

Java Tutorial for Rational Rhapsody

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF available from Help > List of Books.

This edition applies to IBM® Rational® Rhapsody® 7.4 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
ii

Contents
Lesson 1: Creating a Use Case Diagram . 1
Goals for this Lesson . 1

Creating a Rational Rhapsody Project . 1

Creating a Standard Java Project Structure . 3

Analyzing the Dishwasher System . 4

Creating a Use Case Diagram . 5

Adding Use Cases to the Diagram. 7

Associating Actors with Use Cases . 8

Adding a Diagram Title . 9

Summary . 10

Lesson 2: Creating an Object Model Diagram . 11
Goals for this Lesson . 11

Creating an Object Model Diagram . 12

Adding Classes and Objects to the Diagram . 13

Adding Attributes and Operations to a Class. 13

Summary . 14

Lesson 3: Creating a Statechart . 15
Goals for this Lesson . 15

Creating a Statechart . 16

Adding States to a Statechart . 16

Drawing History and Diagram Connectors . 18

Drawing Default Connectors . 18

Drawing Transitions . 19

Adding Actions to States . 21

Summary . 22
Rational Rhapsody iii

Table of Contents
Lesson 4: Creating a Console User Interface . 23
Create the KeyReader Class. 23

Add a Statechart for the Display Class . 23

Add Part/Operation to Display Class. 25

Create an Activity Diagram for the KeyReader Class . 25

Summary . 27

Lesson 5: Creating Sequence Diagrams . 29
Goals for this Lesson . 29

Creating the Execution Sequence Diagram . 30

Summary . 32

Lesson 6: Creating Objects . 33
Creating the Build Object Model Diagram. 33

Specifying the Features of a Rational Rhapsody Configuration . 34

Summary . 35

Lesson 7: Generating Code, Building and Running your Application 37
Generating Code from the Model. 37

Fixing Code Generation Errors . 38
Examining Generated Source Files. 39

Building an Application with Rational Rhapsody. 39

Running an Application with Animation . 39

Injecting Events with the Animation Toolbar . 40

Using Breakpoints with Animation . 42

Summary . 43

Additional Rational Rhapsody Features . 45
Java-specific Features . 45

Additional Rational Rhapsody Features . 45

Index . 47
iv Java Tutorial

Lesson 1: Creating a Use Case Diagram
Use case diagrams (UCDs) show the main functions of the system (use cases) and the entities that
are outside the system (actors). Use case diagrams allow you to specify the requirements for the
system and show the interactions between the system and external actors.

Goals for this Lesson
In this lesson, you are going to determine who are the users of the system and what are the
requirements for the embedded system. Then you are going to create the Dishwasher use case
diagram.

Since this is the first lesson in the tutorial, first you create a new IBM® Rational® Rhapsody®
project.

Creating a Rational Rhapsody Project
To create the Rational Rhapsody project for the tutorial:

1. Launch Rational Rhapsody (Start > Programs > IBM Rational> IBM Rational
Rhapsody > Rhapsody Developer Edition > Rhapsody in J).

2. Click the New button on the main toolbar or select File > New. The New Project
dialog box opens.

3. In the Project name box, replace the default project name with Dishwasher.

4. In the In folder box, browse to find an existing folder or enter a new folder name.

Note: To avoid overwriting the sample Dishwasher project provided with the Rational
Rhapsody product, do not create your project in <Rational Rhapsody
installation>\Samples\JavaSamples. Also, to avoid potentially long
pathnames, do not create the project on the desktop.

5. In the Type box, accept Default, which provides all of the basic UML structures. It is
useful for most Rational Rhapsody projects.
Rational Rhapsody 1

Lesson 1: Creating a Use Case Diagram
Note: For a description of the available project types that you can select from the
Type drop-down list, refer to the IBM Rational Rhapsody User Guide. (Do a
search of the user guide PDF file for “specialized profile.”)

6. Click OK. If the specified location does not exist, Rational Rhapsody asks whether you
want to create it. Click Yes.

Rational Rhapsody creates your project in the new Dishwasher subfolder, opens the
project, and displays the Rational Rhapsody browser in the left pane and the drawing area
for an object model diagram.
2 Java Tutorial

Creating a Standard Java Project Structure
Creating a Standard Java Project Structure
As can be seen in the tree in the Rational Rhapsody Browser, project elements are contained in
Packages. In Rational Rhapsody in J, these packages correspond to Java code packages when code
is generated.

1. In the Rational Rhapsody browser, right-click the Packages category, and select Add New
Package.

2. Name the new package com.

3. Right-click the com package, and select Add New > Package.

4. Name the new package.

5. Repeat the previous two steps to create a package called dishwasher under the project.
Rational Rhapsody 3

Lesson 1: Creating a Use Case Diagram
Analyzing the Dishwasher System
Before using Rational Rhapsody, you should determine the requirements for the embedded system.
To analyze the dishwasher system used in this tutorial, answer these questions:

 Who might use the system?
 How they might use it?
 What are the major actions of the system?
 When do these actions occur?
 What are the relationships, similarities, or differences between the actions?
 What is standard behavior?
 What can go wrong?

Some simplified answers to these questions might be as follows:

 The system users or “actors” would include a “user” and a “service person.”
 The system washes, rinses, and then dries dishes.
 The “user” loads the dishes into the dishwasher, starts the dishwasher, and removes dishes

after they are washed.
 The system might fail to wash, rinse, or dry the dishes and require service.

During this analysis phase, you identify actors for the system. The three types of actors to consider
are:

 Users of the system
 External components providing information to the system
 External components receiving information from the system
4 Java Tutorial

Creating a Use Case Diagram
Creating a Use Case Diagram
In this exercise you are going to create a use case diagram for the dishwasher system. A use case
diagram shows typical interactions between the system being designed and the external actors who
might interact with it.

The following figure shows the Dishwasher use case diagram that you are going to create in this
exercise.

Dishwasher Use Case Diagram

To create the use case diagram, carry out the following steps:

1. Right-click the dishwasher package in the Rational Rhapsody browser, and select Add
New > Use Case Diagram to open the New Diagram dialog box.

2. When the New Diagram dialog box is displayed, type Dishwasher as the name of the
diagram, and then click OK.
Rational Rhapsody automatically adds the Use Case Diagrams category and the name of
the new diagram to the Rational Rhapsody browser and opens the new diagram in the
drawing area, as shown in the following figure:
Rational Rhapsody 5

Lesson 1: Creating a Use Case Diagram
Note
You can also create a diagram by using the Tools menu or the Diagrams toolbar. Also, once
you create a diagram you can open it using the Diagrams toolbar. Refer to the IBM Rational
Rhapsody User Guide for more information.

3. Click the Create Boundary box button on the Drawing toolbar.

4. Click the drawing area and drag to create a boundary box. Rational Rhapsody creates a
boundary box named System Boundary Box.

5. Rename the boundary box Dishwasher and then press Enter.

6. Click the Create Actor button on the Drawing toolbar.

7. On the drawing area, click to the left side of the boundary box. Rational Rhapsody creates
an actor with a default name.

8. Rename the actor User and then press Enter.

Note: Because code can be generated using the specified names, do not include
spaces in the names of actors.

9. Draw another actor outside the boundary box named ServicePerson.
6 Java Tutorial

Adding Use Cases to the Diagram
10. In the browser, you will see a category called Actors under the dishwasher package. If
you expand Actors, you will see the two actors that you just created.

Note: To quickly find the actors in the Rational Rhapsody browser, right-click an
actor on the use case diagram and click Locate or press Ctrl+L. You can use
this technique with other objects on a diagram as well.

Adding Use Cases to the Diagram
During the analysis phase, you identified user-visible functions or important goals of the system.
These are use cases. A use case represents a particular function of the system. To draw the use
cases, follow these steps:

1. Click the Create Use Case button on the Drawing toolbar.

2. Click inside the top half of the boundary box. Rational Rhapsody creates a use case with a
default name.

3. Rename the use case Wash Dishes and then press Enter.

Note: For use case names, you can use spaces because use case names do not appear
in generated code.

4. Create another use case inside the boundary box named Service Dishwasher.

5. In the browser, you can expand the Use Cases category to view the use cases you created,
as shown in the following figure:
Rational Rhapsody 7

Lesson 1: Creating a Use Case Diagram
Associating Actors with Use Cases
The User washes dishes and configures the washing mode, while the ServicePerson only services
the dishwasher as needed.

To incorporate the relationships of the actors to the use cases into the design, you draw association
lines between the actors and use cases. An association represents a connection between objects or
users.To draw association lines, follow these steps:

1. Click the Create Association button on the Drawing toolbar.
Notice that once you move your cursor over the drawing area the mouse pointer turns into
a crosshairs pointer to signify that it is enabled and that it changes into a circled crosshairs
pointer when drawing is possible.

2. Click the edge of the User actor and then click the edge of the Wash Dishes use case.
Rational Rhapsody creates an association line with the name label highlighted. You do not
need to name this association, so click the mouse button again (this is the same as pressing
Enter).

Note: To keep a line straight as you draw it, press the Ctrl key as you are drawing the
line.
8 Java Tutorial

Adding a Diagram Title
3. Create an association between the ServicePerson actor and the Service Dishwasher use
case and then click the mouse button again or press Enter.

4. Click the Save button to save your model.

Your use case diagram should resemble the following figure:

Adding a Diagram Title
Each diagram has its name in the diagram table and in the title bar of the window that displays the
diagram. However, it is also useful to add a title onto the diagram itself to help other members of
your team understand the content and purpose of a diagram.

To add an optional title to your diagram, follow these steps:

1. With the diagram displayed in the drawing area, click on the Free Shapes toolbar.

2. Click above the system boundary box in the diagram and type, for example, Dishwasher
Use Case Diagram, and press Ctrl+Enter.

Note: If you press Enter, you move your cursor to a new line. In this case, to exit
typing mode, you have to press Ctrl+Enter to end your action. Or you can
click out of the typing area.
Rational Rhapsody 9

Lesson 1: Creating a Use Case Diagram
3. Make the following changes if you want:

a. Reposition the title by dragging it into another location.

b. Use the tools on the Format toolbar to change the font styles.

4. Click the Save button to save your model.

For more information about the Free Shapes and Format toolbars, refer to the IBM Rational
Rhapsody User Guide.

Summary
In this lesson, you determined who are the users of the system and what are the requirements for
the embedded system. Then you created a use case diagram that shows the functions and
requirements of the dishwasher. You became familiar with the parts of a use case diagram and
created the following:

 System boundary box
 Actors
 Use cases
 Association lines
 Title for your diagram

You are now ready to proceed to the next lesson, where you are going to define how the system
components are interconnected using an object model diagram.
10 Java Tutorial

Lesson 2: Creating an Object Model
Diagram
Object model diagrams (OMDs) specify the types of objects in the system, the attributes and
operations that belong to those objects, the static relationship that can exist between classes
(types), and the constraints that might apply. The Rational Rhapsody code generator directly
translates the elements and relationships modeled in OMDs into Java source code.

Goals for this Lesson
In this lesson, you are going to create an object model diagram that shows how the system
components are interconnected.

In this lesson, you are going to:

 Create an object model diagram
 Create classes in the object model diagram
 Add attributes to a class
 Add operations to a class
Rational Rhapsody 11

Lesson 2: Creating an Object Model Diagram
Creating an Object Model Diagram
To create the object model diagram, follow these steps:

1. Start Rational Rhapsody and open the Dishwasher model you created if they are not
already open.

2. In the browser, right-click the dishwasher package and then select Add New > Object
Model Diagram.

3. When the New Diagram dialog box is displayed, type Dishwasher and then click OK.

Rational Rhapsody adds the Object Model Diagrams category underneath the dishwasher
package, and adds the name of the new object model diagram to the browser. Rational Rhapsody
also opens the new object model diagram in the drawing area, as shown in the following figure:
12 Java Tutorial

Adding Classes and Objects to the Diagram
Adding Classes and Objects to the Diagram

1. Click the Class button on the Drawing toolbar.
Notice that once you move your mouse pointer over the drawing area, a class icon appears
along with it.

2. Click-and-drag on the drawing area and create a tall rectangular class.

3. Rename the class Dishwasher and then press Enter.

4. Select the Dishwasher class and change to Structured view by clicking the Specification/
Structured View button on the toolbar.

5. Click the Object button on the Drawing toolbar, and use it to draw an object inside
the Dishwasher class. For the name, type jet:Jet. Click Yes when you are asked
whether you want to create a class called Jet. This will create an object called jet based on
a class called Jet.

6. Using the Object button again, draw another object inside the Dishwasher class and name
it heater:Heater. This will create an object called heater based on a class called Heater.

Note: The jet and heater objects were only created here to illustrate the creation of
parts in a class. They will not be referred to in the tutorial.

7. Select the Dishwasher class and change it back to Specification view by clicking the
Specification/Structured View button a second time.

8. Right-click the Dishwasher class select Display Options.

9. On the General tab, click the Compartments button.

10. In the Available list, select Part, and then click << Display to add it to the Displayed
list. (Verify that Attributes and Operations are also in the Displayed list.)

11. Click OK.

12. Click OK to close the Display Options dialog box. You should now see the objects you
created displayed in a compartment.

13. Create another class beside the Dishwasher class and name it Display.

Adding Attributes and Operations to a Class
1. In the object model diagram you created, right-click the Dishwasher class to display the

context menu.
Rational Rhapsody 13

Lesson 2: Creating an Object Model Diagram
2. Select New Attribute.

3. Name the attribute washTime.

4. Repeat the previous steps to create another two attributes called rinseTime and dryTime.

5. Right-click the Dishwasher class and select Features.

6. On the Attributes tab of the Features dialog box, you should see the three attributes you
created. Verify that they have Public visibility and are of type int. If not, use the drop-
down lists to modify the visibility and/or type.

7. Click OK to close the Features dialog box.

8. Right-click the Dishwasher class and select New Operation. Name the operation setup.

9. Right-click the Dishwasher class and select Features.

10. On the Operations tab of the Features dialog box, double-click the setup operation.
This will open the Features dialog box for the operation.

11. On the Implementation tab, type in the following Java code:

washTime = 5000;

rinseTime = 4000;

dryTime = 5000;

12. Click OK to close the Features dialog box for the setup operation.

13. Click OK to close the Features dialog box for the Dishwasher class.

14. Save your project.

Summary
In this lesson, you created an object model diagram that specified the types of objects in the system
and the attributes and operations that belong to those objects.

You are now ready to proceed to the next lesson, where you will create a statechart for the
Dishwasher class.
14 Java Tutorial

Lesson 3: Creating a Statechart
Statecharts define the behavior of objects, including the various states that an object can enter over
its lifetime and the messages or events that cause it to transition from one state to another. Each
statechart defines the life cycle behavior of a single reactive class. Therefore, a single reactive
class can be associated with only one statechart.

Goals for this Lesson
In this lesson you will learn to perform the following tasks:

 Draw a statechart
 Draw states and nested states
 Draw transitions
 Specify entry and exit actions
 Draw history connectors
Rational Rhapsody 15

Lesson 3: Creating a Statechart
Creating a Statechart
The following figure shows the Dishwasher statechart that you are going to create in this exercise.

To create a statechart, follow these steps:

1. Start Rational Rhapsody and the Dishwasher model if they are not already open.

2. In the Rational Rhapsody browser, right-click the Dishwasher class.

3. Select Add New > Statechart.

Rhapsody automatically adds the new statechart under the Dishwasher class in the
browser. In addition, Rhapsody opens the new statechart in the drawing area.

Adding States to a Statechart
To draw a state, follow these steps:

1. Click the State button in the Drawing toolbar.

2. Click-and-drag on the drawing area to create a large state, and name the state Running.
16 Java Tutorial

Adding States to a Statechart
3. Using the completed statechart screen capture as a reference, draw the following states
inside the Running state:

– Washing
– Rinsing

– Drying

4. Outside the Running state, draw two more states and name them Off and Open.

Your statechart should resemble the following figure:
Rational Rhapsody 17

Lesson 3: Creating a Statechart
Drawing History and Diagram Connectors
If you open and close the door during operation, the dishwasher must start up again where it left
off in the wash cycle. In other words, you want the dishwasher to save its history so it can continue
where it left off after an interruption. History connectors store the most recent active configuration
of a state. A transition to a history connector restores this configuration.

When the dishwasher is done drying, the cycle should start over again at the beginning, to handle
future loads. To define the cycle restart, use diagram connectors to connect the end of one part of a
statechart to the beginning of another part. These connectors physically join distant transition
segments. Diagram connectors have the same name to indicate they are a pair of connectors. This
tells the system to jump from one to the other even if they are located on different statecharts.

To draw these connectors, follow these steps:

1. Click the History connector button on the Drawing toolbar and then click inside the
Running state.

2. Click the Diagram connector button on the Drawing toolbar and create the
following diagram connectors and label them Done in the following locations:

– Inside the Running state, below the Drying state. This is the source diagram
connector.

– Outside the Running state, next to the Off state. This is the target connector.
3. Save your model.

Drawing Default Connectors
One object must be assigned the default state. In the default state, the object knows to start the
system. When the dishwasher first starts, it is in the Off state.

Note that once you have drawn a default connector in a statechart, Rational Rhapsody does not
allow you to draw another one in the same chart. Each object can have only one default state.

To assign the default states for classes in the statechart, follow these steps:

1. Click the Default connector button on the Drawing toolbar.

2. Click in the drawing area above and away from the Off state, then click an edge of the Off
state, and then click away from the connector to skip naming the connector (or press
Ctrl+Enter).
18 Java Tutorial

Drawing Transitions
3. Use the same method to draw a default connector to the Washing state, keeping the
connector inside the Running state.

At this point, your statechart should resemble the following figure:

Drawing Transitions
A transition represents a message or event that causes an object to switch from one state to
another.

To add transitions, use the following steps:

1. Click the Transition button on the Drawing toolbar.

2. Click an edge of the Off state to anchor the start of the transition and then click an edge of
the Running state to anchor the end of the transition.

3. Type evStart/setup(); as the label and then press Ctrl+Enter to dismiss the edit box.
(Pressing Enter only adds a new line.)
Rational Rhapsody 19

Lesson 3: Creating a Statechart
Note: To change the text of a label or add a label to a previously drawn transition,
click the Transition Label on the Drawing toolbar. Click the transition
line and type/edit label text.

4. Draw a transition from the Running state to the Open state and type evOpen as the label.

5. Draw a transition from the Open state to the H history connector and type evClose as the
label.

6. Inside the Running state, draw a transition from the Washing state to the Rinsing state and
label it tm(washTime).

Note: tm represents a timeout.

7. Draw a transition from the Rinsing state to the Drying state and label it tm(rinseTime).

8. Draw a transition from Drying state to the Done diagram connector and label it
tm(dryTime).

9. Draw an unlabeled transition from the Done target diagram connector to the Off state.

At this point, your statechart should shows the Dishwasher with all of the transitions
between the various states, and your diagram should resemble the following figure:
20 Java Tutorial

Adding Actions to States
Adding Actions to States
To define actions that should be carried out upon entry into a state or exit from a state, follow these
steps:

1. Double-click the Washing state on the statechart to open the Features dialog box.

2. On the General tab, type the following code in the Action on entry box, as shown in the
following figure:

System.out.println("Washing");

3. Click OK to apply your changes. On the statechart, notice that the Washing state has an
icon in the upper right corner. This indicates that the Washing state now has
underlying actions.

4. Double-click the Rinsing state, and type the following code in the Action on entry box,
and click OK:

System.out.println("Rinsing");
Rational Rhapsody 21

Lesson 3: Creating a Statechart
5. Double-click the Drying state, and type the following:

a. In the Action on entry box:

System.out.println("Drying");

b. In the Action on exit box:

System.out.println("Dishwasher Cycle Complete");

6. For the Open state, type the following:

a. In the Action on entry box:

System.out.println("Door Opened");

b. In the Action on exit box:

System.out.println("Door Closed");

7. Save your model.

Summary
In this lesson, you created a statechart, which identifies the state-based behavior for your
dishwasher model. You became familiar with the parts of a statechart and created the following:

 States and nested states
 Default connectors
 Transitions
 Actions

You are now ready to proceed to the next lesson, where you will create a simple console interface
that will allow you to control the basic functions of the dishwasher.
22 Java Tutorial

Lesson 4: Creating a Console User
Interface
In this lesson, you will create the elements necessary to allow you to use input from a command
line to input events connected to the operation of the dishwasher. Specifically, you will

 create a new class called KeyReader
 add a statechart for the Display class
 add additional operations and parts to the Display class
 create an activity diagram for the KeyReader class

Create the KeyReader Class
The following steps will create a new class that will be responsible for reading the input provided
by the user in the command-line.

1. Right-click the dishwasher package and select Add New > Class.

2. Name the class KeyReader.

3. In the browser, double-click the KeyReader class to open up the Features dialog box.

4. On the General tab, set Concurrency to active.

Add a Statechart for the Display Class
The following steps will create a statechart that specifies the behavior of the Display class when
different events are sent from the command-line.

1. In the browser, right-click the Display class and select Add New > Statechart.

2. Add a state called WaitForKeys to the statechart.

3. Draw a default transition leading to the WaitForKeys state.

4. Add a condition connector to the diagram.

5. Draw a transition from WaitForKeys to the condition connector and label it evKeyPress.
Rational Rhapsody 23

Lesson 4: Creating a Console User Interface
6. Open the Features dialog box for the evKeyPress event.

7. Go to the Arguments tab, and click <New> to create a new argument called key.

8. Use the drop-down list to set the argument type to char.

9. Draw a transition from the condition connector to the WaitForKeys state and enter the
following label:
[params.key == 's']/itsDishwasher.gen(new evStart());

10. Draw another transition from the condition connector to the WaitForKeys state and enter
the following label:
[params.key == 'o']/itsDishwasher.gen(new evOpen());

11. Draw another transition from the condition connector to the WaitForKeys state and enter
the following label:
[params.key == 'c']/itsDishwasher.gen(new evClose());

12. Draw another transition from the condition connector to the WaitForKeys state and enter
the following label:
[params.key == 'x']/System.exit(1);

Your statechart should now look like the following:
24 Java Tutorial

Add Part/Operation to Display Class
Add Part/Operation to Display Class
The following steps will establish the relationship between the Display class and the new
KeyReader class that you created.

1. In the browser, right-click the Display class and select Add New > Part. When the list of
available classes is displayed, select KeyReader from the list.

2. Press Enter to accept the default name provided for the new part, itsKeyReader.

3. Double-click the part you created (itsKeyReader) to open the Features dialog box.

4. On the General tab, in the section Relation to whole, check knows Display as and enter
itsDisplay.

5. Click OK to apply the changes.

6. In the browser, double-click the Display class to open the Features dialog box.

7. Go to the Operations tab, click <New>, and then select Primitive Operation from the
list displayed to create a new operation, and name it processKey.

8. Double-click the name of the operation you created to open the Features dialog box for
processKey.

9. Go to the Arguments tab, and click <New> to create an argument called key of type char.

10. Click OK to apply the changes.

Create an Activity Diagram for the KeyReader Class
The following steps will create an activity diagram that specifies the behavior for the KeyReader
class to allow it to take the user input and initiate the event that the Display class waits for.

1. In the browser, right-click the KeyReader class and select Add New > Activity Diagram.
The new diagram will be opened in the drawing area.

2. Use the Action tool on the Drawing toolbar to add an action to the activity diagram.

3. Enter the following code in the Action box for the action you created:

System.out.println("Enter command:");

4. Use the Default Flow tool to draw a default flow leading to the action you added.

5. Use the Action tool on the Drawing toolbar to add a second action to the activity diagram.
Rational Rhapsody 25

Lesson 4: Creating a Console User Interface
6. Use the Activity Flow tool to add an activity flow from the first action you added to the
second action you added.

7. Enter the following code in the Action box for the second action you created:

char cmd = 0;

try

{

while (Character.isLetterOrDigit(cmd) == false)

cmd = (char)System.in.read();

}

catch (java.io.IOException e)

{

System.err.println("Exception while reading from console: " + e);

}

if (itsDisplay != null)

itsDisplay.gen(new evKeyPress(cmd));

8. Use the Activity Flow tool to add an activity flow from the second action you added,
leading back to itself.

Your activity diagram should now look like the following:
26 Java Tutorial

Summary
Summary
In this lesson, you

 created a new class called KeyReader to handle the user input
 added a statechart for the Display class to specify its behavior when different events are

sent from the command-line
 added a part based on the KeyReader class to establish the relationship between the

Display class and the KeyReader class
 created an activity diagram that specified how the KeyReader class should respond to

input entered by the user
In the next lesson, you will construct a sequence diagram that shows how the various elements of
the system communicate with one another over time.
Rational Rhapsody 27

Lesson 4: Creating a Console User Interface
28 Java Tutorial

Lesson 5: Creating Sequence Diagrams
Sequence diagrams show structural elements communicating with one another over time. They
also identify required relationships and messages. A high-level sequence diagram shows the
interactions between actors, use cases, and blocks. Lower-level sequence diagrams show
communication between classes and objects.

Sequence diagrams have an executable aspect and are a key application animation tool. When you
animate the model to see the application’s operations, Rational Rhapsody dynamically builds
sequence diagrams that record the object-to-object or block-to-block messaging.

Goals for this Lesson
In this lesson you will learn to perform the following tasks:

 Draw a sequence diagram
Rational Rhapsody 29

Lesson 5: Creating Sequence Diagrams
Creating the Execution Sequence Diagram
The following figure shows the Execution sequence diagram that you are going to create in this
exercise.

Execution Sequence Diagram

Rational Rhapsody separates sequence diagrams into a Names pane and a Message pane. The
Names pane contains the name of each instance line or classifier role. The Message pane contains
the elements that make up the interaction.

To create a new sequence diagram, follow these steps:

1. In the Rational Rhapsody browser, right-click the dishwasher package, and select Add
New > Sequence Diagram.

2. When the New Diagram dialog box is displayed:
30 Java Tutorial

Creating the Execution Sequence Diagram
a. Name the diagram Execution

b. Select the Design option

c. Click OK.

3. Click the System Border button on the Drawing toolbar and click on your sequence
diagram. Rational Rhapsody creates an item named ENV (for environment) that
represents the system border.

4. Drag the KeyReader class from the Rational Rhapsody browser to the right of the system
border.

5. Drag the Display class from the browser to the right of the KeyReader line that you
added.

6. Drag the Dishwasher class from the browser to the right of the Display line.

7. Using the Message button on the Drawing toolbar, draw a diagonal message from the
KeyReader class to the Display class, and then open the context menu for the message
and select Select Message > evKeyPress.

8. Using the Message button once again, draw a message from the Display line back to the
Display line (message to self) below the previous message, and then open the context
menu for the message and select Select Message > processKey.

9. Draw a diagonal message from the Display line to the Dishwasher line, below the
previous message, and then open the context menu for the message and select Select
Message > evStart.

10. Draw another message to self, this time on the Dishwasher line, below the previous
message, and then open the context menu for the message and select Select Message >
setup.

11. Draw a diagonal message from the Display line to the Dishwasher line, below the
previous message, and then open the context menu for the message and select Select
Message > evOpen.

12. Draw a diagonal message from the Display line to the Dishwasher line, below the
previous message, and then open the context menu for the message and select Select
Message > evClose.

13. Save your model.
Rational Rhapsody 31

Lesson 5: Creating Sequence Diagrams
Summary
In this lesson, you created a sequence diagram, which show structural elements communicating
with one another over time for your dishwasher model. You became familiar with the parts of a
sequence diagram and created the following:

 System border
 Classifier roles
 Workflow with messages and events.

You are now ready to proceed to the next lesson, where you are going to build an additional object
model diagram that will represent the objects created during execution of the application.
32 Java Tutorial

Lesson 6: Creating Objects
In this lesson, you construct an object model diagram that represents the objects that are created
when you run the application.

You will also learn to specify the features of a Rational Rhapsody configuration, which represents
the details of how you want an application to be built.

Creating the Build Object Model Diagram
To construct an object model diagram that represents the objects that are to be created when the
application is run, follow these steps:

1. Right-click the dishwasher package in the browser, and select Add New > Object Model
Diagram. Name the diagram Build.

2. Using the Composite Class tool in the Drawing toolbar, add a large composite class
called DishwasherBuilder to the diagram.

3. Drag the Display and Dishwasher classes from the browser into the new composite class
that you created.

4. Right-click the Display class and select Make an Object.

5. Right-click the Dishwasher class and select Make an Object.

6. Using the Association tool in the Drawing toolbar, draw an association between
Display and Dishwasher.

7. Using the Link tool in the Drawing toolbar, draw a link between Display and
Dishwasher.

Note: Links represent instances of an association.
Rational Rhapsody 33

Lesson 6: Creating Objects
At this point, your object model diagram should resemble the following figure:

Specifying the Features of a Rational Rhapsody
Configuration

To specify how Rational Rhapsody should build the executable for your application, follow these
steps:

1. In the Rational Rhapsody browser, open the Components category.

2. Select the component named DefaultComponent, press F2, and rename the component
EXE.

3. Double-click the EXE component to open its Features dialog box.

4. On the Scope tab of the Features dialog box, select the All Elements option.

5. In the browser, under the EXE component, open the Configurations category.
34 Java Tutorial

Summary
6. Select the configuration DefaultConfig, press F2, and rename the configuration Host.

7. Double-click the Host configuration to open its Features dialog box.

8. On the Settings tab of the Features dialog box, set the Instrumentation Mode to
Animation.

9. On the Initialization tab, choose the Explicit option under Initial Instances, and then
open the tree of elements and select the check box for DishwasherBuilder.

10. Save the model.

Summary
In this lesson, you:

 created an object model diagram that represents the objects that are created when you run
the application

 modified the settings of a Rational Rhapsody configuration to instruct Rational Rhapsody
how it should build the executable for your application
Rational Rhapsody 35

Lesson 6: Creating Objects
36 Java Tutorial

Lesson 7: Generating Code, Building and
Running your Application
In this lesson, you will:

 Generate Java code for your model
 Build your application from your model
 Run your application using Rational Rhapsody’s animation feature

Generating Code from the Model
Your model can contain more than one component. In turn, each component can contain a number
of configurations.

When you generate code with Rational Rhapsody, it generates code for the active configuration of
the active component. In the Rational Rhapsody browser, the active component and configuration
are displayed in bold.

The active component and configuration are also displayed in the Code toolbar.

In the model built in this tutorial, there is only a single component with a single configuration. So
in this case, you do not have to concern yourself with making sure these are the active component/
configuration before generating code. Keep in mind that when working with models with multiple
components/configurations, you have to check that the correct component and configuration are
designated as active before you generate code.

Note
To make a component/configuration active, you can open the context menu for the
component/configuration and select Set as Active. Alternatively, you can select the
component and configuration from the drop-down lists that are included in the Code toolbar.

1. Select Code > Generate > Host. Rational Rhapsody displays a message that the output
directory for the Host configuration does not yet exist and asks you to confirm its
creation.

2. Click Yes. Rational Rhapsody places the source files generated in the new Host directory.
Rational Rhapsody 37

Lesson 7: Generating Code, Building and Running your Application
Rational Rhapsody generates the code and displays output messages in the Log tab of the Output
window, as shown in the following figure:

Note
If the Output window is not visible at the bottom of the Rational Rhapsody window, select
View > Output Window from the main menu.

The messages inform you of the code generation status, including:

 Success or failure of internal checks for the correctness and completeness of your
model. These checks are performed before code generation begins.

 Names of files generated for classes and packages in the configuration.
 Names of files into which the main() function is generated.
 Completion of code generation.

Fixing Code Generation Errors

If you receive code generation errors, double-click the error in the Output window to go to the
source of the error. The source of the error appears as a highlighted element. Once you fix the
problem, regenerate the code (choose Code > Re Generate > Host) until there are no error
messages.
38 Java Tutorial

Building an Application with Rational Rhapsody
Examining Generated Source Files

To view the code generated for a specific class, right-click on the class in the browser and select
Edit Code.

If you want to toggle the display of line numbers in the code, do the following:

1. Right-click in the code window and select Properties to open the Window Properties
dialog box.

2. On the Misc tab, in the Line Numbering area, select a numbering style from the drop-
down list (for example, Decimal).

3. Click OK.

Building an Application with Rational Rhapsody
Once you generate code without any errors, you are ready to build the model.

To build the model, do one of the following:

 Select Code > Build > Build Entire Project, or

 Click the Make button on the Code toolbar.
Build messages, including any compilation errors that might have occurred are displayed on the
Build tab of the Output Window.

If you encounter any compilation errors, double-clicking the error will take you to the problematic
model element or problematic code.

Running an Application with Animation
Now that the application has been built, you can run the application and use the Rational Rhapsody
animation feature to verify that the application runs correctly.

1. In the Rational Rhapsody browser, double-click the Execution sequence diagram to open
the diagram.

2. To run the application, do one of the following:

a. Select Code > Run MainEXE.class, or

b. Click the Run Executable button on the Code toolbar.
Rational Rhapsody 39

Lesson 7: Generating Code, Building and Running your Application
3. After the console window opens, return to the Rational Rhapsody window. You will see
that a dynamic (animated) version of the Execution sequence diagram has been opened.
At this point, it will only display the various instance lines.

4. Click the Go button on the Animation toolbar. You will see Create() messages in the
animated sequence diagram, representing the creation of the initial objects.

5. Right-click the Dishwasher instance line, and select Open Animated Statechart. A
dynamic (animated) version of the Dishwasher statechart will be opened.

6. Resize the console window that was opened when you ran the application and the Rational
Rhapsody window so that you can align the windows side-by-side to see both at once.

7. Enter s in the console window and press Enter.

8. Watch the animated statechart as the application progresses through the various states that
you defined. The active state at any given moment is highlighted in magenta.

9. In order to simulate the opening of the dishwasher door, enter s in the console window and
press Enter, and immediately afterwards enter o in the console window and press Enter.
The application will move to the Open state in the statechart.

Note: When we earlier defined the attributes that control the movement between the
Washing, Rinsing, and Drying states, we used very small numbers (4-5
seconds). If you find that this does not give you enough time to enter the
character for simulating the door opening event, you can go to the
Implementation tab of the Features dialog box for the setup operation of the
Dishwasher class and change the numbers. You will then have to regenerate
the code and rebuild the application before running the application (using the
Regenerate and Rebuild options in the Code menu).

10. Enter c in the console window and press Enter. The application will return to the Running
state. Note that the application is able to return to the state where it was when the door
was opened because we used a History connector in the statechart.

11. Enter x in the console window and press Enter. The console window will close and the
application will stop running.

Injecting Events with the Animation Toolbar
In order to facilitate the simulation of events for our application, we included a console-based
control panel. While this was useful for the limited number of events in this application, it would
not be very convenient for a system with dozens of events.

Rational Rhapsody provides an easy way to simulate all of the events you have defined for your
application. In this section, you will use this event-injection mechanism.
40 Java Tutorial

Injecting Events with the Animation Toolbar
Note
Since it will probably take you a little while to get used to the GUI controls used in Rational
Rhapsody for simulating events, you might want to change the values for the attributes that
control the timing of movement between the Washing, Rinsing, and Drying states so that
the application stays in the different states for a longer period.

1. In the Rational Rhapsody browser, double-click the Execution sequence diagram to open
the diagram.

2. Run the application by doing one of the following:

a. Select Code > Run MainEXE.class, or

b. Click the Run Executable button on the Code toolbar.

3. After the console window opens, return to the Rational Rhapsody window. You will see
that a dynamic (animated) version of the Execution sequence diagram has been opened.
At this point, it will only display the various instance lines.

4. Click the Go button on the Animation toolbar. You will see Create() messages in the
animated sequence diagram, representing the creation of the initial objects.

5. Right-click the Dishwasher instance line, and select Open Animated Statechart. A
dynamic (animated) version of the Dishwasher statechart will be opened.

6. Click the Event Generator button on the Animation toolbar.

7. When the Events dialog is displayed, click the Select button and select
DishwasherBuilder[0]->itsDishwasher from the list of instances.

8. From the drop-down list of events, select evStart.

9. Click OK.

10. Watch the animated statechart as the application progresses through the various states that
you defined. The active state at any given moment is highlighted in magenta.

11. Click the Event Generator button on the Animation toolbar.

12. When the Events dialog is displayed, click the Select button and select
DishwasherBuilder[0]->itsDishwasher from the list of instances.

13. From the drop-down list of events, select evOpen.

14. Click OK. The application will move to the Open state in the statechart.

15. Click the Event Generator button on the Animation toolbar.
Rational Rhapsody 41

Lesson 7: Generating Code, Building and Running your Application
16. When the Events dialog is displayed, click the Select button and select
DishwasherBuilder[0]->itsDishwasher from the list of instances.

17. From the drop-down list of events, select evClose.

18. Click OK. The application will return to the Running state. Note that the application is
able to return to the state where it was when the door was opened because we used a
History connector in the statechart.

19. Click the Stop Make/Execution button on the Code toolbar. The application will
stop running.

Using Breakpoints with Animation
Rational Rhapsody allows you to add breakpoints to stop execution at various points.

In the model we have been using in this tutorial, once the dishwashing cycle has started, the cycle
continues until completed. In this section, we will use a breakpoint to have the application stop
when it reaches the Drying state.

1. In the Rational Rhapsody browser, double-click the Execution sequence diagram to open
the diagram.

2. Run the application by doing one of the following:

a. Select Code > Run MainEXE.class, or

b. Click the Run Executable button on the Code toolbar.

3. After the console window opens, return to the Rational Rhapsody window. You will see
that a dynamic (animated) version of the Execution sequence diagram has been opened.
At this point, it will only display the various instance lines.

4. Click the Go button on the Animation toolbar. You will see Create() messages in the
animated sequence diagram, representing the creation of the initial objects.

5. Right-click the Dishwasher instance line, and select Open Animated Statechart. A
dynamic (animated) version of the Dishwasher statechart will be opened.

6. Click the Breakpoints button on the Animation toolbar.

7. When the Breakpoints dialog box is displayed, click New. The Define Breakpoint dialog
box is displayed.

8. Click Select, and choose DishwasherBuilder[0]->itsDishwasher from the list of
instances.
42 Java Tutorial

Summary
9. From the Reason drop-down list, select State Entered.

10. In the Data field, enter Drying.

11. Click OK.

12. Click the Event Generator button on the Animation toolbar.

13. When the Events dialog is displayed, click the Select button and select
DishwasherBuilder[0]->itsDishwasher from the list of instances.

14. From the drop-down list of events, select evStart.

15. Click OK.

16. On the animated statechart you will see that the application progresses through the various
states, however, it stops after entering the Drying state. You will also see on the
Animation tab of the Output window a message indicating that a breakpoint was
reached.

17. To allow the application to resume, click the Go button on the Animation toolbar.
Now, the dishwashing cycle will continue until completion.

18. Click the Stop Make/Execution button on the Code toolbar. The application will
stop running.

Summary
In this lesson, you:

 Generated Java code from the model.
 Built the application.
 Ran the application.
 Ran the application with animation.
 Injected events using the Animation toolbar
 Used breakpoints with animation.

This completes the hands-on part of the tutorial. In the next lesson, you find a list of additional
Java-specific features provided by Rational Rhapsody, as well as descriptions of many advanced
features that were not used in the framework of this tutorial.
Rational Rhapsody 43

Lesson 7: Generating Code, Building and Running your Application
44 Java Tutorial

Additional Rational Rhapsody Features
This section lists additional Java-specific features of Rational Rhapsody that were not
demonstrated in this tutorial.

It also contains descriptions of key Rational Rhapsody features that were not used in the tutorial.

Java-specific Features
Rational Rhapsody includes the following Java-specific features that were not used in this tutorial.
You can find information on these features in the IBM Rational Rhapsody User Guide.

 Java annotations
 Java enums

 Static import
 Static blocks
 Javadoc
 Java reference model

Additional Rational Rhapsody Features
The following are important features of Rational Rhapsody that were not used in this tutorial. You
can find information on these features in the IBM Rational Rhapsody User Guide.

 Reverse engineering
Rational Rhapsody can analyze existing code and build a Rational Rhapsody model based
on the code.

 Roundtripping
In addition to one-shot analysis of existing code, you can make manual changes to code
generated by Rational Rhapsody and then have Rational Rhapsody bring these changes
into the model and regenerate code from the updated model.

 Model reports
Rational Rhapsody includes a highly-configurable reporting tool called ReporterPLUS
that you can use to generate detailed reports from your model, including text and
Rational Rhapsody 45

Additional Rational Rhapsody Features
diagrams. When you don’t need the flexibility provided by ReporterPLUS, you can use
the Rational Rhapsody internal report generator to create basic model reports.

 Rational Rhapsody API
Rational Rhapsody provides an API that can be used to perform most Rational Rhapsody
actions from within a script. Two versions of the API are provided: a COM-based API
that can be used with C++ or VB/VBA/VBScript, and a Java API that can be used to
perform Rational Rhapsody actions from within a Java program.

 Rational Rhapsody command-line interface
A command-line version of Rational Rhapsody is provided to allow you to easily perform
Rational Rhapsody actions that do not require the GUI, for example, code generation. The
commands provided can be included in scripts in order to perform tasks such as nightly
builds.
46 Java Tutorial

Index
A
Actions 21
Actors 1, 4, 6
Associations 8

B
Building the model 39

C
Code generation

debugging 38
source files 39

Connectors 18
default 18
diagram 18
history 18
transitions 19

Creating
object model diagram 12
use case diagram 1

D
Debugging 38
Default connectors 18
Diagram connector 18
Diagram connectors 18
Diagrams

Dishwasher 5
Dishwasher statechart 16
Dishwasher use case diagram 5
Execution sequence diagram 30
object model 11, 16
sequence 29
use case 1

Dishwasher
object model diagram 11
use case diagram 1

Dishwasher statechart 16
Dishwasher use case diagram 5
Drawing

connectors 18
default connector 18

E
Execution sequence diagram 30

F
Files

code generation 39
source 39

G
Generated source files 39

H
History connectors 18

I
Instance area 30

J
Java code examples

timeout framework method 21

M
Message pane 30
Model building 39

N
Names pane 30

O
Operations

changing synchronization 22
Output window 38

P
Packages
Rational Rhapsody 47

Inde x
SubsystemsPkg 12
Panes

Message 30
Name 30

Profiles 2
Project profiles 1
Project types 1

R
Rational Rhapsody

project profiles 1
project types 1
specialized profiles 1

Rebuilding the application 38
Regenerating code 38
Requirements 4

S
Sequence diagrams 29

Execution 30
instance area 30
Message pane 30
Names pane 30

set border 30
Source files 39
Specialized profiles 2
Statecharts 15

default connector 18
Dishwasher 16
transitions 19

States
adding actions 21
drawing 16

Synchronization 22

T
Transition connectors 19, 20
Types of profiles 2

U
Use case diagrams 1

actors 6
Dishwasher 5
use cases 7

Use cases 7
48 Java Tutorial

	Contents
	Lesson 1: Creating a Use Case Diagram
	Goals for this Lesson
	Creating a Rational Rhapsody Project
	Creating a Standard Java Project Structure
	Analyzing the Dishwasher System
	Creating a Use Case Diagram
	Adding Use Cases to the Diagram
	Associating Actors with Use Cases
	Adding a Diagram Title
	Summary

	Lesson 2: Creating an Object Model Diagram
	Goals for this Lesson
	Creating an Object Model Diagram
	Adding Classes and Objects to the Diagram
	Adding Attributes and Operations to a Class
	Summary

	Lesson 3: Creating a Statechart
	Goals for this Lesson
	Creating a Statechart
	Adding States to a Statechart
	Drawing History and Diagram Connectors
	Drawing Default Connectors
	Drawing Transitions
	Adding Actions to States
	Summary

	Lesson 4: Creating a Console User Interface
	Create the KeyReader Class
	Add a Statechart for the Display Class
	Add Part/Operation to Display Class
	Create an Activity Diagram for the KeyReader Class
	Summary

	Lesson 5: Creating Sequence Diagrams
	Goals for this Lesson
	Creating the Execution Sequence Diagram
	Summary

	Lesson 6: Creating Objects
	Creating the Build Object Model Diagram
	Specifying the Features of a Rational Rhapsody Configuration
	Summary

	Lesson 7: Generating Code, Building and Running your Application
	Generating Code from the Model
	Fixing Code Generation Errors
	Examining Generated Source Files

	Building an Application with Rational Rhapsody
	Running an Application with Animation
	Injecting Events with the Animation Toolbar
	Using Breakpoints with Animation
	Summary

	Additional Rational Rhapsody Features
	Java-specific Features
	Additional Rational Rhapsody Features

	Index

