fix
the errors.

Keyword Behavior Changes

Code generation for the $FullCodeGeneratedFileName keyword in file header/footer
properties was fixed. As a result, redundant “.” and “..” in the file paths are removed.

For example, for class A’s specification, when the active configuration directory is set to “.”, the
keyword is extracted to DefaultComponent\A.h instead of DefaultComponent\.\A.h.

Property Changes

In Rhapsody in C++, the new keyword $OMReusableStatechartSwitches was added to the
<lang>_CG::<Environment>::MakeFileContent properties. This is a reserved keyword
that expands to nothing.

In Rhapsody in J, the Java containers’ StaticArray::Add property was fixed to generate correct
code for the static array add operation.

Upgrading to Version 5.0.1 MR1
No user actions are required.
Rhapsody 147

Upgrading to Version 5.0.x
Upgrading to Version 5.0.1
This subsection describes behavior and functionality changes between versions of Rhapsody that
you must consider when upgrading your installation to Version 5.0.1.

Changes that Require User Action

This documents the changes that require you to perform some actions when you upgrade to
Version 5.0.1.

Adapters
The VxWorks adapter (C/C++) was upgraded to VxWorks 5.5 (Tornado 2.2).

In order for the IDE integration with Tornado 2.2 to work, you must add the following to the path:

<Tornado 2.2>\host\x86-win32\bin

Code Generation (RiC)
The method RIC_SET_EVENT_DESTROY_OP(me, <event name>); is called in
<event>_Init() in every event that has the RiC_Destroy_<event>() operation. This means
that the generated destroy operation is called instead of the generic one. This change was already
done for events with memory pools, but was missing for other events. If you modified the
C_CG::Event::FreeMemory property, the Version 5.0.1 changes will affect the behavior of your
application.

Framework Changes

This subsection contains information on the changes to the framework for Rhapsody in C and
C++.

RiC Framework Changes
In RiCTimeout_cleanup(), a call to RiCTimerManager_softUnschedTm() was added to
guarantee cleanup of the timeout from the matured list.

RiC++ Framework Changes
The Version 5.0.1 changes are as follows:

� In ntos.h, the include to <afx.h> was replaced with an include to <windows.h> (to
remove the redundant dependency on MFC).
148 Upgrade Guide

Upgrading to Version 5.0.1
� In OMString, the operation GetBuffer(int) was added (in addition to the existing
GetBuffer(int) const). The new operation has the same semantics as the MFC
method CString::GetBuffer(int).

� In VxOS.cpp, the VX_FP_TASK flag was added to taskSpawn() calls.
Rhapsody 149

Upgrading to Version 5.0.x
150 Upgrade Guide

Upgrading to Version 5.0
The changes in version 4.0 of Rhapsody are listed below.

For information on changes to Rhapsody in Ada, see the RiA_Changes.pdf document under
<Rhapsody>\Sodius\help.

Changes that Require User Action
This subsection documents the changes that require you to perform some actions when you
upgrade to Version 5.0.

Changes in the Framework Files

If you are using a customized environment that includes framework makefiles, you must make the
changes described in here to your framework files.

The following changes were made to the framework files:

Language Affected File Description of Change

C (Share\LangC) oxf/RiCHdlCls.* New files. This file contains
a generalization of the
thread closer class.

oxf/RiCNTHdlCls.* Removed. This change
affects Win32 adapters
only.

C++ (Share\LangCpp) oxf/HdlCls.*,
oxf/ThdSup.*

New files. These files
contain a generalization of
the thread closer class.

oxf/IntHdlCls.*,
oxf/IntThdSup.*

Removed. These files
affect the INTEGRITY
adapters only.

oxf/NTHdlCls.*,
oxf/NTThdSup.*

Removed. This change
affects Win32 adapters
only.

oxf/
OMDefaultReactivePort.*

New files. This file supports
ports modeling.
Rhapsody 151

Upgrading to Version 5.0
COM API

Rhapsody 5.0 includes the following changes to the COM API.

Changes in Hierarchy
The changes in the hierarchy of the COM API requires you to recompile type-safe COM clients
(such as COM clients written in C++) before you can use them with Rhapsody 5.0; other clients
(such as VB COM clients) do not need to be recompiled.

The changes are as follows:

� The base interface of IRPAttribute, IRPArgument, and IRPTemplateParameter
was modified from IRPModelElement to IRPVariable. This change aligns with the
UML where IRPVariable is the Rhapsody COM API representation of the UML
TypedElement.

� The base interface of IRPConstraint was modified from IRPModelElement to
IRPAnnotation.

Renamed Metaclasses
The following metaclasses were renamed:

� activityDiagram was renamed to ActivityDiagram.
� LinkInstance was renamed to Link.
� Relation was renamed to AssociationEnd.

You must rename the metaclasses in your code to maintain the correct behavior.

Changes to Statecharts and Activity Diagrams
This change applies to users who traverse or create statecharts and activity diagrams using the
COM API.

Diagram, stub, and junction connectors for statecharts and activity diagrams were added to the
Rhapsody 5.0 repository. This causes some changes in the COM API behavior. The properties
itsSource and itsTarget of RPTransition in Rhapsody 4.2 never showed connectors—they
always jumped to the source or target of the incoming or outgoing transition for the connector.
Rhapsody 5.0 uses the properties itsSource and itsTarget to show the connector itself.

Consider the following example:
152 Upgrade Guide

Changes that Require User Action
In Rhapsody 4.2, the property itsTarget of the outgoing transition of the Start state will show
the Finish state; the property itsSource of the incoming transition of the Finish state will show
the Start state.

In Rhapsody 5.0, the property itsTarget of the outgoing transition of the Start state will show
the connector JUMP; the property itsSource of the incoming transition of state Finish will show
the connector JUMP.

To get the old behavior in Rhapsody 5.0, use the following new functions for RPConnector:

� getDerivedInEdges() As RPCollection—Returns all incoming transitions for the
corresponding connector

� getDerivedOutEdge() As RPTransition—Returns the outgoing transition for the
corresponding connector (there can be only one)

Using the example, to get the state Finish as the target of the outgoing transition of state Start, do
following:

* RPConnector connector=transition.itsTarget //connector JUMP

* RPTransition outgingTransition=connector.getDerivedOutEdge()

// transition from JUMP to Final

* RPState state = outgingTransition.itsTarget // state Final

Use similar code to get the Start state as the source of the incoming transition of the Final state.

IRPUnit::load()
The IRPUnit::load() method includes the following new argument:

[out, retval] IRPUnit** ret

The argument returns the loaded unit. If you are using the API in a C++ COM client, you must
update the arguments of the call to reflect this change.
Rhapsody 153

Upgrading to Version 5.0
DOORS

Beginning with Rhapsody 5.0, the element’s description is exported into a new text attribute in
DOORS called Description.

If you have a pre-5.0 Rhapsody model that was exported to DOORS, you should re-export the
model to add this new attribute, and have the description exported to it. The description in the old
attribute will be deleted.

Alternatively (but less recommended), you can open the old, exported model and select Check
Data. The new attribute will be added to DOORS. The check will prompt you for each element
that has a description (because the new attribute will be empty) and you can update. After the
update, the description in the old attribute will be deleted.

C++ Interfaces

Interfaces (classes stereotyped as «Interface») are implemented as reactive interfaces—as if
they were stereotyped «Reactive Interface» — if they have event receptions or other reactive
features. The implementation of interfaces without reactive features remains the same.

This behavior can be disabled by setting the property
CPP_CG::Class::IsReactiveInterface to FALSE. For 5.0, the default value of this property
is TRUE for all classes. However, while loading pre-5.0 models this property is overridden to
FALSE to maintain backward compatibility (unless you previously overrode the property).

To use the new behavior, you must remove the override this property for the project.

HeaderDirectivePattern Property Value

The default value of the property CG::File::HeaderDirectivePattern property was
changed to "$FULLFILENAME_H" in Version 5.

If you overrode this property value in your .prp files, you will see a change in the generated
#ifndef <file name>_H statements (in C and C++). In addition, there is the potential for
collision of the #ifndef that might result in compilation errors.

DiffMerge of Pre-Version 5.0 Models

If you try comparing a Version 4.x model to itself or to a previous revision of the model and it has
statecharts in which a single state has more than one diagram connector with the same name,
DiffMerge erroneously detects differences.
154 Upgrade Guide

Changes that Require User Action
For example, in the state doorClosed in the class Dishwasher statechart, there are two diagram
connector objects with same name (DONE). If you compare the model to itself, DiffMerge will
detect a difference.

To overcome the problem, load the model in Rhapsody 5.0 and save it.

EmbeddedScalar::Set Property

The following change affects users who have their own container set (XXContainers instead of
OMContainers) or who override the containers properties):

The property <C++ container set>::EmbeddedScalar::Set was removed as
part of the support for classes as attribute types.

Code Generation

Rhapsody 5.0 includes the following changes to code generation:

� C++ and Java changes

When you set the kind of an attribute or relation (C++ only) to Abstract (using the Kind
property), only the accessors and mutators of the attribute or relation are generated (as
abstract operations)—the data member itself is no longer generated. This change enables
you to model interfaces using attributes and relations as well as operations. If you used a
data member created for an abstract attribute or relation, do one of the following:

– Change the kind to Virtual.
– Fix the model by recreating the attribute or relation in the derived classes.

� Now the property CG::Generalization::Generate affects the generated code. If you
have set the property in your model, you must undo the change to generate the same code.

C++ Framework

Copy constructors and assignment operators were added for all containers. (The copy is done
using an assignment operator).

If you are using OMList or OMStack to hold elements by value (for example, OMList<Point>
points), the contained elements must define a bool operator that checks its address against the
OMNullValue<> template instantiation (defined in oxf/abscond.h). For example:

operator bool() {
return (this != &OMNullValue<Point>::get());

}

Rhapsody 155

Upgrading to Version 5.0
Automatic Upgrades Performed by Rhapsody
This documents the changes that Rhapsody performs automatically when you upgrade to
Version 5.0.

Explicit Initial Instances

Beginning with Version 5.0, Rhapsody does not include explicit initial instances as part of the
scope. In other words, in explicit mode, code is not generated for a class just because it is in the list
of initial instances for the configuration.

For existing models, Rhapsody sets the
CG::Configuration::AddExplicitInitialInstancesToScope property to True at the
project level to maintain the old behavior.

This change enables you to use the list of initial instances to create instances that their classes
defined in related components (libraries).

Code Generation Format

Redundant spaces added by code generation at the end of actions that contained one or more
spaces were removed. In addition, redundant spaces in argument declarations were removed.

GenerateWithAggregates Property

The CG::Package::GenerateWithAggregates property was removed. This property was
used to map packages without their descendants to code. Now, the mapping is stored as part of the
scope repository.

When you load an existing model, Rhapsody removes any overrides of this property.

Enabling the Rhapsody 5.0 Features
This documents the changes that require you to perform some actions in order to use the new
Version 5.0 functionality.

Attribute Modifiers

In Rhapsody 5.0, you can set additional modifiers for attributes using the check boxes
Multiplicity, Constant, and Reference in the Features dialog box. In addition, the generation of
156 Upgrade Guide

Additional Changes
attributes was modified so Rhapsody often uses a container (as in relation generation) to generate
the code.

The containers map Constant and Reference to code using the new keywords $constant and
$reference. You must add these keywords to the containers properties (as is done in the
factory<lang>.prp files) to enable correct code generation for these modifiers.

This change affects users who have their own container set (XXContainers instead of
OMContainers) or who override the containers properties).

Typedef Modeling

Rhapsody 5.0 introduces composite type modeling, including enumerations and typedefs.

Typedef code generation is based on a new property in the containers called
FullTypeDefinition. If you use your own container set (XXContainers instead of
OMContainers), you must add this property to enable generation of Typedef types. Otherwise,
Typedef types will not be generated.

For examples, refer to the container properties in the factory<lang>.prp files.

Cross-Package Links

Rhapsody 5.0 supports automatic runtime connection of instances across packages. To enable
correct code generation, you must set the property CG::Component::InitializationScheme
to ByComponent.

Note that there is a check (warning) to alert you if your setting is incorrect.

Additional Changes
This subsection contains information on additional changes.

Framework Changes

The following sections describe additional changes to the framework.

C Framework
Rhapsody 5.0 includes the following changes to the C framework:

� The new file oxfFiles.list lists all the common files in the framework. This list is
included by the makefiles.
Rhapsody 157

Upgrading to Version 5.0
� Typedef statements were added to RiCTypes.h to support language-independent types
(for example, typedef char* RhpString).

� The thread cleanup classes (which clean up thread resources after self-termination of a
thread) that were available in several RTOSes was generalized and is now available for all
RTOSes. The generalized class name is RiCHandleCloser. The general closer is located
in the files RiCHdlCls.*, which replace the operating-specific files.

The mechanism works by instantiation of the thread closer singleton and registering a
cleanup function. The closer is supported on Win32 (Windows) and Nucleus.

� In RiCReactive, the return type of the RiCDispatchEvent function pointer was
modified to conform to changes in the code generation for MISRA compliance.

� The definition of RIC_EMPTY_STRUCT was modified from char to RiCBoolean.
� A cast to RiCBoolean was added to the definition of RiCTRUE and RiCFALSE.
� The term “object_type” is obsolete; “class” is used instead.

C++ Framework
Rhapsody 5.0 includes the following changes to the C++ framework:

� In OMEvent, a new attribute port was added to the event so you can access the port that the
event was sent on (using the method getPort()).

� Three new classes were added to support port modeling:
– OMDefaultReactivePort

– OMDefaultOutBound

– OMDefaultInBound

These classes are defined in the file
OMDefaultReactivePort.*

� New macros were added to oxf.h and ioxfreactive.h to support port actions.
� Typedef statements were added to rawtypes.h to support language-independent types

(for example, typedef OMString RhpString).
� Copy constructors and assignment operators were added for all containers, The copy is

done using the operator =() of the contained class.
� The thread cleanup classes (which clean up thread resources after self-termination of a

thread) that were available in several RTOSes was generalized and is now available for all
RTOSes. The generalized class name is OMHandleCloser. The general closer is located
in the files HdlCls.* and ThdSup.*, which replace the operating-specific files.

The mechanism works by instantiation of the thread closer singleton and registering a
cleanup function. The closer is supported on Win32 (Windows), INTEGRITY, and
Nucleus.
158 Upgrade Guide

Additional Changes
� The __DIAB compilation flag was replaced with __DCC__, a flag defined by WindRiver
Diab compiler. This change avoids the definition of an additional flag.

� In the file osconfig/WIN32/osconfig.h. multiple definitions of
OM_WIN32_COMPILER_DISABLE_WARNING_4244 were removed so now there is a
single definition.

� In the OMTMMessageQueue interface, the method isFull() was added for the event
queue API.

� IOxfReactive contains the following changes:
– A new status flag, OMRBehaviorStarted, was added to the omrStatus

attribute. The OMRBehaviorStarted flag signals that startBehavior()
was called.

– OMRBehaviorStarted includes the following new methods:
bool isBehaviorStarted() const

void setBehaviorStarted()

These methods are called by startBehavior() to prevent multiple taking of the default
transitions on multiple calls.

� The definition of NEW_DUMMY_PARAM was removed from MemAlloc.h. The framework
uses the definition in ommemorymanager.h.

� The omendl definition was added to the omiotypes.h file. This macro enables you to
use endl or std::end1, based on the value of the OM_STL flag.

Java Framework
The RiJStateReactive class includes a new, private, Boolean attribute:
isBehaviorStarted. This attribute is checked and set in startBehavior() to avoid multiple
taking of the default transition on multiple calls.

Code Generation

Rhapsody 5.0 includes the following changes to code generation:

� The EntryPointDeclarationModifier property now affects any environment for
which it is defined.

� Any generated block statement (for, while, if, switch) action code is generated
wrapped in parenthesis. For example:
{<code>}

� In Rhapsody in C and C++, dependencies with <<Usage>> stereotypes between
components result in dependencies within the makefile.
Rhapsody 159

Upgrading to Version 5.0
This means that if you rebuild the dependent component, the dependent makefile will
automatically cause a re-link.

� In Rhapsody C and C++, when the property CG::Package::GeneratePackageCode is
set to a value other than Always, code will not be generated for empty packages in
Instrumented mode. “Empty” packages are packages that have no elements or classes, but
might contain other packages.

Generation of MULTI Build Files
You can add switches to the build file using the property
CPP_CG.::<Environment>::BLDIncludeAdditionalBLD. See the Properties Reference
Guide for more information.

MISRA Compliance Changes (RiC)
This version contains the following changes:

� The values FALSE and TRUE were replaced with RiCFALSE and RiCTRUE, respectively.
� The return type of <class>_dispatchEvent() and <class>_takeEvent() was

changed from int to RiCTakeEventStatus.

The type of the res local variable declared within these methods was modified
accordingly.

Changes in Default Property Values

The following sections list the properties whose default values were changed in Version 5.0. When
loading pre-5.0 models, the property values are converted to maintain backward compatibility.

See the Properties Reference Guide for detailed information on the Rhapsody properties.

General Changes
Version 5.0 includes the following property changes:

� The properties In, InOut, Out, and ReturnType (under CG::Type) were moved to
<lang>_CG::Type and were assigned language-dependent values.

� The <lang>_CG::Attribute::MutatorGenerate property was changed from a
Boolean value to an enumeration. The enumeration values are Always, Never, and
Smart.

� The containers (RiCContainers, OMContainers, and so on) properties were modified
to support attribute modifiers and Typedef types.
160 Upgrade Guide

Additional Changes
Ada
The Ada_CG::GNAT::InvokeMake property was modified to take advantage of the
GnatMake.bat file to set the environment for the build.

C
Version 5.0 includes the following changes to the C properties:

� A new environment for Borland was added to the supported environments.
� To conform to MISRA rules, the default value for the property

C_CG::Framework::ActiveInit was changed to the following:
"$base_init($member, RiCFALSE, $Vtbl)"

� The default value for the property
RiCContainers::EmbeddedScalar::RelationTargetType was changed to
"$CType*" to support the accessor/mutator for a by-value attribute using a class as its
base type.

� The default value for the property RiCContainers::EmbeddedScalar::Set was
changed to support a mutator for a by-value attribute using a class as its base type. The
new value is as follows:

"memcpy((void*)&mecname,(void*)$item, sizeof($target))"

C++
Version 5.0 includes the following property changes:

� The default value for CPP_CG::Class::Embeddable was changed to True. This means
that by-value allocation of objects is preferred over dynamic allocation.

Note that in existing models, this value is automatically set to the Version 4.2 value
(False) to maintain backward compatibility.

� The default value for CPP_CG::Class::IsReactiveInterface was modified to True.
See C++ Interfaces for more information.

� The default value for CPP_CG::Relation::ImplementWithStaticArray was
changed to FixedAndBounded. This means that C-style arrays are preferred over
container classes.

Note that in existing models, this value is automatically set to the Version 4.2 value
(Default) to maintain backward compatibility.

� Brackets were added in ATL and COM properties.
� The metaclass CORBAObjectRefrence was renamed to CORBAObjectReference.
� The environment CPP_CG::MicrosoftWinCE was removed: WinCE 3.X is no longer

supported.
Rhapsody 161

Upgrading to Version 5.0
� For the property CORBA::<ORB>::CPP_StandardInclude, the Rhapsody code
generator now generates the value <CORBA.h> instead of "CORBA.h".

� The CORBA:: prefix was removed from the default values of the following properties:

Deprecated COM APIs

As part of the Rhapsody 5.0 type composition feature, IRPVariable was changed from IRPType
to IRPClassifier, and a new API was introduced to support the change. You can still use the
existing APIs related to IRPType as long as the model does not violate this assumption.

The following COM API properties are deprecated and should not be used:

Note
The change in the hierarchy of IRPConstraint made the constraintsByMe property a
duplicate of the IRPAnnotation anchoredByMe.

Metaclass Property

C++Mapping_CORBABasic • in
• inout
• out
• ReturnValue
• TriggerArgument

C++Mapping_CORBAEnum • in
• inout
• out
• ReturnValue
• TriggerArgument

Property Action

IRPVariable.typeOf Use type instead.
This change is also true for
IRPVariable-derived interfaces
(IRPAttribute, IRPArgument, and
IRPTemplateParameter).

IRPOperation.returnType Use returns instead.

IRPTemplateParameter.typeName Use type instead.

IRPConstraint.constraintsByMe
(RO)

Use anchoredByMe instead.
162 Upgrade Guide

Upgrading to Version 4.2
The changes in version 4.2 of Rhapsody are listed below.

For information on changes to Rhapsody in Ada, see the RiA_Changes.pdf document under
<Rhapsody>\Sodius\help.

Changes that Require User Action
This subsection documents the changes that require you to perform some actions when you
upgrade to Version 4.2.

Static Relations (C++ and Java)

Rhapsody 4.2 introduces the ability to model static (class-wide) relations. To set a relation as static,
you set its CPP_ or JAVA_CG::Relation::Static property to True. The feature also supports
reverse engineering and full roundtrip of static relations.

As part of the feature, two new properties were introduced to the containers’ implementation
metaclasses (Fixed, BoundedOrdered, and so on). Rhapsody in C++ or Rhapsody in J users who
want to use the new static relations feature, and have their own relation implementation container
properties (OMContainers) must add these properties to their user-defined containers.

The new properties are as follows:

� CreateStatic—Specifies container creation for the static relation. This property is used
when the CG::Relation::Containment property is set to Reference.

For example, the value of OMContainers.BoundedOrdered.CreateStatic is "new
OMList<$target*>".

� InitStatic—Specifies the initialization of the container in case of a static relation. This
property is required only for Rhapsody in J.

For example, the value of the Java(1.2)Containers.StaticArray.InitStatic
property is "new $target[$multiplicity]".
Rhapsody 163

Upgrading to Version 4.2
Automatic Glue Generations (Ada)

Version 4.2 includes the following enhancements to Rhapsody in Ada:

� Generation of the main
� Automatic run of the main event loop
� Support for parts within composite classes
� Auto-instantiation of links
� Object instantiation at any level

Rhapsody in Ada code generation was enhanced to automatically generate the entry point, as well
as creation and run-time connection of instances.

To avoid the automatic generation of the entry point (for 4.1 models), set the
CG::Configuration::MainGenerationScheme property to UserInitializationOnly.

OSE Support (C++)

In Rhapsody 4.2, OSE support was upgraded to OSE 4.5, with Diab 5.0.3.

The corresponding changes are as follows:

� New #define statements were added to <Rhapsody install>/Share/LangCpp/
osconfig/ose/omosconfig.h under #ifndef __DIAB:

– __DISABLE_LONG_LONG

– NEED_INLINE_IN_TEMPLATE

– NEED_DELETE_OPERATOR_FOR_STATIC_ALLOC

� A new delete operator was added to OMTimeout, wrapped in #ifdef
NEED_DELETE_OPERATOR_FOR_STATIC_ALLOC.

� The archive log was removed from oseev.sig.
� The PRIORITY_LOW value was changed from 255 to 31.
� The OSE properties were modified.
� The SFK and PPC adapter framework makefiles were updated.

If you are using an older version of OSE or Diab, you should either upgrade your RTOS or make
the appropriate changes to the 4.1 OSE framework-related files and properties.
164 Upgrade Guide

Automatic Upgrades Performed by Rhapsody
QNX Adapter Message Queues

The QNX default message queue was changed from the POSIX message queue, which was
designed for cross-process communication, to the Rhapsody “native” message queue (used in
other adapters such as Linux, Win32, pSOS, and so on).

To use POSIX queues, rebuild the OXF libraries with the OM_POSIX_QUEUES flag set in the
makefile QNXCWoxf.mak or QNXoxf.mak.

Animation Enhancements (C++)

New files were added to <Rhapsody install>/Share/LangCpp/omcom to support new
animation messages. The new files are as follows:

� AnimForeignMessage.cpp/h

� AnimNameValueData.cpp/h

� AnimOpReturn.cpp/h

If you are using a custom adapter that does not take advantage of the omcom .list files, add the
files to your omcom makefile.

Automatic Upgrades Performed by Rhapsody
This documents the changes that Rhapsody performs automatically when you upgrade to
Version 4.2.

Changes in Generated Code

Rhapsody 4.2 includes the following general changes in the generated code:

� Parentheses are added to every auto-generated if, for, and while statement. This change
was done to comply with commonly used “best practices” and as part of the Rhapsody in
C conformance to the Motor Industry Software Reliability Association (MISRA®)
standard.

� In calls to schedTm() (timeout scheduling related to the tm(X) instruction) in non-
instrumented configurations, the last parameter is set to NULL (null in Rhapsody in J)
instead of a string with the state name. This change was done as part of the constraint
memory environment support.

C++-Specific Changes
Rhapsody in C++ includes the following changes:
Rhapsody 165

Upgrading to Version 4.2
� Spaces were added between the template declaration and the operation return type for
template operations. For example, template<class T>void f() is replaced with
template <class T> void f().

� An additional argument was added to DECLARE_MEMORY_ALLOCATOR() when using
memory pools. The additional argument is the initial size of the memory pool. This
change was done as part of the support of memory pools for nested classes.

� By default, a pure-virtual destructor body is generated in the implementation (.cpp) file
to comply with ANSI-C++. This is particularly true for «Reactive Interface»
destructors.

C-Specific Changes
Rhapsody in C includes the following changes:

� In inline operations, the redundant backslash (“\”) was removed from the last line of the
generated macro.

� Reactive classes <state>_IN operations are now constant (that is, the me parameter is
passed as a const pointer).

Changes in Full Roundtrip (C++)

Version 4.2 includes the following changes to full roundtrip in Rhapsody in C++:

� Template operations are now supported.
� Static relations are now supported.
� Roundtrip does not set the Inline property for template operations and functions.
166 Upgrade Guide

Additional Information
Additional Information
This subsection contains additional information.

Adapters

Version 4.2 includes the following changes to adapters:

� pSOS X86 support was terminated and the adapter was removed (C and C++).
� The IntegrityESTL (EC++ with Templates) adapter was added, based on INTEGRITY

4.0.4 (C++).
� OSE adapters were upgraded to OSE 4.5 (Soft Kernel, using VC++ 6.0 SP-3 compiler and

PPC using Diab 5.0.3 compiler).

Rhapsody in C Framework

Version 4.2 includes the following changes to the C framework:

� The RiCHeap implementation was modified to prevent errors when the heap is empty and
trim() is called.

� A potential mutual exclusion problem was corrected in the RiCTimer post() operation.

Animation Enhancements (C++)

Version 4.2 includes the following changes in animation:

� The overloaded out2String() methods were added to om2str.cpp/h (<Rhapsody
install>/Share/LangCpp/omcom).

� New animation messages were added (<Rhapsody install>/Share/omcom/
omnote.h).

� A new macro, OM_RETURN(), was added to aommacros.h.
Rhapsody 167

Upgrading to Version 4.2
GHS MULTI Build Files Generation (C++)

For MultiWin32, the adapter search path is now taken from the
CPP_CG::<Environment>::AdaptorSearchPath property instead of being based on the
environment name, if the property exists and has a significant (not empty) value.

ESTL Support (C++)

The framework was modified to support Embedded C++ with templates (ESTL). In addition, a
predefined ESTL environment was added for INTEGRITY ESTL by Green Hills® Software, Inc.

The corresponding changes are as follows:

� Multiple inheritance was replaced by delegation.
– In IntegrityHandleCloser and NTHandleCloser, inheritance from
OMThread was replaced with aggregation; the aggregate name is thread.

– In AOMEventQueue, inheritance from OMEventQueue was replaced with
aggregation; the aggregate name is omQueue.

– In TOMClass, inheritance from TOMClassNameGiver was replaced with
aggregation; the aggregate name is tomNameGiver.

– In TOMThreadManager, inheritance from OMList<TOMThread *> was
replaced with aggregation; the aggregate name is threadList.

� The OMThread changes are as follows:
– An OMBoolean attribute named deletionAllowed was added. It is used to

delay the deletion of the HandleCloser classes since inheritance of these
classes from OMThread was replaced with aggregation. The default attribute
value is True, and can be modified using the setDeletionAllowed()
method. The virtual method allowDeleteInThreadsCleanup() was
modified to return this new attribute value, instead of True.

– The eventQueue attribute pointer type was modified in animation to
AOMEventQueue as a result of the replacement of the AOMEventQueue
inheritance from OMEventQueue with aggregation.

� In OMNotifier::notifyToError(), omcout is used instead of omcerr under
#ifdef NO_STDERR.

� There is a new version of OMREGISTER_REACTIVE_CLASS under #ifdef ESTL
(aommacros.h).

� In <Rhapsody install>/Share/LangCpp/osconfig/integrity/
omosconfig.h, additional #define statements were added under #ifdef ESTL.

� In order to generate instrumented code and activate checks that verify ESTL compliance,
you should set the CPP_CG::<Environment>::ESTLCompliance property to True.
168 Upgrade Guide

Upgrading to Version 4.1
The changes in version 4.1 of Rhapsody are listed below.

Changes that Require User Action
This subsection documents the changes that require you to perform some actions when you
upgrade to Version 4.1.

Compiler and RTOS Changes

In Version 4.1, the framework files were cleaned up so there are two sets of files:

� Generic files

The generic files contain generic #ifdef statements whose values are set in the compiler-
and RTOS-specific files.

� Compiler- and RTOS-specific files

These files include RTOS adapter files and a new adapter configuration file. See C++
Framework Changes and C Framework Changes for detailed information about the new
configuration file.

Note: Although there are two sets of files, some of the files co-exist in the same
directory.

This change increases portability. If you are using a custom adapter (not an “out-of-the-box”
adapter) or a custom environment (for code generation), you must perform some upgrade actions.

There are two ways to upgrade a custom adapter:

� Create an RTOS configuration file for your adapter. If your adapter is based on one of the
out-of-the box adapters, you can reuse its RTOS configuration file.

It is recommended that you use this method.
� Merge the compiler- and RTOS-specific #ifdef statements back into the framework

code (as required by previous versions of Rhapsody). If you use this method, take into
account any compiler macros (such as __DIAB) on which your code relies.
Rhapsody 169

Upgrading to Version 4.1
Upgrading Your Custom Environment
To upgrade your custom environment, you must do one of the following:

1. Upgrade the code generation environment by setting the property
<lang>_CG.<Environment>.AdaptorSearchPath to the path to the RTOS
configuration file directory. For example, "$(OMROOT)/LangCpp/osconfig/
VxWorks".

2. Upgrade the framework adapter by creating your own configuration file and defining the
relevant flags. Update the generated makefiles by adding the new search path.

C++ Framework Changes
For each RTOS supported in Version 4.1, there is a corresponding file (omosconfig.h) that
contains RTOS-specific definitions (such as
#define OM_NO_OS_ASSERT), include statements, and macros. The file is located in a
<Rhapsody>\Share\LangCpp\osconfig\<RTOS> directory, where <RTOS> is the name of
the adapter (for example, INTEGRITY, Linux, Nucleus, and so on).

Note
Microsoft, MicrosoftDLL, MSStandardLibrary, MicrosoftWinCE and Borland use the file
Win32/omosconfig.h.

The location of the omosconfig.h file was added to the search path of the adapter makefiles and
generated makefiles. See the abstract operating system definition file
(<Rhapsody>\Share\LangCpp\oxf\os.h) for the list of the generic #define statements
added to support adapter portability.

The following table lists the files under <Rhapsody>\Share\LangCpp that have modified
#ifdef statements because of the cleanup.

Subdirectory File

aom • aomdisp.cpp
• aommacro.h
• aommsg.h
• amothread.h

omcom • om2str.h
• omexp.cpp/h
• omnote.cpp
• omsdata.cpp/h
170 Upgrade Guide

Changes that Require User Action
oxf • event.cpp
• MemAlloc.h
• omabscon.h
• ommemorymanager.h
• omputput.cpp
• omprotected.h
• omstring.h
• omunicode.h
• OMValueCompare.h
• os.h
• oxf.cpp
• rawtypes.h
• rp_framework_dll_definition.
h

tom • tomC.cpp/h
• tominst.cpp
• tommask.h
• tomproxy.cpp
• tomstep.cpp
• tomsys.cpp/h

Subdirectory File
Rhapsody 171

Upgrading to Version 4.1
C Framework Changes
For each RTOS supported in Version 4.1, there is a corresponding file (ricosconfig.h) that
contains RTOS-specific definitions (such as
#define RIC_OS_MUTEX_LOCK_AS_OPERATION), include statements, and macros. In addition,
the RiCOS.h file was split and moved from
<Rhapsody>\Share\LangC\oxf so each RTOS directory has its own copy.

For each RTOS, the files are located in a <Rhapsody>\Share\LangC\osconfig\<RTOS>
directory, where <RTOS> is the name of the adapter (for example, Nucleus, pSOS, and so on).
The location of the ricosconfig.h file was added to the search path of the adapter makefiles
and generated makefiles. See the abstract operating system definition file
(<Rhapsody>\Share\LangC\oxf\RiCOSWrap.h) for the list of the generic #define
statements added to support adapter portability.

The following table lists the files under <Rhapsody>\Share\LangC that have modified #ifdef
statements because of the cleanup.

Subdirectory File

aom • aomcalls.c
• aomeque.h
• aomstep.h
• aomthrd.c/h

omcom • om2str.h
• ommask.h
• omnote.c
• omsdata.c

oxf • RiCOS.h – Split and moved to the
osconfig\<RTOS> directories.

• RiCOSWrap.h
• RiCOxf.c
• RiCProtected.h
• RiCString.c
• RiCTypes.h
172 Upgrade Guide

Changes that Require User Action
Framework File Changes

Several files were added to and removed from the C and C++ framework in Version 4.1. If you are
using custom adapters, you must update your makefiles accordingly.

Note
The Rhapsody in J framework file structure was not modified.

Rhapsody in C++ File Changes
For Rhapsody in C++, .list files were added to all the libraries. These files contain the list of
common files that should be compiled as part of all the adapters.
It is recommended that you use these files to increase the tolerance to file changes.

The following table lists the new, common source files located under
<Rhapsody>\Share\LangCpp.

Subdirectory File Name

aom • AOMMessageSender.cpp/h
• aomoperation.cpp/h

omcom • AnimDebuggerBreakPoint.cpp/h
• AnimOpCallReply.cpp/h
• AnimOpCallRequest.cpp/h
• AnimOperationData.cpp/h
• AnimRegisterOperations.cpp/h
• AnimStringOrPointerField.cpp/h

osconfig */*

oxf omiotypes.h

tom tomoperation.cpp/h

WebComponents • StaticClassElementsAdapters.cpp
• TemplatedAdapters.cpp
• WebComponentsTypes.cpp
Rhapsody 173

Upgrading to Version 4.1
Rhapsody in C File Changes
The following table lists the new, common source files located under
<Rhapsody>\Share\LangC.

The following table lists the files that were removed from <Rhapsody>\Share\LangC.

Subdirectory File Name

osconfig */*

WebComponents • StaticCharAttrWebAdapter.c/h
• StaticCStrAttrWebAdapter.c/h
• StaticDoubleAttrWebAdapter.c/h
• StaticEventReceptionWebAdapter.c/h
• StaticIntAttrWebAdapter.c/h
• StaticLongAttrWebAdapter.c/h
• StaticOperationWebAdapter.c/h
• StaticRiCBooleanAttrWebAdapter.c/h
• StaticRiCStringAttrWebAdapter.c/h
• StaticShortAttrWebAdapter.c/h
• StaticUCharAttrWebAdapter.c/h
• StaticUIntAttrWebAdapter.c/h
• StaticULongAttrWebAdapter.c/h
• StaticUShortAttrWebAdapter.c/h
• StaticWebAdapters.c/h

Subdirectory File Name

omcom omexp.c (was an empty file)

oxf RiCOS.h (moved to the osconfig* directories)
174 Upgrade Guide

Changes that Require User Action
Default Directories for Specification and Implementation Files (C and
C++)

This feature enables you to specify different directories for the specification (.h) and
implementation (.cpp) files generated by Rhapsody. You must perform upgrade actions if you
want to use this feature and you have a custom environment, or if the following properties are
overridden in your model:

� <lang>_CG::<Environment>::CompileSwitches

� <lang>_CG::<Environment>::MakeFileContent

To upgrade, do the following:

1. Add "<include qualifier> $OMDefaultSpecificationDirectory" to the
<lang>_CG.<Environment>.CompileSwitches property.

2. Replace the main file source name "$(TARGET_MAIN)$(CPP_EXT)") with
"$OMMainImplementationFile" in the
<lang>_CG.<Environment>.MakeFileContent property.

Model Checking

� In Rhapsody 4.1, the “Dangling transition” check was modified from Warning to Error.
This change was made to prevent erroneous run-time behavior. As a result, if you have a
statechart that has dangling transitions, you must fix the errors before being able to
generate code. To correct the errors, delete the dangling transitions and redraw them. If
the transitions are going into or coming from a diagram connector, delete and re-create the
diagram connectors.

� Now, statechart checks apply to the classifiers’ activity diagrams as well. As a result,
statechart error checks will affect activity diagrams and prevent code generation.
However, these checks do not apply to:

– Activity diagrams of operations
– Activity diagrams in analysis mode
– Activity diagrams and statecharts whose owner class
CG::Class::ImplementStatechart property is set to False

– Activity diagrams and statecharts owned by a use case or non-generated actor

The statechart checks are as follows:
– Reference to unresolved statechart
– Attribute named the same as a state
– State named the same as its own class, super class or related class
– Dangling transition
Rhapsody 175

Upgrading to Version 4.1
– Default transition not targeted to its state’s substate
– Event and generated state in a class have conflicting names
– Implement statechart property differs for derived and base class
– Or state with no default state
– Join from non-orthogonal states
– Fork to non-orthogonal states
– Reference to unresolved statechart
– Reference to unresolved stereotype
– Static reaction without guard or trigger
– Reactive interface with a statechart or an activity diagram; code cannot be

generated

Rhapsody COM API Changes

This subsection describes the changes made in Rhapsody COM API for Version 4.1. To use the
modified API with your Rhapsody COM clients (such as VB or VBA), you must make these
changes.

New Interfaces
Two new interfaces were added to the API:

� IRPInstance—Represents a classifier instance in the model
� IRPLink—Represents a link between two instances in a relation

Name Changes
Version 4.1 of the COM API includes the following name changes:

� The nestedComponenets property of the IRPComponent interface was renamed to
nestedComponents to correct the spelling error.

� The metaclass property of IRPComponentInstance was renamed from Instance to
ComponentInstance.

The Instance value is now used as the metaclass of the IRPInstance interface.

Behavior Changes
The behavior of the IRPApplication methods getSelectedElement() and
getListOfSelectedElements() was modified to support the new interfaces and collaboration
model for sequence diagrams:
176 Upgrade Guide

Features that Are Disabled on Load
� When an instance is selected in the context of an object model diagram (OMD), the
methods will return IRPInstance instead of IRPClass or IRPActor.

� When a link is selected in the context of an OMD, the methods will return IRPLink
instead of IRPRelation.

� When an instance is selected in the context of a sequence diagram, the methods will return
IRPClassifierRole instead of IRPClass.

� When a message is selected in the context of a sequence diagram, the methods will return
IRPMessage instead of IRPInterfaceItem.

DiffMerge Changes

This subsection describes the changes to the DiffMerge utility that require user actions:

� The metaclass General::DiffMerge and its properties (MergeOutput,
DiffInvocation, and DiffMergeInvocation) were removed in Version 4.1 of
Rhapsody. Therefore, if you previously overrode those properties in your site.prp file,
Rhapsody will ignore them (they will have no effect) unless you move them under
DiffMerge::TextDiffMerge.

Rhapsody searches for the properties for the invocation of the external, textual DiffMerge
tool in the following order:

1. If you overrode the properties using the View > Preferences, Rhapsody looks in the
DiffMerge.ini file.

2. Rhapsody searches through the current configuration management tool metaclass.

3. Rhapsody searches under DiffMerge::TextDiffMerge in the properties file.

� When you upgrade from one version of Rhapsody to a higher one and compare an old
repository file with a new one (without changing either file), the DiffMerge utility might
detect differences due to changes in the Rhapsody repository.

For example, if you compare a version 4.0 class with a 4.1 class, DiffMerge might show
differences resulting from a change in the repository’s main diagram link. To eliminate
the problem, open the old repository in the new version of Rhapsody, and save. This
ensures that the saved unit complies with the new repository structure.

Features that Are Disabled on Load
This subsection describes the new features that are disabled on load of pre-4.1 models for
backwards compatibility. Each topic includes a description on how the feature is disabled so you
can enable it in your model.
Rhapsody 177

Upgrading to Version 4.1
Ignore Code in Prolog/Epilog Properties on Roundtrip (C++)

This feature addresses a full roundtrip problem where Rhapsody attempted to roundtrip code that
was added via the prolog/epilog properties, which could result in unwanted elements being added
to the model.

This feature wraps the prolog/epilog properties with ignore annotations, instructing the roundtrip
tool to not add these parts back to the model.

The feature is disabled by setting all the CPP_CG::<Metaclass>::
MarkPrologEpilogInAnnotations properties to None at the project level (for each metaclass
that contains the prolog/epilog properties).

Robust Type Instrumentation (C and C++)

This feature addresses compilation errors in the generated code due to incorrect instrumentations
of types. The feature is disabled to support users who manually defined serialize and deserialize
operations to resolve the errors.

The feature is disabled by setting the CG::Type::Animate property to Force at the project
level, and for any type where the property was overridden to True.

Instance-Based Linking

This feature causes Rhapsody to connect relations based on the instance multiplicity instead of the
relation multiplicity, which enables you to connect instances based on relations with a multiplicity
of “*”.
178 Upgrade Guide

Features that Are Disabled on Load
Consider the following example:

The feature is disabled to prevent creation of new run-time connections that are not expected in the
existing models. It is disabled by setting the CG::Relation::InstanceBasedLinking
property to False at the project level. The feature is not disabled if the property is already
overridden.

Reflect Data Members in Reverse Engineering

This feature imports attributes as data members (thereby separating the data member from the
accessor and mutator, as well as disabling the generation of the getters and setters).

The feature is disabled in configurations that were used for reverse engineering to maintain
existing behavior. It is disabled by setting the property
<lang>_ReverseEngineering::ImplementationTrait::
ReflectDataMembers to None on configurations that were used for reverse engineering.

Advanced Webify Toolkit Settings

This feature enables you to fine-tune the Web server settings on a per-configuration basis (using
the configuration’s Settings tab). This feature was added to resolve limitations related to per-
component settings done by the webconfig.c file.
Rhapsody 179

Upgrading to Version 4.1
The feature is disabled for components associated with the webconfig.c file.

Analysis Sequence Diagrams

Using this feature, you can create sequence diagrams with instances and messages that are not
realized by model elements.

The feature is disabled to maintain the pre-4.1 behavior of sequence diagram modeling. It is
disabled by setting the property SequenceDiagram::General::ClassCentricMode to True
at the project level.

Property Changes
This subsection documents the property changes for Version 4.1. Note that the properties are
upgraded automatically—they do not require any action on your part.

Renamed Properties

The following properties were renamed in Version 4.1 to clarify their roles:

� CG::Type::InstrumentationFunctionName was renamed (and moved) to
<lang>_CG::Type::AnimSerializeOperation.

� The MscGe subject was renamed to SequenceDiagram.
� General::Graphics::ScaleToFitExportedDiagram was renamed to

General::Graphics::ExportedDiagramScale.
� MscGe::General::display_formals was renamed to

SequenceDiagram::General::ShowArguments.
180 Upgrade Guide

Property Changes
� <lang>_ReverseEngineering::ImplementationTrait::
IgnoreIncludes was renamed to
<lang>_ReverseEngineering::ImplementationTrait::
AnalyzeIncludeFiles.

Moved Properties

The following properties were moved in Version 4.1:

� PackageEventIdRange moved from CG::Component to CG::Package to increase the
flexibility and user control over the events ID range reserved for a given package.

� <lang>_CG::Type::Animate moved to CG::Type::Animate as part of the robust
type instrumentation functionality.

� ImplementationEpilog, ImplementationProlog, SpecificationEpilog, and
SpecificationProlog moved from CG::Dependency to
<lang>_CG::Dependency to match the location in other metaclasses.

Superseded Properties

The CG::File::GenerateInMakefileOnly property was replaced by
CG::File::AddToMakefile. The new property enables you to control the generation of a file
separate from the generation of the makefile, so you can handle a file that contains only text as a
source file.

Properties Deleted from the Factory File

The following properties were removed from the factory properties file in
Version 4.1:

� CG::Attribute::InstrumentationFunctionName was removed because of
redundancy. You can specify a serialization operation for a specific argument by
overriding the CG::Type::AnimSerializeOperation for the given attribute.

� CG::Component::PackageEventBaseIdAlgorithm was removed. If you overrode
this property, the override still affects the generated code and the property will move
automatically to the CG::Package metaclass.

� General::Graphics::FlickerFree was removed because it had no effect.
� General::Model::SearchPath was removed because it had no effect.

Changed Properties

In Version 4.0, the CG::Class::CreateImplicitDependencies property did not affect the
generated code (therefore, the #include was generated even when the property was set to
Rhapsody 181

Upgrading to Version 4.1
False). This problem was corrected in Version 4.1, so type declarations are no longer analyzed
when the property is set to False—and, as a result, the #include is not generated.

Additional Information
This subsection contains additional information.

Enhanced C++ Standard Library (STL) Support

This feature was added as part of the support for the Microsoft Visual Studio.NET environment,
but it can be useful for other RTOS adapters as well. This feature enables you to:

� Compile the framework to use the standard library streams without the command use
namespace std; by compiling the framework with the OM_STL compilation flag.

� Use generic stream types mapped to either the vendor streams or standard library streams
based on the OM_STL compilation flag. This is done by using om<stream element>
instead of <stream element>. For example, use omcout instead of cout. The
omstreams are defined in
<Rhapsody>/Share/LangCpp/oxf/omiotypes.h.

Reverse Engineering of #include Statements Not Found by the Parser
(C and C++)

This feature imports the #include statements that were not found by the parser into the
SpecIncludes and ImpIncludes properties.

You can disable the feature by setting the property
<lang>_ReverseEngineering::ImplementationTrait::
CreateDependencies to DependenciesOnly.
182 Upgrade Guide

Additional Information
C++ Framework Changes

In addition to the changes described in C++ Framework Changes, the Rhapsody 4.1 C++ framework
includes the following changes:

� The attribute count_ (unsigned long) was added to OMList and OMMap to improve
the performance of getCount() from O(N) to O(1).

� Two virtual methods were added to OMOSThread to support RTOSes that require socket
initialization and cleanup for each task (GHS INTEGRITY). The methods are not pure
virtual; therefore, there is no need to implement them on other adapters. The new methods
are as follows:

– virtual void InitCommunicationLayer() {}
– virtual void cleanupCommunicationLayer() {}

� Two changes were made to the INTEGRITY adapter:
– The task (_omCloseHandle) is responsible for cleanup after terminating

tasks. The cleanup is required to prevent RTOS resource leaks.
– In animation, only two predefined tasks initialize the TCP/IP layer. User tasks

no longer send animation messages directly.

Modeling Changes

The following sections describe modeling behavior changes to consider when upgrading to
Rhapsody 4.1.

Inherited Statechart Coloring
� Overridden entry and exit actions cause the state to change coloring to None inherited.
� An inherited And state previously colored as None inherited will be colored with

inheritance coloring due to the addition of orthogonal states.
� Some transitions will be colored as overridden even though in previous versions they were

shown as not overridden. This occurs because the color reflects the internal state of the
transition that was overridden or modified in the derived statechart.

Sequence Diagrams
� In instance line text, the format <Name> that referred to <Class Name> now refers to

<Classifier Role Name>. Old sequence diagrams with that name format will change
to :<Class Name>.

� When a Rhapsody 4.0.1 model has a sequence diagram that contains an instance line that
represents a static instance a path name of the form
“<package_name>::<instance_name>:<class_name>”, you might need to save
and reopen the model in order to have Rhapsody display the instance name properly in the
sequence diagram.
Rhapsody 183

Upgrading to Version 4.1
� When set to True, the property SequenceDiagram::General::ClassCentricMode
enables you to create a class by typing <Class Name>, which in turn changes the label
on the instance line to :<Class Name>.

� When you delete an operation or class in the browser, the only way to remove them
automatically from the sequence diagram is to set the property
SequenceDiagram::General::CleanupRealized to True.

� To realize messages automatically when you rename them, set the property
SequenceDiagram::General::RealizeMessages to True.

� By default, names of instance lines are enclosed in a bounding box. To remove these
boxes, set the property AddBoxesAroundInstanceNames (under
SequenceDiagram::InstanceLine) to False.

Configuration Management Changes

The Check Out Branch button was removed from the CM and List Archive dialog boxes. To
reactivate it, add the following property:

ConfigurationManagement::General::EnableCheckoutBranch ="True"

By default, this property is not available in the .prp file.

Code Generation Changes

� There was a defect that made the code generator ignore new lines added to the end of user
code. As a result of the fix made in Rhapsody 4.1, some new lines might appear in your
code after the first generation.

� In large models, event IDs might change if you did not explicitly set them.
� When an active or reactive class (A) inherits from another active or reactive class (B), the

call to start() is removed from startBehavior() operation of class A. This is done
because B::startBehavior() is called from A::startBehavior()—therefore, the
call to start() in A::startBehavior() is redundant.

� A fix in code generation remove redundant commas at the end of block statements. In
Rhapsody 4.1, "if (...) {...};" is replaced with "if (...) {...}" in the
automatically generated code.
184 Upgrade Guide

Upgrading to Version 4.0.1 MRx
The changes in versions 4.0.1 MRx of Rhapsody are listed below.

� Upgrading to Version 4.0.1 MR1

� Upgrading to Version 4.0.1 MR2

Upgrading to Version 4.0.1 MR1
This subsection documents the changes to the framework and properties between Rhapsody 4.0
and Rhapsody 4.0.1 MR1. Note that when you upgrade to Version 4.0.1 MR1, no additional user
modifications are necessary.

Properties

The following properties have been added to this release of Rhapsody:

� CG::Argument::Animate—Enables or disables instrumentation of a specific argument.
� ConfigurationManagement::ClearCase/PVCS/SCC/SourceIntegrity

– DiffInvocation—Specifies the command to invoke the external, textual
DiffMerge tool

– DiffMergeInvocation—Specifies the command to invoke the external,
textual DiffMerge tool

– MergeOutput—Specifies the file that will hold the results of a merge
operation

See the Properties Reference Guide for more information.

Rhapsody in C++-Specific Changes

Version 4.0.1 MR1 includes the following changes to the C++ framework:

� The misspelled OMUAbstructContainer was changed to OMUAbstractContainer; a
typedef was added for backward compatibility.
Rhapsody 185

Upgrading to Version 4.0.1 MRx
� In OMGuard, a parameter (with a default value) was added to the constructor for animation
support.

� The QNX and Nucleus (C and C++) adapters were upgraded.
� In OMTimerManager, simulated time support was enhanced by the following changes:

– void incNonIdleThreadCounter()—This method increases the
nonIdleThreadCounter attribute.

– void decNonIdleThreadCounter()—This method decreases the
nonIdleThreadCounter attribute.

– long nonIdleThreadCounter—Is a counter of the non-idle threads in the
system. This is used in simulated time to determine whether a timer tick
should be issued.

Properties
The following properties have been added:

� In the property STLContainers::Qualified::Remove, the OMValueCompare usage was
modified from "OMValueCompare<$keyType,$target*>($item)" to
"OMValueCompare<const $keyType,$target*>($item)" to conform to the C++
standard.

� There are three new properties under CORBA::<ORB>:
– InitializeORB—Specifies the ORB initialization routines
– InitialInstance—Specifies any additional initial instance routines

required by an ORB
– ClientMainLineTemplate—Enables you to add code to the main function

of a CORBA client
See the Properties Reference Guide for more information about these new properties.

Rhapsody in J-Specific Changes

The isIn() methods are generated to all states, regardless of whether the states are inherited. This
behavior is necessary because the derived class has no access to the super inner class that
implements the isIn().

Upgrading to Version 4.0.1 MR2
When you upgrade to Version 4.0.1 MR2, no additional user modifications are necessary.
186 Upgrade Guide

Upgrading to Version 4.0.1 MR2
Rhapsody in C-Specific Changes

In RiCMap, RiCMapKeyIsGrater was renamed to RiCMapKeyIsGreater to correct the
spelling error. The old name (RiCMapKeyIsGrater) is still available via typedef.
Rhapsody 187

Upgrading to Version 4.0.1 MRx
188 Upgrade Guide

Upgrading to Version 4.0
The changes in version 4.0 of Rhapsody are listed below.

Changes that Require Model Modifications
This subsection documents the changes that require you to modify your model.

Generation of Implicit Dependencies

Rhapsody tries to understand the user model and adds missing dependencies in the code based on
type declarations.

Consider the following model:

Rhapsody will add a dependency (#include) from A to B, due to the use of B* in A::foo().

This is not new behavior. However, in previous versions of Rhapsody, if the model has two classes
named B (say, in different packages), Rhapsody would have created a dependency to one of the B
classes randomly. Rhapsody 4.0 corrects this behavior and does not create any dependency—
letting you figure out the correct dependency.
Rhapsody 189

Upgrading to Version 4.0
This change of behavior might result in compilation errors in models that relied on the implicit
dependencies—and got away with it.

Note
To make Rhapsody stop generating implicit dependencies, set the
CG::Type::GenerateDeclarationDependency property to False at the project level.

Calling an Overridden initRelations() Operation

Rhapsody 4.0 calls user-overridden initRelations() operations. To avoid backward
compatibility issues, this ability is disabled in pre-4.0 models by setting the CG::Class/
Package::CallUserInitRelations property to False at the project level.

However, because this property was introduced in Rhapsody version 3.0.1 without this backward
compatibility, clients that upgrade from version 3.0.1 should consider removing the override.
Clients that upgrade from version 3.0 will get the same behavior.

Relation Properties

Rhapsody 4.0 relation properties were improved to give you more flexibility and control over
custom relation implementation. This change has two side effects, as described in the following
subsections.

Keywords of Relations’ Signature Properties
The $target keyword in the relation signature properties is now resolved correctly to the relation
target class name. Therefore, you should replace the keyword with $cname in the site properties
(site.prp) file. Note that Rhapsody does this automatically for properties that are overridden in
the model).

The affected properties (under <lang>_CG/CG::Relation) are Add, Clear,
CreateComponent, DeleteComponent, Find, Get, GetAt, GetEnd, GetKey, Remove,
RemoveAt, RemoveKey, and Set.

For example:

// If your site file has this...
Subject CG

Metaclass Relation
Property Get String "$targetGet"

end
end

// You must replace it with this.

Subject CG
Metaclass Relation

Property Get String "$cnameGet"
190 Upgrade Guide

Changes that Require Model Modifications
end
end

Keywords Used in the Set Property
In the Set property of the EmbeddedScalar and Scalar metaclasses under the relations
implementation properties, the $target keyword is not resolved correctly as the relation target
type. Therefore, it should be replaced with $item—the set method argument name.

The keywords were replaced in the factory properties, but if either of the following cases applies to
your model, you must upgrade the properties manually:

� You are using custom relation implementation properties, defined at the site properties
level.

� The Set property is overridden in the model.
For example:

// Pre-4.0 property value
Subject MyContainers

Metaclass Scalar
Property Set String "$cname = $target"

end
end

// Should be replaced with
Subject MyContainers

Metaclass Scalar
Property Set String "$cname = $item"

end
end

Framework Event Consumption API Changes (C and C++)

The Rhapsody 4.0 framework was enhanced to allow you to handle unconsumed events and
triggered operations. See Handling Unconsumed Events and Triggered Operations for the
description of the additional API. To support this new functionality, the reactive
consumeEvent() signature was modified to return the event consumption status.

If your model customizes the event consumption by overriding consumeEvent(), you must
modify the return type of the overridden method, as follows:

� For Rhapsody in C++, modify the consumeEvent() return type to the enum
OMReactive::TakeEventStatus.

� For Rhapsody in C, modify the consumeEvent() return type to RiCTakeEventStatus.
Rhapsody 191

Upgrading to Version 4.0
Event Handling in Null Transitions (C and C++)

Rhapsody 4.0 introduces generic handling of derived events. See Generic Handling of Derived
Events for more information.

A side-effect of this change is that the event consumed before a null transition cannot be accessed
from the null transition. If your model uses this kind of access, you must modify the model and
store the event data in a user-defined attribute.

The following example shows such a statechart.

Guarded Class Implementation (C++)

In order to resolve several issues related to inheritance from protected classes, Rhapsody 4.0
changes the implementation of guarded classes. The new guarded classes’ implementation
replaces the inheritance from OMProtected to aggregation.

As a result of this change, the polymorphism of both active classes and guarded classes to
OMProtected no longer exists—that is, you can no longer pass an active or guarded class to an
interface that expects an OMProtected class. If your model relies on this polymorphism, use the
new interface for active/guarded classes, getGuard().

The change from inheritance to aggregation involves the following addition to the guarded class
API (by adding the OMDECLARE_GUARDED macro to your class declaration):

public:
inline void lock() const;
inline void unlock() const;
inline const OMProtected& getGuard() const;

private:
OMProtected m_omGuard;

The same API was added to OMThread.
192 Upgrade Guide

Automatic Upgrades Done by Rhapsody
This additional API means that calling lock() and unlock() on a guarded class will still work.

Consider the following code:

#define GUARD_RESOURCE(guardedResource) OMGuard
guard(guardedResource)

Replace the macro implementation to the one shown in the following code:

#define GUARD_RESOURCE(guardedResource) \
OMGuard guard((guardedResource).getGuard())

Configuration Management of the RPY File in SCC Mode

This change affects the backward compatibility of Rhapsody.

You must complete the following upgrade steps for existing Rhapsody projects that have already
been checked in to an SCC archive:

1. Create a directory/folder in the CM tool with the name of the directory that holds the .rpy
file.

2. In the CM tool, copy the XXX_rpy directory to the directory you just created.

3. Disconnect from the existing archive.

4. Change the value of the property
ConfigurationManagement::SCC::SupportTreeRepository to an empty string.

5. Reconnect to the archive.

Automatic Upgrades Done by Rhapsody
Rhapsody 4.0 will upgrade your model the first time it is loaded. The upgrade of the model is done
by setting properties at the project level, in order to conform to the existing (pre-4.0) code.

Note
Unless explicitly stated otherwise, the upgrade is done only for pre-4.0 models, not for
models saved in the beta version of 4.0.

Clean Default Values for Attributes (C and C++)

Due to a defect in previous versions of Rhapsody, the default value field for attributes sometimes
contained invalid values. Because Rhapsody 4.0 generates initialization code based on the default
value of attributes, the value is set to an empty string when you first load the model in Rhapsody
4.0.
Rhapsody 193

Upgrading to Version 4.0
For Rhapsody in C++, modifying the model does not affect static attributes.

Note that for any attribute whose default value is cleaned, a message is added to the load log file.

Smart Generation of Package Code

Rhapsody 4.0 generates the package code only when it is meaningful (when the package contain
significant elements such as instances, types, functions, and so on.). However, to avoid upgrade
issues, this will not affect pre-4.0 models.

To enable this feature, uncheck the override on the CG::Package::GeneratePackageCode
property (at the project level).

Generation of Filled-Diamond Relations

Rhapsody 4.0 implements filled-diamond relations. When creating a filled-diamond relation, you
can select whether it will be implemented as a composite or an aggregation by setting the property
CG::Relation::FilledDiamondScheme to Composition (the default value) or
Aggregation.

Because the preview versions (beta and prerelease) of Rhapsody 4.0 created only aggregation
code, the property is set to Aggregation when loading models created with the preview versions.

When implementing a composite, Rhapsody generates the same code as it would generate for a
composite relation. For example:

When implementing a composite, Rhapsody generates the same code as it would generate for
aggregation relations. For example:
194 Upgrade Guide

Automatic Upgrades Done by Rhapsody
Rhapsody 195

Upgrading to Version 4.0
Relation Properties

Rhapsody 4.0 relation properties were improved to give you more flexibility and control over
custom relation implementations. As a result, Rhapsody will make the following changes in your
model:

� Keywords of relations’ signature properties

The $target keyword in the relation signature properties is now resolved correctly to
the relation target class name. Therefore, the keyword is replaced with $cname for any
overridden property.

The affected properties (under <lang>_CG/CG::Relation) are Add, Clear,
CreateComponent, DeleteComponent, Find, Get, GetAt, GetEnd, GetKey,
Remove, RemoveAt, RemoveKey, and Set.

� Rhapsody in C++/Java GetAt default signature

The GetAt default signature was modified from get<relation name>() to
get<relation name>At. This change was made to avoid possible collision between
Get and GetAt.

To override this change at the project level, set the <lang>_CG::Relation::GetAt
property value to "get$cname:c".

� Change in the Type property name

The Type property name in the EmbeddedScalar and Scalar metaclasses (under the
relations’ implementation properties) was renamed to CType). However, if the CType
property is not found, the Type property is used to generate the code.

Calling an Overridden initRelations() Operation

Rhapsody 4.0 calls user-overridden initRelations() operations. To avoid backward
compatibility issues, this ability is disabled in pre-4.0 models by setting the CG::Package/
Class::CallUserInitRelations property to False at the project level.

However, because this property was introduced in Rhapsody version 3.0.1 without this backward
compatibility, clients that upgrade from version 3.0.1 should consider removing the override.
Clients that upgrade from version 3.0 will get the same behavior.

Generalization (C++)

Rhapsody 4.0 introduces full support in modeling of generalization (inheritance). As a result, the
properties CPP_CG::Class::VirtualInherits/PrivateInherits became obsolete. The
property content is converted to the model elements, and their content is deleted.
196 Upgrade Guide

Automatic Upgrades Done by Rhapsody
The properties’ content will remain only when Rhapsody cannot convert all the content to model
elements.

Cleanup of the OXF Namespace (C++)

As part of Rhapsody 4.0 development, a major effort was done to clean up the OXF namespace.
See Global Namespace Cleanup for details on the cleanup.

To support pre-4.0 users of the framework, a new file, OMObsolete.h, was added to the
framework. This file enables user code to continue using the pre-4.0 framework API (generated
code uses the new API).

The OMObsolete.h file is included automatically as a standard header.

To remove this include, remove the override on the CPP_CG::Component::StandardHeaders
at the project level.

Generated Class Name for Packages (Java)

In Rhapsody 4.0, the default name of the class generated for a package is <package
name>_pkgClass.

When loading pre-4.0 models that did not modify their default, it is set back to <package name>
by overriding the property Java_CG::Package::PackageClassNamePolicy at the project
level, and setting the property value to Default.

Changes in Property Names or Locations

This subsection documents the properties that were moved or renamed in the Rhapsody factory
properties file (factory.prp). If the properties are overridden in your model, Rhapsody will
automatically move or rename the properties.

If the properties were overridden in your site properties (site.prp), Rhapsody will detect the
properties in their previous location and name—there is no need to modify the site file.

Note
If you overrode these properties in the site file (site.prp), Rhapsody will find the
property without any modification to the file.

The affected properties are as follows:

� CG::Configuration::AllowCollusionWithComponentName was renamed
AllowCollisionWithComponentName.

� CG::Attribute::AnimateAttributes was renamed Animate.
Rhapsody 197

Upgrading to Version 4.0
� CG::Package::EventsBaseId moved to the language-specific subjects (<lang>_CG).
� <lang>_CG::<environment>::CPPCompileSwitches was renamed

<lang>_CG::<environment>::CompileSwitches.
� CPP_CG::Class::VirtualInherits/PrivateInherits were removed from the

factoryC++.prp as part of Rhapsody 4.0 generalization functionality. Overridden
properties values will be added to your model.

VariableInitializationFile Property

Rhapsody 4.0 recognizes a constant global variable when the declaration begins with const, and
initializes the constant global variable in the package specification file.

Consider the following example:

The model contains a package P with a constant global variable MAX_SIZE, which is declared as
const int %s and has an initial value of 50. Rhapsody will generate the following code in P.h:

const int MAX_SIZE(50);

This is new behavior for Rhapsody. To avoid backward compatibility issues, Rhapsody will
override this behavior when loading pre-4.0 models, forcing the initialization to be in the package
implementation file. This is done by overriding the
<lang>_CG::Attribute::VariableInitializationFile property at the project level, and
setting its value to Implementation.

The generated code for pre-4.0 models would be:

P.h:

extern const int MAX_SIZE;

P.cpp:

const int MAX_SIZE(50);

Changes in the Framework API
This subsection describes the changes to the framework API.

Rhapsody in C++-Specific OXF Changes

This documents Rhapsody in C++-specific changes to the OXF.

Global Namespace Cleanup
A special effort was made in Rhapsody 4.0 to clean up the usage of the global namespace. This
entailed the following changes:
198 Upgrade Guide

Changes in the Framework API
� All framework classes use the OM prefix. The only exception is the OXF class.
� Most of the global functions were moved to be static operations of the appropriate classes.
� A new file, OMObsolete.h, was added to the framework. This file holds a set of

typedef and #define statements that redefine the old methods and type to the new
names. You can include this file instead of changing your code. Note that the auto-
generated code uses the new type/operations names.

The following table lists the name changes made to the OXF between version 3.0.1 and 4.0.

Rhapsody 3.0.1 OXF Element Rhapsody 4.0 OXF Element

Classes and Types

State OMState

AndState OMAndState

ComponentState OMComponentState

FinalState OMFinalState

LeafState OMLeafState

OrState OMOrState

Timeout OMTimeout

NullValue OMNullValue

Constants

containersNullBlock OMContainersNullBlock

Null_id OMEventNullId

Timeout_id OMEventTimeoutId

CancelledEvent_id OMEventCancelledEventId

AnyEvent_id OMEventAnyEventId

OMStartBehavior_id OMEventStartBehaviorId

OXFEndEvent_id OMEventOXFEndEventId

Global Variables

theSysTimer OMThreadTimer::instance()

Global Reactive Operations

isCurrentEvent() OMReactive::IsCurrentEvent()

isValidOMReactive() OMReactive::isValid()

Notifications

NotifyToError() OMNotifier::notifyToError()
Rhapsody 199

Upgrading to Version 4.0
OMAbstractMemoryAllocator
An empty virtual destructor was added to support user-defined memory managers.

OMEvent
The inheritance from AOMEvent in instrumentation (animation and tracing) was removed as part
of the support for partial animation (see Partial Animation).

A new virtual operation, OMBoolean isTypeOf(short), was added to support generic handling
of derived events (see Generic Handling of Derived Events).

OMTimeout
The class name was modified from Timeout to OMTimeout as part of the global namespace
cleanup (see Global Namespace Cleanup).

The following changes were made to support partial animation:

OMNotifyToError() OMNotifier::notifyToError()

NotifyToOutput() OMNotifier::notifyToOutput()

OMNotifyToOutput() OMNotifier::notifyToOutput()

NOTIFY_TO_ERROR() OM_NOTIFY_TO_ERROR()

NOTIFY_TO_OUTPUT() OM_NOTIFY_TO_OUTPUT()

Framework Main Global Functions

OXFInit() OXF::init()

OXFStart() OXF::start()

OXFEnd() OXF::end()

OXFDelay() OXF::delay()

OS Layer

theOSFactory() OMOSFactory::instance()

OSOXFInitEpilog() OMOS::initEpilog()

OSOXFEndProlog() OMOS::endProlog()

OSOXFEndApplication() OMOS::endApplication()

String Manipulation Global Functions

strcmpNoCase() OMStrcmpNoCase()

destructiveString2X() OMDestructiveString2X()

Rhapsody 3.0.1 OXF Element Rhapsody 4.0 OXF Element
200 Upgrade Guide

Changes in the Framework API
� A new friend class, OMFriendTimeout, was added to animate the timeout class in
instrumented mode. The friend class declaration is empty for
non-instrumented mode.

� The following instrumentation methods were removed from the class interface:
– getEventClass()

– cserialize()

See Partial Animationfor more information.

The timeout state attribute that was added only in instrumentation mode is now part of the
OMTimeout interface in non-instrumented mode as well, and is set to NULL.

OMStartBehaviorEvent
The following changes were made to support partial animation:

� A new friend class, OMFriendStartBehaviorEvent, was added to animate the start
behavior event class in instrumented mode. The friend class declaration is empty for
non-instrumented mode.

� The following instrumentation methods were removed from the class interface:
– getEventClass()

– cserialize()

See Partial Animationfor more information.

OMCollection
The default, initial collection size was reduced from 256 elements to 20 elements to reduce the
default memory usage by the collection.

The size attribute moved to the base template class (OMStaticArray) to support the
enhancement for user control over memory allocated by the framework (see User Control over
Framework Memory Management (C++)).

OMMap
The private remove() method was renamed removeItem() to support the OSE soft-kernel.

OMMemoryManager
The OMDELETE macro declaration was modified from OMDELETE(object) to
OMDELETE(object, size). The new parameter was added to support the enhancement for user
control over memory allocation (see User Control over Framework Memory Management (C++)).

The signatures of the new and delete operators declared in the macro
OM_DECLARE_FRAMEWORK_MEMORY_ALLOCATION_OPERATORS were modified to support the
Rhapsody 201

Upgrading to Version 4.0
enhancement for user control over memory allocation (see User Control over Framework Memory
Management (C++)). The signature changes are as follows:

� void* operator new(size_t) was modified to:
 static void* operator new(size_t NEW_DUMMY_PARAM)

In this syntax, NEW_DUMMY_PARAM is set to “size_t=0” for every compiler
except for DIAB (where it is set to nothing).

� void* operator new[] (size_t) was modified to:
 static void* operator new[] (size_t size
 NEW_DUMMY_PARAM)

� void operator delete (void * object) was modified to:
 static void operator delete (void * object,
 size_t size)

� void operator delete[] (void * object) was modified to:
 static void operator delete[] (void * object,
 size_t size)

Protection against early destruction on application exit was added. This protection ensures that the
internal memory manager singleton will be valid throughout the termination of the application. To
achieve this guarantee, the following members were added to the class:

� OMMemoryManager(bool)—A constructor
� ~OMMemoryManagerManager()—A destructor
� static bool _singletonDestroyed—A destruction indicator flag

OMNotifier
This is a new class that encapsulates the notifyToError() and notifyToOutput()
operations. It was added as part of the global namespace cleanup (see Global Namespace Cleanup).

OMProtected
As part of the enhancements made for user control over framework memory allocation (see User
Control over Framework Memory Management (C++)), there was a need to create a protected object,
but postpone the creation of the RTOS mutex. The following operations were added to
OMProtected interface to support this need:

� A new constructor was added to the class, OMProtected(OMBoolean createMutex),
to allow creation of the RTOS mutex later in the protected object lifetime, by calling the
new initializeMutex() operation.

� A new operation, void initializeMutex(), was added to OMProtected to create the
RTOS mutex (if it is not already created).
202 Upgrade Guide

Changes in the Framework API
As part of the changes of the implementation of protected classes (see Temporary Files), a new
operation, const OMProtected& getGuard() const, was added to allow handling of guarded
classes and classes that inherit from OMProtected uniformly.

A new macro, OMDECLARE_GUARDED, is defined. This macro is used to aggregate OMProtected
objects inside guarded classes instead of inheritance from OMProtected. The macro is defined as
follows:

#define OMDECLARE_GUARDED \
public: \
 inline void lock() const { m_omGuard.lock(); } \
 inline void unlock() const { m_omGuard.unlock(); } \
 inline const OMProtected& getGuard() const { \
 return m_omGuard; } \
private: \
 OMProtected m_omGuard;

OMGuard
The copy constructor and assignment operator of OMGuard were explicitly disabled to avoid
erroneous unlock of the guarded object mutex.

The GUARD_OPERATION macro was modified to support the aggregation of OMProtected in
guarded classes as well as inheritance from OMProtected by guarded classes.

OMReactive
The inheritance of OMReactive from AOMInstance in instrumented mode was removed as part
of partial animation support (see Partial Animation).

The consumeEvent() return type was modified to TakeEventStatus. This change was made
to support handling of unconsumed events and triggered operations (see Handling Unconsumed
Events and Triggered Operations).

A new value was added to the OMReactive::TakeEventStatus enum to support handling of
unconsumed events (see Handling Unconsumed Events and Triggered Operations). The new value
is OMTakeEventCompletedEventNotConsumed and its integer value is 0. The existing values
were increased by one.

The following operations were added to OMReactive:

� OMBoolean IsCurrentEvent(short eventId) const—Checks whether a given
event id matches the currently processed event. This operation replaces the global
function as part of the global namespace cleanup (see Global Namespace Cleanup).

� const OMEvent* getCurrentEvent() const—Gets the currently processed event.
� void setEventGuard(const OMProtected&)—Sets the event handling guard. This

method is in addition to the method void setEventGuard(const OMProtected*).
Rhapsody 203

Upgrading to Version 4.0
� void handleEventNotConsumed(OMEvent*)—This is a virtual method that is called
when an event is not consumed by the reactive class. This method is part of the
framework support for handling unconsumed events (see Handling Unconsumed Events
and Triggered Operations).

� void handleTONotConsumed(OMEvent*)—This is a virtual method that is called
when a triggered operation is not consumed by the reactive class. This method is part of
the framework support for handling unconsumed triggered operations (see Handling
Unconsumed Events and Triggered Operations).

The eventNotConsumed definition moved from state.h to omreactive.h, and was modified
from 0 to OMReactive::OMTakeEventCompletedEventNotConsumed (which also equals 0). This
was done to support handling of unconsumed events (see Handling Unconsumed Events and
Triggered Operations).

The eventConsumed definition moved from state.h to omreactive.h, and was modified
from 1 to OMReactive::OMTakeEventCompleted (which is also equals 1). This was done to
support handling of unconsumed events (see Handling Unconsumed Events and Triggered
Operations).

The rootState_serializeStates() method, which is declared only in instrumented mode,
was modified from virtual to regular (non-virtual) operation as part of the support for partial
animation.

OMStaticArray
A new attribute, int size, was added to the template class. This attribute moved from the
derived OMCollection template class to support user control over framework memory allocation
(see User Control over Framework Memory Management (C++)).

In addition, a getSize() operation was added.

OMString
All string operators that could be part of the class direct interface were moved into the class
declaration.

OMThread
The inheritance from OMProtected was replaced with aggregation. As a result, the following
were added to the OMThread interface:

� void lock() const—Puts a lock on the thread mutex.
� void unlock() const—Unlocks the thread mutex.
� const OMProtected& getGuard() const—Gets the reference to the OMProtected

part.
� OMProtected m_omGuard—Is a private OMProtected part.
204 Upgrade Guide

Changes in the Framework API
omGetEventQueue(), a virtual, public method was added. This method returns the event queue.
It is not used inside the framework.

The private init() method was renamed _initializeOMThread().

The execute() method implementation was modified to improve event dispatching
performance.

OMUCollection
The default initial size of a collection was reduced from 256 to 20 elements. This change was
made to reduce the default memory requirements of the collection.

OMState
The class name was modified from State to OMState as part of the global namespace cleanup
(see Global Namespace Cleanup). In addition, the “OM” prefix was added to all the classes derived
from OMState.

A new macro, IS_EVENT_TYPE_OF(id), was added to support generic derived event handling
both in flat and reusable statechart implementation (see Generic Handling of Derived Events).

The macro OM_DECLARE_FRAMEWORK_MEMORY_ALLOCATION_OPERATORS was added to the
class declaration to support enhanced user control over framework memory allocation (see User
Control over Framework Memory Management (C++)).

The following elements that were defined only in instrumented mode are now defined in non-
instrumented mode as well to support partial animation (see Partial Animation):

� The stateHandle attribute

In non-instrumented mode, the attribute value is always set to NULL.
� The getConcept() virtual method

In non-instrumented mode, the operation always returns NULL.
� The serializeStates() virtual method

In non-instrumented mode, the operation implementation is empty.

OMTimerManager
The OMThreadTimer class, which was derived from OMTimerManager, was merged into the
base class because the separation of the timer manager into two classes was artificial. You can still
use OMThreadTimer, which is a typedef of OMTimerManager.
Rhapsody 205

Upgrading to Version 4.0
theSysTimer global instance was replaced with a singleton instance. As a result, the following
operations were added to the class interface:

� static OMTimerManager* getStaticTimerManager()—This method has two
overrides, one that actually creates the singleton instance, and the other that lets you get a
reference to the instance, if it was created.

� static void clearInstance()—Cleans up the singleton instance of the timer
manager.

� static OMBoolean m_timerManagerSingletonDestroyed—This static attribute
is used to indicate that the timer manager singleton is destroyed and should not be
accessed.

The following elements that were defined only in instrumented mode are now defined in non-
instrumented mode as well to support partial animation (see Partial Animation):

� void suspend()—Sets the suspended attribute to TRUE
� void resume()—Sets the suspended attribute to FALSE
� OMBoolean suspended—Used by animation to control the application execution

OMValueCompare
The OMValueCompare template class moved from rawtypes.h to OMValueCompare.h to
allow its usage when the framework is not compiled with the OM_USE_STL compilation flag.

The class now uses the std:: namespace directly. If your compiler does not support the std
namespace and you are using qualified relations and STLContainers for relation
implementation, you must compile your application with the NO_STD_NAMESPACE compilation
flag.

Adapter Changes
OSAL global functions were replaced with static member functions as part of the global
namespace cleanup (see Global Namespace Cleanup).

The macro OM_DECLARE_FRAMEWORK_MEMORY_ALLOCATION_OPERATORS was added to the
declaration of the following classes to support enhanced user control over framework memory
allocations (see User Control over Framework Memory Management (C++)):

� OMOSTimer

� OMOSThread

� OMOSEventFlag

� OMOSMutex

� OMOSSemaphore

� OMOSMessageQueue
206 Upgrade Guide

Changes in the Framework API
� OMOSConnectionPort

� OMOSSocket

� OMEventQueue

For OMOSSocket, the lsbFirst attribute was removed from all the implementations of the in-
house adaptors. The attribute is redundant because the htons() standard function is used instead.

For Microsoft adapters, the OM_DECLARE_FRAMEWORK_MEMORY_ALLOCATION_OPERATORS
macro was added to the declaration of the following classes to extend user control over memory
allocated in the framework (see User Control over Framework Memory Management (C++)):

� NTHandleCloser

� OMNTCloseHandleEvent

For the VxWorks adapter, the OM_DECLARE_FRAMEWORK_MEMORY_ALLOCATION_OPERATORS
macro was removed from the adapter classes’ declaration because it is no longer needed (the
macros were added in the generic base classes).

For the Linux adapter, a new static method was added to LinuxThread to handle deletion of
active classes. The method signature is as follows:

static void endThreadHandler(int)

Rhapsody in C-Specific OXF Changes

This subsection documents Rhapsody in C-specific changes to the OXF.

RiCCollection
The default, initial size for collections was reduced from 256 to 20 elements to reduce the memory
requirements of the collection.

A new method was added to the collection to remove the element in the specified position, which
might modify the collection order. The method signature is as follows:

void RiCCollection_removeAt(RiCCollection *const, unsigned int)

RiCEvent
A new inline operation (#define), RiCEvent_isTypeOf(event,id), was added as part of the
generic, derived event handling. Because Rhapsody in C does not support inheritance, this API
was added mainly for future use.

RiCReactive
The following changes were made to support handling of unconsumed events (see Handling
Unconsumed Events and Triggered Operations):
Rhapsody 207

Upgrading to Version 4.0
� The RiCEventResult enum was merged into the RiCTakeEventStatus enum.
� The RiCReactive_consumeEvent() return type was modified from void to

RiCTakeEventStatus.
� RiCReactive_Vtbl was changed, as follows:

– The consumeEvent() return type was modified from void to
RiCTakeEventStatus.

– Two new entries were added to the table:
� handleEventNotConsumed() is called when the reactive class fails to consume

an event. The signature is as follows:
void (*)(struct RiCReactive * const,

struct RiCEvent*).

� handleTONotConsumed() is called when the reactive class fails to consume a
triggered operation. The signature is as follows:
void (*)(struct RiCReactive * const,

struct RiCEvent*).

RiCTask
The execute() method implementation was modified to improve event dispatching
performance.

Adapter Changes
For RiCOSSocket, the lsbFirst attribute was removed from all the implementations of the in-
house adapters. The attribute is redundant because the htons() standard function is used instead.

Rhapsody in J-Specific OXF Changes

This subsection documents Rhapsody in J-specific changes to the OXF.

RiJEvent
A new public method, boolean isTypeOf(long id), was added to support generic handling
of derived events (see Generic Handling of Derived Events).

The following attribute was added:

private boolean isTriggeredOperation

This attribute is used internally by the framework to distinguish between events and triggered
operations. This is done as part of unconsumed event handling.

The attribute has a public getter and setter, as follows:

public boolean getIsTriggeredOperation()
208 Upgrade Guide

Additional Information
public void setIsTriggeredOperation (boolean)

RiJStateReactive
The following elements were added to the class interface to support handling of unconsumed
events (see Handling Unconsumed Events and Triggered Operations):

� public void handleEventNotConsumed(RiJEvent event)—Is called when the
consumption of an event fails. This method has an empty implementation; it is up to the
client to override this method in order to handle unconsumed events.

� public void handleTONotConsumed(RiJEvent event)—Is called when the
consumption of a triggered operation fails. This method has an empty implementation; it
is up to the client to override this method in order to handle unconsumed triggered
operations.

Additional Information
This subsection describes additional changes in the prerelease version of Rhapsody.

Incremental Code Generation

Rhapsody 4.0 introduces a significant improvement in code generation performance by generating
code only for elements that were modified after the last code generation.

This change takes effect only after a complete regeneration of a model. To force regeneration of
the code, use the Re Generate option in the Code menu. Forced code generation behaves like code
generation in Rhapsody 3.0.1.

Rhapsody generates a new file in the configuration directory named <configuration
name>.cg_info. This internal file is needed for incremental code generation. It should not be
under CM control.

Event IDs

As part of the support of complex model collaboration, Rhapsody ensures that event IDs will not
collide.

Any event IDs and package base event IDs that you did not explicitly set will be modified during
the first code generation of the model in Rhapsody 4.0.

To disable this behavior, set the value of the property
CG::Component::CalculatePackageEventBaseId to OnCodeGeneration. Rhapsody will
use the same event IDs as in Rhapsody 3.0.1.
Rhapsody 209

Upgrading to Version 4.0
Note
Rhapsody 3.0.1 does not guarantee to keep event IDs unchanged (that is, a specific event ID
can vary across time).

Derived Statecharts (Flat)

Rhapsody 4.0 does not duplicate the state attributes and IS_IN methods of base classes. Instead,
the state attribute’s type was modified to integer (int), and each class state enumeration hold only
the additional states added by the derived class.

This scheme cases a change in the code of classes with derived statecharts.

Note that this change does not affect code generated for activity diagrams.

Temporary Files

During code generation, Rhapsody creates temporary files. In Rhapsody 3.0.1, these files were
created in the model directory. Rhapsody 4.0 creates these files in the system temporary directory.

You can modify the location of the temporary files by setting the location in Rhapsody INI file, as
follows:

[CodeGen]

TemporaryFilesDirectory=<the temporary directory>

Partial Animation

Rhapsody 4.0 supports partial animation in Rhapsody in C and Rhapsody in C++. This feature is
not supported in Rhapsody in J.

There are two ways to use partial animation:

� In the same selected component, using properties to enable/disable the animation of
specific packages, classes, and so on.

� Mix animated and non-animated components in the same executable.
This feature also supports tracing.

To support partial animation, the following changes were made in
Rhapsody in C++:

� Code generation
– Inheritance of user classes and events from AOM elements was canceled.
210 Upgrade Guide

Additional Information
– For each animated user class (event), a friend class is created in the code. The
friend class is responsible for the animation of the user class.

– All the animation-specific methods are now part of the animation friend class.
� OXF

– Inheritance from AOM classes was canceled (OMEvent and OMReactive).
– Attributes that were protected by #ifdef _OMINSTRUMENT are now regular

attributes, with default values that can be handled by the non-animated
version of the framework.

– Animation friend classes were added for the framework-visible events.

Generalization

Rhapsody 4.0 introduces full support in modeling of generalization (inheritance). As a result, the
CPP_CG::Class::VirtualInherits/PrivateInherits properties became obsolete. The
property content is converted to the model elements, and their content is deleted.

The properties’ content will remain only if Rhapsody cannot convert all their content to model
elements.

If these properties were used, the model is updated to store the information.

Handling Unconsumed Events and Triggered Operations

All three versions of the Rhapsody framework now include the ability to handle events and
triggered operations that were not consumed. This addition is conceptually a callback method that
you must override to define the actual handling of unconsumed events.

To support this modification, the consumeEvent() signature in Rhapsody in C and Rhapsody in
C++ was modified.

User Control over Framework Memory Management (C++)

Rhapsody 4.0 enhances the 3.0.1 facility of application control over memory allocated in the
framework. The enhancement were in two areas:

� Complete the memory management coverage, so every memory allocation in the generic
framework as well as all the RTOS adaptors is using the memory management
mechanism.

� Complete the usage of the returnMemory() interface, so the memory size returned is
passed (as opposed to 0 in version 3.0.1).
Rhapsody 211

Upgrading to Version 4.0
Generic Handling of Derived Events

Rhapsody 4.0 introduces a generic way to handle the consumption of derived events.

In previous versions of Rhapsody, any change in the hierarchy of the events required regeneration
of every class that consumed one of the base events whose hierarchy was modified. Rhapsody 4.0
reduces the coupling between the consumer class and the event hierarchy, so there is no longer a
need to regenerate the consumer when changing the event hierarchy.

The support in generic handling of derived events was done by adding a new method,
isTypeOf(), for every event, and modifying the generated code to check the event using this
method. The isTypeOf() method returns True for derived events, as well as for the actual event.
212 Upgrade Guide

Upgrading to Version 3.0.1
The changes in version 3.0.1 of Rhapsody are listed below.

Properties
This subsection describes the changes made to properties for Rhapsody 3.0.1. Note that in the
<lang>_CG subject, the <lang> placeholder can be C, CPP, or JAVA.

Modified Properties

The default values for the following properties have been changed:

� The <lang>_CG::VxWorks::CPPCompileDebug property was changed to “-O0 -g”
to avoid GNU compiler crashes when compiling PPC CPUs.

� The CPP_CG::Solaris2/SolarisGNU::InvokeExecutable property was modified
to “xterm -e $executable” to correct execution problems under Solaris.

� The error message parsing string for the CPP_CG::OseSfk::ParserErrorMessage
property was changed to correct an error highlighting problem under the OSE soft kernel.

� The CPP_CG::QNXNeutrinoGCC::InvokeMake property was changed to an empty
string (“ “) because the application must be built on the QNX target, and the Rhapsody UI
does not support building of QNX applications.

� In Rhapsody in C++, the property
<ContainerTypes>::EmbeddedFixed::IterGetCurrent was changed to
“(($target *)&$cname[$iterator])” to fix compilation errors.

New Properties

The following properties have been added:

� CG::Configuration::PreFrameworkInitCode (MultiLine)

This property enables you to add code to the generated main() before the call to the
framework initialization (OXFInit() in C++).
Rhapsody 213

Upgrading to Version 3.0.1
� CG::Package/Class::CallUserInitRelations (Bool)

This property disables calls to overridden initRelations() methods. See Code
Generation for more information.

� <lang>_CG::Microsoft/VxWorks::
GetConnectedRuntimeLibraries (String)

See the documentation for the Web-enabled devices feature in the User Guide.
� <lang>_CG::Solaris2/SolarisGNU/JDK::

UnixLineTerminationStyle (Bool)

This environment property enables you to generate UNIX end-of-line style instead of
DOS style. Using this property, you can generate code from a Windows host to a UNIX
target without having to preprocess the generated files before compilation. In addition,
you can add this property to other environments to generate UNIX end-of-line style under
these environments.

� ConfigurationManagement::ClearCase::Delete (MultiLine)

This optional property specifies the script that deletes a particular item from the current
ClearCase directory element when you delete that item from Rhapsody.

� ConfigurationManagement::ClearCase::DeleteActivation (enum)

This optional property controls whether the delete operation (specified by the Delete
property) is enabled.

� ConfigurationManagement::ClearCase::History (String)

This ClearCase-specific property specifies the batch script that enables you to view the
version tree of a given item.

� ConfigurationManagement::ClearCase::Rename (MultiLine)

This optional property specifies the script that renames a particular item in the current
ClearCase directory element when you rename that item in Rhapsody.

� ConfigurationManagement::ClearCase::RenameActivation (enum)

This optional property controls whether the rename operation (specified by the Rename
property) is enabled.

� ConfigurationManagement::ClearCase::
ShowNewItemsInSynchronize (Bool)

This ClearCase-specific property is directly related to what you see in the Synchronize
dialog box.
214 Upgrade Guide

Code Generation
If this property is set to No, new items that are added (by another member of the team) to
the archive after the Rhapsody project is open are not displayed.

Code Generation
In Rhapsody 3.0, if you override the generate initRelations() method (by creating your own
method with the same name or using the Synthesized Code in Model option), Rhapsody will no
longer automatically call the method in the class constructors.

In Rhapsody 3.0.1, the code generation behavior was modified so the initRelations() method
is called, even if it is overridden in the model.

You can disable the calls to overridden initRelations() methods by setting the value of the
CG::Package/Class::CallUserInitRelations property to False.

Framework
The Rhapsody 3.0.1 framework supports two additional customization enhancements:

� Application-level control over the timer used by the framework

This feature enables you to register a timer factory on the framework, causing the
framework to use the user-defined timers instead of the predefined timers. You can
register a timer factory that does not create any timers, causing the timing mechanisms of
the framework to be disabled. For example:

 disable tm()

To have an effect, the user factory must be registered before the framework initialization
(OXFInit()).

The calls for registering the timer factory (as well as the definition of the timer factory itself)
are language-dependent. The method names are as follows:

� The ability to replace the default active class (main thread) of the framework

This feature enables you to register an alternate default active object on the framework.

Rhapsody Edition Method Name

Rhapsody in C RiCOXF_setTickTimerFactory()

Rhapsody in C++ OXF::setTheTickTimerFactory()

Rhapsody in J RiJOXF.setTheTimerFactory()
Rhapsody 215

Upgrading to Version 3.0.1
This is useful when you customize the behavior of application active classes.

To have an effect, the user factory must be registered before the framework initialization
(OXFInit()).

The calls for registering an alternate default active object are language-dependent. The
method names are as follows:

For more information, refer to the Rhapsody framework documentation.

Rhapsody in C++ Framework

The following sections describe upgrade issues that affect Rhapsody in C++ only.

Memory Control
The Rhapsody 3.0.1 C++ framework introduces the ability to control memory allocated in the
framework at the application level (for example, when adding an object to a relation implemented
as OMList).

To control the allocated memory, you must register a memory manager for the framework using
the call OXF::setMemoryManager(). If you do not register a memory manager, the framework
uses the global new and delete operators.

For more information, refer to the Rhapsody framework documentation.

A new class, OMMemoryManager, was added to support this functionality. This class is located in
the files ommemorymanager.cpp/h. For custom adaptors, you must add these files to the OXF
makefile.

The 3.0.1 OXF has built-in memory control support for the following elements:

� All generic types except for states. There is no full support for reusable state machines.
� OS adaptor support for VxWorks. To add support to other OS adaptors, add

OM_DECLARE_FRAMEWORK_MEMORY_ALLOCATION_OPERATORS in the adaptor classes’
declaration, and use the OMNEW and OMDELETE macros for buffer allocation and deletion.

You can compile the memory management out of the framework (using the standard new and
delete operators directly) by defining the OM_NO_FRAMEWORK_MEMORY_MANAGER compilation

Rhapsody Edition Method Name

Rhapsody in C RiCOXF_setTheDefaultActiveObject()

Rhapsody in C++ OXF::setTheDefaultActiveClass()

Rhapsody in J RiJOXF.setTheDefaultActiveClass()
216 Upgrade Guide

Framework
flag in the framework and user makefiles. This option reduces the overhead created by the
framework attempt to obtain the user memory manager.

OMReactive
The OMReactive::setThread() is now public and virtual to support correct thread passing in
complex embeddable composition.

The modified declaration of OMReactive is as follows:

class RP_FRAMEWORK_DLL OMReactive {

 ...

 // The setThread function is virtual and public
 // to allow the user to initialize nested, embedded
 // reactive components of an active class manually.
 // Rhapsody supports only one level of nesting in
 // such cases.
 // Changing the reactive thread is highly dangerous,
 // and should be done only before calling
 // startBehavior().

 virtual void setThread(OMThread *t,
 OMBoolean active = FALSE);

 ...
};
Rhapsody 217

Upgrading to Version 3.0.1
Consider the ExternalComposite embedded class:
218 Upgrade Guide

Framework
The code generated for ExternalComposite is as follows:

ExternalComposite::ExternalComposite(OMThread* p_thread)
{
 setThread(p_thread, FALSE);
 {
 internal.setShouldDelete(FALSE);
 internal.setThread(p_thread, FALSE);
 }
 initStatechart();
}

To make the inner instance run on the same active class as ExternalComposite and
InternalComposite, you must create InternalComposite::setThread() to do the
necessary call to inner.setThread().

OMThread
Rhapsody 3.0.1 includes the following changes to the OMThread class:

� The signature of start() is now virtual to support user customization of the default
active class. The change might affect the behavior of user active classes that have
start() methods with the same signature.

� Three methods were added to support static instances of active classes (particularly the
static instance of OMMainThread). These methods are destroyThread(),
cleanupThread(), and _cleanupThread().

If you have a custom RTOS adaptor that deletes threads in OSEndApplication(),
modify the adapter to call destroyThread() instead of the delete operator.

If you create by-value instances of an active class, you should override the
destroyThread() method to prevent the system from attempting to delete the static
instances.

� The method getStaticThreadsPtrList() was added to provide a static instance of
the threads list, instead of dynamic creation.

The modified declaration of OMThread is as follows:

class RP_FRAMEWORK_DLL OMThread : public OMProtected {

 ...

 public:

 // Start the thread and the event loop.
 //
 // IMPORTANT: OMThread ignores the start parameter!!
 // The parameter should be checked only in default
 // application threads (OMMainThread).
 //
 // When creating an alternative default thread,
 // when doFork is set to 0, the framework is expected
 // to use the OS main thread.
 // When doFork is set to any other value, it should
Rhapsody 219

Upgrading to Version 3.0.1
 // create a new thread.

 virtual void start(int = 0);

 // API to destroy the active class
 // The method is used to destroy the framework
 // default active class object.
 // If you are setting your own default active
 // class object, and the object was not created
 // dynamically (by calling new), you must override
 // this method to avoid its deletion.

 virtual void destroyThread() {delete this;}
 protected:

 // Cleanup - hook to allow cleanup of a thread
 // without calling the DTOR.
 // This method is needed to allow cleanup without
 // destroying the v-table.

 virtual void cleanupThread() {_cleanupThread();}

 private:

 // Return a static instance of the threads list.

 static OMThreadPtrList* getStaticThreadsPtrList();

 // Cleanup - called from the DTOR and from
 // cleanupThread().

 void _cleanupThread();

 ...
};
220 Upgrade Guide

Framework
OMMainThread
Rhapsody 3.0.1 includes the following changes to the OMMainThread class:

� The return type was modified from OMMainThread* to OMThread* to support the default
active class customization.

If you are using a custom RTOS adaptor that calls OMMainThread::instance(),
modify the expected return type.

� The OMMainThread singleton implementation was modified, and the instance is now
statically allocated (on the stack instead of the heap) by the getInstance() method.

� If you are using a custom RTOS adaptor, and the adaptor attempts to delete threads in
OSEndApplication(), modify the adaptor to call destroyThread() instead of the
delete operator.

The modified declaration of OMMainThread is as follows:

class RP_FRAMEWORK_DLL OMMainThread : public OMThread {
...
public:

 static OMThread* instance(int create=1);

 // Override destroyThread() to disable deletion
 // of a statically allocated instance.
 // Call cleanupThread() to perform cleanup.

 virtual void destroyThread() {
 this->cleanupThread();
 }
private:

 // Actually get the main thread instance.

 static OMMainThread* getInstance();
 ...
};
Rhapsody 221

Upgrading to Version 3.0.1
OMTimerManager
In Rhapsody 3.0.1, the timer manager singleton (theSysTimer) implementation was modified,
and the instance is now statically allocated.

Custom RTOS adaptors that try to delete the system timer manager should modify the call from
delete theSysTimer; to:

theSysTimer-> destroyTimer();

The modified declaration of OMTimerManager is as follows:

class OMTimerManager {

public:
 ...

 RP_FRAMEWORK_DLL void destroyTimer() {
 this->~OMTimerManager();
 }

 ...

};

Rhapsody in J Framework

Rhapsody Version 3.0.1 includes major improvements to the threading behavior, and the Java
equivalent of C++ framework functionality that was missing from previous versions of the
product.

The following sections describe upgrade issues that affect Rhapsody in J only.

RiJThread
The RiJThread class includes new methods that allow access to the thread status from other
classes, particularly by the animation framework.

The modified declaration of RiJThread is as follows:

public class RiJThread extends RiJEventDispatcher
 implements RiJActive {
 ...
 //## operation isStarted()

 public boolean isStarted() {
 //#[operation isStarted()
 return wasStarted;
 //#]
 }

 //## operation isSuspended()

 public boolean isSuspended() {
 //#[operation isSuspended()
 return threadSuspend;
222 Upgrade Guide

Framework
 //#]
 }
 ...

}

RiJStateReactive
RiJStateReactive event consumption was upgraded to provide more deterministic event
consumption. All the changes in this class interface are related to these changes.

The changes to RiJStateReactive are as follows:

� The call of a triggered operation from the consumption of another event/TO was blocked
(the second TO is ignored). This prevents the consumption of a TO while the state machine
is in an undefined state.

This behavior is controlled by the busy attribute and the *Busy() operations. To disable
the behavior, override the isBusy() operation so it returns False at all times. However,
this is not recommended.

� The mutualExclusionOfTrigOp() method (attribute, getter and setter) is used by the
animation framework.

� The lockEventMutex() and freeEventMutex() operations are reserved for future
use.

� The _takeEvent() method is the common code for synchronized and nonsynchronized
event consumption.

� The eventMutex attribute and the createEventMutex() operation are used to support
mutual exclusion between events and TO consumed in the same state machine.

� When you make TO guarded in the generated code call createEventMutex() in the user
class CTOR, the result is a call to synchronized(eventMutex) in takeEvent()
before event/TO is consumed. This call ensures the mutual exclusion between events
and TO consumption, but also makes the event consumption slower. Therefore, make TO
guarded only if there is a real need to enable the mutual exclusion between events and TO
consumption (that is, events and TO are consumed in the same state machine).

The modified declaration of RiJStateReactive is as follows:

public class RiJStateReactive extends RiJReactive {

 ...
 private Boolean busy = Boolean.FALSE;
 private RiJMutex eventMutex = null;
 protected boolean mutualExclusionOfTrigOp = true;
 protected int _takeEvent(RiJEvent event) { ... }
 public void createEventMutex() { ... }
 public void lockEventMutex(){ ... }
 public short freeEventMutex() { ... }
 public void doBusy() { ... }
 public void undoBusy() { ... }
 public boolean isBusy() { ... }
Rhapsody 223

Upgrading to Version 3.0.1
 public boolean getMutualExclusionOfTrigOp(){ ... }
 public void setMutualExclusionOfTrigOp(boolean) { ... }

}

RiJTimer
RiJTimer is a new interface, added for the support of application level control over the timer used
by the framework. Any code in the framework that referred to RiJSimpleTimer now refers to
RiJTimer and RiJSimpleTimer to implement the new interface.
224 Upgrade Guide

Upgrading to Version 3.0 MR1
The changes in version 3.0 MR1 of Rhapsody are listed below.

Rhapsody in C++ 3.0 MR1 supports OSE Delta version 4.3.1 instead of 4.0.1. Due to a
compatibility issues, some parts of the framework API were modified.

OMOSMutex Interface Changes
The changes to the C++ framework OMOSMutex interface are as follows:

� The free() method was renamed to unlock().
� A new, non-virtual method free() was introduced to support backward compatibility

with user applications that use OMOSMutex directly. This method is not available in OSE
Delta.

If you have your own adaptor, you must rename OMOSMutex::free() to
OMOSMutex::unlock().

The new OMOSMutex interface is defined as follows:

class RP_FRAMEWORK_DLL OMOSMutex
{
 public:

 virtual ~OMOSMutex(){};
 virtual void lock() = 0;
 virtual void unlock() = 0;
 virtual void* getOsHandle() const = 0;
 // get the real OS element

 #ifndef OSE_DELTA

 // backward compatibility support for non-OSE
 // applications

 void free()
 {
 unlock();
 }

 #endif

};
Rhapsody 225

Upgrading to Version 3.0 MR1
State Interface Changes
The changes to the C++ framework API State interface are as follows:

� The enterState() method replaces the enter() method.
� The exitState() method replaces the exit() method.

The changes were applied to all the classes derived from State. In addition, the generated code
for reusable statecharts has been modified to conform to the framework changes.

Note
If you are using reusable statechart implementation, you must regenerate all your reactive
classes.

The modified interface is as follows:

class RP_FRAMEWORK_DLL State
{

 ...

public:

 ...

 virtual void enterState()=0;
 virtual void exitState()=0;
 ...

};
226 Upgrade Guide

Upgrading to Version 3.0
The changes in version 3.0 of Rhapsody are listed below.

Code Generation
Note the following upgrade issues related to code generation:

� Guarded Destructor—In version 2.3, the concurrency of a destructor effectively behaved
as if it were set to guarded whenever there was a guarded operation in the same class. In
3.0, the concurrency of the destructor is set to guarded only when you explicitly set it that
way. If your model has reactive classes that might be deleted at run time (not via a
Termination connector), you must explicitly set their destructors to be guarded.

It is recommended that you use a Termination connector for self-destruction.
� Event IDs—Rhapsody 3.0 changes the way event IDs are generated. As part of the

upgrade process, you must regenerate the model to prevent behavioral errors related to
event ID collisions.

� Code Generation for Actors—Rhapsody 3.0 supports code generation for actors. When
you open a version 2.3 model in 3.0, code generation for actors is disabled for backward
compatibility and to protect you from illegal code in legacy actors.

To enable code generation for actors, do the following:
1. Add the relevant actors to the relevant component scope.

2. In each legacy configuration that should generate actors, go to the configuration
Initialization tab and check Generate Code for Actors.

In new configurations, the Generate Code for Actors option is enabled by default.

� Class Layout—Rhapsody 3.0 improves the generated file layout, giving you control over
the order in which attributes and relations are generated in the class. If you want to
preserve the version 2.3 layout, set the InitialLayoutAs23 property (under
CG::CGGeneral) to True at the project level.
Rhapsody 227

Upgrading to Version 3.0
Framework
Rhapsody 3.0 moves the simulated time support from link time to run time via a parameter
provided to the framework at application initialization. However, to switch between real and
simulated time, you must still regenerate and build the code.

Properties
This subsection describes the changes made to properties for Rhapsody 3.0. For ease of use, the
properties are grouped by subject.

Note that if you try to use property files from Rhapsody 2.3 with version 3.0, the following error is
displayed:

Exception occurred in <model component>, it may indicate an integrity problem
of your model. It is recommended that you save your model to a new location,
exit Rhapsody and re-open your model to check integrity.

This happens if the version of the \Properties directory does not match the version of
Rhapsody you are using. For example, you installed a newer version of Rhapsody, but kept an
existing version of the \Share\Properties directory, including files contained within the
directory.

Make sure you use the version of the \Properties directory that matches the version of
Rhapsody you are using.

CG

The following properties were moved from CG to <lang>_CG (for example, CPP_CG for C++):

� GetAt property (under the Relation metaclass)
� GetAtGenerate property (under the Relation metaclass)

If these properties are overridden in your site.prp file, you must modify the subject names
manually. For overrides within the model, the conversion is done automatically.

<lang>_CG

� The CPPAdditionalReservedWords property (under the <environment>
metaclasses) was replaced with AdditionalReservedWords. If this property is
overridden in your site.prp file, you must rename the property manually.

� The MakeFileGenerationScheme property (under the Configuration metaclass)
was removed. If you are using the Rhapsody 2.0 makefile generation scheme in Rhapsody
228 Upgrade Guide

Checks
in C++ (with external flags and rules makefiles), you must upgrade your makefile
generation scheme.

� The spelling of the QouteOMROOT property (under the <environment> metaclasses) was
corrected to QuoteOMROOT. If this property is overridden in your site.prp file, you
must rename the property manually.

� The TimerMaxTimeouts property was removed. If you have an override on this property,
it will still affect the code generation. However, the property is obsolete. Use the
TimerMaxTimeouts property (under <lang>_CG::Framework) instead.

� The TimerTicktim property was removed. If you have an override on this property, it
will still affect the code generation. However, the property is obsolete. Use the
TimerResolution property (under <lang>_CG::Framework) instead.

� The TimerTickTime property (under the Framework metaclass) was replaced with the
TimerResolution property. If this property is overridden in your site.prp file, you
must rename the property manually.

ClassImporter

All ClassImporter subjects were changed to <lang>_ReverseEngineering subjects with
the same properties. If any properties in these subjects are overridden in your site.prp file, you
must rename the subjects manually.

In addition, the CreateImplicitClassifier property (under the <lang>_ClassImporter
metaclasses) was removed.

General

The CppReservedWords property (under the Model metaclass) was removed.

Checks
Rhapsody 3.0 adds a check that prevents code generation when a class, actor, event, or global
variable within the component scope has the same name as the component. In Rhapsody in J, the
check prevents generation of a class with the name Main<component>.

This check was added because Rhapsody generates a class for the component. When the model has
global instances, multiple definitions of the same class are generated, one for the user class and the
other for the generated component class. This means that if your model has elements and
component with the same name, you must modify the class name, or the component name, in order
to generate code.
Rhapsody 229

Upgrading to Version 3.0
You can disable the check by setting the AllowCollisionWithComponentName property
(under CG::Configuration) to True. However, if you do this, Rhapsody will not protect you from
redefinition and name collision at the code level.

Upgrading Rhapsody in C++ Models
This subsection describes additional upgrade considerations that are specific to Rhapsody in C++.

Framework

Changes were made to the OS Abstraction Layer (OSAL) for all supported OS adapters. If you are
using a custom adapter, you must implement these changes yourself. The process of adapting
Rhapsody to a new OS, and the OSAL itself, are described in the RTOS Adapter Guide, which is
part of the Rhapsody documentation set.

In general, there are three changes to the OSAL:

� getOsHandle() methods were added to every primitive in the OSAL.
� OMOSMessageQueue::get() signatures were modified to support a success status

return value from GEN() and GEN_ISR() calls. Additional changes in return type were
made in OMReactive and OMThread for the same reason. These changes are shown in
the following section.

� Interface support was added for terminating Rhapsody-related parts of the application
without terminating other parts.

The framework changes are shown in the following code.

class OMOSTimer
{
 public:

 virtual void* getOsHandle() const = 0;
};

class OMOSThread
{
 public:

 virtual void* getOsHandle(void*& osHandle) const = 0;
};

class OMOSFactory
{
 public:

 virtual OMBoolean waitOnThread(void* osHandle,
 timeUnit ms) = 0;
};

extern void OSOXFEndProlog();
230 Upgrade Guide

Upgrading Rhapsody in C++ Models
class OMOSEventFlag
{

 public:

 virtual void* getOsHandle() const = 0;

};

class OMOSMutex
{

 public:

 virtual void* getOsHandle() const = 0;

);

class OMOSSemaphore
{

 public:

 virtual void* getOsHandle() const = 0;

};

class OMOSMessageQueue
{
 public:

 virtual OMBoolean put(void* m,
 OMBoolean fromISR = FALSE) = 0;

 virtual void* getOsHandle() const = 0;

};

template<class Msg> put(Msg *m, OMBoolean fromISR = FALSE)

{

return theQueue->put((void *) m, fromISR);

}

virtual void* getOsHandle() const {
 return theQueue->getOsHandle();

}

};

class OMOSSocket
{

 public:

 virtual void Close() {}

};

To extend framework customization, the following methods were set to virtual:

OMReactive:
Rhapsody 231

Upgrading to Version 3.0
virtual OMBoolean _gen(OMEvent *event,
 OMBoolean genFromISR = FALSE);

virtual OMBoolean gen(OMEvent *event,

 OMBoolean genFromISR = FALSE);

virtual OMBoolean gen(OMEvent *event,
 void *sender);

OMThread:

virtual OMBoolean queueEvent(OMEvent *ev,

 OMBoolean fromISR = FALSE);

virtual void cancelEvent(OMEvent *ev);

virtual void cancelEvents(OMReactive *destination);

virtual void schedTm(timeUnit delteTime, short id,

 OMReactive *instance, const OMHandle *state = NULL);

virtual void unschedTm(short id, OMReactive *c);

Code Generation

Rhapsody 3.0 does not support generation of makefiles in Rhapsody 2.0 Compatibility mode. If
you are using the backward compatibility mode, you must upgrade your makefile generation
scheme by setting the MakeFileGenerationScheme property (under CPP_CG::Configuration) in
any of the model’s configurations. If the property exists and its value is 2.0, you must upgrade the
makefile generation scheme.

Generation of dependencies with a stereotype of «Friend» was modified in version 3.0 to
conform to the UML standard. For backward compatibility, earlier Rhapsody models are set to use
version 2.3-style dependency generation. To modify the code generation scheme for dependencies
with a «Friend» stereotype, use the <<Friend>>ImplementationScheme property (under
CPP_CG::General).

Properties

The spelling of the SpecFilesInDependencyRules property (under CPP_CG::Osesfk) was
corrected.

Roundtrip

Rhapsody 3.0 supports enhanced dynamic model/code associativity (see the code generation and
round-trip documentation). However, when you load version 2.3 models, the new roundtrip
232 Upgrade Guide

Upgrading Rhapsody in C++ Models
capabilities are disabled because the new capabilities require additional information (generated
annotations) in the code.

To use the new roundtrip scheme in a model being upgraded from version 2.3, do the following:

1. Modify the RoundtripScheme property (under CPP_Roundtrip::General) from Basic
to Full.

2. Regenerate the code. If you do not regenerate the code, the model will be overpopulated
when the roundtrip executes.

STL Support

The code for STL containers was upgraded to use the std namespace prefix when needed. This
change allows the use of STL containers without a special STL version of the framework. To use
an STL-oriented framework, you must recompile the framework with the USE_STL switch in the
makefile compiler switches.

If you are already using STL containers, you should expect changes in your code. To prevent these
changes, override the properties in the STLContainers subject in your site.prp file using the
property values from the same subject in your version 2.3 factoryC++.prp file.

To use qualified relations in STL containers without an STL-oriented Rhapsody framework, you
must define OMValueCompare. This value is used in the generated code for the relation. The code
as defined in the STL-oriented framework is:

template<class Key, class Value> class OMValueCompare
{

 public:

 OMValueCompare(Value value) : m_value(value) {}

 operator() (const pair<Key,Value>& p1)

 {

 return p1.second == m_value;

 }

 private:

 Value m_value;

};
Rhapsody 233

Upgrading to Version 3.0
Upgrading Rhapsody in C Models
In the Rhapsody in C framework, the RiCOSMessageQueue_isEmpty() method was replaced
with a macro to improve performance. If you are using your own adapter, you will need to do the
same.

If your implementation of this method is too complex to replace with a macro, you can declare the
method in the RiCOS<env>.h file for your adapter using the following method signature:

RiCBoolean RiCOSMessagQueue_isEmpty (

 RiCOSMessageQueue * const)

Upgrading Rhapsody in J Models
This subsection describes additional upgrade considerations that are specific to Rhapsody in J.

Framework

The location of the Rhapsody in J framework model was changed to
$OMROOT\LangJava\model. The new model contains the animation framework as well as the
Object eXecution Framework (OXF). If you added the framework model as a reference package to
your version 2.3 model, you must remove it and add the new package from the new location.

Code Generation

In Version 3.0, the following changes were made to the build (make) file for the Rhapsody in J
framework model:

� The list of source files is generated to an external file, which is used as input to the Java
compiler. This change was made to solve the problem of large models with too many files
for a single javac command line.

� If you have overridden the MakeFileContent property (under JAVA_CG::JDK), you
should modify the javac call to:

> javac -g @$SourceListFile

Using Rhapsody 2.3 and Rhapsody 3.0 Concurrently
You can switch between versions 2.3 and 3.0 of Rhapsody if you follow these steps:

1. Install Rhapsody 3.0 into a different directory than your Rhapsody 2.3 directory.
234 Upgrade Guide

Using Rhapsody 2.3 and Rhapsody 3.0 Concurrently
The Rhapsody 3.0 installation will not overwrite your existing rhapsody.ini file; it
will only rename it to rhapsody.ini.orig.

2. If you want to work with Rhapsody 2.3, rename your existing rhapsody.ini file to
rhapsody.ini.30 and rename rhapsody.ini.orig back to rhapsody.ini.

3. From your Rhapsody 2.3 installation directory, execute the following command:

rhapsody.exe /RegServer

You can create simple batch files to switch from version 2.3 to 3.0, and from 3.0 to 2.3. Before
switching versions, back up the .ini file of the previous version to keep any changes to it, such as
additional helpers or the last files opened.

Switching from Version 3.0 to 2.3

The body of the batch file should be:

copy c:\winnt\RhapsodyV23.ini c:\winnt\Rhapsody.ini
rhapsody.exe /RegServer
pause

Switching from Version 2.3 to 3.0

The body of the batch file should be:

copy c:\winnt\RhapsodyV30.ini c:\winnt\Rhapsody.ini
rhapsody.exe /RegServer
pause
Rhapsody 235

Upgrading to Version 3.0
236 Upgrade Guide

Upgrading from 1.x and 2.x
This section describes behavior and functionality changes between versions of Rhapsody that you
must consider when upgrading your installation from version 1.x or 2.x.

Upgrading from Version 1.x
C++ language models created in Rhapsody before version 2.0 cannot be loaded directly into 3.0
without going through an intermediate conversion. To upgrade a pre-v2.0 model, you must first
load it into any version of Rhapsody 2.0 or later and save it. Then load the converted model into
the current version, once it is installed (you might require a new license).

Note that this restriction does not apply to the C or Java versions of Rhapsody.

Upgrading from Version 2.x
Upgrading from version 2.x requires a new license.

All 2.0 configurations are translated into components with a single configuration having the same
name. You cannot add version 2.0 or earlier configurations to version 2.2 or later models because
configurations are no longer collaboration units in these models. You must first load the
configurations into a version 2.0 model, and convert them to 2.2 or later as part of the 2.0 model.

Rhapsody Version 2.1 and later fixed corruptions in 2.0 models where transitions in the view did
not have a representation in the model. In cases where the corruption could not be fixed, the
transitions are colored in black and should be reentered.

Configuration switches for version 2.2 models do not include the LangCpp directory. If the
configuration switches are coming from the factory.prp file, you must delete the configuration
and create a new one. If they are coming from the site.prp file or property settings, you must
make the changes there, delete the configuration, and then create a new one.

In addition, language-specific code generation properties moved from the CG subject to the
language-specific <lang>_CG subjects. You must update these properties in the appropriate
site<lang>.prp file (for example, siteC++.prp for C++ models). It is recommended that you
Rhapsody 237

Upgrading from 1.x and 2.x
run a report on the version 2.2 model to get a list of modified properties, then check their locations
in the new property files to see whether a property moved from one subject to another.
238 Upgrade Guide

Index
Symbols
#define 143
#endif 47
#ifdef statement 154

Numerics
32-bit 34
64-bit 34

A
AcceptChanges property 31, 32
Active class, replacing 215
Activity diagrams

changes in the COM API 152
Actors 227
Ada

4.2 changes 164
5.0 changes 161

Ada 83 53, 55
Ada 95 53, 55, 56
Ada code generator rules 66
Ada framework

7.1 changes 53
Adapters 93

4.0 changes for C 208
4.0 changes for C++ 206
4.2 changes 167
5.0.1 changes 148

AddToMakefile property 181
AllowCollisionWithComponentName property 230
Analysis sequence diagram 180
Animation

7.2 changes 30
enhancements in 4.2 165
partial 210

AnimMessageTranslator.cpp 35
AnimServices API 105
aom library 62, 69
aomclass.h 62
aomItem class 69
aomNotifyUtils 69
API

Rhapsody, 7.0 changes 69

APIs
AnimServices 105
COM 3, 83, 114, 123, 162
framework 126
Java 33
Rhapsody 33

Applications
upgrading considerations 2

ATLConnectionPointImpl property 87
Attributes

default values 193
itsRiCTask 27
m_hQueueWnd 68
m_MessageQueue 69
m_MessageQueueBuffer 69
m_pCopyData 68
m_pMessageQueueBuffer 69
m_QueuePublishedName 68, 69
m_RegisteredId 68, 69
m_ToDistributeQueue 68, 69
modifiers 156
registeredId 68

B
BLDAdditionalOptions property 96
BLDMainExecutableOptions property 96
BLDMainLibraryOptions property 96
Blocks 37
Borland 161

C
C framework

4.1 changes 172, 174
4.2 changes 167
5.0 changes 151, 157
5.0x changes 148
6.0 changes 121
6.1 MR1 changes 88
7.0 changes 67
7.1 changes 53
7.2 changes 34
event consumption 191

C framework, Linux
7.0 MR1 changes 63
Rhapsody 239

Index
C models
upgrading 234

C++
3.0 changes 230
4.0.1 MR1 changes 185
generalization in 4.0 196
interfaces 154
new properties in 4.0.1 MR1 186
property changes in 5.0 161

C++ framework 48
3.0.1 changes 216
4.0 changes 198
4.1 changes 170, 173
5.0 changes 151, 155, 158
5.0x changes 148
5.2 changes 146
5.2 MR1 changes 139
6.0 changes 121
6.0 MR2 changes 117
6.1 changes 98
6.1 MR1 changes 88
6.1 MR2 changes 84
7.0 changes 69
7.0 MR2 changes 61
7.0 MR3 changes 59
7.1 changes 53
7.1.1 changes 48
7.2 changes 35
event consumption 191
memory management 211

CallUserInitRelations property 214
CancelTimeouts function 69
CGCompatibilityPre70 72
CGCompatibilityPre70 profile 70, 72
CGCompatibilityPre71 profile 54, 56
CGCompatibilityPre72Cpp profile 28
CGEN macro 88
CGEN_BY_X macro 88
Check Model 30

7.2 changes 30
Check Out Branch button 184
Classes 69

aomItem 69
generated name 197
guarded 192
layout 227
OMReactive 69
OMTimerManager 59
template instantiation 31

ClassImporter subjects 229
cleanUpRelations() 29, 107
Code generation

3.0 changes 227
3.0.1 changes 215
5.0 changes 156
5.0.1 changes 148
7.1.1 changes 47

7.1.1 MR1 changes 43
7.1.1 MR2 changes 41
7.1.1 MR3 changes 39
7.2 changes 27
incremental 209

Code respect 28, 31
CodeGeneratorTool property 27
CollectMode property 73
COM API 3

4.1 changes 176
5.0 changes 152
6.0 changes 114, 123
6.1 MR2 changes 83
connectors 152
deprecated methods and properties 162
hierarchy 152
renamed metaclasses 152

Compiler changes 169
ComplexityForInlining property 48
ComponentFileIsSavedUnit property 48
ComponentFileType property 73
Configuration management 2

SCC mode 193
Connectors 152
Considerations

upgrading Rhapsody 2
ConstantVariableAsDefine 143
Constructors

LinuxMutex 80
consumeTime operation 59
Containers

changes in 5.0 157
property changes 160

ContainerSet property 72
CORBA 83, 85, 87, 91, 92
CoreImplementation.sbs 36
CPPAdditionalReservedWords property 228
CPPCompileDebug property 213
CppReservedWords property 229
CreateDependencies property 54, 57, 73, 182
CreateFileAsUnit property 48
CreateFilesIn property 73
CreateFolderByPath property 58
CreateImplicitDependencies property 59, 86
CreateStatic property 163
Cross-package link 157
Custom adapters

upgrading 169
Cygwin environment 47, 70

D
Data member 179
DECLARE_OPERATION_CLASS macro 30
DeclareInterfacesInModule property 96
Default active class

replacing 215
240 Upgrade Guide

Index
DefaultImplementationDirectory property 28
DefaultSpecificationDirectory property 28
Delete property 214
DeleteActivation property 214
Deleted properties

4.0 211
4.1 181

Derived events
generic handling 212

Derived statechart 210
Description attribute 154
DestroyInitialInstance property 83
Destructor property 66
Destructors 70
Developer

upgrading to 1
Diagram connector 152
DiffMerge

behavior in 5.0 154
property changes in 4.1 177

Directory
implementation and specification 175

Distribution property 70
Documentation 3
DOORS

5.0 changes 154

E
EmptyArgumentListName property 27
EnableCheckoutBranch property 184
EnableInitializationStyleForStaticAttributes

property 90
EnableTypeToTemplateInstantiation property 31
enterState() method 226
Environments

Cygwin 47, 70
INTEGRITY 51, 68
INTEGRITY5 57, 96
INTEGRITY5ESTL 96
Integrity5ESTL 57
Linux 47, 63, 70, 80, 93
Multi 51
Multi4Win32 57, 96
QNXNeutrinoGCC 31
VxWorks6.0diab 77
VxWorks6.0gnu 77
VxWorks6.2diab 77
VxWorks6.2gnu 77

ESTL support 168
Events

consumption 191
generic handling 212
handling of null transitions 192
IDs in 3.0 227
IDs in 4.0 209
unconsumed 211

EventSender property 48
exitState() method 226

F
factoryAda.prp 133
Files

C framework, 4.1 changes 174
C framework, 5.0 changes 151
C++ framework, 4.1 changes 173
C++ framework, 5.0 changes 151
temporary 210

Filled-diamond relations 194
Flat statechart 210
FlowportInterfaces.cpp 51
FlowportInterfaces.h 51
ForceDefaultConstructor property 72
ForwardDeclarationPlacement property 72
Framework

3.0 changes 228, 230
3.0.1 changes 215
6.0 changes 126
API 126
memory management 211

Framework property 126
Friend stereotype 232
Functions

CancelTimeouts 69
getCurrentEvent 69, 71
getItsWebAdapter() 52
getKey 65
handleEventUnderDestruction 53
increaseTail_ 67
isHeapFull 69
NotifyAnimQueueEvent 68
RiCOSMessageQueue_createDistributed 68
RiCOSMessageQueue_getMessageQueueId 68
RiCOSMessageQueue_getRegisteredId 68
RiCOSMessageQueue_initDistributed 68
RiCOSMessageQueue_isMessageQueueIdString 68
RiCReactive_DelayedDestroy 52, 53
RiCTask_CreateDistributed 68
RiCTask_createDistributed 68
RiCTask_destroyEvent 68
RiCTask_execute 67
RiCTask_InitDistributed 68
RiCTask_initDistributed 68
RiCTimerManager_unschedTm 67
RiDSendRemoteEvent 68

G
Generalization 196

obsolete properties 211
Generate

implicit dependencies 189
package code 194
Rhapsody 241

Index
property 28, 41
GenerateDeclarationDependency property 52, 86
GenerateDirectoryPerModelComponent 141
GenerateInMakefileOnly property 181
GenerateOriginComment property 57
GeneratePackageCleanup property 91
GeneratePackageCode property 92
GeneratePackageInitialization property 91
Generation.log 63
Generic handling

events 212
Get property 43
get() signatures 230
GetAt property 228
GetAtGenerate property 228
GetConnectedRuntimeLibraries property 30, 214
getCurrentEvent function 69, 71
getItsWebAdapter() function 52
getKey function 65
GetKey property 72
getOSHandle method 230
getStaticThreadsPtrList method 219
globalSupportDirectDeletion variable 53
Guarded class 192
Guarded destructor 227

H
handleEventUnderDestruction function 53
Harmony profile 70, 72
HeaderDirectivePattern property 154
HeaderFile property 44
Help 3
History property 214
HistoryConnectorDepth property 56

I
IDLCompileCommand property 96
Ignore annotations 178
Ignore property 54, 58
Implementation file

default directory 175
Implicit dependencies 189
ImportGlobalAsPrivate property 73
ImportPreprocessorDirectives property 58
ImportStructAsClass 145
increaseTail_ function 67
Incremental code generation 209
Initial instance 156
InitialInstance property 83
InitializationScheme property 54, 157
InitializationStyle property 90
InitialLayoutAs23 property 227
initRelations

3.0.1 215
4.0 190

InitStatic property 163
Inline property 43
Instance

explicit 156
Instance-based linking 178
Instantiation 31
Instrumentation

data types 178
INTEGRITY environment 51, 68
INTEGRITY5 environment 57, 96
INTEGRITY5ESTL environment 96
Integrity5ESTL environment 57
IntegrityBuild.bat 68
Interface 154
InterfaceGenerationSupport property 56
Interfaces

IRPFileFragment 83
IRPStereotype 69

intos.cpp 36
InvokeExecutable property 133, 213
InvokeMake property 213
InvokeMakeGenerator property 57
InvokeRelay property 57
IOxfEventSender 36, 48
IOxfEventSender.h 36
IOxfReactive 48
IRiCDefaultReactive 67
IRPClassifier 69
IRPFileFragment interface 83
IRPInstance interface 176
IRPLink interface 176
IRPModelElement 69
IRPStereotype interface 69
isHeapFull function 69
IsReactiveInterface property 154
IterCreate property 96
IterGetCurrent property 213
itsRiCTask attribute 27

J
Java 5.0 33
Java API 33
Java framework 37

3.0 changes 234
3.0.1 changes 222
5.0 changes 159
7.2 changes 37
path change 37

Java models
upgrading 234

Junction connector 152

K
Keywords

in Set property 191
242 Upgrade Guide

Index
relation properties 190

L
Language-independent type 158
libm.so.1 31
Libraries

aom 62, 69
omcom 70
tom 62

Library dependencies in makefile 39
LIBS section of makefile 39
Link

cross-package 157
instance-based 178

LINK_FLAGS 31
Linux environment 47, 63, 70, 80, 93
LinuxMutex constructor 80
linuxos.cpp 36
List of Books 3
Load

disabled features in 4.1 177

M
m_hQueueWnd attribute 68
m_MessageQueue attribute 69
m_MessageQueueBuffer attribute 69
m_pCopyData attribute 68
m_pMessageQueueBuffer attribute 69
m_QueuePublishedName attribute 68, 69
m_RegisteredId attribute 68, 69
m_ToDistributeQueue attribute 68, 69
Macros

CGEN 88
CGEN_BY_X 88
DECLARE_OPERATION_CLASS 30
NOTIFY_OPERATION 70
OM_NOTIFY_ERROR 35, 36, 49
OPORT 35
OUT_PORT 35
RiCGEN 88
RiCGENREMOTE 68

MainGenerationScheme property 164
Makefile 31, 39, 70

7.2 changes 31
LIBS section 39
link order of library dependencies 39

MakeFileContent property 31
MakeFileGenerationScheme property 228
Makefiles 232
MapGlobalsToComponentFiles property 73
Me pointer 27
Memory

control 216
management 211

Message queue

QNX 165
Metaclasses

renamed 152
Methods

startBehavior 61
startBehavior() 52

MISRA98 profile 51
Modeler capability

upgrading 1
Modeling

7.2 changes 32
Models

upgrading C++ models 230
upgrading Java 234

Moved properties
4.0 197
4.1 181

Msdox.mak 34
msoxf.mak 34, 36
Multi environment 51
Multi4Win32 environment 57, 96
MultiMakefileGenerator script 62, 65, 70
MultiWin32

adapter search path 168

N
Namespace cleanup 197
NOTIFY_OPERATION animation macro 70
NotifyAnimQueueEvent functions 68
notifyGotControl operation 69
notifyLostControl operations 69
NotifySyscallFault 36
ntos.cpp 36
ntos.h 36
Null transition

event handling 192

O
Objects 32, 37

theMainTask 27
Obsolete properties 211
OM_INSTRUMENT_EVENT 27, 34
OM_INSTRUMENT_EVENT_NO_UNSERIALIZE 3

4
OM_NOTIFY_ERROR macro 35, 36, 49
OM_RETURN(triggerEvent.om_reply) 29
OMAbstractMemoryAllocator 200
OMCollection 201
omcom library 70
OMContainer

changes in 5.0 157
OMDefaultInBound 158
OMDefaultOutBound 158
OMDefaultReactivePort 158
OMEvent 35, 200
Rhapsody 243

Index
5.0 changes 158
OMEvent.cpp 35
omevent.cpp 36
omevent.h 36
OMEventQueue 84
OMGuard 203
OMHandleCloser 35, 158
OMHandleCloser.cpp 35
omhandlecloser.cpp 36
OMMainThread 221
OMMap 201
OMMemoryManager

3.0.1 changes 216
4.0 changes 201

OMNotifier 202
omosconfig.h 35
OMOSMutex 225
OMProtected 69, 202
OMProtected class 69
OMReactive

3.0 changes 231
3.0.1 changes 217
4.0 changes 203

OMReactive class 69
omreactive.cpp 36
omreactive.h 36
OMStartBehaviorEvent 201
OMState 205
OMStaticArray 204
OMString 204
OMThread

3.0.1 changes 219
4.0 changes 204
4.2 changes 168

OMTimeout 200
OMTimerManager 69

3.0.1 changes 222
4.0 changes 205

OMTimerManager class 59, 69
omtimermanager.cpp 36
omtimermanager.h 36
OMTMMessageQueue 84
OMUCollection 205
OMValueCompare 206
Online help 3
Operations

consumeTime 59
notifyGotControl 69
notifyLostControl 69
unconsumed trigger 211

OPORT macro 35
OSAL changes

3.0 230
OSE 164
OSE Delta 225
OXF 234

namespace cleanup 197

oxfportmacros.h 36

P
PackageCtrlDPMC 141
Partial animation 210
PathDelimiter property 66
Ports 158
PreFrameworkInitCode property 213
Preprocessor flags

RIC_DISTRIBUTED_SYSTEM 68, 69
Profiles 72

CGCompatibilityPre70 70
CGCompatibilityPre71 54, 56
CGCompatibilityPre72Cpp 28
Harmony 70, 72
MISRA98 51
SysML 33, 43

Properties
3.0 changes 228
3.0.1 changes 213
4.0 changes 211
4.1 changes 180, 181
5.0 changes 160
5.0.1 MR2 changes 147
7.1.1 changes 48
AcceptChanges 31, 32
AddToMakefile 181
ATLConnectionPointImpl 87
BLDAdditionalOptions 96
BLDMainExecutableOptions 96
BLDMainLibraryOptions 96
CodeGeneratorTool 27
CollectMode 73
ComplexityForInlining 48
ComponentFileIsSavedUnit 48
ComponentFileType 73
ContainerSet 72
CreateDependencies 54, 57, 73, 182
CreateFileAsUnit 48
CreateFilesIn 73
CreateFolderByPath 58
CreateImplicitDependencies 59, 86
CreateStatic 163
DeclareInterfacesInModule 96
DefaultImplementationDirectory 28
DefaultSpecificationDirectory 28
DestroyInitialInstance 83
Destructor 66
Distribution 70
EmptyArgumentListName 27
EnableInitializationStyleForStaticAttributes 90
EnableTypeToTemplateInstantiation 31
EventSender 48
ForceDefaultConstructor 72
ForwardDeclarationPlacement 72
Framework 126
244 Upgrade Guide

Index
Generate 28, 41
GenerateDeclarationDependency 52, 86
GenerateInMakefileOnly 181
GenerateOriginComment 57
GeneratePackageCleanup 91
GeneratePackageCode 92
GeneratePackageInitialization 91
Get 43
GetConnectedRuntimeLibraries 30
GetKey 72
HeaderDirectivePattern 154
HeaderFile 44
HistoryConnectorDepth 56
IDLCompileCommand 96
Ignore 54, 58
ImportGlobalAsPrivate 73
ImportPreprocessorDirectives 58
InitialInstance 83
InitializationScheme 54, 157
InitializationStyle 90
InitStatic 163
Inline 43
InterfaceGenerationSupport 56
InvokeExecutable 133
InvokeMakeGenerator 57
InvokeRelay 57
IsReactiveInterface 154
IterCreate 96
MainGenerationScheme 164
MakeFileContent 31
MapGlobalsToComponentFiles 73
moved in 4.0 197
moved in 5.0 160
new in 3.0.1 213
new in 4.0.1 MR1 185
new in 4.2 163
obsolete 211
PathDelimiter 66
QuoteOMROOT 51
ReactiveInterfaceScheme 48
ReactiveSetTask 132
relation keywords 190
relations, changes in 4.0 196
Remove 29
renamed in 4.0 197
ReportChanges 31
ReportToOutputWindow 63
RespectCodeLayout 31
ReusableStatechartSwitches 61, 62, 133
RoundtripScheme 27, 28, 31, 52, 53, 54, 55, 58
Static 163
superseded 181
ThrowExceptions 89
UseAda83Framework 55, 56
UseDirectReactiveDeletion 57
UsePackageForExternals 57
UseRhp5CompatibilityAPI 126

UseTemplateTypename 47
VariableInitializationFile 198

Q
QNX

message queues 165
QNXNeutrinoGCC environment 31
qnxos.cpp 36
QuoteOMROOT property 51, 229

R
ReactiveInterfaceScheme property 48
ReactiveSetTask property 132
ReactiveSimpleComposites 143
Reflect data members 179
registeredId attribute 68
RelatesComponentsIncludePathInMakefile 144
Relations

filled diamond 194
property changes in 4.0 196
property keywords 190
static 163

Remove property 29
Rename property 214
RenameActivation property 214
ReportChanges property 31
ReporterPLUS 37
ReportToLogFile 63
ReportToOutputWindow property 63
Respect 28, 31
RespectCodeLayout property 31
ReusableStatechartSwitches property 61, 62, 133
Reverse engineering

7.1.1 changes 48
7.2 changes 31
include statements 182
reflect data members 179

Rhapsody
applications, upgrading 2
developer capability 1
downward compatibility 2
in Ada 164
makefiles in 3.0 232
OSAL changes 230
State interface 226
STL support 233
upgrading applications 2
using v2.3 and 3.0 concurrently 234
Windows systems 1

Rhapsody API
7.0 changes 69
7.2 changes 33

Rhapsody in C
4.0 changes 207
4.0.1 MR2 changes 187
Rhapsody 245

Index
Rhapsody in J
4.0.1 MR1 changes 186

rhapsody.ini 63
RIC_DISTRIBUTED_SYSTEM preprocessor flag 68,

69
RiCBoolean 34
RiCCollection 207
RiCDefaultReactiveInbound 67
RiCDefaultReactiveOutbound 67
RiCDefaultReactivePort 67
RiCDefaultReactivePort.h 34
RiCEvent 207
RiCEvent.h 68
RiCGEN macro 88
RiCGENREMOTE macro 68
RiCHandleCloser 158
RiCIntMessageQueue 68, 69
RiCONST.c 68
RiCONST.h 68
RiCOSEventFlag_reset 34
RiCOSIntegrity.c 69
RiCOSIntegrity.h 68
RiCOSMessageQueue_createDistributed function 68
RiCOSMessageQueue_getMessageQueueId

function 68
RiCOSMessageQueue_getRegisteredId function 68
RiCOSMessageQueue_initDistributed functions 68
RiCOSMessageQueue_isEmpty method 234
RiCOSMessageQueue_isMessageQueueIdString

function 68
RiCOSNT.c 35
RiCOSVxWorks.c 34, 35
RiCOSWrap.h 68
RiCOXF.c 68
RiCPortMacros.h 34
RiCQueue.c 67
RiCReactive 207
RiCReactive.h 68
RiCReactive_DelayedDestroy function 52, 53
RiCReactive_setGlobalSupportDirectDeletion

variable 53
RiCReactive_shouldSupportDirectDeletion 53
RiCReactive_shouldSupportDirectDeletion variable 53
RiCReactive_takeTrigger 34
RiCReactive_Vtbl 51, 53
RiCTask 68, 208
RiCTask.c 67
RiCTask_cancelEvents 53
RiCTask_CreateDistributed function 68
RiCTask_createDistributed function 68
RiCTask_destroyEvent function 68
RiCTask_execute 53
RiCTask_execute function 67
RiCTask_InitDistributed function 68
RiCTask_initDistributed function 68
RiCTimer.c 35, 67
RiCTimer.h 35

RiCTimerManager_getSystemTimer 67
RiCTimerManager_unschedTm function 67
RiDSendRemoteEvent function 68
RiJEvent 208
RiJStateReactive

3.0.1 changes 223
4.0 changes 209

RiJThread
version 3.0.1 changes 222

RiJThread changes 222
RiJTimeoutManager 37
RiJTimer 37, 224
ROOT_STATE_SERIALIZE_STATES 146
Roundtripping

3.0 changes 232
7.1.1 changes 48
7.2 changes 31, 32
ignore annotations 178

RoundtripScheme property 27, 28, 31, 52, 53, 54, 55, 58,
233

RTOS changes 169

S
SCC mode 193
Scope 156
Scripts

MultiMakefileGenerator 62, 65, 70
Sequence diagram analysis 180
Set property

keywords 191
setThread operation 217
Simulated time 228
Simulink 61, 66
SimulinkLibName variable 66, 70
Smart generation 194
sodius.prp 133
Solaris 53, 54
SpecFilesInDependencyRules property 232
Specification file

default directory 175
startBehavior method 61
startBehavior() method 52
State interface

C++ changes 226
state.cpp 62
Statecharts

changes in the COM API 152
flat 210

Static property 163
Static relations 163
Stereotypes 232
STL support 233

enhanced 182
stopTimer 37
StrictExternalElementsGeneration 144
Stub connector 152
246 Upgrade Guide

Index
Superseded properties 181
SysML

7.1,1 MR1 changes 43
7.2 changes 33
profile 33, 43

SysML profile 43

T
Targets

64-bit 34
Template instantiation classes 31
theMainTask object 27
ThrowExceptions property 89
TimeManagement.sbs 36
Timeout heap 69
Timer factory 215
TimerMaxTimeouts property 229
TimerResolution property 229
TimerTickTime property 229
tom library 62
Triggered operations

unconsumed 211
Typedef modeling 157

U
Unconsumed

events 211
triggered operations 211

UnixLineTerminationStyle property 214
Upgrading

C models to 3.0 234
C++ models to 3.0 230

considerations for Windows systems 1
custom adapters 169
Java models to 3.0 234
Modeler to Developer 1

UsageType 144
UseAda83Framework property 55, 56
UseAsExternal 143
UseDirectReactiveDeletion property 57
UsePackageForExternals property 57
User documentation 3
UseRhp5CompatibilityAPI property 126
UseTemplateTypename property 47

V
VariableInitializationFile property 198
Variables

globalSupportDirectDeletion 53
RiCReactive_setGlobalSupportDirectDeletion 53
RiCReactive_shouldSupportDirectDeletion 53
SimulinkLibName 66, 70

Visual Studio 2005 31, 34, 36
vxos.cpp 35, 36
vxoxf.mak 36, 62
VxWorks 6.5 36
VxWorks6.0diab environment 77
VxWorks6.0gnu environment 77
VxWorks6.2diab environment 77
VxWorks6.2gnu environment 77

W
Webify Toolkit 179
Windows systems 1
Rhapsody 247

Index
248 Upgrade Guide

	Contents
	Upgrade Considerations
	Upgrading Rational Rhapsody on Windows 98 Systems
	Upgrading from Modeler to Developer Capability
	Upgrading Rational Rhapsody Applications
	Upgrading Applications that Use Configuration Management
	Required User Actions for All Releases
	COM API

	Documentation

	Upgrading to Version 7.5
	Changes in Version 7.5
	Code Generation
	MicroC

	Reverse Engineering
	Frameworks
	OXF - C++
	OXF - C

	Diagrams
	Statecharts
	Activity Diagrams
	Activity Diagram Element Changes
	Common Drawing Tools, Free Shapes

	Rhapsody API Changes
	Other Changes
	Removal of Support for pre-6.0 OXF
	Saving of Models
	Visual Studio Support
	Cygwin gcc Support
	AUTOSAR
	Tracing

	Upgrading to Version 7.4.0.1
	Changes in Version 7.4.0.1
	Code Generation
	MicroC Profile

	Frameworks
	OXF - C++
	OXF - C

	AutomotiveC

	Upgrading to Version 7.4
	Changes in Version 7.4
	Frameworks
	OXF - C++

	Code Generation
	AutomotiveC Profile

	Upgrading to Version 7.3 MR-1
	Changes in Version 7.3 MR-1
	Frameworks
	ExtendedC_OXF

	Code Generation
	AutomotiveC Profile

	Upgrading to Version 7.3
	Changes in Version 7.3
	Code Generation
	Reverse Engineering
	Roundtripping
	Tracing
	Framework
	C
	C++

	Other Changes

	Upgrading to Version 7.2 MR-1
	Changes in Version 7.2 MR-1
	Code Generation

	Upgrading to Version 7.2
	Changes in Version 7.2
	Code Generation
	Animation
	Check Model
	Code Generation - Makefile
	Reverse Engineering
	Roundtripping
	Modeling
	GUI
	Rhapsody API
	Java API
	SysML Profile
	Support for 64-bit Targets
	Framework
	C
	C++
	Java

	ReporterPLUS

	Upgrading to Version 7.1.1 MR-3
	Changes in Version 7.1.1 MR-3
	Code Generation

	Upgrading to Version 7.1.1 MR-2
	Changes in Version 7.1.1 MR-2
	Code Generation

	Upgrading to Version 7.1.1 MR-1
	Changes in Version 7.1.1 MR-1
	Code Generation
	Other Changes
	Changes to the SysML Profile

	Upgrading to Version 7.1.1
	Changes in Version 7.1.1
	Code Generation
	Reverse Engineering / Roundtripping
	Framework
	C++

	Upgrading to Version 7.1
	Changes in Version 7.1
	Code Generation
	Reverse Engineering / Roundtripping
	Framework
	Ada
	C
	C++

	Properties
	Other Changes

	Automatic Upgrade Performed by Rhapsody
	Changes that May Necessitate User Action
	Code Generation
	Reverse Engineering / Roundtripping
	Framework
	Other Changes

	Backward Compatibility Settings
	Code Generation
	Reverse Engineering / Roundtripping

	Upgrading to Version 7.0 MR-3
	Changes in Version 7.0 MR-3
	Code Generation
	Framework

	Upgrading to Version 7.0 MR-2
	Changes in Version 7.0 MR-2
	Code Generation
	Framework
	Other Changes

	Changes that May Necessitate User Action
	Code Generation

	Upgrading to Version 7.0 MR-1
	Changes in Version 7.0 MR-1
	Framework - Linux
	Properties

	Upgrading to Version 7.0
	Changes in Version 7.0
	Code Generation
	Reverse Engineering
	Framework
	Rhapsody API
	Other Changes

	Automatic Upgrade Performed by Rhapsody
	Changes that May Necessitate User Action
	Code Generation
	Framework
	Other Changes

	Backward Compatibility Settings
	Code Generation
	Reverse Engineering

	Upgrading to Version 6.2 MR-1
	Upgrading to Version 6.2
	Changes that Require User Action
	RiC++ OXF
	OM_DECLARE_FRAMEWORK_MEMORY_ALLOCATION_OPERATORS

	Adapters
	VxWorks support

	Automatic Upgrade Performed by Rhapsody
	RiC++ OXF

	Additional Information
	Code Generation
	RiC IDF
	RiC++ OXF

	Upgrading to Version 6.1 MR-2
	Changes that Require User Action
	COM API
	Code Generation
	Initialization of C++ Instances Realizing CORBA Interfaces

	Additional Information
	Framework
	OXF

	Upgrading to Version 6.1 MR-1
	General Recommendations
	Code Generation
	Working with Rhapsody 6.1 and Rhapsody 6.1 MR-1 Simultaneously
	The CORBA Package

	Changes that Require User Action
	Code Generation
	General
	COM-ATL Support (C++)
	CORBA Compatibility with Rhapsody 6.0

	Framework
	RiC++
	RiC

	Automatic Upgrade Performed by Rhapsody
	Code Generation
	Backward Compatibility Profiles
	Statechart Serialization
	Redundant Assignment of Event IDs Removed
	Declaring Empty Throw

	Changes Disabled for Backward Compatibility
	Code Generation
	General
	CORBA

	Additional Information
	Code Generation
	Template Instantiation Usage
	Web Instrumentation
	Namespace Cleanup
	Generation of Empty Packages
	Activity Diagrams for Operations

	Framework
	Adapters
	RiC++
	RiC
	RiJ

	MULTI Makefile Generator
	INTEGRITY Target Selection

	Properties
	Modified Properties
	Renamed Properties

	Upgrading to Version 6.1
	Changes that Require User Action
	Code Generation
	Attribute Multiplicity field

	Framework
	VxWorks Adapters
	RiC++ Framework File Changes
	IDF (Interrupt Driven Framework)
	Callback Function Pointers in the RiC++ OSAL

	Properties on Stereotypes

	Automatic Upgrade Performed by Rhapsody
	Code Generation
	General
	RiC
	RiC++
	Animation and Tracing Configurations
	CORBA - Type Modeling Support

	Features Disabled for Backward-Compatibility
	Property Resolution
	Code Generation
	Generation of Dependencies from Arguments
	Origin of #include
	CORBA

	Additional Changes
	Framework
	RiC++
	Adapters
	Nucleus
	RiC

	Code Generation
	C++
	Types with Identical Names
	Statechart Code

	Changed Properties
	COM API
	MultiMakefileGenerator
	Added features
	Additional Changes

	Upgrading to Version 6.0 MR-2
	Changes in Rhapsody 6.0 MR-2
	Framework
	RiC++

	Upgrading to Version 6.0 MR-1
	Changes in Rhapsody 6.0 MR-1
	CORBA
	C++ OXF

	Upgrading to Rhapsody 6.0
	Changes that Require User Action
	Framework
	Rhapsody in C
	Rhapsody in C++
	VxWorks Adapter

	DiffMerge of Diagrams
	Code Generation
	Class Specification Epilog and Namespace

	Properties
	PredefinedMacros
	DescriptionEditorSupportsRTF

	COM API

	Rhapsody in C++ Object eXecution Framework
	Backward Compatibility
	Changes that Require User Action
	Enabling the New Features of the Framework

	Automatic Upgrades Performed by Rhapsody
	Code Generation
	Data Member Declarations

	PublicQualifier Property

	Features Disabled for Backward-Compatibility
	MultiMakefileGenerator
	Full Roundtrip

	Additional Information
	Code Generation
	Instrumentation of Composite Classes
	Flat Statechart Macro
	OMDECLARE_GUARDED
	Import Statements

	Framework
	C
	C++

	Linux/MVL Adapters
	Properties
	VxWorks MakeFileContent
	C++
	Java
	Ada

	MultiMakefileGenerator

	Upgrading to Version 5.2 MR-1
	Changes that Require User Action
	Code Generation
	Template-Based Descriptions

	C++ Properties

	Additional Information
	Code Generation
	Instrumentation of Composite Classes

	C++ Framework

	Upgrading to Version 5.2
	Changes that Require User Action
	Code Generation
	GenerateDirectoryPerModelComponent Property
	Generation of Variables
	Ports

	Automatic Upgrades Performed by Rhapsody
	Modeling of External Elements
	Code Generation
	Composite Classes
	Constant Variables as #define
	Reverse Engineering

	Features Disabled for Backward-Compatibility
	Code Generation
	External Elements
	Generating the Makefile Search Path

	Reverse Engineering
	Import of Structures

	Additional Information
	Code Generation
	Order of Attribute Initialization
	Template-Based Descriptions
	Ports
	New Lines
	Reactive V-Table Initialization
	Annotations

	Framework

	Upgrading to Version 5.0.x
	Upgrading to Version 5.0.1 MR2
	Changes that Require User Action
	Keyword Behavior Changes
	Property Changes

	Upgrading to Version 5.0.1 MR1
	Upgrading to Version 5.0.1
	Changes that Require User Action
	Adapters
	Code Generation (RiC)

	Framework Changes
	RiC Framework Changes
	RiC++ Framework Changes

	Upgrading to Version 5.0
	Changes that Require User Action
	Changes in the Framework Files
	COM API
	Changes in Hierarchy
	Renamed Metaclasses
	Changes to Statecharts and Activity Diagrams
	IRPUnit::load()

	DOORS
	C++ Interfaces
	HeaderDirectivePattern Property Value
	DiffMerge of Pre-Version 5.0 Models
	EmbeddedScalar::Set Property
	Code Generation
	C++ Framework

	Automatic Upgrades Performed by Rhapsody
	Explicit Initial Instances
	Code Generation Format
	GenerateWithAggregates Property

	Enabling the Rhapsody 5.0 Features
	Attribute Modifiers
	Typedef Modeling
	Cross-Package Links

	Additional Changes
	Framework Changes
	C Framework
	C++ Framework
	Java Framework

	Code Generation
	Generation of MULTI Build Files
	MISRA Compliance Changes (RiC)

	Changes in Default Property Values
	General Changes
	Ada
	C
	C++

	Deprecated COM APIs

	Upgrading to Version 4.2
	Changes that Require User Action
	Static Relations (C++ and Java)
	Automatic Glue Generations (Ada)
	OSE Support (C++)
	QNX Adapter Message Queues
	Animation Enhancements (C++)

	Automatic Upgrades Performed by Rhapsody
	Changes in Generated Code
	C++-Specific Changes
	C-Specific Changes

	Changes in Full Roundtrip (C++)

	Additional Information
	Adapters
	Rhapsody in C Framework
	Animation Enhancements (C++)
	GHS MULTI Build Files Generation (C++)
	ESTL Support (C++)

	Upgrading to Version 4.1
	Changes that Require User Action
	Compiler and RTOS Changes
	Upgrading Your Custom Environment
	C++ Framework Changes
	C Framework Changes

	Framework File Changes
	Rhapsody in C++ File Changes
	Rhapsody in C File Changes

	Default Directories for Specification and Implementation Files (C and C++)
	Model Checking
	Rhapsody COM API Changes
	New Interfaces
	Name Changes
	Behavior Changes

	DiffMerge Changes

	Features that Are Disabled on Load
	Ignore Code in Prolog/Epilog Properties on Roundtrip (C++)
	Robust Type Instrumentation (C and C++)
	Instance-Based Linking
	Reflect Data Members in Reverse Engineering
	Advanced Webify Toolkit Settings
	Analysis Sequence Diagrams

	Property Changes
	Renamed Properties
	Moved Properties
	Superseded Properties
	Properties Deleted from the Factory File
	Changed Properties

	Additional Information
	Enhanced C++ Standard Library (STL) Support
	Reverse Engineering of #include Statements Not Found by the Parser (C and C++)
	C++ Framework Changes
	Modeling Changes
	Inherited Statechart Coloring
	Sequence Diagrams

	Configuration Management Changes
	Code Generation Changes

	Upgrading to Version 4.0.1 MRx
	Upgrading to Version 4.0.1 MR1
	Properties
	Rhapsody in C++-Specific Changes
	Properties

	Rhapsody in J-Specific Changes

	Upgrading to Version 4.0.1 MR2
	Rhapsody in C-Specific Changes

	Upgrading to Version 4.0
	Changes that Require Model Modifications
	Generation of Implicit Dependencies
	Calling an Overridden initRelations() Operation
	Relation Properties
	Keywords of Relations’ Signature Properties
	Keywords Used in the Set Property

	Framework Event Consumption API Changes (C and C++)
	Event Handling in Null Transitions (C and C++)
	Guarded Class Implementation (C++)
	Configuration Management of the RPY File in SCC Mode

	Automatic Upgrades Done by Rhapsody
	Clean Default Values for Attributes (C and C++)
	Smart Generation of Package Code
	Generation of Filled-Diamond Relations
	Relation Properties
	Calling an Overridden initRelations() Operation
	Generalization (C++)
	Cleanup of the OXF Namespace (C++)
	Generated Class Name for Packages (Java)
	Changes in Property Names or Locations
	VariableInitializationFile Property

	Changes in the Framework API
	Rhapsody in C++-Specific OXF Changes
	Global Namespace Cleanup
	OMAbstractMemoryAllocator
	OMEvent
	OMTimeout
	OMStartBehaviorEvent
	OMCollection
	OMMap
	OMMemoryManager
	OMNotifier
	OMProtected
	OMGuard
	OMReactive
	OMStaticArray
	OMString
	OMThread
	OMUCollection
	OMState
	OMTimerManager
	OMValueCompare
	Adapter Changes

	Rhapsody in C-Specific OXF Changes
	RiCCollection
	RiCEvent
	RiCReactive
	RiCTask
	Adapter Changes

	Rhapsody in J-Specific OXF Changes
	RiJEvent
	RiJStateReactive

	Additional Information
	Incremental Code Generation
	Event IDs
	Derived Statecharts (Flat)
	Temporary Files
	Partial Animation
	Generalization
	Handling Unconsumed Events and Triggered Operations
	User Control over Framework Memory Management (C++)
	Generic Handling of Derived Events

	Upgrading to Version 3.0.1
	Properties
	Modified Properties
	New Properties

	Code Generation
	Framework
	Rhapsody in C++ Framework
	Memory Control
	OMReactive
	OMThread
	OMMainThread
	OMTimerManager

	Rhapsody in J Framework
	RiJThread
	RiJStateReactive
	RiJTimer

	Upgrading to Version 3.0 MR1
	OMOSMutex Interface Changes
	State Interface Changes

	Upgrading to Version 3.0
	Code Generation
	Framework
	Properties
	CG
	<lang>_CG
	ClassImporter
	General

	Checks
	Upgrading Rhapsody in C++ Models
	Framework
	Code Generation
	Properties
	Roundtrip
	STL Support

	Upgrading Rhapsody in C Models
	Upgrading Rhapsody in J Models
	Framework
	Code Generation

	Using Rhapsody 2.3 and Rhapsody 3.0 Concurrently
	Switching from Version 3.0 to 2.3
	Switching from Version 2.3 to 3.0

	Upgrading from 1.x and 2.x
	Upgrading from Version 1.x
	Upgrading from Version 2.x

	Index

