

C++ Tutorial for Rational Rhapsody

Before using the information in this manual, be sure to read the “Notices” section of the Help or
the PDF available from Help > List of Books.

This edition applies to IBM® Rational® Rhapsody® 7.4 and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1997, 2009.

US Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.
ii

Contents
Getting Started . 1
Audience for the C++ Tutorial . 1

Before You Begin . 1

C++ Tutorial Overview. 2

C++ Tutorial Objectives . 3

Documentation Conventions . 4

About the Rational Rhapsody Product . 5
UML Diagrams . 5
Starting the Rational Rhapsody Product . 6
Closing the Rational Rhapsody Product . 6

Setting Up the C++ Tutorial . 7
Creating a Project . 7
About a Rational Rhapsody Project . 9
Saving a Project . 12
Organizing the Model Using Packages . 13

Opening the Handset Model . 18

Using Naming Conventions . 19
Prefixes . 19
Model Element Names . 19

Rational Rhapsody User Interface . 20
Toolbars . 21
Browser . 22
Drawing Area . 23
Output Window . 23
Drawing Toolbars . 23
Features Dialog Box . 24

Summary . 29

Lesson 1: Creating Use Case Diagrams . 31
Goals of this Lesson . 31
Rational Rhapsody iii

Table of Contents
Exercise 1: Creating the Functional Overview UCD. 32
Task 1a: Creating the Functional Overview Use Case Diagram. 33
Task 1b: Drawing the Boundary Box and Actors. 35
Task 1c: Drawing the Use Cases . 37
Task 1d: Defining Use Case Features . 39
Task 1e: Associating Actors with Use Cases . 40
Task 1f: Drawing Generalizations . 42
Task 1g: Adding Remarks to Model Elements and Diagrams. 43

Exercise 2: Creating the Place Call Overview UCD . 45
Task 2a: Creating the Place Call Overview Use Case Diagram . 46
Task 2b: Drawing the Use Cases . 46
Task 2c: Defining Use Case Features. 48
Task 2d: Drawing Generalizations . 49
Task 2e: Modeling Requirements in Rational Rhapsody . 50

Exercise 3: Creating the Data Call Requirements UCD . 58
Task 3a: Creating the Data Call Requirements Use Case Diagram . 59
Task 3b: Adding Requirements . 59
Task 3c: Drawing and Defining the Dependencies . 61

Summary . 63

Lesson 2: Creating Structure Diagrams . 65
Goals of this Lesson . 65

Exercise 1: Creating the Handset System Structure Diagrams . 65
Task 1a: Creating the Handset System Structure Diagram . 67
Task 1b: Drawing Objects . 69
Task 1c: Drawing More Objects . 72
Task 1d: Drawing Ports . 75
Task 1e: Drawing Flows . 77
Task 1f: Specifying the Port Contract . 82
Task 1g: Allocating the Functions Among Subsystems . 88

Exercise 2: Creating the Connection Management Structure Diagram . 91
Task 2a: Creating the Connection Management Structure Diagram. 92
Task 2b: Drawing Objects . 92
Task 2c: Drawing Ports . 93
Task 2d: Drawing Links. 94

Exercise 3: Creating the Data Link Structure Diagram . 96
Task 3a: Creating the Data Link Structure Diagram . 97
Task 3b: Drawing Objects . 97
Task 3c: Drawing Ports . 98
Task 3d: Drawing Links. 98
Task 3e: Specifying the Port Contract and Attributes . 99
iv C++ Tutorial

Table of Contents
Exercise 4: Creating the MM Architecture Structure Diagram . 100
Task 4a: Creating the MM Architecture Diagram . 101
Task 4b: Drawing Objects . 101
Task 4c: Drawing Ports . 102
Task 4d: Drawing Links. 102
Task 4e: Specifying the Port Contract and Attributes . 103

Summary . 104

Lesson 3: Creating Object Model Diagrams . 105
Goals for this Lesson . 105

Exercise 1: Creating the Subsystem Architecture OMD . 106
Task 1a: Creating the Subsystem Architecture Object Model Diagram . 107
Task 1b: Drawing Objects . 108
Task 1c: Drawing More Objects . 109
Task 1d: Drawing Links. 110

Summary . 110

Lesson 4: Generating Code and Building Your Model 111
Goals for this Lesson . 111

Exercise 1: Preparing for Generating Code . 112
Task 1a: Creating a Component . 112
Task 1b: Setting the Component Features . 113
Task 1c: Creating a Configuration. 114
Task 1d: Generating Code . 115
Task 1e: Building the Model . 117

Summary . 118

Lesson 5: Creating Sequence Diagrams . 119
Goals for this Lesson . 119

Exercise 1: Creating the Place Call Request Successful SD . 120
Task 1a: Creating the Place Call Request Sequence Diagram. 122
Task 1b: Drawing Actor Lines . 123
Task 1c: Drawing Classifier Roles. 124
Task 1d: Drawing Messages. 125
Task 1e: Drawing an Interaction Occurrence . 128

Exercise 2: Creating the NetworkConnect SD . 129
Task 2a: Creating the NetworkConnect Sequence Diagram. 130
Task 2b: Drawing Messages. 130
Task 2c: Drawing Time Intervals . 131
Task 2d: Moving Events . 132
Rational Rhapsody v

Table of Contents
Exercise 3: Creating the Connection Management Place Call Request Success SD 133
Task 3a: Creating the Connection Management Place Call Request Success Sequence Diagram. . . . 134
Task 3b: Drawing the System Border . 134
Task 3c: Drawing Classifier Roles. 135
Task 3d: Drawing Messages. 136
Task 3e: Setting the Features of locationUpdate . 137
Task 3f: Moving ConfirmIndication . 138

Exercise 4: Animating a Sequence Diagram. 139
Task 4a: Changing the Settings for the Debug Configuration. 139
Task 4b: Regenerating Code and Rebuilding Your Model . 141
Task 4c: Starting Animation . 141
Task 4d: Animating a Sequence Diagram. 143
Task 4e: Viewing the Browser. 145
Task 4f: Quitting Animation . 147

Summary . 147

Lesson 6: Creating Activity Diagrams . 149
Goals for this Lesson . 149

Exercise 1: Creating the MMCallControl Activity Diagram . 150
Task 1a: Creating an Activity Diagram . 151
Task 1b: Drawing Swimlanes . 153
Task 1c: Drawing Action Elements . 155
Task 1d: Drawing a Default Flow . 157
Task 1e: Drawing a Subactivity . 157
Task 1f: Drawing Send Action States . 158
Task 1g: Drawing Transitions . 160
Task 1h: Drawing a Fork Synchronization. 162
Task 1i: Drawing a Join Synchronization . 163
Task 1j: Drawing a Timeout Transition . 165
Task 1k: Specifying an Action on a Transition . 165

Exercise 2: Creating the InCall Subactivity Diagram . 166
Task 2a: Creating the InCall Subactivity Diagram. 167
Task 2b: Drawing Action Elements . 167
Task 2c: Drawing a Default Flow. 167
Task 2d: Drawing Transitions . 168
Task 2e: Drawing a Timeout Transition. 169

Exercise 3: Creating the RegistrationMonitor Activity Diagram . 170
Task 3a: Creating the RegistrationMonitor Activity Diagram. 171
Task 3b: Drawing Action Elements . 171
Task 3c: Drawing a Send Action State . 172
Task 3d: Drawing a Default Flow . 172
Task 3e: Drawing Transitions . 173
vi C++ Tutorial

Table of Contents
Task 3f: Drawing a Timeout Transition . 173

Exercise 4: Animating the MMCall Control Activity Diagram . 174
Task 4a: Regenerating Code and Rebuilding Your Model . 174
Task 4b: Animating the MMCall Control Activity Diagram. 175

Summary . 177

Lesson 7: Creating Statecharts . 179
Goals for this Lesson . 179

Exercise 1: Creating the CallControl Statechart. 180
Task 1a: Creating the CallControl Statechart . 181
Task 1b: Drawing States . 182
Task 1c: Drawing Nested States. 182
Task 1d: Drawing Default Connectors. 183
Task 1e: Drawing Send Action States. 184
Task 1f: Drawing Transitions. 186
Task 1g: Drawing a Timeout Transition. 187

Exercise 2: Animating the CallControl Statechart . 188
Task 2a: Regenerating Code and Rebuilding the Model. 188
Task 2b: Animating the CallControl Statechart . 189

Summary . 190

Lesson 8: More Animation . 191
Goals for this Lesson . 191

Exercise 1: Animating Your Diagrams . 192
Task 1a: Preparing for Animation . 192
Task 1b: Animating Your Diagrams. 192

Exercise 2: Sending Events to Your Model. 193
Task 2a: Sending an Event to Your Model . 193
Task 2b: Sending Another Event . 197
Task 2c: Quitting Animation . 200

Summary . 200

Index . 201
Rational Rhapsody vii

Table of Contents
viii C++ Tutorial

Getting Started
Welcome to the C++ Tutorial for IBM Rational Rhapsody! IBM® Rational® Rhapsody® is the
Model-Driven Development environment of choice for systems engineers and software developers
of either embedded or real-time systems. Rational Rhapsody in C++ generates full production C++
code for a variety of target platforms based on UML 2.0 behavioral and structural diagrams. The
Rational Rhapsody product also provides for the reverse engineering of C++ code for re-use of
your intellectual property within a Model-Driven environment.

Audience for the C++ Tutorial
The intended audience for this tutorial is system engineers and software engineers who are familiar
with the C++ language. The tutorial assumes that you are familiar with UML (Unified Modeling
Language) and Object Oriented concepts.

Before You Begin
Before you work through this tutorial, you might find it helpful to review the Getting Started
Guide for the Rational Rhapsody product. It provides a functional overview for the Rational
Rhapsody product for system designers, system engineers, and software developers with more
functions (meaning how to do something), explanations, and details than this tutorial provides. In
addition, throughout the tutorial, references are made to other Rational Rhapsody documentation
where appropriate. Note also that the IBM Rational Rhapsody User Guide has a Glossary section
that you might find useful. Note the following:

� You must have installed the compiler necessary to generate code.
� Before you can work through any of the lessons in this tutorial, you must create the

Handset project, which is detailed in Setting Up the C++ Tutorial.
� You should work through the tutorial in the order of the lessons. During the course of

working through this tutorial, you generate code as well as build your model at various
stages. For example, in the lesson where you first learn how to generate code, you will get
warning messages. Once you work through the next lesson, you will no longer get those
warning messages. In addition, in the later lessons, you set up for animation and work
through some initial animation as you go along. Near the end of the tutorial, you
Rational Rhapsody 1

Getting Started
culminate the animation lessons by sending events to your model to see more involved
animation.

C++ Tutorial Overview
This tutorial helps you become familiar with the Rational Rhapsody product. You should consider
it part of the Rational Rhapsody learning process, in addition, for example, to the Rhapsody
Essential Tool Training class and the Rational Rhapsody eLearning courses, both of which are
available at an additional cost.

This tutorial shows you how to use the Rational Rhapsody product to analyze, design, and build a
model of a wireless telephone using a file-based modeling approach. Before you begin creating
this model, you need to consider the functions of the wireless telephone. Wireless telephony
provides voice and data services to users placing and receiving calls. To deliver services, the
wireless network must receive, set up, and direct incoming and outgoing call requests, track and
maintain the location of users, and facilitate uninterrupted service when users move within and
outside the network.

When the wireless user initiates a call, the network receives the request, and validates and registers
the user. Once registered, the network monitors the user’s location. In order for the network to
receive the call, the wireless telephone must send the minimum acceptable signal strength to the
network. When the network receives a call, it directs it to the appropriate registered user.

For this tutorial, you are going to create a project called Handset. The Rational Rhapsody product
contains a sample handset model that you can use to compare with the lessons in this tutorial. The
sample model is located in the <Rational Rhapsody installation>\Samples\CppSamples
subfolder.

Note that the official sample Handset model in the Samples subfolder might be different from the
model you create when you follow the instructions in this tutorial. While the model you create
with the tutorial might have the same name as the official product sample, the tutorial might
demonstrate different techniques and features for instructional purposes.

Note
To minimize the complexity of the tutorial, the operations have been simplified to focus on
the function of placing a call.
2 C++ Tutorial

C++ Tutorial Objectives
C++ Tutorial Objectives
When you have completed this tutorial, you will have performed the following standard tasks:

� Created a project
� Created use case diagrams, which show the main functions of the system (use cases) and

the entities that are outside the system
� Created structure diagrams, which define the system structure and identify the large-scale

organizational pieces of the system
� Created object model diagrams, which specify the structure of the classes, objects, and

interfaces in the system and the static relationships that exist between them
� Created sequence diagrams, which describe how structural elements communicate with

one another over time, and identify the required relationships and messages
� Created activity diagrams, which show the dynamic aspects of a system and the flow of

control from activity to activity
� Created statecharts, which define the behavior of classifiers (actors, use cases, or classes),

objects, including the states that they can enter over their lifetime and the messages,
events, or operations that cause them to transition from state to state

� Generated code
� Built a model
� Animated a model
Rational Rhapsody 3

Getting Started
Documentation Conventions
This document uses the following conventions:

� Boldtype for names of GUI objects and controls, including selection choices; and
emphasis. Examples:

– From the Interface drop-down list box, select Out and click OK.
– Click the <<Subsystem>> ConnectManagement object and drag it into the

CM_Subsystem package.

– Click the Create Port button on the Drawing toolbar click the left edge of
the CallControl object.

– If the Rational Rhapsody browser does not display, select View > Browser.
– A project file, called <project_name>.rpy.

� Courier font in 10 point for pathnames, system messages, and items that you have to
type. Examples:

– To avoid overwriting the Handset sample project provided with the Rational
Rhapsody product, do not create your project in <Rational Rhapsody
installation>\Samples\CppSamples.

– The Output window displays the message Animation session terminated.
– In the Project name box, replace the default project name with Handset.
– Type cc_in press Enter.

� Italics for the first mention of a concept with an explanation.
4 C++ Tutorial

About the Rational Rhapsody Product
About the Rational Rhapsody Product
The Rational Rhapsody product is a visual design tool for developing object-oriented embedded
software, and performing structural and systems modeling. It enables you to perform these tasks:

� Analyze, during which you can define, analyze, and validate the system requirements.
� Design, during which you can specify and design the architecture.
� Implement, during which you can automatically generate code build and run it within the

Rational Rhapsody product.
� Model Execution, during which you can animate the model on the local host or a remote

target to perform design-level debugging within animated views.

UML Diagrams

The following are the UML diagrams in Rational Rhapsody:

� Use Case Diagrams show the main functions of the system (use cases) and the entities
(actors) outside the system.

� Structure Diagrams show the system structure and identify the organizational pieces of
the system.

� Object Model Diagrams show the structure of the system in terms of classes, objects, and
the relationships between these structural elements.

� Sequence Diagrams show sequences of steps and messages passed between structural
elements when executing a particular instance of a use case.

� Activity Diagrams specify a flow for classifiers (classes, actors, use cases), objects, and
operations.

� Statecharts show the behavior of a particular classifier (class, actor, use case) or object
over its entire life cycle.

� Collaboration Diagrams provide the same information as sequence diagrams,
emphasizing structure rather than time.

� Component Diagrams describe the organization of the software units and the
dependencies among units.

� Deployment Diagrams show the nodes in the final system architecture and the
connections between them.

In addition, Flow Charts are available in the Rational Rhapsody product. Flow charts are not in
UML. They are a subset of activity diagrams with parts (of the functionality for activity diagrams)
excluded. Flow charts have specifically event-driven behavior. You can use a flow chart to
describe a function or class operation and for code generation.
Rational Rhapsody 5

Getting Started
Starting the Rational Rhapsody Product

Windows

To start the Rational Rhapsody product in Windows: Select Start > Programs > IBM Rational >
IBM Rational Rhapsody Version# > Rhapsody Developer Edition > Rhapsody in C++.

Linux

To start the Rational Rhapsody product in Linux, use these steps:

1. From the Terminal, browse to the Rational Rhapsody home directory.

2. Execute the RhapsodyInCPP script. For example:

[RhapsodyUser@MyHostMachine]# cd /home/Rhapsody
[RhapsodyUser@MyHostMachine Rhapsody]# ./RhapsodyInCpp

In this example, “RhapsodyUser” is the username, “MyHostMachine” is the host machine
and “/home/Rhapsody” is the installation directory.

Closing the Rational Rhapsody Product

To close the Rational Rhapsody product, follow these steps:

1. Save your changes. See Saving a Project.

2. Choose File > Exit or click the Close button .
6 C++ Tutorial

Setting Up the C++ Tutorial
Setting Up the C++ Tutorial
Before you can work through this tutorial, you must create and set up the Handset project, which
you do in this section. The following tasks show you how to:

� Create the Handset project
� Save a project
� Create the packages needed for the Handset project

Creating a Project

To create a new project, follow these steps:

1. Start the Rational Rhapsody product if it is not already running. If necessary, see Starting
the Rational Rhapsody Product.

2. Click the New button on the main toolbar or select File > New. The New Project
dialog box opens.

3. In the Project name box, replace the default project name with Handset.

4. In the In folder box, browse to find an existing folder or enter a new folder name.

Note: To avoid overwriting the sample Handset project provided with the Rational
Rhapsody product, do not create your project in <Rational Rhapsody
installation>\Samples\CppSamples. Also, to avoid potentially long
pathnames, do not create the project on the desktop.

5. In the Type box, accept Default, which provides all of the basic UML structures. It is
useful for most Rational Rhapsody projects. Your dialog box should resemble the
following figure:
Rational Rhapsody 7

Getting Started
Note: For a description of the available project profile types that you can select from
the Type drop-down list, refer to the IBM Rational Rhapsody User Guide. (Do
a search of the user guide PDF file for “specialized profile.”)

6. Click OK. The Rational Rhapsody product verifies that the specified location exists. If it
does not exist, Rational Rhapsody asks whether you want to create it. Click Yes.

Rational Rhapsody creates your project in the new Handset subfolder, opens the project,
and displays the Rational Rhapsody browser in the left pane and the drawing area for an
object model diagram (by default because of your Type [project profile] choice on the
New Project dialog box), as shown in the following figure:

Note: An asterisk (*) in a title bar for the Rational Rhapsody window and any dialog
box means that data has been modified and a save has not been done yet.

If the Rational Rhapsody browser does not display, select View > Browser.

7. Save your project. If necessary, see Saving a Project.
8 C++ Tutorial

Setting Up the C++ Tutorial
About a Rational Rhapsody Project

A Rational Rhapsody project includes the UML diagrams, packages, and code generation
configurations that define the model and the code generated from it. When you create a new
project, Rational Rhapsody creates a project folder that contains the project files in the specified
location. The name you choose for your new project is used to name project files and folders, as
shown in the following figure.

For more information about the folders and files that are part of a Rational Rhapsody model, see
About Project Files and Folders.
Rational Rhapsody 9

Getting Started
In addition, the name appears at the top level of the project hierarchy in the Rational Rhapsody
browser. Rational Rhapsody provides several default elements in the new project: a object model
diagram, package, component, and configuration, as shown in the following figure:

An element is an atomic constituent of a model. In the Rational Rhapsody product, primary model
elements within the browser are packages, classes, object model diagrams, associations,
dependencies, operations, variables, events, event receptions, triggered operations, constructors,
destructors, and types. Primary model elements in object model diagrams are packages, classes,
associations (links), dependencies, and actors.
10 C++ Tutorial

Setting Up the C++ Tutorial
About Project Files and Folders
The Rational Rhapsody product creates the following files and subfolders in the project folder.
Some folders and files are created when you initially create a project, others only when applicable.

� A project folder, called <project_name>_rpy, which contains the unit files for the
project, including UML diagrams, packages, and code generation configurations.

� A project file, called <project_name>.rpy.
� A subfolder, called <project_name>_auto_rpy, which appears only when necessary

(after ten minutes if a save has not been made) and disappears after you save.
� An event history file, called <project_name>.ehl, which contains a record of events

injected during animation, and active and nonactive breakpoints. This file appears after
your first save of a project.

� Log files, which record when projects were loaded and saved in the product; for example,
load.log and store.log.

� A .vba file, called <project_name_>.vba, which contains macros or wizards.
� Backup project files and folders (<project_name>_bak1_rpy,

<project_name>_bak2_rpy), which are optional, depending on project settings.
� An _RTC subfolder, when applicable, which holds any tests created using the Rational

Rhapsody TestConductor™ add-on.
The <project_name>.rpy file and the <project_name>_rpy folder are necessary for the
generation of source code.

The following figure shows the project folder for the Handset project and some of its files and
subfolders.
Rational Rhapsody 11

Getting Started
Saving a Project

To save a project in the current location, use one of the following methods:

� Click the Save button on the main toolbar
� Select File > Save.

To save the project to a new location, select File > Save As.

Note that the Save command saves only the modified units, reducing the time required to save
large projects.

A unit is a composite model element stored in its own file that you can check in and out of a
Content Management system. A model element can be made into a unit as long as it can be saved
as a separate file. Some elements that can be saved as units are the entire model, packages, classes
(in C, objects and object types), any type of Rational Rhapsody diagram, and components. The
project, represented by the root node displayed in the browser, is always a unit. The primary
purpose of units is to support collaboration with other developers.

About Autosave
The Rational Rhapsody product automatically performs an autosave every ten minutes to back up
changes made between saves. Modified units are saved in an autosave folder
(<project_name>_auto_rpy), along with any units that have a time stamp older than the project
file. Note that the autosave folder appears only when necessary (after ten minutes if a save has not
been made) and disappears after you save.

About Backups
You can set a property to create backups of your model every time you save your project. This
gives you the opportunity to revert to a previously saved version if you encounter a problem. By
default, Rational Rhapsody does not create backups. Refer to the IBM Rational Rhapsody User
Guide for more information about creating backups. (Do a search of the user guide PDF file for
“backups.”)
12 C++ Tutorial

Setting Up the C++ Tutorial
Organizing the Model Using Packages

Packages can be used to divide the model into functional domains or subsystems, which consist of
objects, object types, functions, variables, and other logical artifacts. They can be organized into
hierarchies to provide a high level of partitioning.

The handset model will have the following main packages:

� RequirementsPkg to contain the system’s functional requirements.
� AnalysisPkg to contain the use case diagrams, which identify the requirements of the

system.
� ArchitecturePkg to contain the structure diagram, which details the design of the system

model and the flow of information.
� SubsystemsPkg to contain the components of the system.

Note
To establish traceability between analysis and implementation, the RequirementsPkg,
AnalysisPkg, and ArchitecturePkg packages can be referenced from the software
application model (even if it is a different Rational Rhapsody project) to establish
traceability from design to analysis.

To organize the model into packages, follow these steps:

1. In the Rational Rhapsody browser, expand the Packages category.

2. Rename the Default package:

a. Double-click the Default package, or right-click it and select Features. The Features
dialog box opens.

b. On the General tab, in the Name box, replace Default with RequirementsPkg, as
shown in the following figure:

c. Click OK.
Rational Rhapsody 13

Getting Started
3. Create another package:

a. Right-click Packages in the Rational Rhapsody browser and select Add New
Package. Rational Rhapsody creates a package with the default name package_n,
where n is greater or equal to 0.

b. Rename the package AnalysisPkg and press Enter.

4. Repeat the previous step but create a package named ArchitecturePkg and then a
package named SubsystemsPkg. Your browser should resemble the following figure:
14 C++ Tutorial

Setting Up the C++ Tutorial
5. To re-order the packages so that the RequirementsPkg package is first, do the following:

a. With focus in the browser, choose View > Browser Display Options > Enable
Ordering. This activates the Up and Down buttons for the browser. Because the first
package you created was RequirementsPkg, Rational Rhapsody makes it the first
package on the list of packages, as shown in the following figure. If not, go to the
next substep.

Note: By default Enable Ordering is not enabled. This means that all elements in the
Rational Rhapsody browser appear in alphabetical order. Once you enable the
Enable Ordering capability, elements are listed on the browser in the order
entered. Where allowed, you can re-order the elements in the Rational
Rhapsody browser.

b. If needed, select RequirementsPkg in the browser and then click the Up button
and move the package to the top of the list.
Rational Rhapsody 15

Getting Started
Hiding Predefined Packages
To unclutter the browser for this tutorial, you can hide the predefined packages (seen in the
previous figure showing the browser). To do this, you must modify one of the many properties in
the Rational Rhapsody product.

You can modify a Rational Rhapsody property through the Properties tab of the Features dialog
box. The Properties tab lists the properties associated with the selected Rational Rhapsody
element.

� The top left column on this tab shows the metaclass and property (for example, Settings
and ShowPredefinedPackage).

� The top right column shows the default for the selected property, if there is one (for
example, Cleared).

� The box at the bottom portion of the Properties tab shows the definition for the property
selected in the upper left column of the tab. The definition display shows the names of the
subject, metaclass, property, and the definition for the property.

Note that Rational Rhapsody documentation uses a notation method with double colons to identify
the location of a specific property, for example, Browser::Settings::ShowPredefinedPackage.
In this example, Browser is the name of the subject, Settings is the name of the metaclass, and
ShowPredefinedPackage is the name of the property.

Refer to the IBM Rational Rhapsody User Guide for more information on setting properties. (Do a
search of the user guide PDF file for “properties tab.”)

To hide the predefined packages, follow these steps:

1. Choose File > Project Properties.

2. On the Properties tab, select All from the drop-down menu. (The label appears as
View All after you make the selection.)

3. Scroll down to and expand the Browser subject expand the Settings metaclass.
16 C++ Tutorial

Setting Up the C++ Tutorial
4. Clear the check box for the ShowPredefinedPackage property, as shown in the following
figure:

5. Click OK.

6. Click the Save button to save your project. Your Rational Rhapsody browser should
resemble the following figure:

Rational Rhapsody 17

Getting Started
Opening the Handset Model
Once you have created, saved, and closed the handset model, you can open and work on it at any
time.

To open the handset model, follow these steps:

1. Start Rational Rhapsody if it is not already running. If necessary, see Starting the Rational
Rhapsody Product.

2. Click the Open button on the main toolbar or select File > Open. The Open dialog box
opens.

3. Navigate to the location in which you saved the Handset project.

4. Select Handset.rpy, or type the name of the project file in the File name box, as shown in
the following figure:

5. Accept the default With All Subunits option.

This choice means that the Rational Rhapsody product will load all units in the project.
Refer to the IBM Rational Rhapsody User Guide for information about the options. (Do a
search of the user guide PDF file by the option names.)

6. Click Open. Rational Rhapsody opens the handset model.
18 C++ Tutorial

Using Naming Conventions
Using Naming Conventions
To assist all members of your team in understanding the purpose of individual items in the model,
it is a good idea to define naming conventions. These conventions help team members to read a
diagram quickly and to remember model element names easily.

Note
Remember that the names used in the Rational Rhapsody models are going to be
automatically written into the generated code. Therefore, the names should be simple and
clearly label all of the elements. Note also that since the C++ language is CASE sensitive,
typing errors can prevent the model from building.

Prefixes

Lower and upper case prefixes are useful for model elements. The following is a list of common
prefixes with examples of each:

� Event names = “ev” (evStart)
� Trigger operations = “op” (opPress)
� Condition operations = “is” (isPressed)
� Interface classes = “I” (IHardware)

Model Element Names

The names of the elements themselves should follow conventions, such as these:

� Block and class names begin with an upper case letter, such as “System.”
� Operations and attributes begin with lower case letters, such as “restartSystem.”
� Upper case letters to separate concatenated words, such as “checkStatus.”
Rational Rhapsody 19

Getting Started
Rational Rhapsody User Interface
Before proceeding with this tutorial, you should become familiar with the main features of the
Rational Rhapsody graphical user interface (GUI). The Rational Rhapsody GUI is made up of
three key windows and different toolbars for each of the UML diagram types. The following figure
shows the Rational Rhapsody GUI.

Output Window

Drawing Toolbar

Drawing Area

Browser

Menu Bar

Toolbars
20 C++ Tutorial

Rational Rhapsody User Interface
Toolbars

The Rational Rhapsody toolbars provide quick access to the commonly used commands. These
commands are also available from the menus. The Rational Rhapsody product has the following
toolbars:

� Standard has buttons for the frequently used options on the File, Edit, and Help menus.
Examples: New, Open, Save; Copy, Paste, Locate in Browser; About.

� Code has buttons for the frequently used options on the Code menu, such as Make, Run
Executable and G/M/R (for Generate/Make/Run).

� Windows has buttons for the frequently used options on the View menu, such as Show/
Hide Browser and Show/Hide output window.

� Diagrams has buttons for the part of the Tools menu that give you quick access to the
diagrams in the project, such as Sequence Diagrams and Open Statechart.

� VBA provides access to the VBA options, such as VBA Editor and Show Macros
Dialog. Note that VBA is for Windows only.

� Animation has buttons for the animation options during an animation session, such as Go,
Animation Break, and Quit Animation.

� Layout has buttons that help you with the layout of elements in your diagram, such as
Snap to Grid, Align Top, and Align Left.

� Drawing has buttons for the graphics editor used to create and edit diagrams. Each
Drawing toolbar is unique to its particular diagram type. For example, the Drawing
toolbar for a sequence diagram is different from that for a statechart.

� Common Drawing has buttons to add requirements, comments, and other annotations to
any diagram, such as Note and Requirement.

� Free Shapes has buttons for basic drawing shapes, such as Polyline and Polycurve.
� Zoom has buttons to zoom options, such as Zoom In, Zoom Out, and Pan.
� Format has buttons for various text formatting options and line/fill options, such as Italic

and Font Color.
Refer to the IBM Rational Rhapsody User Guide for detailed information about the toolbars.
Rational Rhapsody 21

Getting Started
Browser

The Rational Rhapsody browser shows the contents of the project in an expandable tree structure.
By default, it is the upper, left-hand part of the Rational Rhapsody GUI. The top-level folder,
which contains the name of the project, is the project folder or project node. Although this folder
contains no elements, the folders that reside under it contain elements that have similar
characteristics. These folders are referred to as categories.

A project consists of at least one package in the Packages category. A package contains UML
elements, such as classes, files, and diagrams. Rational Rhapsody automatically creates a default
package called Default, which it uses to save model parts unless you specify a different package.
The following figure shows an example of the browser.

Filtering the Browser
The browser filter lets you display only the elements relevant to your current task.

To filter the Rational Rhapsody browser, click the drop-down arrow at the top of the browser
window, and select the view you want to see from the menu. Refer to the IBM Rational Rhapsody
User Guide for information on the view options.

Repositioning the Browser
To make more room for you to work on diagrams, you can move the browser outside of the
Rational Rhapsody GUI and reposition it as a separate window on the desktop. To reposition the
Rational Rhapsody browser, click the bar at the top of the browser and drag it to another desktop
location.

Click the plus (+)
to expand a branch.
Click the minus (–)
to collapse a
branch.

Project Folder

Browser Filter

Category

Up/Down (Ordering)
Buttons
22 C++ Tutorial

Rational Rhapsody User Interface
Drawing Area

The drawing area displays the graphic editors and code editors, and it is the region for drawing
diagrams. By default, it is the upper, right-hand section of the Rational Rhapsody GUI. Rational
Rhapsody displays each diagram with a tab that includes the name of the diagram and an icon that
denotes the diagram type. When you make changes to a diagram, Rational Rhapsody displays an
asterisk after the name of the diagram in the title bar to indicate that you must save your changes.

Output Window

The Output window displays Rational Rhapsody messages. By default, it is the lower section of
the Rational Rhapsody GUI. It includes tabs that display the following types of messages:

� Log
� Check Model
� Build
� Configuration Management
� Animation
� Search results

If the Output window does not appear, choose View > Output Window.

Drawing Toolbars

The Rational Rhapsody product displays a separate Drawing toolbar for each UML diagram type.
By default, it places the Drawing toolbar to the left of the diagram.

To move the toolbar, click and drag it to another location.
Rational Rhapsody 23

Getting Started
Features Dialog Box

The Features dialog box lets you view and edit the features of an element in the Rational Rhapsody
product.

To open the Features dialog box, do one of the following:

� Double-click an element (for example, Out [an interface])
� Right-click an element (for example, Subsystem Architecture [a diagram]) select

Features
� Select an element and press Alt + Enter
� Select an element and select View > Features

You can resize the Features dialog box and hide the tabs on it if you want. For more information
about the Features dialog box, refer to the section on it in the IBM Rational Rhapsody User Guide.

Keeping Open the Features Dialog Box
Once you open the Features dialog box, you can leave it open and select other elements to view
their features. This means that after you make changes to the Features dialog box for an element in
your drawing or on the Rational Rhapsody browser, you can click Apply. Then, without closing
the dialog box, you can select another element to view its features. Once you are done with the
Features dialog box, you click OK to close it.

Note
Even though you clicked Apply or OK for your changes in the Features dialog box, you
must still save your model to save all the changes you made. Clicking Apply or OK
applies any changes to the currently opened model. However, to save the changes
for the model so that they are in effect the next time you open it, you must save your
model.

Note the following about the Apply and OK buttons on the Features dialog box:

� Click Apply when you want to apply any changes you made to the Features dialog box but
want keep it open. For example, you might need to apply a change before you can
continue with using the Features dialog box, or you want to apply a change and see its
effect before continuing making any more changes on the dialog box.

� Click OK when you want to apply your changes and close the Features dialog box at the
same time.
24 C++ Tutorial

Rational Rhapsody User Interface
Tabs for the Features Dialog Box
The Features dialog box has different tabs at the top of the dialog box and different boxes on the
tabs depending on the element type.

The following tabs are common to all types of elements. For more information about these tabs, as
well as the other tabs that you might see in the Features dialog box, refer to the section on it in the
IBM Rational Rhapsody User Guide.

� General typically contains the name of the element and other general options, as shown in
the following figure:

� Description, as its title implies and as shown in the following figure, contains the
description of the element, if it has been included.
Rational Rhapsody 25

Getting Started
� Relations lists all the relationships (dependencies, associations, and so on) an element is
engaged with, as shown in the following figure:

� Tags lists any tags available for an element. Tags enable you to add information to certain
kinds of elements to reflect characteristics of the specific domain or platform for the
modeled system. Refer to the IBM Rational Rhapsody User Guide for more information
about tags.
26 C++ Tutorial

Rational Rhapsody User Interface
� Properties lists the properties associated with the Rational Rhapsody element.
– The top left column on this tab shows the metaclass and property (for

example, Settings and ShowPredefinedPackage).
– The top right column shows the default for the selected property, if there is

one (for example, Cleared).
– The box at the bottom portion of the Properties tab shows the definition for

the property selected in the upper left column of the tab. The definition
display shows the names of the subject, metaclass, property, and the definition
for the property, as shown in the following figure:

Note: Rational Rhapsody documentation uses a notation method with double colons
to identify the location of a specific property. For example, for the property in
the above figure, the location is
Browser::Settings::ShowPredefinedPackage where Browser is the
subject, Settings is the metaclass, and ShowPredefinedPackage is the
property.
Rational Rhapsody 27

Getting Started
Moving the Features Dialog Box
The Features dialog box is a floating window that can be positioned anywhere on the screen, or
docked to the Rational Rhapsody GUI.

To dock the Features dialog box in the Rational Rhapsody window, do one of the following:

� Double-click the title bar. The dialog box docks. You can now drag it to another location if
you want.

� Right-click the title bar and select Docking by Drag. Then drag the dialog box to another
location.

To undock the Features dialog box, do one of the following:

� Double-click the title bar to undock it.
� Right-click the title bar and clear Docking by Drag drag the dialog box to another

location.
28 C++ Tutorial

Summary
Summary
In this section, you became familiar with the Rational Rhapsody product and its features. You
performed the following:

� Created the Handset project
� Saved the project
� Created and organized packages needed for the project

You are now ready to proceed to the next sections where you are going to create the handset
model. In the next section, you are going to model the requirements of the wireless telephone and
the functions of placing a call using use case diagrams.

For ease of presentation, this tutorial organizes the sections by diagram type and general workflow.
However, when modeling systems, diagrams are often created in parallel or might require elements
in one diagram to be planned or designed before another diagram can be finalized. For example,
you might identify the communication scenarios using sequence diagrams before defining the
flows, flow items, and port contracts in the structure diagrams. In addition, you might perform
black-box analysis using activity diagrams, sequence diagrams, and statecharts; and white-box
analysis using sequence diagrams before decomposing the system’s functions into subsystem
components.

When you do black-box analysis, such as when you do a black-box sequence diagram, you are
showing the sequence of messages between external actors and the system as a whole. When you
do white-box analysis, such as when you do a white-box sequence diagram, you are showing
messages to and from the internal individual parts.
Rational Rhapsody 29

Getting Started
30 C++ Tutorial

Lesson 1: Creating Use Case Diagrams
Use case diagrams (UCDs) show the main functions of the system (use cases) and the entities that
are outside the system (actors). Use case diagrams allow you to specify the requirements for the
system and show the interactions between the system and external actors.

Note
You must complete all the tasks in Setting Up the C++ Tutorial in the Getting Started section
before you start this lesson.

Goals for this Lesson
In this lesson, you are going to create the following use case diagrams:

� Functional Overview to show the requirements and functions of the handset.
� Place Call Overview to show the functions of placing a call.
� Data Call Requirements to show the relations among requirement elements.
Rational Rhapsody 31

Lesson 1: Creating Use Case Diagrams
Exercise 1: Creating the Functional Overview UCD
In this exercise you are going to create the Functional Overview use case diagram. This UCD
shows the system requirements, including the actors, the major use cases of the system, and the
relationships between them.

The following figure shows the Functional Overview use case diagram that you are going to create
in this exercise.

Functional Overview Use Case Diagram
32 C++ Tutorial

Exercise 1: Creating the Functional Overview UCD
Task 1a: Creating the Functional Overview Use Case Diagram

To create the Functional Overview use case diagram, follow these steps:

1. Start Rational Rhapsody and open the handset model if they are not already open.

2. In the Rational Rhapsody browser, expand the Packages category, then right-click the
AnalysisPkg package, and then select Add New > Use Case Diagram. The New
Diagram dialog box opens.

3. Type Functional Overview, as shown in the following figure, and then click OK.

Rational Rhapsody automatically adds the Use Case Diagrams category and the name of the new
diagram to the browser, as shown in the Functional Overview Use Case Diagram figure, and opens
the new diagram in the drawing area.

Note
You can also create a diagram by using the Tools menu or the Diagrams toolbar. Also, once
you create a diagram you can open it using the Diagrams toolbar. Refer to the IBM Rational
Rhapsody User Guide for more information.
Rational Rhapsody 33

Lesson 1: Creating Use Case Diagrams
Preparing to Draw the Functional Overview UCD
Before drawing the Functional Overview use case diagram, you must identify the system
requirements including the actors, the major use cases of the system, and the relationships between
them.

For this Functional Overview use case diagram, these actors interact with the system:

� MMI represents the handset user interface, including the keypad and display
� Network represents the system network or infrastructure of the signalling technology

The major use cases of the system are:

� The handset enables users to place and receive calls.
� The network receives incoming and outgoing call requests, and tracks users.

The actors and the system relate to each other in the following ways:

� MMI places and receives calls.
� Network tracks users, monitors signal strength, and provides network status and location

registration.
You draw a use case diagram using the following general steps:

1. Draw the boundary box.

2. Draw the actors outside of the boundary box.

3. Draw the use cases inside the boundary box.

4. Associate the use cases with the actors.
34 C++ Tutorial

Exercise 1: Creating the Functional Overview UCD
Task 1b: Drawing the Boundary Box and Actors

The boundary box delineates the system under design from the external actors. Use cases are
inside the boundary box; actors are outside the boundary box. In this task, you are going to draw
the boundary box and actors using the Functional Overview Use Case Diagram figure as a reference.

To draw the boundary box and actors, follow these steps:

1. Click the Create Boundary Box button on the Drawing toolbar.

2. Click in the upper, left corner of the drawing area and drag to the lower right. Rational
Rhapsody creates a boundary box, named System Boundary Box.

3. Rename the boundary box Handset Protocol System and then press Enter.

4. Click the Create Actor button on the Drawing toolbar.

5. Click the left side of the drawing area. Rational Rhapsody creates an actor with a default
name of actor_n, where n is greater than or equal to 0.

6. Rename the actor MMI and then press Enter.

Note: Because code can be generated using the specified names, do not include
spaces in the names of actors.
Rational Rhapsody 35

Lesson 1: Creating Use Case Diagrams
7. Draw an actor on the right side of the drawing area named Network.

Note: You can use the tools on the Layout toolbar to help you with the layout of
selected elements (including labels) in your diagram. For example, you can
select MMI and Network and use Align Bottom to align them to be on the
same bottom edge or Same Size to resize them so that they are the same
size. Keep in mind that the last element selected is used as the default. Refer to
the IBM Rational Rhapsody User Guide for more information about the
Layout toolbar.

In addition if you want to move a drawn element on a drawing more precisely
than clicking it and dragging it, click one or more elements, press the Ctrl key
and use the standalone directional arrow keys to move your element(s). You
can also use the directional arrows on the numeric keypad with NumLock not
active.

8. In the browser, expand the AnalysisPkg package and the Actors category to view your
newly created actors, as shown in the following figure:

Note: To quickly find the Actors category in the Rational Rhapsody browser, right-
click an actor on the use case diagram and click Locate or press Ctrl+L. You
can use this technique with other objects on a diagram.
36 C++ Tutorial

Exercise 1: Creating the Functional Overview UCD
Task 1c: Drawing the Use Cases

A use case represents a particular function of the system. The Functional Overview use case
diagram has the following use cases:

� Place Call to show that the user can place various types of calls.
� Supplementary Service to show that the system can provide services, such as messaging,

call forwarding, call holding, call barring, and conference calling.
� Receive Call to show that the system can receive various types of calls.
� Provide Status to show that the system can provide network status, user location, and

signal strength.
In this task, you are going to draw use cases using the Functional Overview Use Case Diagram
figure as a reference.

To draw the use cases, follow these steps:

1. Click the Create Use Case button on the Drawing toolbar.

2. Click inside the upper left of the boundary box. Rational Rhapsody creates a use case with
a default name of usecase_n, where n is equal to or greater than 0.

3. Rename the use case Place Call and then press Enter.

Note: For use case names, you can use spaces because use case names do not
correspond to actual generated code. In the previous task where you drew
actors, you did not use spaces in actor names because code can be generated
using the specified actor names.
Rational Rhapsody 37

Lesson 1: Creating Use Case Diagrams
4. Create three more use cases inside the boundary box named Supplementary Service,
Receive Call, and Provide Status.

In the browser, expand the AnalysisPkg package and the Use Cases category to view the
use cases you created, as shown in the following figure:
38 C++ Tutorial

Exercise 1: Creating the Functional Overview UCD
Task 1d: Defining Use Case Features

In this task, you define use case features. You can define the features of a use case, enter a
description, and do other things through the use of the Features dialog box. You can access the
Features dialog box from the browser or the diagram.

To define use case features, follow these steps:

1. In the browser, if necessary, expand the AnalysisPkg package and Use Cases category.

2. Double-click the Place Call use case, or right-click and select Features. The Features
dialog box opens.

Note: You can also open the use case through the Functional Overview use case
diagram: Double-click the Place Call use case, or right-click the use case and
select Features.

3. On the Description tab, type the following text to describe the purpose of this use case:

General function of the system is that it must be able to place various
types of calls.

Note: You can also click the Ellipsis button just above the Description box on
the Description tab to expand the internal text editor. When you have entered
the description, click OK to close the Text Editor dialog box and return to the
Features dialog box.

Your Description tab should resemble the following figure:

4. Click Apply.
Rational Rhapsody 39

Lesson 1: Creating Use Case Diagrams
5. With the Features dialog box still open (if necessary, see Keeping Open the Features Dialog
Box), for the other use cases, type a description for each as follows:

� For the Supplementary Service use case:

A supplementary service is a short message, call forwarding, call
holding, call barring, or conference calling.

� For the Receive Call use case:

General function of the system is that it must be able to receive
and terminate calls.

� For the Provide Status use case:

The system must be able to communicate with the network in order to
show the user the visual status such as signal strength and current
registered network. It must also handle user requests for network
status and location registration.

6. Click OK to close the Features dialog box.

7. Click the Save button to save your model.

Task 1e: Associating Actors with Use Cases

The MMI actor places calls and receives calls. The Network actor notifies the system of incoming
calls and provides status. You want to show the associations between actors and the relevant use
cases using association lines. An association represents a connection between objects or users. In
this task, you associate actors with use cases using the Functional Overview Use Case Diagram
figure as a reference.

To draw association lines, follow these steps:

1. Click the Create Association button on the Drawing toolbar.

Once you move your cursor over the drawing area, notice that the mouse pointer turns
into a crosshairs pointer to signify that it is enabled and that it changes into a circled
crosshairs pointer when drawing is possible.

2. Click the edge of the MMI actor and then click the edge of the Place Call use case.
Rational Rhapsody creates an association line with the name label highlighted. You do not
need to name this association, so click the mouse button again (this is the same as pressing
Enter).

3. Create an association between the MMI actor and the Receive Call use case and then
click the mouse button again or press Enter.
40 C++ Tutorial

Exercise 1: Creating the Functional Overview UCD
4. Create an association between the Network actor and the Receive Call use case.

5. Create an association between the Network actor and the Provide Status use case.

6. In the Rational Rhapsody browser, expand the Actors category to view the relations for
the actors and use cases, as shown in the following figure:

The MMI actor has two new relations:

� itsPlace Call is the role played by the Place Call use case in relation to this actor.
� itsReceive Call is the role played by the Receive Call use case in relation to this

actor.
The Network actor also has two new relations:

� itsProvide Status is the role played by the Provide Status use case in relation to
this actor.

� itsReceive Call is the role played by the Receive Call use case in relation to this
actor.
Rational Rhapsody 41

Lesson 1: Creating Use Case Diagrams
Task 1f: Drawing Generalizations

A generalization is a relationship between a general element and a more specific element. The
more specific element inherits the properties of the general element and is substitutable for the
general element. A generalization lets you derive one use case from another.

The Supplementary Service use case is a more specific case of placing a call, and it is a more
specific case of receiving a call. In this task, you are going to draw generalizations indicating that
Supplementary Service is derived from the Place Call use case and the Receive Call use case.
Use the figure in this section as a reference.

To draw generalizations, follow these steps:

1. Click the Create Generalization button on the Drawing toolbar, and then click the
Supplementary Service use case and draw a line to the Place Call use case.

2. Click the Create Generalization button , and then click the Supplementary Service use
case and draw a line to the Receive Call use case.

3. In the browser, expand the Supplementary Service use case. Notice that Place Call and
Receive Call are SuperUseCases for this use case.

Note: To quickly find the Supplementary Service use case in the Rational Rhapsody
browser, right-click it on the Functional Overview use case diagram and click
Locate or press Ctrl+L.

Your Rational Rhapsody browser should resemble the following figure:
42 C++ Tutorial

Exercise 1: Creating the Functional Overview UCD
Task 1g: Adding Remarks to Model Elements and Diagrams

In this task, you are going to add a comment to the Functional Overview use case diagram. You
can add remarks to specify additional information about a model element or diagram. Rational
Rhapsody supports the following types of remarks in diagrams, which can be accessed from the
Common Drawing toolbar:

� Note is a textual annotation that contains information that might be useful to the reader,
but it does not add semantics. A note is not stored in the model repository and is not
visible in the Rational Rhapsody browser.

� Constraint is a condition or restriction expressed in text. Constraints might have
semantics in terms of the application, but the Rational Rhapsody product does not do
anything with them nor does it enforce those semantics. Constraints are part of the model
and are, therefore, visible in the browser.

Note: Most constraints are declarative and not imperative, and therefore do not affect
code generation. For example, if you add a constraint that says the worst case
execution time of an operation is < 12ms, it does not change how code is
generated (which it would if it were imperative), but it does change whether or
not the generated code is correct.

� Comment is a textual annotation that contains information that might be useful to the
reader, but it does not add semantics. Comments are visible in the browser.

� Requirement is a textual annotation that describes the intent of the element.
Requirements might have semantics in terms of the application, but the Rational
Rhapsody product does not do anything with them nor does it enforce those semantics.
Requirements are part of the model and are, therefore, visible in the browser.

� Anchor attaches a constraint, comment, requirement, or note to one or more elements.
To add remarks to model elements and diagrams, follow these steps:

1. Click the Comment button on the Common Drawing toolbar.

Note: If the toolbar is not open, select View > Toolbars > Common Drawing.

2. Click the top section of the diagram (outside of the boundary box).

3. Type the following description:

This is a mock up solution of a generic protocol system which handles
voice and supplementary service calls. The use case diagram shows the
functional requirements of the system.
Rational Rhapsody 43

Lesson 1: Creating Use Case Diagrams
Rational Rhapsody adds the comment to the Comments category in the
AnalysisPkg package, as shown in the following figure:

4. Click the Save button to save your model.

You have completed drawing the Functional Overview use case diagram. It should resemble the
figure shown above.
44 C++ Tutorial

Exercise 2: Creating the Place Call Overview UCD
Exercise 2: Creating the Place Call Overview UCD
The Place Call Overview use case diagram breaks down the Place Call use case and identifies the
different types of calls that can be placed as use cases.

The following figure shows the Place Call Overview use case diagram that you are going to create
in this exercise.

Place Call Overview Use Case Diagram

Rational Rhapsody 45

Lesson 1: Creating Use Case Diagrams
Task 2a: Creating the Place Call Overview Use Case Diagram

To create the Place Call Overview use case diagram, follow these steps:

1. In the browser, in the AnalysisPkg package, right-click the Use Case Diagrams category
and select Add New Use Case Diagram. The New Diagram dialog box opens.

2. Type Place Call Overview and then click OK.

Rational Rhapsody automatically adds the name of the new use case diagram to the browser and
opens the new diagram in the drawing area.

Task 2b: Drawing the Use Cases

In this task, you are going to draw the following use cases:

� Place Call to show that the user can place various types of calls. You defined the Place
Call use case in the Functional Overview use case diagram.

� Data Call to show that the user can originate and receive data requests. It is a more
specific case of placing a call.

� Voice Call to show that the user can place and receive voice calls, either while
transmitting or receiving data, or standalone. It is a more specific case of placing a call.

Use the Place Call Overview Use Case Diagram figure as a reference.

To draw the use cases, follow these steps:

1. Continuing from the previous task, in the Rational Rhapsody browser, if it is not already,
expand the Use Cases category.

2. Select the Place Call use case and drag it to the top center of the drawing area for the
Place Call Overview use case diagram.

3. Click the Create Use Case button on the Drawing toolbar.

4. Create a use case in the lower left of the drawing area, named Data Call, and press Enter.
46 C++ Tutorial

Exercise 2: Creating the Place Call Overview UCD
5. Create a use case in the lower right of the drawing area, named Voice Call, and press
Enter. Your browser and diagram should resemble the following figure:
Rational Rhapsody 47

Lesson 1: Creating Use Case Diagrams
Task 2c: Defining Use Case Features

To add descriptions to the Data Call and Voice Call use cases, follow these steps:

1. In the Place Call Overview use case diagram or the browser, double-click the Data Call
use case, or right-click and select Features. The Features dialog box opens.

2. On the Description tab, type the following text to describe its purpose:

The system must be able to originate and receive data requests of up to
384 kbps. Data calls can be originated or terminated while active voice
calls are in progress.

Note: You can also click the Ellipsis button just above the Description box on
the Description tab to expand the internal text editor. When you have entered
the description, click OK to close the Text Editor dialog box and return to the
Features dialog box.

3. Click Apply.

4. With the Features dialog box still opened (if necessary, see Keeping Open the Features
Dialog Box), for the Voice Call use case, type the following description:

The user must be able to place or receive voice calls, either while
transmitting or receiving data, or standalone. The limit of the voice
calls a user can engage in at once is dictated by the conference call
supplementary service.

5. Click OK to close the Features dialog box.

6. Click the Save button to save your model.
48 C++ Tutorial

Exercise 2: Creating the Place Call Overview UCD
Task 2d: Drawing Generalizations

In this task, you are going to draw generalizations to show that the Data Call use case and the
Voice Call use case derive from the Place Call use case. Use the Place Call Overview Use Case
Diagram figure as a reference.

To draw generalizations, follow these steps:

1. Click the Create Generalization button on the Drawing toolbar to activate the tool.

2. Click the edge of the Data Call use case and draw the line to the edge of the Place Call
use case.

3. Click the Create Generalization button .

4. Click the edge of the Voice Call use case and draw the line to the edge of the Place Call
use case.
Rational Rhapsody 49

Lesson 1: Creating Use Case Diagrams
Task 2e: Modeling Requirements in Rational Rhapsody

Modeling requirement elements in Rational Rhapsody enables you to provide requirements
traceability without a Requirements Management (RM) tool. Modeling requirement elements also
supplements the Rational Rhapsody to DOORs interface.

Requirements traceability is the ability to describe and follow the life of a requirement, in both a
forward and backward direction. It supports requirements verification and validation, prevents the
introduction of unspecified features, and provides visibility to derived requirements that need to be
specified and tested.

For more information on the Rational Rhapsody interface to DOORS, refer to the IBM Rational
IBM Rational Rhapsody User Guide.

Adding Requirement Elements to the Model
You can represent requirements in the browser and diagrams as requirement elements.
Requirement elements are textual annotations, which describe the intent of the element.

In this task, you are going to add the handset model requirements to the RequirementsPkg
package in the browser. You can also add requirements directly to the diagram using the
Requirement tool from the Common Drawing toolbar. Refer to the IBM Rational Rhapsody User
Guide for more information.

Use the Place Call Overview Use Case Diagram figure as a reference.

To add requirements elements, follow these steps:

1. In the Rational Rhapsody browser, right-click the RequirementsPkg package, and select
Add New > Requirement. Rational Rhapsody creates the Requirements category and a
requirement with a default name of requirement_n, where n is greater than or equal to 0.

2. Rename the requirement Req.1.1 and then press Enter.

3. Double-click Req.1.1 or right-click and select Features. The Features dialog box opens.

4. On the Description tab, type the following:

The mobile shall be fully registered before a place call sequence can
begin.
50 C++ Tutorial

Exercise 2: Creating the Place Call Overview UCD
Your Features dialog box should resemble the following figure:

5. Right-click the Requirements category and select Add New Requirement for each of the
remaining requirements and their specifications as follows:

� Req.1.2 – The mobile shall have a signal strength within +/- 1 of the
minimum acceptable signal.

� Req.3.1 – The mobile shall be able to place short messages while
registered.

� Req.3.2 – The mobile shall be able to receive short messages while
registered.

� Req.4.0 – The mobile shall be able to receive data calls at the rate
of 128 kbps.

� Req.4.1 – The mobile shall be able to send data at the rate of 384
kbps.

� Req.4.2 – The mobile shall be able to receive streaming video at 384
kbps.

� Req.5.6 – The mobile shall be able to receive a maximum of 356
characters in a short message.

� Req.6.2 – The optimal size of messages the mobile can send in a text
message is 356 characters.

6. Click OK to close the Features dialog box.
Rational Rhapsody 51

Lesson 1: Creating Use Case Diagrams
7. Click the Save button to save your model. Your diagram and browser should resemble
the following figure:

Adding Requirement Elements
You can add requirement elements to use case diagrams to show how the requirements trace to the
use cases. In this task, you are going to add requirement elements to the Place Call Overview use
case diagram.

Use the Place Call Overview Use Case Diagram figure as a reference.

To add the requirements to the use case diagram, follow these steps:

1. Continuing from the previous task, in the Rational Rhapsody browser the
RequirementsPkg package and the Requirements category should be expanded, select
Req.1.1 and drag it to the right of the Place Call use case.

2. Select Req.4.1 and drag it to the lower left of the Data Call use case.

3. Select Req.4.2 and drag it to the lower right of the Data Call use case.
52 C++ Tutorial

Exercise 2: Creating the Place Call Overview UCD
Setting the Display Options for Requirement Elements
You can set the type of information and the graphical format to display for model elements using
the Display Options dialog box. In this task, you are going to set the display options to Name to
show only the name of the requirement on the diagram.

To set the display options, follow these steps:

1. Right-click Req.1.1 in the diagram and select Display Options.

2. The Show group specifies the information to display for the requirement. Select the Name
option button to display the name of the requirement, as shown in the following figure:

3. Click OK.

4. Following the above steps, set the display options for Req.4.1 and Req.4.2 to Name.

Note: You can set a property for the diagram to show the Name of the requirement by
default. Right-click the use case diagram in the Rational Rhapsody browser
and select Features. On the Properties tab, select All from the drop-down
menu, expand the UseCaseGe subject, and expand the Requirement metaclass.
For the ShowAnnotationContents property, select Name and then click OK.
You must do this before you place any objects in your diagram.
Rational Rhapsody 53

Lesson 1: Creating Use Case Diagrams
Drawing Dependencies
In this task, you are going to draw dependencies between the requirements and the use cases. A
dependency is a direct relationship in which the function of an element requires the presence of
and might change another element. You can show the relationship between requirements, and
between requirements and model elements using dependencies.

Use the Place Call Overview Use Case Diagram figure as a reference.

To draw dependencies, follow these steps:

1. Click the Dependency button on the Drawing toolbar, and then click the Req.1.1
requirement and draw a line to the Place Call use case.

2. Click the Dependency button and draw a line from the Req.4.1 requirement to the
Data Call.

3. Click the Dependency button and draw a line from the Req.4.2 requirement to the
Data Call.

4. Click the Dependency button and draw a line from the Req.4.2 requirement to
Req.4.1.
54 C++ Tutorial

Exercise 2: Creating the Place Call Overview UCD
5. In the browser, expand the Requirements category (if not already expanded) to view the
dependency relationship, as shown in the following figure.

Note: If you have a full keyboard with the numeric keypad enabled, select the
RequirementsPkg package and then (on Microsoft Windows machines) you
can use the * key on the keypad to completely expand the RequirementsPkg
node in the browser. In addition, you can use the 4 and 6 keys to expand and
collapse by element. (The same is true if you use the Left and Right directional
arrows on a full keyboard.) For more about application accelerators, refer to the
IBM Rational Rhapsody User Guide.

Note that the expand/collapse shortcuts mentioned above are standard
Windows shortcuts. Also be aware that if you use the * key on a node with
many elements, it might take a while for the shortcut to work.
Rational Rhapsody 55

Lesson 1: Creating Use Case Diagrams
Defining the Stereotype of a Dependency
You can specify the ways in which requirements relate to other requirements and model elements
using stereotypes. A stereotype is a modeling element that extends the semantics of the UML
metamodel by typing UML entities. Rational Rhapsody includes predefined stereotypes, and you
can also define your own stereotypes. Stereotypes are enclosed in angle quotes (or guillemets) on
diagrams, for example, «derive».

In this task, you are going to set the following types of dependency stereotypes:

� Derive is a requirement that is a consequence of another requirement.
� Trace is a requirement that traces to an element that realizes it.

Use the Place Call Overview Use Case Diagram figure as a reference.

To define the stereotype of a dependency, follow these steps:

1. Double-click the dependency between Req.1.1 and Place Call, or right-click and select
Features. The Features dialog box opens.

2. On the General tab, from the Stereotype drop-down list box, select trace in Predefined
Types, as shown in the following figure, and click Apply.

Note: After you make your selection, trace appears in the box.
56 C++ Tutorial

Exercise 2: Creating the Place Call Overview UCD
3. Double-click the dependency between and set the stereotype of the dependency between
Req.4.1 and Data Call to trace.

4. Double-click the dependency between and set the stereotype of the dependency between
Req.4.2 and Data Call to trace.

5. Double-click the dependency between and set the stereotype of the dependency between
Req.4.1 and Req.4.2 to derive.

6. Click OK to close the Features dialog box.

7. Click the Save button to save your model.

You have completed drawing the Place Call Overview use case diagram. It should resemble the
Place Call Overview Use Case Diagram figure.
Rational Rhapsody 57

Lesson 1: Creating Use Case Diagrams
Exercise 3: Creating the Data Call Requirements UCD
The Data Call Requirements use case diagram graphically shows the relationship among textual
requirement elements for sending and receiving data calls.

The following figure shows the Data Call Requirements use case diagram that you are going to
create in this exercise.

Data Call Requirements Use Case Diagram
58 C++ Tutorial

Exercise 3: Creating the Data Call Requirements UCD
Task 3a: Creating the Data Call Requirements Use Case Diagram

Because the Data Call Requirements use case diagram contains only requirements, you are going
to create it in the RequirementsPkg package.

To create the Data Call Requirements use case diagram, follow these steps:

1. Right-click the RequirementsPkg package, and select Add New > Use Case Diagram.
The New Diagram dialog box opens.

2. Type Data Call Requirements and then click OK.

Rational Rhapsody automatically adds the Use Case Diagrams category and the new use case
diagram to the RequirementsPkg package in the browser, and opens the new diagram in the
drawing area.

Task 3b: Adding Requirements

In this task, you are going to add requirements. Use the Data Call Requirements Use Case Diagram
figure as a reference.

To add requirements, follow these steps:

1. In the browser, if not already expanded, expand the RequirementsPkg package and the
Requirements category.

2. Select Req.4.2 and drag it to the top left of the drawing area.

3. Select Req.4.1 and drag it below Req.4.2.

4. Select Req.3.2 and drag it to the top center of the drawing area.

5. Select Req.4.0 and drag it to the lower left side of Req.3.2.

6. Select Req.5.6 and drag it to the lower right side of Req.3.2.

7. Select Req.6.2 and drag it below Req.5.6.

8. For each requirement, set the display options to Name to show the requirement name on
the diagram.

a. Right-click a requirement in the use case diagram and click Display Options.

b. In the Show group, click the Name option button.

c. Click OK.
Rational Rhapsody 59

Lesson 1: Creating Use Case Diagrams
9. Save your model. Your use case diagram should resemble the following figure:
60 C++ Tutorial

Exercise 3: Creating the Data Call Requirements UCD
Task 3c: Drawing and Defining the Dependencies

In this task, you are going to show the relationship between requirements by drawing
dependencies and then setting the dependency stereotype. Use the Data Call Requirements Use
Case Diagram figure as a reference.

To draw and define dependencies, follow these steps:

1. Click the Dependency button on the Drawing toolbar and draw a dependency line
from Req.4.2 to Req.4.1, and then open the Features dialog box and set derive as the
stereotype.

Note: To keep a line straight as you draw it, press the Ctrl key as you are drawing the
line.

2. Click the Dependency button and draw a dependency line from Req.4.1 to Req.4.0,
and then set derive as the stereotype.

3. Click the Dependency button and draw a dependency line from Req.4.0 to Req.3.2,
and then set trace as the stereotype.

4. Click the Dependency button and draw a dependency line from Req.5.6 to Req.3.2,
and then set trace as the stereotype.

5. Click the Dependency button and draw a dependency line from Req.6.2 to Req.5.6,
and then set derive as the stereotype.

6. Click OK to close the Features dialog box.

7. Click the Save button to save your model.
Rational Rhapsody 61

Lesson 1: Creating Use Case Diagrams
Rational Rhapsody automatically adds the dependency relationships to the browser,
as shown in the following figure.

Note: As mentioned earlier, you can use the tools on the Layout toolbar to help you
with the layout of selected elements in your diagram. For example, you can
select Req.4.2 and Req.3.2 and use Align Bottom to align them to be on
the same bottom edge or you can select all the requirement icons in your
drawing and use Same Size to resize them so that they are the same size.
Keep in mind that the last element selected is used as the default.

In addition, if you want to move a drawn element (including labels) on a
drawing more precisely, click one or more elements, press the Ctrl key and use
the standalone directional arrow keys. You can also use the directional arrows
on the numeric keypad with NumLock not active.

You have completed drawing the Data Call Requirements use case diagram.It should resemble the
Data Call Requirements Use Case Diagram figure.
62 C++ Tutorial

Summary
Summary
In this lesson, you created use case diagrams that show the functions and requirements of the
wireless telephone and placing a call. You became familiar with the parts of a use case diagram
and created the following:

� System boundary box
� Actors
� Use cases
� Association lines
� Dependencies
� Generalizations
� Requirements

In the next lesson, you are going to define the components of the system and the flow of
information using structure diagrams.
Rational Rhapsody 63

Lesson 1: Creating Use Case Diagrams
64 C++ Tutorial

Lesson 2: Creating Structure Diagrams
Structure diagrams define the system structure and identify the large-scale organizational pieces of
the system. They can show the flow of information between system components and the interface
definition through ports. In large systems, the components are often decomposed into functions or
subsystems modules.

Goals for this Lesson
In this lesson, you are going to create the following structure diagrams:

� Handset System to identify the object-level components and flow of information
� Connection Management to identify the ConnectionManagement functions
� Data Link to identify the DataLink functions

� MM Architecture Structure to identify the MobilityManagement function
For ease of presentation, this section includes both the system and subsystem structure diagrams.

Exercise 1: Creating the Handset System Structure
Diagrams

The Handset System diagram is a structure diagram that identifies the system components
(objects) and describes the flow of data between the components from a black-box perspective. In
Lesson 3: Creating Object Model Diagrams, you are going to decompose the system components
(objects) to show the subsystems and flow of data (that is, a white-box perspective).

You draw structure diagrams using the following general steps:

1. Draw objects.

2. Draw ports.

3. Draw flows.

This exercise describes each of these steps in detail.
Rational Rhapsody 65

Lesson 2: Creating Structure Diagrams
The following figure shows the Handset System structure diagram that you are going to create in
this exercise.

Handset System Structure Diagram
66 C++ Tutorial

Exercise 1: Creating the Handset System Structure Diagrams
Task 1a: Creating the Handset System Structure Diagram

In this task, you are going to create a structure diagram called Handset System.

To create a structure diagram, follow these steps:

1. Start Rational Rhapsody and open the handset model if they are not already open.

2. In the browser, expand the Packages category, right-click the ArchitecturePkg package
select Add New > Structure Diagram. The New Diagram dialog box opens.

3. Type Handset System, as shown in the following figure:

4. Click OK to close the dialog box.
Rational Rhapsody 67

Lesson 2: Creating Structure Diagrams
Rational Rhapsody automatically creates the Structure Diagrams category in the browser, and
adds the name of the new structure diagram. In addition, Rational Rhapsody opens the new
diagram in the drawing area, as shown in the following figure:
68 C++ Tutorial

Exercise 1: Creating the Handset System Structure Diagrams
Task 1b: Drawing Objects

An object is an entity with a well-defined boundary and identity that encapsulates state and
behavior. State is represented by attributes and relationships, whereas behavior is represented by
operations, methods, and state machines.

An object is an instance of a class. In object-oriented languages such as C++, a class is a template
for the creation of instances (objects) that share the same attributes, operations, methods,
relationships, and semantics.

For more information about objects, classes, states, behavior, semantics, and so forth, refer to the
IBM Rational IBM Rational Rhapsody User Guide.

The handset model contains the following three system components or functions:

� ConnectionManagement to handle the reception, setup, and transmission of incoming
and outgoing call requests.

� MobilityManagement to handle the registration and location of users.
� DataLink to monitor registration.

Use the Handset System Structure Diagram figure as a reference.

To draw the objects, follow these steps:

1. Click the Object button on the Drawing toolbar.

2. Click the top center of the drawing area. (You can also use click-and-drag.) Rational
Rhapsody creates an object with a default name of object_n, where n is equal to or
greater than 0.

3. Rename the object ConnectionManagement press Enter.

4. Click the Object button on the Drawing toolbar, but this time click the upper right of
the drawing area and rename the object MobilityManagement.

5. Click the Object button on the Drawing toolbar, but this time click the bottom right of
the drawing area and rename the object DataLink.

Note: You can use the tools on the Layout toolbar to help you with the layout of
selected elements in your diagram. Keep in mind that the last element selected
is used as the default. Plus, if you want to move a drawn element (including
labels) on a drawing more precisely, click one or more elements, press the Ctrl
key and use the standalone directional arrow keys. You can also use the
directional arrows on the numeric keypad with NumLock not active.
Rational Rhapsody 69

Lesson 2: Creating Structure Diagrams
Defining the Object Stereotype
To indicate that the ConnectionManagement, MobilityManagement, and DataLink objects are
subsystems that are to be further decomposed, you must set the stereotype to Subsystem.

To define the stereotype, follow these steps:

1. Double-click the ConnectionManagement object, or right-click and select Features. The
Features dialog box opens.

2. On the General tab, in the Stereotype box, select the Subsystem in PredefinedTypes
Cpp check box, as shown in the following figure:

Note: After you make your selection, Subsystem appears in the box.

3. Click Apply to apply your changes.

4. With the Features dialog box still open, set the stereotype to Subsystem for the
MobilityManagement and DataLink objects.

5. When done setting stereotypes, click OK to close the Features dialog box.

6. Right-click one of the objects (for example, ConnectionManagement) and select Display
Options. The Display Options dialog box opens.
70 C++ Tutorial

Exercise 1: Creating the Handset System Structure Diagrams
7. Make the following settings for the object:

a. In the Display Name group, select the Label option button.

b. Clear the Show Stereotype Label check box.

c. In the Image View group, select the Enable Image View check box select the Use
Associated Image option button; click the Advanced button to open the Advanced
Image View Options dialog box and select the Structured option button click OK to
close the dialog box.

d. Click OK to close the Display Options dialog box.

The object appears on your drawing with its label underlined. This is the default style
for the appearance of the label. In addition, the object shows the image associated
with it. The number in the upper left corner shows the multiplicity for the object.

8. Set the same display options for the other objects (for example, MobilityManagement
and DataLink if you already did ConnectionManagement).

9. Save your model. Your Handset System structure diagram and browser should resemble
the following figure:
Rational Rhapsody 71

Lesson 2: Creating Structure Diagrams
Task 1c: Drawing More Objects

In this task, you are going to draw the two objects that interact with the system: UI (user interface)
and Net (network).

To draw these objects, follow these steps:

1. Click the Object button on the Drawing toolbar.

2. Click the upper, left corner of the drawing window. (You can also use click-and-drag.)
Rational Rhapsody creates an object with a default name of object_n, where n is equal to
or greater than 0.

3. Rename the object UI press Enter.

4. Create another object, but this time click the bottom center of the drawing area and rename
the object Net.

Setting the Object Stereotype and Type
You can define the features of an object, including the stereotype and type, using the Features
dialog box. The type specifies the class of which the object is an instance; that is, it provides a
unique instance for each object.

In this task, you are going to define and set the stereotype for the UI and Net objects to Actor to
indicate that the objects are actors. You also going to set the UI object type to MMI in
AnalysisPkg and the Net object type to Network in AnalysisPkg.

To set the stereotype and type, follow these steps:

1. Double-click the UI object, or right-click and select Features. The Features dialog box
opens.

2. On the General tab, set the following options:

a. In the Stereotype box, select <<New>>.

b. Type Actor in the Name box of the dialog box that appears click OK. After you
make your selection, Actor appears in the Stereotype box, as shown in the following
diagram.

Note: This step is necessary if you are creating the handset model from scratch
because there are no stereotypes created for the ArchitecturePkg package yet.
If you are using the handset model provided with the Rational Rhapsody
product you will see an Actor in Architecture check box in the drop-down list
for the Stereotype box, because this stereotype would have already been
created for the package.
72 C++ Tutorial

Exercise 1: Creating the Handset System Structure Diagrams
c. In the Type box, select MMI in AnalysisPkg.

3. Click Apply to apply the changes.

4. Rational Rhapsody displays a message stating that turning object to be of a specific type
will cause the loss of current object features. Click Yes to continue.

5. Click OK to close the dialog box.

6. Open the Features dialog box for the Net object and set the following options:

a. In the Stereotype box, select the Actor in Architecture check box.

b. In the Type box, select Network in AnalysisPkg.

7. Click Apply to apply the changes.

8. Rational Rhapsody displays a message stating that turning object to be of a specific type
will cause the loss of current object features. Click Yes to continue.

9. Click OK to close the dialog box.

10. Right-click one of the objects (for example, UI) and select Display Options. The Display
Options dialog box opens.

11. Make the following settings for the object:

a. In the Display Name group, select the Label option button.
Rational Rhapsody 73

Lesson 2: Creating Structure Diagrams
b. Clear the Show Stereotype Label check box.

c. Click OK to close the Display Options dialog box.

12. Repeat the previous step to set the same display options for the Net object.

13. Save your model. Your diagram and browser should resemble the following figure:
74 C++ Tutorial

Lesson 2: Creating Structure Diagrams
15. Click OK to close the Features dialog box.

Rational Rhapsody adds the provided and required interfaces to the mm_dl port in the
Object Diagram. Rational Rhapsody also adds the receptions to the Events category in
ArchitecturePkg package, as shown in the following figure:

16. To specify the port interfaces for dl_in, double-click the dl_in port, or right-click and
select Features. The Features dialog box opens.

17. On the General tab, from the Contract drop-down list box, select In.

18. Select the Contract tab. Notice that Rational Rhapsody automatically added the provided
interfaces previously defined as In.

19. Select the Required folder icon click the Add button. The Add New Interface dialog box
opens.

20. From the Interface drop-down list box, select Out click OK. Rational Rhapsody
automatically adds the required interfaces previously defined as Out.

21. Click OK to apply the changes and close the Features dialog box.
86 C++ Tutorial

Exercise 1: Creating the Handset System Structure Diagrams
Reversing a Port
In this task, you are going to reverse a port.You can reverse ports so that the provided interfaces
become the required interfaces, and the required interfaces become the provided interfaces.

To reverse the dl_in port, follow these steps:

1. Open the Features dialog box for the dl_in port.

2. On the General tab, in the Attributes group, select the Reversed check box.

3. Click OK.

4. Save your model.

You have completed drawing the Handset System structure diagram, which should resemble
the Handset System Structure Diagram figure.
Rational Rhapsody 87

Lesson 2: Creating Structure Diagrams
Task 1g: Allocating the Functions Among Subsystems

Now that you have captured the architectural design in the Object Diagram, you need to divide the
operations of the system into its functional subsystems and allocate the activities among the
subsystems.

Note
For ease of presentation, this section includes both the system and subsystem structure
diagrams. Depending on your workflow, you might perform further black-box analysis with
activity diagrams, sequence diagrams, and statecharts, and white-box analysis using
sequence diagrams before decomposing the system’s functions into subsystem components.

Organizing the SubsystemsPkg Package
Packages let you divide the system into functional domains or subsystems, which consist of
objects, object types, functions, variables, and other logical artifacts. They can be organized into
hierarchies to provide a high level of partitioning.

In this task, you are going to create the following subpackages, which represent the functional
subsystems:

� CM_Subsystem for ConnectionManagement
� DL_Subsystem for DataLink
� MM_Subsystem for MobilityManagement.

To create packages within the Subsystems package, follow these steps:

1. In the browser, right-click SubsystemsPkg and select Add New > Package. Rational
Rhapsody creates a new Packages category within SubsystemsPkg and a package with
the default name package_n, where n is greater or equal to 0.

2. Rename the package CM_Subsystem press Enter.
88 C++ Tutorial

Exercise 1: Creating the Handset System Structure Diagrams
3. Right-click Packages (under SubsystemsPkg), select Add New Package, and create two
additional packages named DL_Subsystem and MM_Subsystem, as shown below:

Organizing Elements
In this task, you are going to allocate the subsystem objects from the Object Diagram in the
ArchitecturePkg package to their respective packages in the SubsystemsPkg package by moving
them.

To organize elements, follow these steps:

1. In the browser, expand the ArchitecturePkg package and the Objects category.

2. Select the <<Subsystem>> ConnectionManagement object and drag it into the
CM_Subsystem package.

3. Select the <<Subsystem>> DataLink object and drag it into the DL_Subsystem
package.
Rational Rhapsody 89

Lesson 2: Creating Structure Diagrams
4. Select the <<Subsystem>> MobilityManagement object and drag it into the
MM_Subsystem package.

The objects are removed from the ArchitecturePkg package and added to the
SubsystemsPkg packages, as shown in the following figure:

5. Save your model.

You can decompose the system-level objects in the Handset System structure diagram into
sub-objects and corresponding structure diagrams to show their decomposition. In the later
sections, you are going to create the following subsystem structure diagrams:

� Connection Management from the ConnectionManagement object
� Data Link from the DataLink object
� MM Architecture from the Mobility Management object
90 C++ Tutorial

Exercise 2: Creating the Connection Management Structure Diagram
Exercise 2: Creating the Connection Management
Structure Diagram

The Connection Management structure diagram decomposes the ConnectionManagement object
into its subsystems. Connection Management identifies how calls are set up, including the
establishment and clearing of calls, short message services, and supplementary services.

The following figure shows the Connection Management structure diagram that you are going to
create in this exercise.

Connection Management Structure Diagram
Rational Rhapsody 91

Lesson 2: Creating Structure Diagrams
Task 2a: Creating the Connection Management Structure Diagram

To create the Connection Management structure diagram, follow these steps:

1. In the browser, if not already expanded, expand the Packages category, the
SubsystemsPkg package, the Packages package, the CM_Subsystem package and the
Objects category. Right-click <<Subsystem>> ConnectionManagement and select
Add New > Structure Diagram. The New Diagram dialog box opens.

or

In the Handset System structure diagram, right-click ConnectionManagement and select
New Structure Diagram. The New Diagram dialog box opens.

2. Type Connection Management Structure click OK.

Rational Rhapsody automatically creates the Structure Diagrams category in the
CM_Subsystem object, and adds the name of the new structure diagram. In addition, Rational
Rhapsody opens the new diagram in the drawing area

Task 2b: Drawing Objects

In this task, you are going to draw the following objects, which represent the activities performed
by Connection Management:

� Connection to track the number of valid connections
� CallList to maintain the list of currently active calls
� CallControl to manage incoming and outgoing calls
� SMS to manage the short message services
� SupplementaryServices to manage the supplementary services, including call waiting,

holding, and barring
To draw objects, follow these steps:

1. Click the Object button on the Drawing toolbar click or click-and-drag in the upper,
left corner of ConnectionManagement. Rational Rhapsody creates an object with a
default name of object_n, where n is equal to or greater than 0.

2. Rename the object Connection press Enter.

3. Draw the CallList, CallControl, SMS, and SupplementaryServices objects using the
Connection Management Structure Diagram figure as a reference.
92 C++ Tutorial

Exercise 2: Creating the Connection Management Structure Diagram
Task 2c: Drawing Ports

In this task, you are going to draw ports using the Connection Management Structure Diagram
figure as a reference.

To draw ports, follow these steps:

1. Click the Create Port button on the Drawing toolbar click the left edge of the
CallControl object.

2. Type cc_mm press Enter. This port relays messages to and from MobilityManagement.

3. Click the Create Port button on the Drawing toolbar click the right edge of the
CallControl object.

4. Type cc_in press Enter. This port relays messages from the user interface.

Changing the Placement of Ports
When Rational Rhapsody adds the ConnectionManagement object to the diagram, it places the
ports defined in the Handset System structure diagram (created in exercise 1 of this lesson) on the
boundary. You can change the port placement by selecting the port and dragging it to another
location on the object.

To change port placement, follow these steps:

1. Typically, the ports from the ConnectionManagement object are not visible. To make
them visible, right-click the object and select Ports > Show All Ports.

2. Use the Connection Management Structure Diagram figure as a reference and change the
placement of the call_req and network ports, if necessary.

3. Save your model.
Rational Rhapsody 93

Lesson 2: Creating Structure Diagrams
Task 2d: Drawing Links

In this task, you are going to draw links between objects and ports. A link is an instance of an
association. You can specify links without having to specify the association being instantiated by
the link; you can specify features of links that are not mapped to an association. Use the
Connection Management Structure Diagram figure as a reference.

To draw links, follow these steps:

1. Click the Link button on the Drawing toolbar click the cc_mm port click the network
port, and then click the mouse button again (this is the same as pressing Enter).

2. Click the Link button click the cc_in port click the call_req port, and then click the
mouse button again or press Enter.

3. Click the Link button click the CallControl object click the Connection object, and
then click the mouse button again or press Enter.

4. Click the Link button click the CallControl object click the CallList object, and then
click the mouse button again or press Enter.

5. Click the Link button click the CallControl object click the SMS object, and then
click the mouse button again or press Enter.

6. Click the Link button click the CallControl object click the SupplementaryServices
object, and then click the mouse button again or press Enter.
94 C++ Tutorial

Exercise 2: Creating the Connection Management Structure Diagram
7. Save your model. In the browser, expand the <<Subsystem>> ConnectionManagement
category to view the newly created links and parts, as shown in the following figure:

You have completed drawing the Connection Management diagram. It should resemble the
Connection Management Structure Diagram figure.
Rational Rhapsody 95

Lesson 2: Creating Structure Diagrams
Exercise 3: Creating the Data Link Structure Diagram
The Data Link structure diagram decomposes the DataLink object into its subsystems. It
identifies how the system monitors registration.

The following figure shows the Data Link structure diagram that you are going to create in this
exercise.

Data Link Structure Diagram
96 C++ Tutorial

Exercise 3: Creating the Data Link Structure Diagram
Task 3a: Creating the Data Link Structure Diagram

To create the Data Link diagram, follow these steps:

1. In the browser, if not already expanded, expand the Packages category, the
SubsystemsPkg package, the Packages package, the DL_Subsystem package, and the
Objects category. Right-click <<Subsystem>> DataLink and select Add New >
Structure Diagram. The New Diagram dialog box opens.

or

Right-click DataLink in the Handset System structure diagram and select New Structure
Diagram. The New Diagram dialog box opens.

2. Type Data Link click OK.

Rational Rhapsody automatically creates the Structure Diagrams category in the
<<Subsystem>> DL_Subsystem object, and adds the name of the new structure diagram. In
addition, Rational Rhapsody opens the new diagram in the drawing area.

Task 3b: Drawing Objects

In this task, you are going to draw the RegistrationMonitor object, which represents the activity
performed by the DataLink object. Use the Data Link Structure Diagram figure as a reference.

To draw the RegistrationMonitor object, follow these steps:

1. Click the Object button on the Drawing toolbar click or click-and-drag in the center of
DataLink.

2. Type RegistrationMonitor press Enter.
Rational Rhapsody 97

Lesson 2: Creating Structure Diagrams
Task 3c: Drawing Ports

In this task, you are going to draw ports using the Data Link Structure Diagram figure as a reference.

To draw ports, follow these steps:

1. Click the Create Port button on the Drawing toolbar.

2. Click the right edge of RegistrationMonitor and create a port named reg_request press
Enter. This port relays registration requests and results.

3. If the ports for the DataLink object are not visible, right-click the object and select
Ports > Show All Ports.

4. If the ports for the DataLink object are not located as shown on the Data Link Structure
Diagram figure, change these port placements by selecting a port and dragging it to
another location on the object. For example, you might have to drag dl_in to the right
edge of the DataLink object. This makes the Data Link structure diagram easier to work
with.

Task 3d: Drawing Links

To draw links, follow these steps:

1. Click the Link button on the Drawing toolbar.

2. Click the reg_request port click the dl_in port click the mouse button again or press
Enter.
98 C++ Tutorial

Exercise 3: Creating the Data Link Structure Diagram
Task 3e: Specifying the Port Contract and Attributes

In this task you are going to specify the port contract and features for reg_request using the Data
Link Structure Diagram figure as a reference.

To specify the port contract and attributes, follow these steps:

1. Double-click the reg_request port, or right-click and select Features. The Features dialog
box opens.

2. On the General tab, in the Attributes group, select the Behavior and Reversed check
boxes.

3. On the Contract tab, select the Provided folder icon click the Add button. The Add New
Interface dialog box opens.

4. From the Interface drop-down list box, select In click OK.

Rational Rhapsody automatically adds the Provided and Required interfaces.

5. On the General tab, from the Contract drop-down list box, select In.

6. Click Apply. Rational Rhapsody displays a message that the port is not realized. Click Yes
to add the realization.

7. Click OK to close the Features dialog box.

8. Save your model.

You have completed drawing the Data Link structure diagram. It should resemble the Data Link
Structure Diagram figure. Rational Rhapsody automatically adds the newly created objects, links,
and ports to the DataLink object in the browser.
Rational Rhapsody 99

Lesson 2: Creating Structure Diagrams
Exercise 4: Creating the MM Architecture Structure
Diagram

The MM Architecture diagram decomposes the MobilityManagement object into its subsystems.
Mobility Management supports the mobility of users, including registering users on the network
and providing their current location.

The following figure shows the MM Architecture diagram that you are going to create in this
exercise.

MM Architecture Structure Diagram
100 C++ Tutorial

Exercise 4: Creating the MM Architecture Structure Diagram
Task 4a: Creating the MM Architecture Diagram

To create the MM Architecture diagram, follow these steps:

1. In the browser, if not already expanded, expand the Packages category, the
SubsystemsPkg package, the Packages package, the MM_Subsystem package, and the
Objects category. Right-click <<Subsystem>> MobilityManagement and select Add
New > Structure Diagram. The New Diagram dialog box opens.

or

Right-click MobilityManagement in the Handset System structure diagram, and select
New Structure Diagram. The New Diagram dialog box opens.

2. Type MM Architecture click OK.

Rational Rhapsody automatically creates the Structure Diagrams category in the
MM_Subsystem object, and adds the name of the new structure diagram. In addition,
Rational Rhapsody opens the new diagram in the drawing area.

Task 4b: Drawing Objects

In this task, you are going to draw the following objects, which represent the activities performed
by MobilityManagement:

� Registration to maintain the registration status
� Location to track the location of users
� MMCallControl to maintain the logic for MobilityManagement

To draw objects, follow these steps:

1. Click the Object button on the Drawing toolbar click (or click-and-drag) in the upper,
left corner of MobilityManagement.

2. Type Registration, and then press Enter.

3. Draw two objects and name them Location and MMCallControl. Use the MM Architecture
Structure Diagram figure as a reference.
Rational Rhapsody 101

Lesson 2: Creating Structure Diagrams
Task 4c: Drawing Ports

In this task, you are going to draw ports using the MM Architecture Structure Diagram figure as a
reference.

To draw ports, follow these steps:

1. Click the Create Port button on the Drawing toolbar click the left edge of the
MMCallControl object and name the port mm_cc press Enter. This port relays
information to ConnectionManagement.

2. Click the Create Port button on the Drawing toolbar click the right edge of the
MMCallControl object and name the port cc_in press Enter. This port sends and
receives information from the DataLink.

3. If the ports for the MobilityManagement object are not visible, right-click the object and
select Ports > Show All Ports.

4. If the ports for the MobilityManagement object are not located as shown on the MM
Architecture Structure Diagram figure, change a port placement by selecting it and
dragging it to another location on the object. This makes the MM Architecture structure
diagram easier to work with.

Task 4d: Drawing Links

In this task, you are going to draw links using the MM Architecture Structure Diagram figure as a
reference.

To draw links, follow these steps:

1. Click the Link button on the Drawing toolbar click the mm_cc port click the mm_dl
port, and then click the mouse button again (this is the same as pressing Enter).

2. Click the Link button click the cc_in port click the mm_network port, and then click
the mouse button again or press Enter.

3. Click the Link button click the MMCallControl object click the Registration object,
and then click the mouse button again or press Enter.

4. Click the Link button click the MMCallControl object click the Location object,
and then click the mouse button again or press Enter.
102 C++ Tutorial

Exercise 4: Creating the MM Architecture Structure Diagram
Task 4e: Specifying the Port Contract and Attributes

In this task, you are going to specify the port contract and attributes for the mm_cc port.

To specify the port contract and attributes, follow these steps:

1. Double-click the mm_cc port, or right-click and select Features. The Features dialog box
opens.

2. On the General tab, specify the following settings:

a. From the Contract drop-down list box, select In.

b. In the Attributes group, select the Behavior check box.

3. Click Apply. Rational Rhapsody displays a message that the port is not realized. Click Yes
to add the realization.

Rational Rhapsody automatically adds the provided and required interfaces to the
Contract tab.

4. Click OK to close the dialog box.

5. Save your model.

You have completed drawing the MM Architecture diagram. It should resemble the MM
Architecture Structure Diagram figure. Rational Rhapsody automatically adds the newly created
objects, links, and ports to the MobilityManagement object in the browser.
Rational Rhapsody 103

Lesson 2: Creating Structure Diagrams
Summary
In this lesson, you created a system-level structure diagram, and then decomposed that diagram
into functions to show how the software systems trace to the system functional objects. You
became familiar with the parts of a structure diagram and created the following:

� Objects
� Ports
� Flows
� Links
� Dependencies

As mentioned earlier, for ease of presentation, this section included both the system and subsystem
structure diagrams. Depending on your workflow, you might identify the communication scenarios
using sequence diagrams (which are covered in Lesson 5: Creating Sequence Diagrams) before
defining the flows, flowitems, and port contracts.

In addition, you might perform black-box analysis using activity diagrams (which are covered in
Lesson 6: Creating Activity Diagrams), sequence diagrams, and statecharts (which are covered in
Lesson 7: Creating Statecharts). You might perform white-box analysis using sequence diagrams
before decomposing the system’s functions into subsystem components.

You are now ready to proceed to the next lesson, where you are going to define how the system
components are interconnected using object model diagrams.
104 C++ Tutorial

Lesson 3: Creating Object Model
Diagrams
Object model diagrams (OMDs) specify the structure of the classes, objects, and interfaces in the
system and the static relationships that exist between them. Object model diagrams provide a
graphical representation of the system structure. The Rational Rhapsody code generator directly
translates the elements and relationships modeled in OMDs into C++ source code.

Goals for this Lesson
In this lesson, you are going to create the Subsystem Architecture object model diagram, which
shows how the system components are interconnected at the subsystem level, and identifies the
port connections and the flow of information between components as links.
Rational Rhapsody 105

Lesson 3: Creating Object Model Diagrams
Exercise 1: Creating the Subsystem Architecture OMD
Object model diagrams show the types of objects in the system, the attributes and operations that
belong to those objects, and the static relationships that can exist between classes (types).

The following figure shows the Subsystem Architecture object model diagram that you are going
to create in this exercise.

Subsystem Architecture Object Model Diagram
106 C++ Tutorial

Exercise 1: Creating the Subsystem Architecture OMD
Task 1a: Creating the Subsystem Architecture Object Model Diagram

The Subsystem Architecture object model diagram identifies how the system components are
interconnected at the subsystem level. It shows the realization of flows between objects through
links and ports. Flows are used for high-level analysis, and links are used for executability
(realization of flows).

You draw an object model diagram using the following general steps:

1. Draw objects.

2. Draw links.

The following tasks describe each of these steps in detail.

To create an object model diagram, follow these steps:

1. Start Rational Rhapsody and open the handset model if they are not already open.

2. In the browser, expand the Packages category, right-click the SubsystemsPkg package
select Add New > Object Model Diagram. The New Diagram dialog box opens.

3. Type Subsystem Architecture click OK.

Rational Rhapsody adds the Object Model Diagrams category and the name of the new object
model diagram to the browser. Rational Rhapsody also opens the new object model diagram in the
drawing area.
Rational Rhapsody 107

Lesson 3: Creating Object Model Diagrams
Task 1b: Drawing Objects

In this task, you are going to draw objects for the Subsystem Architecture object model diagram.
Use the Subsystem Architecture Object Model Diagram figure as a reference.

To draw objects for the object model diagram, follow these steps:

1. In the Rational Rhapsody browser, expand Packages package, the CM_Subsystem
package, and the Objects category.

2. Click the <<Subsystem>> ConnectionManagement object and drag it to the upper, left
side of the drawing area. The ConnectionManagement object and its ports are added to
the diagram.

3. In the browser, expand the MM_Subsystem package and the Objects category.

4. Click the <<Subsystem>> MobilityManagement object and drag it to the upper, right
side of the drawing area.

5. In the browser, expand the DL_Subsystem package and the Objects category.

6. Click the <<Subsystem>> DataLink object and drag it to the lower, right side of the
drawing area.

7. To make the drawing a little easier to work with, make the following settings for all the
objects in your diagram:

a. Right-click an object in the drawing area (for example, ConnectionManagement)
and select Display Options. The Display Options dialog box opens.

b. On the General tab, in the Display Name group, select the Name only option button.

c. Click OK.

8. Save your model.
108 C++ Tutorial

Exercise 1: Creating the Subsystem Architecture OMD
Task 1c: Drawing More Objects

The Subsystem Architecture object model diagram contains the UI object defined in the Handset
System structure diagram you created in Exercise 1: Creating the Handset System Structure
Diagrams in the previous lesson. The UI object interacts with ConnectionManagement to
establish and clear calls, and request and receive data services.

Use the Subsystem Architecture Object Model Diagram figure as a reference to do this task.

To draw the UI object in your object model diagram, follow these steps:

1. In the browser, expand the ArchitecturePkg package and the Objects category.

2. Click the <<Actors>> UI object and drag it to the bottom, left side of the object model
diagram. The UI object and its port are added to the diagram.

Note: When Rational Rhapsody add an object to a diagram, it places the object’s ports
on the object’s boundary. Using the Subsystem Architecture Object Model
Diagram figure as a reference, change the placement of ports by selecting a port
and dragging it to the location shown in the following figure. Doing this makes
the diagram easier to work with.
Rational Rhapsody 109

Lesson 3: Creating Object Model Diagrams
Task 1d: Drawing Links

In this task, you are going to draw links that show the flow of information for the Subsystem
Architecture object model diagram. A link is an instance of an association.

To draw a link, follow these steps:

1. Click the Link button on the Drawing toolbar.

2. Click the network port and then click the mm_network port click the mouse button again
(this is the same as pressing Enter).

3. Draw the following links:

� From the call_req port to the ui_req port
� From the mm_dl port to the dl_in port

4. Save your model.

You have completed drawing the Subsystem Architecture diagram. It should resemble the
Subsystem Architecture Object Model Diagram figure.

Summary
In this lesson, you created an object model diagram, which shows how the system components are
interconnected. You became familiar with the parts of an object model diagram and added the
following elements:

� Objects
� Links

In Lesson 2: Creating Structure Diagrams, you specified some ports and links between them on
structure diagrams. In this lesson, you specified some ports and links at the overall system level.

You are now ready to proceed to the next lesson, where you are going to generate code and build
your handset model in its current state. This lets you determine whether the model meets the
requirements and identify defects early on in the design process.
110 C++ Tutorial

Lesson 4: Generating Code and Building
Your Model
It is good practice to test the model incrementally using model execution. You can animate pieces
of the model as it is developed. This gives you the opportunity to determine whether the model
meets the requirements and find defects early on. Then you can test the entire model. In this way,
you iteratively build the model, and then with each iteration perform an entire model validation.

Goals for this Lesson
In this lesson, you are going to generate code for the handset model and build your model at its
current point by doing the following:

� Create a component
� Set the component features

� Create a configuration
� Generate code in Rational Rhapsody
� Build your handset model
Rational Rhapsody 111

Lesson 4: Generating Code and Building Your Model
Exercise 1: Preparing for Generating Code
Before you generate code, you must do the following general steps:

1. Create a component and set its features.

2. Create a configuration.

3. Generate component code.

4. Build the component application.

5. Run the component application.

The following tasks describe these steps in detail.

Task 1a: Creating a Component

A component is a physical subsystem in the form of a library or executable program. It plays an
important role in the modeling of large systems that contain several libraries and executables. Each
component contains configuration and file specification categories, which are used to generate,
build, and run the executable model.

Each project contains a default component, named DefaultComponent. You can use the default
component or create a new component. In this task, you are going to rename the default
component Simulate, and then use the Simulate component to animate the model.

To use the default component, follow these steps:

1. In the Rational Rhapsody browser, expand the Components category.

2. Double-click DefaultComponent to open the Features dialog box.

3. In the Name box, replace the name DefaultComponent with Simulate.

4. Click Apply. Do not close the dialog box.
112 C++ Tutorial

Exercise 1: Preparing for Generating Code
Task 1b: Setting the Component Features

Once you have created the component, you must set its features.

To set the component features, follow these steps:

1. If you closed the Features dialog box from the previous task, open it. In the Rational
Rhapsody browser, double-click Simulate or right-click and select Features.

2. On the General tab, in the Type group, select the Executable option button if it is not
already selected.

3. On the Scope tab:

a. Select the Selected Elements option button.

b. Select the AnalysisPkg, ArchitecturePkg, and SubsystemsPkg check boxes. These
are the packages for which you are going to generate code. Do not select
RequirementsPkg because you are not going to generate code for it.

Your Scope tab should look like the following figure.

4. Click OK.
Rational Rhapsody 113

Lesson 4: Generating Code and Building Your Model
Task 1c: Creating a Configuration

A component can contain many configurations. A configuration specifies how the component is to
be produced.

Each component contains a default configuration, named DefaultConfig. In this task, you are
going to rename the default configuration to Debug, and then use the Debug configuration to
animate the model.

To use the default configuration, follow these steps:

1. In the Rational Rhapsody browser, expand the Simulate component and the
Configurations category.

2. Double-click DefaultConfig to open the Features dialog box.

3. In the Name box, replace DefaultConfig with Debug.

4. Click OK.
114 C++ Tutorial

Exercise 1: Preparing for Generating Code
Task 1d: Generating Code

In this task you generate code in Rational Rhapsody. Before you generate code, you must first set
the active configuration. The active configuration is the configuration for which you generate
code. The active configuration appears in the drop-down list on the Code toolbar.

To set the active configuration and generate code for the Debug configuration, follow these steps:

1. In the Rational Rhapsody browser, right-click the Debug configuration select Set as
Active Configuration.

Note: You can also select the active configuration from the drop-down list on the
Code toolbar.

2. Select Code > Generate > Debug. Rational Rhapsody displays a message that the Debug
directory does not yet exist and asks you to confirm its creation.

3. Click Yes. Rational Rhapsody places the files generated for the active configuration in the
new Debug directory.

Rational Rhapsody generates the code and displays output messages in the Build tab of the Output
window, as shown in the following figure:

Note
As you can see, when you generated code you received warnings; see About Code
Generation Warnings.
Rational Rhapsody 115

Lesson 4: Generating Code and Building Your Model
The messages inform you of the code generation status, including:

� Success or failure of internal checks for the correctness and completeness of your model.
These checks are performed before code generation begins.

� Names of files generated for classes and packages in the configuration.
� Names of files into which the main() function is generated.
� Location of the generated make file.
� Completion of code generation.

Fixing Code Generation Errors
If you receive code generation errors, double-click the error in the Output window to go to the
source of the error. The source of the error appears as a highlighted element. Once you fix the
problem, regenerate the code, and rebuild the application until there are no error messages.

About Code Generation Warnings
If you receive code generation warnings, double-click the warning in the Output window to go to
the source of the warning. The source of the warning appears as a highlighted element. You might
be able to fix the warning. Or you might leave the warning as is because your model is not yet fully
formed.

In this case, the five warnings you received is because your model is not yet fully formed so that
all your port connections are not yet in place. For now, you will ignore the warnings. They will go
away as you continue to build the handset model.

In other cases, if you do have warnings that are valid for the current state of your mode, fix them
regenerate the code, and rebuild the application until those warnings are no longer appearing.

Examining Generated Source Files
To examine any of the generated source files, go to the \Simulate\Debug subfolder of the handset
project.

Using External Elements
The Rational Rhapsody product enables you to visualize frozen legacy code or edit external code
as external elements. This external code is code that is developed and maintained outside of the
Rational Rhapsody product. This code will not be regenerated by the Rational Rhapsody product,
but will participate in the code generation and build process of Rational Rhapsody models that
interact or interface with this external code. You can create external elements by reverse
engineering the files or by modeling. Refer to the IBM Rational Rhapsody User Guide for more
information on using external elements.
116 C++ Tutorial

Exercise 1: Preparing for Generating Code
Task 1e: Building the Model

Once you generate code without any errors, you are ready to build the model.

To build the model, do one of the following:

� Select Code > Build Simulate.exe, or

� Click the Make button on the Code toolbar.
Rational Rhapsody builds the model by performing the following tasks:

� Executes the makefile that it generated for the configuration.
� Sets up the environment for the compiler.
� Starts the compiler and linker, which run on the generated code. Once the code is compiled

and linked, the Rational Rhapsody product displays the message Build Done in the
Output window.

For a successful model build, the Build tab of the Output window should resemble the following
figure:
Rational Rhapsody 117

Lesson 4: Generating Code and Building Your Model
Fixing Build Errors
If you receive build errors, double-click the error in the Output window to go to the source of the
error. The source of the error appears as a highlighted element. Once you fix the problem,
regenerate the code and rebuild the application until there are no error messages.

Any time you make changes to the model, you need to regenerate and rebuild the model before
animating it. For more information about full code generation and an incremental code generation,
refer to the IBM Rational Rhapsody User Guide. (Search the user guide PDF for “incremental code
generation.”) You might also find it useful to use the Clean function. Do a search of the user guide
PDF for “deleting old objects.”

Summary
In this lesson, you created generated code and built your model at its current point. You performed
the following:

� Created a component and set its features
� Created a configuration
� Set a configuration as the active configuration
� Generated code in Rhapsody
� Built the handset model at its current point

You are now ready to proceed to the next lesson, where you continue to creating your handset
model. You are going to define the message exchange between subsystems and subsystem
modules when placing a call using sequence diagrams. You also get to regenerate code and rebuild
your model, plus you learn a little about animation.
118 C++ Tutorial

Lesson 5: Creating Sequence Diagrams
Sequence diagrams (SDs) describe how structural elements communicate with one another over
time, and identify the required relationships and messages. Sequence diagrams can be used at
different levels of abstraction. At higher levels of abstractions, sequence diagrams show the
interactions between actors, use cases, and objects. At lower levels of abstraction and for
implementation, sequence diagrams show the communication between classes and objects.

Sequence diagrams have an executable aspect and are a key animation tool. When you animate a
model, Rational Rhapsody dynamically builds sequence diagrams that record the object-to-object
messaging.

Goals for this Lesson
In this lesson, you are going to create the following sequence diagrams:

� Place Call Request Successful to identify the message exchange when placing a call
� NetworkConnect to identify the scenario of connecting to the network
� Connection Management Place Call Request Success to identify the message exchange

between functions when placing a call
For ease of presentation, this section includes all sequence diagrams. Depending on your
workflow, you might first identify the high-level communication scenario of placing a call and
then refine the high-level structure diagram and object model diagrams, before defining the
communication scenarios of the modules.

In addition, in this lesson you are going to set up for animation, as well as do a little by animating
one of the sequence diagrams you create in this section.
Rational Rhapsody 119

Lesson 5: Creating Sequence Diagrams
Exercise 1: Creating the Place Call Request Successful
SD

The Place Call Request Successful sequence diagram shows how subsystems interact during the
scenario of successfully requesting to place a call. It identifies the order and exchange of messages
between the objects as represented in the Handset System structure diagram, which you created in
Lesson 2. By describing the flows through scenarios, you create the logical interfaces of the
objects. For example, if a message is shown going into the DataLink object, you can see that the
message belongs to the object as an event or operation.

You draw a sequence diagram using the following general steps:

1. Draw the actor lines.

2. Draw classifier roles.

3. Draw messages.

4. Draw interaction occurrences.

This exercise describes each of these steps in detail.
120 C++ Tutorial

Exercise 1: Creating the Place Call Request Successful SD
The following figure shows the Place Call Request Successful sequence diagram that you are
going to create in this exercise.

Place Call Request Successful Sequence Diagram

Rational Rhapsody separates sequence diagrams into a Names pane and a Message pane. The
Names pane contains the name of each instance line or classifier role. The Message pane contains
the elements that make up the interaction.

Message
Pane

Names
Pane
Rational Rhapsody 121

Lesson 5: Creating Sequence Diagrams
Task 1a: Creating the Place Call Request Sequence Diagram

To create a new sequence diagram, follow these steps:

1. Start Rational Rhapsody and open the handset model if they are not already open.

2. In the Rational Rhapsody browser, right-click the SubsystemsPkg package, and select
Add New > Sequence Diagram. The New Diagram dialog box opens.

3. Type Place Call Request Successful, as shown in the following figure.

4. In the Operation Mode group, select the Design option button.

Rational Rhapsody lets you create sequence diagrams in two modes:

a. In analysis mode, you draw message sequences without adding elements to the
model. This means you can brainstorm your analysis and design without affecting the
generated source code. Once the design is finalized, you can realize the instance lines
and messages so that they display in the Rational Rhapsody browser, and can have
code generated for them.

b. In design mode, every instance line and message you create or rename can be realized
as an element (class, object, operation, or event) that appears in the Rational
Rhapsody browser, and for which code can be generated. When you draw a message,
Rational Rhapsody asks if you want to realize it. Click Yes to realize the message.

5. Click OK to close the dialog box.
122 C++ Tutorial

Exercise 1: Creating the Place Call Request Successful SD
Rational Rhapsody automatically creates the Sequence Diagrams category in the
SubsystemsPkg package, and adds the name of the new sequence diagram. In addition,
Rational Rhapsody opens the new diagram in the drawing area.

Note
You can also create a sequence diagram using the Tools menu. Refer to the IBM Rational
Rhapsody User Guide for more information.

Task 1b: Drawing Actor Lines

In this task, you are going to draw the actor lines that represent the two objects, MMI and
Network, as defined in the Handset System structure diagram by dragging them from the Rational
Rhapsody browser to the diagram. Actor lines show how actors participate in the scenario. Actors
are represented as instance lines with a column of diagonal lines. In use case diagrams and
sequence diagrams, actors describe the external elements with which the system context interacts.
For placement of the actor lines, use the Place Call Request Successful Sequence Diagram figure as
a reference.

To draw actor lines, follow these steps:

1. In the Rational Rhapsody browser, expand the ArchitecturePkg package and the Objects
category.

2. Click the UI object and drag-and-drop it at the beginning of the sequence diagram.
Rational Rhapsody creates the actor line.

3. Click the Net object and drag-and-drop it at the end of the sequence diagram.
Rational Rhapsody 123

Lesson 5: Creating Sequence Diagrams
Task 1c: Drawing Classifier Roles

In this task, you are going to draw the classifier roles that represent the system components,
ConnectionManagement, MobilityManagement, and DataLink.Classifier roles or instance
lines are vertical timelines labeled with the name of an instance, which indicate the lifecycle of
classifiers or objects that participate in the scenario. They represent a typical instance in the
scenario being described. Classifier roles can receive messages from or send messages to other
instance lines. Time proceeds downward on the vertical axis. For placement of the classifier roles,
use the Place Call Request Successful Sequence Diagram figure as a reference.

To draw classifier roles, follow these steps:

1. In the Rational Rhapsody browser, expand the SubsystemsPkg package, the Packages
category, the CM_Subsystem package, and the Objects category.

2. Click <<Subsystem>> ConnectionManagement and drag-and-drop it next to the UI
object. Rational Rhapsody creates the classifier role with the name of the role in the
Names pane.

3. In the browser, expand the MM_Subsystem package and the Objects category. Click
<<Subsystem>> MobilityManagement and drag-and-drop it next to
ConnectionManagement.

4. In the browser, expand the DL_Subsystem package and the Objects category. Click
<<Subsystem>> DataLink and drag-and-drop it next to MobilityManagement.

5. Save your model.

Note
To add white space to (or remove it from) a sequence diagram (such as between actors lines
and classifier roles), press the Shift key and drag the actor line or classifier role to its new
location.
124 C++ Tutorial

Exercise 1: Creating the Place Call Request Successful SD
Task 1d: Drawing Messages

A message represents an interaction between objects, or between an object and the environment. A
message can be an event, a triggered operation, or a primitive operation. Depending on the shape
of the line, Rational Rhapsody interprets the message as follows:

� If the message line is horizontal, the message is interpreted as a triggered operation if the
target is a reactive class, or a primitive operation if the target is a nonreactive class. A
message line that is horizontal indicates that the operations are synchronous.

� If the message line is slanted, the message is interpreted as an event if the target is a
reactive class, or as a primitive operation if the target is a nonreactive class. A message
line that is slanted emphasizes that time passes between the sending and receiving of
messages. Message lines that are slanted can cross each other.

� If the message line returns to itself, the message is interpreted as a primitive operation if
the arrow folds back to a nonreactive class or if the arrow folds back immediately; or it is
interpreted as an event if the arrow folds back sometime later. The arrow can be on either
side of the instance line.

Note
Reactive classes can receive events, triggered operations, and primitive operations.
Non-reactive classes can receive only messages that are calls to primitive operations.

In this task, you are going to draw events that represent the exchange of information when placing
a call. The UI actor issues a request to connect when placing a call. Call and connect confirmations
occur between MobilityManagement and ConnectionManagement. Alerts occur between
MobilityManagement and DataLink. The user receives confirmation from
ConnectionManagement. Use the Place Call Request Successful Sequence Diagram figure as a
reference.

To draw messages, follow these steps:

1. Click the Message button on the Drawing toolbar.

2. Click the UI actor line to show that the first message comes from the UI actor when the
user issues the command to place a call request.

3. Click the ConnectionManagement line to create a downward-slanted diagonal line.
Rational Rhapsody creates a message with the default name event_n(), where n is an
incremental integer starting with 0.
Rational Rhapsody 125

Lesson 5: Creating Sequence Diagrams
4. Rename the message PlaceCallReq press Enter.

Note: Because you are creating the sequence diagram in design mode, each time you
draw a new message, Rational Rhapsody asks if you want to realize the
message. Click Yes to realize each new message.

5. Draw the following messages using the Place Call Request Successful Sequence Diagram
figure as a reference:

a. From ConnectionManagement to MobilityManagement, named PlaceCallReq

b. From MobilityManagement to ConnectionManagement, named CallConfirm

c. From MobilityManagement to DataLink, named Alert

6. Leave a space for the interaction occurrence (reference sequence diagram) you are going
to create in Task 1e: Drawing an Interaction Occurrence.

7. Draw the following messages using the Place Call Request Successful Sequence Diagram
figure as a reference:

– From MobilityManagement to ConnectionManagement, named
ConnectConfirm

– From ConnectionManagement to the UI actor, named ConfirmIndication.
8. Save your model.
126 C++ Tutorial

Exercise 1: Creating the Place Call Request Successful SD
9. In the Rational Rhapsody browser, view the realized events. Rational Rhapsody adds the
new realized events to the package in which the message is passed. Rational Rhapsody
adds CallConfirm, ConnectConfirm, and PlaceCallReq to the Events category in the
CM_Subsystem package, as shown in the following figure.

Note
To locate an event in the Rational Rhapsody browser, select the element in the sequence
diagram and click the Locate in Browser button on the standard toolbar or select Edit >
Locate in Browser.
Rational Rhapsody 127

Lesson 5: Creating Sequence Diagrams
Task 1e: Drawing an Interaction Occurrence

In this task, you are going to draw an interaction occurrence. An interaction occurrence (or
reference sequence diagram) allows you to refer to another sequence diagram from within a
sequence diagram. It lets you break down complex scenarios into smaller scenarios that can be
reused.

To draw an interaction occurrence, follow these steps:

1. Click the Interaction Occurrence button on the Drawing toolbar.

2. Using the Place Call Request Successful Sequence Diagram figure as a reference, draw the
interaction occurrence below the Alert message and across the MobilityManagement
instance line and the Net actor line. The interaction occurrence appears as a box with the
Ref label in the top corner.

3. Type NetworkConnect. You are going to draw the NetworkConnect diagram in the next
section, Exercise 2: Creating the NetworkConnect SD.

4. Save your model.

You have completed drawing the Place Call Request Successful sequence diagram. It should
resemble the Place Call Request Successful Sequence Diagram figure.
128 C++ Tutorial

Exercise 2: Creating the NetworkConnect SD
Exercise 2: Creating the NetworkConnect SD
As mentioned in the previous exercise, NetworkConnect is a reference sequence diagram. In this
exercise, you create this sequence diagram, which shows the scenario of connecting to the network
when placing a call. It is a generic interaction that can be reused within voice, data, supplementary
services, and short message services.

The following figure shows the NetworkConnect sequence diagram that you are going to create in
this exercise.

NetworkConnect Sequence Diagram
Rational Rhapsody 129

Lesson 5: Creating Sequence Diagrams
Task 2a: Creating the NetworkConnect Sequence Diagram

To create the NetworkConnect sequence diagram, right-click the interaction occurrence, which
you named NetworkConnect previously in the Place Call Request Successful sequence diagram,
and select Create Reference Sequence Diagram. Rational Rhapsody opens the new diagram in
the drawing area containing the three functions the interaction occurrence crosses on the Place Call
Request Successful sequence diagram, and adds the NetworkConnect sequence diagram to the
Rational Rhapsody browser.

Opening a Reference Sequence Diagram
When needed, once you have created a reference sequence diagram, you can open it using the
following methods:

� Double-click the name of the diagram in the Rational Rhapsody browser.
� Right-click the interaction occurrence in the Place Call Request Successful sequence

diagram and select Create Reference Sequence Diagram.

Task 2b: Drawing Messages

In this task, you are going to draw events using the NetworkConnect Sequence Diagram figure as a
reference.

To draw messages, follow these steps.

Note
For a cleaner presentation of the task, re-order the classifier roles (DataLink and
MobilityManagement) and actor line (Net:Network) as shown in the NetworkConnect
Sequence Diagram figure. (Use click-and-drag in the drawing area.)

1. Click the Message button on the Drawing toolbar.

2. Draw the following messages:

– From DataLink to Net, named Alert
– From MobilityManagement to DataLink, named ConnectionRequest
– From DataLink to Net, named Alert
– From Net to DataLink, named AlertCnf
– From Net to DataLink, named ChannelOpen
– From DataLink to MobilityManagement, named ChannelOpen

Note: When prompted, click Yes to realize each new message.

Rational Rhapsody adds the new realized events to the browser.
130 C++ Tutorial

Exercise 2: Creating the NetworkConnect SD
Task 2c: Drawing Time Intervals

In this task, you are going to set a time interval of 3 seconds in which MobilityManagement
checks for a connection request. Sequence diagrams can specify the maximum amount of time that
can elapse between two points. A time interval is a vertical annotation that shows how much (real)
time should pass between two points in the scenario. The name of the time interval is free text; it is
not constrained to be a number or unit.

To draw a time interval, follow these steps:

1. Click the Time Interval button on the Drawing toolbar.

2. Click near the top of the MobilityManagement line click the origin of the
ConnectionRequest event. Rational Rhapsody draws two horizontal lines at the start and
end points of the time interval, and a two-headed vertical arrow in the middle, indicating
the time lapse between the two points.

3. Edit the label on the time interval (<n sec>) as follows:

every 3 seconds

4. Save your model.

You have completed drawing the NetworkConnect diagram. It should resemble the
NetworkConnect Sequence Diagram figure.
Rational Rhapsody 131

Lesson 5: Creating Sequence Diagrams
Task 2d: Moving Events

The SubsystemsPkg package contains the sequence diagrams that detail the design of the system
and the flow of information. When you draw messages on the sequence diagrams, several
messages are added to the Events category in the ArchitecturePkg package. To make these events
available for model execution, you need to move them from the ArchitecturePkg package to the
SubsystemsPkg package.

To move events, follow these steps:

1. Expand the ArchitecturePkg package and the Events category.

2. Select Alert and drag-and-drop it in the SubsystemsPkg package. Rational Rhapsody
automatically creates the Events category in the SubsystemsPkg package and adds the
Alert event.

3. Drag-and-drop the remaining events from the ArchitecturePkg package to the
SubsystemsPkg package.

Note: You can select multiple events to move by using Shift+Click.

4. Expand the SubsystemsPkg package and Events category to view the events you moved,
as shown in the following figure. Also notice that there is no longer an Events category in
the ArchitecturePkg package.
132 C++ Tutorial

Exercise 3: Creating the Connection Management Place Call Request Success SD
Exercise 3: Creating the Connection Management
Place Call Request Success SD

The Connection Management Place Call Request Success sequence diagram shows the interaction
of the subsystem modules. It identifies the part decomposition interaction when placing a
successful call.

The following figure shows the Connection Management Place Call Request Success sequence
diagram that you are going to create in this lesson.

Connection Management Place Call Request Success Sequence Diagram
Rational Rhapsody 133

Lesson 5: Creating Sequence Diagrams
Task 3a: Creating the Connection Management Place Call Request
Success Sequence Diagram

Because the Connection Management Place Call Request Success sequence diagram identifies
how the modules communicate, you are going to create it in the SubsystemsPkg package.

To create the Connection Management Place Call Request Success sequence diagram, follow these
steps:

1. In the Rational Rhapsody browser, expand the SubsystemsPkg package right-click
Sequence Diagrams and select Add New Sequence Diagram. The New Diagram dialog
box opens.

2. Type Connection Management Place Call Request Success.

3. In the Operation Mode group, select the Design option button.

4. Click OK to close the dialog box.

Rational Rhapsody adds the name of the new sequence diagram to the Sequence Diagrams
category in the browser. In addition, Rational Rhapsody opens the new diagram in the drawing
area.

Task 3b: Drawing the System Border

In this task, you are going to draw the system border. The system border represents the
environment and is shown as a column of diagonal lines. Events or operations that do not come
from instance lines are drawn from the system border. You can place a system border anywhere an
instance line can be placed; the most usual locations are the left or right side of the sequence
diagram. Use the Connection Management Place Call Request Success Sequence Diagram figure as
a reference.

To draw the system border, follow these steps:

1. Click the System Border button on the Drawing toolbar.

2. Click on the left side of the diagram to place the border.
134 C++ Tutorial

Exercise 3: Creating the Connection Management Place Call Request Success SD
Task 3c: Drawing Classifier Roles

In this task, you are going to draw the classifier roles that represent the internal functions of the
subsystems by dragging elements from the Rational Rhapsody browser to the sequence diagram.
Use the Connection Management Place Call Request Success Sequence Diagram figure as a
reference.

To draw classifier roles, follow these steps:

1. In the Rational Rhapsody browser, expand the ConnectionManagement object and the
Parts category (found under the CM_Subsystem package).

2. Click CallControl and drag-and-drop it next to the system border. Rational Rhapsody
creates the classifier role with the name of the function in the Names pane.

3. Click CallList and drag-and-drop it next to CallControl.

4. Click Connection and drag-and-drop it next to CallList.

5. In the browser, expand the MobilityManagement object and the Parts category (found
under the MM_Subsystem package).

6. Click MMCallControl and drag-and-drop it next to Connection.

7. In the browser, expand the DataLink object and the Parts category (found under the
DL_Subsystem package).

8. Click RegistrationMonitor and drag-and-drop it next to MMCallControl.

9. Save your model. Your Connection Management Place Request Success sequence
diagram should resemble the following figure:
Rational Rhapsody 135

Lesson 5: Creating Sequence Diagrams
Task 3d: Drawing Messages

When the system receives a request to place a call, it validates and registers the user; once
registered, it monitors the user’s location. The call and connection are confirmed, the connection is
set up, and confirmation is provided.

In this task, you are going to draw events using slanted lines, primitive operations using horizontal
lines, and messages-to-self. Use the Connection Management Place Call Request Success Sequence
Diagram figure as a reference. When prompted, click Yes to realize each new message.

To draw messages, follow these steps:

1. Click the Message button on the Drawing toolbar.

2. Draw the following events using slanted lines:

a. From the system border to the CallControl line, named PlaceCallReq

b. From CallControl to MMCallControl, named PlaceCallReq

c. From MMCallControl to RegistrationMonitor, named RegistrationReq

d. From RegistrationMonitor to MMCallControl, named ChannelOpen

3. Draw a message-to-self on the MMCallControl instance line, named locationUpdate.

Note: Message names are case-sensitive.

4. Draw the following events:

a. From MMCallControl to CallControl, named CallConfirm

b. From MMCallControl to CallControl, named ConnectConfirm

5. Draw the following primitive operations using horizontal lines:

a. From CallControl to CallList, named addToCallList

b. From CallControl to Connection, named addConnection

6. Draw an event from CallControl to the system border, named ConfirmIndication.

Rational Rhapsody adds the new realized events and primitive operations to the part to which the
message is passed. For example, Rational Rhapsody adds locationUpdate to the Operations
category in the MMCallControl part (found under the MM_Subsystem package).
136 C++ Tutorial

Exercise 3: Creating the Connection Management Place Call Request Success SD
Task 3e: Setting the Features of locationUpdate

In this task, you are going to set the return type and implementation for locationUpdate.

To set the features, follow these steps:

1. On the Rational Rhapsody browser, double-click locationUpdate (expand the
MM_Subsystem package, the MobilityManagement object, and then MMCallControl
part), or right-click and select Features. The Features dialog box opens.

2. On the General tab, in the Returns group, clear the Use existing type check box and in
the C++ Declaration box, type bool, as shown in the following figure.

3. On the Implementation tab, enter the following:

return TRUE;

4. Click OK.
Rational Rhapsody 137

Lesson 5: Creating Sequence Diagrams
Task 3f: Moving ConfirmIndication

When you drew messages on the sequence diagrams, the ConfirmIndication message was added
to the Events category in the AnalysisPkg package. To make this event available for model
execution, you need to move it from the AnalysisPkg package to the CM_Subsystem package.

To move ConfirmIndication, follow these steps:

1. Expand the AnalysisPkg package and the Events category.

2. Select ConfirmIndication and drag-and-drop it in the CM_Subsystem package. Rational
Rhapsody adds ConfirmIndication to the Events category.

3. Save your model.

You have completed drawing the Connection Management Place Request Success sequence
diagram. It should resemble the Connection Management Place Call Request Success Sequence
Diagram figure.
138 C++ Tutorial

Exercise 4: Animating a Sequence Diagram
Exercise 4: Animating a Sequence Diagram
As the model gets more and more complicated, it is a good practice to stop and validate the model
periodically and provide design-level debugging. One of the primary methods the Rational
Rhapsody product uses to simulate a model is animation.

In this exercise, you are going to animate the Connection Management Place Call Request Success
sequence diagram. Note that this exercise introduces you to animation. You will learn more about
and do more animation in subsequent lessons.

Animation is the observable execution of behaviors and associated definitions in the model.
Rational Rhapsody animates the model by executing the code generated, with instrumentation, for
classes, operations, and associations. Once you start model animation, you can open animated
diagrams, which let you observe the model as it is running and perform design-level debugging.
You can step through the model, set and clear breakpoints, inject events, and generate an output
trace.

Task 4a: Changing the Settings for the Debug Configuration

In Lesson 4: Generating Code and Building Your Model you created a component and configuration
so that you could generate code and build the handset model at that point in time. To be able to
animate a model, you have to change the settings for the Debug configuration.

To change the settings for the Debug configuration for animation, follow these steps:

1. In the Rational Rhapsody browser, double-click Debug or right-click and select Features.
The Features dialog box opens.

2. On the Initialization tab, make sure the following values are already set (they should be):

a. In the Initial Instances group, select the Explicit option button.

b. Select the Generate Code for Actors check box.

Note: For more information about these options, refer to the IBM Rational Rhapsody
User Guide. (Do a search of the user guide PDF for “initialization tab” and go
to the section on this topic.)

3. Define the environment so that Rational Rhapsody knows how to create an appropriate
makefile. On the Settings tab, set the following values:

a. In the Instrumentation group, from the Instrumentation Mode drop-down list box,
select Animation. This adds instrumentation code, which makes it possible to
animate the model.

b. In the Time Model group, if not already selected, select the Real (for real time)
option button.
Rational Rhapsody 139

Lesson 5: Creating Sequence Diagrams
c. In the Statechart Implementation group, if not already selected, select the Flat
option button. Rational Rhapsody implements states as simple, enumerated-type
variables.

d. Rational Rhapsody sets the values in the Environment Settings group based on the
compiler settings you configured during installation. If you want to use a different
compiler, select a system compiler from the drop-down menu in the Environment
box.

This example uses a system with the Microsoft compiler, as shown in the following
figure. Your environment might use a different compiler.

4. Click OK.
140 C++ Tutorial

Exercise 4: Animating a Sequence Diagram
Task 4b: Regenerating Code and Rebuilding Your Model

Before you can run animation for any of the sequence diagrams you created in this lesson, you
have to regenerate the code and rebuild your model.

To regenerate code and rebuild your model, follow these steps:

1. Make sure Debug is your active configuration. It should appear in boldtype in the Rational
Rhapsody browser when it is set as the active configuration. If needed, in the Rational
Rhapsody browser, right-click the Debug configuration select Set as Active
Configuration.

Note: If you have more than one configuration, you can also select the active
configuration from the drop-down list on the Code toolbar.

2. If the Output window is already open and there is information on the Build tab, to ensure
that you will only be looking at information for the latest code generation/build,
right-click on the tab select Clear. You might want to do this if information from a
previous generation/build is still there.

3. Select Code > Re Generate > Debug. If applicable, fix any errors noted on the Build tab
of the Output window.

4. Select Code > Rebuild Simulate.exe. If applicable, fix any errors noted on the Build tab.

Task 4c: Starting Animation

Note
If you have many diagrams opened in the drawing area, you might find it less confusing if
you close them before you do this task. To close a diagram, click the Windows Close
button for the diagram. Save a diagram if necessary.

If you have any sequence diagrams already open, Rational Rhapsody automatically creates
an animated sequence diagram for each one that is open. Closing all sequence diagrams
before you do this task will be less confusing, as this task deals with only one sequence
diagram.

To start animation, do one of the following:

� Select Code > Run Simulate.exe, or

� Click the Run Executable button .
Rational Rhapsody 141

Lesson 5: Creating Sequence Diagrams
Rational Rhapsody starts animation and performs the following tasks:

� Runs the application to main().

� Displays the Animation toolbar, which lets you control the animation process.
� Displays a log window, which provides input to and output from the model. You can

position and resize the log and Rational Rhapsody windows so both are visible.
� Displays the following two output panes:

– Call Stack to show the logical call stack of the executing model at the design
level, rather than the code level.

– Event Queue to show the events waiting on the event queue of the executing
process.

Note
If the output panes are not displayed, select View > Call Stack or View > Event Queue.
The output panes are dockable, so you can move them out of the Rational Rhapsody GUI to
increase the viewable area for animations. To move a window, click-and-drag it to another
location.
142 C++ Tutorial

Exercise 4: Animating a Sequence Diagram
Task 4d: Animating a Sequence Diagram

Animated sequence diagrams show how objects pass messages while the model is executing. You
do not manually add messages to an animated sequence diagram—the animation process adds
them for you while the model is running. This means you can observe the communication taking
place in the system. You can then compare the message sequence to the non-animated sequence
diagrams to see whether the model is behaving correctly.

In this task, you are going to animate the Connection Management Place Call Request Success
sequence diagram you created in Exercise 3: Creating the Connection Management Place Call
Request Success SD.

To animate the sequence diagram, follow these steps:

1. Select Tools > Animated Sequence Diagram. The Open Sequence Diagram dialog box
opens.

2. Expand SubsystemsPkg and select Connection Management Place Call Request
Success, as show in the following figure.

3. Click Open. This creates an animated version of the SD with the same instance lines as
the original, but without the messages.
Rational Rhapsody 143

Lesson 5: Creating Sequence Diagrams
4. Click the Go button on the Animation toolbar. Rational Rhapsody creates the
constructors for the objects, as shown in the following figure.
144 C++ Tutorial

Exercise 4: Animating a Sequence Diagram
Task 4e: Viewing the Browser

During animation, Rational Rhapsody adds the Instances category to the Rational Rhapsody
browser, which provides information on the status of instances, and their attributes and relations.

To view the Instances category on the Rational Rhapsody browser, follow these steps:

1. In the browser, expand the SubsystemsPkg package, the CM_Subsystem package, the
ConnectionManagement object, and then Instances category.

2. From the browser filter drop-down list, select Animation View so that the browser
displays only the elements relevant to your current task.
Rational Rhapsody 145

Lesson 5: Creating Sequence Diagrams
3. Double-click ConnectionManagement or right-click and select Features. The Features
dialog box opens with the current values of all the initialized attributes and relations for
ConnectionManagement, as shown in the following figure.

4. Click OK.

5. Save your model. Answer Yes when asked if you want to save your animated Connection
Management Place Call Request Success sequence diagram.
146 C++ Tutorial

Summary
Task 4f: Quitting Animation

To end the animation session, follow these steps:

1. Click the Animation Break button on the Animation toolbar click the Quit Animation

button .

2. Click Yes to confirm ending the animation session.

The Animation tab on the Output window displays the message Animation session terminated.

Note
When you close the project or an animated diagram, Rational Rhapsody prompts whether or
not you want to save the animated diagram. Saving an animated diagram is useful in order
to compare the results of the current session to those of different execution scenarios.

Summary
In this lesson, you created sequence diagrams, which identify the message exchange between
subsystems and subsystem modules when placing a call. You became familiar with the parts of a
sequence diagram and created the following:

� System border
� Classifier roles and actor lines
� Interaction occurrences
� Events and primitive operations
� Time intervals
� Timeouts

In this lesson, you also set up for animation. To test that you can do animation, you created an
animated sequence diagram. You will learn more about and do more animation in subsequent
lessons.

You are now ready to proceed to the next lesson, where you are going to identify the functional
flow of users placing a call and registering users on the network using activity diagrams.
Rational Rhapsody 147

Lesson 5: Creating Sequence Diagrams
148 C++ Tutorial

Lesson 6: Creating Activity Diagrams
Activity diagrams show the dynamic aspects of a system and the flow of control from activity to
activity. They describe the essential interactions between the system and the environment, and the
interconnections of behaviors for which the subsystems or components are responsible. They can
also be used to model an operation or the details of a computation. In addition, you can animate
activity diagrams to verify the functional flow.

Goals for this Lesson
In this lesson, you are going to create the following activity diagrams:

� MMCallControl to identify the functional flow of users placing a call, which includes
registering users on the network, providing their current location, and obtaining an
acceptable signal strength.

� InCall to identify the flow of information once the system connects the call.
� RegistrationMonitor to identify the functional flow of registering users on the network,

which includes monitoring registration requests and sending received requests to the
network.

In addition, in this lesson, you are going to animate an activity diagram.
Rational Rhapsody 149

Lesson 6: Creating Activity Diagrams
Exercise 1: Creating the MMCallControl Activity
Diagram

The MMCallControl activity diagram shows the functional flow that supports the mobility of users
when placing a call, which includes registering users on the network, providing their current
location, and obtaining an acceptable signal strength. When the user places a call, the system
leaves the Idle action element, checks for an acceptable signal strength and whether the wireless
telephone is registered. It then waits for the call to connect and enters a connection action element.

An action element represents function invocations with a single exit transition when the function
completes.

Note
The activity diagrams in this section use labels to provide descriptions of the actions, rather
than language.

You are going to draw an activity diagram using the following general steps:

1. Draw swimlanes.

2. Draw action elements.

3. Draw a subactivity.

4. Draw send action states.

5. Draw a default flow.

6. Draw transitions.

This exercise describes these steps in detail.
150 C++ Tutorial

Exercise 1: Creating the MMCallControl Activity Diagram
Task 1a: Creating an Activity Diagram

To create an activity diagram, follow these steps:

1. Start Rational Rhapsody and open the handset model if they are not already open.

2. In the Rational Rhapsody browser, expand the SubsystemsPkg package, the
MM_Subsystem package, the MobilityManagement object, and the Parts category.
Right-click MMCallControl and select Add New > Activity Diagram.

or

Open the MM Architecture structure diagram. Right-click MMCallControl and select
New Activity Diagram.

Rational Rhapsody automatically adds the Activity Diagram category and the new activity
diagram for the MMCallControl part in the Rational Rhapsody browser, and opens the new
activity diagram in the drawing area.
Rational Rhapsody 151

Lesson 6: Creating Activity Diagrams
The following figure shows the MMCallControl activity diagram that you are going to create in
this exercise.

MMCallControl Activity Diagram
152 C++ Tutorial

Exercise 1: Creating the MMCallControl Activity Diagram
Task 1b: Drawing Swimlanes

In this task, you are going to draw swimlanes. Swimlanes organize activity diagrams into sections
of responsibility for actions and subactions. Vertical, solid lines separate each swimlane from
adjacent swimlanes. To draw swimlanes, you first need to create a swimlane frame and then a
swimlane divider. Use the MMCallControl Activity Diagram figure as a reference.

To draw swimlanes, follow these steps:

1. You might find it helpful to expand the drawing area by closing the Rational Rhapsody
browser (click the browser’s Close button or select View > Browser). This gives you
more space for the drawing area.

2. Click the Swimlanes Frame button on the Drawing toolbar.

3. Click to place one corner drag diagonally to draw the swimlane frame.

4. Click the Swimlanes Divider button on the Drawing toolbar for each swimlane:

� Click about a third of the way in from the left edge of the swimlane frame. You
have created two swimlines. The one on the left is named swimlane_0 and the
one on the right is named swimlane_1.

� Click about the middle of swimlane_1 to create a third swimlane. You have three
swimlanes: swimlane_0, swimlane_2, and swimlane_1. Your swimlane numbers
might be different.

5. Starting from the leftmost swimlane, change its name to Status, the middle swimlane to
Location, and the rightmost swimlane to SignalStrength. (Double-click the swimlane
to open its Features dialog box.)

� The Status swimlane tracks the status of calls.
� The Location swimlane tracks the location of users.
� The SignalStrength swimlane tracks the signal strength of users.
Rational Rhapsody 153

Lesson 6: Creating Activity Diagrams
6. Save your model. Your activity diagram should resemble the following figure:
154 C++ Tutorial

Exercise 1: Creating the MMCallControl Activity Diagram
Task 1c: Drawing Action Elements

In this task, you are going to draw the action elements that represent the functional processes, and
then add names to the action elements. Use the MMCallControl Activity Diagram figure as a
reference.

Note
You add names to action elements using the Features dialog box. When you draw an action
element and type a name in the action element on the diagram, that name becomes the
action, not the name of the action.

To draw action elements, follow these steps:

1. Click the Action button on the Drawing toolbar.

2. At the top of the Status swimlane, click to create an action element press Ctrl+Enter.

Note: If you press Enter, you move your cursor to a new line. In this case, you have
to press Ctrl+Enter to end your action.

3. Double-click the action element, or right-click the action element and select Features.
The Features dialog box opens.

4. On the General tab, in the Name box, type Idle. This indicates that no call is in progress.

5. On the Description tab, type the following:

Waiting in the Idle state for a call request.

6. Click OK to apply the changes and close the Features dialog box.

7. Set the display options. Right-click the action element, select Display Options:

a. From the Show Name group, select the Name option button.

b. From the Show Action, Description or Label group, select the Description option
button.

c. Click OK to close the Display Options dialog box.

Note: You can widen the action element if necessary to make the name and
description appear better on your diagram.
Rational Rhapsody 155

Lesson 6: Creating Activity Diagrams
8. Repeat the previous steps but create the following action elements where noted:

a. In the lower half of the Location swimlane, draw an action element and name it
LocationUpdate and include the following description:

Get a location update of the terminating party.

b. In the upper half of the SignalStrength swimlane, draw an action element and name
it CheckSignal.

c. Above the LocationUpdate action element, draw an action element and name it
Register.

d. Below the CheckSignal action element, draw an action element and name it
SignalOK. Your diagram should resemble the following figure:
156 C++ Tutorial

Exercise 1: Creating the MMCallControl Activity Diagram
Task 1d: Drawing a Default Flow

In this task, you are going to draw a default flow. The action element with the default flow is the
default action element. It is the initial action element of the object. Idle is in the default action
element as it waits for call requests. Once the default action is activated, other actions in the
MMCallControl activity diagram can happen. Use the MMCallControl Activity Diagram figure as a
reference.

To draw a default flow, follow these steps:

1. Click the Default Flow button on Drawing toolbar.

2. Click to the right of the Idle action element click its edge click the mouse button again
(this is the same as pressing Enter).

3. Save your model.

Task 1e: Drawing a Subactivity

In this task, you are going to draw the InCall subactivity, which indicates that the call has been
established. A subactivity represents the execution of a non-atomic sequence of steps nested within
another activity. It looks like an action element with a subactivity icon in its lower, right corner,
depicting a nested activity diagram. Use the MMCallControl Activity Diagram figure as a reference.

To draw a subactivity, follow these steps:

1. Click the Subactivity button on the Drawing toolbar.

2. In the bottom section of the Status swimlane, click to create a subactivity.

3. Double-click the subactivity element you just created, or right-click it and select Features.
The Features dialog box opens.

4. On the General tab, in the Name box, type InCall.

5. Click OK.

In the subsequent section, Exercise 2: Creating the InCall Subactivity Diagram, you are going to open
and draw the InCall subactivity diagram.
Rational Rhapsody 157

Lesson 6: Creating Activity Diagrams
Task 1f: Drawing Send Action States

The Send Action State element can be used to represent the sending of events to external entities.

Send Action State elements allow you to specify the event to send, the event target, and values for
event arguments. This is a language-independent element that is translated into the relevant
implementation language during code generation.

To define the element, provide the following information in the Features dialog box:

� From the Target drop-down list, select the object that is to receive the event.
� From the Event drop-down list, select the event that should be sent.
� When necessary, provide values for the event arguments by selecting the argument in the

argument list and clicking the Value column.
For more information about send action states, refer to the IBM Rational Rhapsody User Guide.
(Do a search of the user guide PDF file for “send action state elements” and go to the section on
this topic.)

To draw a send action state, follow these steps:

1. Click the Send Action State button on the Drawing toolbar.

2. Click in the Status swimlane between Idle and InCall.

3. Double-click the Send Action element on the diagram. The Features dialog box opens.

4. On the General tab, in the Target drop-down list, select mm_cc in SubsystemsPkg.

5. In the Event drop-down list, select <<New>>.

6. In the dialog box that opens, on the General tab, in the Name box, type Disconnect.

7. Click OK to close that dialog box.

8. Click OK to close the Features dialog box for the send action.

The Disconnect to mm_cc send action state element you just created sends an
asynchronous message out the mm_cc port when disconnecting.
158 C++ Tutorial

Exercise 1: Creating the MMCallControl Activity Diagram
9. Draw the following send action state elements:

� Between the Register and LocationUpdate action elements: For the Target,
select mm_cc in SubsystemsPkg; for the Event, select RegistrationReq in
SubsystemsPkg.

This send action state sends an asynchronous message out the mm_cc port for
registration requests.

� After the LocationUpdate element: For the Target, select cc_in in
SubsystemsPkg; for the Event, select CallConfirm in SubsystemsPkg.

� After the CallConfirm in SubsystemsPkg send action state element: For the
Target, select cc_in in SubsystemsPkg; for the Event, select ConnectConfirm
in SubsystemsPkg.

The last two send action states send asynchronous messages out the cc_in port.
10. Click OK to close the Features dialog box.

11. Save your model. Your model should resemble the following figure:
Rational Rhapsody 159

Lesson 6: Creating Activity Diagrams
Task 1g: Drawing Transitions

A transition represents a relationship between two states indicating that an object in the first state
will perform certain specified actions and enter the second state when a specified event occurs and
specified conditions are satisfied. In this task, you are going to draw the following transitions:

� Transitions between actions
� Fork and join transitions
� Timeout transition

Drawing Transitions Between Actions
In this task, you are going to draw two transitions: one named Disconnect, and one with the label
Registering. Use the MMCallControl Activity Diagram figure as a reference.

To draw transitions between actions, follow these steps:

1. Click the Activity Flow button on the Drawing toolbar.

2. Click the InCall subactivity action click the Disconnect to mm_cc send action state
element.

3. Type the name Disconnect press Ctrl+Enter.

Note: To change the line shape of a transition, right-click the line, select Line Shape,
and then Straight, Spline, Rectilinear, or Re-Route.

4. Draw a transition from the Disconnect to mm_cc send action state element to the Idle
action element.

5. Draw a transition from Register to the RegistrationReq to mm_cc send action state
element, and then from the send action state element to the LocationUpdate action
element.

You are going to label this element in the next set of instructions.

6. Draw a transition from CheckSignal to SignalOK.

Labeling Elements

In this task, you are going to label the transition between Register and RegistrationReq to
mm_cc.

You can assign a descriptive label to an element. The label of an element does not have any
meaning in terms of generated code, but it lets you to easily reference and locate elements in
diagrams and dialog boxes. A label can have any value and does not need to be unique.
160 C++ Tutorial

Exercise 1: Creating the MMCallControl Activity Diagram
To label elements, follow these steps:

1. Double-click the transition between Register and RegistrationReq to mm_cc or
right-click and select Features. The Features dialog box opens.

2. Click the L button next to the Name box. The Name and Label dialog box opens.

3. Type Registering in the Label box.

4. Click OK to close the Name and Label dialog box.

5. Click OK to close the Features dialog box.

6. To display the label, right-click the transition and select Display Options to open the
Display Options dialog box; from the Display Name group, select Label; then click OK.

7. Save your model. Your diagram should resemble the following figure:
Rational Rhapsody 161

Lesson 6: Creating Activity Diagrams
Task 1h: Drawing a Fork Synchronization

In this task, you are going to draw a fork synchronization bar. A fork synchronization represents
the splitting of a single flow into two or more outgoing flows. It is shown as a bar with one
incoming transition and two or more outgoing transitions. Use the MMCallControl Activity Diagram
figure as a reference.

To draw a fork synchronization bar, follow these steps:

1. Click the Draw Fork Sync Bar button on the Drawing toolbar.

2. In the Location swimlane, click above Register. Rational Rhapsody adds the fork
synchronization bar.

3. Click the Activity Flow button, and draw a single incoming transition from Idle to the
synchronization bar. Type PlaceCallReq press Ctrl+Enter. This transition indicates that
the interface has initiated a call request. PlaceCallReq corresponds to the trigger of the
transition.

4. Use the Activity Flow button to draw the following outgoing transitions from the
synchronization bar:

a. To the Register action.

b. To the CheckSignal action.

5. To change the line shape of a transition, right-click the line, select Line Shape, and then
Straight, Spline, Rectilinear, or Re-Route.
162 C++ Tutorial

Exercise 1: Creating the MMCallControl Activity Diagram
Task 1i: Drawing a Join Synchronization

In this task, you are going to draw a join synchronization bar. A join synchronization represents the
merging of two or more concurrent flows into a single outgoing flow. It is shown as a bar with two
or more incoming transitions and one outgoing transition. Use the MMCallControl Activity Diagram
figure as a reference.

To draw a join synchronization bar, follow these steps:

1. Click the Draw Join Sync Bar button on the Drawing toolbar.

2. Click below the LocationUpdate action element and above the CallConfirm to cc_in
send action state element. Rational Rhapsody adds the join synchronization bar.

3. Click the Activity Flow button, and draw the following incoming transitions to the
synchronization bar:

a. From LocationUpdate press Ctrl+Enter.

b. From SignalOK.

4. To change the line shape of a transition, right-click the line, select Line Shape, and then
Straight, Spline, Rectilinear, or Re-Route.

5. Draw one outgoing transition from the synchronization bar to CallConfirm to cc_in, type
ChannelOpen press Ctrl+Enter. This transition indicates that the channel is open and the
call can be established. ChannelOpen corresponds to the trigger of the transition.

6. Draw a transition from CallConfirm to cc_in to ConnectConfirm to cc_in.

7. Draw a transition from ConnectConfirm to cc_in to InCall.

8. Change the line shape if you want.
Rational Rhapsody 163

Lesson 6: Creating Activity Diagrams
9. Save your model. Your diagram should resemble the following figure:
164 C++ Tutorial

Exercise 1: Creating the MMCallControl Activity Diagram
Task 1j: Drawing a Timeout Transition

In this task, you are going to draw a timeout transition that monitors the signal strength of
transmissions every three seconds. A timeout transition causes an object to transition after a
specified amount of time has passed. It is an event with the form tm(n), where n is the number of
milliseconds the object should wait before making the transition. Use the MMCallControl Activity
Diagram figure as a reference.

To draw a timeout transition, follow these steps:

1. Click the Activity Flow button on the Drawing toolbar.

2. Draw a transition originating and ending with CheckSignal.

3. Type tm(3000) press Ctrl+Enter.

4. Save your model.

Task 1k: Specifying an Action on a Transition

In this task, you are going to specify actions for ChannelOpen.

To specify an action, follow these steps:

1. Double-click the ChannelOpen transition, or right-click and select Features. The
Features dialog box opens.

2. On the General tab, in the Action box, type the following code:

locationUpdate();

3. Click OK to apply the changes and close the Features dialog box. Rational Rhapsody
displays the transition name with the action command.

4. Save your model.

Note
To display the transition name without the action, you can type the transition name as the
label using the Features dialog box. Then right-click the transition and select Display
Options to open the Display Options dialog box, and from the Display Name group, select
Label click OK.

You have completed drawing the MMCall Control diagram. It should resemble the MMCallControl
Activity Diagram figure. Rational Rhapsody automatically adds the action elements and transitions
to the MMCallControl part in the browser.
Rational Rhapsody 165

Lesson 6: Creating Activity Diagrams
Exercise 2: Creating the InCall Subactivity Diagram
Subactivities represent nested activity diagrams. The InCall subactivity diagram shows the flow of
information once the system connects the call. The system monitors the signal strength for voice
data every 15 seconds. The following figure shows the InCall subactivity diagram that you are
going to create in this exercise.

InCall Subactivity Diagram
166 C++ Tutorial

Exercise 2: Creating the InCall Subactivity Diagram
Task 2a: Creating the InCall Subactivity Diagram

To create the InCall subactivity diagram, follow these steps:

1. Right-click InCall in the MMCallControl activity diagram.

2. Select Open Sub Activity Diagram.

Rational Rhapsody displays the subactivity diagram with the InCall activity in the drawing area.

Note
After you have created the subactivity diagram, you can open it through the Rational
Rhapsody browser too: Expand the MM_Subsystem package, the <<Subsystem>>
MobilityManagement object, the MMCallControl part, the Activity Diagram, and the
Actions category right-click InCall and select Open nested Activity Diagram.

Task 2b: Drawing Action Elements

In this task, you are going to draw the following action elements, and then add names to them. Use
the InCall Subactivity Diagram figure as a reference.

� VoiceData to process voice data
� CheckSignal to check the signal strength on the network

To draw the action elements, follow these steps:

1. Click the Action button on the Drawing toolbar and click in the top half of the InCall
action element press Ctrl+Enter.

2. Double-click the action element to open the Features dialog box, and on the General tab,
in the Name box, type VoiceData click OK.

3. Add an action element to the bottom section of the InCall action element.

4. Open the Features dialog box, and on the General tab, in the Name box, type
CheckSignal click OK.

5. For each action element, set the display options to Name to show the name on the
diagram. Select both action elements, right-click, select Display Options to open the
Display Options dialog box select Name from the Display Name group, and click OK.

Task 2c: Drawing a Default Flow

In this task, you are going to draw a default flow. The subactivity diagram must have an initial
action element. Execution begins with the initial action element when an input transition to the
subactivity action element is triggered. Use the InCall Subactivity Diagram figure as a reference.
Rational Rhapsody 167

Lesson 6: Creating Activity Diagrams
To draw the default flow, follow these steps:

1. Click the Default Flow button on the Drawing toolbar.

2. Click above VoiceData, then click VoiceData. Press Ctrl+Enter.

Task 2d: Drawing Transitions

In this task, you are going to draw a transition between VoiceData and CheckSignal. Use the
InCall Subactivity Diagram figure as a reference.

To draw transitions, follow these steps:

1. Click the Activity Flow button on the Drawing toolbar.

2. Draw a transition from VoiceData to CheckSignal. Press Ctrl+Enter.
168 C++ Tutorial

Exercise 2: Creating the InCall Subactivity Diagram
Task 2e: Drawing a Timeout Transition

In this task, you are going to draw a timeout transition to check for voice data every 15 seconds.
Use the InCall Subactivity Diagram figure as a reference.

To draw a timeout transition, follow these steps:

1. Click the Activity Flow button on the Drawing toolbar.

2. Draw a transition from CheckSignal to VoiceData.

3. Type tm(15000) press Ctrl+Enter.

4. To change the line shape of a transition, right-click the line, select Line Shape, and then
Straight, Spline, Rectilinear, or Re-Route.

5. Save your model.

You have completed drawing the InCall subactivity diagram. It should resemble the InCall
Subactivity Diagram figure. Rational Rhapsody automatically adds the newly created action
elements and transitions to the browser.
Rational Rhapsody 169

Lesson 6: Creating Activity Diagrams
Exercise 3: Creating the RegistrationMonitor Activity
Diagram

The RegistrationMonitor activity diagram shows the functional flow of network registration
requests. The system checks for registration requests and then sends received requests to the
network. The following figure shows the RegistrationMonitor activity diagram that you are going
to create in this exercise.

RegistrationMonitor Activity Diagram
170 C++ Tutorial

Exercise 3: Creating the RegistrationMonitor Activity Diagram
Task 3a: Creating the RegistrationMonitor Activity Diagram

To create the RegistrationMonitor activity diagram, do either of the following:

� In the Rational Rhapsody browser, expand the DL_Subsystem package, the
<<Subsystem>> DataLink object, and the Parts category. Right-click
RegistrationMonitor and select Add New > Activity Diagram.

or

� Open the Data Link structure diagram. Right-click RegistrationMonitor and select New
Activity Diagram.

Rational Rhapsody adds the Activity Diagram category and the new activity diagram to the
RegistrationMonitor part in the Rational Rhapsody browser, and opens the new activity diagram
in the drawing area.

Task 3b: Drawing Action Elements

In this task, you are going to draw three action elements and then add names to the action
elements. Use the RegistrationMonitor Activity Diagram figure as a reference.

To draw action elements, follow these steps:

1. Click the Action button on the Drawing toolbar.

2. In the upper section of the drawing window, create an action element press Ctrl+Enter.

3. Open the Features dialog box for this action element, in the Name box, type Idle. Click
OK.

4. Repeat the previous steps but create these additional action elements where noted:

a. Below Idle, with a name of InitiateRequest.

b. Below InitiateRequest, with a name of Success.

5. For each action element, set the display options to Name to show the name on the
diagram. Select all the action elements, right-click, select Display Options to open the
Display Options dialog box, from the Display Name group, select Name click OK.
Rational Rhapsody 171

Lesson 6: Creating Activity Diagrams
Task 3c: Drawing a Send Action State

As you did for the MMCallControl activity diagram in Exercise 1: Creating the MMCallControl
Activity Diagram, you are going to create a send action state to represent the sending of an event.
Use the RegistrationMonitor Activity Diagram figure as a reference.

To draw a send action state, follow these steps:

1. Click the Send Action State button on the Drawing toolbar.

2. Click between InitiateRequest and Success.

3. Double-click the Send Action State element on the diagram. The Features dialog box
opens.

4. On the General tab, in the Target drop-down list, select reg_request in SubsystemsPkg.

5. In the Event drop-down list, select ChannelOpen in SubsystemsPkg.

This command sends an asynchronous message out the reg_request port when the
channel is open.

6. Click OK.

Task 3d: Drawing a Default Flow

In this task, you are going to draw a default flow. Use the RegistrationMonitor Activity Diagram
figure as a reference.

To draw a default flow, follow these steps:

1. Click the Default Flow button on the Drawing toolbar.

2. Click above Idle click Idle. Press Ctrl+Enter.
172 C++ Tutorial

Exercise 3: Creating the RegistrationMonitor Activity Diagram
Task 3e: Drawing Transitions

In this task, you are going to draw transitions between action elements. Use the
RegistrationMonitor Activity Diagram figure as a reference.

To draw transitions, follow these steps:

1. Click the Activity Flow button on the Drawing toolbar.

2. Draw a transition from Idle to InitiateRequest. Type RegistrationReq press
Ctrl+Enter.

3. Click the Activity Flow button for each of these transitions:

� From InitiateRequest to ChannelOpen to reg_request press Ctrl+Enter.
� From ChannelOpen to reg_request to Success.

� From Success to Idle.
4. To change the line shape of a transition, right-click the line, select Line Shape, and then

Straight, Spline, Rectilinear, or Re-Route.

Task 3f: Drawing a Timeout Transition

In this task, you are going to draw a timeout transition to return to the Idle action element after 45
seconds if no response is received from the network. Use the RegistrationMonitor Activity Diagram
figure as a reference.

To draw a timeout transition, follow these steps:

1. Click the Activity Flow button on the Drawing toolbar.

2. Draw a transition from InitiateRequest to Idle.

3. Type the transition label tm(45000) press Ctrl+Enter.

4. Change the line shape if you want.

5. Save your model.

You have completed drawing the RegistrationMonitor diagram. It should resemble the
RegistrationMonitor Activity Diagram figure. Rational Rhapsody automatically adds the newly
created action elements and transitions to the RegistrationMonitor part in the Rational Rhapsody
browser.
Rational Rhapsody 173

Lesson 6: Creating Activity Diagrams
Exercise 4: Animating the MMCall Control Activity
Diagram

As mentioned in the previous lesson, as a model gets more and more complicated, it is a good
practice to stop and validate the model periodically and provide design-level debugging. In this
task, you are going to regenerate the code, rebuild the model, and animate the MMCall Control
activity diagram.

Animated activity diagrams show how states transition to other states while the model is
executing.

Note
You must have completed Lesson 4: Generating Code and Building Your Model and Lesson 5:
Creating Sequence Diagrams before you perform this task. In working through tasks in these
previous lessons, you set up the Simulate component and the Debug configuration, and you
made settings necessary for animation.

Task 4a: Regenerating Code and Rebuilding Your Model

Because you created activity diagrams in this lesson, you must regenerate code and rebuild your
model before you do anything.

To regenerated code and rebuild your model, follow these steps:

1. Make sure Debug is your active configuration. It should appear in boldtype in the browser
when it is set as the active configuration. If needed, in the Rational Rhapsody browser,
right-click the Debug configuration select Set as Active Configuration.

Note: If you have more than one configuration, you can also select the active
configuration from the drop-down list on the Code toolbar.

2. If you have many diagrams open, you might find it less confusing to close them.

3. If the Output window is already open and there is information on the Build tab, to ensure
that you will only be looking at information for the latest code generation/build,
right-click on the tab select Clear. You might want to do this if information from a
previous generation/build is still there.

4. Select Code > Re Generate > Debug. If applicable, fix any errors noted on the Build tab
of the Output window.

5. Select Code > Rebuild Simulate.exe. If applicable, fix any errors noted on the Build tab.
174 C++ Tutorial

Exercise 4: Animating the MMCall Control Activity Diagram
Task 4b: Animating the MMCall Control Activity Diagram

To animate the MMCall Control activity diagram, follow these steps:

1. Start animation:

– Select Code > Run Simulate.exe, or

– Click the Run Executable button .
2. Select Tools > Animated Activity diagram. The Open Animated Activity Diagram

dialog box displays, as shown in the following figure.

3. Select MobilityManagement[0]>MMCallControl click OK.
Rational Rhapsody 175

Lesson 6: Creating Activity Diagrams
4. Click the Go button on the Animation toolbar. Rational Rhapsody displays an
animated version of your activity diagram, as shown in the following figure. Rational
Rhapsody highlights Idle in magenta because it is active, while olive green shows what is
inactive.

5. End the animation when you are done. If necessary, see Task 4f: Quitting Animation.
176 C++ Tutorial

Summary
Summary
In this lesson, you created activity diagrams and a subactivity diagram, which show the functional
flow of placing a call and registering users. You became familiar with the parts of an activity
diagram and created the following:

� Swimlanes
� Action elements
� Send action states
� Subactivity diagram
� Default flows
� Transitions and timeout transitions
� Fork synchronization bar and join synchronization bar

You also regenerated code and rebuilt your model, and then you animated an activity diagram.

You are now ready to proceed to the next lesson, where you are going to identify the action
element-based behavior when the system receives call requests and connects calls using a
statechart.
Rational Rhapsody 177

Lesson 6: Creating Activity Diagrams
178 C++ Tutorial

Lesson 7: Creating Statecharts
Statecharts (SCs) define the behavior of classifiers (actors, use cases, or classes), objects,
including the states that they can enter over their lifetime and the messages, events, or operations
that cause them to transition from state to state.

Statecharts are a key animation tool used to verify the functional flow and moding. Statecharts can
be animated to view the design level of abstraction and graphically show dynamic behavior.

Goals for this Lesson
In this lesson, you are going to create the CallControl statechart to identify the state-based
behavior when the system receives call requests and connects calls.
Rational Rhapsody 179

Lesson 7: Creating Statecharts
Exercise 1: Creating the CallControl Statechart
Statecharts define state-based behavior. The following figure shows the CallControl statechart that
you are going to create in this exercise.

CallControl Statechart
180 C++ Tutorial

Exercise 1: Creating the CallControl Statechart
Task 1a: Creating the CallControl Statechart

The CallControl statechart identifies the state-based behavior of instances of CallControl when the
system receives call requests from users and connects calls. CallControl waits for an incoming
call in the Idle state. When an incoming call is received, it forwards the message. If it does not
receive a confirmation from the network in thirty seconds, it returns to the Idle state. If it receives
a confirmation, the call connects, and remains connected until it receives a message to disconnect.

You draw statecharts using the following general steps:

1. Draw states and nested states.

2. Draw default connectors.

3. Draw send action states.

4. Draw transitions and specify actions on transitions.

5. Draw timeout transitions.

The following tasks describe these steps in detail.

To create a statechart, follow these steps:

1. Start Rational Rhapsody and open the handset model if they are not already open.

2. In the Rational Rhapsody browser, expand the SubsystemsPkg package, the
CM_Subsystem package, the ConnectionManagement object, and the Parts category.
Right-click CallControl and select Add New > Statechart.

or

Open the Connection Management structure diagram. Right-click CallControl and select
New Statechart.

Rational Rhapsody adds the Statechart category and the new statechart to the CallControl part in
the browser, and opens the new statechart in the drawing area.

Note
Once you create a statechart, you can open it using the Diagrams toolbar.
Rational Rhapsody 181

Lesson 7: Creating Statecharts
Task 1b: Drawing States

In this task, you are going to draw two states, Idle and Active. A state is a graphical representation
of the status of an object. It typically reflects a certain set of its internal data (attributes) and
relations. Use the CallControl Statechart figure as a reference.

To draw a state, follow these steps:

1. Click the State button on the Drawing toolbar click on the top section of the drawing
area. (You can also use click-and-drag.) Rational Rhapsody create a state with a default
name of state_n, where n is equal to or greater than 0.

2. Type Idle press Enter. This state indicates that no call is in progress.

3. Draw a larger state named Active in the center of the drawing area. This state indicates
that the call is being set up or is in progress.

Task 1c: Drawing Nested States

In this task, you are going to draw the following states nested inside the Active state.

� ConnectionConfirm to wait for a connection and then confirms the connection
� Connected to connect as a voice or data call

Use the CallControl Statechart figure as reference.

To draw nested states, follow these steps:

1. Click the State button on the Drawing toolbar.

2. In the top half of the Active state, draw a state named ConnectionConfirm.

3. In the bottom half of the Active state, draw a state named Connected.
182 C++ Tutorial

Exercise 1: Creating the CallControl Statechart
Task 1d: Drawing Default Connectors

One of an object’s states must be the default state, that is, the state in which the object finds itself
when it is first instantiated. Idle is in the default state as it waits for call requests, and Active is in
the default state before it confirms the connection. Use the CallControl Statechart figure as a
reference.

To draw default connectors, follow these steps:

1. Click the Default Connector button on the Drawing toolbar.

2. Click to the upper left of the Idle state, click Idle press Ctrl+Enter.

3. Draw a default connector to ConnectionConfirm press Ctrl+Enter.
Rational Rhapsody 183

Lesson 7: Creating Statecharts
Task 1e: Drawing Send Action States

As mentioned in Task 1f: Drawing Send Action States in the previous section on activity diagrams,
the Send Action State element can be used to represent the sending of events to external entities.

To draw a send action state, follow these steps:

1. Click the Send Action State button on the Drawing toolbar.

2. Using the CallControl Statechart figure as a reference, click to the left of the Idle and
Active states.

3. Double-click the Send Action element on the diagram. The Features dialog box opens.

4. On the General tab, in the Target drop-down list, select cc_mm in SubsystemsPkg.

5. In the Event drop-down list, select Disconnect in SubsystemsPkg.

This command sends an asynchronous message out the cc_mm port when disconnecting.

6. Click OK to close the Features dialog box for the send action.

7. Draw another Send Action State between the Idle and Active states: For the Target, select
cc_mm in SubsystemsPkg; for the Event, select PlaceCallReq in SubsystemsPkg.

This command sends an asynchronous message out the cc_mm port when placing a call.
184 C++ Tutorial

Exercise 1: Creating the CallControl Statechart
8. Click OK to close the Features dialog box.

9. Save your statechart.

Your statechart should resemble the following figure:
Rational Rhapsody 185

Lesson 7: Creating Statecharts
Task 1f: Drawing Transitions

In this task, you are going to draw transitions with triggers. Transitions represent the response to a
message in a given state. They show what the next state is going to be. A transition can have an
optional trigger, guard, or action. Use the CallControl Statechart figure as a reference.

To draw transitions, follow these steps:

1. Click the Transition button on the Drawing toolbar.

2. Click the Idle state and then click the PlaceCallReq to cc_mm send action state.

3. In the label box, type PlaceCallReq press Ctrl+Enter.

4. Create a transition from PlaceCallReq to cc_mm to Active.

5. Create a transition from ConnectionConfirm to Connected named ConnectConfirm.

6. Create a transition from the Active state to the Disconnect to cc_mm send action state
named Disconnect. This transition indicates that the user has disconnected or the
network has terminated the call.

7. Create a transition from the Disconnect to cc_mm send action state to Idle.

Note
To change the line shape, right-click the line, select Line Shape, and then Straight, Spline,
Rectilinear, or Re-Route.
186 C++ Tutorial

Exercise 1: Creating the CallControl Statechart
Task 1g: Drawing a Timeout Transition

In this task, you are going to draw a timeout transition in which ConnectionConfirm waits thirty
seconds before returning to the Idle state if a connect confirmation is not made. A timeout
transition causes an object to transition to the next state after a specified amount of time has
passed. It is an event with the form tm(n), where n is the number of milliseconds the object should
wait before making the transition. Use the CallControl Statechart figure as a reference.

To draw a timeout transition, follow these steps:

1. Click the Transition button on the Drawing toolbar.

2. Draw a transition from ConnectionConfirm to Idle.

3. Type tm(30000) press Ctrl+Enter.

4. Save your statechart.

You have completed drawing the CallControl statechart. It should resemble the CallControl
Statechart figure. Rational Rhapsody automatically adds the newly created states and transitions to
the CallControl part in the browser.
Rational Rhapsody 187

Lesson 7: Creating Statecharts
Exercise 2: Animating the CallControl Statechart
As mentioned in earlier lessons, as a model gets more and more complicated, it is a good practice
to stop and validate the model periodically and provide design-level debugging. In this task, you
are going to regenerate the code, rebuild the model, and animate the CallControl statechart.

Animated statecharts show how states transition to other states while the model is executing.

Note
You must have completed Lesson 4: Generating Code and Building Your Model and Lesson 5:
Creating Sequence Diagrams before you perform this task. In working through tasks in these
previous lessons, you set up the Simulate component and the Debug configuration, and you
made settings necessary for animation.

Task 2a: Regenerating Code and Rebuilding the Model

To do this task, follow these steps:

1. Make sure Debug is your active configuration. It should appear in boldtype in the browser
when it is set as the active configuration. If needed, in the Rational Rhapsody browser,
right-click the Debug configuration select Set as Active Configuration.

Note: If you have more than one configuration, you can also select the active
configuration from the drop-down list on the Code toolbar.

2. If you have many diagrams open, you might find it less confusing to close them.

3. If the Output window is already open and there is information on the Build tab, to ensure
that you will only be looking at information for the latest code generation/build,
right-click on the tab select Clear. You might want to do this if information from a
previous generation/build is still there.

4. Select Code > Re Generate > Debug. If applicable, fix any errors noted on the Build tab
of the Output window.

5. Select Code > Rebuild Simulate.exe. If applicable, fix any errors noted on the Build tab.
188 C++ Tutorial

Exercise 2: Animating the CallControl Statechart
Task 2b: Animating the CallControl Statechart

1. Start animation:

� Select Code > Run Simulate.exe, or

� Click the Run Executable button .
2. Select Tools > Animated Statechart. The Open Animated State Chart dialog box

displays, as shown in the following figure.

3. Select ConnectionManagement[0]->CallControl click OK. Rational Rhapsody displays
an animated version of your statechart.
Rational Rhapsody 189

Lesson 7: Creating Statecharts
4. Click the Go button on the Animation toolbar. Rational Rhapsody displays an
animated version of your activity diagram, as shown in the following figure. Rational
Rhapsody highlights Idle in magenta because it is active, while olive green shows what is
inactive.

5. End the animation when you are done. If necessary, see Task 4f: Quitting Animation.

Summary
In this lesson, you created a statechart, which identifies the state-based behavior when the system
receives call requests and connects calls. You became familiar with the parts of a statechart and
created the following:

� States and nested states
� Default connectors
� Send action states
� Transitions and timeout transitions

You also regenerated code and rebuilt your model, and then you animated your statechart.

You have completed the handset model. You are now ready to proceed to the next lesson, where
you learn more about animation, including sending events to your model.
190 C++ Tutorial

Lesson 8: More Animation
Animation is the observable execution of behaviors and associated definitions in the model.
Rational Rhapsody animates the model by executing the code generated, with instrumentation, for
classes, operations, and associations. Once you start model animation, you can open animated
diagrams, which let you observe the model as it is running and perform design-level debugging.
You can step through the model, set and clear breakpoints, inject events, and generate an output
trace.

It is good practice to test the model incrementally using model execution, which you have
practiced in earlier lessons. You can animate pieces of the model as it is developed. This gives you
the opportunity to determine whether the model meets the requirements and find defects early on.
Then you can test the entire model. In this way, you iteratively build the model, and then with each
iteration perform an entire model validation.

In the previous lessons you animated a sequence diagram, activity diagram, and a statechart
individually. Now that you have completed designing your model so that all your model elements
are in place, you can view a fuller animation sequence for your handset model.

Goals for this Lesson
In the previous lessons on sequence diagrams, activity diagrams, and statecharts you learned about
animation and you animated these diagrams. In this lesson, you are going to send events to your
model and view this in animation.
Rational Rhapsody 191

Lesson 8: More Animation
Exercise 1: Animating Your Diagrams
This tutorial assumes that you have done the lessons in order in this tutorial.

Before you can animate your model, you have to generate code and build your model, which you
learned how to do in Lesson 4: Generating Code and Building Your Model. You also learned how to
set up for animation and run animation as part of Lesson 5: Creating Sequence Diagrams
(specifically in Exercise 4: Animating a Sequence Diagram).

Task 1a: Preparing for Animation

Before you do animation, regenerate your code and rebuild your model so that you know that you
are working with the latest code and model. If necessary, see Exercise 2: Animating the CallControl
Statechart from Lesson 7: Creating Statecharts.

Task 1b: Animating Your Diagrams

Open the following diagrams and animate them:

1. Connection Management Place Call Request Success sequence diagram
(select Tools > Animated Sequence Diagram). If necessary, see Exercise 4: Animating a
Sequence Diagram. Once you animate this diagram, the other diagrams will be animated
once you open them.

2. MMCallControl activity diagram
(select Tools > Animated Activity Diagram). If necessary, see Exercise 4: Animating the
MMCall Control Activity Diagram.

3. ConnectionManagement>CallControl statechart
(select Tools > Animated Statechart). If necessary, see Exercise 2: Animating the
CallControl Statechart.
192 C++ Tutorial

Exercise 2: Sending Events to Your Model
Exercise 2: Sending Events to Your Model
You can inject events in an animated diagram to see how the model reacts. In this exercise, you are
going to generate an event in the animated statechart and view the resulting behavior in the
animated statechart, animated sequence diagram, and animated activity diagram. You also get to
send the Disconnect event to your model

Task 2a: Sending an Event to Your Model

To send an event to your model, follow these steps:

1. In the animated CallControl statechart, right-click Idle and select Generate Event. The
Events dialog box opens.

2. From the Event drop-down list box, select PlaceCallReq, as shown in the following
figure.
Rational Rhapsody 193

Lesson 8: More Animation
3. Click OK to close the dialog box.

In the animated statechart, Idle and PlaceCallReq becomes inactive (olive), and Active
and ConnectionConfirm become active (magenta), as shown in the following figure.

Then ConnectionConfirm and ConnectConfirm become inactive, and Connected
becomes active, as shown in the following figure:

.

194 C++ Tutorial

Exercise 2: Sending Events to Your Model
4. Switch to the animated ConnectionManagement Place Call Request Success sequence
diagram. Rational Rhapsody dynamically displays how the instances pass messages, as
shown in the following figure.

Rational Rhapsody 195

Lesson 8: More Animation
5. Switch to the animated MMCallControl activity diagram. Idle becomes inactive (olive).
Register and CheckSignal become active (magenta), and then LocationUpdate becomes
active.

Then LocationUpdate becomes inactive, and InCall becomes active, as shown in the
following figure:

You can continue generating events and viewing the resulting behavior in the animated diagrams.
196 C++ Tutorial

Exercise 2: Sending Events to Your Model
Task 2b: Sending Another Event

To send another event to your model, follow these steps:

1. In the animated CallControl statechart, right-click Idle and select Generate Event.

2. Select Disconnect in the Event drop-down list box, and click OK.

3. View your statechart, which should show a transition to the Idle state (magenta) and
Active and Disconnect become inactive (olive green), as shown in the following figure:
Rational Rhapsody 197

Lesson 8: More Animation
4. View your animated ConnectionManagement Place Call Request Success sequence
diagram. Rational Rhapsody displays how the Disconnect message, as shown in the
following figure:
198 C++ Tutorial

Exercise 2: Sending Events to Your Model
5. Switch to the animated MMCallControl activity diagram, Idle transitions to the active
state (magenta) and InCall becomes inactive (olive green).
Rational Rhapsody 199

Lesson 8: More Animation
Task 2c: Quitting Animation

To end the animation session, follow these steps:

1. Click the Animation Break button on the Animation toolbar click the Quit Animation

button .

2. Click Yes to confirm ending the animation session.

The Output window displays the message Animation session terminated.

Note
When you close the project or an animated sequence diagram, Rational Rhapsody prompts
whether or not you want to save the diagram. Saving an animated sequence diagram is
useful in order to compare the results of the current session to those of different execution
scenarios.

Summary
In this lesson, you animated the model and sent events to the model and saw it progress through
states and pass messages.

In the next section, you learn about Technical Support and documentation plus other useful
information.
200 C++ Tutorial

Index
Symbols
_rpy file 11
_RTC directory 11

A
Action element 155
Active configuration 115
Activity diagram 5, 149

action element 155
animating 174
creating 149
default flow 157
fork sync bar 162
InCall 166
join sync bar 163
MMCallControl 152
opening subactivity diagram 167
RegistrationMonitor 170
subactivity 157
swimlanes 153
timeout transition 165
transition 160

Actor 31
associating with use cases 40
line 123

Actor lines 123
Analysis mode 122
Anchor 43
Animation 139, 191

activity diagram 174
browser 145
Call Stack window 142
configuration 114
Event Queue window 142
generating code 115
injecting events 193
output panes 142
quitting 147, 200
sending events 193
sequence diagram 143
starting 141
statechart 188

Association 40
Autosave 12

B
Backup 12
Behavioral port 76
Black-box analysis 29
Boundary box 35
Browser 22
Building the model 117

C
C++ language 1

case-sensitivity 19
Call stack 142
Case-sensitivity 19
Categories 22
Classifier roles 124, 135
Code 1
Code generation 115

debugging 116, 118
source files 116

Collaboration diagram 5
Comment 43
Compilers 140
Component 112

creating 112
creating configuration 114
default description 112
features 113

Component diagram 5
Configuration 114

creating animation 114
Debug 115
default 114

Connection Management Place Call Request Success
sequence diagram 133

Connection Management structure diagram 91
Constraint 43
Contract-based port 82
Creating

activity diagram 149
animation configuration 114
component 112
handset project 7
object model diagram 107
sequence diagram 119
Rational Rhapsody 201

Index
statechart 179
structure diagram 65
use case diagram 31

D
Data Call Requirements use case diagram 58
Data Link structure diagram 96
Debug configuration 115
Debugging 116, 118
Default component 112
Default configuration 114
Default connector 183
Default flow 157
Dependency 54

adding stereotype 56
Deployment diagram 5
Description tab 25
Design mode 122
Diagrams 5

activity 149
Connection Management Place Call Request

Success 133
Connection Management structure diagram 91
Data Call Requirements 58
Data Link structure diagram 96
Functional Overview 32
Handset System structure diagram 66
InCall subactivity diagram 166
MM Architecture structure diagram 100
MMCallControl 152
NetworkConnect 129
object model 105
Place Call Overview 45
Place Call Request Successful 121
RegistrationMonitor 170
sequence 119
statechart 179
Subsystem Architecture object model diagram 106
UML 5
use case 31

Display options 53
Docking the Features dialog box 28
Domains 13
Drawing area 23
Drawing toolbar 23

E
ehl file 11
Elements

adding remarks 43
display options 53
external 116
labeling 160
organizing 88

Event 83, 125, 127, 132, 165, 187, 193

Event history file 11
Event Queue 142
Events, naming conventions 19
External elements 116

F
Features dialog box 24

Apply and OK buttons 24
Description tab 25
docking 28
General tab 25
keeping open 24
moving 28
Properties tab 27
Relations tab 26
requirement description 51
save all changes 48
tabs 25
Tags tab 26

Files 11
code generation 116
project 9
source 116

Flow 77
changing the direction 78
drawing 77
specifying flow items 79

Flow charts 5
Flow item 79
Folders 11
Fork sync bar 162
Fork synchronization 162
Functional Overview use case diagram 32

G
General tab 25
Generalization 42
Generated source files 116
Generating C++ code 1
Generating code for animation 115
Graphical user interface 20

H
Handset 2

activity diagram 149
animating 139, 191
creating 7
object model diagram 105
opening 18
sequence diagram 119
statechart 179
use case diagram 31

Handset System structure diagram 66, 67
Help pane for property 16
202 C++ Tutorial

Index
I
Implementation 13, 119
InCall subactivity diagram 166
Instance area 121
Instance line 124, 135
Interaction occurrence 128
Interface naming conventions 19
Interfaces 82

J
Join sync bar 163
Join synchronization 163

L
Labeling elements 160
Legacy code 116
Line shapes 81
Link 94, 110
Linux 6
Locate in Browser 127
Log files 11

M
Makefile 139
Message pane 121
Messages 125
MM Architecture structure diagram 100
MMCallControl activity diagram 152
Model building 117
Models

naming conventions 19
Moving the Features dialog box 28

N
Names pane 121
Naming conventions 19
Nested state 182
NetworkConnect sequence diagram 129
Non-behavioral port 76
Noncontract-based port 82
Note 43

O
Object model diagram 5

link 110
Subsystem Architecture 106

Objects 69
adding stereotype 70
diagram 67
drawing 72

Occurrence 128
Opening

project 18
Rational Rhapsody 6

Operations
names 19
naming conventions 19

Output window 23, 116, 118
Call Stack 142
Event Queue 142

P
Packages 13, 16, 22

AnalysisPkg 13, 33, 113, 138
ArchitecturePkg 13, 67, 89, 109, 113, 132
RequirementsPkg 13, 50
SubsystemsPkg 13, 88, 89, 107, 113, 122, 132, 151, 181

Place Call Overview use case diagram 45
Place Call Request Successful sequence diagram 121
Port 75

behavioral 76
changing the placement 93
contract-based 82
drawing 75
non-behavioral 76
noncontract-based 82
rapid 82
reversing 87
specifying port contract 82

Port contract 82
Predefined types of packages 16
Profiles 8
Project

creating 7
files 11
opening 18
saving 12

Project files 9, 11
Project folder 22
Project node 22
Project profiles 7
Project subfolders 11
Project types 7
Properties 42
Properties tab 16, 27
Provided interfaces 82

Q
Quitting animation 147, 200

R
Rapid port 82
Rational Rhapsody

autosave 12
Rational Rhapsody 203

Index
backup 12
browser 22
closing 6
drawing area 23
Drawing toolbar 23
exiting 6
Features dialog box 24
GUI 20
interface 20
naming conventions 19
Output window 23
project profiles 7
project types 7
specialized profiles 7
starting 6
toolbars 21
UML diagrams 5

Rebuilding the application 116, 118
Rectilinear line 81
Regenerating code 116, 118
RegistrationMonitor activity diagram 170
Relations tab 26
Remarks 43
Repository directory 11
Required interfaces 82
Requirement 43
Requirements elements 50
Requirements traceability 50
Reverse engineering 1
rpy file 11

S
Send Action State 158, 172
Sending events

animation 193
Sequence diagram 5, 119

actor line 123
animating 143
classifier role 124, 135
Connection Management Place Call Request

Success 133
creating 119
instance area 121
instance line 124
interaction occurrence 128
message 125
Message pane 121
Names pane 121
NetworkConnect 129
operation mode 122
Place Call Request Successful 121
system border 134
time interval 131
types of messages 125

Source files 116
Specialized profiles 8

Spline line 81
Stamp mode 75
State 182
Statechart 5, 179

animating 188
creating 179
default connector 183
nested state 182
state 182
timeout transition 187
transition 186

Stereotype 56
dependency 56
subsystem 70

Straight line 81
Structure diagram 5

Connection Management 91
creating 65
Data Link 96
flow 77
Handset Structure 67
link 94
MM Architecture 100
objects 69, 72
port 75
specifying flow items 79

Structure diagrams 65
Subactivity 157
Subactivity diagram 166, 167
Subfolders 11
Subsystem Architecture object model diagram 106
Subsystems 13
Swimlanes 153
System border 134

T
Tags tab 26
Time interval 131
Timeout transition

activity diagram 165
statechart 187

Toolbars 21, 23
Traceability 13, 50
Transition

activity diagram 160
specifying action 165
statechart 186
timeout 187

Troubleshooting
case-sensitivity 19

Types of profiles 8

U
UML (Unified Modeling Language) 1
Unit 12
204 C++ Tutorial

Index
Use case
associating with actors 40
drawing 37
features 39

Use case diagram 5, 31
boundary box 35
Data Call Requirements 58
dependencies 54
drawing 34
Functional Overview 32
Place Call Overview 45
requirements 52

use cases 37

V
vba file 11

W
White-box analysis 29
Windows 6
Rational Rhapsody 205

Index
206 C++ Tutorial

	Contents
	Getting Started
	Audience for the C++ Tutorial
	Before You Begin
	C++ Tutorial Overview
	C++ Tutorial Objectives
	Documentation Conventions
	About the Rational Rhapsody Product
	UML Diagrams
	Starting the Rational Rhapsody Product
	Closing the Rational Rhapsody Product

	Setting Up the C++ Tutorial
	Creating a Project
	About a Rational Rhapsody Project
	About Project Files and Folders

	Saving a Project
	About Autosave
	About Backups

	Organizing the Model Using Packages
	Hiding Predefined Packages

	Opening the Handset Model
	Using Naming Conventions
	Prefixes
	Model Element Names

	Rational Rhapsody User Interface
	Toolbars
	Browser
	Filtering the Browser
	Repositioning the Browser

	Drawing Area
	Output Window
	Drawing Toolbars
	Features Dialog Box
	Keeping Open the Features Dialog Box
	Tabs for the Features Dialog Box
	Moving the Features Dialog Box

	Summary

	Lesson 1: Creating Use Case Diagrams
	Goals for this Lesson
	Exercise 1: Creating the Functional Overview UCD
	Task 1a: Creating the Functional Overview Use Case Diagram
	Preparing to Draw the Functional Overview UCD

	Task 1b: Drawing the Boundary Box and Actors
	Task 1c: Drawing the Use Cases
	Task 1d: Defining Use Case Features
	Task 1e: Associating Actors with Use Cases
	Task 1f: Drawing Generalizations
	Task 1g: Adding Remarks to Model Elements and Diagrams

	Exercise 2: Creating the Place Call Overview UCD
	Task 2a: Creating the Place Call Overview Use Case Diagram
	Task 2b: Drawing the Use Cases
	Task 2c: Defining Use Case Features
	Task 2d: Drawing Generalizations
	Task 2e: Modeling Requirements in Rational Rhapsody
	Adding Requirement Elements to the Model
	Adding Requirement Elements
	Setting the Display Options for Requirement Elements
	Drawing Dependencies
	Defining the Stereotype of a Dependency

	Exercise 3: Creating the Data Call Requirements UCD
	Task 3a: Creating the Data Call Requirements Use Case Diagram
	Task 3b: Adding Requirements
	Task 3c: Drawing and Defining the Dependencies

	Summary

	Lesson 2: Creating Structure Diagrams
	Goals for this Lesson
	Exercise 1: Creating the Handset System Structure Diagrams
	Task 1a: Creating the Handset System Structure Diagram
	Task 1b: Drawing Objects
	Defining the Object Stereotype

	Task 1c: Drawing More Objects
	Setting the Object Stereotype and Type

	Task 1d: Drawing Ports
	Specifying Port Attributes

	Task 1e: Drawing Flows
	Changing the Direction of the Flow
	Specifying the FlowItems
	Changing the Line Shape

	Task 1f: Specifying the Port Contract
	Reversing a Port

	Task 1g: Allocating the Functions Among Subsystems
	Organizing the SubsystemsPkg Package
	Organizing Elements

	Exercise 2: Creating the Connection Management Structure Diagram
	Task 2a: Creating the Connection Management Structure Diagram
	Task 2b: Drawing Objects
	Task 2c: Drawing Ports
	Changing the Placement of Ports

	Task 2d: Drawing Links

	Exercise 3: Creating the Data Link Structure Diagram
	Task 3a: Creating the Data Link Structure Diagram
	Task 3b: Drawing Objects
	Task 3c: Drawing Ports
	Task 3d: Drawing Links
	Task 3e: Specifying the Port Contract and Attributes

	Exercise 4: Creating the MM Architecture Structure Diagram
	Task 4a: Creating the MM Architecture Diagram
	Task 4b: Drawing Objects
	Task 4c: Drawing Ports
	Task 4d: Drawing Links
	Task 4e: Specifying the Port Contract and Attributes

	Summary

	Lesson 3: Creating Object Model Diagrams
	Goals for this Lesson
	Exercise 1: Creating the Subsystem Architecture OMD
	Task 1a: Creating the Subsystem Architecture Object Model Diagram
	Task 1b: Drawing Objects
	Task 1c: Drawing More Objects
	Task 1d: Drawing Links

	Summary

	Lesson 4: Generating Code and Building Your Model
	Goals for this Lesson
	Exercise 1: Preparing for Generating Code
	Task 1a: Creating a Component
	Task 1b: Setting the Component Features
	Task 1c: Creating a Configuration
	Task 1d: Generating Code
	Fixing Code Generation Errors
	About Code Generation Warnings
	Examining Generated Source Files
	Using External Elements

	Task 1e: Building the Model
	Fixing Build Errors

	Summary

	Lesson 5: Creating Sequence Diagrams
	Goals for this Lesson
	Exercise 1: Creating the Place Call Request Successful SD
	Task 1a: Creating the Place Call Request Sequence Diagram
	Task 1b: Drawing Actor Lines
	Task 1c: Drawing Classifier Roles
	Task 1d: Drawing Messages
	Task 1e: Drawing an Interaction Occurrence

	Exercise 2: Creating the NetworkConnect SD
	Task 2a: Creating the NetworkConnect Sequence Diagram
	Opening a Reference Sequence Diagram

	Task 2b: Drawing Messages
	Task 2c: Drawing Time Intervals
	Task 2d: Moving Events

	Exercise 3: Creating the Connection Management Place Call Request Success SD
	Task 3a: Creating the Connection Management Place Call Request Success Sequence Diagram
	Task 3b: Drawing the System Border
	Task 3c: Drawing Classifier Roles
	Task 3d: Drawing Messages
	Task 3e: Setting the Features of locationUpdate
	Task 3f: Moving ConfirmIndication

	Exercise 4: Animating a Sequence Diagram
	Task 4a: Changing the Settings for the Debug Configuration
	Task 4b: Regenerating Code and Rebuilding Your Model
	Task 4c: Starting Animation
	Task 4d: Animating a Sequence Diagram
	Task 4e: Viewing the Browser
	Task 4f: Quitting Animation

	Summary

	Lesson 6: Creating Activity Diagrams
	Goals for this Lesson
	Exercise 1: Creating the MMCallControl Activity Diagram
	Task 1a: Creating an Activity Diagram
	Task 1b: Drawing Swimlanes
	Task 1c: Drawing Action Elements
	Task 1d: Drawing a Default Flow
	Task 1e: Drawing a Subactivity
	Task 1f: Drawing Send Action States
	Task 1g: Drawing Transitions
	Drawing Transitions Between Actions

	Task 1h: Drawing a Fork Synchronization
	Task 1i: Drawing a Join Synchronization
	Task 1j: Drawing a Timeout Transition
	Task 1k: Specifying an Action on a Transition

	Exercise 2: Creating the InCall Subactivity Diagram
	Task 2a: Creating the InCall Subactivity Diagram
	Task 2b: Drawing Action Elements
	Task 2c: Drawing a Default Flow
	Task 2d: Drawing Transitions
	Task 2e: Drawing a Timeout Transition

	Exercise 3: Creating the RegistrationMonitor Activity Diagram
	Task 3a: Creating the RegistrationMonitor Activity Diagram
	Task 3b: Drawing Action Elements
	Task 3c: Drawing a Send Action State
	Task 3d: Drawing a Default Flow
	Task 3e: Drawing Transitions
	Task 3f: Drawing a Timeout Transition

	Exercise 4: Animating the MMCall Control Activity Diagram
	Task 4a: Regenerating Code and Rebuilding Your Model
	Task 4b: Animating the MMCall Control Activity Diagram

	Summary

	Lesson 7: Creating Statecharts
	Goals for this Lesson
	Exercise 1: Creating the CallControl Statechart
	Task 1a: Creating the CallControl Statechart
	Task 1b: Drawing States
	Task 1c: Drawing Nested States
	Task 1d: Drawing Default Connectors
	Task 1e: Drawing Send Action States
	Task 1f: Drawing Transitions
	Task 1g: Drawing a Timeout Transition

	Exercise 2: Animating the CallControl Statechart
	Task 2a: Regenerating Code and Rebuilding the Model
	Task 2b: Animating the CallControl Statechart

	Summary

	Lesson 8: More Animation
	Goals for this Lesson
	Exercise 1: Animating Your Diagrams
	Task 1a: Preparing for Animation
	Task 1b: Animating Your Diagrams

	Exercise 2: Sending Events to Your Model
	Task 2a: Sending an Event to Your Model
	Task 2b: Sending Another Event
	Task 2c: Quitting Animation

	Summary

	Index

