Rhapsody

C++ Tutorial

C++ Tutorial for Rational Rhapsody

Before using the information in this manual, be sure to read the “Notices’ section of the Help or
the PDF available from Help > List of Books.

This edition applies to IBM® Rational® Rhapsody® 7.4 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents

Getting Started 1
Audience forthe CH+ Tutorial 1
Before YOU Begin 1
CH+ TULOrIAl OVeIVIBW. . . o oo e e e e 2
C++ Tutorial ObjeCtiVES . .o o 3
Documentation CONVENTIONSo e e 4
About the Rational Rhapsody Product e 5
UML DIagramsottt e e e e e e et e e e e e e e 5
Starting the Rational Rhapsody Product. e 6
Closing the Rational Rhapsody Product e 6
Setting Up the CH++ Tutorial e e e 7
Creating @ ProjeCto 7
About a Rational Rhapsody Project 9
SaAVINg @ PrOJeCt . . .o 12
Organizing the Model Using Packages.t e e 13
Opening the Handset Model e e e e e e e 18
Using Naming ConVENtiONS i e e e e e e e e 19
PrEfIXES . . e 19
Model Element Namest e 19
Rational Rhapsody User Interface. e 20
TO0IDArS . . 21
BI O S . . . ot 22
Drawing ArCa oot 23
OUPUL WINAOW e e e e e e e e 23
Drawing TOOIDars e 23
Features Dialog BOXo 24
SUMIMIAIY . . e e e e e e e 29
Lesson 1: Creating Use Case Diagrams, 31
Goals Of this LeSSONo e 31

Rational Rhapsody

Table of Contents

Exercise 1: Creating the Functional Overview UCD. 32
Task 1a: Creating the Functional Overview Use Case Diagram.t 33
Task 1b: Drawing the Boundary BoX and ACtOrS.ottt e e e e e 35
Task 1c: Drawing the USe Casesottt e e e e e 37
Task 1d: Defining Use Case Featuresttt e 39
Task le: Associating Actors with Use Casesttt e e 40
Task 1f: Drawing Generalizationsot 42
Task 1g: Adding Remarks to Model Elements and Diagrams. 43
Exercise 2: Creating the Place Call Overview UCD 45
Task 2a: Creating the Place Call Overview Use Case Diagramc.o it 46
Task 2b: Drawing the Use Casesottt e 46
Task 2c: Defining Use Case Features.ttt e e e 48
Task 2d: Drawing Generalizations e 49
Task 2e: Modeling Requirements in Rational Rhapsody 50
Exercise 3: Creating the Data Call Requirements UCD 58
Task 3a: Creating the Data Call Requirements Use Case Diagram 59
Task 3b: Adding ReqQUITEMENTS. e e e e e 59
Task 3c: Drawing and Defining the Dependencies it e 61
SUMIMIAIY . . e e e e e e e 63
Lesson 2: Creating Structure Diagrams 65
Goals Of this LeSSONo o e 65
Exercise 1: Creating the Handset System Structure Diagrams 65
Task la: Creating the Handset System Structure Diagramttt 67
Task 1b: Drawing ODbjJectso e 69
Task 1c: Drawing More ODJECtSo e 72
Task 1d: Drawing PortS.o e 75
Task 1e: Drawing FlowWSot 77
Task 1f: Specifying the POrt CoNtract e e 82
Task 1g: Allocating the Functions Among Subsystems i 88
Exercise 2: Creating the Connection Management Structure Diagram 91
Task 2a: Creating the Connection Management Structure Diagram.t 92
Task 2b: Drawing ODbjJects e 92
Task 2C: Drawing PoOrtSo e 93
Task 2d: Drawing LinKS.ot 94
Exercise 3: Creating the Data Link Structure Diagram 96
Task 3a: Creating the Data Link Structure Diagramttt s 97
Task 3b: Drawing ObjectS o e 97
Task 3C: Drawing PoOrtSo e 98
Task 3d: Drawing LinksS.o e 98
Task 3e: Specifying the Port Contract and Attributes 99

iv C++ Tutorial

Table of Contents

Exercise 4: Creating the MM Architecture Structure Diagram 100
Task 4a: Creating the MM Architecture Diagram e 101
Task 4b: Drawing Objects.o e 101
Task 4C: Drawing PoOrtSo oo 102
Task 4d: Drawing LinksS.o e 102
Task 4e: Specifying the Port Contract and Attributes 103
SUMIMIAIY . . ittt e e e e e e 104
Lesson 3: Creating Object Model Diagrams 105
Goals for this LeSSON e 105
Exercise 1: Creating the Subsystem Architecture OMD 106
Task la: Creating the Subsystem Architecture Object Model Diagram 107
Task 1b: Drawing ObjJects e 108
Task 1c: Drawing More ODJECESottt e e 109
Task 1d: Drawing LinKS.ot 110
SUMMIAIY . . e e e e e e e e e 110
Lesson 4: Generating Code and Building Your Model 111
Goals for this LeSSONo 111
Exercise 1: Preparing for Generating Codet 112
Task 1a: Creating @ CoOmMPONENL oottt e e e 112
Task 1b: Setting the Component Features i e e 113
Task 1c: Creating a Configuration. i e e e e e e 114
Task 1d: Generating Codet e 115
Task le: Building the Model e 117
SUMIMAIY . o ot e e e e 118
Lesson 5: Creating Sequence Diagrams ...t 119
Goals for this LeSSON o e e 119
Exercise 1: Creating the Place Call Request Successful SD 120
Task la: Creating the Place Call Request Sequence Diagram.ottt 122
Task 1b: Drawing ACtOr LINESottt e e e e 123
Task 1c: Drawing Classifier ROIES. 124
Task 1d: Drawing MESSAgES ottt it et e e 125
Task 1e: Drawing an INteraction OCCUITENCEt vttt e e e e e e e 128
Exercise 2: Creating the NetworkConnect SD e i 129
Task 2a: Creating the NetworkConnect Sequence Diagram.ttt 130
Task 2b: Drawing MeSSAgES. vt ittt et e 130
Task 2c: Drawing Time Intervals. e e 131
Task 2d: MOVING EVENTS e 132

Rational Rhapsody %

Table of Contents

Exercise 3: Creating the Connection Management Place Call Request Success SD........ 133
Task 3a: Creating the Connection Management Place Call Request Success Sequence Diagram. ... 134
Task 3b: Drawing the System Border e e 134
Task 3c: Drawing Classifier ROIES. 135
Task 3d: Drawing MeSSA0ES. vttt et et e e 136
Task 3e: Setting the Features of locationUpdate i, 137
Task 3f: Moving ConfirmIndication 138
Exercise 4: Animating a Sequence Diagram. e 139
Task 4a: Changing the Settings for the Debug Configuration. 139
Task 4b: Regenerating Code and Rebuilding YourModel 141
Task 4c: Starting ANIMationo e 141
Task 4d: Animating a Sequence Diagram.t e 143
Task 4e: Viewing the Browser. 145
Task 4f: QUItting ANIMAatioN 147
SUMIMIAIY ottt e e e e e e 147
Lesson 6: Creating Activity Diagrams 149
Goals for this LeSSONo 149
Exercise 1: Creating the MMCallControl Activity Diagramc i, 150
Task la: Creating an Activity Diagram e 151
Task 1b: Drawing SWIMIANEs 153
Task 1c: Drawing ACtion EIEmMeENtsSo 155
Task 1d: Drawing a Default FIow e e e e 157
Task 1e: Drawing @ SUDACHIVILYot e 157
Task 1f: Drawing Send ACtiON States e 158
Task 1g: Drawing TranSitionsottt e e e 160
Task 1h: Drawing a Fork Synchronization.t e 162
Task 1i: Drawing a Join Synchronization e 163
Task 1j: Drawing @ Timeout Transitionottt e e e e 165
Task 1k: Specifying an Action on a Transition e 165
Exercise 2: Creating the InCall Subactivity Diagram i 166
Task 2a: Creating the InCall Subactivity Diagram. s 167
Task 2b: Drawing Action Elements e 167
Task 2c: Drawing a Default FIow. 167
Task 2d: Drawing Transitionsot 168
Task 2e: Drawing a Timeout Transition. i e e e e e 169
Exercise 3: Creating the RegistrationMonitor Activity Diagram............... 170
Task 3a: Creating the RegistrationMonitor Activity Diagram. i 171
Task 3b: Drawing Action Elements 171
Task 3c: Drawing a Send Action State 172
Task 3d: Drawing a Default FIow 172
Task 3e: Drawing Transitionsttt e e e 173

Vi C++ Tutorial

Table of Contents

Task 3f: Drawing a Timeout Transition e 173
Exercise 4: Animating the MMCall Control Activity Diagram 174
Task 4a: Regenerating Code and Rebuilding YourModel 174
Task 4b: Animating the MMCall Control Activity Diagram.t 175
SUMMIAIY . . e e e e e e e e e 177
Lesson 7: Creating Statecharts i 179
Goals for this LeSSONo 179
Exercise 1: Creating the CallControl Statechart. 180
Task la: Creating the CallControl Statechart e 181
Task 1b: Drawing Statest o 182
Task 1c: Drawing Nested States.ottt e e e e 182
Task 1d: Drawing Default CoONNeCTOrsS.t e e e 183
Task 1le: Drawing Send ACtion States. e 184
Task 1f: Drawing TranSitions.ttt e e e e e 186
Task 1g: Drawing a Timeout Transition.t e 187
Exercise 2: Animating the CallControl Statechart 188
Task 2a: Regenerating Code and Rebuildingthe Model. 188
Task 2b: Animating the CallControl Statechart. e 189
SUMMIAIY . . e e e e e e e e 190
Lesson 8: More Animation i 191
Goals for this LEeSSONo e 191
Exercise 1: Animating Your Diagramsttt 192
Task 1a: Preparing for Animation 192
Task 1b: Animating Your Diagrams.ottt e e e 192
Exercise 2: Sending Events to Your Model. 193
Task 2a: Sending an Eventto Your Model 193
Task 2b: Sending Another EVENt e 197
Task 2c: QUitting ANIMAtioNo 200
SUMMIAIY . ottt e e e 200
N X . .o 201

Rational Rhapsody

Vii

Table of Contents

viii C++ Tutorial

Getting Started

Welcome to the C++ Tutorial for IBM Rational Rhapsody! IBM® Rational® Rhapsody® isthe
Model-Driven Devel opment environment of choice for systems engineers and software devel opers
of either embedded or real-time systems. Rational Rhapsody in C++ generates full production C++
code for avariety of target platforms based on UML 2.0 behavioral and structural diagrams. The
Rational Rhapsody product also provides for the reverse engineering of C++ code for re-use of
your intellectual property within a Model-Driven environment.

Audience for the C++ Tutorial

Theintended audience for thistutorial is system engineers and software engineers who are familiar
with the C++ language. The tutorial assumes that you are familiar with UML (Unified Modeling
Language) and Object Oriented concepts.

Before You Begin

Before you work through this tutorial, you might find it helpful to review the Getting Sarted
Guide for the Rational Rhapsody product. It provides afunctional overview for the Rational
Rhapsody product for system designers, system engineers, and software devel opers with more
functions (meaning how to do something), explanations, and details than this tutorial provides. In
addition, throughout the tutorial, references are made to other Rational Rhapsody documentation
where appropriate. Note also that the IBM Rational Rhapsody User Guide has a Glossary section
that you might find useful. Note the following:

+ You must have installed the compiler necessary to generate code.

+ Before you can work through any of the lessonsin thistutorial, you must create the
Handset project, which is detailed in Setting Up the C++ Tutorial.

+ You should work through the tutorial in the order of the lessons. During the course of
working through this tutorial, you generate code as well as build your model at various
stages. For example, in the lesson where you first learn how to generate code, you will get
warning messages. Once you work through the next lesson, you will no longer get those
warning messages. |n addition, in the later lessons, you set up for animation and work
through some initial animation as you go along. Near the end of the tutorial, you

Rational Rhapsody 1

Getting Started

culminate the animation lessons by sending events to your model to see more involved
animation.

C++ Tutorial Overview

Thistutorial helps you become familiar with the Rational Rhapsody product. You should consider
it part of the Rational Rhapsody learning process, in addition, for example, to the Rhapsody
Essential Tool Training class and the Rational Rhapsody el earning courses, both of which are
available at an additional cost.

Thistutorial shows you how to use the Rational Rhapsody product to analyze, design, and build a
model of awireless telephone using a file-based modeling approach. Before you begin creating
this model, you need to consider the functions of the wireless telephone. Wireless telephony
provides voice and data services to users placing and receiving calls. To deliver services, the
wireless network must receive, set up, and direct incoming and outgoing call requests, track and
maintain the location of users, and facilitate uninterrupted service when users move within and
outside the network.

When the wireless user initiates a call, the network receives the request, and validates and registers
the user. Once registered, the network monitors the user’slocation. In order for the network to
receive the call, the wireless tel ephone must send the minimum acceptable signal strength to the
network. When the network receives acall, it directs it to the appropriate registered user.

For thistutorial, you are going to create a project called Handset. The Rational Rhapsody product
contains a sample handset model that you can use to compare with the lessonsin thistutorial. The
Sample model islocated in the <rational Rhapsody installations>\Samples\CppSamples
subfolder.

Note that the official sample Handset model in the Samples subfolder might be different from the
model you create when you follow the instructionsin this tutorial. While the model you create
with the tutorial might have the same name as the official product sample, the tutorial might
demonstrate different techniques and features for instructional purposes.

Note

To minimize the complexity of the tutorial, the operations have been simplified to focus on
the function of placing acall.

2 C++ Tutorial

C++ Tutorial Objectives

C++ Tutorial Objectives

When you have completed this tutorial, you will have performed the following standard tasks:

*

*

Created a project

Created use case diagrams, which show the main functions of the system (use cases) and
the entities that are outside the system

Created structure diagrams, which define the system structure and identify the large-scale
organizational pieces of the system

Created object model diagrams, which specify the structure of the classes, objects, and
interfaces in the system and the static relationships that exist between them

Created sequence diagrams, which describe how structural el ements communicate with
one another over time, and identify the required relationships and messages

Created activity diagrams, which show the dynamic aspects of a system and the flow of
control from activity to activity

Created statecharts, which define the behavior of classifiers (actors, use cases, or classes),
objects, including the states that they can enter over their lifetime and the messages,
events, or operations that cause them to transition from state to state

Generated code
Built amodel
Animated a model

Rational Rhapsody 3

Getting Started

Documentation Conventions

This document uses the following conventions:

¢ Boldtype for names of GUI objects and controls, including selection choices; and
emphasis. Examples:

— From the I nterface drop-down list box, select Out and click OK.

— Click the <<Subsystem>> ConnectM anagement object and drag it into the
CM_Subsystem package.

— Click the Create Port button = on the Drawing toolbar click the |eft edge of
the CallControl object.

— If the Rational Rhapsody browser does not display, select View > Browser.

— A project file, called <project_name>.rpy.

¢ Ccourier font in 10 point for pathnames, system messages, and itemsthat you have to
type. Examples:

— To avoid overwriting the Handset sample project provided with the Rational
Rhapsody product, do not create your project in <Rational Rhapsody
installation>\Samples\CppSamples.

— The Output window displays the message Animation session terminated.
— Inthe Project name box, replace the default project name with Handset.
— Typecc_in press Enter.

¢ [talicsfor the first mention of a concept with an explanation.

4 C++ Tutorial

About the Rational Rhapsody Product

About the Rational Rhapsody Product

The Rational Rhapsody product is avisua design tool for devel oping object-oriented embedded
software, and performing structural and systems modeling. It enables you to perform these tasks:

*

*

*

Analyze, during which you can define, analyze, and validate the system requirements.
Design, during which you can specify and design the architecture.

I mplement, during which you can automatically generate code build and run it within the
Rational Rhapsody product.

Model Execution, during which you can animate the model on the local host or aremote
target to perform design-level debugging within animated views.

UML Diagrams

Thefollowing are the UML diagramsin Rational Rhapsody:

*

Use Case Diagrams show the main functions of the system (use cases) and the entities
(actors) outside the system.

Sructure Diagrams show the system structure and identify the organizational pieces of
the system.

Object M odel Diagrams show the structure of the system in terms of classes, objects, and
the relationships between these structural elements.

Seguence Diagrams show sequences of steps and messages passed between structural
elements when executing a particular instance of a use case.

Activity Diagrams specify aflow for classifiers (classes, actors, use cases), objects, and
operations.

Satecharts show the behavior of a particular classifier (class, actor, use case) or object
over itsentire life cycle.

Collaboration Diagrams provide the same information as sequence diagrams,
emphasizing structure rather than time.

Component Diagrams describe the organization of the software units and the
dependencies among units.

Deployment Diagrams show the nodes in the final system architecture and the
connections between them.

In addition, Flow Charts are available in the Rational Rhapsody product. Flow charts are not in
UML. They are asubset of activity diagramswith parts (of the functionality for activity diagrams)
excluded. Flow charts have specifically event-driven behavior. You can use aflow chart to
describe afunction or class operation and for code generation.

Rational Rhapsody 5

Getting Started

Starting the Rational Rhapsody Product
Windows

To start the Rational Rhapsody product in Windows: Select Sart > Programs> |BM Rational >
IBM Rational Rhapsody Version# > Rhapsody Developer Edition > Rhapsody in C++.

Linux
To start the Rational Rhapsody product in Linux, use these steps:

1. Fromthe Terminal, browse to the Rational Rhapsody home directory.

2. Execute the RhapsodyIncep script. For example:

[RhapsodyUser@MyHostMachinel # cd /home/Rhapsody
[RhapsodyUser@MyHostMachine Rhapsodyl# ./RhapsodyInCpp

In this example, “ RhapsodyUser” is the username, “mMyHostMachine” iSthe host machine
and “/home/Rhapsody” is the installation directory.

Closing the Rational Rhapsody Product

To close the Rational Rhapsody product, follow these steps:

1. Saveyour changes. See Saving a Project.

2. Choose File > Exit or click the Close button I.

C++ Tutorial

Setting Up the C++ Tutorial

Setting Up the C++ Tutorial

Before you can work through this tutorial, you must create and set up the Handset project, which
you do in this section. The following tasks show you how to:

¢ Create the Handset project
¢ Saveaproject
+ Create the packages needed for the Handset project

Creating a Project

To create anew project, follow these steps.

1. Start the Rational Rhapsody product if it is not already running. If necessary, see Starting
the Rational Rhapsody Product.

2. Click the New button Ql on the main toolbar or select File > New. The New Project
dialog box opens.

3. Inthe Project name box, replace the default project name with Handset.
4. Intheln folder box, browse to find an existing folder or enter a new folder name.

Note: To avoid overwriting the sample Handset project provided with the Rational
Rhapsody product, do not create your project in <Rational Rhapsody
installations\Samples\CppSamples. AlSO, to avoid potentially long
pathnames, do not create the project on the desktop.

5. Inthe Type box, accept Default, which provides all of the basic UML structures. Itis
useful for most Rational Rhapsody projects. Your dialog box should resemble the
following figure:

Onewprogec x

Project narne: IHandSEl

It folder: IE:\FI hapsody?. 14Handset Browsze... |

Tupe: I Default j

0k I Cancel Help

Rational Rhapsody 7

Getting Started

Note: For adescription of the available project profile types that you can select from
the Type drop-down list, refer to the IBM Rational Rhapsody User Guide. (Do
a search of the user guide PDF file for “specialized profile.”)

6. Click OK. The Rational Rhapsody product verifies that the specified location exists. If it
does not exist, Rational Rhapsody asks whether you want to create it. Click Yes.

Rational Rhapsody creates your project in the new Handset subfolder, opens the project,
and displays the Rational Rhapsody browser in the left pane and the drawing areafor an
object model diagram (by default because of your Type [project profile] choice on the
New Project dialog box), as shown in the following figure:

ﬂ File Edt “iew Code Layout Tools ‘Window Help - | &8 x
DEE & =4 #m & ™ E oo - of B £ 9] %l & & | B &
e |DefauItCDmpDnent ﬂ|DefauItCanig ﬂ o I = - =
g || o & NLhOV eOAR |[reaimu -0 -]
r i 'y
[I B
Entire Model View ¥
= b Handset: =]
+-[11 Components
=1 Obiject Model Diagrams -
+-(1 Packages 5
-0
ﬁ}..
I_|
Ly
V'
. &
'I_II
"
u
A
(i) -
£ < | | b
| w Welcome.. g8 Model1*

Note: An asterisk (*) in atitle bar for the Rational Rhapsody window and any dialog
box means that data has been modified and a save has not been done yet.

If the Rational Rhapsody browser does not display, select View > Browser.

7. Saveyour project. If necessary, see Saving a Project.

8 C++ Tutorial

Setting Up the C++ Tutorial

About a Rational Rhapsody Project

A Rational Rhapsody project includes the UML diagrams, packages, and code generation
configurations that define the model and the code generated from it. When you create a new
project, Rational Rhapsody creates a project folder that contains the project filesin the specified
location. The name you choose for your new project is used to name project files and folders, as

shown in the following figure.

®% C:'Rhapsody7.1%Handset

|3 Handset_rpy &~
4| | v

1

=10] x|
File Edit W“iew Favorites Tools Help | .f,"
0 Back - .\‘_.:J = L‘ﬁ' >) Search H_'l Falders = T3 x n | =
Address I[ﬁ C\Rhapsody?. 11Handset j G
Folders X || Mamne | Date Modified | Size | Type
= e Local Disk (C:) LI |5y Handset_rpy 4f25/2007 4:20 PM File Folder
B custq IR Handset rpy 4/25/2007 4:20 PM 2KB Rhapsady Project
£ Documents and Settings Handset.vba 4/25/2007 4:20 PM 16KE YBA File
) Program Files Iij Plugins.log 4125/2007 4:20 PM 1 KB Text Document
) Guintus — I?I rtc.log 4f25/2007 4:20 PM OFKE Text Docurment
) RECYCLER F:j store.log 4f25/2007 4:20 PM ZKE Text Document
E 55 Rhapsody?.1
- o [

| 3]

For more information about the folders and files that are part of a Rational Rhapsody model, see

About Project Files and Folders.

Rational Rhapsody

Getting Started

In addition, the name appears at the top level of the project hierarchy in the Rational Rhapsody
browser. Rational Rhapsody provides several default elements in the new project: a object model
diagram, package, component, and configuration, as shown in the following figure:

B A
+ 1

Entire Model Yiew A

E--B Handset
E|{:| Components
EIE DefaultComponent
E||:| Configurations
E|‘\, DefaultConfig
: Hyperlinks
EH:l CObject Model Diagrams
o ﬂ] Modell
E|{:| Packages
----- ﬁ Defaulk
E PredefinedTypes (REF)
ﬁ PredefinedTypesCpp (REF)

An element is an atomic constituent of amodel. In the Rational Rhapsody product, primary model
elements within the browser are packages, classes, object model diagrams, associations,
dependencies, operations, variables, events, event receptions, triggered operations, constructors,

destructors, and types. Primary model elements in object model diagrams are packages, classes,
associations (links), dependencies, and actors.

10 C++ Tutorial

Setting Up the C++ Tutorial

About Project Files and Folders

The Rational Rhapsody product creates the following files and subfolders in the project folder.
Some folders and files are created when you initially create a project, others only when applicable.

* A project folder, called <project_name>_rpy, which contains the unit files for the
project, including UML diagrams, packages, and code generation configurations.
* A project file, called <project_name>.rpy.

+ A subfolder, called <project_name>_auto_rpy, which appears only when necessary
(after ten minutes if a save has not been made) and disappears after you save.

* Anevent history file, called <project_name>.ehl, which contains arecord of events
injected during animation, and active and nonactive breakpoints. This file appears after
your first save of a project.

+ Logfiles, which record when projects were loaded and saved in the product; for example,
load.log and store.log.

* A .vbafile, called <project_name_>.vba, which contains macros or wizards.

+ Backup project files and folders (<project_name>_bak1 rpy,
<project_name> bak2 rpy), which are optional, depending on project settings.

+ An_RTC subfolder, when applicable, which holds any tests created using the Rational
Rhapsody TestConductor™ add-on.

The <project_name>.rpy file and the <project_name>_rpy folder are necessary for the
generation of source code.

The following figure shows the project folder for the Handset project and some of itsfiles and
subfolders.

% C:'\Rhapsody7.1'Handset - |I:I|1|
File Edit “iew Faworites Tools Help | I":'
Qv - © - (3| Dsew [raas | 15 5 X 9 |-
fddress |2y C:\Rhapsody?. 1\ Handser j a Go
Folders Mame = | Date Modified | Sizel Twpe
=l <e Local Disk (€23 ;I [C)Handset_auto_rpy 4/25/2007 5:58 PM File Folder
[cuskg |[C)Handset_rpy 412512007 5:41 PM File Folder
) Documents and Settings J Handset.ehl 4252007 5148 PM 1 KE EHL File
3 Program Files Handset, rpuw 42512007 5:43 PM 1KE RPW File
=) Quintus l’I_E,'-Hanu:lselz.rpy 412512007 5:48 PM 3KB Rhapsody Project
[C3) RECYCLER Handset.vba 4/25/2007 5:48 PM 16 KB VBA Filz
= 25 Rhapsody7.1 r;:] load. log 4/25/2007 5143 PM TKE Text Document
Sl EJ Flugins. log 42512007 5:43 PM 1 KB Text Document
) Handset_rpy r;] tke.log 4252007 5:43 PM 0KE Text Docurent
31 System Yolume I;Fc'rmaticun - r;l stare.log 412512007 5:48 PM 4 KB Text Document
a 3 4| | »]
Rational Rhapsody 11

Getting Started

Saving a Project

To save aproject in the current location, use one of the following methods:

+ Click the Save button [B| on the main toolbar
¢ Select File> Save.
To save the project to a new location, select File > Save As.

Note that the Save command saves only the modified units, reducing the time required to save
large projects.

A unit is acomposite model element stored in its own file that you can check in and out of a
Content Management system. A model element can be made into a unit aslong asit can be saved
as a separate file. Some elements that can be saved as units are the entire model, packages, classes
(in C, objects and object types), any type of Rational Rhapsody diagram, and components. The
project, represented by the root node displayed in the browser, is always a unit. The primary
purpose of unitsisto support collaboration with other devel opers.

About Autosave

The Rational Rhapsody product automatically performs an autosave every ten minutes to back up
changes made between saves. Modified units are saved in an autosave folder
(<project_name>_auto_rpy), along with any units that have atime stamp older than the project
file. Note that the autosave folder appears only when necessary (after ten minutesif a save has not
been made) and disappears after you save.

About Backups

You can set a property to create backups of your model every time you save your project. This
gives you the opportunity to revert to a previously saved version if you encounter a problem. By
default, Rational Rhapsody does not create backups. Refer to the IBM Rational Rhapsody User
Guide for more information about creating backups. (Do a search of the user guide PDF file for
“backups.”)

12 C++ Tutorial

Setting Up the C++ Tutorial

Organizing the Model Using Packages

Packages can be used to divide the model into functional domains or subsystems, which consist of
objects, object types, functions, variables, and other logical artifacts. They can be organized into
hierarchiesto provide a high level of partitioning.

The handset model will have the following main packages:

+ RequirementsPkg to contain the system’s functional requirements.

+ AnalysisPkg to contain the use case diagrams, which identify the requirements of the
System.

+ ArchitecturePkg to contain the structure diagram, which details the design of the system
model and the flow of information.

¢ SubsystemsPkg to contain the components of the system.

Note

To establish traceability between analysis and implementation, the RequirementsPkg,
AnalysisPkg, and ArchitecturePkg packages can be referenced from the software
application model (evenif it is adifferent Rational Rhapsody project) to establish
traceability from design to analysis.

To organize the model into packages, follow these steps:
1. Inthe Rational Rhapsody browser, expand the Packages category.
2. Rename the Default package:

a. Double-click the Default package, or right-click it and select Features. The Features
dialog box opens.

b. Onthe General tab, in the Name box, replace pefault With Requirementspkg, as
shown in the following figure:

Package : Default in Handset * I E

General |Descriptiu:un| Flelatiunsl Tags I Prupertiesl

Hame: IHequirementsF‘kg Ll

Stereotype I j El&l
[

bain Diagram: I

Lucatel 0K | Apply ||

c. Click OK.

Rational Rhapsody 13

Getting Started

Create another package:

a. Right-click Packagesin the Rational Rhapsody browser and select Add New
Package. Rational Rhapsody creates a package with the default name package n,

where n is greater or equal to 0.
b. Rename the package analysisPkg and press Enter.

Repeat the previous step but create a package named Architecturepkg and then a
package named subsystemsPkg. Your browser should resemble the following figure:

Handset.rpy:l _il
Entire Model Wigw - + 1
E--D Handsek

-3 Companents

-1 Object Model Diagrams

B3 Packages
e B3 AnalysisPkg
- F architecturePkg
& PredefinedTypes (REF)
& PredefinedTypesCpp (REF)
o 5 RequirementsPlg
. E SubsystemsPka

14

C++ Tutorial

Setting Up the C++ Tutorial

5. Tore-order the packages so that the RequirementsPkg package isfirst, do the following:

a. With focusin the browser, choose View > Browser Display Options > Enable

Ordering. Thisactivates the Up and Down buttons for the browser. Because the first
package you created was RequirementsPkg, Rational Rhapsody makes it the first
package on the list of packages, as shown in the following figure. If not, go to the

next substep.
Entire Model View - + 4+
El--D Handset

..{:| Components

=13 Object Model Diagrams

g Eﬂ Modeli

=12 Packages
----- E RequirementsPkg
B PredefinedTypes (REF)
& PredefinedTvpesCpp (REF)
- 3 analysisPkg
e [ArchitecturePkg
- F SubsystemsPkg

Note: By default Enable Ordering is not enabled. Thismeansthat all elementsin the
Rational Rhapsody browser appear in alphabetical order. Once you enable the
Enable Ordering capability, elements are listed on the browser in the order
entered. Where allowed, you can re-order the elementsin the Rational

Rhapsody browser.

b. If needed, select RequirementsPkg in the browser and then click the Up button g

and move the package to the top of the list.

Rational Rhapsody

15

Getting Started

Hiding Predefined Packages

To unclutter the browser for this tutorial, you can hide the predefined packages (seen in the
previous figure showing the browser). To do this, you must modify one of the many propertiesin
the Rational Rhapsody product.

You can modify a Rational Rhapsody property through the Properties tab of the Features dialog
box. The Propertiestab lists the properties associated with the selected Rational Rhapsody
element.

¢ Thetop left column on this tab shows the metaclass and property (for example, Settings
and ShowPredefinedPackage).

+ Thetop right column shows the default for the selected property, if there is one (for
example, Cleared).

+ Thebox at the bottom portion of the Properties tab shows the definition for the property
selected in the upper left column of the tab. The definition display shows the names of the
subject, metaclass, property, and the definition for the property.

Note that Rational Rhapsody documentation uses a notation method with double colonsto identify
the location of a specific property, for example, Browser: : Settings: : ShowPredefinedPackage.
In this example, Browser isthe name of the subject, Settingsis the name of the metaclass, and
ShowPr edefinedPackage is the name of the property.

Refer to the IBM Rational Rhapsody User Guide for more information on setting properties. (Do a
search of the user guide PDF file for “propertiestab.”)

To hide the predefined packages, follow these steps:
1. ChooseFile> Project Properties.

2. OnthePropertiestab, select All from the drop-down menu. (The label appears as
View All after you make the selection.)

3. Scroll down to and expand the Browser subject expand the Settings metaclass.

16 C++ Tutorial

Setting Up the C++ Tutorial

4. Clear the check box for the ShowPredefinedPackage property, as shown in the following

fig

ure:
Project : Handset |
Generall Desctiptianl Helatiansl Tags Properties |
Wiew All -
.
=] Settings —I
DeleteConfirmation Always
DisplayMaode Meta-class
ShowFeatures

Locate |

ShowImplementationArgument

ShowImplementationMamelnTree

ShowLabels

ShowMultipleStereotypes

Showrder

ShowPredefinedPackage

ShowsStereokypes

s OEAOOOM

Ea) ey

to Cleared, the package is hidden.
Default = Checked

oK | Apsly ||

Browszer:Settings:ShowPredefinedPackage
The ShowPredefinedPackage property iz a Boolean value that determines whether
the PredefinedT ypes package iz dizplayed in the browser. 'When the property iz zet

:LII
i

5 Cli

6. Click the Save button El to save your project. Your Rational Rhapsody browser should

ck OK.

resemble the following figure:

Handset.rpy:1

+ +

Entire Model Wigw v

=l Handset
l:l Cornponents
l:l CObject Model Diagramns
EH:I Packages
& RequirermentsPlkg
E AnalysisPka
: & ArchitecturaPkg
E SubsystemsPlg

Rational Rhapsody

Getting Started

Opening the Handset Model

Once you have created, saved, and closed the handset model, you can open and work on it at any
time.

To open the handset model, follow these steps:

1. Start Rational Rhapsody if it is not already running. If necessary, see Starting the Rational

Rhapsody Product.

2. Click the Open button = on the main toolbar or select File > Open. The Open dial og box
opens.

3. Navigate to the location in which you saved the Handset project.

4. Select Handset.rpy, or type the name of the project file in the File name box, as shown in
the following figure:

21|

Look in; I_} Handset j o EF =

| “IHandset_rpy &+ with All Subunits
Hardset, rpy ™ without Subunits

" Restore Last Session

File: narme: IHandset_rp_l,l Open I
Filez of bype: IHhapsndy Projectz] [*.rpy."1pl) j Cancel |

5. Accept the default With All Subunits option.

This choice means that the Rational Rhapsody product will load all unitsin the project.

Refer to the IBM Rational Rhapsody User Guide for information about the options. (Do a
search of the user guide PDF file by the option names.)

6. Click Open. Rational Rhapsody opens the handset model.

18 C++ Tutorial

Using Naming Conventions

Using Naming Conventions

To assist all members of your team in understanding the purpose of individual itemsin the model,
it isagood ideato define naming conventions. These conventions help team membersto read a
diagram quickly and to remember model element names easily.

Note

Remember that the names used in the Rational Rhapsody models are going to be
automatically written into the generated code. Therefore, the names should be simple and
clearly label al of the elements. Note also that since the C++ language is CASE sensitive,
typing errors can prevent the model from building.

Prefixes

Lower and upper case prefixes are useful for model elements. The following isalist of common
prefixes with examples of each:

¢ Event names="ev’ (evStart)

¢ Trigger operations = “op” (opPress)

¢ Condition operations = “is’ (isPressed)

* Interface classes="“1" (IHardware)

Model Element Names

The names of the e ements themselves should follow conventions, such as these:

+ Block and class names begin with an upper case letter, such as“ System.”
+ Operations and attributes begin with lower case letters, such as “restartSystem.”
+ Upper case letters to separate concatenated words, such as “ checkStatus.”

Rational Rhapsody 19

Getting Started

Rational Rhapsody User Interface

Before proceeding with this tutorial, you should become familiar with the main features of the
Rationa Rhapsody graphical user interface (GUI). The Rational Rhapsody GUI is made up of
three key windows and different toolbars for each of the UML diagram types. The following figure

shows the Rational Rhapsody GUI

ﬁﬁlle Edit View Code Layout Tools ‘Window Help

Menu Bar

—l8lx|

Peasmaviagr . - @LE[x|[aaboEs

T00% j|§m£ﬂﬁﬂﬁﬂ|ﬂﬂ

]]@ m ! e ISlmuIate

z Tl

Panel j |”|{D} B |“. H] |E‘ =

(5 =

‘mg TMRUE~S E@E M| NLAOLCOAR

]Int@m.ammccv 0 v[/ B |§

s
T PR R | L Perforrmance Requirements Diagram
=15, handset S
D Components ﬁ
() Hyperlinks El B
B0 Packages — | Req.4.2
EE] «System Requirsmentss _Requirements L o
[E? Requirements ~ .
E-C_l Use Case Diagrams DraW| n g Area
% Data Call Requirements Diagram (|| ") | wderives Ve straces S dtraces
(- Analysis — /
E' Architecture | N
-2 Subsystems . .
{1 Profiles \ B B}
Browser Req 4.1) Req 6.6
__ederiven
B 1
Drgwing Toolbar Vs
/ wderives
| | _’I_I
¥ Welcome to... 3 Data Call Re

Ll

Output Window

AT e Log A check Madel j, Euid

Configuration Management & Animation iy Search Resdlts 7

20

C++ Tutorial

Rational Rhapsody User Interface

Toolbars

The Rational Rhapsody toolbars provide quick access to the commonly used commands. These
commands are also available from the menus. The Rational Rhapsody product has the following
toolbars:

*

Standard has buttons for the frequently used options on the File, Edit, and Help menus.
Examples: New, Open, Save; Copy, Paste, Locate in Browser; About.

Code has buttons for the frequently used options on the Code menu, such as Make, Run
Executable and G/M/R (for Generate/M ake/Run).

Windows has buttons for the frequently used options on the View menu, such as Show/
Hide Browser and Show/Hide output window.

Diagrams has buttons for the part of the Tools menu that give you quick accessto the
diagrams in the project, such as Sequence Diagrams and Open Statechart.

VBA provides access to the VBA options, such as VBA Editor and Show Macros
Dialog. Note that VBA isfor Windows only.

Animation has buttons for the animation options during an animation session, such as Go,
Animation Break, and Quit Animation.

L ayout has buttons that help you with the layout of elementsin your diagram, such as
Snap to Grid, Align Top, and Align Left.

Drawing has buttons for the graphics editor used to create and edit diagrams. Each
Drawing toolbar is unique to its particular diagram type. For example, the Drawing
toolbar for a sequence diagram is different from that for a statechart.

Common Drawing has buttons to add requirements, comments, and other annotations to
any diagram, such as Note and Requirement.

Free Shapes has buttons for basic drawing shapes, such as Polyline and Polycurve.
Zoom has buttons to zoom options, such as Zoom In, Zoom Out, and Pan.

Format has buttons for various text formatting options and lineffill options, such asltalic
and Font Color.

Refer to the IBM Rational Rhapsody User Guide for detailed information about the toolbars.

Rational Rhapsody 21

Getting Started

Browser

The Rational Rhapsody browser shows the contents of the project in an expandable tree structure.
By default, it is the upper, left-hand part of the Rational Rhapsody GUI. The top-level folder,
which contains the name of the project, isthe project folder or project node. Although this folder
contains no elements, the folders that reside under it contain € ements that have similar
characteristics. These folders are referred to as categories.

A project consists of at |east one package in the Packages category. A package contains UML
elements, such as classes, files, and diagrams. Rational Rhapsody automatically creates a default
package called Default, which it uses to save model parts unless you specify a different package.
The following figure shows an example of the browser.

|
Browser Filter 4| Ertire Model Yiew = | | + 4+ |—— Up/Down (Ordering)
Project Folder =[] Handset Buttons

Category

—t =] Components |

Elﬂ DefaultComponent

: Bl Configurations
‘\, DefaultConfig

l:l Object Model Diagrams

Click the plus (+)

to expand a branch. El--{“_:"l Packages

Click the minus (-) {23 RequirementsPkg
to collapse a £ AnalysisPkg
branch. s} chitecturePlg

o & SubsystemsPlg

Filtering the Browser
The browser filter lets you display only the elements relevant to your current task.

To filter the Rational Rhapsody browser, click the drop-down arrow at the top of the browser
window, and select the view you want to see from the menu. Refer to the IBM Rational Rhapsody
User Guide for information on the view options.

Repositioning the Browser
To make more room for you to work on diagrams, you can move the browser outside of the
Rational Rhapsody GUI and reposition it as a separate window on the desktop. To reposition the
Rational Rhapsody browser, click the bar at the top of the browser and drag it to another desktop
location.

22 C++ Tutorial

Rational Rhapsody User Interface

Drawing Area

The drawing area displays the graphic editors and code editors, and it is the region for drawing
diagrams. By default, it is the upper, right-hand section of the Rational Rhapsody GUI. Rational
Rhapsody displays each diagram with atab that includes the name of the diagram and an icon that
denotes the diagram type. When you make changes to a diagram, Rational Rhapsody displays an
asterisk after the name of the diagram in the title bar to indicate that you must save your changes.

Output Window

The Output window displays Rational Rhapsody messages. By default, it is the lower section of
the Rational Rhapsody GUI. It includes tabs that display the following types of messages:

¢ Log

¢ Check Mode

¢ Build

¢ Configuration Management

¢ Animation

¢ Searchresults
If the Output window does not appear, choose View > Output Window.

Drawing Toolbars

The Rational Rhapsody product displays a separate Drawing toolbar for each UML diagram type.
By default, it places the Drawing toolbar to the left of the diagram.

To move the toolbar, click and drag it to another location.

Rational Rhapsody 23

Getting Started

Features Dialog Box

The Features dialog box lets you view and edit the features of an element in the Rational Rhapsody
product.

To open the Features dialog box, do one of the following:

*

*

*

*

Double-click an element (for example, Out [an interface])

Right-click an element (for example, Subsystem Architecture [adiagram]) select
Features

Select an element and press Alt + Enter
Select an element and select View > Features

You can resize the Features dialog box and hide the tabs on it if you want. For more information
about the Features dialog box, refer to the section on it in the IBM Rational Rhapsody User Guide.

Keeping Open the Features Dialog Box

Once you open the Features dialog box, you can leave it open and select other elementsto view
their features. This meansthat after you make changesto the Features dialog box for an element in
your drawing or on the Rational Rhapsody browser, you can click Apply. Then, without closing
the dialog box, you can select another element to view its features. Once you are done with the
Features dialog box, you click OK to closeit.

Note

Even though you clicked Apply or OK for your changesin the Features dialog box, you
must still save your model to save all the changes you made. Clicking Apply or OK
applies any changes to the currently opened model. However, to save the changes
for the model so that they arein effect the next time you open it, you must save your
model.

Note the following about the Apply and OK buttons on the Features dialog box:

*

*

Click Apply when you want to apply any changes you made to the Features dialog box but
want keep it open. For example, you might need to apply a change before you can
continue with using the Features dialog box, or you want to apply a change and seeiits
effect before continuing making any more changes on the dialog box.

Click OK when you want to apply your changes and close the Features dialog box at the
sametime.

24

C++ Tutorial

Rational Rhapsody User Interface

Tabs for the Features Dialog Box

The Features dialog box has different tabs at the top of the dialog box and different boxes on the
tabs depending on the element type.

Thefollowing tabs are common to all types of elements. For more information about these tabs, as
well as the other tabs that you might see in the Features dialog box, refer to the section oniit in the
IBM Rational Rhapsody User Guide.

¢ General typically contains the name of the element and other general options, asshownin
the following figure:

Use Case : Place Call in Analysis = =]

General I Descriptiunl Helatiu:unsl Tags | F'n:upertiesl

M amne; IF'Iace Call LI
Stereotype: I j EIEI
I

bd zin Dhizgram: I

Extenzion Points:

M ame | Mew |

Delete |

Locate | 1] 4 | Apply | ‘

+ Destription, asitstitleimplies and as shown in the following figure, contains the
description of the element, if it has been included.

Use Case : Place Call in Analysis x|

General Description |F|e|atiu:uns| Tags | F'n:upertiesl

—

General function of the system is that it must be able to place various types
of calls.

Locate | 1] 4 | Apply | ‘

Rational Rhapsody 25

Getting Started

+ Relationslists all the relationships (dependencies, associations, and so on) an element is
engaged with, as shown in the following figure:

Use Case : Place Call in Analysis =]
General I Description Relations | Tagz | Froperties |
Wiew Relations -
I ame I Type I Directi... I From/To
“T* Place Call in Analysis: Data Call Generalization Baze Drata Call
“T* Place Call in Analysis: Supplementary Service Generalization Baze Supplementary
“I* Place Callin Analysis:Woice Call Generalization Baze YWaoice Call
*s) Place Callin _Requirements.FReq.1.1 Dependency From Feq11
L itzMMI in Analysis:Place Call Azsociation End - To Al
L itzPlace Call in Analpsiz: MM Aszgocigtion End - From Al
1| I |
Locate | 1] 4 | Apply | |

+ Tagslistsany tags available for an element. Tags enable you to add information to certain
kinds of elementsto reflect characteristics of the specific domain or platform for the
modeled system. Refer to the IBM Rational Rhapsody User Guide for more information
about tags.

26 C++ Tutorial

Rational Rhapsody User Interface

* Propertiesliststhe properties associated with the Rational Rhapsody element.

— Thetop left column on this tab shows the metaclass and property (for
example, Settings and ShowPredefinedPackage).

— Thetop right column shows the default for the selected property, if thereis
one (for example, Cleared).

— The box at the bottom portion of the Properties tab shows the definition for
the property selected in the upper left column of the tab. The definition
display shows the names of the subject, metaclass, property, and the definition

for the property, as shown

in the following figure:

EE|
General I Drezcription I Felations | Tage Properties |

Wiew All -

=l| Settings d
DeleteConfirmation Alays
DisplayMaode Meta-class
ShowFeatures
ShowImplementationArgument D
ShowImplementationMameInTree D
ShowLabels D
Showkultiplestereotypes
ShowOrder

------- ShowPredefinedPackage D
...... Showstereotypes Prefix

G hd

Bmwser:5ettin_gs:ShuwPredefinec_lFackage _ j

The ShowPredefinedPackage property iz a Boolean value that determines whether

the: PredefinedT ppes package iz displaved in the browser, "When the property is set

to Cleared, the package is hidden.

Default = Checked |

Locate | 0K | Apply | |

Note: Rational Rhapsody documentation uses a notation method with double colons
to identify the location of a specific property. For example, for the property in
the above figure, the location is

Browser: :Settings: : ShowPredefinedPackage Where Browser iSthe
subject, settings isthe metaclass, and showPredefinedPackage iSthe

property.

Rational Rhapsody

27

28

Getting Started

Moving the Features Dialog Box

The Features dialog box is a floating window that can be positioned anywhere on the screen, or
docked to the Rational Rhapsody GUI.

To dock the Features dialog box in the Rational Rhapsody window, do one of the following:
*

Double-click thetitle bar. The dialog box docks. You can now drag it to another location if
you want.

Right-click thetitle bar and select Docking by Drag. Then drag the dialog box to another
location.

To undock the Features dialog box, do one of the following:

+ Double-click thetitle bar to undock it.

¢ Right-click thetitle bar and clear Docking by Drag drag the dialog box to another
location.

C++ Tutorial

Summary

Summary

In this section, you became familiar with the Rational Rhapsody product and its features. You
performed the following:

¢ Created the Handset project
¢ Saved the project
¢ Created and organized packages needed for the project

You are now ready to proceed to the next sections where you are going to create the handset
model. In the next section, you are going to model the requirements of the wireless tel ephone and
the functions of placing acall using use case diagrams.

For ease of presentation, thistutorial organizes the sections by diagram type and general workflow.
However, when modeling systems, diagrams are often created in parallel or might require elements
in one diagram to be planned or designed before another diagram can be finalized. For example,
you might identify the communication scenarios using sequence diagrams before defining the
flows, flow items, and port contracts in the structure diagrams. In addition, you might perform
black-box analysis using activity diagrams, sequence diagrams, and statecharts; and white-box
analysis using sequence diagrams before decomposing the system’s functions into subsystem
components.

When you do black-box analysis, such as when you do a black-box sequence diagram, you are
showing the sequence of messages between external actors and the system as a whole. When you
do white-box analysis, such as when you do a white-box sequence diagram, you are showing
messages to and from the internal individua parts.

Rational Rhapsody 29

Getting Started

30

C++ Tutorial

Lesson 1: Creating Use Case Diagrams

Use case diagrams (UCDs) show the main functions of the system (use cases) and the entities that
are outside the system (actors). Use case diagrams allow you to specify the requirements for the
system and show the interactions between the system and external actors.

Note

You must complete all the tasksin Setting Up the C++ Tutorial in the Getting Started section
before you start this lesson.

Goals for this Lesson

In thislesson, you are going to create the following use case diagrams:

+ Functional Overview to show the regquirements and functions of the handset.
+ Place Call Overview to show the functions of placing acall.
+ Data Call Requirementsto show the relations among requirement elements.

Rational Rhapsody 31

Lesson 1: Creating Use Case Diagrams

Exercise 1: Creating the Functional Overview UCD

In this exercise you are going to create the Functional Overview use case diagram. This UCD
shows the system requirements, including the actors, the major use cases of the system, and the

rel ationshi ps between them.
Thefollowing figure shows the Functional Overview use case diagram that you are going to create
in this exercise.
Functional Overview Use Case Diagram
" = — - it —
' & r
Entire Madel View = + * | -
L Handset a - This iz a mock up solution of a generic protocol system which handles voice
- Components =l = and supplementary service calls. The use case diagram shows the functional
..D Object Model Diagrams B tequirements of the system.
B+ Packages —
----- % RequirementsPkg o
= ﬁ”ag’fms 4 Handset Protocol System
S |
=L Association End
..... e
----- L, itsReceive Call .
ﬁ Metwork \ O

E||—| Association Ends

Comments
comnment_7
Use Case Diagrams
H gj Functional Cverview
B Use Cases
B¢ Place Call
E||—| Association Ends
----- Iy itsMMI

- superliseCases
----- 4 Place Call
----- T Receive Call
=1 Receive Call
EI|—| Association Ends
----- L itsMMI
----- L itshetwork
=D Provide Status

----- L, itsReceive Call
----- L, itsProvide Status

=1 Supplementary Service

Ior™

Tll

Place Call

Supplementary
% .

Provide Status

£y
Receive Call
eceive Ca (-

4

W Welcome to... ﬁ Functional O...

32

C++ Tutorial

Exercise 1: Creating the Functional Overview UCD

Task la: Creating the Functional Overview Use Case Diagram
To create the Functional Overview use case diagram, follow these steps:

1. Start Rational Rhapsody and open the handset model if they are not already open.

2. Inthe Rational Rhapsody browser, expand the Packages category, then right-click the
AnalysisPkg package, and then select Add New > Use Case Diagram. The New
Diagram dialog box opens.

3. TypeFunctional overview, asshown in the following figure, and then click OK.

x

Selected Owner: uzecagediagram_[

Marme:

IFunu:tiu:unaI Owerview

Populate Diagram [

ok | Help |

Rational Rhapsody automatically adds the Use Case Diagrams category and the name of the new
diagram to the browser, as shown in the Functional Overview Use Case Diagram figure, and opens
the new diagram in the drawing area.

Note

You can also create adiagram by using the Tools menu or the Diagr ams tool bar. Also, once

you create adiagram you can open it using the Diagr ams toolbar. Refer to the IBM Rational
Rhapsody User Guide for more information.

Rational Rhapsody 33

Lesson 1: Creating Use Case Diagrams

Preparing to Draw the Functional Overview UCD

Before drawing the Functional Overview use case diagram, you must identify the system
requirementsincluding the actors, the major use cases of the system, and the rel ationships between
them.

For this Functional Overview use case diagram, these actors interact with the system:

¢+ MMI represents the handset user interface, including the keypad and display
+ Network represents the system network or infrastructure of the signalling technology
The major use cases of the system are:

¢ The handset enables usersto place and receive calls.
¢ The network receivesincoming and outgoing call requests, and tracks users.
The actors and the system relate to each other in the following ways:

¢ MMI places and receives cals.

+ Network tracks users, monitors signal strength, and provides network status and location
registration.

You draw a use case diagram using the following general steps:
1. Draw the boundary box.
2. Draw the actors outside of the boundary box.
3. Draw the use cases inside the boundary box.

4. Associate the use cases with the actors.

34 C++ Tutorial

Exercise 1: Creating the Functional Overview UCD

Task 1b: Drawing the Boundary Box and Actors

The boundary box delineates the system under design from the external actors. Use cases are
inside the boundary box; actors are outside the boundary box. In this task, you are going to draw
the boundary box and actors using the Functional Overview Use Case Diagram figure as areference.

To draw the boundary box and actors, follow these steps:

1. Click the Create Boundary Box button on the Drawing toolbar.

2. Click in the upper, left corner of the drawing area and drag to the lower right. Rational
Rhapsody creates a boundary box, named system Boundary Box.

3. Renamethe boundary box Handset Protocol system and then pressEnter.

4. Click the Create Actor button ® on the Drawing toolbar.

5. Click theleft side of the drawing area. Rational Rhapsody creates an actor with a default
name of actor_n, where n is greater than or equal to 0.

6. Rename the actor mm1 and then press Enter.

Note: Because code can be generated using the specified names, do not include
spaces in the names of actors.

Rational Rhapsody 35

Lesson 1: Creating Use Case Diagrams

7. Draw an actor on the right side of the drawing area named Network.

Note: You can use the tools on the L ayout toolbar to help you with the layout of

8.

selected elements (including labels) in your diagram. For example, you can
select MM I and Networ k and use Align Bottom I o aignthemto beonthe

same bottom edge or Same Size B to resize them so that they are the same
size. Keep in mind that the last element selected is used as the default. Refer to
the IBM Rational Rhapsody User Guide for more information about the

L ayout toolbar.

In addition if you want to move a drawn element on a drawing more precisely
than clicking it and dragging it, click one or more elements, press the Ctrl key
and use the standalone directional arrow keys to move your element(s). You
can also use the directional arrows on the numeric keypad with NumLock not
active.

In the browser, expand the AnalysisPkg package and the Actors category to view your

newly created actors, as shown in the following figure:

B

|

&t|

Entire Model View =

E--g Handsat
D Components
{21 Object Madel Diagrams
ED Packages
----- ﬁ RequirementsPkg
Eﬁ AnalysisPkg
E‘?,%‘ Actors

i B0 Use Case Diagrams
g Functional Owerview
[Architecturepkg

L B SubsystemsPlkg

|»

Handset Protocal System

Z|B ¢ |00 (&

Al Metwark

il

< |

W Weloome ta... ﬂ Functional DI

Note: To quickly find the Actor s category in the Rational Rhapsody browser, right-

click an actor on the use case diagram and click L ocate or press Ctrl+L. You
can use this technigue with other objects on a diagram.

36

C++ Tutorial

Exercise 1: Creating the Functional Overview UCD

Task 1c: Drawing the Use Cases

A use case represents a particular function of the system. The Functional Overview use case
diagram has the following use cases:
+ Place Call to show that the user can place various types of calls.

+ Supplementary Serviceto show that the system can provide services, such as messaging,
call forwarding, call holding, call barring, and conference calling.

+ Receive Call to show that the system can receive various types of calls.

+ Provide Satus to show that the system can provide network status, user location, and
signal strength.

In thistask, you are going to draw use cases using the Functional Overview Use Case Diagram
figure as areference.

To draw the use cases, follow these steps:

1. Click the Create Use Case button < on the Drawing toolbar.

2. Click inside the upper left of the boundary box. Rational Rhapsody creates a use case with
adefault name of usecase_n, where n isequal to or greater than O.

3. Renametheuse caseriace call and then press Enter.

Note: For use case names, you can use spaces because use case names do not
correspond to actual generated code. In the previous task where you drew
actors, you did not use spaces in actor names because code can be generated
using the specified actor names.

Rational Rhapsody 37

Lesson 1: Creating Use Case Diagrams

Entire Model Yiew <

4. Create three more use cases inside the boundary box named supplementary Service,
Receive Call, and provide Status.

In the browser, expand the AnalysisPkg package and the Use Cases category to view the
use cases you created, as shown in the following figure:

E|

4f|

(-4 Handset
{:I Components
{:I Ohject Model Diagrams
ED Packages

----- E RequirementsPkg
EE AnalysisPlkg

D Use Case Diagrams

lﬁj Functional Overview

B¢ Use Cases

- Place Call

{2 Supplementary Service
- Receive Call
D) Provide Status

----- 5 architecturepkg

----- F subsystemspkg

¢ 5P 0|7

=

hlhl

Handset Protocol System

Place Call

Supplementary

Receive Call

Serice

Provide Status

|»

Metwork

38

C++ Tutorial

Exercise 1: Creating the Functional Overview UCD

Task 1d: Defining Use Case Features

In thistask, you define use case features. You can define the features of a use case, enter a

description, and do other things through the use of the Features dialog box. You can access the
Features dialog box from the browser or the diagram.

To define use case features, follow these steps:

1. Inthe browser, if necessary, expand the AnalysisPkg package and Use Cases category.

2. Double-click the Place Call use case, or right-click and select Features. The Features
dialog box opens.

Note: You can also open the use case through the Functional Overview use case

diagram: Double-click the Place Call use case, or right-click the use case and
select Features.

3. Onthe Description tab, type the following text to describe the purpose of this use case:

General function of the system is that it must be able to place various
types of calls.

Note: You can aso click the Ellipsis button _I just above the Description box on
the Description tab to expand the internal text editor. When you have entered

the description, click OK to close the Text Editor dialog box and return to the
Features dialog box.

Your Description tab should resemble the following figure:

Use Case : Place Call in Analysis ==l

General Description |F|elations| Tags I F'ru:upertiesl

—

General function of the systemn is that it rmust be able to place
various types of calls.

Lucatel 0K | Apply ||

4. Click Apply.

Rational Rhapsody 39

Lesson 1: Creating Use Case Diagrams

5. With the Features dialog box still open (if necessary, see Keeping Open the Features Dialog

Box), for the other use cases, type a description for each as follows:
¢ For the Supplementary Service use case:
A supplementary service is a short message, call forwarding, call

holding, call barring, or conference calling.

* For the Receive Call use case:

General function of the system is that it must be able to receive
and terminate calls.

+ For the Provide Satus use case:

The system must be able to communicate with the network in order to
show the user the visual status such as signal strength and current
registered network. It must also handle user requests for network
status and location registration.

6. Click OK to close the Features dialog box.

7. Click the Save button E' to save your model.

Task le: Associating Actors with Use Cases

TheMMI actor places callsand receives calls. The Networ k actor notifies the system of incoming
calls and provides status. You want to show the associations between actors and the relevant use
cases using association lines. An association represents a connection between objects or users. In
this task, you associate actors with use cases using the Functional Overview Use Case Diagram
figure as areference.

To draw association lines, follow these steps:

1. Click the Create Association button = on the Drawing toolbar.

Once you move your cursor over the drawing area, notice that the mouse pointer turns
into a crosshairs pointer to signify that it is enabled and that it changesinto acircled
crosshairs pointer when drawing is possible.

2. Click the edge of the MM | actor and then click the edge of the Place Call use case.
Rational Rhapsody creates an association line with the name label highlighted. You do not
need to name this association, so click the mouse button again (thisisthe same as pressing
Enter).

3. Create an association between the MM | actor and the Receive Call use case and then
click the mouse button again or press Enter.

40

C++ Tutorial

Exercise 1: Creating the Functional Overview UCD

4, Create an association between the Networ k actor and the Receive Call use case.

5. Create an association between the Networ k actor and the Provide Satus use case.

6. Inthe Rational Rhapsody browser, expand the Actor s category to view the relations for
the actors and use cases, as shown in the following figure:

%

-Lf|

Entire Model View =

=] D Handset

{“_‘| Components

D Object Madel Diagrams

ED Packages
----- ﬁ RequirementsPkg

EB AnalysisPkg

= 9% Actors

L gk mm

EI‘—| Association Ends
----- L itsPlace Call
e L itsReceive Call

| E-3E Network

EI‘—| Association Ends

by itsReceive Call

= Use Case Diagrams
-8 Functional Overview
E1¢D Use Cases
¢ Place Call
EI|—| Association Ends
Ly i
-3 Supplementary Service
€D Receive Call
€D Pravide Status
----- ﬁ ArchitecturePlyg
----- ﬁ SubsystemsPlg

: A Supplernentary
------ L itsProvide Status Senice

Handset Protocaol System

< W .

4 B¢+ 5 |0% 0|+

M Receive Call Metwark

-
1 | 3

The MM actor has two new relations:

*

*

The Networ

*

itsPlace Call istherole played by the Place Call use casein relation to this actor.

itsReceive Call isthe role played by the Receive Call use casein relation to this
actor.

k actor also has two new relations:
itsProvide Satusistherole played by the Provide Satus use case in relation to
this actor.

itsReceive Call isthe role played by the Receive Call use case in relation to this
actor.

Rational Rhapsody

41

Lesson 1: Creating Use Case Diagrams

Task 1f: Drawing Generalizations

A generalization is arelationship between a general element and a more specific element. The
more specific element inherits the properties of the general element and is substitutable for the

general

element. A generalization lets you derive one use case from another.

The Supplementary Service use case is amore specific case of placing acall, and it isamore
specific case of receiving acall. In thistask, you are going to draw generalizations indicating that
Supplementary Serviceis derived from the Place Call use case and the Receive Call use case.

Usethe

figurein this section as areference.

To draw generalizations, follow these steps:

1

Click the Create Generalization button T on the Drawing toolbar, and then click the
Supplementary Service use case and draw alineto the Place Call use case.

Click the Create Generalization button T, and then click the Supplementary Service use
case and draw aline to the Receive Call use case.

In the browser, expand the Supplementary Service use case. Notice that Place Call and
Receive Call are SuperUseCases for this use case.

Note: To quickly find the Supplementary Service use case in the Rational Rhapsody

browser, right-click it on the Functional Overview use case diagram and click
L ocate or press Ctrl+L.

Your Rational Rhapsody browser should resemble the following figure:

W"f-f"*
-

|

Entire Model Yiew <

|»

[, Handset
..{“_‘| Components
{20 Cbject Madel Diagrams
B Packages

[£ RequirementsPkg
E‘b AnalysisPkg
B9t Actors
C B3R MM

E?% Metwork

B Use Cases
E- Place Call

--C) Receive Call

----- B9 architecturePka

E|I_| Association Ends
----- L itsPlace Call
----- L, itsReceive Call

E||—| Association Ends
L itsReceive Call
L itsProvide Status
ED Use Case Diagrams
;s‘o Functional Cwverviews

| Bk Association Ends W
[Ly itsMrI
=1 Supplementary Service
| B9 SuperUseCases
[4 Place Call

----- T Receive Cal

¢1~|

Handset Protocol System

Place Call
Supplementary
Senice
) /
Receive Call
Provide Status

£ |B|¢ + 5|00l

Metwork

40 Provide Status = =
< | »

42

C++ Tutorial

Exercise 1: Creating the Functional Overview UCD

Task 1g: Adding Remarks to Model Elements and Diagrams

In this task, you are going to add a comment to the Functional Overview use case diagram. You
can add remarks to specify additional information about a model element or diagram. Rational

Rhapsody supports the following types of remarks in diagrams, which can be accessed from the
Common Drawing toolbar:

+ Noteisatextual annotation that contains information that might be useful to the reader,

but it does not add semantics. A note is hot stored in the model repository and is not
visible in the Rational Rhapsody browser.

Constraint isacondition or restriction expressed in text. Constraints might have
semanticsin terms of the application, but the Rational Rhapsody product does not do

anything with them nor does it enforce those semantics. Constraints are part of the model
and are, therefore, visible in the browser.

Note: Most constraints are declarative and not imperative, and therefore do not affect
code generation. For example, if you add a constraint that says the worst case
execution time of an operationis < 12ms, it does not change how codeis

generated (which it would if it were imperative), but it does change whether or
not the generated code is correct.

Comment isatextual annotation that contains information that might be useful to the
reader, but it does not add semantics. Comments are visible in the browser.

Requirement is atextual annotation that describes the intent of the element.
Requirements might have semantics in terms of the application, but the Rational
Rhapsody product does not do anything with them nor does it enforce those semantics.
Requirements are part of the model and are, therefore, visible in the browser.

¢ Anchor attaches a constraint, comment, requirement, or note to one or more elements.

To add remarks to model elements and diagrams, follow these steps:

1. Click the Comment button on the Common Drawing toolbar.

Note: If the toolbar is not open, select View > Toolbars > Common Drawing.
2. Click thetop section of the diagram (outside of the boundary box).
3. Typethefollowing description:

This is a mock up solution of a generic protocol system which handles
voice and supplementary service calls. The use case diagram shows the
functional requirements of the system.

Rational Rhapsody 43

Lesson 1: Creating Use Case Diagrams

Rationa Rhapsody adds the comment to the Comments category in the
AnalysisPkg package, as shown in the following figure:

e

%

Entire Model Yiew <

+ 4 |
[, 1 Handset -
D Components
D Ohbject Model Diagrams
ED Packages
----- & RequirerentsPkg
EI& AnalysisPlkg
2 ?% Ackors
S 5E MM
E||—| Association Ends
----- L itsPlace Call
----- L itsReceive Call
ﬁ Metwork.
E||—| Association Ends
----- L itsReceive Call
----- L itsProvide Status
Comments
comment_7
Use Case Diagrams
3% Functional Overview
Use Cases
E- Place Call
| Bl #ssociation Ends
T L, itsMrI
Supplementary Service
B9 SuperUseCases
----- 4 Place Call
----- 4 Receive Call
- Receive Call

| #1073 Prowide Skatis | IL‘
4 »

« 5P 0%

s

This is a mock up solution of & generic protocol system which handles voice
and supplermentary service calls. The use case diagram shows the functional
requirernents of the system.

TN

Place Call

Handset Protocol System

Supplermentary

Provide Status

ik
Receive Call
eceive Ca etwork

4]

j o

W "Welcome to... ﬂ Functional DI

4. Click the Save button El to save your model.

You have completed drawing the Functional Overview use case diagram. It should resemble the
figure shown above.

44

C++ Tutorial

Exercise 2: Creating the Place Call Overview UCD

Exercise 2: Creating the Place Call Overview UCD

The Place Call Overview use case diagram breaks down the Place Call use case and identifies the
different types of calls that can be placed as use cases.

The following figure shows the Place Call Overview use case diagram that you are going to create
in this exercise.

Place Call Overview Use Case Diagram
P A
+ 4|

| v

B
__ Reg11

ctraces

Entire Model Yiew =

E--D Handset
D Components
D Object Model Diagrams
ED Packages
EIB RequirementsPkg
=B Requirements
=-E Reg.1.1
[E-*s) Dependencies
L%y etraces Place Call

Place Call

| v

¢ > r[Psp 0]

Data Call

7
VG

..... E:! Req.4.0

E-E Req.4.1 / \

El-"y Dependencies atraces / atraces
“s) atraces Data Call

E-E Req.4.2 /

= Dependencies EY

sderives

..... E:! Req.6.2
EIB AnalysisPkg
-9t Ackars

Comments -
= D Use Case Diagrams 1| | >

&% | Functional O i
% PlL;nc; IEZ;TOV\:::\‘W =l W Welcome to...l ﬂ Functional ... |ﬂ Flace Call Dl

Rational Rhapsody 45

Lesson 1: Creating Use Case Diagrams

Task 2a: Creating the Place Call Overview Use Case Diagram
To create the Place Call Overview use case diagram, follow these steps:

1. Inthebrowser, in the AnalysisPkg package, right-click the Use Case Diagrams category
and select Add New Use Case Diagram. The New Diagram dialog box opens.

2. Typerlace call overview andthen click OK.

Rational Rhapsody automatically adds the name of the new use case diagram to the browser and
opens the new diagram in the drawing area.

Task 2b: Drawing the Use Cases
In this task, you are going to draw the following use cases:
+ Place Call to show that the user can place various types of calls. You defined the Place

Call use case in the Functional Overview use case diagram.

+ Data Call to show that the user can originate and receive data requests. It isamore
specific case of placing acall.

+ Voice Call to show that the user can place and receive voice cals, either while
transmitting or receiving data, or standalone. It is a more specific case of placing a call.

Use the Place Call Overview Use Case Diagram figure as a reference.

To draw the use cases, follow these steps:

1. Continuing from the previous task, in the Rational Rhapsody browser, if it is not aready,
expand the Use Cases category.

2. Select the Place Call use case and drag it to the top center of the drawing areafor the
Place Call Overview use case diagram.

3. Click the Create Use Case button < on the Drawing toolbar.

4. Create ause caseinthelower left of the drawing area, named pata call, and press Enter.

46 C++ Tutorial

Exercise 2: Creating the Place Call Overview UCD

5. Create ause casein the lower right of the drawing area, named voice call, and press
Enter. Your browser and diagram should resemble the following figure:

Entire Model Yiew =

+ 4|
Place Call

Data Call .

E--D Handset

D Components

D Object Model Diagrams
{1 Packages

E RequirementsPkg

AnalysisPkg

¢+ 1P 0%

+-B] Comments
Use Case Diagrams
Iﬁj Functional Crverview
Iﬁj Place Call Cverview
- Use Cases
F- Flace Call
--C) Supplementary Service
-4 Receive Call
¢ Provide Status
D Data Cal

VG

----- £ architecturePkg
..... £ subsystemsPkg

-
1| | 3

W Welcome to...lﬂ Functional ... ﬂ Place Call DI

Rational Rhapsody 47

Lesson 1: Creating Use Case Diagrams

Task 2c: Defining Use Case Features

To add descriptions to the Data Call and Voice Call use cases, follow these steps:

1

In the Place Call Overview use case diagram or the browser, double-click the Data Call
use case, or right-click and select Features. The Features dialog box opens.

On the Description tab, type the following text to describe its purpose:

The system must be able to originate and receive data requests of up to
384 kbps. Data calls can be originated or terminated while active voice
calls are in progress.

Note: You can aso click the Ellipsis button _I just above the Description box on
the Description tab to expand the internal text editor. When you have entered
the description, click OK to close the Text Editor dialog box and return to the
Features dialog box.

Click Apply.

With the Features dialog box still opened (if necessary, see Keeping Open the Features
Dialog Box), for the Voice Call use case, type the following description:

The user must be able to place or receive voice calls, either while
transmitting or receiving data, or standalone. The limit of the voice

calls a user can engage in at once is dictated by the conference call
supplementary service.

Click OK to close the Features dialog box.

Click the Save button El to save your model.

48

C++ Tutorial

Exercise 2: Creating the Place Call Overview UCD

Task 2d: Drawing Generalizations

In thistask, you are going to draw generalizations to show that the Data Call use case and the
Voice Call use case derive from the Place Call use case. Use the Place Call Overview Use Case
Diagram figure as areference.

To draw generalizations, follow these steps:

1. Click the Create Generalization button T on the Drawing toolbar to activate the tool.

2. Click the edge of the Data Call use case and draw the line to the edge of the Place Call
use case.

3. Click the Create Generalization button T .

4. Click the edge of the Voice Call use case and draw the line to the edge of the Place Call
use case.

Rational Rhapsody 49

Lesson 1: Creating Use Case Diagrams

Task 2e: Modeling Requirements in Rational Rhapsody

Modeling requirement elements in Rational Rhapsody enables you to provide requirements
traceability without a Requirements Management (RM) tool. M odeling requirement elements also
supplements the Rational Rhapsody to DOORs interface.

Requirements traceability is the ability to describe and follow the life of arequirement, in both a
forward and backward direction. It supports requirements verification and validation, prevents the
introduction of unspecified features, and providesvisibility to derived requirements that need to be
specified and tested.

For more information on the Rational Rhapsody interface to DOORS, refer to the IBM Rational
IBM Rational Rhapsody User Guide.

Adding Requirement Elements to the Model

You can represent requirements in the browser and diagrams as requirement elements.
Requirement elements are textual annotations, which describe the intent of the element.

In thistask, you are going to add the handset model requirements to the RequirementsPkg
package in the browser. You can also add requirements directly to the diagram using the
Requirement tool from the Common Drawing toolbar. Refer to the IBM Rational Rhapsody User
Guide for more information.

Use the Place Call Overview Use Case Diagram figure as areference.

To add requirements elements, follow these steps:

1. Inthe Rational Rhapsody browser, right-click the RequirementsPkg package, and select
Add New > Requirement. Rational Rhapsody creates the Requirements category and a
reguirement with a default name of requirement_n, where n is greater than or equal to 0.

2. Renamethe requirement req. 1.1 and then press Enter.
3. Double-click Req.1.1 or right-click and select Features. The Features dialog box opens.
4. Onthe Description tab, type the following:

The mobile shall be fully registered before a place call sequence can
begin.

50 C++ Tutorial

Exercise 2: Creating the Place Call Overview UCD

Your Features dialog box should resemble the following figure:

Requirement : Req.1.1 in RequirementsPlkg * EE

General Description |F|e|atiu:uns| Tags I F'n:upertiesl

—

The mabile shall be fully registered befare 3 place call sequence can begin.

Locate | 1] 4 | Apply | ‘

5. Right-click the Requirements category and select Add New Requirement for each of the
remaining requirements and their specifications as follows:

. Req.l.Z—The mobile shall have a signal strength within +/- 1 of the
minimum acceptable signal.

¢ Req.3.l—The mobile shall be able to place short messages while
registered.

¢ Reg.3.2—The mobile shall be able to receive short messages while
registered.

¢ Req.4.0—-The mobile shall be able to receive data calls at the rate
of 128 kbps.

¢ Reg.4.1 —The mobile shall be able to send data at the rate of 384
kbps.

¢ Req.4.2—The mobile shall be able to receive streaming video at 384
kbps.

¢ Req.5.6 —The mobile shall be able to receive a maximum of 356
characters in a short message.

¢ Req.G.Z—The optimal size of messages the mobile can send in a text
message 1s 356 characters.

6. Click OK to close the Features dialog box.

Rational Rhapsody 51

Lesson 1: Creating Use Case Diagrams

7. Click the Save button IEl to save your model. Your diagram and browser should resemble

the following figure:
| Wy

E|

Entire Model Yiew =

E--D Handset
D Components
D Object Model Diagrams
ED Packages
EIB RequirementsPkg
=} Requirerments
=¥ Req.l.1
Req.1.2
Req.3.1
Req.3.2
Req.4.0
Req.4.1
Req.4.2
Req.5.6
Req.6.2
[]---ﬁ AnalysisPkg
----- B ArchitecturePlg
----- B SubsystemsPkg

-&1“

Data Call

#8550 0%

-
1| | 3

W Welcome to...lﬂ Functional ... ﬂ Place Call DI

Adding Requirement Elements

You can add requirement elements to use case diagrams to show how the requirements trace to the
use cases. In thistask, you are going to add regquirement elements to the Place Call Overview use
case diagram.

Use the Place Call Overview Use Case Diagram figure as areference.

To add the requirements to the use case diagram, follow these steps:

1. Continuing from the previous task, in the Rational Rhapsody browser the
RequirementsPkg package and the Requirements category should be expanded, select
Req.1.1 and drag it to the right of the Place Call use case.

2. Select Req.4.1 and drag it to the lower left of the Data Call use case.

3. Select Reg.4.2 and drag it to the lower right of the Data Call use case.

52 C++ Tutorial

Exercise 2: Creating the Place Call Overview UCD

Setting the Display Options for Requirement Elements
You can set the type of information and the graphical format to display for model elements using
the Display Options dialog box. In thistask, you are going to set the display options to Name to
show only the name of the requirement on the diagram.

To set the display options, follow these steps.

1. Right-click Reg.1.1in the diagram and select Display Options.

2. The Show group specifies theinformation to display for the requirement. Select the Name
option button to display the name of the requirement, as shown in the following figure:

Requirement Display Options

x|
— Show:
&+ MName " Label " Specification Description
— Form:
" Plain & MNate Symbol © Pushpin
QK I Cancel
3. Click OK.

4. Following the above steps, set the display options for Req.4.1 and Req.4.2 to Name.

Note: You can set aproperty for the diagram to show the Name of the requirement by
default. Right-click the use case diagram in the Rational Rhapsody browser
and select Features. On the Properties tab, select All from the drop-down
menu, expand the usecasece subject, and expand the Requirement metaclass.

For the snowannotationContents property, select Name and then click OK.
You must do this before you place any objects in your diagram.

Rational Rhapsody

53

Lesson 1: Creating Use Case Diagrams

Drawing Dependencies

In thistask, you are going to draw dependencies between the requirements and the use cases. A
dependency is adirect relationship in which the function of an element requires the presence of
and might change another element. You can show the relationship between requirements, and
between requirements and model elements using dependencies.

Use the Place Call Overview Use Case Diagram figure as areference.

To draw dependencies, follow these steps.

1. Click the Dependency button " on the Drawing toolbar, and then click the Req.1.1
requirement and draw aline to the Place Call use case.

2. Click the Dependency button 3 and draw aline from the Req.4.1 requirement to the
Data Call.

3. Click the Dependency button I and draw aline from the Reg.4.2 requirement to the
Data Call.

4. Click the Dependency button " and draw aline from the Reg.4.2 requirement to
Req.4.1.

54

C++ Tutorial

Exercise 2: Creating the Place Call Overview UCD

5. Inthe browser, expand the Requirements category (if not already expanded) to view the
dependency relationship, as shown in the following figure.

Note: If you have afull keyboard with the numeric keypad enabled, select the
RequirementsPkg package and then (on Microsoft Windows machines) you
can use the * key on the keypad to completely expand the RequirementsPkg
node in the browser. In addition, you can use the 4 and 6 keysto expand and
collapse by element. (The sameistrueif you use the Left and Right directional
arrowson afull keyboard.) For more about application accelerators, refer to the
IBM Rational Rhapsody User Guide.

Note that the expand/collapse shortcuts mentioned above are standard
Windows shortcuts. Also be aware that if you use the * key on a node with
many elements, it might take awhile for the shortcut to work.

FE

E|

Entire Model Yiew = + 4 ‘
E--D Handset
D Components
D Object Model Diagrams
ED Packages
EIB RequirementsPkg
=B Requirements
=-E Reg.1.1
[E-*s) Dependencies
‘™) Place Cal

#8550 0%

- Req41

El-*y) Dependsncies
L™y Data Call

- Req.4.2

El-*y) Dependsncies
") Data Cal
. s Req_4_1

..... B Reg.6.2
EI& AnalysisPkg
2%‘ Actars
E-B) Comments
D Use Case Diagrams -
() Use Cases | | »

_____ E :L;T::E:r:::kk; W Welcome to...lﬂ Functional ... ﬂ Place Call DI

Rational Rhapsody 55

Lesson 1: Creating Use Case Diagrams

Defining the Stereotype of a Dependency

You can specify the ways in which requirements relate to other requirements and model elements
using stereotypes. A stereotype is a modeling element that extends the semantics of the UML
metamodel by typing UML entities. Rational Rhapsody includes predefined stereotypes, and you
can aso define your own stereotypes. Stereotypes are enclosed in angle quotes (or guillemets) on
diagrams, for example, «derive».

In thistask, you are going to set the following types of dependency stereotypes:

+ Deriveisarequirement that is a consequence of another requirement.
+ Traceisarequirement that traces to an element that realizesit.
Use the Place Call Overview Use Case Diagram figure as areference.

To define the stereotype of a dependency, follow these steps:

1. Double-click the dependency between Reg.1.1 and Place Call, or right-click and select
Features. The Features dialog box opens.

2. Onthe General tab, from the Sereotype drop-down list box, select trace in Predefined
Types, as shown in the following figure, and click Apply.

Dependency : Place Callin Req.1.1 *) x|

General |Descriptian| Tags I Plapertiesl

Name: [Flace Cal L

Stereotype: hrace j %I%I
[Friend in PredefinedT ypesCpp -
[include in PredefinedT ypes

[T refine in PredefinedT ypes

[T Send in PredefinedT ypes

7 trace in PredefinedT ypes]
[Usage in PredefinedT vpes -

Depends

Lucatel 0K | Apply | |

Note: After you make your selection, trace appears in the box.

56

C++ Tutorial

Exercise 2: Creating the Place Call Overview UCD

7.

Double-click the dependency between and set the stereotype of the dependency between
Req.4.1 and Data Call to trace.

Double-click the dependency between and set the stereotype of the dependency between
Reg.4.2 and Data Call to trace.

Double-click the dependency between and set the stereotype of the dependency between
Req.4.1 and Reg.4.2 to derive.

Click OK to close the Features dialog box.

Click the Save button El to save your model.

You have completed drawing the Place Call Overview use case diagram. It should resemble the
Place Call Overview Use Case Diagram figure.

Rational Rhapsody 57

Lesson 1: Creating Use Case Diagrams

Exercise 3: Creating the Data Call Requirements UCD

The Data Call Requirements use case diagram graphically shows the relationship among textual
regquirement elements for sending and receiving data calls.

The following figure shows the Data Call Requirements use case diagram that you are going to

create in this exercise.

Data Call Requirements Use Case Diagram

2
-+ 2| o
[

ED Handset
D Components it
D Ohbject Madel Diagrams]
ED Packages -
EIB RequirementsPkg o
=B} Requirements ~
]

se Case Diagrams

s 5% Data Call Requirements
-5 AnalysisPkg

----- £ architecturePkg

----- £ subsystemsPkg

B
Req.d4.2

|
sderives |

|
A"
B
Reg.4.1

1

sderives

B
Req.3.2

e
/

straces ;’

W Welcome to...l ﬂ Functional ... |ﬂ Place Call 0. ﬂ Data Call Re...

N
N

\ ctraces

N
E

7'

/«derive»

B
Reg.b6.2

Reg.5.6

58

C++ Tutorial

Exercise 3: Creating the Data Call Requirements UCD

Task 3a: Creating the Data Call Requirements Use Case Diagram

Because the Data Call Requirements use case diagram contains only regquirements, you are going
to create it in the RequirementsPkg package.

To create the Data Call Requirements use case diagram, follow these steps:

1. Right-click the RequirementsPkg package, and select Add New > Use Case Diagram.
The New Diagram dialog box opens.

2. Typepata call Requirements and then click OK.

Rational Rhapsody automatically adds the Use Case Diagrams category and the new use case
diagram to the RequirementsPkg package in the browser, and opens the new diagram in the
drawing area.

Task 3b: Adding Requirements

In thistask, you are going to add requirements. Use the Data Call Requirements Use Case Diagram
figure as areference.

To add requirements, follow these steps:

1. Inthebrowser, if not already expanded, expand the RequirementsPkg package and the
Requirements category.

Select Req.4.2 and drag it to the top left of the drawing area.
Select Req.4.1 and drag it below Req.4.2.

Select Req.3.2 and drag it to the top center of the drawing area.
Select Req.4.0 and drag it to the lower |eft side of Req.3.2.
Select Req.5.6 and drag it to the lower right side of Req.3.2.
Select Req.6.2 and drag it below Req.5.6.

© N o g »~ w b

For each requirement, set the display options to Name to show the requirement name on
the diagram.

a. Right-click arequirement in the use case diagram and click Display Options.
b. Inthe Show group, click the Name option button.

c. Click OK.

Rational Rhapsody 59

Lesson 1: Creating Use Case Diagrams

9. Saveyour model.

Your use case diagram should resemble the following figure:

Entire Model Yiew = + 4 ‘ -
[

E--D Handset
D Components it
D Object Model Diagrams El
ED Packages f—
EIE] RequirementsPkg o
=B} Requirements &~
]

=21 Use Case Diagrams
s 3% Data Call Requirements
(-5 AnalysisPkg
----- £ architecturePkg
----- £ subsystemsPkg

VG

B
Req.d4.2

B
Reg.4.1

1

B
Req.4.0

B
Req.3.2

B
Reg.5.6

| v

W Welcome to...l ﬂ Functional ... |ﬂ Flace Call Dl ﬂ Data Call F...

60

C++ Tutorial

Exercise 3: Creating the Data Call Requirements UCD

Task 3c: Drawing and Defining the Dependencies

In thistask, you are going to show the relationship between requirements by drawing
dependencies and then setting the dependency stereotype. Use the Data Call Requirements Use
Case Diagram figure as areference.

To draw and define dependencies, follow these steps:

1. Click the Dependency button M onthe Drawing toolbar and draw a dependency line
from Reg.4.2 to Reg.4.1, and then open the Features dialog box and set derive as the
stereotype.

Note: To keep aline straight asyou draw it, pressthe Ctrl key as you are drawing the
line.

2. Click the Dependency button M and draw adependency line from Req.4.1 to Req.4.0,
and then set derive as the stereotype.

3. Click the Dependency button M and draw a dependency line from Req.4.0 to Req.3.2,
and then set trace as the stereotype.

4. Click the Dependency button M and draw adependency line from Req.5.6 to Req.3.2,
and then set trace as the stereotype.

5. Click the Dependency button M and draw a dependency line from Req.6.2 to Req.5.6,
and then set derive as the stereotype.

6. Click OK to close the Features dialog box.

7. Click the Save button El to save your model.

Rational Rhapsody 61

Lesson 1: Creating Use Case Diagrams

Rationa Rhapsody automatically adds the dependency relationships to the browser,
as shown in the following figure.

Note: Asmentioned earlier, you can use the tools on the L ayout toolbar to help you
with the layout of selected elementsin your diagram. For example, you can

select Reg.4.2 and Req.3.2 and use Align Bottom

il

to align them to be on
the same bottom edge or you can select all the requirement iconsin your

drawing and use Same Size ¥ to resize them so that they are the same size.
Keep in mind that the last element selected is used as the defaullt.

In addition, if you want to move adrawn element (including labels) on a

drawing more precisely, click one or more elements, pressthe Ctrl key and use
the standalone directional arrow keys. You can also use the directional arrows
on the numeric keypad with NumLock not active.

Entire Model Yiew =

‘;,‘

E|

E--D Handset
D Components
D Object Model Diagrams
ED Packages
EIB RequirementsPkg
=B Requirements
- Req.11

[_]E:! Req.4.0
E|"-‘_:J Dependencies

E-E Req.4.1
="y} Dependencies
~,

E-*) Derivations
L) Req_4_0
- Req.4.2
B Dependencies

Derivations

[_]E:! Req.5.6
E|"-‘:J Dependencies

“-“) Rea 5 &

s) atraces Req_3_2

-"s) «traces Data Call

Ly straces Data Call
B

-

#8550 0%

1 |

= =
Req.d4.2 Req.3.2
| VAN
sderives | / \
| «trace»/ \ ctraces
W / b
=2 B =2
Reg.4.1 Reqg.4.0 Reg.5.6
sderives
=
sderives
EY
Reg.b6.2

| v

-

W Welcome to...l ﬂ Functional ... |ﬂ Flace Call Dl ﬂ Data Call F||

You have completed drawing the Data Call Requirements use case diagram.|t should resemble the
Data Call Requirements Use Case Diagram figure.

62

C++ Tutorial

Summary

Summary

In thislesson, you created use case diagrams that show the functions and requirements of the
wireless telephone and placing a call. You became familiar with the parts of a use case diagram
and created the following:

¢ System boundary box

* Actors

¢ Usecases

¢ Association lines

¢ Dependencies

¢ Generdizations

¢ Reguirements

In the next lesson, you are going to define the components of the system and the flow of
information using structure diagrams.

Rational Rhapsody 63

Lesson 1: Creating Use Case Diagrams

64

C++ Tutorial

Lesson 2: Creating Structure Diagrams

Sructure diagrams define the system structure and identify the large-scale organizational pieces of
the system. They can show the flow of information between system components and the interface
definition through ports. In large systems, the components are often decomposed into functions or
subsystems modules.

Goals for this Lesson

In thislesson, you are going to create the following structure diagrams:

¢ Handset System to identify the object-level components and flow of information
¢ Connection Management to identify the ConnectionManagement functions
¢ DataLink toidentify the DataLink functions
¢ MM Architecture Structure to identify the MobilityManagement function
For ease of presentation, this section includes both the system and subsystem structure diagrams.

Exercise 1: Creating the Handset System Structure
Diagrams

The Handset System diagram is a structure diagram that identifies the system components
(objects) and describes the flow of data between the components from a black-box perspective. In
Lesson 3: Creating Object Model Diagrams, YOU are going to decompose the system components
(objects) to show the subsystems and flow of data (that is, a white-box perspective).

You draw structure diagrams using the following general steps:
1. Draw objects.
2. Draw ports.
3. Draw flows.

This exercise describes each of these stepsin detail.

Rational Rhapsody 65

Lesson 2: Creating Structure Diagrams

The following figure shows the Handset System structure diagram that you are going to create in

this exercise.

Handset System Structure Diagram

|
Entire Model View A + + |
E|{;_'| Handset -
- Companents
- Obiect Model Diagrams
B0 Packages

-2 ArchitecturePkg
B Y Events
% AlertCrf()
% Channelopen()
% plert()
\ RegistrationReq()
=1-(§] Flow Ttems
{E] CalRequests
{E] RegistrationSkatus
{E] CallStatus
{E] CalRequestsTomMM
{E] Registration
{E] LocationUpdate
= \ Flows
\ ConnectionManagement
\ MobilityManagement_Co
\ DataLink_MobilityManage—
-y Net_Datalink
=B Interfaces
|_—‘_|§ In
£y Dependencies
bty sllsages Out
B E Cperations

o R AlertCnf()

E Channelopen() -
.| | 3

N

[RegistrationStatus, —
CallStatus,
i U CallRequests |1 Connectionhlanagement| CallRequestsTahih 1 MobilityManagement
=) ui_req call_req : netwark mm_network -
[— — 2] (& ——— — — >]
al aflows !\l eflows !\l
-
o mW
b In | Out
Registration «flows |
In Ot
! Det) 1 Datalink
net_in LocationUpdate

| |

i Welcome to, ..|ﬂF’\ace Call Dlﬂ Data Call Hlﬂ Functional ... Handset Sy I

66

C++ Tutorial

Exercise 1: Creating the Handset System Structure Diagrams

Task la: Creating the Handset System Structure Diagram

In thistask, you are going to create a structure diagram called Handset System.
To create a structure diagram, follow these steps.

1. Start Rational Rhapsody and open the handset model if they are not already open.

2. Inthe browser, expand the Packages category, right-click the ArchitecturePkg package
select Add New > Structure Diagram. The New Diagram dialog box opens.

3. Typenandset System, asshown in thefollowing figure:
x

Selected Owner: ArchitecturePlg

M arne:

IHandset Syztem

Populate Diagram [

ok | Help |

4. Click OK to close the dialog box.

Rational Rhapsody 67

Lesson 2: Creating Structure Diagrams

Rationa Rhapsody automatically creates the Structure Diagrams category in the browser, and
adds the name of the new structure diagram. In addition, Rational Rhapsody opens the new
diagram in the drawing area, as shown in the following figure:

Entire Model Yiew = + 4 ‘ —
E--D Handset =
D Components E
D Object Model Diagrams
=] Packages
B RequirementsPkg —a
B AnalysisPkg L
EB ArchitecturePkg =
ED Skructure Diagrams "
] E] Handset System \
LB SubsystemsPkg =

1 |

W Welcome to...l ﬂ Flace Call Dl ﬂ Data Call F... | ﬂ Functional ... | Handset Sy..

68

C++ Tutorial

Exercise 1: Creating the Handset System Structure Diagrams

Task 1b: Drawing Objects

An object is an entity with awell-defined boundary and identity that encapsulates state and
behavior. Sate is represented by attributes and relationships, whereas behavior is represented by
operations, methods, and state machines.

An object is an instance of aclass. In object-oriented languages such as C++, aclassis atemplate
for the creation of instances (objects) that share the same attributes, operations, methods,
relationships, and semantics.

For more information about objects, classes, states, behavior, semantics, and so forth, refer to the
IBM Rational IBM Rational Rhapsody User Guide.

The handset model contains the following three system components or functions:
¢ ConnectionM anagement to handle the reception, setup, and transmission of incoming
and outgoing call requests.
+ MobilityManagement to handle the registration and location of users.
¢ Datal ink to monitor registration.

Use the Handset System Structure Diagram figure as areference.

To draw the objects, follow these steps:

1. Click the Object button 5 on the Drawing toolbar.

2. Click thetop center of the drawing area. (You can also use click-and-drag.) Rational

Rhapsody creates an abject with a default name of object_n, where n isequal to or
greater than O.

3. Rename the object connectionManagement press Enter.

4. Click the Object button & on the Drawing toolbar, but this time click the upper right of
the drawing area and rename the object Mobi 11ityManagement.

5. Click the Object button B on the Drawing toolbar, but thistime click the bottom right of
the drawing area and rename the object pataLink.

Note: You can use the tools on the L ayout toolbar to help you with the layout of
selected elementsin your diagram. Keep in mind that the last element selected
is used as the default. Plus, if you want to move a drawn element (including
labels) on a drawing more precisely, click one or more elements, pressthe Ctrl
key and use the standalone directional arrow keys. You can aso use the
directional arrows on the numeric keypad with NumLock not active.

Rational Rhapsody 69

Lesson 2: Creating Structure Diagrams

Defining the Object Stereotype

To indicate that the ConnectionM anagement, M obilityM anagement, and DataL ink objects are
subsystems that are to be further decomposed, you must set the stereotype to Subsystem.

To define the stereotype, follow these steps:

1. Double-click the ConnectionM anagement abject, or right-click and select Features. The
Features dialog box opens.

2. Onthe General tab, in the Stereotype box, select the Subsystem in PredefinedTypes
Cpp check box, as shown in the following figure:

Object : ConnectionManagement in ArchitecturePkg * 2]

General |Descriptiu:un| .&ttributesl Dperatiunsl Portz | Helatiu:unsl Tags I F'ru:upertiesl

I arne: IEDnnectiDnManagement L |
Stereatype: Subzyztem j Eﬁl%l
Main Diagram: I" <cHew>

[T Interface in PredefinedT ypes
Concurrency: | Resource in PredefinedT ypes

[T Singleton in PredefinedTypes
[T MeszageQueus in PredefinedTypes El
builtiplicity: [T Tirnet in PredefinedT wpes
o [T Semaphore in PredefinedTvpes
Iitializaticn: [T Mutex in PredefinedTypes _|
[T EventFlag in PredefinedTypes
Relation to vl [Task in PredefinedT ypes
O e [T CORBaInterface in PredefinedTypesCpp
[T CORBAException in PredefinedT ypesCop
I [T COM Interface in PredefinedT ypesCpp
[T COM Coclass in PredefinedT ypesCpp
Subsystem in PredefinedTvpesCp
[T COM ATL Class in PredefinedTypesCpp
[~ ‘web Managed in PredefinedT ypesCpp
[T Reactive Interface in Predefined T ypesCpp

Type:

Lucatel 0K | Apply | |

Note: After you make your selection, Subsystem appearsin the box.
3. Click Apply to apply your changes.

4. With the Features dialog box till open, set the stereotype to Subsystem for the
M obilityM anagement and DataL ink objects.

5. When done setting stereotypes, click OK to close the Features dialog box.

6. Right-click one of the objects (for example, ConnectionM anagement) and select Display
Options. The Display Options dialog box opens.

70 C++ Tutorial

Exercise 1: Creating the Handset System Structure Diagrams

7. Make the following settings for the object:
a. Inthe Display Name group, select the L abel option button.
b. Clear the Show Stereotype Label check box.

c. Inthelmage View group, select the Enable I mage View check box select the Use
Associated | mage option button; click the Advanced button to open the Advanced
Image View Options dialog box and select the Structured option button click OK to
close the dialog box.

d. Click OK to close the Display Options dialog box.

The object appears on your drawing with itslabel underlined. Thisisthe default style
for the appearance of the label. In addition, the object shows the image associated
with it. The number in the upper left corner shows the multiplicity for the object.

8. Set the same display options for the other objects (for example, M obilityM anagement
and DataL ink if you already did ConnectionM anagement).

9. Saveyour model. Your Handset System structure diagram and browser should resemble
the following figure:

2] -
i A]K =
Entire Model Yiew - | + 4+ | — 1 Connectionfanagement 1N1 il R:ubsvstem» .
MobilityManagement
oot et obilityManagemen
{21 Components
-2 Object Model Diagrams ‘ l
B0 Packages ~ l
- RequirementsPkg -a bt .
-2 AnalysisPlg L
B4 rchitecturePkg !
Objects *u 7
| «Subsystem Connectionian Y,

i
ﬁ #5ubsystem: MabilityManage
7] «Subsystems Datalink,

{231 Structure Diagrams

8] Handset System

El SubsystemsPkg 1 wSubsystems
Datalink

“
| | ;lj

4| | o W Welcome to...lﬂPlace Call Dlﬂ Data Cal Hlﬂ Functional ... Handset S-"'S"'I

Rational Rhapsody 71

Lesson 2: Creating Structure Diagrams

Task 1c: Drawing More Objects

In thistask, you are going to draw the two objects that interact with the system: Ul (user interface)
and Net (network).

To draw these objects, follow these steps:

1. Click the Object button @ on the Drawing toolbar.

2. Click the upper, left corner of the drawing window. (You can aso use click-and-drag.)

Rational Rhapsody creates an object with a default name of object_n, wheren isequal to
or greater than 0.

3. Rename the abject ut press Enter.

4. Create another object, but thistime click the bottom center of the drawing area and rename
the object Net.

Setting the Object Stereotype and Type

You can define the features of an object, including the stereotype and type, using the Features
dialog box. The type specifies the class of which the object is an instance; that is, it provides a
unique instance for each object.

In thistask, you are going to define and set the stereotype for the Ul and Net objectsto Actor to
indicate that the objects are actors. You also going to set the Ul object typeto MM in
AnalysisPkg and the Net object type to Network in AnalysisPkg.

To set the stereotype and type, follow these steps:

1. Double-click the Ul object, or right-click and select Features. The Features dialog box
opens.

2. Onthe General tab, set the following options:
a. Inthe Stereotype box, select <<New>>.

b. Typeactor inthe Name box of the dialog box that appears click OK. After you
make your selection, Actor appearsin the Stereotype box, as shown in the following
diagram.

Note: Thisstep isnecessary if you are creating the handset model from scratch
because there are no stereotypes created for the Ar chitecturePkg package yet.
If you are using the handset model provided with the Rational Rhapsody
product you will seean Actor in Architecture check box in the drop-down list
for the Sereotype box, because this stereotype would have already been
created for the package.

72

C++ Tutorial

Exercise 1: Creating the Handset System Structure Diagrams

c. IntheTypebox, select MMI in AnalysisPkg.

Object : UI in ArchitecturePkg * |

General |Descriptian| Attlibutesl Dpetatiansl Portz | Helatiansl Tagz I Prapettiesl =

Mame: ILII LI

Stereatype: I Actor j EIEI
ain Diagram: IHandset Swyzten in ArchitecturePkg j
Concurrency: I j

Type: [MMIin AralysisPg =1 =
Multiplicity. |1 |

Initializabion: I |

Felation to whole

[T Knows its whale as:

Lucatel 0K | Apply | |

3. Click Apply to apply the changes.

4. Rational Rhapsody displays a message stating that turning object to be of a specific type
will cause the loss of current object features. Click Yesto continue.

5. Click OK to close the dialog box.

6. Open the Features dialog box for the Net object and set the following options:
a. Inthe Sereotype box, select the Actor in Architecture check box.
b. IntheTypebox, select Network in AnalysisPkg.

7. Click Apply to apply the changes.

8. Rationa Rhapsody displays a message stating that turning object to be of a specific type
will cause the loss of current object features. Click Yesto continue.

9. Click OK to close the dialog box.

10. Right-click one of the objects (for example, Ul) and select Display Options. The Display
Options dialog box opens.

11. Makethefollowing settings for the object:

a. Inthe Display Name group, select the L abel option button.

Rational Rhapsody 73

Lesson 2: Creating Structure Diagrams

b. Clear the Show Sereotype Label check box.
c. Click OK to close the Display Options dialog box.
12. Repeat the previous step to set the same display options for the Net object.

13. Saveyour model. Your diagram and browser should resemble the following figure:

+ ¢ | — (" ul ‘1 ConnectionManagement| 1 tobilityManagement

74 C++ Tutorial

Lesson 2: Creating Structure Diagrams

15.

16.

17.
18.

19.

20.

21.

Click OK to close the Features dialog box.

Rationa Rhapsody adds the provided and required interfaces to the mm_dl port in the
Object Diagram. Rational Rhapsody also adds the receptions to the Events category in
ArchitecturePkg package, as shown in the following figure:

[=
Entire Model View - + +
EI--D Handsek

D Camponents
{:l Chbject Maodel Diagrams
El{:l Packages
& RequirementsPka
ﬁ AnalysisPkg
EI& ArchitecturePkg
L——_I\ Events

L% AlertCnft)

i \ ChannelOpen)

(- [§] Flow Ttems
-y, Flows
H-B Inkerfaces
Eﬂ--ﬁ Objects
[#]-«5% Stereokypes
-7 Structure Diagrams
----- 5 subsystemsPhg

To specify the port interfaces for dl_in, double-click the dl_in port, or right-click and
select Features. The Features dialog box opens.

On the General tab, from the Contract drop-down list box, select In.

Select the Contract tab. Notice that Rational Rhapsody automatically added the provided
interfaces previously defined as I n.

Select the Required folder icon click the Add button. The Add New Interface dialog box
opens.

From the I nter face drop-down list box, select Out click OK. Rational Rhapsody
automatically adds the required interfaces previously defined as Out.

Click OK to apply the changes and close the Features dialog box.

86

C++ Tutorial

Exercise 1: Creating the Handset System Structure Diagrams

Reversing a Port

In thistask, you are going to reverse a port.You can reverse ports so that the provided interfaces
become the required interfaces, and the required interfaces become the provided interfaces.

To reverse the dl_in port, follow these steps:
1. Open the Features dialog box for thedl_in port.
2. Onthe General tab, in the Attributes group, select the Rever sed check box.
3. Click OK.
4. Saveyour model.

You have completed drawing the Handset System structure diagram, which should resemble
the Handset System Structure Diagram figure.

Rational Rhapsody 87

Lesson 2: Creating Structure Diagrams

Task 1g: Allocating the Functions Among Subsystems

Now that you have captured the architectural design in the Object Diagram, you need to divide the
operations of the system into its functional subsystems and allocate the activities among the
subsystems.

Note

For ease of presentation, this section includes both the system and subsystem structure
diagrams. Depending on your workflow, you might perform further black-box analysiswith
activity diagrams, sequence diagrams, and statecharts, and white-box analysis using
sequence diagrams before decomposing the system’s functions into subsystem components.

Organizing the SubsystemsPkg Package

Packages let you divide the system into functional domains or subsystems, which consist of
objects, object types, functions, variables, and other logical artifacts. They can be organized into
hierarchiesto provide a high level of partitioning.

In thistask, you are going to create the following subpackages, which represent the functional
subsystems:

¢ CM_Subsystem for ConnectionM anagement

¢ DL_Subsystem for DatalL ink

¢+ MM_Subsystem for MabilityM anagement.
To create packages within the Subsystems package, follow these steps:

1. Inthe browser, right-click SubsystemsPkg and select Add New > Package. Rational

Rhapsody creates a new Packages category within SubsystemsPkg and a package with
the default name package n, where n is greater or equal to 0.

2. Renamethe package cM_subsystem press Enter.

88 C++ Tutorial

Exercise 1: Creating the Handset System Structure Diagrams

3. Right-click Packages (under SubsystemsPkg), select Add New Package, and create two
additional packages named p1._subsystem and MM_Subsystem, 8 shown below:

[=
Entire Model Yiew - + +
EI--EI Handsek

l:l Compaonents
I:I Cbject Model Diagrams
=143 Packages
ﬁ RequirementsPkg
ﬁ AnalysisPlg
ﬁ ArchibecturePkg
Elﬁ SubsystemsPkg
ED Parckages
----- ﬁ CM_Subsyskem
----- ﬁ DL_Subsystem
L ﬁ MM _Subsystem

Organizing Elements

In thistask, you are going to allocate the subsystem objects from the Object Diagram in the

ArchitecturePkg package to their respective packages in the SubsystemsPkg package by moving
them.

To organize elements, follow these steps:

1. Inthe browser, expand the ArchitecturePkg package and the Objects category.

2. Select the <<Subsystem>> ConnectionM anagement object and drag it into the
CM_Subsystem package.

3. Select the <<Subsystem>> Datal ink object and drag it into the DL _Subsystem
package.

Rational Rhapsody 89

Lesson 2: Creating Structure Diagrams

4. Select the <<Subsystem>> M obilityM anagement object and drag it into the
MM _Subsystem package.

The objects are removed from the Ar chitecturePkg package and added to the
SubsystemsPkg packages, as shown in the following figure:

[x|
&1|

Entire Model Wiew -

E--g Handset
- Compaonents
-] Object Model Diagrams
EHEQ Packages
-1 RequirsmentsPkg
ﬁ AnalysisPka
= ArchitectursPkg
\ Events
#-[B] Flow Items
E‘ Flows
#-B Interfaces
Eﬁ Objects
Pl [whictars UL
[ehctars Net
[-+5 Stereatypes
l:l Skruckture Diagrams
Elﬁ SubsystemsPkg
=27 Packages
EE CM_Subsystem
‘ Eﬁ Ohjects
‘ ﬁ w3ubsystems ConnectionManagement
=3 DL_Subsystem
! Eﬁ Objects
_ 7] «Subsystems Datalink
Eﬁ MPM_Subsystem
Eﬁ Ohjects
ﬁ #5ubsystems MaobilityManagement

5. Saveyour model.

You can decompose the system-level objects in the Handset System structure diagram into
sub-objects and corresponding structure diagrams to show their decomposition. In the later
sections, you are going to create the following subsystem structure diagrams:

¢ Connection Management from the ConnectionM anagement object

¢ DatalLink from the DatalL ink object

¢ MM Architecture from the M obility M anagement object

90

C++ Tutorial

Exercise 2: Creating the Connection Management Structure Diagram

Exercise 2: Creating the Connection Management
Structure Diagram

The Connection Management structure diagram decomposes the ConnectionM anagement object
into its subsystems. Connection Management identifies how calls are set up, including the
establishment and clearing of calls, short message services, and supplementary services.

The following figure shows the Connection Management structure diagram that you are going to
create in this exercise.

Connection Management Structure Diagram
E|

| v

Entire Model View = | + ‘

E--D Handset
D Components
D Object Model Diagrams
ED Packages
E RequirementsPkg
E AnalysisPkg
E ArchitecturePkg
EE SubsystemsPkg
ED Packages
El--& CM_Subsystem
Eﬁ Objects
Eﬁ «Subsystems Connectiontana

|»

| Zers@an#]

wSubsystemn
Connectionhlanagement

1 Connection 1 CallList

network call_req

B+l Links
I_‘ L 1 CallContral i] f—-
-1 CallControl_network ccomm oo in
1 CallCantrol_call_req - -
1 Callantrol_Connectior ‘ |

1 CallCantrol_cCallList
19 CallControl_SM3

----- 1 Callantrol_Supplemer
[—]ﬁ Parks
ﬁ Connection

= callist -
g calcmtral 1 SME 1 SupplementaryServices

=7 sms

ﬁ SupplementaryService:
-0 Ports

-D call_req

L0 metwark,

I'_—'ID Structure Diagrams P _ILI
Connection Managems g I I P
- DL Subsvstem z Welcome lo..| 5] Handsst Sy...| 3¥|Place Call 0..] 3% Data Call R...| 3] Functioral ... 5 C
4 | 5 W Welcome to...| [o7] Handset Sy... ace Call 0., ata CallR... unctional ... [o5] Connectian ...

Rational Rhapsody 91

Lesson 2: Creating Structure Diagrams

Task 2a: Creating the Connection Management Structure Diagram

To create the Connection Management structure diagram, follow these steps:

1. Inthebrowser, if not already expanded, expand the Packages category, the
SubsystemsPkg package, the Packages package, the CM _Subsystem package and the
Objects category. Right-click <<Subsystem>> ConnectionM anagement and select
Add New > Sructure Diagram. The New Diagram dialog box opens.

or

In the Handset System structure diagram, right-click ConnectionM anagement and select
New Structure Diagram. The New Diagram dialog box opens.

2. Typeconnection Management Structure Click OK.

Rationa Rhapsody automatically creates the Structure Diagrams category in the
CM_Subsystem object, and adds the name of the new structure diagram. In addition, Rational
Rhapsody opens the new diagram in the drawing area

Task 2b: Drawing Objects

In thistask, you are going to draw the following objects, which represent the activities performed
by Connection Management:

¢ Connection to track the number of valid connections

¢ CallList to maintain thelist of currently active cals

¢ CallControl to manage incoming and outgoing calls

¢ SMSto manage the short message services

¢ SupplementaryServices to manage the supplementary services, including call waiting,
holding, and barring

To draw objects, follow these steps:

1. Click the Object button EI\ on the Drawing toolbar click or click-and-drag in the upper,
left corner of ConnectionM anagement. Rational Rhapsody creates an object with a
default name of object_n, where n isequal to or greater than 0.

2. Rename the object connection press Enter.

3. Draw the CallList, CallControl, SM S, and SupplementarySer vices objects using the
Connection Management Structure Diagram figure as areference.

92 C++ Tutorial

Exercise 2: Creating the Connection Management Structure Diagram

Task 2c: Drawing Ports

In thistask, you are going to draw ports using the Connection Management Structure Diagram

figure as areference.

To draw ports, follow these steps:

4.

Click the Create Port button ™= on the Drawi ng toolbar click the left edge of the
CallControl object.

Type cc_mm press Enter. This port relays messages to and from M obilityM anagement.

Click the Create Port button ™= on the Drawi ng toolbar click the right edge of the
CallControl object.

Type cc_in press Enter. This port relays messages from the user interface.

Changing the Placement of Ports

When Rational Rhapsody adds the ConnectionM anagement object to the diagram, it placesthe
ports defined in the Handset System structure diagram (created in exercise 1 of thislesson) on the

boundary. You can change the port placement by selecting the port and dragging it to another
location on the object.

To change port placement, follow these steps.

1

Typicaly, the ports from the ConnectionM anagement object are not visible. To make
them visible, right-click the object and select Ports > Show All Ports.

Use the Connection Management Structure Diagram figure as a reference and change the
placement of the call_reg and network ports, if necessary.

Save your model.

Rational Rhapsody

93

Lesson 2: Creating Structure Diagrams

Task 2d: Drawing Links

In thistask, you are going to draw links between objects and ports. A link is an instance of an
association. You can specify links without having to specify the association being instantiated by
the link; you can specify features of links that are not mapped to an association. Use the
Connection Management Structure Diagram figure as a reference.

To draw links, follow these steps:

1. Click theLink button ' on the Drawing toolbar click the cc_mm port click the network
port, and then click the mouse button again (thisis the same as pressing Enter).

2. Click the Link button ' click the cc_in port click the call_req port, and then click the
mouse button again or press Enter.

3. Click the Link button ' click the CallControl object click the Connection object, and
then click the mouse button again or press Enter.

4. Click the Link button ' click the CallControl object click the CallL ist object, and then
click the mouse button again or press Enter.

5. Click the Link button ! click the CallControl object click the SM S object, and then
click the mouse button again or press Enter.

6. Click the Link button ' click the CallControl object click the SupplementaryServices
object, and then click the mouse button again or press Enter.

94

C++ Tutorial

Exercise 2: Creating the Connection Management Structure Diagram

7. Saveyour model. In the browser, expand the <<Subsystem>> ConnectionM anagement
category to view the newly created links and parts, as shown in the following figure:

[=
Entire Model Yiew - ‘ + + |
=l-f0 Handset =

l:| Components
{2 Ohject Model Diagrams
=127 Packages
- RequirementsPkg
ﬁ AnalysisPlig
ﬁ ArchitecturePkg
=5 SubsystemsPkg
E|{:| Packages
=B €M subsystemn
Eﬁ Objects
Eﬁ «5Subsystem: ConnectionManagement
Bl Links
----- L CallContral_netwark
----- L CallContral_call_req
----- L CallControl_Connection
----- L CallContral_CallList
----- L CalControl_SM3
----- L CallContral_SupplementaryServices

E-{7) Connection

El-L, Association Ends
o L itsiCallContral

=) Callist

E|I_| Association Ends
bl itsCalliCantral

[—]ﬁ CalliZontrol

£l Assaciation Ends

L itsConnection

L iksCallList

Ly its5Ms

L, itsSupplementaryServices

El'Cl Parts

o) sms B

You have completed drawing the Connection Management diagram. It should resemble the
Connection Management Structure Diagram figure.

Rational Rhapsody 95

Lesson 2: Creating Structure Diagrams

Exercise 3: Creating the Data Link Structure Diagram

The Data Link structure diagram decomposes the Datal ink object into its subsystems. It
identifies how the system monitors registration.

The following figure shows the Data Link structure diagram that you are going to create in this

exercise.

Data Link Structure Diagram

Entire Model View =

EZIN

=-f] Handset
D Components
D Object Model Diagrams
ED Packages
ﬁ RequirementsPkg
ﬁ AnalysisPkg
ﬁ ArchitecturePkg
Eﬁ SubsystemsPkg
ED Packages
& CM_Subsystem
EI'-& DL_Subsystem
Eﬁ Objects
Eﬁ «Subsystems Datalink
5L Links

Parts

Eﬁ RegistrationMonitor
E|-C| Parts
- reg_request

- D Struckure Diagrams
[]--& MM _Subsystem

; 1 RegistrationMonitor_dl_in

| Zerls@an#

data_net

|

1 wSubsystem»
Datalink

1 Registrationtonitor

Out

Out

| o

W Welcome to | Handszet Sy ..|ﬂplace Call Dlﬁ Data Call Hlﬁ Functional ... | Connection | Diata Link in...l

96

C++ Tutorial

Exercise 3: Creating the Data Link Structure Diagram

Task 3a: Creating the Data Link Structure Diagram
To create the Data Link diagram, follow these steps:

1. Inthebrowser, if not already expanded, expand the Packages category, the
SubsystemsPkg package, the Packages package, the DL _Subsystem package, and the
Objects category. Right-click <<Subsystem>> DatalL ink and select Add New >
Structure Diagram. The New Diagram dialog box opens.

or

Right-click DataL ink in the Handset System structure diagram and select New Structure
Diagram. The New Diagram dialog box opens.

2. Typepata Link click OK.

Rationa Rhapsody automatically creates the Structure Diagrams category in the
<<Subsystem>> DL _Subsystem object, and adds the name of the new structure diagram. In
addition, Rational Rhapsody opens the new diagram in the drawing area.

Task 3b: Drawing Objects

In thistask, you are going to draw the RegistrationM onitor object, which represents the activity
performed by the DataL ink object. Use the Data Link Structure Diagram figure as a reference.

To draw the RegistrationM onitor object, follow these steps:

1. Click the Object button = on the Drawing toolbar click or click-and-drag in the center of
DatalL ink.

2. TyperegistrationMonitor press Enter.

Rational Rhapsody 97

Lesson 2: Creating Structure Diagrams

Task 3c: Drawing Ports

In thistask, you are going to draw ports using the Data Link Structure Diagram figure as areference.

To draw ports, follow these steps:

1. Click the Create Port button ™= on the Drawing toolbar.

2. Click theright edge of RegistrationM onitor and create a port named reg_request press
Enter. This port relays registration requests and results.

3. If the portsfor the DataL ink object are not visible, right-click the object and select
Ports> Show All Ports.

4. If the portsfor the DatalL ink object are not located as shown on the Data Link Structure
Diagram figure, change these port placements by selecting a port and dragging it to
another location on the object. For example, you might have to drag dl_in to the right
edge of the DataL ink object. This makes the Data Link structure diagram easier to work
with.

Task 3d: Drawing Links

To draw links, follow these steps.

1. Click theLink button = on the Drawing toolbar.

2. Click thereg_request port click thedl_in port click the mouse button again or press
Enter.

98 C++ Tutorial

Exercise 3: Creating the Data Link Structure Diagram

Task 3e: Specifying the Port Contract and Attributes

In thistask you are going to specify the port contract and features for reg_request using the Data
Link Structure Diagram figure as areference.

To specify the port contract and attributes, follow these steps:

1

7.
8.

Double-click thereg_request port, or right-click and select Features. The Features dialog
box opens.

On the General tab, in the Attributes group, select the Behavior and Rever sed check
boxes.

On the Contract tab, select the Provided folder icon click the Add button. The Add New
Interface dialog box opens.

From the I nterface drop-down list box, select In click OK.
Rational Rhapsody automatically adds the Provided and Required interfaces.
On the General tab, from the Contract drop-down list box, select In.

Click Apply. Rational Rhapsody displays a message that the port isnot realized. Click Yes
to add the realization.

Click OK to close the Features dialog box.

Save your model.

You have completed drawing the Data Link structure diagram. It should resemble the Data Link
Structure Diagram figure. Rational Rhapsody automatically adds the newly created objects, links,

and ports to the DataL ink object in the browser.

Rational Rhapsody 99

Lesson 2: Creating Structure Diagrams

Exercise 4: Creating the MM Architecture Structure
Diagram

The MM Architecture diagram decomposes the M obilityM anagement object into its subsystems

Mobility Management supports the mobility of users, including registering users on the network
and providing their current location.

The following figure shows the MM Architecture diagram that you are going to create in this
exercise.

Entire Model Yiew ~

MM Architecture Structure Diagram

‘$f|§

El--D Handset
-] Components

E|C| Packages

CI Object Model Diagrams

B RenuirementsPlkg
B AnalysisPkg
(-5 ArchitecturePkg
EB SubsystemsPka
=1-{Z] Packages
E-E CM_Subsystem
(-5 DL_Subsystem
E-E5 MM _Subsystem
Eﬁ Ohjects
Eﬁ «5Subsysteny MobilkyManagen

Lirks

L MMCalContral_mm_di

Ly MMCalCantral_mm_net

i by MMCallControl_Redistr

Ly MMC Al ontrol_Location

-] Parts

Eﬁ Reqistration

E||—| Assariation Ends

Ly ibsMME Al ot

ﬁ Lacakion

ﬁ MMCalControl

-0 Parts

-EI rarn_netwiork

et mm_dl

=-{Z Strurture Diagrams
MM Architeckure:

PR

Kl

Out

|»

«Subsystem
MaubilityManagement

1

Registration

1

Location

T

Out

1 MMCallContral

- cc_in

=]

mm_netwark

o

W Welcome | Handset 5. |ﬂ Flace Call | ﬂ [rata Call ...|ﬂFuncliUna\.. | Cunnecliu...l D ata Link | bt Archit |

100

C++ Tutorial

Exercise 4: Creating the MM Architecture Structure Diagram

Task 4a: Creating the MM Architecture Diagram
To create the MM Architecture diagram, follow these steps:

1. Inthebrowser, if not already expanded, expand the Packages category, the
SubsystemsPkg package, the Packages package, the MM _Subsystem package, and the
Objects category. Right-click <<Subsystem>> M obilityM anagement and select Add
New > Structure Diagram. The New Diagram dialog box opens.

or

Right-click M obilityM anagement in the Handset System structure diagram, and select
New Structure Diagram. The New Diagram dialog box opens.

2. TypemM Architecture click OK.

Rationa Rhapsody automatically creates the Structure Diagrams category in the
MM _Subsystem object, and adds the name of the new structure diagram. In addition,
Rational Rhapsody opens the new diagram in the drawing area.

Task 4b: Drawing Objects

In thistask, you are going to draw the following objects, which represent the activities performed
by MobilityManagement:

¢ Registration to maintain the registration status

¢ Location totrack the location of users

¢ MMCallControl to maintain the logic for M abilityM anagement
To draw objects, follow these steps:

1. Click the Object button & on the Drawing toolbar click (or click-and-drag) in the upper,
left corner of M obilityM anagement.

2. Typeregistration, and then press Enter.

3. Draw two objects and name them Location and MMcallcontrol. Usethe MM Architecture
Structure Diagram figure as areference.

Rational Rhapsody 101

Lesson 2: Creating Structure Diagrams

Task 4c: Drawing Ports

In thistask, you are going to draw ports using the MM Architecture Structure Diagram figure asa
reference.

To draw ports, follow these steps:

1. Click the Create Port button =™ on the Drawing toolbar click the left edge of the
MM CallControl object and name the port mm_cc press Enter. This port relays
information to ConnectionM anagement.

2. Click the Create Port button ™ on the Drawing toolbar click the right edge of the
MM CallControl object and name the port cc_in press Enter. This port sends and
receives information from the DataL ink.

3. If the portsfor the M obilityM anagement object are not visible, right-click the object and
select Ports> Show All Ports.

4. If the ports for the M obilityM anagement object are not located as shown on the MM
Architecture Structure Diagram figure, change a port placement by selecting it and
dragging it to another location on the object. This makes the MM Architecture structure
diagram easier to work with.

Task 4d: Drawing Links

In thistask, you are going to draw links using the MM Architecture Structure Diagram figure asa
reference.

To draw links, follow these steps.

1. Click theLink button ! on the Drawing toolbar click the mm_cc port click themm_dl
port, and then click the mouse button again (thisis the same as pressing Enter).

2. Click the Link button ! click the cc_in port click the mm_network port, and then click
the mouse button again or press Enter.

3. Click theLink button ' click the MM CallControl object click the Registration object,
and then click the mouse button again or press Enter.

4. Click the Link button ! click the MM CallControl object click the L ocation object,
and then click the mouse button again or press Enter.

102 C++ Tutorial

Exercise 4: Creating the MM Architecture Structure Diagram

Task 4e: Specifying the Port Contract and Attributes

In this task, you are going to specify the port contract and attributes for the mm_cc port.

To specify the port contract and attributes, follow these steps:

1

4.
5.

Double-click the mm_cc port, or right-click and select Features. The Features dialog box
opens.

On the General tab, specify the following settings:
a. From the Contract drop-down list box, select In.
b. IntheAttributesgroup, select the Behavior check box.

Click Apply. Rational Rhapsody displays amessage that the port is not realized. Click Yes
to add the realization.

Rational Rhapsody automatically adds the provided and required interfaces to the
Contract tab.

Click OK to close the dialog box.

Save your model.

You have completed drawing the MM Architecture diagram. It should resemble the MM

Architecture Structure Diagram figure. Rational Rhapsody automatically adds the newly created
objects, links, and ports to the M abilityM anagement object in the browser.

Rational Rhapsody 103

Lesson 2: Creating Structure Diagrams

Summary

In thislesson, you created a system-level structure diagram, and then decomposed that diagram
into functions to show how the software systems trace to the system functional objects. You
became familiar with the parts of a structure diagram and created the following:

¢ Objects
¢ Ports
* Flows
¢ Links

¢ Dependencies

As mentioned earlier, for ease of presentation, this section included both the system and subsystem
structure diagrams. Depending on your workflow, you might identify the communication scenarios
using sequence diagrams (which are covered in Lesson 5: Creating Sequence Diagrams) before
defining the flows, flowitems, and port contracts.

In addition, you might perform black-box analysis using activity diagrams (which are covered in
Lesson 6: Creating Activity Diagrams), sequence diagrams, and statecharts (which are covered in
Lesson 7: Creating Statecharts). You might perform white-box analysis using sequence diagrams
before decomposing the system’s functions into subsystem components.

You are now ready to proceed to the next lesson, where you are going to define how the system
components are interconnected using object model diagrams.

104

C++ Tutorial

Lesson 3: Creating Object Model
Diagrams

Object model diagrams (OMDs) specify the structure of the classes, objects, and interfacesin the
system and the static relationships that exist between them. Object model diagrams provide a
graphical representation of the system structure. The Rational Rhapsody code generator directly
tranglates the elements and rel ationships modeled in OMDs into C++ source code.

Goals for this Lesson

In this lesson, you are going to create the Subsystem Architecture object model diagram, which
shows how the system components are interconnected at the subsystem level, and identifies the
port connections and the flow of information between components as links.

Rational Rhapsody 105

Lesson 3: Creating Object Model Diagrams

Exercise 1: Creating the Subsystem Architecture OMD

Object model diagrams show the types of objectsin the system, the attributes and operations that
belong to those objects, and the static relationships that can exist between classes (types).

The following figure shows the Subsystem Architecture object model diagram that you are going
to create in this exercise.

Subsystem Architecture Object Model Diagram

[E
Entire Model Yiew - + 1T |

E-g:l Handset -
D Components
D Object Model Diagrams
E|C| Packages
& RequirementsPkg
& AnalysisPlg
E& ArchitecturePko
\ Events
[E] Flow Ttems

& Flows

D Structure Diagrams
E& SubsystemsPkg

EB CM_Subsystem

Eﬁ Ohjercts

ﬁ «5ubsysterns Connect
EB DL_Subsystem

Eﬁ Ohjercts

ﬁ «5ubsysterns Datalink
EB MM_Subsystem o

Eﬁ Ohjercts
— =

< ' 0

1 «Subsystemy
Connectiontanagement

network

L
call_req

1 whictors
ArchitecturePlg. UL b

KA SR 3|0 PEDAlEZ

ui_req

|${b-o

<

|»

mm_netwaork:

«Subsystemx
Mobilitytanagemert

wSubsystemy
Datalink

data_net

S

UWeIcome...l Cotirect. | Haridszt | Data Lir.. | 1M Archi...l %¥|Place Cal | 7¢|Data Ea\l...lﬂ Function |£ Subsyste. .

106

C++ Tutorial

Exercise 1: Creating the Subsystem Architecture OMD

Task la: Creating the Subsystem Architecture Object Model Diagram

The Subsystem Architecture object model diagram identifies how the system components are
interconnected at the subsystem level. It shows the realization of flows between objects through
links and ports. Flows are used for high-level analysis, and links are used for executability
(redlization of flows).

You draw an object model diagram using the following general steps:
1. Draw objects.
2. Draw links.
The following tasks describe each of these stepsin detail.
To create an object model diagram, follow these steps:
1. Start Rational Rhapsody and open the handset model if they are not already open.

2. Inthe browser, expand the Packages category, right-click the SubsystemsPkg package
select Add New > Object Mode Diagram. The New Diagram dialog box opens.

3. Typesubsystem Architecture click OK.

Rationa Rhapsody adds the Object M odel Diagrams category and the name of the new object
model diagram to the browser. Rational Rhapsody also opens the new object model diagram in the
drawing area.

Rational Rhapsody 107

Lesson 3: Creating Object Model Diagrams

Task 1b: Drawing Objects

In this task, you are going to draw objects for the Subsystem Architecture object model diagram.
Use the Subsystem Architecture Object Model Diagram figure as a reference.

To draw objects for the object model diagram, follow these steps:

1

In the Rational Rhapsody browser, expand Packages package, the CM _Subsystem
package, and the Obj ects category.

Click the <<Subsystem>> ConnectionM anagement object and drag it to the upper, left
side of the drawing area. The ConnectionM anagement object and its ports are added to
the diagram.

In the browser, expand the MM _Subsystem package and the Objects category.

Click the <<Subsystem>> M obilityM anagement object and drag it to the upper, right
side of the drawing area.

In the browser, expand the DL _Subsystem package and the Obj ects category.

Click the <<Subsystem>> DataL ink object and drag it to the lower, right side of the
drawing area.

To make the drawing alittle easier to work with, make the following settings for al the
objectsin your diagram:

a. Right-click an object in the drawing area (for example, ConnectionM anagement)
and select Display Options. The Display Options dialog box opens.

b. Onthe General tab, in the Display Name group, select the Name only option button.
c. Click OK.

Save your model.

108

C++ Tutorial

Exercise 1: Creating the Subsystem Architecture OMD

Task 1c: Drawing More Objects

The Subsystem Architecture object model diagram contains the Ul object defined in the Handset
System structure diagram you created in Exercise 1: Creating the Handset System Structure
Diagrams in the previous lesson. The Ul abject interacts with ConnectionM anagement to
establish and clear calls, and request and receive data services.

Use the Subsystem Architecture Object Model Diagram figure as areference to do this task.

To draw the Ul object in your object model diagram, follow these steps:
1. Inthe browser, expand the ArchitecturePkg package and the Objects category.

2. Click the <<Actors>> Ul object and drag it to the bottom, left side of the object model
diagram. The Ul object and its port are added to the diagram.

Note: When Rational Rhapsody add an object to adiagram, it places the object’s ports
on the object’s boundary. Using the Subsystem Architecture Object Model
Diagram figure as areference, change the placement of ports by selecting a port
and dragging it to the location shown in the following figure. Doing this makes
the diagram easier to work with.

= x
+ + |

Entire Model Yiew @

g1 Handset
[:l Components
[:l Object Model Diagrams
B[] Packages
B RequirementsPlkg
B AnalysisPkg
=] B ArchitecturePlg
\ Events
-[8] Flow Ttems
Flows
- Interfaces
Objects
S whctors LT
4 «hctors Met
-5 Stereokypes
{:l Structure Diagrams
EB SubsyskemsPlg
E{:l Object Model Diagrams
lﬂ] Subsystem Architechure
=] Packages
Eﬁ CM_Subsystem
- B objects
: ﬁ «Subsystems Connection

1 wSubsystemy 1 wSubsystams

Connectionhanagement Mabilitybanagement
retwiork mn_nhetwork

[+
call_req mr&jgi)__

1 whotars 1 wSubsysteme

ArchitecturePlg. UL il Datalink
i_req data_net

(2ol g rerre s o PEDAIE

= DL_Subsystem
E-ﬁ Chijects
i 37 «Subsystems DataLink

Eﬁ MM_Subsystem -
-] objects 4 | Ll_l

ﬁ «Subsystems MabilityMar
J | ¥ o Welcome.. | Connecti. | Handset | Data Lin... | b Archi...lﬁ Place Cal...l ﬁ Data Call...l ﬁ Function... ﬂ Subsyste...

Rational Rhapsody 109

Lesson 3: Creating Object Model Diagrams

Task 1d: Drawing Links

In thistask, you are going to draw links that show the flow of information for the Subsystem
Architecture object model diagram. A link is an instance of an association.

To draw alink, follow these steps:

1. Click theLink button ™% onthe Drawing toolbar.

2. Click the network port and then click the mm_network port click the mouse button again
(thisisthe same as pressing Enter).

3. Draw thefollowing links:

¢ Fromthecall_req port to the ui_req port
¢ Fromthe mm_dI port to thedl_in port
4. Saveyour model.

You have completed drawing the Subsystem Architecture diagram. It should resemble the
Subsystem Architecture Object Model Diagram figure.

Summary

In thislesson, you created an object model diagram, which shows how the system components are
interconnected. You became familiar with the parts of an object model diagram and added the
following elements:

¢ Objects

¢ Links

In Lesson 2: Creating Structure Diagrams, you specified some ports and links between them on
structure diagrams. In this lesson, you specified some ports and links at the overall system level.

You are now ready to proceed to the next lesson, where you are going to generate code and build
your handset model in its current state. This lets you determine whether the model meets the
requirements and identify defects early on in the design process.

110 C++ Tutorial

Lesson 4: Generating Code and Building
Your Model

It is good practice to test the model incrementally using model execution. You can animate pieces
of the model asit is developed. This gives you the opportunity to determine whether the model
meets the requirements and find defects early on. Then you can test the entire model. In this way,
you iteratively build the model, and then with each iteration perform an entire model validation.

Goals for this Lesson

In this lesson, you are going to generate code for the handset model and build your model at its
current point by doing the following:

¢ Create acomponent

¢ Set the component features

* Create aconfiguration

¢ Generate codein Rational Rhapsody

¢ Build your handset model

Rational Rhapsody 111

Lesson 4: Generating Code and Building Your Model

Exercise 1: Preparing for Generating Code

Before you generate code, you must do the following genera steps:

A 0w NP

5.

Create a component and set its features.
Create a configuration.

Generate component code.

Build the component application.

Run the component application.

The following tasks describe these steps in detail.

Task la: Creating a Component

A component is a physical subsystem in the form of alibrary or executable program. It plays an
important role in the modeling of large systems that contain several libraries and executables. Each
component contains configuration and file specification categories, which are used to generate,
build, and run the executable model.

Each project contains a default component, named pefaultComponent. YOU can use the default
component or create a new component. In thistask, you are going to rename the default
component simulate, and then use the Simulate component to animate the model.

To use the default component, follow these steps:

1
2
3.
4

In the Rational Rhapsody browser, expand the Components category.
Double-click DefaultComponent to open the Features dialog box.
In the Name box, replace the name pefaultComponent With simulate.

Click Apply. Do not close the dialog box.

112

C++ Tutorial

Exercise 1: Preparing for Generating Code

Task 1b: Setting the Component Features

Once you have created the component, you must set its features.

To set the component features, follow these steps:

1. If you closed the Features dialog box from the previous task, open it. In the Rational
Rhapsody browser, double-click Simulate or right-click and select Features.

2. Onthe General tab, in the Type group, select the Executable option button if it is not
already selected.

3. Onthe Scope tab:
a. Select the Selected Elements option button.

b. Select the AnalysisPkg, ArchitecturePkg, and SubsystemsPkg check boxes. These
are the packages for which you are going to generate code. Do not select
RequirementsPkg because you are not going to generate code for it.

Your Scope tab should look like the following figure.

Component : Simulate in Handset kS |
General Scope I Descriptiunl Helatiu:unsl Tags I F'n:upertiesl
Languange: IEH j
&l Elements

&+ Selected Elements

- [l AnalysisPkg

(-] ArchitectursPlkg
- [RequirementsPkg
[¥ SubsystemsPlg

Locate | 1] 4 | Apply | |

4. Click OK.

Rational Rhapsody 113

Lesson 4: Generating Code and Building Your Model

Task 1c: Creating a Configuration

A component can contain many configurations. A configuration specifies how the component isto
be produced.

Each component contains a default configuration, named pefaultconfig. In thistask, you are

going to rename the default configuration to pebug, and then use the Debug configuration to
animate the model.

To use the default configuration, follow these steps:

1. Inthe Rational Rhapsody browser, expand the Simulate component and the
Configurations category.

2. Double-click DefaultConfig to open the Features dialog box.
3. Inthe Name box, replace pefaultconfig With bDebug.

4. Click OK.

114

C++ Tutorial

Exercise 1: Preparing for Generating Code

Task 1d: Generating Code

In this task you generate code in Rational Rhapsody. Before you generate code, you must first set
the active configuration. The active configuration is the configuration for which you generate
code. The active configuration appears in the drop-down list on the Code toolbar.

To set the active configuration and generate code for the pebug configuration, follow these steps:

1. Inthe Rational Rhapsody browser, right-click the Debug configuration select Set as
Active Configuration.

Note: You can aso select the active configuration from the drop-down list on the
Code toolbar.

2. Select Code > Generate > Debug. Rational Rhapsody displays a message that the Debug
directory does not yet exist and asks you to confirm its creation.

3. Click Yes. Rational Rhapsody placesthe files generated for the active configuration in the
New pebug directory.

Rational Rhapsody generates the code and displays output messagesin the Build tab of the Output
window, as shown in the following figure:

| Generating implementation of CM_Zubsystem into file CHM_3Jubayatem. cpp

Generating implementation of DL_Subaystem into file DL 3ubsystem. cpp

Generating implementation of MM _Subsystem into file MM Subayatenw.cpp

Generating implementation of 3ubsystensPkg into £ile 3ubsystensPkg. cpp

Generating Component initialization code atd main function into f£ile Main%imulate.h
Generating Component initialization code and main function into £ile Mainfimulate.cpp
Generating make file 3imulate.mak

Code Gerneration Done

0 Errori(s), 5 Warhing(z), 0 Hessage(=z)

14 I 4 I }l HI'\Build A Check Madel ,}\. Configuration Managemant)H. Animation ,}\. Search Results f

Note

Asyou can see, when you generated code you received warnings, see About Code
Generation Warnings.

Rational Rhapsody 115

Lesson 4: Generating Code and Building Your Model

The messages inform you of the code generation status, including:
¢ Success or failure of internal checks for the correctness and compl eteness of your model.
These checks are performed before code generation begins.
+ Names of files generated for classes and packages in the configuration.
¢ Names of filesinto which the main() function is generated.
¢ Location of the generated make file.
¢ Completion of code generation.

Fixing Code Generation Errors

If you receive code generation errors, double-click the error in the Output window to go to the
source of the error. The source of the error appears as a highlighted element. Once you fix the
problem, regenerate the code, and rebuild the application until there are no error messages.

About Code Generation Warnings

If you receive code generation warnings, double-click the warning in the Output window to go to
the source of the warning. The source of the warning appears as a highlighted element. You might
be able to fix the warning. Or you might leave the warning asis because your model isnot yet fully
formed.

In this case, the five warnings you received is because your model is not yet fully formed so that
all your port connections are not yet in place. For now, you will ignore the warnings. They will go
away as you continue to build the handset model.

In other cases, if you do have warnings that are valid for the current state of your mode, fix them
regenerate the code, and rebuild the application until those warnings are no longer appearing.

Examining Generated Source Files

To examine any of the generated source files, go to the \ simulate\Debug subfolder of the handset
project.

Using External Elements

The Rational Rhapsody product enables you to visualize frozen legacy code or edit external code
as external elements. This external code is code that is developed and maintained outside of the
Rationa Rhapsody product. This code will not be regenerated by the Rational Rhapsody product,
but will participate in the code generation and build process of Rational Rhapsody models that
interact or interface with this external code. You can create external elements by reverse
engineering the files or by modeling. Refer to the IBM Rational Rhapsody User Guide for more
information on using external elements.

116

C++ Tutorial

Exercise 1: Preparing for Generating Code

Task le: Building the Model

Once you generate code without any errors, you are ready to build the model.
To build the model, do one of the following:

¢ Select Code > Build Simulate.exe, or

Rational Rhapsody builds the model by performing the following tasks:

¢ Executes the makefile that it generated for the configuration.
¢ Setsup the environment for the compiler.

+ Startsthe compiler and linker, which run on the generated code. Once the codeis compiled
and linked, the Rational Rhapsody product displays the message Build Done inthe
Output window.

For a successful model build, the Build tab of the Output window should resemble the following
figure:

ElBuilding ———————————— Simulate.exe - ——---——————-
:JExecuting: "C:\Ehapsody 7.1%Sharebetchmsmake.bat” Simulate.mak build
Jetting environwent for using Microsoft Visual C4+ tools.
MMI.cpp

Network. cpp

In.cpp

out. cpp

ComnectionManagenent., cpp

Datalink.cpp

MobilityManagement, cpp

Architecturelky. cop

SubsystensPkg. cop

CH_Subsysten. chp

DL_Subsysten. cpp

MM Subsysten. cpp

Maindimalate.cpp

Linking Simulate.exe

Euild Done

LRI nnm Build ;{. Check Madel)\ Configuration Managernent }\ Animnation)\ Search Results [

Rational Rhapsody 117

Lesson 4: Generating Code and Building Your Model

Fixing Build Errors

If you receive build errors, double-click the error in the Output window to go to the source of the
error. The source of the error appears as a highlighted element. Once you fix the problem,
regenerate the code and rebuild the application until there are no error messages.

Any time you make changes to the model, you need to regenerate and rebuild the model before
animating it. For more information about full code generation and an incremental code generation,
refer to the IBM Rational Rhapsody User Guide. (Search the user guide PDF for “incremental code
generation.”) You might also find it useful to use the Clean function. Do a search of the user guide
PDF for “deleting old objects.”

Summary

In thislesson, you created generated code and built your model at its current point. You performed
the following:

¢ Created a component and set its features

¢ Created a configuration

¢ Set aconfiguration as the active configuration

¢ Generated code in Rhapsody

¢ Built the handset model at its current point

You are now ready to proceed to the next lesson, where you continue to creating your handset
model. You are going to define the message exchange between subsystems and subsystem
modules when placing acall using sequence diagrams. You also get to regenerate code and rebuild
your model, plus you learn alittle about animation.

118

C++ Tutorial

Lesson 5: Creating Sequence Diagrams

Sequence diagrams (SDs) describe how structural elements communicate with one another over
time, and identify the required relationships and messages. Sequence diagrams can be used at
different levels of abstraction. At higher levels of abstractions, sequence diagrams show the
interactions between actors, use cases, and objects. At lower levels of abstraction and for
implementation, sequence diagrams show the communication between classes and objects.

Sequence diagrams have an executabl e aspect and are a key animation tool. When you animate a
model, Rational Rhapsody dynamically builds sequence diagrams that record the object-to-object
messaging.

Goals for this Lesson

In this lesson, you are going to create the following sequence diagrams.

+ Place Call Request Successful to identify the message exchange when placing a call
+ NetworkConnect to identify the scenario of connecting to the network

+ Connection Management Place Call Request Success to identify the message exchange
between functions when placing a call

For ease of presentation, this section includes all sequence diagrams. Depending on your
workflow, you might first identify the high-level communication scenario of placing acall and
then refine the high-level structure diagram and object model diagrams, before defining the
communication scenarios of the modules.

In addition, in this lesson you are going to set up for animation, as well as do alittle by animating
one of the sequence diagrams you create in this section.

Rational Rhapsody 119

Lesson 5: Creating Sequence Diagrams

Exercise 1: Creating the Place Call Request Successful
SD

The Place Call Request Successful sequence diagram shows how subsystems interact during the
scenario of successfully requesting to place acall. It identifies the order and exchange of messages
between the objects as represented in the Handset System structure diagram, which you created in
Lesson 2. By describing the flows through scenarios, you create the logical interfaces of the
objects. For example, if amessage is shown going into the DataL ink object, you can see that the
message belongs to the object as an event or operation.

You draw a sequence diagram using the following genera steps:
Draw the actor lines.

Draw classifier roles.

w npoP

Draw messages.
4. Draw interaction occurrences.

This exercise describes each of these steps in detail.

120 C++ Tutorial

Exercise 1: Creating the Place Call Request Successful SD

Names
Pane

The following figure shows the Place Call Request Successful sequence diagram that you are
going to create in this exercise.

Place Call Request Successful Sequence Diagram

Caonfirmlndication()

LI kARAIL |CunnectiDnManage..lMubilinanageme_.l Datalink | Met:MNetwork | |
LI mARAL Connectionkd Wabilityhana Datalink Met: Metwark
anagement gement

/,//,, PlacaCallReq() | | | 7

7 | | | 7

7 | | Z

e PlaceCallReq() o

Z | | Z

e o

e o

;:i | | Z

% | CallCaonfirm() | ///
Message 77 Alert) 7
Pane o | ’//’/

7 Z

7 | Z

. /

7 | | Z

; | Ref

e

7 |

/// MetwarkConnect

7 |

7

7

? | ConnectConfirm()

Z

“

e

o

7

7

“

e

“

7

|

=

ISURRRN RN

Rational Rhapsody separates sequence diagrams into a Names pane and a Message pane. The
Names pane contains the name of each instance line or classifier role. The Message pane contains
the elements that make up the interaction.

Rational Rhapsody

121

Lesson 5: Creating Sequence Diagrams

Task la: Creating the Place Call Request Sequence Diagram

To create a new sequence diagram, follow these steps:
1. Start Rational Rhapsody and open the handset model if they are not already open.

2. Inthe Rational Rhapsody browser, right-click the SubsystemsPkg package, and select
Add New > Sequence Diagram. The New Diagram dialog box opens.

3. Typerlace call Request Successful, asshown inthefollowing figure.

New Diagram x|

Selected Owner: zequencediagran_B

Marne; IF'Iace Call Request Succezsful

Operation Mode
’7 O Analysiz {5 Design

ok | Help |

4. Inthe Operation Mode group, select the Design option button.

Rational Rhapsody lets you create sequence diagrams in two modes:

a. Inanalysis mode, you draw message sequences without adding elements to the
model. This meansyou can brainstorm your analysis and design without affecting the
generated source code. Oncethe designisfinalized, you can reaize theinstance lines
and messages so that they display in the Rational Rhapsody browser, and can have
code generated for them.

b. Indesign mode, every instance line and message you create or rename can be realized
as an element (class, object, operation, or event) that appears in the Rational
Rhapsody browser, and for which code can be generated. When you draw a message,
Rational Rhapsody asksif you want to realize it. Click Yesto realize the message.

5. Click OK to close the dialog box.

122 C++ Tutorial

Exercise 1: Creating the Place Call Request Successful SD

Rationa Rhapsody automatically creates the Sequence Diagrams category in the
SubsystemsPkg package, and adds the name of the new sequence diagram. In addition,
Rational Rhapsody opens the new diagram in the drawing area.

Note

You can also create a sequence diagram using the Tools menu. Refer to the IBM Rational
Rhapsody User Guide for more information.

Task 1b: Drawing Actor Lines

In this task, you are going to draw the actor lines that represent the two objects, MMI and
Network, as defined in the Handset System structure diagram by dragging them from the Rational
Rhapsody browser to the diagram. Actor lines show how actors participate in the scenario. Actors
are represented as instance lines with a column of diagonal lines. In use case diagrams and
seguence diagrams, actors describe the external elements with which the system context interacts.

For placement of the actor lines, use the Place Call Request Successful Sequence Diagram figure as
areference.

To draw actor lines, follow these steps:

1. IntheRationa Rhapsody browser, expand the Ar chitectur ePkg package and the Objects
category.

2. Click the Ul object and drag-and-drop it at the beginning of the sequence diagram.
Rationa Rhapsody creates the actor line.

3. Click the Net object and drag-and-drop it at the end of the sequence diagram.

Rational Rhapsody 123

Lesson 5: Creating Sequence Diagrams

Task 1c: Drawing Classifier Roles

In thistask, you are going to draw the classifier roles that represent the system components,
ConnectionM anagement, M obilityM anagement, and DataL ink.Classifier roles or instance
lines are vertical timelines labeled with the name of an instance, which indicate the lifecycle of
classifiers or objectsthat participate in the scenario. They represent atypical instance in the
scenario being described. Classifier roles can receive messages from or send messages to other
instance lines. Time proceeds downward on the vertical axis. For placement of the classifier roles,
use the Place Call Request Successful Sequence Diagram figure as areference.

To draw classifier roles, follow these steps:

1. Inthe Rational Rhapsody browser, expand the SubsystemsPkg package, the Packages
category, the CM _Subsystem package, and the Objects category.

2. Click <<Subsystem>> ConnectionM anagement and drag-and-drop it next to the Ul
object. Rational Rhapsody creates the classifier role with the name of therole in the
Names pane.

3. Inthe browser, expand the MM _Subsystem package and the Obj ects category. Click
<<Subsystem>> M obilityM anagement and drag-and-drop it next to
ConnectionM anagement.

4. Inthe browser, expand the DL _Subsystem package and the Obj ects category. Click
<<Subsystem>> DataL ink and drag-and-drop it next to M obilityM anagement.

5. Saveyour model.

Note

To add white space to (or remove it from) a sequence diagram (such as between actorslines
and classifier roles), press the Shift key and drag the actor line or classifier role to its new
location.

124

C++ Tutorial

Exercise 1: Creating the Place Call Request Successful SD

Task 1d: Drawing Messages

A message represents an interaction between objects, or between an object and the environment. A
message can be an event, atriggered operation, or a primitive operation. Depending on the shape
of the line, Rational Rhapsody interprets the message as follows:

+ If the message line is horizontal, the message isinterpreted as atriggered operation if the
target isareactive class, or a primitive operation if the target is a nonreactive class. A
message line that is horizontal indicates that the operations are synchronous.

+ If the message line is slanted, the message isinterpreted as an event if thetarget isa
reactive class, or as a primitive operation if the target is a nonreactive class. A message
line that is danted emphasizes that time passes between the sending and receiving of
messages. Message lines that are slanted can cross each other.

+ If the message line returns to itself, the message is interpreted as a primitive operation if
the arrow folds back to anonreactive class or if the arrow folds back immediately; or it is
interpreted as an event if the arrow folds back sometime later. The arrow can be on either
side of the instance line.

Note

Reactive classes can receive events, triggered operations, and primitive operations.
Non-reactive classes can receive only messages that are callsto primitive operations.

In thistask, you are going to draw events that represent the exchange of information when placing
acall. The Ul actor issues arequest to connect when placing acall. Call and connect confirmations
occur between M obilityM anagement and ConnectionM anagement. Alerts occur between

M obilityM anagement and DataL ink. The user receives confirmation from

ConnectionM anagement. Use the Place Call Request Successful Sequence Diagram figure asa
reference.

To draw messages, follow these steps:

1. Click the Message button ™ on the Drawi ng toolbar.

2. Click the Ul actor line to show that the first message comes from the Ul actor when the
user issues the command to place acall request.

3. Click the ConnectionM anagement line to create a downward-slanted diagonal line.

Rational Rhapsody creates a message with the default name event_n(), wheren isan
incremental integer starting with O.

Rational Rhapsody 125

Lesson 5: Creating Sequence Diagrams

4. Rename the message placecallReq Press Enter.

Note: Because you are creating the sequence diagram in design mode, each time you
draw a new message, Rational Rhapsody asksif you want to redlize the
message. Click Yesto realize each new message.

Draw the following messages using the Place Call Request Successful Sequence Diagram
figure as areference:

a. From ConnectionManagement to M obilityM anagement, named placecallRreq
b. From MobilityManagement to ConnectionM anagement, named callconfirm
c. From MobilityM anagement to Datal ink, named alert

Leave a space for the interaction occurrence (reference sequence diagram) you are going
to create in Task le: Drawing an Interaction Occurrence.

Draw the following messages using the Place Call Request Successful Sequence Diagram
figure as areference:

— From M obilityM anagement to ConnectionM anagement, hamed
ConnectConfirm

— From ConnectionM anagement to the Ul actor, named confirmIndication.
Save your model.

126

C++ Tutorial

Exercise 1: Creating the Place Call Request Successful SD

In the Rational Rhapsody browser, view the realized events. Rational Rhapsody adds the
new realized events to the package in which the message is passed. Rational Rhapsody
adds CallConfirm, ConnectConfirm, and PlaceCallReq to the Events category in the

CM _Subsystem package, as shown in the following figure.

E| K ULRAMI |CDnnectiDnManagem | Mohilitybanageme | Datalink Met:Metwark |
Ertire Model iew = & | = UMb Connectionid Mohilityhana DatalLink Net:Network | -~
EI-{;__"I Handset T+ anagement germent
-] Companents 4
(-] Object Model Diagrams o % PlaceCallReq() | | | f
=+ Packages N % | | | f
B RequirementsPkg o é | | f
-5 AnalysisPkg % “
(- ArchitecturePkg =0 % PlaceCallReq() | | ?
=53 subsystemspkg - f f
[+l Links Gl % | | f
-] Ohiect Madel Diagrams % | CallCanfirm() | f
=+ Packages & Z Alert) Z
- =+ CM_Subsystem hic] % | | f
- %, Events i é | | f]
i, .
» I Z Z
% ConnectConfirm(l % | | | f
ﬁ Objects l:l % f
-5 DL_Subsystem — % | | | f
o #-f MM_Subsystem j=a) % | | | f
[#-{Z] Sequence Diagrams &= é | ConnectConfirmi) | f
“
Gl | | Z
I “
é Confirmindication() | | | ?
“
Z | | | 7
Z Z
“
Z | | | =
/ . . . i
4 | o
UW’elcum...l Cunnec...l Handsa...l DratalLi.. | Mbd Arc... HF’I&CE Ca_._lﬂﬂ Place C.. |£ Subsysl...l ﬂData Ca...l ﬂ Funcliu...l

Note

To locate an event in the Rational Rhapsody browser, select the element in the sequence

diagram and click the Locate in Browser button on the standard toolbar or select Edit >

L ocatein Browser.

Rational Rhapsody

127

Lesson 5: Creating Sequence Diagrams

Task le: Drawing an Interaction Occurrence

In thistask, you are going to draw an interaction occurrence. An interaction occurrence (or
reference sequence diagram) allows you to refer to another sequence diagram from within a
sequence diagram. It lets you break down complex scenariosinto smaller scenarios that can be

reused.

To draw an interaction occurrence, follow these steps:

4,

Click the Interaction Occurrence button B3 on the Drawing toolbar.

Using the Place Call Request Successful Sequence Diagram figure as areference, draw the
interaction occurrence below the Alert message and across the M obilityM anagement
instance line and the Net actor line. The interaction occurrence appears as a box with the
Ref label in the top corner.

Type NetworkConnect. YOU are going to draw the NetworkConnect diagram in the next
section, Exercise 2: Creating the NetworkConnect SD.

Save your model.

You have completed drawing the Place Call Request Successful sequence diagram. It should
resemble the Place Call Request Successful Sequence Diagram figure.

128

C++ Tutorial

Exercise 2: Creating the NetworkConnect SD

Exercise 2: Creating the NetworkConnect SD

As mentioned in the previous exercise, NetworkConnect is a reference sequence diagram. In this
exercise, you create this sequence diagram, which shows the scenario of connecting to the network
when placing acall. It isageneric interaction that can be reused within voice, data, supplementary
services, and short message services.

The following figure shows the NetworkConnect sequence diagram that you are going to create in

this exercise.
NetworkConnect Sequence Diagram
B]f MetMetwark | Diatalink |) MobilityMana...l
Entire Model View ~ | & 4 ‘ = Met:Metwork Datalink Mlabilityhdana [
ED Handset o gement
D Components G
B Object Model Diagrams Alert]) | [every 3 seconds
=] Packages

B RequirementsPkg
B AnalysisPkg
B ArchitecturePlg
EB SubsystemsPkg
\ Events
-y Links
D Object Model Diagrams
D Packages
ED Sequence Diagrams
----- lﬂj Place Call Request Successful
o NetworkConnect

| |
| Connection() Request |
|

Alert()

AlertCnf()

ChannelOpen()

M

(BBO|=0h|Erws it

ChannelOpen()

-
1| | 3

w . |ECo | Ha [EF0a [E M B P [#] P e5su | #Da] #]Fu | Ei]ne |

N N)

Rational Rhapsody 129

Lesson 5: Creating Sequence Diagrams

Task 2a: Creating the NetworkConnect Sequence Diagram

To create the NetworkConnect sequence diagram, right-click the interaction occurrence, which
you named Networ kConnect previoudy in the Place Call Request Successful sequence diagram,
and select Create Reference Sequence Diagram. Rational Rhapsody opens the new diagram in
the drawing area containing the three functions the interaction occurrence crosses on the Place Call
Request Successful sequence diagram, and adds the NetworkConnect sequence diagram to the
Rational Rhapsody browser.

Opening a Reference Sequence Diagram
When needed, once you have created a reference sequence diagram, you can open it using the
following methods:
¢ Double-click the name of the diagram in the Rational Rhapsody browser.

+ Right-click the interaction occurrence in the Place Call Request Successful sequence
diagram and select Create Reference Sequence Diagram.

Task 2b: Drawing Messages

In thistask, you are going to draw events using the NetworkConnect Sequence Diagram figure asa
reference.

To draw messages, follow these steps.

Note

For a cleaner presentation of the task, re-order the classifier roles (DataL ink and
M obilityM anagement) and actor line (Net:Networ k) as shown in the NetworkConnect
Sequence Diagram figure. (Use click-and-drag in the drawing area.)

1. Click the Message button ™ on the Drawi ng toolbar.
2. Draw thefollowing messages:

From DataLink to Net, named alert

From MobilityM anagement to DataL ink, named connectionRequest
From DataL ink to Net, named alert
From Net to Datal ink, named alertcnt

From Net to Datal ink, named channelopen
From DataL ink to M obilityM anagement, named channelopen

Note: When prompted, click Yesto realize each new message.
Rational Rhapsody adds the new realized events to the browser.

130 C++ Tutorial

Exercise 2: Creating the NetworkConnect SD

Task 2c: Drawing Time Intervals

In thistask, you are going to set atime interval of 3 secondsin which M obilityM anagement
checks for a connection request. Sequence diagrams can specify the maximum amount of time that
can elapse between two points. A timeinterval isavertical annotation that shows how much (real)
time should pass between two pointsin the scenario. The name of thetimeinterval isfreetext; itis
not constrained to be a number or unit.

To draw atime interval, follow these steps:

1. Click the Time Interval button fo on the Drawing toolbar.

2. Click near the top of the M obilityM anagement line click the origin of the
ConnectionRequest event. Rational Rhapsody draws two horizontal lines at the start and
end points of the time interval, and a two-headed vertical arrow in the middle, indicating
the time | apse between the two points.

3. Editthelabel onthetimeinterval (<n sec>) asfollows:
every 3 seconds
4. Saveyour model.

You have completed drawing the NetworkConnect diagram. It should resemble the
NetworkConnect Sequence Diagram figure.

Rational Rhapsody 131

Lesson 5: Creating Sequence Diagrams

Task 2d: Moving Events

The SubsystemsPkg package contains the sequence diagrams that detail the design of the system
and the flow of information. When you draw messages on the sequence diagrams, several
messages are added to the Events category in the Ar chitecturePkg package. To make these events
available for model execution, you need to move them from the Ar chitecturePkg package to the
SubsystemsPkg package.

To move events, follow these steps:

1. Expand the ArchitecturePkg package and the Events category.

2. Select Alert and drag-and-drop it in the SubsystemsPkg package. Rational Rhapsody

4.

automatically creates the Events category in the SubsystemsPkg package and adds the
Alert event.

Drag-and-drop the remaining events from the Ar chitectur ePkg package to the
SubsystemsPkg package.

Note: You can select multiple events to move by using Shift+Click.
Expand the SubsystemsPkg package and Events category to view the events you moved,

as shown in thefollowing figure. Also notice that thereisno longer an Events category in
the ArchitecturePkg package.

[#
Entire Model Wigw v + 1
E--g Handset

l:l Components
l:l Object Model Diagrams
=21 Packages

& RequirermentsPlg
-5 AnalysisPkg
Elil ArchitecturePlg
[E] Flow Tkems
; *?& Flaws
-B Interfaces
. B[] objects
---as» Sterentypes
o B3 Struckure Diagrams
EEI SubsystemsPlg
=%, Events
Db % Alerk(y
\ AlertCnf()
i % Channelopeni)
: \ ReqgistrationReql)
-y Links
D Ohject Model Diagrams

132

C++ Tutorial

Exercise 3: Creating the Connection Management Place Call Request Success SD

Exercise 3: Creating the Connection Management
Place Call Request Success SD

The Connection Management Place Call Request Success sequence diagram shows the interaction

of the subsystem modules. It identifies the part decomposition interaction when placing a

successful call.

The following figure shows the Connection Management Place Call Request Success sequence
diagram that you are going to create in this lesson.

Connection Management Place Call Request Success Sequence Diagram
[Elscquence biagram: Comection Management Place Call Request Success i SubsyatemaPi

| ConnedionManage..IConnedionManage...lConnedionManage... |M0bi|ityl\»1anagemen..| DataLink.Registr..I

EMNY

g [l

ENY

Connectionha
nagement. Call
Caontrol

Connectionha
nagement. Call
List

Connectionha
nagement.Caon
nection

MaobilityManag
ement. MMCall
Caontrol

Datalink. Regist
rationtonitor

T N T U U)

|

-

PlaceCallReq() [

PlaceCalReg |

addToCallList()

| addConnectian()

Confirmindication()

¥

CallConfirmi)

ConnectCaonfirm()

RegistrationReg)

]

ChannelOpen() |

ocationUpdate()

=

Rational Rhapsody

133

Lesson 5: Creating Sequence Diagrams

Task 3a: Creating the Connection Management Place Call Request
Success Sequence Diagram

Because the Connection Management Place Call Request Success sequence diagram identifies
how the modules communicate, you are going to create it in the SubsystemsPkg package.

To create the Connection Management Place Call Request Success sequence diagram, follow these
steps:
1. Inthe Rational Rhapsody browser, expand the SubsystemsPkg package right-click

Sequence Diagrams and select Add New Sequence Diagram. The New Diagram dialog
box opens.

2. Typeconnection Management Place Call Request Success.
3. Inthe Operation Mode group, select the Design option button.
4. Click OK to close the dialog box.

Rational Rhapsody adds the name of the new sequence diagram to the Sequence Diagrams
category in the browser. In addition, Rational Rhapsody opens the new diagram in the drawing
area.

Task 3b: Drawing the System Border

In thistask, you are going to draw the system border. The system border represents the
environment and is shown as a column of diagonal lines. Events or operations that do not come
from instance lines are drawn from the system border. You can place a system border anywhere an
instance line can be placed; the most usual locations are the left or right side of the sequence
diagram. Use the Connection Management Place Call Request Success Sequence Diagram figure as
areference.

To draw the system border, follow these steps:

1. Click the System Border button /* onthe Drawing toolbar.
2. Click on the left side of the diagram to place the border.

134 C++ Tutorial

Exercise 3: Creating the Connection Management Place Call Request Success SD

Task 3c: Drawing Classifier Roles

In thistask, you are going to draw the classifier roles that represent the internal functions of the
subsystems by dragging elements from the Rational Rhapsody browser to the sequence diagram.

Use the Connection Management Place Call Request Success Sequence Diagram figure asa
reference.

To draw classifier roles, follow these steps:

1

In the Rational Rhapsody browser, expand the ConnectionM anagement object and the
Parts category (found under the CM _Subsystem package).

Click CallControl and drag-and-drop it next to the system border. Rational Rhapsody
creates the classifier role with the name of the function in the Names pane.

Click CallList and drag-and-drop it next to CallControl.

Click Connection and drag-and-drop it next to CallList.

In the browser, expand the M obilityM anagement object and the Parts category (found
under the MM _Subsystem package).

Click MM CallControl and drag-and-drop it next to Connection.

In the browser, expand the DatalL ink object and the Parts category (found under the
DL _Subsystem package).

Click RegistrationM onitor and drag-and-drop it next to MM CallControal.

Save your model. Your Connection Management Place Request Success sequence
diagram should resemble the following figure:

E] Sequence Diagram: Connection Management Place Call Request Success in SubsystemsPk:

g [l

EMY ConnedionManage..IConnedionManage...lConnedionManage... |M0bi|ityl\a1anagemen.. DataLink.Registr..I
EMY Connectionha Connectionha Connectionha MaobilityManag Datalink. Regist j
nagement. Call nagement. Call nagement.Caon ement. MMCall rationtonitor
Control List nection Control

7 | | | | |

Z | | | | |

“

7 | | | | |

“

7 | | | | |

“

7 | | | | |

“

7 | | | | |

“ I I I I |

Rational Rhapsody

135

Lesson 5: Creating Sequence Diagrams

Task 3d: Drawing Messages

When the system receives arequest to place acall, it validates and registers the user; once
registered, it monitors the user’slocation. The call and connection are confirmed, the connectionis
set up, and confirmation is provided.

In thistask, you are going to draw events using slanted lines, primitive operations using horizontal

lines, and messages-to-self. Use the Connection Management Place Call Request Success Sequence
Diagram figure as areference. When prompted, click Yesto realize each new message.

To draw messages, follow these steps:

1. Click the Message button N

on the Drawing toolbar.
2. Draw thefollowing events using slanted lines:
a. From the system border to the CallControl line, named placecallreq
b. From CallControl to MM CallControl, named placecallreq
c. From MM CallControl to RegistrationM onitor, named RegistrationReq
d. From RegistrationMonitor to MM CallControl, named channelopen
3. Draw amessage-to-self on the MM CallControl instance line, named 1ocationUpdate.
Note: Message names are case-sensitive.
4. Draw thefollowing events:
a. From MM CallControl to CallControl, named callconfirm
b. From MM CallControl to CallControl, named connectConfirm
5. Draw thefollowing primitive operations using horizonta lines:
a. From CallControl to CallList, named addTocallList
b. From CallControl to Connection, named addConnection

6. Draw an event from CallControl to the system border, named confirmIndication.

Rationa Rhapsody adds the new realized events and primitive operations to the part to which the
message is passed. For example, Rational Rhapsody adds locationUpdate to the Operations
category in the MM CallControl part (found under the MM _Subsystem package).

136 C++ Tutorial

Exercise 3: Creating the Connection Management Place Call Request Success SD

Task 3e: Setting the Features of locationUpdate

In this task, you are going to set the return type and implementation for locationUpdate.

To set the features, follow these steps:

1. Onthe Rational Rhapsody browser, double-click locationUpdate (expand the
MM _Subsystem package, the M abilityM anagement object, and then MM CallControal
part), or right-click and select Features. The Features dialog box opens.

2. Onthe General tab, in the Returns group, clear the Use existing type check box and in
the C++ Declaration box, type boo1, as shown in the following figure.

Primitive Operation : locationUpdate in MMCallConkrol T x|

General I Descriptionl Implementatianl Argumentsl Helatiansl Tags I Prapertiesl

|vuiu:| lozationl pdate|)

M ame: IIDcatiDnLlpdate Ll

Sterentype: I j El&l
Visibiiy: [Public =]

Type: IPrimitive Operation ﬂ [~ Template _I
— Heturns

[T Use existing type

C++ Declaration: [0

— Modifiers

[~ “itwal [~ Static [Inline [Constant [~ Abstract

Locate | 1] 4 | Apply | ‘

3. Onthe Implementation tab, enter the following:
return TRUE;

4. Click OK.

Rational Rhapsody 137

Lesson 5: Creating Sequence Diagrams

Task 3f: Moving Confirmindication

When you drew messages on the sequence diagrams, the Confir mlndication message was added
to the Events category in the AnalysisPkg package. To make this event available for model
execution, you need to move it from the AnalysisPkg package to the CM _Subsystem package.

To move Confirmlndication, follow these steps:
1. Expand the AnalysisPkg package and the Events category.

2. Select Confirmlndication and drag-and-drop it inthe CM _Subsystem package. Rational
Rhapsody adds Confirmindication to the Events category.

3. Saveyour model.

You have completed drawing the Connection Management Place Request Success sequence
diagram. It should resemble the Connection Management Place Call Request Success Sequence

Diagram figure.

138 C++ Tutorial

Exercise 4: Animating a Sequence Diagram

Exercise 4: Animating a Sequence Diagram

Asthe model gets more and more complicated, it isagood practice to stop and validate the model
periodically and provide design-level debugging. One of the primary methods the Rational
Rhapsody product uses to ssimulate a model is animation.

In this exercise, you are going to animate the Connection Management Place Call Request Success
sequence diagram. Note that this exercise introduces you to animation. You will learn more about
and do more animation in subsequent lessons.

Animation is the observable execution of behaviors and associated definitions in the model.
Rational Rhapsody animates the model by executing the code generated, with instrumentation, for
classes, operations, and associations. Once you start model animation, you can open animated
diagrams, which let you observe the model asit is running and perform design-level debugging.
You can step through the model, set and clear breakpoints, inject events, and generate an output
trace.

Task 4a: Changing the Settings for the Debug Configuration

In Lesson 4: Generating Code and Building Your Model you created a component and configuration
so that you could generate code and build the handset model at that point in time. To be able to
animate amodel, you have to change the settings for the Debug configuration.

To change the settings for the Debug configuration for animation, follow these steps:

1. Inthe Rational Rhapsody browser, double-click Debug or right-click and select Features.
The Features dialog box opens.

2. Onthelnitialization tab, make sure the following values are already set (they should be):
a. Inthelnitial Instances group, select the Explicit option button.
b. Select the Generate Codefor Actorscheck box.

Note: For more information about these options, refer to the IBM Rational Rhapsody
User Guide. (Do a search of the user guide PDF for “initialization tab” and go
to the section on this topic.)

3. Define the environment so that Rational Rhapsody knows how to create an appropriate
makefile. On the Settingstab, set the following values:

a. Inthelnstrumentation group, from the I nstrumentation M ode drop-down list box,
select Animation. This adds instrumentation code, which makes it possible to
animate the model.

b. IntheTimeMode group, if not already selected, select the Real (for real time)
option button.

Rational Rhapsody 139

Lesson 5: Creating Sequence Diagrams

c. Inthe Satechart Implementation group, if not already selected, select the Flat
option button. Rational Rhapsody implements states as simple, enumerated-type

variables.

d. Rationa Rhapsody setsthe valuesin the Environment Settings group based on the
compiler settings you configured during installation. If you want to use a different
compiler, select a system compiler from the drop-down menu in the Environment

box.

This example uses a system with the Microsoft compiler, as shown in the following
figure. Your environment might use a different compiler.

Configuration : Debug in Simulate *

Directony:
Librarigs:
Additional Sources:

Standard Headers:
Include Path:

Eenerall Descriptionl Initializatior

] Ehecksl Helationsl Tagz I F'mpertiesl

|E:'\F|ha|:us0dy?'.1'\Handset'\SimuIate'\D | ¥ Use Default

| B

|]
|]
| =

— Instrurmentation

Ingtrumentation kode: lﬂ.nimatiun

ﬂ Advanced ... |

— "Wehify

[~ ‘wieh Enabling

Sdvanced ... |

Tirne todel:

Statechart Implementation:

i+ Fedl Simulated
" Reusable © Flat

— Environment Settings

Errviranment: IMichSth j Default |

Build Set: IDebug j

Compiler Switches: |/ . A $0MDefaultS pecificationDirectony A ;l
${0OMROOT MLangCpp A LI _l

Link Switches: $0MLinkCommandSet MOLOGO ;I

Locate | OK | Apply | ‘
4. Click OK.
140 C++ Tutorial

Exercise 4: Animating a Sequence Diagram

Task 4b: Regenerating Code and Rebuilding Your Model

Before you can run animation for any of the sequence diagrams you created in this lesson, you
have to regenerate the code and rebuild your model.

To regenerate code and rebuild your model, follow these steps:

1. Make sure Debugisyour active configuration. It should appear in boldtype in the Rational
Rhapsody browser when it is set as the active configuration. If needed, in the Rational
Rhapsody browser, right-click the Debug configuration select Set as Active
Configuration.

Note: If you have more than one configuration, you can also select the active
configuration from the drop-down list on the Code toolbar.

2. If the Output window is already open and thereis information on the Build tab, to ensure
that you will only be looking at information for the latest code generation/build,
right-click on the tab select Clear. You might want to do thisif information from a
previous generation/build is still there.

3. Select Code > Re Generate > Debug. If applicable, fix any errors noted on the Build tab
of the Output window.

4, Select Code > Rebuild Simulate.exe. If applicable, fix any errors noted on the Build tab.
Task 4c: Starting Animation

Note

If you have many diagrams opened in the drawing area, you might find it less confusing if

you close them before you do this task. To close adiagram, click the Windows Close =
button for the diagram. Save a diagram if necessary.

If you have any sequence diagrams already open, Rational Rhapsody automatically creates
an animated sequence diagram for each one that is open. Closing all sequence diagrams
before you do this task will be less confusing, as this task deals with only one sequence
diagram.

To start animation, do one of the following:

¢ Select Code > Run Simulate.exe, or

¢ Click the Run Executable button ! .

Rational Rhapsody 141

Lesson 5: Creating Sequence Diagrams

Rationa Rhapsody starts animation and performs the following tasks:

¢ Runsthe application to main().
¢ Displaysthe Animation toolbar, which lets you control the animation process.

¢ Displays alog window, which provides input to and output from the model. You can
position and resize the log and Rational Rhapsody windows so both are visible.

¢ Displaysthe following two output panes:

— Call Sack to show thelogical cal stack of the executing model at the design
level, rather than the code level.

— Event Queue to show the events waiting on the event queue of the executing
process.

Note

If the output panes are not displayed, select View > Call Stack or View > Event Queue.
The output panes are dockable, so you can move them out of the Rational Rhapsody GUI to
increase the viewable area for animations. To move awindow, click-and-drag it to another
location.

142 C++ Tutorial

Exercise 4: Animating a Sequence Diagram

Task 4d: Animating a Sequence Diagram

Animated sequence diagrams show how objects pass messages while the model is executing. You
do not manually add messages to an animated sequence diagram—the animation process adds
them for you while the model is running. This means you can observe the communication taking
place in the system. You can then compare the message segquence to the non-animated sequence
diagrams to see whether the model is behaving correctly.

In this task, you are going to animate the Connection Management Place Call Request Success
sequence diagram you created in Exercise 3: Creating the Connection Management Place Call

Request Success SD.

To animate the sequence diagram, follow these steps:

1. Select Tools> Animated Sequence Diagram. The Open Sequence Diagram dialog box

opens.

2. Expand SubsystemsPkg and select Connection M anagement Place Call Request

Success, as show in the following figure.

Open Sequence Diagram

|_] Packages

i By Analysis

9 Requirements
L Architecture
EIEI Subsystems
- CM_Subsystem
..... B9 MM_Subspstem
-9 DL_Subsystem
..... EJ Place Call Request Successful
{ | MetwarkConnect

al

------ H] Connection bManagement Place Call Reguest Succ

| B

Open I

Cancel |

Help |

3. Click Open. This creates an animated version of the SD with the same instance lines as

the original, but without the messages.

Rational Rhapsody

143

Lesson 5: Creating Sequence Diagrams

4. Click the Go button b on the Animation toolbar. Rational Rhapsody creates the
constructors for the objects, as shown in the following figure.

E] Sequence Diagram: Animated Connection Management Place Call Request Success *

=101 x|

EMY |ConnediDnManag..lCDnneu:tiDnManag..l CDnneu:tiu:unManag..|v1|:|bi|ityrv1anagem... DataLinkRegist..l
En CannectionMa CannectionMa ConnectionMan MabilityhManag Datalink.Regist
nagement. Call nagement. Call agement. Conne erment. MMCall rationMonitor
Control List ction Control
/gEEiEU___I _____ __ _ _) | |
LB RS 5 | | |
7 Createl)
~ Creme) | | | |
L I S B
Z | | 1_ ™ |
/j, I I [I [

144

C++ Tutorial

Exercise 4: Animating a Sequence Diagram

Task 4e: Viewing the Browser

During animation, Rational Rhapsody adds the | nstances category to the Rational Rhapsody
browser, which provides information on the status of instances, and their attributes and relations.

To view the I nstances category on the Rational Rhapsody browser, follow these steps:

1. Inthe browser, expand the SubsystemsPkg package, the CM _Subsystem package, the
ConnectionM anagement object, and then I nstances category.

2. From the browser filter drop-down list, select Animation View so that the browser
displays only the elements relevant to your current task.

[£
Animation Yew - + 1 ‘

ED Handsek
B Packages

----- 5 RequirementsPkg
ﬁ AnalysisPkg
& ArchitecturePky
Elﬁ SubsystemsPkg
=10 Packages
Eﬁ CM_Subsystem
Elﬁ Chbijects
E‘ﬁ «5ubswstem: ConnectionManagement
E@] Instances
l@] ConnectionManagement
ﬁ Parts
=0 Forts
[EI---& DL_Subsystenn
£ MM_Subsystem

Rational Rhapsody 145

Lesson 5: Creating Sequence Diagrams

3. Double-click ConnectionM anagement or right-click and select Features. The Features
dialog box opens with the current values of all the initialized attributes and relations for
ConnectionM anagement, as shown in the following figure.

Features of ConnectionManagement 2=
r
Instance Mame: IEDnnectiDnManagement ﬂ
Attrbutes:
Mame | Walue | Type |

Fielations:

Connechion Cannection
CallList
CallCantral
SMS

SupplementaryS ervices

Locate | 1] 4 | Apply | |

4. Click OK.

5. Saveyour model. Answer Yes when asked if you want to save your animated Connection
Management Place Call Reguest Success sequence diagram.

146 C++ Tutorial

Summary

Task 4f: Quitting Animation

To end the animation session, follow these steps:

1. Click the Animation Break button m on the Animation toolbar click the Quit Animation
button = .
2. Click Yesto confirm ending the animation session.

The Animation tab on the Output window displaysthe message animation session terminated.

Note

When you close the project or an animated diagram, Rational Rhapsody prompts whether or
not you want to save the animated diagram. Saving an animated diagram is useful in order
to compare the results of the current session to those of different execution scenarios.

Summary

In this lesson, you created sequence diagrams, which identify the message exchange between
subsystems and subsystem modules when placing acall. You became familiar with the parts of a
sequence diagram and created the following:

¢ System border

+ Classifier rolesand actor lines

* Interaction occurrences

+ Eventsand primitive operations

¢ Timeintervals

¢ Timeouts
In thislesson, you also set up for animation. To test that you can do animation, you created an
animated sequence diagram. You will learn more about and do more animation in subsequent
lessons.

You are now ready to proceed to the next lesson, where you are going to identify the functional
flow of users placing a call and registering users on the network using activity diagrams.

Rational Rhapsody 147

Lesson 5: Creating Sequence Diagrams

148 C++ Tutorial

Lesson 6: Creating Activity Diagrams

Activity diagrams show the dynamic aspects of a system and the flow of control from activity to
activity. They describe the essential interactions between the system and the environment, and the
interconnections of behaviors for which the subsystems or components are responsible. They can
also be used to model an operation or the details of a computation. In addition, you can animate
activity diagrams to verify the functional flow.

Goals for this Lesson

In thislesson, you are going to create the following activity diagrams:

¢ MMCallControl to identify the functional flow of users placing acall, which includes

registering users on the network, providing their current location, and obtaining an
acceptable signal strength.

+ InCall to identify the flow of information once the system connects the call.

+ RegistrationMonitor to identify the functional flow of registering users on the network,

which includes monitoring registration requests and sending received requests to the
network.

In addition, in thislesson, you are going to animate an activity diagram.

Rational Rhapsody 149

Lesson 6: Creating Activity Diagrams

Exercise 1: Creating the MMCallControl Activity
Diagram

The MM CallControl activity diagram shows the functional flow that supports the mobility of users
when placing acall, which includes registering users on the network, providing their current
location, and obtaining an acceptable signal strength. When the user places a call, the system
leaves the | dle action element, checks for an acceptable signal strength and whether the wireless
telephoneis registered. It then waits for the call to connect and enters a connection action element.

An action element represents function invocations with a single exit transition when the function
compl etes.

Note

The activity diagramsin this section use labels to provide descriptions of the actions, rather
than language.

You are going to draw an activity diagram using the following general steps:
Draw swimlanes.

Draw action elements.

Draw a subactivity.

Draw send action states.

Draw a default flow.

o g M~ w Ddh

Draw transitions.

This exercise describes these steps in detail.

150

C++ Tutorial

Exercise 1: Creating the MMCallControl Activity Diagram

Task la: Creating an Activity Diagram
To create an activity diagram, follow these steps:

1. Start Rational Rhapsody and open the handset model if they are not already open.

2. Inthe Rational Rhapsody browser, expand the SubsystemsPkg package, the
MM _Subsystem package, the M abilityM anagement object, and the Parts category.
Right-click MM CallControl and select Add New > Activity Diagram.

or

Open the MM Architecture structure diagram. Right-click MM CallControl and select
New Activity Diagram.

Rational Rhapsody automatically adds the Activity Diagram category and the new activity
diagram for the MM CallControl part in the Rational Rhapsody browser, and opens the new
activity diagram in the drawing area.

Rational Rhapsody 151

Lesson 6: Creating Activity Diagrams

The following figure shows the MM CallControl activity diagram that you are going to create in

this exercise.

MMCallControl Activity Diagram

Status

Location

SignalStrength

Idle

YWaiting in the idle state
for a call reaquest.

PlaceCallReqg

Disconnect to mm_ce

Disconnect

InCall

Register
; Registering

| RegistrationReq to mm_cc

LocationUpdate
Get a location update of
the terminating party.

CheckSignal

F 3

tm(3000)

¥

Signal Ok

E—

1l’+

ChannelOpendocationUpdate);
¥
| CallConfirm to cc_in

v

| ConnectConfirm to co_in

F 3

4

W Welcome to... H Subsystems...

152

C++ Tutorial

Exercise 1: Creating the MMCallControl Activity Diagram

Task 1b: Drawing Swimlanes

In this task, you are going to draw swimlanes. Snimlanes organize activity diagrams into sections
of responsibility for actions and subactions. Vertical, solid lines separate each swimlane from
adjacent swimlanes. To draw swimlanes, you first need to create a swimlane frame and then a
swimlane divider. Use the MMCallControl Activity Diagram figure as a reference.

To draw swimlanes, follow these steps:

1

You might find it helpful to expand the drawing area by closing the Rational Rhapsody
browser (click the browser’s Close button or select View > Browser). This givesyou
more space for the drawing area.

Click the Swimlanes Frame button G| on the Drawing toolbar.

Click to place one corner drag diagonally to draw the swimlane frame.

Click the Swimlanes Divider button [on the Drawing toolbar for each swimlane:

¢ Click about athird of the way in from the left edge of the swimlane frame. You
have created two swimlines. The one on the left is named swimlane 0 and the
one on theright is named swimlane 1.

¢ Click about the middle of swimlane_1 to create athird swimlane. You have three
swimlanes: swimlane_0, swimlane 2, and swimlane_1. Your swimlane numbers
might be different.

Starting from the leftmost swimlane, change its name to status, the middle swimlaneto
Location, and the rightmost swimlane to signalstrength. (Double-click the swimlane
to open its Features dialog box.)

¢ The Satus swimlane tracks the status of calls.
¢ The Location swimlane tracks the location of users.
+ The SignalStrength swimlane tracks the signal strength of users.

Rational Rhapsody 153

Lesson 6: Creating Activity Diagrams

6. Saveyour model. Your activity diagram should resemble the following figure:

[# Activity Diagram of : SubsystemsPkg:MM_SubsystemzMobilityManagement:MMCallControl

=10lx]|

Status

Location

SignalStrength

|»

154

C++ Tutorial

Exercise 1: Creating the MMCallControl Activity Diagram

Task 1c: Drawing Action Elements

In this task, you are going to draw the action elements that represent the functional processes, and
then add names to the action elements. Use the MMCallControl Activity Diagram figure asa
reference.

Note

You add names to action elements using the Features dialog box. When you draw an action
element and type a name in the action element on the diagram, that name becomes the
action, not the name of the action.

To draw action elements, follow these steps:

1. Click the Action button = on the Drawing toolbar.
2. Atthetop of the Satus swimlane, click to create an action element press Ctrl+Enter.

Note: If you press Enter, you move your cursor to anew line. In this case, you have
to press Ctrl+Enter to end your action.

3. Double-click the action element, or right-click the action element and select Features.
The Features dialog box opens.

4. Onthe Genera tab, in the Name box, type 1d1e. Thisindicates that no cal isin progress.

5. Onthe Description tab, type the following:

Waiting in the Idle state for a call request.

6. Click OK to apply the changes and close the Features dialog box.
7. Set the display options. Right-click the action element, select Display Options:
a. From the Show Name group, select the Name option button.

b. From the Show Action, Description or Label group, select the Description option
button.

c. Click OK to close the Display Options dialog box.

Note: You can widen the action element if necessary to make the name and
description appear better on your diagram.

Rational Rhapsody 155

Lesson 6: Creating Activity Diagrams

8. Repeat the previous steps but create the following action elements where noted:

a.

In the lower half of the L ocation swimlane, draw an action element and name it
LocationUpdate and include the following description:

Get alocation update of the terminating party.

In the upper half of the Signal Strength swimlane, draw an action element and name

it checkSignal.

Above the L ocationUpdate action element, draw an action element and name it

Register.

Below the CheckSignal action element, draw an action element and name it
signalok. Your diagram should resemble the following figure:

Status

Location

SignalStrength

Idle

YWaiting in the idle state
for a call reaquest.

Register

LocationUpdate

Get a location update of
the terminating party.

CheckSignal

Signal Ok

1

156

C++ Tutorial

Exercise 1: Creating the MMCallControl Activity Diagram

Task 1d: Drawing a Default Flow

In this task, you are going to draw a default flow. The action element with the default flow isthe
default action element. It istheinitial action element of the object. Idleisin the default action
element asit waits for call requests. Once the default action is activated, other actionsin the

MM CallControl activity diagram can happen. Use the MMCallControl Activity Diagram figure asa
reference.

To draw a default flow, follow these steps:

1. Click the Default Flow button l on Drawing toolbar.

2. Click to theright of the I dle action element click its edge click the mouse button again
(thisisthe same as pressing Enter).

3. Saveyour model.

Task le: Drawing a Subactivity

In thistask, you are going to draw the I nCall subactivity, which indicates that the call has been
established. A subactivity represents the execution of anon-atomic sequence of steps nested within
another activity. It looks like an action element with a subactivity icon in its lower, right corner,
depicting a nested activity diagram. Use the MMCallControl Activity Diagram figure as areference.

To draw a subactivity, follow these steps:

1. Click the Subactivity button & on the Drawing toolbar.
2. Inthe bottom section of the Status swimlane, click to create a subactivity.

3. Double-click the subactivity element you just created, or right-click it and select Features.
The Features dialog box opens.

4. Onthe General tab, in the Name box, type 1nca11.
5. Click OK.

In the subsequent section, Exercise 2: Creating the InCall Subactivity Diagram, yOu are going to open
and draw the InCall subactivity diagram.

Rational Rhapsody 157

Lesson 6: Creating Activity Diagrams

Task 1f: Drawing Send Action States

The Send Action State element can be used to represent the sending of events to external entities.

Send Action State elements allow you to specify the event to send, the event target, and values for
event arguments. Thisis alanguage-independent element that is translated into the relevant
implementation language during code generation.

To define the element, provide the following information in the Features dialog box:

+ From the Target drop-down list, select the object that isto receive the event.
+ From the Event drop-down list, select the event that should be sent.

* When necessary, provide values for the event arguments by selecting the argument in the
argument list and clicking the Value column.

For more information about send action states, refer to the IBM Rational Rhapsody User Guide.
(Do asearch of the user guide PDF file for “ send action state elements’ and go to the section on
thistopic.)

To draw a send action state, follow these steps:

Click the Send Action State button 9 on the Drawing tool bar.

Click in the Status swimlane between | dle and InCall.

Double-click the Send Action element on the diagram. The Features dialog box opens.
On the General tab, in the Target drop-down list, select mm_cc in SubsystemsPkg.
In the Event drop-down list, select <<New>>.

In the dialog box that opens, on the General tab, in the Name box, type pisconnect.

Click OK to close that dialog box.

© N o g M w DD P

Click OK to close the Features dialog box for the send action.

The Disconnect to mm_cc send action state element you just created sends an
asynchronous message out the mm_cc port when disconnecting.

158 C++ Tutorial

Exercise 1: Creating the MMCallControl Activity Diagram

9. Draw thefollowing send action state elements:

¢ Between the Register and L ocationUpdate action elements: For the Tar get,
select mm_cc in SubsystemsPkg; for the Event, select RegistrationReq in
SubsystemsPkg.

This send action state sends an asynchronous message out the mm_cc port for
registration requests.

¢ After the LocationUpdate element: For the Target, select cc_inin
SubsystemsPkg; for the Event, select CallConfirm in SubsystemsPkg.

¢ After the CallConfirm in SubsystemsPkg send action state element: For the
Target, select cc_in in SubsystemsPkg; for the Event, select ConnectConfirm
in SubsystemsPkg.

The last two send action states send asynchronous messages out the cc_in port.
10. Click OK to close the Features dialog box.

11. Saveyour model. Your model should resemble the following figure:

Status Location SignalStrength

Idle

YWaiting in the idle state
for a call reaquest.

Register CheckSignal

| RegistrationReq to mm_cc

LocationUpdate Signal Ok
Get a location update of
the terminating party.

‘ Disconnect to mm_ce

| CallConfirm to cc_in

InCall | ConnectConfirm to cc_in

Rational Rhapsody 159

Lesson 6: Creating Activity Diagrams

Task 1g: Drawing Transitions

A transition represents a relationship between two states indicating that an object in the first state
will perform certain specified actions and enter the second state when a specified event occurs and
specified conditions are satisfied. In thistask, you are going to draw the following transitions:

*

*

*

Transitions between actions
Fork and join transitions
Timeout transition

Drawing Transitions Between Actions

In thistask, you are going to draw two transitions. one named pisconnect, and one with the label
Registering. Use the MMCallControl Activity Diagram figure as a reference.

To draw transitions between actions, follow these steps:

6.

Click the Activity Flow button > on the Drawing toolbar.

Click the InCall subactivity action click the Disconnect to mm_cc send action state
element.

Type the name pisconnect press Ctrl+Enter.

Note: To change the line shape of atransition, right-click the line, select Line Shape,
and then Straight, Spline, Rectilinear, or Re-Route.

Draw atransition from the Disconnect to mm_cc send action state element to the I dle
action element.

Draw atransition from Register to the RegistrationReg to mm_cc send action state
element, and then from the send action state element to the L ocationUpdate action
element.

You are going to label this element in the next set of instructions.

Draw atransition from CheckSignal to SignalOK.

Labeling Elements

In thistask, you are going to label the transition between Register and RegistrationReq to

mm_cc.

You can assigh adescriptive label to an element. The label of an element does not have any
meaning in terms of generated code, but it lets you to easily reference and locate elementsin
diagrams and dialog boxes. A label can have any value and does not need to be unique.

160

C++ Tutorial

Exercise 1: Creating the MMCallControl Activity Diagram

To label elements, follow these steps:

1. Double-click the transition between Register and RegistrationReq to mm_cc or
right-click and select Features. The Features dialog box opens.

Click the L button next to the Name box. The Name and Label dialog box opens.
Typeregistering in the Label box.

Click OK to close the Name and Label dialog box.

Click OK to close the Features dialog box.

o u & w D

To display the label, right-click the transition and select Display Options to open the
Display Options dialog box; from the Display Name group, select L abel; then click OK.

7. Saveyour model. Your diagram should resemble the following figure:

Status Location SignalStrength

Idle

YWaiting in the idle state
for a call reaquest.

Register CheckSignal

; Registering

| RegistrationReq to mm_cc

¥
LocationUpdate Signal Ok
Get a location update of
the terminating party.

‘ Disconnect to mm_ce

& | CallConfirm to cc_in

Disconnect

InCall | ConnectConfirm to cc_in

Rational Rhapsody 161

Lesson 6: Creating Activity Diagrams

Task 1h: Drawing a Fork Synchronization

In thistask, you are going to draw afork synchronization bar. A fork synchronization represents
the splitting of asingle flow into two or more outgoing flows. It is shown as a bar with one
incoming transition and two or more outgoing transitions. Use the MMCallControl Activity Diagram
figure as areference.

To draw afork synchronization bar, follow these steps:

1
2.

Click the Draw Fork Sync Bar button ¥ on the Drawing toolbar.

In the L ocation swimlane, click above Register. Rational Rhapsody adds the fork
synchronization bar.

Click the Activity Flow button, and draw a single incoming transition from I dle to the
synchronization bar. Type placecallreq press Ctrl+Enter. Thistransition indicates that
the interface has initiated a call request. PlaceCallReq corresponds to the trigger of the
transition.

Use the Activity Flow button to draw the following outgoing transitions from the
synchronization bar:

a. TotheRegister action.
b. Tothe CheckSignal action.

To change the line shape of atransition, right-click the line, select Line Shape, and then
Sraight, Spline, Rectilinear, or Re-Route.

162

C++ Tutorial

Exercise 1: Creating the MMCallControl Activity Diagram

Task 1li: Drawing a Join Synchronization

In thistask, you are going to draw ajoin synchronization bar. A join synchronization representsthe
merging of two or more concurrent flows into a single outgoing flow. It is shown as a bar with two
or more incoming transitions and one outgoing transition. Use the MMCallControl Activity Diagram
figure as areference.

To draw ajoin synchronization bar, follow these steps:

1. Click the Draw Join Sync Bar button & on the Drawing toolbar.

2. Click below the L ocationUpdate action element and above the CallConfirm to cc_in
send action state element. Rational Rhapsody adds the join synchronization bar.

3. Click the Activity Flow button, and draw the following incoming transitions to the
synchronization bar:

a. From LocationUpdate press Ctrl+Enter.
b. From SignalOK.

4. To change the line shape of atransition, right-click the line, select Line Shape, and then
Sraight, Spline, Rectilinear, or Re-Route.

5. Draw one outgoing transition from the synchronization bar to CallConfirm to cc in, type
channelopen press Ctrl+Enter. Thistransition indicates that the channel is open and the
call can be established. ChannelOpen corresponds to the trigger of the transition.

6. Draw atransition from CallConfirm to cc_in to ConnectConfirm to cc_in.
7. Draw atransition from ConnectConfirm to cc_in to InCall.

8. Changetheline shapeif you want.

Rational Rhapsody 163

Lesson 6: Creating Activity Diagrams

9. Saveyour model. Your diagram should resemble the following figure:

Disconnect to mm_ce

Disconnect

InCall

| RegistrationReq to mm_cc

LocationUpdate
Get a location update of
the terminating party.

Status Location SignalStrength
_>| Idle vy *
YWaiting in the idle state
for a call reauest.
PlaceCallReqg
Regist
saister CheckSignal
Registering

i

|

Signal Ok

1l’+

¥ ChannelOpen

| CallConfirm to cc_in

v

| ConnectConfirm to co_in

F 3

164

C++ Tutorial

Exercise 1: Creating the MMCallControl Activity Diagram

Task 1j: Drawing a Timeout Transition

In thistask, you are going to draw atimeout transition that monitors the signal strength of
transmissions every three seconds. A timeout transition causes an object to transition after a
specified amount of time has passed. It is an event with the form tm (n) , where n is the number of
milliseconds the object should wait before making the transition. Use the MMCallControl Activity
Diagram figure as areference.

To draw atimeout transition, follow these steps:

A W Dd P

Click the Activity Flow button > onthe Drawing toolbar.
Draw atransition originating and ending with CheckSignal.
Type tm(3000) press Ctrl+Enter.

Save your model.

Task 1k: Specifying an Action on a Transition

In thistask, you are going to specify actions for ChannelOpen.

To specify an action, follow these steps:

1. Double-click the ChannelOpen transition, or right-click and select Features. The
Features dialog box opens.

2. Onthe General tab, in the Action box, type the following code:
locationUpdate () ;

3. Click OK to apply the changes and close the Features dialog box. Rational Rhapsody
displays the transition name with the action command.

4. Saveyour model.

Note

To display the transition name without the action, you can type the transition name as the
label using the Features dialog box. Then right-click the transition and select Display
Optionsto open the Display Options dialog box, and from the Display Name group, select
Label click OK.

You have completed drawing the MM Call Control diagram. It should resemble the MMCallControl
Activity Diagram figure. Rational Rhapsody automatically adds the action elements and transitions
to the MM CallControl part in the browser.

Rational Rhapsody 165

Les

son 6: Creating Activity Diagrams

Exercise 2: Creating the InCall Subactivity Diagram

Subactivities represent nested activity diagrams. The InCall subactivity diagram shows the flow of
information once the system connects the call. The system monitors the signal strength for voice
dataevery 15 seconds. The following figure shows the InCall subactivity diagram that you are
going to create in this exercise.

InCall Subactivity Diagram

| v

Entire Model Yiew =

-&1“

E--D Handset
D Components
D Object Model Diagrams
ED Packages
E RequirementsPkg
E AnalysisPkg
E ArchitecturePlg
EE SubsystemsPkg
\ Events
-y Links
D Object Model Diagrams
EID Packages
E CM_Subsystem
E DL_Subsystem
EE MM _Subsystem
\ Events
Eﬁ Objects
Eﬁ «5ubsystem:s MobilityManagen
-y Links
E Operations
Elﬁ Parts
ﬁ Reqistration
ﬁ Location
E{EL MMCallControl
E| E:_.J Ackivity Diagram
& default of Ide

O e v
@ Incl K1l | _>|_I

o G- 4 j?inCDHIECIL‘ o Welcome t°---|H Subsystems...lg Subspstems... To MMEaIIEontr...I

| v

QUCEHEXR* €0 000/ /0089080~

InCall

N

YoiceData

tm(15000) \

CheckSignal

¥

166

C++ Tutorial

Exercise 2: Creating the InCall Subactivity Diagram

Task 2a: Creating the InCall Subactivity Diagram
To create the InCall subactivity diagram, follow these steps:

1. Right-click InCall in the MMCallControl activity diagram.
2. Select Open Sub Activity Diagram.

Rational Rhapsody displays the subactivity diagram with the InCall activity in the drawing area.

Note

After you have created the subactivity diagram, you can open it through the Rational
Rhapsody browser too: Expand the MM _Subsystem package, the <<Subsystem>>

M obilityM anagement object, the MM CallControl part, the Activity Diagram, and the
Actions category right-click InCall and select Open nested Activity Diagram.

Task 2b: Drawing Action Elements

In thistask, you are going to draw the following action elements, and then add names to them. Use
the InCall Subactivity Diagram figure as a reference.

¢ VoiceData to process voice data

¢ CheckSignal to check the signal strength on the network
To draw the action elements, follow these steps:

1. Click the Action button & on the Drawing toolbar and click in the top half of the InCall
action element press Ctrl+Enter.

2. Double-click the action element to open the Features dialog box, and on the General tab,
in the Name box, type voicebata click OK.

3. Add an action e ement to the bottom section of the InCall action element.

4. Open the Features dialog box, and on the General tab, in the Name box, type
ChecksSignal click OK.

5. For each action element, set the display options to Name to show the name on the
diagram. Select both action elements, right-click, select Display Optionsto open the
Display Options dialog box select Name from the Display Name group, and click OK.

Task 2c: Drawing a Default Flow
In thistask, you are going to draw a default flow. The subactivity diagram must have an initial

action element. Execution begins with theinitial action element when an input transition to the
subactivity action element is triggered. Use the InCall Subactivity Diagram figure as areference.

Rational Rhapsody 167

Lesson 6: Creating Activity Diagrams

To draw the default flow, follow these steps:

1. Click the Default Flow button l on the Drawing toolbar.

2. Click above VoiceData, then click VoiceData. Press Ctrl+Enter.

Task 2d: Drawing Transitions

In thistask, you are going to draw atransition between VoiceData and CheckSignal. Use the
InCall Subactivity Diagram figure as areference.

To draw transitions, follow these steps:

1. Click the Activity Flow button > on the Drawing toolbar.

2. Draw atransition from VoiceData to CheckSignal. Press Ctrl+Enter.

168 C++ Tutorial

Exercise 2: Creating the InCall Subactivity Diagram

Task 2e: Drawing a Timeout Transition

In thistask, you are going to draw atimeout transition to check for voice data every 15 seconds.
Use the InCall Subactivity Diagram figure as a reference.

To draw atimeout transition, follow these steps:

1. Click the Activity Flow button ™ onthe Drawing toolbar.
2. Draw atransition from CheckSignal to VoiceData.
3. Typetm(15000) pressCtrl+Enter.

4. To change the line shape of atransition, right-click the line, select Line Shape, and then
Sraight, Spline, Rectilinear, or Re-Route.

5. Saveyour model.

You have completed drawing the InCall subactivity diagram. It should resemble the InCall
Subactivity Diagram figure. Rational Rhapsody automatically adds the newly created action
elements and transitions to the browser.

Rational Rhapsody 169

Lesson 6: Creating Activity Diagrams

Exercise 3: Creating the RegistrationMonitor Activity
Diagram

The RegistrationMonitor activity diagram shows the functional flow of network registration
requests. The system checks for registration requests and then sends received requests to the
network. The following figure shows the RegistrationMonitor activity diagram that you are going
to create in this exercise.

Entire Model Yiew =

RegistrationMonitor Activity Diagram

E|

-&1“

<

E--D Handset =

D Components

D Object Model Diagrams

ED Packages

B RequirementsPkg

; B AnalysisPkg

B ArchitecturePlg

=] B SubsystemsPkg

\ Events

L Links

{21 ©bject Model Diagrams

EID Packages

B CM_Subsystem

EIB DL_Subsystem

\ Events

Eﬁ Objects

Eﬁ #5ubsystem:s DataLink

-y Links
E Operations

Elﬁ Parts

E{EL RegistrationMaonitar

- E:_.J Ackivity Diagram

R default of Idk

-2 Actions

H D 1dle
() InitiateRe
--E) sendactio

D Success

---E| Ports b

‘ﬁ Superlasses

-0 Ports

F-{Z Structure Diagrams hd
| 3

QUCrEHEE* €000 Uv// 00Oz

tm(45000)

N

Idle

RegistrationReq

¥
InitiateReguest

¥

ChannelOpen to req_request

Success

o

W Welcome tl H Subsystem...l H Subsystem...l H MHCallCo... H Subspsterns..

| v

il

170

C++ Tutorial

Exercise 3: Creating the RegistrationMonitor Activity Diagram

Task 3a: Creating the RegistrationMonitor Activity Diagram
To create the RegistrationMonitor activity diagram, do either of the following:

+ Inthe Rational Rhapsody browser, expand the DL _Subsystem package, the
<<Subsystem>> DataL ink object, and the Parts category. Right-click
RegistrationMonitor and select Add New > Activity Diagram.

or

¢ Open the Data Link structure diagram. Right-click RegistrationM onitor and select New
Activity Diagram.

Rational Rhapsody adds the Activity Diagram category and the new activity diagram to the
RegistrationMonitor part in the Rational Rhapsody browser, and opens the new activity diagram
in the drawing area.

Task 3b: Drawing Action Elements

In thistask, you are going to draw three action elements and then add names to the action
elements. Use the RegistrationMonitor Activity Diagram figure as areference.

To draw action elements, follow these steps:

=

Click the Action button < on the Drawing toolbar.
2. Inthe upper section of the drawing window, create an action element press Ctrl+Enter.

3. Open the Features dialog box for this action element, in the Name box, type 1d1e. Click
OK.

4. Repeat the previous steps but create these additional action elements where noted:
a. Below ldle withanameof tnitiateRequest.
b. Below InitiateRequest, with a name of success.

5. For each action element, set the display options to Name to show the name on the
diagram. Select all the action elements, right-click, select Display Optionsto open the
Display Options dialog box, from the Display Name group, select Name click OK.

Rational Rhapsody 171

Lesson 6: Creating Activity Diagrams

Task 3c: Drawing a Send Action State

Asyou did for the MM CallControl activity diagram in Exercise 1: Creating the MMCallControl

Activity Diagram, you are going to create a send action state to represent the sending of an event.
Use the RegistrationMonitor Activity Diagram figure as a reference.

To draw a send action state, follow these steps:

1. Click the Send Action State button Q on the Drawing toolbar.

2. Click between I nitiateRequest and Success.

3. Double-click the Send Action State element on the diagram. The Features dialog box
opens.

4. Onthe Genera tab, in the Target drop-down list, select reg_request in SubsystemsPkg.

5. Inthe Event drop-down list, select ChannelOpen in SubsystemsPkg.

This command sends an asynchronous message out the reg_request port when the
channel is open.

6. Click OK.
Task 3d: Drawing a Default Flow

In thistask, you are going to draw a default flow. Use the RegistrationMonitor Activity Diagram
figure as areference.

To draw a default flow, follow these steps:

1. Click the Default Flow button l on the Drawing toolbar.
2. Click aboveldleclick Idle. Press Ctrl+Enter.

172 C++ Tutorial

Exercise 3: Creating the RegistrationMonitor Activity Diagram

Task 3e: Drawing Transitions

In thistask, you are going to draw transitions between action elements. Use the
RegistrationMonitor Activity Diagram figure as areference.

To draw transitions, follow these steps:

1. Click the Activity Flow button ™ onthe Drawing toolbar.

2. Draw atransition from Idleto InitiateRequest. Type RegistrationReq pPress
Ctrl+Enter.

3. Click the Activity Flow button ™ for each of these transitions:

¢ From InitiateRequest to ChannelOpen to reg_request press Ctrl+Enter.
¢ From ChannelOpen to reg_request to Success.
¢ From Successto Idle.

4. To change the line shape of atransition, right-click the line, select Line Shape, and then
Sraight, Spline, Rectilinear, or Re-Route.

Task 3f: Drawing a Timeout Transition

In thistask, you are going to draw atimeout transition to return to the | dle action element after 45
seconds if no response is received from the network. Use the ReagistrationMonitor Activity Diagram
figure as areference.

To draw atimeout transition, follow these steps.

1. Click the Activity Flow button > onthe Drawing toolbar.
2. Draw atrangition from I nitiateRequest to Idle.

3. Typethetransition label tm(45000) press Ctrl+Enter.

4. Changethe line shapeif you want.

5. Saveyour model.

You have completed drawing the RegistrationMonitor diagram. It should resemble the
RegistrationMonitor Activity Diagram figure. Rational Rhapsody automatically adds the newly
created action elements and transitions to the RegistrationM onitor part in the Rational Rhapsody
browser.

Rational Rhapsody 173

Lesson 6: Creating Activity Diagrams

Exercise 4: Animating the MMCall Control Activity
Diagram

As mentioned in the previous lesson, as amodel gets more and more complicated, it isagood
practice to stop and validate the model periodically and provide design-level debugging. In this
task, you are going to regenerate the code, rebuild the model, and animate the MM Call Control
activity diagram.

Animated activity diagrams show how states transition to other states while the model is
executing.

Note

You must have completed Lesson 4: Generating Code and Building Your Model and Lesson 5:
Creating Sequence Diagrams before you perform thistask. In working through tasks in these
previous lessons, you set up the Simulate component and the Debug configuration, and you
made settings necessary for animation.

Task 4a: Regenerating Code and Rebuilding Your Model

Because you created activity diagramsin this lesson, you must regenerate code and rebuild your
model before you do anything.

To regenerated code and rebuild your model, follow these steps:

1. Makesure Debugisyour active configuration. It should appear in boldtype in the browser
when it is set as the active configuration. If needed, in the Rational Rhapsody browser,
right-click the Debug configuration select Set as Active Configuration.

Note: If you have more than one configuration, you can also select the active
configuration from the drop-down list on the Code tool bar.

2. If you have many diagrams open, you might find it less confusing to close them.

3. If the Output window is already open and thereis information on the Build tab, to ensure
that you will only be looking at information for the latest code generation/build,
right-click on the tab select Clear. You might want to do thisif information from a
previous generation/build is still there.

4. Select Code > Re Generate > Debug. If applicable, fix any errors noted on the Build tab
of the Output window.

5. Select Code > Rebuild Simulate.exe. If applicable, fix any errors noted on the Build tab.

174 C++ Tutorial

Exercise 4: Animating the MMCall Control Activity Diagram

Task 4b: Animating the MMCall Control Activity Diagram

To animate the MM Call Control activity diagram, follow these steps:
1. Start animation:

— Select Code > Run Simulate.exe, or

— Click the Run Executable button ! .

2. Select Tools > Animated Activity diagram. The Open Animated Activity Diagram
dialog box displays, as shown in the following figure.

x
Chooze instance:
|nstance | Clazs ak. I
b ohilitytd anagement[0]->MMCallControl - SubsystemsPlo:Mhd_Sub
Dratalink[0]->Registrationtd onitor SubzystemszPlg:DL_Subs Cancel |
Help |
4| | il

3. Select MobilityM anagement[0]>M M CallControal click OK.

Rational Rhapsody

175

Lesson 6: Creating Activity Diagrams

4. Click the Go button b on the Animation toolbar. Rational Rhapsody displays an
animated version of your activity diagram, as shown in the following figure. Rational
Rhapsody highlights I dle in magenta because it is active, while olive green showswhat is

inactive.

Status

Location

SignalStrength

Idle W

YWaiting in the idle state

M.Eﬁﬂ.ﬁmﬁ_‘

PlaceCallReqg

Disconnect to mm_ce

Disconnect

InCall

Register
; Registering

RegistrationReq to mm_cc

LocationUpdate
Get a location update of
the terminating party.

CheckSignal

F 3

tm(3000)

¥

Signal Ok

—

1l’+

ChannelOpendocationUpdate);
¥

CallConfirm to cc_in

v

ConnectConfirm to co_in

i
F

1

W Welcome to... H Subsystems...l

5. End the animation when you are done. If necessary, see Task 4f: Quitting Animation.

176

C++ Tutorial

Summary

Summary

In this lesson, you created activity diagrams and a subactivity diagram, which show the functional
flow of placing a call and registering users. You became familiar with the parts of an activity
diagram and created the following:

¢+ Swimlanes

¢ Action elements

¢ Send action states

¢ Subactivity diagram

¢ Default flows

¢ Transitions and timeout transitions

¢ Fork synchronization bar and join synchronization bar
You also regenerated code and rebuilt your model, and then you animated an activity diagram.
You are now ready to proceed to the next lesson, where you are going to identify the action

element-based behavior when the system receives call requests and connects calls using a
statechart.

Rational Rhapsody 177

Lesson 6: Creating Activity Diagrams

178 C++ Tutorial

Lesson 7: Creating Statecharts

Satecharts (SCs) define the behavior of classifiers (actors, use cases, or classes), objects,
including the states that they can enter over their lifetime and the messages, events, or operations
that cause them to transition from state to state.

Statecharts are akey animation tool used to verify the functional flow and moding. Statecharts can
be animated to view the design level of abstraction and graphically show dynamic behavior.

Goals for this Lesson

In this lesson, you are going to create the CallControl statechart to identify the state-based
behavior when the system receives call requests and connects calls.

Rational Rhapsody 179

Lesson 7: Creating Statecharts

Exercise 1: Creating the CallControl Statechart

Statecharts define state-based behavior. The following figure shows the CallControl statechart that

you are going to create in this exercise.

CallControl Statechart

f=] Statechart of : CallControl | 10l =|
Idle
¢ PlaceCallRey
Disconnect to cc_mm | PlaceCallReg to cc_mm
ry ¢ trm(30000)
Active
Disconnect =
._\; ConnectionConfirm
ConnectConfirm
¥
| Connected |

180

C++ Tutorial

Exercise 1: Creating the CallControl Statechart

Task la: Creating the CallControl Statechart

The CalControl statechart identifies the state-based behavior of instances of CallControl when the
system receives call requests from users and connects calls. CallControl waits for an incoming
call inthe ldle state. When an incoming call isreceived, it forwards the message. If it does not
receive a confirmation from the network in thirty seconds, it returns to the I dle state. If it receives
aconfirmation, the call connects, and remains connected until it receives a message to disconnect.

You draw statecharts using the following general steps:
1. Draw states and nested states.
2. Draw default connectors.
3. Draw send action states.
4. Draw transitions and specify actions on transitions.
5. Draw timeout transitions.
The following tasks describe these steps in detail.

To create a statechart, follow these steps:

1. Start Rational Rhapsody and open the handset model if they are not already open.

2. Inthe Rational Rhapsody browser, expand the SubsystemsPkg package, the
CM _Subsystem package, the ConnectionM anagement object, and the Parts category.
Right-click CallControl and select Add New > Satechart.

or

Open the Connection Management structure diagram. Right-click CallControl and select
New Satechart.

Rational Rhapsody addsthe Satechart category and the new statechart to the CallControl partin
the browser, and opens the new statechart in the drawing area.

Note

Once you create a statechart, you can open it using the Diagr ams toolbar.

Rational Rhapsody 181

Lesson 7: Creating Statecharts

Task 1b: Drawing States

In thistask, you are going to draw two states, |dle and Active. A stateisagraphical representation
of the status of an object. It typically reflects a certain set of itsinternal data (attributes) and
relations. Use the CallControl Statechart figure as a reference.

To draw a state, follow these steps:

1. Click the State button () on the Drawing toolbar click on the top section of the drawing
area. (You can also use click-and-drag.) Rational Rhapsody create a state with a default
name of state n, wheren isequal to or greater than O.

2. Type1die press Enter. This state indicates that no call isin progress.

3. Draw alarger state named act ive in the center of the drawing area. This state indicates
that the call isbeing set up or isin progress.

Task 1c: Drawing Nested States

In thistask, you are going to draw the following states nested inside the Active state.

+ ConnectionConfirm to wait for a connection and then confirms the connection
+ Connected to connect as a voice or data call
Use the CallControl Statechart figure as reference.

To draw nested states, follow these steps:

1. Click the State button ™ on the Drawing toolbar.
2. Inthetop half of the Active state, draw a state named connectionConfirm.

3. Inthe bottom half of the Active state, draw a state named connected.

182 C++ Tutorial

Exercise 1: Creating the CallControl Statechart

Task 1d: Drawing Default Connectors

One of an object’s states must be the default state, that is, the state in which the object finds itself
when it isfirst instantiated. Idleisin the default state asit waits for call requests, and Activeisin
the default state before it confirms the connection. Use the CallControl Statechart figure as a
reference.

To draw default connectors, follow these steps:

1. Click the Default Connector button l on the Drawing toolbar.
2. Click to the upper left of the I dle state, click Idle press CtrI+Enter.

3. Draw adefault connector to ConnectionConfirm press Ctrl+Enter.

Rational Rhapsody 183

Lesson 7: Creating Statecharts

Task le: Drawing Send Action States

Asmentioned in Task 1f: Drawing Send Action States in the previous section on activity diagrams,
the Send Action State element can be used to represent the sending of events to external entities.

To draw a send action state, follow these steps:

Click the Send Action State button 9 on the Drawing tool bar.

Using the callControl Statechart figure as areference, click to the left of the I dle and
Active states.

Double-click the Send Action element on the diagram. The Features dialog box opens.
On the General tab, in the Target drop-down list, select cc_mm in SubsystemsPkg.

In the Event drop-down list, select Disconnect in SubsystemsPkg.

This command sends an asynchronous message out the cc_mm port when disconnecting.
Click OK to close the Features dialog box for the send action.

Draw another Send Action State between the 1dle and Active states: For the Tar get, select
cc_mm in SubsystemsPkg; for the Event, select PlaceCallReq in SubsystemsPkg.

This command sends an asynchronous message out the cc_mm port when placing a cal.

184

C++ Tutorial

Exercise 1: Creating the CallControl Statechart

8. Click OK to close the Features dialog box.
9. Saveyour statechart.

Your statechart should resemble the following figure:

j=1 Statechart of : CallControl * 10l =|

Ox'

| Idle |

PlaceCallReg to cc_mm

| v

Disconnect to cc_mm

Active

._\; ConnectionConfirm |

| Connected |

Rational Rhapsody 185

Lesson 7: Creating Statecharts

Task 1f: Drawing Transitions

In thistask, you are going to draw transitions with triggers. Transitions represent the responseto a
message in a given state. They show what the next state is going to be. A transition can have an
optional trigger, guard, or action. Use the CallControl Statechart figure as a reference.

To draw transitions, follow these steps:

1. Click the Transition button ™ on the Drawing toolbar.

2. Click the ldle state and then click the PlaceCallReq to cc_mm send action state.
3. Inthelabel box, type p1acecalireq press Ctrl+Enter.

4. Createatransition from PlaceCallReq to cc_mm to Active.

5. Create atransition from ConnectionConfirm to Connected named connectConfirm.
6. Create atransition from the Active state to the Disconnect to cc_mm send action state
named pisconnect. Thistransition indicates that the user has disconnected or the

network has terminated the call.
7. Create atransition from the Disconnect to cc_mm send action state to Idle.
Note

To change the line shape, right-click the line, select Line Shape, and then Straight, Spline,
Rectilinear, or Re-Route.

186

C++ Tutorial

Exercise 1: Creating the CallControl Statechart

Task 1g: Drawing a Timeout Transition

In this task, you are going to draw atimeout transition in which ConnectionConfirm waits thirty
seconds before returning to the I dle state if a connect confirmation is not made. A timeout
transition causes an object to transition to the next state after a specified amount of time has
passed. It isan event with theform tm (n) , where n is the number of milliseconds the object should
wait before making the transition. Use the CallControl Statechart figure as a reference.

To draw atimeout transition, follow these steps:

1. Click the Transition button ™ on the Drawing toolbar.
2. Draw atransition from ConnectionConfirm to Idle.
3. Typetm(30000) pressCtrl+Enter.

4. Saveyour statechart.

You have completed drawing the cal1control statechart. It should resemble the CaliControl
Statechart figure. Rational Rhapsody automatically adds the newly created states and transitions to
the CallControl part in the browser.

Rational Rhapsody 187

Lesson 7: Creating Statecharts

Exercise 2: Animating the CallControl Statechart

As mentioned in earlier lessons, as a model gets more and more complicated, it isagood practice
to stop and validate the model periodically and provide design-level debugging. In this task, you
are going to regenerate the code, rebuild the model, and animate the CallControl statechart.

Animated statecharts show how states transition to other states while the model is executing.

Note

You must have completed Lesson 4: Generating Code and Building Your Model and Lessan 5:
Creating Sequence Diagrams before you perform thistask. In working through tasks in these

previous lessons, you set up the Simulate component and the Debug configuration, and you
made settings necessary for animation.

Task 2a: Regenerating Code and Rebuilding the Model

To do thistask, follow these steps:

1

Make sure Debug isyour active configuration. It should appear in boldtypein the browser
when it is set as the active configuration. If needed, in the Rational Rhapsody browser,
right-click the Debug configuration select Set as Active Configuration.

Note: If you have more than one configuration, you can also select the active
configuration from the drop-down list on the Code toolbar.

If you have many diagrams open, you might find it less confusing to close them.

If the Output window is already open and there isinformation on the Build tab, to ensure
that you will only be looking at information for the latest code generation/build,
right-click on the tab select Clear. You might want to do thisif information from a
previous generation/build is still there.

Select Code > Re Generate > Debug. If applicable, fix any errors noted on the Build tab
of the Output window.

Select Code > Rebuild Simulate.exe. If applicable, fix any errors noted on the Build tab.

188

C++ Tutorial

Exercise 2: Animating the CallControl Statechart

Task 2b: Animating the CallControl Statechart
1. Start animation:
¢ Select Code > Run Simulate.exe, or

¢ Click the Run Executable button ! .

2. Select Tools > Animated Statechart. The Open Animated State Chart dialog box
displays, as shown in the following figure.

Open Animated State Chart

Chooze inztance:

|nstance | Clazs
Connectiontd anagement[0]-> CallContral - SubsystemszPlg: C_Suk

Cancel

Juil

Help

1 | |

3. Select ConnectionM anagement[0]->CallControl click OK. Rational Rhapsody displays
an animated version of your statechart.

Rational Rhapsody 189

Lesson 7: Creating Statecharts

B

1

Click the Go button b on the Animation toolbar. Rational Rhapsody displays an
animated version of your activity diagram, as shown in the following figure. Rational
Rhapsody highlights I dle in magenta because it is active, while olive green showswhat is
inactive.

Statechart of : CallControl - ConnectionManagement[0]- =CallControl = |EI|1|

Idle

&

¢ PlaceCallRey

Disconnect to cc_mm | PlaceCallReg to cc_mm

i ¢ tm(30000)

Active

._\; ConnectionConfirm

ConnectConfirm

Disconnect

¥
| Connected |

| o

5. End the animation when you are done. If necessary, see Task 4f: Quitting Animation.

Summary

In thislesson, you created a statechart, which identifies the state-based behavior when the system
receives call requests and connects calls. You became familiar with the parts of a statechart and
created the following:

*

*

*

*

States and nested states

Default connectors

Send action states

Transitions and timeout transitions

You also regenerated code and rebuilt your model, and then you animated your statechart.

You have completed the handset model. You are now ready to proceed to the next lesson, where
you learn more about animation, including sending events to your model.

190

C++ Tutorial

Lesson 8: More Animation

Animation is the observable execution of behaviors and associated definitions in the model.
Rational Rhapsody animates the model by executing the code generated, with instrumentation, for
classes, operations, and associations. Once you start model animation, you can open animated
diagrams, which let you observe the model asit is running and perform design-level debugging.
You can step through the model, set and clear breakpoints, inject events, and generate an output
trace.

It is good practice to test the model incrementally using model execution, which you have
practiced in earlier lessons. You can animate pieces of the model asit is developed. This givesyou
the opportunity to determine whether the model meets the requirements and find defects early on.
Then you can test the entire model. In thisway, you iteratively build the model, and then with each
iteration perform an entire model validation.

In the previous lessons you animated a sequence diagram, activity diagram, and a statechart
individually. Now that you have completed designing your model so that all your model elements
arein place, you can view afuller animation sequence for your handset model.

Goals for this Lesson

In the previous lessons on sequence diagrams, activity diagrams, and statecharts you learned about
animation and you animated these diagrams. In this lesson, you are going to send events to your
model and view thisin animation.

Rational Rhapsody 191

Lesson 8: More Animation

Exercise 1: Animating Your Diagrams

Thistutorial assumes that you have done the lessons in order in this tutorial.

Before you can animate your model, you have to generate code and build your model, which you
learned how to do in Lesson 4: Generating Code and Building Your Model. You also learned how to
set up for animation and run animation as part of Lesson 5: Creating Sequence Diagrams
(specifically in Exercise 4: Animating a Sequence Diagram).

Task la: Preparing for Animation

Before you do animation, regenerate your code and rebuild your model so that you know that you
are working with the latest code and model. If necessary, see Exercise 2: Animating the CallControl
Statechart from Lesson 7: Creating Statecharts.

Task 1b: Animating Your Diagrams
Open the following diagrams and animate them:

1. Connection Management Place Call Request Success sequence diagram
(select Tools > Animated Sequence Diagram). If necessary, see Exercise 4: Animating a
Sequence Diagram. Once you animate this diagram, the other diagrams will be animated
once you open them.

2. MMCdlIControl activity diagram
(select Tools > Animated Activity Diagram). If necessary, see Exercise 4: Animating the
MMCall Control Activity Diagram.

3. ConnectionManagement>CallControl statechart
(select Tools > Animated Statechart). If necessary, see Exercise 2: Animating the
CallControl Statechart.

192 C++ Tutorial

Exercise 2: Sending Events to Your Model

Exercise 2: Sending Events to Your Model

You can inject eventsin an animated diagram to see how the model reacts. In this exercise, you are
going to generate an event in the animated statechart and view the resulting behavior in the
animated statechart, animated sequence diagram, and animated activity diagram. You also get to
send the Disconnect event to your model

Task 2a: Sending an Event to Your Model
To send an event to your model, follow these steps:

1. Intheanimated CallControl statechart, right-click Idle and select Generate Event. The
Events dialog box opens.

2. From the Event drop-down list box, select PlaceCallReq, as shown in the following

figure.
Object: IEDnnectiDnManagement[D]->EaIICDntml Select |
Ewvent:
Argumnents:
M ame | Type | Walue I E dit I
Hiztary:
Clear |
1] I Cancel Help
4

Rational Rhapsody 193

Lesson 8: More Animation

3. Click OK to close the dialog box.

In the animated statechart, 1dle and PlaceCallReq becomes inactive (olive), and Active
and ConnectionConfirm become active (magenta), as shown in the following figure.

—

Idle

[

Disconnect to cc_mm

k

Disconnect

PlaceCallReq

I PlaceCallReq to cc_mm)

:

Active

.\1[ConnectionConfirm

¥

ConnectConfirtn

| Connected

tm(30000)

Then ConnectionConfirm and ConnectConfirm become inactive, and Connected
becomes active, as shown in the following figure:

Ox'

Idle

¥

&

¢ PlaceCallRey

Disconnect to cc_mm | PlaceCallReg to cc_mm
& l trn(30000)
[Active h
Disconnect
.\ ConnectionConfirm
ConnectConfirm
Connected
b
194 C++ Tutorial

Exercise 2: Sending Events to Your Model

4. Switch to the animated ConnectionManagement Place Call Request Success sequence
diagram. Rational Rhapsody dynamically displays how the instances pass messages, as

shown in the following figure.

/ﬂixhéﬁﬁﬂﬂﬂ%g_qﬁ+h_ﬁﬂq

CallCanfirm()

EMY | CDnneCticmManage..lCﬁnnedwunManage...lCunnec:liunManage . |MUbi\ityManagemen..| Datalink Fegistr.
ENY Connectionia Connectionia Connectionia MobilityManag Datalink Regist
nagernert. Call nagernert. Call nagernent. Con ement.MMCall rationhonitor
Caontral List nection Contral

ZCeaey [[N | |
Zleae) |l | | |
Zome) e | | | |
“Creategp -
e R N R t————r »|
2 PlaceCalReqy | 1 T ™ |

|

|

|

RegistrationReg)

ChannelOpen
locationUpdatel)

X

trn(15000) at ROOT. Inq:all ROCT.InCall.CheckSignal

tm(5000) at ROOT. In%all ROCT.InCall.CheckSignal

Rational Rhapsody

195

Lesson 8: More Animation

5. Switch to the animated MM CallControl activity diagram. |dle becomes inactive (olive).

Register and Check Signal become active (magenta), and then L ocationUpdate becomes
active.

Then L ocationUpdate becomes inactive, and InCall becomes active, as shown in the
following figure:

Status Location SignalStrength

ldle

WWaiting in the idle state
for a call request.

PlaceCallReq

Regist
e
Registering
‘ RegistrationReq to mrm_ce
tm(3000)
LocationUpdat ¥
ocationUpdate Signalok

Get a location update of
the terminating party.

Y +
Disconnect to mm oo ChannelOpendocationUpdate);

- h 4
‘ CallConfirm to cc_in
Discannect +

InCall ‘ ConnectConfirm to co_in

ot I

2 I

You can continue generating events and viewing the resulting behavior in the animated diagrams.

196 C++ Tutorial

Exercise 2: Sending Events to Your Model

Task 2b: Sending Another Event
To send another event to your model, follow these steps:
1. Intheanimated CallControl statechart, right-click I dle and select Gener ate Event.

2. Select Disconnect in the Event drop-down list box, and click OK ..

3. View your statechart, which should show atransition to the | dle state (magenta) and

Active and Disconnect become inactive (olive green), as shown in the following figure:

MDY

{ Idle
¢ FlaceCallReq
I Disconnect to cc_mm > | FlaceCallReq to cc_mm
¢ tm(30000)
' " =
Active

Disconnect

'_\4 ConnectionCanfirm

ConnectConfirm

Connected

Rational Rhapsody

197

Lesson 8: More Animation

4. View your animated ConnectionManagement Place Call Request Success sequence
diagram. Rational Rhapsody displays how the Disconnect message, as shown in the
following figure:

| ConnemiDnManage..IConnemionManage... Connectiontdanage... |MDbiIityManagemen..| DataLinkRegistr..I

| |
tm(15000) at ROOT. Intall ROOT.InCall. CheckSignal

m
z
=z

trn(15000) at ROCT. InFaII ROOT.InCall. CheckSignal
trn(15000) at ROCT. In%all ROOT.InCall. CheckSignal

m(15000% at ROOT. Intall ROOT.InCall. CheckSignal
trn(15000) at ROCT. InFaII ROOT.InCall. CheckSignal
trn(15000) at ROCT. In%all ROOT.InCall. CheckSignal

m(15000% at ROOT. Intall ROOT.InCall. CheckSignal
trn(15000) at ROCT. InFaII ROOT.InCall. CheckSignal

trn(15000) at ROCT. In%all ROOT.InCall. CheckSignal

p |
| |

|

|

Disconnect()

Z

SRDANININIINANINANINDANINOINNINANINANINANNNIOINNINNINNNN

198 C++ Tutorial

Exercise 2: Sending Events to Your Model

5. Switch to the animated MM CallControl activity diagram, |dle transitions to the active
state (magenta) and InCall becomes inactive (olive green).

Status Location SignalStrength

Idle Pad
VWatting in the idle state
PIaceCaIIRe?
Regist
Faister CheckSignal
5

; Registering

RegistrationReq to mm_cc

T

LacationUpdate Signalok

Get a location update of
the terminating party.

trm(3000)

i J i
I.. Disconnectto mm_ce) ChannelOpenilocationUpdge(;

CallCaonfirm to ce_in

Disconnect +
Inall ‘ ConnectConfirm to cc_in

Fy

Rational Rhapsody 199

Lesson 8: More Animation

Task 2c: Quitting Animation

To end the animation session, follow these steps:

1. Click the Animation Break button m on the Animation toolbar click the Quit Animation
button = .
2. Click Yesto confirm ending the animation session.

The Output window displays the message Animation session terminated.

Note

When you close the project or an animated sequence diagram, Rational Rhapsody prompts
whether or not you want to save the diagram. Saving an animated sequence diagram is
useful in order to compare the results of the current session to those of different execution
scenarios.

Summary

In this lesson, you animated the model and sent events to the model and saw it progress through
states and pass messages.

In the next section, you learn about Technical Support and documentation plus other useful
information.

200 C++ Tutorial

Index

Symbols

_rpy file 11
_RTC directory 11

A

Action element 155
Active configuration 115
Activity diagram 5, 149
action element 155
animating 174
creating 149
default flow 157
fork sync bar 162
InCall 166
join sync bar 163
MMCallControl 152
opening subactivity diagram 167
RegistrationMonitor 170
subactivity 157
swimlanes 153
timeout transition 165
transition 160
Actor 31
associating with use cases 40
line 123
Actor lines 123
Analysis mode 122
Anchor 43
Animation 139, 191
activity diagram 174
browser 145
Call Stack window 142
configuration 114
Event Queue window 142
generating code 115
injecting events 193
output panes 142
quitting 147, 200
sending events 193
sequence diagram 143
starting 141
statechart 188
Association 40
Autosave 12

B

Backup 12

Behaviora port 76
Black-box analysis 29
Boundary box 35
Browser 22

Building the model 117

C

C++ language 1
case-sensitivity 19
Call stack 142
Case-sensitivity 19
Categories 22
Classifier roles 124, 135
Code 1
Code generation 115
debugging 116, 118
source files 116
Collaboration diagram 5
Comment 43
Compilers 140
Component 112
creating 112
creating configuration 114
default description 112
features 113
Component diagram 5
Configuration 114
creating animation 114
Debug 115
default 114
Connection Management Place Call Reguest Success
sequence diagram 133
Connection Management structure diagram 91
Constraint 43
Contract-based port 82
Creating
activity diagram 149
animation configuration 114
component 112
handset project 7
object model diagram 107
sequence diagram 119

Rational Rhapsody

201

Index

statechart 179
structure diagram 65
use case diagram 31

D

Data Call Requirements use case diagram 58
Data Link structure diagram 96
Debug configuration 115
Debugging 116, 118
Default component 112
Default configuration 114
Default connector 183
Default flow 157
Dependency 54
adding stereotype 56
Deployment diagram 5
Description tab 25
Design mode 122
Diagrams 5
activity 149
Connection Management Place Call Request
Success 133
Connection Management structure diagram 91
Data Call Requirements 58
Data Link structure diagram 96
Functional Overview 32
Handset System structure diagram 66
InCall subactivity diagram 166
MM Architecture structure diagram 100
MMZCallControl 152
NetworkConnect 129
object model 105
Place Call Overview 45
Place Call Request Successful 121
RegistrationMonitor 170
sequence 119
statechart 179

Subsystem Architecture object model diagram 106

UML 5
use case 31
Display options 53
Docking the Features dialog box 28
Domains 13
Drawing area 23
Drawing toolbar 23

E

ehl file 11
Elements
adding remarks 43
display options 53
external 116
labeling 160
organizing 88
Event 83, 125, 127, 132, 165, 187, 193

Event history file 11

Event Queue 142

Events, naming conventions 19
External elements 116

F

Features dialog box 24
Apply and OK buttons 24
Description tab 25
docking 28
Generd tab 25
keeping open 24
moving 28
Propertiestab 27
Relationstab 26
requirement description 51
save all changes 48
tabs 25
Tagstab 26

Files 11
code generation 116
project 9
source 116

Flow 77
changing the direction 78
drawing 77
specifying flow items 79

Flow charts 5

Flow item 79

Folders 11

Fork sync bar 162

Fork synchronization 162

Functional Overview use case diagram 32

G

General tab 25

Generalization 42

Generated source files 116
Generating C++ code 1
Generating code for animation 115
Graphical user interface 20

H

Handset 2
activity diagram 149
animating 139, 191
creating 7
object model diagram 105
opening 18
sequence diagram 119
statechart 179
use case diagram 31

Handset System structure diagram 66, 67

Help pane for property 16

202

C++ Tutorial

Index

Implementation 13, 119

InCall subactivity diagram 166
Instance area 121

Instance line 124, 135
Interaction occurrence 128
Interface naming conventions 19
Interfaces 82

J

Join sync bar 163
Join synchronization 163

L

Labeling elements 160
Legacy code 116

Line shapes 81

Link 94, 110

Linux 6

Locatein Browser 127
Logfiles 11

M

Makefile 139
Message pane 121
Messages 125
MM Architecture structure diagram 100
MM CallControl activity diagram 152
Model building 117
Models
naming conventions 19
Moving the Features dialog box 28

N

Names pane 121

Naming conventions 19

Nested state 182

NetworkConnect sequence diagram 129
Non-behavioral port 76
Noncontract-based port 82

Note 43

O

Object model diagram 5
link 110
Subsystem Architecture 106
Objects 69
adding stereotype 70
diagram 67
drawing 72

Occurrence 128
Opening

project 18

Rational Rhapsody 6
Operations

names 19

naming conventions 19
Output window 23, 116, 118

Call Stack 142

Event Queue 142

P

Packages 13, 16, 22
AnalysisPkg 13, 33, 113, 138
ArchitecturePkg 13, 67, 89, 109, 113, 132
RequirementsPkg 13, 50
SubsystemsPkg 13, 88, 89, 107, 113, 122, 132, 151, 181
Place Call Overview use case diagram 45
Place Call Request Successful sequence diagram 121
Port 75
behavioral 76
changing the placement 93
contract-based 82
drawing 75
non-behavioral 76
noncontract-based 82
rapid 82
reversing 87
specifying port contract 82
Port contract 82
Predefined types of packages 16
Profiles 8
Project
creating 7
files 11
opening 18
saving 12
Project files 9, 11
Project folder 22
Project node 22
Project profiles 7
Project subfolders 11
Project types 7
Properties 42
Propertiestab 16, 27
Provided interfaces 82

Q

Quitting animation 147, 200

R

Rapid port 82
Rational Rhapsody
autosave 12

Rational Rhapsody

203

Index

backup 12

browser 22

closing 6

drawing area 23

Drawing toolbar 23

exiting 6

Features dialog box 24

GUI 20

interface 20

naming conventions 19

Output window 23

project profiles 7

project types 7

specialized profiles 7

starting 6

toolbars 21

UML diagrams 5
Rebuilding the application 116, 118
Rectilinear line 81
Regenerating code 116, 118
RegistrationMonitor activity diagram 170
Relations tab 26
Remarks 43
Repository directory 11
Required interfaces 82
Requirement 43
Requirements elements 50
Requirements traceability 50
Reverse engineering 1
rpy file 11

S

Send Action State 158, 172
Sending events
animation 193
Sequence diagram 5, 119
actor line 123
animating 143
classifier role 124, 135
Connection Management Place Call Request
Success 133
creating 119
instance area 121
instance line 124
interaction occurrence 128
message 125
Message pane 121
Names pane 121
NetworkConnect 129
operation mode 122
Place Call Request Successful 121
system border 134
timeinterval 131
types of messages 125
Sourcefiles 116
Specialized profiles 8

Splineline 81
Stamp mode 75
State 182
Statechart 5, 179
animating 188
creating 179
default connector 183
nested state 182
state 182
timeout transition 187
transition 186
Stereotype 56
dependency 56
subsystem 70
Straight line 81
Structure diagram 5
Connection Management 91
creating 65
DataLink 96
flow 77
Handset Structure 67
link 94
MM Architecture 100
objects 69, 72
port 75
specifying flow items 79
Structure diagrams 65
Subactivity 157
Subactivity diagram 166, 167
Subfolders 11

Subsystem Architecture object model diagram 106

Subsystems 13
Swimlanes 153
System border 134

T

Tagstab 26
Timeinterva 131
Timeout transition
activity diagram 165
statechart 187
Toolbars 21, 23
Traceability 13, 50
Transition
activity diagram 160
specifying action 165
statechart 186
timeout 187
Troubleshooting
case-sensitivity 19
Types of profiles 8

U

UML (Unified Modeling Language) 1
Unit 12

204

C++ Tutorial

Index

Use case
associating with actors 40
drawing 37
features 39

Use case diagram 5, 31
boundary box 35
Data Call Requirements 58
dependencies 54
drawing 34
Functional Overview 32
Place Call Overview 45
reguirements 52

use cases 37

Vv

vbafile 11

wW

White-box analysis 29
Windows 6

Rational Rhapsody

205

Index

206 C++ Tutorial

	Contents
	Getting Started
	Audience for the C++ Tutorial
	Before You Begin
	C++ Tutorial Overview
	C++ Tutorial Objectives
	Documentation Conventions
	About the Rational Rhapsody Product
	UML Diagrams
	Starting the Rational Rhapsody Product
	Closing the Rational Rhapsody Product

	Setting Up the C++ Tutorial
	Creating a Project
	About a Rational Rhapsody Project
	About Project Files and Folders

	Saving a Project
	About Autosave
	About Backups

	Organizing the Model Using Packages
	Hiding Predefined Packages

	Opening the Handset Model
	Using Naming Conventions
	Prefixes
	Model Element Names

	Rational Rhapsody User Interface
	Toolbars
	Browser
	Filtering the Browser
	Repositioning the Browser

	Drawing Area
	Output Window
	Drawing Toolbars
	Features Dialog Box
	Keeping Open the Features Dialog Box
	Tabs for the Features Dialog Box
	Moving the Features Dialog Box

	Summary

	Lesson 1: Creating Use Case Diagrams
	Goals for this Lesson
	Exercise 1: Creating the Functional Overview UCD
	Task 1a: Creating the Functional Overview Use Case Diagram
	Preparing to Draw the Functional Overview UCD

	Task 1b: Drawing the Boundary Box and Actors
	Task 1c: Drawing the Use Cases
	Task 1d: Defining Use Case Features
	Task 1e: Associating Actors with Use Cases
	Task 1f: Drawing Generalizations
	Task 1g: Adding Remarks to Model Elements and Diagrams

	Exercise 2: Creating the Place Call Overview UCD
	Task 2a: Creating the Place Call Overview Use Case Diagram
	Task 2b: Drawing the Use Cases
	Task 2c: Defining Use Case Features
	Task 2d: Drawing Generalizations
	Task 2e: Modeling Requirements in Rational Rhapsody
	Adding Requirement Elements to the Model
	Adding Requirement Elements
	Setting the Display Options for Requirement Elements
	Drawing Dependencies
	Defining the Stereotype of a Dependency

	Exercise 3: Creating the Data Call Requirements UCD
	Task 3a: Creating the Data Call Requirements Use Case Diagram
	Task 3b: Adding Requirements
	Task 3c: Drawing and Defining the Dependencies

	Summary

	Lesson 2: Creating Structure Diagrams
	Goals for this Lesson
	Exercise 1: Creating the Handset System Structure Diagrams
	Task 1a: Creating the Handset System Structure Diagram
	Task 1b: Drawing Objects
	Defining the Object Stereotype

	Task 1c: Drawing More Objects
	Setting the Object Stereotype and Type

	Task 1d: Drawing Ports
	Specifying Port Attributes

	Task 1e: Drawing Flows
	Changing the Direction of the Flow
	Specifying the FlowItems
	Changing the Line Shape

	Task 1f: Specifying the Port Contract
	Reversing a Port

	Task 1g: Allocating the Functions Among Subsystems
	Organizing the SubsystemsPkg Package
	Organizing Elements

	Exercise 2: Creating the Connection Management Structure Diagram
	Task 2a: Creating the Connection Management Structure Diagram
	Task 2b: Drawing Objects
	Task 2c: Drawing Ports
	Changing the Placement of Ports

	Task 2d: Drawing Links

	Exercise 3: Creating the Data Link Structure Diagram
	Task 3a: Creating the Data Link Structure Diagram
	Task 3b: Drawing Objects
	Task 3c: Drawing Ports
	Task 3d: Drawing Links
	Task 3e: Specifying the Port Contract and Attributes

	Exercise 4: Creating the MM Architecture Structure Diagram
	Task 4a: Creating the MM Architecture Diagram
	Task 4b: Drawing Objects
	Task 4c: Drawing Ports
	Task 4d: Drawing Links
	Task 4e: Specifying the Port Contract and Attributes

	Summary

	Lesson 3: Creating Object Model Diagrams
	Goals for this Lesson
	Exercise 1: Creating the Subsystem Architecture OMD
	Task 1a: Creating the Subsystem Architecture Object Model Diagram
	Task 1b: Drawing Objects
	Task 1c: Drawing More Objects
	Task 1d: Drawing Links

	Summary

	Lesson 4: Generating Code and Building Your Model
	Goals for this Lesson
	Exercise 1: Preparing for Generating Code
	Task 1a: Creating a Component
	Task 1b: Setting the Component Features
	Task 1c: Creating a Configuration
	Task 1d: Generating Code
	Fixing Code Generation Errors
	About Code Generation Warnings
	Examining Generated Source Files
	Using External Elements

	Task 1e: Building the Model
	Fixing Build Errors

	Summary

	Lesson 5: Creating Sequence Diagrams
	Goals for this Lesson
	Exercise 1: Creating the Place Call Request Successful SD
	Task 1a: Creating the Place Call Request Sequence Diagram
	Task 1b: Drawing Actor Lines
	Task 1c: Drawing Classifier Roles
	Task 1d: Drawing Messages
	Task 1e: Drawing an Interaction Occurrence

	Exercise 2: Creating the NetworkConnect SD
	Task 2a: Creating the NetworkConnect Sequence Diagram
	Opening a Reference Sequence Diagram

	Task 2b: Drawing Messages
	Task 2c: Drawing Time Intervals
	Task 2d: Moving Events

	Exercise 3: Creating the Connection Management Place Call Request Success SD
	Task 3a: Creating the Connection Management Place Call Request Success Sequence Diagram
	Task 3b: Drawing the System Border
	Task 3c: Drawing Classifier Roles
	Task 3d: Drawing Messages
	Task 3e: Setting the Features of locationUpdate
	Task 3f: Moving ConfirmIndication

	Exercise 4: Animating a Sequence Diagram
	Task 4a: Changing the Settings for the Debug Configuration
	Task 4b: Regenerating Code and Rebuilding Your Model
	Task 4c: Starting Animation
	Task 4d: Animating a Sequence Diagram
	Task 4e: Viewing the Browser
	Task 4f: Quitting Animation

	Summary

	Lesson 6: Creating Activity Diagrams
	Goals for this Lesson
	Exercise 1: Creating the MMCallControl Activity Diagram
	Task 1a: Creating an Activity Diagram
	Task 1b: Drawing Swimlanes
	Task 1c: Drawing Action Elements
	Task 1d: Drawing a Default Flow
	Task 1e: Drawing a Subactivity
	Task 1f: Drawing Send Action States
	Task 1g: Drawing Transitions
	Drawing Transitions Between Actions

	Task 1h: Drawing a Fork Synchronization
	Task 1i: Drawing a Join Synchronization
	Task 1j: Drawing a Timeout Transition
	Task 1k: Specifying an Action on a Transition

	Exercise 2: Creating the InCall Subactivity Diagram
	Task 2a: Creating the InCall Subactivity Diagram
	Task 2b: Drawing Action Elements
	Task 2c: Drawing a Default Flow
	Task 2d: Drawing Transitions
	Task 2e: Drawing a Timeout Transition

	Exercise 3: Creating the RegistrationMonitor Activity Diagram
	Task 3a: Creating the RegistrationMonitor Activity Diagram
	Task 3b: Drawing Action Elements
	Task 3c: Drawing a Send Action State
	Task 3d: Drawing a Default Flow
	Task 3e: Drawing Transitions
	Task 3f: Drawing a Timeout Transition

	Exercise 4: Animating the MMCall Control Activity Diagram
	Task 4a: Regenerating Code and Rebuilding Your Model
	Task 4b: Animating the MMCall Control Activity Diagram

	Summary

	Lesson 7: Creating Statecharts
	Goals for this Lesson
	Exercise 1: Creating the CallControl Statechart
	Task 1a: Creating the CallControl Statechart
	Task 1b: Drawing States
	Task 1c: Drawing Nested States
	Task 1d: Drawing Default Connectors
	Task 1e: Drawing Send Action States
	Task 1f: Drawing Transitions
	Task 1g: Drawing a Timeout Transition

	Exercise 2: Animating the CallControl Statechart
	Task 2a: Regenerating Code and Rebuilding the Model
	Task 2b: Animating the CallControl Statechart

	Summary

	Lesson 8: More Animation
	Goals for this Lesson
	Exercise 1: Animating Your Diagrams
	Task 1a: Preparing for Animation
	Task 1b: Animating Your Diagrams

	Exercise 2: Sending Events to Your Model
	Task 2a: Sending an Event to Your Model
	Task 2b: Sending Another Event
	Task 2c: Quitting Animation

	Summary

	Index

